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ABSTRACT

Toward Co-Design of Autonomous Aerospace Cyber-Physical Systems

by

Justin M. Bradley

Chair: Ella M. Atkins

Modern vehicles are equipped with a complex suite of computing (cyber)

and electromechanical (physical) systems. Holistic design, modeling, and op-

timization of such Cyber-Physical Systems (CPS) requires new techniques ca-

pable of integrated analysis across the full CPS. This dissertations introduces

two methods for balancing cyber and physical resources in a step toward holis-

tic co-design of CPS. First, an ordinary differential equation model abstraction

of controller sampling rate is developed and added to the equations of mo-

tion of a physical system to form a holistic discrete-time-varying linear system

representing the CPS controller. Using feedback control, this cyber effector,

sampling rate, is then co-regulated alongside physical effectors in response to

physical system tracking error. This technique is applied to a spring-mass-

damper, inverted pendulum, and finally to attitude control of a small satellite

(CubeSat). Additionally, two new controllers for discrete-time-varying sys-

tems are introduced; a gain-scheduled discrete-time linear regulator (DLQR)

in which DLQR gains are scheduled over time-varying sampling rates, and a

forward-propagation Riccati-based (FPRB) controller. The FPRB CPS con-

troller shows promise in balancing cyber and physical resources.

xvii



Second, we propose a cost function of cyber and physical parameters to op-

timize an Unmanned Aircraft System (UAS) trajectory for a pipeline surveil-

lance mission. Optimization parameters are UAV velocity and mission-critical

surveillance task execution rate. Metrics for pipeline image information, en-

ergy, cyber utilization, and time comprise the cost function and Pareto fronts

are analyzed to gain insight into cyber and physical tradeoffs for mission suc-

cess. Finally, the cost function is optimized using numerical methods, and

results from several cost weightings and Pareto front analyses are tabulated.

We show that increased mission success can be achieved by considering both

cyber and physical parameters together.
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CHAPTER 1

Introduction

Cyber-Physical Systems (CPSs) are “the next generation of systems that require tight in-
tegration of computing, communication, and control technologies to achieve stability, per-
formance, reliability, robustness, and efficiency in dealing with physical systems of many
application domains” [1]. CPS research aims to more synergistically integrate control,
computing, communications, and physical systems in novel ways that leverage interdepen-
dent behavior.

The potential impact of CPS research is far-reaching owing to the diverse platforms and
applications to which it can be applied. CPS have been the topic of numerous reports of
global interest [2–7]. Consumer devices such as smartphones, TV, and gaming systems re-
spond to voice commands and wearable electronics are becoming the norm. Imbuing build-
ings with advanced sensors, networks, and intelligent energy management can reap great
rewards in efficiency [8]. Advances in health care medical devices and systems can lower
operating costs and increase reliability and patient care. New software-enabled function-
ality, increased connectivity, and physiologically closed-loop systems have the potential to
reduce human error that can cost lives [9]. A new energy service system dubbed the “smart
grid” promises to utilize CPS technologies to increase configurability, adaptability, reac-
tiveness, and self-manageability [10], but will simultaneously require CPS breakthroughs
in security to monitor, manage, and thwart threats both to the physical entities comprising
the grid, as well as the cyber attacks on its networked components [11]. Most relevant to the
work in this dissertation is the application of CPS research to vehicle and robotic systems.
In this domain CPS research offers an increase in autonomy, reconfigurability, reliability,
safety, energy efficiency, and robustness [12].

Human beings are the quintessential CPS possessing heavily interdependent cyber (mind)
and physical (body) subsystems. Analogous to this mind-body paradigm, advanced robotic
systems utilize both cyber and physical resources. However, unlike the symbiotic mind-
body awareness humans have, to date cyber and physical subsystems are unaware or only
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partially aware of the other. Most likely the cyber system receives performance feed-
back and calculates control inputs for the physical system. In this way the cyber system
serves the needs of the physical system. This particular role has received a great amount
of research attention most prominently in the form of control theory and Real-Time Sys-
tem (RTS) theory. It is also likely that the physical system is accomplishing a mission
objective that services the goals of the cyber system, for example, surveillance, safe trans-
portation, science data collection, etc. In this way the physical system serves the needs of
the cyber system. This role, however, has historically been dominated by humans in-the-
loop who design plans, set waypoints, or modify tasks either through an interface or direct
software manipulation.

At the lower, reactive control level this partial awareness is manifested by the sub-
servience of the cyber system to the needs of the physical system. For example, hard-
deadline tasks in a real-time system are time-triggered (e.g. control tasks) and are therefore
executed regardless of environmental or robotic system conditions even if the physical sys-
tem is in steady state and needs only minimal control authority. While these abstractions
have arguably led to a wealth of theory in control and real-time systems theory, allocation
of cyber resources can be inefficient and may detract from servicing other tasks [13].

CPS research calls for new models, new abstractions, new performance metrics, new
design methodologies, integration methods for large-scale systems, new methods of reason-
ing about uncertainty, and a revolution in how we think about computing [12, 14]. While
the depth offered by separately modeling and analyzing physical and cyber subsystem be-
haviors is useful, aberrant system behavior (i.e. when laws of compositionality or com-
posability do not hold) may be undesirable at best, and dangerous at worst. Accounting
for as many subsystem interactions as possible can reduce the negative side effects of such
behaviors as well as providing provable holistic system characteristics (e.g. stability) [15].
Integrated analyses can enable more efficient, safe, secure, and capable systems as we in-
crease the level of autonomy in CPS devices and vehicles.

In this dissertation we describe our research to address some of the challenges facing
CPS. We hope that through the proposed new abstractions, metrics, cost functions, and
methods for balancing cyber and physical resources presented here that we spark the cre-
ativity of future researchers and inspire new technologies that will power the CPS of the
future.
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1.1 Research Objectives

We are pursuing the development of new models, frameworks, algorithms, and design tech-
niques that allow for the co-design of holistic CPS through two main research thrusts:

• CPS Co-Regulation Problem Statement: develop new abstractions and models of
control tasks for the cyber system such that an efficient feedback regulation process
using a new CPS linear system representation can be realized. Develop new discrete-
time-varying controllers capable of addressing the time-varying nature of the variable
sampling rate and co-regulate both cyber and physical effectors through feedback
control.

• CPS Co-Optimization Problem Statement: develop new metrics coupling cyber
and physical resource use into a co-optimization framework for mission planning.
Gain insight into the tradeoffs between physical and cyber parameters via Pareto
front analysis and demonstrate how increased mission efficiency can be obtained by
dual consideration of cyber and physical resources.

1.2 CPS Co-Regulation

CPS interface physics-based and digital computing world models. These systems may link
digital devices with a human, vehicle or robotic device, or both. As embedded digital sys-
tems become more prevalent and cost effective, co-design of cyber and physical system
properties shows promise of making the holistic system more capable and efficient. To-
date, co-design has involved deciding how to allocate system resources to manage both
its cyber and physical effectors. In the context of real-time scheduling, resources such as
processors and communication channels are allocated across tasks/messages aimed at man-
aging sensors, actuations, and information. In the context of the feedback control system,
objectives of the physical system (e.g. disturbance rejection, tracking accuracy, etc.) are
translated to computing actuator commands that minimize errors between reference and
actual trajectories through physical space. Traditional feedback controllers model state as
a vector of continuous-valued positions and velocities, relying on physics-based models to
predict trends over time. “Cyber” controllers such as real-time schedulers assign a discrete
set of tasks across discrete resource intervals to meet task goals, processing and commu-
nication link load constraints, etc. CPS co-design challenges us to identify and capture
synergistic properties of cyber and physical systems. Figure 1.1 illustrates the traditional
decoupled cyber and physical modeling and control processes but also proposes links to en-
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able the “cyber” controllers to consider physical system properties and the “physics-based”
controllers to consider cyber (computing resource) properties.

Figure 1.1: Abstract Duality of Cyber and Physical Systems

Traditional approaches to system design are specific to one of these effector classes,
either physical or cyber. Both computer scientists and control engineers have developed
mechanisms for dealing with the alternate cyber/physical component but rarely have those
methods combined to allow for true co-design of the CPS as a whole. Poovendran points
to this issue as one of the grand challenges facing the CPS community, stating “A dramatic
increase in the ability to perform true cyber-physical co-design–where the physics of sur-
face friction, moments of inertia, and computer hardware and software behavior can be
simultaneously observed–is critical to advance both how CPS is engineered and how it is
deployed” [16].

CPS typically require an interacting suite of communication and processing tasks. This
requirement can become a limiting factor forcing RTS engineers to design inflexible sched-
ules. RTS designers traditionally aim to provide hard timing guarantees particularly for
safety-critical physical system controllers, with best-effort execution of non-critical (soft
real-time) tasks. For sampled-data control systems this is done using periodic or time-
triggered sampling of the system also known as Riemann sampling [17]. The effects of
limited processing capacity are rarely taken into account during the design of the physical
system controller, so static hard timing guarantees are expected. Without taking comput-
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ing system limitations into account, the controller may ask for more resources than are
needed to achieve performance objectives. As a result Riemann sampling may waste cyber
resources during quiescent periods of physical system activity, in addition to providing sub-
optimal system performance [17,18]. Event-triggered or Lebesgue sampling holds promise
for better resource utilization and control performance at the expense of scheduling com-
plexity for the RTS [17]. Perhaps more importantly, although there has been some recent
work exploring event-based feedback control [18–22], as well as a hybrid control approach
that switches between Riemann and Lebesgue sampling [23], Lebesgue sampling is still a
largely unexplored area relative to Riemann sampling [17].

Following the CPS abstract duality in Figure 1.1 we propose a representation and cor-
responding theory to unify these disparate notions of “effector regulation” into a common
framework. Figure 1.2 represents our proposed framework wherein a traditional physical
system control scheme and a cyber feedback scheduling (see Section 2.3.4.2) scheme are
coupled through feedback control. The cyber model (feedback scheduling scheme) is rep-

Figure 1.2: CPS Co-Regulation Block Diagram

resented by a linear model abstraction of controller task sampling rate and controllers for
both the cyber and physical system are designed incorporating holistic CPS state infor-
mation. Disturbances to the physical system (e.g. sensor noise, model uncertainty, etc.)
and the cyber system (e.g. thermal issues, deadline uncertainty, etc.) are accounted for by
simultaneously regulating both physical and cyber states.

We hope this incremental advancement toward physical-computational state co-regulation
helps the CPS community meet the grand challenge of co-design. We aim to provide the
benefits of Riemann sampling: ease of RTS scheduling, hard timing guarantees, and the rich
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theory of digital control while also providing some of the benefits of Lebesgue sampling:
on-demand cyber resource utilization. Our abstraction allows an engineer to treat schedul-
ing of a control task as a control problem where interactions between cyber and physi-
cal states are represented in a common regulation framework. We also present two new
controllers, a gain-scheduled discrete linear quadratic regulator, and a foward-propagation
Riccatic-based controller for discrete-time-varying systems and through simulation demon-
strate their effectiveness. This technique is applied to a spring-mass damper, inverted pen-
dulum, and finally to attitude control of a small satellite (CubeSat). We demonstrate the
effectiveness of our approach via a case study for the CubeSat representing disturbance re-
jection. CPS performance is analyzed using a new set of CPS metrics designed to measure
both cyber and physical performance objectives.

1.3 CPS Co-Optimization

The primary goal of air vehicle design has historically been to achieve appropriate ma-
neuverability and to overcome aerodynamic drag and the influence of gravity in a manner
that maximizes range and/or endurance. To-date, the energy a powered aircraft requires
to apply the necessary propulsive and control actuation forces over a flight has dominated
the total energy consumed across all other vehicle subsystems, including cyber. Surveil-
lance Unmanned Aircraft Systems (UAS) are becoming smaller and are constructed with
composite materials that minimize weight [24]. They are also being equipped with increas-
ingly sophisticated avionics and payloads. Powered glider designs in particular exhibit low
drag and weight, resulting in a significantly reduced thrust requirement. For the first time,
the power required by avionics and payload systems for a flight vehicle is comparable to
propulsive plus control actuation requirements. We will likely see a future where avion-
ics and payload power can even exceed power required for force application particularly
during periods of demanding on-board processing and communication activity.

Control systems engineers typically optimize vehicle trajectories and thereby force ap-
plication time histories over physics-based models of vehicle dynamics, including flight
envelope and actuator saturation constraints. Conversely, software engineers optimize pro-
cessor and communication resource use over the suite of computational and information
sharing tasks, regulating energy use through the real-time regulation of variable-speed pro-
cessors, activation/shutdown of cores in a multi-processor system, and regulation of com-
munication links. While real-time task execution models are typically discrete rather than
continuous-time, the methods used to optimally control physical and real-time comput-
ing systems are fundamentally the same: gradient or search-based algorithms are used to

6



identify minimum-cost solutions given constraints.
For emerging UAS that consume comparable power for avionics versus force applica-

tion, or whose mission effectiveness is dependent on both cyber and physical resources,
neither physical nor cyber system optimization is dominant. Therefore, globally-optimal
(minimum-energy, minimum-time, maximum-information) performance can only be achieved
if cyber and physical models can be shown independent of each other, or else if necessary
cyber and physical couplings are identified and simultaneously considered during opti-
mization. Computational resources must be utilized as a minimum to guide, navigate, and
control the UAS as well as to compute or update future spatiotemporal (4-D) trajectories.
Physical trajectories in turn enable the cyber system to maximize its ability to acquire in-
formation (e.g. from payload sensors) and to communicate (e.g. with ground operators).
Cyber and physical resources are therefore necessarily coupled.

We present a new multi-disciplinary optimization [25] direction for which the mod-
els being integrated optimize energy consumption and mission success over both physi-
cal effectors and cyber resources. The cost function to be optimized includes weighted
terms representing energy used by physical actuators, cyber resource utilization, time, and
mission-critical surveillance information. We present a case study of a UAS surveillance
mission to assess the potential performance improvements possible with co-optimization
of cyber and physical resources.

1.4 Contributions

The contributions of this work are primarily directed toward the emerging CPS community
though it makes use of and relates to the control, Artificial Intelligence (AI), Real-Time
System (RTS), and Aerospace communities as well. This dissertation makes the following
contributions:

• New abstractions and models for representing the cyber system in a coupled CPS. We
develop continuous state variable models for the cyber system to enable cyber system
integration and analysis in a linear systems framework. This formulation enables use
of the rich tools from linear system theory to the holistic CPS.

• Metrics for evaluating CPS and mission performance. The development of metrics
for measuring CPS performance has been one of the grand challenges in the CPS
community [2]. We leverage work from the real-time systems community to develop
metrics for measuring cyber performance. We also propose and demonstrate the use
of specific metrics that combine both physical and cyber parameters.
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• Development of two new controllers for discrete-time-varying systems.

– Gain-Scheduled Discrete Linear Quadratic Regulator (GSDLQR) wherein DLQR
gains are scheduled over time-varying sampling rates of a system. To our
knowledge this is the first time feedback control gains have been scheduled
over time-varying sampling rates of the controller.

– Forward-Propagation Riccati-based (FPRB) controller. For the FPRB controller
we add to the empirical evidence that forward-propagation Riccati techniques
are broadly applicable if not yet fully understood.

• Potential for increased energy and mission efficiency in the operation of emerging
small Aerospace vehicles. Our application domains include a fixed-wing small Un-
manned Aircraft System (UAS), and a small satellite (CubeSat). The key to efficiency
gains is to appropriately balance the proposed new metrics for CPS performance.

– First application of time-varying sampling rates to a small satellite platform
(CubeSat).

• Extensible software capable of simulating a system with dynamically changing sam-
pling rates. We have built extensible software that can simulate a CPS that fits into
our linear systems abstraction. Unlike traditional discrete system simulators, our im-
plementation accurately simulates continuous-time physical system response while
also simulating the time-varying sample-and-hold behavior of a digital control sys-
tem.

1.5 Innovations

Innovations from our work take the form of novel methods for coupling, analyzing, opti-
mizing, and regulating CPS. The following specific innovations are offered:

• Development of an abstract cyber model corresponding with traditional “physics-
based” representations and the inclusion of this model into a linear systems frame-
work. This innovation provides a low-level feedback co-regulation of both physical
and cyber effectors.

• Design of feedback controllers for proposed cyber model enabling co-regulation of
holistic CPS.
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• Development of new metrics for the cyber system, as well as for a holistic CPS.

• Co-optimizing CPS trajectory over a suite of physical and cyber metrics and ana-
lyzing coupled system behavior with a Pareto front analysis that couples cyber and
physical cost terms.

1.6 Outline

The dissertation is organized as follows. First, in Chapter 2 we review research related to
this work both theoretically and within the aerospace community. In Chapter 3 (also [26])
we propose a new model for “abstracting” discrete task execution models into a continuous-
state framework amenable to linear systems analysis and co-regulation. This cyber model
is added to spring-mass-damper and inverted pendulum systems and plots are shown. In
Chapter 4 (also [27]) we further refine the cyber model and apply this technique to attitude
control of a small satellite (CubeSat). We discuss two new controllers for our discrete-
time-varying system and simulate a disturbance response to the attitude of the CubeSat. In
Chapter 5 (also [28]) we propose a co-optimization scheme and examine tradeoffs between
cyber and physical resources for mission success. We then present conclusions and related
future work in Chapter 6.
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CHAPTER 2

Background and Related Work

CPS research encompasses a broad scope and diverse applications. Ultimately, a primary
goal of developing foundations across cyber and physical system models is to appropriately
balance the performance of the physical system with the performance of the cyber system.
In this chapter we focus attention on computationally-based control research and aerospace
applications relevant to the research in this dissertation.

We begin by discussing how “Cyber-Physical Systems” came about - the confluence
of communications, control, and computing, including a brief history of those topics. We
then discuss the implications of computer-controlled systems in terms of delay and sample-
and-hold systems. Approaches to addressing these difficulties is then discussed including
time-delay systems, network control systems, and recent advances in CPS research relevant
to digital real-time control. Finally, although CPS research is still in its infancy in the
Aerospace community we discuss how CPS issues have been addressed therein.

2.1 Brief History of CPS

In the last century advances in communication, control, and computing were primarily
used as individual tools in their respective domains. For example, advances in communica-
tion were used strictly for communicating between humans without integration into more
complex systems. However, as technology has advanced the integration of the tools and
techniques within each domain into more complex systems has provided a new frontier
fusing communication, control, and computing.

An excellent exposition on CPS research and its history can be found in [1] and we
recapitulate the history here focusing on integration of these technologies. In Figure 2.1 is
a timeline of important events and developments in communication, control, and computing
that led to CPS as an important topic of research.
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Figure 2.1: CPS History

2.1.1 “Cyber”

The term “cyber,” as a prefix, stems from the field of research known as “cybernetics”
- the scientific study of control and communication in the animal and the machine [29].
Cybernetics as a field of research in the modern era began in the 1940’s with Norbert
Wiener, Warren McCulloch, W. Ross Ashby, Alan Turing, and W. Grey Walter. Since
then, however, semantically, “cyber” is usually associated with Information Technology,
Computers, the Internet, or to denote control in the computer or electronic context [30].
Perhaps the most fitting definition of the word “cyber” from “cybernetics” stems from
Plato’s The Alcibiades and is “the study of self-governance” [31]. As a field of research
CPS strives to improve self-governance for machines, infrastructure, and devices.

2.1.2 Communication

In 1969 the ARPANET was developed as an experiment linking computers together at ma-
jor university campuses across the U.S. [32]. The development of this technology into what
we now know as the Internet is perhaps one of the greatest communications innovations of
humankind. We are only beginning to realize the power of this technology as the Internet
of Things [33] enables communication between autonomous agents in a worldwide cyber-
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physical network. Aiding this network of interconnected agents is the development of cel-
lular communication which began modestly in the late 1940’s [34]. Continuing the trend
of mobile communications, in 1997 the IEEE WiFi standard (802.11b) was established and
spread quickly across homes and businesses [35].

Advances in communication have enabled a revolution merging computing and com-
munication in systems ranging from large interconnected networks to small autonomous
agents leveraging local and potentially network-level (cloud) information. The end result
is a high-bandwidth flow of information that will only continue to grow.

2.1.3 Control

Although control theory has roots in mechanical devices such as the steam engine governor
in the early 1800’s [36], very early in the 1900’s a strong theory, often dubbed “classi-
cal control,” based in the frequency domain was developed by Nyquist, Bode and others
primarily at Bell Laboratories [37–40]. By the 1950’s the onset of computing in con-
junction with the “space race” spawned a new form of control - digital control - whereby
computers could now perform calculations on incoming sensor signals to compute con-
trol inputs [41]. During this time “modern control” utilizing linear algebra techniques was
developed and linear systems theory and state-space methods became the norm [42–45].
From such firm foundations came optimal control [46], nonlinear control [47], stochastic
control [48], adaptive control [49], discrete event systems [50], and hybrid systems [51].
Perhaps most pertinent to a discussion of the integration of computing and control is mod-
ern digital control arising from the need to control inherently periodic systems. The peri-
odic nature of sampled-data systems arises from the periodic scheduling of the control task
on a real-time system (discussed further in Section 2.2). Out of this thread of research the
Z-transform, “frequency” domain, state space and other digital control tools some of which
were analogous to those in the continuous domain were developed [52, 53].

Control theory and applications have exploded in popularity centered on strong math-
ematical foundations and guarantees of important system properties (e.g. stability). The
tight integration of computing and control is the future of complex systems. Advances in
strong mathematical foundations for computing and control are required for efficiency and
autonomy.

2.1.4 Computing

Not long after the computer was invented it was adopted for use in closed-loop control
of physical systems [1]. Coupling a physical system with Analog-to-Digital (A/D) and
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Digital-to-Analog (D/A) converters enabled a computer to calculate control inputs and
thereby control the physical system. Prior to this computers had strictly been used to exe-
cute fixed sequences of control instructions. The timing of computations was immediately
recognized as critical for success [54]. Initially to address this computational algorithms
took the form of cyclic executives, ad hoc algorithms in which one task loops over sev-
eral activities adjusting timing as it progresses through the loop [55]. One or several of
these activities were designed to make computations and use them to apply control inputs
to the physical system at regular timing intervals. This paradigm gave rise to many of
the advancements in digital control. It wasn’t long, however, until the need for a rigorous
theory, tools, and curriculum for scheduling and real-time systems were needed to support
more demanding applications. In the early 1980’s the U.S. Office of Naval Research started
the Real-Time Systems Initiative. Under this initiative many of the modern scheduling al-
gorithms and analysis tools were developed [55]. Even so, due to success in computing
and the surprising adherence to Moore’s law [56] computational resources have often been
assumed infinite.

Computing, control, and communication have combined to form powerful complex sys-
tems that are widely applicable. Communication between remote agents and the Internet
of Things can provide a wealth of information for autonomous agents to learn quickly and
leverage the experience of other robots [57]. Control enables the translation of robotic
and/or human objectives into physical realities through robust, stable actions. The com-
mon thread and analogous decision-making “mind” is the computing platform governing
communication and physical operation through space and time. The holistic, synergistic
integration of these three areas constitutes CPS research.

2.2 Real-Time Computing Meets Control

Since computing resources are finite, a simplifying assumption of infinitely-fast sampling
rate is not realizable in practice. In a Real-Time Operating System (RTOS) processor time
is allocated to tasks according to a schedule. Tasks are divided into hard and soft deadline
requirements; missed hard deadlines are unacceptable and may result in system failure
while missed soft deadlines degrade quality of service [58]. If we use a RTOS to implement
control of a system, the timing of reading sensors, calculation of control input, and output
of the control signal is modeled and regulated as timing including delays and update rate
have an impact on both the design of the controller and the scheduling algorithm. Whatever
method is used to implement a controller task the assumption is made that the RTOS can
guarantee the controller task deadlines and therefore guarantee a specific sampling rate.
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Perhaps the simplest real-time scheduling algorithm is known as a cyclic executive. In
a cyclic executive a single executive task loops over several activities, or tasks, adjusting
timing as it progresses through the loop. Assume τ1 is a control task implemented on
an RTOS. That is, assume τ1 receives sensor values from the A/D converter, obtains an
updated system state estimate, xp, computes the control input, up, and outputs the control
signal to the D/A converter. Also assume that the control input is applied at the completion
of the task and is held for Tτ1 seconds, which is the period of task τ1. Note that Tτ1 is the
control task period or sampling period, and that 1/Tτ1 = rτ1 is the sampling rate, or control
task execution rate. Assume that τ2 and τ3 are two other real-time tasks to be scheduled. In
a cyclic executive the Worst-Case Execution Time (WCET) of each task is used to schedule
the tasks as seen in Figure 2.2. If a given task does not require its full WCET to complete its

Figure 2.2: Cyclic Executive Scheduling

work the executive inserts idle time or executes other soft real-time (best-effort) tasks as it
awaits arrival of the next hard real-time task. In the case of the cyclic executive this means
that in the worst case the delay between reading the sensors and outputting the control
signal is WCET(τ1). If we assume a continuous-time linear state-variable model of the
physical system, taking this into account would give us

ẋp (t,WCET(τ1)) = Apxp (t,WCET(τ1)) + Bpup,ZOH (t,WCET(τ1))

where up,ZOH (t,WCET(τ1)) represents the zero-order held (ZOH) control input at time t

which is held for time period Tτ1 .
Most modern real-time scheduling algorithms are preemptive, allowing tasks to inter-

rupt each other to be serviced as long as deadlines can be met. Static or offline scheduling
protocols such as Rate-Monotonic Scheduling (RMS) offer solutions that can be analyzed
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prior to deployment providing a guarantee, under nominal operating conditions, that all
hard deadlines will be met [59]. In contrast, dynamic, or online schedules such as Earliest
Deadline First (EDF), are executed at run-time requiring the scheduling algorithm to search
through a queue of jobs (instances of a task) to find the next job to be scheduled [59]. Most
schedules are created to guarantee that all hard deadlines will be met and leave slack for
soft real-time tasks to be inserted as they can fit (though soft deadlines may be missed
without introducing potential for catastrophic failure).

In a preemptive RTOS containing multiple high-priority tasks, timing is unpredictable.
We do not know precisely when the control task will be executed, or whether it will be
preempted by a higher priority task. We only know that it will complete by its deadline.
We demonstrate this in Figure 2.3. In this schedule each task has a periodic rate at which

Figure 2.3: Preemptive Scheduling on a Single Processor

it must be executed, but because the tasks are preemptable higher-priority tasks may be
serviced first. Schedule feasibility is determined based on the WCET of a task and total
system utilization. In a preemptive scheduling paradigm the delays for the physical system
being controlled are

ẋp (t,∆t) = Apxp (t,∆t) + Bpup,ZOH (t,∆t)

where ∆t ∈
[
WCET(τ1) ,Tτ1

]
and up,ZOH (t,∆t) represents the Zero-Order Hold (ZOH) con-

trol input at time t which is held for task period Tτ1 . In the preemptive RTOS delay is
dictated by context switches between tasks, the task period Tτ1 , any tasks that preempted
τ1, and the computation time required to complete τ1.

Traditional digital control leverages the sampled-data system assumption that the read-
ing of sensors, calculation of control input, and output of the control signal happens in-
stantaneously and always with a current estimate of the physical system state. That control
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input is then “held” for the entire sampling time until the next cycle. In other words, it
is assumed there is no delay in the system. The problem of control under the varying de-
lays associated with digital real-time control have been studied extensively in the Digital
Control, Time-Delay Systems, Networked Control Systems, Automotive, Aerospace, and
Real-Time Systems communities [60–68].

2.3 Computer-Based Control Research

The methodologies for merging discrete and physical subsystems including inherent de-
lay and uncertainty has been addressed in several communities. Below, we first discuss
approaches for modeling response delays in physical systems, where delay is one impor-
tant artifact of finite control loop execution rate. This discussion centers around a review of
time-delay and digital control systems. Digital control models characterize sampled system
behavior but assume a predetermined sampling rate without accounting for the possibility
that this rate could itself be regulated. Next real-time systems research is discussed with fo-
cus on scheduling theory and algorithms. We then discuss recent advances in CPS research
related to the balancing of cyber and physical resources.

2.3.1 Time-Delay Systems

Time-delay systems research has played a prominent role in the definition, control, and
stability of systems with delay. The primary difficulty in the development of appropriate
tools for modeling these systems is a result of their infinite-dimensional nature [66]. Hence,
traditional dynamics (using Ordinary Differential Equations) and by extension traditional
continuous control are inadequate. Delay Differential Equations (DDEs), a special type
of Functional Differential Equations (FDEs), with accompanying analysis, however, have
provided a rich framework for investigation of such infinite dimensional systems [69–71].

The primary result of delay in a physical system is destabilization. Therefore, research
into if, and when, a system becomes unstable has played a key role in this field. While some
physical systems are, in fact, S∞ stable (delay-independent asymptotically stable), most
physical systems of interest are Sδ stable (delay-dependent asymptotically stable). In Sδ
stability, we are interested in the δ∗ (i.e. delay) that results in instability of the system, then
we design the system with values of δ < δ∗ that are stable. Lyapunov stability, more specif-
ically Lyapunov-Krasovskii and Lyapunov-Razumikhin stability, have motivated much of
the stability analysis in this field. If we think of a FDE as an evolution in a Euclidean
space, the application of Lyapunov’s second method becomes more clear. Specifically,
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Lyapunov-Krasovskii stability tells us that the derivative of the candidate Lyapunov func-
tional V̇ must be negative along all system trajectories. As in traditional nonlinear control
theory, Lyapunov’s second method is often surprisingly difficult to demonstrate. Lyapunov-
Razumikhin stability relaxes the Lyapunov-Krasovskii stability theorem and seeks stability
on a subset of trajectories defined by system evolution in the interval [t−δ, t] [72–74].

There are at least two main obstacles in utilizing time-delay system theory in a CPS to
provide a unified framework. First, our purpose in modeling delay as a part of the CPS is to
allow us to choose the optimal delay under changing conditions. While time-delay system
analysis can help us analyze the range of stable delays up to δ∗, it has relatively few tools for
handling time-varying delays and appropriately choosing them amidst control objectives.
Second, while the delay is part of the system model, it does not function as one of the
control variables. This means we cannot directly utilize the rich theory and practical tools
from the control community in our design of an energy-conscious CPS through strictly
time-delay analyses over physical position/velocity state.

2.3.2 Digital Control

Time-delay systems analysis considers a continuous delay term. In a CPS delay induces a
ZOH effect on the physical system. This effect is better suited to a purely discrete mathe-
matical model than a DDE model [75]. Digital control provides this discrete mathematical
framework, as well as familiar control techniques couched in a “digital” representation to
design, simulate, and model a system.

Two traditional techniques arise from this area of study. The first is direct digital design.
Assuming a fixed sampling rate, direct digital design provides tools to derive a digital model
of the system from which design, analysis, and simulation can be achieved. Utilizing the
Z-transform, the left half of the S -plane is folded into the unit circle. We can guarantee
asymptotic stability if the system’s eigenvalues (poles) reside within the unit circle. Z-
domain analysis, including root-locus, Nyquist stability criterion, etc. are equally valid in
the digital domain. State-space equations using difference equations rather than differential
equations can be formed, and compensator design, linear quadratic optimal controllers,
Kalman filters, etc. retain their familiar form and use.

The second primary method for digital control design is emulation of the controller
or compensator. In this method all design and analysis is done in the continuous domain
and the assumption is made that the cyber system sampling rate and control calculations
are sufficiently fast to adequately control the system. A transformation using a selected
sampling rate is applied to the controller to adapt it to the digital domain [60]. This method
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is often used in practice, although this assumption is not valid in cases where cyber resource
utilization should be minimized rather than simply constrained to avoid over-utilization.
This second method is therefore not relevant for CPS co-design.

An important consideration in digital control is the selection of the correct sampling
rate. It is clear from an energy usage standpoint that lower sampling rates require less
energy. However, lower control loop rates also contribute to the deterioration of system
performance thereby potentially increasing energy use due to increased physical actuation.
The theoretical lower bound on sampling rate is the familiar Nyquist rate, or ωs/ωb > 2
where ωs is the sampling rate, and ωb is the bandwidth of the system [60]. It is, however,
well understood that a real physical system will perform poorly and will be highly sensitive
to parameter variations and disturbances at sampling rates approaching the Nyquist limit.
Beyond the Nyquist rate the speed of open-loop dynamics (real and imaginary poles), the
spectrum of possible commanded reference trajectories, the spectrum of expected distur-
bances, uncertainty in plant dynamics, jitter in the RTS, aliasing, stability margins, and
sensor noise are just some of the factors that should be considered when choosing a sam-
pling rate. These are issues without clear cut answers and control engineers face tradeoffs
when designing digital controllers.

There is little theoretical basis for correctly choosing sampling rate, and primarily “rules
of thumb” have been the norm. Ad hoc approaches and trial and error techniques have
been used in many cases [76]. Another practice is choosing a sampling rate based on a
certain multiple of the fastest mode of the system [77]. Others suggest the safe choice
of ωs/ωb > 20 should suffice for most systems [78, 79]. No matter what sampling rate is
chosen, a limiting factor in these methods is that they assume sampling rate is fixed. Similar
to time-delay system analysis, it does not appear that traditional digital control tells us how
to optimally choose (under changing conditions) a sampling rate, nor does it provide us
with tools to treat the sampling rate as a control parameter.

Both the time-delay systems and digital control areas approach the problem of a CPS
from the perspective of the physical system, but they do not address the need for the cyber
system to regulate itself in relation to the physical system.

2.3.3 Real-Time Systems

From the cyber perspective, RTS research focuses on task scheduling to provide guarantees
of hard-deadline tasks, and the best effort and execution of soft-deadline tasks as discussed
in Section 2.2. Offline static schedulers as well as online dynamic schedulers have been
proposed to provide provable timing guarantees for given task sets [58]. Some RTS-centric
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CPS research has attempted to redefine task execution and scheduling paradigms to ac-
commodate and provide guarantees for classes of tasks suited for more dynamic CPS, for
example, tasks with varying periodicity [22, 80].

2.3.4 Recent CPS Research

A number of results emerging from the growing CPS community have had an impact on
our understanding of coupled CPS. Anytime control [81–83], feedback scheduling [84–
86], Networked Control System (NCS) [61, 87, 88], hybrid systems [89–92], time-varying
sampling [63, 93, 94], sensor scheduling [95–99] and optimal sampling patterns [13, 100]
are particularly relevant to our work, covering a spectrum of topics related to the dynamic
optimal control of the holistic CPS. Contributions in each area are highlighted below.

2.3.4.1 Anytime Control

Anytime control allows control solutions to be refined or improved as a function of avail-
able CPU time. These techniques are usually broken down into two improvement strate-
gies: model reduction and performance reduction. In model reduction, the physical system
is reduced by partial fraction expansion, modal reduction, or by weakly observable or con-
trollable states. In this manner, we can prioritize which control inputs should be calculated
given the available resources, or we can interrupt control optimization activities as required.
In performance reduction the performance of the system is prioritized according to some
performance index and the corresponding controls to achieve the performance indices are
computed as resources become available [81].

The seminal work by Bhattacharya et al. [82] adapted anytime algorithm techniques to
controller design using model reduction and a smooth switching algorithm. Most recently
this type of control has been extended to utilize an optimal LQG controller to meet perfor-
mance criteria when the resources are time-varying and not known a priori [83]. In this
formulation an unconstrained and constrained formulation are developed and the latter is
shown to be an adaptation of Receding Horizon Control. Our feedback control model is
deterministic but in future work we anticipate the use of optimal control methods for which
an anytime formulation may play an essential role.

2.3.4.2 Feedback Scheduling

In contrast to anytime control, wherein a control algorithm is designed to offer improved
controller performance with increasing CPU time, feedback scheduling has become popu-
lar as a way of adjusting cyber resources based on the needs of the cyber system, including
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the control algorithm [55]. Feedback scheduling adapts traditional control theory to regu-
late the cyber system which in turn contributes to regulating the CPS as a whole.

In this paradigm, the feedback scheduler manages resources by allocating CPU and
communication resources to each control task as needed. In this scheme models are pre-
sumed to exist that relate sampling rate with controller performance [84]. Much work has
been done by Cervin et al. in [85] to create a sound framework for feedback scheduling of
control systems.

Such algorithms are often computationally intense. A model that directly incorporates
the cost of control performance as it relates to cyber system resources would provide an
excellent tool for feedback scheduling algorithms which can then utilize such information
in choosing appropriate scheduling routines [86]. In our work, we devise a linear model
relating sampling rate to controller performance. This effort is quite similar to past work in
feedback scheduling. Our goal, however, is distinct, in that we seek to couple the resulting
cyber system “dynamics” model to the physics-based model so that both can be coupled
for co-regulation at each control loop cycle.

2.3.4.3 Networked Control Systems (NCS)

In a Networked Control System (NCS), feedback control loops are closed across a real-time
network [61, 87]. Network communication is required to close a feedback loop whenever
the sensor(s), actuator(s), and/or software are not co-located at the same physical process-
ing unit. Typical NCS are faced with three primary problems: delay introduced due to
limited bandwidth and competing control tasks, lack of synchronization between data inte-
grated into each controller, and packet loss that may cause data to be unavailable for one or
more control cycles.

Researchers have focused on a variety of issues associated with NCS, with much work
focused on maintaining controller stability. Techniques from feedback scheduling (cited
above) can be applied to assess the impact of delay on performance. Control schedul-
ing techniques specifically addressing NCS issues have also been formulated. For exam-
ple, [88] formally analyzes stability of a control system in the presence of delays and packet
dropout, with a simulation also illustrating the effectiveness of clock synchronization com-
pensation.

Our work is complementary to efforts in feedback scheduling and NCS. Research in
feedback scheduling and NCS both offer a foundation for formally analyzing controller
stability and in fact optimizing a real-time schedule over a set of controllers. This research,
however, has focused on computing stability constraints through offline analyses, then cap-
turing these constraints in a real-time processor and/or network scheduler. We instead focus
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on a more tightly-coupled regulation process, where the rate of control loop execution is
in fact regulated at each control cycle based on errors in physical state as well as an ideal
“reference” control loop rate that might be computed a priori using methods from NCS
and feedback scheduling.

2.3.4.4 Hybrid Systems

The control systems community has established a theory of hybrid systems to simulta-
neously capture continuous and discrete system states. In a hybrid system, a finite state
machine represents discrete system modes potentially having different sets of dynamics,
constraints, and controllers. This formulation has provided the ability to model systems that
switch between different controllers, potentially with different task rates, and that “jump”
or switch through discontinuities or nonlinearities [89, 90]. Control-theoretic analyses of
hybrid systems has focused on characterizing reachability and guaranteeing stability of
all reachable states. Stability has been an important topic in hybrid systems research and
has followed traditional Lyapunov-based energy proofs [91]. Research in this area has
primarily focused on handling the “jumps” typically representing nonlinearities in system
dynamics rather than changes in control task execution rate.

Formally, a hybrid system, H, is defined by the tuple H = {Q,Σ, Inv, J, Init}, where set Q

is the discrete state set, Σ is the collection of dynamical subsystems associated with states
Q, set Inv represents invariants that must be true to remain in a particular state, mapping J

represents state transition behaviors, and Init represents the initial conditions, discrete and
continuous. For this work, we abstract computational state to a differentiable representation
in part through use of a simple hybrid systems formalism to handle a discontinuity in cyber
state.

2.3.4.5 Time-Varying Sampling and Sensor Scheduling

Uncertainty in sampling rate can be caused by transmission delays in a NCS, jitter and/or
missed deadlines in the RTS, etc. Research investigating the design of controllers under
uncertain delays has resulted in more robust systems. Typically, as in NCS research, these
approaches consider a small range of possible sampling rates and stability and robustness
guarantees are given for that range under varying control schemes [63]. Successful optimal
controllers under these circumstances using an Linear Matrix Inequality (LMI) approach
have been designed [93, 94]. Rather than design controllers amidst uncertain sampling
times we explicitly vary the sampling time and design robust controllers under that as-
sumption. However, formal stability guarantees from research in time-varying sampling
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could aid us in future work as we seek stability guarantees for our formulation.
Sensor scheduling is a technique used to determine which sensors or sensor modes

should be read next to minimize error in the control system. [95, 96]. This often occurs
where many sensors or sensor modes provide readings for similar phenomena. Markov
Decision Process (MDP) formulations typically find an optimal policy for scheduling sen-
sors [97–99]. In many control systems sensors are read at a higher rate than the control
is output to the actuators guaranteeing up-to-date measurements of physical system state.
Such a technique would benefit our work by allowing another task in the RTS to make
decisions about when to execute the control task and output the next control signal even if
the control task rate is very low.

2.3.4.6 Optimal Sampling Patterns

The research most related to our work has originated in research in event-triggered control
and time-varying control and sampling to reduce the number of sampling instants. Bini et
al. recently proposed an optimal control formulation to optimize both control inputs and
sampling pattern trajectory, a computationally-feasible quanitzation-based method to esti-
mate or approximate the optimal control solution, and proved optimality for first order sys-
tems [13]. Varying Time Control (VTC) is proposed by Kowalska et al. wherein a similar
optimal control problem over control inputs and sampling instants is solved for a receding
horizon with a computationally tractable algorithm [100] but loss of optimality guaran-
tee [13]. Our work is similar, it allows for variable sampling instants, but whereas their
work focuses on optimality over a planned trajectory our technique focuses on increasing
robustness to system disturbances and deviations from planned trajectories through pro-
portional feedback control which determines the sampling rate. Additionally, our feedback
co-regulation scheme could be used to supplement optimal sampling pattern techniques
by accepting the optimal sampling pattern as the reference trajectory and using feedback
co-regulation to offer minor adjustments based on aberrant conditions.

2.4 CPS Topics in Aerospace

Safety-critical Aerospace systems require task schedules executing on real-time operat-
ing systems that have been analyzed offline to show hard deadlines are met and that soft
real-time tasks will receive sufficient attention for effective mission accomplishment. In
low-cost systems such as UAS or CubeSat platforms, code may be executed in a best-effort
mode with non-real-time operating system such as an embedded Linux distribution. Such a
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simple execution strategy can be successful so long as tasks under-utilize available cyber re-
sources or the missing of deadlines does not place the system at risk. As more sophisticated
logic such as image processing and flight plan optimization algorithms migrate on-board
to improve mission data collection and robustness to scenarios such as lost link and/or loss
of Global Positioning System (GPS), resources will no longer be under-utilized thus must
be carefully managed in real-time.

Large spacecraft systems have typically addressed the problem of physical and cyber
resource utilization through careful task scheduling. For an orbiting spacecraft, science
payload data collection must often occur within a relatively short time window (e.g. a
few minutes for Low Earth Orbit (LEO) [101]). During this window the system must
maximize its efforts to collect science data. Traditionally such task scheduling problems
have been addressed by ground operators manually constructing plans with write and check
procedures [101]. EO-1 is the first of a series of NASA missions entitled “EO” (Earth
Observer) targeting both science and technology demonstration goals. The Continuous
Activity Scheduling, Planning, Execution, and Replanning (CASPER) planner was used
onboard EO-1 to optimize science activities based on incoming data [102]. An iterative
repair algorithm was used to improve task execution schedule. This science planner was
highly successful, and has continued to evolve for infusion into additional missions. Other
planners include the Automated Scheduling and Planning ENvironment (ASPEN) where
scheduling is combined with mission planning [103], the Remote Agent [104], and the
Heuristic Scheduling Testbed System (HSTS) [105]. Bataille et al. examine and design for
physical constraints, fairness, and efficiency for different agents using a shared resource
(an earth observing satellite) [106]. In work by Bresina et al. two techniques, GenH which
generates a specialized search heuristic, and Heuristic-Biased Stochastic Sampling (HBSS)
which employs the heuristic within a stochastic sampling method are combined together to
automatically generate high quality schedules with respect to an objective function [107].

Agrawal, Cofer, and Samad explore some of the reasons why more advanced control
algorithms are not used in modern aircraft and spacecraft avionics system [108]. They con-
clude that a Quality of Service (QoS) approach [109,110] is needed to address the problem
and they propose an adaptive resource management scheme for a real-time avionics system
using anytime control and accompanying nontraditional task scheduling. Russ and Stütz
recently proposed a higher level style of resource management that includes task based
guidance, navigation, and perception plans. Their method focuses on finding algorith-
mic solutions adapting to perceptual demands that vary during flight as well as balancing
those demands with sensory and computational resources [111]. Narayan et al. present a
novel computationally adaptive trajectory decision optimization system that can dynam-
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ically manage, calculate, and schedule task execution parameters [112]. An offline and
online component work together to increase overall mission efficiency.

2.5 Concluding Remarks

All or most of the work presented in this chapter may be used as a baseline for devel-
oping solutions to the problem of controlling physical systems using digital devices. We
present this related work primarily to create awareness for the reader that the work pre-
sented in Chapter 3 and 4 is novel in its coupling of cyber and physical systems via the
equations of motion rather than incorporating the delays of motion into the models used
for task scheduling. That is, at the feedback control level, cyber and physical resources
are balanced dynamically rather than at a higher planning level presumed in [13, 100] and
in traditional satellite task scheduling. Our approach does not replace traditional planning,
but rather supplements it by allowing reactive reallocation of resources within the refer-
ence trajectories commanded by the planner. Our work in Chapter 5 complements existing
research by providing a mechanism to optimize over cyber and physical resources while
leveraging optimization theory and more particularly optimal control [113]. Existing solu-
tions to dynamically adjust parameters can provide the tools by which a system could use
our methodology to produce more efficient missions according to the individual metrics
chosen in the cost function.
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CHAPTER 3

Toward Continuous State-Space Regulation of
Coupled Cyber-Physical Systems

Efficiency and performance are motivators for CPS co-design. Historically, the energy
required to actuate physical effectors has dominated energy requirements of any cyber sys-
tem. We are entering an era, however, where handheld and embedded devices are com-
putationally advanced, with fast, distributed, networked processors demanding nontrivial
energy. A physical system must therefore be optimized over its computational resources
and vice versa, a synergy consistent with awareness in biologic entities. It has become
imperative for any resource scheduler to be aware of if, and when, it can scale back re-
sources devoted to reasoning about the physical system and still maintain good quality of
control. In terms of performance of the physical system, an increase in resources allotted to
the computation of control inputs will result in better performance of the physical system.
This can occur either by scheduling additional processing time for physical system control
tasks, or by increasing the processor frequency.

In this chapter we focus on augmentation of the “physical” controller depicted in Fig-
ure 1.1 to better support CPS co-design through co-regulation. We represent computational
state in a continuous-time state formulation and derive an approximate or abstract continu-
ous model that can be numerically coupled within a unified continuous-time mathematical
representation. We then augment a simple physical system, a 2nd-order damped oscillator,
with this cyber model to illustrate how the cyber and physical systems are co-regulated.
Once cast as a linear system, we then design a Linear Quadratic Regulator (LQR) law for
the holistic CPS and demonstrate the closed loop co-regulation of the cyber and physical
states. We evaluate results over a series of reference control loop rates, illustrating how co-
regulation is particularly useful in cases where resource demands by other tasks are in direct
competition with control loop execution rate to the extent of impacting system stability. We
extend these results by applying this methodology to an unstable inverted pendulum system
demonstrating the ability of our proposed technique to conserve resources while stabilizing
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the system.
Below, we first present a simple physical system example to motivate CPS co-regulation.

In Section 3.2 we describe our model of computational state as well as an approximate con-
tinuous cyber model and combine this with the physical model to form an augmented sys-
tem in Section 3.3. We then design a closed-loop LQR controller and present simulation
results in Section 3.4. Results compare a continuous-only simulation and the decoupled
CPS model developed. Section 3.5 presents some preliminary work and results investigat-
ing one potential coupling scheme.

3.1 A Motivating Example

We present a physical system used throughout this chapter to first illustrate the impact of
digital feedback control on a physical system and then to provide a baseline model for
CPS co-regulation. The goal is for the reader to gain insight through a simple model into
how the cyber system affects the response, stability, and control authority of the physical
system and how we are able to model and leverage coupling between cyber and physical
“effectors.”

3.1.1 Spring-Mass-Damper System

A damped oscillator system may be represented as

Σp :


ẋp1

ẋp2

 =

 0 1
− k

m − c
m

 xp1

xp2

+

01
up , (3.1)

where xp1 is the position and xp2 is the velocity of the mass. For this system, and throughout
this chapter, we have chosen physical constants stiffness k = 39.4784, mass m = 1, and
damping c = 1.2566. The eigenvalues for the system are λ1,2 = −0.6283± 6.2517 j. Note
that since all the eigenvalues are in the Open Left Half Plane (OLHP) the system is stable.
Our simulations in this chapter will, by default, show the response to initial conditions
xp (0) = xp0 =

[
1 0

]T
. The plot of the open loop response is shown in Figure 3.1.

3.1.2 Closed-loop Controller

In designing control systems we have specifications that govern the transient and steady-
state responses. Rise time, overshoot and undershoot, settling time, and steady-state value
are usually designated as well as the inherent need to design a robust controller with robust
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Figure 3.1: Open Loop Response

stability margins. For simplicity, and because we’re interested in state regulation (driving
the states to equilibrium), we design a proportional-derivative feedback controller assuming
full-state feedback. Let

up = −kp1xp1− kp2xp2

be the control, where kp1 = 3.5, kp2 = 2 are gains chosen using pole placement techniques
that give a desirable response. We can find the equivalent digital version of the system
and controller assuming a sampling time Ts = 0.1s using standard digital control tech-
niques [60]. Simulating the continuous and digital systems and overlaying the responses,
we obtain the plot in Figure 3.2. Note that the response has improved significantly relative
to open-loop simulation. Also notice the zero-order hold (ZOH) nature of the system, an
artifact of holding the input up at the last computed value throughout a control loop cycle,
as well as only updating the state (output), y, once per cycle.

Figure 3.2: Closed-loop Response

Often, control systems can be executed at a sufficiently fast rate to ignore the effects
of ZOH thereby assuming properties of a continuous system. In this chapter we provide
continuous-time trends as a reference to illustrate the impact of ZOH over different intervals
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on our system. However, in a co-regulated CPS we seek to minimize use of computational
resource “energy” as much as we seek to minimize use of physical actuation “energy.” We
therefore more carefully model the time required for the control loop cycle and discuss
how this might change. Let Tsi be the time required to calculate a control input up, and
Tsc � Tsi be the sampling time of the A/D and D/A converters [114]. Then the discrete
nature of the physical system will be determined by the full sampling period

Ts = Tsi + Tsc. (3.2)

From the perspective of the physical system, an appropriate sampling rate is chosen such
that requirements for smoothness, stability, and tracking are met. It is often recommended
that the sampling rate, ωs, be chosen such that ωs/ωb > 20, where ωb is the desired band-
width [60]. If a constant gain is held as sampling rate decreases (delay), tracking accuracy
and stability decrease. From the cyber perspective, however, we would prefer the lowest
sampling rate to allow the cyber system to attend to other tasks, translating to the control
task occupying a lower percentage processor utilization. Alternatively, decreasing control
loop rate might involve slowing a variable-speed processor or “turning off” one or more
processors in a multi-core architecture to reduce energy use.

As a result of these competing objectives, a tightly coupled unified model that enables
co-regulation of cyber and physical states would allow us to co-design the CPS and opti-
mally exchange control authority of the physical system for cyber resource allocation.

3.2 Development of a Cyber Model

To augment the physical system continuous state vector with information about the cyber
system, we develop a continuous abstraction representing the computational properties of
the cyber system with relevance to co-regulation. For this work we assume Ts in Equa-
tion (3.2) is directly controllable by changing the sampling rate of the D/A converters, al-
tering the fraction of CPU utilization allocated to the control task, modifying the frequency
of computations (clock speed), or a combination of these. Although in any real-time oper-
ating system (RTOS) tasks will context switch, we approximate the rate of progress through
the control loop, data acquisition, and computational processes to be constant, “resetting”
to the beginning of the cycle each time a new control command is generated. This results in
a step-wise linear relationship between progress through the control loop and elapsed time,
with slope varying as a function of control loop frequency or rate.

Definition: Let yc represent the fraction of all control loop data acquisition and calcu-
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lation activities completed. Also, let f = 1/Ts be the frequency at which the control loop is
executed and let t be time. Then

yc = f t−n (t) for n (t)Ts ≤ t ≤ (n (t) + 1)Ts

n (t) = bt/Tsc

This relationship implies that ẏc = f for n (t)Ts ≤ t ≤ (n (t) + 1)Ts. Note that n (t) represents
the cycle or control loop count. In Figure 3.3 we show a plot of yc as a function of time
(with Ts units) as it would appear in a cyber system with f at a constant value.

Figure 3.3: Fraction of Completed Control Task, yc, as a Function of Time

Figure 3.4 shows yc plotted for varied fi to illustrate how regulation of Ts, recomputed
once during each control loop cycle, impacts progress through the control loop over time.

Figure 3.4: Fraction of Completed Control Task, yc, as a Function of Time with Varying f

As a continuous abstraction to an inherently discrete model, we consider the dynamics
of cyber state yc to be modeled as an open loop double integrator subject to an impulsive
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“forcing” term uc capable of instantaneously changing ẏc to a new rate at the end of each
control cycle. Note that impulsive uc is realistic because it represents an instantaneous
change in task execution “velocity” or rate rather than a change in physical velocity. Once
uc updates ẏc and yc is reset to zero indicating a new controller cycle has begun, the con-
troller process is executed under a ZOH condition with uc = 0 such that yc increases linearly
over sampling period Ts.

The ideal sawtooth model described above represents impulsive uc, possible if the real-
time scheduler is indeed able to instantly reconfigure the CPU or CPUs accordingly. How-
ever, in practice, particularly when numerous real-time tasks must be managed potentially
across multiple cores, the scheduler will need time to adjust tasks and resources. For this
work, we presume such change to the task schedule will be incremental in nature, analo-
gous to a physical system where an “accelerated” mass changes its rate (velocity) slowly
rather than instantly. Drawing inspiration from the behavior of physics-based systems, we
propose the following linear systems model of our control loop “cyber” system:

Σc :


ẋc1

ẋc2

 =

0 1
0 0

 xc1

xc2

+

01
uc (3.3)

where xc1 is the fraction of control loop calculations completed in this cycle, and xc2 is
the frequency at which the control loop executes. As previously defined uc represents the
“force” or “acceleration” required to adjust cyber resources.

This model only applies during one sampling period Ts, requiring a discrete jump at
the end of the control task. The discrete nature of the cyber model can be modeled using a
hybrid automaton which we present in Section 3.3.

3.3 CPS Model

3.3.1 Augmented System

We can combine the physical model in (3.1) and the cyber model in (3.3) by combining the
continuous-valued states into a single stacked vector. This gives

ẋp1

ẋp2

ẋc1

ẋc2

 =


0 1 ? ?
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m ? ?

? ? 0 1
? ? 0 0
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1 0
0 0
0 1


up

uc

 . (3.4)
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where the “?” indicates terms that might couple cyber and physical system dynamics.
It is clear from the discussion in Section 3.1.2 that the physical system is affected by

sampling time Ts of the cyber system. Additionally, the cyber system should respond to
demands in the physical system. As a result, the coupling terms, (?), in Equation (3.4) need
to be addressed. However, we initially assume a decoupled CPS model in which the only
effect the cyber system has on the physical system is through the ZOH. This results in a
final CPS model

ΣCPS :




ẋp1

ẋp2

ẋc1

ẋc2

 =


0 1 0 0
− k

m − c
m 0 0

0 0 0 1
0 0 0 0
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+
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1 0
0 0
0 1


up

uc

 . (3.5)

3.3.2 Hybrid Automaton Formulation

We employ a hybrid automaton to model the state jump (reset) of xc1 for the decoupled
system as shown in Figure 3.5. During each sampling period, the input vector, u =

[
up,uc

]T
,

Figure 3.5: Hybrid System Model

is held constant. At the end of each sampling period, xc1 jumps back to zero.

3.3.3 Implementation Details

The hybrid automaton in Figure 3.5 was implemented in MATLAB wherein, at each cycle,
we use a 4th-order Runge-Kutta variable time step ordinary differential equation solver.
As xc2 changes according to the CPS system dynamics and desired reference frequency,
the length of a cycle, and hence range of integration, varies and appropriately captures
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the changing dynamics of the cyber system. The ZOH nature of the CPS is captured by
holding the input constant until the next cycle. Additionally, a cyber system cannot have
negative state values even though this would be allowed by our continuous state model. To
address this, we set xc1 = 0 in our simulation as it currently has no bearing on the CPS due
to the ZOH. We also artificially restrict xc2 to a lower bound on sampling rate representing
the point of instability. Although this lower limit on xc2 introduces a nonlinearity into the
system, it is analogous to saturation in a linear system and can be analyzed similarly. In
our following simulation we set this threshold to xc2,min = 3.33Hz as that is the frequency
at which the spring-mass system response approaches instability in our simulations.

The following pseudocode summarizes our MATLAB-based implementation:

Algorithm 3.1 Algorithm for Simulation of a CPS
while t < tmax do

u=-K*xprev
tspan=[tprev, tprev + xc2]
[t,x]=ode45(@CPSmodel,tspan,xprev)
tall=[tall;t]
xall=[xall;x]

end while

Note that because MATLAB’s ode45 is a one-step solver, the piecing together of mul-
tiple executions of ode45 based only upon xprev is a justifiable mechanism for obtaining
the true integrated solution (to within numerical method precision).

3.4 Closed-Loop Co-Regulation of Cyber and Physical
States

We employed Linear-Quadratic Regulator (LQR) controller designs in all simulation re-
sults presented below. We examined the performance of two different systems, the 2nd-
order damped oscillator system presented and an unstable system representing an inverted
pendulum. In this initial work, we only examine decoupled systems as presented in Equa-
tion (3.5) demonstrating the power of our CPS abstraction to enable the application of
traditional control theory.

3.4.1 2nd-order Damped Oscillator

In this section we present results for the spring mass damper system in Equation (3.5).
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3.4.1.1 LQR Design

Since we have formulated our CPS as a linear system, we can apply traditional linear feed-
back control design techniques. We have designed an infinite horizon LQR controller which
minimizes

J =

∫ t1

t0

(
xT Qx + uT Ru

)
dt

We add two integrator states to the system and the LQR gain is solved for the augmented
system ėẋ

 =

0 C
0 AΣCPS

 ex
+

 0
BΣCPS

 up

uc

+

r0


C =

1 0 0 0
0 0 1 1


r =

−xp1,r

−xc2,r


where xp1,r and xc2,r are the reference inputs for the physical and cyber system respectively.

In choosing appropriate Q and R matrices we face a tradeoff. The double-integrator
representing the cyber system can have fast rise time indicating that the cyber system is
able to adjust resources very quickly. This corresponds to a large Q and small R. However,
with this design the double integrator will always overshoot the reference frequency, a
condition that worsens as the gains are increased. If we choose small Q and large R we can
make a smoother transition with little overshoot, but this is undesirable if the cyber system
must rapidly respond to stabilize the physical system. Our chosen values of Q and R,

Q =


150×103 0

0 1×103

0

 , R =

 3 0
0 20

 .
in the simulations that follow place higher importance on response time since we artificially
limit the lower bound on xc2 as described. The consequence is, however, that the system
can spend a nontrivial time period at xc2,min causing poor quality of control of the physical
system for a short time.

3.4.1.2 Results

We present results from three test cases given in Table 3.1. In these results we will compare
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Table 3.1: Test Cases for 2nd-Order Damped Oscillator

CASE xp1,0 xp2,0 xp1,r xp2,r xc2,0 xc2,r

1 1m 0m/s 0m 0m/s 200Hz 80Hz
2 1m 0m/s 0m 0m/s 3.4Hz 6Hz
3 1m 0m/s 0m 0m/s 20Hz 5Hz

a traditional continuous-only simulation (allowing for negative values of the cyber states,
and no ZOH) and our CPS simulation shown in Algorithm 3.1.

2nd-Order Damped Oscillator Case 1 In the first case the initial frequency, xc2,0 is over
twice as high as xc2,r. However, both values are sufficiently fast with respect to the destabi-
lization frequency that the system suffers no significant loss of quality of control due to the
co-regulation of physical force and control loop rate. Indeed, at these high sampling rates
the CPS simulation approaches a continuous system as seen in Figure 3.6.

Figure 3.6: Simulation for Case 1. xc2,0 = 200Hz, xc2,r = 80Hz
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2nd-Order Damped Oscillator Case 2 In the next case, shown in Figure 3.7, the initial
frequency is very near the lower stability threshold xc2,min, a condition that might occur
in processing overload or critical energy conservation situations. In the presence of an
appropriate guidance law, the cyber system would detect the impending instability and
command a higher reference frequency, xc2,r while balancing the need to conserve cyber
resources. We choose xc2,r = 6Hz to simulate this scenario.

Figure 3.7: Simulation for Case 2. xc2,0 = 3.4Hz, xc2,r = 6Hz

Note that at the extremely low sampling rate (xc2 = 3.4Hz) the system approaches in-
stability due to the ZOH. As the cyber system directs more resources (higher control loop
rate) to the physical system, it is able to quickly regain control.

2nd-Order Damped Oscillator Case 3 In this test case we approach the energy conscious
sampling rate from above. The results are shown in Figure 3.8. In this case, because
we saturate at xc2,min = 3.33Hz, the system nearly goes unstable, but because we have
commanded xc2,r = 5Hz the CPS rate increases and the system is stabilized. Note that the
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Figure 3.8: Simulation for Case 3. xc2,0 = 20Hz, xc2,r = 5Hz

system spends a nontrivial amount of time at or near xc2,min. As in Case 2, this is because the
corresponding sampling time is 0.3s, requiring multiple sampling periods for the integral
control to respond. In this case, this is likely a limitation of using the double integrator as
a cyber model abstraction. However, if the correct coupling terms were known, we have
evidence suggesting that the controller would drive the system to xc2,r more quickly.

3.4.2 Unstable System Results

As a more challenging system that requires active control for stability, in this section
present results for an inverted pendulum by applying the same techniques applied to the
spring-mass system.
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3.4.2.1 Inverted Pendulum

The augmented inverted pendulum system is
ẋp1

ẋp2

ẋc1

ẋc2

 =


0 1 0 0
g
l 0 0 0
0 0 0 1
0 0 0 0




xp1

xp2

xc1

xc2

+


0 0
1 0
0 0
0 1


up

uc

 (3.6)

where g = 9.8m/s2 is gravity, and l = 1m is the length of the pendulum. The system is
unstable indicated by having an eigenvalue λ = 3.13 in the Open Right Half Plane (ORHP).
This means that the response to any initial condition not precisely at the equilibrium, zero
in this case, requires a stabilizing controller for convergence.

3.4.2.2 LQR Design

We again use an LQR controller formulation to regulate the inverted pendulum to its equi-
librium from a nearby initial condition. Again we include integrator states to ensure we
reach the desired reference values and then find the LQR gain for the decoupled system
using

Q =


4000 0

0 100

0

 , R =

 0.1 0
0 0.1

 .
3.4.2.3 Results

To simulate the inverted pendulum we computed the system response to initial conditions[
xp1, xp2

]
= [0.17,0]T in radians. We determined the lower threshold for sampling rate

needed to maintain stability to be xc2,min = 6.66Hz. We present results from the three test
cases given in Table 3.2.

Table 3.2: Test Cases for Inverted Pendulum

CASE xp1,0 xp2,0 xp1,r xp2,r xc2,0 xc2,r

1 0.17rad 0 rad/s 0rad 0 rad/s 200Hz 80Hz
2 0.17rad 0 rad/s 0rad 0 rad/s 6.66Hz 13Hz
3 0.17rad 0 rad/s 0rad 0 rad/s 20Hz 7Hz

In these results we again compare a continuous simulation with our CPS simulation of
the decoupled system in Equation (3.6).
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Inverted Pendulum Case 1 This test case (Figure 3.9) is the same as Case 1 for the
spring-mass system above. Both the initial sampling rate and the reference sampling rate
are much higher than xc2,min. Both xp1 and xp2 closely track the continuous response. At
one point, xc2 dips to xc2,min as a result of the overshoot. This causes a sampling period
that would result in instability if not corrected, as well as the small deviation from the
continuous response. But this low sampling rate only occurs for one period, after which
xc2 quickly rises to xc2,r.

Figure 3.9: Simulation for Case 1. xc2,0 = 200Hz, xc2,r = 80Hz

Inverted Pendulum Case 2 Similar to Case 2 for the spring-mass system, in this test we
move from an energy conscious sampling rate near xc2,min to a faster rate in response to a
disturbance in xp1 (represented by our initial conditions). The results in Figure 3.10 demon-
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strate that the cyber system is able to adjust its resources commanding a faster sampling
rate to stabilize the system.

Figure 3.10: Simulation for Case 2. xc2,0 = 6.66Hz, xc2,r = 13Hz

The initial upward trajectory of xp1 occurs as a result of holding up,0 (initial control in-
put) at zero for one sampling period. Additionally, although the system is able to stabilize
the system, the cost in control input is very high. In a real CPS it is likely our actuators
would be unable to deliver such a control input. This again suggests the need for deter-
mining the correct coupling terms, “?,” in Equation (3.4) so that the cyber system responds
more quickly, and smaller control inputs are required.

Inverted Pendulum Case 3 In this test, similar to Case 3 for the spring-mass system,
we begin with a relatively high sampling rate and command a more energy conscious rate
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to allow the reallocation of resources in the cyber system. Note that xc2,r is very close to
xc2,min. Nevertheless, as seen in Figure 3.11 the CPS system regulates the states well and
keeps it stabilized even at the low sampling rate.

Figure 3.11: Simulation for Case 3. xc2,0 = 20Hz, xc2,r = 7Hz

In this case, up is not very large, and the physical states xp1 and xp2 track the continuous
response well despite a sampling rate near instability.

3.5 Toward a Coupled Model

It is apparent that the appropriate coupling terms, “?” in Equation (3.4), are needed to
further improve system performance and make this CPS representation a viable asset to the
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CPS community. In this section we explore some coupling options and investigate how
they impact the system.

As an early investigation of how we might couple cyber state [xc1, xc2] with physical
(oscillator) state

[
xp1, xp2

]
of the stable 2nd-order oscillator system, we examine how the

quality of control of the physical system is impacted by changing the frequency of the cyber
system.

To do this, we propose an average error metric for quality of control. We define µ ( fs)

as the average error in response of the physical system over a specified time interval for
sampling frequency fs in Hz. For our 2nd-order system, we compute µ ( fs) over time in-
terval [0.0 6.0] seconds for fs between 2.2Hz (Ts = 0.45s) and 100Hz (Ts = 0.01s). This
range in fs is sufficient to illustrate error trends from a slow unstable rate (2.2Hz) to a rate
sufficiently fast to approximate the ideal continuous response (100Hz).

To define µ ( fs), we performed a series of 45 simulations with equally spaced Ts. For
each simulation, we computed the response of the 2nd-order physical system using a 4th-
order Runge-Kutta method with integration step ∆t = 0.001s which yielded n = 6/∆t = 6000
data points over the six second simulation time. To simulate the particular fs of interest,
force input up was held constant between controller updates made every Ts = 1/ fs seconds.

To compute average error for each simulation run over a particular fs, we computed
errors in the continuous physical states for each of the n simulation time points ti:

ep1 (ti) = xp1,r (ti)− xp1 (ti)

ep2 (ti) = xp2,r (ti)− xp2 (ti)

where xp1,r, xp2,r are the control system reference states. Although the reference states
could change over time, they are held constant after an initial step change for our simula-
tions. We then define average errors for physical states p1 and p2:

µp1 ( fs) =
1
n

n∑
i=1

e2
p1 (ti)

µp2 ( fs) =
1
n

n∑
i=1

e2
p2 (ti)

Figure 3.12 shows average errors µp1 and µp2 as a function of fs. We note that these curves
are consistent with results from other researchers in this area [109].

The average error of the system depends nonlinearly on the frequency as expected.
However, we can approximate the curve using two linear fits by dividing the curve at a
switching frequency fsw = 6.173Hz. As shown in Figure 3.12, velocity (p2) is more sen-
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Figure 3.12: µp1 and µp2 as a Function of Frequency

sitive to frequency than position (p2). The nearly horizontal portion of the curves indicate
that at higher frequencies ( f > fsw) there is little effect of the frequency on the physical
system, hence we use a linear fit with constant error (zero slope) for frequencies above fsw.
For the lower frequencies ( f ≤ fsw), we apply a linear curve fit to obtain coefficients

cxp1,xc2 = −0.01008, cxp2,xc2 = −0.4852 (3.7)

where cxp1,xc2 is the dependence of xp1 on xc2 (cyber or control loop frequency), and cxp2,xc2

is the dependence of xp2 on xc2.

3.5.1 Early Coupling Results

We now combine the augmented CPS model in Equation (3.4) with our linear fit from
Equation (3.7). Because we used a two segment linear fit to characterize the dependence of
the physical system on the cyber system, we have two sets of continuous dynamics

ΣCPS ,1 = ΣCPS in Equation (3.5) (3.8a)

ΣCPS ,2 = ΣCPS where A =


0 1 0 cxp1,xc2

− k
m − c

m 0 cxp2,xc2

0 0 0 1
0 0 0 0

 . (3.8b)
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We employ a hybrid automaton, seen in Figure 3.13, to switch between ΣCPS ,1 and ΣCPS ,2

in Equation (3.8). In this formulation two discrete modes represent the full CPS, ΣCPS ,1

applied when xc2 > fsw and ΣCPS ,2 applied when xc2 ≤ fsw. We tested this new hybrid

Figure 3.13: Hybrid System for Coupled CPS Model

automaton formulation using a MATLAB implementation similar to Algorithm 3.1 but
allowing for switching discrete modes at fsw.
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3.5.1.1 2nd-Order Oscillator

For the 2nd-order oscillator we demonstrate the results shown in Figure 3.14 by simulating
the third test case from Table 3.1. We compare the decoupled formulation simulated earlier
with this preliminary hybrid switching formulation presented in this section.

In our testing, we used the values in Equation (3.7) as initial starting points for the
coupling terms, but learned that tuned values cxp1,xc2 = −0.04 and cxp2,xc2 = −0.6 yielded
improved results. In this simulation with the hybrid switching formulation xp1 and xp2

Figure 3.14: Simulation for 2nd-order Oscillator with Coupling Terms. xc2,0 = 20Hz, xc2,r =

5Hz

have much smaller error as they are regulated. Even more compelling is the very low
control effort, up, required to obtain these results. This shows that at low frequencies using
these coupling terms, we can control the system with smaller control efforts as the cyber
system directs more resources to the control loop.
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3.5.1.2 Inverted Pendulum

Despite the strong results just given, there is still work to examine how and when the cyber
states should affect the physical system as evidenced by the results shown in Figure 3.15 for
the inverted pendulum. In these results we used the same techniques described for the 2nd-
order oscillator system and tuned the coupling values to cxp1,xc2 = −0.03 and cxp2,xc2 = −1.1.
The hybrid switching formulation for the inverted pendulum regulates the physical system

Figure 3.15: Simulation For Inverted Pendulum with Coupling Terms. xc2,0 = 20Hz, xc2,r =

7Hz

states sufficiently (albeit with undesirable oscillations), but more concerning is that the
control effort expenditure is significantly higher.
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3.5.2 Future Coupling Objectives

Based on this preliminary investigation, we believe the coupling terms discussed in this
section could be treated as a disturbance rather than coupling terms in the system matrix.
Nevertheless, this coupling itself seems less compelling than the coupling that models the
cyber system state dependency on the physical system states

(
e.g. cxc2,xp1 , cxc2,xp2

)
. Be-

cause the cyber states are an abstraction and don’t adhere to the same laws as the physical
system, and because we have more direct control over the cyber system, we believe the
strongest results will lie in the development of these latter coupling terms.

3.6 Conclusions

We have presented a novel CPS representation in which physical and computational sys-
tems are represented as a single continuous multi-variable linear system. This representa-
tion enables co-regulation of physical and computational state to optimally balance compu-
tational load with physical system stability and disturbance rejection at each control loop
cycle. A 2nd-order oscillator system was used as an illustrative physical model, and a con-
tinuous cyber model abstraction of the associated single-thread control task executing on
a CPU was developed. We developed a simulation environment for the CPS modeling
technique presented and have shown results both for the 2nd-order oscillator developed as
well as for an unstable inverted pendulum. These baseline models were augmented further
with coupling terms derived from curves representing quality of control as a function of
sampling rate. Two contrasting results were given demonstrating that appropriate coupling
can provide robustness to the physical system response in situations where computational
resources must be conserved, but that more work is needed to understand how to appropri-
ately select those terms.

Ideally, in a more complex CPS a similar coupled continuous representation could be
developed containing both the dynamics of the physical system and the abstraction of the
cyber system. This would allow the use of the powerful set of techniques, theory, and results
from modern control theory to be applied to the CPS holistically. Perhaps most attractive
would be the ability to develop optimal control strategies to balance goals for both the
physical and cyber states of the full system much like that done in [13, 100]. However,
much work remains before the proposed model will be of practical use as a complement to
existing scheduling and modeling strategies. First, although we have introduced terms for
the dependency of the physical system on the cyber system, this coupling is incomplete.
Exploration of the dependency of the cyber system on the physical system is necessary
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to properly couple the CPS. Further, the proposed continuous cyber model will always
overshoot the reference command, which may not be desirable in a real system. Cyber
models need to be explored that can possibly reduce this overshoot or prevent it entirely.
Finally, this work should be applied to more complex real-world systems.
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CHAPTER 4

Cyber-Physical System Modeling and
Co-Regulation of a CubeSat

In small robotic platforms such as miniature rovers, Micro-Air Vehicles (MAVs) or small
satellites (CubeSats), power required for computing and communication can rival or exceed
propulsion/locomotion system power. For such systems, it is therefore inefficient and po-
tentially insufficient to regulate motion (e.g. over propulsive/locomotion commands) first
and computational/communication resources independently or in response. It is equally
ineffective in platforms where computational and locomotion resource requirements are
comparable to optimize the real-time computing/communication task schedule first then
“move as needed” to support the cyber mission.

This chapter builds on Chapter 3 and our previous work in [26, 115] by proposing the
application of state-variable techniques to the real-time feedback co-regulation of physical
actuation and real-time controller task rate of execution (or sampling rate) for attitude con-
trol of a small spacecraft (CubeSat). With this scheme, computational resources devoted
to attitude control during quiescent periods can be directed to other tasks such as commu-
nication, data gathering/processing, or mission planning. Although resource reclamation
of this type has already been identified as valuable to increase mission productivity, space-
craft missions to-date have yet to run guidance, navigation, and control (GNC) tasks less
frequently than would be required in worst-case disturbance and maneuver scenarios [102].
To our knowledge this is the first time a dynamic sampling rate scheme has been proposed
for any spacecraft.

We conduct a CubeSat case study simulating disturbance rejection to the 3-DOF attitude
of the CubeSat which uses reaction microwheels as physical actuators for attitude control.
The CubeSat has an onboard computer and RTOS with presumed schedulability constraints
representing the cyber system. A modeling abstraction of control task execution rate is
coupled to the state-space model for attitude control allowing the dynamic adjustment of
that rate and forming a discrete-time varying Cyber-Physical System model. We apply two
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new controllers to handle the discrete-time-varying system: a feedback controller where
the gains are scheduled over the time-varying sampling rate of the system, and a forward-
propagation Riccati-based controller. We also believe this to be the first time controller
gains have been scheduled over a dynamically changing control task execution rate. We
further hope to add empirical evidence of the utility of forward-propagation (and forward-
integration) Riccati-based controllers, the full understanding of which remains an open
question in control theory [116–119]. Finally, we evaluate coupled CPS performance in
terms of physical tracking error, control effort, and CPU resource requirements for the
control task.

In this chapter we first summarize CubeSat attitude dynamics and formulate a continuous-
time linearized model followed by the discrete-time-varying CubeSat model that utilizes
our CPS control strategy. A cyber model representing control task execution rate is cou-
pled to the CubeSat model forming a closed-loop holistic CPS model. Evaluation metrics
for coupled CPS performance are then presented. The CubeSat case study is then discussed
and results are given focusing on an evaluation of physical state error, control effort (energy
utilization), and cyber control task resource utilization relative to fixed-rate controllers.

4.1 CubeSat Equations of Motion

Attitude control of a class of picosatellites called “CubeSat” [120] is a compelling cyber-
physical system (CPS) challenge because of the unstable system dynamics and widely-
varying pointing accuracy requirements for data collection and communication versus qui-
escent drift periods. Typically science data can be collected much faster than it can be
communicated, a problem confounded by constraints on orbital windows in which a ground
station is accessible. This requires the CubeSat to devote substantial effort to manipulat-
ing data onboard, as was done with EO-1 [102], to improve science output. CubeSats,
therefore, usually contain substantial computing power for their size. At any given time
computational activities on a CubeSat can easily consume 10%-50%1 of available energy
resources, motivating the need for CPS co-design techniques that co-regulate both cyber
and physical resources.

CubeSat missions are accomplished with a 1− 3kg satellite containing major onboard
subsystems such as attitude control, communication, power distribution, generation, and
storage, command and data handling, and payload. Pointing may require rotational move-
ments once or more per orbit depending upon the mission. A spacecraft in a 500km cir-

1Personal communication with Dr. James W. Cutler from the Michigan Exploration Laboratory at The
University of Michigan.
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cular orbit spends 38% of its time in eclipse meaning that energy can be generated during
the other 62% of the orbital period. Since a typical time period for a 500km altitude orbit
is about 95min, this poses a challenge for energy utilization. Data transmission requires
energy that depends on multiple factors such as data rate, signal strength, antenna size and
type, etc. These factors provide motivation for communication and position-aware com-
puting. In this work we focus on making the cyber system (i.e. real-time system) able
to regulate the attitude control sampling rate so that it can achieve appropriate balance
between that and resource availability for other tasks such as science data handling.

4.1.1 Equations of Motion

The equations of motion for attitude control of a CubeSat can be developed using Euler
equations for rigid body kinematics and dynamics with a diagonal inertia matrix J. The
equations used in this chapter assume a circular orbit and small perturbations about the
equilibrium point about which the equations of motion are linearized. The dynamics about
the pitch axis are represented as

θ̇2 = ω2

ω̇2 =
3ω2

o (J3− J1)
J2

θ2 +
M2

J2

(4.1)

where the body-fixed pitch axis is assumed to be aligned with one of the principal axes of
the spacecraft. The torque applied (M2) is equal to and opposite in direction to the rate of
change of angular momentum of the microwheel

(
i.e. Ḣw

2 = −M2
)
. The angular velocity for

a circular orbit is ωo =
√
µ/R3 where µ is the gravitational constant and R is the radius of the

orbit.
The dynamics about roll (1) axis and yaw (3) axis are represented by

θ̇1 = ω1−ωoθ3

θ̇3 = ω3−ωoθ1

ω̇1 =
ωo (J2− J3)

J1
ω3 +

3ω2
o (J3− J2)

J1
θ1−

H̄w
2

J1
ω3 +

M1

J1

ω̇3 =
ωo (J1− J2)

J3
ω1 +

H̄w
2

J3
ω1 +

M3

J3

(4.2)

where roll and yaw axes are assumed to be aligned with the principal axes of the spacecraft
perpendicular to each other and perpendicular to the pitch axis. Note that the equations of
motion are linearized about an equilibrium point where the body-fixed axes of the space-
craft are aligned with a Local Vertical Local Horizontal (LVLH) reference frame. Hence
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(ω1,ω2,ω3) are components of the perturbation about the equilibrium point in the angular
velocity vector with respect to an inertial frame expressed in the body-fixed frame of ref-
erence. θ1, θ2, and θ3 are perturbations of the 3-2-1 Euler angles that define the spacecraft
attitude with respect to the LVLH coordinate frame. H̄w

2 represents bias in the pitch reac-
tion microwheel. The torque applied (M1,M3) is equal to and opposite in direction to the
rate of change of angular momentum of the microwheel

(
i.e. Ḣw

1 = −M1 and Ḣw
3 = −M3

)
.

We can rewrite the open-loop equations in state-space form

ẋp = Apxp + Bpup

where the states and controls are

xp =
(
θ1, θ2, θ3,ω1,ω2,ω3,Hw

1 ,H
w
2 ,H

w
3

)
up = (M1,M2,M3)

(4.3)

and matrices Ap and Bp are taken from Equations (4.1) and (4.2). The CubeSat considered
has mass of 3kg with dimensions of 30cm×10cm×10cm. The CubeSat has inertia matrix
J = diag(0.005,0.025,0.025) kg ·m2. The altitude of the spacecraft is assumed to be 500km
above Earth’s surface which results in an orbital angular velocity ωo = 0.0011 rad/s. H̄w

2 =

0.01kg ·m2. Because this work also introduces a cyber system model we use the subscript
“p” to indicate that these equations depict the physical system.

Depending on the configuration of the spacecraft the linearized system can either be
stable or unstable [121]. For our CubeSat, the system matrix Ap has unstable poles thus it
requires active control to stabilize.

4.2 Discrete CubeSat Model

As discussed in Section 2.2 there are several sources for uncertain delays when implement-
ing a controller on an RTOS. Nevertheless, the traditional sampled-data assumption of no
delay is reasonable to make under most scenarios. In a modern digital control system it
is likely that dedicated A/D and D/A converters minimize conversion delays and we as-
sume that a predictive algorithm can always provide the current physical system state at
the moment the control output is calculated thereby eliminating appreciable delays in state
estimation. This assumption allows us to leverage digital control theory to discretize the
CubeSat model and design digital controllers.
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4.2.1 Discrete CubeSat Model

If we assume the control task, τ1, is a hard-deadline task and that execution deadlines are
always satisfied by the real-time system, we can discretize the system for a given sampling
period. In the most general case the discrete system matrices may vary due to parameter
changes, uncertainty in dynamics, or in our case, a time-varying sampling rate. We re-
flect the discrete-time-varying nature of the system using the variable k, representing an
execution cycle of the control task. Assuming a ZOH we can write the physical system as

xp (k + 1) =Φp (k)xp (k) +Γp (k)up (k)

where
Φp (k) = eApTτ1 (k)

Γp (k) =

∫ Tτ1 (k)

0
eApηdηBp.

(4.4)

We note that in traditional digital control theory a constant sampling period is assumed and
the resulting system would be

xp (k + 1) =Φpxp (k) +Γpup (k)

in which system matrices Φp, and Γp are constant over each cycle [60].

4.2.2 Physical System Control Laws

The design of feedback controllers for a system that can dynamically adjust its own sam-
pling rate is a relatively new area for research [13, 100]. As a result we borrow from
strong foundations in digital, optimal, and nonlinear control and seek to apply them to
discrete-time-varying systems. We propose two controllers: a Gain-Scheduled Discrete
Linear Quadratic Regulator (GSDLQR), and a Forward-Propagation Riccati-based (FPRB)
controller.

4.2.2.1 Gain Scheduled DLQR Control

Infinite horizon Discrete Linear Quadratic Regulator (DLQR) controllers are designed as-
suming a fixed sampling rate and constant system matrices. For a given stabilizing sam-
pling rate, because our system is completely controllable it is possible to compute an infi-
nite horizon DLQR controller with a finite cost where the cost function is given by:
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J =
1
2

∞∑
k=0

xT
p (k)Qxp (k) + uT

p (k)Rup (k) . (4.5)

The resulting optimal control law is given by:

up (k) = −Kpxp (k)

where
Kp =

(
R +ΓT

pPΓp
)−1
ΓT

pPΦp

and P is the positive definite solution to the Discrete-time Algebraic Riccati Equation
(DARE)

P = Q +ΦT
p

(
P−PΓp

(
R +ΓT

pPΓp
)−1
ΓT

pP
)
Φp. (4.6)

In the simulations carried out for our work, Q = 100I9 and R = 105I3 where In is the n×n

identity matrix.
The choice of sampling rate is a difficult one and many of the factors affecting that

choice are mentioned in Section 2.3.2. Research into the “Quality of Service” a RTS
can provide offers insight into the tradeoffs between computational resources and sys-
tem performance. Metrics quantifying control system performance under various sampling
rates can be used to optimize computational resources under various conditions [109,110].
Trends observed in QoS research suggest that increasing sampling rate yields improved
control system performance [109]. However, this generality doesn’t always hold as system
characteristics such as harmonics and exponentials impact the response [122].

Consider the effect of sampling rate on the DLQR gains. Higher sampling rates gener-
ally result in larger gains while lower sampling rates generally result in lower gains [123].
While lower sampling rates may conserve energy, most often system robustness suffers as
a result. For our CubeSat we specify upper and lower bounds for sampling rate. We choose
a maximum sampling rate rτ,max for which we can guarantee that the control task is schedu-
lable and a minimum sampling rate rτ,min for which we can still guarantee physical system
stability:

rτ1,max = 10Hz

rτ1,min = 0.1Hz.

To illustrate the relationship between sampling rate and gain, we computed the matrix
norm of DLQR gains for the CubeSat discretized at rτ1,max, rτ1,min, and an intermediate
rate, rτ1 = 1.0Hz (see [124]). These are listed in Table 4.1.
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Table 4.1: Scaling Factor Comparison for Normalized DLQR CubeSat Gains

SAMPLING RATE
∥∥∥Kp

∥∥∥
2

rτ1,max 0.0626
rτ1 = 1Hz 0.0325
rτ1,min 0.0050

We make the general assumption that sampling faster yields improved control system
performance except for sampling rates where the H2 cost is infinite which we disallow.
In light of the widely varying gains between rτ1,min and rτ1,max, and considering that some
sampling rates will cause system instability, we followed the procedure in [122] to examine
the relationship between sampling rate and control system performance. We swept the sam-
pling rate from rτ1,min to rτ1,max and calculated the H2 cost for each discrete closed-loop
system using DLQR feedback control at each sampling rate. Results are shown in Fig-
ure 4.1. Triangles in the plot indicate points where H2 =∞ and those corresponding sam-

Figure 4.1: H2 Performance Cost with Changing Sampling Rate

pling rates are avoided in our simulation. Circles indicate sampling rates where a DLQR
gain could not be found. For our CubeSat QoS increases with sampling rate commensurate
with H2 cost.

Because this work focuses on the dynamic adjustment of sampling rate, and since
DLQR gains vary significantly over the range of possible rates, a constant DLQR gain will
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yield suboptimal results. From the plot in Figure 4.1 it is also clear that we cannot compute
a DLQR gain at all possible sampling rates between rτ1,min and rτ1,max. Gain scheduling is a
technique traditionally applied to nonlinear systems where the complexity of the nonlinear
system prevents or greatly complicates the design of feasible controllers. In this paradigm,
a nonlinear system is linearized about operating points or equilibrium points for which lin-
ear system control techniques can be applied. The effects of nonlinearities in the system are
then mitigated by “scheduling”2 the designed gains via an interpolating scheme to compute
gains at intermediate operating points [125, 126].

We use this strategy as inspiration for developing a gain scheduling scheme over oper-
ating points of the cyber system (i.e. sampling rates). Where possible we design DLQR
controllers for the CubeSat at discrete sampling rates between rτ1,min and rτ1,max where
each sampling rate is an operating point of the CPS. We then “schedule” the appropriate
DLQR gains for the CubeSat corresponding to the commanded sampling rate, rτ1 (k), as
illustrated in Figure 4.2. This paradigm ensures that an appropriate gain is used to compute

Figure 4.2: Gain Scheduling Over rτ1 (k) (Sampling Rate)

the next control input for the newly-commanded control task sampling rate.

4.2.2.2 Forward-Propagation Riccati-Based (FPRB) Control

The optimal DLQR control is found by either propagating the DARE in Equation (4.6)
backward from a final condition for finite-horizon control, or by finding the steady-state
positive definite solution to the DARE for infinite-horizon control. Suppose we know sys-
tem matrices Φp (k), and Γp (k) k = 1,2,3, . . . ,N. We could then propagate the DARE in
Equation (4.6) backward from a final condition to obtain the optimal discrete-time-varying

2We note that this form of “scheduling” is not the same as the scheduling discussed in Section 2.2 in the
context of RTS.
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control [127]. Since we don’t know how the sampling rate will evolve (i.e. it is dynami-
cally adjusted based on error in the physical system trajectory as described in Section 4.3)
we do not know the system matrices in advance.

Forward-Integration Riccati-Based control is an emerging control design method wherein
the solution to the forward-in-time control Riccati equation is used to compute the con-
trol gain. While research is still investigating the stability and performance guarantees of
this method it has empirically shown to be effective in controlling a wide array of sys-
tems [116–119]. We apply this strategy to our discrete-time-varying CubeSat attitude con-
trol problem by computing

up (k) = −Kp (k)xp (k)

where
Kp (k) =

(
R +ΓT

p (k)P (k)Γp (k)
)−1
ΓT

p (k)P (k)Φp (k)

and P (k) is found iteratively using the forward-in-discrete-time algebraic Riccati equation

P (k) =Q +ΦT
p (k)

(
P (k−1)−P (k−1)Γp (k)(

R +ΓT
p (k)P (k−1)Γp (k)

)−1
ΓT

p (k)P (k−1)
)
Φp (k)

with initial-time boundary condition P (0) ≥ 0. As before, in the simulations carried out
for this work, Q = 100I9 and R = 105I3. As will be shown in Section 4.6 this controller is
effective and only requires the forward-propagation of the DARE.

4.3 Cyber-Physical System Model

Having designed controllers for a discrete-time-varying CubeSat model we now present
our state-variable cyber model, two cyber controllers, and couple this model to the state-
variable CubeSat model via feedback control.

4.3.1 State-Variable Cyber Model

The RTOS on a CubeSat potentially executes many tasks related to guidance, navigation,
control, science data collection, communication, etc. The ability to dynamically modify
the schedule to allocate cyber resources is useful if some tasks can benefit from increased
CPU time while others are scaled back. We assume that in our CubeSat study science data
collection tasks or other tasks related to guidance, navigation, and CubeSat maintenance
can always benefit from increased cyber resources. While it is also possible that the con-
trol task has multiple operating modes, branches, or algorithms we assume our control task
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consists of linear feedback only and hence execution time from job to job remains approx-
imately constant. With these assumptions in mind, wherein Chapter 3 we modeled two
cyber states, one representing progress through the control task, and the other represent-
ing sampling rate, for our CubeSat case progress through the control task has no impact
on design of a cyber or physical controller and we restrict our problem to modeling and
regulating sampling rate or control task execution rate.

In a RTOS the scheduler runs periodically to order jobs in a priority queue. As such it
also has the capability to nearly instantaneously (ignoring context switch time) modify the
priority and sampling rate of the control task. For this work we assume that the sampling
rate can be regulated any time the control task is not running or in an interrupted state (i.e.
it has completed a cycle and has not started a new one). To apply state feedback we require
a cyber model represented by an ordinary differential equation. This has the added benefit
of providing “memory” or filtering. The cyber model of sampling rate is

ẋc = uc

where xc is the cyber state representing the frequency of the control task
τ1

(
i.e. xc = rτ1 = 1/Tτ1

)
, and uc a forcing term adjusting the rate of change of the sampling

rate. This implies that xc has units 1/s, or Hz, and uc has units 1/s2.

4.3.2 Open-Loop Cyber-Physical System Model

We augment the continous-time physical system with our proposed cyber model forming
the open-loop CPS equationsẋp

ẋc

 =

Ap 0
0 0

 xp

xc

+

Bp 0
0 1

 up

uc

 .
Since the cyber model will also be implemented on a digital computer we can apply the
formula in Equation (4.4) to specify the CPS model as a set of difference equations:xp (k + 1)

xc (k + 1)

 =

Φp (k) 0
0 1

 xp (k)

xc (k)

+

Γp (k) 0
0 Tτ1 (k)

 up (k)

uc (k)

 (4.7)

and note again that xc (k) = rτ1 (k) = 1/Tτ1 (k). Because Tτ1 (k) = 1/xc(k) and Φp (k) and Γp (k)

are functions of xc (as per Equation (4.4)) the system is now nonlinear.
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4.3.3 Cyber System Control Law

To design a control law for the new cyber model we must examine dependencies between
the cyber and physical systems. In the closed-loop system, performance is directly depen-
dent on the execution rate of the control task due to the ZOH nature of the RTOS implemen-
tation. System state, xp, is fed back into the cyber system from which we can compute the
performance metric xp−xp,r where xp,r is the physical state reference trajectory. We want
the cyber system to in turn adjust sampling rate based on the performance of the physical
system.

As a result we design a two-part control law for the cyber system. One part reacts to
off-nominal disturbance conditions in the physical system, and the other drives the task
execution rate to a reference rate. We introduce two versions of the cyber control law for
comparison in our results. In Version One, uc,1 (k), we allow the control input to be scaled
by the sampling period as indicated in Equation (4.7):

uc,1 (k) = Kcp (k)
(
xp (k)−xp,r

)
− kc

(
xc (k)− xc,r

)
(4.8)

where xc,r is the cyber system reference trajectory (i.e. a desired sampling rate for τ1), and
kc is a gain. For uc,1, Kcp has units necessary to cancel physical state units

Kcp =
[
1/s2 1/s2 1/s2 1/s 1/s 1/s 1/N·m·s3 1/N·m·s3 1/N·m·s3

]
and kc has units 1/s. In Version Two, uc,2 (k), we eliminate the scaling by Tτ1 (k) and the
nonlinearity in the cyber system so that the cyber controller is unaffected by the current
sampling rate. Therefore

uc,2 (k) =
1

Tτ1 (k)

(
Kcp (k)

(
xp (k)−xp,r

)
− kc

(
xc (k)− xc,r

))
. (4.9)

For uc,2 Kcp and kc now have units

Kcp =
[
1/s 1/s 1/s dim dim dim 1/N·m·s2 1/N·m·s2 1/N·m·s2

]
kc = dim

where dim indicates the quantity is dimensionless. Note that if there is nonzero error in
the physical system the cyber system should increase the sampling rate. Therefore, Kcp is
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specified as a gain vector with

Kcp (k) =

kcp,i if xp,i (k)− xp,i,r ≥ 0

−kcp,i if xp,i (k)− xp,i,r < 0
∀kcp,i ∈Kcp, xp,i ∈ xp, xp,i,r ∈ xp,r.

This control law allows the cyber system to adjust its resources in accordance with the
performance of the physical system as it simultaneously targets a reference execution rate.
In practice it is likely a trajectory planner would update reference trajectories for both the
physical and cyber system to meet mission and performance requirements.

4.3.4 Closed-Loop CPS Model

Now that we have discrete controllers for both the physical and cyber system we can write
the closed-loop equations of the full CPS model using Equations (4.7), (4.8), and (4.9).
Since we are regulating xp to zero, xp,r = 0 and for uc,1 we havexp (k + 1)

xc (k + 1)

 =

Φp (k)−Γp (k)Kp (k) 0
Tτ1 (k)Kcp 1−Tτ1 (k)kc

 xp (k)

xc (k)

+

 0
Tτ1 (k)kcxc,r

 .
For uc,2 we havexp (k + 1)

xc (k + 1)

 =

Φp (k)−Γp (k)Kp (k) 0
Kcp 1− kc

 xp (k)

xc (k)

+

 0
kcxc,r

 .
4.4 CPS Metrics

We demonstrate the effectiveness of our proposed methodology by analyzing and compar-
ing simulation results against fixed-rate optimal control strategies. Measuring holistic CPS
performance requires the development of additional metrics to evaluate more than tradi-
tional control performance indicators (e.g. rise time, settling time, etc.). In this section we
describe our CPS evaluation metrics.

4.4.1 Performance Metrics

To appropriately compare results we utilize three metrics that collectively account for both
physical and cyber performance. Each metric is described below.
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4.4.1.1 Physical State Metric

To gauge the effectiveness of the control and rate of the control task on the physical system
we examine the time-average squared error of physical state xp. Let mp represent the
metric for physical state, and let subscript j indicate the jth entry in the state vector. Also let
xp j,r be the reference trajectory for the jth physical state. We then compute time-averaged
physical state error as

mp =


1
tf

∫ tf
0

(
xp1 (t)− xp1,r (t)

)2
dt

...
1
tf

∫ tf
0

(
xp j (t)− xp j,r (t)

)2
dt

 (4.10)

where tf is the final time. This metric provides an assessment of how well CubeSat attitude
and angular velocities are being regulated by the real-time control system. To facilitate
comparison we also make use of a normalized physical state metric wherein we leverage
the inherent discrete nature of the simulation to normalize the metric for each physical state

mp,n =


1

tf x2
p1,max

∑n
i=1 ti

(
xp1,i− xp1,r

)2

...
1

tf x2
p j,max

∑n
i=1 ti

(
xp j,i− xp j,r

)2

 (4.11)

where j is the jth state and there are n discrete samples of the state.

4.4.1.2 Cyber Rate Metric

To measure computing system utilization/performance we focus attention on our regulation
of the sampling rate. Although in a RTS many tasks would consume resources we assume
that utilization of the control task is proportional to utilization of the total RTS. Lower
utilization could result in reduced energy requirements for the RTS (e.g. with a voltage
scaling CPU) or the liberation of resources that can be devoted to other tasks. For this
metric we select a maximum sampling rate, xc,max = rτ1,max, under which the complete
RTS remains schedulable (i.e. can meet all hard real-time task deadlines). We define our
metric to be the time-averaged percent of maximum sampling rate:

mc =
1

tf xc,max

n∑
i=1

tixc,i (4.12)

where n is the number of time slices from time t ∈ [0, tf]. This metric was chosen over
the traditional RTS utilization definition (as described in Section 4.5) because it allows
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us to easily compare and analyze different controller designs independent of the RTOS
implementation.

4.4.1.3 Control Effort Metric

An important measure of system performance is how much physical control effort is ex-
pended to meet performance requirements. This effort, a function of both sampling rate
and control gain, requires energy expenditure for the CPS and therefore minimizing con-
trol effort can improve endurance and mission performance. An important consideration in
the design of an energy-efficient control law is the sampling rate. Generally as sampling
rate increases higher gain values can be tolerated while the system remains stable, while
slower sampling rates require lower gains [68].

We are interested in minimizing control effort while maintaining closed-loop stability
and trajectory tracking, captured in physical metric (4.11). It is common in optimal control
to minimize uTu as in the DLQR cost function in Equation (4.5). Because energy expendi-
ture is generally a monotonically increasing function of control, minimizing control effort
reduces energy expenditure. Our metric for control effort in this context only includes ef-
fort for the physical system, up, given that we don’t throttle CPU clock rate or turn cores
on/off. Taking the DLQR cost term as a cue and due to the discrete nature of the control
input caused by the ZOH, we define a control effort metric as the discrete time squared
average of physical control effort

mup =


1
tf

∑n
i=1 tiu2

p1,i
...

1
tf

∑n
i=1 tiu2

p j,i

 (4.13)

where j is the jth control input.

4.5 CubeSat Case Study

To develop a realistic case study of attitude control of a CubeSat we summarize the Cube-
Sat literature with focus on simulating responses to disturbances. We then describe our
CubeSat cyber model.
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4.5.1 Physical Characteristics and Setup

Low-earth orbit presents a challenging environment due to the potential for plasma-induced
and magnetic disturbances, high velocity debris and meteoroids, atmospheric drag, radi-
ation, solar wind, and dust [128–132]. All are sources of disturbance on attitude and
orbit of a CubeSat. Generally a CubeSat has three reasons to adjust its attitude: scien-
tific data acquisition, communication with a ground station, or to maximize solar energy
harvesting. Pointing activities must be planned and carried out within narrow time con-
straints and it is critical that controllers be capable of rejecting disturbances to achieve
these goals. As discussed in Section 2.3.4.6, optimal control input and sampling pattern
algorithms [13,100] have been proposed to schedule controller sampling rate and conserve
computing resources; however, these algorithms do not attempt to deal with disturbances
which are more effectively handled by feedback control [13]. In this chapter we have pro-
posed such a CPS feedback control formulation and therefore focus on highlighting its
ability to deal with disturbances.

Our tests generate system responses to initial conditions representing an impulsive dis-
turbance due to an impact or other transient event that perturbs the attitude and correspond-
ing angular rates of the CubeSat. The controller objective is then to restore both attitude
and angular rates to a zero reference state. The initial conditions on the physical state
representing this disturbance are defined:

xp0 =
[
0.1 0.5 0.2 0.02 0.01 0.005 0 0 0

]
where states (1, 2, 3) are roll, pitch, and yaw in the LVLH reference frame, states (4, 5, 6)
are elements of the angular velocity vector, and states (7, 8, 9) represent angular momentum
of each of three reaction microwheels used in control. Because we are regulating states to
zero the reference trajectory is

xp,r =
[
0 0 0 0 0 0 0 0 0

]
.

In a 500km orbit altitude ( [133, 134]) above Earth’s surface our simulated CubeSat
spends roughly 62% of its orbit (59 min) in sunlight during which energy is collected via
solar panels, producing about 7W of power, and stored in a 7.4V, 4.4Ah LiOn battery [135,
136]. While it is possible to store energy in the microwheels ( [137, 138]) we assume
they are used strictly for attitude control and that energy for control of the microwheels
is only delivered from the battery system [136]. We also assume that the solar energy
harvesting is sufficient during each orbital period to replenish the energy expended during
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eclipse. We use one reaction wheel for each axis of rotation which has characteristics
(similar to [139–141]) shown in Table 4.2.

Table 4.2: Reaction Microwheel Characteristics

CHARACTERISTIC VALUE

Max Torque 30mN ·m
Supply Power 7.0W@6500RPM, 5mN ·m
Wheel Inertia 0.001766969kg ·m2

Mass 500g

4.5.2 Cyber Characteristics and Setup

Current trajectories of CubeSat development suggest that the time will come when the
majority of computationally-intense tasks onboard a CubeSat will be those associated with
autonomous decision making and science data handling [142–144]. However, at present,
guidance, navigation, and control (GNC) tasks still consume a nontrivial portion of cyber
resources. With this in mind we posit that significant savings can be realized by adjusting
GNC tasks in accordance with pointing performance.

We assume the computing platform onboard the CubeSat is running a RTOS capable
of dynamically adjusting the period of the control task as long as the control task isn’t
running or in an interrupted state. As discussed in Section 4.2.2 we set hard limits on the
cyber rate based on the maximum schedulability for the control task and the performance
requirements of the CubeSat. For our particular system we choose

xc,max = rτ1,max = 10Hz

xc,min = rτ1,min = 0.1Hz.

Such hard limits are similar to saturation limits on actuators and are treated as such. RTS
utilization is defined as

URTS =

n∑
i=1

WCET(τi)r (τi)

where WCET(τi) is the worst-case execution time of τi, r (τi) is the rate of task τi, and
n is the number of tasks [58]. In popular preemptive scheduling paradigms such as Rate-
Monotonic (RMS) or Earliest Deadline First (EDF) scheduling, URTS ≤ 1 implies a valid
schedule such that all deadlines will be met [58]. Recalling that τ1 is the attitude control
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task, we assume that without τ1, URTS = 0.70 and that WCET(τ1) = 0.03s. Therefore

URTS
(
xc,max Hz

)
= URTS + 0.03xc,max = 1

URTS
(
xc,min Hz

)
= URTS + 0.03xc,min = 0.703

which implies a significant reduction in cyber resource utilization when we reduce the
sampling rate. The selection of the cyber reference rate could be based on physical system
characteristics such as the Nyquist rate, disturbance characteristics, harmonics, exponen-
tials as well as cyber characteristics such as maximum schedulable rate, QoS tradeoffs,
etc. We assume that a higher level trajectory planner (such as that described in Chapter 5)
would provide the cyber reference rate. In this work through testing it was determined that

xc0 = 0.3Hz

xc,r = 0.3Hz

clearly illustrate the differences in controller behavior and demonstrate good cyber resource
reclamation. With the 0.3Hz reference rate, URTS (0.3Hz) = 0.709, resulting in a 29.1%
cyber resource utilization savings relative to the maximum rate.

Kcp was determined by manual tuning as

Kcp =
[
1 1 1 1 1 1 0 0 0

]
.

Similarly, the control gain of the cyber system was tuned to

kc = 0.5.

Our simulation is executed over a 20 second interval which is sufficient in our case to
observe disturbance rejection behavior.

4.6 CubeSat CPS Simulation Results

We illustrate the utility of our variable-rate control laws by comparing them with fixed-
rate DLQR controllers and with each other in our CubeSat case study. We first offer some
specifics of our MATLAB simulation. In the results we use as baseline designs DLQR
controllers designed at fixed sampling rates rτ1,max, rτ1,min, and rτ1 = 1Hz. We first compare
time response plots of GSDLQR control against a fixed 1Hz DLQR control design. We
then compare time response plots of FPRB control against GSDLQR control and fixed 1Hz
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DLQR control. Finally, to compare all designs we use the evaluation metrics presented in
Section (4.4.1) and tabulate the results.

4.6.1 Simulation

MATLAB offers two primary methods of control system simulation, continuous and dis-
crete. In the case of continuous time systems, ordinary differential equation solvers such
as ode45 can be used to simulate linear and nonlinear system response to initial values.
Specifically aimed at control design for both discrete and continuous linear systems lsim
provides the system response to a user defined control input. All of MATLAB’s simulation
techniques assume either a purely continuous system or a discrete system executed at a sin-
gle sampling rate. Our proposed technique, however, requires a mechanism for simulating
a system with a time-varying sampling rate.

To manage this difficulty we use a fourth-order Runge-Kutta variable time step ordi-
nary differential equations solver, namely MATLAB’s ode45, to solve each time-varying
discrete step of the simulation. At each discrete step (integration cycle) of the simulation
the “initial condition” is the final state from the previous integration cycle, and the control
input is held constant during that cycle. As the control loop execution rate, xc, changes ac-
cording to the cyber system dynamics the length of an integration cycle changes. Because
MATLAB’s ode45 is a one-step solver, we can piece together the output from multiple
executions of ode45 based only upon the “initial conditions,” xp,prev, as shown in Algo-
rithm 4.1. We’ve chosen a highly-accurate integrator to enable us to look into the true
system response including “ripple” or transients between discrete (sample-and-hold) cy-
cles [60, 145].

4.6.2 GSDLQR CPS Designs

GSDLQR control was applied to the CubeSat CPS as discussed in Section 4.2.2.1 and
simulated with initial state disturbance-induced error specified in Section4.5. In Figure 4.3
we show the response of states θp,1 (roll angle), and ωp,1 (angular velocity in roll direction),
the physical control for roll, up,1, and the cyber state xc. In Figure 4.3a cyber controller uc,1

(Equation (4.8)) is used and in Figure 4.3b uc,2 (Equation (4.9)) is used.3

Recall that the state xc is the sampling rate of the system for the next time step. Because
xc0 = 0.3Hz the system does nothing for Tτ1 (0) = 3.3̄ s while waiting for the next update
to observe the error in the physical states. At time t = 3.3̄ s the controller executes and
computes a new sampling rate that is higher due to the large physical state error. As xp

3Comprehensive plots for all CubeSat simulations can be found in Appendix B
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Algorithm 4.1 Algorithm for Simulation of CPS
Initialize variables
while t < tfinal do
% Propagate the cyber system
xc = xc + Tτ1uc
tspan = [t, t + 1/xc]

% Propagate the physical system
Kp = computeKp

(
t,xp,prev, xc

)
% either Gain

scheduled or FPRB control
[t,x_p] = ode45

(
@CPSmodel () ,tspan,xp,prev

)
xp,prev = x_p(end,:)

% Collect the states and inputs
end while

approaches zero, the reference value, the cyber controller begins to push the sampling rate
down to xc,r.

There are minor differences between using cyber controllers uc,1 and uc,2 as seen in
Figure 4.3. In the equations for uc (Equations (4.8) and (4.9)) there is balance between
the errors in the physical states forcing xc high and the error in the cyber state forcing it
low. That balance is scaled by Tτ1 = 1/xc as seen in Equation (4.7). Hence when xc is
high, uc is less forceful thereby attenuating that balance, and when xc is low (e.g. < 1) that
balance is magnified. This effect is seen in the more gradual slopes of xc both ramping up
and ramping down in Figure 4.3b which has the added benefit of resulting in lower control
effort and cyber resource utilization while providing similar physical system performance.

4.6.3 FPRB CPS Designs

We now select uc,1 as the controller for the cyber system and show comparisons of our
FPRB design from Section 4.2.2.2 with the the GSDLQR controller also using uc,1. In
Figure 4.4 we show time response plots for the same states and control

(
θ1, ω1, up,1, xc

)
. In

Figure 4.4a we show FPRB control using uc,1 and in Figure 4.4b GSDLQR control using
uc,1. We then show the fixed-rate DLQR at 1Hz in Subfigure 4.4c for reference.

Consider the physical control effort
(
up,1

)
applied by FPRB and GSDLQR control. De-

spite having nearly identical physical and cyber state trajectories the control effort for GS-
DLQR spikes very low initially, and only subsequently follows a trajectory similar to that of
FPRB. The FPRB controllers generally exert much less control effort on the physical sys-
tem for nearly identical responses in physical and cyber states than the DLQR controllers,
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(a) GSDLQR using uc,1 (b) GSDLQR using uc,2 (c) Traditional DLQR Control at
1Hz

Figure 4.3: Gain Scheduled DLQR CPS Comparisons

suggesting FPRB out-performs GSDLQR and fixed-rate (1Hz) DLQR control.

4.6.4 Design Comparisons

In this section the metrics presented in Section 4.4.1 are used to evaluate the effective-
ness of all presented controller designs. We investigate three baseline DLQR controllers at
rτ1,max, rτ1 = 1Hz, and rτ1,min and simulate them in the traditional manner using the cho-
sen sampling rate. The first baseline design, rτ1,max, represents a system design wherein
CubeSat pointing performance is most valued and real-time system bandwidth is plenti-
ful. The design assuming rτ1,min represents the opposite extreme where cyber resources are
scarce and more highly valued than attitude pointing accuracy. This may be appropriate
where cyber resources are prioritized to favor tasks such as communication, or science data
collection. Finally, we choose rτ1 = 1Hz as a compromise between these two extremes.

In Table 4.3 we show a comparison of the different designs using our metrics. Table 4.3
reveals some important tradeoffs between control strategies. The DLQR fixed-rate con-
troller at 1Hz controls the physical states very well while using reasonable physical and
cyber control effort. GSDLQR controllers offer a significant savings in cyber effort but re-
sult in higher error in physical state trajectories and a very large amount of physical control
effort cost (see column 4) even exceeding the fixed rate 10Hz controller.

The FPRB controllers show promise in balancing cyber and physical cost metrics via
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(a) FPRB using uc,1 (b) GSDLQR using uc,1 (c) Traditional DLQR Control at
1Hz

Figure 4.4: FPRB CPS Comparisons

online rather than a priori specification. On the cyber side, FPRB CPS using uc,2 (i.e.
the last row in Table 4.3), when compared with the maximum fixed-rate 10Hz controller,
achieves slightly poorer physical control, most of the error of which occurs in the transient
portion during time t =

[
0, 3.33̄

]
before the controller responds. However, at that expense

it achieves significantly lower cyber resource utilization. In fact, RTS utilization goes from
URTS (10Hz) = 1 to URTS (0.613Hz) = 0.718, a 28.2% savings in RTS cyber resource uti-
lization.

On the physical side, as seen in column four of Table 4.3, the FPRB controllers use
significantly less control effort over our 20s simulation than all but the lowest effort con-
troller (DLQR@0.1Hz). If we assume a constant power bias to operate the electronics, the
mechanical power of each wheel is

Pi = Ωiup,i

where Ωi is the angular speed of the ith wheel [146]. The total mechanical power for all
wheels is [146]

Ptotal = |P1|+ |P2|+ |P3| .

FPRB CPS using uc,1 (i.e. the sixth row in Table 4.3) gives us 12.2% savings in average
total power, and a 44.1% savings in peak power compared with the fixed-rate DLQR 10Hz
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Table 4.3: Comparison of CPS Control Designs

DESIGN
‖mp,n‖
‖mp,n‖min

‖mp‖∞
‖mp‖∞,min

‖mup‖
‖mup‖min

mc

DLQR@10Hz 1.0000 1.0000 71.9176 1.0000
DLQR@1Hz 1.4253 1.9743 58.0076 0.1000
DLQR@0.1Hz 7.9076 18.1157 1.0000 0.0100
GSDLQR CPS using uc,1 2.4131 4.0907 78.8988 0.0786
GSDLQR CPS using uc,2 2.4563 4.1937 67.2715 0.0599
FPRB CPS using uc,1 2.7085 4.5546 32.7810 0.0824
FPRB CPS using uc,2 2.5723 4.3232 47.3717 0.0613

controller.4

4.7 Conclusions

Research in cyber-physical systems (CPS) demands creative approaches to develop new
models and abstractions to couple interacting cyber and physical control strategies. To
this end we propose an abstraction to couple CPS control that builds upon linear state-
space feedback control. The physical dynamics state-space model is augmented with an
abstracted model of the cyber system, and a control formulation is proposed to dynam-
ically regulate cyber resources based on physical state error. We have applied our co-
regulation approach to attitude control of a small satellite system (CubeSat) and conducted
a disturbance-rejection case study based on that platform.

Our CPS controller enables the cyber system, specifically the attitude controller, to
operate at a lower sampling rate than might otherwise be chosen based on a single worst-
case condition yet still retaining robustness to disturbances. This strategy can free cyber
resources thereby allowing the cyber system to reallocate resources to other tasks, or to
conserve energy by reducing processor clock speed or turning off cores. We have also
devised baseline GSDLQR and FPRB control law formulations, proposed evaluation met-
rics, and investigated the performance of the controllers in simulation. Results indicate that
FPRB formulations can indeed dynamically balance cyber and physical resource use via
our co-regulation scheme.

While this representation makes progress toward a holistic CPS representation for co-
regulation, there are important issues requiring further investigation. In this work we did
not provide a formal optimization scheme to determine the best values for the gains Kcp or

4Comprehensive plots for all CubeSat simulations can be found in Appendix B
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kc. Future work is also needed to explore alternative performance metrics, domain models,
and disturbances to provide additional insight into the tradeoffs between GSDLQR, FPRB,
and fixed-rate digital control. Additionally, a critical component for future use of this
proposed system will be establishing formal stability guarantees for the CPS. Finally, our
results and proposed system would be strengthened by experimental verification in a real
CubeSat or similarly complex robotic platform.
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CHAPTER 5

Cyber-Physical Optimization for Unmanned
Aircraft Systems

CPS co-design requires us to consider computation, communication, and control at all
layers of system integration. In Chapters 3 and 4 we looked at computational control co-
design at the feedback control level. We now move to a higher level of reasoning - planning
- and propose a new co-optimization scheme of computational and physical resources to
maximize mission success for an Unmanned Aircraft System (UAS).

In this chapter, using UAS pipeline inspection as an example, a mission-appropriate
analytical cost function is developed to provide a minimal-cost trajectory over the mission.
We simplify the cost function by allowing design variables to remain static throughout the
mission, consistent with a steady flight scenario, thereby reducing the complexity of the
cost function and optimization process. We then examine Pareto fronts for combinations of
cost function objectives to demonstrate the important tradeoffs between physical and cyber
resources and to give insight into the interdependence between them. We use a numerical
solver to find physical-subsystem optimal, cyber-subsystem optimal, and holistic-system
optimal solutions and compare them with solutions selected from Pareto front analysis.
We demonstrate that only via a total Cyber-Physical System optimization can one achieve
efficiency throughout the total system.

For our case study, we adopt a solar-supplemented powered-glider small UAS currently
flown by a University of Michigan student team (SolarDrones) for which steady flight per-
formance parameters are available. The small UAS payload is a downward-facing video
camera that can provide frames at a variable rate. The simulated avionics allows direct
regulation of computational power requirements in a manner that trades energy use with
camera data acquisition bandwidth. A one-dimensional pipeline inspection case study is
investigated, focusing attention on physical and computational energy use tradeoffs with-
out the additional complexity of optimizing an accelerated path through three-dimensional
space.
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5.1 Cost Functions

We seek optimization over both physical and cyber characteristics of the UAS and its mis-
sion to more holistically optimize system performance. This means developing cost terms
for task performance and energy required for cyber activities as well as for control actu-
ation effort and propulsion. Moreover, we want to maximize efficiency of our designated
mission which will include goals for both the physical and cyber components of the UAS.
These mission-dependent goals may include maximizing coverage area or amount of in-
formation acquired for a given area, along with collection, processing and transmission of
data.

In this work we develop cost terms representing both mission goals and efficiency
for a UAS whose mission is surveillance of a straight section of pipeline with a small,
lightweight downward-facing gimballed camera. We focus on movement in one dimension
only and assume flight dynamics are governed by steady flight assumptions. The metrics
proposed in this chapter complement the metrics in Section 4.4.1 but are specific to our
proposed UAS mission.

Our objective for the physical system will be to determine the optimal velocity (airspeed
in one dimension) of the UAS for the mission. Owing to the assumptions of the mission and
steady flight we rely on a gimbal to consistently adjust the camera to point directly toward
the ground (optical axis perpendicular to ground plane) which compensates for changes in
pitch of the aircraft needed to accommodate various speeds of flight.

We model a single real-time task to accomplish the primary goals of the mission related
to pipeline surveillance. This task performs image acquisition, processing, and communi-
cation/storage of image. Our design objective for the cyber system will be to determine the
optimal execution rate of this task. While there are other system-critical tasks on the cyber
system including the control task, we assume these require a fixed amount of resources.
We instead focus on optimizing over the remaining non-critical bandwidth available in the
cyber system.

We divide the cost terms into physical and cyber goals for clarity, and emphasize the
assimilation of each into a system-wide cost function. “Physical” in the context of a UAS
includes items related to flight, for example, the airframe, propulsion system, and control
surfaces. “Cyber” relates to items required for data processing, communication, image
collection, computation of control inputs, etc. In this work we endeavor to focus clearly on
the idea of combining physical and cyber cost terms into a holistic cyber-physical system
cost function.
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5.1.1 Physical System Terms

Small UAS typically have modest energy reserves, most often consisting of small battery
packs or a small fuel tank. In non-energy-harvesting applications under normal conditions
such energy supplies can provide a small fixed-wing UAS between thirty minutes to a few
hours of flight time. These flight times can be reduced when cyber-intensive activities such
as image processing and communication are involved. Minimizing energy consumption
over the mission is an important consideration in the design and control of the UAS.

5.1.1.1 Physical System Energy

In most aircraft applications, propulsion will consume the majority of the energy required
for flight, surpassing actuation effort required by control surfaces. For simplicity, in this
work we assume propulsion is the only drain on energy supplies by the physical system,
that net energy is always a loss, and we model steady flight in which power used by control
surface servos would be constant or near-constant. We therefore seek to minimize energy
of the physical system over the entire mission

E =

∫ T

0
P (v (t))dt (5.1)

where T is the duration of the mission and P (v (t)) is a traditional model for power as a
function of velocity [147]

P (v (t)) =
1
2

S CD0ρv (t)3 +
2KW2

ρv (t)S
. (5.2)

In steady level flight, power of the aircraft, and therefore its velocity, is manipulated by a
throttle setting that maps nonlinearly to power as

P = ηδt

(
ρ

ρs

)m

Ps
max (5.3)

where Ps
max is the maximum power of the engine/motor at sea level, m> 0 is a characteristic

of the engine/motor, 0 ≤ η ≤ 1 is a propeller efficiency factor, ρs is the air density at sea
level, and 0 ≤ δt ≤ 1 is the throttle setting [147]. The power curve for our UAS (described
in Section 5.2.4.1 on page 83) can be seen in Figure 5.1.
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Figure 5.1: Power Curve for SolarDrones UAS

5.1.1.2 Time

In addition to minimizing energy, ideally we would like to efficiently accomplish our mis-
sion by minimizing the time required to complete it. Such minimum-time optimization cost
terms appear frequently in traditional optimization schemes and are given by

T =

∫ t1

t0
dt (5.4)

where [t0, t1] =the total mission surveillance time.

5.1.1.3 Cost Function for Physical System

These two competing objectives, Ep and T , comprise the cost function for the overall phys-
ical system

Jp = βp1

∫ T

0
P (v (t))dt +βp2T (5.5)

where βp1, βp2 are weighting terms. Optimizing Jp alone is what a traditional trajectory or
path planner might do if no costs are attributed to the cyber system. While some UAS re-
searchers have added tracking information, target acquisition, and other mission objectives
to their control and optimization algorithms [148, 149], to our knowledge this has histor-
ically been done from the physical perspective without attempting to optimize over cyber
system performance and requirements.
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5.1.2 Cyber System Terms

In a modern fully-autonomous UAS the cyber system becomes the gateway for virtually all
aspects of the system. Control actuation inputs, data collection, communication, throttle
setting, path and mission planning are potentially all being done simultaneously on-board.
While real-time system researchers have advanced scheduling techniques for prioritizing
each of these critical tasks, the correlation between physical performance, mission objec-
tives, and computational efficiency has remained largely unexplored [16].

In many cyber-physical systems (CPS) task execution rates are selected a priori based
on requirements of the system. For example, the sampling rate of the control task may be
selected based on digital control analysis thereby ensuring robustness and stability margins.
While it is unreasonable to interfere with such high priority tasks, lower priority tasks may
still have some flexibility in task execution rate allowing us to optimize over mission and
cyber parameters without interfering with mission critical tasks.

In our previous work we explored the tradeoff of mission critical task execution rates
and physical performance [26, 115]. For this work we assume that hard real-time feedback
control tasks are appropriately scheduled and executed while we focus on the rest of the
available cyber resources for soft real-time tasks. More specifically, we assume that we can
not only conserve energy by optimally selecting execution rates of lower priority tasks, but
we can also increase mission effectiveness by developing costs that relate task execution
rates to mission efficiency.

5.1.2.1 Cyber Utilization

In real-time system scheduling theory online schedules can be created by examining rel-
ative deadlines of independent periodic tasks as in the earliest deadline first scheduling
algorithm. Such optimal scheduling algorithms are dynamic in that they can assign task
priority as jobs are released to the operating system for scheduling [58]. They therefore
have the ability to respond to changing deadlines and periodic rates.

In this work we assume that at least part of the cyber utilization is fixed based on se-
lected and scheduled periodicity of mission critical tasks, consistent with current practices
in the Aerospace community. We then focus on maximizing use of the remaining resources.
The innovation of this work relative to applications studied by others (e.g. CASPER for
EO-1 [102]) is that we purposely co-optimize the speed of the aircraft and the speed of
payload (image) data acquisition/processing. Because aircraft motion changes what is ob-
served in the acquired image sequence, and because energy is consumed by flight control
and payload systems, this co-optimization is essential for a more “globally-optimal” solu-
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tion than is possible when separately optimizing cyber and physical resource usage.
In this initial co-optimization work, we assume a single task, τ2, is repeatedly executed

to achieve the mission goal of capturing and processing images of a pipeline to be inspected.
The task runs at execution rate rτ2 (k) Hz and has a maximum execution rate of rτ2,max Hz
stemming from restrictions based on available cyber resources and the worst case execution
time (WCET) of task τ2. That is, we ensure schedulability of the task based on rτ2,max but
allow that rate to slow down resulting in freed cyber resources to be devoted to increased
service of other processing tasks or to conserving energy through fewer memory cycles,
reduced processor clock rate when possible, and/or shutdown of some system cores when
possible. Let k represent the execution cycle of τ2, incrementing each time task τ2 is run.
The execution rate of τ2 at cycle k is then rτ2 (k). Figure 5.2 demonstrates an example
processor utilization timeline depicting rτ2 (k). We then introduce the cyber utilization term

Figure 5.2: Processor Utilization Timeline for Task τ

as the weighted average of the ratio of task rate to max task rate

Uτ2 =
1

Trτ2,max

∑
k

tkrτ2 (k) . (5.6)

Note that the rate of execution cannot change during a particular execution cycle of that
task. We assume that cyber utilization is proportional to energy consumed by the cyber
system, and as a result, minimizing it is the cyber equivalent to the energy minimization
term of the physical system in Equation (5.1). This metric is identical to the metric used to
quantify RTS performance in our co-regulation work in Equation (4.12).

5.1.2.2 Mission Information

We seek to relate mission efficiency to cyber and physical parameters. For our specified
mission, we assume that detailed imagery of the pipeline is critical for detecting aberra-
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tions and problems. Collecting an appropriate amount of imagery, and more specifically
appropriate imagery of any pipeline cracks, is critical for detection of problems. We ap-
proach this goal from an information theory viewpoint and desire to create a cost term in
that context.

Information theory was originally designed to be applied to source coding where the
limits of data compression are lower bounded by the entropy of the source code [150,151].
However, it has since been applied to numerous fields and in numerous creative ways in-
cluding image processing, object detection, and surveillance. In image processing and
computer vision, mutual information can be used to provide image registration in medical
imaging [152], while maximum entropy is regularly used in image reconstruction particu-
larly in astronomy [153]. In the context of UAS surveillance systems information theory
has been used for dim target detection in sense-and-avoid applications [154].

The most common quantity of information is entropy of a random variable. Let X be
an ensemble {x,Ax,Px} where x are the outcomes, Ax is the domain or sample space, and
Px the set of outcome probabilities. Then the entropy for a discrete ensemble is defined as

H (X) = −
∑
x∈Ax

p (x) log2 p (x) . (5.7)

Intuitively, entropy measures the average unpredictability of a random variable.
Information theory is used in this work to develop an appropriate mission information

cost term. To ensure a well-behaved total system cost function each individual cost function
must be continuous, convex, and non-negative such that, when minimized, greater benefits
are realized. This means we need a metric that, when minimized, produces increased in-
formation about the pipeline being imaged.

For surveillance missions in which detection of aberrations or events are important,
multiple observations of any single point in the area of interest are valuable. Acquiring
multiple images of the same ground points has the advantage of providing additional view-
points and redundant data, and may allow for super-resolved imagery thereby increasing
our ability to detect pipeline anomalies [155]. Keeping this in mind, we propose a cost
term based on overlap between successive images where increasing overlap is rewarded.
Increased overlap between images is equivalent to lower entropy as the scene in each suc-
cessive image changes little. Additionally, if there is underlap each successive image is
completely new information about the pipeline and therefore provides the maximum en-
tropy. From this perspective, contrary to traditional applications of information theory, we
seek to minimize entropy as this strategy provides the most redundant information.

From an information theory perspective we view information cost as an exponential dis-
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tribution of redundancy of acquired information of the scene or overflown region (pipeline).
In this sense, minimizing the entropy has the effect of maximizing the total information ac-
quired. This term has the effect of requiring a combination of slow aircraft speed and/or
increased task frequency and depends on both velocity of the aircraft, v (t), and rate of
image acquisition and processing rτ2 (k)

H =
∑

k

∫
tk

e−αΩ(t,k)dt. (5.8)

Let α be a tuning parameter. The overlap between successive image footprints is then

Figure 5.3: Entropy Cost H

Ω (t,k) =
1
A

A−w
∫ t

t−Tτ2 (k)
v (γ)dγ

 (5.9)

where A is the total area of an image, w is the width of an image, and Tτ2 (k) = 1/rτ2 (k) is the
period of task τ2. An exponential distribution was used as it provides a rapidly increasing
penalty for flying too fast, and appropriate diminishing returns for flying slowly. For sim-
plicity, we assume that the aircraft flies at approximately the same height above ground for
the duration of the mission, and therefore A and w remain constant. In Figure 5.3 we show
a plot of H to demonstrate how the entropy changes with both cyber rate

(
rτ2

)
and velocity
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(v). The dependence of entropy on cyber rate falls off as a steep exponential, and falls
off more gradually with aircraft velocity. This means we expect our Pareto front analysis
in Section 5.3.1 on page 86 to indicate that lower entropy will be achieved primarily by
increasing cyber rate rather than flying at a slower velocity.

5.1.2.3 Cost Function for Cyber System

The expressions in Equations (5.6) and (5.8) comprise the cost function for the cyber system

Jc =
βc1

Trτ2,max

∑
k

tkrτ2 (k) +βc2

∑
k

∫
tk

e−αΩ(t,k)dt (5.10)

where we have weighting terms βc1, and βc2. Such a cost function might be used if we were
only interested in trading cyber resource utilization cost against reward for accomplishing
mission objectives, which in the pipeline inspection case study maps to minimizing entropy
(increasing information redundancy) that could be obtained through overlapping image data
acquisition and processing.

5.1.3 CPS Cost Function

We combine Jp and Jc to obtain a holistic CPS cost function

J = βp1

∫ T

0
P (v (t))dt +βp2T +

βc1

Trτ2,max

∑
k

tkrτ2 (k) +βc2

∑
k

∫
tk

e−αΩ(t,k)dt (5.11)

In Section 5.3 on page 85 we select appropriate weighting terms to compare physical-only
optimization, cyber-only optimization, and total system optimization to demonstrate how
increased efficiency and conservation of energy can be achieved by including both physical
and cyber objectives.

5.2 Setup and Solution

Our mission objective is to survey a straight segment of pipeline by flying a small, high
aspect ratio UAS with a downward facing gimballed camera directly overhead. We have
created a simulation in MATLAB to compare various solutions to the optimization problem
posed. We first list the assumptions we’ve made to simplify the problem and demonstrate
why an analytical solution is not possible. We then describe the numerical methods chosen
to solve our optimization problem, and discuss the models we have adopted.
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5.2.1 Assumptions

Equation (5.11) is non-trivial to solve in part due to the need to find the time-varying so-
lution v (t) and rτ2 (k). It is further complicated by the discrete nature of the cyber system
design variable rτ2 (k) making this a mixed discrete-continuous equation. We make the
following assumptions in order to simplify the problem:

1. The segment of pipeline is straight.

2. We assume aircraft performance is consistent with the principles of steady level
flight.

3. The mission takes place close to sea level, with a relatively low altitude allowing use
of standard sea level air density.

4. Altitude remains approximately constant through the mission.

5. Due to assumptions 1 and 2, the on-board gimballed camera always points straight
down toward the ground. Specifically, this implies the optical axis of the camera is
always perpendicular to the ground plane.

6. The scene, ground, and accompanying pipeline are approximately flat compared with
the camera’s height.

7. We restrict our problem to finding the optimal static v and rτ2 that minimize the cost
of the mission assuming v (t) and rτ2 (k) remain constant throughout.

An interesting addition to this work to be made in the future will be to model certain places
on the pipeline as “high interest,” either a priori or through real-time image processing,
and therefore solve for the optimal trajectory with dynamically changing velocity and task
execution rate.

5.2.2 Simplified Cost Function

Let rτ2,max be the WCET of task τ2, and D be the (constant) total straight-line distance of
the entire mission. Based on the assumptions made and knowing the total distance, D, of
the mission we can rewrite the overlap term, Ω (t,k), as

Ω
(
v,rτ2

)
= 1−

wv
rτ2 A
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where w and A denote the constant width and area of an image footprint. Because we
limit our problem to finding the optimal static v and rτ2 , and owing to the fixed distance of
the mission, we can replace the integrals in Equation (5.11) with the total corresponding
quantities as a function of v and rτ2 . This yields

J
(
v,rτ2

)
= βp1

DP (v)
v

+βp2
D
v

+βc1
rτ2

rτ2,max
+βc2De−αΩ

(
v,rτ2

)
. (5.12)

In Figure 5.4 is a plot of J
(
v,rτ2

)
in Equation (5.12). We note the convex shape and un-

Figure 5.4: J (v,rτ)

constrained nature of the minimum, implying we should obtain a robust solution with an
appropriate numerical optimization method.

A difficulty in any optimization scheme is the correct selection of weights for each cost
metric. To equalize the contribution from each term, we normalize each thereby giving us
more intuition later on as we choose our weighting terms βp1, βp2, βc1, and βc2. Because
we have constrained our problem to realistic parameters for velocity, v, and mission task
rate, rτ2 , we can compute max {E} and max {T }, occurring at the slowest velocity (vmin),
and max {H} occurring under conditions giving rise to lowest amount of overlap between
images

(
vmax,rτ2,min

)
. Combining these we obtain a new normalized cost function
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J
(
v,rτ2

)
= βp1

DP (v)
vmax {E}

+βp2
D

vmax {T }
+βc1

rτ2

rτ2,max
+βc2

De−αΩ
(
v,rτ2

)
max {H}

. (5.13)

After substitutions and some algebra we can rewrite Equation (5.13) as

J
(
v,rτ2

)
= βp1γ1v2 +

βp1γ2

v2 +
βp2vmin

v
+
βc1rτ2

rτ2,max
+βc2γ3e

wv
rτ2 A (5.14)

where

γ1 =
vminS CD0ρ

2P (vmin)
(5.15a)

γ2 =
2vminKW2

ρS P (vmin)
(5.15b)

γ3 =
e−α

e−αΩ
(
vmax,rτ2,min

) . (5.15c)

5.2.3 Analytical Solution and Feasibility

We investigated the possibility of identifying a minimum for Equation (5.14) through an-
alytical computation. Due to the constraints of the flight envelope and of the real-time
computing system, let domain D ⊂ R2 be

D =


 v

rτ2

 ∈ R2

∣∣∣∣∣∣∣
 vmin

rτ2,min

 ≤  v

rτ2

 ≤  vmax

rτ2,max


 (5.16)

which is a compact set. From the Weierstrass theorem, J
(
v,rτ2

)
in Equation (5.14), has a

global minimizer [156].
In attempting to find an analytical solution we formulate the constrained optimization

problem
Minimize J

(
v,rτ2

)
subject to v ≤ vmax

v ≥ vmin

rτ2 ≤ rτ2,max

rτ2 ≥ rτ2,min

(5.17)

To solve the constrained optimization problem we form the Lagrangian

L
(
v,rτ2 ,λ1...4

)
= J

(
v,rτ2

)
+λ1 (v− vmax) +λ2 (−v + vmin) +λ3

(
r− rτ2,max

)
+λ4

(
−r + rτ2,min

)
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where J
(
v,rτ2

)
is from Equation 5.14 and λ1...4 are Lagrange multipliers. However, in

applying the Karush-Kuhn-Tucker (KKT) necessary conditions to the Lagrangian we en-
counter a transcendental function

∇vL = 2βp1γ1v−
2βp1γ2

v3 −
β2vmin

v2 +
wβc2γ3

rτ2 A
e

wv
rτ2 A +λ1−λ2 (5.18a)

∇rτ2
L =

βc1

rτ2,max
−

wvβc2γ3

Ar2
τ2

e
wv

rτ2 A +λ3−λ4. (5.18b)

We have attempted to solve this set of equations analytically by hand and by using mathe-
matical software solvers and were unable to do so. This requires us to resort to numerical
solutions.

5.2.4 Experimental Models and Setup

5.2.4.1 Aircraft

Table 5.1: UAS Model Parameters

PARAMETER DESCRIPTION VALUE

e0 Oswald Factor 0.95
b Wingspan 3.3m
S Surface Area 1.0m2

m Mass 11.5kg
CD0 Zero-lift Drag 0.04

The SolarDrones student team in the Aerospace Engineering Dept. at the University
of Michigan has designed, built, and tested the solar-supplemented powered glider UAS
Solar Sight illustrated without solar cells in Figure 5.5. In our simulation we presume the
aerodynamic model parameters given in Table 5.1. This model leverages the well known
power/velocity relationship of a single-engine propeller-driven aircraft as was described in
Equation (5.2) [147]. From these model parameters we compute the remaining necessary
parameters for the power equation which are shown in Table 5.2. While the proposed
aircraft is solar-supplemented, the details of optimizing trajectories taking into account
solar-generated power is not considered here. For this work we assume that the aircraft
never generates more power than it can use and hence it is always advantageous to minimize
energy over the mission1.

1In some applications (e.g. CubeSats) it is sometimes necessary to frivolously expend energy through
propulsion, thrust, or other mechanical means to avoid thermal issues associated with excess energy.
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Figure 5.5: SolarSight Solar-powered UAS

Table 5.2: Additional Parameters for Power Equation

PARAMETER DESCRIPTION VALUE

K = 1
πe0AR Aerodynamic Parameter 0.0347

AR = b2

S Aspect Ratio 9.6628
W = gm Weight 112.7N
ρ = ρs Air Density 1.225 kg/m3

5.2.4.2 Camera

Table 5.3: Camera Model Parameters

PARAMETER DESCRIPTION VALUE

f Focal Length 0.0046m
Hdist Horizontal Distance of

Image Plane
0.00361m

Vdist Vertical Distance of Im-
age Plane

0.00272m

For the camera we use a standard pin-hole model consistent with specifications of the
Panasonic GP-CX161/45P/E [157]. The key parameters for this camera are shown in Ta-
ble 5.3. Given the pinhole assumption for simplicity, we do not model lens distortions and
other effects. We also assume that the ground and pipeline are approximately flat compared
to the much larger camera height above the ground. Because we know the camera height
above ground at all times, presumed constant in steady level flight conditions, we can di-
rectly calculate the image footprint on the ground as a function of height above the ground.
This is done by projecting the four corners of the image plane onto the (presumed) flat
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ground forming the image footprint [158, 159]. We can then easily compute overlapping
area between acquired images.

5.2.4.3 Experimental Setup

For the SolarSight aircraft, the stall speed (around 9 m/s) and maximum power output of the
engine/motor determine the bounds of v. For the cyber rate, rτ2 , the lower bound was cho-
sen based primarily on tuning the information cost in Equation 5.8. That is, at rates lower
than 3Hz there was no overlap between images resulting in coverage gaps thus maximum
entropy (H = 1) presumed for the entire mission. The maximum cyber rate was chosen
based on diminishing returns from cyber rates higher than 20Hz. Bounds are therefore

9 m/s ≤ v ≤ 17 m/s

3Hz ≤ rτ2 ≤ 20Hz.

Additionally, via tuning, we chose the parameter α = 4 in Equation (5.13), and chose the
height above ground (from which we are able to derive Ai and wi) to be 30m.

In our simulation we used MATLAB’s fmincon function to solve the optimization
problem. There are a variety of available algorithms, and we obtain equally good results
with fmincon’s implementation of the Active-Set and Sequential Quadratic Programming
(SQP) algorithms [160].

5.3 Results

We investigated the impact and tradeoffs between objectives from both the cyber and physi-
cal systems with the goal of minimizing energy use and time while maximizing information
(minimizing entropy). Our goal is to show that simultaneous consideration of cyber and
physical cost terms can yield more capable missions than what would be possible from de-
signing these two parts of the CPS individually. We first examine and analyze Pareto fronts
of the cost function in Equation (5.13) to gain insight into the tradeoffs from competing
objectives. We select candidate points along the Pareto front of several plots representing
true multi-objective optimization and use the corresponding v and rτ2 to compute associ-
ated costs of the mission. We then select weights βp1, βp2, βc1, and βc2, optimize the CPS
single objective cost function in Equation (5.13) and compare results with solution points
selected from the Pareto fronts.
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5.3.1 Pareto Fronts

Pareto front examination and analysis gives insight into the tradeoffs between competing
objectives. Pareto front plots of Jp (Equation (5.5)) and Jc (Equation (5.10)) can be seen in
Figure 5.6 where the black (darker) data points represent the Pareto front.

(a) Pareto Front for Jp (b) Pareto Front for Jc

Figure 5.6: Pareto Front for Jp and Jc

These curves show how the objectives for the physical and cyber systems, individually,
trade off respective costs. The plots in Figure 5.6 follow their respective governing dy-
namical equations to produce the curves shown. For Figure 5.6a the plot is dominated by
the power curve indicating we could expend similar amounts of energy, accomplishing our
mission in very different lengths of time. Clearly to achieve our minimum time objective,
the front side of the power curve is more optimal as indicated by the Pareto front. Because
our entropy cost is a function of both v and rτ2 we have multiple points corresponding to
a single cyber rate rτ2 . As a result, the velocities resulting in a higher entropy cost are
dominated by those producing lower entropy.

If we choose a solution along one of these Pareto fronts we will optimize for either
the physical or cyber portion of the system. Using these plots, we select the velocity cor-
responding with the data point highlighted in Figure 5.6a, v = 14.9 m/s . From the Pareto
front for Jc we choose the cyber rate corresponding with the data point highlighted in Fig-
ure 5.6b, or rτ2 = 5.6Hz. In Table 5.4 we show the costs associated with a mission using
these parameters.

We can gain more insight into the tradeoffs of the entire cost function by also examining
the tradeoffs between the CPS as a whole. We show these Pareto fronts in Figure 5.7
where in each subfigure we examine the tradeoff between three of the four objectives. In
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Table 5.4: Costs For v = 14.9 m/s and rτ2 = 5.6Hz

COSTS VALUES

E 16626.2J
T 134.2s
Uτ2 0.28
H 66.7

Figure 5.7a we again observe the presence of the power curve governing the relationship
between aircraft energy (E) and the other objectives. The curve folds over onto itself and
we choose the point indicated in that plot which is in the crease of the function while also
balancing cyber utilization

(
Uτ2

)
and entropy (H) costs.

In Figure 5.7b no new insight or information is gained since the Aircraft Energy cost
and Total Time cost (T ) are independent of Cyber Utilization cost. Additionally, we note
the similarity of this plot with the Pareto front for Jp in Figure 5.6a. In the Pareto front plot
in Figure 5.7c there are no dominated points making the entire surface a Pareto front. We
select the solution point indicated on this Pareto front that we determined from inspection
of the plots which provides appropriate balance between the competing objectives.

Figure 5.7d shows the tradeoffs between entropy, aircraft energy, and total time costs.
In this Pareto front we call attention to the normal tradeoff between total time and aircraft
energy costs, but more interestingly the tradeoff with entropy cost. This shows the coupling
between cyber and physical cost terms and gives insight into how they compete in the total
cost. We follow our previous reasoning in choosing a point that compromises total time
and aircraft energy but augmented by an attempt to minimize entropy as well.

We list the velocities, cyber rates, and corresponding costs for each of these three se-
lected points in Table 5.5.

Table 5.5: Parameters and Costs for Data Points Selected from Pareto Fronts

PARAMETERS E T Uτ2 H

v = 14.4 m/s, rτ2 = 15.4Hz 16314.5J 138.9s 0.77 45.2
v = 12.4 m/s, rτ2 = 6Hz 15833.3J 161.3s 0.30 58.4
v = 12.6 m/s, rτ2 = 6.1Hz 15816.9J 158.7s 0.31 58.4
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(a) Pareto Front for E, Uτ2 , and H (b) Pareto Front for E, T , and Uτ2

(c) Pareto Front for H, T , and Uτ2 (d) Pareto Front for H, T , and E

Figure 5.7: Pareto Fronts for J

5.3.2 Optimization over Total Cost Function J
(
v,rτ2

)
In addition to examining Pareto fronts, using numerical methods, we can solve the single
objective cost function J

(
v,rτ2

)
in Equation (5.13), examine the resulting costs, and com-

pare them with those found from the Pareto front analysis. This requires we select the
weights for each cost term. Often there are practical reasons for favoring one cost term
over another such as length of time since the last mission, or a cloudy day with less direct
sunshine which might result in a tighter energy budget for our solar powered glider. Since
we wish to compare holistic CPS optimization to independent physical and cyber system
optimization we allow corresponding weights to go to zero as indicated in the 5th and 6th

rows of Table 5.6. In each case, however, in the absence of any compelling reasons to
favor one term over another we equalize all non-zero cost terms as shown. We compare
the previous results from our Pareto analysis with our numerical solutions and show the
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individual costs, as well as the scaled, and normalized total cost in Table 5.6. The lowest
total cost solution is the last entry in the table wherein each individual cost term was given
equal weight, and we compare its total cost with the other solutions as a percentage.

5.4 Conclusions

As technology allows us to shrink physical platform size, resource use by a cyber-system
(e.g. the computational and communication components) begins to rival actuation effort
of the physical system required for propulsion and servo actuation. This chapter inves-
tigates holistic optimization over both, demonstrating by example that co-design of the
cyber–physical system results in a net savings of energy for given mission time and infor-
mation gain by efficiently allocating cyber–physical system (CPS) resources.

Such a coupled co-design has been demonstrated in the form of optimization over cost
functions, describing competing cyber and physical objectives. Unmanned aircraft system
surveillance of a straight segment of pipeline was proposed as a baseline candidate mis-
sion, and simulation results were obtained. Pareto fronts of these results were analyzed,
illustrating important tradeoffs between aircraft airspeed and task-execution rate for the
candidate mission task. Optimal solutions were found to the combined CPS cost func-
tion, and were compared to results with independently optimized cyber and physical cost
functions, demonstrating that large efficiency improvements can be realized by such an
approach.

This chapter has focused on a simulation-based analysis of CPS optimization for a UAS.
An actual flight test demonstrating results was beyond the scope of this project. We have,
however, been able to validate the basic CPS cost tradeoffs introduced in this chapter using
a single degree-of-freedom satellite simulator (TableSat) in a laboratory environment [161].
This paper is included as Appendix A.

An important enhancement will be to demonstrate a dynamic real-time planner that can
appropriately adapt cost function parameters that, in turn, modify the flight plan to maintain
optimal conditions based on feedback from sensors, onboard data-processing elements, and
mission operators. Examination of more complex missions will require additional CPS cost
metrics; it is anticipated that this will promote additional innovations in measuring task,
cyber, and overall mission success. Complex missions could involve overflight of rugged
terrain, target tracking, and interaction with other cooperative, non-cooperative, or hostile
entities. Results from real-world flight operations would also bolster this work, enabling
evaluation of static or ultimately dynamic optimization to improve overall CPS metrics
during representative missions such as area coverage or inspection.
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CHAPTER 6

Conclusion

Cyber-Physical Systems require new models, abstractions, and co-design techniques that
account for the interdependency between components of the system. While CPS research
is very broad in scope in this dissertation we have focused on the interactions between
computing and control of a mobile physical system and have introduced methods to co-
regulate and co-optimize a CPS as summarized below.

6.1 Co-Regulation of CPS

We have presented and evolved an abstraction of the task execution rate of the controller
(i.e. sampling rate) as a continuous-valued dynamics system to couple with a traditional
linear system model of a physical system. This CPS model will allow an engineer to de-
sign a feedback controller for both the cyber and physical system together, exploiting the
coupling between them. The result is a CPS model lying between the extremes of Riemann
sampling on the one hand, and Lebesgue sampling on the other [17]. The sampling rate of
the CPS is regulated in discrete time according to a feedback controller and thereby reaps
many of the benefits of Riemann scheduling theory and digital control while also offer-
ing much of the cyber resource savings implicit in “as-needed” Lebesgue sampling. In a
broader context this co-design technique gives the cyber system awareness of the needs
and performance of the physical system and allows the cyber system to adjust controller
resources appropriately.

Along with this abstraction we have proposed two new controllers for our discrete-time-
varying CPS:

• GSLDQR. A Gain-Scheduled Discrete Linear Quadratic Regulator controller em-
ploys DLQR gains designed at various operating points, or fixed sampling rates, of
the CPS. Those gains are scheduled over the range of possible sampling rates so that
at each sampling time the corresponding DLQR gain is used to compute the next
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control input for the physical system. To our knowledge this is the first time gains
have been scheduled over sampling rates of a system. While this controller provided
excellent cyber resource savings it did not compare favorably with traditional fixed-
rate DLQR controller for reference tracking or control effort. It is possible that an
investigation of the values of the Q and R weighting matrices could yield improved
performance.

• FPRB. We designed a Forward-Propagation Riccati-based controller wherein the
gain is computed by propagating the discrete Riccati equation forward in discrete
time (as opposed to backward in time which is traditionally done) according to the
discrete system dynamics at each time step. We have added important empirical ev-
idence that these techniques can be broadly applied and provide stable control with
good performance for our class of systems.

We have applied our CPS co-regulation technique to three systems and used our metrics
developed for CPS to compare performance. First, our co-design methodology was applied
to a spring-mass-damper system to illustrate proof of concept. A more challenging unsta-
ble system, an inverted pendulum, was then used and several test case scenarios for both
systems were explored. Scenarios explored the increase or decrease of sampling rate as a
result of a new reference command scenario representing the new goals of a higher-level
planner to increase performance or scale back cyber-resource use respectively. Results
demonstrated that cyber resources could be dynamically adjusted to meet new planning
goals.

Second, we have applied our co-regulation methodology to attitude control of a Cube-
Sat using reaction microwheels where active control is required due to unstable system dy-
namics. This is the first time variable sampling rate control has been applied to spacecraft.
In this case study we focus on disturbance rejection thereby highlighting the effectiveness
of feedback control over optimal sampling pattern techniques [13] in regulating sampling
rate. Results indicate that significant cyber resource savings (28% for our sample CubeSat)
as well as significant control effort savings (12% for our sample CubeSat) can be achieved
while maintaining near optimal tracking performance.

6.1.1 CPS Co-Regulation Future Work

This work would greatly benefit from future development of discrete-time-system theory
and proof of stability guarantees for both the GSDLQR and FPRB control law formulations.
Similarly, the design of feedback control laws for both the physical and cyber system needs
further analysis to develop an optimal methodology for choosing coupled CPS gains for
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the time-varying sampling rate system. Finally, the application of our technique to real
hardware, software, and mission conditions is vital for gaining insight into further tradeoffs
between cyber and physical resource use at the feedback control level.

6.2 Co-Optimization of CPS

New metrics for CPS design and performance evaluation is one of the grand challenges of
CPS research [2]. At the planning level, we have devised new CPS metrics and presented
a novel method for trading off cyber and physical resources to obtain improved mission
performance. Using a UAS surveillance case study we developed metrics representing en-
ergy, time, cyber utilization, and surveillance information and formulated a cost function to
improve mission performance. The cost is a function of UAS velocity and rate of execution
of a mission-critical surveillance task which collects, processes, and stores imagery of a
pipeline. We show and analyze Pareto fronts of the competing objectives to gain insight
into the tradeoffs between cyber and physical resources for mission success. The cost func-
tion is then optimized numerically and results are tabulated comparing physical-only cost,
cyber-only cost, and joint cyber-physical cost. We have demonstrated that increased mis-
sion success can be achieved by considering cyber and physical resources together rather
than independently. We envision such a planning scheme could serve to provide reference
commands to the lower-level co-regulation system also presented in this dissertation.

This dissertation presents an approach to co-optimization that is innovative with re-
spect multi-disciplinary CPS models, metrics, and Pareto analysis. As proof of concept
we limited our optimization to finding constant values for velocity and task rate. However,
a dynamic planner that updates reference commands based on in situ measurements and
feedback of information for both the cyber and physical system remains an important topic
for future work and will likely prove quite valuable for improved mission success. While in
Appendix A we have provided limited hardware verification of our proposed technique, our
work would be further strengthened by real vehicle-based demonstration of its effectiveness
in more complex scenarios, missions, terrain, etc.

The work in this dissertation represents progress toward co-design of the computational
control systems for CPS. We hope that future work building on these ideas will spawn the
next generation of more capable, aware, reliable, and secure Cyber-Physical Systems.
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APPENDIX A

Mission-Aware Cyber-Physical Optimization on
a Tabletop Satellite [161]

A.1 Introduction

Modern systems require sensors, actuators, algorithms, and real-time digital systems to
coordinate their activities with a physical system to achieve designated goals. Often each
of these individual subsystems are designed independently to meet performance objectives.
Important system design properties such as compositionality and composability can suffer
without co-design techniques that account for limitations and strengths of each subsystem
as well as the physical objects with which the system interacts. Additionally, as systems
become smaller, requiring less energy for actuation and sensing, computational (cyber)
resources begin to demand energy comparable to that of the physical system.

Control systems engineers attempt to optimize physical system trajectories by the proper
application of force over time. Physics-based models of system dynamics including sat-
uration constraints and other nonlinearities are used to design control laws that achieve
designed trajectories - most often in the continuous time domain. On the other hand, real-
time systems engineers, using discrete mathematical tools, optimize task allocation and
scheduling over processor, communication, and Input/Output (I/O) resources to guarantee
performance deadlines for reliability and robustness. Good design of the task schedule
may provide enough slack so that energy can be conserved through variable speed proces-
sors. Alternatively, slack in the task schedule may allow for aperiodic and sporadic task
guarantees thereby providing event-driven capabilities or simply just increased service of
individual tasks.

For systems which must more carefully manage all their physical and cyber resources
together to achieve their objectives, globally-optimal (minimum-energy, minimum-time,
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maximum-information) performance can only be achieved by identifying and exploiting
coupling between cyber and physical resources during the design process. Cyber resources
provide the means for guidance, navigation, and control of the physical system, as well as
the estimation of states, communication, and processing of information. The physical sys-
tem, in turn, provides the ability to acquire information, survey an area, or take important
measurements.

We have been conducting research to try and accomplish such optimal cyber-physical
co-design. In recent work we developed a multidisciplinary approach for optimizing over
both cyber and physical resources, including mission goals and objectives [28,162]. Using
metrics encompassing physical system energy, time, surveillance information, and cyber
utilization we showed that we can more appropriately balance overall system performance.
We also used Pareto front analysis to examine some of the coupling between cyber and
physical resource use.

In this paper we take this research a step further by trying to experimentally validate this
technique. To this end we have adopted TableSat [163], a one-degree of freedom rotating
platform emulating a small satellite to demonstrate this method of design. TableSat, shown
in Figure A.1, uses computer fan actuators, rate gyros, and accelerometers controlled by an
on-board Gumstix computing platform to control its rotation. We have fitted TableSat with

Figure A.1: TableSat

a camera and propose an example mission to emulate a satellite gathering important data.
The example mission is to collect the maximum amount of “information” which we define
to be number of orange pixels viewed by the camera. The colored paper setup can also be
seen in Figure A.1.
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We first introduce some related work in the fields of real-time systems and aerospace
systems. We then describe the cost function including the metrics describing the competing
mission objectives. A description of our experimental setup follows, after which we present
analytical and subsequently experimental results.

A.2 Related Work

The design of control systems under the constraints of cyber resources is not a new area
of research. Anytime control [81–83] tries to improve control accuracy as cyber resources
become available. Feedback scheduling [55,84,86] is a technique wherein cyber resources
are modified according to the needs of the cyber system. However, only recently in the
context of aerospace, satellites, avionics systems, surveillance, and UASs has there been
increasing work attempting to address this important issue.

Agrawal et. al. explore some of the reasons why more advanced control algorithms
are not used in modern avionics systems. They conclude that a Quality of Service (QoS)
approach is needed to address the problem and they propose an adaptive resource man-
agement scheme for a real-time avionics system using anytime control and accompanying
nontraditional task scheduling [108]. Russ and Sttz proposed a higher-level style of re-
source management that includes task-based guidance and navigation and perception plans.
Their method focuses on finding algorithmic solutions adapting to perceptual demands that
vary during flight as well as balancing those demands with sensory and computational re-
sources [111]. Narayan et al. present a novel computationally adaptive trajectory decision
optimization system that can dynamically manage, calculate, and schedule task execution
parameters [112]. An offline and online component work together to increase overall mis-
sion efficiency.

For satellite systems information gathering by imaging systems generally happens in
a relatively short time window (in low earth orbits around three min) during which the
system must maximize its efforts to collect the data. There is generally a 10-15 minute
window during which the system can prepare resources for intense data collection. Tra-
ditionally, such task scheduling problems have been addressed by teams of planners on
the ground using write and check procedures [101]. However, automated methods have
been proposed and used with success. Bataille et. al. examine and design for physical
constraints, fairness, and efficiency for different agents using a shared resource (an earth
observing satellite) [106]. Bresina et. al. combine together two techniques - GenH which
generates a specialized search heuristic, and HBSS which employs the heuristic within a
stochastic sampling method - to automatically generate high-quality schedules with respect
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to an objective function [107].
Our work complements existing research by providing a mechanism to optimize over

cyber-physical resources as well as mission objectives for the holistic system while lever-
aging optimization theory, and more particularly, optimal control. Existing solutions to dy-
namically adjust parameters can provide the tools by which a system could use our method-
ology to produce more efficient missions according to the individual metrics chosen in the
cost function.

A.3 Cost Functions

We desire to optimize over both physical and cyber characteristics to improve efficiency and
performance for our designated mission. We do this by developing cost terms for physical
system energy, cyber utilization, as well as mission-critical task performance. This means
developing cost terms for the energy consumed by the fan actuators as function of desired
angular velocity, a term representing the energy consumed by the computing system, and a
metric measuring the amount of information we gather from the on-board camera.

For the physical system, we wish to determine the optimal angular velocity of TableSat
for our proposed mission. Because the on-board camera is fixed and rotating with Table-
Sat, and since we only allow for rotation in one direction, we need only consider simplified
motion about a single axis. For the cyber system, our objective is to determine the opti-
mal execution rate of a mission-specific task. This task is a real-time surveillance task in
which we wish to collect data on orange colored segments of construction paper. A single
complete job of this surveillance task consists of acquisition, processing, and storage of an
image. We assume that other system-critical cyber tasks, including the control task, have
been allocated a fixed amount of resources. Our surveillance task therefore operates within
the remaining non-critical bandwidth available in the cyber system.

We build our cost function from the ground-up, integrating physical and cyber cost
terms and associated functions. “Physical” in the context of a TableSat includes items
related to rotation of the system, for example, the rotating table, fan actuators, and sensors.
“Cyber” relates to items required for image collection, data processing, computation of
control inputs, etc.

A.3.1 Physical System Terms

To balance the goals of the physical system we seek to minimize total energy consumption
by the fan actuators while also minimizing time required for mission completion.
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A.3.1.1 Physical System Energy

In TableSat all the energy required to rotate the table is consumed by the fan actuators. The
metric then for physical system energy becomes

Ep =

∫
P (ω)dt. (A.1)

Where P is power as a function of the angular velocity, ω. Because we use simple computer
fans controlled by a Pulse Width Modulation (PWM) signal we assume power consumed
is simply

P (V) = IV (A.2)

where I is the constant current draw (a parameter of the fan), and V the time averaged
voltage “seen” by the fan via the PWM duty cycle. As voltage is a function of PWM signal
which is our control input, we can rewrite Equation A.2 as

P (d) = IVmax
d−dmin

dmax−dmin

where d is the PWM duty cycle and dmin and dmax are the constant minimum and maximum
duty cycles respectively as experimentally determined. Vmax is a constant parameter of the
fan and is the maximum voltage the fan can accept.

Because we require a power function that takes angular velocity as a parameter for op-
timization we conducted a series of experiments commanding a PWM duty cycle, awaiting
approximately steady state angular velocity, and subsequently timing the rotational speed.
We used MATLAB’s cftool to determine a linear curve fit as seen in Figure A.2. We note
that higher order polynomials would provide a better fit. We explicitly chose a linear fit
due to the uncertainty surrounding our friction coefficients between experiments.

Functionally, we have power as a function of angular velocity given by

P (ω) = IVmax

(
p1ω+ p2−dmin

dmax−dmin

)
(A.3)

Using the coefficients experimentally determined we can reduce Equation A.3 to

P (ω) = 0.514ω−0.292 (A.4)

The experimentally determined power curve and associated energy curve can be seen in
Figure A.3. We note the flattening out of the energy curve as angular velocity increases.
This suggests that at some point it does not cost us significantly more to rotate much faster.
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Figure A.2: Linear Curve Fit Using MATLAB’s cftool

This observation is seen later on in the final cost function.

A.3.1.2 Time

In addition to minimizing power consumption, we would also like to minimize the amount
of time required to accomplish our mission. Such time-minimal optimization cost terms
are common, and are simply given by

T =

∫
dt. (A.5)

A.3.1.3 Cost Function for Physical System

The two competing cost metrics, Ep and T , comprise the cost function for the physical
system

Jp (ω) = βp1

∫
P (ω)dt +βp2

∫
dt

where βp1, βp2 are weighting terms. Optimizing Jp alone is what a traditional trajectory or
path planner would do if no costs are attributed to the cyber system.
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Figure A.3: Power and Energy Curves for TableSat Physical System

A.3.2 Cyber System Terms

For a modern autonomous system the cyber portion becomes the center point for data col-
lection, actuation inputs, communication, I/O, path planning, control input calculation, etc.
In many real-time systems task execution rates are determined a priori based on require-
ments of the system and/or mission. For example, the sampling rate of the control task may
be selected based on digital control analysis. In this work we do not interfere with such
high-priority task assignments and focus instead on the tuning of a lower-priority mission-
critical task giving us the ability to optimize over mission and cyber parameters without
interfering with safety-critical tasks. We assume that we can not only conserve energy by
optimally selecting execution rates of lower-priority tasks, but we can also increase mission
effectiveness by developing costs that relate task execution rates to mission efficiency.
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A.3.2.1 Cyber Utilization

In real-time system scheduling theory online schedules can be created by examining rela-
tive deadlines of independent periodic tasks as in the Earliest Deadline First (EDF) schedul-
ing algorithm. Such optimal scheduling algorithms are dynamic by assigning task priority
as jobs are released to the operating system for scheduling [58]. They therefore have the
ability to respond to changing deadlines and periodic rates.

In this paper, we assume that at least part of the cyber utilization is fixed based on se-
lected and scheduled periodicity of mission-critical tasks, and instead focus on maximizing
use of the remaining resources. To that end, we assume a single task, τ, achieves the impor-
tant mission goal of capturing and processing an image of our orange and black cylindrical
backdrop (see Figure A.1). The task runs at execution rate rτHz and has a maximum ex-
ecution rate of rτ,max Hz stemming from restrictions based on available cyber resources.
That is, we ensure schedulability of the task based on rτ,max but allow that period to change
resulting in freed cyber resources to be devoted to increased service of other tasks or simply
to conserve energy. We introduce the cyber utilization term

Uτ =
rτ

rτ,max
. (A.6)

We note that rτ is the rate of execution of task τ throughout the mission. We assume that
cyber utilization is proportional to energy consumed by the cyber system, and as a result,
minimizing it is the cyber analog to the energy minimization term of the physical system
in Equation (A.1).

A.3.2.2 Mission Information

In developing our cost metrics, we seek to relate mission efficiency to cyber and physical
parameters. Our specific mission objective is to aquire images of orange squares on a poster
board backdrop. We can consider this mission equivalent to collecting as many orange
pixels as possible. To appropriately model the collection of orange pixels we make the
simplifying assumption that the orange squares of the backdrop are laid out continuously
(as opposed to an alternating pattern with black) covering θorange radians of the rotation.
We then find the number of frames F collected during the interval which is a function of
both angular velocity and cyber task execution rate

F =
rτθorange

ω
. (A.7)
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We note that this is a continuous function and does not truly represent the discrete number
of frames taken. However, this approximation allows us to use existing mathematical tools
to solve the problem. We then determine the amount of sweep made by the camera in F

frames and including the camera’s footprint γ in radians

θF = γ+ θorange. (A.8)

We assume that the camera can only see the colored backdrop and that all pixels will
be counted as either orange or black. We can then combine Equations (A.7) and (A.8) to
determine the number of orange pixels per radian seen by the camera which we call mission
“information”

I (ω,rτ) =
FPθorange

2πθF

where P is the total number of pixels in an image (for a 640× 480 camera this is 307,200
pixels).

Naturally, this metric as we have described it, should be maximized to produce the
greatest mission success. Traditionally, we would simply minimize −

∫
I (ω,rτ)dt for the

equivalent. This results in the metric shown in Figure (A.4). Such a metric becomes prob-

Figure A.4: −I (ω,rτ)
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lematic in the total system cost function because it is concave rather than convex. This
in turn means the final cost function has a saddle point and falls off sharply toward the
boundaries. To be able to solve a well-behaved convex shaped optimization problem we
need a mission success metric that, when minimized, produces maximum mission success.
Therefore we propose

M =

∫
1

I (ω,rτ)
dt (A.9)

which can be seen in Figure A.5. We note the nonlinear dependence of M on both angular

Figure A.5: Information Metric

velocity, and the cyber rate. We also note that the dependence on cyber rate falls off as a
steep exponential, and falls off more gradually with aircraft velocity. This means we expect
optimal solutions to achieve higher mission success by increasing cyber rate than by going
slower.
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A.3.2.3 Cost Function for Cyber System

The expressions in Equations (A.6) and (A.9) together comprise the cost function for the
cyber system

Jc (ω,rτ) = βc1
rτ

rτ,max
+βc2

∫
1

I (ω,rτ)

where we have weighting terms βc1, and βc2. We might independently optimize over such a
cost function if we were interested solely in trading cyber resource utilization cost against
reward from accomplishing mission objectives.

A.3.3 CPS Cost Function

We desire, however, a holistic cost function that gives us optimal values of ω, and rτ for
the total system including mission objectives. We therefore combine Jp and Jc to obtain a
CPS cost function

J (ω,rτ) = βp1

∫
P (ω)dt +βp2

∫
dt +βc1

rτ
rτ,max

+βc2

∫
1

I (ω,rτ)
dt (A.10)

In Section A.5 we will manipulate the weights to compare physical-only optimization,
cyber-only optimization, and total system optimization, to illustrate the efficacy of our co-
design methodology.

A.3.3.1 Simplified Cost Function

Although Equation (A.10) could be solved for the optimal trajectories for ω, and rτ, as in
our previous work [162] we limit our solution to finding the static ω, and rτ that minimize
the cost function. If we know the total “distance” D of the mission (for TableSat we use
the rotational distance of 2π radians), we can replace the integrals in (A.10) with more
straightforward sums, simplifying the equation to

J (ω,rτ) = βp1
DP (ω)
ω

+βp2
D
ω

+βc1
rτ

rτ,max
+βc2

1
DI (ω,rτ)

. (A.11)

Note that this function is convex with an unconstrained minimum, so finding a solution is
straightforward.

Choosing appropriate weights is a difficult part of the design process, and is made much
harder when different cost metrics take on different ranges of values. If we normalize the
terms, the weights we choose will make intuitive sense and can be meaningfully compared
between terms. Using the maximum possible values for each term, we are able to normalize
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Equation (A.11) to

J (ω,rτ) = βp1
DP (ω)

ωmax
{
Ep

} +βp2
D

ωmax {T }
+βc1

rτ
rτ,max

+βc2
1

DI (ω,rτ)max {M}
(A.12)

wheremax {EP} is found by assuming the maximum angular velocity for the mission, max {T }
is found from the slowest angular velocity, and max {M} from the fastest angular velocity
and slowest cyber rate. We solve the problem with numerical methods, which we describe
more in Section A.5.1.

A.3.3.2 Optimization Problem

This leads to the constrained optimization problem we wish to solve

MinimizeJ (ω,rτ)

subject toω ≤ ωmax

ω ≥ ωmin

rτ ≤ rτ,max

rτ ≥ rτ,min

(A.13)

where ωmin, ωmax, rτ,min, and rτ,max are determined based on limitations of the physical
system along with diminishing returns of success, and are

0.95rads/s ≤ ω ≤ 5.52rads/s

1Hz ≤ rτ ≤ 8Hz

A.4 Experiment Setup

Our objective is to survey orange segments of an orange and black paper wall surrounding
a rotating table-top satellite, TableSat, using a fixed camera mounted at the center. The
surveying mission requires two configurable settings, angular velocity and task rate. Below
is a description of the hardware and software components of our application, as well as the
assumptions and model parameters that arose from the components.

A.4.1 TableSat Overview

TableSat is a table-top satellite with one degree of rotational freedom. It has a base with
a central post that comes to a conical point. The board itself balances on the post via a
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screw located at the middle of the board. Because the contact is reduced to that single
point, TableSat has a very low coefficient of friction. It rotates around the base using two
standard computer cooling fans which take PWM signals to dictate fan rotations per minute
(RPMs). The computer-on-module (COM) is a Gumstix Overo with a Tobi expansion board
that provides GPIO, such as that used for PWM output. TableSat also has a camera mounted
at the center that connects to the COM through the USB port.

A.4.2 Hardware

A.4.2.1 Gumstix

The TableSat COM is a Gumstix Overo with a 1GHz ARMv7 processor and 512 MB DDR
RAM. The Gumstix runs Linux 2.6.36, which is not a real-time operating system (RTOS).
That means that because our software timers are run at the user-level, as opposed to the
kernel-level, the timers may be limited in their precision. The slow speed of the processor
also means that the maximum frame capture and process rate is 8 frames per second (FPS).
Finding an efficient means of employing this limited resource is therefore crucial.

A.4.2.2 Fans

The actuators are two Sunon KD1209PTB2 computer cooling fans with a max rated speed
of 2600 RPM. The operating voltage ranges between 5 and 13.8 volts. They are rated to
draw 0.2 amps of direct current and 2.4 watts of power.

The fan speed is set by sending a PWM signal over the control line. The characteristics
of the PWM signal is specified in code by sending a byte sequence to the control line.
We needed to discover which bytes corresponded to the minimum and maximum PWM
signals, and ensure that the range of intermediate byte values mapped linearly to the signal.
We connected the PWM line to an oscilloscope and determined what bytes corresponded to
which PWM signals. In particular, we figured out what bytes corresponded to max speed.
In this way, we could tell what fraction of max fan speed we were signaling. By running a
series of timed experiments and fitting a curve to the resulting data, we were able to map
PWM signal to angular velocity. As described in A.3.1.1, to model the energy usage of the
fans, we assumed that the power draw is proportional to the average amount of time the
PWM signal is up.
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A.4.2.3 Camera

The webcam is a Logitech QuickCam Pro 9000 that connects to the board via USB. It
has a max frame rate of 30 FPS and a resolution of 640× 480. The camera also has an
automatic brightness/contrast adjustment feature that must be considered and accounted
for when attempting computer vision tasks.

A.4.3 Software

A.4.3.1 Frame Capture

Camera access and frame processing was done using OpenCV libraries. We wrote a func-
tion that captured a 640 × 480 frame from the webcam, converted it to a HSV (Hue-
Saturation-Value) colorspace and then thresholded it on orange. Thresholding produces
a black and white image where white pixels indicate the presence of orange on the original
image. Mathematically, the resulting image has 640×480 = 307,200 pixels, each of which
takes on a value, v, of either 255 or 0, where 255 indicates orange detection. The total
number of orange pixels in the original image, N, is thus given by

N =

∑307,200
i=1 vi

255
Once the camera is initialized, this capture-and-process task can be called whenever de-
sired.

A.4.3.2 Cyclic Executive

Our program takes two parameters: angular velocity and the task rate for our periodic task.
Since we only consider the static case in this project, we set the fan speed in the beginning
that corresponds to the desired angular velocity, and the only periodic task is then capturing
frames from the camera.

After the PWM signal is initialized, we wait three minutes for the TableSat to spin up
to steady state angular velocity. Then, when the experimenter presses ¡ctrl¿-c, the program
starts capturing frames at the specified frame rate. This is done using a cyclic executive
that consists of one task, the frame capturing/pixel counting task. When the experimenter
presses ¡ctrl¿-c again after the desired number of revolutions, the system stops and some
metrics are displayed - the number of white pixels seen, the number of total pixels captured,
and the amount of time that the cyclic executive executed for.
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A.4.4 Assumptions

We assume that friction is constant, or at least consistent. This is not necessarily true,
because even when the TableSat is perfectly balanced at rest, as it rotates it begins to precess
due to the heterogeneous mounted components applying non-uniform forces to the board.
As the TableSat precesses, it changes position on its base, which changes the coefficient of
friction over time.

To properly maintain a constant speed, we would need to adjust the fan signal in re-
sponse to the changing friction. However, in our experiments, we send a constant PWM
signal and assume that after some time the TableSat will reach a steady state speed. As
noted in A.4.2.2, we mapped PWM signals to steady state angular velocities using the re-
sults from a set of timed trials. Assuming constant (or consistent) friction is necessary
for the assumption that the same PWM signal will always result in the same steady-state
velocity. Since we are using open-loop control, this assumption is crucial.

A.5 Results

We first investigated the simulated impact and tradeoffs between objectives from both the
cyber and physical systems with the goal of minimizing energy use and time while max-
imizing mission success. We hope to demonstrate that consideration given to both physi-
cal, cyber, and mission objectives can yield more well-rounded, efficient results. We first
examine and analyze simulated results obtained by optimizing the cost function in Equa-
tion (A.12) to gain insight into the tradeoffs from competing objectives. We optimize over
the physical system alone, the cyber system alone, and both together by selecting appropri-
ate weights βp1, βp2, βc1, and βc2. Then we compare real-world performance of the three
different optimization techniques as indicated by TableSat mission data.

A.5.1 Simulated Results

We solve the optimization problem in Equation (A.13) using numerical methods. We use
MATLAB’s solver fmincon and setting lower and upper bounds on the design parameters.
This MATLAB function uses active-set optimization which utilizes sequential quadratic
programming (SQP) and estimates the Hessian of the Lagrangian using the well-known
BFGS algorithm [164].

Often there are auxiliary reasons for favoring one cost term over another such as length
of time since the last mission, or a cloudy day resulting in poorer image quality. Since we
wish to investigate the comparison of holistic CPS optimization with independent physical
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and cyber system optimization we allow corresponding weights to go to zero as indicated
in the 1st and 2nd rows of Table A.1. In the 3rd row we use some a priori intuition to select
weights that focus slightly more on time and less on cyber utilization. The analytical results
of our optimization scheme and simulation are in Table A.1. These results suggest that the
lowest cost solution comes by focusing on cyber parameters. This indicates there may be
a problem with the weights that we are applying to the cost function. We note the specific
weighting we used that slightly favors time over cyber utilization, which means we won’t
collect as many orange pixels. Despite these analytical results, in the next section we show
experimental results that indeed validate this design methodology.

A.5.2 Experimental Results

We present in Table A.2 the results from our experiments with TableSat. As we had hoped,
the lowest cost solution was indeed the total system optimization that accounts for cyber,
physical, and mission objectives.

A.6 Conclusions and Future Work

The impact of the digital revolution will continue to reverberate across many fields for
some time. As cyber and physical systems become more tightly integrated, the need for
strong multidisciplinary co-design techniques becomes increasingly urgent. In this paper,
we’ve implemented one such proposed optimization scheme - a cost function combining
physical and cyber terms - on real hardware. We used a TableSat with a mounted camera
to undertake a mission to survey orange segments of an orange and black paper landscape.
We experimentally determined system-specific parameters for our equations and used the
resulting optimization problem to produce an optimal angular velocity and task rate. We
were then able to use these results to configure a real mission, and compare real-world
performance between the traditional optimization method and the cost-function method.

Our results showed that our multi-disciplinary approach indeed resulted in better effi-
ciency than optimizing the physical terms without considering the cyber term (or optimiz-
ing the cyber term without considering the physical term). This supports the theoretical
results found by previous work.

However, these results have limited statistical significance, as they are results from only
one run for each configuration. The TableSat platform was very noisy and had extremely
high variance in steady state speed. We tried to calibrate it before every run such that
the behavior roughly matched the experimental results we obtained earlier when mapping
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PWM signals to angular velocity, but this was time-consuming and statistically unsatisfy-
ing. Another result of this is that we were not able to do a parameter sweep of cost-function
weights. Our information metric is also not very sophisticated and may not be representa-
tive of all the complexities present in many real applications.

This work highlighted many of the difficulties associated with working with physical
systems, one of which is that some physical phenomena are extremely sensitive to ini-
tial conditions. At a macro-level this looks like inconsistency (e.g. varying steady-state
speeds). To be able to use simple equations that cannot account for all possible distur-
bances, the system must display consistent, stable states at whatever scale the system is
modeled. Then, control theory is applied to reject (most) disturbances usually via feed-
back. For the scope of this project, however, we used open-loop control, which made data
collection difficult. For those reasons, further work on this particular application would
require writing a closed-loop controller for the TableSat platform. This would also allow
us to do a broad parameter sweep of our cost function.

Though further work in this area presents challenges, the effort may be well worth it.
As cyber-physical systems become a more and more ubiquitous presence in our lives, we
must embrace the integration of previously disparate paradigms and begin working towards
a similarly integrated multidisciplinary approach.
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APPENDIX B

Comprehensive CubeSat Attitude Control Plots

In this appendix we show more comprehensive (i.e. all states) plots for the CubeSat simu-
lations in Chapter 4. The states indicated in each subplot correspond to the state description
in Equation (4.3) which we also show here

xp =
(
θ1, θ2, θ3,ω1,ω2,ω3,Hw

1 ,H
w
2 ,H

w
3

)
up = (M1,M2,M3) .

To recapitulate, states (1, 2, 3) are roll, pitch, and yaw in the LVLH reference frame, states
(4, 5, 6) are elements of the angular velocity vector, and states (7, 8, 9) represent angu-
lar momentum of each of three reaction microwheels used in control. The control vector
is composed of torques on the spacecraft resulting from the reaction microwheels. The
simulation setup is described in Section 4.5.

In the plots that follow all axes have been fixed to facilitate comparison between plots.
We have ordered the figures following the order in Table 4.3.
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Figure B.1: CubeSat Attitude Disturbance Response Using Fixed 10Hz DLQR Control

Figure B.2: CubeSat Attitude Disturbance Response Using Fixed 1Hz DLQR Control
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Figure B.3: CubeSat Attitude Disturbance Response Using Fixed 0.1Hz DLQR Control

Figure B.4: CubeSat Attitude Disturbance Response Using GSDLQR Control Using uc,1
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Figure B.5: CubeSat Attitude Disturbance Response Using GSDLQR Control Using uc,2

Figure B.6: CubeSat Attitude Disturbance Response Using FPRB Control Using uc,1
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Figure B.7: CubeSat Attitude Disturbance Response Using FPRB Control Using uc,2
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scheduling of control tasks,” Real-Time Systems, Vol. 23, No. 1, 2002, pp. 25–53.
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