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Abstract 

The main goal of this work is to develop a systematic methodology to improve the range of 

electric vehicle and protect the battery health. Several other objectives enable achieving the main 

goal, including modeling, and power management optimization of hydraulic electric hybrid 

system, and battery degradation investigation and optimization.  

In order to improve the electric vehicle range, the hydraulic hybridization of electric vehicle 

is proposed. Physics based models of hydraulic electric hybrid vehicle are developed and the 

performance is analyzed. A near optimal and vehicle implementable rule-based energy 

management strategy is developed for the hydraulic-electric hybrid vehicle. To further improve 

the range, the battery health is identified to be the key issue. Electrochemistry-based battery 

models are developed to investigate the degradation of the graphite/        cell. This topic is 

motivated by the need to enhance the performance and longevity of lithium ion cells in the 

electric vehicle systems. In particular, the long cycle life is critical for the transportation 

electrification. Later, this dissertation elucidates the key degradation mechanisms in the lithium 

ion cells which enable opportunities to improve battery performance and health through optimal 

design. The whole topic is addressed in three steps.  

Firstly, we propose hydraulic hybridization of electric vehicle and develop a physics based 

model for hydraulic-electric hybrid vehicle. In order to improve the range, power management 

optimization is conducted to determine the optimal control strategy for the hybrid vehicle. The 

all electric range is improved by 68.3% through hybridization and control optimization. 
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Secondly, battery health is another key issue for transportation electrification. In order to 

improve the battery health, we develop mathematical models for the key side reactions, and 

couple these side reactions to Newman’s backbone model to form a degradation model. A three 

electrode cell is fabricated and cycled over long term to provide physical support for the 

modeling framework.  Our degradation study shows that the capacity fade can be divided into 

three stages: acceleration stage (SEI growth on anode is dominant), stabilization stage (SEI 

growth slows down and cathode capacity fade continues), and saturation stage (cathode has poor 

capacity and becomes the limiting factor). Long term cycled electrodes are examined by SEM 

and TEM. Cathode LMO fracture is repeatedly observed and suspected to be one important 

degradation mechanism in the cathode. A single particle fracture model is developed to 

investigate capacity fade induced by cathode fracture. The study shows that fracture introduces a 

significant capacity loss. In a 5 um particle with fracture, the capacity loss can reach to 13.7%. 

The particle size is another key factor that affects the mass transportation in the particle. Larger 

particles lead to higher internal resistance for electron transportation; therefore, fracture-induced 

capacity fade is more severe than with particles of smaller size.  

In the final phase, a general procedure is developed to optimize the battery health while 

fulfilling the energy and power requirements. The study investigates the impact of battery 

parameters on the battery performance, such as energy density, power density and battery health. 

In total, this dissertation provides a systematic way to improve the range of electric vehicle 

by hydraulic hybridization and battery optimal design. The results provide insights into the 

effects of the hybridization on the electric vehicle performance, and also the battery parameters 

on the battery degradation. The methodologies developed in this dissertation can be used to 
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provide guidance for development of strategies for hybrid propulsion and optimal design of the 

battery health. 
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Chapter 1 

Introduction 

 

The energy economy based on fossil fuels is at a serious risk due to several factors, such as, 

the energy insecurity dependent on unstable import oil, and depletion of non-renewable 

resource[1-3]. The access to the stable energy has becomes essential to the functioning of 

modern economies. Deployment of renewable energy and energy efficiency, and diversification 

of energy sources, would bring significant energy security and economic benefits[4]. Another 

adverse effect of the current energy economy is the climate change. The greenhouse gases 

emitted from fossil fuel burning traps heat and make the planet warmer[5]. CO2 is the primary 

greenhouse gas emitted from human activities and accounted for about 84% of all U.S. 

greenhouse gas emissions in 2011[6]. The main source of CO2 is the combustion of fossil fuels 

for energy and transportation[7].  There is an urgent need to address the energy security, and 

climate change, which requires the use of clean energy. Transportation electrification, such as, 

electric vehicles (EV), can replace petroleum with renewable energy sources, and reduce the CO2 

emission, therefore helps address the energy and environmental issues. Although electric 

vehicles are appealing for environmental and energy security reasons, the efficiency of these 

electric vehicles has been known to drop from 90% to 60% during low speed or high torque [8].  

High current draw during operation will also damage the battery system, and reduce the battery 

life[9].  One of the solutions to overcome such challenge is the hybridization of electric vehicles. 

Hybrid vehicles use secondary energy storage, such as, hydraulic accumulator, and a secondary 

power device, such as, hydraulic pump/motor. Efficient power management of the secondary 
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power devices provides an additional degree of freedom to operate the electric motor and battery 

system. However, the vehicle system becomes more complicated when it is hybridized. In this 

study, the potential of the hydraulic electric hybrid will be evaluated and the power management 

strategy will be developed.  

Besides electric vehicle hybridization, long cycle life battery system is urgently needed to 

support the aggressive vehicle electrification. Batteries, as the energy storage system, play a 

crucial role in the renewable energy systems, such as wind power, solar power and transportation 

electrification, etc., as shown in Figure 1.1.  It not only provides the energy storage for the 

electrified transportation, but also mitigates the intermittency of the renewable energy generation, 

such as wind, and solar power.  

As more and more renewables come online, large scale and high efficient batteries have 

become more and more attractive as an energy storage option. Many different battery systems 

exist in the market. Figure 1.2 shows the comparison of several key battery systems[10]. It is 

shown that Li-ion batteries have superior specific energy and high power density. Due to the 

high specific energy, high efficiency, high power density, and the stable cycling performance[1], 

LIBs are expected to find a prominent role in the energy storage system.  
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Figure 1.1 Battery’s role in the energy infrastructure 

 

Since the first commercialization by Sony in 1991, Lithium ion batteries (LIBs) have been 

widely used as portable power sources for consumer electronics. The growth of EV and HEV 

will also require the development of high performance of Li-ion batteries. However, problems of 

various natures of lithium ion batteries still prevent the large scale introduction of electric 

vehicles. One drawback of the current Li-ion technology for the automotive application is their 

limited cycle life. A number of causes are postulated to contribute to the capacity degradation 

[11-13]. Due to the complexity of the battery system, the degradation mechanisms in the Li-ion 

batteries remain poorly understood.  
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Figure 1.2 Distribution of the different electrochemical systems according to their 

gravimetric/volumetric energy densities [10]. 

 

In order to improve the battery design, especially the battery lifetime, this dissertation 

introduces innovative approaches for multiphysics/multiscale modeling, problem formation, and 

analysis. These approaches are applied to investigate the major degradation mechanisms in the 

Li-ion batteries to study the long term degradation patterns. The framework presented here 

integrates different degradation mechanisms together, and provides a deeper understanding of 

their interactions. Physical/mathematical models are developed to quantitatively study the impact 

of each degradation mechanism on the overall battery performance. The results reveal the 

dynamic evolution of the battery degradation process. Through the insight provided by the 

degradation analysis, potential opportunities for cycle life improvement are identified. The 

proposed optimal design based on degradation analysis has the potential to increase battery cycle 

life.  

The remainder of the induction section is organized in the following five parts. First, the big 

picture of the research background is explained and the motivation of this dissertation is 
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presented. Second, a literature review is conducted, and the performance of the electric vehicle, 

hydraulic system and the main battery degradation mechanisms are introduced. Third, the 

potential challenges are identified. Forth, the contributions of this dissertation are summarized. 

Fifth, the dissertation organization is outlined. 

1.1 Research Objective and Motivation 

 

The main objective of this dissertation is to develop a methodology to improve the range of 

electric vehicle and protect the battery health. The study demonstrates the benefits of hydraulic 

hybridization of electric vehicle and its effects on the vehicle range and battery health.  After the 

power management optimization, battery is identified to be the key component in the vehicle 

electrification. Lithium ion batteries are energy storage systems that can draw energy from the 

electric grid and provide propulsive energy for transportation. This functional change allows a 

hybrid vehicle to displace petroleum energy with multi-source electric energy. This also provides 

the opportunities to reduce the greenhouse gas emissions from the transportation system. 

However, the battery energy storage system is the weakest part in achieving this goal due to the 

limited lifetime. Therefore, the battery typically has to be oversized in order to meet the lifetime 

requirement[14], which makes the system expensive. This also provides a strong impetus for 

investigating the battery degradation and extending the battery lifetime.  

One of the objectives of this dissertation is to develop techniques for battery cycle life 

improvement. The importance of this topic is not only motivated by the vision of future 

renewable energy infrastructure as shown in Figure 1.1, but also by the rapid growth of 

renewable energy all over the world as shown in Figure 1.3.  In the future, renewable energy will 

potentially present a significant portion of the energy portfolio. In the long term, different 
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country is implementing technologies to increase the renewable energy productions. The policy 

targets for several countries over the world are included in Table 1.1. 

 

Figure 1.3 Annual Value of Renewable Energy Capacity Installed  

(MENA=Middle East North Africa; RoW=Rest of the World)[15] 

Due to the intermittent nature of the renewable energy sources such as, wind, solar, and tidal 

power, a large scale and long lifetime battery storage system is in need. A battery energy storage 

system is one of the critical enabling technologies to realize the future renewable energy 

infrastructure.  

Table 1.1 Renewable Energy Targets by Country [16] 

Country Amount (of total energy) Deadline 

Australia 20% 2020 

China 15% 2020 

Egypt 12% 2020 

European Union 20% 2020 

Japan 10% 2020 
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In this dissertation we focus on power management optimization of the hydraulic electric 

hybrid vehicle to improve the range, and furthermore, we carry out optimal design of battery 

health to improve the battery cycle life. This research investigated the impact of different control 

strategies on the vehicle performance, and also the impact of battery parameters on the battery 

cycle life.  The methodology developed in this dissertation provides design guidelines for 

improving the electric vehicle efficiency, extending all-electric range, and optimizing battery life 

therefore reduces the long term replacement costs of the expensive high capacity battery packs.   

 

1.2 Literature Review 

 

1.2.1 Hydraulic Hybridization 

 

Hydraulics is a mature technology, and has been widely used in construction machinery. The 

hydraulic hybrid propulsion system uses fluid power to propel the powertrain. Of many 

hybridization options, the hydraulic hybrid has many advantages for heavy duty vehicles due to 

its high power density and energy conversion efficiency. The hydraulic accumulator stores high 

power energy via highly compressed gas like a pneumatic spring. The accumulator has higher 

power density compared to battery systems[17]. Thus, hydraulic accumulator is very suitable for 

capturing high power energy, such as, regenerative braking, and also suitable for outputting high 

power energy during acceleration. Due to the relatively slow chemical reaction rates, battery 

provides much less charge and discharge rate compared with hydraulic accumulator.  Figure 1.4 

shows the common energy storage system. The power density of hydraulic accumulator is more 

than 10 times higher than batteries[18]. However, the low energy density is the drawback of 

hydraulic accumulator. Therefore, combining the battery system and hydraulic accumulator 
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enables us to meet both high power demand and low power demand. Optimal management of 

battery energy and hydraulic energy in the hybrid vehicle becomes a very important issue.  

 

Figure 1.4 Energy vs. power density of different energy storage systems[18, 19] 

 

A hydraulic pump/motor (P/M) can be used as the secondary power device in the 

hybridization of electric vehicle. The hydraulic pump/motor is used as a pump when it pumps the 

fluid from reservoir to the accumulator. It’s used as a motor when the high pressure fluid from 

the accumulator flows out to the reservoir. The displacement of the PM can be changed 

continuously, which gives a continuous change of output torque. The efficiency of the hydraulic 

system is reported as high as 82% as shown in Figure 1.5.  

 

 



9 

 

 
Figure 1.5 Round-trip efficiency of hydraulic hybrid vehicle system[20] 

 

1.2.2 Li-ion Battery Fundamentals 

 

 

Figure 1.6 illustrates the electrochemical process within a lithium-ion cell. A typical Lithium 

ion cell consists of a positive electrode (cathode) and a negative electrode (anode). A separator is 

used as an insulator in between two electrodes to prevent internal shorting. Cathode and anode 

are attached to alumina and copper current collectors respectively. Common cathode materials 

include LiCoO2, LiMn2O4, LiFePO4, etc. Anode usually uses carbonaceious material, such as, 

graphite, hard carbon, and petroleum coke. The porous electrode includes PVDF binder, 

conductive additive (carbon blacks), and active materials. The porous structure of electrode is 

filled with electrolyte, which is a lithium salt in an organic solvent and provides the media for 

lithium transportation. A common used electrolyte is LiPF6 dissolved in EC/DMC 1:1 solution. 

When the battery is being charged, the lithium is deintercalated from the cathode electrode, 

diffused through electrolyte, and transferred to the anode electrode where lithium ions intercalate 
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into anode particles. When the battery is being discharged, the lithium is deintercalated from 

anode and intercalated into cathode.  

 
Figure 1.6 Lithium ion battery configuration [21] 

Spinel lithium manganese oxide LiMn2O4, as one of the common used cathode materials, 

has many desirable advantages, including high rate performance, high energy density, low cost, 

low toxicity, and simplicity of preparation[22]. In this dissertation, LiMn2O4 is chosen as the 

cathode active material. As shown in Figure 1.7, LiMn2O4 has a cubic close-packing 

arrangement of oxygen ions at the 32e sites, the Li ions at the tetrahedral 8a sites, and the Mn
3+

 

and Mn
4+

 ions at the octahedral 16d sites[23]. Generally, lithium manganese oxide has two 

voltage plateaus, one about 4V versus Li/Li
+
 and the other about 3V versus Li/Li

+
. Usually, only 

the 4V plateau is used in the practical applications. Compared with 3V plateau, 4V plateau is 

highly reversible and leads to higher specific energy[24].  The charge/discharge reaction of the 

lithium manganese oxide spinel occurs through extraction/insertion of lithium ions from/into the 

Mn2O4 host lattice. 
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Figure 1.7 LiMn2O4 spinel structure and graphite structure 

Graphite is commonly used as anode in the Lithium ion battery. As shown in Figure 1.7, 

graphite as a layered, planar structure. In each layer, the carbon atoms are arranged in a 

honeycomb lattice with separation of 0.142 nm, and the distance between planes is 0.335 nm[25].  

The chemical reactions in the lithium ion batteries which have LiMn2O4 as cathode active 

material and graphite as anode active material can be expressed in the following equations:  

Negative electrode reaction:                    

Positive electrode reaction:                              

Net reaction:                                

1.2.3 Electrochemical Model 

 

The most established mathematical description of porous battery electrodes is Newman's 

model[26], which incorporates the behavior of both solid phase via porous electrode theory and 

liquid phase via concentrated solution theory. This model is general enough to be applied to 

various active materials and electrolyte solutions with different properties and has been used in 

various studies. In this model, battery system is divided into three domains. As shown in Figure 

1.8, the three domains include a negative electrode, separator, and a positive electrode. The 
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composite electrodes which consist of active material with small amount of binder and 

conductive additive, and electrolyte solution, are modeled using porous electrode theory.  

Due to the tortuosity from the porous structure, the conductivity of the solid phase, and the 

diffusivity and ionic conductivity of the liquid phase need to be corrected by using Bruggeman 

equations as shown in the following [26]. 

  
   

       
  (1.1) 

  
   

       
  (1.2) 

  
   

       
  (1.3) 

Where   
   

is the effective conductivity of solid phase,    solid phase conductivity,    is 

active material volume fraction,    is porosity (electrolyte phase volume fraction),   is  

Bruggeman porosity exponent,   
   

 is the effective electrolyte phase Li diffusion coefficient   

and    is the electrolyte phase Li diffusion coefficient 

The potential distribution in the solid phase is governed by Ohm’s law as shown in the 

following equation.  

 

  
(  

      

  
)         (1.4) 

Where   
   

 is the effective conductivity of solid phase,      is the intercalation flux. 

The potential distribution in the electrolyte is governed by the following equation 

 

  
(  

      

  
)  

 

  
(   

    

  
    )         (1.5) 

Where   
   

is the effective conductivity of the liquid phase,    
   

 is the effective electrolyte 

phase Li diffusion conductivity,    is the lithium concentration in the electrolyte. 

The mass transportation in solid phase is governed by the diffusion law as shown in the 

following equation. 
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Where    is the lithium concentration in the solid phase,    is the lithium diffusivity of solid 

phase.  

The mass transportation in the electrolyte is governed by the following equation. 

       

  
 

 

  
(  

      

  
)  

    
 

 
     (1.7) 

Where    is the porosity,   
   

 is the effective electrolyte phase Li diffusion coefficient,   
  

is the transference number.  

Reaction rate is coupled to phase potentials by the Butler-Volmer kinetic expression: 

         {   [
   

  
   ]     [ 

   

  
   ]  } (1.8) 

          (1.9) 

Where U is Negative/Positive electrode equilibrium potential,    is the active surface area per unit 

electrode volume,    is the exchange current density,   ,   , are charge transfer coefficients,   is 

the gas constant,   is the absolute temperature.  

 

Figure 1.8 Schematic representation of the lithium ion battery model during discharge 
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Figure 1.8 shows the potential distributions of the solid and liquid phases during discharge, 

and the boundary conditions between different domains.  

Newman’s model has a good prediction on the battery performance compared with 

experiments’ results[27]. It provides a good mathematical tool for battery optimal design, such as, 

energy density and power density design. Du et al. [28] developed a surrogate modeling 

framework based on Newman’s electrochemical model to investigate the gravimetric energy 

density of a Li-ion cell with respect to different design parameters. Xue et al. [29] applied 

gradient-based optimization to Newman’s battery model to optimize the energy density for 

different power requirement. Smith et al. [30] augmented Newman’s model with thermal 

distribution in the Li-ion cell, and conducted power density analysis, which indicated the solid 

state diffusion is the limiting mechanism for the power output.  Newman’s model achieves great 

success in the battery optimization design. This model captures the key dynamics in the battery, 

and enables the optimization of the cells under different requirements.  

However, due to the lack of degradation mechanisms, Newman’s model provides no 

information about battery capacity fade.  Battery health becomes more and more important due 

to the high cost of replacing large scale battery pack. It is urgently needed to enhance the battery 

model in order to optimize battery lifetime. Due to the complexity of the battery degradation, 

many different side reactions need to be considered. The following section presents a review of 

the major degradation mechanisms in the battery capacity fade. 

1.2.4 Side Reactions 

 

The capacity of a lithium ion battery decreases as it cycles. The capacity fade is due to many 

different mechanisms which are associated to different side reactions. These side reactions occur 

on anode, cathode, and also electrolyte. These capacity fade mechanisms are not included in the 



15 

 

Newman’s model. Consequently, the model cannot predict the battery capacity fade during 

cycling. Blow, we first discuss the side reaction in the electrolyte, then the side reaction in the 

cathode, and finally we discuss the side reaction in the anode. 

The electrolyte consists of organic solvent and Li salt. One of the most common used 

electrolytes in the Li-ion batteries is the mixtures of ethylene carbonates (EC), and dimethyl 

carbonate (DMC), and lithium hexafluorophosphate (LiPF6). The high potential cathode 

electrodes used in the lithium ion batteries put a strict requirement on electrolyte stability. Many 

electrolytes used in the lithium ion batteries decompose at voltage higher than 4.5V, and form a 

SEI layer on the cathode surface [31, 32], which block the pores of the electrodes and lead to gas 

generation[12]. High voltage induced electrolyte oxidation not only introduces the SEI layer on 

the cathode surface, but also generates the protons[33]. The protons generated have a significant 

impact on Mn dissolution on the cathode surface. 

During cycling, cathode electrode experiences the degradation. Lithium manganese oxide 

(LMO) spinel, as one of the most commonly used cathode materials, has been extensively 

investigated during the past 10 years. LMO spinel is a good cathode material due to its economic 

and non-toxic features. However, capacity degradation during cycling becomes an obstacle for 

its higher market share. Several degradation mechanisms, such as surface film formation, 

electrolyte decomposition, and Mn dissolution have been proposed for the capacity loss. Jang et 

al.[34]
 
stated that manganese dissolution is the primary reason for capacity fade in the LMO 

spinal cathode.  They also reported that the solvent molecules are electrochemically oxidized and 

that spinel dissolution is promoted by the acids generated as a result of solvent oxidation[35]. 

Their results revealed the important link between the generation of protons and manganese 

dissolution. The dissolution of Mn due to acid attack is also observed in the experiments. A long 
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term cycled cathode electrode was examined by SEM in this study, as shown in Figure 1.9. The 

cathode particle surface has clear tiny grooves, which are suspected to be caused by acid attack.  

In order to quantitatively study LMO degradation, Park et al.[36] developed a mathematical 

model of LMO cathode degradation based on the Mn(III) disproportionation mechanism[37]. 

Later, Dai et al.[38] proposed a capacity fade model including acid generation from two side 

reactions (solvent oxidation and the LiPF6 decomposition); acid-promoted Mn dissolution was 

also studied. Although the dissolution of Mn in the LMO spinel cathode is an important factor 

for capacity fade, chemical analytical results indicate that capacity loss caused solely by 

Mn
2+

 dissolution accounts for only 34% and 23% of the overall capacity loss at 50ºC and room 

teperature, respectively[39]. Not only does Mn dissolution lead to cathode degradation, but the 

reduction reaction of Mn
2+

 on the negative electrode causes additional capacity fade as well [40].
 

 

Figure 1.9 a) and b) shows the acid corrosion induced Mn dissolution of a LiMn2O4 fresh 

electrode left at 55 
o
C for 2 months [41]; c) shows the Acid attack induced Mn dissolution in a 

LiMn2O4 electrode after over 1000 cycles. 
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Another important degradation mechanism of the cathode is particle fracture due to the 

stress induced by Li intercalation/deintercalation. Particle fractures in the cathode electrode have 

been observed in experiments [42-44] after cycling as shown in Figure 1.10.  There is a 6.5% 

volume change in the cubic phase of LiMn2O4 during cycling[45]. During Li insertion into the 

lattice of active material in electrodes, the lattice is expanded accordingly. The non-uniform 

lattice expansion due to this concentration gradient can cause non-uniform strain inside the 

particle. And this uneven strain results in stress.  As intercalation/deintercalation continues, the 

particle undergoes cyclic stress load, which eventually leads to particle fracture after certain 

number of cycles. The particle fracture results in loss of electric contact and increase of 

resistance, and therefore reduces the cathode capacity.  

 
 

Figure 1.10 experimental observation of fracture in cathode particles: (a)LiFePO4 particle 

fracture after 60 cycles[42]; (b) gold-codeposited LiMn2O4 electrode particles after cyclic 

votanmetric tests at a scan rate of 4mV/s[43]; (c)LiCoO2 particles after 50 cycles[44]. 

On the anode, there are several side reactions occurring. It is now well known that the 

carbonaceous lithium-insertion electrodes experience a significant amount of irreversible 

capacity loss during the initial charging cycles[46]. Irreversible capacity loss during the first few 

cycles is thought to result from the formation of the SEI layer on the surface of the carbon. As 

shown in Figure 1.11, in the initial cycles, the lithium ions, electrons combine with the 
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electrolyte to form the SEI in the immediate vicinity of the anode[47]. Zhang et al.[48] used the 

measured the SEI thickness by elemental line scan analysis, and showed that the initial SEI film 

has a thickness range of 450 nm to 980 nm. In the SEI formation, Li salt is produced, such as, 

LiF. The SEI layer continues growing and dissolving due to the continuous reduction of the 

electrolyte and the reformation of the SEI layers. The process consumes the cyclable lithium ions, 

which leads to irreversible capacity loss in the lithium ion batteries. SEI formation can remove a 

significant amount of the cyclable lithium depending on the type of carbon used. For the 

graphitic materials such as Osaka Gas mesocarbon micobeads (MCMB) irreversible capacity is 

as low as 8 to 15%, whereas for the hard carbons it can be as high as 50% of the reversible 

capacity.[12]  

 

Figure 1.11 a) Li intercalation into graphite, b) electrons and Lithium ions are coupled together, c) 

SEI formed[47]; d) SEM image shows the cross section of the natural graphite sphere, the SEI 

thickness varies from 450 nm to 980 nm[48]; e) SEI composition on graphite surface[49] 
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Another important side reaction on the anode surface is the metallic lithium deposition[50]. 

The metallic lithium deposition is expected for the cells with a higher than desired initial mass 

ratio. Figure 1.12 shows the experimental observation of Li plating on an MCMB electrode[51]. 

Because of the highly reactive nature of metallic lithium, the deposited lithium on the negative 

electrode can quickly react with the electrolyte, and causes cyclable lithium loss and electrolyte 

reduction. The primary products of the deposited lithium reacting with solvent and salt molecules 

are Li2CO3, LiF, or other products [46, 52]. Lithium deposition may even occur at high current or 

low temperature to the cells with correct mass ratio because of the high polarization of the 

negative electrode.  However, the most common circumstance that leads to the lithium 

deposition is the imbalanced cells with excess positive electrode mass.  

The most likely place where metallic lithium occurs is expected to be near the electrode-

separator boundary due to the more negative potential than other regions. Formation of metallic 

lithium not only reduces the cyclable lithium, but also is a safety hazard due to the highly 

reactive nature of metallic lithium and cell internal shorting. 

 

 
Figure 1.12 Li plating on the MCMB electrode [51] 
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The existence of Mn deposition has been experimentally confirmed on the anode surface by 

electron probe microanalysis [41, 53]. Xiao et al. [54] observed the Mn particle deposited on the 

graphite surface by TEM as shown in Figure 1.13. S. Komaba et al. [55] conducted a cycling 

experiment in 1 mol/dm
3
 LiClO4 EC/DEC solution where Mn was added before and during 

cycling. The graphite discharge capacity was severely decreased by Mn deposition. The Mn 

deposition is believed decrease the cyclable lithium ions because the manganese deposition may 

occur instead of lithium insertion into the anode during charging.  

 

 
 

Figure 1.13 a) TEM image showing Mn nanoparticles on the graphite surface; b) Mn 

nanoparticle (~14 nm in diameter) deposited on the graphite surface[54] 

 

As discussed above, the major side reactions are divided into three domains: anode, cathode, 

and electrolyte. Table 1.2 summarizes the main side reactions in different domains. The listed 

side reactions are the key ones considered in this dissertation. 

Table 1.2 Key side reactions 

Anode Electrolyte Cathode 

SEI film Solvent reduction & oxidation Particle fracture 

Lithium plating Salt decomposition Mn dissolution 

Mn deposition   
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Prior to this dissertation, battery degradation research has been largely focusing on different 

individual side reactions. One of our objectives is to investigate the interaction between different 

side reactions. Yet, the fusion of different degradation mechanisms contains several technical 

challenges. 

 

1.3 Research Challenges 

Hydraulic electric hybrid vehicle optimal control development and the cycle life 

improvement for Li-ion battery system are particularly challenging for the following reasons: 

 The hydraulic electric hybrid vehicle has multiple energy source and power devices, 

the supervisory control to manage multiple energy source and power sources is 

difficult.   

 The degradation mechanisms are complex, the contribution of each individual 

degradation mechanism to the overall battery capacity fade is unclear, and the 

interactions between different degradation mechanisms are poorly understood.  

 The long term cycling leads to a significant amplification of small change at each 

individual moment. Capturing small changes is extremely difficult.  

 The same battery parameters have different, or even opposite effects on different 

degradation mechanisms. Changing one parameter may be beneficial to one 

degradation mechanism, but had adverse effect on the others.  

 The high computational cost and high nonlinearity of simulating a multi-physics 

based electrochemical model and the lack of a complete understanding of side 

reactions occurring in the battery system have hindered the implementation of 

optimization schemes in the battery design.  
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 Battery application requires not only the energy density and high power performance, 

but also the long cycle life. The multi-objective nature brings up more aspects to 

consider when optimal design.  

1.4 Dissertation Organization 

This dissertation is organized as follows. In Chapter 2, the hydraulic electric hybrid vehicle 

model is developed and the supervisory control is optimized in order to improve the all-electric 

range and battery health. In Chapter 3, the detailed system design of the hydraulic-electric hybrid 

vehicle is introduced. In Chapter 4, a side-reaction coupled electrochemical model is developed 

for the capacity fade analysis of lithium ion batteries. This side-reaction coupled electrochemical 

model includes the major side reactions: anode SEI growth, Mn deposition, cathode fracture, Mn 

dissolution, electrolyte oxidation and salt decomposition. The cell internal resistance increase 

due to SEI formation on the surface of anode is also included. In Chapter 5, the effects of 

different degradation mechanisms on capacity fade and battery performance are studied 

quantitatively. As a result, it is found that the degradation process of a Li-ion cell can be divided 

into three main stages: acceleration, stabilization and saturation. This analysis clearly explains 

the role and process of each degradation mechanism on the life of the battery at each stage. The 

three electrode cell is fabricated and cycled over long term, and the experimental results are 

obtained to provide the physical evidence.  Cycled anode and cathode were also examed by SEM 

and TEM to identify the main degradation mechanisms. Cathode fracture was observed 

repeatedly, which leads to our further study of fracture impact on the capacity fade. In Chapter 6, 

a single particle fracture model is developed to study the impact of fracture on the capacity fade. 

The study explores the effect of SOC, and conductivity on the fracture. Chapter 7 summaries the 

findings from Chapter 5 and Chapter 6, based on the findings, potential ways to improve the 
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battery cycle life are proposed, a general procedure is developed to optimize the battery health 

while fulfilling the energy density and power density requirements. Chapter 8 concludes the 

main results of this dissertation, the new contributions to the field and the possible future 

research directions. 
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Chapter 2 

Hydraulic-Electric Hybrid Vehicle Control Optimization 

 

Limited fossil fuel reserves and global warming provide a strong driving force for 

developing a highly efficient and clean transportation system. This chapter presents a low-cost 

path for extending the range of small urban pure electric vehicles by hydraulic hybridization. 

Energy management strategies are investigated to improve the electric range, components 

efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy 

is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region 

of DC motor and the hydraulic pump/motor. Dynamic programming (DP) is used as a 

benchmark to find the optimal control trajectories for DC motor and a hydraulic pump/motor. 

Implementable rules are derived by studying the optimal control trajectories from DP. With new 

improved rules implemented, simulation results show electric range improvement due to 

increased battery usable capacity and higher DC motor operating efficiency. 

2.1 Introduction 

This chapter investigates a novel concept for extending the range of small urban electric 

vehicles. Light-duty vehicles provide the most common transportation service. Over 85% of 

travel in the United States is in light-duty vehicles [56, 57]. In recent years, electric vehicle 

manufacturers have been speeding up the electric vehicle development. The attractiveness of 

light-duty EVs stem from zero direct carbon emissions, low fuel costs, and diverse energy 

sources including nuclear power, fossil fuels, and renewable sources such as wind, and solar 
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power, which can significantly reduce the dependence on oil. To achieve low cost, using the 

mature and simple lead-acid batteries and electric machines such as the brushed DC motor is 

always a good choice for manufacturers. Under these circumstances, the main goal for light-duty 

EVs is to extend the electric range without compromising vehicle life and while maintaining low 

cost. 

Hydraulic hybridization is one of the effective ways to achieve range improvements through 

effective regeneration due to the low cost and high efficiency of the hydraulic system. Compared 

with an electrochemical battery, a hydraulic accumulator has more power density with less 

energy capacity [58, 59]. Therefore, adding a hydraulic system to an EV combines both 

advantages of high power density and high energy capacity. This holds a promise of significantly 

improving the electric range of operation, but also opens the question of how to coordinate the 

operation of these two energy storage systems to better satisfy the power demand and improve 

the overall efficiency. 

The platform used in this study is a light-duty PK truck called Xebra as shown in Figure 2.1 

from ZAP Jonway, a new automotive manufacturer in electric vehicles (EVs). Based on the 

existing EV configuration, a low-cost solution for improving the electric range is proposed as 

shown in Figure 2.2. To get the performance and calibration data for later vehicle modeling, this 

Xebra truck was tested for range and efficiency under different driving cycles at the US EPA 

National Vehicle and Fuel Emissions Lab. Vehicle status data such as speed, battery voltage, 

current, power, charging energy, and AC energy from the wall were recorded over the tests.  

The Xebra has a battery pack consisting of six 12V lead-acid batteries, which can provide 

4.64 kWh at 1C and costs $1,050. It takes up to 12 hours to charge the battery pack that is 100% 
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discharged. A 5kW brushed DC series wound motor is coupled to the wheel through the 

reduction gears with gear ratio 4.5:1. No regenerative braking is allowed in the stock Xebra.  

 

The previous work [60] introduced several energy management options for Xebra. The 

objective of this chapter is to further investigate the energy management options for the 

hydraulic-electric hybrid light urban vehicle. The chapter is organized as follows. In the first part 

the modeling effort is presented. Then the intuitive rule based strategy is proposed, based on the 

analyses of the component efficiencies. In order to explore the best achievable system efficiency, 

Dynamic programming technique is introduced. The near-optimal control rules are extracted 

from the DP result to be applied in the real world.  

The baseline EV uses a Lead-acid battery and a DC motor to minimize cost. Regeneration 

was not possible.  The option to improve the range with more advanced Li-ion battery is 

prohibitively costly, as it almost doubles the price of a small urban vehicle. Instead, we propose 

integration of a compact and low-cost hydraulic regeneration system. As the only energy source 

in the EVs, battery usable capacity becomes an important factor to the vehicle electric range. In 

order to better understand the lead-acid battery performance, a high fidelity battery model is 

developed based on the testing data from the US EPA National Vehicle and Fuel Emissions Lab. 

Simulation study shows the usable capacity is highly dependent on the usage patterns. 

Aggressive discharging can significantly decrease battery usable capacity. A high power density 

hydraulic system can avoid high current demands on battery and therefore improve its usable 

capacity significantly. 
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Figure 2.1 Xebra light-duty pickup truck from ZAP Jonway. 

 

2.2 Hydraulic Electric Hybrid System 

Based on the stock Xebra PK truck, hydraulic system was designed and added to the stock 

Xebra in order to improve the vehicle electric range. The hydraulic system consists of a 45cc 

bent-axis pump motor with variable displacement, a 23 L hydraulic accumulator with maximum 

pressure of 344 bars and a 30 L hydraulic oil tank. The hydraulic Pump Motor (PM) shaft is 

coupled to the DC motor shaft in parallel through a gear reduction to achieve the gear ratio 2.9:1 

from PM shaft to wheel shaft. The configuration of the Hydraulic-Electric Hybrid Vehicle 

(HEHV) is shown in Figure 2.2. The parameters for electric and hydraulic components are listed 

in Table 2.1.  

 
Figure 2.2 Hydraulic-Electric Hybrid Vehicle (HEHV) Parallel Configuration. 
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Table 2.1 Components Parameters. 

DC motor Power Nom. 5.0  kW 
Battery Capacity @ 1C 4.64  kWh 
Battery Mass 199 kg 
Final Drive Ratio 4.5:1 
PM to wheel Ratio 2.9:1 
Pump Motor 45 cc/rev 
Accumulator Vol. 23 L 
Max. Pressure 344 bars 
Oil Tanks Vol. 30 L 

Hybrid Vehicle Mass 895 kg 
 

2.3 Vehicle system modeling 

The dynamometer tests conducted at the US EPA NVFEL provided a rich set of data for the 

system modeling and calibration. A baseline EV model was first developed and used as a 

platform for the further hybridization and energy management strategy study. This baseline 

model consists of battery model, driver model, DC motor model, DC slave controller, and 

vehicle dynamic model. The preview was added to the driver model to reduce the velocity 

overshoot. A physics-based DC series wound motor model was developed as the primary power 

source [5]. The DC motor model is accurate under certain conditions, however, magnetic flux 

saturation and losses due to commutator switching have a significant impact on the mutual 

inductance factor. A 3D map was derived from the testing data to predict the mutual inductance 

factor under varying speed and torque. The testing data from US EPA NVFEL covers most 

typical driving styles from aggressive stop-go to moderate cruising, and also includes standard 

UDDS driving cycle, where the maximum speed was limited to 35mph to match the Xebra 

specifications. The baseline model was calibrated and validated with a variety of data collected 

under different driving cycles.  

After validating the baseline EV model with actual testing data, hydraulic system was added 

to build the hybrid model. The hydraulic pump motor model is based on Wilson’s equations [61]. 
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The model accounts for both volumetric and torque losses in the pump motor, the volumetric 

losses include laminar leakage loss, turbulent leakage and the loss due to fluid compressibility. 

Torque losses include losses due to fluid viscosity and mechanical friction. The hydraulic 

accumulator is modeled based on the Benedict-Webb-Rubin (BWR) equations [61]. The 

hydraulic accumulator model can predict both the pressure and temperature change during 

discharging and charging. More details about the DC motor, hydraulic pump motor, vehicle 

dynamics, driver model are available in references [60]. The whole HEHV model is shown in the 

Figure 2.3. 

 
Figure 2.3 Hydraulic-Electric Hybrid Vehicle (HEHV) Simulation Model. 

 

2.3.1 Enhanced Battery SOC Estimation 

 

Battery state-of-charge (SOC) is vital in the evaluation of the energy saving in this study. 

The battery capacity is usually specified for a certain discharge time of n hours, for example, Cn 

=200 Ah means that 200 Ah is delivered if discharged at such a rate that the discharge time is n 

hours. The discharge rate can be calculated by Eq. (2.1) 
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, (2.1) 

 

According to Peukert’s findings [62], the relationship between battery usable capacity Cn1 

and the discharge rate In1 can be expressed as Eq. (2.2) 

      (
  

   
)
    

, (2.2) 

Where Cn1 is the usable capacity that the battery will deliver if the discharged at such a rate 

that the discharge time is n1 (h). pc is the “Peukert coefficient” (usually between 1 and 2) unique 

to a battery of a certain make and model [62]. 

Peukert’s findings show the impact of different constant discharge rates on the battery 

usable capacity. Eq. (2.2) can be used to calculate the usable capacity under constant discharging. 

However, due to the non-uniform power demand over the driving cycle, the discharging current 

varies all the time through the driving cycle, which causes troubles to use Peukert’s equation to 

calculate the usable capacity. Inaccurate usable capacity estimation leads to poor SOC prediction. 

An enhanced battery model was later developed in order to improve the SOC estimation under 

varying discharging rate.  

As a starting point, a simplified equivalent circuit model (shown in Figure 2.4) for lead-acid 

pack was used based on the equivalent circuitry introduced by M. Ceraolo [63].  

  
Figure 2.4 Simplified equivalent circuit model for the lead-acid battery pack. [63] 
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The governing equations are shown in Eqs. (2.3), (2.4), (2.5), (2.6), (2.7). More details are 

available in the reference [60]. 

                , (2.3) 

   
  

  
  (2.4) 

               (2.5) 

      

                

               
  (2.6) 

                      (2.7) 

 

The modeled electromotive force, capacitance, and resistances are represented by E0, C0, 

R0, R1, and R2, respectively. These variables are dependent upon parameters which were tuned 

to fit test data. The detailed parameters are shown in Table 2.2.  

Table 2.2 Battery Parameters. 

    78.2 V 
   7.56 
   60.082 s 

    0.027958 Ohm 

    0.13605 Ohm 

    -10.694 

    -3.8789 

    0.02569 Ohm 

   -0.3005 

 

The above equivalent circuit model is very accurate in constant discharging, but has a poor 

capability to estimate SOC under varying discharge. To solve this problem, an enhanced SOC 

estimation algorithm is introduced to the battery model [64].  

The SOC in the above model is calculated by Eq. (2.8).  

      
 

 
, (2.8) 
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Where C is the battery nominal capacity, Q is the total amount of energy (Ah) discharged. 

Because the usable capacity changes under different discharging patterns, the C should also be 

changed accordingly. Rather than changing the denominator C, the enhanced SOC algorithm 

adjusts the numerator Q according to the discharging patterns. Eq. (2.9) is used to calculate the 

Qe under different discharge patterns. 

   ∫                
 

 
, (2.9) 

Qreg is a term introduced for Ah reactivated by electrolyte diffusion during pauses. Alpha is 

the penalty factor for different current. More details are available in the reference [60]. 

2.3.2 Battery Tests 

Battery discharging data was recorded over different driving cycles (including 3 acceleration 

cycles with different acceleration rates, 3 steady state cycles with different steady speeds), as 

shown in Figure 2.5. 

 
Figure 2.5 A) Steady state cycles, and B) acceleration cycles. 
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Figure 2.6 Battery Available Capacities under Acceleration Cycles. 

In Figure 2.6, compared with steady state traces, the acceleration traces have many pauses 

between accelerations. Energy is reactivated by electrolyte diffusion during pauses, which leads 

to more usable energy from the battery. In both steady state and acceleration traces, the total 

energy from the battery increases as the average current from the battery decreases. And, higher 

discharge rate also causes the loss of conductivity between adjacent particles in the active 

material matrix, which leads to uneven current distributions and higher stress on the cell [65, 66]. 

This increased stress will likely lead to shorter the battery life.   

Therefore, in order to get more energy from the lead-acid battery and protect the battery 

health, one of the objectives of the preliminary rule based control strategy is to keep the battery 

discharge rate as low as possible.  

2.4 Preliminary rule-base control strategy developments 

2.4.1 Pure electric drive analysis 

One of the reasons to hybridize the pure electric vehicle is the inefficient performance of a 

baseline DC motor. After calibrating the DC motor to the testing data, an efficiency map was 

obtained based on DC motor model. It indicates severe efficiency penalties at low RPM’s. Figure 
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2.7 shows the visitation points of the DC motor scattered on the DC motor efficiency map over 

UDDS driving cycle, where 120A is about the half of the maximum DC motor current.  

 
Figure 2.7 DC motor visitation points & proposed preliminary rules. 

 

In the Figure 2.7, on the left side of red curve, the operating points are in the low efficiency 

zone or high current. In this region, the battery suffers and the DC motor is working inefficiently. 

In contrast, the hydraulic pump motor has a very significant advantage under the high torque 

demand and low speed circumstances. Hydraulic pump motor has a very high efficiency with 

high displacement which means high torque output. A hydraulic pump motor overall efficiency 

3D map (as shown in Figure 2.8) was obtained based on the pump motor model which has been 

calibrated with the testing data. This 3D efficiency map clearly shows that the displacement is 

the dominant factor that affects the efficiency which means the high torque demand leads to high 

displacement, and therefore high efficiency. Considering both efficiency of DC motor and 

hydraulic pump motor, it’s quite clear that replacing the DC motor with hydraulic pump motor 

during high torque and low speed is a perfect match to improve the overall efficiency. 

Based on the above analysis, the most intuitive control strategy is proposed. The primary 

goal of this control strategy is to move the DC motor operating points to the more efficient 
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region. Figure 2.7 illustrates the basic power split idea on the DC motor efficiency map. The 

whole DC motor efficiency map is divided into 3 regions. On the left side of the red curve is the 

low speed region, where only hydraulic pump motor provides all the torque demand as long as 

there is energy in the accumulator. In case there is not enough energy in the accumulator, DC 

motor increases the output torque to satisfy the torque demand in the low speed region. 

Between the red curve and the green curve, the DC motor replaces the hydraulic pump 

motor to satisfy the torque request alone. Once the torque demand exceeds the green curve 

(maximum torque curve) hydraulic pump motor supplies the excess torque. Because the braking 

energy is “cost free”, this control strategy is trying to use regenerative braking whenever possible.  

 

 
Figure 2.8 Hydraulic pump motor efficiency map. 

This control strategy can lower the battery current during acceleration (low speed region). 

And instead of using DC motor at low RPM’s, hydraulic motor can significantly improve the 

energy conversion efficiency and reduce the current drawn from battery. 

Due to the limited power of the 5 kW DC motor, the stock Xebra can only reach 35 mph. 

The maximum speed of the UDDS cycle is limited to 35 mph to match the maximum speed of 

Xebra. The simulation evaluates the effectiveness of the control strategy in achieving energy 
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savings by evaluating the battery SOC at the end of a single driving cycle. More energy savings 

and higher battery remaining SOC after one driving cycle means longer electric range. It’s also 

more convenient to apply dynamic programming to one driving cycle with fixed length. After 

incorporating the rule-based control strategy into the vehicle model, the simulation results are 

generated as shown in Figure 2.9. 

 
Figure 2.9 Preliminary rule--based control strategy simulation results over UDDS 

 

DC motor torque, hydraulic PM torque, hydraulic accumulator SOC and battery current 

trajectories show the control actions based on the preliminary rule-based controller over the 

UDDS cycle. The torque trajectories in Figure 2.9 show that PM is almost used at the beginning 

of acceleration (low speed), however for some high torque demand in the low speed, which 
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exceeds the maximum available torque from hydraulic PM, DC motor provides extra toque to 

overcome high torque demand. A comparison between EV mode and Hybrid mode (preliminary 

rule-based) is presented in Table 2.3. Overall, the energy consumption is reduced by 25.72% 

which is mainly attributed to the regenerative braking, efficient DC motor operation, and 

increased usable capacity of the battery pack due to lower discharge currents. By repeating the 

UDDS cycles until the battery is depleted, the electric range is obtained for both EV only mode 

and Hybrid mode. The preliminary rule-based control strategy enables HEHV to achieve 

64.75 % range improvement. 

Table 2.3 Results comparison: EV, and preliminary rule (PR). 

 EV PR Improvement 
Energy Consumption (MJ) 5.72 4.25 -25.70% 

Remaining SOCbatt. 67.95% 80.36% +12.41% 

Electric range 13.25 21.83 +64.75% 
 

2.5 Optimization of rule-based control strategy using dynamic 

programming 

2.5.1 Dynamic programming problem formulation 

The simulation results from preliminary rule-based control strategy show significant 

improvement after hybridization and also bring up question about the best achievable energy 

saving under current hardware configuration. Dynamic Programming (DP) technique was chosen 

as an effective way to determine the optimal control actions for this control problem. In the past, 

DP has been successfully applied to replace the Rule-based control strategy for hybrid electric 

vehicles [67, 68]. In order to find and tentatively reapply the optimal control strategy for HHEV, 

an optimization problem is formulated and solved by dynamic programming algorithm. 
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Since the high fidelity model is not suitable for DP analysis (curse of dimensionality), the 

original high fidelity model is simplified to reduce the computation cost. The details of the 

simplification are described below. 

The simplified vehicle dynamics model which consists of the rolling resistance (tire), 

rotating friction and the aerodynamic resistance can be approximated by Eq. (2.10) 

                          , (2.10) 

Where   and   are the speed and the acceleration of the driving cycle (UDDS) at time t. M is 

the mass of the vehicle. 

The simplified DC motor is based on efficiency map as shown in Figure 2.7. The efficiency 

map is obtained based on the testing data from the US EPA National Vehicle and Fuel Emissions 

Lab. The DC motor efficiency is a function of motor torque and speed. The DC motor is only 

outputting positive torque; therefore no regenerative brake is done by DC motor. The governing 

equations are shown below. 

             , (2.11) 

               , (2.12) 

               , (2.13) 

Where     is the DC motor torque,    is the total torque demand,        is the power split 

ratio (control action u) between DC motor and hydraulic PM. 

The hydraulic pump motor is modeled based on the efficiency map shown in Figure 2.8. The 

governing equations for pump motor are shown below. 

                 , (2.14) 

    
   

      
, (2.15) 
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                  , (2.16) 

        
   

   
  (2.17) 

Where    ,    ,    ,     are the PM torque, displacement, efficiency, and power 

respectively. 

Hydraulic accumulator pressure is calculated based on SOC by Eq. (2.18) 

           (         )         (2.18) 

Where   ,     , and      are the accumulator pressure, maximum pressure, and pre-

charged pressure respectively. 

The complicated battery model shown in the Figure 2.4 can be simplified to an efficiency 

map based model for the dynamic programming. The efficiency map for the lead acid battery is 

obtained by running the high fidelity model in Figure 2.4 under different SOC and discharging 

power conditions. The efficiency map is shown in Figure 2.10. The battery SOC and discharging 

efficiency are calculated by Eq. (2.19), (2.20) 

           
    

     
   (2.19) 

                         (2.20) 

 
 

Where     ,      ,      , and       are the battery discharged energy, full energy capacity, 

discharging power, and efficiency respectively. 
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Figure 2.10 Energy efficiency maps of the lead acid battery for discharging. 

 

Minimizing the energy consumption (battery power output) over the UDDS cycle is selected 

as the objective function in dynamic programming. The objective function is defined by the Eq. 

(2.21): 

         ∑  (         )

     

   

   (2.21) 

Where L is the energy drawn from battery over a time segment, N is the driving cycle length. 

x and u are the vectors of state variables  (battery SOC, accumulator SOC, etc..) and control 

signal (power split ratio) respectively. In order to match the final value of accumulator SOC with 

the initial value, and get higher final battery SOC as much as possible, a penalty term Eq. (2.22) 

is introduced: 

                                                 (2.22) 

Therefore the final objective of the optimization problem can be expressed as Eq. (2.23).  

         ∑  (         )

     

   

    (2.23) 

 



41 

 

Based on the simplified model, a generic DP function introduced by Sundström and 

Guzzella [69], is used to searches for the optimal control actions over the UDDS driving cycle. 

The optimal states and control trajectories are shown in Figure 2.11. 

 
Figure 2.11 Dynamic Programming results under UDDS 
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Figure 2.12 Visitation points in DP forward Simulation (Simplified model) & lines defining 

operating modes for the new rules 

 

Figure 2.12 depicts the visitation points of the simplified model after running through the 

UDDS driving cycle using the optimal control law from the DP. The visitation figure clearly 

shows that DP tends to move all the DC motor operating points to the region 2 in Figure 2.12, 

where the efficiency is highest, and PM is working in the region 1, where the speed is low. When 

the torque demand and speed are both high in region 3, DC motor and PM are used 

simultaneously. Three curves are extracted from visitation points in Figure 2.12 to form the new 

control rules. The red curve called PM only curve defines the region where running PM is 

preferred. The blue curve called DC motor upper limit defines the DC motor running region. In 

the region 3, the hybrid mode is engaged and torque from the DC motor and the hydraulic motor 

are blended together. This new extracted rules should be able to capture the main features of the 

DP optimal results.  

2.5.2 Summary 

 

After implementing the DP improved rules (extracted from DP) into the high fidelity model, 

additional results are generated and shown in Figure 2.13. Compared with the preliminary rules 

(in Figure 2.7) which run DC motor above 45% efficiency curve, the improved control strategy 

DC motor 

only 

PM only ❶ 

Hybrid 

❸ 

❷ 
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(in Figure 2.13) tends to operate the DC motor in a narrower region with higher efficiency 

(above 55%) which explains the energy savings listed in Table 2.4. Overall, the improved rules 

extracted from DP tend to operate the DC motor mainly in the high efficiency region; however, 

due to the depletion of hydraulic energy, DC motor is also occasionally used in hybrid mode 

outside of the desired area, such as the upper left corner, and the center bottom area in Figure 

2.13.  

Even though Dynamic Programming is searching for the optimal control actions over a pre-

defined driving cycle UDDS, the simulation result from DP in Figure 2.13 reveals a general and 

efficient way to operate the whole system. Therefore, the extracted rules are also expected to 

achieve near optimal performance over different driving cycles. 

 

 
Figure 2.13 Visitation points based on improved rules over UDDS (High fidelity model) 

The DP improved rule-based control strategy achieves lower energy consumption and higher 

remaining SOC, compared to preliminary rules (Table 2.4). The electric range is obtained by 

repeating the UDDS cycles until battery is depleted. 

 

Table 2.4 Results comparison: EV, PR, Improved Rules. 

Configuration EV HEHV (Preliminary Rules) HEHV(Improved Rules) 
Energy Consumption 5.72 MJ 4.25 MJ (-25.70%) 4.22 MJ (-26.22%) 
Remaining Battery 

SOC 

67.95% 80.36% (+12.41%) 80.79% (+12.84%) 

Electric range 13.25 

miles 

21.83 miles (+64.75%) 22.3 miles (+68.30%) 
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2.6 Conclusions 

Based on the EV model and Hydraulic Electric Hybrid Vehicle model, an energy 

management problem was formulated with the objective to lower the energy consumption. As a 

starting point, a preliminary rule-based (PR) control strategy was proposed based on the analysis 

of the DC motor efficiency and the battery characteristics. The PR control was a simple and 

intuitive strategy; nevertheless it enabled significant improvements of the system efficiency and 

increased the electric range. A secondary benefit was achieved by reduced battery peak loads and 

likely extended battery life. 

In order to explore the best achievable energy saving, an optimization problem was formed 

and solved by Dynamic Programming algorithm. Based on the forward simulation results, 

optimal rules are extracted from the optimal control trajectory. Results show that the additional 

energy consumption improvement is mainly from the more efficient DC motor operation. Based 

on this study, the near optimal and vehicle implementable rule-based energy management 

strategy was developed for the Hydraulic-Electric Hybrid Vehicle. The next challenge will be to 

implement designed control strategy into the real vehicle, and this effort is underway. 
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45 

 

  

SOCbatt. Lead-Acid Battery SOC 

UDDS Urban Dynamometer Drive Schedule 

PR            Preliminary Rules 

HEHV            Hydraulic Electric Hybrid Vehicle 
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Chapter 3 

Hydraulic-Electric Hybrid Vehicle System Design 

3.1 Introduction 

 

In previous chapter, control strategy is optimized for the hydraulic-electric hybrid vehicle. 

The electrical range is improved significantly by hydraulic hybridization and control 

optimization. In this chapter, the detailed system design of the hydraulic-electric hybrid vehicle 

is introduced. The following sections show the details of the system design which includes the 

hydraulic system design, electric system design, and control code development.  

 

3.2 Hydraulic System Design 

 

 

3.2.1 Hydraulic system layout 

 

The schematic diagram of the hydraulic-electric hybrid vehicle is shown in Figure 2.2. The 

hydraulic system is connected to the DC motor in a parallel configuration through a gear box. All 

the hydraulic components are connected together by hydraulic hoses as shown in Figure 3.1. The 

hydraulic system consists of hydraulic accumulator, hydraulic pump motor, oil reservoir, 

pressure sensors, low pressure manifold, oil filters and hydraulic valves. 
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Figure 3.1 Hydraulic assembly in 3D (left) and hydraulic system layout (right). 

 

The accumulator is mainly used to store the energy. The oil is pressurized into the 

accumulator by hydraulic pump. The hydraulic accumulator used here is a bladder-type 

accumulator and its components are shown in Figure 3.2. A nitrogen gas pressure sensor is 

installed on the one end of the hydraulic accumulator to monitor the pressure insider the 

accumulator and HISOV (High pressure shut off valve), and FSOV ( Fast shut off valve) are 

installed on the other end of the accumulator to open or close the accumulator.  

 

Figure 3.2 Bladder-type accumulator and its components [70] 
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Between the FSOV and HISOV, there is a small pilot high pressure hose. The pilot hose 

provides necessary high pressure oil for the pump motor displacement actuator during pump 

motor operation.  

The high pressure line starts from the outlet of hydraulic accumulator, through HISOV, 

FSOV, and then goes to the high pressure union. The union connects the high pressure hose from 

hydraulic accumulator, the inlet port of hydraulic pump motor, and high pressure relief valve. 

The purpose of relief valve is to release the high pressure oil directly to the oil tank when the 

pressure of the oil exceeds certain dangerous level. 

The hydraulic pump motor used in this study is a variable displacement bent axis type 

hydraulic pump motor as shown in Figure 3.3. It has a rotating cylinder containing parallel 

prisons arranged radially around the cylinder center line. The pump motor shaft is arranged at a 

variable angle to the cylinder axis. The shaft includes a flange with a mechanical connection to 

each piston. In pump mode, as the shaft rotates the pistons the hydraulic oil is sucked from the 

inlet port and pushed out from outlet put. In the motor mode, the high pressure oil pushes the 

pistons, and the shaft is therefore spun.  

 

Figure 3.3 Bent-axis hydraulic pump motor[19] 
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The hydraulic pump motor used in this study has three main ports. The first port is the high 

pressure inlet port which connects to the high pressure oil line. The second port is the outlet port 

which connects to the low pressure manifold. And the third port is the actuator port which 

connects to the high pressure line from the oil port between HISOV and FSOV. The high 

pressure oil goes to the third port to enable the displacement control. The pump motor is installed 

on the reduction gear box as shown in Figure 3.4. 

 

Figure 3.4 Hydraulic pump motor installation 

 

There are two oil filters in the system. The first filter is in the line from accumulator to the 

pump motor actuator port. It cleans the oil going into the pump motor actuator. And the other 

filter is installed on the low pressure manifold, which cleans the oil from the pump motor to the 

oil tank.  

Low pressure manifold is designed to include check valves and filter on the low pressure 

side of pump motor. The detailed design of the manifold is shown in Figure 3.5. The manifold 

contains 3 check valves, 1 pressure sensor and 1 oil filter.  
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Figure 3.5 Low pressure hydraulic manifold 

 

The oil tank is specially designed as shown in Figure 3.5. It has 3 inlet ports connecting to 

pilot valve, low pressure manifold, and pressure relief valve. One outlet port is on the bottom of 

the oil tank. A inner filter is installed on the suction port.  

 
Figure 3.6 Oil tank design 

 

 

The oil tank is designed to be placed in between battery pack and the stock DC motor controller 

as shown in Figure 3.7.  
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Figure 3.7 Oil tank position 

A reduction gear box is designed to gain the right gear ratio between DC motor and 

hydraulic pump motor. As shown in Figure 3.8, the pump motor is installed on the reduction gear 

box.  

 
Figure 3.8 Pump motor and reduction gear box 

After the hydraulic system is designed, the parts are assembled together as shown Figure 3.9. 
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Figure 3.9 Hydraulic system after packaging 

 

The energy capacity of the hydraulic accumulator depends on several factors, such as, 

accumulator size, pre-charge pressure, maximum pressure, etc. In order to better utilize the 

capacity of the accumulator and save space for the vehicle, the energy capacity of the 

accumulator under different pre-charge pressure, and accumulator sizes is investigated.  

As shown in Figure 3.10, the left Y axis shows the energy capacity of the accumulator, and 

the bottom X axis shows different pre-charge pressure. The maximum pressure in the 

accumulator is fixed to be 5000 psi due to the safety concern. Different energy capacities are 

plotted with different colors. The right Y axis shows the kinetic energy of the vehicle, and the 

upper X axis shows the vehicle speed. The volume of the hydraulic accumulator used in this 

study is chosen to be 6 gallon which has enough energy capacity to capture the kinetic energy 

from the vehicle at 35 mph (maximum speed).   
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Figure 3.10 Accumulator energy capacity and vehicle kinetic energy 

 

3.2.2 Hydraulic operating modes 

 

The hydraulic system is connected to the existing propulsion system. During the acceleration 

and brake, hydraulic system is used to assist DC motor to launch or vehicle brake system to go 

regenerative brake.  The central controller monitors the pressure in the hydraulic system and 

vehicle status, and controls the hydraulic system during different events. In the following section, 

different events are introduced and the control sequences in different events are explained.  
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Figure 3.11 Power off mode 

 

Figure 3.11 shows the hydraulic system status in the power off mode. In the power off mode, 

the vehicle is turned off. And FSOV and HISOV for the accumulator are also shut off  to close 

the accumulator. All the hydraulic lines become low pressure. The hydraulic pump motor is not 

controllable during power off mode due to lack of pressure to the actuator.  The vehicle wheel 

can spin freely, because the pump motor has a build-in idling bypass check valve. The residual 

oil in the pump motor will circulate through the bypass channel inside the pump motor if the 

vehicle wheel is rotating.  
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Figure 3.12 Power on mode 

When the power is just turned but not driven yet, the HISOV is switched on as shown in 

Figure 3.12. The high pressure oil comes out from the accumulator, and goes to the pilot line 

which is directly connected to the actuator port of the pump motor. Therefore, the pump motor 

displacement can be controlled. The controller can send out command to set the displacement of 

the hydraulic pump motor based on the throttle pedal. During power on stage, the throttle pedal 

is not pressed yet, the controller will send 0 displacement signal to the pump motor. Therefore, 

the hydraulic pump motor will have 0 displacement which means neutral of the hydraulic system.   
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Figure 3.13  Acceleration mode 

 

When the driver presses the throttle pedal, the vehicle starts to accelerate. The controller will 

send out the signal to switch on the FSOV. The high pressure oil goes through HISOV and 

FSOV to the hydraulic pump motor. The hydraulic pump motor is working under motor mode. 

The hydraulic motor outputs the torque through the gear box to the wheel. The oil comes out 

from the hydraulic motor and goes to the low pressure manifold. The filter installed on the 

manifold will clean the oil before the oil goes to the oil tank.  
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Figure 3.14 Regenerative brake mode 

When the driver presses the brake pedal, the controller sends out the signal to set the pump 

motor to be negative displacement, which means the hydraulic pump motor enters pump motor. 

The oil will be pumped from low pressure oil tank to the high pressure accumulator. The 

pressure difference applied on the hydraulic pump will generate a brake torque to the wheel. The 

pumped oil is stored in the accumulator for the next acceleration.  

All the hydraulic valves, pump motor, and sensors are connected to the central controller. 

The central controller sends out the commands in each event based on the measurements of 

vehicle speed, accumulator pressure, throttle pedal position and brake pedal position.  
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3.3 Electric System Design 

 

3.3.1 Stock electrical system  

 

 

The electric system in the stock vehicle is shown in Figure 3.15. The existing electric system 

includes high voltage (72V) power from the battery pack and low voltage power (12V) from 1 

battery under the hood. The 12V circuitry sends out the control signals to the 72V circuitry. The 

throttle pedal is a special potential meter. The voltage signal from the potential meter is fed to the 

DC motor controller which will adjust 72V power to the DC motor through PWM.  

 
 

Figure 3.15 Electric system in the stock vehicle 

 

3.3.2 Modified electric system 

 

In order to integrate the new hydraulic system to the stock vehicle, the existing electrical 

system is modified as shown in Figure 3.16.  The Pi M460 controller is used as the central 

controller for the hybrid vehicle. The 12V circuitry provides the power to the M460 controller. 
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The controller collects all the signals from different sensors, such as throttle pedal, key position, 

vehicle speed, pressure in hydraulic system, and sends out the commands to different actuators in 

hydraulic system and electric system.  

 
 

Figure 3.16 Modified electric system 

 

3.4 Control System Design 

 

3.4.1 Code architecture and SIL setup 

 

The control system is developed in the software in the loop environment. The hybrid vehicle 

model developed in the previous chapter is used as the baseline for the control code development. 

In order to test the code in Matlab Simulink, the existing hybrid vehicle model is augmented with 

details, such as, hydraulic pressure sensors, valves, and actuators. 
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Figure 3.17 Control system in Simulink 

 

 

The control system has three main modules. The first module is the vehicle status monitor. 

This module is responsible for monitoring the key position, such as, forward or reverse modes. 

The vehicle status monitor module determines the whether or not to engage the hydraulic system. 

The information from the status monitor module is sent to the toque distribution calculation 

module. This module is used to calculate the torque distribution between DC motor and 

hydraulic pump motor. The third module is the output signal processing module for the HISOV 

and FSOV. The calculated torque distribution message will be passed to this module, and the 

signals for HISOV and FSOV will be sent out from this module.  

The torque distribution calculation module is the most important part in the control system. 

It includes the effects of different factors on the hydraulic pump motor displacement and DC 
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motor command. As shown in Figure 3.18, the module calculates the torque distribution for DC 

motor and hydraulic pump motor based on the input from throttle pedal, brake pedal and signals 

from pressure and speed sensors.   

 
 

Figure 3.18 Torque distribution calculation 

 

3.5 Summary 

 

This chapter introduces the hardware design of hydraulic-electric hybrid vehicle. It includes 

the hydraulic system design, electric system design and control system design. The hydraulic 

system is first designed. Based on the hydraulic system, the operating modes are developed. The 

existing electric system in the stock vehicle is studied, and modified in order to integrate the 

hydraulic system to the stock vehicle. The control system is developed in software in the loop 

environment, and failure modes are tested before implementation.  
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Chapter 4 

Side Reaction Coupled Degradation Model Development 

4.1 Introduction 

A substantial amount of work has gone into understanding capacity fade through 

experiments and theoretical/numerical studies [71-80]. Ramadass et al.[81] carried out a 

complete capacity fade analysis for the Sony 18650 cells after hundreds of cycles. They divided 

the capacity fade into rate capability loss as well as primary and secondary active material losses. 

However, they proposed no model to quantitatively explain the capacity fade due to different 

mechanisms. Safari et al.[82] proposed a multimodal physics-based aging model to predict the 

capacity fade for Li-ion batteries.  They assumed that capacity fade stems mainly from solid 

electrolyte interphase (SEI) growth on the anode, and that lithium ion consumption during SEI 

growth was the main contributor to cycling degradation. Zhang et al.[13] developed a single-

particle model which they calibrated against the cycling data to study the parameter trajectories. 

They suggested that there were probably different stages of capacity fade in the lithium ion 

battery. However, they proposed no degradation model to quantitatively study the degradation 

process.  

The studies above have attempted to elucidate capacity fade by focusing on specific 

mechanisms, not by regarding all the key mechanisms together. Because each mechanism is 

coupled to each other, it is important to consider all of them and their interactions simultaneously. 

In this way, the whole life of a battery cell can be predicted, and its pattern can be analyzed. 

From this point of view, an attempt is made in this study to develop a physics-based model to 

predict the capacity fading process. There is a number of degradation mechanisms associated 

with cell degradation[12]. The most known processes leading to capacity fade in the Li-ion 
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batteries are SEI growth and manganese deposition on the anode electrode, as well as manganese 

dissolution, electrolyte oxidation and salt decomposition on the cathode electrode. Quantifying 

all these degradation processes will improve prediction of cell capacity during operations.  

The battery system considered in this study is a graphite/LMO full cell, which consists of a 

150 m anode, a 30 m separator and a 110 m cathode in 1 M LiPF6 ethylene carbonate (EC) / 

dimethyl carbonate (DMC) electrolyte. In order to explore the long-term degradation pattern, 

each side reaction is coupled to the electrochemical cell-level model. This model consists of two 

levels: the particle level and cell level. The particle-level modeling describes side reactions on 

both anode and cathode electrodes. The cell-level electrochemical model based on porous-

electrode theory describes the lithium ion transportation process during charge and discharge[83]. 

The two levels are coupled through the local reaction current based on charge conservation.  

4.2 Model Development 

The following sections introduce details of the modeling work and are divided into three 

parts. The first part introduces side reactions on the anode surface, which are mainly responsible 

for the cyclable lithium ion loss. The second part focuses on the side reactions on the cathode, 

which lead to the active material loss and capacity fade of the cathode. Finally, the side reactions 

are coupled to a cell-level electrochemical model for studying cell degradation.  

4.2.1 Part I: modeling of side reaction at anode 

Several side reactions occur on the surface of the anode particles.  Examples of these include 

SEI formation, metallic manganese deposition[55] and the reduction of a small amount of H+ 

generated from solvent oxidation and salt decomposition[38]. A particle-level model is 

developed to describe the side reactions when the SEI layer is growing. The impact of the SEI 

layer on the side reactions is included in the model. As shown in Figure 4.1, the anode particle is 
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covered by a thin SEI layer which can vary from a few nm[84] to hundreds nm [48] depending 

on the cycling conditions and the compositions of the system.  

 

Figure 4.1  A schematic diagram of side reactions on anode, including SEI formation, Mn 

deposition, and Li plating 

In a fresh cell the SEI layer is not yet formed, so the side reaction rate is controlled only by 

Butler-Volmer equations which consider the reactant concentration and electric potential[85]. As 

the SEI grows thicker, the side reactions are slowed down because the electrolyte diffusion 

through the SEI film to the graphite surface is limited[82]. The SEI film growth curves from 

numerical simulations based on detailed chemistry model[86] and solvent-diffusion model[82], 

and also the experimental measurements based on spectroscopic ellipsometry[87] clearly show a 

decaying SEI growth rate as SEI film thickness increases. The decaying growth rate with respect 

to the thickness of the SEI film can be well approximated by an exponential decay function of 

         , (4.1) 

where      is the limiting factor which ranges from 0 to 1,   is the thickness of the SEI layer 

and   is the limiting coefficient. 

The side reation rates limited by the SEI layer can be expressed by  

                 
             

    {   [
  

      

  
(     )]     [ 

  
      

  
       ]  }, (4.2) 
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where       is the side reaction limited by the SEI layer,      
  is the original side reaction rate 

without SEI limitation,       is the limiting coefficient of the side reaction,    
      is the exchange 

current density,   
     is the anodic charge transfer coefficent,    

      is the cathodic charge 

transfer coeffcient,   is the number of electrons involved in the reaction,    is the Faraday 

constant,    is the gas constant,   is the absolute temperature,   is the electric potential and 

    is the equlibirum potential for the side reaction. 

 

SEI formation 

There is continuous SEI formation reaction between the lithiated graphite and the electrolyte 

solvent[88, 89]. This continuous SEI growth leads to a gradual consumption of the cyclable 

lithium and an increase in electrode impedance upon cycling[90, 91].  

The electrolyte reduction reactions occurring on the graphite surface are very similar to 

those on the lithium metal[92]. Aurbach et al.[92] stated that the lithium ethylene dicarbonate 

(CH2OCO2Li)2 and ethylene gas resulting from a one-electron reduction process of EC are the 

dominant products in the SEI formation. Yang et al.[93] investigated the SEI film composition in 

an EC-based electrolyte using Fourier transform infrared and mass spectroscopy. They observed 

that the passive SEI film consists of chiefly (CH2OCO2Li)2. Wang et al.[94] carried out the high 

level density functional calculations, and concluded that the reductive decomposition of EC 

initially proceeds through an ion-pair intermediate. It then homiletically cleaves via an 11.5 

kcal/mol barrier to generate a radical anion, which undergoes a secondary reaction by barrier-

free self-dimerizing. Based on the above findings, Safari et al.[82] developed the SEI growth 

model in which lithium ethylene dicarbonate (CH2OCO2Li)2 is considered to be the main 
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component of the SEI layer and the SEI formation process is expressed in the following 

equations.  

                    (4.3) 

                                   (4.4) 

                                                           (4.5) 

                                                     (4.6) 

The reaction rate of the radical anion formation process at the interface of the graphite and 

the electrolyte,     
  , is expressed by [82] 

    
                 

  
    

  
        , (4.7) 

where       is the reaction rate constant of SEI,     is the solvent concentration,   
     is the 

cathodic charge transfer coeffcient,   is the solid-phase potential, and    is the solution-phase 

potential. 

As mentioned above, as the SEI grows thicker, the reaction rate slows down. The modified 

SEI side reaction rate,      , is given by 

               
                        

  
    

  
        . (4.8) 

The growth rate of the SEI layer due to the accumulation of lithium ethylene dicarbonate is 

related to the side-reaction current density by [82] 

  

  
  

    

  

    

    
 (4.9) 

where   is time,      is the molecular weight of SEI, and      is the SEI density.  

Overcharge phenomena 

 

Lithium deposition as one important side reaction is expected to occur in the lithium ion 

battery under abuse conditions, such as adverse charging conditions, accidental overcharging or 
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low temperature charging[95, 96]. Lithium deposition not only lead to the cyclable lithium loss, 

but also is considered as a safety hazard due to the high reactive nature of metallic lithium with 

electrolyte [97, 98]. 

The main side reaction on the negative electrode surface during overcharge is given by the 

following equation. 

              (4.10) 

Pankaj et al.[50] proposed a deposition model to describe the charge transfer kinetic 

controlled lithium deposition process in a Butler Volmer expression 

                   {   [
          

  
       ]        

          

  
        }  (4.11) 

Pankaj further simplified the reaction rate equation to a cathodic Tafel expression based on 

the assumption that the deposition reaction is considered to be irreversible or the amount of 

lithium deposited is very small and reacts quickly with the solvent. The simplified equation is 

shown below. 

                      [ 
          

  
       ]  (4.12) 

The lithium deposition is also considered to be affected by the SEI thickness[95]. As the SEI 

get thicker, the lithium deposition is reduced due to the difficulty in getting electrons. The 

limitation effect is introduced to the reaction rate, the modified equation is shown below. 

                         

 

 
            [ 

          

  
       ] (4.13) 

 

Manganese deposition and acid reduction 

The deposition of Mn particles on the lithium metal after cycling was confirmed through 

EDX analysis[41, 99]. Komaba et al.[40] conducted cycling experiments in 1 M LiClO4 
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EC/DEC solution where Mn was added before and during the cycling. The discharge capacity 

will severely decrease due to Mn
2+

 reduction on the anode surface. The Mn deposition is 

believed to decrease the cyclable lithium ions because manganese deposition consumes electrons 

that are supposed to be coupled to lithium ions during the intercalation process. This side 

reaction is expressed by  

              , (4.14) 

which implies that Mn deposition on the graphite anode will reduce the amount of cyclable 

lithium ions in the cell. 

Because the reaction is controlled by electrical charge transfer, the Mn deposition process 

follows the Butler Volmer expression[38], in the form of 

       
                   [ 

  
      

  

  
       ], (4.15) 

where        
  is the Mn deposition rate,         is the reaction rate constant,       is the      

concentration, and    
      

  is a cathodic charge transfer coeffcient in the process.  

The Mn deposition is also considered to be affected by the SEI thickness. As the SEI grows 

thicker, the Mn deposition rate should decrease, giving 

                    
                             [ 

  
      

  

  
       ]. (4.16) 

The protons generated from electrolyte oxidation and salt decomposition could also be 

consumed at the anode surface via [12]  

      
 

 
     . (4.17) 

The reaction is controlled by electrical charge transfer and the reaction rate can be expressed 

by  
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      [ 

  
   

  
       ], (4.18) 

where    
 is the reaction rate constant,     is the    concentration, and   

    is a cathodic 

charge transfer coeffcient.  

When the cell is being discharged, the potential difference       is large, giving a very 

small reaction rate. Therefore, we assume that there is no reduction/oxidation reactions for  H
+
 

and Mn
2+

  during discharge[38]. 

4.2.2 Part II: modeling of side reaction at cathode 

Important side reactions in the cathode electrode include electrolyte oxidation, salt 

decomposition, Mn dissolution [100, 101], and cathode particle fracture[42, 102, 103]. Further, 

these side reactions are coupled with each other. The protons generated as a result of solvent 

oxidation and salt decomposition play a key role in Mn dissolution.[35] The generated protons 

attack the active material on the cathode surface. This Mn dissolution process can be expressed 

by [35, 38, 104] 

                       
 

 
          . (4.19) 

The reaction rate is controlled by the proton concentration in the cathode because of the high 

content of LMO in the cathode and the small concentration of protons. Part of Mn
2+

 forms 

composites such as MnF2 in the SEI layer on the cathode surface,[100] the dissolved Mn
2+ 

is 

hypothesized to be a fraction of the reaction product, and is expressed by 

                                        , (4.20) 

where         is the Mn dissolution rate,         is the fraction coefficient,           is the 

reaction rate, and      is the reaction rate constant for the acid attack on the active material. 
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Figure 4.2 Side reactions on cathode, including salt decomposition, solvent oxidation, and Mn 

dissolution 

The protons originate from two main sources. The first source is solvent oxidation,[35, 38, 

104]
   

       
         
→                        , (4.21) 

where     and     represent the solvent oxidation products. The reaction is controlled by 

electrical charge transfer, and the solvent oxidation rate per volume,       , can be expressed by 

the Butler-Volmer equation[38]  

          
   {   [

  
    

  
     ]      [ 

  
     

  
     ]}, (4.22) 

                 
  

, (4.23) 

where    is the surface area per unit volume for the solvent oxidation,   
    is the exchange 

current density,   
    is the anodic charge transfer coefficient,   

    is the cathodic charge transfer 

coefficient, and      
  

is the equilibrium potential of the side reaction. 

An anodic Tafel expression can be used to describe the rate if the decomposition reaction is 

considered irreversible, where 

          
      (

  
    

  
     ). (4.24) 
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The proton generation rate per volume by solvent oxidation is assumed to be a fraction of 

the oxidation current, 

   
               , (4.25) 

where     is a fraction coefficient. 

The surface area for the solvent reaction should be adjusted according to the carbon content 

since solvent oxidation occurs mostly on the surface of the conductive carbon black.[105] We 

assume that    is related to the carbon content   % (weight percentage) by 

   
  

  
     

   
 , (4.26) 

where   
   

 represents the carbon content for a preset value, and   
   

 is the value of    

corresponding to the preset carbon content,   
   

 .   

The other source for the proton is the decomposition of       , [101]  

             , (4.27) 

where the product     reacts with water to form   , namely 

                . (4.28) 

The proton production rate per volume due to LiPF6 decomposition is given by[101] 

   
                         

, (4.29) 

where        is the reaction coefficient,     is the water concentration in the electrolyte, and 

      
is the LiPF6 concentration in the electrolyte. Due to the high ionization of      , the 

concentration       
 can be approximated by     . 

The effect of the potential on the transport of Mn
2+

 and H
+
 is neglected due to the extremely 

low concentrations of these species. Therefore, the migration term is neglected, and only the 

diffusion law applies in the mass conservation of  H
+
 and Mn

2+
.[38] 
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The overall reaction and diffusion process is summarized in Figure 4.2. The mass 

conservation for H
+
 is expressed by 
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Boundary conditions:  
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where    is the electrolyte phase volume fraction,  
  
   

 is the effective diffusivity of    ,   
   

 

and   
   

 are the active surface area per unit electrode volume on the postive (pos) electrode and 

negative (neg) electrode, respectively, and   represents the cell thickness including the anode, 

seperator and cathode. 

The mass conservation for      in the electrolyte is expressed by:                                             
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where      is the concentration of      and  
     

   
is the effective diffusivity. 

The mass conservation for H2O in the electrolyte is expressed by 
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,   negative electrode (4.40) 

Boundary condition:  
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|
   

       (4.41) 

where     
    

is the effective diffusivity of H2O. 

The Mn dissolution-induced active material loss alone cannot explain the overall capacity 

loss. Xia et al.[39] reported that the measured capacity losses caused by Mn dissolution are only 

34% and 23% of the overall capacity loss at 50ºC and room teperature, respectively. It is 

suspected that the other loss of the overall capacity is due to the Mn dissolution-induced contact-

resistance increase, particle structure distortion and LMO particle isolation from the conductive 

nework[106]. 

In our study, contact-resistance increase and active material loss are modeled based on the 

volume fraction change of the LMO cathode. Accounting for the acid-induced Mn dissolution, 

the volume fraction of the solid phase,   , at the cathode is given by[38] 

   
   

  
  

  
   

          ̅

 
  , (4.42) 

where  ̅is the molar volume of LMO.  

The effective conductivity of the solid phase,    
   

  relates to the volume fraction by 

  
   

       
 , (4.43) 

wherei   is the solid phase conductivity, and   is the Bruggeman porosity exponent. 

As disccused above, cathode capacity fade stems from Mn dissolution-induced active 

material loss, contact-resistance increase, particle structure distortion and particle isolation. The 

active material loss and contact-resistance increase can be reflected in the cell level model by Eq. 

(4.42) and Eq. (4.43). However, in order to reflect the capacity fade due to particle structure 

distortion and particle isolation in the cell level model, a term called usable volume fraction, 



74 

 

       
    , is introduced here.  The solid phase volume fraction,   

   
 , accounts for all the active 

and inactive (isolated and distorted due to stress induced by intercalation/deintercalation) 

particles in the solid phase, while the usable volume fraction,        
   

 , accounts for only the 

connected active particles in the solid phase and therefore can reflect the capacity fade due to 

particle isolation and structure distortion. Normally,         
   

, is smaller than   
   

 except at the 

initial state where they have the same value.  

The change of the usable volume fraction is hypothesised to be propotional to the change of 

the solid phase volume fraction, namely  

        
          

   
  at t=0, (4.44) 

        
   

  
     

   
   

  
, (4.45) 

where      is a coefficient. 

As a LMO particle becomes isolated from the conductive network or distorted due to Mn 

dissolution, the effective capacity per unit electrode volume decreases. The maximum 

concentration of Li per unit electrode volume also decreases,  

       
            

         
   

 , (4.46) 

   
       

     
   

 , (4.47) 

where        
   

 is the maximum amount of lithium per unit electrode volume,       
   

 is the  

maximum lithium concenctration in the solid phase,    
   

 is the amount of lithium per unit 

electrode volume, and   
   

 is the lithium concenctration in the solid phase. Therefore, the state 

of charge (SOC) of the electrode can be calculated by 

           
           

   
 . (4.48) 
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The lithium concentration in the electrode decreases as Mn dissolution induced particle distortion 

and isolation increases. 

 

4.2.3 Part III: Side reaction coupled cell level electrochemical model 

 

In order to investigate the impact of the side reactions on the cell performance, the 

degradation mechanisms introduced in previous sections will be integrated into cell level model. 

As shown in Figure 4.1, a typical lithium ion cell consists of two porous composite electrodes, an 

ionic conductive separator and copper and aluminum current collectors. Newman’s porous 

composite electrode model[27] is used here as the basic cell level framework. The cell level 

model consists of three domains: the negative composite electrode, the separator, and the 

positive composite electrode. The composite electrodes consist of active material (LixC6 for the 

anode, LiyMn2O4 for the cathode), electrolyte solution (LiPF6 1M EC/DMC) and a small amount 

of conductive additive (carbon black) and binder (PVDF). The mass and charge are conserved in 

the cell. The total lithium intercalation and deintercalation current per volume,      , is taken into 

account by the Butler-Volmer equation, 

         {   [
   

  
(  

    

  
    )]     [ 

   

  
(  

    

  
    )]  } (4.49) 

          (4.50) 

           (4.51) 

where       is the local reaction current,    is the active surface area per unit electrode 

volume,     is the exchange current density,    is the anodic charge transfer coefficent,      is the 

cathodic charge transfer coeffcient,       is the resistance of the SEI layer,   is the open-circuit 

potential, and      is the SEI resistivity. 
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Figure 4.3 A schematic diagram of side reactions coupled with the cell level framework. The left 

bottom corner illustrates the side reactions on anode, including SEI formation and Mn deposition. 

The right bottom corner illustrates side reactions on cathode, including salt decomposition, 

solvent oxidation, and Mn dissolution. 

In order to couple the side-reaction particle-level model to Newman’s cell level model, the 

side-reaction induced cyclable lithium loss should be added or subtracted from the lithium 

intercalation or deintercalation. On the anode, the side reactions are coupled to the cell level 

model through the following equations: 

               (4.52) 

         
   

          
                  (4.53) 

where     is the current density of lithium intercalation or deintercalation,       is the lithium loss 

due to SEI growth,    
 is the lithum loss from the hydrogen gas, and         represents the 

lithium loss by Mn deposition. 

On the cathode, the side reactions are coupled to the cell level model by 
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                   (4.54) 

where            is lithum loss due to acid attack and        is lithium reinsertion due to 

electrolyte oxidation. 

Table 4.1 summarized the equations used in the degradation model. The side reaction 

equations are divided into the anode side and cathode side.  
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Table 4.1 An overview of equations employed in the degradation model 
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Table 4.2 summarized the battery model parameters. The meanings of the parameters in 

Newman models can be found in  the reference[27].   

 

Table 4.2 Cell level model parameters 

    

Parameter Negative electrode Separator Positive electrode 

Electrode thickness (m)                           

Particle radius    (m)                     

Active material volume fraction    0.471  0.297 

Polymer and conductive filler volume fraction    0.172  0.259 

Porosity (electrolyte phase volume fraction)    0.357 1 0.444 

Solid phase conductivity      (S/m) 100  3.8 

Effective conductivity of solid phase    
   

(S/m)   
   

       
     

   
       

  

Maximum solid phase concentration        (mol/m
3
) 26390  22860 

Solid phase Li diffusion coefficient    (m
2
/s)                    

Initial electrolyte concentration (mol/m
3
) 1000 1000 1000 

Li transference number   
  0.363 0.363 0.363 

Electrolyte phase ionic conductivity    (S/m)
c
        curve 

Effective electrolyte phase ionic conductivity   
   

(S/m)   
   

       
  

Electrolyte phase Li diffusion coefficient    (m
2
/s)                               

Effective electrolyte phase Li diffusion coefficient 

  
   

(S/m) 

  
   

       
  

Effective electrolyte phase Li diffusion conductivity 

   
   

(A/m) 

   
   

 
     

   

 
     

     
     

 

     

  

Electrolyte activity coefficient   
  1 1 1 

Bruggeman porosity exponent    1.5 1.5 1.5 
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Charge transfers coefficient   ,    0.5  0.5 

Reaction rate coefficient     (m/s)                  

Exchange current density     (A/m
2
)      

               
      

       

Active surface area per unit electrode volume    (1/m)    

  

 
         

   

  

 

Faraday constant    (C/mol)  96485.3415  

Initial electrode SOC (fresh cell) 0.01  0.99 

Negative electrode equilibrium potential  U_(V)
 c
 U_(           ) curve   

Positive electrode equilibrium potential  U+(V)
 c
   U+(           )) curve 

c
 Curves in Appendix 

 

Table 4.3 lists the key parameters for the side reactions. More details on the parameters can 

be found in the reference[38, 82]. 
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Table 4.3 Parameter of side reactions 

 

Parameter Value Parameter Value 

             m/s   
    0.5 

    4541 mol/m
3
      

   a
 4.1  V 

    
a
          1/m    

 a
 15% 

  
    0.5   

 a
 10% 

     0.162  kg/mol   
    a

 10% 

     1690 kg/m
3
   

   
  
    a

 10  A/m
3
 

       
 a
         m/s       

 a
             m6

/mol
2
s 

  
      

 0.5  
  
    a

           
   m

2
/s 

       
 a
       1/m  

    
    a

          
   m

2
/s 

   

 a
           m/s     

    a
           

   m
2
/s 

   

 a
       1/m  ̅           m

3
/mol 

  
   0.5     

 a
 8 

    
 a
       m/s     

 a
            

       
 a
 40%   

a
Assumed values 

 

The calibration and validation of the above parameters are introduced in 5.3.5.  
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4.2.5 Numerical implementation 

 

The mathematical model described in previous sections is a multi-scale model. In this 

dissertation,  a 1D geometry is used to model the cell level dynamics, and a 2D geometry is used 

to model the particle level dynamics. The 1D geometry consists of three sequentially connected 

lines to represent the positive electrode, the separator and the negative electrode, respectively. 

And the 2D geometry which consists of two rectangles to denote the solid phase in the 

electrodes[107]. Figure 4.4 shows the configuration of the combined 1D cell level and pseudo 

2D particle level model.  

 

Figure 4.4 Pseudo 2D model for side reaction coupled degradation model, the top 1D geometry 

consists of three segments which denote the anode electrode, the separator and the cathode 

electrode. The bottom two rectangles represent the solid phases of the anode and cathode. The Li 

intercalation/deintercalation flux is extracted from the 1D cell model and projected on the top 

boundary of the 2D geometry. The Li concentration on the top boundary of the 2D geometry is 

projected on the 1D domain as the particle surface concentration of Li [107]. 

 

Cell level variables are solved in the 1D geometry, such as, the Li-ion concentration of the 

binary electrolyte, the potential distribution in the electrolyte, the potential distribution in the 

solid phase and the pore wall flux ( flux between electrolyte and solid phase). The electric 

potential on the left end of the anode electrode is set to 0V as the electric ground. At the right 
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end of the cathode electrode, the current density is specified. The pore wall flux calculated from 

1D domain is projected on the top boundary of the 2D geometry by using linear extrusion in 

COMSOL Multiphysics. After receiving the flux from 1D domain, Li concentration in the solid 

phase is calculated in the 2D domain, and the particle surface concentration which is on the top 

boundary of the 2D geometry is projected back to the 1D domain for equilibrium potential 

calculation in 1D domain. The coupling between 2 domains is done by linear extrusion in 

COMSOL Multiphysics. 

The vertical coordinate in the 2D geometry represents the radial direction of the electrode 

particles. The lithium diffusion is along the radial direction of the particle; therefore, the 

diffusion in the 2D geometry happens only in Y direction (up-down direction). The diffusion of 

the Lithium in the X direction (left-right direction) is ignored by setting the corresponding 

diffusion coefficient to zero.  

4.3 Summary 

This chapter utilizes first-principle physics to develop degradation model for lithium ion 

batteries.  In the discourse on degradation model development, different side reactions on both 

anode and cathode electrode are introduced. The mathematical expressions to describe each side 

reactions are derived. Later, the combination of these individual side reactions and the coupling 

between degradation mechanisms and cell level model are elaborated. Newman’s battery model 

is used as a backbone model. Side reactions are added to this backbone model by using a 1D and 

2D combined model. This model will be utilized in the subsequent chapters to investigate the 

battery degradation patterns over long term cycling, and also to conduct optimal design of 

battery lifetime. 
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Chapter 5 

Degradation Pattern Analysis and Experimental 

Comparison 

5.1 Introduction 

In previous chapter, a degradation model is developed by taking into account the major 

degradation mechanisms on both anode and cathode. This model enables us to investigate the 

long term degradation patterns for Li-ion battery. This degradation pattern analysis is a critical 

step toward battery performance improvement. Several studies have considered the battery 

degradation analysis [108-113] by focusing on specific mechanisms, not by regarding all the key 

mechanisms together. Because batteries’ lifetimes are affected by the combined effect of 

different degradation mechanisms[114], it is important to consider their interactions and their 

impact on the overall battery performance simultaneously. In this chapter, the dynamic process 

of cell degradation and the effects of each different degradation mechanism on battery capacity 

fade during cycling are investigated using the developed model. After the degradation pattern 

analysis, three electrode coin cells are fabricated and cycled over a long period of time in order 

to investigate how the overall capacity fade is affected by the individual electrode capacity and 

the cyclable lithium. SEM and TEM measurements are employed to provide further physical 

evidence of degradation mechanisms at cathode and anode before and after long term cycling. A 

water-glass model was then proposed to describe the whole degradation process based on the 

result from both model prediction and long term cycling data. 

The following sections show the details of capacity fade during cycling and the analysis of 

capacity fade based on the degradation mechanisms described in previous Chapter, and also the 

details of the experimental results. 
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5.2 Degradation Pattern Analysis 

 

5.2.1 Capacity fade during cycling 

 

In order to investigate the overall degradation pattern, the simulation study is conducted to 

cycle the Li-ion cell over 900 cycles. The cycling condition is simulated based on constant 

current/constant voltage (CCCV): the cell is charged with 1C rate until the cutoff voltage of 4.1 

V. Next, the voltage is held until the current drops down to 0.1C. Next, the cell is discharged to 

3.4 V at 1C, held at 3.4 V until the current drops down to 0.1C.  

In order to trace cyclable lithium loss through the whole cell life from factory assemblage to 

cell failure, the simulation starts from the fresh cell condition, in which the cell is composed of 

an empty graphite anode and a fully liathiated LMO cathode. The initial SOCs of the negative 

electrode and the positive electrode are set to 0.01 and 0.99, respectively, in order to represent 

the fresh state of the cell.  

Figure 5.1 shows the discharge capacity fade during cycling from our model prediction. The 

capacity degradation of the cell can be divided into three stages: acceleration, stabilization and 

saturation. Spotnitz  studied the cycle life data from many manufacturers[78]. These data showed 

that the rate of capacity fade was initially high, but slowed down quickly. After several hundreds 

of cycles the rate of capacity fade started a rapid increase. This degradation pattern is consistent 

with the degradation stages reported by our model. 
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Figure 5.1 Degradation of discharge capacity after 900 cycles. The degradation is divided to 

three stages: acceleration stage, stabilization stage and saturation stage. 

 

In the acceleration stage, capacity fade is quite fast due to SEI formation on the anode 

surface. SEI formation can remove a significant amount of cyclable lithium. For the graphitic 

materials such as MCMB, the irreversible capacity ranges between 8% and 15%.[12] In our 

simulation, the capacity fade in the acceleration stage is about 10%, which is close to the 

experimental values[12].
 
As the SEI grows thicker, the reaction rate slows down due to the 

isolation effect of SEI layer. The cyclable lithium loss also slows down, and the battery enters 

the stabilization stage. In this stage, battery performance is relatively stable, and capacity 

decreases slowly. Instead of cyclable lithium loss, the capacity loss of the cathode due to Mn 

dissolution becomes a main contributor to capacity fade. As Mn dissolution develops further, the 

cathode capacity is insufficient to contain all the cyclable lithium in the system and the cathode 

is almost fully intercalated at the end of discharge. At this point, the cell enters the saturation 

stage. Due to the steepness of the cathode voltage curve at high depth of discharge (DOD), the 

battery discharge process reaches the cutoff voltage earlier. 
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Figure 5.2 Discharge curves of aged graphite/LMO cell every 20 cycles during 900 cycles. The 

fast capacity fade is observed at the initial cycles due to the SEI formation induced cyclable 

lithium loss. 

The capacity fade is also reflected in the discharge curves of aged graphite/LMO cell during 

900 cycles as shown in Figure 5.2. In the initial cycles where SEI formation-induced cyclable 

lithium loss is the dominant contributor to the cell capacity fade, a quick shift of the potential 

curve near the end of discharges is observed; this is due to fast cyclable lithium loss induced by 

SEI formation in the acceleration stage. As the cycling number increases, the capacity decreases, 

and the cell voltage reaches the cutoff voltage earlier. The SEI formation induced potential shift 

was also confirmed in experiments. Amatucci et al [115] studied the degradation of 

LiMn2O4/coke cell and a quick shift of potential was observed. They reported that a surface 

electrolyte interface layer was formed on the coke surface. This passive layer reduced the 

cyclable lithium and led to the observed capacity fade and potential shift. 
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Figure 5.3 Side reaction induced cyclable lithium loss. SEI formation is the major contributor to 

cyclable lithium loss, and the loss is fast during initial cycles. 

 

Figure 5.3 and Figure 5.4 show cyclable lithium loss and active material loss due to the side 

reactions, which provide us more insight as to what happens inside the cell. 

The main side reactions consuming the cyclable lithium are SEI formation and Mn 

deposition. Many studies have identified a relationship of SEI growth thickness ∝ t
1/2

 and 

demonstrated that the SEI parabolic growth law fit the experimental data very well[116]. As 

shown in Figure 5.3, the SEI formation curve from our simulation is also consistent with the 

parabolic growth law. SEI formation contributes to the most significant part of cyclable lithium 

loss. The Mn deposition-induced cyclable lithium loss is negligible compared to the SEI 

formation. Therefore, SEI formation dominates cyclable lithium loss during cycling. Figure 4 

shows that in initial cycles the SEI layer consumes 7% of the cyclable lithium when the paricles 

have a  radius of 12.5 m. Smith et al studied the SEI growth by high precision coulometry[116]. 

They reported about 8% lithium loss after 25 days which is about 250 cycles in our simulation. 
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The lithium loss from our simulation is about 7% after 250 cycles and is very close to their 

experiment data. Mn deposition causes additional cyclable lithium loss. The speed of the Mn 

deposition is stable through the whole cycling life due to the high penetration of Mn
2+

 through 

the SEI layer and the continuous dissolution of Mn
2+

 from the cathode.  

 

 

Figure 5.4 Cathode active material volume fraction change over 900 cycles. The Mn dissolution 

leads to the cathode active material loss and therefore the volume fraction decreases. 

Cyclable lithium loss contributes the most capacity loss in the acceleration stage; the active 

material loss becomes important when the cell enters the stabilization and saturation stages. 

Figure 5.4 presents the change of active material volume fraction during cycling. After 900 

cycles the solid phase volume fraction decreases to 0.279, which is about 94% of the initial value. 

The decrease of the solid phase volume fraction contributes to capacity fade in three ways. First, 

the Mn dissolution-induced active material loss leads to a decrease of conductivity of the solid 

phase. Second, the active material loss itself and the induced structure distortion contribute to 
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capacity fade. Third, the active material loss leads to contact loss of the active particle with the 

conductive network, which causes the isolation of active particles. All together, the decrease of 

the solid volume fraction will reduce the effective capacity of the cathode electrode. 

5.2.2 Capacity fade analysis 

 

As discussed in the previous section, there are three stages of lithium ion battery capacity 

fade.  In order to clearly explore the effects of different degradation mechanisms on the capacity 

fade and battery performance at each stage, evolutions of the SOC swing windows of each 

individual electrode are investigated. Particle isolation and loss of active materials are considered 

in our model. Here we wish to emphasize that the SOC of an electrode as defined earlier 

accounts for particles still in good contact with the conducting network, and is not an average of 

all the connected and non-connected particles. 
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Figure 5.5 SOC swing window on anode. Each pair of makers indicate the SOCs at the end of 

discharge/charge that are representative of different stages. The lower markers correspond to 

charged state, the higher markers correspond to discharged state. 

Acceleration stage 

Figure 5.5 shows the evolution of the SOC swing window on the anode during 900 cycles. 

In the initial cycles, the anode SOC swing window starts to move down due to the sudden 

lithium loss. The SEI layer growth during the initial cycles consumes significant amounts of 

cyclable lithium in the anode, which drags the SOC swing window down in the anode. Due to 

the mass conservation in the system, the cyclable lithium in the cathode also decreases in the 

initial cycles as shown in Figure 5.6. 
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Figure 5.6 SOC swing window on cathode. Each pair of makers indicate the SOCs at the end of 

discharge/charge that are representative of different stages. The lower markers correspond to 

discharged state, the higher markers correspond to charged state. 

 

The SOC swing window shift on both the anode and cathode affects the voltage response of 

each electrode. As shown in the bottom of Figure 5.5, the lower SOC in the anode increases 

anode potential, which leads to earlier termination of discharge. The lower SOC swing window 

also increases cathode potential leading to earlier termination of charge. The shift of the swing 

windows towards the steep potential side accelerates capacity fade. As a result of cyclable 

lithium loss in the anode, both electrodes are pushed to the high steep voltage region. Further, the 

high voltage on the cathode also speeds up electrolyte oxidation, thereby accelerating Mn 
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dissolution. In the acceleration stage, the side reaction induced cyclable lithium loss dominates 

capacity fade.  

Stabilization stage 

As the SEI layer grows thicker, the SEI formation on the anode surface slows down, and the 

battery enters the stabilization stage. In this stage the battery performance is relatively stable, and 

the capacity slowly decreases. 

As shown in Figure 5.5 and Figure 5.6, the SOC swing windows on both electrodes shift up 

after entering the stabilization stage. At the same time, the cyclable lithium loss continues at a 

relatively slow rate compared to the acceleration stage. In the stabilization stage, the capacity 

loss of cathode electrode outpaces the loss of cyclable lithium; therefore, SOC on both electrodes 

are raised up. The shift up of SOC swing windows also brings the electrode voltage back to a 

relatively flat voltage region. In this stage, because of the low lithium loss rate and low cathode 

capacity loss, the battery works in a relatively balanced way, which benefits cell capacity 

performance.  

Saturation stage 

After the acceleration and stabilization stages, cathode stress induced fracture and Mn 

dissolution continue. Mn dissolution induced active material loss, fracture induced particle 

structure distortion and particle isolation develop further.  The final result is poor capacity of the 

cathode. After hundreds of cycles, the capacity of the cathode is insufficient to accommodate all 

cyclable lithium. Therefore, more and more lithium ions are left in the anode. As shown in 

Figure 5.5, lithium in the anode increases. Due to the small capacity of the cathode, the cathode 

is almost fully intercalated, even with a small amount of lithium. The poor capacity on the 

cathode makes the cathode quickly saturated during discharge, and also quickly depleted during 
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charge. As shown in Figure 5.6, the SOC swing window on the cathode side becomes wider in 

the saturation stage due to the small capacity. The anode potential is pushed to a low level due to 

the increased concentration, and the SOC swing window of anode shrinks due to the small 

amount of Li interaction and deintercalation. 

The three stages of degradation have been observed in experiments. Zhang et al. studied the 

capacity degradation pattern of lithium ion batteries based on a series of long term cycling data 

[13]. A parameter estimation technique was used to investigate the parameter trajectories along 

cycling. Their results showed a clear three stage capacity degradation pattern, which support our 

model prediction of acceleration, stabilization and saturation stages. 

The effects of different degradation mechanisms on capacity fade and battery performance 

are studied quantitatively. Our study shows that there are three stages during the battery 

degradation: the acceleration stage, the stabilization stage and the saturation stage. In the 

acceleration stage, the cyclable lithium loss due to the SEI formation is dominant. When the SEI 

layer grows thicker and the side reaction rate decays, the degradation enters the stabilization 

stage. In this stage, the loss of cathode capacity due two Mn dissolution, and fracture outpaces 

the cyclable lithium loss, and the concentration of both electrodes starts to increase. In the 

stabilization stage, the lithium ion battery has relatively stable performance. As Mn dissolution 

and particle fracture continues further, the cathode loses enough capacity to contain all cyclable 

lithium ions. More and more cyclable lithium is left in the anode, and the total amount of 

cyclable lithium ions in the system decreases at very low rate. The poor capacity of the cathode 

makes the cathode quickly saturated during discharge and also quickly depleted during charge, 

which accelerates capacity fade.  
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In our study Mn reduction and precipitation at the anode is deemed to affect the cell by 

reducing the amount of cyclable lithium, much in the same way that SEI film formation at the 

anode operates. We have assumed that the SEI structure is independent from Mn deposition. 

However, it is likely that the Mn deposition may fundamentally change the nature of SEI, such as 

porosity, ionic conductivity and stability. These coupling effects need more studies and will be 

considered in future modeling effort. 

5.3 Experimental Study of Capacity Fade 

 

5.3.1 Introduction and motivation 

 

Experiments are designed to investigate the capacity fade over long term cycling and 

provide physical evidence for simulation efforts. A lot of efforts have been spent on 

understanding the lithium ion battery degradation. Ramadass et al.[81] carried out a complete 

capacity fade analysis for the Sony 18650 cells after hundreds of cycles. They divided the 

capacity fade into rate capability loss as well as primary and secondary active material losses. 

Ning et al.[72] studied the capacity fade of Sony US 18650 Li-ion battery under different 

discharge rates and proposed a mechanism to explain the capacity fade that capacity fade is 

mainly due to SEI growth. Arora et al. [12] review a lot of degradation mechanisms and revealed 

each degradation mechanism. The above research attributes the cell degradation either to a 

specific degradation mechanism, such as SEI growth, or to a list of mechanisms. However, they 

didn’t explain the roles of the degradation of each individual electrode in the overall capacity 

fade. And another important issue is the cell voltage data they used is the terminal voltage which 

is the potential difference between cathode and anode. Because the terminal voltage is the 
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difference between cathode and anode, not the absolute value of the two electrode open circuit 

voltages, the potential of each individual electrode is hardly observable[117]. And therefore, the 

information about each individual electrode capacity fade is not measurable. 

In order to investigate how the overall capacity fade is affected by the individual electrode 

capacity and the cyclable lithium, in this dissertation, three electrode coin cells are fabricated and 

cycled over a long period of time. The data from the cycled cell provides not only the cell 

voltage information, but also the voltage information for both anode and cathode, which gives us 

a deep insight about the degradation of each electrode. The cycled cell is dissembled, and SEM 

and TEM measurements are employed to provide further physical evidence of degradation 

mechanisms at cathode and anode before and after long term cycling.  

5.3.2 Three electrode cell cycling 

 

Cell fabrication & experiment setup 

Graphite and carbon black are provided from TIMCAL. Polyvinylidene difluoride (PVDF) 

and N-methyl-2-pyrrolidinone are supplied by Kureha. Powders of LiMn2O4 are available from 

Sigma Aldrich. The 1:1 solvent mixtures of ethylene carbonate (EC) to dimethylcarbonate 

(DMC) with 1 M LiPF6 dissolved are made in glove box and contained less than 10 ppm of H2O.  

The anode electrodes are prepared by mixing TIMCAL graphite, 5wt% TIMCAL super p 

conductive carbon black, 5 wt % PVDF and a small amount of N-methyl-2-pyrrolidinone. The 

mixture paste is spread on Cu foils and evaporated to dryness under vacuum for 10 h at 100 

degree Celsius. The cathode electrodes are prepared by mixing the active component (LiMn2O4) 

with 5 wt% TIMCAL super p conductive carbon black, 5 wt% PVDF and a small amount of N-



97 

 

methyl-2-pyrrolidinone. The mixture is then spread on the Al foils. The cathode and anode 

composition is listed in Table 5.1. 

Table 5.1 Cathode and anode composition 

Component Mass Ratio Source 

Cathode   

LiMn2O4 90% Sigma-Aldrich 

Super p Carbon blacks 5% TIMCAL Graphite & Carbon 

PVDF 5% Kureha Chemical Industry Co., Ltd. 

Anode   

Graphite 90% TIMCAL Graphite & Carbon 

Super p Carbon blacks 5% TIMCAL Graphite & Carbon 

PVDF 5% Kureha Chemical Industry Co., Ltd. 

 

All the processes of assembling and dismantling of the cells were carried out in argon 

atmosphere in a glove box. A small piece of lithium metal is pressed on the Cu strip. In order to 

prevent the Cu strip from touching the coin cell case, the Cu strip is wrapped by Celgard 

separator and inserted in between two separators. The coin cell parts are purchased from MTI 

Corporation. After placing the anode, cathode and lithium reference electrode, the cell is sealed 

by the hydraulic crimper. The schematic of the three electrode cell is shown in Figure 5.7.  Note 

that in a common procedure, the graphite anode and the LMO cathode are supposed to be placed 

into coin cell negative case and coin cell positive case respectively, however, due to the 

electroplating effect[118, 119], in this dissertation, the graphite anode is placed into the coin cell 

positive case and the LMO cathode is placed into the coin cell negative case. Because the two 

electrodes are switched, the external applied voltage/current is also switched to be functional.  
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Figure 5.7 Three-electrode coin cell assembly 

 

The electroplating is found when placing the graphite anode in the coin cell negative case as 

shown in Figure 5.8. After cell assembled in the common procedure, there is a distance between 

graphite electrode and the coin cell negative case due to the spacer and wave spring. During 

charging, the potential on the coin cell negative case is slightly lower than the potential of the 

graphite anode. Therefore, it’s likely for lithium ions to get electrons from the coin cell negative 

case instead of the graphite anode. As shown in Figure 5.8, lithium plating is found on both the 

wave spring and coin cell negative case in experiments.  
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Figure 5.8 Electroplating of lithium on the negative case 

By switching the positions of the electrodes, the lithium deposition on the negative case is 

avoided. 

The assembled cells are installed on the Maccor cycler and cycled over a long period of time. 

The cell is charged with 1C rate until the cutoff voltage of 4.1 V. The voltage is held until the 

current drops down to 0.1C. Next, the cell is discharged to 3.5 V at 1C, held at 3.4C until the 

current drops down to 0.1C. The information of the cell current, cell capacity, cell voltage, 

cathode voltage respect to the lithium reference electrode and the anode voltage respect to the 

lithium reference electrode are recorded throughout the long term cycling.  

 

Degradation Analysis 

The voltage profiles from each electrode with respect to lithium reference electrode over 

long term cycling are presented in Figure 5.9. Because the electrode voltage versus Li reference 

electrode is determined by the surface Li concentration of the electrode, the evolution of Li 

concentration in the electrode can be reflected by the voltage profile. Figure 5.9 shows the 

voltage evolutions of LMO cathode and graphite anode with mass ratio 0.84 over the 1500 cycles. 
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The voltage evolution shows three different stages. In the first stage, the voltage from both 

electrodes shows an increasing trend, and in the second stage, the voltage decreases gradually. 

And finally in the third stage, cathode voltage reaches 3.5 V and the anode voltage decreases to 

nearly 0.15V. The voltage swing window also changes as cycle increases. As shown in Figure 

5.9,  the voltage swing window of cathode expands when cycling, and the voltage swing window 

of anode shrinks. In the middle of the whole cycling, an uncontrolled discharge happened due to 

the malfunction of the Maccor cycler, and the cell is discharged to 0 V for about 2 days, which is 

expected to increase degradation of cathode. 

 

 

Figure 5.9 Measured charge capacity and voltage from anode and cathode with mass ratio 0.84 

 

Another three-electrode cell with different mass ratio shows the similar pattern as shown in 

Figure 5.10. 
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Figure 5.10 Measured charge capacity and voltage from anode and cathode with mass ratio 1.53 

 

5.3.3 Cycled cell examination 

 

After long term cycling, three electrode cells are dissembled and each individual electrode is 

taken out and examined by SEM and TEM. TEM and SEM are both electron microscopy. 

However, there is some difference between them. SEM is based on scattered electrons while 

TEM is based on transmitted electrons[120]. SEM produced the image of the sample by 

collecting and counting the scattered electrons reflected from the sample. TEM passes the 
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electrons directly through the sample. The electrons that pass through the sample are the parts 

that are illuminated in the image. In terms of magnification and resolution, TEM has up to a 50 

million magnification level while SEM only offers 2 million as the maximum level of 

magnification. In this dissertation, SEM is used to examine the cycled electrode at microscale, 

and TEM is used to examine the cycled electrode further deeper, at the nanoscale. 

 

Cathode examination 

First, the cycled cathode is examined by SEM. In order to show the how severe the fracture 

is in the cathode, a fixed area on the electrode surface is selected and the fracture is examined in 

this fix area. As shown in Figure 5.11, in a square area, many cracks are found, the center 

particle shows severe fracture on its surface, the isolated part of the particle is estimated to be 

about 30% of its total volume. The electrode is also washed by acetone in order to remove the 

surface attachment, such as, carbon blacks, PVDF, and electrolyte residues. Figure 5.12 shows 

the fractures on the particle surface after acetone wash. The particle surface is full of fractures. 

For comparison, the fresh LMO powders are also examined by SEM. As shown in Figure 5.13, 

the fresh LMO powders have a clean crystal surface without any fractures.  Therefore, there is no 

doubt that the fracture is due to the cycling. The above SEM examination of cycled cathode 

electrode reveals the fracture is everywhere in the cycled cathode electrode, and is suspected to 

be the main degradation mechanism of the cathode capacity fade.   
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Figure 5.11 SEM measurements of cycled cathode without wash, fractures are found all over the 

surface 
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Figure 5.12 SEM measurements of cycled cathode after acetone wash, fractures are found all 

over the surface 

 

Figure 5.13 SEM image of the fresh LiMn2O4 powders 

 



105 

 

The cracks on the particles observed by SEM reveal the importance of fracture in the 

cathode degradation. TEM is used to provide further information at nanoscale. The particle is 

washed by acetone, and placed on the TEM grid. The cathode sample is transferred into TEM, 

and examined. Figure 5.14 shows the TEM images of the single LMO particle. The particle is 

placed on carbon film of the TEM grid holder. The carbon film is also shown as background in 

Figure 5.14. The surface of the LMO particle is examined, and nanoscale fractures are found. 

 

Figure 5.14 TEM images show that nano cracks are found over a single cycled cathode particle 

 

The above TEM examination of cycled cathode electrode reveals the nanoscale fractures are 

all over the surface. TEM and SEM examinations confirm that the fractures are found 
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everywhere in the cycled cathode electrode, and are suspected to be the main degradation 

mechanism of the cathode capacity fade. 

 

Anode examination 

Graphite anode is believed to have a significant surface change after cycling[121]. One of 

the most important degradation mechanisms in the graphite anode is the SEI layer growth[46, 

122] which is very likely to change the morphology of the surface morphology of the graphite 

anode. 

The cycled anode electrode is taken out and examined by SEM and TEM to get direct view 

of the anode structure change and morphology change after cycling.  

First, the cycled sample is examined by SEM. Figure 5.15 shows the SEM images of the 

fresh anode graphite electrode, and cycled anode graphite electrode. The fresh graphite electrode 

has a clear surface; however, the cycled graphite electrode has a very obvious film covering over 

all the particles.  

 

Figure 5.15 SEM images of a) fresh graphite anode with clear surface, and b) cycled graphite 

anode with SEI film on the surface 
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The SEI film is observed in SEM images, in order to get the more information, such as, SEI 

thickness, SEI impact on the graphite structure, TEM is used to investigate deeper. In a common 

TEM sample preparation procedure, the sample particle milled by ion beam to the thickness of 

several nanometers, however, this procedure is likely to damage the SEI layer or graphite 

structure. In order to protect the particle, we avoid milling the sample by looking at the particle 

edge of which the thickness is small enough for electrons to pass. Cycled graphite particles are 

directly placed into the TEM grid without acetone wash.  Figure 5.16 shows the TEM images of 

the cycled graphite particle. The SEI layer is clearly shown on the surface of graphite. The 

morphology of the SEI layer is amorphous. The thickness of SEI layer varies from location to 

location.  
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Figure 5.16 TEM images show SEI film on the graphite surface; a) and c) show the same 

location with different focus, the thickness of SEI varies from 30 nm to 100 nm; b) shows a 

magnified view of a rectangle area in a); d) shows the SEI layer in another location 

 

Carbon blacks are also found in the TEM images as shown in Figure 5.17. The carbon 

blacks have about 40~50 nm diameter. Carbon blacks are found to not only stay on the surface of 

the graphite, but also underneath the graphite. 
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Figure 5.17 TEM images show the carbon blacks on the graphite surface 

 

The SEI film is found all over the surface of graphite particles. Deeper investigation reveals 

that the graphite particle is exfoliated after cycling. Several studies have been done to elucidate 

the origin of graphite exfoliation. Usually, solvent cointercalation is attributed to have an 

important role in the graphite exfoliation [123-125].  However, the TEM results from this 

dissertation show another important role in the graphite exfoliation, that is the SEI growth. 

Figure 5.18 and Figure 5.19 show the TEM images that reveal the different patterns of graphite 

exfoliation in the cycled anode electrode.  
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Figure 5.18 TEM images show the graphite exfoliation, a) side exfoliation, b) center exfoliation 

 

 
Figure 5.19 TEM images show two sides exfoliation of graphite 
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Figure 5.18 a) shows that SEI layer seems to grow into the graphite layer from the side and 

the graphite layer is delaminated. Figure 5.18 b) shows a clear view of SEI grows into the 

graphite layer from a top defect, and the graphite layer is delaminated from the center point. 

Figure 5.19 shows that the SEI layer can grow from both sides of a big piece of graphite, and 

finally separate this piece of graphite from the bulk graphite. In this case, the delamination is 

from both sides. And the capacity loss due the graphite isolation is significant. 

Through the above SEM and TEM investigation, it’s believed that the SEI growth and the 

graphite exfoliation are the suspected to be the major contributors in the anode electrode capacity 

fade. The SEI growth not only consumes the cyclable lithium and therefore reduces the total 

available lithium ion the battery system, and also increase the internal resistance increase. The 

role of SEI growth in the graphite exfoliation is a potential future topic.  

 

5.3.4 Cathode fracture augment 

 

As shown in the previous section, cathode fracture has been observed frequently over the 

particle surface.  In 4.2.2, the change of the usable volume fraction is hypothesised to be 

propotional to the change of the solid phase volume fraction. With SEM and TEM observation, 

the fracture is highly likely to lead to usable volume fraction reduction. Therefore, in order to 

better reflect the real degradation mechanism, the change of the usable volume fraction updated 

to be propotional to the hydrostatic stress induced by the lithium intercalation/deintercalation, 

namely  

        
          

   
  at t=0, (5.1) 

        
   

  
        (5.2) 
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where      is a coefficient,    is the hydrostatic stress induced by the lithium 

intercalation/deintercalation. The details about the stress generation inside the particle will be 

introduced in the following section. 

Stress induced particle fracture in cathode 

Stress induced particle fracture is one of the important degradation mechanisms in 

cathode[126].  

The lattice constants changes as Li intercalates into or deintercalates out of LiMn2O4 particle. 

Figure 5.20 shows the lattice constant variation as a function of Li stoichiometry [45]. The lattice 

constant change may be assumed to change linearly with Li stoichiometry[127, 128].  

 

Figure 5.20 Lattice parameter change as a function of Li stoichiometry (squares) measured by 

Amatucci et al.[127]; The dashed curve is the lattice parameter change assuming constant partial 

molar volumes 

 

Stress is generated when lithium intercalation/deintercalation induced lattice change is not 

uniform. Prussin [129] studied the stress generated by diffusion in a wafer. He made an analogy 

between concentration and temperature. And the stresses caused by concentration gradients are 
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treated to be similar to those caused by temperature gradients in an otherwise unstressed body. 

The classic equations describing the thermal effects on the stress-strain relations are expressed 

below[130].  
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where     are strain components,    are stress components,   isYoung’s modulus,   is Poisson’s 

ratio,   is modulus of elasticity in shear,   is thermal expansion coefficient, and   is the 

temperature change from the original value. Timoshenko et al.[130] modified the equations for 

thermal effect to concentration effect by replacing temperature   with concentration  , and 

replacing thermal expansion coefficient   with concetration expansion coefficient 
 

 
 (partial 

molar volume/3). Note that, for small expansions, the volumetric expansion coefficient is three 

times the linear coefficient. Therefore, the equations for stress-strain relations with existing of 

concentration gradients can be expressed as follows. 
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By using delta function,    , the above equations can be simplified to one equation shown 

below[131]. 

    {
      
      

 (5.11) 
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   . (5.13) 

where  ̃       is the concentration change from the original stress free value. 

The above equation can be rearranged to get the stress components. 
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The relation between strain tensor and displacement is expressed as [130] 
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In this dissertation, the body forces are neglected, thefore, the equilibrium equation is 

expressed by [130] 

                  (5.16) 

The displacement equations can be obtained by substitution of Eq. (5.14) and (5.15) into Eq. 

(5.16), as expressed below [132]. 

                   ̃               (5.17) 

The boundary condition for the particle surface is  traction-free which can be expressed as 

follows[132]. 

                     (5.18) 

                     (5.19) 
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                     (5.20) 

where  ,   ,    denote the direction cosines between the external normal and each axis. 

Substitution of Eq. (5.14) and (5.15) into boundary conditions Eq. (5.18), (5.19), and (5.20) 

yields 

 (         )                            (5.21) 

where      ,      and     . Therefore, the onlye equations need to be solved are Eq. 

(5.17), and the boundary condition of Eq. (5.21).  

The concentration profile is needed in order to calculate the stress generation inside the 

particle throught Eq. (5.14). The mass transportation inside the particle is modeled as a diffusion 

process. And the driving force for Lithium diffusion is the chemical potential gradient as shown 

below. 

       (5.22) 

where   is the mobility, and   is the chemical potential of lithium. The Lithium flux can then be 

written as 

           (5.23) 

where c is the lithium concentration. 

Based on the thermodynamics, the electrochemical potential in an ideal solid solution can be 

expressed as[131] 

               (5.24) 

   
           

 
 (5.25) 

where    is a constant,   is gas constant, T is absolute temperature,   is the molar fraction of 

lithium ion,   is partial molar volume of lithium ion, and    is the hydrostatic stress. 
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By assuming temperature is constant, substitute Eq. (5.24) into Eq. (5.23) to get the 

following equation. 

           
 

 
     

 

 
   (5.26) 

And the flux equation can be obtained as follows 

        
  

  
     (5.27) 

where       is diffusion coefficient. The mass conservation law gives 
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By substituting Eq. (5.27) into Eq. (5.28), we get 
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The flux boudnary condition is 
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where    is the current density on the particle surface and   is Faraday’s constant. 

In order to implement the stress generation into the cell level model, equations of stress 

generation for 1D spherical particle are derived. In 1D case, the stress tensor for a spherical 

particle has two independent variables, radial stress    and tangential stress   . The equilibrium 

equation corresponding to Eq. (5.16) becomes, 
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And the equations for stress-strain relation cosressponding to Eq. (5.13) become 
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The equation for strain-displacement relations corresponding to Eq. (5.15) becomes 
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And the equation for displacement corresponding to Eq. (5.17) can be rewritten as 
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The stress may be obtained by integrating the above equation. Noting that the radial stress is 

zero at the particle surface. The two stress variables can be obtained as shown below. 
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The equation for the diffusion process corresponding to Eq. (5.29) can be obtained as 

follows.  
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The hydrostatic stress is obtained by Eq.(5.36) and Eq. (5.37). 
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Substitute Eq. (5.39) into Eq. (5.38), we get 
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The boundary fux equation can be obtain by substituting Eq.(5.39) into Eq. (5.30) 
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Therefore, the stress generation and the diffusion process are decoupled. In order to get the 

sterss, the concentration profile should be calculated first. 

5.3.5 Degradation model calibration and validation 

 

Degradation model is calibrated against the data from the three electrode cell cycling. The 

cathode electrode potential and anode electrode potential are used to calibrate the degradation 

model, after calibration, capacity fade data is used to validate the model prediction. The 

parameters used in the degradation model are listed in Table 5.2. The first part of the parameters 

is from experiment measurements and also the reference. The end part of the parameters is 

determined by calibration.  

Table 5.2 Battery parameters and calibration 

Parameter Expressions Unit Description Source 

L_neg           m Length of negative electrode Experiment 

L_sep         m Length of separator Experiment 

L_pos          m Length of positive electrode Experiment 

D1_neg                Solid phase Li-diffusivity Negative [27] 

D1_pos0              Solid phase Li-diffusivity Positive [27] 

rp_neg         m Particle radius Negative Experiment 

rp_pos          m Particle radius Positive Experiment 

Sa_neg                      Specific surface area Negative [27] 

brug 1.5  Bruggeman coefficient [27] 

Rg 8.314           Gas constant [27] 

Far 96487         Faraday's constant [27] 

t_plus 0.363  Cationic transport number [27] 

D2                Salt diffusivity in Electrolyte Experiment 

eps1_pos0 1-eps2_pos0-0.259  Positive solid phase volume fraction [27] 

eps2_sep 1  Separator porosity Experiment 

eps2_pos0 0.48  Positive electrolyte volume fraction Experiment 

K1_pos 3.8 S/m Solid phase conductivity Positive Experiment 

K1_neg 100 S/m Solid phase conductivity Negative Experiment 
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c20 2000        Initial electrolyte salt concentration Experiment 

dlnfdlnc 0  Activity factor concentration variation [27] 

brug1 1.5  Solid phase Bruggemann coefficient [27] 

eps1_neg 1-eps2_neg-0.172  Negative solid phase volume fraction [27] 

eps2_neg 0.52  Negative electrolyte volume fraction Experiment 

c1max_neg 26390        Max solid phase concentration Negative [27] 

c1max_pos 22860        Max solid phase concentration Positive [27] 

soc0_neg 300[      ]/c1max_neg Initial Negative State of Charge Experiment 

soc0_pos 22500[      ]/c1max_pos Initial Positive State of Charge Experiment 

k_neg         m/s Reaction rate coefficient Negative [27] 

k_pos         m/s Reaction rate coefficient Positive [27] 

aA_pos 0.5  Reaction rate coefficient Positive [27] 

aC_pos 0.5  Reaction rate coefficient Positive [27] 

aA_neg 0.5  Reaction rate coefficient Negative [27] 

aC_neg 0.5  Reaction rate coefficient Negative [27] 

omega                 Partial molar volume [126] 

pois 0.3  Poisson’s ratio [126] 

E_pos 10 GPa Young’s modulus [126] 

E_max 4 V Charge cutoff voltage Experiment 

E_min 3.4 V Discharge cutoff voltage Experiment 

I0 20      Oxidation rate coefficient Calibrattion 

k3        m/s Dissolution rate coefficient Calibrattion 

k_iso_ch                    Isolation rate during charge Calibrattion 

k_iso_dis                   Isolation rate during discharge Calibrattion 

k_fs         m/s SEI growth rate coefficient Calibrattion 

lamda         1/m SEI decay coefficient Calibrattion 

k_SEI              SEI resistant coefficient Calibrattion 

 

 The first part of shift is due to SEI growth, in the first part, the SEI parameters are adjusted 

in order to match the shift. And the latter, due to the growth of SEI layer, which reduces the 

reaction rate of the SEI growth, and cathode degradation, becomes the main contributor for the 

voltage shift later on. And the parameters related to the cathode side reaction are adjusted to 

meet the shift of the cathode and anode potential shift. After the calibration, the comparison 

between real data and simulation of cathode anode potential are shown Figure 5.21. 
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Figure 5.21 Model calibration against cathode and anode potentials 

The calibrated model is run over 240 cycles, and the capacity prediction is compared with 

experimental data. As shown in Figure 5.22. The data and prediction has very good match. The 

model parameters calibrated are used in the battery health optimization process.  

 
Figure 5.22 Comparison of capacity fade between simulation and experiment 
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5.4 Summary 

 

This chapter utilizes experiment tools to investigate the capacity fade of Li-ion batteries. 

Three electrode cells are designed and the cycled data is analyzed to study the degradation 

pattern. TEM and SEM are employed to investigate the degradation mechanisms in each 

individual electrode.  

From the TEM and SEM results, the SEI growth and graphite exfoliation are the two major 

degradation mechanisms in the anode electrode. Fracture is found everywhere in cycled cathode 

electrode. It’s believed that the fracture is one of the most important degradation mechanisms in 

the cathode electrode.  

Our study shows that the capacity fade can be divided into three stages: acceleration, 

stabilization, and saturation. This work provides the experimental evidence for the modeling 

framework.  
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Chapter 6 

Fracture Impact Analysis Based On Single Particle Model 

6.1 Introduction 

 

Local fractures in Li-ion batteries have been experimentally observed in the cycled cathode 

electrodes[43]. As discussed in previous chapter, SEM and TEM have shown severe fractures on 

the LMO particles of the cycled cathode electrode. The fracture is believed to be one of the most 

important degradation mechanisms in cathode electrode. Several models have been developed to 

determine the stress generated by lithium intercalation and deintercalation[113, 133, 134]. And 

the relationships have been established between stress levels within cathode particles and 

parameters such as current density, voltage and particle size[135]. Analytical expressions have 

been constructed to capture the stress evolution in spherical electrode particles under 

galvanostatic or potentiostatic conditions[126]. However, the fracture impact on the capacity 

fade has not been well understood. The classic model for the LMO only considers the diffusion 

in the single particle, and assumes that the electron conductivity is not the limiting factor. 

However, due to the low conductivity of the LMO material, especially, when fracture exists, the 

lithium transportation in LMO material is not only controlled by diffusion, but also migration. 

In this chapter, our objectives are as follows: 

1) Develop a physics based single particle model with fracture.  

2) Determine the effect of particle fracture on the lithium transportation 

3) Determine the SOC impact on the fracture 

 

Figure 6.1 shows the comparison of SEM images between fresh LMO cathode and cycled 

ones. Figure 6.1 (a) and (b) show the fresh LMO electrode with clear surfaces. Figure 6.1 (c) and 
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(d) clearly show the fractures on the particles after about 1000 cycles. One possible cause of 

fracture in the LMO particle is the high stress induced by lithium intercalation/deintercalation, 

especially at high charge/discharge rates. A substantial amount of work has gone into 

understanding stress generation and fracture propagation in cathode electrodes. Zhang et al.[126] 

developed a three dimensional stress model to systematically study intercalation-induced stress 

in the cathode particles. They investigated the lithium intercalation-induced stress at different 

particles sizes and aspect ratios and suggested that smaller sizes are desirable for reducing 

intercalation-induced stress during the cycling of lithium ion batteries. Later,  Zhu et al.[135] 

conducted fracture analysis by using the extended finite element method in order to evaluate the 

effects of current density, particle size and particle aspect ratio on fracture propagation. Their 

study shows that current density and particle size are positively correlated with fracture 

propagation, though not monotonically. All the above research has elucidated stress generation 

and fracture propagation in the cathode particle under different conditions. However, no direct 

relationship between fracture and capacity fade has yet been established for the cathode particles 

under different conditions. The impact of fracture on cathode capacity fade during 

discharge/charge cycles remains to be investigated.    
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Figure 6.1 SEM images of (a)/(b) fresh cathode electrode with clear particle surfaces and cycled 

cathode electrode (c)/(d) after 1200, fractures are observed all over the surface of the particles. (d) 

shows that a part of the LMO material is surrounded by fractures and almost isolated from the 

bulk particle. The composite electrode consists of 5% carbon blacks and 5% PVDF and 90% 

LMO material from Sigma-Aldrich. 

Fracture has a significant impact on cathode electrode performance. Fracture increases the 

surface area exposed to the electrolyte, therefore increasing the side reaction rate and Mn
2+

 

dissolution[41]. The increased surface area might be beneficial for the lithium 

intercalation/deintercalation due to increased contact area with the electrolyte. However, fracture 

also leads to the loss of electrical contact and causes particle isolation, which contributes to 

capacity fade of the cathode electrode. In order to understand the impact of fracture on battery 

performance, our present work develops a single-particle fracture model which includes both 

diffusion and migration of lithium ions and electrons in the LMO particle. This model is used to 

investigate capacity fade due to fracture under different conditions. 

The following sections introduce details of the modeling work as well as simulation 

experiments. The impact of LMO material conductivity, cathode SOC swing window, and 

particle size on cathode capacity performance will be investigated. As a result, the optimal 

design and operation rules are obtained to suppress the impact of fracture on cathode capacity 

fade.   
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6.2 Model Development 

 

6.2.1 Cathode electrode composition and micro-structure 

 

The fresh LMO cathode is made by mixing 5% carbon black, 90% LMO active material and 

5% PVDF binder together. As shown in the Figure 6.1 (a), (b) and Figure 6.2 (a), carbon blacks 

are not distributed evenly on the surface of each particle. Instead a considerable portion of 

carbon blacks aggregate in between LMO particles and form the conductive network. Only a 

fraction of carbon blacks is in contact with LMO particles. The LMO particle surface is not fully 

covered by carbon blacks, and part of the surface area is exposed to the electrolyte. The carbon 

blacks connected to the LMO particles are the bridges for electron transport between the current 

collector and LMO particles. The LMO surface area exposed to the electrolyte is available for 

lithium ion intercalation /deintercalation. Figure 6.2 (b) shows the roles of carbon blacks and 

LMO particle and also the electron pathways in the cathode electrodes. The composition and the 

micro-structure of the LMO electrode can be simplified and represented by Figure 6.2 (d).  
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 Figure 6.2 FIB-SEM micrograph of (a) a lithium manganese oxide composite electrode.[136]  

Due to carbon black aggregation, only a fraction of carbon blacks are in contact with the LMO 

particle (b). Diffusion only model (c) assumes that the carbon blacks are distributed over the 

particle surface uniformly, and therefore, the electrons and lithium ions react uniformly over the 

surface, only diffusion law governs the lithium transportation inside the particle. Diffusion & 

migration model (d) assumes that carbon blacks are not distributed evenly on the surface, and the 

mass transportation of lithium ions and electrons is controlled by both migration and diffusion.  

In the conventional model [27], the lithium transportation in the particles is modeled by only 

diffusion lay as shown in Figure 6.2 (c). Diffusion only model assumes that the carbon blacks are 

distributed over the particle surface uniformly, and therefore, the electrons and lithium ions react 

uniformly over the surface, only diffusion law governs the lithium transportation inside the 

particle. The diffusion only model has a uniform flux over the particle surface. Therefore, bigger 

particle surface facilitates the lithium ion and electron reaction, and increases the lithium 

diffusion. Particle fracture increases the particle surface area, therefore is beneficial for batter 

performance in the diffusion only model, which is contradictory to the experimental 
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observations[42]. The electrical isolation cannot be captured in the diffusion only model. In the 

new proposed diffusion and migration model as shown in Figure 6.2 (d), it’s assumed that carbon 

blacks are not distributed evenly on the surface, and the mass transportation of lithium ions and 

electrons is controlled by both migration and diffusion. Therefore, the fracture induced electrical 

isolation or electrical resistance increase can be captured and the impact of fracture on the 

battery capacity can be investigated.  

 As shown in Figure 6.2 (d), when the LiMn2O4/Li half-cell is being charged, the electrons 

are transferred out from the cathode. The carbon black network provides the pathway for 

electron transportation. Once the electrons from the LMO particles are out, due to the charge 

neutrality, the lithium ions are deintercalated out of the particles as well.  When the cell is being 

discharged, the electrons are injected into the current collector from the external circuit and 

transferred to the LMO particles through the carbon black network. The lithium ions in the 

electrolyte are also intercalated into particles due to charge conservation.  

After cycling, fracture develops as shown in Figure 6.1 (c) and (d). The fractured particles 

often have parts which are surrounded by fractures and almost isolated from the bulk particles as 

shown in Figure 6.1 (d). Based on experimental observations, the cathode micro-structure can be 

simplified and represented by a single-particle half-cell as shown in Figure 6.3.  
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 Figure 6.3 (a) LMO/Li half-cell includes carbon blacks (domain1), LMO particle (domain2), 

electrolyte and separator (domain3), and lithium metal anode (domain4). (b) Meshed geometry 

of the single LMO particle with carbon blacks. The carbon blacks are in contact with one side of 

the LMO surface. 

The single-particle model is constructed in COMSOL as shown in Figure 6.3 (a). The model 

consists of 4 domains, carbon blacks (domain1), LMO particle (domain2), electrolyte and 

separator (domain3), and lithium metal anode (domain4). In all sections, subscripts 1, 2, 3, 4 

denote the domains. Subscripts (1,2), (2,3), (3,4) denote the interfaces between carbon blacks 

and LMO particle, LMO particle and electrolyte, electrolyte and Li metal anode, respectively. 

When the cell is being charged, the current flux is added to the carbon black surface, the 

electrons are transferred out of the LMO particle through the carbon black network, and lithium 

ions are deintercalated into the electrolyte. Lithium ions in the electrolyte are transferred to the 

anode side and deposited on the surface of lithium metal.  



129 

 

Due to the uneven distribution of carbon blacks in the cathode electrode, the carbon blacks 

are positioned mainly on one side of the LMO particle. Figure 6.3 (b) shows that the carbon 

blacks are positioned mainly on one side of the particle surface via Matlab random function.  

The mass ratio between carbon black and LMO particle is 5%:90%. Due to the van der 

Waals force, electrostatic force, and Brownian force, LMO particles and carbon blacks dispersed 

in the liquid phase during electrode fabrication stick to each other, and spontaneously form 

irregular particle aggregates. Due to carbon black aggregation, carbon blacks are not distributed 

evenly on the LMO particle surface, instead, they form aggregates in between LMO particles. 

Therefore, only a fraction of the carbon blacks are in contact with the surface of LMO particles. 

Here we assume that about 40% of carbon blacks are attached to the surface. Therefore, the mass 

ratio between LMO particle and carbon blacks is 90:2. 

6.2.2 Single-particle model equations 

Due to the high conductivity of the carbon blacks, the only mobile species in them is 

electrons. Therefore, the flux of electrons in the carbon black network is governed by Ohm’s law 

as expressed in the following equation:  

        (6.1) 

        (6.2) 

where    is the electric potential of the carbon blacks.    is the electric field,    is the current 

density, i.e., the negative flux of the electrons, and    is the conductivity of the carbon black 

network.  

The inlet/outlet flux only occurs on the interface of the LMO particle and carbon blacks, and 

also the interface between the LMO particle and the electrolyte. The interfaces between carbon 



130 

 

blacks and the electrolyte, between the LMO particle and the electrolyte, and between the 

electrolyte and lithium metal are electrically insulated.  

Lithium ions are exchanged with the available electrons on the surface of the LMO particle. 

No electron flux occurs between the LMO particle and electrolyte. The electrochemical reaction 

at the LMO/electrolyte interface can be expressed in the following equation:  

                     (6.3) 

On the interface of carbon blacks and LMO particles, the electron flux is governed not only 

by electron concentrations in the LMO particle, but also the local potential difference between 

the carbon blacks and LMO particle. Butler volmer equation is used to model the electron flux as 

expressed in the following equation: 
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    ]     [ 

   

  
    ]  } (6.4) 

               (6.5) 

where       is the reaction current between carbon blacks and LMO,      is the exchange current 

density,    is the anodic charge transfer coefficient,      is the cathodic charge transfer 

coefficient,   is the open-circuit potential,   is the LMO particle potential, and    is the carbon 

blacks potential,   is the fraction coefficient. 

On the interface of LMO particles and electrolyte, the Lithium intercalation/deintercalation 

rate is governed not only by lithium ion concentrations in both the electrolyte and LMO particle, 

but also the local potential difference between the electrolyte and LMO particle. Butler volmer 

equation is used to model the lithium intercalation/deintercalation rate as expressed in the 

following equation: 
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    ]  } (6.6) 
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                   (6.7) 

where       is the reaction current between LMO and electrolyte,      is the exchange current 

density,    is the anodic charge transfer coefficient,      is the cathodic charge transfer 

coefficient,   is the open-circuit potential,   is the LMO particle potential, and    is the 

electrolyte potential. 

In the LMO particle, the mobile species are lithium ions and electrons. The Mn2O4 host 

structure is relatively stationary. Yamamura et al. [137] conducted an in situ measurement of 

LiMn2O4 conductivity at different SOC. From their measurements, the conductivity vs. SOC 

curve is shown in Figure 6.4.  

 

Figure 6.4  the potential-conductivity profile of a 0.2 um LiMn2O4 film[137] 

Figure 6.4 shows that when the voltage is 4.2 V (x=0 in LixMn2O4), Mn2O4 still has a low 

conductivity, which indicates that there exist mobile electrons provided by Mn2O4. As the 

lithium ions intercalate into the LMO particle, the mobile electrons in the particle are increased. 

Therefore, based on charge neutrality, the total amount of mobile electrons is equal to the sum of 
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lithium ions and the certain amount of mobile electrons provided by the host structure (Mn2O4). 

The two sources of mobile electrons can be expressed in the following equations.  

          (6.8) 

             
       (6.9) 

The fluxes of negatively and positively charged species in the cathode particle are governed 

by Nernst-planck equations, which are obtained by combining Ohm’s law and diffusion 

equations to keep the charge conservation and mass conservation. The flux of each species is not 

only controlled by the concentration gradient but also the potential gradient as shown in the 

following equation.  

                                 (6.10) 

         
      

      (6.11) 

where     represents the flux of the mobile species   which can be   (electrons),    (lithium ions), 

or       (       
  ).      is the diffusivity of species  .      is the concentration,      is the 

charge number,       is the mobility,    is the Faraday constant, and    is the electric potential 

of the LMO particle. Because        
   is stationary, it’s assumed that the diffusion 

coefficient for        
   is infinitely small; therefore, its flux is negligible.      is the 

conductivity of the species  , which is a function of the concentration of species   . 

The mobility of species   can be obtained from the Einstein relation expressed in the 

following equation. 

     
    

  
 (6.12) 

where      is the mobility of the mobile species  ,      is the diffusity,   is the gas constant, and 

  is the absolute temperature. The mass conservation of each species is expressed as 
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                                        (6.13) 

The charge conservation is expressed as 

∑          

 

 (6.14) 

where      is the charge number of species  .  

The electrolyte (LiPF6 1M EC/DMC) is assumed to be binary, i.e., only positively charged 

lithium ions and negatively charged species are assumed to be mobile. The electro neutrality is 

satisfied by keeping the Li ions concentration always equal to the concentration of negatively 

charged species. Based on the concentrated solution theory[138], the fluxes of the positively 

charged ions and negatively charged ions can be expressed by the gradient of the electrochemical 

potential. The gradient of the electrochemical potential can be decomposed into gradients of the 

salt concentration and the electrical potential.[26] Therefore, the fluxes of the Li-ions and the 

negatively charged species can be expressed in the following equations. The detailed derivation 

is included in the Appendix. [139] 
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where        and      are the lithium ion flux and negatively charged ion flux in the electrolyte, 

     and      are the numbers of cations and anions into which a molecule of electrolyte 
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dissociates.    and    are the diffusivity and conductivity of electrolyte,    is the total 

concentration including the solvent,    is the solvent concentrations.   
  and   

  are transference 

numbers.   is the gas constant,   is absolute temperature,      and      are the concentrations of 

lithium ions and negatively charged ions,      and      are charge numbers,   is the Faraday 

constant.    is the electrolyte activity coefficient.    is the electrolyte concentration.    is the 

electric potential of the electrolyte.  

On the anode (lithium metal) surface, lithium deposition and dissolution occurs during 

charging and discharging. There is no electron exchange between electrolyte and lithium metal. 

The reaction rate of the lithium deposition or dissolution is controlled by the over potential 

between electrolyte and lithium metal and also lithium concentration in the electrolyte as 

expressed in the following equation.  

         {   [
      

  
 ]     [ 

      

  
 ]  } (6.19) 

           (6.20) 

where       is the reaction current between electrolyte and lithium metal,      is the exchange 

current density,       is the anodic charge transfer coefficient,         is the cathodic charge 

transfer coefficient,   is lithium metal potential, and    is the electrolyte potential. 

Material properties were selected based on carbon blacks, LiMn2O4, EC/DMC 1M LiPF6 

electrolyte and Lithium metal. The values are listed in Table 6.1.  

Table 6.1 Parameters for fracture model 

TABLE I.  Values of model parameters   

Paramters Description Value Ref. 

  (S/m) Carbon black conductivity 100 [140] 
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(mol/m
3
) Maximum solid phase concentration 22860 [27] 

    (m/s) Reaction rate coefficient         [27] 

  ,    Charge transfers coefficient 0.5 [27] 

      (m/s) Reaction rate coefficient        assumed 

  Fraction coefficient 0.5 assumed 

     Exchange current density between carbon 

blacks and LMO 

       
   

 assumed 

     (A/m
2
) Exchange current density between LMO and 

electrolyte 

     
        

   

       
    

   

[27] 

U(V)
 c Cathode electrode equilibrium potential U(           

   ) curve  

     (m
2
/s) Diffusivity of lithium ions         [27] 

    (m
2
/s) Diffusivity of electrons           fitted 

        
(m

2
/s) Diffusivity of        

             

      Charge number of lithium ion 1  

     Charge number of electron -1  

        
 Charge number of        

   0.875  fitted 

     Number of cations per molecular of electrolyte 1  

     Number of anions per molecular of electrolyte 1  

  (mol/m
3
) Solvent concentration          [141] 

  (m
2
/s) Diffusivity of electrolyte            [139] 

  (S/m) Conductivity of electrolyte      [142] 

  
  Li transference number 0.363 [27] 

  
  Anion transference number     
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     Charge number of cations in electrolyte 1  

     Charge number of anions in electrolyte -1  

  
  Electrolyte activity coefficient 1  

    (A/m
2
) Exchange current density between lithium foil 

and electrolyte 

8500 [139] 

     ,       Charge transfer coefficient 0.5 [139] 

  (m
2
) Cross area               

 (m) Distance between two terminals         

  (C/mol) Faraday constant 96485.3415  

   c
 Curves in Appendix 

 

 

6.3 Results 

6.3.1 Validation of the single-particle model 

 

In order to validate the model, a simulation experiment is conducted. Due to the difficulty of 

measuring the electronic conductivity of a sphere particle, a cylinder particle is constructed by 

using the same parameters and equations as used in the sphere particle. This simple geometry 

change makes the measurement much easier, and validates the same equations and same 

parameters.  The simulation experiment setup is shown in Fig. 5 (a). During the electronic 

conductivity measurements, the electrons in the LMO cylinder are the only mobile species. The 

current flux (electron flux) is added to one terminal of the cylinder and flowing out of the 

cylinder from the other terminal. The conductivity is calculated by the following equation. 
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 (6.21) 

where       is the conductivity,   is the current,   is the distance between two terminals,      

is the voltage difference between two terminals,    is cross area of the cylinder. 

The electronic conductivity of the LMO material at different SOCs is measured from both 

simulation and experiments. Figure 6.5 (b) shows the comparison of measured [137] LMO 

conductivity and calculated value from simulation. The model has good prediction of LMO 

conductivity under different SOCs. 

 

Figure 6.5 Simulation setup for measurements of conductivity and comparison between 

experimental measurements and calculated values from simulation. 

Figure 6.5 shows that the conductivity of the LMO material is a function of Li ion 

concentration. As the lithium ion concentration increases, the conductivity increases as well. The 

maximum deviation between the simulated value and the measured data is about 6%.  

Impact of the electronic conductivity 

The electronic conductivity of LMO particles strongly affects lithium transportation in the 

particle. LMO material has a quite low conductivity [137]. In order to understand the impact of 

conductivity impact on the mass transportation pattern in the LMO particle, the model is charged 
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at 1C rate for 1000 seconds under different conductivities. Figure 6.6 (a) shows the lithium 

transportation in the LMO particle by using the measured conductivity data. Most of the lithium 

is deintercalated from the side where the carbon blacks connect to. As the conductivity increases 

by 10 times and 100 times shown in Figure 6.6 (b) and Figure 6.6 (c), more and more lithium is 

deintercalated out of the particle from elsewhere. After conductivity is increased by 1000 times 

as shown in Figure 6.6 (d), the lithium transportation pattern is much closer to the diffusion-only 

model. The lithium is deintercalated from each direction with the same flux. Figure 6.6 clearly 

shows that with high electronic conductivity, lithium intercalation/deintercalation initiates in 

each directions surrounding the particle. The fast transportation of electrons compensates for the 

lithium intercalation/deintercalation. With low electronic conductivity, the lithium 

intercalation/deintercalation initiates on the side close to the carbon blacks. The slow 

transportation of electrons cannot compensate for the lithium intercalation/deintercalation far 

away from the carbon blacks. Therefore, lithium intercalation/deintercalation mainly occurs on 

the side where electrons are available.  

 

Figure 6.6 Li transportation in the LMO particle under different conductivities. 
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6.3.2 Fracture impact on lithium transportation 

Fractures of LMO particles have been observed repeatedly [43] in the cycled electrodes as 

shown in Figure 6.1. On one hand, the fracture inevitably increases the surface area in contact 

with the electrolyte. The increased surface area is available for lithium 

intercalation/deintercalation. On the other hand, fracture increases the internal resistance for 

electron transportation inside the LMO particle. As shown in Figure 6.1 (c) and (d), the fractured 

particles are observed often to have some parts which are almost isolated from the bulk particle 

by fractures. In order to study the fracture impact on the lithium transportation in the particle, 

fracture is introduced to the particle, as shown in the Figure 6.7 (b). After fracture is added, the 

single particle is charged at 1C until the voltage increases to 4.4 V.  Figure 6.7 (a) shows the 

lithium concentration profiles of LMO particle without fracture, and Figure 6.7 (b) shows the 

lithium concentration profile with fracture. For a particle without fracture, the lithium ions are 

mainly deintercalated on the side where carbon blacks connect to. The Lithium concentrations in 

the bulk are close to each other. The average concentration is about 6400 mol/m
3
. After adding 

fracture, the concentrations in the bulk differ significantly. The concentration difference across 

the fracture is about 3899 mol/m
3
. That means there is more lithium in the isolated region than 

the connected region. The fracture leads to the difficulty of lithium deintercalation in the isolated 

region. The total charge capacity with fracture decreases about 13.7% compared to the one 

without fracture. 
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Figure 6.7 Lithium concentration profiles in the particles before and after adding fractures 

 

6.3.3 Particle size impact 

The impact of the particle size was also investigated. Three different particle sizes chosen 

are 1um, 5 um, and 8um. The mass ratio between carbon blacks and LMO particles are the same 

as before. In order to mesh the geometry, carbon blacks are scaled accordingly. All the particles 

are charged to 4.4 V. Figure 6.8 shows the lithium concentration profiles with different particle 

sizes.  

 

Figure 6.8 Lithium concentration profiles at different particle sizes 
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Figure 6.8 shows that the particle size has a significant impact on lithium transportation in 

the LMO particle with fractures. Smaller particles facilitate the transportation of lithium due to 

increased specific surface area and decreased internal resistance. The lithium concentration 

difference across the fracture decreases as particle size decreases. When particle size is 1um as 

shown in Figure 6.8 (a), the concentration difference across the fracture is only 162 mol/m3 

which is quite small and negligible. However, after increasing the particle size to 5 um as shown 

in Figure 6.8 (b), the concentration difference becomes 3946 mol/m
3
. When the particle size is 

increased to 8 um as shown in Figure 6.8 (c), the concentration difference further increases to 

7983 mol/m
3
 which is significant. From the above study, smaller particle size is preferable in 

order to suppress the impact of fracture.  

6.3.4 SOC  impact 

SOC has a significant impact on the conductivity of the LMO material as shown in Figure 

6.4. In order to understand the SOC impact on the lithium transportation with fracture, particles 

are charged at 1C rate to different SOCs; the lithium concentration profiles are shown in Figure 

6.9.  
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Figure 6.9 lithium concentration profiles at different particle sizes 

Because the carbon blacks pull the electrons out of the LMO particle, most of the lithium is 

deintercalated from the side where carbon blacks connect to. However, as the lithium 

concentration goes down during charging, Eq. 9 demonstratesthat the ionic conductivity of 

lithium goes down as well. Lithium transportation becomes more difficult. The electronic 

conductivity also goes down. The comparison between ionic conductivity and electronic 

conductivity is shown in Figure 6.9 (e). It shows that electronic conductivity is lower than ionic 

conductivity. Therefore, the mass transportation inside the particle is mainly limited by electron 
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transportation. After the SOC goes down, both electronic conductivity and ionic conductivity 

decrease. In order to suppress the impact of fracture, higher SOC is preferable; higher SOC 

brings both high electronic conductivity and ionic conductivity, which facilitates mass 

transportation. 

6.3.5 Conclusions 

Based on the experimental observations, a single-particle model has been developed to study 

the impact of fracture on the capacity fade of Li-ion batteries. This study explores the impact of 

conductivity, the SOC swing window, and particle size on fracture-induced capacity fade.  

It shows that electronic conductivity has a significant impact on the Li transportation in the 

LMO particle. When electronic conductivity is low, the main limiting factor is the electron 

transportation in the particle rather than lithium transportation. As electronic conductivity 

increases, the limiting factor changes from electron transportation to lithium transportation. 

When the electronic conductivity is high enough, lithium transportation can be assumed to be 

diffusion only. The low electronic conductivity indicates that the lithium is deintercalated on the 

side where carbon blacks connect to. When fracture is present, the resistance for electron 

transportation increases inside the particle. Therefore, some lithium is stuck in the isolated part 

due to lack of electrons. Based on the SOC investigation, SOC also has a significant impact on 

the conductivity of the LMO particle. When the SOC is high, the particle is full of lithium and 

electrons, and both electronic conductivity and ionic conductivity are relatively higher. Therefore, 

the electrons can be pulled out relatively easily. The SOC study suggests that the cathode should 

be run at a higher SOC level to gain the good conductivity required to suppress the impact of 

fracture on capacity fade. Particle size is another key factor that affects mass transportation in the 

particle. Larger particles lead to higher internal resistance for electron transportation; therefore, 
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fracture-induced capacity fade is more severe than with particles of smaller size. Therefore, in 

order to suppress the impact of fracture, a smaller particle size is preferable.  

Nomenclature 

   cross area 

      concentration of lithium 

     concentration of electrons 

        
 Concentration of        

   

   total concentration including the solvent 

   solvent concentrations 

     concentrations of lithium ions in electrolyte 

     concentrations of negatively charged ions in electrolyte 

   electrolyte concentration 

      diffusivity of Lithium 

     diffusivity of electron 

        
 diffusivity of        

  , which is infinitely small 

   diffusivity of electrolyte 

   electric field of carbon black network 
  

  electrolyte activity coefficient 
  Faraday constant 

  applied current for conductivity measurements 

     exchange current density between carbon blacks and LMO 

     exchange current density between LMO and electrolyte 

     lithium ion flux in the electrolyte 

     negatively charged ion flux in the electrolyte 

     reaction current between electrolyte and lithium metal 

     exchange current density between electrolyte and lithium metal 

     reaction current between carbon blacks and LMO 

     reaction current between LMO and electrolyte 

      flux of lithium in LMO particle 

     flux of electron in LMO particle 

        
 flux of        

   in LMO particle, which is zero 

     electronic conductivity of LMO 

   conductivity of electrolyte 

  distance between two terminals 

  
  Li transference number 

U cathode electrode equilibrium potential 

     voltage difference between two terminals 

     number of cations per molecular of electrolyte 

     number of anions per molecular of electrolyte 

      charge number of lithium ion 
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     charge number of electron 

        
 charge number of        

   

     ccharge number of cations in electrolyte 

     charge number of anions in electrolyte 

   conductivity of the carbon black network 

     over potential between carbon blacks and LMO 

     over potential between LMO and electrolyte 

     over potential between Li metal and electrolyte 

   electric potential of the carbon blacks 

   LMO particle potential 

   electrolyte potential 

   lithium metal potential 
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6.4 Summary 

 

This chapter developed a single-particle model to study the impact of fracture on the 

capacity fade of cathode electrode. The study investigates the impact of conductivity, SOC swing 

window, and particle size on the fracture-induced capacity fade. The study suggests that the 

cathode should be run at a higher SOC level to gain the good conductivity required to suppress 

the impact of fracture on capacity fade. Particle size is another key factor that affects mass 

transportation in the particle. Larger particles lead to higher internal resistance for electron 

transportation; therefore, fracture-induced capacity fade is more severe than with particles of 

smaller size. Therefore, in order to suppress the impact of fracture, a smaller particle size is 

preferable. This chapter provides design guidance to the cathode electrode.  
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Chapter 7 

Battery Health Improvement through Multi-objective 

Optimization 

7.1 Introduction 

Battery longevity is crucial in transportation electrification[143, 144]. While a 3 to 5 years 

battery life is acceptable for consumer electronics, such as, cell phones, laptops, etc., such short 

service time would pose a major drawback for a hybrid/electric vehicle[145, 146]. Battery pack 

replacement would constitute an expense comparable to an engine or transmission. However, 

batteries are non-ideal energy storage system, minimizing the energy consumption of a battery –

powered system is not equivalent to maximizing the battery lifetime[147]. Several studies have 

been done to optimize the battery performance, especially the energy density and power density. 

Fuller et al. [148] investigated the dual lithium ion insertion cell and optimized the energy 

density and power density by using Newman’s battery model. Sumitava et al. [149] developed a 

model-based procedure to optimize the battery parameters, such as, electrode porosities and 

thickness to maximize the energy draw for an applied current, cutoff voltage, and total amount of 

discharge time. Some research efforts have been devoted to improving the battery lifetime. 

Advanced control algorithms have been developed to improve the battery lifetime. Moura et 

al.[150-152] developed a battery management strategy based on SEI growth model to protect the 

battery health during charging and discharging. Advanced control algorithm can maximize the 

performance under certain hardware settings, however, the best achieve performance is limited 

by the battery parameters. Therefore, before developing advanced management algorithms, 

battery parameters should be first optimized to reduce the potential degradations. All the above 

research work is focused on control algorithms or energy density and power density optimization. 
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No direct relationship between battery parameters and capacity fade has yet been established.  In 

this chapter, the impact of design parameters on the battery capacity fade will be investigated, 

and optimal design guidance will be developed.  

7.2 Degradation analysis and potential improvement 

 

As discussed in previous chapters, the capacity fade can be explained in total cyclable 

lithium loss and individual electrode capacity loss.  

7.2.1 Side reactions on anode 

 

From 1.2.4 and 5.3.3, the cyclable lithium loss is mainly due to the side reactions on the 

anode surface, especially, the SEI growth. Figure 7.1 summarizes the degradation mechanisms 

on the anode surface, which lead to the total cyclable lithium loss. SEI growth is the major 

contributor to the cyclable lithium loss. The lithium which is supposed to intercalate into the 

graphite, reacts with solvent and forms SEI products. The deposition of Mn particles on the 

lithium metal after cycling was confirmed through EDX analysis [41, 99]. Mn deposition also 

costs additional cyclabe lithium loss. The electrons that are supposed to couple with lithium ions 

in the electrolyte are consumed by Mn
2+

 ions, therefore, the lithium ions are left in electrolyte 

inactively. Li plating leads to a huge amount of cyclable lithium loss, because the lithium 

deposited on the surface will react fast with solvent to form SEI products. The details of the roles 

of each side reactions on the graphite surface have been discussed in Chapter 5. In order to 

reduce side reactions on the graphite surface, different design parameters are investigated by 

using the degradation model developed in previous sections.  
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Figure 7.1 Cyclable lithium loss due to side reactions on the graphite surface 

7.2.2 Side reactions on cathode 

 

From the study in Chapter 5, cathode electrode capacity fade is one main contributor to the 

cell capacity fade. The fracture induced by stress inside the cathode particle could lead to particle 

isolation, and therefore capacity fade. Figure 7.2 shows the SEM images of fractures and Mn 

dissolution at the same scale. These figures show clearly that compared to fracture, Mn 

dissolution is less likely to cost significant capacity fade.  

 

Figure 7.2 Comparison between fracture and Mn dissolution 
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The details of the roles of fracture and Mn dissolution in the cathode capacity fade have 

been discussed in Chapter 5. In order to reduce side reactions, mainly the fracture, on the cathode 

particle, different design parameters are investigated by using the degradation model developed 

in previous sections.  

In order to improve the cycle life, side reactions on both anode and cathode should be 

reduced. In the following section, advanced optimization algorithm is utilized to improve the 

battery health.   

7.3 Multiple-objective optimization 

 

The design parameters have significant impact on the battery performance. In several 

research works[149, 153-157], battery design parameters are optimized to achieve better battery 

performance, such as, high energy density and power density.  In this dissertation, several main 

design parameters are investigated in order to achieve better battery cycle life. In this Chapter, 

the design parameters are optimized to meet the power density and energy density requirements 

first, and then the cycle life is optimized. 

Design parameters for a typical Lithium ion battery are chosen from reference [27] as shown 

in Table 4.2. Parameters of material properties are determined by the nature of the material and 

the synthesis methods, in this Chapter, the values for material properties are known from 

reference and fixed. Based on the material properties, the impact of cell fabrication parameters, 

such as, anode and cathode particle sizes, electrode thickness, electrode porosity, and mass ratio, 

are investigated.  

 

7.3.1 Optimization framework 
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A general optimization problem has the following form: 

minimize                      (7.1) 

subject to         {

               

               

                   

 (7.2) 

 

 

Where      is the objective function to be minimized over the variable  ,       are called 

inequality constraints, and       are called equality constraints. In this case, the objective 

function is the battery capacity fade after long time cycling. The variables are the design 

variables listed in Table 7.1. 

 A gradient-descent scheme [158] is employed in this framework due to its efficiency and 

ability to handle nonlinear problems. The process of gradient calculation and variable 

optimization is shown in Figure 7.3. 

 

Figure 7.3 Flowchart of a gradient based optimization scheme 

 

The first order necessary conditions for a solution in nonlinear programming to be minimal 

is the Karush-Kuhn-Tucker (KKT) conditions[159], which is expressed as below. 
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       ∑       
  

 

   

 ∑       
  

 

   

   (7.3) 

    ,          for all           (7.4) 

         ,    for all           (7.5) 

Where   and   are the Lagrange multipliers associated with the inequality and equality 

constraints. Eq. (7.3) and Eq. (7.4) are used to differentiate between active and inactive 

inequality constraints, such that inactive constraints can be removed from consideration by 

equating them to zero. The numerical method used to solve the optimization problem is 

introduced in the following section. 

7.3.2 Optimization method 

 

In this dissertation, the gradient-based optimization method used is the sequential quadratic 

programming (SQP). SQP solves a sequence of optimization subproblems, each of which 

optimizes a quadratic model of the objective subject to a linearization of the constraints. The 

subproblem at each iteration can be expressed by. 

minimize   
 

 
            

   (7.6) 

       
           ,          for all           (7.7) 

       
           ,          for all           (7.8) 

The matrix    is a positive definite approximation of the Hessian matrix of the Lagrangian 

function.    can be updated by any of the quasi-Newton methods. This subproblem can be 

solved using QP algorithm. The solution is used to form a new iterate at  

              (7.9) 



153 

 

The step length parameter    is determined by an appropriate line search procedure so that a 

sufficient decrease in a merit function is obtained.  

7.3.3 Problem Setup 

 

 

In order to satisfy automobile performance, energy density and power density are first 

optimized. The power density requirement is chosen first and fixed as a constraint. The energy 

density is maximized by using the numerical optimization framework in previous section. The 

battery parameters obtained after maximizing energy density with power density requirement are 

used as the starting point of battery health optimization. In the battery health optimization, the 

power density requirement is still fixed, and the energy density requirement is lowered down to a 

fraction of the maximum energy density in order to let optimization algorithm have some 

freedom to search for better parameters to improve health.  

In the first step, the energy density is obtained through one galvanostatic discharge cycle of 

the cell until a cutoff voltage of 3.5V for 3600s, which is a common cutoff voltage for Li-ion cell. 

The power density is obtained through high discharge rate to cutoff voltage of 3V for 10 s[160]. 

This cutoff value is selected as further discharge of cell in real life could lead to irreversible 

damage to the battery. The capacity fade is represented by the relative difference between 

discharge capacity at the 100
th

 cycles and the discharge capacity at the 1
st
 cycle.  

      
 

     
∫            

    

 
       (7.10) 

      
 

     
∫            

  

 

 (7.11) 

       
       

  
  (7.12) 

                            (7.13) 
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Where       is the energy density,       is the power density,       is the cell terminal voltage, 

  is the discharge rate,        is the relative capacity fade,      is the discharge capacity at 100
th

 

cycle,    is the discharge capacity at 1
st
 cycle.       is the total cell mass,      is the mass of the 

negative current collector,     is the mass of the negative electrode,      is the mass of the 

separator,    is the mass of the positive electrode,      is the mass of the positive current 

collector. The mass of electrodes is a function of thickness, and porosity.  

maximize                
 

     
∫            

    

 
   (7.14) 

subject to         {
               

                  
 (7.15) 

To minimize the capacity fade, we selected 8 design parameters, as shown in Table 7.1. The 

cycling rate is an operation condition and not a cell design variable. It’s necessary to allow it to 

vary during the constraint evaluation, in order to meet the energy and power density 

requirements. Except cycling rate, there are 7 design parameters. There are 3 design parameters 

for the anode, which are particle size, electrode thickness, and porosity. However, there are 4 

design parameters for cathode, which includes particle size, electrode thickness, porosity, and 

conductivity. Because graphite electrode is highly conductivity, adding more carbon blacks 

doesn’t affect the conductivity much; therefore, the conductivity of the anode is fixed at a high 

value. However, the conductivity of cathode electrode is highly dependent on the conductive 

additive, and can be varied significantly during fabrication.  

      
 

     
∫            

    

 
       (7.16) 

      
 

     
∫            

  

 

 (7.17) 

       
       

  
  (7.18) 
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                            (7.19) 

The optimization problem is to minimize the capacity fade after long term cycling while 

meeting the energy density and power density requirements. The overall optimization problem 

can be expressed by the following equations.  

minimize                    
             

     
  (7.20) 

subject to         {

               

                    

                  

 (7.21) 

Where      is the power density requirement,      is the energy density requirement.  

 

Table 7.1 Design variables and their bounds 

Design variables Lower bound Upper bound 

Cathode particle radius (um) 0.2 20 

Cathode thickness (um) 40 250 

Cathode porosity     0.6 

Cathode conductivity (S/m) 1 10 

Anode particle radius (um) 0.2 20 

Anode thickness (um) 40 250 

Anode porosity 0.1 0.6 

Cycling rate (C) 0.1 20 

 

In order to achieve global minimal, different starting points are chosen as shown in Table 

7.2. In each set of initial parameters, the value of each parameter is chosen randomly and also 

different from other sets of parameters. These four sets of initial parameters are used as initial 

values for each energy and power optimization. 
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Table 7.2 Initial values for four different starting points 

Parameters 1 set 2 set 3 set  4 set 

Cathode particle radius (m)                               

Cathode thickness (m)                                 

Cathode porosity 0.35 0.45 0.4 0.35 

Cathode conductivity (S/m) 3 2 1 1 

Anode particle radius (m)                              

Anode thickness (m)                                 

Anode porosity 0.3 0.47 0.3 0.55 

Mass ratio 2.1726 1.9788  1.6794 2.4383 

 

 

The battery parameters except the design variables are listed in the following table. These 

parameters are listed in Table 4.2 and fixed in each optimization. 

7.4 Results and discussion 

 

The power density requirement varies from different application. In this study it is chosen to 

be           which is in the range of the reported values [161, 162]. Due to the high 

complexity of the degradation model, each derivative evaluation takes about half hour. After 15 

days’ continuously running, the optimized values are found and listed in Table 7.3. For each set 

of initial parameters, the optimization is conducted.  

As shown in Figure 7.4, for each set of initial parameters, the optimization algorithm 

maximized the energy density, and meanwhile adjusts the parameters to meet the power 

requirement. All power densities from four different starting points reach the power density 
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requirement 2200 W/kg after optimization. Energy densities are increased as much as possible to 

nearly 100 Wh/kg. 

 

 
Figure 7.4 Energy optimization with power density requirement 

 

The optimized parameters in Table 7.3 are close to each other, and the average values are 

calculated. These average values are used as the starting point for the battery health optimization.  
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Table 7.3 Optimized parameter value for energy and power 

Parameters Symbol 1 set 2 set 3 set  4 set average 

Cathode particle radius rp_pos [um] 0.45 0.51 0.21 0.38 0.39 

Cathode thickness L_pos [um] 94.26 109.36 103.35 94.39 100.34 

Cathode porosity Epsl_pos 0.17 0.19 0.19 0.18 0.18 

Cathode conductivity Ks_pos [S/m] 7.28 4.85 6.02 7.53 6.42 

Anode particle radius rp_neg [um] 1.57 1.39 1.74 1.31 1.50 

Anode thickness  L_neg [um] 106.31 119.74 101.86 94.25 105.26 

Anode porosity epsl_neg 0.34 0.35 0.32 0.31 0.33 

Mass ratio mass_ratio 2.00 2.03 2.09 2.06 2.04 

 

From the optimization of energy density and power density, it shows that the design 

parameters are converging to the optimal values. The energy density reaches about 100 Wh/kg 

which is the maximum achievable density under power requirement and material parameters. In 

order to allow optimization algorithm to have freedom to adjust design parameters, energy 

density requirement is cut to certain level of the maximum achievable. In this study, 86% of the 

maximum value is chosen, i.e. 86 Wh/kg. The parameter values from energy and power 

optimization are used as starting point for battery health optimization. Energy density and power 

density requirements are used as constraints for battery health optimization. Figure 7.5 shows the 

optimization process. Battery degradation is decreased from 60% to 20% at 100 cycles after 

optimization. The design parameters all converged to the optimal values.  
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Figure 7.5 Battery health optimization 

 

The design parameters are compared before and after optimization, which are listed in Table 

7.4. From the comparison, it shows the most significant changes are the particle sizes change of 

anode particle and cathode particle.  

Table 7.4 Optimized parameter values for battery health 

Parameters Symbol average optimized for health 

Cathode particle radius rp_pos [um] 0.39 0.95 

Cathode thickness L_pos [um] 100.34 61.12 

Cathode porosity Epsl_pos 0.18 0.17 

Cathode conductivity Ks_pos [S/m] 6.42 5.18 

Anode particle radius rp_neg [um] 1.50 7.08 

Anode thickness L_neg [um] 105.26 60.00 

Anode porosity epsl_neg 0.33 0.31 

Mass ratio mass_ratio 2.04 2.14 

 degradation 60% 20% 
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7.4.1 Comparison before and after optimization 

 

The cell performance before and after optimization are compared by using the parameters in 

Table 7.4. Before optimization, the capacity fade is shown in Figure 7.6, the capacity fade is 

about 40% after 100 cycles, which is severe. However, after optimization, the cell capacity 

decreases about 20 %, which is about half degradation before optimization. The energy density is 

reduced to about 86 Wh/kg to achieve better battery health. 

 

Figure 7.6  Capacity degradation comparison between normal cell and optimized cell 

 

In order to understand the degradation pattern in the above two cases, the SOC windows are 

analyzed. As shown in Figure 7.7, the anode and cathode swing windows have been optimized. 

The degradation of the cell before health optimization has a shrinking cathode SOC window, and 

a shrinking anode SOC window. The main reason is due to the anode SEI growth which 

consumes the cyclable lithium. Before the health optimization, the anode particle size is quite 

small due to high power and energy requirement. Small anode particle size provides a high total 

surface area which accelerates the SEI growth, therefore leads to consumption of cyclable 

lithium. After optimization, the anode particle size is increases significantly as shown in Table 
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7.4. The SEI growth is suppressed, and therefore the SEI induced cyclable lithium loss is also 

decreased. The optimized cell has a more balanced degradation from both anode and cathode, 

therefore, the cycle life is improved.  

 

 

Figure 7.7 SOC swing window comparison between normal cell and optimized cell 

 

The SOC windows changes after optimization indicates the side reaction change on the 

anode and catode electrode. Figure 7.8 shows the details about the side reaction induced cyclable 

lithium loss on the anode before and after optimization. The cell before health optimization has 
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about 50% cyclable lithium loss after 100 cycles, and the optimized cell has only 14% cyclable 

lithium loss.  

 

Figure 7.8 Cyclable lithium loss due to SEI and Mn deposition 

After health optimization, the battery degradation is significantly reduced. The optimal 

design parameters are obtained. Particle size plays an important role in the battery degradation. 

Bigger anode particle size suppresses the SEI growth, and the optimal mass ratio is also found. 

 

 

 

7.5 Summary 

 

This chapter developed a general procedure to optimize the battery health while fulfilling the 

energy and power requirements. The study investigates the impact of battery parameters on the 

battery performance, such as energy density, power density and battery health. Study shows that 

energy density and power density optimization doesn’t guarantee the battery health. Therefore, 

for hybrid vehicle application, the energy density, power density, and battery health should be 

optimized together. Higher energy density and power density require small particle sizes of both 

anode and cathode; however, battery health needs bigger particle size on anode and a small 
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particle size on cathode. The gradient based optimization algorithm enables us to optimize the 

battery parameters to achieve better battery health while still fulfilling the energy and power 

requirements. After the optimization, battery degradation can be reduced without affecting power 

and energy density.  

 

  



164 

 

 

 

Chapter 8 

Conclusions and Future Work 

 

In the dissertation, we propose a methodology for power management optimization of 

hydraulic electric hybrid vehicle. The study demonstrates the benefits of hydraulic hybridization 

of electric vehicle and its effects on the vehicle range and battery health.  After the power 

management optimization, battery health is identified to be the key issue in the vehicle 

electrification. Battery degradation is investigated and a comprehensive degradation model is 

developed. Based on the modeling work, an optimization procedure is developed to improve the 

battery health. A detailed summary of the dissertation contents is as follows.  

8.1  Achievements and Contributions  

 

8.1.1 Hydraulic Electric Hybrid Vehicle Optimization 

 

The all electric range and battery health of the electric vehicle is improved by hydraulic 

hybridization. A hydraulic electric hybrid vehicle model is developed with the objective to 

increase the range and protect the battery for improved life. Based on the EV model and 

Hydraulic Electric Hybrid Vehicle model, an energy management problem was formulated with 

the objective to lower the energy consumption. As a starting point, a preliminary rule-based (PR) 

control strategy was proposed based on the analysis of the DC motor efficiency and the battery 

characteristics. The PR control was a simple and intuitive strategy; nevertheless it enabled 
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significant improvements of the system efficiency and increased the electric range. A secondary 

benefit was achieved by reduced battery peak loads and likely extended battery life. 

In order to explore the best achievable energy saving, an optimization problem was formed 

and solved by Dynamic Programming algorithm. Based on the forward simulation results, 

optimal rules are extracted from the optimal control trajectory. Results show that the additional 

energy consumption improvement is mainly from the more efficient DC motor operation. Based 

on this study, the near optimal and vehicle implementable rule-based energy management 

strategy was developed for the Hydraulic-Electric Hybrid Vehicle. The next challenge will be to 

implement designed control strategy into the real vehicle, and this effort is underway. 

 

8.1.2 Degradation Analysis Based On Degradation Model 

 
A degradation model was developed by including the key side reactions, and three electrode 

cell long term cycling was conducted to validate the comprehensive model. Both simulation and 

experiment show that the capacity degradation process can be divided into three stages: the 

acceleration stage (SEI growth on anode is dominant), the stabilization stage (SEI slows down, 

Mn dissolution induced capacity fade is small), and the saturation stage (cathode has poor 

capacity and becomes the limiting factor). Cracks are suspected to be the main degradation 

mechanism of Adrich LMO. Anode graphite defoliation was found, which is companied by SEI 

growth. SEI seems to promote the graphite defoliation. A water-glass model is proposed to 

explain the overall capacity fade by including different degradation mechanisms. Our study 

shows that the capacity fade can be divided into three stages: acceleration, stabilization, and 

saturation. This work provides the experimental evidence for the modeling framework.  
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8.1.3 Fracture Impact Analysis of Single Cathode Particles 

 

A single-particle model to study the impact of fracture on the capacity fades of cathode 

electrode. The study investigates the impact of conductivity, SOC swing window, and particle 

size on the fracture-induced capacity fade. The study suggests that the cathode should be run at a 

higher SOC level to gain the good conductivity required to suppress the impact of fracture on 

capacity fade. Particle size is another key factor that affects mass transportation in the particle. 

Larger particles lead to higher internal resistance for electron transportation; therefore, fracture-

induced capacity fade is more severe than with particles of smaller size. Therefore, in order to 

suppress the impact of fracture, a smaller particle size is preferable. This chapter provides design 

guidance to the cathode electrode.  

8.1.4 Battery capacity fade Optimization Based on Degradation Model 

 

A general procedure to optimize the battery health while fulfilling the energy and power 

requirements is developed. The study investigates the impact of battery parameters on the battery 

performance, such as energy density, power density and battery health. Study shows that energy 

density and power density optimization doesn’t guarantee the battery health. Therefore, for 

hybrid vehicle application, the energy density, power density, and battery health should be 

optimized together. Higher energy density and power density require small particle sizes of both 

anode and cathode; however, battery health needs bigger particle size on anode and a small 

particle size on cathode. The gradient based optimization algorithm enables us to optimize the 

battery parameters to achieve better battery health while still fulfilling the energy and power 

requirements. After the optimization, battery degradation can be reduced without affecting power 

and energy density.  
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8.2 Future Work 

8.2.1 Degradation model further augment 

 

Degradation is complex process of the lithium ion battery, the degradation in the auto 

mobile application are taking severe environmental conditions, such as, high temperature, high 

stress. The degradation patterns under these hassle conditions should also be included in the 

future study.  

8.2.2 Battery management optimization 

 

Battery design optimization provides the best achievable design for the automobile 

application, however, the power management system is also a key part of the whole system, and 

will largely affect the battery cycle life. In order to get the best cycle life, the energy 

management system should also be considered.  
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Appendix A Potential for anode and cathode 
 

 

The equilibrium potentials for LMO cathode and graphite anode are obtained by C/50 

charge and discharge on a 90:5:5 mass ratio anode half-cell and cathode half-cell, respectively, 

as shown in Fig. A-1. and Fig. A-2. The electrolyte ionic conductivity is shown in Fig. A-3, 

which is a function of salt concentration.[27] 

 

Figure A-1. Equilibrium potential for anode. 
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Figure A-2. Equilibrium potential for cathode. 

 

 

Figure A-3. Electrolyte phase ionic conductivity. 
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Appendix B Detailed derivation 
 

In the electrolyte, electrochemical potential is the driving force for species flux. The flux of 

mobile species in the electrolyte can be expressed in the following equations. [138] 
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where            , and                  
   is the electrochemical potential of the 

electrolyte.  

The relationship between electrolyte potential and current density can be expressed in the 

following equation. [138] 
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In order to express species flux densities in terms of concentration gradient and potential 

gradient, equation A3 is substituted into equation A1 and A2 to read: 
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Apply the same procedure to equation.   
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The last term in equation A4 and A5 is negligible when solvent velocity,   , is small.  

The equilibrium potentials for the LMO cathode is obtained by C/50 charge and discharge 

on a 90:5:5 mass ratio cathode half-cell as shown in Fig. A-1.  

 

 

 

Figure A-1. Equilibrium potential for cathode. 
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