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ABSTRACT

On Probabilistic Representations of Microstructure for Multi-scale Modeling

by

Abhishek Kumar

Chair: Veera Sundararaghavan

In this thesis, several innovative methods for microstructure representation, recon-

struction, property analysis and optimization are developed. Metallic microstructures

are stochastic by nature and a single snapshot of the microstructure does not give

the complete variability. However, experiments to assess the complete microstructure

map of large aerospace structures are computationally prohibitive. One contribution

of this thesis is on the development of a Markov Random Field approach to generate

microstructures from limited experimental measurements of the microstructure. The

result is a simple method for generating 3D microstructures from 2D micrographs that

generates visually striking 3D reconstructions of anisotropic microstructures and is

computationally efficient.

Traditionally, finite elements techniques have been used to analyze properties of

metallic microstructures. While finite element methods forms a viable approach for

modeling a few hundred grains, a macroscale component such as turbine disk con-

tains millions of grains and simulation of such ‘macroscale’ components is a chal-

lenging task even when using current state-of-the-art supercomputers. In addition,

finite element simulations are deterministic while polycrystalline microstructures are

xiii



inherently stochastic in nature. An alternate class of schemes have been developed in

this work that allows representation of microstructure using probabilistic descriptors..

We have employed this descriptor to represent the microstructure of an Iron-Gallium

alloy (Galfenol). We have developed computational methods to link these properties

with the ODF descriptor. Subsequently, we have employed data mining techniques

to identify microstructural features (in the form of ODFs) that lead to an optimal

combination of magnetostrictive strains, yield strength and elastic stiffness.

Since ODF representation does not contain information about the local neighbor-

hood of crystals, all crystals are subject to the same deformation and equilibrium

across grain boundaries is not captured. We also done preliminary work on the use

of higher order probability descriptors that contains neighborhood information. Of

specific interest is the two–point correlation function(COCF) that arises in known

expressions for mechanical and transport properties. The improvement in predic-

tion of texture and strains achieved by the COCF approach is quantified through

deformation analysis of a planar polycrystalline microstructure.

xiv



CHAPTER I

Introduction

Integrated Computational Materials Engineering (ICME) is an emerging paradigm

for materials design that emphasizes integration of material models at multiple length

scales with engineering analysis of products and processes. For example, during sim-

ulation of metal forming processes, microstructure evolution can be explicitly tracked

to facilitate design of processing paths that lead to optimized microstructure. At the

microstructural level, a popular material model is based on finite element analysis of

polycrystalline aggregates via crystal plasticity theory ([20, 28, 99, 18, 116, 126, 100]).

Here, microstructure evolution in the form of reorientation of crystals(texturing) is

modeled by deforming an aggregate of grains characterized using microdiffraction

techniques. Deformation mechanisms such as dislocation slip and twinning are mod-

eled using constitutive laws based on state variables such as dislocation densities or

slip system resistances along various slip systems. Reorientation of grains and evo-

lution of the threshold stress along each slip system due to various hardening mech-

anisms (self-hardening, latent hardening etc.) are modeled. The grain-level stresses

are averaged to obtain the mechanical response (stress-strain curve) and crystallo-

graphic texture is post-processed. While CPFE forms a viable approach for modeling

a few hundred grains, a macroscale component such as turbine disk contains mil-

lions of grains and simulation of such ‘macroscale’ components is a challenging task

1



even when using current state-of-the-art supercomputers. Thus, such simulations

have not yet been successfully integrated (via two-way, run time coupling) to com-

mercial deformation process simulation (FE) codes. Instead, several codes employ

phenomenological models or decouple such material models from engineering soft-

ware (through postprocessing). These methods lead to oversimplifications and often

significant deviations from real behavior. In addition, finite element simulations are

deterministic while polycrystalline microstructures are inherently stochastic in nature

and a single snapshot of the microstructure does not predict the correct behavior of

the material.

In the second chapter of the thesis, a novel method to sample microstructures

is presented. Of particular interest in this work is sampling of 2D and 3D mi-

crostructures from limited information known through experiments. Towards this

end, Voronoi construction has been used in several studies in modelling polycrys-

talline microstructures [150, 73, 138]. Microstructures are generated by altering the

voronoi cell generator points, altering aspect ratios [27] and orientations. However,

Voronoi constructions are largely an idealization and do not account for the complex-

ity of real microstructures (eg. non-convex grain shapes). Physics based simulations

based on Monte Carlo and phase field methods are computationally intensive and

several parameters (eg. nucleation models, free energy models) need to be care-

fully calibrated from experiments. Markov Random Field methods developed in this

thesis provide an efficient route to sample microstructures [39]. Given a small input

microstructure, these algorithms can reconstruct larger microstructures pixel-by-pixel

using patten matching algorithms. An inverse problem of specific interest in this the-

sis is the reconstruction of 3D microstructures from three orthogonal 2D sectional

images taken along the x-, y- and z- planes. The information contained in these three

2D micrographs is in the form of pixels containing colors corresponding to different

constituent phases. The outcome of the inverse problem is a 3D microstructure con-
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taining voxels colored consistently such that any arbitrary x-, y- or z- slice ‘looks’

similar to the corresponding input micrographs. This reconstruction problem leads

to anisotropic microstructures, which is in contrast to other such works in litera-

ture that use a single reference (2D) image and make assumptions of microstructural

isotropy, i.e. slices in every direction look similar to a single input image [127]. Most

popular among these methods involve matching statistical features like two-point cor-

relation functions of a single planar image to a random 3D image using optimization

procedures like simulated annealing [147, 88]. Extension of these methods to achieve

anisotropic microstructures have been proposed in the past using directionally de-

pendent statistical features [108]. However, these methods are restricted to simple

two-phase microstructures and are not applicable to more complex microstructures

such as metallic polycrystals. The approach proposed here involves maximizing the

similarity between the solid microstructure and the 2D sectional microstructures by

minimizing a neighborhood cost function. This cost function ensures that the lo-

cal neighborhood on 2D slices taken along the x-,y- or z- directions through the 3D

microstructure is similar to some neighborhood in the 2D micrograph imaged along

that plane. The result is a simple method for generating 3D microstructures from

2D micrographs that generates visually striking 3D reconstructions of anisotropic mi-

crostructures, is computationally efficient and is applicable to diverse microstructures.

In the subsequent chapters of this thesis, an alternative to computationally ex-

pensive crystal plasticity finite element methods is studied. In this approach, prob-

abilistic descriptors are modeled rather than actual microstructure during property

computation. The simplest of these descriptors is the one-point probability measure,

the orientation distribution function (A(g)), which quantifies the volume fractions

of crystals in the orientation space (g). Under an applied deformation, texturing is

simulated by numerically evolving the ODF using conservation laws [34]. Conven-

tional solution schemes are based upon representation of the ODF using a series of
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Figure 1.1: Multiscale modeling using descriptors: The initial microstructure is sam-
pled to obtain the descriptor which is then represented in a finite element mesh.
The descriptors are directly evolved during thermomechanical processing to compute
change in properties.

harmonics [63, 29, 2, 60] or finite elements [66, 67]. We have employed this descrip-

tor to represent the microstructure of an Iron-Gallium alloy (Galfenol). Galfenol is

a recently discovered lowcost alloy that has several attractive properties including

low magnetic hysteresis, high mechanical strength and good magnetostrictive strains

under low magnetic fields. When a magnetic field is applied to Galfenol single crys-

tal, the boundaries between the magnetic domains shift and rotate, both of which

cause a change in the material’s dimensions. This behavior, termed magnetostriction,

has been successfully to transduce magnetic field to mechanical force in micro–scale

(MEMS) sensors and actuators. While single crystals of Galfenol provide large mag-

netostriction, their preparation is expensive. It is well known that thermomechanical

processes (such as rolling and extrusion) may provide means to develop polycrystalline

Galfenol with properties comparable to expensive single crystals [61]. However, it has

proved difficult to predict (and thus, control) the large changes in properties such as

magnetostriction and yield strength that occur during thermomechanical processing.

For example, warm rolled and annealed specimens retain high magnetostriction but

are quite brittle; whereas, cold rolled specimens have high yield strength but lose

their magnetostriction [31, 16]. Consequently, it is important to study the effect of
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meso–scale features (such as texture, misorientation distribution) on the response of

these alloys. For example, experimental studies suggest that internal inhomogeneous

strains introduced by microstructural changes play an important role in determin-

ing the final magnetostriction in Galfenol [52]. In chapter 3, we have calibrated a

rate-independent elasto-plastic model of BCC Galfenol single crystal for studying the

effect of forming processes on the microstructure response. Both loading and un-

loading processes have been simulated and a finite strain homogenization algorithm

has been developed to investigate microstructural response under coupled magnetic

and stress fields. In chapter 4 of the thesis, we have used this model to identify mi-

crostructural features (in the form of ODFs) that lead to an optimal combination of

magnetostrictive strains, yield strength and elastic stiffness is developed.

Since ODF representation does not contain information about the local neigh-

borhood of crystals, Taylor assumption [132] is typically used where all crystals are

subject to the same macroscopic strain and equilibrium across grain boundaries is

not captured. In chapter 5 of the thesis, we investigate a higher order probability de-

scriptor, the orientation correlation function (OCF), for representing polycrystalline

microstructures. The OCF arises in known expressions for mechanical and trans-

port properties [108, 22] and correlates with defect-sensitive properties such as stress

corrosion cracking and creep [137]. The OCF defined by F(g′, g, r), gives the proba-

bility density of finding orientations g′ and g at the end points of a randomly placed

vector r within the microstructure. In addition to containing volume fraction infor-

mation, the OCF also contains crystal neighborhood information that can be used

in models that predict interactions between grains. Finite element representation

of the two–point measure is challenging due to its high dimensionality, for example,

nine–dimensional elements are needed to fully discretize the OCF for a 3D FCC poly-

crystal. Analytical approximations in the form of exponentially decaying functions

(based on the Corson’s model, [36, 47]) have been developed for approximating the
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two–point probability function. More recently, Adams exploited the use of inter-

mediate representation called ‘texture functions’, approximated in Fourier space [4].

However, these are global approximations and are not efficient in capturing sharp

changes in the two–point probability function that occur in real microstructures. In

this work, we attempt to develop a simplified finite element representation of the

two–point measure using an approach analogous to ‘separation of variables’ method

used for solving differential equations. Here, the OCF is described using intercon-

nected layers of meshes in g, r and g′ spaces. The conditional orientation correlation

function (COCF), F(g′|(g, r)) is described using a finite element mesh in the 3D ori-

entation space of g′. This mesh is linked to a node r in a separate mesh representing

the local neighborhood of orientation g. As the microstructure evolves, the crystal

reorientations close to an orientation (g) is captured by updating probability fields in

these interconnected finite element meshes. A novel total Lagrangian approach has

been developed that allows evolution of probability densities while satisfying basic

normalization constraints. The piecewise polynomial functions used to represent the

COCF allow ease of construction of various orientation transformations, such as dif-

ferencing, interpolation and projection. The improvement in prediction of texture and

strains achieved by the COCF approach over ODF–based methods has been quanti-

fied through simple deformation analysis of a planar polycrystalline microstructure.

For this simulation, we employ a viscoplastic (non–hardening) constitutive model and

a Green’s function based first order correction to the Taylor model previously devel-

oped in [3]. In contrast to finite element methods for which simulation time increases

with the size of the RVE, the simulation time is practically constant with the size

or discretization of the microstructure. For realistic microstructures, the COCF ap-

proach is expected to be significantly faster than FE approaches. In chapter 6 of the

thesis, we propose some future work in this area, including extension of the approach

to other alloys (HCP Titanium) .
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CHAPTER II

Markov Random Fields for synthesis of metallic

microstructures

Microstructures and resulting properties are stochastic in nature and a single snap-

shot of the microstructure does not give the complete variability of microstructure.

However, experiments to assess the complete microstructure map of large naval struc-

tures are computationally prohibitive. It is of interest to generate various possible

microstructures from limited information known through experiments. We are inter-

ested in the following criteria for characterizing the reconstructed microstructures:

• The reconstructed microstructure must ‘look like’ the seed image. The similar-

ity measures in this work come from the field of metallography/crystallography

including lower order statistics (eg. grain size distribution, orientation distri-

bution function) and finer statistical features (eg. grain boundary connectivity

descriptors, higher order orientation correlations).

• Physical properties of the microstructure such as elastic moduli must be within

reasonable bounds to the properties of the original microstructure. The proper-

ties were tested using finite element models and compared to experiments and

bounding theories.
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2.1 Mathematical modeling of microstructures as Markov

Random fields

Some of early attempts at microstructure modeling were based on Ising models

[58]. In the Ising model, a N×N lattice (L) is constructed with values Xi assigned for

each particle i on the lattice, i ∈ [1, .., N2]. In an Ising model, Xi is a binary variable

equal to either +1 or −1 (eg. magnetic moment [58]). In this work, the values Xi may

contain any one of G color levels in the range {0, 1, .., G − 1} (following the integer

range extension of the Ising model by Besag [23]). A coloring of L denoted by X

maps each particle in the lattice L to a particular value in the set {0, 1, .., G−1}. Ising

models fall under the umbrella of undirected graph models in probability theory. In

order to rewrite the Ising model as a graph, we assign neighbors to particles and link

pairs of neighbors using a bond as shown in Fig. 2.1(a). The rule to assign neighbors

is based on a pairwise Markov property. A particle j is said to be a neighbor of

particle i only if the conditional probability of the value Xi given all other particles

(except (i, j), i.e., p(Xi|X1, X2, .., Xi−1, Xi+1, .., Xj−1, Xj+1, .., XN2)) depends on the

value Xj.

(a) (b)

Figure 2.1: Markov random field as an undirected graph model, circles are pixels in the
image and bonds are used to connect neighbors: (a) Ising model with nearest neighbor
interactions (b) Microstructure modeled by including higher order interactions in the
Ising model.

8



Note that the above definition does not warrant the neighbor particles to be close

in distance, although this is widely employed for physical reasons. For example, in the

classical Ising model, each particle is bonded to the next nearest neighbor as shown

in Fig. 2.1(a). In this work, we assume that a microstructure is a higher order Ising

model (Fig. 2.1(b)). The particles of the microstructure correspond to pixels of the

2D image (or voxels in 3D). The neighborhood of a pixel is modeled using a square

window around that pixel and bonding the center pixel to every other pixel within

the window. The window size is a parameter that is chosen based on the scale of the

biggest regular feature (eg. grain size). Using this graph structure, a Markov random

field can be defined as the joint probability density P (X) on the set of all possible

colorings X, subject to a local Markov property. The local Markov property states

that the probability of value Xi, given its neighbors, is conditionally independent

of the values at all other particles. In other words, P (Xi|all particles except i) =

p(Xi|neighbors of particle i). Microstructures are obtained by sampling the Markov

random field P (X). In this chapter, we present methods to sample microstructures by

sampling the conditional probability density p(Xi|neighbors of voxel i) from available

2D experimental data.

Markov random fields for texture synthesis

The approach is based on Claude Shannon’s generalized Markov chain [119]. In

the one dimensional problem, a set of consecutive pixels is used as a template to

determine the probability distribution function (PDF) of the next pixel. Efros and

Leung [39] extended the concept of Markov chain to 2D images. The texture is

grown layer–by–layer from a small seed image (3x3 pixels) taken randomly from the

sample. Explicit construction of the probability model for pixels is difficult. Instead,

to synthesize a pixel, the algorithm first finds all windows in the sample image that

are similar to the unknown pixel’s neighborhood window. One of these matching

windows is chosen and its center pixel is taken to be the newly synthesized pixel (Fig.
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2.2). The measure of similarity between different windows is given by a normalized

Figure 2.2: The Markov random field approach [39, 146]: The image is grown from
a 3x3 seed image. As the algorithm progresses, the output pixel (shown in red) is
computed by searching for a pixel with a similar neighborhood (shown in blue) in the
input image.

sum of weighted squared differences. The weights for nearby pixels are taken to be

greater than for pixels far away (Gaussian weighting kernels are typically used). All

matches within p% (p=10 in [39]) of the match are considered. The center pixel

values of patches in the list give a histogram for the unknown pixel, which can then

be sampled, either uniformly or weighted by the distance. Note that for any pixel the

values of only some of its neighborhood pixels will be known. The distance measure

is computed by only matching on the known values and normalizing the error by the

total number of known pixels.

The fundamental approximation in this numerical implementation is that the

probability distribution function (PDF) of an unfilled pixel is assumed to be in-

dependent of the PDF of its unfilled neighbors. In other words, PDF for a pixel that

is obtained by sampling may not stay valid as the rest of its neighbors are filled in.

This is addressed by choosing the size of window as an adjustable parameter.
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2.2 Examples

Markov random field algorithm for microstructure synthesis was performed on two

different seed microstructures (1) Polycrystalline structure with grayscale data (from

[77]) (2) An experimental RGB microstructure of AA3002 Aluminum alloy [142]. The

free parameter in the reconstruction is the sampling window size which is taken to

be w = 13 × 13 pixels for case (1) and w = 7 × 7 pixels for case (2). The window

sizes are related to the grain size distribution in the image and can be calibrated

using these reference microstructures. In Fig 2.3 we have demonstrated the effect

of window size on quality of synthesized image. Higher the window size better the

image quality, we have observed that close to window size of ’11’ synthesized image

resembles very close to that of sample input both visually as well as when comparing

statistical correlation functions. This example of 2 phase material is also used in next

section. To compare the sample image with reconstructed image, three global feature

vectors were extracted from the input microstructure.

1. Heyn’s intercept histogram [43, 42] is employed for assessing the grain sizes.

Histograms of the intercept length distribution (mean intercept length versus

number of test lines possessing the mean intercept length) is used as the feature

vector.

2. Rose of intersections is used as the feature vector for assessing grain shapes.

To obtain the rose of intersections, a network of parallel equidistant lines is

placed over the microstructure image at several angles and the number of grain

boundary intersections with each test line is measured. The distribution of

intersections with the angle of orientation of the lines is called the rose of inter-

section.

3. Color histogram and color clouds are used for measuring phase/orientation dis-

tribution. The color cloud used here is an attempt at showing the pixels in
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‘color space’ rather than Euclidean space (‘microstructure’). Color densities

are converted into scattered random dots around the spatial position assigned

to the color, with the extent of the spatial position determined by the frequency

with which that RGB triplet appears in the image.

Sample Window Size 3 Window Size 5

Window Size 7 Window Size 9 Window Size 11

Figure 2.3: Effect of Window size, none of the image looks similar to sample image
but image generated with window size of 11 has statistical correlation function very
much similar to that of sample image.

These features were compared with similar features from a few snapshots (with

the same size as the input image) extracted from the reconstructed microstructure.

Our preliminary results for case (1) (Fig. 2.5) look quite impressive. The MRF model

is not only able to reconstruct the local features such as grain boundaries and con-

nectivities, the global feature vectors (intercept histogram and rose of intersections)

compare favorably with the input image.

In the second example, microstructure of the Aluminum alloy AA3002 measured

using polarised light microscopy (Ref. [142]) was used. The microstructure represents
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Figure 2.4: Initial microstructure (left) and the synthesized microstructure (right)
from our Markov random field code. Note that local features such as grain boundaries
are effectively captured.

the rolling plane and reveals a fully recrystallised grain structure with randomly dis-

tributed intermetallic phases (dark spots in the image). The microstructure is col-

ored based on the occurrence of near-cube and non-cube orientations. This analysis

is based on observed contrast effects when the object is rotated relative to the po-

larised light directions. Purple regions are cube or near-cube orientations, whereas

the yellow/red regions are non-cube. The Markov random field reconstruction and

the original microstructure are indicated in Fig. 2.6. The microstructure was recon-

structed using a 150× 170 pixel input image shown in Fig 2.6(left). The preliminary

reconstruction shown here only uses the RGB data for reconstruction. The fraction of

cube versus non-cube orientations and distribution of intermetallic phases was studied

using color histograms.

The color blot and color histogram results shown in Fig 2.7 show good visual cor-

relation of the reconstructed image with the experimental input image. The texture

components (cube versus non–cube orientations) are well reproduced in the larger

synthesized image. Comparison of the larger experimental image present a more rig-

orous test of correctness of the MRF approach. It is seen that the large scale texture

is faithfully captured.However,the intermetallic phases (eg. black spots) appear more

correlated (thinly spread out) in the experimental image as well as the input image.

13



0 5 10 15 20
0

100

200

300

400

500

Mean intercept length

N
u

m
b
e

r 
o

f 
li
n

e
s

 

 

Seed image

image 1

image 2

image 3

image 4

image 5

Seed image         Image 1

Image 4              Image 5  

  100

  200

  300

  400

30

210

60

240

90

270

120

300

150

330

180 0

Image 2             Image 3

Figure 2.5: Statistics of synthesized images are compared with the seed image. The
mean intercept length and rose of intersections are shown. Note that none of the
synthesized images are identical to the seed image, yet global statistics of the seed
image are well captured.

Such fine features can be better captured using a feature mapping MRF approach

described before, where weights are assigned to an additional feature channel (in addi-

tion to the original RGB channel). Further, if feature mapping were utilized, a better

resolution of grain boundaries could have been obtained in the synthesized image.

2.2.1 Comparison of moment invariants

Moment Invariants(MIs) are techniques to quantify the differences between two

microstructure or in our case the images. MIs are generally non-linear combinations of

(typically second order) moment of an object that are selected in such a way that they

are invariant with respect to a class of coordinate transformations. The MIs of a set of

a similar objects can be plotted as a distribution, and different object shapes generate

different distribution. MIs were first used for automated identification of character

14



Input image

Original experimental imageReconstruction with MRF

Figure 2.6: Reconstruction of an experimentally measured AA3002 Aluminum alloy
microstructure [142] using Markov random Field algorithm. The larger microstructure
from which the input image is taken is also shown for comparison. Purple regions are
cube/near cube grain orientations, yellow/red regions are non-cube orientations. The
fine dark spots are the intermetallic phases.

by Hu[57], and have since seen many applications in a variety of field including the

material field [86]. The MIs can be expressed in a normalized(dimensionless) form by

approximate scaling with respect to the object surface area, the researchers [30] have

identified 2 MI’s (ω1, ω2 of second order, details about the normalization factor and

their values for various possible 2D shapes are given in [30]. Graphical representation

for these 2 second order moment invariant as x-y coordinate in a plot is known as

Second Order Moment Invariant map (SOMIM). SOMIM can be used for providing

shape information while shape complexity is contained in higher order moments. In

the generalized higher dimensional space of higher order moments, we can represent

the coordinate of the morphology as ξ = (x1,x2......,xN) where N is the number of

MIs used in the description. This can be projected onto the diagonal line in this N-

dimensional space by forming the dot product with the unit vector û = (1,1....1)/
√
N ;

the result is a point on the diagonal line at a (signed) distance du(x) = (
∑N

i=1 xi)/N

from the origin. In other words, distance along the diagonal is equal to the average

of the vector components du(x) = 〈xi〉. Projecting all the MIs of a given order onto a

single line has the advantage that MIs of second through fourth order can be repre-

sented graphically in a single 3D diagram. We will refer to such diagrams as projected
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Figure 2.7: Color histograms of the input microstructure and reconstructed mi-
crostructure are compared. A novel color blot method is used to compare the distribu-
tion of cube/near cube regions, and intermetallic phases in the input and synthesized
images.

moment invariant maps(PMIM). Details about the PMIM for various shapes is given

in this paper[30]. To make a comparison of synthesized with original image we used

combination of second and fourth order moments in a 2D PMIM. The x axis for this

map is the average of 2nd order moment invariant while y axis is average of 4th order

moment invariant. Using SOMIM and PMIM we can generate density maps to show

distribution of shapes throughout an image. For 1D distribution of data second order

moment is analogous to standard deviation while the 4th order moment invariant is

similar to kurtosis. The density maps for SOMIM and PMIM is shown in Fig.2.8

and Fig.2.9 respectively. These density maps are for image shown in 2.4.

To compare the density maps obtained by reconstructed image to that of original

image we need to introduce an appropriate similarity metric. The modified Bhat-

tacharya coefficient H(p,q) also known as Hellinger distance, was found to provide a
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Figure 2.8: SOMIM density map original(left) and synthetic(right)
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Figure 2.9: PMIM density map original(left) and synthetic(right)

good balance between ease of use, speed of computation and ability to distinguish

between two different density maps p and q. The regular Bhattacharya coefficient

β(p, q) is a measure of the similarity between two normalized distributions and can

be written in discrete form as [24][6]

β(p, q) =
N∑
i=1

√
p(i)q(i),

(
with

N∑
i=1

p(i) =
N∑
i=1

q(i) = 1

)
(2.1)

where the summation run over all of the N bins of the SOMIM or PMIM density

maps. The larger the value of β, the more similar the two distributions are. The

Hellinger distance H(p,q) is defined by [35] as

H(p, q) =
√

1− β(p, q) (2.2)
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Value of H for SOMIM is 0.47 and that of PMIM is 0.37. These values for H indicate

that we can able to reconstruct the synthetic image from our original image using

MRF synthesis approach.

2.2.2 Comparison of microstructure sensitive properties

In this section we have calculated and compared effective properties for sample

and reconstructed image. We have performed finite element analysis to compare the

stress distributions in the original and synthesized image.

2.2.2.1 Example 1. Tungsten Silver Composite Image

In Fig2.3, the sample image from Ref. [135] is presented. Assuming isotropic na-

ture of the microstructure, rotationally invariant probability functions are employed

as the microstructural feature to compare the sample image with the reconstructed

one. Rotationally invariant N-point correlation measure SiN can be interpreted as the

probability of finding the N vertices of a polyhedron separated by relative distances

x1, x2,. . .,xN . The simplest of these probability functions is the one-point function,

Si1, which is just the volume fraction (V) of phase i. The two-point correlation mea-

sure, Si2, can be obtained by randomly placing line segments of length r within the

microstructure and counting the fraction of times the end points fall in phase i. All

the required correlation measures for classification are obtained using a Monte-Carlo

sampling procedure. The procedure involves initially selecting a large number of ini-

tial points in the microstructure. For every initial point, several end points at various

distances are randomly sampled and the number of successes (of all points falling in

the ith phase) are counted to obtain the required correlation measures.

Statistical measures up to the third-order were extracted from the microstructures

by sampling 15,000 initial points. A 303X303 pixel region of the microstructure was

converted to a black and white image for distinguishing the two phases. The rotation-
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ally invariant two- and three-point correlation measures of the experimental image

were then extracted using Monte-Carlo sampling techniques.Classification is based

on two sets of descriptors, the autocorrelation function γ(r) = S2(r)−p2
p−p2 and three-

point measure S3(r, s, t).The statistical correlation measures of the reconstructed mi-

crostructure and the sample image are compared in Fig. 2.10.The three-point prob-

ability measure S3(r,s,t) is depicted in a feature vector format with the distances

(r,s,t)µm indicated for key points in Fig.2.10(b). Object oriented finite element soft-

ware developed by NIST (OOF2)[105][106] allows computation of the mechanical

properties directly from the microstructure. To obtain the stress contour under a

uniaxial tension(3.3% strain in y direction) we first created a binary image using Im-

ageJ software. The binary image is then imported in OOF2 and mesh is created. For

tungsten, we have used an Young’s Modulus value of 411 GPa and a Poisson’s ratio

of 0.28, corresponding values for the silver phase is 83 GPa and 0.37. Using these

elastic properties, we obtained the stress contour plot as shown in Fig 2.11 (a) and

(b) for sample and reconstructed image respectively. The color histogram for stress

contour plot are shown in part c and d of same figure. Color histogram of the stresses

in the synthesized image matches closely to that of sample one. Average stress value

for synthesized image comes out to be 9.62 GPa the corresponding value for sample

image is 9.85 GPa. Using this stress value we have calculated effective Young Modu-

lus(Y) for synthesized and sample as 288.61 GPa and 295.58 GPa respectively. This

value for Young Modulus is very close to what is obtained by experiments Ref [135].

The variation of Y for original, synthesized with temperature is shown in Fig2.12, in

the same plot, we also plot the value of Y at different temperatures as obtained by

experiments.
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Figure 2.10: Comparison of the sample image statistical features with the features of
the reconstructed image shown in Fig.2.3. (a) The autocorrelation function and (b)
the three-point probability function S3(r,s,t) shown for s=t=5(long range correlation)
and s=t=3(short range correlation)

2.2.3 Example 2. Aluminum alloy AA3002 representing the rolling plane

We performed finite element calculations on synthesized and sample image in Fig

2.6 and compared the Young’s Modulus with angle of rotation for sample and synthe-

sized image. To measure the statistically similarity between sample and synthesized

image, we also calculated the orientation distribution function(ODF) by assigning

a unique orientation to each pixel based on its color. In Fig 2.14 we have shown

ODF for sample and two synthesized images and we observed that ODF for synthe-

sized images is very close to that of sample image. This result clearly proves that

reconstructed microstructure is very similar to the sample microstructure. In Fig
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Figure 2.11: Comparison of the distribution of the normal stress σy in GPa for
(a)sample image (b) Synthesized image (c)Color histogram of stress contour for sam-
ple image (d) Color histogram of stress contour for synthesized image

2.13(b) we have plotted the variation of Young’s Modulus (E) with rotation angle of

the crystal present in the material. We got a similar variation of E for sample and

synthesized images. A crystal plasticity simulation (from our recent work[32]) was

performed at a constant strain rate of 6.667e-4 s−1 and a temperature of 300K. The

numerical experiment simulated a simple shear motion. In Fig 2.13(a) we have plot-

ted the equivalent stress-strain response for sample and synthesized image. Contour

plot with color histogram of stresses shown in Fig.2.15 reveal that the response of the

synthesized image is very similar to that of sample.
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Figure 2.12: Variation of Young Modulus with temperature for sample and synthesized
image also that obtained in experiment

2.3 Algorithm for reconstruction of 3D microstructures

Another problem of interest is the reconstruction of 3D microstructures from three

orthogonal 2D sectional images taken along the x-, y- and z- planes. The information

contained in these three 2D micrographs is in the form of pixels containing colors

corresponding to different constituent phases. The outcome of the inverse problem

is a 3D microstructure containing voxels colored consistently such that any arbitrary

x-, y- or z- slice ‘looks’ similar to the corresponding input micrographs. This recon-

struction problem leads to anisotropic microstructures, which is in contrast to other

such works in literature that use a single reference (2D) image and make assumptions

of microstructural isotropy, i.e. slices in every direction look similar to a single input

image [127]. The approach proposed here involves maximizing the similarity between

the solid microstructure and the 2D sectional microstructures by minimizing a neigh-

borhood cost function. This cost function ensures that the local neighborhood on 2D

slices taken along the x-,y- or z- directions through the 3D microstructure is similar
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to some neighborhood in the 2D micrograph imaged along that plane.

In the following discussion, let Sx,Sy and Sz denote the set of orthogonal (x, y

and z, respectively) slices of the microstructure. Let V denote the solid (3D) mi-

crostructure. The color of voxel v in the 3D microstructure is denoted by V v. In

addition to the color (eg. RGB triplet), the vector V v may also contain other values

including grain orientation and phase index. In this work, the color is represented

using G color levels in the range {0, 1, .., G−1} each of which maps to an RGB triplet.

The number of color levels is chosen based on the microstructure to be reconstructed,

eg. for binary images G = 2.

Recall our Markovian assumption that the probability distribution of the color

for a pixel given the colors of its spatial neighborhood is independent of the rest of

image. The vectors denoting the spatial neighborhood of voxel v in the slices or-

thogonal to the x, y, and z axis, respectively, are denoted as V x
v ,V

y
v, and V z

v (see

Fig. 2.16). The neighborhood is taken over a small user-assigned window around

the voxel v. Let Sx,w,Sy,w, and Sz,w denote a window of the same size in the in-

put 2D micrographs. In order to find the coloring of voxel v based on the neigh-

bor voxels in the x–plane, one needs to compute the conditional probability density

p(V v|color of x–plane neighbors of v). Explicit construction of such a probability

density is often computationally intractable. Instead, the most likely value of v is

identified by first finding a window Sx,w that is most similar to V x
v in the input

2D micrograph. This window is denoted by Sxv (see Fig. 2.16). Similarly, match-

ing windows to the y– and z– plane neighborhoods of voxel v in the corresponding

2D sectional image (denoted as Syv,S
z
v are found. Each of these matching windows

Sxv ,S
y
v,S

z
v may have different coloring of the center pixel. Thus, we need an optimiza-

tion methodology to effectively merge these disparate values and identify a unique

coloring for voxel v. The optimization approach is described next.

Let the value V x
v,u denotes the color of voxel u in the neighborhood V x

v . Similarly,
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the value Sxv,u and Sx,wu , respectively, denote the color of pixel u in the window Sxv

and Sx,w. The 3D microstructure is synthesized by posing the problem as a L2

minimization of the energy [69]:

E(V ) =
∑

i∈{x,y,z}

∑
v

∑
u

ωiv,u‖V i
v,u − Siv,u‖2 (2.3)

Here, ωiv,u denotes a per pixel weight. In order to preserve the short range correlations

of the microstructure as much as possible, the weight for nearby pixel is taken to be

greater than pixels farther away (Gaussian weighting is used).

The optimization is carried out in two steps. In the first step, the energy is

minimized with respect to Siv. In this step, we assume that the most likely sample

from the conditional probability distribution of the center pixel in the 3D image

(eg. p(V v|colors of x–plane neighbors of v)) is the center pixel of a best matching

window in an experimentally obtained 2D slice on the corresponding plane. The

best matching neighborhood of voxel v along the x–plane is selected by solving the

following problem:

Sxv = arg min
Sx,w

∑
u

ωxv,u‖V x
v,u − Sx,wu ‖2 (2.4)

This is an exhaustive search that compares all the windows in the input 2D micrograph

to the corresponding x–slice neighborhood of voxel v and identifies a window that

leads to a minimum weighted squared distance. In this process, for 2D images of size

64 × 64 with a 16 × 16 neighborhood window, a matrix of size 162 × (64 − 16)2 is

built containing all possible neighborhoods of pixels that have a complete 162 window

around it. The column in this matrix that has a minimum distance to the 3D slice V x
v

is then found through a k–nearest neighbor algorithm [8]. Note that, we are only given

a limited (in this work, a single) 2D experimental sample along each cross–section,

which means that the best match may not be an exact match for V x
v .

Thus, for each voxel v, a set of three best matching neighborhoods are obtained,
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possibly with different colors corresponding to the center pixel. A unique value of v

thus needs to be found by weighting colors pertaining to location v in not only the

matching windows of voxel v but also its neighbors. This is exactly done in the second

step of the optimization procedure, where the optimal color of voxel v is computed by

setting the derivative of the energy function with respect to V v to zero. This leads

to a simple weighted average expression for the color of voxel v:

V v = (
∑

i∈{x,y,z}

∑
u

ωiu,vS
i
u,v)/(

∑
i∈{x,y,z}

∑
u

ωiu,v) (2.5)

Note that the subscripts u and v are switched in the above expression as compared

to Eq. 2.3. This implies that the optimal color of the voxel v is the weighted average

of the colors at locations corresponding to voxel v in the best matching windows

(Siu) of voxels (u) in the solid microstructure. Since V v changes after this step,

the set of closest input neighborhoods Siv will also change. Hence, these two steps

were repeated until convergence, i.e., until the set Siv stops changing. As a starting

condition, a random color from the input 2D images is assigned to each voxel v. The

process is carried out in a multiresolution (or multigrid) fashion [64]: starting with a

coarse voxel mesh and interpolating the results to a finer mesh once the coarser 3D

image has converged to a local minimum. Three resolution levels (163, 323 and 643)

were used. Synthesizing a 643 solid microstructure took between 10–15 minutes on a

3 GHz desktop computer, with about two–thirds of the time spend in step 1 (search)

algorithm.

2.4 Results

The approach has been demonstrated for three test cases with 2D images corre-

sponding to:

1. Case 1. An isotropic distribution of solid circles;
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2. Case 2. An anisotropic case with solid circles in the z-slice (similar to case (i))

but an interconnected lamellar structure in the x- and y- slices;

3. Case 3. A polycrystalline microstructure.

In case 1, all three slices (x-,y- and z-) were assigned to the same 2D image

depicted in Fig. 2.17(a). The resulting 3D microstructure is expected to be a random

distribution of spheres. The 3D microstructure obtained by our approach is shown

in Fig. 2.17(b). The internal structure of the solid microstructure is shown via slices

in the x–plane at different distances from the origin. Various slices ‘look’ similar

to the input image as expected from the Markov Random field assumption. Case 2

builds upon this case by introducing anisotropy in the x- and y- planes. Three 2D

images corresponding to x–,y– and z– slices (as shown in Fig. 2.18(a)) were used in

the reconstruction. An interconnected lamellar structure was used in the x- and z-

planes while the z–plane image allowed merging of the solid circles to allow for a more

complex microstructure. In the algorithm, we match the 2D images with all three

orthogonal slices through every voxel. The resulting anisotropic 3D microstructure

shown in Fig. 2.18(b) is quite complex. The y–axis slices as shown in Fig. 2.18(c)

show the depth profile of various solid circles seen at the top surface, with intricate

internal structure revealed.

In the last example, a polycrystalline microstructure was employed to show the

applicability of the algorithm to cases beyond two-phase media. The microstructure

is equiaxed and all three slices were assigned to the same 2D image shown in Fig.

2.19(a). The resulting 3D microstructure is shown in Fig. 2.19(b) and its internal

structure revealed through x–axis slices in Fig. 2.19(c). The results show that the

grains built by the algorithm are also equiaxed with a variety of 3D shapes identified

by the algorithm. However, some of grain boundaries do not show up well in the slices

which is primarily attributed to the lower resolution of the 3D image (643) compared

to the original input image.
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2.4.1 Validation tests

For testing the validity of the 3D reconstructions, quantitative comparisons were

made between the original 2D image and the reconstructed image, through compari-

son of the statistical correlation functions as described in Ref. [145]. The statistical

features of the 2D distribution of solid circles from Fig. 2.17 and its 3D reconstruction

were compared. The original 2D image was a square of side 64µm and had a phase

1 (white phase) volume fraction of 70%. The comparison of two point probability

(S(2)) and the three point probability function S(3) are shown in Fig. 2.20(a) and Fig.

2.20(b), respectively. The three-point probability measure S(3)(r, s, t) is depicted in

a feature vector format with the distances (r, s, t)µm indicated for key points in Fig.

2.20(b). The first points in both graphs (Fig. 2.20) show the volume fraction of white

phase for 2D image as well as the reconstructed image. The decay in the two point

correlation function is identical for the reconstructed image up until 3µm, showing

excellent reproduction of the short–range correlation. The same aspect can also be

seen from comparing the short range correlation in the three–point probability func-

tion (Fig. 2.20(b)). Although the longer range correlations match qualitatively, there

is a drift seen as the distance between pixels increases. Both the excellent match

in short range correlation and the small drift in the long range correlation can be

explained based on the reconstruction algorithm, which models a stronger interaction

of a center pixel to pixels in its immediate local neighborhood than pixels farther

away. In effect, the algorithm gives a stronger weighting towards matching the short

range correlations in the microstructure.

2.4.2 Elastic properties of two phase composite

The experimental image of the tungsten silver composite in Ref [135] was used to

reconstruct a 3D microstructure. An instance of the reconstructed microstructure is

shown in Fig. 2.21(b,c) with the distribution of each phase shown separately. The
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auto-correlation function for the silver phase γ(r) =
S1
(2)

(r)−p2

p−p2 of the reconstructed 3D

microstructure and the experimental image are compared in Fig. 2.22(a) showing ex-

cellent match of short range correlations with a small difference seen in longer range

correlations. Short range correlations carry the greatest weightage in determining

mechanical properties such as elastic modulus (eg. [108]), although long range corre-

lations have been found to be important for phenomena such as surface roughening

during plastic deformation [75]. To test if the elastic properties are well captured

in the reconstructed 3D microstructure, we compared against the experimental data

from Ref. [135] of the elastic modulus as a function of temperature. The elastic

properties of individual components at different temperatures are available from Ref.

[107] and are listed in Table. 1. The data was used within a finite element simulation

to compute the elastic modulus of the reconstructed microstructure using the method

described in Ref. [46]. The computed properties of the reconstructed 3D microstruc-

ture closely follow the experimentally measured Young’s modulus from Ref. [135] as

shown in Fig. 2.22(b) with an average error from experimental data of about 5 %.

Table 2.1: Elastic properties of silver and tungsten phases as a function of temperature
(from Ref. [107])

T (oC) Esilver (GPa) νsilver Etungsten (GPa) νtungsten

25 71 0.36 400 0.28
200 69 0.36 392 0.28
400 63 0.36 383 0.28
600 54 0.36 373 0.28
800 45 0.37 363 0.28
860 42 0.37 361 0.28
910 39 0.37 359 0.28
950 37 0.37 357 0.28
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2.5 Conclusions and Summary

A Markov Random Field approach for reconstructing diverse microstructure from

two–dimensional microstructures is presented. Given a small input microstructure,

these algorithms can reconstruct larger microstructures pixel-by-pixel using patten

matching algorithms. The algorithm can also reconstruct 3D images through match-

ing of 2D slices at different voxels to the representative 2D micrographs. The method

is particularly promising for anisotropic cases where the x–,y– and z– slices look dif-

ferent. We performed rigorous testing of the stereological features (eg. grain size

histograms) and other engineering properties (elastic properties, stress distribution)

of reconstructed microstructures. The results demonstrate that the method can ef-

fectively model statistical features in the microstructure. The approach can be useful

to rapidly build a library of 3D microstructures for modeling purposes from 2D mi-

crographs.
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Figure 2.13: (a) Comparison of the equivalent stress-strain curve predicted through
homogenization with Taylor Simulation for Sample and two Synthesized image (b)
Variation of Young Modulus with angle of rotation for sample and synthesized image
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Figure 2.14: ODF Plot for sample and synthesized image for rolling case
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Figure 2.15: Comparison of the distribution of the equivalent stress with color his-
togram

Figure 2.16: The neighborhoods of v in the slices orthogonal to the x, y, and z axis,
respectively, are shown. The windows in the input 2D micrograph shown in dotted lines
are denoted by Siv (i = x, y, z). These windows closely resemble the neighborhoods of
v.
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(a) (b)

(c)

Figure 2.17: a. Input 2D microstructure showing an isotropic distribution of solid
circles. b. 3D reconstruction c. 3D sectional images of the reconstructed microstruc-
ture.
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(a) (b)

(c)

Figure 2.18: a. An anisotropic case with solid circles in the z-slice (similar to case (i))
but an interconnected lamellar structure in the x- and y- slices. b. 3D reconstruction
c. 3D sectional images of the reconstructed microstructure.
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(a) (b)

(c)

Figure 2.19: a. An experimental 2D polycrystalline microstructure. b. 3D reconstruc-
tion c. 3D sectional images of the reconstructed microstructure.
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Figure 2.20: Comparison of the features of the 2D and reconstructed image shown in
Fig. 2.16. (a) Two point probability function. (b) Three point probability function
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(a)

(b)

(c)

Figure 2.21: Experimental Tungsten-silver composite image (204 × 236µm) from
Umekawa et al. [135]. The black and white image corresponds to a thresholded image
with white representing the silver phase and black representing Tungsten. A 64 µm
square cell shown in inset was used to reconstruct the 3D image. (b) A 64 µm length
cell of reconstructed 3D microstructure of the experimental image showing silver dis-
tribution (c) The tungsten phase of the reconstructed microstructure.
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Figure 2.22: Comparison of properties of 3D reconstruction of Silver-Tungsten com-
posite (a) The autocorrelation function for the silver phase (b) Experimental Young’s
modulus is shown along with the FEM results for the reconstructed 3D microstructure.
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CHAPTER III

Microstructural modeling of BCC Galfenol

When a magnetic field is applied to Galfenol single crystal, the boundaries be-

tween the magnetic domains shift and rotate, both of which cause a change in the

material’s dimensions. This behavior, termed magnetostriction, has been success-

fully to transduce magnetic field to mechanical force in micro–scale (MEMS) sensors

and actuators. While single crystals of Galfenol provide large magnetostriction, their

preparation is expensive. It is well known that thermomechanical processes (such as

rolling and extrusion) may provide means to develop polycrystalline Galfenol with

properties comparable to expensive single crystals [61]. However, it has proved dif-

ficult to predict (and thus, control) the large changes in properties such as magne-

tostriction and yield strength that occur during thermomechanical processing. For

example, warm rolled and annealed specimens retain high magnetostriction but are

quite brittle; whereas, cold rolled specimens have high yield strength but lose their

magnetostriction [31, 16]. Consequently, it is critical to develop predictive models

that can be used to optimize thermomechanical processes and control properties in

the final product.

Properties of Galfenol can be tailored by controlling the evolution of features

of underlying polycrystalline microstructure through controlled plastic deformation.

Simulation of microstructure evolution in polycrystals has been well studied in the
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past. Many of the related works apply the Taylor-type (e.g. for a review see Kocks et

al.[63]) or finite element homogenization [126] methods that link the kinematics of the

macro- and microscopic scales. The success of such approaches has allowed efficient

computation of the effect of macroscopic parameters (such as forging rates) on the

microstructural response. Microstructure-sensitive design methods can then employ

these techniques to address inverse/optimization problems such as computation of

optimal crystal orientation distributions that lead to desired elasto-plastic properties

(Adams et al) and identification of processing paths that lead to optimal microstruc-

tures [127]. In order to control properties during processing, it is important to study

the effect of meso–scale features (such as texture, misorientation distribution) on the

response of these alloys. For example, experimental studies suggest that internal in-

homogeneous strains introduced by microstructural changes play an important role

in determining the final magnetostriction in Galfenol [52]. In this chapter, we have

calibrated a rate-independent elasto-plastic model of BCC Galfenol single crystal for

studying the effect of forming processes on the microstructure response. Both loading

and unloading processes have been simulated and a finite strain homogenization algo-

rithm has been developed to investigate final microstructural response under coupled

magnetic and stress fields.

3.1 Microstructure Evolution Direct Problem

A rate-independent single-crystal plasticity model developed in Kothari and Anand [9]

is used to compute the effect of macroscopic strain on the polycrystal. For a material

with α = 1, . . . , N slip systems defined by ortho-normal vector pairs (mα,nα) denot-

ing the slip direction and slip plane normal respectively, the constitutive equations

relate the following basic fields: the deformation gradient F which can be decomposed

into elastic and plastic parts as F = F eF p , the Cauchy stress T and the slip resis-

tances sα > 0. In the constitutive equations (intended to characterize small elastic
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strains) to be defined below, the Green elastic strain measure Ě
e

= 1
2

(
F eTF e − I

)
defined on the relaxed configuration (plastically deformed, unstressed configuration) is

utilized. The conjugate stress measure is then defined as T̃ = detF e(F e)−1T (F e)−T

where T is the Cauchy stress for the crystal.

The constitutive relation, for stress, is given by T̃ = Le
[
Ě
e]

where Le is the

fourth-order anisotropic elasticity tensor. It is assumed that deformation takes place

through dislocation glide and the evolution of the plastic flow is given by

Lp = Ḟ p(F p)−1 =
∑
α

γ̇αSα0 sign(τα) (3.1)

where Sα0 = mα ⊗ nα is the Schmid tensor and γ̇α is the plastic shearing

rate on the αth slip system. The resolved stress on the αth slip system is given by

τα = T̃ · Sα0 . The resolved shear stress τα attains a critical value sα on the systems

where slip occurs (γ̇α > 0). Further, the resolved shear stress does not exceed sα on

the inactive systems with γ̇α = 0. The hardening law for the slip resistance sα is

taken as,

ṡα(t) =
∑
β

hαβγ̇β, sα(0) = sα0 (3.2)

3.2 Single crystal model of magnetostriction

When a magnetic field is applied to a Galfenol single crystal, the boundaries

between the magnetic domains shift and rotate, both of which cause a change in the

material’s dimensions. Galfenol crystal has minimal energy in the < 111 > family of

directions (easy direction of magnetization) and maximal magnetocrystalline energies

in the < 100 > family (hard directions). Magnetostrictive strain is specified using

two independent parameters, λ100 and λ111, that characterize the changes in normal

strain along the < 111 > and < 100 > direction resulting from the rotation of a

magnetization state into these directions. The magnetostrictive strain tensor for a
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crystal with magnetization direction given by the unit vector m = (mx,my,mz) (in

the crystal coordinate system) is then given by the following expression:

λ =
3

2


λ100(m2

x − 1
3
) λ111(mxmy) λ111(mxmz)

λ111(mymx) λ100(m2
y − 1

3
) λ111(mymz)

λ111(mzmx) λ111(mzmy) λ100(m2
z − 1

3
)

 (3.3)

A magnetic free energy is then defined that represents the amount of energy

required to rotate a unit volume with a known magnetization to a given direction

from a reference direction. We use the model from Armstrong [12] that represents

the free energy as a sum of internal and external energy terms. The internal energy

represents the energy released as the magnetization vector rotates away from a hard

direction towards an easier direction of magnetization. The following form of internal

energy is taken:

EI = K1(m2
xm

2
y +m2

ym
2
z +m2

xm
2
z) (3.4)

The simple form for EI used here ensures that a domain in the crystal has minimal

and maximal energies when oriented, respectively, along the < 111 > directions (easy

direction) and the < 100 > family (hard directions). Application of an external

magnetic field leads to an energy change in energy proportional to the intensity of the

magnetic field, H , the magnetization of the domain, M , and the direction between

them. The direction of the applied magnetic field is represented as n = (nx, ny, nz)

in the crystal coordinate system.

EH = −µ0MH(m · n) (3.5)

The energy contribution (per unit volume) associated with the interaction of ex-
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ternally applied stresses with magnetostrictive strains is given as:

Eσ = −σ · λ (3.6)

In an ideal crystal without defects (at T = 0K), the domain would align in the

direction of minimal energy. However, domain magnetization is expected to follow

a Boltzmann–like distribution at higher temperatures due to an increase in entropy.

The probability, P , that the magnetization direction is equal to m is given as:

P (m) ∝ exp(−(EI + EH + Eσ)

Ω
) (3.7)

The parameter Ω represents the spread of the magnetization direction from the

ideal direction (of minimal energy). The magnetostriction strain tensor is obtained

by averaging the strains over the probability density of magnetization in the crystal.

λ =

∫
P (m)λdm∫
P (m)dm

(3.8)

In sample frame (λs = RTλR), where R is the rotation tensor.

Similarly, the average value of Magnetization(M = Mm) can be calculated as

M =

∫
P (m)Mdm∫
P (m)dm

(3.9)

and Ms = RTM is component of magnetization of domain in the sample direction.

The above two integrals are calculated by using a finite element representation of the

surface of a unit sphere (with 320 quadrilateral elements). Each point on the unit

sphere represents a unit normal vector (magnetization direction). The free energy is

computed over all the integration points for each element and the integral over m

is computed by summing up the element contributions. The actual magnetization is

calculated by subtracting out the strains for an unstressed reference crystal of same
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orientation, but with zero applied magnetic field. The computed strains for each in-

tegration point in the FE mesh is then volume averaged in Eq.(3.8) to compute the

overall magnetization strain in the material. A total Lagrangian FEM formulation is

used to solve the microstructure deformation problem. The unloading process is mod-

eled as a non-linear (finite deformation) elasto-static boundary value problem.[126]

The final stress(σ) after unloading is affected by the stress due to magnetostriction(λ)

as well as residual elastic stress (σres). Further λ is also dependent on σres, this cou-

pled configuration results in non-linear finite element formulation. For the magnetoe-

lastic analysis, small deformation elastic model was used. It is assumed that strain

at any point in the material consists of elastic strain and magnetic strain which can

be added linearly i.e

ε = εelastic + λ (3.10)

From Hooke’s law

σ = C̄εelastic = C̄(ε− λ) (3.11)

where C̄ is the fourth-order anisotropic elasticity tensor.

The elastic problem solved is

∇s
T .σres = 0 (3.12)

where ∇T
s is transpose for ∇s defined in 1

1∇s =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0


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Using the Newton Raphson iterative scheme we solve the matrix equation

Kδu = R (3.13)

where Stiffness Matrix (K) and Residual(R) calculated in terms of C̄, B and λ for

zero body force(Fb) as

R = −
∫
Ωe

BeT C̄eBeddΩ +

∫
Ωe

BeT C̄λdΩ +

∫
Γe

N eT t̄dΓ (3.14)

K =

∫
Ω

BeT C̄eBeddΩ−
∫
Ω

BeT C̄
∂λ

∂u
dΩ (3.15)

where

∂λ

∂u
=
∂λ

∂σ

∂σ

∂u
=
∂λ

∂σ
C̄B (3.16)

Standard Galerkin formulation is used to calculate Shape function(N) and derivative

of Shape function (B).

To calculate ∂λ
∂σ

a perturbation approach is applied on the model in Eq.(3.8).

3.3 Numerical Examples

The slip system hardening model used in the examples is given as:

hαβ = [q + (1− q)δαβ]hβ (no sum on β) (3.17)

where hβ is a single slip hardening rate, q is the latent-hardening ratio and δαβ is

the Kronecker delta function. The parameter q is taken to be 1.0 for coplanar slip

systems and 1.4 for non-coplanar slip systems. For the single-slip hardening rate, the
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following specific form is adopted:

hβ = ho(1−
sβ

ss
)a (3.18)

where ho, a, and ss are slip hardening parameters taken to be identical for all

slip systems, with values ho = 500 MPa, ss = 350 MPa and a = 2.25 for BCC

Galfenol single crystals. The initial value of slip system resistance is calibrated

as so = 180MPa. Values of elastic parameters for Galfenol crystal are taken as

C11 = 213 GPa, C12 = 174 GPa and C44 = 120 GPa. The initial texturing of the

material is assumed to be random.

Plastic deformation due to crystallographic slip is assumed to occur in the < 111 >

direction, and the possible slip planes are of the {110}, {112}, and {123} type. The

model adequately captures the macroscopic tensile mode stress-strain response at

room temperature reported in [79] well as shown in Fig. 3.1(right). To further

validate the microscale model, we compared the results with textures seen in BCC

iron rolling processes and textures predicted by our model. The model results from

Fig. 3.1(b) captures both α and γ texture seen from experiments (in Fig. 3.1(c) [17]).

Results were also compared with experimental rolling textures of BCC Fe-16.83%Ga

results (Fig 3.1(a) [79]). However, the experiment indicates a {112} < 132 > texture

in addition to the expected γ texture pointing to the possible presence of additional

deformation mechanisms in Galfenol that needs future study.

The effect of a rolling process on polycrystalline Galfenol was subsequently stud-

ied. A microstructure with 31 grains was generated using a standard Voronoi tes-

sellation based on our previous work [126]. Texture was randomly assigned and the

microstructure was discretized into 690 quadrilateral elements. A rolling process (with

plane strain compression along y-axis) was studied with a strain rate of 10−3 for a

time of 10 seconds. The microstructure was subsequently unloaded to study the effect
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Figure 3.1: (left) Comparison of textures (Euler angle space, φ2 = 45o) predicted
by our model (Fig. 3.1(b)) with experiments on BCC iron in Fig. 3.1(c) [17]. Ex-
perimental rolling textures of BCC Fe-16.83%Ga results (Fig 3.1(a) [79]) are also
shown. The experiment indicates a {112} < 132 > texture in addition to the expected
γ texture. (right) Comparison of results of current model with published results in
[79]. The plot shows tensile test curves of as-cast polycrystalline Galfenol at different
temperatures.
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Figure 3.2: Final microstructure after rolling to 1% strain and unloading. The mis-
orientation distribution over grains that depicts the change in Neo-Eulerian angle
from the initial configuration (t=0).

of the rolling process. After unloading from a strain of 1%, a spring back of 0.065%

was observed in the y-direction. The misorientation development was computed using

the change in neo-eulerian angle of rotation ξ(t) at time t from the values of ξ(t = 0)

of the initial texture. ξ is obtained from the Rodrigues parametrization given by

r = n tan( ξ
2
) where n denotes the axis of rotation. The change in the neo-eulerian

angle from the initially assigned orientation of grains shown in Fig. 3.2(b) clearly

shows the formation of disoriented regions within grains at this moderate deforma-

tion.

The magnetostrictive model developed here was subsequently validated by com-

paring with results in literature [16]. The values of constants used in this study are

as follows:

K1 = 3.6 ×104 J/m−1

λ100 = 170 ×10−6 λ111 = -4.67 ×10−6
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(c) λH210
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Figure 3.3: Magnetostrictive λ − H and B-H response for various compressive pre-
stress values of 0, 15, 30, 45, 60 and 80 MPa along [100] and [210] crystallographic
direction.

Ms = 1.83/µ0 Am−1 Ω = 625 J/m−3

Our model includes two enhancements to a single crystal model to better account for

the behavior of polycrystalline Galfenol. Firstly, we use a 3D model that includes all

stress components in the crystal (this includes the effect of shear stress produced by

rolling or any other mechanical processes). Secondly, instead of volume averaging,

we have employed a finite element homogenization approach to compute the effective

properties.

We show the λ-H and B-H plot of 18% Ga single-crystal FeGa in the [100],[210]

and [111] directions for various compressive pre-stress values (0, 5, 20, 40 and 80

MPa) in Fig.[3.3]. In [100] case, the stress and magnetic field is applied along [100]

crystallographic direction. In the plots, the continuous line (3D model) is of our work

and dotted point (1D model) is from Ref. [16]. The plots for λ-H show good com-

parison with deviations at the highest compressive stresses but the saturation value
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Simulation Experimental 

Figure 3.4: Magnetostrictive λ − H response of polycrystal for various compressive
pre-stress values of 0, 15, 30, 45, 60 and 80 MPa

is same for both models. Once we got the good comparison for single-crystal case,

we used our model to obtain experimental actuation behavior for polycrystals which

is shown in Fig.[3.4](left). These plots are also in good agreement with published

results Fig.[3.4](right).

Using the magnetostriction model, the final magnetostrictive state was computed

over each element. Here, a 20000 A/turn (= 251.33 Oe) magnetic field was applied

along the y-direction. The magnetostrictive strains along the x- and y- directions,

respectively, are plotted in Fig. 3.6. It is seen that grains with high x- strains are

associated with low y- strains and vice versa. Significant changes in magnetostriction

strains are seen even within a single grain due to the effect of misorientations and

residual stresses.

Finally, we studied the effect of annealing on magnetostrictive behavior. In

Fig[3.5], three cases are plotted. Case 1 is Galfenol without any processing, case 2

involves rolling Galfenol for 10s and case 3 involves rolling Galfenol for 10s and then

annealing. As we see from the plot, rolling with annealing gives the same value for
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Figure 3.5: Effect of Annealing Process on magnetostriction process

magnetic strain(λ) as that of no processing showing that annealing effectively removes

the residual stresses which has the greatest bearing on magnetostrictive properties.
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(a) (b)

Figure 3.6: Magnetostrictive strain distribution in the as-rolled microstructure (to
1 % strain) under a y-direction magnetic field of 251.33 Oe. (a) Magnetostrictive
strains along x-direction and (b) strains along the y- direction.
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CHAPTER IV

Structure-property optimization in Galfenol

through data mining of probabilistic descriptors

Recent developments in materials-by-design have allowed a more advanced sys-

tems approach that integrates processing, structure and property through multi-scale

computational material models [90]. In the area of composites, techniques that enable

tailoring of microstructure topology have allowed design of structures with interesting

extremal properties such as negative thermal expansion [120] and negative Poisson’s

ratio [71]. In contrast to composites, techniques that allow tailoring of properties of

polycrystalline alloys involve tailoring of preferred orientation of crystals manifested

as the crystallographic texture. In this research, we propose a data mining frame-

work for material texture-property optimization problems with high dimensionality.

Given an optimization problem with an objective function that represents a certain

property, and a set of texture variables as well as constraints, we first construct a

database of representative variable-objective data instances with randomization tech-

niques. Then, by employing feature selection and classification techniques, we obtain

variable rankings and therefore refine the search path and search region. Finally,

by applying traditional optimization methods (Linear Programming for linear func-

tions and Genetic Algorithm for nonlinear functions) on the reduced variable set, we

are able to find the optimized property with texture variable combinations that are
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difficult to obtain otherwise, with significantly reduced computational effort.

4.1 Modeling of texture

4.1.1 Representation in Rodrigues space

Orientation distribution function (ODF) [29, 63], the probability density function

for orientations, is employed for the quantification of crystallographic texture. Tex-

ture evolution methodologies use parameterizations for the crystal lattice rotation

which together with the crystal symmetry define the problem domain. Angle-axis

representations define an alternative way of representing texture compared to the use

of Euler angles [29, 140]. We employ the axis-angle parametrization of the orientation

space proposed by Rodrigues [68]. This is based on the unique association of an ori-

entation with a rotation axis, and an angle of rotation about the axis. The Rodrigues’

parametrization is created by scaling the axis of rotation n as r = ntan( θ
2
), where θ is

the rotation angle. A proper rotation R relates the lattice orientation to a reference

orientation. Given the Rodrigues parametrization r, the rotation R can be obtained

as,

R =
1

1 + r.r
(I(1− r.r) + 2(r⊗ r + I× r)) (4.1)

The fundamental region represents a region of the orientation space such that each

crystal orientation is represented uniquely within the space. Fundamental region for

the cubic symmetry group results in a truncated cube. The planes that form the faces

of the cube are introduced by symmetry rotations about the 〈100〉 family of axes and

the corners are truncated by planes introduced by rotations about the 〈111〉 axes. The

ODF (represented by A) describes the local density of crystals over this fundamental

region of orientation space. The volume fraction of crystals within a part (<∗) of the

fundamental region is given by vf (<∗) =
∫
<∗ Adv. The ODF is normalized to unity
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over the fundamental region. Here dv =
√
detg dr1dr2dr3. Since the orientation space

is non-Euclidean, the volume element is scaled by the term
√
detg = cos4(θ/2) where

g is the metric for the space. If the orientation-dependent property for a single crystal

χ(r, t) is known, any polycrystal property can be expressed as an expectation value

or average given by:

< χ >=

∫
R

χ(r, t)A(r, t)dv (4.2)

4.2 Property representation and optimization in Rodrigues

space

Finite element discretization of the orientation space and associated integration

schemes using Gauss quadrature allows matrix representation of several properties of

the ODF. ODF is assumed to be discretized into N independent nodes with Nelem

finite elements and Nint integration points per element. The constraint that the ODF

is normalized to unity over the fundamental region can then be written as:

∫
R

Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn|
1

(1 + rm · rm)2
= 1 (4.3)

where A(rm) is the value of the ODF at the m-th integration point with global

coordinate rm of the n-th element, |Jn| is the jacobian determinant of the n-th element

and wm is the integration weight associated with the m-th integration point. This

is equivalent to the linear constraint: qint
T
Aint = 1, where qinti = wi|Ji| 1

(1+ri·ri)2 and

Ainti = A(ri), where each i corresponds to a combination (n,m), i = 1, . . . , Nint ×

Nelem. If the orientation-dependent property for a single crystal χ(r) is known, any
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polycrystal property can be expressed in a linear form as follows:

< χ >=

∫
R

χ(r)A(r)dv =
nel∑
n=1

nint∑
m=1

χ(rm)A(rm)wm|Jn|
1

(1 + rm · rm)2
(4.4)

This is again equivalent to an equation linear in the ODF: < χ >= pint
T
Aint, where

pinti = χ(ri)wi|Ji| 1
(1+ri·ri)2 and Ainti = A(ri), i = 1, . . . , Nint ×Nelem.

Using reduced integration with one integration point per element at local coordi-

nate of (0.25, 0.25, 0.25) and an integration weight of w = 1
6
, the simplified property

matrix pint corresponding to polycrystal average properties [< χ1 >, . . . , < χnp >]

and the normalization constraint vector (qint) are given as:

pint =



1
6
χ1(r1)|J1| 1

(1+r1·r1)2
. . . 1

6
χnp(r1)|J1| 1

(1+r1·r1)2

1
6
χ1(r2)|J2| 1

(1+r2·r2)2
. . . 1

6
χnp(r2)|J2| 1

(1+r2·r2)2

. . .

1
6
χ1(rNel)|JNel | 1

(1+rNel ·rNel )
2 . . . 1

6
χnp(rNel)|JNel | 1

(1+rNel ·rNel )
2



qint =



1
6
|J1| 1

(1+r1·r1)2

1
6
|J2| 1

(1+r2·r2)2

. . .

1
6
|JNel | 1

(1+rNel ·rNel )
2


The H matrix can be defined from the equation Ainte = 0.25

∑4
i=1 A

i
e where Ainte

is the integration point ODF value at element e and Aie, i = 1, . . . , 4 refers to the

ODF values at the four nodes of the tetrahedral element e. The p matrix is formed

as p = HTpint so that any property d can be represented as the scalar product pTA

with the ODF values (A) at the independent nodal points.

An additional constraint in the representation of the material set is the symme-

try of the ODF. Orientations on each pair of planes in the fundamental region are
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equivalent under the symmetries. In the cubic fundamental region, orientations on

the {100} faces are identified with orientations on the diametrically opposed faces

following rotations through π/4 about the corresponding < 100 > axes. Similarly,

symmetric orientations on the various {111} faces are obtained following rotations

through π/3 about the < 111 > axes. The space of ODF values at integration points

of the FE mesh does not represent this symmetry. Symmetry conditions are enforced

by considering the set of independent nodal points instead of the integration points.

Independent nodal points are the reduced set of nodes obtained by accounting for

symmetry conditions at the boundaries of the ODF. Let H be the matrix convert-

ing the independent nodal values Anode to the integration point values Aint through

the shape functions, then, Aint = HAnode. The independent nodal values Anode are

sufficient to describe the ODF due to the symmetry of the fundamental region. Vec-

tor containing the values of the ODF at independent nodal points Anode is hereafter

referred to as A. The ODF constraint can then be written in terms of the modi-

fied qT = qint
T
H as qTA = 1,A ≥ 0. Properties are specified using the modified

pT ≡ pintTH as < χ >= pTA. For calculating more than one property, p is written

in a matrix form. Another constraint is based on the positivity of the ODF which

constrains the nodal values of the ODF to be positive (A ≥ 0). Space of all possi-

ble ODFs thus includes three constraints: normalization, positiveness and symmetry.

The constraint qTA = 1,A ≥ 0 means that the complete set of all possible ODFs is

a hyperplane in the space of independent nodal values, which we call the ‘material

plane’.

4.2.1 Calculation of properties

In this section, we discuss methodologies used for calculation of properties such as

Young Modulus(E), Yield Strength(Y) and magnetostrictive strain(m) for polycrys-

talline material.
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1. Polycrystal stiffness calculation:

Values of elastic parameters for BCC Galfenol crystal are taken as c11 = 123.0GPa, c12 =

174GPa, c44 = 120GPa. The polycrystal stiffness, C̄, is computed through a weighted

average (over A) of the stiffness of individual crystals expressed in the sample refer-

ence frame.

2. Yield strength calculation:

The crystal plasticity model described in the previous chapter is used to calculate the

yield strength at all Gauss points. In this method, the polycrystal at each integration

point in the macro-scale mesh is subjected to uniaxial (y-axis) tension conditions

up-to strain of 0.2% to obtain the corresponding 0.2% offset yield strength at each

integration point.

3. Magnetostrictive Strain calculation:

The calculation for Magnetostrictive strain is given in detail in the previous chapter

(Section 3.2).

4.3 Traditional structural optimization design

The material structural optimization design is essentially a mathematical opti-

mization problem where the objective is to find structure patterns that maximize or

minimize a certain property. The property function is given, either linear or nonlin-

ear, and the optimization is conducted on a high dimensional space. The problem

can be formed as follows.

maximize F (X)

X = {x1, x2, . . . , xD} ⊆ RD

subject toaTX = 1, X ≥ 0

The selection of material and geometry to minimize (or maximize) some given

property has been a common problem in material science. Single-objective opti-
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mization deals with only one objective function, whereas multi-objective optimiza-

tion refers to optimizing simultaneously a collection of objective property functions.

While people often approach a multi-objective optimization problem by formulating

its function into a single-objective one, using methods as weighted sum, weighted

product, etc., therefore in this context we do not distinguish these two types.

Traditionally, the answer that leads to an optimum can be obtained by an ex-

haustive search among the numerous choices in the searching domain bounded by

some boundary conditions and constraints. More intelligently and less laboriously,

the search can be guided by heuristics, and how the heuristic is designed is dis-

cussed by various researchers in the area of searching algorithms and artificial intel-

ligence [112] [49].

However, traditional search-based methods suffer from the high dimensionality

used to in structure representation. The increase in the number of variables would

extremely enlarge the plausible space and increase the number of evaluations of the

objective functions. Both the computational speed and the memory constraint be-

come crucial issue. The reported studies on the scalability of those algorithms are

scarce.

4.3.1 Linear programming

When the property objective function is linear, with also linear equality and in-

equality constraints on material structure, the problem can be solved efficiently using

linear programming (LP). Algorithms for linear programming include simplex, inte-

rior point, active-set, etc., and simplex is the most widely used. In the structural

optimization design, the constraints on ODF define a feasible region known as a poly-

tope, in which the vertices are the best answers - ODFs that give extremal properties,

and the edges are feasible ways. The algorithm starts at a vertex, walks along the

edges to another vertex. This goes on until an optimal property is found for sure. The
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assumption of all functions being linear is obviously too strict in real applications.

Alternatively, when the function is nonlinear, the traditional way is to approximate

it into a linear problem. Sequential linear programming (SLP) breaks a bigger, linear

or nonlinear, problem into a sequential of approximate linear subproblems, obtained

by writing linear Taylor series expansions for the objective and constraint functions.

Nonlinear programming (NLP) includes a category of methods that forms further

subcategories by examining the convexness of the problem space.

4.3.2 Genetic algorithms

Genetic Algorithm (GA) belongs to the class of evolutionary algorithms, which

generate solutions to optimization problems using techniques inspired by natural evo-

lution (survival of the fittest). The theory was proposed by Holland [56] and further

developed by Goldberg [50] and others. GA starts from a population of candidate

microstructures, and keep generating better and better offspring in iterations, with

operations as mutation, selection, and crossover. The new population of microstruc-

tures are evaluated and the best ones are selected to produce the next generation, as

in the nature biological evolution. The randomness and evolutionary scheme of GA

ensure that the candidate microstructures produced through generations get closer

and closer to the optimum stochastically. When dealing with high dimensionality

problems, as the number of variable increases, so does the required population size,

which implies a large number of cost-function evaluations and thus large time con-

sumption.

4.4 Structural optimization with data mining

In recent years, the dramatic emergence of the information era has seen the de-

velopment of data mining methods and tools booming. Areas of application include

finance, genomics, and medicine, to name a few, where increasingly rich data are
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collected, stored and shared but to manage, parse and analyze has become a bottle-

neck. Data mining bears the notion of “learning from data”, aiming at discovering

important and meaningful patterns from a collection of data instances where each

instance is represented by a (often multidimensional) vector in feature space, either

associated with a supervisory label (in the case of supervised learning) or not (in the

case of unsupervised learning). Mining of such patterns results in dimension being

reduced, information discovered, and knowledge formed.

Material scientists have begun to explore data mining strategies and nourished

the area of material informatics [103]. Applications as basic as thermodynamics

and crystallography, and as complex as microstructure have all seen data mining

playing an important role. Both supervised data classification and unsupervised data

clustering have been applied to problems as separating crystal structures into distinct

classes, identifying classes of given compounds, among others. The goal is to uncover

the essence of materials by understanding the structures and predicting the properties,

and hence accelerate the new material discovery and design. To be able to achieve

that, there is a need to link structure parameters of a material to its properties.

In our context, the purpose is to search for an optimal ODF pattern that leads

to the extremal value of properties. But the number of possible patterns is almost

limitless, making an empirical search laborious and expensive. Here we show that

data mining can instead direct the search for possible ODF structures, towards only

valuable and critical features of ODF. By reducing the searching space to only a

valuable subspace, both the searching time and the quality of the optimal solutions

found are dramatically improved.

4.4.1 Framework

We consider the problem of global optimization in high dimensions. It is of great

interest to consider the case where the domain of the function to be optimized is
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high dimensional, but the optimal values of the function depend only on a reduced,

albeit unknown, set of variables. The dimensionality of searching space limits the

performance of the optimization methods to a large extent. With the number of

variables of the function to be optimized getting larger and larger, the traditional

optimization methods either take too long to operate or the memory demand gets

impractical.

Recall in the optimization problem definition we haveX = {x1, x2, . . . , xD} ⊆ RD.

The original variable dimension is D. Now we assume the optimum of the function

F only depends on some intrinsic dimension d, where d� D, in that only d variables

in X are considered strongly and actively related to the optimum of F . Once the

values of those d variables are fixed, the rest variables can be determined by taking a

weighted equal value to satisfy the constraint.

We formalize such an insight and provide a framework of high dimensional global

optimization based on data mining and feature selection. The framework is depicted

in Fig. 4.1. As it indicates, on top of a traditional structure optimization process that

consists of representation and the application of standard optimization techniques,

data mining methods introduce two additional steps: database construction, and

feature selection. The following two subsections are devoted to each of them. The

objective is to reduce the dimension of features, and hence the searching space, by

learning “which features in the microstructure vector is most related to a sufficiently

high (or low) property”.

4.4.2 Database construction

As we attempt to apply data mining to learn and facilitate an optimization pro-

cess, data are an essential component. We focus on the supervised feature selection

methods, where the importance factors of features are learned from their relationship

with the class target. Hence a training set of {Xi, di} is needed prior to the feature
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Figure 4.1: Framework of Data Mining based Material Structure Optimization

selection. The training set should be representative in the sense that the variable-

class relationship is well embedded and presented. The set of training samples is also

required to be unbiased, clean (as opposed to noisy), and sufficiently large in order

to have the feature selection methods work well.

Given a property function F (X), training examples {Xi, di} can be generated

where Xi ⊆ RD, di ∈ {−1, 1}. Suppose in this problem we want to maximize the

property.The class label di = +1 is assigned to the input vector Xi if the function

value F (Xi) is “sufficiently high”. For most algorithms to work well, data from the

opposing class is needed, which indicates sufficiently low property and are assigned a

class label of −1.

Theoretically, with the property function F (X) one can generate as much data as

one wants, by varying the microstructure in any way. But the final set can only be

of a certain size, and is meant to be representative. Randomness is considered the

trick to remove bias. But how to randomize a microstructure under constraints is of

great concern. The following serval methods, namely, Random Intervals, Random k

Intervals, Random Every k, and Best-First Assignment, are developed to tackle the
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issue from different angles. Firstly, they all ensure randomness. Secondly, while some

of them give the right of taking values to every variable equally, the others tend to

think that only a limited k variables are of importance and should be treated first,

only we don’t know which k. Randomness plays a role to pick them for us.

Random Intervals (RI): To account for the constraints qTA = 1 and A ≥ 0, we

can consider the unit 1 is divided into r random intervals, or making r − 1 random

cuts between the interval [0, 1], where r = |A|. Afterwards, the intervals generated

are randomly assigned to each dimension of A.

Random k Intervals (RkI): This is similar to Random Intervals but each time,

only k intervals are generated and assigned to k random dimensions.

Random Every k (REk): Randomly generate k values at a time, continue only

when the sum of the current k value does not exceed the threshold 1. Update the

threshold to whats remaining, and repeat the process until the remainder is sufficiently

small.

Best-First Assignment (BFA): Randomly pick a variable and assign to it a random

value u, 0 ≤ u ≤ 1. Distribute the remainder 1 − u evenly to all other variables so

that the constraint is met. Compute the objective function and obtain the function

value. Repeat n times and continue with whichever gives the best function value.

Repeat the process until no variable is left.

We apply the four random data generating processes to obtain data entries in a

input-objective form. Meanwhile, an important data polarizing procedure is oversee-

ing this generation processes to assure that only the opposing two groups are saved,

in this case, only the high valued ones and the low valued ones. As in an optimization

problem one of the extremes is desired and the other one undesired, we denote them

as SD and SU , respectively.
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4.4.3 Feature selection

Variable and feature selection has become the focus of many research areas where

a large number of variables are available and only a portion of them is of usage on

building models. Often we refer variable to the raw input variables and feature to the

constructed supposedly more meaningful variables from the input variables. But in

the current context there is no need to distinguish the two since we consider the feature

construction is done through finite element representation and has resulted in the

ODF variables. The objective of feature selection before optimization is mainly the

efficiency of running standard optimization algorithms, by reducing the measurement

and storage requirements as well as narrowing the searching space.

Major variable and feature selection methods fall in the group of supervised learn-

ing based feature selection, in that they bear an insight of obtaining some metric in-

dicating each features merit by looking at its relationship to the desired class target.

Algorithms belonging to this regime include variable ranking, wrapper methods, fil-

ter methods, etc. Unsupervised feature selection studies the interrelationship among

the features themselves, and attempts to eliminate the redundant features while keep

representative ones. Popular methods include principal component analysis (PCA),

kernel machines, clustering, etc. These methods are beyond our scope.

Four feature selection methods are applied in our experiments. They work either

through calculating a metric to characterize the relevance of each feature with the

class target, or through building classifiers from a subset of variables and evaluate

the performance.

Correlation-based Feature Subset selection: Evaluates the worth of a subset of

variables by considering the individual predictive ability of each variable along with

the degree of redundancy between them. Subsets of features that are highly correlated

with the class while having low intercorrelation are preferred. The dataset being used

is SD.
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Chi-square: Evaluates the worth of an attribute by computing the value of the

chi-squared statistic with respect to the class. The dataset being used is SD.

Information Gain: Evaluates the worth of an attribute by measuring the infor-

mation gain with respect to the class. The dataset being used is SD.

Consistency: Evaluates the worth of a subset of variables by the level of consis-

tency in the class values when the training instances are projected onto the subset of

variables. The dataset being used is SD + SU .

SVM-based: Evaluates the worth of an attribute by using an SVM classifier. At-

tributes are ranked by the square of the weight assigned by the SVM. The dataset

being used is SD + SU .

4.5 Material Design Problems

We are interested in applying the data mining techniques to identify microstruc-

tures that can optimize material properties specified by the following objective func-

tions:

1. The Young Modulus (E). For metals E is inversely proportional to deflection

of beams, so a lower modulus results in higher deflection for the same applied

stress. Therefore our objective is to obtain a minimized E.

2. The Yield Stress (Y ). Higher yield strength will increase the load bearing ca-

pacity of the structure. Therefore our objective is to maximize Y .

3. The Magnetostrictive strain (ms). A higher value of ms will enhance the ca-

pability of material to act as a sensor material. Therefore, our objective is to

maximize m.
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4. A composite function F1 = Y ∗ms
E

. We are looking for a material with lighter

weight and higher value for strength and magnetostrivtive strain, therefore to

maximize F1.

5. Another function F2 is a multi–objective function given by a combination of

two specific properties C̄33 = 226.43GPa and ms = 28.33ppm.

4.5.1 4-step optimization

The 4-step framework in Fig. 4.1 is applied to optimizing the problems in the

following fashion.

Microstructure representation. Crystallographic texture is represented by ODF

(denoted by A), with a degree of 76. We keep this representation and treat each of

the orientation in A as a design variable. In optimizing these objective functions we

make sure the constraints qTA = 1,A ≥ 0, explained in Section 4.2, are satisfied.

Database construction. Randomization methods in Section 4.4.2 are employed to

generate a data set containing desired and undesired classes, denoted by SD and SU ,

respectively. The number of data instances generated by each randomization method

is fixed as 1000. While with methods like RI and BFA it implies running the method

for 1000 times, with RkI and REk it also involves a selection of k between 1 to 76

obeying a uniformed distribution. Then, a polarized procedure takes the instances

with the highest and lowest objective values, the former as SD and latter as SU in a

maximization problem (F2,F3,F4,F5), and reversely in a minimization problem (F1).

Feature selection. With the feature selection and ranking methods described in

4.4.3, we can obtain rankings of variables either indicated by a similarity metric

(e.g. Correlation, Consistency), a importance metric (e.g. Information Gain), or a

classification accuracy (e.g. SVM). Table 4.2 displays the result of the ranked variables
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Table 4.1: Feature rankings produced by various methods

Correlation Chi-square Info Gain Consistency SVM

1st ODF2 ODF3 ODF3 ODF3 ODF3

2nd ODF3 ODF2 ODF2 ODF2 ODF2

3rd ODF16 ODF65 ODF65 ODF65 ODF75

4th ODF30 ODF66 ODF66 ODF64 ODF73

5th ODF32 ODF64 ODF64 ODF66 ODF65

6th ODF57 ODF70 ODF70 ODF70 ODF72

7th ODF60 ODF72 ODF72 ODF16 ODF64

8th ODF64 ODF30 ODF30 ODF72 ODF70

9th ODF65 ODF10 ODF10 ODF75 ODF16

10th ODF66 ODF24 ODF24 ODF44 ODF66

... ... ... ... ... ...

from each of the methods, for the objective function F4. Top 10 features with the

highest ranks are shown but in practice the whole list of 76 ODFs is obtained. It is

normally observed that different methods produce a different ranking, since they look

at the same data from different mathematical angles and with different evaluation

metrics, however we do observe consistency in the results. As we proceed to the next

step of feature reduction, we can only take one final ranking, which is decided by a

voting (majority wins) among the five methods. The final ranking will determine the

searching order in the next step.

Global optimization. With ordered variables we can conduct a standard optimiza-

tion. Global optimization algorithms find the best value with the number of variables

varying from 1 to 76, following the order of importance. At iteration k, while the k-th

variable from the rank is being fixed by the algorithm, the top k − 1 variables have

already had values fixed, and the remaining 76− k are temporarily set to zero. The

iteration stops when adding a variable does not improve the best value obtained. In

terms of global optimization algorithms, linear programming is used for linear func-

tions F1 and F2. For nonlinear functions F3, F4 and F5, genetic algorithm is used.

Both algorithms allow specifying the constraints, lower and upper bounds, of input

variables.
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4.5.2 Optimization results

Three criteria are used to evaluate the material structural design methods: the

goodness of properties obtained, the efficiency of search, and the completeness of

solutions. Since in this context we are dealing with design problems that optimize

certain defined property functions, the goodness of method can be determined by

the sheer value of the property obtained. The efficiency is judged by the time taken

for obtaining the result under the same computational environment. In some cases,

there exist multiple solutions of structure that produce the same best property, and

we evaluate the completeness of solutions by the number of answers generated. The

best solution would be the one that finds the most number of (if there exists more than

one) desired optimum result within the shortest time. In this section, we first present

directly the optimum results for each problem gained by our data mining method as

well as how each solution is structured (single solution or multiple solutions, single-

crystalline or poly-crystalline). For any of them to make sense, we compare both

the results and the running time with some baseline searching methods as well as

advanced optimization methods. Subsequent discussions and analyses are provided.

The minimum of Young Modulus (Eopt) obtained is 85.9878 GPa, given by a single-

crystal microstructure with A(34) = 265.8581 and the other variables zero. Fig. 4.2

shows the microstructure with only one orientation of the crystal in poly-crystalline

material. The maximum of Yield Stress (Y opt) is 3.5311 GPa and is given by three

sets of answers, two of which are single-crystal microstructures: 1) A(32) = 265.8581

and others 0; 2) A(33) = 265.8581 and others 0; and 3) A(32) = A(33) = 132.9291

and others 0. Fig. 4.3 shows the microstructure with only one orientation of the

crystal in poly-crystalline material. The maximum of magnetostrictive strain (mopt)

is 1.5498e-04, given again by a single-crystal microstructure where A(32) = 265.8581

and others all 0. Fig. 4.4 shows the microstructure. As expected for linear property

we get a single crystal which for Galfenol is < 100 > direction, with our data mining
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search we are able to find this optimal microstructure in very less amount of time.

The optimum microstructure for objective function F1 is also a single-crystal and

ODF plots is similar to previous ODF plots. The value of F opt
1 is 2.9347e-06. For

problem F2, however, we get 26 microstructure which give the same maximum value

of F opt
2 = 10. ODF plots for all those microstructure is shown in Fig.4.5.

Figure 4.2: ODF values that satisfy the Objective Function E

Figure 4.3: ODF values that satisfy the Objective Function Y

Figure 4.4: ODF values that satisfy the Objective Function m
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Figure 4.5: ODF values for all 26 possible cases that satisfy the Objective Function
F2

Table 4.2: Comparison of Optimal Value for different property

Property Random Search Data Mining Genetic Algorithm
Yield Strength (Y) in GPa 0.323 0.35311 0.30654
Magnetostrictive Strain(m) 9.0034e-5 1.5498e-4 1.3797e-04
Young Modulus (E) in GPa 186.25 85.9878 89.5667

To validate the result obtained by data mining we did exhaustive search (1 million

search) for Y, m and E. In table we have shown the comparison of results obtained by

data mining and exhaustive search method. As we can deduce from this comparison

that being linear property it’s still possible to get similar optimal value for Y and

m using exhaustive search. But, for non linear property such as E large number of

search is still not enough to find the microstructure for which value for E is minimum.

With our data mining approach we can able to find this minimum value for non linear

property E in fraction of time as compared to exhaustive search method.
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4.6 Conclusion

In this chapter we developed an approach for microstructure sensitive design using

a data mining frame work based on feature extraction and start point recommenda-

tion.Using this data mining method we can search for microstructure that can result

in optimal property in fraction of time as compared to conventional linear program-

ming method which is generally used to solve these kinds of problems. For one of

the objective function we got several combinations for microstructure which is not

possible with conventional linear programming technique. In the future we will try

to employ these methods for more complex problems such as finding microstructure

that can results for better fatigue performance, lower hysteresis, optimal damping

and numerous other properties. We will further validate these findings with series of

experiments.
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CHAPTER V

Microstructure modeling using statistical

correlation functions

Since ODF representation does not contain information about the local neigh-

borhood of crystals, Taylor assumption [132] is typically used where all crystals are

subject to the same macroscopic strain and equilibrium across grain boundaries is

not captured. In chapter 6 of the thesis, we investigate a higher order probability de-

scriptor, the orientation correlation function (OCF), for representing polycrystalline

microstructures. The OCF arises in known expressions for mechanical and transport

properties [108, 22] and correlates with defect-sensitive properties such as stress cor-

rosion cracking and creep [137]. The OCF defined by F(g′, g, r), gives the probability

density of finding orientations g′ and g at the end points of a randomly placed vector

r within the microstructure. In addition to containing volume fraction information,

the OCF also contains crystal neighborhood information that can be used in models

that predict interactions between grains.

Finite element representation of the two–point measure is challenging due to its

high dimensionality, for example, nine–dimensional elements are needed to fully dis-

cretize the OCF for a 3D FCC polycrystal. Analytical approximations in the form

of exponentially decaying functions (based on the Corson’s model, Corson (1976),

Garmestani et al. (2001)) have been developed for approximating the two–point prob-
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ability function. More recently, Adams exploited the use of intermediate representa-

tion called ‘texture functions’, approximated in Fourier space (Adams et al. (2005)).

However, these are global approximations and are not efficient in capturing sharp

changes in the two–point probability function that occur in real microstructures. In

this work, we attempt to develop a simplified finite element representation of the

two–point measure using an approach analogous to ‘separation of variables’ method

used for solving differential equations. Here, the OCF is described using intercon-

nected layers of meshes in g, r and g′ spaces. The conditional orientation correlation

function (COCF), F(g′|(g, r)) is described using a finite element mesh in the 3D ori-

entation space of g′. This mesh is linked to a node r in a separate mesh representing

the local neighborhood of orientation g. As the microstructure evolves, the crystal

reorientations close to an orientation (g) is captured by updating probability fields in

these interconnected finite element meshes. A novel total Lagrangian approach has

been developed that allows evolution of probability densities while satisfying basic

normalization constraints. The piecewise polynomial functions used to represent the

COCF allow ease of construction of various orientation transformations, such as dif-

ferencing, interpolation and projection. The improvement in prediction of texture and

strains achieved by the COCF approach over ODF–based methods has been quanti-

fied through simple deformation analysis of a planar polycrystalline microstructure.

For this simulation, we employ a viscoplastic (non–hardening) constitutive model

and a Green’s function based first order correction to the Taylor model previously

developed in Adams et al. (1989).
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5.1 Representation of the conditional orientation correlation

function

The N-point correlation measure can be interpreted as the probability of finding

the N vertices of a polyhedron separated by relative distances x1, x2, ..., xN in crystal

orientations g1, g2, ..., gN when tossed in the microstructure. The conditional orien-

tation correlation function used in this work, F(g′|(g, r)), is related to the two–point

descriptor (N = 2). The function, hereafter simply called COCF, gives the proba-

bility density of occurrence of an orientation g′ at the end point of a vector r (with

length r) emanating from a given orientation g (Fig. 5.1). The function satisfies the

r

g

g’

(b)

(c)(a)

Figure 5.1: (a) COCF (F(g′|(g, r))) gives the probability density of occurrence of
an orientation g′ at the end point of a vector r emanating from orientation g. (b)
Sampling along all directions results in a rotationally invariant OCF with scalar r.
(c) Direction sensitive sampling for a vector representation of r

following conservation equations at all times during deformation:

∫
F(g′|(g, r))dg′ = 1 (5.1)∫

F(g′|(g, r))P(r|g)dr = A(g′) (5.2)∫
A(g′)dg′ = 1 (5.3)∫
P(r|g)dr = 1 (5.4)
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In the above equation A(g′) refers to the orientation distribution function (ODF)

and P(r|g) gives the probability density of occurrence of vector r from a location

with orientation g. P(r|g) is a geometrical probability distribution that accounts

for the finite size of the microstructure. In the derivation of Eq. 5.2, orientations

g′ and g are considered mutually independent variables, with the joint probability

G(g′, g) = A(g)A(g′).

In addition, the following constraints have to be satisfied by the COCF at all

times:

F(g′|(g, r = 0)) = δ(g − g′) (5.5)

F(g′|(g, r)) ≥ 0 (with P(r|g) ≥ 0,A(g′) ≥ 0) (5.6)

Here, δ stands for the dirac delta function. The distance r can be considered a scalar

(using the notion of rotational invariance). Note that the correlation functions may

also depend on the direction of r, in which case, parameter r must be considered as a

vector. Use of scalar r simplifies the computational cost but captures less information

about the polycrystal. We will discuss both cases in this work. In addition to the

above constraints, the orientation space corresponding to all possible g’s must satisfy

the crystallographic symmetries of the chosen system (FCC, HCP etc.) and the

switching symmetry of the two–point measure.

Previously, analytical approximations (Garmestani et al. (2001)) have been used

to represent discrete two–point probability functions. For example, exponential func-

tions in the following form can be used to represent the conditional two–point prob-

ability function for a discrete set of orientations g:

P (gj|(gi, r)) =

 Vj + (1− Vj)exp(−cijrnij) if i = j;

Vj − Vjexp(−cijrnij) if i 6= j.
(5.7)
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where, Vj is the volume fraction of grains with orientations gj. The parameters cij and

nij are obtained by curve fitting the measured initial COCF. The above relationship is

a smooth global approximation and is not efficient in capturing localized changes (at

different r) in the two–point probability function that occur in real microstructures.

In this paper, we develop a new finite element discretization approach for representing

the orientation correlation function. In this section, we first explain the representation

scheme for the COCF using a continuous domain of orientations g, i.e., the orientation

space.

The complete orientation space of a polycrystal can be reduced to a smaller subset,

called the fundamental region, as a consequence of crystal symmetries. Within the

fundamental region, each crystal orientation is represented uniquely by a coordinate

g, the parametrization for the rotation (eg. Euler angles, Rodrigues vector etc.). The

ODF, represented byA(g), describes the local density of crystals over the fundamental

region of orientation space. Consider a region Rδ which is a ball of radius δ centered at

orientation g in the fundamental region. Let vf (Rδ) be the volume fraction of crystals

that have orientations that occur within volume Rδ. Assuming that the ODF is a

continuous function in the fundamental region, the ODF at an orientation g is defined

as:

A(g) = lim
δ→0

vf (Rδ)∫
Rδ
dg

(5.8)

A variety of ODF representation techniques have been developed in literature,

including spectral expansions and finite element representations. We employ the

finite element approach where the ODF is represented through the nodal values of a

finite element grid in the fundamental region (eg. g–mesh in Fig. 5.2).

The COCF, F(g′|(g, r)), is represented in the FE discretized fundamental region

(called mesh Mg′|gr). Another mesh (mesh Mr|g) in real space is considered that

contains all possible distances (r) from an orientation g. This is a 1D mesh if only

scalar magnitudes of r is considered and a nD mesh in a general case if n-dimensional
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g mesh

g’|(g,r) mesh

r|g mesh

COCF representation for planar 

microstructures

Figure 5.2: COCF mesh representation for a planar microstructure (with fundamental
region being a line between −π/2 to π/2). The r mesh is a semicircle with each
node point giving the distance and orientation of a vector r drawn from orientation
g. Orientation g′ located at the end of vector r is represented using a fundamental
region connected to each node in the r mesh.

(n = 2, 3) vector locations r are considered. The mesh Mg′|gr is represented at

every node point in mesh Mr|g. The mesh Mr|g is, in turn, defined for every node

point in another FE discretized fundamental region (mesh Mg). The approach is

illustrated in Fig. 5.2 for a planar microstructure (with fundamental region for g

being a line between −π/2 to π/2). The approach used here allows easy visualization

and interpretation of COCF evolution during deformation.

5.2 Probability update in finite element spaces

The probabilities are evolved from time t = 0 from an initial COCF that satisfies

the conservation equations 5.1–5.4. The initial orientation go of a crystal reorients

during deformation and maps to a new orientation gt at time t. Simultaneously,

the finite element mesh of fundamental region Mg deforms with nodes located at go

moving to new locations gt. We assume that the mapping from go to gt is invertible.

The ODF A(gt) represents the volume density of crystals with orientation gt at

time t. The evolution of ODF is given by the conservation equation 5.3 as:
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∫
A(go, t = 0)dgo =

∫
A(gt)dgt = 1 (5.9)

where dgo represents the volume element in the undeformed (initial) ODF mesh

(Mgo) which becomes volume element dgt at time t. A Jacobian J(go, t) = det(F )

gives the ratio of elemental volumes, where F is the reorientation gradient given as

F (go, t) =
∂gt
∂go

. Using the Jacobian, a map of the current mesh (at time t) to the

reference mesh (at t = 0) can be made:

∫
(A(go, t = 0)− Â(go, t)J(go, t))dgo = 0 (5.10)

The quantity written as Â(go, t) is the volume density A(gt) plotted over the cor-

responding orientation (go) in the initial mesh. Thus, Â(go, t) gives the Lagrangian

representation of the current ODF in the initial mesh Mgo . If the integrand is contin-

uous, a localized relationship of the following form can be used to update the ODF

at any time t:

Â(go, t)J(go, t) = A(go, t = 0) (5.11)

For computing gt, a reorientation velocity (computed from the constitutive model)

v =
∂gt
∂t

is used. The reorientation velocity is computed at each nodal point in the

mesh and the change in orientation ∆g
′
= g

′
t−g

′
o is then stored at the nodal points in

the fundamental region. Fig. 5.3 gives an idea of how the approach works for a one–

dimensional fundamental region that is represented using two–noded finite elements

with linear interpolation. Here, the Jacobian is simply the ratio of element lengths,

i.e. current length divided by the initial length. If the element length decreases

over time, the probability density has to increase based on Eq. 5.11 to maintain

normalization of the ODF.
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Figure 5.3: Probability update scheme in FE space: During deformation, the nodal
points (g) of the FE mesh are moved to reflect reorientation (∆g) of crystals. The
new ODF is obtained using Eq. 5.11 that ensures that the normalization constraint
(Eq. 5.9) is met in the reoriented mesh.

Note that the integrand in Eq. 5.10 needs to be continuous for the localization

relationship to be valid. Thus, it is implied that J(go, t) needs to be continuous

and consequently, v needs to be continuously differentiable (at least piecewise) in

the fundamental region. The latter is rather a restriction on the constitutive model

and macro–micro linking assumption that is used to compute v.1 Note that the

differentiability of v will also ensure invertibility of the map from go to gt.

Similar approach is used to update the probability densities P and F in the meshes

Mr|g and Mg′|gr respectively. The evolution of geometrical probability density P is

given by conservation equation 5.4 as:

∫
(P̂(ro, t|gt)J(ro, t|gt)− P(ro, t = 0|gt))drog = 0 (5.12)

where drog represents the volume element in the undeformed (initial) mesh (Mr|g) and

1Some rate-independent crystal plasticity models give sharp differences in reorientation velocities
for orientations that are, in fact, very close to each other. When using such models, the Jacobian
may become ill–defined.
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J(ro, t|gt) = det( ∂rt
∂ro (gt)) is the Jacobian for a volume element initially at location

ro from orientation gt. A localized relation of the following form is used to compute

the geometrical probability density at time t:

P̂(ro, t|gt)J(ro, t|gt) = P(ro, t = 0|gt) (5.13)

We consider the microstructure to be periodic, in which case, the initial probability

P(ro, t = 0|g) = co, a constant independent of g. That is, from a given crystal, all

r–vectors are equally probable due to periodicity.

For computing the COCF, we first look at the r–interdependence (Eq. 5.2):

∫
F(g

′

t|(gt, rt))P(rt|gt)drt = A(g
′

t) (5.14)

The two localization relations given by Eq. 5.11 and Eq. 5.13 are used to reduce

the above equation:

∫
F̂(g

′

t|(gt, ro, t))
P(ro, t = 0|gt)
J(ro, t|gt)

J(ro, t)dro =
A(g

′
o, t = 0)

J(g′o, t)
(5.15)

=
1

J(g′o, t)

∫
F(g

′

o, t = 0|(go, ro)) P (ro, t = 0|go)dro (5.16)∫
co(F̂(g

′

t|(gt, ro, t))
J(g

′
o, t)J(ro, t)

J(ro, t|gt)
− F(g

′

o, t = 0|(go, ro)))dro = 0(5.17)

In the above derivation, we have used the fact that P(ro, t = 0|g) = co at time t

= 0 due to periodicity. The localization relationship obtained from Eq. 5.17 leads to

a simple probability update strategy for the COCF:

F̂(g
′

t|(gt, ro, t))
J(g

′
o, t)J(ro, t)

J(ro, t|gt)
= F(g

′

o, t = 0|(go, ro)) (5.18)

The above equation gives the COCF in locations (gt, rt) for all times t > 0.

Finally, we need to develop a mesh update strategy that ensures the normalization

78



equation for COCF (F) (Eq 5.1) is satisfied at times t > 0:

∫
F(g

′

t|(rt, gt))dg
′

trg = 1 (5.19)

where dg
′
trg represents the volume element at orientation g

′
t in the deformed COCF

mesh (Mg′|gr) located at a distance of rt from gt.

Using Eq. 5.18, the conservation equation is written as:

∫
F(g

′

o, t = 0|(go, ro))
J(ro, t|gt)

J(g′o, t)J(ro, t)
dg
′

trg =

∫
F(g

′

o, t = 0|(go, ro))dg
′

org = 1

(5.20)

By inspection of the above equation, the Jacobian for the COCF mesh evolution

can be obtained as:

J(g
′

o, t|(rt, gt)) = det(
∂g
′
t

∂g′o
(rt, gt)) =

J(g
′
o, t)J(ro, t)

J(ro, t|gt)
(5.21)

The initial COCF mesh (at t = 0) is the same at all locations r and J(g
′
o, t|(ro, gt))

is also numerically equal to the above Jacobian. This equation gives a mesh update

strategy for the COCF. As explained previously, ODF mesh update uses the reorien-

tation gradient F (g
′
o, t) =

∂gt
∂go

computed from the reorientation velocity v =
∂gt
∂t

(as given by the constitutive model). At each location rt and g, the node points

of the COCF mesh (Mg′|gr) are moved using the same reorientation gradient (with

Jacobian J(g
′
o, t)) but scaled by a factor ( J(ro,t)

J(ro,t|gt)
)
1
d , where d is the dimensionality of

the orientation space. We next look at the approach to compute this scaling factor.

Apart from crystal reorientations, the COCF also evolves due to stretching of

grains during deformation (Fig 5.4). Let us say, for now, that the velocity gradient

(L) for each grain of orientation g can be computed (this is discussed later in section

5.3.1). In Fig. 5.4, the rate of change of vector r originating from orientation g

(shown as a red line) can be found by integrating Ldr over the vector r. However,
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Figure 5.4: During deformation, the two–point descriptor evolves due to reorientation
of crystals with initial orientation g′ and g at the end points of vector r. In addition,
both the length and orientation of r vector changes during deformation.

in the COCF approach, the velocity gradient L along the vector r is only known in

a statistical sense. For eg. the average velocity gradient at a distance of r′ (r′ = λr,

0 ≤ λ ≤ 1) from orientation g, denoted as < L(r′|g) >, can be found by averaging

over the COCF:

< L(r′|g) >=

∫
F(g′|(g, r′))L(g′)dg

′

r′g (5.22)

The average rate of change of vector r can then be written as a path integral of

averaged velocity gradient (< L(r′|g) >) along r:

< ṙ >g=

r∫
0

< L(r′|g) > dr
′

g (5.23)

Nodes in the meshMr|g are updated using the velocities computed in Eq. 5.23 from

which the Jacobian J(ro, t|g) can be computed. The probability P(rt) is computed
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from the relationship: ∫
P(rt|gt)A(gt)dgt = P(rt) (5.24)

Then, the Jacobian is computed as J(ro, t) = P(ro)
P(rt) .

5.2.1 Case of rotationally invariant COCF:

When using the rotationally invariant COCF, only the rate of change of magnitude

of r needs to be calculated. The vector r′ is written as a product of the magnitude r′

and a unit vector n (ie. r′ = r′n). Eq. 5.23 is rewritten in terms of the stretch rate

tensor <D > (symmetric part of < L >) and another integral is performed over the

surface of a unit sphere in order to average over all possible unit vectors n.

< ṙ >g=

∫  r∫
0

nT <D(nr′|g) > ndr
′

g

 dn (5.25)

The average velocity gradient is computed from the rotationally invariant COCF

as follows:

< L(nr
′|g) >=

∫
F(g′|(g, r′))L(g′)dg′r′g (5.26)

The right hand side of the above expression is clearly independent of n due to the

use of rotationally invariant COCF (ie. < L(nr′|g) >=< L(r′|g) >). Thus, Eq. 5.25

can be rewritten as follows:

< ṙ >g=

 r∫
0

<D(r′|g) > dr
′

g

[∫ nTndn

]
(5.27)

Using the property
∫
nTndn = 1

3
δij, we can rewrite Eq. 5.27 as:

< ṙ >g=
1

3

r∫
0

trace(<D(r′|g) >)dr
′

g (5.28)
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Note that the velocity < ṙ >g will be zero in viscoplastic analysis due to the incom-

pressibility constraint trace(<D >) = 0.

Remark: Note that the rate of change of r–vector between two orientations (g

and g′) can be accurately computed if conditional three–point probability functions

are known (Adams et al. (1989)):

< L(r′|(g′, g, r)) >=

∫
F(g′′|(g′, g, r, r′))L(g′′)dg

′′

g′gr′r (5.29)

< ṙ >(g,g′)=

r∫
0

< L(r′|(g′, g, r)) > dr
′

g′gr (5.30)

where F(g′′|(g′, g, r, r′)) is the probability of orientation g′′ at a distance r′ = λr

from orientation g given that orientation g′ is at a distance of r from g. Here, the

rate of change < ṙ > is assumed to depend on both g and g′. In the current work,

we compute the rate of change < ṙ > using only the starting orientation g. This is

based on our Bayesian separation of variables: F(g, g′, r) = F(g′|(g, r))P(r|g)A(g).

In the second term (P(r|g)), the deformation of r-mesh is modeled to depend only on

the starting orientation g. Our motivation here was to restrict ourselves to the known

two–point probability function and avoid computing or storing the even more com-

plex three–point probability function. In another paper (Garmestani et al. (2001)),

the three–point probability function was approximated using the known two–point

probability functions, but the approximation violated the normalization relationships

for the three–point probability function. Derivation of consistent approximations are

the subject of recent research (Mikdam et al. (2009)).

5.2.2 Symmetry constraints in the COCF

Since g and g′ can be switched in the joint distribution (F(g, g′, r)) without

change in the probability density, a symmetry relationship of the following form is

obtained:
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F(g|(g′, r))P(r|g′)A(g′) = F(g′|(g, r))P(r|g)A(g) (5.31)

Substituting the localized Lagrangian conservation relationships in the above re-

lationship leads to the following equation:

F(go, t = 0|(g′o, ro))
J(go, t|(g′, r))

P(ro, t = 0|g′)
J(ro, t|g′)

A(g
′
o)

J(g′o, t)
=
F(g

′
o, t = 0|(go, ro))
J(g′o, t|(g, r))

P(ro, t = 0|g)

J(ro, t|g)

A(go)

J(go, t)
(5.32)

Using the definition for Jacobian of COCF (Eq. 5.18) and the fact that P = co

at time t = 0, the above equation reduces to:

F(go, t = 0|(g′o, ro))A(g
′

o) = F(g
′

o, t = 0|(go, ro))A(go) (5.33)

Note that the reference COCF sampled from the microstructure satisfies the above

constraint. This indicates that the evolution of the COCF will continue to follow the

symmetry constraint Eq. 5.31 when using the proposed probability update scheme.

5.3 Constitutive modeling

The OCF evolution of a viscoplastic polycrystal is calculated using the following

constitutive model (Asaro and Needleman (1985)). The velocity gradient of a crystal

with orientation, g (and rotation matrix R) is taken to be of the following form:

L(g) = Ω + R
∑
α

γ̇αŚ
α
RT (5.34)

where Ω is the lattice spin, γ̇α is the shearing rate along the slip system α and Ś
α

is the Schmid tensor for the slip system α, given by (ḿα ⊗ ńα), where ḿα is the
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slip direction and ńα is the slip plane normal, both in the crystal lattice frame. The

expressions for the spin and symmetric parts are obtained as shown below:

Ω = W − R
∑
α

γ̇αQ́
α
RT (5.35)

D́ =
∑
α

γ̇α Ṕ
α

(5.36)

where Ṕ
α

and Q́
α

are the symmetric and skew parts of the Schmid tensor respectively

and D́ is the deviatoric deformation rate expressed in the lattice frame through,

D́ = RTDR. The shearing rate on slip systems is given by a power law and we

further assume that all slip systems have identical slip system resistance.

γ̇α = γ̇0

∣∣∣∣ταs
∣∣∣∣1/msign(ταs

)
(5.37)

where s is the slip system resistance, m is the strain rate sensitivity, γ̇0 is a reference

rate of shearing and τα is the resolved shear stress on slip system α. Further, the

resolved stress is related to the deviatoric crystal Cauchy stress as

τα = σ́• Ṕ
α

(5.38)

If the velocity gradient for the crystal (L(g)) is known, then solving the system of

equations (5.36 − 5.38) will lead to the deviatoric crystal cauchy stress (σ́) and the

shear rate (γ̇α). A Newton algorithm is used to find the stress for a given velocity

gradient and orientation. The secant moduli (symmetric tensor Ń ) that relates the

deviatoric deformation rate to the deviatoric stress tensor (as in σ́ = ŃD́) in the

lattice frame is then computed based on Eq. 5.39. The secant moduli in the lattice

frame is then rotated back to the sample reference frame to calculate N .
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Ńijkl =

[∑
α

(
γ̇o
s

)|Ṕα
rsσ́rs/s|

1
m
−1Ṕα

ij Ṕ
α
kl

]−1

(5.39)

5.3.1 Interaction Law

In the following section, the interaction law is derived for a viscoplastic polycrys-

tal following an integral equation approach (Molinari et al. (1987)). We denote by

T the local Cauchy stress, T = σ − pI, with σ representing the deviatoric cauchy

stress, p representing the pressure and I being the second-order identity tensor. N

refers to the secant modulus (in the sample reference frame) derived from the con-

stitutive problem with the relationship σ = ND = NL. Therefore, the governing

equations for deformation (equilibrium equation with incompressibility constraint) in

the polycrystal can be expressed as:

Tij,j = (NijklLkl),j − p,i = 0 with Lii = 0 (5.40)

A macroscopic velocity gradient L̄ (with L̄ii = 0) is imposed upon the aggregate. Our

objective is to find out the local velocity gradient (L) in each crystal that satisfies

the above governing equation. To this end, we first decompose N as the sum of a

uniform part N̄ and a space dependent part Ñ to obtain N = N̄ + Ñ . The uniform

part is a tensor that is constant over the microstructure. In this work, the constant

tensor N̄ is taken as the instantaneous secant moduli of the (first order) homogenized

microstructure:

N̄ =

∫
A(g)N (L̄, g)dg (5.41)

Molinari et al. (1987) proposed a Green’s function solution for the set of PDEs

represented by Eq.(5.40) and the compatibility conditions, Lii = 0

Lik(r) = L̄ik +
∫
Gij,kl(r − r

′
)σ̃jl(r

′)dr
′

(5.42)
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Here, Gij,kl is the spatial Green’s function that is obtained from Eqs. 5.40 (Fig.

5.5), the positions r are those computed at current time t and the fluctuation stress

is given as:

σ̃jl(r
′) = Ñjlrs(L(r

′
), g(r

′
))Lrs(r

′
) (5.43)
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Figure 5.5: Real part of Green’s function operator G11,11(r) for a 2D microstructure.
The function peaks at r = (0, 0) and decays to zero at large r.

Using an abbreviated form for the convolution operator, the above equation can

be concisely written as:

L(r) = L̄+G(r − r′) ∗ σ̃(r′) (5.44)

Adams et al. (1989) developed an approach where statistical correlation functions

can be used to compute this velocity gradient. When using the COCF descriptor,

we assume that all grains with orientation g have one local velocity gradient that

is calculated as an ensemble average. Note that there may be differences in the

deformation of crystals with the same orientation but located at different positions

in the microstructure. Unlike aggregate FE models, the local neighborhoods are not

explicitly resolved in the COCF descriptor but are rather averaged for crystals with
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orientation g. Symbol 〈·〉g denotes such an ensemble average. Applying this to

Eq.(5.44), the ensemble average of the local velocity gradients belonging to the same

orientation g∗ can be calculated (approximation is valid within the ergodic hypothesis

described in Beran (1968)):

L(g∗) = 〈L(r)〉g(r)=g∗ = L̄+G(r − r′) ∗ 〈σ̃(r′)〉g(r)=g∗

= L̄+G(r − r′) ∗
[∫
F(g

′|(r − r′ , g∗))σ̃(g′)dg
′

r′g

]
(5.45)

This equation is non–linear since σ̃ in itself depends on the velocity gradient (Eq.

5.43). The velocity gradient for any orientation g can be found by solving the above

equation in a self–consistent iterative manner. No such iterations are required if we

use a simplifying assumption that velocity gradient field does not deviate too far

from the uniform field of the Taylor-type polycrystal (using a first order correction

L(r
′
) ≈ L̄):

〈σ̃(r′)〉g(r)=g∗ ≈
∫
F(g

′ |(r − r′ , g∗))Ñ (L̄, g′)L̄dg
′

r′g (5.46)

For the purpose of demonstration of our probability update scheme, we employ this

first order correction in a similar vein as Garmestani et al.(2001). The average velocity

gradient provided by the approach is enough to compute the necessary Jacobians

used in updating the probability functions. There is, however, further room for

development of the Green’s function approach. Extensions to the case where state

variables (eg. s in Eq. 5.37) evolve with deformation has been treated in Kumar

and Dawson (1996a) for ODFs. A similar approach may be used where ensemble

average of the state variable is computed for all grains of the same orientation. In

addition, Eq. 5.45 can be enhanced by modifying it to calculate the velocity gradient

as a function of distance from orientation g. These enhancements will be a subject

of future study.
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5.4 Numerical examples

The improvement in prediction of texture and strains achieved by the COCF

approach over ODF–based methods has been quantified through simple deformation

analysis of a planar polycrystalline microstructure. Orientations of planar crystals

are characterized by the two dimensional rotation R relating the crystal lattice frame

to the reference sample frame. A parametrization of the associated rotation group is,

R = Icos(r)−Esin(r) (5.47)

where r is the angle between the crystal and sample axes, E is the two dimensional

alternator (E11 = E22 = 0, E12 = −E21 = 1), and I is the identity tensor. Under the

symmetry, crystal orientations can be described uniquely by parameters drawn from

a simply connected fundamental region [a, a+π). Out of convenience, we will restrict

the choice of fundamental regions to the interval closest to the origin (−π/2, π/2).

Due to symmetry, the orientation π/2 is exactly the same as orientation −π/2. This

constraint on the ODF and COCF is enforced in practise by using periodic boundary

conditions in the finite element mesh (Sundararaghavan and Zabaras (2007)) wherein

node at g = π/2 is considered a dependent node with field values updated using the

values at g = −π/2. The crystal reorientation velocity follows by taking a derivative

of relation Eq. 5.47 and using Ω from Eq. 5.35:

v =
1

2
E.Ω (5.48)

The following parameters were used in the power law: γ̇0 = 1 sec−1, s = 27.17

MPa and m = 0.05. A specific crystal geometry with two slip systems at orientation

−π/6 and +π/6 were considered. Kumar and Dawson (1996b) showed that this model

leads to continuity in both reorientation velocity (v) and its gradient (∇v) over the
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orientation space. Thus, a localized Lagrangian model is admissible for the test case.

The imposed macroscopic velocity gradient L (tension) is given as:

L = η

 1 0

0 −1

 (5.49)

Here η is a constant strain rate taken to be 0.1. To test the proposed formulation,

a representative volume element (RVE) containing 36 crystals was chosen. The mi-

crostructure is divided into N × N (N = 18) smaller elements and the orientations

were randomly assigned. It is assumed that this microstructure contains adequate

number of grains to represent the overall one and two–point statistics. To avoid edge

effects in sampling two–point statistics, it is assumed that the microstructure is pe-

riodic in the x- and y- directions. Fig. 5.6 shows the initial microstructure as well

as the initial ODF sampled from the RVE. The initial ODF is plotted on a finite ele-

ment grid with nine line elements in the fundamental region (−π/2, π/2) of a planar

microstructure. Both locations of nodal points and integration points are indicated

in Fig. 5.6(b).
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Figure 5.6: (a) The initial (periodic) RVE with 324 elements and 36 crystals. Each
crystal is divided into 9 elements. (b) The initial ODF sampled from the RVE is
plotted on a finite element grid in the fundamental region (−π/2, π/2). Both locations
of nodal points and integration points are indicated.
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The COCF of the microstructure was sampled to compute probabilities at the node

points of finite element meshes Mg′|gr, Mr|g and Mg. Grains that have orientations

close to the nodal points in the Mg mesh (within an error of ±δg, δg = 0.05rad

being a small smoothing parameter in the g–space) are chosen for sampling. From

these selected grains, a set of r vectors are drawn. The lengths and orientation of

the r vectors are chosen based on the location of node points in the Mr|g mesh. If

the end point of these vectors fall in orientation that corresponds to a node point

(within the smoothing parameter) in the COCF mesh Mg′|gr, then the weight for this

node is incremented by one. The approach is illustrated in Fig.5.7. COCF weights

are computed for all combination of node points in meshes Mr|g and Mg. The nodal

probabilities are then computed through normalization of the weights over the COCF

mesh (Mg′|gr). Note that there is no limitation on the number of crystals in the actual

microstructure when using the COCF mesh. The COCF is sampled using a fixed set

of elements in the g, r and g′ meshes irrespective of how many grains are actually

present in the microstructure. The present example was only used as a simple test case

and larger systems (with more grains) could have been considered without restriction.

r = 10
ϕg

r = 10

g

g’

(a) (b) (c)

Figure 5.7: Illustration of the sampling approach for COCF: (a) Sample a pixel in a
grain with orientation g corresponding to a node point in the Mg mesh (b) Draw a
line passing through the pixel to identify the orientation g′ at a distance r, increment
the weights in a 3D array F (g, r, g′) (c) Sample lines at various angles to capture
orientation dependence. The lengths and orientation of the lines are chosen based on
the location of node points in the Mr|g mesh.
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The Green’s function (G11,11) for the proposed constitutive model parameters was

shown in Fig. 5.5. From analysis of the decay of this and other components of

the tensor (Gij,kl), a cut-off distance of 25 mm was chosen for the Mr|g mesh. The

microstructure is taken to be of length 100 mm, much larger than the cut–off distance

of 25 mm, for computational convenience. A semi–circular mesh is adequate in the r–

space owing to the symmetry of the Green’s function. For maintaining consistency in

the convolution operation in Eq. 5.42, two r–vectors +r and −r need to be sampled

from location g to update the value of COCF weights at nodal location r in the Mr|g

mesh. Linear interpolation was used in the Mg and Mg′|gr meshes with two integration

points per element. In the Mr|g mesh, four noded quadrilateral elements with bilinear

interpolation and four integration points per element were employed.

Finite element integration techniques (where quantities are summed at gauss

points) are used to compute integrals such as Eq. 5.22 and Eq. 5.42. This ap-

proach circumvents the issue of singularity of Green’s functions at r − r′ = 0 since

Gauss points do not fall at this location2. However, smaller elements are needed

close to the singularity to capture the sharp changes in the Green’s function close to

r − r′ = 0. For this purpose, a convergence study was performed to select the best

possible mesh in the Mr|g space that allows good trade–off between computational

speed and accuracy. Fig. 5.8 depicts various different meshes (Mr|g) used for testing

the convergence of the Green’s function approach. The Green’s function shown in Fig.

5.5 is superposed on these meshes as a color contour. The meshes were adapted to

capture the major variations in Green’s function that occur at small values of r− r′.

In order to test the approach, an aggregate model was developed where a mesh in

2A proper solution to the singularity problem is to construct solutions for a finite small volume
Vc surrounding point r, then calculate the average value of the velocity gradient to replace the value
at r (Kroner (1987)). The average value of velocity gradient L0(g∗) is given as:

L0(g∗) = L̄+
1

Vc

∫
r∈Vc

G(r − r
′
) ∗ 〈σ̃(r

′
)〉g(r)=g∗dr
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Figure 5.8: Various meshes used to discretize the r space for testing the convergence
of the Green’s function approach. The Green’s function G11,11 is superposed on the
r-mesh as a color contour.

the r–space (a full circular mesh) is directly utilized at every integration point in the

aggregate RVE to compute the local velocity gradients in the crystals. The approach

is similar to the work of Lebensohn (2001) and Lee et al. (2011), except that Green’s

function convolution is performed in the real space instead of the k–space. A first

order correction (eq. 5.46) is used similar to the COCF model. This approach, called

the ‘aggregate model’, is more accurate than the COCF model as it explicitly includes

the neighborhood of each crystal rather than an ‘average’ neighborhood computed

during COCF sampling. The convergence results are shown in Fig. 5.9. The y-axis

shows the l2 norm of the change in nodal coordinates when using the current mesh

(compared to the previous coarser mesh). The final microstructure at t = 1 sec is

also shown for a few cases. An 82 element mesh in the r-space was chosen based on

this study. We also tested the singularity averaging approach (Kroner (1987), see

footnote 3) and found the change to be modest, with less than 4% change in the

Green’s function term for orientation g = −π/2.

The algorithm for the COCF update is given in Table 1. In the algorithm, we

first compute the velocity gradient of each orientation g using the Green’s function

approach. Subsequently, the velocity gradient is used to compute the reorientation

velocities in the M(g) mesh and the nodal displacements in M(r|g) meshes. The
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Figure 5.9: Convergence with respect to r–mesh: The y-axis shows the l2 norm of the
change in nodal coordinates when using the current mesh (compared to the previous
coarser mesh). The final microstructure at t = 1 sec is also shown for all cases. An
82 element mesh in the r-space was chosen based on this study.

results are used to compute the Jacobians necessary to update the COCF. A total

lagrangian approach is used where the fundamental region mesh for g and g′ remain

unchanged and the reorientations are only stored at the nodal points. If the reori-

entations are used to move the nodal locations, new orientation spaces are obtained,

which are also valid fundamental regions (Kumar and Dawson (1996a)). Several ideas

from the finite element community were used to solve the COCF evolution problem.

For example, shape functions were used to calculate the gradient of deformation and

the Jacobians, integrations were performed at the integration points to compute in-

tegrals (eg. in Eqs. (5.22–5.24,5.41,5.45)), interpolations are performed using shape

functions to transfer deformation from nodes to integration points, smoothing is per-

formed to transfer the computed jacobians from integration points to nodes. The

total Lagrangian approach used in this work was found to be adequate up to a strain

of 0.2. At larger strains, the nodal points may begin to overlap and interpenetrate.
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To address such situations, remeshing techniques and updated lagrangian methods

need to be developed in the future.

Table 5.1: Algorithm for COCF evolution

(1) Initialize meshes M(g),M(r|g) and M(g′|rg) and load probabilities
A(g), P(r|g) and F(g′|(r, g)) computed from the sampling algorithm.
(2) Apply time increment ∆t.
(3) At current time step:

(3.1) Calculate N̄ from Equation 5.41.
(3.2) Compute and store the Green’s function at integration points of

r–mesh (3.3) Compute and store σ̃ at integration points of r–mesh
connected to each orientation g using Eq. 5.46

(3.4) Loop over all nodes in mesh M(g) and perform convolution of σ̃
with the Green’s function (Eq. 5.45) to compute the velocity gradient at
each nodal orientation.
(4) Update Probabilities:

(4.1) Call constitutive model to compute reorientation velocities at
nodes in the fundamental region (use velocity gradient found in step (3.4)).

(4.2) Update ODF using Eq. 5.11
(4.3) Compute velocity of nodes in meshes M(r|g) using Eq 5.23 and

deform the M(r|g) meshes.

(4.4) Compute P̂(r|g) using Eq. 5.13 and then, compute P̂(r) using
Eq. 5.24

(4.5) Update COCF F(g′|(r, g)) using Eq. 5.21
(5) Go to step (2) if time t < tfinal.

The final texture predicted by the COCF model for the microstructure at t = 1

sec is shown in Fig. 5.10. From Kumar and Dawson (1996b), it is seen that texture

from tension process leads to an orientation sink at zero degrees and source at ±π/2;

with the basin of the sink spanning all of orientation space. Thus the ODF will evolve

exponentially with strain and eventually approach the asymptote, A(r) = δ(r−π/2).

As seen in Fig. 5.10, there is tendency for crystals with angles close to the origin to

reorient farther away (sink) and an associated increase in the ODF close to the ideal

orientation of θ = ±π/2 (source) as expected.

The initial Lagrangian COCF F̂ (g′|(g = −π/2, r)) and the COCF calculated

94



-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Orientation (rad)

O
D

F

 

 

Initial ODF

Final ODF from COCF model

Figure 5.10: The final texture predicted by the COCF model is shown. There is strong
tendency for crystals with smaller angles (close to the origin) to reorient farther away
from the origin. An increase in the ODF close to an ideal orientation of θ = ±π/2
is seen.

at t = 1 sec is shown in Fig. 5.11. In this visualization, probability density of

various orientations g′ at distances r from orientation g = −π/2 is shown over the

r-mesh. At t = 0, the figure shows the average neighborhood of grain with orientation

g = −π/2 as computed from the sampling algorithm. The circles shown in the line

connecting various M(r|g) (semi-circle) meshes correspond to various values of g′

from (−π/2, π/2). Thus, the first mesh corresponds to the probability of finding

orientation g′ = −π/2 at various distances r from orientation g = −π/2, given as

F̂ (g′ = −π/2|(g = −π/2, r)). The second mesh corresponds to F̂ (g′ = −0.39π|(g =

−π/2, r)) etc. At r = 0, a delta function is obtained F̂ (g′|(g = −π/2, r = 0)) with a

large value (seen at node with r = 0) in the first mesh and zeros at the same node in

the other meshes (not shown). The evolved COCF at a strain of 0.1 is also shown.

The next figure (Fig. 5.12) shows another facet of the COCF F̂ (g′ = −π/2|(g, r)).

Here, the representation depicts the probability of finding orientation g′ = −π/2 in

the neighborhood of all other nodal orientations. The circles correspond to various val-
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Figure 5.11: Visualization of Lagrangian COCF F̂ (g′|(g = −π/2, r)): The circles
correspond to various values of g′ from (−π/2, π/2). The probability density of ori-
entations g′ at various distances r from orientation g = −π/2 is shown over the
r-mesh. The first mesh corresponds to F̂ (g′ = −π/2|(g = −π/2, r)), the second mesh
corresponds to F̂ (g′ = −0.39π|(g = −π/2, r)) etc. The evolved COCF at t = 1 sec is
also shown.

ues of g from (−π/2, π/2). The COCF shown here is closely related to that shown in

Fig. 5.11 through the switching symmetry. Recall the equation for switching symme-

try in this context F(g′ = −π/2|(g, r)) = F(g|(g′ = −π/2, r))
P(r|g′=−π/2)A(g′=−π/2)

P(r|g)A(g)
.

Note that the ratio of geometrical probabilities (P) is not significantly different from

the initial value of one under the moderate strain imposed here. Since the ODF

at g = −π/2 at t = 10 sec is larger than ODF at any other orientation (from

Fig. 5.10), this would imply that the COCF F̂ (g′ = −π/2|(g, r)) in Fig. 5.12

(at t = 10 sec) will be larger than the COCF shown in Fig. 5.11. This was used

as a quick check to ensure that the switching symmetry is indeed satisfied during

the simulation. Fig. 5.13 demonstrates the switching symmetry in more detail

where the COCF F̂ (g′ = 0.055π|(g = −0.5π, r)) can be seen to be the same as

F̂ (g′ = −0.5π|(g = 0.055π, r)) after multiplying it with the scaling factor.
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Figure 5.12: Visualization of Lagrangian COCF F̂ (g′ = −π/2|(g, r)): The circles
correspond to various values of g from (−π/2, π/2). The probability density of ori-
entation g′ = −π/2 at various distances r from orientations g is shown over the
r-mesh. The evolved COCF at t = 1 sec is also shown. The COCF shown here is
closely related to that shown in Fig. 5.11 through the switching symmetry.

A comparison of the ODF predicted by the Taylor and COCF model at various

times are shown in Fig. 5.14. The Taylor model predicts a sharper ODF at the

location of the source (g = π/2) as expected (Sundararaghavan and Zabaras (2006)).

The ODF values for crystals with an orientation close to the location of the source

(±85.8 degrees) as predicted by the Taylor and COCF models are directly compared

with that sampled from the aggregate model in Fig. 5.14(b,c). In both cases, the

Taylor model predicts the largest ODF. The COCF model predicts an ODF that falls

in between those predicted by the Taylor model and the aggregate model.

In order to visually interpret the results of the COCF model, we performed a

direct comparison of the microstructure predicted by aggregate and COCF models

in Fig 5.15. In the case of COCF model, the average velocity gradients predicted for

each orientation (from Eq. 5.45) were used to update the microstructure mesh. In

addition, crystal orientations are also updated. Compared to the aggregate model,
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Figure 5.13: Switching symmetry of the COCF at t = 1 sec: The COCF F̂ (g′ =
0.055π|(g = −0.5π, r)) can be seen to be equal to F̂ (g′ = −0.5π|(g = 0.055π, r))

after multiplying it with the scaling factor
P(r|g)A(g)

P(r|g′)A(g′) .

COCF approach is seen to give less pronounced deviations of intergranular strains

from the applied macroscopic strain. However, the modes of deformation predicted in

each crystal is close to those given by the aggregate model. Lower strains are primarily

due to the fact that the COCF uses an average neighborhood for each orientation. In

other words, it overlooks the differences in local neighborhood if two or more crystals

have the same orientation but are at different locations. Alternately, the COCF results

shown here can be seen as an ensemble average obtained for all microstructures with

the given initial two–point descriptor. In contrast, the aggregate solution shown here

provides a single sample from this large ensemble of microstructures. The crystal

orientations and displacements predicted by Taylor and COCF models (in Fig. 5.15)

were analyzed with respect to those predicted by the aggregate model. Fig. 5.16 shows

the evolution of error in prediction of orientations and displacements as a function of

time. The y-axes correspond to the l2 norm of the difference in nodal values between

Taylor/COCF meshes with respect to the aggregate mesh. The Taylor model gives a

larger error in both orientation and displacement compared to the COCF model.

Fig. 5.17(a) shows that the use of COCF information reduces the error in pre-

diction of displacements and orientations by 30 % when compared to the Taylor

model. The percentage improvement remained almost constant for all strains over

the simulation. More importantly, the 30 % improvement in error is achieved with a

significantly less computational cost compared to the aggregate model. The COCF
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Figure 5.14: (a) Comparison of the Lagrangian ODF predicted by the Taylor and
COCF model at times t = 0.1,0.4,0.7 and 1.0 sec. (b,c) The ODF values at ±85.8
degrees predicted by the Taylor and COCF models are compared with that predicted
by the aggregate model.

simulation for the test case was three times faster than the aggregate simulation. As

shown in Fig 5.17(b), the computational time is significantly lower than a full aggre-

gate model as the number of element increases. The simulation time for the COCF

model is independent of the size of the RVE since the statistics are represented over

the same COCF mesh for all cases. However, as the number of elements in the RVE

increases, the computational expense in aggregate models increase as O(N2). The

improvement in computational efficiency achieved by COCF models is most useful

when performing multiscale design of industrial forming processes (eg. our work in

Sundararaghavan and Zabaras (2008)). Once the initial COCF of the raw material

(or preform) is known, the data can be used to perform more accurate multiscale sim-

ulations without resorting to the use of less accurate Taylor–based or computationally

expensive FE–based microstructural models.
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Figure 5.15: Direct comparison of the microstructure predicted by (a) aggregate and
(b) COCF model. The average velocity gradient predicted by the COCF model (for
each orientation) is used to update the microstructure mesh.

5.5 Conclusion

In this paper, a probabilistic model based on conditional orientation correlation

function (COCF) is used for describing microstructure evolution during deforma-

tion. The COCF approach is an attempted move towards a new regime of computa-

tion where instead of microstructures, probabilistic descriptors are represented and

evolved using finite element analysis. The COCF describes the probability density

of occurrence of a crystal orientation g′ at a distance r from a given orientation g.

As the microstructure evolves, the reoriented neighborhood and strain field close to

an orientation (g) is captured by updating the probability fields in a finite element

mesh of the fundamental region of crystal orientation (g′) attached to a mesh of

distance vectors (r). A novel total Lagrangian approach was developed to perform

the probability update that allows evolution of probability densities while satisfying

normalization constraints and symmetries.

In contrast to volume fraction (ODF) based models that do not use neighborhood

information, COCF–based models capture length scales associated with the actual

microstructure and include information about the neighborhood of each crystal ori-
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Figure 5.16: Comparison of error in (a) crystal orientations and (b) nodal coordinates
that arise in Taylor and COCF models. The errors correspond to l2 norm of the
difference in values between Taylor/COCF models with respect to the aggregate model.
Errors are plotted as a function of simulation time.
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Figure 5.17: (a) COCF model reduces the error in prediction of displacements and
orientations by 30 % when compared to the Taylor model. (b) Comparison of compu-
tational speed of aggregate model with respect to COCF model as number of elements
in RVE increases.

entation. Thus, non–local interactions that lead to complex grain boundary evolution

during loading may be statistically captured (using Green’s functions). In contrast,

Taylor models do not model equilibrium across grain boundaries. Finite element (FE)

models with complete microstructural input can capture this effect, however, FE tech-

niques are not of practical use in multiscale simulations due to large computational

cost involved in modeling realistic microstructures.

Simulations comparing Taylor, COCF and aggregate models were presented for the

case of deformation of a planar (2D) microstructure. Our simulation results indicate
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that the COCF model decreases the error in prediction of texture and strain by about

30 %. The differences between a full microstructure simulation and a COCF–based

simulation was primarily attributed to the fact that two–point descriptors contain

an average neighborhood for each orientation. In other words, the differences in

local neighborhood for two or more crystals with the same orientation that may be

present at different locations is overlooked. Thus, the COCF model gives a more

constrained solution than the actual deformation, but is less constrained than the

deformation predicted by the one–point descriptor (eg. ODF/Taylor model) that

has no neighborhood information. At larger strains, the fundamental region may get

severely distorted and remeshing methods still need to be developed. In contrast

to finite element methods for which simulation time increases with the size of the

RVE, the simulation time is practically constant with the size or discretization of

the microstructure. For realistic microstructures, the COCF approach is expected

to be significantly faster than FE approaches. In the future, we plan to extend the

approach to 3D orientation spaces (FCC, HCP crystals) to address the well–known

limitations of Taylor models, and to problems involving twinning (eg. Abdolvand et

al.(2011)).
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CHAPTER VI

Suggestions for future research

6.1 Key Contributions of the dissertation

The following is a summary of the primary contributions that the research pro-

posed in this dissertation provides for microstructure representation, reconstruction,

property analysis and optimization.

• In Chapter 2, Markov Random Field approach for reconstructing diverse mi-

crostructure from two–dimensional microstructures is presented. We performed

rigorous testing of the stereological features (eg. grain size histograms) and

other engineering properties (elastic properties, stress distribution) of recon-

structed microstructures. We extended the approach to 3D, and were able to

reconstruct 3D images through matching of 3D slices at different voxels to the

representative 2D micrographs.

• In Chapter 3, we have developed a rate-independent elasto-plastic model of BCC

Galfenol single crystal for studying the effect of microstructure on mechanical

properties. Both loading and unloading processes have been simulated and a

finite strain homogenization algorithm has been developed to investigate final

microstructural response. The 3D model developed reproduces experimental

behavior of polycrystalline Galfenol under coupled magnetic and stress fields.
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This current study shows that microstructural features play an important role

in determining the final magnetostriction in Galfenol.

• In Chapter 4, we have employed data mining techniques to identify microstruc-

tural features (in the form of ODFs) that lead to an optimal combination of

magnetostrictive strains, yield strength and elastic stiffness. Using this data

mining method we can search for multiple microstructure that can result in

optimal property in fraction of time as compared to conventional optimization

methods.

• In Chapter 5, we have developed a probabilistic model based on conditional ori-

entation correlation function (COCF) which is used for describing microstruc-

ture evolution during deformation. The COCF approach is an attempted move

towards a new regime of computation where instead of microstructures, proba-

bilistic descriptors are represented and evolved using finite element analysis.Our

simulation results showed that the COCF model decreases the error in predic-

tion of texture and strain by about 30 %. In contrast to finite element methods

for which simulation time increases with the size of the RVE, the simulation time

is practically constant with the size or discretization of the microstructure.

6.2 Development of Process Design Methodologies

In spite of this increased use of computer and information technologies in the

analysis of deformation processes, selection of actual process design variables to op-

timize property distribution in materials still requires a significant amount of ex-

pert knowledge. To overcome this dependency and to create products with optimal

properties, optimization-based design techniques for deformation processing would

be valuable. The methodology described here would enable expansion of the conven-

tional design space to include objectives such as to obtain desired microstructure in
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the final product. However, to identify optimal processing paths that lead to these

microstructures is still an open problem. It will be interest to develop a coupled

macro-micro framework for multi-scale design of Galfenol where the macro- process

parameters and processing sequence in cold-working processes can be altered to tune

microstructure-sensitive material properties. The design problem of interest, such as

to optimize engineering properties such as stiffness and yield strength through control

of process parameters like die shapes and forging velocities, has several industrially

relevant applications. Our approach can also be extended towards the control of a

variety of properties (e.g. control of magnetic properties or material anisotropy that

are dependent on the microstructure. In addition to deformation processing, thermal

processing is also of future interest. Recent experimental studies have indicated that

magnetostriction in single crystals with gallium content upto 17 at.% is only weakly

dependent on the thermal history. However, increasing beyond 17 at.% Ga results in

a decrease in magnetostriction when single crystals have been furnace cooled, whereas

when these alloys are rapidly quenched into water from temperatures 800oC, the mag-

netostriction is increased. Rapid cooling leads to the emergence of directional short

range ordering of Ga atoms which strains the the b.c.c. lattice of Fe along [100] di-

rections and increases magnetostriction. However, slow cooling allows the formation

of an ordered phase that decreases magnetostriction. Thermal processing involves

recrystallization of deformed grains with dislocation-free grains. A stored energy is

introduced (resulting from an accumulation of dislocations during deformation) in

the homogenization model. This involves modeling of strain energy development and

nucleation deterministically based on grain boundary (GB) energy [141, 19, 109, 55].

GB nucleation is modelled by considering all orientations in the deformation texture

as nuclei and distributing them in the deformed matrix depending on the stored en-

ergy [37, 40]. Recovery kinetics of a deformed grain is determined by the number of

different activated slip systems during deformation [117] with several different acti-
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vated slip systems leading to faster recovery. For modeling recrystallization textures,

boundary mobilities of nuclei are assumed to be given by a mean-field approxima-

tion where the rate of growth is proportional to the variation in strain energy from

the mean field energy. The driving force for primary static recrystallization results

from the difference between the stored energy densities of the deformed matrix and

the nucleus obtained from finite element simulations. Energy minimization methods

([127]) could be used to simulate aspects of grain growth kinetics. In this method, a

hamiltonian which governs the grain growth in the lattice is minimized. The hamilto-

nian is defined based on the grain boundary curvature and the stored energy. Models

with well-calibrated parameters [111, 123, 102, 110, 85] have indeed shown reasonable

comparisons with experimental results.

6.3 Extending the approach to other alloys, including HCP

metals

The ODF representation developed for cubic crystal structure of Galfenol can be

extended towards modeling of hexagonally close packed crystals such as Titanium.

Key differences in modeling approach followed for cubic crystals such as Galfenol and

HCP crystals such as Titanium include (i) the fundamental region for the ODF for

HCP crystals is different and a different ODF mesh is used. (ii) the predominant slip

systems for HCP crystals are different and are shown in Figure 6.1. The constitutive

model, however, is similar to that developed for Galfenol in chapter 3. The slip

systems active in HCP metals are the basal systems, prismatic systems, and one

family of pyramidal systems. Slip-system normals and slip directions are indicated in

the conventional indices for HCP systems. Typically, the pyramidal slip systems are

stronger than either the basal or prismatic systems, and in this work we considered

cases of initial strength ratios with factors of 1.5 and 2 of prismatic and pyramidal
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in comparison to the basal system.Only the basal and prismatic slip systems were

activate in determining the model parameters given in Tables 6.1 and 6.2.

The slip system hardening model used in the examples is given as:

hαβ = [q + (1− q)δαβ]hβ(no sum on β) (6.1)

where hβ is a single slip hardening rate, and q is the latent-hardening ratio. The

parameter q is taken to be 1.0 for coplanar slip systems and 1.4 for non-coplanar slip

systems. For the single slip hardening rate, the following specific form is adopted:

hβ = ho(1−
sβ

ss
)a (6.2)

where ho,a, and ss are slip hardening parameters taken to be identical for a particular

slip system.

Basal slip system Prismatic slip Pyramidal slip

m = {0001}
b  = <1120>

m = {1010}
b  = <1120>

m = {1011}
b  = <1123>

Figure 6.1: Pyramidal, basal, and prismatic slip systems used in titanium simulations

As a validation of the micro-scale texture evolution model, results are compared
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with the experiments. The experiment corresponds to an z-axis compression with a

strain rate of 0.001 /s of Titanium polycrystal. The initial texturing of the material

is assumed to be random, and this corresponds to a constant Lagrangian ODF of

1.2135. The reference fundamental region is discretized into 111 tetrahedral elements

with cubic symmetry enforced in the solution procedure. Comparison of results of

our model with the experiments is shown in Figure. 6.2. and 6.3

-0.88 -0.66 -0.44

-0.22 0.0 0.22

0.660.44 0.88

ODF SLICES

Marin (1997) [40] UM ODF model

Initial Random Texture Texture 20% compression 

(a)

(b)

Figure 6.2: Comparison of texture evolution of Ti under plane strain compression
using our ODF model after 200 sec of simple compression at the rate of 1e− 3s−1
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Table 6.1: Value of elastic parameters for single crystal HCP Titanium Alloys [121]

C11 C12 C13 C33 C55

125.3GPa 99.4GPa 68.8GPa 154.5GPa 31.6GPa

Table 6.2: Crystal Plasticity parameters for HCP

sbasal0 sprismatic0 spyramidal0 h0 a sbasals sprismatics spyramidals

190MPa 250MPa 360MPa 400MPa 1 1000MPa 1500MPa 2500MPa

Rigorous quantitative microstructural models of Titanium behavior at the meso-

scale such as those developed here is expected to be important for controlling prop-

erties of commercially important components such as turbine blades and protective

armors. Apart from texture, properties of metallic materials are affected by several

characteristics that are stereological (grain sizes, shapes, grain boundary networks)

attributes. The extension towards computing the effect of higher order features on

properties described in this thesis will be useful towards this end.
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(a)

(b)

Figure 6.3: (a) Comparison for Pole Figure (b) Comparison of equivalent stress-strain
response with results from experiments
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