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ABSTRACT 

Bio-Inspired Optic Flow Sensors for Artificial Compound Eyes 

by 

Seok Jun Park 

 

Compound eyes in flying insects have been studied to reveal the mysterious cues of 

vision-based flying mechanisms inside the smallest flying creatures in nature. Especially, 

researchers in the robotic area have made efforts to transfer the findings into their less 

than palm-sized unmanned air vehicles, micro-air-vehicles (MAVs). The miniaturized 

artificial compound eye is one of the key components in this system to provide visual 

information for navigation. Multi-directional sensing and motion estimation capabilities 

can give wide field-of-view (FoV) optic flows up to 360º solid angle. By deciphering the 

wide FoV optic flows, relevant information on the self-status of flight is parsed and 

utilized for flight command generation. In the last few years, several artificial compound 

eyes have been demonstrated by forming a hemispherical lens configuration to realize an 

independent optical path to each photoreceptor. However, they require complicated 

fabrication processes, limiting their applications due to poor yield and high cost.  

In this work, we take a simple and practical approach. We realize the wide-field optic 

flow sensing in a pseudo-hemispherical configuration realized by mounting a number of 

2D array optic flow sensors on a flexible PCB module. The flexible PCBs can be bent to 

form a compound eye shape by origami packaging. From this scheme, the multiple 2D 
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optic flow sensors can provide a modular, expandable configuration to meet low power 

constraints.  

The 2D optic flow sensors satisfy the low power constraint by employing a novel bio-

inspired algorithm. We have modified the conventional elementary motion detector 

(EMD), which is known to be a basic operational unit in the insect’s visual pathways. We 

have implemented a bio-inspired time-stamp-based algorithm in mixed-mode circuits for 

robust operation. By optimal partitioning of analog to digital signal domains, we can 

realize the algorithm mostly in digital domain in a column-parallel circuits. Only the 

feature extraction algorithm is incorporated inside a pixel in analog circuits.   In addition, 

the sensors integrate digital peripheral circuits to provide modular expandability. The on-

chip data compressor can reduce the data rate by a factor of 8, so that it can connect a 

total of 25 optic flow sensors in a 4-wired Serial Peripheral Interface (SPI) bus.  The 

packaged compound eye can transmit full-resolution optic flow data through the single 

3MB/sec SPI bus. The fabricated 2D optic flow prototype sensor has achieved the power 

consumption of 243.3pJ/pixel and the maximum detectable optic flow of 1.96rad/sec at 

120fps and 60º FoV. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

1.1.1 Artificial compound eyes 

For a recent decade, research efforts have been made on building miniaturized 

artificial compound eyes. The bio-inspired devices mimic a flying insect’s visual organs 

and signal pathways to provide valuable information from wide field-of-view (FoV) 

surroundings [1]–[3]. The wide FoV multi-directional sensing is the most interesting 

capability of the organs that covers nearly 360° from both compound eyes. In addition, 

the collected visual information is processed to generate optic flow of the encompassing 

environment. Then, the neuron nerves in the insect’s eyes parse the wide FoV optic flow 

to extract key cues for its safe and agile flying navigation [4]. Many researchers in 

robotics are focusing on understanding the flying mechanism and visual information 

sensing. With the information, they are trying to implement the mechanism on their robot 

platforms, especially on micro air vehicles (MAVs) which are the smallest class of 

unmanned aerial vehicles [5]–[15]. This effort is natural in that researchers examine the 

mechanism inside the smallest flying creature in the world to discover solutions that will 

work under the situations and harsh design constraints that cannot be achieved by 

conventional UAV soultions.Two recently demonstrated 3D-shaped wide FoV artificial 
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compound eyes are shown in Figure 1-1. The curved artificial compound eye (CurvACE) 

in Figure 1-1(a) supports 180° FoV in horizontal and 60º FoV in vertical directions. The 

module is assembled on a flexible PCB; 42 linear array including 15 photodetectors are 

located on top of the PCB with the customized micro lenses. Then, the linear array is 

carefully cut along with all the vertical lines to give flexibility in horizontal direction. 

Finally, the PCB is bent to form a cylinder shape configuration to achieve 180º FoV in 

horizontal direction. Because in this configuration the PCB is not able to bend in the 

vertical direction, the vertical FoV is limited. However, by patterning the apertures in 

different spaces from the photodetectors, the device guides different angles of incident 

light path in the vertical direction. Thus, 60º FoV is achieved. Both acceptance and inter-

photodetectors angles are also carefully designed in the CurvACE sensor. The 

preliminary work for investigating the relationship can be found in [3], [16]–[18].  

 

 

Figure 1-1: 3D wide FoV artificial compound eyes: (a) 180º(H)×60º(V), 42×15 spatial 

resolution curved artificial compound eye (CurvACE) [1], (b) 160º FoV, 16×16 spatial 

resolution bio-inspired digital camera [2] 

 

(b)(a)
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A different approach to form 3D hemispherical artificial compound eyes is shown in 

Figure 1-1(b). The device combines elastometric compound optical elements with 

deformable arrays of thin silicon photodetectors into integrated sheets that can be 

elastically transformed from the planar geometries in which they are fabricated to 

hemispherical shapes for integration into apposition cameras Figure 1-1.  The stretchable 

micro lens and photodetector arrays form the shape on hemispherical supporting substrate 

of black silicone. Thus, this approach achieves 160º FoV for all surroundings. The 

photodetectors underneath the hemisphere collect light from 16×16 array and deliver the 

measured photo currents through the contact matrix at the bottom stretchable layer. The 

sensor does not integrate optic flow or motion sensing capability yet. The CurvACE 

embedded a customized optic flow estimation algorithm in the MCU on the discrete thick 

PCB, which is also used for supporting its cylindrical shape. The CurvACE system 

consumes 0.9W maximum power, which could be reduced by integrating the optic flow 

and interface circuits in the same silicon.  

The aforementioned systems require complicated fabrication and assembly processes 

to form a hemispherical lens configuration and secure an independent optical path to each 

photodetector. Instead of relying on the customized technology, we take a simple and 

more practical approach to realize wide-field optic flow sensing in a pseudo-

hemispherical configuration by mounting a number of 2D array optic flow sensors on a 

flexible PCB module as shown in Figure 1-2. Multiple pairs of a lens and 2D optic flow 

sensors, which are implemented using the conventional image sensors assembly process, 

are located on top of each segment of a flexible PCB. Then, the origami packaging 

technique folds the segments to form desired inter-sensor angles to build a semi-
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hemispherical shape configuration. Thus, the artificial compound eyes can be assembled 

only applying existing technologies. The main challenge of the approach is customizing 

2D optic flow sensors being capable of modular expandability so that identical sensors 

can capture and transmit optic flow on the multiple sensors in a module platform. Each 

sensor is required to support modular expandability being able to easily attach and detach 

from the system. In addition, 2D optic flow estimation must consume extremely low 

power to engage multiple sensors on MAV applications.  

 

 

Figure 1-2: 3-D semi-hemispherical module platform for the artificial compound eyes 

 

1.1.2 Micro-air-vehicles (MAVs) and microsystems sensor capability gap 

This small-size MAV, whose size ranges up to a few centimeters, is designed to 

perform various missions in dangerous places that threaten human life. For example, 

Micro Autonomous Systems and  Technology (MAST) alliance [19] defines mission 

scenarios for MAVs: cave searches, demolished building searches, and perimeter defense. 

Lens

Optic flow sensor

Controller

Origami 
Packaging

3-D semi-hemispherical module
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While performing cave searches and demolished building search missions, soldiers are 

exposed to unpredictable dangers; in perimeter defense, soldiers are always facing to an 

abrupt enemy attack. Therefore, the mission success of MAVs is thankfully saving 

tremendous amounts of human life. The demolished building mission can also save 

people from the dangers of fire or toxic gas leakage. 

The design constraints of MAVs in terms of payload and wingspan, the distance from 

one to the other wingtips, are shown in Figure 1-3 [20]; the constraints for previously 

implemented unmanned aerial vehicles (UAVs) are also shown. Because both constraints 

for MAVs are less than two orders of magnitude than those of previously implemented 

UAVs, most mechanical components and electronics are no longer reused by just scaling 

its physical dimensions; those aggressive constraints have changed everything to build 

the smallest class flying system. In addition to the constraints, an extremely limited 

power source due to the MAV’s capability of loading only a very small-size battery is 

another big hurdle to overcome. As a result, researchers have borrowed mechanisms and 

vision-based navigation schemes from inside flying insects to meet those constraints of 

MAVs: aerodynamics modeled from inside the wings of a fly [21]–[24], a control theory 

based on an insect’s vision-based flight navigation [25]–[29], and a motion sensing 

scheme of from insect’s eyes [30]–[32]. These mechanisms are being proposed as several 

solutions for the aforementioned constraints; a vision-based navigation system is a good 

example to achieve the goals. 
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Figure 1-3: Payload versus wingspan plot for unmanned aerial vehicles (UAVs) and 

MAVs [1] 

 

Sensors that are utilized for UAVs or able to be used for MAVs for fight navigation 

are listed in Table 1-1. Target constraints for payload and power consumption are around 

1g and 100mW ranges for electronic devices on a MAV system. A global positioning 

system (GPS), the most popular solution for UAVs, is no longer available for MAVs not 

only because the places of a MAV’s missions are too harsh for a GPS to correctly operate 

(indoor or between buildings), but also because the payload and power consumption of 

the GPS are much higher than the constraints as shown in Table 1-1. An inertial 

measurement unit (IMU), a laser rangefinder, and an ultrasonic device do not satisfy the 

constraints in an order of magnitude. An analog neuromorphic optic flow sensor, which is 

implemented by mimicking the motion sensing scheme in an insect’s compound eyes, is 

the only sensor to meet both payload and power constraints.  

UAVs
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Table 1-1: Payload and power consumption of available sensors for a MAV's flight 

navigation 

 

 

1.1.3 Bio-inspired wide field integration (WFI) navigation methods 

Research findings on a flying insect’s visual pathway reveal that neurons in the 

compound eyes interpret the information about self-flight status from wide FoV optic 

flow [4]. For example, the velocity of piloting, a distance from possible obstacles, and 

even self-motion can be parsed by the neurons. This mechanism has inspired to develop 

the wide field integration navigation (WFI) methods [25]–[27], [33]. The methods apply 

matched filters on the measured wide-field optic flow to extract cues containing self-

status of flight. Then, the motor commands feedback and move the vehicles to maintain 

the target status. The demonstrated systems in Figure 1-4 verify 3 degree-of-freedom 

(DoF) controls are possible in a corridor by the methods [25], [26], [33]. As shown in 

Figure 1-4(a), the system mounts an image sensor or camera and a parabolic mirror on 

top of the sensor to monitor wide FoV scenes. Then, optic flow is extracted on concentric 

circles, which correspond to the wide-field flow from the surrounding equator. 
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Figure 1-4: Demonstrated WFI platform: (a) ground robot [25], (b) quadrotor [26]  

 

In addition, a theory expanding the WFI for 6 DoF control is published [27]. For 6 

DoF control, the theory requires optic flow from the 3D surrounding sphere, not 2D 

concentric circles in the Figure 1-4. Therefore, the artificial compound eyes are key 

components in the system.  

 

1.1.4 Current state of the art optic flow sensing solutions for MAVs 

In addition to the WFI methods, a variety of control schemes are successfully 

demonstrated on MAV systems by integrating optic flow sensing systems or devices for 

collision avoidance [34] and altitude control [35]. Two state-of-the-art approaches for 

optic flow sensing implementation are described: the pure digital system approach and 

pure analog VLSI approach. 

 

(b)(a)
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1.1.4.1 Pure digital optic flow sensing approach 

The pure digital optic flow sensing approach implements computation intensive 

signal processing algorithms such as Lucas and Kanade (L-K) [36], which are the state-

of-the-art highly accurate optic flow estimation algorithms, on hardware. This hardware 

consists of an image sensor to extract video scenes and a microcontroller (MCU) or a 

field programmable gate array (FPGA) to compute the high computational cost 

algorithms [37]. Though this approach provides very accurate optic flows, it is difficult to 

meet a MAV’s payload and power consumption constraints: discrete components 

increase payload, image sensors, MCUs, and FPGAs consume too much power to 

compute the algorithms. For example, the SXGA image sensor consumes 120mW [38]; 

the Blackfin processor, which is a commercially available low power MCU adopted for 

the implementation in Conroy [26], consumes around 64mW [39]. FPGAs consume 

50mW [40].  Therefore, even though pure digital approach provides accurate optic flows, 

this hardware implementation has a huge gap for MAV applications. 

 

Table 1-2: Estimated total power consumption in the pure digital approaches 

 

 

CIS+MCU [1] CIS+FPGA [2]

CMOS Image Sensor 120* -

Blackfin Processor 64** -

FPGA - 50**

Total 184 >50 including CIS

Unit [mW]* From deatsheet, ** estimated



10 

 

1.1.4.2 Pure analog VLSI optic flow sensors 

Pure analog VLSI optic flow sensors, which are neuromorphic circuits mimicking 

neuro-biological architectures in an insect’s visual pathways, are categorized by two 

purposes. The first type is implementing the full insect’s visual signal processing chain as 

similar as possible in order to verify a hypothesis made to explain physiological 

experiment results. As a byproduct, the sensors also can be used for the MAV 

applications [30]. The other type of pure analog optic flow sensors selectively chooses 

the aspects inside a flying insect’s eyes to effectively implement on the sensor [32]. Thus, 

the sensors are compactly designed by modifying the original models. 

Both pure analog neuromorphic approaches provide a monolithic solution and 

consume only ranges from nW to µW; therefore, it is considered a promising solution to 

overcome MAVs payload and power constraints. However, the pure analog 

neuromorphic circuit is sensitive to temperature and process variations; thus, output from 

the circuits is susceptible to noise. In addition, neuromorphic signal processing is 

implemented in pixel-level; a pixel consists of  quite a few transistors. Thus, a small pixel 

design is difficult. Also, this in-pixel implementation causes pixel-to-pixel output 

variations due to circuit mismatches.  

 

1.1.4.3 Analog/digital (A/D) mixed-mode optic flow sensor 

The focus of this thesis is to address the drawback of the aforementioned pure digital 

and analog approaches by introducing the A/D mixed-mode approach. The approach is 

realized by the time-stamp-based optic flow algorithm, which is developed for the 

optimal A/D partitioning. The algorithm borrows motion estimation concepts from a 
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flying insect’s neuromorphic algorithm; however, it differently maps the concepts into 

circuits so that the approach selectively takes advantages of both pure digital and analog 

circuits. The time-stamp-based algorithm implements the moving feature extraction using 

a temporal high-pass filter in the analog domain as the compound eye’s Lamina lobe does. 

Then, the algorithm performs time-of-travel measurement and velocity conversion such 

as the neuromorphic EMD; however, the time-of-travel value is calculated by simple 

digital arithmetic operators for robust optic flows. As a result, the proposed approach 

achieves low power consumption in mainly two ways: reducing digital calculation power 

inherited by the compact bio-inspired algorithm and minimizing static power 

consumption by only activating analog amplifiers for the readout period, which is 

possible to operate the sensor in discrete-time domain. 

 

1.2 Thesis outline 

This thesis presents bio-inspired optic flow sensors that are customized for the semi-

hemispherical artificial compound eyes platform. Visual signal pathways in a flying 

insect’s compound eyes and a variety of bio-inspired optic flow estimation algorithms are 

discussed as background research. Bio-inspired time-stamp-based optic flow algorithm 

and its circuit implementation are following to address the A/D mixed-mode approach. 

Then, two prototype sensors are introduced. The 1D optic flow sensor is fabricated and 

characterized to verify the developed bio-inspire time-stamp-based algorithm; the 2D 

optic flow sensor demonstrates the optic flow core performance as well as the feasibility 

to be mounted on the artificial compound eyes platform by integrating additional 

peripheral circuits.   
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1.2.1 Chapter 2: Visual information processing in a flying insect’s eyes 

This chapter covers the basic anatomy of an insect’s compound eyes to elucidate its 

mechanism of vision-based flying control. I describe an elementary motion detector 

model that is known to estimate optic flows in the compound eyes. Also, the parsing cues 

from wide FoV optic flow in tangential cells in the visual organ is introduced. Then, I 

seek to understand how these visual cues are utilized to control a MAV’s autonomous 

navigation. 

 

1.2.2 Chapter 3: Optic flow estimation algorithms in MAVs 

This chapter covers two categories of optic flow algorithms that are adopted on 

unmanned vehicles for vision-based autonomous navigation. Computationally intensive 

high-accurate gradient-based algorithms and bio-inspired low computation power EMD-

based algorithms are introduced. 

 

1.2.3 Chapter 4: Time-stamp-based optic flow estimation algorithm 

This chapter covers the proposed time-stamp-based optic flow algorithm from a 

conceptual level to detailed 1D and 2D optic flow examples. At the end of the chapter, 

our two algorithm evaluation methods are introduced and used to assess the algorithm in 

terms of a MAV’s autonomous navigation requirements. 

 

1.2.4 Chapter 5: Bio-inspired 1D optic flow sensor and physical verification of the 
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time-stamp-based optic flow algorithm 

This chapter covers from the design to measurement of the 1D time-stamp-based 

optic flow sensor. Firstly, the proposed sensor architecture to efficiently implement the 

time-stamp-based algorithm in analog/digital (A/D) mixed-mode circuits is introduced. 

Secondly, each block design of the proposed architecture is explained in the signal 

processing order: a discrete-time temporal high-pass filter; feature detection circuits; 

time-stamp latch; and digital time-of-travel and velocity calculation circuits. Finally, the 

measurement results of the fabricated sensor are discussed. 

 

1.2.5 Chapter 6: Bio-inspired time-stamp-based 2D optic flow sensor for artificial 

compound eyes 

This chapter introduces the bio-inspired 2D optic flow sensor which is not only 

composed of time-stamp-based 2D optic flow core, but also integrates all the required 

periphery circuits for the proposed artificial compound eyes platforms. The embedded 

optic flow data compression core supports data reduction on the 16-b/pixel raw optic 

flow; as a result, in average only 1.92-b/pixel is required to transmit. Therefore, up to 25 

sensors can send the full resolution optic flow data on the 3MB/sec SPI bus without any 

loss. The digital WFI core is also integrated to provide the parsed cues from measured 2D 

optic flow for a MAV’s autonomous navigation. The future direction of the research is 

also discussed at the end of the chapter. 

 

1.2.6 Chapter 7: Conclusions, contributions, and future work 
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This chapter summarizes final conclusions and highlights contributions of this work, 

and suggests possible and meaningful further works in this research area. 

 



15 

 

CHAPTER 2 

VISUAL INFORMATION PROCESSING INSIDE A FLYING INSECT’S EYES 

 

In a flying insect’s body, eyes occupy most of its head and provide important visual 

information for flying control [41]. As shown in Figure 2-1, the huge eyes are composed 

of many tiny repeating units (ommatidia), which include a lens and a photoreceptor to 

independently sense light. Thus, the eyes are called compound eyes. Each hemispherical 

compound eye can see a wide field of view (FOV), approximately 180º. Therefore, two 

compound eyes allow a flying insect to see nearly 360 º and thereby continuously extract 

visual information from its full surroundings [42].  

 

Figure 2-1: The compound eyes of flying insects adapted by http://lis.epfl.ch/curvace 
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In addition to sensing the aforementioned wide FOV, the insect’s eye also has aspect 

namely it is immobile and consists of fixed-focus optics [43]. With these two features, an 

insect’s eye cannot extract distance information from either stereo vision or focus control, 

as human eyes do. Instead, the compound eye infers distance information from estimating 

motions (or optic flows) based on the phenomenon that a closer object causes faster 

motion than a farther object. 

Because compound eyes must efficiently detect motion information, they have high 

temporal resolution, whose maximum detectable frequency ranges from 200-300 Hz 

whereas human eye is only sensitive to up to 20 Hz [44]. However, their spatial 

resolution is poorer than that of human eyes. Spatial resolution is partially attributed to 

physical limitation that is the small size of an insect eye. Specifically, the total number of 

ommitidia in a compound eye ranges from only 700 in the fruitfly to merely 6,000 in the 

blowfly, a member of Diptera, which is a large order of insects that comprises the true 

flies. In comparison, this number of detection units is significantly smaller than human 

retina (108 for rods and 106 for cones) and even in commercially available artificial image 

sensors (3x105 for VGA resolution and 2x106 for HDTV resolution) [45]. These 

differences imply an insect’s vision system has evolved in a quite different manner than 

human vision has and is worth reviewing to understand how visual information is 

processed to find clues for their flight control. 

This chapter covers the basic anatomy of an insect’s compound eyes to elucidate its 

mechanism for vision and flying control.  To facilitate understanding the eye, I describe 

an elementary motion detector model that estimates optic flows. This model explains how 

neighboring ommatidia to coordinate local motion information. Also, because an insect’s 
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eye integrates all the local motions into a combined wide-field motion view, I present a 

wide-field optic flow analysis model. In total, I seek to understand how an insect uses all 

clues from optic flow field to control its body in flight. 

2.1 Anatomy of an insect’s compound eyes 

The anatomy of an insect’s compound eyes that is relating on an flying insect’s 

navigation is concisely summarized by Zeffery [46]. The anatomy for visual information 

processing is mainly quoted from the reference. Three main optic lobes for visual 

information processing in a flying insect’s two compound eyes are shown in Figure 2-1. 

Those optic lobes are composed of three types of neuropils or ganglia, which are a dense 

network of interwoven nerve fibers and their branches and synapses: the lamina, the 

medulla, and the lobula complex (consisting of lobula and lobula plate). Those neuropils 

correspond to three important visual information processing chains [46]: 

 The lamina lies right beneath the photoreceptor layer of the eye and receives 

direct input from photoreceptors. The neurons in this ganglion act as temporal 

high-pass filter (HPF) by amplifying temporal contrast reversals or changes. 

They also provide gain control functionality; thus, ensuring a quick adaptation 

to variations in background light intensity. Axons from the lamina invert the 

image from front to back while projecting to the medulla. 

 Cells in the medulla are extremely small and difficult to record from. 

However, behavioural experiments suggest that local optic flow detection 

occurs at this level. The retinotopic organization is still present in this second 

ganglion and there are about 50 neurons per ommatidium. The medulla then 

sends information to the lobula complex. 
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 The third optic ganglion, the lobula complex, is the locus of massive spatial 

convergence. Information from several thousand photoreceptors, preprocessed 

by the two previous ganglia, converges onto a mere 60 cells in the lobula plate. 

These so-called tangential cells (or Lobular Plate Tangential Cells, LPTC) 

have broad dendritic trees that receive synaptic inputs from large regions of 

the medulla, resulting in large visual receptive fields. The lobula complex 

projects to higher brain centers and to descending neurons that carry 

information to motor centers in the thoracic ganglia. 

 

 

Figure 2-2: A schematic representation of the fly’s visual and central nervous system 

(cross section through the fly’s brain). Photoreceptor signals are transmitted to the lamina, 

which accentuates temporal changes. A retinotopic arrangement is maintainted through 

medulla. The lobula plate is made up of wide-field, motion-sensitive tangential neurons 

that send information to the controlateral optic lobe as well as to the thoracic ganglia, 

which control the wings [7-8]. 

 

This vision processing in three optic lobes are modeled by engineers. The lamina is 

modeled as a temporal HPF. If a moving feature, which has different illuminance from 

background, is arrived in each ommatidium, the output of the lamina is high due to a 

temporal contrast change. Therefore, this HPF output represents a moving feature’s 

arrival. The medulla is modeled as a motion detector between spatially neighboring cells. 
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The first motion detector model was introduced by Hassenstein and Reichardt [49] and 

was named as the elementary motion detector (EMD). This EMD output is the magnitude 

of 1-D motion between a pair of neighboring cells. The details of this model are 

described in the section 2.2.  Finally, the lobular complex is modeled as parallel matched 

filters, whose output is an inner product of 2-D matrices: one matrix is optic flows from 

surroundings, the other matrix is coefficients designed for self-motion estimation. The 

details of this matched filter is discussed in the section 2.3.  

2.2 Elementary motion detector model 

The specialized processing of visual motion begins in the medulla, which maintains a 

retinotopic architecture with columns of cells each associated with an overlying 

ommatidium. An early and still influential model of early motion detection, the 

correlational EMD, was formulated by Hassenstein and Reichardt [49]. This model is 

based on a correlation of the signal associated with one ommatidium with the delayed 

signal from a neighboring ommatidium, as depicted schematically in Figure 2-3. The 

combination of the spatial connectivity, the delay operation, and the nonlinear interaction 

of the correlator endow the EMD with directional motion sensitivity. The final opponent 

stage depicted in Figure 2-3, which takes the difference of two mirror-image correlator 

outputs, enhances the directional properties and rejects the effects of temporal contrast 

not due to motion. The EMD produces a motion-related output without computing 

derivatives (a process that would amplify noise). 

The correlational EMD model is well-supported by physiological and behavioral 

evidence, although its neural basis has been hard to pinpoint due to the technical 

difficulty of electrophysiological recording from the very small medulla cells that are 
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believed to be involved. Evidence suggests that EMDs are formed between at least 

nearest neighbors and next-nearest neighbors on the hexagonal lattice, and are thus 

aligned with various directions in visual space [50]. Physiological data in support of the 

EMD model have been taken primarily from more central neurons in the lobula complex, 

in particular the tangential cells themselves.  

The output of a motion detector model of this kind in response to a moving visual 

scene is typically unsteady, with transients generated in response to the passage of edges 

or contrast gradients. In the mean, however, the output is a function of velocity of a 

moving stimulus, although this dependence is not monotonic, and there is also strong 

dependence on spatial structure and contrast of the stimulus. In spite of its ambiguities as 

a motion sensor, theory suggests that this type of detector is inherently well suited to 

tasks that might be limited by noise [51]. 
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Figure 2-3: The Hassenstein-Rechardt or correlational elementary motion detector (EMD) 

 

2.3 Wide-field optic flow analysis: lobular complex 

Visual motion stimuli occur when an insect moves in a stationary environment, and 

their underlying reason is the continual displacement of retinal images during self motion. 

The resulting optic flow fields depend in a characteristic way on the trajectory followed 

by the insect and the 3-D structure of the visual surroundings. Therefore, these motion 

patterns contain information indicating to the insect its own motion and the distances 

from potential obstacles. However, this information cannot be directly retrieved at the 

local level and optic flow from various regions of the visual field must be combined to 

infer behaviourally significant information as shown in Figure 2-4 [52]. 
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Analysis of the global motion field (or at least several different regions) is generally 

required in order for the local measurement to be exploited at a behavioural level. Some 

sort of spatial integration is known to take place after the medulla (where local motion 

detection occurs retinotopically), mainly in the lobular plate where tangential neurons 

receive input from large receptive fields. Thus, the lobula plate represents a major center 

for optic flow field analysis. Some of the 60 neurons of the lobula plate are known to 

coherent large-field motion, for example the VS, HS, and Hx-cells, whereas other 

neurons, the Figure detection cells (FD-cells), are sensitive to the relative motion between 

small objects and the background [53].  

The response fields of VS neurons resemble rotational optic flow fields that would be 

induced by the fly during rotations around horizontal axes [53]. The response field of Hx 

cells have the global structure of a translational optic flow field. The response fields of 

HS cells are somewhat more difficult to interpret since it is believed that they do not 

discriminate between rotational and translational components. In summary, it appears that 

tangential cells in the lobula act as neuronal matched filters tuned to particular types of 

visual wide-field motion as shown in Figure 2-5 [53]. 
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Figure 2-4: Self-motion and optic flow. Left: self-motion parameter of the fly can be 

described in terms of their components along the three cardinal body axes. Right: self-

motion results in optic flow fields representing how the visual world moves relative to the 

fly’s eyes. [52].  

 

 

Figure 2-5: A hypothetical filter neuron matched to a particular optic flow field induced 

by rotating self motion adapted by [53].  
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2.4 Bio-inspired autonomous navigation  

Bio-inspired autonomous navigation, which extracts control parameters by integrating 

wide-field optic flow, is implemented and demonstrated [14-15]. This navigation method 

extracts control parameters from several matched filters, which are tuned to be sensitive 

for optic flow patterns induced by a robot’s specific movement.  

As an example, a fly is moving forward along a corridor, which is located between 

two patterned side walls [26]. Geometric parameters in the given example are: γ is the 

body-fixed viewing angle, a is the half of the corridor width, δy is lateral displacement, 

δψ is a phase shift, and δu is a forward speed increase. The three parameters, δy, δψ, and 

δu, are controlled in flight in order for the fly to be able to maintain a stable state.  

The stable flight state is described in Figure 2-6 A, which a fly is moving forward 

with a desired speed in the center of the corridor by looking straight (no orientation shift); 

thus, a generated optic flow pattern, which is plotted as a function of the angle γ, is 

approximately a sine wave. A focus of expansion is in the front of view, and a focus of 

contraction is in the rear. These two focuses generate the smallest motion, and the sides 

generate the largest motion because of the closest distance.  

Then, the three parameters are extracted by monitoring perturbations of a generated 

optic flow pattern. If the fly laterally shifts to right, a generated optic flow pattern moves 

downward by reflecting lateral displacement δy as shown in Figure 2-6 B. This is because 

the right side wall becomes closer than the left side wall. If the fly shifts its orientation, 

the focus of expansion and the focus of contraction are rotated; thus, a generated optic 

flow pattern shifts along with the γ axis (Figure 2-6 C). Finally, the fly is moving faster or 

slower than desired speed, the generated optic flow pattern is scaled as shown in Figure 
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2-6 D. Therefore, a lateral shift (δy), orientation shift (δψ), and a forward speed increase 

(δu) are all extracted from a generated optic flow pattern. By a close-loop flight control, 

the fly can maintain the stable fight state (Figure 2-6 A). 

 

 

Figure 2-6: Perturbations of azimuthal optic flow and their correlations to the relative 

state of the vehicle. Amplitude, phase, and asymmetry of the azimuthal optic flow pattern 

encode relative proximity and speed with respect to obstacles in the environment [16]. 

 

2.5 Summary 

In this chapter, the vision processing in an insect’s eye is described. Three optic lobes, 

which are lamina, medulla, and lobula, perform temporal high-pass filtering, motion 

detection, and wide-field optic flow integration in each lobe. The integrated optic flows 

by a matched filter provide self-motion, depth and speed information for a flying insect’s 



26 

 

flight. A 3 degree-of-freedom (3 DoF) autonomous navigation control scheme, which 

utilizes the extracted motion by WFI, is also described.  
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CHAPTER 3 

OPTIC FLOW ESTIMATION ALGORITHMS IN MAVS 

 

3.1 Introduction 

Optic flow or optical flow is the pattern of apparent motion of objects, surfaces, and 

edges in a visual scene caused by the relative motion between an observer (an eye or a 

camera) and the scene [54]. This pattern is 3-D in the natural world, and animals have 

evolved to detect the surrounding optic flow field. The pattern includes key information 

for animal navigation such as the distance between the observer and its surroundings and 

the velocity of self-motion or egomotion, which is 3-D motion of an observer. When the 

observer is a natural object, such as an insect, an eye plays a role to detect the flow field. 

The eye has special cells to decode the information to control the animal’s body while it 

is flying. Thus, researchers who are building very small size air vehicles have been trying 

to utilize optic flow for their systems to mimic the smallest flying creature in nature.   

The cells of the eye are inspiration or a model for researchers trying to mimic the 

visual ability of insects and animals. Prior to the initiate for modeling optic flow on the 

natural eye, researchers used an algorithm with a fixed time period. Displacement 

measurement in a fixed time period can estimate both the direction and magnitude of 

motion. The displacement measuring method is adequate to develop algorithms using 

computers because currently used camera systems provide image sequences with a fixed 
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time period (called frame rate). Therefore, a variety of algorithms based on displacement 

measurement have been reported with high accuracy working on high computing power 

processors. With inspiration from an insect’s eye, researchers have developed an 

algorithm for modeling flow that has a free time period and a fixed distance unit. The 

elementary motion detector (EMD) is the model, which estimates motion information 

from two fixed neighboring photorecepters. With a free time period, the traveling time of 

an object is measured as it passes between neighboring cells. Such time-of-travel-

measurement algorithms are simple to calculate; however, custom-designed imaging 

systems must be utilized, which are not required for displacement systems. Moreover, for 

very small air vehicles, power constraint is also as important as accuracy, thus finding an 

optimal solution, balancing the calculation power and accuracy is a key point of the 

algorithm selection for the system.  

This chapter covers the variations of these two aforementioned optic flow algorithms. 

Especially, the algorithms that are implemented on autonomous navigation system are 

described.  

3.2 Gradient-based algorithms 

3.2.1 1D gradient-based algorithm 

The gradient method is based on the assumption that image intensity is conserved 

between successive frames in an image sequence [55]. For 1D optic flow, this constraint 

simplifies to: 
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Where, I is pixel intensity, t is time and x is pixel position.  

Comparing successive frames, and using finite differencing, provides the temporal 

gradient, while comparing adjacent pixels in a given frame provides the spacial gradient. 

In implementation, however, this method often suffers the drawback of having erroneous 

spikes in optic flow in regions with low spatial gradient. For this reason, we typically 

obtain a spatially dense grid of estimates and then desample this grid (by block averaging 

of adjacent estimates), ignoring large-shift outliers in the process. Since it assumes the 

image intensity varies linearly, the algorithm generally becomes ineffective for shifts 

larger than a few pixels per frame, depending on the environment textures. 

 

3.2.2 Lucas and Kanade (L-K) algorithm 

The original L-K algorithm effectively extends the gradient method to two 

dimensions and includes several improvements [36], namely: 

 Final estimates are formed by averaging the raw estimates over several 

neighboring pixels (in a 2D ‘integration’ window). 

 The gradient-based estimate (based on a first order Taylor expansion) is 

iterated in a Newton-Raphson fashion to converge on a local optimum. 

 The estimator equation has been re-derived based on minimization of L2 norm 

image-intensity matching error in the equation (2), since the equation (1) does 

not generalize to n-dimensions. The associated cost function is 
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   ε = ∑ ∑ δIk
2(x, y)

y=py+ωy

y=py−ωy

x=px+ωx
x=px−ωx

    (2) 

Where, δIk
2(x, y) is defined in the equation (3). 

 

3.2.3 Pyramidal Lucas and Kanade (L-K) algorithm 

Accuracy requires a small window size since larger windows may contain pixels with 

differing velocities. Computation limitations also dictate a smaller window. Robustness, 

however, requires larger windows, i.e. if the optimum lies within the window then 

convergence is much more likely. To solve this trade-off, Bouguet proposed a Pyramid 

iteration scheme [56]. A low resolution version of the image is used to obtain an estimate 

for the optic flow, and then this estimate is fed to a higher resolution version as the new 

initial guess. The process repeats until the full resolution image returns the final estimate. 

This enables shifts to be detected which are greater than the window size and partially 

overcomes the problem of getting trapped in local optima. The raw L-K algorithm is 

capable of detecting shifts up to 
1

2
 a wavelength of the highest spatial frequency. Thus, the 

pyramid resolution iteration extends the maximum detectable image shift by first 

focusing on the lower spatial frequencies in the image. 

G = ∑ ∑ [
Ix
2(x, y) Ix (x, y)Iy (x, y)

Ix (x, y)Iy (x, y) Iy
2(x, y)

]

y=py+ωy

y=py−ωy

x=px+ωx

x=px−ωx

 

δIk (x, y) = I(x, y) − J(x + gx + vx
k−1, y + gy + vy

k−1) 

bk = ∑ ∑ [
∂Ix (x, y)Iy (x, y)

∂Ix (x, y)Iy (x, y)
]

y=py+ωy

y=py−ωy

x=px+ωx

x=px−ωx

 

   vk = vk−1 + G−1bk      (3) 
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where (Ix, Iy) are the spatial intensity gradients, (px, py) is the point in the image which we 

wish to track, (wx, wy) define the integration window size, (gx, gy) is the shift estimate 

from the previous pyramid (resolution) level, vk is the adjustment to the shift estimate at 

iteration step k (iteration ceases after 20 steps, default in our simulation, or when ‖G-

‖bk‖<0.3 (default in our simulation)), I refers to the intensity of the previous image and J 

the intensity of the current image. At each pyramidal level, G and g are updated then 

δIk(x, y), vk and bk are successively computed until the iteration ceases. 

In general, more pyramid-resolution levels allow one to detect greater shifts more 

robustly. However, if the raw image resolution is already low, and the pixel shifts are 

typically small, it can be detrimental to use pyramid iteration, as the estimates from 

lower-resolution levels may be erroneous due to poor image contrast at very low spatial 

frequencies. 

3.3 Bio-inspired elementary motion detector (EMD) algorithms  

The first elementary motion detector (EMD) model in a flying insect’s vision system 

was formulated by Hassenstein and Reichardt [49]. As shown in Figure 3-1(a), the EMD 

consists of two photoreceptors, temporal high pass filters (HPFs), and delay units 

modeled by low pass filters, and correlators. The two outputs of the correlators are 

summed up with different polarity. This configuration estimates motion of a moving 

object or feature, which is passing through two neighboring photoreceptor cells.  

An example in Figure 3-1shows that a feature is moving from the left photoreceptor 

(at time t=0, shown in a solid line) to the right photoreceptor (at t=t1, shown in a dotted 

line). As a result, a temporal change is detected by a HPF and is delayed with a time 

constant τ (Figure 3-1 (b)). Each delayed HPF output is correlated or multiplied with the 
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HPF output of the neighboring cell; thus, each correlator generates output when a feature 

is moving to a preferred direction. In the given example, the feature moves from left to 

right at t=t1; only the left side correlator generates output at time t=t1 as shown in Figure 

3-1(c). Therefore, the final output is positive, which means the direction of motion is left 

to right, and its magnitude corresponds to the speed of motion. Due to the correlation 

process, the maximum detectable velocity is limited until two inputs of the correlator are 

exactly matched or overlapped. The condition of the exact overlapping is when t1 is τ; 

thus, the maximum measurable speed is 1/τ [pixel/sec]. 

 

 

Figure 3-1: The Hassenstein-Rechardt or correlational elementary motion detector (EMD) 
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3.3.1 Photoreceptor model 

The first implemented photoreceptor model by Delbrück and Mead is shown in 

Figure 3-2 [57]. Two valuable features in an insect eye are implemented in the model: 

logarithmic response and adaptation to ambient light. The logarithmic response allows 

the device to collect information from both indoor and outdoor environments. The 

adaptation to ambient light example is shown in Figure 3-3 [1]. The transient response 

shown in green lines is centered at the ambient light condition illustrated in red lines. 

This model is implemented in most EMD-based motion detectors. 

 

Figure 3-2: Adaptive photoreceptor [57] 
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Figure 3-3: Adaptive photoreceptor response to the ambient light [1] 

 

3.3.2 High pass filter, delays, and correlators 

3.3.2.1 Pure analog EMD implementation 

The high pass filter (HPF), delays, and correlators in Figure 3-1 measure velocity for 

a preferred direction of two neighboring photoreceptor cells. The HPF finds temporal 

change by rejecting DC ambient light. Thus, the HPF responds at the arrival or departure 

of a moving object on the location. The delays are modeled using a low pass filter (LPF). 

An ideal all-pass LPF delivers perfect delaying functionality. However, other types of 

LPFs can be also used for motion measurement. Correlators are the component that has a 

variety of circuit implementation. An analog multiplier is the first option for finding 

correlation between two analog signals [58]–[60]. 
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3.3.2.2 Pulse-based EMD implementation 

In order to see the variations of the implementation, the EMD including LPFs as 

delay cells are shown in Figure 3-4. The difference from using ideal delay cells in Figure 

3-1 can be found in Figure 3-4(b). The delayed HPF output is expressed as the impulse 

response of LPF in delay cells. Here, an interesting observation is made. The HPF output 

can be considered as an impulse signal which indicates the time of the moving feature’s 

arrival (or also called token). In addition, due to impulse-like HPF output, the correlator 

output can be understood as a sampled delayed response of the LPF, which is captured at 

time t1 in the example. This concept is implemented by utilizing pulse-based analog 

circuits [32], [61]. The implementation replaces the analog multipliers to sampling 

circuits and pulse generators.  

 

Figure 3-4: EMD output using LPFs as delay cells 
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Figure 3-5 Facilitate-and-inhibit (FI) optic flow estimation algorithm 

 

Another pulse-based implementation is shown in Figure 3-5. This algorithm is named 

“facilitate-and-inhibition” because the time-of-travel is measured by facilitating and 

inhibiting paired pixels as shown in Figure 3-5 (a) [32], [62], [63]. The timing diagram in 

Figure 3-5 (b) describes time-of-travel measurement for an object that moves from left to 

right direction. A moving object is represented by a contrast edge, which can be 

implemented using a continuous-time (CT) high-pass filter (HPF). In the example, a 

contrast edge moves from a left pixel to right pixel in a certain time interval; thus a 

facilitating signal (F1) is generated at the left pixel and an inhibiting signal (I2) is 

followed from the right pixel. Using the signals (F1 and I2), a pulse is accordingly 

generated at node R, and its pulse width (Pw) indicates the time-of-travel of the moving 

object. Finally, using an inversely proportional relationship between the measured time-

of-travel and velocity shown in Figure 3-5 (C), motion to the right direction is estimated. 

Motion to the left direction is estimated by the same procedure with F2 and I1 signals at 

output node L. Note: time-of-travel is directly measured as the pulse width of the output 

signal. This inspires many variations of implementation, however the circuits basically 
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inhibit (FTI) [32], [61], and facilitate-and-compare (FC) [64]. The review on the 

aforementioned pulse-based algorithms are found in [65]. 

 

3.3.2.3 Digital EMD implementation 

The research efforts were made on implementing the EMD algorithm in digital 

circuits in FPGAs [66]–[68]. The motivation is straightforward. On FPGAs, porting 

digital algorithms is simple and fast. Nowadays, the algorithm developed in Matlab can 

be directly ported on FPGAs [69]. Therefore, customized algorithms can be quickly 

integrated on a robot platform. The modification and verification process is also simple 

and fast. In addition, the digital EMD directly interfaces to the host MCU or CPU by 

providing digital output. The FPGA-EMD implementation can be considered as the A/D 

boundary is moved to the front of the sensor.  

Compared to the analog EMDs, which are implemented in parallel at every pixel, the 

digital EMDs share computation cores. Pixel and intermediate data are stored in digital 

memory. Logarithmic transform for modeling photoreceptor response and temporal high 

pass filtering are performed in high speed, 100-160MHz [66]–[68]. Temporal HPF cores 

are carefully designed in recursive fashion using stored intermediate data in RAMs. High 

precision (36-b) is required for intermediate data to avoid information loss in processing.  

The delay cells are implemented in discrete-time manner. The frame rate determines 

minimum delay unit. The correlators can be implemented using digital multipliers [66]. 

Also, time-of-travel can be measured at each pixel by implementing a counter at every 

pixel [68]. The counter is triggered by the temporal edge information generated by 

current location and stopped by the edge of neighboring cells. The operation is similar 
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with timing using a stopwatch. Thus, the recorded time in the counter is time-of-travel. 

To measure 1D velocity information, two counters are required per pixel to measure right 

and left directions.  

The digital EMDs proved the neuromorphic algorithm can be integrated in the digital 

domain. Compact size implementation is also demonstrated as shown in Figure 3-6. 

However, hardware cost to store frame data and to process temporal high pass filtering is 

expensive. High speed operation due to recursive computation increases power 

consumption. Thus, to be applied on MAVs additional efforts to be monolithic 

integration and low power consumption are required. 

 

 

Figure 3-6: Photoreceptor linear array (left) and electronic board (right) with 12x12mm 

FPGA [68] 

 

3.3.2.4 Contrast adaptation 

The mechanism inside a flying insect’s visual pathway is still mysterious only basic 

motion detection and processing behaviors are uncovered. The Reichardt EMD model 

strongly depends on contrast strength; under the condition of the same speed applied, the 

high contrast signal induces faster velocity output, and the low contrast signal induces 
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slower velocity output. These results from correlators are simply multiplication of two 

analog contrast signals. However, physiology tests of flying insects show the contrast 

dependency is not severe in actual pathways. Thus, additional hypothesis is made on 

contrast adaptation in the pathways [30], [70], [71]. The saturation block is introduced 

after HPFs in EMDs to limit high contrast signals to affect the correlator output [59], [70]. 

Another assumption introduces adaptive gain control on HPF output depending on global 

velocity [30], [71], [72]. Though research efforts on validating the aforementioned 

hypothesis are under progressing, the circuit implementation can engage the contrast 

adaptation or normalization function for the sensor’s robust operation. 

 

3.3.2.5 On and off pathways 

On and off pathways in the vertebrate retina are recently reported to also exist in the 

insect’s vision [73]. The on and off pathways process the on-edge and off-edge of 

contrast change separately [74], [75]. The example in Figure 3-7 describes the on and off 

edge processing with respect to a moving object’s departure and arrival. The contrast 

change is measured by the HPF in EMDs. The rising edge (on-edge) and falling edge 

(off-edge) of the contrast changes encode the arrival and departure of a moving object. 

When a bright object is passing through a dark background, the on-edge represents the 

arrival as shown in Figure 3-7 (a). At the same condition, off-edges occur at the object’s 

departure. The opposite relationship is made when a dark object is passing on a bright 

background as shown in Figure 3-7 (b). This relationship between on/off edges and the 

departure/arrival of moving objects are summarized in Table 3-1.  
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Two notes on this property are important. The first note is if on-edge occurs, then off-

edge follows; if off-edge occurs, then on-edge follows. This is because arrival is always 

followed by departure. The other note is motion information or time-of-travel between 

neighboring cells must be measured by using the same edges. This condition confirms the 

measurement is the time between the arrivals (or departures); thus, a moving object’s 

staying time on the location can be extracted for velocity measurement.  

 

 

Figure 3-7: On/off pathways and feature arrival/departure relationship 

 

Table 3-1: The relationship between on/off edges and the departure/arrival of objects 
 Bright objects Dark objects 

On-edge Arrival Departure 

Off-edge Departure Arrival 

 

The property recommends on-edges and off-edges be processed in parallel datapaths 

in hardware implementation. However, it requires twice the resources for computation 

and memory. For example, the stopwatch like digital EMDs require 4 counters in each 
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pixel. Therefore, optimal solution in the accurate optic flow and hardware resource needs 

to be considered before implementation. 

 

3.4 Summary 

Optic flow algorithms that are adopted on autonomous navigation systems are 

described. In digital systems, the state-of-the-art gradient-based L-K and algorithm is 

programmed on MCUs or CPUs. Thus, substantial hardware is required. Bio-inspired 

optic flow algorithms based on EMDs address low computation complexity and massive 

implementation on analog-VLSI chips. The EMD algorithm models the visual pathways 

in a flying insect to measure motion information. Adaptive photoreceptor to ambient light 

enlarges dynamic range and amplifies contrast. HPFs in the pathway find a temporal 

contrast change, which occur at a moving object’s arrival or departure. Delay cells are 

modeled LPFs, and correlators are implemented using analog multipliers. The delayed 

correlation function is also interpreted to time-of-travel measurement of neighboring cells. 

The time-of-travel measurement enables simple implementation of delayed correlation. 

Pulse-based time-of-travel measurement is popular implementation. Contrast adaptation 

is also considered in a few implementations by limiting the measured contrast before 

correlators. On and off pathways in the insect’s vision contain an important hint for time-

of-travel-based algorithms. The measurement must be made between the same edges; 

thus, parallel datapaths are required. Finally, digital EMDs are also implemented on 

FPGAs; however, substantial hardware resources for temporal filtering and data storage 

are hurdles to be overcome if to be applied on MAVs.  
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In the next chapter, the time-stamp-based algorithm which is modified from time-of-

travel EMDs is introduced. The algorithm maintains bio-inspired features such as in-pixel 

temporal contrast measurement. The algorithm also introduces the time-stamp imaging, 

which is effectively used for intermediate information for simple and robust digital time-

of-travel computation. Thus, the algorithm addresses the drawback of pure analog and 

pure digital EMDs. 
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CHAPTER 4 

TIME-STAMP-BASED OPTIC FLOW ESTIMATION ALGORITHM 

 

4.1 Introduction 

In the previous chapter, I discussed calculation intensive displacement-based and bio-

inspired optic flow estimation algorithms. These algorithms have been implemented on 

hardware to provide real-time, front-end information for bio-inspired micro air vehicles 

(MAVs). The most popular one, the Lucas and Kanade (L-K) algorithm, was 

implemented using a programmed microcontroller and successfully demonstrated 

autonomous navigation of unmanned vehicles [26]. This same algorithm was also 

implemented solely using hardware, which consisted of field-programmable gate arrays 

(FPGAs) for algorithm processing and external dynamic random access memories 

(DRAMs) for frame memory storage [37]. Although both solutions have proved to be 

feasible for MAVs, they are too bulky to satisfy a MAV’s low power consumption and 

payload constraints because the complicated algorithm consumes huge amounts of power 

and requires too much physical space. In addition, a huge frame memory requirement 

makes it impossible to be integrated on a single chip with an image sensor.  

Bio-inspired neuromorphic optic flow algorithms were also implemented on hardware 

by either pure analog circuits [30], [32], [76] or FPGAs [6-7] . Due to the simple nature 

of the algorithm, pure analog processing implementation proved to be a monolithic 

solution, which integrated both photoreceptors and processing circuits in a single chip. 
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However, pure analog signal processing is too easily susceptible to temperature and 

process variations to provide a stable optic flow. Also, the analog processing must be 

implemented in pixel-level circuits; as a result, it is difficult to either scale the pixel size 

or apply low power design techniques in [78]–[81]. The FPGA solution overcame the 

weakness of pure analog signal processing in terms of providing stable optic flow, but 

unexpected huge hardware resources were required to perform temporal filtering in the 

digital domain, making this approach unsuitable for MAVs. 

In order to address the aforementioned problems, I propose a time-stamp-based optic 

flow algorithm, which is modified from the conventional neuromorphic algorithm to give 

an optimum partitioning of hardware blocks in both analog and digital domains as well as 

adequate allocation of pixel-level, column-parallel, and chip-level processing. Temporal 

filtering, which requires huge hardware resources if implemented in the digital domain, 

can be implemented in a pixel-level analog processing unit to maintain minimal hardware 

resources. The rest of the blocks can be implemented using digital circuits in column-

parallel or chip-level processing units in order to provide stable optic flows. 

This chapter covers the proposed time-stamp-based optic flow algorithm from a 

conceptual level to detailed 1D and 2D optic flow examples. Lastly, two algorithm 

evaluation methods are introduced and used to assess the algorithm with respect to the 

MAV’s autonomous navigation requirements. 

 

4.2 General concept of the proposed time-stamp-based motion sensing scheme 

The basic idea of the proposed time-stamp based motion sensing algorithm is 

illustrated in Figure 4-1. As shown in Figure 4-1 (a), an object is moving from t=10 to 
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t=20 following the trajectory depicted as an arrow. Each pixel records the time when the 

feature arrives in the pixel; thus the recorded value in each pixel is the time stamped at 

each arrival. Figure 4-1 (b) shows the recorded values in a 2D array that is named a time-

stamp image. Most zero values in the image mean that there was no object appearance at 

the corresponding location for the time period, yet non-zero values contain useful 

information for motion estimation.  

Since the non-zero value of each pixel encodes information of when a moving object 

arrives at the spatial location, a new image sequence that locates a moving object at 

specific time can be decoded as shown in Figure 4-1 (c). In the decoded images, a black 

square means the location that an object arrives at that current time, and a gray square 

means the location that an object arrived at that previous time. Then, the motion 

information at a specific time can be extracted by finding a position change (∆x, ∆y) over 

a given time period (∆t). The arrow in Figure 4-1 (d) shows the extracted motion at the 

specific time t=14 by calculating a position change from the previous time (t=13) over 

time period ∆t=1. 
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Figure 4-1: General concept of the time-stamp-based motion sensing scheme 

 

4.3 Time-stamp-based 1-D optic flow estimation algorithm 

A 1-D optic flow estimation algorithm based on time-stamp information is delineated. 

The algorithm basically measures time-of-travel at the pixels, where moving objects are 

newly arrived, and estimates motion velocity by calculating the reciprocal of time-of-

travel. Thus, in a normal case, optic flow is sparsely generated at the location of moving 

features.  
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4.3.1 Time-of-travel measurement and velocity conversion  

The time-stamp based motion sensing scheme can also be applied for time-of-travel 

optic flow estimation as illustrated in Figure 4-2. An object or a feature is moving from 

left to right in a 1-D pixel array with a speed gradually increasing from t=10 to t=40, and 

corresponding 1-D time-stamp image is also shown. The time-of-travel of a moving 

feature is simply measured by calculating the difference of the neighboring time-stamp 

values as in equation (1). In the given example, the calculated time-of-travel value of the 

left most pixel, Ttime-of-travel(1), is 7, and that of the right most pixel, Ttime-of-travel(9), is 1. A 

slower object travels at a longer time to cross the neighboring pixels than the faster one. 

Finally, motion information, V(n), can be calculated as in equation (2), which is inversely 

proportional to the time-of-travel, and its sign corresponds to the direction of motion. 
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These time-of-travel and velocity conversions are calculated only if a feature is 

detected at specific time. Therefore, optic flows are sparsely generated for example: at 

time 7, the optic flow is generated only at the leftmost pixel; at time 40, the optic flow is 

generated only at the rightmost pixel in the 1-D array. 
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Figure 4-2: Time-stamp-based 1-D time-of-travel measurement 

 

4.3.2 Facilitate-trigger-and-inhibit (FTI) algorithm 

Several variations of time-of-travel measurement were reported to increase the 

algorithm’s performance or to implement efficiently on hardware [82]. One of these 

algorithms, the facilitate-trigger-and-inhibit (FTI), is introduced to increase noise 

immunity by an additional triggering stage to check a feature’s moving history from one 

more adjacent pixel.  

Traditional time-of-travel measurement using two photoreceptors (or pixels) is as 

shown in Figure 3-5. This algorithm is named “facilitate-and-inhibition” because the 

time-of-travel is measured by facilitating and inhibiting paired pixels as shown in Figure 

3-5 (a) [83]. The timing diagram in Figure 3-5 (b) describes time-of-travel measurement 

for an object moving to the right. A moving object is represented by a contrast edge, 

which can be implemented using a continuous-time (CT) high-pass filter (HPF). In the 

example, a contrast edge moves from a left pixel to right pixel in a certain time interval; 
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thus a facilitating signal (F1) is generated at the left pixel and an inhibiting signal (I2) is 

followed from the right pixel. Using the signals (F1 and I2), a pulse is accordingly 

generated at node R, and its pulse width (Pw) indicates the time-of-travel of the object 

moving to the right. Finally, using an inversely proportional relationship between the 

measured time-of-travel and velocity shown in Figure 3-5 (C), motion to the right 

direction is estimated. Motion to the left direction is estimated by the same procedure 

with F2 and I1 signals at output node L.  

 

 

Figure 4-3: Traditional time-of-travel measurement, facilitate-and-inhibit (FI) 

 

Because a falsely detected feature signal at each pixel (F1 or I2) due to noise can 

directly be reflected to the output velocity, the FT algorithm is sensitive to temporal or 

spatial noise. To overcome this weakness, the FTI algorithm is reported [11-12].  As 

shown in Figure 4-4 (a), FTI employs one more pixel and checks one more conditional 
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measure time-of-travel on the R node in Figure 4-4 (a), FTI starts measurement if F1 is 

generated and T2 follows. If this condition is met, FTI triggers the output pulse, R, and 

I1 F2 F1 I2

L R

F1

I2

Time-of-travel

Pw

P
u
ls

e 
w

id
th

VelocityP
u
ls

e 
w

id
th

R

(a) (b) (c)



50 

 

the generated pulse lasts until I3 is reached. The timing diagram in Figure 4-4 (b) 

describes the operation. Since this additional triggering condition monitors the history of 

a moving feature from an adjacent location, FTI can generate output velocity only for 

proven moving features. Thus, the FTI algorithm is insensitive to noise introduced from 

each feature detector; however, it conservatively generates output. 

 

 

Figure 4-4: Facilitate-trigger-and-inhibition (FTI) time-of-travel measurement 

 

4.4 Time-stamp-based 2-D optic flow estimation algorithm 

The previously explained 1-D optic flow estimation algorithm is easily applied for 2-

D optic flow estimation by measuring multiple time-of-travel values in different 

directions. An example using a 3x3 spatial window to find 2-D optic flow is illustrated in 

Figure 4-5. In this example, the 3x3 mask on a time-stamp image in Figure 4-5 (a) is 

defined to estimate 2-D optic flow for the center position, whose time-stamp value is 11 

in the given example. At the mask, four basis velocities, horizontal (VWE), vertical (VSN), 
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measured by gray colored time-stamp information in Figure 4-5 (b). Then, x and y 

component of motion, (u, v), at each location can be calculated by equation (3). 
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     (3) 

 

Similar to the 1-D optic flow estimation, these calculations are only performed when 

a feature is detected at the center pixel of a 3x3 mask. Thus, in the 3x3 mask example in 

Figure 4-5 (a), the optic flow at the 3x3 window is calculated and generated only when 

time is 11 because a feature is detected at the time. 

A more specific relationship between optic flow generation timing and the 3x3 mask 

on a time-stamp image is explained by examples in Figure 4-6. At time t=11, a 2-D optic 

flow is generated at the dotted 3x3 mask because a feature is detected at the center of the 

mask at that time. In this case, the measured time-of-travel and estimated velocity are 

both -1 for the direction of diagonal 1 in Figure 4-5 (b), which means VSW_NE is -1 

[pixels/frame]. For the other three directions, measured time-of-travel and velocity are all 

zero. Therefore, from equation (3), the final 2-D optic flow at the dotted 3x3 mask, (u, 

v)dotted, is (−
1

√2
, −

1

√2
)  [pixels/frame]. 

However, at time t=12, no feature is detected at the center of the dotted mask; no 

optic flow is generated at the location: (u, v)dotted=0 at t=12.  Instead, a feature is detected 

at the center of the different 3x3 mask, which is drawn as a solid line; a 2-D optic flow is 

generated from the solid 3x3 mask at t=12. This case measured time-of-travel and 
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velocity for the horizontal direction is both -1; VWE is -1 [pixels/frame] and (u, v)solid is 

(−1, 0) at t=12. 

 

 

Figure 4-5: 2-D optic flow estimation example 
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Figure 4-6: 3x3 mask examples at different time and locations 

 

4.5  Performance comparison with respect to MAVs applications 

To evaluate if the proposed optic flow algorithm provides enough information for a 

MAV’s navigation; we set up test environment to measure two metrics for different optic 

flow algorithms. The first metric is static rotational velocity test to measure the linearity 

of extracted motion. The second metric is navigation control parameter comparison using 

computer generated scenes, which are modeled a situation in which a robot is flying in a 

computer generated virtual arena. Because the generated images have correct optic flows, 

which are mathematically calculated from physical geometric dimensions [85], correct 

navigation control parameters can also be found; therefore, control parameters extracted 

by different optic flow algorithms are compared to the correct parameters. 
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4.5.1.1 Test patterns 

360° panoramic high-resolution (2048x410) images shown in Figure 4-7 are test 

patterns of our rotational experiment setup. Since those images consist of sufficient 

amounts of pixels for surrounding environmental changes, we can precisely generate test 

patterns that can be shifted in any arbitrary rotational angles.  By using equations (4) and 

(5), the amount of pixels to be shifted per frame, or a variable RotateShift in equation (5), 

was calculated from the predetermined parameters: rotational optic flow [rad/sec] and 

frame rates [frame/sec].  

 

 

Figure 4-7: A 360° wide-field high-resolution imagery example for rotational velocity 

evaluation 
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This evaluation environment was set up by using Matlab and combining Simulink and 

C++ algorithm models. Figure 4-8 illustrates the test flow for this evaluation. Simulation 

starts by reading the panoramic image; vertical averaging follows to reduce the spatial 
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resolution to fit the image into the sensor configuration (4 vertical rings). For this 

evaluation, we kept the same sensor configuration (4 rings and 96 cells per ring) that was 

used for performance comparison of MAV navigation. After performing vertical 

averaging, the amount of horizontal shifts per frame corresponding to the target optic 

flow velocity and frame rate are precisely calculated in the scale of high resolution image 

width. Once the rotated pixel positions are determined by the horizontal shifts, horizontal 

averaging is performed on the updated rotated positions. The horizontally averaged image 

is plugged into the algorithm models to extract optic flows. If the number of frames 

reaches the target test frame number, then simulation is completed. Otherwise, the 

simulation task moves back to the “update rotated positions” and repeats this loop until 

the target frame number is met. 

 

Calculate shift 
(rotation) per frame

Update rotated 
position
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End of Frame?

Vertical Averaging

Yes

No

END

Write optic flows

Read panoramic image

Optic flow generation

 

Figure 4-8: Flow chart for evaluation of rotational velocity extraction 
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4.5.1.2 Theoretical detectable velocity range 

Figure 4-1 shows a sensor configuration to analyze theoretical detectable velocity 

range of the algorithm. If the number of deployed pixels is nPixels, the angle between 

neighboring pixels is equally Δφ = 2π / nPixels [rad]. The minimum time interval, which 

the algorithm can distinguish, is determined by a frame rate, and the maximum time 

interval is determined by both the frame rate and the maximum time-stamp global 

counter value of the algorithm as described in equation (6) and (7). 

 

• Min. Δt = 1/(frame rate) [sec]      (6) 

• Max. Δt = (Max. global counter value)/(frame rate) [sec]   (7) 

 

Since the velocity is the ratio of the angle of neighboring pixels to an object’s 

traveling time between the pixels, the equation of the measured velocity can be expressed 

as in equation (8). Thus, the maximum and minimum detectable velocity ranges are 

derived as in equation (9) and (10), respectively, from equations (6), (7), and (8). 

 

• v=Δφ/Δt                                                                                                         (8) 

• Max v = (2π / nPixels ) * (frame rate)               (9) 

• Min v = (2π / nPixels ) * (frame rate/Max. time-stamp counter value)        (10) 
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Figure 4-9: Sensor configuration to analyze the detectable velocity range 

 

 

We performed the simulations for a simple horizontal bar pattern, which is moving 

from left to right, with a certain velocity and verified the theoretical detectable range. The 

parameters for the simulation were: 

nPixels = 96, frame rate = 125 fps, Max. global counter = 128 (7bit) 

 

From equations (9) and (10), the theoretical maximum and minimum detectable 

ranges were calculated to be 8.18 [rad/sec] and 0.06 [rad/sec].  

 

4.5.1.3 Test results 

We performed the simulation with different ranges of target optic flow velocities 

from 0.2 rad/sec to 2 rad/sec at a frame rate of 125 fps. The results are shown in Figure 

4-10. The x-axis specifies target test optic flow velocities from 0.2 rad/sec to 2 rad/sec, 

∆ φ 

pixel
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and the generated optic flows from different algorithms are shown on the y-axis in the 

unit of pixels/frame. The black colored plotted points show the pre-calculated correct 

flows. Blue (labeled ‘RMD’), red (labeled ‘New’), and green (labeled ‘PLK’) plots 

correspond to each of the optic flows extracted from “Basic EMD,” “Advanced EMD,” 

which has been proven for a MAV’s navigation [85], “Lucas & Kanade,” the proposed 

time-stamp based algorithms, respectively. The error bars among the plotted points 

indicate a standard deviation of the estimated optic flows. The result shows that “Lucas & 

Kanade” algorithm outperforms the both neuromorphic algorithms in this rotational 

velocity evaluation. It should be noted that the “Basic EMD” cannot discriminate 

rotational velocities at all. However, the “Advanced EMD” gives a linearly increasing 

tendency in optic flow velocities until the target velocity reaches the sensor limitation 

though an additional scaling factor should be applied on the result. This limitation comes 

from EMD’s time constants (around 1 rad/sec).  

The simulation results of the proposed time-stamp-based algorithm for the given 

parameters are shown in Figure 4-11, and these results correspond well to their 

theoretical limit. Note that the estimation of the minimum detectable velocity should be 

revised. This is because we adopted the FTI time-of-travel method for our algorithm, 

which utilizes three neighboring pixels as described in the previous quarterly report, and 

we reduced the maximum time-stamp counter value to a half to save the hardware and 

power consumption. Thus, the equation for estimating the minimum detectable velocity 

should be revised as in equation (11), and the actual calculated number is 0.12 [rad/sec] 

for the given parameters. 
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Min v = (2π / nPixels ) * (frame rate/(Max. global counter value/2))    (11) 

 

 

Figure 4-10: Generated optic flows from rotational velocity evaluation 

 

 

Figure 4-11: Detected velocity plot for different input rotational velocities 
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4.5.2 Optic flow algorithm performance evaluation for MAV navigation 

4.5.2.1 Test patterns and sensor configuration 

We evaluated the proposed optic flow algorithm by comparing to gradient-based 

optic flow algorithms in terms of how well the algorithms can provide information for a 

navigation control, which is implemented on our target MAV platform (i.e., wide-field 

integration platform [26]). For this evaluation, methodology should reflect the actual 

flight simulation of an autonomous MAV. We used ten different test image patterns 

which were captured while a MAV was moving around a computer-generated 3D virtual 

arena for 1.2 seconds, as shown in Figure 4-12 [85].  

Optic flow sensors were configured to have four vertically stacked rings and the 

given test images’ spatial resolution was fit into this configuration, as shown in Figure 

4-13. Each ring consists of 96 photoreceptors (or cells) that capture a 360° view in the 

horizontal plane, and the optic flow algorithm generates four 1-D surrounding optic flows 

from each ring. Matched filter operations extract control information for MAV’s 

navigation from the optic flows. For example, flight control parameters or spatial Fourier 

coefficients, A1, A2, B1 and B2, were extracted from the different matched filters, which 

provide the information of orientation shift, lateral asymmetry, forward velocity, and 

collision approaching of a flying vehicle, respectively. 

The navigation performance evaluation environment is summarized in Figure 4-14.  

Test images and correct flows for ten flight paths are stored in a desktop, and then using 

the stored test images each optic flow algorithm is simulated on a computer.At first, ten 
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estimated optic flows are directly compared to correct optic flows in order to find a 

correlation for optic flows. Next, navigation control parameters are generated using the 

estimated optic flows. Finally, the control parameters correlation between the estimated 

optic flows and correct flows are extracted. 

 

Figure 4-12. A flybot flight simulation: (a) Virtual flight arena, (b) ten fight paths of an 

MAV [85] 

 

4 rings

96 cells / 

ring

 

 

Figure 4-13. Optic flow sensor configuration and a captured image for the 

performance evaluation. 

 

(a) (b)
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Figure 4-14. Navigation performance evaluation environment setup 

 

4.5.2.2 Evaluation results 

To provide a quantitative performance comparison, we examined the correlation 

between each optic flow algorithm and the correct optic flow over the empirical 

distribution, treating the two as random variables. Since the correlation is proportional to 

the similarity of the two random variables, the higher correlation indicates two random 

variables are closer to each other. In Table 1, the “Optic flow” column shows the 

correlation between each estimated optic flow and the correct flow, and “A0” to “B1” 

columns indicate the correlation between spatial Fourier coefficients. The “Basic EMD” 

algorithm is a simple neuromorphic algorithm which consists of photodetectors, a high-

pass filter, and elementary motion detectors (EMDs). The “Minimal Gradient” algorithm 

is a simpler version of the Lucas & Kanade algorithm that utilizes less spatial window 

constraints. The “LK” is the state-of-the-art optic flow algorithm, and “Tanner’s” 

algorithm is a proven neuromorphic algorithm for a wide field integration navigation 

control algorithm. The proposed algorithm provides higher mutual information for all 
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spatial Fourier modes than the proven advanced EMD [85] and minimal gradient, 

therefore it delivers enough information for an adequate autonomous navigation control. 

 

Table 4-1: Correlation between the optic flow generated from each optic flow algorithm 

and the correct optic flow using the test images 

 
 

4.6 Summary 

The bio-inspired time-stamp-based optic flow estimation algorithm, which borrows 

two major aspects in an insect’s eye: a temporal HPF for feature extraction, and time-of-

travel measurement. These two aspects are implemented totally differently as compared 

to conventional bio-inspired optic flow algorithms in order to provide the optimal A/D 

partitioning for effective hardware implementation. A discrete-time HPF and 1-b 

comparator extract a moving feature and deliver digitized 1-b data to the remaining 

digital blocks. This 1-b A/D conversion is simple and fast; it contributes to reducing 

conversion power consumption and to increasing temporal resolution. Time-stamp-based 

time-of-travel measurement is implemented by a digital arithmetic subtractor; therefore, 

the algorithm provides a optimum optic flow, which is insensitive to temperature and 

process variations. 

  

Optic Flow A0 A1 A2 B1 B2f

Proposed 0.159 0.408 0.175 0.189 0.282 0.244

LK 0.414 0.509 0.259 0.442 0.236 0.367

Advanced EMD 0.143 0.249 0.136 0.180 0.244 0.202

Minimal Gradient 0.402 0.361 0.0482 0.0503 0.0587 0.0743
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CHAPTER 5 

BIO-INSPIRED 1D OPTIC FLOW SENSOR AND PHYSICAL VERIFICATION 

OF TIME-STAMP-BASED OPTIC FLOW ALGORITHM 

 

5.1 Introduction 

In the previous chapter, the proposed time-stamp-based optic flow estimation 

algorithm is introduced and evaluated for low power and payload constrained micro air 

vehicles (MAVs). This algorithm is integrated on the first prototype optic flow sensor in 

order to prove feasibility after physical implementation.  

The first prototype sensor integrates a temporal high pass filter in a 2D pixel array; a 

moving feature detector and 8-b time-stamp latch in column-level; and 1-D time-stamp-

based optic flow estimation core including time-of-travel measurement and velocity 

convertor in chip-level. The implemented discrete-time temporal high pass filter 

measures a temporal contrast change in each pixel. The measured contrast change is 

compared to a pre-determined threshold value to determine a moving feature existence at 

each pixel; if the measured contrast change at a certain pixel is bigger than the pre-

determined threshold, then a moving feature is considered to be arrived at the pixel 

location. This feature detection function is implemented in each column as digital circuits 

using a 1-b comparator. Then, the detected 1-b feature information enables the 8-b time-

stamp to latch the frame counter value to record or to update recent time when a moving 

feature is arrived.  Thus, a 1D time-stamp array is generated on column-level 8-b latch 
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array. Using the 1-D time-stamp image, a time-of-travel measurement and velocity 

conversion is performed in the chip-level digital core. As a result, a pair of 8-b motion 

information, whose sign value indicates a direction and magnitude specifies speed, is 

delivered per each pixel. In addition to the 1-D optic flow generation from the integrated 

core, 2-D optic flows can be generated by the 2-D feature information from the 2-D pixel 

array and 2-D time-stamp processing from external FPGAs. 

This chapter covers from the design to measurement of the first prototype time-

stamp-based optic flow sensor. Firstly, the proposed sensor architecture to efficiently 

implement the time-stamp-based algorithm in analog/digital (A/D) mixed-mode circuits 

is introduced. Secondly, each block design of the proposed architecture is explained by a 

signal processing order: a discrete-time temporal high-pass filter; feature detection 

circuits; time-stamp latch; and digital time-of-travel and velocity calculation circuits. 

Finally, the measurement results of the fabricated sensor are discussed. 

5.2 Chip architecture 

The sensor architecture of the first prototype time-stamp-based optic flow sensor, 

which integrates the 1-D time-stamp-based core, is shown in Figure 5-1. Two main goals 

to be considered while building this architecture are: carefully partitioning the 

analog/digital (A/D) domains to balance processing loads, and providing both normal 

images for micro-ocelli (µ-Ocelli) applications and optic flows for micro-compound eye 

(µ-Compound Eye) applications.  
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Figure 5-1: First prototype time-stamp-based optic flow sensor architecture 

 

5.2.1 A/D partitioning 

For the A/D partitioning boundary, the feature detector block is chosen to be the 

boundary because the 1-b signal communication between the A/D domains minimizes a 

chance of information loss from A/D conversion. Also, a temporal high-pass filtering is 

efficiently implemented in the analog domain to reduce A/D conversion power 

consumption in an order of magnitude. Table 5-1 compares required memory spaces of a 

frame memory between analog and digital implementation. In analog implementation, 

one sampling capacitor (1Cs) per pixel to store illumination information is required. On 

the contrary, in digital implementation, N-b per pixel memory unit is required and typical 

N-b values are 12-b, 10-b or 8-b. SRAMs are the only solution to achieve the minimum 

physical area because DRAMs are difficult to be integrated to the logic process due to 
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fabrication compatibility. In order to implement the temporal high-pass filter in the 

digital domain, illumination information from a photoreceptor on each pixel must be 

converted to digital codes and must be stored to SRAMs. This means N-b A/D 

conversion is required for the digital high-pass filtering operation; Only 1-b A/D 

conversion is required for the analog high-pass filtering operation. Considering 10-b per 

pixel A/D conversion, 10 times power saving can be achieved by locating the A/D 

boundary after the high-pass filter.  

 

Table 5-1: Hardware resource comparison of a discrete temporal high-pass filter 

implementation 
 Analog (Capacitors) Digital (SRAMs) 

Memory space 1Cs per  pixel N-bit per pixel 

A/D Sampling frequency fs N*fs 

 

5.2.2 Two modes of operation: optic flow generation, and normal image capture 

This architecture shown in Figure 5-1 supports both normal image capturing and optic 

flow sensing modes. In the normal image mode, the sensor generates 8-b digital images 

using the integrated single slope (SS) ADCs. The row scanner activates one row at a time 

to readout a conventional 3T CMOS active pixel sensor (APS) through source followers. 

The readout values are compared to a ramp signal, and latch the 8-b gray counter value in 

column-parallel for SS ADC operation.  

In the optic flow generation mode, the sensor operates as a bio-inspired vision chip by 

estimating optic flows from the integrated time-stamp-based optic flow algorithm. Firstly, 

a temporal contrast change is monitored from consecutive frames in the pixel array, 
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operating as a discrete-time (DT) HPF. A 1-b comparator detects the feature when there 

is a significant change in the temporal contrast beyond a threshold which can be 

dynamically adjusted. A time-stamp latch records the time when the latest feature arrives 

in the pixel array. The recorded time-stamp information is kept until the next frame.  The 

information can be moved to a shift register and fed into the chip-level digital optic flow 

processing unit to decode the time-stamp information into velocity. The I2C slave 

interface in the digital core allows on-the-fly setting of conversion gains from an off-chip 

host. 

5.3 Pixel architecture 

Figure 5-2 shows the pixel architecture and equivalent circuit for temporal contrast 

and normal image modes, respectively. The pixel includes a sampling capacitor (C1) and 

the dual purpose capacitor (C2) for setting a programmable gain amplifier (PGA) gain 

and providing wide dynamic range (WDR) operation. In WDR operation, C2 is connected 

to the photodiode in order to increase the well capacity, thus stretching the input signal 

range. Frame difference is monitored in the temporal contrast mode by sampling the pixel 

voltage (Vp(t1)) of the previous frame from C1 first, and then applying the current pixel 

voltage (Vp(t2)) to the PGA. The supply voltage for photodiodes and source followers is 

3.3V. The PGA operates at 1.8V and is only enabled during the signal transferring period 

to reduce static power consumption. 
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Figure 5-2: Pixel architecture and equivalent circuit 

 

5.4 Column circuits 

Figure 5-3 shows the column-parallel circuits implemented to realize the time-stamp 

based optic flow algorithm in the digital processing core. The column-parallel unit 

consists of a comparator and an 8-b time-stamp latch. The comparator will generate a 1-b 

signal in each pixel when the temporal contrast change is larger than a feature threshold. 

The detected 1-b feature signals in column-parallel enable the time-stamp latches to 

record the corresponding time using the value of the integrated time-stamp counter, 

which is implemented as a circulating 8-b frame counter. Therefore, the column-parallel 

time-stamp latches contain the time information of when the most recent feature has 

occurred in each pixel. The supply voltage for the comparator and time-stamp latch is 
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0.9V. In the normal image mode, the column-parallel comparators and latches operate as 

a SS ADC by applying a ramp signal to the feature threshold node.  

 

 

Figure 5-3: Column circuits and implemented 1-D time-stamp-based optic flow core 

 

5.4.1 The circular time-stamp counter and sign conversion circuits 

The time-stamp counter is implemented using an 8-b circular counter, which 

increments for every frame and decreases to the lowest at its maximum value. Because of 

this circular operation, discontinuous time-stamp values can be obtained for continuous 

motion, which occurs while the time-stamp counter is circulating. Therefore, the time-

stamp value reordering process is required to align the values in a chronological order. 
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The implemented re-alignment method is illustrated in Figure 5-4. Though the 

example uses a 3-b counter, the method is easily extended for implementing higher bit-

width counters such as 8-b or 10-b. Firstly, zero (0) value is reserved for the no-stamp 

code, which implies no moving feature is detected on the pixel; thus, if the latched time-

stamp value is zero, then it means no time-stamp value is recorded. This no-stamp code is 

decoded using column-parallel digital circuits as shown in Figure 5-5. The 1-b no-stamp 

flag is generated when the recorded time-stamp (TS) is equal to zero. This flag is utilized 

for negating time-of-travel measurement in the chip-level digital core because the 

recorded time-stamp is invalid.  

The lowest circulating counter value is one (1), and the maximum value is 2n-1, here 

n is the bit-width of the counter and 7 is for the 3-b counter. In the figure, the circular 

counter increases in the clockwise direction. The current counter value is indicated by a 

solid arrow as used on a clock. Therefore, the current time-stamp counter value is 2, 

which means the recent time is 2; the oldest time-stamp value is 3, whose chronological 

relationship is illustrated by a dotted line. To recover this relationship, the algorithm 

subtracts 2n-1, which is 7 in this example, for bigger recorded time-stamp values than the 

current time-stamp counter value. As a result, the chronological reordering is 

automatically accomplished by expressing the reversed events using negative values. 

This reordering conversion is implemented in column-parallel digital circuits as 

shown in Figure 5-6. The recorded time-stamp (TS) is first compared to the current time-

stamp counter (TS counter). If the recorded value is bigger than the current counter, then 

the selection signal of the multiplexer (flagTS_Conv) is set to 1 in order to output the 
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converted value, which is TS-255 in 8-b implementation. Otherwise, the multiplexer 

selection signal is set to 0 to bypass the recorded time-stamp.  

The recorded time-stamp must be cleared to the no-stamp code (0) after one period of 

the time-stamp counter is passed in order not to use the old time-stamp values for time-

of-travel measurement. Because the sensor uses the 8-b time-stamp counter, the recorded 

time-stamp value is maintained for 255 frames. This clearing circuit is illustrated in 

Figure 5-7. If a moving feature (Feature) is not detected at the current frame and the 

recorded time-stamp is equal to the current time-stamp counter, the clear signal (Clear) is 

set. 

The overall column-parallel digital time-stamp circuit is shown in Figure 5-8. The 

supply voltage is scaled down to 0.9V for low power consumption. The time-stamp latch 

is cleared to the no-stamp code if the clearing condition in Figure 5-7 is met. If a feature 

is detected, then the time-stamp latch is updated to the current time-stamp counter value. 

The latched value is further processed for the no-time stamp decoding and reordering 

conversion; those signals are moved to shift registers and finally feed into a chip-level 

digital processing core. 
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Figure 5-4: The implemented circular time-stamp counter and value reordering 

 

 

Figure 5-5: Column-parallel no-stamp code decoding logic 

 

 

Figure 5-6: Column-parallel time-stamp value reordering logic for the 8-b circular 
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Figure 5-7: Column-parallel recorded time-stamp clearing logic 

 

 

Figure 5-8: Column-parallel digital time-stamp circuits implemented using 0.9V supply 

 

5.4.2 Column-parallel time-stamp sign conversion example from chip measurement 

Figure 5-9 shows the details of how the time-stamp optic flow algorithm works. 
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time stamp counter (168). By using the converted value, time-of-travel measurement is 

simply calculated by a subtraction operation. Since the input pattern is horizontally 

moving bars with 3 different velocities (Figure 5-16), the plot explicitly shows three 

different slopes (dotted lines), which are inversely proportional to the amplitude of the 

velocity. 

 

 

Figure 5-9: Column-level time-stamp sign conversion 

 

5.5 Time-stamp-based optic flow estimation core 

The optic flow, the velocity of a moving feature, is estimated by decoding the 

relationship between spatially neighboring time-stamp values. The velocity is determined 
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by the traveling time between the two neighboring pixels since the moving distance of the 

feature is fixed to one pixel. As shown in Figure 5-3, the velocity of a moving feature 

increases, as the difference in the neighboring time-stamp values decreases. This 

calculation is accomplished by a chip-level digital processing core which consists of three 

blocks: time-of-travel measurement, time-to-velocity converter, and unit conversion gain 

blocks. In the time-of-travel measurement block, an 8-b subtractor determines the 

difference of two neighboring time-stamp values. The inverse of the traveling time is 

implemented by a look up table (LUT) in the time-to-velocity convertor block. The 8-b 

multiplier in the unit conversion gain block calculates the final estimated optic flow that 

will compensate for all the external system parameters such as frame rate, field of view, 

etc. The 1-D optic flow core is synthesized using standard cells operating at 1.8V. 

The chip-level time-stamp processing chain is illustrated in Figure 5-10. The 1-b no-

stamp flag (No_Stamp) and converted time-stamp (TS_Conv) are shifted from the 

column circuits. The shifted data are aligned on five stages D flip-flops; thus, 5-tap 

spatially neighboring No_Stamp and TS_Conv samples are simultaneously accessed for 

time-of-travel measurement: TS_Conv[n-2] to TS_Conv[n+2], No_Stamp[n-2] to 

No_Stamp[n+2], here n is a spatial index. Because the digital FTI algorithm requires 

three neighboring time-stamps to measure one directional time-of-travel, two FTI cores 

refer to each half of the aligned TS_Conv and No_Stamp samples to measure two 

directional time-of-travels, which move from right to left (R2L) and from left to right 

(L2R). 

The implemented FTI logic is shown in Figure 5-11. In the figure, the spatial index n 

corresponds to the center of the 5 aligned tap in Figure 5-10, and the spatial index n-2 is 
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the right most tap (n+2) for the R2L FTI and the left most tap (n-2) for L2R FTI 

measurement. The algorithm simultaneously calculates both time-of-travels of the center 

and neighboring locations, dT[n] and dT[n-1] in Figure 5-11, using two subtractors. Then, 

the absolute value of the difference between the calculated time-of-travels is compared to 

the adjustable threshold (FTI_Threshold) for the motion consistency check, which 

verifies the direction and velocity of extracted motion are in the similar range of the 

neighboring location. If the motion consistency check is passed, the remaining condition 

is to find if any no-stamp code is used for the calculation. This condition is implemented 

using a 3-input NOR gate as illustrated in Figure 5-12. Any no-stamp flag forces  the 

NOR gate’s output to zero; as a result, the time-of-travel valid flag (FTI_EN) is also 

invalid by the AND gate in Figure 5-11. This valid flag signal is registered and bypassed 

for all remaining pipeline stages to synchronize with calculated data. If the FTI_EN is 

valid, the measured time-of-travel from the center location, dT[n], is registered via D flip-

flops for pipeline processing. 

The measured time-of-travel is converted to velocity by a look-up table (LUT) shown 

in Figure 5-13. The LUT is designed to support 8-b fixed-point data processing; each 

entry of the LUT is multiplied by 28 to the reciprocal (1/x) function. In order to save LUT 

entries, only unsigned time-of-travels are itemized as a table. Instead, sign extraction and 

absolute value conversion are performed for input data; thus, only a converted unsigned 

integer is fed to the table. Then, the original sign is recovered at the end of processing by 

multiplying previously extracted sign value.  

Finally, the converted velocities for opposite directions are merged and multiplied by 

a user controlled gain, which is used for optic flow unit conversion or additional digital 
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gain control as shown in Figure 5-10. The 8-b fixed point calculation is shifted to the 

right to align the decimal point. The amount of the right shift is also controlled by a user 

to provide flexible decimal places: if the amount of the shift is 8, then output data is 8-b 

integer, if the amount is 6, output data consists of 6-b integer and 2-b below decimal 

point. 
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Figure 5-10: Chip-level time-stamp-based 1-D optic flow processing core 
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Figure 5-11: Implemented digital facilitate-trigger-and-inhibition (FTI) circuits 
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Figure 5-12: Valid stamps detection logic 

 

 

Figure 5-13: A velocity conversion look-up table (LUT) 
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5.6 Chip characteristics 

A prototype chip was fabricated using 0.18μm 1P4M process. A chip micrograph is 

shown in Figure 5-14. In order to prove the feasibility of a MAV’s application, optic flow 

accuracy and power consumption are mainly characterized. The linearity of generated 

optic flows is characterized by averaging optic flows from a moving horizontal bar 

pattern with a constant velocity in pixel/frame.  

 

 

Figure 5-14: Chip micrograph 
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5.6.1 Measurement setup 

The block diagram of the measurement environment for the first prototype chip is 

shown in Figure 5-15. The prototype chip supports three output modes to generate a 

captured image, 1D optic flows, and feature information for 2D array. A 3-to-1 

multiplexer selects one of the generated outputs from the prototype chip and sends it to a 

data acquisition (DAQ) system in PC. LabView converts the delivered output data to a 

proper format in order to display it on a monitor. One FPGA, FPGA1 in Figure 5-15, on 

the PCB generates all control signals to operate the prototype chip, and the other FPGA, 

FPGA2 in Figure 5-15, stores time-stamp information for 64x64 2D array and perform an 

algorithm to generate 2D optic flows by programming FPGA. The PCB design has been 

completed, and programming for FPGAs and LabView is being performed.  

The first prototype chip test is planned as shown in Table 5-1. The operation of the 

photodiodes will be verified first. With an off-chip ADC, the output of the photodiodes is 

converted to digital data so that DAQ and LabView can display an image on a display. 

After the photodiodes verification, the image signal path will be tested in order to check 

the operation of column-level circuits and latches. Then, the on-chip 1D optic flow digital 

processing core will be tested by displaying 1D optic flows from the prototype chip. 

Synthetic image patterns will be utilized to characterize the detectable velocity range of 

the fabricated chip. A unit of time interval of the time-stamp is controlled by changing 

the frame rate. The 2D algorithm will be elaborated and demonstrated with an off-chip 

FPGA that stores time-stamp information of 2D array and processes the 2D algorithm. 
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Figure 5-15: Block diagram of measurement environment for the first prototype chip 

 

Table 5-2: Measurement plan for the first prototype chip 

 

 

5.6.2 Measurement results 

5.6.2.1 1-D optic flow test results 

Figure 5-16 shows the performance of the integrated 1-D digital optic flow core. The 

linearity curve in Figure 5-16 (a) was characterized by averaging the output optic flows 

Test items Description 

Photodiode With an off-chip ADC, the output of photodiodes is converted 

to digital data so that DAQ and LabView can display an image 

on a display. 

Image signal path The image signal path inside the prototype chip is tested by 

displaying image data, which are directly generated inside the 

prototype chip. The image signal path includes photodiodes, 

column circuits, and latches. 

1D optic flow signal path On-chip digital processing unit to perform the time-stamp based 

1D optic flow algorithm is tested by getting 1D optic flows 

from the prototype chip. To characterize optic flow resolution, 

synthetic input video patterns with different rotational velocities 

are used. Different frame rate settings control the time interval 

of the time-stamp unit. 

2D optic flow algorithm With an off-chip FPGA, time-stamp information for 2D array is 

stored and processed to generate 2D optic flows. This test is for 

elaborating 2D algorithm and real-time demonstration with real 

environmental test cases. 
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while applying fixed velocity input bar patterns with a constant velocity in [pixel/frame]. 

The patterns were computer-generated and exposed by an LCD monitor screen. Because 

the patterns displaying on the LCD monitor and the projected images on the sensor were 

not perfectly matched as expected, the actual input velocity of the pattern visualized at 

the sensor side was different from the expected input velocity while building the pattern. 

Thus, the measured steps in the x-axis are not equally spaced. In order to recover the 

actual input velocity that the sensor captured, we also collected a series of normal images 

(256 frames) per input velocity and then re-calculated the bar speed in the computer. In 

Figure 5-16 (a), the circles and error bars indicate the measured mean velocity and its 

standard deviation. The measured mean velocity linearly follows the input velocity, while 

the range of standard deviation increases with respect to input velocity as seen in the 

simulation. We observed that the standard deviation ranges are non-linearly increased by 

the reciprocal operator converting the time-of-travel to velocity. This reciprocal operator 

resulted in nonlinear spacing output digital codes, which are precise in lower velocity and 

sparse in higher velocity. For example, the value of time-of-travel 1 [frame/pixel] maps 

to 1 [pixel/frame] of velocity; 2 [frame/pixel] time-of-travel maps to 0.5 [pixel/frame]; 

and 4 [frame/pixel] time-of-travel maps to 0.25 [pixel/frame]. In this non-linear 

relationship, one code difference in the measured time-of-travel affects a different swing 

in the converted velocity; thus, a measurement error in time-of-travel causes non-linear 

ranges in different velocities. 
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(a) Measured linearity curve from on-chip 1-D optic flow core 

 

 

(b) Measured multi-velocity curve from two moving bars 

 

Figure 5-16. 1-D optic flow test plots with the on-chip digital core 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

Input velocity [pixel/frame]

M
e

a
s

u
re

d
 v

e
lo

c
it

y
 [

p
ix

e
l/
fr

a
m

e
]

10 20 30 40 50 60
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pixel index

Moving two bars from the center with 3 different 
velocities (0.05, 0.1, 0.2 [pixel/frame])

Input pattern

0.05 0.1 0.2

-0.2 -0.1 -0.05



86 

 

The multi-velocity test was performed by applying two horizontally moving bars to 

opposite directions from the center as shown in Figure 5-16 (b). The velocity of the bars 

is changed in three different segments: 0.05, 0.1, and 0.2 [pixel/frame], respectively. The 

goal of the test is to verify that the measured 1-D optic flow properly reflected both 

magnitude and direction of motion. The direction of motion is encoded in the sign of 

measured optic flow. The negative sign indicates the motion of moving left; the positive 

sign implies the motion of moving to the right direction. The plot in Figure 5-16 (b) is the 

accumulated 1-D optic flow for the period while the input bars started to move from the 

center until reaching to both sides. The x-axis of the plot is the spatial index from 0 to 63; 

each of the numbers indicates the left most and right most pixel. Thus, the measured plot 

shows three different plateaus per each direction, which correspond to the velocity of 

0.05, 0.1, and 0.2 [pixel/frame]. The plot is also symmetric to the origin because the 

directions of the patterns were opposite. 

 

5.6.2.2 2-D optic flow test results 

Figure 5-17 shows the 2-D optic flow test results constructed from the extracted 1-D 

features generated from the fabricated chip. The test frame rate was 15fps, and translating, 

diagonally moving, and rotating input patterns were applied. In addition to the pattern 

tests, we tested with a moving miniature train in order to emulate the MAV environment. 
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Figure 5-17. 2-D optic flow test result constructed from 1-b feature information generated 

by the fabricated chip 

 

5.6.3 Characteristics summary 

The performance of the sensor is summarized in Table 5-3. We achieved a 2.38 

nW/pixel to estimate 8-b 1-D optic flows. Performance comparison with previously 

implemented optic flow sensors is presented in Table 5-4. 
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Table 5-3: Chip characteristics 

 

 

Table 5-4: Performance comparison with previous works 

 1999 [59] 2001 [86] 2005 [87] 2009 [88] 2011 [89] This work 

Technology 1.2µm CMOS 2µm Nwell 0.8µm 

BiCMOS 

- 0.5µm CMOS 0.18µm 

CMOS 

Array size 6×24 7×7 30×30 40 circular 19×1 64×64 

Optic flow 1D analog 2D averaging 

analog 

2D analog 1D analog 1D WFI analog 1D digital 

 

Pixel size 

[µm2] 

61×199 70×90 124×124 - 112x257.3 28.8×28.8 

Fill factor [%] - 40 - - 11 18.32 

Total power 

[µW] 

- - - 1000 42.6 0.152 

Power/pixel 

[µW] 

0.025 350 52 25 2.24 0.00238 

(@30fps) 

 

5.7 Summary 

A bio-inspired A/D mixed-mode optic flow sensor that captures a normal image and 

also estimates optic flows for vision-based autonomous navigation in micro-air-vehicles 

Process 0.18 μm 1P4M CMOS

Core size 3.26 x 3.26 mm2

Pixel array 64 x 64

Pixel size 28.8 x 28.8 μm2

Fill factor 18.32 %

Maximum optic flow 1.96 rad/sec @ 120 fps, FOV 60º

Power (Pixel, 3.3V @ 30 fps) 6.79 nW

Power (ADC analog, 1.8 V, @ 30 fps) 12.96 nW

Power (Digital, 0.9 V, @ 30 fps) 24.03 nW

Power (Digital, 1.8 V, @ 30 fps) 108.72 nW

Total power (@ 30fps) 152.50 nW

Power FOM [pW/pixel·frame] 79.4
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is implemented and fabricated. The sensor integrates the 1D time-stamp based optic flow 

estimation core, which is developed for efficient implementation of bio-inspired time-of-

travel measurement in the mixed-mode circuits. The sensor has successfully 

demonstrated the algorithm by generating 1D optic flows with the maximum frame rate 

of 120 fps. The feasibility to extend the algorithm for 2D optic flow estimation is also 

verified using the 1-b feature information acquired from the fabricated sensor. 
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CHAPTER 6 

BIO-INSPIRED TIME-STAMP-BASED 2D OPTIC FLOW SENSOR FOR 

ARTIFICIAL COMPOUND EYES 

 

This chapter introduces the bio-inspired low-power optic flow sensor, which consists 

of a 2D time-stamp-based optic flow core and peripheral circuits to accomplish the 

artificial compound eyes on our 3D semi-hemispherical module platform shown in Figure 

6-1.  

 

 

Figure 6-1: Artificial compound eyes on the 3-D semi-hemispherical module platform 

 

In this work, we have devised and implemented the 2D time-stamp-based optic flow 

algorithm, which is modified from the conventional EMD algorithm to give an optimum 

partitioning of hardware blocks in analog and digital domains as well as assign adequate 
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allocation of pixel-level, column-parallel, and chip-level processing. Temporal filtering, 

which may require huge hardware resources if implemented in digital domain, remains in 

a pixel-level analog processing unit. Feature detection is implemented using digital 

circuits in the column-parallel. The embedded digital core decodes the 2D time-stamp 

information into velocity in chip-level processing. Spatial resolution scaling or down-

sampling is optionally supported if users need to reduce the data transmission rate by 

sacrificing spatial resolution. The estimated 16-b optic flow data are compressed and 

transmitted to the host through a 4-wired Serial Peripheral Interface (SPI) bus. In addition, 

to transmit the optic flow data, the embedded 12 matched filters perform the wide-field 

integration of the measured optic flow to provide the direct input of the bio-inspired 

navigation systems. 

6.1 3D semi-hemispherical module platform for artificial compound eyes 

Our 3D semi-hemispherical module platform provides a practical solution for multi-

directional optic flow sensing using existing technologies rather than relying on 

complicated and customized technologies to precisely mimic an insect’s compound eye 

configuration. The conceptual diagram of the 3D module platform is illustrated in Figure 

6-2. The multi-directional optic flow sensing is accomplished by 2D optic flow sensors 

located on top of a flexible PCB, which is bent to any desired inter-sensor angles by 

origami packaging technique. This sensing scheme is distinguished from that of actual 

compound eyes.  

Several variations of 3D shapes are also possible by folding a base flexible PCB 

differently. One variation is a uni-axial sensing module as shown in Figure 6-3. In this 

module, a base flexible PCB is designed as a long band and multiple 2D optic flow 
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sensors are sequentially mounted with equal space between. Then, by bending and 

connecting both sides, a ring-shaped uni-axial module is formed. This configuration 

provides 180º wide FoV on a plane so that a 3 degree of freedom (DoF) control is 

possible for a MAV’s autonomous navigation [25], [26]. 

 

 

Figure 6-2: The conceptual diagram of 3D semi-hemispherical module platform 

 

 

Figure 6-3: The uni-axial sensing module of the 3D semi-hemispherical module platform 

 

A variety of 3D shaped modules can be built depending on a user’s different purpose; 

however, the requirements of 2D optic flow sensors on the modules are straightforward. 
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Low power consumption and a small form factor are the highest concerns from a MAV’s 

limited power source and size. In addition, a simple data-line connection between the 

sensors and secure data bandwidth are issued due to its multiple sensors on a module 

platform. Those issues are discussed in the following sections. 

6.2 System requirements of 2D optic flow sensors on the 3D module platform 

The 3D module platform that mounts multiple sensors on a single module requires 

two major design constraints: minimal electrical connection and on-demand data 

transmission. The minimal connection between the sensors on the module enables 

assembling the module in a small form factor because the signal routing area on a PCB is 

minimized; on-demand data transmission allows the host to acquire surrounding optic 

flow data on time without any loss from each sensor. To resolve both issues, we 

researched available bus protocols in a MAV system.  

 

Table 6-1: Serial bus protocols used in MAV systems 
 Connections [wire] Bandwidth [kB/s] Supported sensors @100fps, full 

resolution (64x64) [EA] 

I2C 2 40 0.048 

UART 2 92 0.11 

SPI 4 3,500 4.3 

 

I2C, UART, and SPI are widely used serial bus protocols in the MAV system as 

summarized in Table 1-1. I2C and UART supports a 2-wired interface; SPI supports a 4-

wired interface. Though I2C and UART provide the minimum electrical connectivity (two 

wires), data bandwidth is limited only up to 40kB/s for I2C and 92kB/s for UART. These 
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bandwidth specifications are not enough to transmit 64x64 full resolution of 2D optic 

flow data (16-b per pixel and 8-b for x and y components), especially considering 

multiple sensors are transmitting data concurrently. However, 3MB/s SPI supports up to 

4 sensors to transmit full resolution data at 100fps. Although this capability still does not 

fully satisfy our requirement using 7 sensors for the 3D semi-hemispherical form and 8 

sensors for the uni-axial form, SPI is chosen because it is the only serialize data bus 

protocol that can handle full resolution data. Therefore, further efforts on reducing data 

bandwidth at the sensor side should be elaborated. A down-sampler, a data compressor, 

and wide-field integration blocks are designed to contribute to the data reduction.  

A remaining issue is how the host acquires optic flow data from multiple sensors in 

the module. To resolve this problem, sensors are operating as slaves on the SPI bus as 

illustrated in Figure 6-4. The data transmission from one sensor is invoked when the host 

activates the sensor and requests optic flow data for a predetermined period. Therefore, 

the data transmission is accomplished in such a time division multiplexing way from 

multiple sensors. In order to support this data transmission operation, each sensor must 

contain at least the amount of one frame of recently generated optic flow data so that the 

sensor can immediately send data according to the host’s request.  
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Figure 6-4: System architecture of the artificial compound eye module 

 

6.3 Implemented bio-inspired 2D time-stamp-based optic flow algorithm 

Bio-inspired optic flow estimation algorithms and sensors have been widely 

investigated for MAV autonomous navigation. Most previous works implemented an 

insect’s motion estimation in aVLSI circuits. We adopted this bio-inspired algorithm for 

low-power calculation of optic flow estimation utilizing the time-of-travel estimation of a 

moving feature. However, we implemented the algorithm in analog/digital mixed-mode 

circuits instead of pure analog neuromorphic circuits. This mixed-mode circuit approach 

can address the drawbacks in pure analog signal processing and estimate accurate optic 

flows with high noise immunity from process and temperature variations. 

In order to efficiently implement the bio-inspired time-of-travel measurement in 

mixed-mode circuits, we have introduced the time-stamp imaging. We defined the time-

stamp information as the time of the most recent event for a moving feature’s arriving 

into a pixel. Therefore, the time-stamp information is stored in a two dimensional array in 

our sensor; every pixel keeps updating the information whenever a moving feature arrival 
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is detected at the location. The basic idea of the proposed imaging is illustrated in Figure 

6-5.  

 

 

Figure 6-5: Concept diagram of 2D time-stamp information 

 

In the example, an object is moving on the sensor plane by following the trajectory 

from the time t=1 to t=20. The object moves with the speed of 0.5pixel/frame for the first 

half of the trajectory, and it speeds up twice (1pixel/frame) for the remaining movement. 

As a result, at time t=20, the 2D time-stamp array records the object’s arrival time as 

specified in Figure 6-5 (b). Once the time-stamp array is updated with the latest 

information, the 2D optic flow is decoded from the information at every pixel. The 

direction of motion is estimated by finding the direction of the increasing time-stamp 

information in neighboring pixels; it starts from the pixel of lower time-stamp value and 

ends at the pixel of the higher one. The speed of the flow is inversely proportional to the 

time-of-travel of the direction; the time-of-travel can be simply calculated by subtracting 

the recorded two time-stamp values of the corresponding locations. The example in 

Figure 6-5 (c) shows the recovered 2D optic flow. We have developed the 2D time-

stamp-based optic flow algorithm that is able to automatically update the time-stamp 

array and recover the optic flow by recovering the aforementioned relationship.  
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The moving object arrival detection in each pixel enables the algorithm to 

automatically update the time-stamp information. We mimic the moving feature detection 

scheme inside an insect’s visual signal pathway that utilizes the temporal contrast edge as 

an object’s arrival or departure at each photo-recepting unit called an ommatidium. The 

detection scheme in an insect’s eyes is illustrated in Figure 6-6. Two simplified cases in 

the figure are: (a) a brighter object than background arrived at time t=1 and left the 

location at t=2; (b) a darker object than the background arrived at t=1 and left at t=2. The 

temporal contrast is measured by a temporal high pass filter (HPF). The positive polarity 

of the measured temporal is named on-edge polarity. In the same manner, the negative 

temporal contrast is named off-edge polarity [73]. This on-edge (or also off-edge) occurs 

when a moving object arrived to or departed from the pixel. The on-edge (off-edge) is 

caused by the arrival (departure) if relative brightness of the object is brighter than the 

background; the on-edge (off-edge) is caused by the departure (arrival) if relative 

brightness of the object is darker than the background. As an example in Figure 6-6 (a), 

the on-edge contrast change represents the arrival; the off-edge indicates the departure for 

a brighter object. In Figure 6-6 (b) due to the opposite brightness relationship of the 

object and background, the on-edge (off-edge) represents the departure (arrival). No 

matter what the on-edge or off-edge represent either arrival or departure, we can measure 

the time-of-travel time passing on the pixel by considering only one polarity. For 

example, if considering only on-edge polarity to measure the traveling time of a moving 

object that passes two neighboring pixels as shown in Figure 6-6 (c), the measurement is 

actually the results of the arrival time difference between the pixels for a bright moving 

object, which corresponds to the time difference in Figure 6-6 (d). In an actual insect’s 
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visual system, the on-edge and off-edge polarities are processed in parallel in two 

different pathways for the independent time-of-travel measurements [73]. However, our 

algorithm processes only one polarity to save hardware resources, which are mainly 

reduced by allocating one 64x64x8-b 2D time-stamp array, not two arrays for both on-

edge and off-edge information. This algorithm reduction is possible due to the property 

that is explained from the examples of Figure 6-6 (a) and (b): the on-edge (off-edge) of 

the contrast change always traces the off-edge (on-edge) contrast change if an object is 

passing on the pixel. This property implies even though only a single pathway is 

implemented, there is no chance to miss any motion information passing on the pixel.  

 

 

Figure 6-6: A bio-inspired moving object arrival/departure detection 

 



99 

 

In the proposed algorithm, we adopted a simplified version of a discrete-time high-

pass filter (DT-HPF) implemented using A/D mixed-mode circuits to perform the 

function describe in eq. (1). The algorithm only requires 1-b digital feature information at 

the A/D boundary defined as eq. (2). This information is required to stamp the 

corresponding time. Thus, the algorithm requires only 1-b ADCs which can be 

implemented using 1-b comparators with a feature threshold (Thfeature).   
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Where It(n) and It-1(n)  are the measured illuminances at the current time t and previous 

time t-1 in the spatial location of n; and Thfeature is the feature threshold which is an 

adjustable reference value to determine the moving feature.  

Figure 6-7 summarizes the implemented time-stamp-based 2D optic flow algorithm. 

The pixel-level moving feature detection in Figure 6-7 (a) consists of the photodiode, 

DT-HPF for temporal contrast measurement, and thresholding comparator. Because the 

implemented algorithm operates in the discrete-time domain, the signals in the example 

timing diagram are sampled. The sampling frequency corresponds to the frame rate. In 

the timing diagram, on-edge contrast change is quantized using an adjustable threshold; 

as a result, 1-b moving feature information is detected. This feature information updates 

the time-stamp information of the pixel by latching the global frame counter value. The 

time-of-travel measurement and velocity conversion using the updated 2D time-stamp 
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array is described in Figure 6-7 (b). As shown in the figure, the algorithm generates the 

2D optic flow in every pixel by referring to 8 neighboring time-stamp pieces of 

information which are a 3x3 masking operation. The calculation is triggered only when 

the center pixel detects the moving feature. If a feature is detected, the updated time-

stamp information is the same as the current global counter value at the location (pixel). 

For example, at time t=3 only at the pixel in the left dotted box, the calculation is 

performed; in the same manner, at time t=19 only at the location of the right dotted box in 

the figure is the optic flow estimated. The estimation is sequentially performed by 

measuring time-of-travel values of x and y directions, (Tx, Ty). This measurement is 

simply accomplished by subtracting time-stamp information of neighboring pixels from 

that of the center. The optic flow (Vx, Vy) is inversely proportional to the measured time-

of-travel (Tx, Ty) which is implemented using look up tables. In the given examples in the 

dotted boxes, are the direction and velocity of 2D vector (Vx, Vy). 
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Figure 6-7: Implemented time-stamp-based 2D optic flow estimation algorithm 

 

6.4 Sensor architecture 

The prototype sensor consists of the 2D pixel array which integrates the frame 

difference measurement circuit as a simplified DT HPF for the temporal contrast 

measurement in each pixel; the moving feature arrival/departure detection comparator in 

the column circuits; the chip-level digital time-stamp-based 2D optic flow computation 

core; and the digital peripheral circuits to provide a modular expandability for the 

multiple sensors in a module platform as shown in Figure 6-8.  
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Figure 6-8: Prototype time-stamp-based 2D optic flow sensor architecture 

 

This architecture is similar to that of normal CMOS imagers integrating column-

parallel single slope ADCs (SS ADCs) in order to support both normal image generation 
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margin from the noise floor to the measured temporal contrast signal to perform the 1-b 
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quantization. These column feature detection circuits are implemented to use 0.9V supply 

for low power consumption. 

After performing the 1-b conversion in the column circuits, the digital 1-b moving 

feature signal flows into the integrated digital 2D time-stamp-based optic flow estimation 

core in the raster scan order. In the digital core, the delivered 1-b feature updates the 8-b 

time-stamp information of the corresponding pixel if a moving feature is detected. The 

updated time-stamp information is aligned for a 3x3 masking operation in the two-line 

buffer which stores the upper two rows of updated time-stamp information. Then, using 

the updated 3x3 time-stamp information, the core measures four directional time-of-

travel values with respect to horizontal, vertical, and two diagonal axes. Thus, the 

implemented hardware considers two more directional motion pieces of information than 

the aforementioned simple algorithm for accurate estimation. The time-of-travel 

measurement is implemented using digital arithmetic subractors. The measured time-of-

travel values in four directions are converted to velocities from four look-up tables. 

Finally, the four converted velocities are projected to x and y axes to find 16-b 2D optic 

flow (Vx, Vy). Peripheral circuits further process the estimated 16-b raw optic flow. The 

main reason is to reduce data bandwidth to satisfy the system requirement of the multiple 

sensors since they share a single serialize bus. Thus, we developed and implemented a 

data compression algorithm that is customized for optic flow data. The algorithm can be 

selected to operate as a lossless or lossy compressor based on parameter settings. The 

peripheral circuit is able to further reduce data bandwidth using spatial down-sampling 

raw optic flow down to 32x32, 16x16, and 8x8. In addition to provide optic flow, the 

peripheral circuit supports the processed wide field integration (WFI) output which is the 
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front-end information of a bio-inspired autonomous navigation algorithm for MAVs 

[25]–[27]. 

 

6.5 Circuit implementation and proposed sensor 

6.5.1 Pixel architecture 

The pixel architecture and layout for the optic flow and normal image modes are 

shown in Figure 6-9. In the optic flow mode, the pixel measures frame difference. The 

pixel includes a sampling capacitor (C1) and the capacitor (C2) for setting a 

programmable gain amplifier (PGA) gain. Frame difference is monitored by sampling the 

pixel voltage (Vp(t1)) of the previous frame from C1 first, and then applying the current 

pixel voltage (Vp(t2)) to the PGA. In both normal image and frame difference modes, the 

PGA supports x1, x2, x4, and x8 gains by connecting more unit capacitors of C2 in 

parallel. The supply voltage for photodiodes and source followers is 3.3V. The PGA 

operates at 1.8V and is only enabled during the signal transferring period to reduce static 

power consumption. The layout of the pixel is shown in Figure 6-9 (b). The pixel size is 

28.8x28.8µm2.  The laid out photodiode achieved 18% of fill factor. The capacitor array 

consists of metal-insulator-metal (MIM) capacitors occupying about half of the pixel area. 

The remaining area is for the PGA and switches and the source follower transistors. The 

signal lines are vertically passing through the center between the photodiode and 

capacitor array and also horizontally passing at the top and bottom of the pixel. 
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Figure 6-9: Pixel architecture: schematic and layout 

 

6.5.2 Column-parallel feature detection circuits 

Figure 6-10 shows the moving feature arrival/departure detection circuits which are 

implemented in column-parallel combining with the in-pixel PGA.  The schematic of the 

full feature detection signal path is shown in Figure 6-10 (a). The boundary of in-pixel 

PGA and the remaining column-level circuits is at the S2 switch. The implemented 

circuits compare the measured frame difference to the adjustable feature threshold, 

VTh_feature; then, generate 1-b feature information if the measured value is higher than the 

threshold. We designed the circuits to detect only the off-edges of the temporal contrast; 

as a result, the circuit can use smaller voltage headroom comparably to support both 

edges. Thus, the power supply is reduced down to 1.8V for low power consumption. In 

addition, by only using the off-edges we also reduced the digital hardware resource as 

mentioned in the algorithm description, in that only one 2D time-stamp buffer (64x64x8b) 

is required. In Figure 6-10 (b), an example timing diagram is illustrated to explain the 
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feature detection operation. In the example, the gain of the PGA is set to 1 to make the 

example simple. The operation is composed of three phases: sample, hold, and compare. 

The example shows three different levels of the source follower output voltage (Vsf) in 

time to demonstrate two frame difference measurements. The source follower voltage 

level in the example is described as flat over one frame for simplification; however, the 

actual voltage is reset to 3.3V when the reset signal (RST) is asserted and decreases to the 

steady level over integration. The hold phase is expressed for a short duration in the 

timing diagram, but the actual time lasts as long as almost one frame. The example starts 

from the sample phase of the Vsf by closing all F0, F1, and F2 switches. At this phase, the 

SEL, PE, and S1, S2 switches are also turned on in order for Vsf to be stored at C1. The 

next hold phase is for the pixel to hold value for the integration time by disconnecting S2 

from column circuit so that another row can utilize the column detector circuits. For this 

hold phase, the S0 and S1 are controlled to keep one terminal of C1 to the reference 

voltage of the PGA. After one frame of the integration time is passed, the operation 

moves to the first compare phase. The Vsf is changed after the integration time, but the 

difference from the previous frame is not higher than the threshold voltage (VTh_feature). In 

the compare phase, the Vsf of the current frame is applied by closing the S1 and S2 

switches; as a result, the frame difference is reflected by decreasing voltage at the node 

Vx as shown in the timing diagram. The measured frame difference (Vsig) is expressed as 

the Eq (3).  

))()(( 1 nsfnsfsig tVtVAV       (3) 

Where, Vsf(tn) is the source follower voltage of the current frame, Vsf(tn-1) is the source 

follower voltage of the previous frame, and A is the PGA gain. In the given timing 
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diagram, A is set to 1. Then, the signal path from the PGA is isolated by opening S2. The 

comparison to the VTh_freature is performed by applying the threshold voltage to the Vcomp 

terminal. At this comparison, because the Vsig is smaller than VTh_freature, Vx becomes 

bigger than Vref1 of the pre-amplifier. Therefore, S and R inputs of the SR latch are 

configured to reset by the comparator output. As a result, the output of SR latch (Vfeature) 

is zero, which means no feature is detected. After the first comparison phase, the current 

frame voltage is sampled at C1 in the second sample phase and held for the next 

integration time in the second hold phase. In the second compare phase, Vsf difference 

(Vsig) is bigger than VTh_freature; thus, the Vx finally becomes lower than Vref1, which 

triggers the SR latch to be set. As a result, the 1-b feature information (Vfeature) is detected.  
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(a) Feature detection circuit schematic 

 

(b) Feature detection circuit timing diagram example 

Figure 6-10: Feature detection circuits: schematic and timing diagram 
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6.5.3 Digital time-stamp-based optic flow estimation core 

The block diagram of the implemented chip-level digital circuits is shown in Figure 

6-11. The embedded digital processing circuits mainly consist of two parts: the time-

stamp-based optic flow estimation core that generates 16-b 2D raw optic flow from 

neighboring 3x3 time-stamp information, and the peripheral circuits including SPI 

interface and post processors, which reduce the data bandwidth (down-sampler and 

compressor) as well as extract wide field integration (WFI) control parameters for a 

MAV’s autonomous navigation.  

 

 

Figure 6-11: Digital time-stamp-based optic flow estimation core and peripheral circuits 
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every frame using the 1-b feature information from the column-level feature detector 

circuits. Also, the block chronologically re-orders the time-stamp information. The 

implemented re-alignment algorithm is illustrated in Figure 6-12. Though the example 

uses a 3-b counter, this method is simply extended for higher bit-width counters such as 

8-b or 10-b. Before considering the reordering algorithm, note the zero time-stamp values 

are reserved for the no-stamp code, which implies no moving feature is detected on the 

corresponding pixel. Thus, if the latched time-stamp value is zero, further velocity 

calculation processing must be suspended since no useful time-stamp is recorded at the 

location. Because the no-stamp code reserves zero, the lowest circulating counter value is 

one (1), and the maximum value is 2n-1 (7 for a 3-b counter and 255 for an 8-b counter). 

As shown in Figure 6-12, the circular counter increases in the clockwise direction. The 

current counter value is indicated by a solid arrow as on a clock; thus, the current time-

stamp counter is 2. This implies that among the recorded time-stamp values in the latches 

the most recent event is the counter value of 2, and the oldest is 3. This chronological 

relationship is illustrated by a dotted line. To automatically recover this order, the 

algorithm subtracts 2n-1 (7 for this example) only for the time-stamp values that are 

bigger than the current time-stamp counter (>2). As a result, the chronological order is 

automatically recovered by expressing the older events rather than the current time stamp 

counter using negative values as shown in Figure 6-12. The time-stamp update block in 

Figure 6-11 also performs to clear the recorded time-stamp information by writing the no 

stamp code (0) if it lasted for one period of the frame counter. The updated time-stamp 

value is recoded to the 2D time-stamp array and then read out in the raster scan order.  
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Figure 6-12: The implemented circular time-stamp counter and value reordering 

 

A two-line buffer aligns the updated time-stamp information for the 3x3 masking 

operation. The 3x3 time-stamp information is required because the implemented core 

finds the velocity of a moving feature in four directions, which are horizontal, vertical, 

and two diagonals. In addition, four 1D time-stamp-based optic flow estimation units are 

implemented to find 1D optic flow for each direction using the equations in Table 6-2. 

Then, velocity projection block merges the four 1D optic flow values to generate 2D 

optic flow information by projecting the measured flows onto the x and y axes using Eq. 

(4). 
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axes, √2 is used for the measurement. The measured u and v are 8-b each. Thus, total 16-

b raw 2D optic flow is generated from the core. 

 

Table 6-2: Equations for 2D time-stamp-based optic flow estimation 

 

 TS(x, y) means the updated time-stamp information at the spatial location of (x, y) 

 dT means the time-stamp difference between the center to neighbors. 

 N, S, W, and E mean North, South, West, and East directions. 

 T means the measured time-of-travel for each 1D axis. 

 V means the converted velocity for each 1D direction. 

 

6.5.4 Digital peripheral circuits: SPI controller, compressor, down-sampler, and 

WFI 

The peripheral circuits were implemented to support our modular-based artificial 

compound eyes platform. The 4-wired SPI was chosen to secure high data bandwidth 

among currently available serial bus interfaces utilized in MAVs because the compound 

eyes platform is mountable with multiple sensors on the system. Though the integrated 
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3MB/sec SPI is the fastest option, only three 2D optic flow sensors can send data at full 

resolution, 64x64x16-b at 120fps. Thus, the sensor integrates additional data reduction 

blocks to meet the system requirements. The optic flow data compression algorithm can 

support both lossy and lossless compression and is optimized for simple hardware 

implementation. Using the lossless algorithm, up to 25 sensors are able to transfer the full 

resolution data on the same 3MB/sec SPI bus. In addition to the compression core, the 

integrated down-sampler can further reduce the data by spatially resampling the raw flow 

data down to 32x32, 16x16, and 8x8 with the fixed scaling ratios. Finally, the wide field 

integration (WFI) block performs 2D matched filtering operation using the down-

sampled optic flow and user defined coefficients. The WFI outputs can be directly used 

as control parameters by the bio-inspired MAVs for autonomous navigation. 

 

6.5.5 Optic flow data compression core 

The implemented compression algorithm is described in Figure 6-13. The algorithm 

utilizes the sparsity of generated optic flow in a scene because scenes in nature are mostly 

composed of low spatial and temporal frequency components. Specifically, the sparsity is 

maximized in such bio-inspired algorithms in which both temporal and spatial edges are 

considered to estimate the optic flow. For example, our algorithm only generates optic 

flow at the locations where spatial edges are moving. Thus, in a rotating fan scene, the 

flow is generated only at the edges of the vanes. Based on the observation, we simulated 

using image sets from a robot simulator to verify that the sparsity is consistent in the 

moving robot’s vision [85]. We tested with ten thousand scenes which were captured 

from the robot simulator while the robot was flying the five trajectories. The result in 
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Figure 6-13 (a) shows optic flow was generated at only about 5.4% of total measurement 

sites; 94.59% of locations has zero optic flow. Thus, the sparsity property is still valid in 

a mobile robot situation. This distribution of the histogram was inspired to apply entropy 

data compression technique for the optic flow data: the shortest code is allocated for zero 

optic flow data; the longer codes are allocated with respect to the frequency of occurrence. 

To simplify hardware implementation, we categorized the estimated optic flow data to 

only two types of the data set: non-flow data and valid optic flow data. Then, 1-b ‘1’ code 

is reserved for the majority. For the detected optic flow, 2-b header (‘01’) plus 16-b raw 

optic flow is sent. Therefore, based on the probability distribution, 16-b/sample raw optic 

flow is compressed to only 1.92 bit/sample in average without any loss.  
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Figure 6-13: Implemented 2D optic flow data compression algorithm 

 

 

We introduced a threshold to determine the non-flow data for preventing negligible 

small flows which degrade the compression performance. The sources of the small flows 

can be a continuous weak vibration of MAVs as they constantly work to maintain balance. 

As shown in Figure 6-13 (b), the criteria of determining non-flow is the absolute optic 

flow in both the x and y directions which must be less than the threshold. Thus, if the 

threshold is zero, the algorithm performs lossless compression because all measured flow 
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compression which abandons smaller measured flows than the threshold for 
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6.5.6 Down-sampler and WFI 

The sensor integrated the digital wide field integration (WFI) function. The WFI 

preforms the 2D matched filtering operation to extract clues of self-motion information 

by parsing the measured surrounding optic flow. This mechanism is inspired by the 

tangential cells in a flying insect’s compound eyes, which are directionally selective cells 

for detecting motions from its surroundings [53]. This behavior is modeled by the 2D 

matched filter that measures the correlation between the optic flow and the predetermined 

coefficient sets. The filter operation is an inner product between the surrounding 2D optic 

flow and the user-defined 2D coefficients. Bio-inspired autonomous navigation control 

theories utilizing the calculated WFI as front-end information were successfully 

demonstrated on MAVs and ground robots [25], [26].  

The integrated WFI supports up to 12 matched filter coefficient sets that are 

configured through the SPI. The memory space to store the coefficients is not trivial. If 

the filter supported up to the full 64x64 spatial resolution, the required memory space 

would be the amount of storing several frame buffers assuming 8-b per each coefficient 

and 12 sets. Therefore, the embedded spatial down-sampler reduces the spatial resolution 

down to 32x32, 16x16, and 8x8. Then, the coefficients can be configured either 16x16 or 

8x8 for both the x and y optic flow components. Each coefficient is 8-b; thus, in total 

12x16x16x2x8-b memory space is required. We shared the space with the frame buffer 

SRAM; thus, in the WFI mode, the SRAM works as a coefficients set memory, and in the 

optic flow mode, the SRAM is used for the frame buffer to provide the data in 

accordance to the host’s requests.  
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6.6 Experimental results 

A prototype chip was fabricated using 0.18μm 1P4M process and has been fully 

characterized. A chip micrograph is shown in Figure 6-15. The total chip size 

3.09mm×4.18mm including I/O pads. The chip contains a 64×64 pixel array, column-

level feature extraction circuits, and 8-b single-slope ADCs for the normal image mode. 

The ramp generator is not implemented in the sensor, and an external DAC is used to 

generate the ramp signal for SS ADCs and feature threshold. The digital processing core 

is designed using standard cells. Two SRAMs are integrated for the 2D time-stamp array 

and output frame buffer/WFI coefficient’s storage.  The test system contains a printed 

circuit board (PCB) to integrate the sensor, ramp generator, and an FPGA to generate 

input control signals. The measurement environment is shown in Figure 6-14, whose 

signal flow is described in Figure 5-15. Input motion is generated in front of the sensor 

by moving objects or on an LCD screen. The output data from the sensor are transmitted 

to PCs through DAQ and LabView. For a test purpose, the 8-b normal image output path 

is implemented using bi-directional pads so that the digital core is able to directly get 

input data from the on-board FPGA. As a result, characterizing the digital core separately 

from the analog parts is possible if required.  
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Figure 6-14: Measurement setup 

 

 

Figure 6-15: Chip micrograph 
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6.6.1 2D optic flow performance 

The linearity test was performed by applying a horizontally moving bar pattern on the 

sensor. The measured linearity curve in Figure 6-16 (a) shows both results from the pure 

digital core and entire signal chain. The dotted triangle line with an error bar is 

characterized by the pure digital core. The linear performance of the pure digital optic 

flow core was characterized by directly applying the digital pattern through the test ports. 

The test pattern was the white bar on the black background. The pattern was controlled to 

move 1 pixel per n-th frame; thus, 1/n [pixel/frame] velocities were tested. The triangle 

and error bar in the plot are the mean and standard deviation of the measured optic flow. 

The result curve shows the average measured flow which linearly follows the input 

velocity. In addition, the measured error bar shows the increasing tendency by applying 

fast patterns. This is explained by the reciprocal operator that converts the time-of-travel 

to the velocity specified in Table 6-2. The reciprocal operator non-linearly converts the 

measured time-of-travel values. The 1-code difference in time-of-travel values is mapped 

differently to the velocity: 1-code difference in small time-of-travel values, for example 0 

and 1frame/pixel, maps to large range of velocity, for example 1frame/pixel; 1-code 

difference in large time-of-travel values, for example 254 and 255frame/pixel, maps to 

small range of velocity, for example 1/255frame/pixel to larger range of the converted 

velocity. Thus, the fast motion is sensitive to the error introduced by the time-of-travel 

measurement as specified in the error bars of the plot. The circles in the plot were 

measured through the entire signal path starting from the pixel. To characterize the sensor, 

a horizontally moving bar pattern was applied by an LCD monitor; then, the projected 

pattern on the sensor was characterized by averaging all the measured flows. We also 
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tested simple computer-generated patterns: translating, diagonally moving, and rotating 

patterns at 30fps as shown in Figure 6-16 (b). The translating and diagonal patterns were 

applied to verify the four axes of time-of-travel measurement were properly operating. 

The patterns consist of four bars moving from the center projectin out to the end of the 

corners with two different velocities. The bars were moving slowly for the half of the 

distance and sped up for the remaining half. Those velocity differences are reflected in 

the lengths of the arrows in the figure. The indicating error off the horizontal and vertical 

axes was observed in the translating pattern at the boundary of the bars. The error can be 

mainly categorized to an aperture problem, which is caused from the fact that the 

algorithm considers only 3x3 pixels to estimate the motion. The problematic case occurs 

when the 3x3 window is applied on the corner of the translating bar. For example, as 

specified in the circle in the figure, the corner of the pattern is passing the given window. 

The bright gray color of the window indicates the pattern located at the previous frame; 

the dark gray color describes the pattern has moved to the current location. Because the 

implemented algorithm calculates the 1D optic flow in four horizontal, vertical, and two 

diagonal directions, the problematic case causes the generation of motion in two axes, the 

vertical and one diagonal directions specified by the white arrows. As a result, the 

merged final 2D optic flow is off to the vertical axis as indicated by the red arrow. One 

solution to handle this type of error is to use additional measurement axes in diagonal 

directions so that the unwanted diagonal component can be cancelled out, which is 

described in the same figure. However, the additional measurement units increase 

hardware resources and power consumption. Thus, the optimal number of the 

measurement axes must be determined by considering the design constraints and 



121 

 

applications. The accumulated 2D optic flow from the rotating bar test pattern is also 

shown in Figure 6-16.

 

(a) Linearity test result 

 

(b) Computer generated pattern test results 

Figure 6-16: Characterized 2D Optic flow performance 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Input velocity [pixel/frame]

M
e

a
s

u
re

d
 v

e
lo

c
it

y
 [

p
ix

e
l/
fr

a
m

e
]

 

 

Digital core only

Entire sensor

12

slowfast

1

2
slow

fast

Generated optic flows from 
diagonally moving four bars

Generated optic flows from 
translating four bars

compensation

Generating optic flows from a 
rotating bar at the center



122 

 

sensor was capturing the flow at the frame rate of 120fps. The result shown in Figure 

6-17 (a) is the accumulated optic flow for 2 seconds. Comparing to the result of a rotating 

bar pattern in Figure 6-17 (b), the captured optic flow is distorted near the complex 

background spatial edges. However, the global pattern of the measured flow clearly 

shows the rotation of the fan, which verifies the feasibility of extracting global self-

motion of a MAV. A laser pointer was also used to test if the sensor can track the 

movement of a point source. We sequentially wrote the letters U, of, and M on a plane 

board. As shown in the Figure 6-17 (b), the sensor successfully captured the optic flow 

from the point source. Finally, the trajectory of a bouncing golf ball was captured by the 

sensor in Figure 6-17  (c). We tossed the ball to the highest spot of the trajectory; then, 

the ball freely dropped and bounced by following the trajectory. The sensor was 

operating at 120fps to capture the fast motion. 
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(a) 2D optic flow from a rotating fan for 2 seconds, captured at 120fps. 

 

(b) Letters by tracing a laser pointer source captured at 60fps. 

 

(c) Bouncing ball captured at 120fps. 

Figure 6-17: Sample images and captured optic flow from real moving objects 
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6.6.3 Down-sampler and WFI 

The integrated down-sampler and WFI cores were characterized by applying patterns 

through the digital test ports. The patterns were generated in the external FPGA. The 

generated patterns of the expanding square and rhombus for the down-sampler tests are 

superimposed on the captured 64x64 flows in Figure 6-18. As shown in the figure, the 

down-sampler finds one vector that represents 2x2, 4x4, and 8x8 windows for the down-

sampling ratios of x2, x4, and x8.  

 

 

(a) Horizontally and vertically expanding square pattern 

 

(b) Diagonally expanding rhombus pattern 

Figure 6-18: Down-sampler performance 
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The WFI core was tested under the condition to perform 8x8 2D matched filtering 

with 6 coefficient sets. The coefficients were set to be sensitive to 6 different self-

motions as illustrated in Figure 6-19 [66]. Four test patterns were applied: horizontally 

moving bar, vertically moving bar, horizontally and vertically expanding square, and 

diagonally expanding rhombus. The square and rhombus patterns were the same as those 

for down-sampling tests. The plots in the figure show the WFI (matched filtering) output 

in time. The unit of the x-axis is the frame index from 0 to 60frame; the unit of the y-axis 

is an arbitrary unit. For each test, two WFI outputs from the sensitive coefficient sets of 

the applied motions are shown. The other WFI outputs from remaining coefficient sets 

were fluctuated near zero for the test period. The WFI plots of the horizontally moving 

bar are from two coefficient sets: a) horizontal translation, and b) horizontal expansion. 

Because the bar is moving in one direction, the plot is all positive for the translation filter. 

However, for the expansion filter, the result is opposite in sign for half of the scene. The 

WFI plots of the vertically moving bar are also explained in the same way, which is 

sensitive to two coefficient sets: d) vertical translation, and e) vertical expansion. Both 

expanding square and rhombus patterns are sensitive to b) horizontal expansion and e) 

vertical expansion coefficients. The WFI plots of the expanding square pattern 

monotonically increase since the applied square pattern is continuously expanding. Thus, 

the number of locations generating optic flow increases. However, the WFI of the 

diagonal rhombus is symmetric to the middle of the applied period (near 40th frame) 

because the rhombus pattern started to break after half of the period. Then, the broken 

bars were shrinking for the remaining of the period. 
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Figure 6-19: WFI core performance 

 

6.6.4 Performance summary and comparison 

The test configuration and the measured parameters are summarized in Table 6-3. 

The key parameters are compared with those of the state-of-the-art optic flow sensors and 

systems available in the literature in Table 6-4. As can be seen, the proposed sensor 

achieved the smallest power consumption per pixel to estimate 2D optic flow in the 

condition of 30fps operation. The digital optic flow sensing approaches require separate 

CPUs or FPGAs for the intensive digital computation in addition to normal image sensors 

[26], [37]. Thus, these systems are not optimized for a low power solution. The pure 

analog approaches are advantageous in regards to bandwidth and power consumption, 

especially subthreshold circuit design technique is applied. However, these approaches 

process the estimation in pixel circuits, which must be laid out large enough to minimize 

matching issues. Therefore, power consumption and pixel scaling are in a trade off 

relationship. The prototype sensor achieved the optimum power and area consumption by 
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adopting the A/D mixed-mode approach. In addition, the sensor integrated for the first 

time the digital 2D WFI in the sensor, while the analog 1D WFI was implemented and 

demonstrated robot navigation in [89].  

 

Table 6-3: Chip characteristics 

 

  

Process 0.18 μm 1P4M CMOS

Chip size 4.18 x 3.09 mm2

Pixel array 64 x 64

Pixel size 28.8 x 28.8 μm2

Fill factor 18.32 %

Maximum optic flow 1.96 rad/sec @ 120 fps, FOV 60º

Power (Pixel, 3.3V @ 30 fps) 0.57 µW
2-D optic 

flow 

estimation

29.9 µWPower (ADC 1.8 V analog, 0.9V digital @ 30 fps) 5.30 µW

Power (2-D optic flow core, 1.8 V, @ 30 fps) 24.03 µW

Power (Compressor & interface, 1.8 V, @ 30 fps) 79.48 µW

Total power (@ 30fps) 109.38 µW

Optic flow data rate after compression

(16-b/sample raw data)

Average: 1.92-b/sample

Peak: 4.84-b/sample (< 2.77% occurrence 

frequency)
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Table 6-4: Performance comparison of optic flow sensors and systems 
 [26] [37] 

Image Sensor OV7725 (120mW*) N/A 

Processor BlackFin (64mW**) Vertex Pro2 (50mW**) 

Optic flow 2D digital (160x120) 2D digital (150x150) 

Total power [mW] 184@55fps >50mW@30fps 

FOM  [nJ/pixel] 173 73 

 From datasheet, ** estimated 

 [90] [87] [89] This work 

Technology 0.5µm CMOS 0.8µm 

BiCMOS 

0.5µm 

CMOS 

0.18µm CMOS 

Array size 17x17 30x30 19x1 64x64 

Optic flow 1D analog 2D analog 1D WFI 

analog 

2D digital 

2D WFI digital 

Pixel size [µm2] 61x199 124x124 112x257.3 28.8x28.8 

Total power [µW] 140 

@70Hz 

Core 52/pixel  

@1kHz 

42.6 

@1kHz 

109 

@30Hz 

Core 

5.2@70Hz 29.9@30Hz 

FOM [nJ/pixel] 6.9 0.257 52 2.2 0.89 0.243 

 

 

6.7 Conclusions 

A bio-inspired A/D mixed-mode 2D optic flow sensor is implemented and fabricated 

for artificial compound eyes’ applications. The sensor integrates the 2D time-stamp-
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based optic flow estimation core, which is developed for efficient implementation of bio-

inspired time-of-travel measurement in the mixed-mode circuits. The sensor also 

integrates peripheral circuits to provide modular capability, which is required for our 

proposed multiple sensors on a module style artificial compound eyes’ system. The 

integrated optic flow data compressor reduces the full resolution 2D raw optic flow down 

to 12.0% of the total data on average without any loss. Thus, more than 25 sensors can be 

mounted on the same 3MB/sec SPI bus. The integrated 2D digital WFI supports up to 12 

matched filters for the down-sampled 2D optic flows (16x16 and 8x8). The sensor has 

successfully demonstrated to deliver all types of data at the maximum frame rate of 

120fps through the 4 wired-SPI.  
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CHAPTER 7 

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK 

 

Miniaturized artificial compound eyes are one of the key components in MAVs. 

Multi-directional sensing and motion estimation capabilities can give wide FoV optic 

flows up to 360º of solid angle. By integrating the wide FoV optic flows, relevant 

information on the self-status of flight is parsed and utilized for flight commands 

generation. The proposed pseudo-hemispherical artificial compound eye system provides 

a simple and practical solution for multi-directional sensing. The main technical 

challenge for the successful realization of the system is to customize 2D optic flow 

sensors to meet design constraints inherited by MAV systems. The multiple-sensors-in-a-

module fashioned system requires extremely low power optic flow core and expandable 

interface protocol. This work presents a bio-inspired time-stamp-based optic flow 

algorithm to accomplish a low power estimation core. In addition, integrated peripheral 

circuits enable a 4-wired interface between the sensors on the same module. 

 

To achieve the aims above, the proposed bio-inspired optic flow sensors have 

introduced the following contributions/innovations: 

 Bio-inspired time-stamp-based optic flow estimation algorithm: in this work, we 

introduced time-stamp-based optic flow sensing which robustly extracts velocity 

information from time-stamp image array. 
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 A/D mixed-mode implementation of the time-stamp-based optic flow core: analog 

temporal contrast measurement, 1-b feature A/D conversion, and digital arithmetic 

time-of-travel measurement accomplish optimal balancing in terms of hardware 

resources and computational power consumption. 

 Integrated circuit optimization for low power consumption:  supply voltage scaling, 

power gating of analog amplifiers, and simple optic flow computation reduce total 

power consumption. 

 Serialize data communication protocol for the multiple-sensors-in-a-module platform:  

SPI connects all the sensors on 4 wires; data access protocols for raw optic flow, 

compressed flow, and WFI are implemented. 

 Lossless/lossy optic flow data compression: entropy coding utilizing the sparsity 

property of optic flow data reduces data rate down to 1.92-b/sample so that 25 sensors 

can transmit full resolution data on a single bus.  

 Integrated digital WFI for robot command generation:  WFI function is implemented 

by supporting 12 user-defined matched filters configured through SPI bus. 

 Modular expandable sensor system: the modular system can be expanded to cover 

wide FoV of surroundings and also to be independently configured to perform a 

variety of mission scenarios. 

 Dual-mode optic flow/normal image sensing: normal image and optic flow sensing 

modes are supported in the same architecture to provide surrounding scene 

information for navigation and surveillance. 
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 Dynamic configuration: control parameters in the sensors are dynamically configured 

to support real-time adaptation; feature threshold, compressor threshold, down-

sampling ratio, and WFI coefficients are configured on the fly. 

 

7.1 Suggestions for future work 

In this work, we introduced the bio-inspired optic flow sensors embedding the 

customized low power optic flow core and peripheral blocks for system integration. For 

further investigation and future work, the following research topics are suggested: 

 Single chip stand-alone optic flow sensing system: the integration of a timing 

generator, a ramp generator, and bias circuits enables complete 4-wire interface on a 

miniaturized module; only 4 interface and power pins need to be bonded.  

 Hybrid coarse and fine optic flow estimation: to overcome 1pixel/frame maximum 

detectable velocity inherited by bio-inspired EMDs, hybrid estimation is suggested; 

coarse flow is measured by displacement search, and fine optic flow is measured by 

time-of-travel. 

 Contrast adaptation: contrast adaptation discussed in chapter 1 can be implemented 

by supporting a feedback path; the feature threshold is dynamically adjusted by 

monitored contrast statistics in the previous frame. 

 Pixel scaling and high spatial resolution for dense flow sensing: high spatial 

resolution increases flow density; pixel scaling by relocating frame difference circuits 

from in-pixel increases spatial resolution.  
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 Pixel performance improvement: a variety of pixel architecture can be applied to 

improve pixel performance in terms of sensitivity, dynamic range, and area 

optimization. 

  Lens customization: compact size, low payload, and a wide FoV lens design is a 

challenging research topic to allow the building of the artificial compound eye 

module. 

 Flexible and expandable PCB design and origami packaging: the proposed artificial 

compound eye platform can be finally accomplish by foldable flexible PCB design 

and origami packaging; 3D configuration to achieve desired inter-sensor’s angle 

requires a robust assembly process. 
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