
Any errors in this dissertation are probably

fixable: topics in probability and error correcting

codes

by

Mary Katherine Wootters

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2014

Doctoral Committee:

Professor Martin Strauss, Chair
Professor Anna Gilbert
Professor Mark Rudelson
Assistant Professor Grant Schoenebeck
Professor Roman Vershynin

c© Mary Wootters 2014
All Rights Reserved

For Isaac

ii

ACKNOWLEDGEMENTS

I have so many people to thank for this thesis. First, I cannot express enough

gratitude to Martin Strauss and Anna Gilbert. Martin and Anna have been the best

(official and unofficial) advisors I could have hoped for in graduate school. They have

gone far out of their way to make sure that I had every opportunity: to learn, travel,

speak at conferences, do internships, and so on. Their support went far beyond

academic. I don’t think many other people can say that their advisor is an awesome

running coach, or did a 5k swim race with them, or advises them on the logistics

of mixing conference travel with cycling tours. Because of Martin and Anna, grad

school was a lot of fun, academically and otherwise.

In addition to my advisor, I was fortunate to receive wisdom from several advisorly

figures. In particular, I thank Brett Hemenway, Yaniv Plan, and Atri Rudra, who

have taught me so much about how to do research. I also would like to thank all

of my other coauthors and collaborators throughout grad school: Rich Baraniuk,

Mark Davenport, Moritz Hardt, Simon Foucart, Carl Miller, Deanna Needell, Jelani

Nelson, Hung Ngo, Rafi Ostrovsky, Eric Price, Yaoyun Shi, Ewout van den Berg,

and David Woodruff. Finally, I thank the other members of my committee, Mark

Rudelson, Roman Vershynin, and Grant Schoenebeck, for their helpful feedback on

this dissertation and throughout graduate school. I especially thank Roman for the

two excellent courses I took from him, and both Mark and Roman for organizing

such great seminars while I’ve been here.

iii

I also thank all of the institutions which have supported and housed me for the

past five years, in particular the Math and EECS departments at UMich—especially

Tara, Stephanie, Carrie, and Lauri, without whom I would likely be living on the

street, locked out of my office, and without health insurance. I gratefully acknowledge

a Rackham predoctoral fellowship for funding in my last year of graduate school. I

thank the Simons Institute for Theoretical Computer Science for their hospitality and

support during the Fall 2013 semester, and I thank the theory group at IBM Almaden

for a wonderful internship during Summer 2011. Finally I thank Mighty Good Coffee

and all three Espresso Royales in downtown Ann Arbor for their continued hospitality

and caffeination.

I thank all of my friends and family. Thanks Brittan, for putting up with me

as an office-mate. Thanks to Mom, Dad, and Nate for your support while I delay

adulthood. And, thank you to Isaac, my best friend and the love of my life, for

everything.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

CHAPTER

1. Introduction . 1

1.1 Overview of contributions . 2
1.1.1 List decoding . 2
1.1.2 Local decoding . 6

1.2 Dissertation outline . 8

2. Set up and Preliminaries . 10

2.1 Basic coding theory: background and definitions 10
2.1.1 The rate-distance trade-off: some basic bounds 14
2.1.2 Examples of codes . 18

2.2 List-Decodable codes . 23
2.2.1 List-decoding radius vs. rate . 25
2.2.2 List-decoding radius vs. distance, and the Johnson bound 30
2.2.3 List decoding of Reed-Solomon codes and beyond 33
2.2.4 Summary . 35

2.3 Locally Decodable codes . 36
2.3.1 Two examples: Hadamard codes and Reed-Muller codes 37
2.3.2 Two parameter regimes . 41

2.4 Random tools . 43
2.4.1 Gaussian random variables . 43
2.4.2 Suprema of Gaussian processes . 44
2.4.3 Getting to Gaussians . 48

2.5 Overview of notation . 51

3. List Decoding: small alphabets . 53

3.1 Introduction . 54
3.1.1 Related work . 55
3.1.2 Contributions of Chapter 3 . 57
3.1.3 Overview of the approach . 58
3.1.4 Chapter organization . 59

3.2 A few more definitions . 59
3.3 Sufficient conditions for list decodability . 63

3.3.1 Aside: the Restricted Isometry Property 64

v

3.4 Random linear codes are optimally list-decodable over small alphabets . . . 65
3.5 Generalization to randomly punctured codes 71
3.6 Conclusion . 76

4. List Decoding: large alphabets and Reed-Solomon codes 78

4.1 Introduction . 78
4.1.1 Contributions of Chapter 4 . 82
4.1.2 Chapter Organization . 83

4.2 Yet more definitions . 84
4.3 Average-radius Johnson bounds . 86
4.4 Overview of approach . 90
4.5 Main theorem . 95

4.5.1 Codes with good distance have abundant optimally-list-decodable
puncturings . 97

4.5.2 Most Reed-Solomon codes are list-decodable beyond the Johnson
bound . 102

4.5.3 Near-optimal bounds for random linear codes over large alphabets 103
4.6 Proof of Theorem 4.6: reduction to Gaussian processes 105
4.7 Proof of Theorem 4.9: controlling a Gaussian process 109

4.7.1 Defining the nets . 110
4.7.2 Proof of Theorem 4.9 from Lemma 4.10: a chaining argument . . . 112
4.7.3 Proof of Lemma 4.10: the desired nets exist 116

4.8 Conclusion and future work . 126

5. List decoding: more general applications . 128

5.1 Introduction . 129
5.1.1 Linear time encoding with near optimal rate 130
5.1.2 Folded codes . 131
5.1.3 Contributions of Chapter 5 . 133
5.1.4 Chapter organization . 133

5.2 Setup, and still more definitions . 134
5.3 Efficiently encodable list-decodable codes from expander graphs 137
5.4 Random folding . 140
5.5 Conclusion . 146

6. Local decoding: expander codes . 148

6.1 Introduction . 149
6.1.1 Notation and preliminaries . 149
6.1.2 Related work . 152
6.1.3 Contributions of Chapter 6 . 154
6.1.4 Chapter organization . 155

6.2 Overview of expander graphs . 156
6.2.1 Proof of Lemma 6.7 . 159

6.3 Local correctability of expander codes . 164
6.3.1 Local Correction . 166
6.3.2 Proof of Theorem 6.13 . 170

6.4 Examples . 174
6.5 Conclusion . 177

7. Summary and conclusions . 179

vi

7.1 Summary of contributions . 179
7.2 Future work and open questions . 180

7.2.1 List decoding . 180
7.2.2 Local decoding . 183

BIBLIOGRAPHY . 185

vii

LIST OF FIGURES

Figure

2.1 The set-up for error correcting codes: Alice-and-Bob version. 11
2.2 The set-up for error correcting codes: Combinatorial version. 12
2.3 The q-ary entropy function Hq(x). 16
2.4 Expander codes . 22
2.5 The set-up for list-decodable codes: Alice-and-Bob version. 24
2.6 The set-up for list decodable codes: combinatorial version. 24
2.7 The advantages of list decoding over unique decoding. 29
2.8 The set-up for locally decodable codes . 38
2.9 A surprising connection between probability and paleontology 44
2.10 Gaussian mean width. 45
2.11 Primitive chaining argument . 47
2.12 Introducing Gaussians . 48
4.1 The state of affairs for q-ary random linear codes. 104
5.1 Folded codes. 132
6.1 Double covers. 158
7.1 Concrete results of this work. 180

viii

CHAPTER 1

Introduction

The protagonists of this dissertation are Alice and Bob. Alice wants to send a

message to Bob, in the face of seemingly insurmountable obstacles. While the full

backstory of Alice and Bob and their personal lives is beyond the scope of this dis-

sertation, there are a few common reasons to study such a scenario. When Alice and

Bob are replaced with the more pragmatic but less evocotive “sender” and “receiver,”

there are immediate applications to communication; beyond that, this situation is

relevant to storage, cryptography, complexity theory, and pseudorandomness, among

others.

In the theory of error correcting codes, one studies variations of the above scenario,

and hopes to provide Alice and Bob with the tools to succeed. In a standard set-up,

Alice begins with a message x of length k, which she maps to a codeword c = C(x) of

length n; she then sends this codeword to Bob. Unfortunately, the codeword may be

corrupted en route. Bob’s job is to take this corrupted codeword, and to determine

Alice’s original message x.

We will use tools from probability theory—mostly tools from high-dimensional

probability—to study coding theory. The motivating question is: what should Alice

and Bob do? On the combinatorial side of things, how should they pick the set C of

1

2

all possible codewords? We call this set an error correcting code. On the algorithmic

side of things, how can Alice efficiently encode x into a codeword c = C(x) ∈ C? How

can Bob efficiently recover the message that Alice sent? In general, there is a trade-

off between the effectiveness of their communication (as measured by robustness to

noise, efficiency of encoding/decoding, and so on), and the amount of redundancy

Alice and Bob must use.

In the settings we consider, the most successful approaches to these questions have

been algebraic in nature: for the most part, they rely on properties of polynomials

over finite fields. By approaching these problems from an analytic and probabilistic

point of view, we improve the trade-off for Alice and Bob.

We consider two variants of coding theory, list decoding and local decoding. In each

of these variants, Bob is not required to recover everything about x; but in return,

he faces a more difficult task. In list decoding, Bob need not recover Alice’s message

x exactly, and instead may recover a short list which contains x; but the number

of corruptions may be very large. In local decoding, Bob is only trying to recover

a small portion of Alice’s message, say a single bit of x; but he must manage this

extremely quickly, without even looking at the entire codeword c. This dissertation

answers two long-standing open questions in list decoding, and provide a new answer

to an open-until-very-recently question in local decoding.

1.1 Overview of contributions

Before diving into the details, we outline our main contributions.

1.1.1 List decoding

We focus first on list decoding. List decoding was first introduced by Elias [27] and

Wozencraft [112] in the 1950’s, and has received a great deal of attention from both

3

coding and complexity theorists over the past few decades. In list decoding, Bob need

not recover Alice’s message x uniquely, but instead may recover a short list of possible

messages which includes x. One important reason to study list decoding is that Alice

and Bob can handle much more error in this setting than in the standard setting.

We focus on the challenge of designing codes C which allow for communication even

in the presence of extreme noise. Given an amount of noise, we aim to minimize the

amount of redundancy that Alice and Bob must use. We measure the redundancy

of the code C by the rate of C: if Alice wishes to send a message of length k, and

actually ends up sending a codeword of length n, the rate is defined to be the ratio

k/n. Thus, for a given amount of noise, we seek to maximize the rate of the code.

The state of the list decoding literature is very interesting. Generally speaking,

we have three ways of obtaining (guarantees about) list-decodable codes.

1. The first tool is a classical result called the Johnson bound, which is a combinato-

rial statement. The Johnson bound gives guarantees about the list-decodability

of a code given its distance (a combinatorial property of the code to which we

will return later). However, while the Johnson bound is the strongest statement

possible using distance alone, there are codes which beat the guarantees of the

Johnson bound.

2. A second approach comes from random codes. As we will see, a completely

random subset C ⊂ Fnq is, with high probability, optimal for the list decoding

problem. In particular, the guarantees for such a code go beyond the Johnson

bound, and meet the information-theoretic limit for this problem. This is well

known and in some sense not very interesting; in coding theory, it is often the

case that a completely random code attains near-optimal combinatorial bounds.

A more interesting direction is structured ensembles of random codes. For ex-

4

ample, we may consider a code selected uniformly at random from a collection

of “nice” codes. Although a few pathological cases may make it impossible to

say “all “nice” codes have good list-decodability properties,” perhaps it is still

possible to say “most “nice” codes have good list-decodability properties.” This

has turned out to be surprisingly difficult. A natural starting point is random

linear codes; that is, codes C which are a random linear subspace of Fnq . This

simple case—which is much less random than a general random code—is al-

ready interesting (and nontrivial). It was asked by Elias [28] in 1991 whether

random linear codes were as list-decodable as general random codes, and to date

there has been a great deal of work on this [20, 44, 45, 49, 95]. Other possible

“nice” families include certain ensembles of Reed-Solomon codes, which are a

well-studied family of codes based on polynomials over finite fields.

3. In the past two decades, there has been a great deal of interest in explicit

constructions of list-decodable codes, especially those which admit efficient en-

coding and decoding algorithms. This literature began in the late 1990’s, with

the work of Guruswami and Sudan [57,101], who showed how to efficiently list-

decode Reed-Solomon codes up to the Johnson bound. Their work sparked a

search for efficiently encodable and decodable codes which are list-decodable be-

yond the Johnson bound [23,48,51,62,63,78,87], and also a line of work trying to

establish whether Reed-Solomon codes themselves might do the trick [12,50,94].

One interesting feature of the landscape sketched above is that, other than general

random codes, the only optimally list-decodable codes we know about are highly

structured—that is, they fall under Category 3. We start our investigation in this

dissertation in Categories 1 and 2; surprisingly, our approach will also make some

progress on Category 3.

5

Contributions in list decoding.

This dissertation makes the following contributions in list decoding.

• List decodability of random linear codes. We show that random linear

codes, over constant-sized alphabets, are optimally list-decodable. This answers

a question, asked by Elias [28], which had been open for over 20 years at the time

of this writing. As an added benefit, our proof is quite simple. For large, non-

constant alphabets, we can show (using a more complex argument) that random

linear codes are nearly optimally list-decodable (up to logarithmic factors in the

rate).

• List decodability of Reed-Solomon codes. We show that there do exist

Reed-Solomon codes which are list-decodable beyond the Johnson bound. This

answers a question first asked by Guruswami and Sudan over 15 years ago [56]—

see [43, 94, 108] for explicit formulations of this problem. To the best of our

knowledge, it was not known which way this question would go, and in fact

there has been significant effort devoted to showing that such codes do not

exist [12, 19,50].

• General statements about random families of codes. In fact, the earlier

two bullet points are corollaries of two very general theorems (one for small

alphabets and one for large alphabets), which provides a way to obtain (nearly)

optimally list-decodable codes from any code with good structural properties.

This yields general statements which fall somewhere between Categories 1 and

2 above. For example, it is not true that any code with good distance is opti-

mally list-decodable—the Johnson bound is tight in this respect—but we can

show that “most” (suitable transformations of) codes with good distance are

6

optimally list decodable.

• A few more applications. While random linear codes and Reed-Solomon

codes are the headline applications of the machinery mentioned above, we show

how it can be used to obtain other useful constructions. Examples include

linear-time encodable, optimally list-decodable, binary codes; optimally list-

decodable variants on Reed-Muller codes; and results about the list-decodability

of randomly folded codes. Along the way, we also prove several “average-radius”

variants of the Johnson bound, which appear to be folklore but are probably

worth having written down.

1.1.2 Local decoding

In the second part of this thesis, we will consider locally decodable codes. In the

local decoding setup, again Bob’s job is again easier: he need only recover a single

bit of Alice’s message. The catch is that Alice doesn’t know before she encodes her

message which bit Bob will be interested in. Further, we insist that Bob work in

sublinear time. In particular, he doesn’t have time to look at the entire codeword c;

his decoding is “local” in the sense that he needs to look at only a few bits of the

codeword. Locally decodable codes have been lurking implicitly in coding theory [89]

since the 1950’s and in theoretical computer science [5,16,33,34,36,82,88] since the

late 1980’s, but the first explicit definition did not appear until later [75]. The reader

is referred to [114] for an excellent survey.

The important trade-off in this setting is between the locality of the code—how

many bits Bob must look at to recover a single bit of Alice’s message—and the rate

of the code. Generally speaking, there are two parameter regimes, in which very

different approaches have been considered.

7

1. Small locality, small rate. In the first parameter regime, the locality is

very small: Bob may look at only two or three bits. However, the rate is

quite bad: Alice must send nearly 2k bits to convey a message of length k.

Approaches in this regime tend to be combinatorial [25, 26, 113]. At a high

level, the arguments follow the same outline: show that Bob can succeed if

there are no errors, and then argue that with enough randomization his queries

will, with high probability, avoid any errors that do occur.

2. Large locality, high rate. In the second parameter regime, the rate of the

code approaches 1 (so n is only very slightly larger than k), but the locality

grows with n, perhaps like n0.001. Codes in this regime have only been found

very recently. Other than the work presented in this thesis, there are currently

two families of codes known in this parameter regime, multiplicity codes [79] and

lifted codes [41]. The arguments here are quite different that those in the small-

locality regime. First, they are algebraic, rather than combinatorial. Second,

they follow a different outline: when Bob considers ω(1) bits, it is no longer

enough for him to succeed in the error-free setting. Indeed, he looks at so much

of the codeword that there is no way he can avoid errors entirely, no matter how

cleverly he randomizes.

Contributions in local decoding

In this dissertation, we make the following contributions in local decoding.

• Locally decodable codes in the high-rate regime. We will give the third

known family in the large-locality, high-rate regime. Our codes will actually be

locally correctible, which is a slightly stronger notion. As mentioned above, there

are only two other constructions of such codes known. In fact, it was a conjecture

8

of Dvir that such codes did not exist [21]. One of the main contributions of this

work is that our construction is quite different from multiplicity codes and lifted

codes—in fact, our style of argument follows the probabilistic and combinatorial

arguments from the small-error, small-rate regime. Our work can be viewed as

a way to port the small-locality line of reasoning to the high-rate setting.

• Sublinear-time decoding of expander codes. The construction mentioned

above is in fact not new: we use a family of codes (called Tanner codes or

expander codes) which have been around in some form or another since the

1980’s, with roots going back to the 1960’s. Thus, our results also give sublinear-

time decoding algorithms for this well-studied family of codes. As far as we can

tell, it was not suspected that these codes might provide the sought-after locality.

1.2 Dissertation outline

In Chapter 2, we will set up the formal notation and prove some simple lemmas

that we will need. We will also prove a couple of (standard) theorems and work out

a few computations, to set the stage for our results later. In Chapter 3 we present

some results about the list-decodability of certain ensembles of binary codes; as a

corollary, we will answer a question of [28], and show that random linear codes are

(with high probability) as list-decodable as random codes. The results in Chapter 3

are based on the paper [111]. In Chapter 4, we will extend the arguments of Chapter 3

to deal with larger alphabet sizes. This will involve a fair amount of work and is

the most technical part of the dissertation. As a corollary, we will show that there

exist Reed-Solomon codes which are nearly optimally list-decodable; this answers a

question posed by Guruswami and Sudan in [56]. The results in Chapter 4 are based

on the paper [96], which is joint work with Atri Rudra. Given that the punchlines

9

of Chapters 3 and 4 are corollaries of more general phenomena, it is natural to ask

how far you can push this technique; Chapter 5 explores this question. In Chapter 5

we state a very general theorem about random operations of codes, and give recipes

for obtaining optimally list-decodable codes. The results in Chapter 5 are joint work

with Atri Rudra. Finally, in Chapter 6 we mix it up a bit and turn our attention to

locally decodable codes, and we show that expander codes are locally decodabable

in the high-rate regime. The results in Chapter 6 are based on the paper [68], which

is joint work with Brett Hemenway and Rafail Ostrovsky.

CHAPTER 2

Set up and Preliminaries

2.1 Basic coding theory: background and definitions

We return to Alice and Bob. Formally, Alice and Bob employ an error correcting

code, which is a subset C ⊂ Fnq , for a finite field1 Fq. The size q of the field is called

the alphabet size. The elements c ∈ C are called codewords. The codewords then have

length n, which is called the block length of C. For every message x ∈ Fkq of length k,

there is an encoding function which maps x to c = C(x) ∈ C. As we just did, we will

occasionally overload notation and write C : Fkq → Fnq for a function whose image is

the set C ⊂ Fnq . The size of the code is then |C| = qk. In the Alice-and-Bob scenario

above, Alice will choose a codeword to send to Bob; if Bob can correctly identify

the codeword, he will have identified the message Alice wishes to send. The general

setup is shown in Figure 2.1.

Alphabet size and error model. The alphabet size q and the way in which

errors may be introduced are important and linked parameters. In our error model,

a symbol ci ∈ Fq of a codeword c ∈ Fnq , is the smallest unit of communication

that can be corrupted. Here, corrupted means that the symbol may be changed

to another element of Fq. There are many reasonable models of corruption. For

1While it is not in general necessary to assume that the alphabet has any sort of algebraic structure, for this
thesis it will be convenient to consider codes over finite fields.

10

11

Alice Bob

corrupted codeword w ∈ Fnq

message x ∈ Fkq

codeword C(x) ∈ Fnq

x?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.1: The set-up for error correcting codes: Alice-and-Bob version.

example, symbols could be changed (or not) independently at random; or only certain

error patterns could be possible. In this work, we exclusively consider the most

conservative, worst-case model. That is, up to ρn symbols may be corrupted, for

some parameter ρ ∈ [0, 1], and these corruptions may occur in any locations. When

a symbol is corrupted, it can be changed to any other symbol in Fq. We imagine

that these corruptions are adversarial: someone who knows Alice and Bob’s strategy

is deliberately trying to mess them up.2 The fraction ρ of errors that this adversary

is allowed to introduce is called the error rate.

The study of error correcting codes was initiated in the seminal paper of Shan-

non [97]. Shannon considered a probabilistic error model; the adversarial model

that we study here was indroduced by Hamming [66], and is often referred to as the

“Hamming model.”

Distance. In the Hamming model, Alice and Bob’s success (combinatorially

2Again, who this bad guy is and why he’s so out to get Alice and Bob is beyond the scope of this dissertation;
suffice it to say that this worst-case model is not only nice and conservative in the communication setting, but it also
turns out to be essential for applications in complexity theory and other areas.

12

Fnq

c ∈ C

δ(C)
ρ

w ∈ Fnqz ∈ Fnq

Figure 2.2: The set-up for error correcting codes: Combinatorial version. The black dots represent
the elements of the code C, with distance δ(C). If w ∈ Fnq differs from a codeword c ∈ C in at most
ρn places, and ρ ≤ δ/2, it is possible to uniquely determine c from w. On the other hand, if z ∈ Fnq
differs from c ∈ C in more than δ/2 places, it may not be possible to determine c from z.

speaking) is determined by the distance of the code:

δ(C) := min
c,c′∈C

δ(c, c′),

where δ(c, c′) is the relative Hamming distance between c and c′:

δ(c, c′) :=
1

n

n∑
i=1

1ci 6=c′i .

If the distance δ(C) is larger than 2ρ, then for any w ∈ Fnq Bob may receive, there is

at most one c ∈ C so that δ(c, w) < ρ. Thus, no matter what errors are introduced,

Bob can uniquely determine which codeword c was sent. On the other hand, if

the distance is smaller than 2ρ, there is always an error pattern which will trip up

Alice and Bob. Thus, in the Hamming model, the distance of the code characterizes

the acceptable (to Alice and Bob) error rates ρ. This combinatorial view of error

correcting codes is shown in Figure 2.2.

Rate. Another important quantity which measures the effectiveness of Alice and

Bob’s communication is the ratio of the length k of Alice’s message (the number of

symbols she wants to send) to the length n of the codeword (the number of symbols

13

she actually sends). This quantity R = k/n is called the rate of the code C. Since

there are qk possible messages of length k, the code C has size qk; thus, the rate is

given by

R =
logq(|C|)

n
.

Note that the rate is always between 0 and 1.

Families and ensembles of codes. We consider Alice and Bob’s situation as

n becomes very large. To that end, we will consider families of codes. A family

C = C1, C2, C3, . . . is a sequence of codes, so that the length of Ci is ni, and ni ↗∞.

We can define distance and rate for families as we did with codes: if the rate of Ci is

Ri and the distance is δi, the rate R and distance δ of C are given by

R = lim inf
i

Ri and δ = lim inf
i

δi.

Above, we have used the same notation (C) for a family of codes as we used for a

particular code; this will be the first in a long line of notational abuses on this topic.

In particular, we will henceforth refer to a family of codes as simply a “code,” and

we will refer to its rate and distance in terms of the length n of the code. We will

also invoke standard asymptotic notation (e.g., R = 1−o(1) to indicate that the rate

approaches 1 as n tends to infinity) to describe the behavior of codes as n becomes

large. For reference, we define this notation in Section 2.5.

We also consider (families of) random codes. That is, we fix a distribution D on

subsets C of Fnq , and we imagine that C is a code drawn from D. In this case, we

may be interested in, say, bounding the rate and distance with high probability. As

before, we will be interested in the case that n gets large, and we will have in mind a

sequence of distributions D1,D2, . . ., so that Di is a distribution on subsets of Fniq , for

an infinite family of increasing ni. We will sometimes call such a family of random

14

codes an ensemble of codes.

2.1.1 The rate-distance trade-off: some basic bounds

The fundamental problem in coding theory is understanding the trade-off between

distance and rate. The larger the distance, the larger the error rate can be. The

larger the rate, the more information Alice can send to Bob. This trade-off has been

studied since the beginning of time—that is, since around 1950—beginning with the

work of Hamming [66]. Since then, the literature has grown far too much to be

completely surveyed here. See [54,84] for an introduction to coding theory. In order

to get a feel for the types of rate-distance trade-offs we can hope for, we mention a

few classical results below.

We start with the Singleton bound, which states that any code C ∈ Fnq with

distance δ = δ(C) must have rate at most

(2.1) R ≤ 1− δ + 1/n.

To see this, consider the projection of C onto the first (1− δ)n+ 1 coordinates of Fnq .

This projection is injective, because by definition, no two codewords agree in more

than (1− δ)n symbols. Thus, we have |C| ≤ q(1−δ)n+1, which implies the bound.

Sphere-packing arguments can also be used to get a handle on how large (or

small) a code C with distance δ can (or must) be. Recall that we are working over

an alphabet of size q, and for z ∈ Fnq , define the (q-ary) Hamming ball of radius ρ

about z, denoted Bq(z, ρ) ⊂ Fnq , by

Bq(z, ρ) =
{
x ∈ Fnq : δ(z, x) ≤ ρ

}
.

Suppose that C is a maximal code with distance δ. How big can C be? The balls

15

Bq(c, δ/2) for c ∈ C are all disjoint, and all contained in Fnq , so we must have 3

|Fnq | ≥
∑
c∈C

|Bq(c, δ/2)| = |C||Bq(0, δ/2)|.

On the other hand, since C is maximal, Fnq is covered by the union of Bq(c, δ) for

c ∈ C. Thus,

|Fnq | ≤

∣∣∣∣∣⋃
c∈C

Bq(c, δ)

∣∣∣∣∣ ≤∑
c∈C

|Bq(c, δ)| = |C||Bq(0, δ)|.

Putting these together, we conclude that

(2.2)
qn

|Bq(0, δ)|
≤ |C| ≤ qn

|Bq(0, δ/2)|
.

The lower bound on C is known as the Gilbert-Varshamov (GV) bound. The upper

bound is called the Hamming bound. To understand these bounds, it is helpful to

get an idea of the size of the Hamming ball Bq(0, δ). We can write

|Bq(0, δ)| =
bnδc∑
j=1

(
n

j

)
(q − 1)j,

although perhaps that’s not very illuminating. One way to get good intuition for

|Bq(0, δ)| is through the q-ary entropy function Hq. We define

(2.3) Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

The q-ary entropy function is a generalization of the standard (binary) entropy. It is

plotted in Figure 2.3, and we will return to its behavior in much more detail below. It

turns out that Hq(δ) nicely characterizes the size of Hamming balls over Fq. Indeed,

(see [84] for the computation), for any δ ∈ (0, 1− 1/q) and for sufficiently large n,

(2.4) qn(Hq(δ)−o(1)) ≤ |Bq(0, δ)| ≤ qnHq(δ).

3Notice that for any c, |Bq(c, δ/2)| = |Bq(0, δ/2)|, which follows from the fact that the map x 7→ x − c is an
automorphism of Fnq which preserves Hamming distance.

16

0 0.25 0.5 0.75 1.0
0

0.25

0.5

0.75

1.0

x

Hq(x)

q = 2

q = 4

q = 8

Figure 2.3: The q-ary entropy function Hq(x).

Combining (2.2) and the above, we see that the the rate R = logq(|C|)/n of a maximal

code C of distance δ is bounded by

(2.5) 1−Hq(δ)− o(1) ≤ R ≤ 1−Hq(δ/2).

Some useful facts about Hq(x). To understand Equation (2.5), we expand

a bit on the function Hq(δ). Shown in Figure 2.3, the function Hq(x) attains its

maximum (which is 1) at 1 − 1/q. It will be useful to investigate its behavior near

this point. Very near to 1 − 1/q, say at 1 − 1/q − ε for ε � 1/q, the behavior of

Hq(x) is roughly quadratic in ε; for slightly larger ε, it is roughly linear. To be more

precise, consider the series expansion of Hq(1− 1/q − ε) near ε = 0. We have

(2.6) Hq(1− 1/q − ε) = 1−
(

q2

2(q − 1) log(q)

)
ε2 +Oq(ε

3),

which describes the behavior of Hq for constant q and ε → 0. On the other hand,

expanding Hq(1− 1/q − ε) near q =∞, we have

(2.7) Hq(1− 1/q − ε) = 1− 1/q − ε− H2(ε)

log2(q)
− oε(1/q) = 1− ε+Oε(1/ log(q)),

17

which describes the behavior of Hq for constant ε and growing q. In chapters 4 and

5, we will be interested in situations where both ε → 0 and q → ∞ at the same

time. In this case, the asymptotics of Hq(1− 1/q − ε) can get a little hairy, but the

following is true:

(2.8)

Hq(1−1/q−ε) =

1−Θ
(

qε2

log(q)

)
q = O(1/ε) (“small” q)

1−Θ(ε) q = Ω(ε−c) for some constant c > 1 (“large” q)

1− ε(1− o(1)) q = ε−ω(1) (“very large” q)

We will informally use the labels “small q” and “large q” to refer to the param-

eter regimes above. These regimes do not capture everything—we may have q =

log(1/ε)/ε, for example—but they are enough intuition for our purposes.

Let us consider the take-away from these calculations, combined with (2.5), which

said that the rate R of the largest code of distance δ obeys

1−Hq(δ)− o(1) ≤ R ≤ 1−Hq(δ/2).

The first inequality (the Gilbert-Varshamov bound) then implies that there are codes

with distance δ = 1 − 1/q − ε and rate approaching ε2 (small q) or ε (large q). On

the other hand, the second inequality (the Hamming bound) indicates that perhaps

we can do better. For large q, it is known that in fact we can. For binary codes,

where q = 2, it is not known whether one can do better than the Gilbert-Varshamov

bound.

Pinning down the best possible rate-distance trade-off is still an open question,

and there are tighter bounds than those presented here. However, the bounds given

above will be enough intuition for the work in this thesis. In our work, we will study

several classical ensembles of codes, whose rates and distances are well-understood

18

(and generally speaking match the Gilbert-Varshamov bound), and prove new results

about their capabilities. We introduce some of these families in the next section.

2.1.2 Examples of codes

Most of the codes in this dissertation are linear codes, which are codes C so that C

forms a linear subspace over Fq. In this case, the message length k is the dimension

of the subspace, and this is called the dimension of the code; as before the rate is

R = k/n. We may write a linear code C as

C =
{
xTG : x ∈ Fkq

}
,

where G ∈ Fk×nq is a matrix4 of rank k over Fq. We refer to G as a generator matrix

for C. We may also write a linear code C as

C =
{
y ∈ Fnq : Hy = 0

}
,

for some matrix5 H ∈ F(n−k)×n
q of rank n−k. We refer to H as a parity check matrix

for C. Notice that if G is a generator matrix for C and H is a parity-check matrix

for C, then HGT = 0: H spans the kernel of G.

In Chapters 3 and 4, we study (uniformly) random linear codes. A uniformly

random linear code C of rate R is just a uniformly random linear subspace of Fnq

of dimension k = Rn. It will be convenient to also consider the distribution on

linear codes that arises from choosing a generator matrix G uniformly at random

from Fk×nq . These are slightly different distributions, because a matrix G drawn at

random may not have full rank. However, for the parameter values we are interested

in, these distributions are very similar. We will abuse language and use “uniformly

4In coding theory, one generally writes G as a short fat matrix and multiplies messages as row vectors on the left.
When in Rome...

5The parity-check matrix is multiplied by a column vector on the right—all is right with the world.

19

random linear code” to refer to both of these distributions. When it comes time to

make precise statements, we will be more clear about which we mean.

Linear codes have a lot of structure. If Alice has her hands on G, she may encode

a message x ∈ Fkq as xTG ∈ C reasonably efficiently. If Bob has his hands on G, he

may test quickly whether or not z ∈ Fnq is a codeword in C, and if it is, he may quickly

recover the corresponding message x. Linear codes obey a lot of useful symmetries:

for example, the distance of a linear code is same as the distance of any codeword

to the all-zero codeword. We define here a few linear codes which will be especially

useful to us.

Reed-Solomon codes

The work in Chapter 4 is motivated by Reed-Solomon codes. Reed-Solomon

codes [90], which are based on polynomials over finite fields, are one of the most-

studied families in coding theory. They are prevalent in practice, showing up ev-

erywhere from storage in CD-ROMs6 to QR codes for smartphones7 to schemes for

high-thoughput screening of DNA [106]. See [110] for more discussion of the many

applications of Reed-Solomon codes.

Definition 2.1. The Reed-Solomon code of degree k−1 and length n with evaluation

points α1, . . . , αn ∈ Fq is

RSq(k, n) =
{

(f(α1), . . . , f(αn)) ∈ Fnq : f ∈ Fq[x], deg(f) ≤ k − 1
}
.

Notice that the definition of Reed-Solomon codes implies that the alphabet size q

must be large; indeed, it must be larger than n. In particular, when we consider the

family of Reed-Solomon codes and let n go to infinity, q must also grow to infinity.

6too old-fashioned?
7that’s better

20

One reason that Reed-Solomon codes are so prevalent is because they have the

optimal rate-distance trade-off. To see this, we compute the rate and distance below:

Distance. The distance of RSq(k, n) is exactly (k − 1)/n. Indeed, for any two

polynomials f, g of degree at most k − 1, the number of α ∈ Fq so that f(α) = g(α)

is at most k − 1, the number of roots of f − g. Conversely, for any set of evaluation

points, the distance between the codewords corresponding to f(x) = 0 and g(x) =

(x− α1)(x− α2) · · · (x− αk−1) is precisely (k − 1)/n.

Rate. The rate of RSq(k, n) is exactly k/n; this follows from the fact that the

generator matrix for RSq(k, n), given by

1 1 1 · · · 1

α1 α2 α3 · · · αn

α2
1 α2

2 α2
3 · · · α2

n

...
...

...
...

αk1 αk2 αk3 · · · αkn

has full rank.

Thus, a Reed-Solomon code with distance δ has rate R = k/n = 1 − δ + 1/n,

exactly matching the Singleton bound. It also matches the “big-q” version of the

GV bound: a Reed-Solomon code of distance δ = 1− 1/q− ε = 1− ε− o(1) has rate

R = 1− δ − o(1) = ε− o(1).

Above, we imagine that ε is a small constant, and we recall that 1/q = o(1), as q > n

for Reed-Solomon codes is not constant.

Expander codes

In Chapter 6, we will study a family of linear codes based on expander graphs.

These codes, called Tanner codes, are formed from d-regular bipartite graphs G =

21

(U, V,E), and an inner code C0 ⊂ Fdq . The idea of using bipartite graphs to define

linear codes goes back to Gallager [32] in the 1960’s; the version we will use is due

to Tanner [105] and to Sipser and Spielman [98]. In these variants, the graph G

and the inner code C0 are used to define a Tanner code C = C(G, C0) ⊂ FNdq ; here,

N = |V | = |U | is the number of vertices on each side of G. Thus, the length of C is

n = Nd, which is the number of edges in G.

A codeword c ∈ C will be interpreted as a labeling of the edges of G. For a vertex

u, we will use Γ(u) to denote the edges adjacent to u (so, Γ(u) ⊂ E has size d). We

will fix an ordering on these edges, and write Γ(u) = {Γ1(u),Γ2(u), . . . ,Γd(u)}.

Definition 2.2. Let G be a d-regular bipartite graph, and let C0 ∈ Fdq. With the

notation above, the Tanner code C = C(G, C0) is defined by

C =
{
c ∈ FNdq : ∀u ∈ U ∪ V, (cΓ1(u), cΓ2(u), . . . , cΓd(u)) ∈ C0

}
.

Above, we index the coordinates of c ∈ C by the edges of G, and use ce to denote the

e-th coordinate.

A picture of this construction is shown in Figure 2.4. As suggested above, we

will choose the graph G to be an expander graph. When the underlying graph G

is an expander graph, then it turns out [98] that the code C can be encoded and

decoded extremely quickly, in time linear in n. In Chapter 6, we will give algorithms

for decoding these codes in sublinear time. We will defer the definition of expander

graphs until they are needed in Chapter 6. For now, we will simply observe some

facts about the rate of C when C0 is linear, for arbitrary bipartite graphs G.

It is not immediately obvious that the Tanner code C we just defined is non-empty;

why should there be any labeling of the edges that are consistent with C0? If C0 is

linear, we can answer this questions by counting linear constraints. Indeed, if C0 is

22

U V

u = Γ3(v)

Γ2(v)

Γ1(v)

Γ3(u) = v

Γ2(u)

Γ1(u)

These symbols
form a codeword in

C0
So do these

Figure 2.4: A codeword in an Tanner code C is a labeling of the edges of a bipartite graph G. A
labeling c is in C if at every vertex u ∈ U and v ∈ V , the labels on the edges coming out of u (and
v) form a codeword in an inner code C0.

23

a linear code of rate R0, then it is defined by d(1 − R0) linear constraints, and by

definition C is a linear code defined by 2N(d(1 − R0)) (possibly redundant) linear

constraints, d(1−R0) constraints for each of the 2N vertices. In particular, the rate

of C is at least

R(C) ≥ Nd− 2N(d(1−R0))

Nd
= 2R0 − 1.

Thus, as long as R0 > 1/2, C has positive rate and we have done something nontrivial.

With a few examples of codes under our belts, we will return to the slog of

definitions, and introduce two variants of the general coding theory set-up.

2.2 List-Decodable codes

Alice and Bob will fail when the error rate exceeds half of the minimum distance

of the code. Indeed, consider the point z in Figure 2.2; if there are two codewords

c, c′ ∈ C with δ(c, c′) < 2ρ, then there is always some z ∈ Fnq with δ(c, z), δ(c′, z) < ρ.

This is perhaps disappointing: what if the error rate is bigger than 1/2? In some

applications, ρ may be nearly 1. Is there anything to be done in this case? The

answer is yes: Alice and Bob can use list decoding.

In list decoding, Bob is allowed to return a short list of messages x1, . . . , xL ∈ Fkq ,

as long as he can guarantee that Alice’s message appears somewhere in the list.

Formally, we have the following definition.

Definition 2.3. A code C ⊂ Fnq is (ρ, L)-list decodable, if for every z ∈ Fnq ,

| {c ∈ C : δ(z, c) ≤ ρ} | ≤ L.

We refer to the largest ρ so that Definition 2.3 holds as the list-decoding radius of

C for list size L. For our purposes, we will usually hope that L is “reasonably small,”

which might mean “polynomial in a few parameters of interest.” When L is clear, we

24

will sometimes just refer to this ρ as the list-decoding radius of C. The Alice-and-Bob

setup is shown in Figure 2.5; the combinatorial interpretation is shown in Figure 2.6.

Alice Bob

corrupted codeword w ∈ Fnq

message x ∈ Fkq

codeword C(x) ∈ Fnq

x ∈ {x1, x2, . . . , xL} ?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.5: The set-up for list-decodable codes: Alice-and-Bob version.

Fnq

c ∈ C

δ(C)

z ∈ Fnq

ρ

Figure 2.6: The set-up for list-decodable codes, from a combinatorial perspective. Even though the
is not a unique codeword c ∈ C which are within ρ of z, there are not that many. The code pictured
above is (ρ, 4)-list-decodable.

List decoding was introduced, independently, by Elias and Wozencraft [27, 112]

in the late 1950’s. Since then, it has found uses throughout theoretical computer

science, not only in communication, but also in complexity theory and pseudoran-

domness. For example,8 in complexity theory list decodable codes have been used

8for the reader already familiar with the lingo

25

(often implicitly) in hardness amplification [103], constructing hardcore predicates

from one-way functions [36], and in average-case hardness of the permanent [17,37].

In pseudorandomness, list-decodable codes are intimately connected to pseudoran-

dom gadgets like extractors [60], expanders, condensers, and so on [107]. We refer

the reader to the excellent surveys of Sudan [102] and Vadhan [108], as well as to

Guruswami’s thesis [43], for the many applications of list decodability.

To get a feel for what can and cannot be done in list decoding, we will survey

some results and do a few computations below.

2.2.1 List-decoding radius vs. rate

The motivation for list decoding is to handle extremely large error rates; how

large is large? First, it is not hard to see that ρ > 1− 1/q is just too large. Indeed,

in expectation a random received word y ∈ Fnq will agree with a given codeword c

in a 1/q-fraction of the places, and so we expect for y to be this close to a large

number of c ∈ C. The remarkable fact is that this is the only barrier: Alice and Bob

can handle any ρ < 1− 1/q. The following theorem, called the list decoding capacity

theorem, pins down the rate we can hope for for any ρ < 1− 1/q.

Theorem 2.4 (List decoding capacity theorem, [28, 116]). Fix q ≥ 2 and let ρ ∈

(1, 1/q). Then the following are true.

(1) For any code C ⊂ Fnq which is (ρ, L)-list decodable, with rate R = 1−Hq(ρ) + γ

for any γ > 0,

L ≥ qn(γ−o(1)).

(2) On the other hand, for all L ≥ 1, there is a (ρ, L)-list-decodable code with rate

R ≤ 1−Hq(ρ)− 1/L.

26

The proof of Theorem 2.4 is relevant for some of the results in this dissertation,

so we include it here.

Proof. For Item (1), consider picking a random received word z ∈ F n, and fix c ∈ C.

We have

P {c ∈ Bq(z, ρ)} =
|Bq(c, ρ)|

qn
≥ q−n(1−Hq(ρ)−o(1)),

using (2.4). Then, in expectation over z,

E [|Bq(z, ρ) ∩ C|] ≥ qRnq−n(1−H1(ρ)−o(1)) = qn(ε−o(1)).

In particular, there is some z so that the number of codewords within ρ of z is

exponentially large in n, the block length of C.

For Item (2), we again will use the probabilistic method. Fix R ≤ 1−Hq(ρ)−1/L,

and let k ≤ Rn be an integer. Choose C =
{
C(x) : x ∈ Fkq

}
⊂ Fnq , so that C(x) is

chosen uniformly at random, independently for the different x ∈ Fkq . Now, for a fixed

z ∈ Fnq and a fixed set of messages Λ ⊂ Fkq , with |Λ| = L+ 1, consider the event Ez,Λ

that

C(x) ∈ Bq(z, ρ) ∀x ∈ Λ

The probability of this event is

P {Ez,Λ} =
∏
x∈Λ

P {C(x) ∈ Bq(z, ρ)} ≤
(
|Bq(z, ρ)|

qn

)L+1

≤ q−n(L+1)(1−Hq(ρ)),

where in the first equality we have used independence, and in the last inequality we

have again used (2.4). Now, by the union bound, the probability that Ez,Λ occurs

27

for any z,Λ is

P {∃z,Λ such that Ez,Λ} ≤ qn
(

qk

L+ 1

)
q−n(L+1)(1−Hq(ρ))

≤ qnqk(L+1)q−n(L+1)(1−Hq(ρ))

≤ qn(1+(1−Hq(ρ)−1/L)(L+1)−(L+1)(1−Hq(ρ)))

= q−n/L

< 1.

In particular, there exists a code C so that none of the events Ez,Λ occur. But if this

is the case, then by definition C is (ρ, L)-list-decodable.

Let us apply our intuition (2.8) about the behavior of Hq(1 − 1/q − ε) to the

conclusions of Theorem 2.4 in the parameter regime when ρ = 1− 1/q − ε:

Corollary 2.5. Suppose that C is (1 − 1/q − ε, L)-list decodable with list size L

polynomial in 1/ε. Then the rate R of C must obey

R ≤ 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

Corollary 2.5 is not the tightest statement we could make (in terms of the con-

stants), but for this thesis we care about the asymptotic dependence of ε and q,

rather than the exact values of the constants.

The “large-ρ” parameter regime

The take-away from Theorem 2.4 and Corollary 2.5 is that list decoding effectively

doubles the correctable fraction of errors. For any (nontrivial) code over an alphabet

of size q, the distance cannot be more than 1−1/q, and so no more than a 1
2

(
1− 1

q

)
fraction of errors can be recovered from uniquely. However, when the decoder may

output a short list, there are codes which can tolerate a 1− 1
q
− ε fraction of errors,

28

for any ε > 0. This fact has been crucially exploited in numerous applications of

list decoding in theoretical computer science and in particular to the complexity

theoretic applications mentioned above. There are two important features of these

applications:

1. For complexity applications, it is necessary for the fraction of correctible errors

to be arbitrarily close to 1 − 1
q
. This is less important in the communication

setting (where we might hope ρ is close to 0), but for clarity of exposition we

will stick with Alice and Bob: our motivation is captured in Figure 2.7.

2. As we saw above, the optimal rate to correct 1 − 1
q
− ε fraction of errors is

known, given by

R∗(q, ε) := 1−Hq(1− 1/q − ε),

and bounded by Corollary 2.5. However, for complexity applications it is often

enough to design a code with rate Ω(R∗(q, ε)) with the same error correction

capability.9

We study list decoding in these parameter regimes. That is, we seek to correct a

1 − 1/q − ε fraction of errors, with rate Ω̃(R∗(q, ε)) which may be suboptimal by

multiplicative factors. The ultimate goal is to get the correct dependence on ε and

q.

The proof of (2) in Theorem 2.4 implies that a random code C is optimally list-

decodable with high probability. We digress for a moment to remark on the im-

portance that independence played in this proof: if the encodings C(x) were not

independent, for different x, then a priori the probability of the event Ez,Λ might

be much larger, and the union bound would not go through. For example, suppose

9In fact in some applications even polynomial dependence on R∗(q, ε) is sufficient.

29

ρ = δ/2

Bob

Unique decoding

ρ→ δ

Bob

List decoding

Figure 2.7: Moving from unique decoding to list decoding allows Alice and Bob to nearly double
the tolerable error rate, from ρ = δ/2 to ρ = δ. To illustrate this phenomenon, we include a picture
above of how happy this makes Bob.

that instead of taking C to be a random code, we considered a random linear code.

That is, choose a random matrix G ∈ Fn×kq , and set C(x) = Gx. Now it is no

longer the case that the encodings {C(x) : x ∈ Λ} are independent; in fact, since

Gx + Gy = G(x + y), they are not even 3-wise independent. We may modify the

approach of the proof above (following [116]) to work.

Proposition 2.6 ([116]). Let q ≥ 2 and choose ρ ∈ (0, 1− 1/q). Let C be a random

linear code of rate R ≤ 1 − Hq(ρ) − 1
dlogq(L+1)e . Then with high probability C is

(ρ, L)-list-decodable.

Proof. We modify the proof of Theorem 2.4, part (2), above. As before, the plan will

be to bound P {Ez,Λ} and take a union bound. Any set Λ ⊂ Fkq of L + 1 messages

must contain at least logq(L + 1) linearly independent vectors: this follows because

any subspace of Fkq of dimension t contains at most qt messages. Now, for any set of

linearly independent messages x ∈ Fkq , the corresponding codewords C(x) = Gx ∈ Fnq

are independent random variables. Thus, we may bound

P {Ez,Λ} ≤ (P {Gx ∈ Bq(z, ρ)})dlogq(L+1)e ≤ q−n(1−Hq(ρ))dlogq(L+1)e.

30

The proof proceeds by taking a union bound, as before.

We note that Proposition 2.6 is exponentially worse than part (2) of Theorem 2.4,

in terms of the list sizes. Indeed, when ρ = 1− 1/q − ε, then in order to obtain the

“correct” rate (as per Corollary 2.5), we must set L = q1/ε or q1/ε2 , which is much

larger than 1/poly(ε). It is a natural question whether or not we can do better [28].

We will return to this question in Chapters 3 and 4, where we will answer it in the

affirmative.

2.2.2 List-decoding radius vs. distance, and the Johnson bound

Above, we quantified the best trade-off we can hope for between the rate R of a

code and its list-decoding radius ρ. A related question is the trade-off between the

distance δ and the list-decoding radius ρ. We have already discussed the trade-off

between δ and R, summarized by (2.5) and (2.8), and this gives us an idea about

what we might hope for for the trade-off between δ and ρ.

Intuitively, it seems like good distance should be enough to imply a large list-

decoding radius. Indeed, in Figure 2.6, it seems reasonable that if all of the points of

C are very spread out, there should be no way to capture too many of them in a ball

of radius ρ. What sort of trade-off could we hope for? Suppose that C lies on the

Gilbert-Varshamov bound (the first inequality in (2.5)) and has distance δ; thus the

rate is R = 1−Hq(δ)−o(1). Then the list-decoding capacity theorem (Theorem 2.4)

indicates that we may hope to obtain nontrivial list-decoding guarantees with the

list-decoding radius ρ approaching the distance δ of the code. This quantitative

intuition might make us hope that any code with distance 1−1/q−Ω(ε) should have

list-decoding radius ρ = 1 − 1/q − ε. Unfortuately, this is just too good be true.10

10 Indeed, a random coding argument [38, Section 4.3] shows that there are (non-linear) q-ary codes of distance

31

But there is some statement we can make along these lines, known as the Johnson

Bound.

Theorem 2.7 (Johnson bound, [72]). Let C ⊂ Fnq have distance δ, and let

ρ ≤ (1− 1/q)

(
1−

√
1− qδ

q − 1

)
=: Jq(δ).

Then C is (ρ, L)-list decodable, for L = qn2δ.

When δ = 1 − 1/q − ε2, then Jq(δ) is at least 1 − 1/q − ε. Thus, in our setting,

the Johnson bound states that any code with distance 1− 1/q− ε2 has list-decoding

radius ρ ≥ 1− 1/q − ε.

Average-radius, average-distance Johnson bound

There are many proofs of the Johnson bound [1,20,28,29,38,58,59,72,73,81]. We

will give a proof here, for q = 2 and d = 1/q − ε, which will be instructive in the

future. This proof is similar to (and inspired by) the proof in [20].

Theorem 2.8 (Average-distance, average-radius Johnson bound for q = 2). Let

C ⊂ Fn2 be a binary code. Then for any Λ ⊂ Fn2 with |Λ| = L, and for any z ∈ Fn2 ,

1

L

∑
x∈Λ

δ(C(x), z) ≥ 1

2

1−
√

1− 2

L2

∑
x 6=y∈Λ

δ(C(x), C(y))

 .

Proof. Let Φ ∈ (±1)n×2k be the matrix whose columns are indexed by x ∈ Fk2, so

1− 1/q− ε so that one can find a Hamming ball of radius 1− 1/q−Ω(
√
ε) which contains super-polynomially many

codewords. There are similar results for linear codes [42,55].

32

that Φj,x = (−1)C(x)j . Let ϕj denote the j-th column of Φ. Then

max
z

∑
x∈Λ

1− δ(C(x), z) =
1

n

n∑
j=1

max
b∈{0,1}

∑
x∈Λ

1C(x)j=α

=
1

n

n∑
j=1

max
α∈{0,1}

∑
x∈Λ

(−1)α(−1)C(x)j + 1

2

=
1

n

n∑
j=1

(
L+

n∑
j=1

|〈ϕj,1Λ〉|

)

=
1

2

(
L+

1

n
‖Φ1Λ‖1

)
≤ 1

2

(
L+

1√
n
‖Φ1Λ‖2

)
,

using Cauchy-Schwarz in the final line. The claim then follows from the definition

of Φ and the fact that the (x, y)-entry of ΦTΦ is given by n(1 − 2δ(C(x), C(y))) .

Indeed, from this, we have

‖Φ1Λ‖2
2 = 1TΛΦTΦ1Λ = n

∑
x∈Λ

∑
y∈Λ

(1− 2δ(C(x), C(y))) ,

and plugging this in above and a little bit of rearrangement gives the statement.

Theorem 2.8 is stronger than Theorem 2.7 in two important ways; to understand

them, we will derive Theorem 2.7 from Theorem 2.8. First, notice that by the

definition of list-decodability, C is list-decodable if and only if, for all sets Λ ⊂ Fkq of

size L + 1, and for all z ∈ Fnq , there is at least one x ∈ Λ so that δ(C(x), z) ≥ ρ; in

other words,

max
x∈Λ

δ(C(x), z) ≥ ρ.

Because the average is always smaller than the maximum, it suffices for

1

L

∑
x∈Λ

δ(C(x), z) ≥ ρ,

which is the form that the bound in Theorem 2.8 takes. Next, we observe that if the

minimum distance δ(C) of C is large, then the averaged distance term that shows up

33

in Theorem 2.8 is also large:

∑
x 6=y∈Λ

δ(C(x), C(y)) ≥ L(L− 1)δ(C).

Incorporating these observations into the statement of Theorem 2.8, we obtain

that a binary code C is (ρ, L)-list-decodable for all

ρ ≤ 1

2

(
1−

√
1− 2

(
1− 1

L+ 1

)
δ

)
.

Comparing this to J2(δ) = 1
2

(
1−
√

1− 2δ
)
, we find that for large L these are basi-

cally the same in our parameter regime: if we are shooting for ρ = 1/2− ε, we may

take δ = 1/2−O(ε2) and L = O(1/ε2).

We call Theorem 2.8 a average-radius, average-distance Johnson bound. It is

average-radius because it shows that the averaged list-decoding radius

max
z,Λ

1

L

∑
x∈Λ

δ(C(x), z)

is large. It is average-distance because it depends on the averaged distances

1

L(L− 1)

∑
x 6=y

δ(C(x), C(y)),

rather than the minimum distance. Many proofs of the Johnson bound can actually

be tweaked to imply average-radius or average-distance Johnson bounds. This fact

appears to be folklore, but the distinction is important to us. In Chapter 4 we will

give a few more average-radius, average-distance Johnson bounds, which hold for all

q.

2.2.3 List decoding of Reed-Solomon codes and beyond

Reed-Solomon codes play an important role in the history of list decoding. Like

any code with good distance, the Johnson bound implies that Reed-Solomon codes

have large list-decoding radius. More precisely, Theorem 2.7, combined with our

34

earlier calculations about Reed-Solomon codes, imply that a Reed-Solomon code of

rate ε2 (over Fq for q � 1/ε2) has distance about 1 − ε2 and hence list-decoding

radius ρ = 1− ε. The remarkable thing about Reed-Solomon codes is that they can

be list-decoded to this radius efficiently.

The celebrated work of Guruswami and Sudan [57, 101], in the late 1990’s, gave

an efficient list-decoding algorithm for Reed-Solomon codes which works up to the

Johnson bound. This was the first non-trivial progress in efficiently list decoding

codes up to radius 1 − ε, and it made a big impact. However, as we saw from

the List Decoding Capacity Theorem (Theorem 2.4), this is not the best rate/list-

decoding-radius trade-off we could hope for. Ideally, if ρ = 1 − ε, we ought to be

able to find codes of rate ε.

Eventually, the “Johnson bound barrier” was broken for efficiently decodable

codes [87], and now we know of several families of codes which are efficiently list

decodable all the way to the list-decoding capacity theorem [51, 62–64, 78]. For the

most part, these codes are generalizations of Reed-Solomon codes. However, no more

progress was made on Reed-Solomon codes themselves, except for a few negative re-

sults. Indeed, it has been conjectured that Reed-Solomon codes are not list-decodable

beyond the Johnson bound [19], and so significant effort has been put in to proving

this. So far, we know that if the evaluation points contain certain algebraic struc-

ture, then indeed Reed-Solomon codes can’t be list-decoded, even combinatorially,

much beyond the Johnson bound [12]. Further, if we pass to a related problem,

called list-recovery, then the analogue of the Johnson bound is the right answer for

Reed-Solomon codes [50]. Finally, it seems likely that, no matter what the evaluation

points, list-decoding Reed-Solomon codes much beyond the Johnson bound will be

computationally difficult [19], even if it is combinatorially possible.

35

We will return to this question later. One of the main contributions of Chapter 4 is

that there are Reed-Solomon codes which are list-decodable well beyond the Johnson

bound, and nearly to list-decoding capacity. In fact, we will show that most Reed-

Solomon codes achieve this, in the sense that choosing the evaluation points at

random is a good bet.

2.2.4 Summary

To sum up, the state of (existential) knowledge about list-decodable codes, before

the work in this thesis, is as follows.

• Random codes are list-decodable to capacity. Other random ensembles of codes,

even the simple case of random linear codes, have proved difficult to analyze.

• The Johnson bound gives us a structural condition (distance) which implies

good list-decodability, but it does not (and cannot11) go as far as the lower

bound imposed by the list-decoding capacity theorem.

• We know of a few, very specific, families of codes, based on Reed-Solomon

codes, which are list-decodable to capacity. These codes also are efficiently

list-decodable.

• As for Reed-Solomon codes themselves, we know that some choices of evaluation

points will obstruct list-decoding to capacity.

There are some gaps and open questions in this landscape. We will return to these

later in Chapters 3, 4, and 5, where we will fill some gaps and answer some questions.

For now, we will consider the basics of list-decoding covered, and move on to locally

decodable codes.
11That is, there are codes whose distance and list-decoding radius match the Johnson bound, see [55]

36

2.3 Locally Decodable codes

Suppose that Bob only wants to recover a single symbol of Alice’s message x. Of

course, if Bob is equipped to recover all of x, as he has been so far, he can do this

easily. However, in order to recover all of x, Bob must at least look at the entire

codeword c = C(x), and in particular the time he will take to do this is Ω(n). In

local decoding, one wonders if Bob might do better.

More precisely, the setup will be as follows. Alice will encode her message as

c = C(x) ∈ Fnq , as before. As before, an adversary will corrupt a ρ-fraction of the

symbols of c, to create a corrupted codeword w ∈ Fnq . Bob will be given query access

to w. Now, the adversary additionally gives Bob an index i ∈ {1, . . . , k}. Bob’s job

will be to make Q� n queries to w, and from these queries he must produce a guess

of xi. It is not hard to see that Bob’s queries must be randomized: indeed, because

the adversary will know Bob’s stratregy, if Bob were to look at a deterministic set

of Q � n queries, then the adversary could simply corrupt every single query Bob

observes. Thus, we will demand that, for all i, he succeed with high probability. The

setup is shown in Figure 2.8, and a more formal definition is given below.

Remark 1. In locally decodable codes, the number of queries is generally denote by

q. Of course, in coding theory, it is often the case that q = |Fq| is the size of the

alphabet. Resolving this notational collision is one of the greatest open problems in

local decoding. Not wanting to bite of more than we can chew with this thesis, we

will punt and denote the number of queries by Q.

Definition 2.9 (Locally Decodable Codes (LDCs)). Let C : Fkq → Fnq be a code.

Then C is (Q, ρ)-locally decodable with error probability η if there is a randomized

37

algorithm ∆, so that for any w ∈ Fnq with δ(w, C(x)) < ρ, for each i ∈ [k],

P {∆(w, i) = xi} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over

the internal randomness of the decoding algorithm ∆.

In this dissertation, we will also be concerned with a slightly stronger notion,

called a locally correctable code (LCC). In this setup, Bob must be able to not only

find every symbol of Alice’s message x, but also of the codeword C(x).

Definition 2.10 (Locally Correctable Codes (LCCs)). Let C ⊂ Fnq be a code. Then C

is (Q, ρ)-locally correctable with error probability η if there is a randomized algorithm,

∆, so that for any w ∈ Fnq with δ(w, C(x)) < ρ, for each j ∈ [n],

P {∆(w, j) = wj} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over

the internal randomness of the decoding algorithm ∆.

A locally correctable linear code gives a locally decodable code—this follows from

the fact that we may always put the generator matrix in canonical form, so that the

left-most k× k block is the identity. In this view, the message itself appears as part

of the codeword, and so the ability to recover any symbol of the codeword is enough

to recover any symbol of the message.

2.3.1 Two examples: Hadamard codes and Reed-Muller codes

It is worthwhile to consider two examples of locally decodable codes. The first

example is the (q-ary) Hadamard code.

38

Alice Bob

corrupted codeword w ∈ Fnq

Q queries

message x ∈ Fkq

codeword c = C(x) ∈ Fnq

xi?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.8: The set-up for locally decodable codes. For each i ∈ {1, . . . , k}, Bob must be able to
guess xi with high probability over his choice of queries. The symbols are corrupted after C(x) is
encoded, but before Bob makes his queries.

Definition 2.11 (Hadamard code). For n = qk, the Hadamard code of length n

encodes messages in x ∈ Fkq by

C(x) = (〈ai, x〉)ni=1 ∈ Fnq ,

where ai ranges over all elements of Fkq .

In other words, the Hadamard code is the linear code whose generator matrix is

the k× qk matrix whose rows include every vector in Fkq . The rate of the Hadamard

code is k/qk; it approaches 0 as k → ∞. However, the Hadamard code is (2, ρ)-

locally correctable for any ρ < (1−1/q)/2. Algorithm 1 shows how Bob may recover

C(x)a for some a ∈ Fkq , by looking at only two entries of a corrupted codeword w.

Algorithm 1: Local correction algorithm for the Hadamard code

Input: Corrupted codeword w ∈ Fnq , index a ∈ Fkq .

Choose r ∈ Fkq uniformly at random.
Choose s = a− r.
Query ws and wr.
return ws + wr

39

Why does Algorithm 1 work? Suppose that Bob’s two queries ws and wr are

correct. Then

ws = C(x)s = 〈x, s〉 and wr = C(x)r = 〈x, r〉 ,

and so the value returned by Algorithm 1 is

ws + wr = 〈x, s+ r〉 = 〈x, r + a− r〉 = 〈x, a〉 = C(x)a.

Thus, the algorithm works whenever these two symbols are not corrupted. While the

two queries are correlated, the marginals of each are uniformly random in Fkq . The

probability that a random query is corrupted is ρ, the fraction of corrupted symbols.

Thus, by the union bound, the probability (over the choice of r) that both queries

are correct is

P {ws = C(s) and wr = C(r)} ≥ 1− 2ρ.

Thus, as long as ρ is small enough, Alice and Bob can succeed. In particular, if

ρ < (1 − 1/q)/2, then Alice and Bob are doing better than guessing, so we declare

success. If a higher success probability is required, Alice and Bob may do several

independent repetitions of Algorithm 1 and take the majority vote; this will allow

them to get arbitrarily good success probability, at the cost of more queries.

Our second example is the Reed-Muller code.

Definition 2.12 (Reed-Muller code). The q-ary m-variate Reed-Muller code of de-

gree d < q − 1, denoted RMq(d,m), is a linear code C ⊂ Fnq , where n = qm. The

message length is k =
(
m+d
d

)
, and we regard each message f ∈ Fkq as a polynomial

in Fq[x1, x2, . . . , xm] of degree at most d. Then the encoding C(f) of f is all of the

evaluations of f over Fmq :

C(f) = (f(x))x∈Fmq .

40

Remark 2. Later on, we will consider Reed-Muller codes in a slightly different pa-

rameter regime (which the reader may be more familiar with), where q = 2 and

d ≥ q − 1 may be larger. We’ll see below why we want the restriction d < q − 1 for

locally decodable codes.

We note that Hadamard codes are thus just the k-variate Reed-Muller code of

degree 1; Reed-Muller codes can also be seen as a multivariate version of the Reed-

Solomon codes we have already encountered.

Algorithm 2: Local correction algorithm for Reed-Muller codes

Input: Corrupted codeword w ∈ Fnq , index a ∈ Fmq .
Choose r ∈ Fmq at random.
Let L = {a+ λr : λ ∈ Fq} ⊂ Fmq be the line through a and r.
Query wb for b ∈ L \ {a}.
Find a univariate polynomial g : Fq → Fq so that

g(λ) = w(a+λr)

for the most number of λ’s.
return g(0)

Algorithm 2 gives a local correction procedure for Reed-Muller codes; it requires

a bit more explanation than Algorithm 1. First, observe that Algorithm 2 makes

Q = q−1 queries, the number of points on a line in Fmq (except for a itself). Second,

the restriction of an m-variate polynomial of degree at most d to a line is a univariate

polynomial of degree at most d. Thus, the queries {C(f)b : b ∈ L} form a corrupted

codeword of the q-ary Reed-Solomon code of degree d. We have seen that the distance

of this code is 1− d/q; any two codewords disagree in at least q − d places. Thus, if

there are no more than (q−d)/2−1 corruptions in our q−1 queries, the polynomial

g in Algorithm 2 agrees with the restriction of f to L. In fact, one may find this

polynomial g efficiently. After g has been recovered, we have

g(0) = f(a+ 0 · r) = f(a) = C(f)a.

41

It remains to check when it’s the case that not too many of the queries are corrupted.

As with the Hadamard code, the queries of Algorithm 2 are correlated, but the

marginals are uniformly random. Thus, we expect a ρ-fraction of the symbols indexed

by L to be corrupted. By Markov’s inequality,

P
{

more than
q − d− 2

2
queries are corrupted

}
≤ 2ρ(q − 1)

q − d− 2
,

and so the probability of success is at least

P {algorithm 2 works } ≥ 1− 2ρ

1− d+1
q−1

.

This is better than 1/q whenever

ρ ≤ 1

2

(
1− d+ 2

q

)
.

There are many ways to pick parameters for Reed-Muller codes to make this

algorithm work. For illustration, consider m = 2 and d = q/2. Then the rate of the

corresponding Reed-Mulller code is

R =

(
m+d
d

)
qm

=

(
q/2+2

2

)
q2

=
1

8
+O(1/q).

The query complexity is

Q = q − 1 =
√
n− 1.

We can make the rate better by choosing d larger; notice that we can never choose

d ≥ q − 2, or else the tolerable error rate ρ becomes 0, and so the rate can never

become larger than 1/2.

2.3.2 Two parameter regimes

These two examples live on different sides of the spectrum: Hadamard codes have

rate which tends to zero exponentially quickly, but use only two queries. Reed-Muller

42

codes (with parameter settings like those above) have constant rate, approaching 1/2,

but query complexity about
√
n. It is natural to ask if one can do better in either

regime: if we have constant query complexity, can we have subexponential blowup

in the length of the codeword? If we have query complexity that scales like nε, can

we have rate arbitrarily close to 1? The answer to both questions—both open until

recently—is yes. We briefly survey work in this direction below.

• Constant locality. It is known [77] that one cannot improve on the rate of

the Hadamard code if we require the query complexity to be 2. However, a

great surprise of the past decade is that there are 3-query LDC’s with n slightly

subexponential in k [10, 11, 18, 22, 25, 26, 71, 113]. These codes, called matching

vector codes, have a strategy similar to the strategy we pursued for Hadamard

codes. That is, these codes have what we will call a smooth local reconstruction

algorithm. By this we mean an algorithm which for any symbol xi can make a

few queries so that (a) if all the queries are correct, it will correctly find xi, and

(b) while the queries may be correlated, the marginals are (close to) uniform.

Then the same argument we used in the Hadamard case goes through: by a

union bound, with high probability none of the queries are corrupted.

• Locality nε. As with the constant-query regime, the existence of locally decod-

able (or correctible) codes with rate approaching 1 for any nontrivial number of

queries was an open question until recently. In the past few years, there have

been two such constructions, multiplicity codes [79], and lifted codes [41]. In this

thesis, we will give a third example [68], which is very different in flavor.

The codes in [41, 79] are based on polynomials over finite fields, and at a high

level the arguments are similar to the Reed-Muller argument we made above.

43

One cannot hope to argue that with high probability none of the queries are

corrupted; indeed, if there are nε queries then with very high probability about

a ρ-fraction of them are corrupted. Instead, one can set things up so that the

queries themselves form some other code, like the Reed-Muller queries formed

a Reed-Solomon code.

Is there some way to turn a smooth local reconstruction algorithm into a lo-

cally decodable code the large-locality regime? We will return to this question in

Chapter 6, where we will show how to make such an argument work. For now, we

will momentarily leave the discrete world of finite fields and go over some of the

(continuous) probabilistic tools we’ll need.

2.4 Random tools

In this section, we briefly review some probability background that we will need

for our analyses.

2.4.1 Gaussian random variables

A Gaussian (or normal) random variable g ∼ N(0, σ2) with variance σ2 has a

probability density function

f(t) =
1√

2πσ2
exp(−t2/2σ2),

which is shown in Figure 2.9. One fact which we will use repeatedly about Gaussians

is that they are very well concentrated. More precisely, the cumulative distribution

function,

P {g > t} =
1√

2πσ2

∫ ∞
u=t

exp(−u2/2σ2) du

obeys the estimate

(2.9) P {g > t} ≤ σ

t
· 1√

2π
exp(−t2/2σ2)

44

f(x) = 1√
2π
e−x

2/2

Figure 2.9: The probability density function of a standard Gaussian random variable. It looks a
bit like a Brontosaurus.

for all t > 0. Indeed, because on the domain u ≥ t, (u/t) ≥ 1, we have

(2.10)

1√
2πσ2

∫ ∞
u=t

exp

(
−u2

2σ2

)
du ≤ 1√

2πσ2

∫ ∞
u=t

u

t
exp

(
−u2

2σ2

)
du =

σ

t
√

2π
exp

(
−t2

2σ2

)
.

Another very nice fact about Gaussian random variables is that they are stable:

linear combinations of Gaussian random variables are again Gaussian.

Fact 2.13. Let g1, . . . , gn be Gaussian random variables with variances σ2
1, . . . , σ

2
n.

Then the random variable
∑

i aigi is again a Gaussian random variable, with variance∑
a2
iσ

2
i .

2.4.2 Suprema of Gaussian processes

Several times in this thesis, we will encounter the problem of estimating something

of the form

(2.11) w(T) := E sup
t∈T
〈g, t〉 ,

for some set T ⊂ Rn, where g = (g1, . . . , gn) ∼ N(0, I) is a Gaussian random vector

(that is, each entry gi of g is an independent standard Gaussian). The quantity w(T)

is called the (Gaussian) mean width of T . Figure 2.10 shows why the name makes

sense.

45

T

g ∼ N(0, I)

Figure 2.10: Gaussian mean width. The vector g ∼ N(0, I) points in a uniformly random direction,
and its length (`2 norm) is very concentrated around

√
n. Having drawn g, the vector t ∈ T which

maximizes 〈g, t〉 is the one with the largest projection onto g, and the value of 〈g, t〉 is (proportional
to) the length of that projection; as shown above, this is half of the “width” of T in the direction g.
Thus, the quantity E supt∈T 〈g, t〉 can be described as the “mean width” of T , because we average
the width of T in direction g, over all directions.

The most basic situation is when T = {σiei : i ∈ [n]} is the collection of (scaled)

standard basis vectors. In this case, E supt∈T 〈g, t〉 is just the expected value of the

maximum of n Guassian random variables with variances σ2
1, . . . , σ

2
n. We have the

following proposition.

Proposition 2.14. Let gi ∼ N(0, σ2
i), for i = 1, . . . , n, and suppose that maxi σi ≤

σ. Then

Emax
i∈[n]
|gi| ≤ σ

√
2 ln(n) · (1 + o(1)).

Proof. We have

Emax
i∈[n]
|gi| =

∫ ∞
u=0

P
{

max
i∈[n]
|gi| > u

}
du

≤ A+
2√
2π

∫ ∞
u=A

n exp

(
−u2

2σ2

)
du

for any A ≥ σ (which we will choose shortly). In the above inequality, we have

used (2.9) (with the fact that A ≥ σ) and the fact that for every i, P {|gi| > u} =

2P {gi > u}. We may estimate the integral using (2.10), so

2√
2π

∫ ∞
u=A

exp

(
−u2

2σ2

)
du ≤ 2σ2

A
√

2π
exp

(
− A2

2σ2

)
.

46

Choosing A = σ
√

2 ln(n), we get

Emax
i∈[n]
|gi| ≤ σ

√
2 ln(n) +

σ√
π ln(n)

.

It is not hard to see that the mean width does not change when we take the convex

hull of T :

(2.12) w(T) = w(conv(T)).

For example, Proposition 2.14 implies that the mean width of the `1 ball Bn
1 =

{x ∈ Rn : ‖x‖1 ≤ 1} is

w(Bn
1) = w(conv({e1, e2, . . . , en})) = w({e1, e2, . . . , en}) = Θ

(√
ln(n)

)
.

What about other sets T? For several T , w(T) can be computed rather precisely.

For example, w(Bn
2) = Θ(

√
n). For others, it can be much trickier. We wave our

hands about a general method, called a chaining argument, below.

Let Xt = 〈g, t〉, so we want to understand E supt∈T Xt. A natural approach would

be a union bound: if Xt is small with probability 1− p, then supt∈T Xt is small with

probability 1−Np, where N is the size of (a suitable discretization of) T . However,

in many situations, p > 1/N is not small enough to allow for such a union bound.

We mustn’t give up hope: naive union bounds are often quite wasteful. If ‖s − t‖2

is small, then Xt and Xs are highly correlated. Treating Xt and Xs as completely

unrelated (or worse) when taking the union bound is leaving something on the table.

A first attempt to take advantage of this is illustrated in Figure 2.11. Suppose

that T is “clustered” (with respect to `2 distance) and write T = S1 ∪ S2 . . . ∪ S`.

For each i, pick a representative point ti ∈ Si. Consider events of two types. The

47

t1S1

t2

S2

t3 S3

t0

Figure 2.11: First attempt at a chaining argument. The set T can be partitioned into S1 ∪S2 ∪S3.
Suppose thatXt = 〈g, t〉 for t ∈ T , and we wish to argue that supt∈T |Xt| ≤M with high probability.
A naive attempt would be to apply a union bound to the bad events that |Xt| > M for all t ∈ T .
A slightly more refined approach is as follows. Consider the bad event that |Xt0 − Xt3 | > M/4.
This is very unlikely, much more unlikely than the event that |Xt0 | > M , because Xt0 − Xt3 =
〈g, t0 − t3〉 ∼ N(0, ‖t0 − t3‖22), and ‖t0 − t3‖2 is very small. Take a union bound over all events of
this type, as well as the three events that |Xti | > 3M/4 for i = 1, 2, 3. In the favorable case that
none of these events occur, we still have Xt ≤ M/4 + 3M/4 = M for all t ∈ T , but we have saved
a little bit in the union bound. The idea of a chaining argument is to iterate this process, and
recursively subdivide the sets Si.

first type of event is that Xti is small. The second type of event, for t ∈ Si, is that

|Xt −Xti | is small. Now this has made the situation somewhat better: if ` is small,

then we can handle a union bound over all events of the first type, because there

are not too many of them. On the other hand, there are lots of events of the second

type, but they happen with much higher probability because t and ti are “close.”

The idea behind a chaining argument is to iterate the first attempt described

above. Having made clusters S1, . . . , S`, we then cluster each of the clusters, and

so on. We will return to this argument in Chapter 4, where we will use it to show

that Reed-Solomon codes (with random evaluation points) are near-optimally list-

decodable with high probability. To put this argument in a little more context, we

mention here that such chaining arguments are quite general, and in the case of

Gaussian processes Xt, they in fact completely capture E supt∈T Xt. More precisely,

Talagrand’s majorizing measures theorem [104] shows that there is always a chaining

48

argument which can estimate E supt∈T Xt, up to constant factors.

2.4.3 Getting to Gaussians

Above, we have outlined many of the wonderful properties about Gaussian random

variables. However, this thesis is about coding theory over finite fields. The reader

may be wondering how Gaussians (which are real random variables) could possibly

come into the picture. There are several tricks we can use to take advantage of the

tools above, even working over finite fields. The basic idea is illustrated in Figure

2.12. We will outline a few specific tricks that we need below.

⇒
f(x) = 1√

2π
e−x

2/2

Figure 2.12: When life gives you lemons, turn them into Gaussians.

Our main tools are based on the fact that the sum of independent random variables

behaves a lot like Gaussians. The first version that we use is the Chernoff-Hoeffding

bound, which states that the tail behavior of the sum of independent random variables

is very much like that a Gaussian random variable.

Theorem 2.15. Let X1, . . . , Xm be m independent random variables such that for

every i ∈ [m], Xi ∈ [ai, bi], then for the random variable

S =
m∑
i=1

Xi,

and any positive v ≥ 0, we have

P {|S − E [S] | ≥ v} ≤ 2 exp

(
− 2v2∑m

i=1(bi − ai)2

)
.

49

A second way to introduce Gaussians is via symmetrization and comparison ar-

guments. These arguments simplify expressions like E
∥∥∥∑n

j=1(Xj − EXj)
∥∥∥ for inde-

pendent random variables Xj taking values in any Banach space. These arguments

are standard—see [80], Lemma 6.3 and Equation (4.8), respectively. For complete-

ness (and concreteness), we’ll state and prove versions when the Xi are real-valued

functions of some set T , and the norm is the L∞ norm.

Lemma 2.16. Let T ⊂ Rn, and let Xi : T → R for i = 1, . . . ,m be independent

random functions.

E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXt(t))

∣∣∣∣∣∣ ≤ 2E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ ,
where the ξi are independent Rademacher random variables (that is, ξi = +1 with

probability 1/2 and −1 with probability 1/2).

Proof. Let C ′ be an independent copy of C, and let X ′j(t) denote an independent copy

of Xj(t). Then,

EX sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXXj(t))

∣∣∣∣∣∣ = EX sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(
Xj(t)− ECXj(t)− EX′

[
X ′j(t)− EX′X ′j(t)

])∣∣∣∣∣∣
≤ EXEX′ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

(
Xj(t)−X ′j(t)

)∣∣∣∣∣∣
= EξEXEX′ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj(Xj(t)−X ′j(t))

∣∣∣∣∣∣
≤ 2EξEX sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ .
Above, we used Jensen’s inequality, independence, and the triangle inequality in the

second, third, and fourth lines, respectively.

Next, we replace the Rademacher random variables ξj with Gaussian random

variables gj using a comparison argument.

50

Lemma 2.17. Let T ⊂ Rn be any set, and fix Xj : T → R. Let ξ1, . . . , ξn be in-

dependent Rademacher random variables, and let g1, . . . , gn be independent standard

normal random variables. Then

Eξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ ≤
√
π

2
Eg sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ .
Proof. We have

Eg sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ = EgEξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj|gj|Xj(t)

∣∣∣∣∣∣
≥ Eξ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjEg|gj|Xj(t)

∣∣∣∣∣∣ by Jensen’s inequality

= Eξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj

√
2

π
Xj(t)

∣∣∣∣∣∣ .
Above, we used the fact that for a standard normal random variable gj, E|gj| =√

2/π.

Together, Lemma 2.16 and Lemma 2.17 imply that

E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXj(t))

∣∣∣∣∣∣ ≤ CE sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ ,
for some constant C. This will allow us to use our observations above about the

mean width. Indeed, the expression on the right hand side is the Gaussian mean

width of the set

{(X1(t), . . . , Xn(t)) : t ∈ T} ⊂ Rn.

When manipulating Gaussian processes of the form (2.11), the following contraction

principle will also come in handy.

Lemma 2.18 (Corollary 3.17 in [80]). Let T ⊂ Rn be a bounded set, and let g1, . . . , gn

be i.i.d. standard normal random variables. Let ϕ : R→ R be a contraction (that is,

51

|ϕ(x) − ϕ(y)| ≤ |x − y| for all x, y in R) with ϕ(0) = 0. Then for all non-negative

convex increasing functions F on R+,

EF

(
1

2
sup
t∈T

∣∣∣∣∣∑
i

giϕ(ti)

∣∣∣∣∣
)
≤ EF

(
2 sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣
)
.

In the case when F is the identity and ϕ(x) = |x|, this implies that

(2.13) E sup
t∈T

∣∣∣∣∣
n∑
i=1

gi|ti|

∣∣∣∣∣ ≤ 4E sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣ .
2.5 Overview of notation

We conclude this chapter with a brief overview of the notation. We reserve n

for the block length of a code, and k for the dimension of a (linear) code. We will

use R for the rate of a code. For x, y ∈ Fnq , δ(x, y) will denote relative Hamming

distance. For an integer r, [r] will denote the set [r] = {1, 2, . . . , r} ⊂ Z. Generally,

g will denote a Gaussian random variable, and ξ will denote a Rademacher random

variable. We will use E to denote the expectation operator, and P {·} for probabilities.

For x ∈ Rn, ‖x‖p will denote the `p norm of x:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, ‖x‖∞ = max
i
|xi|.

For vectors x, y in Rn or Fnq , 〈x, y〉 will denote the inner product

〈x, y〉 =
n∑
i=1

xiyi.

We care more about the dependence on key parameters (like n and ε as n grows

large and ε grows small) than on the constant factors. To that end, we will use C or

Ci to denote absolute constants, which do not depend on any of the parameters of

interest. We will use standard asymptotic notation to hide these constants. Precisely,

52

for functions f(x), g(x), we say f = O(g) as x → ∞ if there is some constant C

(independent of the inputs to f and g) so that f(x) ≤ Cg(x) for sufficiently large x.

Similarly, f = Ω(g) means there is a constant C so that f(x) ≥ Cg(x) for suffiently

large x, and f = Θ(g) means that both f = O(g) and f = Ω(g). The notation

f = o(g) (resp. f = ω(g)) means that for all constants C and for all x0, there is

some x ≥ x0 so that f(x) ≤ Cg(x) (resp. f(x) ≥ Cg(x)). We will also occasionally

use notation like f . g, f & g, and f h g to mean f = O(g), f = Ω(g), f = Θ(g),

respectively. Usually the asymptotics will be in terms of the block size n of a code,

which will tend to infinity. In the list-decoding setting, we consider asymptotics as

the error rate ρ = 1−1/q−ε as ε→ 0 and (sometimes) q →∞. In the local-decoding

setting we will consider what happens as the rate R→ 1. We will make it clear what

parameters we consider when each case arises.

CHAPTER 3

List Decoding: small alphabets

In our discussion in Chapter 2 of list decoding, we saw that random codes were

nearly optimally list-decodable (Theorem 2.4), and wondered if the same would hold

for random linear codes, not just for random codes. In this chapter, we return to

this question, in the case when q is small (that is, constant).

More precisely, Theorem 2.4 implies that a random q-ary code of rate Ω(ε2) is

list decodable up to radius 1 − 1/q − ε, with list sizes on the order of 1/ε2. When

we tried to extend the argument to random linear codes in Chapter 2, we ended up

with Proposition 2.6, which was unsatisfying: the list sizes were on the order of q1/ε2 .

This was basically the best we could do until recently. However, in 2013, Cheraghchi,

Guruswami, and Velingker [20] made substantial progress. They exploited a connec-

tion between list decodability of random linear codes and the Restricted Isometry

Property, a property of matrices which comes up in compressed sensing (an area of

signal processing). Using this connection, they showed that a random linear code

of rate Ω(ε2/ log3(1/ε)) achieves the list decoding properties above, with constant

probability. In this chapter, we improve on their result to show that in fact we may

take the rate to be Ω(ε2), which is optimal for constant q (up to constant factors),

and further that the success probability is 1 − o(1), rather than constant. As an

53

54

added benefit, our proof is quite simple.

Our argument extends beyond random linear codes. We will return to the full

generality of our approach in Chapter 5, but here we will state a corollary for ran-

domly punctured codes over small alphabet sizes. Using this generalization, we show

that randomly punctured Reed-Muller codes have the same list decoding properties

as the original codes, even when the rate is improved to a constant.

3.1 Introduction

We recall that a random linear code C ⊂ Fnq is a random subspace of Fnq . The

dimension of C, which we will denote by k, is just the dimension of the subspace,

and the rate is defined to be R = k/n. We are interested in the trade-off between

the rate R and the list-decoding radius ρ, for polynomial list-sizes L = poly(1/ε). In

particular, we would like to answer the following question:

Question: Do random linear codes have the same list-decoding radius

of random codes? More precisely, are random linear codes of rate Ω(ε2)

(probably) (ρ, L)-list-decodable for ρ = 1− 1/q − ε and L = 1/ε2?

As mentioned in the previous chapters, understanding the trade-offs in list decod-

ing is interesting not just for communication, but also for a wide array of applications

in complexity theory. List decodable codes can be used for hardness amplification of

boolean functions and for constructing hardcore predicates from one-way functions,

and they can be used to construct randomness extractors, expanders, and pseudo-

random generators [43, 102,108]. Beyond that, understanding the behavior of linear

codes, and in particular random linear codes, is also of interest: decoding a random

linear code is related to the problem of learning with errors, a fundamental problem

in both learning theory [15,30] and cryptography [91].

55

For most of these applications, the parameter regime of interest in when the error

rate ρ is very large. We saw in Section 2.2.1 that the largest we can hope for ρ to

be is 1 − 1/q. Thus, we study what happens when we back off just a little bit, to

ρ = 1−1/q−ε. For the work in this chapter, the computations will work out slightly

more nicely if instead we consider ρ = (1− 1/q) (1− ε), so we’ll do that.

3.1.1 Related work

Random linear codes are a very natural class of codes, and there have been many

works devoted to their list-decodability. Recall, we have already made such an at-

tempt in Chapter 2, Proposition 2.6. In order to set the stage, we first recall how we

arrived at that result.

In Chapter 2, in the proof of Theorem 2.4, we saw a proof that general random

codes are optimally list-decodable. The basic idea was that, for a set Λ of possible

messages and any received word z, there is only a very small probability that all of

the codewords corresponding to Λ are close to z. This probability is small enough

to allow for a union bound over the qn ·
(
N
L

)
choices for Λ and z. However, as

we pointed out after the proof of Theorem 2.4, this argument crucially exploits the

independence between the encodings of distinct messages. If we begin with a random

linear code, then codewords are no longer independent, and the above argument

fails. We managed to find away around this in Proposition 2.6: by considering only

the linearly independent messages in Λ, we made the argument work, but we got

exponentially large list sizes of qΩ(1/ε).

This exponential dependence on ε can actually be removed for a constant fraction

of errors, by a careful analysis of the dependence between codewords corresponding

to linearly dependent messages. When ρ is constant, rather than tending to 1− 1/q,

Guruswami, H̊astad, and Kopparty [44] show that a random linear code of rate

56

1−Hq(ρ)−Cρ,q/L is (ρ, L)-list decodable, where Hq(x) = x logq(q− 1)−x logq(x)−

(1 − x) logq(1 − x) is the q-ary entropy. This matches lower bounds of Rudra and

Guruswami-Narayanan [49, 95]. However, for ρ = (1− 1/q) (1− ε), the constant Cρ,q

depends exponentially on ε, and this result quickly degrades.

When ρ = (1− 1/q) (1− ε), Proposition 2.6, originally due to [116], gave the

best upper bounds for random linear codes with rate Ω(ε2) came until recently.

Closing the exponential gap in the list sizes between random linear codes and general

random codes was posed by [28]. Some progress was made in 2002 by Guruswami,

H̊astad, Sudan, and Zuckerman [45], who proved the existence of a binary linear

code with rate Ω(ε2) and list size O(1/ε2). However, this result only holds for

binary codes, and further the proof does not show that most linear codes have this

property. Cheraghchi, Guruswami, and Velingker (henceforth CGV) recently made

substantial progress on closing the gap between random linear codes and general

random codes [20]. Using a connection between list decodability of random linear

codes and the Restricted Isometry Property (RIP) from compressed sensing, they

proved the following theorem.

Theorem 3.1. (Theorem 12 in [20]) Let q be a prime power, and let ε, γ > 0 be

constant parameters. Then for all large enough integers n, a random linear code

C ⊆ Fnq of rate R, for some

R ≥ C
ε2

log(1/γ) log3(q/ε) log(q)

is ((1− 1/q) (1− ε) , O(1/ε2))-list decodable with probability at least 1− γ.

It is known that the rate cannot exceed O(ε2); this follows from the list decoding

capacity theorem, Theorem 2.4, and we stated it in Corollary 2.5. Further, the recent

lower bounds of Guruswami and Vadhan [61] and Blinovsky [13,14] show that the list

57

size L must be at least Ωq(1/ε
2). Thus, Theorem 3.1 has nearly optimal dependence

on ε, leaving a polylogarithmic gap.

3.1.2 Contributions of Chapter 3

The extra logarithmic factors in the result of CGV stem from the difficulty in

proving that the RIP is likely to hold for randomly subsampled Fourier matrices.

Removing these logarithmic factors is considered to be a difficult problem. In this

work, we show that while the RIP is a sufficient condition for list decoding, it may

not be necessary. We formulate a different sufficient condition for list decodability:

while the RIP is about controlling the `2 norm of Φx, for a matrix Φ and a sparse

vector x with ‖x‖2 = 1, our sufficient condition amounts to controlling the `1 norm of

Φx with the same conditions on x. Next, we show, using (easy) techniques from high

dimensional probability, that this condition does hold with overwhelming probability

for random linear codes, with no extra logarithmic dependence on ε. The punchline,

and our main result, is the following theorem.

Theorem 3.2. Let q be a prime power, and fix ε > 0. Then for all large enough

integers n, a random linear code C ⊆ Fnq of rate R, for

R ≥ C
ε2

log(q)

is ((1− 1/q) (1− ε) , O(1/ε2))-list decodable with probability at least 1− o(1). Above,

C is an absolute constant.

There are three differences between Theorem 3.1 and Theorem 3.2. First, the

dependence on ε in Theorem 3.2 is optimal. Second, the dependence on q is also

improved by several log factors, although it is still not quite correct—we will return

to this in Chapter 4. Finally, the success probability in Theorem 3.2 is 1 − o(1),

compared to a constant success probability in Theorem 3.1. As an additional benefit,

58

the proof on Theorem 3.2 is relatively short, while the proof of the RIP result in [20]

is quite difficult.

After proving Theorem 3.2, we then generalize our approach to apply to not-

necessarily-uniform ensembles of linear codes. We formulate a more general version

of Theorem 3.2, and give examples of codes to which it applies. Our main example is

linear codes C of rate Ω(ε2) whose generator matrix is chosen by randomly sampling

the columns of a generator matrix of a linear code C0 of nonconstant rate. Ignoring

details about repeating columns, C can be viewed as randomly punctured version of

C0. Random linear codes fit into this framework when C0 is taken to be RMq(1, k),

the q-ary Reed-Muller code of degree one and dimension k. We extend this in a

natural way by taking C0 = RM(r,m) to be any (binary) Reed-Muller code.1 It

has recently been shown [40,76] that RM(r,m) is list-decodable up to 1/2− ε, with

exponential but nontrivial list sizes. However, RM(r,m) is not a “good” code, in the

sense that it does not have constant rate. In the same spirit as our main result, we

show that when RM(r,m) is punctured down to rate O(ε2), with high probability

the resulting code is list decodable up to radius 1/2− ε with asymptotically no loss

in list size.

3.1.3 Overview of the approach

The CGV proof of Theorem 3.1 proceeds in three steps. The first step is to

prove an average-distance Johnson bound, a la Theorem 2.8. The second step is

a translation of the coding theory setting to a setting suitable for the RIP: a code

C is encoded as a matrix Φ whose columns correspond to codewords of C. This

encoding has the property that if Φ had the RIP with good parameters, then C is

1We saw Reed-Muller codes (Definition 2.12) earlier in the context of locally decodable codes. The parameter
settings we are interested in for list-decoding are a little different—we will return to these later—but the definition
is the same.

59

list decodable with similarly good parameters. Finally, the last and most technical

step is proving that the matrix Φ does indeed have the Restricted Isometry Property

with the desired parameters.

In this work, we use the second step from the CGV analysis (the encoding from

codes to matrices), but we bypass the other steps. While both the average case

Johnson bound and the improved RIP analysis for Fourier matrices are clearly of

independent interest, our analysis will be much simpler, and obtains the correct

dependence on ε.

3.1.4 Chapter organization

In Section 3.2, we fix some notation and recall some definitions, and also introduce

the simplex encoding map from the second step of the CGV analysis. In Section 3.3,

we state our sufficient condition and show that it implies list decoding, which is

straightforward. We take a detour in Section 3.3.1 to note that the sufficiency of our

condition in fact implies the sufficiency of the Restricted Isometry Property directly,

providing an alternative proof of Theorem 11 in [20]. In Section 3.4 we prove that

our sufficient condition holds, and conclude Theorem 3.2. Finally, in Section 3.5, we

discuss the generality of our result, and show that it applies to other ensembles of

linear codes.

3.2 A few more definitions

First, we recall some of the notation we’ll need. Throughout, we will be interested

in linear, q-ary, codes C with length n and size |C| = N . We use the notation

[q] = {0, . . . , q − 1}, and for a prime power q, Fq denotes the finite field with q

elements. When notationally convenient, we identify [q] with Fq; for our purposes,

this identification may be arbitrary. We let ω = e2πi/q denote the primitive qth root

60

of unity, and we use ΣL ⊂ {0, 1}N to denote the space of L-sparse binary vectors.

For two vectors x, y ∈ [q]n, the relative Hamming distance between them is

δ(x, y) =
1

n
|{i : xi 6= yi}| .

Throughout, Ci denotes numerical constants.

We recall Definition 2.3 of list-decodability: a code is list-decodable if any possible

received word z does not have too many codewords close to it. For convenience, we

repeat the definition here.

Definition 3.3. A code C ⊆ Fnq is (ρ, L)-list decodable if for all z ∈ Fnq ,

|{c ∈ C : δ(c, w) ≤ ρ}| ≤ L.

A code is linear if the set C of codewords is of the form C = {xG | x ∈ Fkq}, for

a k × n generator matrix G. We say that C is a random linear code of rate R if the

image of the generator matrix G is a random subspace of dimension k = Rn.

Below, it will be convenient to work with generator matrices G chosen uniformly

at random from Fk×nq , rather than with random linear subspaces of dimension k.

These are not the same, as there is a small but positive probability that G chosen

this way will not have full rank. However, we observe that

(3.1) P {rank(G) < k} =
k−1∏
r=0

(
1− qr−n

)
= 1− o(1).

Now suppose that C is a random linear code of rate R = k/n, and C ′ is a code with a

random k×n generator matrix G. Let E be the event that C is (ρ, L)-list decodable

for some ρ and L, and let E ′ be the corresponding event for C ′. By symmetry, we

61

have

P {E} = P {E ′ | rank(G) = k}

≥ P {E ′ ∧ rank(G) = k}

≥ 1− P
{
E ′
}
− P {rank(G) < k}

= P {E ′} − o(1),

where we have used (3.1) in the final line. Thus, to prove Theorem 3.2, it suffices

to show that C ′ is list decodable, and so going forward we will consider a code C

with a random k×n generator matrix. For notational convenience, we will also treat

C =
{
xG | x ∈ Fkq

}
as a multi-set, so that in particular we always have N = |C| = qk.

Because by the above analysis the parameter of interest is now k, not |C|, this will

be innocuous.

We make use the simplex encoding used in the CGV analysis, which maps the

code C to a complex matrix Φ.

Definition 3.4 (Simplex encoding from [20]).

Define a map ϕ : [q] → Cq−1 by ϕ(x)(α) = ωxα for α ∈ {1, . . . , q − 1}. We extend

this map to a map ϕ : [q]n → Cn(q−1) in the natural way by concatenation. Further,

we extend ϕ to act on sets C ⊂ [q]n: ϕ(C) is the n(q− 1)×N matrix whose columns

are ϕ(c) for c ∈ C.

Notice that when q = 2, the simplex encoding Φ = ϕ(C) is the same as the matrix

Φ in our proof of the average-radius, average-distance Johnson bound in Theorem 2.8.

Suppose that C is a q-ary linear code with random generator matrix G ∈ Fk×nq , as

above. Consider the n×N matrix M which has the codewords as columns. The rows

of this matrix are independent—each row corresponds to a column t of the random

generator matrix G. To sample a row r, we choose t ∈ Fkq uniformly at random

62

(with replacement), and let r = (〈t, x〉)x∈Fkq . Let T denote the random multiset with

elements in Fkq consisting of the draws t. To obtain Φ = ϕ(C), we replace each symbol

β of M with its simplex encoding ϕ(β), regarded as a column vector. Thus, each

row of Φ corresponds to a vector t ∈ T (a row of the original matrix M , or a column

of the generator matrix G), and an index α ∈ {1, . . . , q − 1} (a coordinate of the

simplex encoding). We denote this row by ft,α.

We use the following facts about the simplex encoding, also from [20]:

1. For x, y ∈ [q]n,

(3.2) 〈ϕ(x), ϕ(y)〉 = (q − 1)n− qδ(x, y)n.

2. If C is a linear code with a uniformly random generator matrix, the columns of

Φ are orthogonal in expectation. That is, for x, y ∈ Fnq , indexed by i, j ∈ Fkq

respectively, we have

Ed(x, y) =
1

n
E
∑
t∈T

1〈t,i〉6=〈t,j〉

= P {〈t, i〉 6= 〈t, j〉}

=

1− 1

q
i 6= j

0 i = j

Combined with (3.2), we have

E 〈ϕ(x), ϕ(y)〉 = (q − 1)n− qnEδ(x, y)

=

(q − 1)n x = y

0 x 6= y

This implies that

(3.3) E‖Φx‖2
2 =

∑
i,j∈[N]

xixjE 〈ϕ(ci), ϕ(cj)〉 = (q − 1)n‖x‖2.

63

3.3 Sufficient conditions for list decodability

Suppose that C is a linear code as above, and let Φ = ϕ(C) ∈ Cn(q−1)×N be

the complex matrix associated with C by the simplex encoding. We first translate

Definition 2.3 into a linear algebraic statement about Φ. The identity (3.2) implies

that C is (ρ, L− 1) list decodable if and only if for all w ∈ Fnq , for all sets Λ ⊂ C with

|Λ| = L, there is at least one codeword c ∈ Λ so that d(w, c) > ρ, that is, so that

〈ϕ(c), ϕ(w)〉 < (q − 1)n− qρn.

Translating the quantifiers into appropriate max’s and min’s, we observe

Observation 3.5. A code C ∈ [q]n is (ρ, L− 1)-list decodable if and only if

max
w∈[q]n

max
Λ⊂C,|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 < (q − 1)n− qρn.

When ρ = (1− 1/q) (1− ε), C is (ρ, L− 1)-list decodable if and only if

(3.4) max
w∈[q]n

max
Λ⊂C,|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 < (q − 1)nε.

We seek sufficient conditions for (3.4). Below is the one we will find useful:

Lemma 3.6. Let C ∈ Fnq be a q-ary linear code, and let Φ = ϕ(C) as above. Suppose

that

(3.5)
1

L
max
x∈ΣL

‖Φx‖1 < (q − 1)nε.

Then (3.4) holds, and hence C is ((1− 1/q) (1− ε) , L− 1)-list decodable.

Proof. We always have

min
c∈Λ
〈ϕ(w), ϕ(c)〉 ≤ 1

L

∑
c∈Λ

〈ϕ(w), ϕ(c)〉 ,

64

so

max
w∈[q]n

max
|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 ≤ 1

L
max
w∈[q]n

max
|Λ|=L

∑
c∈Λ

〈ϕ(w), ϕ(c)〉

=
1

L
max
w∈[q]n

max
x∈ΣL

ϕ(w)TΦx

≤ 1

L
max
w∈[q]n

‖ϕ(w)‖∞max
x∈ΣL

‖Φx‖1

=
1

L
max
x∈ΣL

‖Φx‖1.

Thus it suffices to bound the last line by (q − 1)nε.

Remark 3. There are two inequalities in the proof above. The first is passing from

list-decodability to average-radius list-decodability, which we mentioned in Chapter 2.

The second is the more serious inequality, and it is here that we give up on large q.

Indeed, for q = 2, the second inequality in the proof of Lemma 3.6 is an equality, and

nothing is lost. As q grows, this becomes more and more lossy.

3.3.1 Aside: the Restricted Isometry Property

A matrix A has the Restricted Isometry Property (RIP) if, for some constant δ

and sparsity level s,

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all s-sparse vectors x. The best constant δ = δ(A, k) is called the Restricted

Isometry Constant. The RIP is an important quantity in compressed sensing—an

area of signal processing—and much work has gone into understanding it. See [31]

for an excellent overview of compressed sensing, including the RIP.

CGV have shown that if 1√
n(q−1)

ϕ(C) has the RIP with appropriate parameters, C

is list decodable. The proof that the RIP is a sufficient condition follows, after some

65

computations, from an average-distance Johnson bound. While the average-distance

Johnson bound is interesting on its own, in this section we note that Lemma 3.6

implies the sufficiency of the RIP immediately. Indeed, by Cauchy-Schwarz,

1

L
max
x∈ΣL

‖Φx‖1 ≤
√
n(q − 1)

L
max
x∈ΣL

‖Φx‖2

≤
√
n(q − 1)

L

(√
n(q − 1)(1 + δ) max

x∈ΣL
‖x‖2

)
≤ n(q − 1)√

L
(1 + δ),

where Φ = ϕ(C), and δ = δ(Φ̃, L) is the restricted isometry constant for Φ̃ =

1√
n(q−1)

Φ and sparsity L. By Lemma 3.6, this implies that

δ + 1√
L

< ε

also implies (3.4), and hence ((1− 1/q) (1− ε) , L − 1)-list decodability. Setting δ =

1/2, we may conclude the following statement:

For any code C ⊂ [q]n, if 1√
n(q−1)

ϕ(C) has the RIP with contant 1/2 and

sparsity level L, then C is ((1− 1/q) (1− 3/2
√
L) , L− 1)-list decodable.

This precisely recovers Theorem 11 from [20].

3.4 Random linear codes are optimally list-decodable over small alpha-
bets

We wish to show that, when Φ = ϕ(C) for a random linear code C, (3.5) holds

with high probability. Thus, we need to bound maxx∈ΣL ‖Φx‖1. We write

(3.6) max
x∈ΣL

‖Φx‖1 ≤ max
x∈ΣL

E‖Φx‖1 + max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ,

and we will bound each term separately. First, we observe that E‖Φx‖1 is correct.

66

Lemma 3.7. Let C ⊂ Fnq be a linear q-ary code with a random generator matrix.

Let Φ = ϕ(C) as above. Then for any x ∈ ΣL,

1

L
E‖Φx‖1 ≤

n(q − 1)√
L

.

Proof. The proof is a straighforward consequence of (3.3). For any x ∈ ΣL, we have

E‖Φx‖1 ≤
√
n(q − 1)E‖Φx‖2

≤
√
n(q − 1)

(
E‖Φx‖2

2

)1/2

= n(q − 1)
√
L

using (3.3) and the fact that ‖x‖2 =
√
L.

Next, we control the deviation of ‖Φx‖1 from E‖Φx‖1, uniformly over x ∈ ΣL.

We do not require the vectors tj be drawn uniformly at random anymore, so long as

they are selected independently.

Lemma 3.8. Let C ⊂ Fnq be q-ary linear code, so that the columns t1, . . . , tn of the

generator matrix are independent. Then

1

L
Emax
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ≤ C0(q − 1)
√
n ln(N)

with probability 1− 1/poly(N), for an absolute constant C0.

Remark 4. As noted above, we do not make any assumptions on the distribution of

the vectors t1, . . . , tn, other than that they are chosen independently. In fact, we do

not even require the code to be linear—it is enough for the vectors vi = (c(i))c∈C ∈ [q]N

to be independent. However, as we only consider linear codes in this work, we stick

with our statement in order to keep the notation consistent.

67

As a warm-up to the proof, which involves a few too many symbols, consider first

the case when q = 2, and suppose that we wish to succeed with constant probability.

Then the rows ft of Φ are rows of the Hadamard matrix, chosen independently. By

standard symmetrization and comparison arguments (as we saw in Section 2.4, and

which we will make more precise below), it suffices to bound

1

L
Emax
x∈ΣL

∑
t∈T

gt 〈ft, x〉 =
1

L
Emax
x∈ΣL

〈g,Φx〉

≤ E max
x∈BN1

〈g,Φx〉

= E max
y∈ΦBN1

〈g, y〉 ,

where above g = (g1, g2, . . . , gn) is a vector of i.i.d. standard normal random vari-

ables, and BN
1 denotes the `1 ball in RN . The last line is the Gaussian mean width

of ΦBN
1 , which we discussed in Section 2.4 (Equation (2.11)). Fortunately, it is easy

to estimate the mean width of ΦBN
1 , which is a polytope contained in the convex

hull of ±ϕ(c) for c ∈ C, (that is, the columns of Φ and their opposites). As in (2.12),

taking convex hulls does not change the mean width, and so

E max
y∈ΦBN1

〈g, y〉 = Emax
c∈C
〈g, ϕ(c)〉

≤ 3
√

log |C|
√

E 〈g, ϕ(c)〉2

= 3‖c‖2

√
log(N)

= 3
√
n log(N)

which is what we wanted. Above, we used Fact 2.13 that 〈g, ϕ(c)〉 ∼ N(0, ‖ϕ(c)‖2
2),

and then Proposition 2.14.

For general q and failure probability o(1), there is slightly more notation, but the

proof idea is the same. We will need the following bound on moments of maxima of

Gaussian random variables.

68

Lemma 3.9. Let X1, . . . , XN be standard normal random variables (not necessarily

independent). Then (
Emax

i≤N
|Xi|p

)1/p

≤ C1N
1/p√p

for some absolute constant C1.

We remark that while Lemma 3.9 is clearly suboptimal for small p (compare to

the bound we got for p = 1 above), we will apply it with p ∼ ln(N) and this will

give us the desired results.

Proof. Let Z = maxi≤N |Xi|. Then

P {Z > s} ≤ N exp(−s2/2)

for s ≥ 1. Integrating,

E|Z|p =

∫
P {Zp > s} ds

=

∫
P {Zp > tp} ptp−1 dt

≤ 1 +N

∫ ∞
1

exp(−t2/2)ptp−1 dt

≤ 1 +Np2p/2Γ(p/2)

≤ 1 + (Np)
(
pp/2

)
.

Thus,

(E|Z|p)1/p ≤ C1N
1/p√p.

for some absolute constant C1.

Now we may prove the lemma.

Proof of Lemma 3.8. We recall the notation from the facts in Section 3.2: the rows

of Φ are ft,α for t ∈ T , where T is a random multiset of size n with elements chosen

independently from Fdq , and α ∈ F∗q.

69

To control the largest deviation of ‖Φx‖1 from its expectation, we will control

the pth moments of this deviation—eventually we will choose p ∼ ln(N). By a

symmetrization argument followed by a comparison principle (Lemma 6.3 and Equa-

tion (4.8), respectively, in [80]), for any p ≥ 1,

Emax
x∈ΣL

|‖Φx‖1 − E‖Φx‖1|p

= Emax
x∈ΣL

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

(| 〈ft,α, x〉 | − E| 〈ft,α, x〉 |)

∣∣∣∣∣∣
p

≤ C2ETEg max
x∈ΣL

∣∣∣∣∣∣
∑
t∈T

gt
∑
α∈F∗q

| 〈ft,α, x〉 |

∣∣∣∣∣∣
p

≤ C2ETEg max
x∈ΣL

∣∣∣∣∣(q − 1) max
α∈F∗q

∑
t∈T

gt| 〈ft,α, x〉 |

∣∣∣∣∣
p

≤ C24p(q − 1)pETEg max
x∈ΣL

max
α∈F∗q

∣∣∣∣∣∑
t∈T

gt 〈ft,α, x〉

∣∣∣∣∣
p

,(3.7)

where the gt are i.i.d. standard normal random variables, and we dropped the abso-

lute values at the cost of a factor of four by a contraction principle (Equation (2.13)).

Above, we used the independence of the vectors ft,α for a fixed α to apply the sym-

metrization.

For fixed α, let Φα denote Φ restricted to the rows ft,α that are indexed by α.

Similarly, for a column ϕ(c) of Φ, let ϕ(c)α denote the restriction of that column to

the rows indexed by α. Conditioning on T and fixing α ∈ F∗q, let

X(x, α) :=
∑
t∈T

gt 〈ft,α, x〉 = 〈g,Φαx〉 .

Let BN
1 denote the `1 ball in RN . Since ΣL ⊂ LBN

1 , we have

Φα(ΣL) ⊂ LΦα(BN
1) = conv{±Lϕ(c)α : c ∈ C}.

70

Thus, we have

Eg max
x∈ΣL

max
α∈F∗q
|X(x, α)|p

= Eg max
y∈ΦαΣL

max
α∈F∗q
| 〈g, y〉 |p

≤ Lp Eg max
±c∈C

max
α∈F∗q
| 〈g, ϕ(c)α〉 |p,(3.8)

using the fact that maxx∈conv(S) F (x) = maxx∈S F (x) for any convex function F .

Using Lemma 3.9, and the fact that 〈g, ϕ(c)α〉 is Gaussian with variance ‖ϕ(c)α‖2
2 =

n,

Lp Eg max
±c∈C

max
α∈F∗q
| 〈g, ϕ(c)α〉 |p

≤
(
C1 L

√
np(2N(q − 1))1/p

)p
.(3.9)

Together, (3.7), (3.8), and (3.9) imply

Emax
x∈ΣL

|‖Φx‖1 − E‖Φx‖1|p

≤ C24p(q − 1)pET
(
C1L
√
np(2N(q − 1))1/p

)p
≤
(

4C
1/p
2 C1(q − 1)(1+1/p)L

√
np(2N)1/p

)p
=: Q(p)p.

Finally, we set p = ln(N), so we have

Q(ln(N)) ≤ C3(q − 1)L
√
n ln(N),

for an another constant C3. Then Markov’s inequality implies

P
{

max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| > eQ(ln(N))

}
≤ 1

N
.

We conclude that with probability at least 1− o(1),

1

L
max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ≤ C0(q − 1)
√
n ln(N),

for C0 = eC3.

71

Now we may prove Theorem 3.2.

Proof of Theorem 3.2. Lemmas 3.7 and 3.8, along with (3.6), imply that

1

L
max
x∈ΣL

‖Φx‖1 ≤
n(q − 1)√

L
+ C0(q − 1)

√
n ln(N)

with probability 1− o(1). Thus, if

(3.10) (q − 1)

(
n√
L

+ C0

√
n ln(N)

)
< (q − 1)nε

holds, the condition (3.5) also holds with probability 1−o(1). Setting L = (2/ε)2 and

n =
4C2

0 ln(N)

ε2
satisfies (3.10), so Lemma 3.6 implies that C is ((1− 1/q) (1− ε) , 4/ε2)-

list decodable, with k equal to

logq(N) =
nε2

(2C0)2 ln(q)
.

With the remarks from Section 3.2 following the definition of random linear codes,

this concludes the proof.

3.5 Generalization to randomly punctured codes

In this section, we show that our approach above applies not just to random linear

codes, but to many ensembles. In our proof of Theorem 3.2, we required only that

the expectation of ‖Φx‖1 be about right, and that the columns of the generator

matrix were chosen independently, so that Lemma 3.8 implies concentration. The

fact that ‖Φx‖1 was about right followed from the condition (3.3), which required

that, within sets Λ ⊂ C of size L, the average pairwise distance is, in expectation,

large. We formalize this observation in the following lemma, which can be substituted

for Lemma 3.7.

72

Lemma 3.10. Let C = {c1, . . . , cN} ⊂ [q]n be a (not necessarily uniformly) random

code2 so that for any Λ ⊂ [N] with |Λ| = L,

(3.11)
1(
L
2

)E ∑
i<j∈Λ

δ(ci, cj) ≥ (1− 1/q) (1− η) .

Then for all x ∈ ΣL,

1

L
E‖ϕ(C)x‖1 ≤ n(q − 1)

√
1

L
+

2η
(
L
2

)
L2

.

Proof. Fix x ∈ ΣL, and let Λ denote the support of x. Then, using (3.2),

1

L
E‖ϕ(C)x‖1 ≤

√
n(q − 1)

L

(
E‖ϕ(C)‖2

2

)1/2

=

√
n(q − 1)

L

(
E
∑
i,j∈Λ

〈ϕ(ci), ϕ(cj)〉

)1/2

=

√
n(q − 1)

L

(
E
∑
i,j∈Λ

(q − 1)n− qn δ(ci, cj)

)1/2

≤
√
n(q − 1)

L

(
L(q − 1)n+ 2

(
L

2

)
n(q − 1)η

)1/2

= n(q − 1)

√
1

L
+

2η
(
L
2

)
L2

,

as claimed.

Thus, we may prove a statement analogous to Theorem 3.2 about any distribution

on linear codes whose generator matix has independent columns, which satisfies

(3.11). Where might we find such distributions? Notice that if the expectation is

removed, (3.11) is precisely what we needed for the average-distance Johnson bound

(Theorem 2.8 in this thesis, or Theorem 8 in [20]) to work, and so any code C0 to

which the average-distance Johnson bound applies attains (3.11). However, such a

2C need not be linear, so we switch the alphabet from Fq to [q] to emphasize that the field structure is not
important.

73

code C0 might have substantially suboptimal rate—we can improve the rate, and still

satisfy (3.11), by forming generator matrix for a new code C from a random set of

columns of the generator matrix of C0.

Definition 3.11. Fix a code C0 ⊂ [q]n0, and define an ensemble C = C(C0) ⊂ [q]n as

follows. To draw C, choose a random multiset T = {t1, . . . , tn} of size n by drawing

elements of [n0] independently with replacement. Then let

C = {(ct1 , . . . , ctn) : c ∈ C0} .

We will call C a random sampled version of C0, with block length n.

Remark 5 (Sampling vs. Puncturing). We note that the operation of randomly

sampling a code (a term we just made up) is very similar to that of randomly punc-

turing a code (a term with a long and illustrious history). The only difference is

that we sample with replacement, while a randomly punctured code can be viewed

as a code where the sampling is done without replacement. These two distributions

are basically the same in the parameter regimes we consider: as such we will (and

have) occasionally abuse(d) language and refer(ed) to the operation in Definition 3.11

“puncturing.”

We also notice that since all we need is independence of the symbols, the results

would follow if we retained each coordinate in [n0] independently with probability

n/n0. This would actually be a punctured code, except that the length would now be

a random variable, with expected length n.

Replacing Lemma 3.7 with Lemma 3.10 in the proof of Theorem 3.2 immediately

implies that randomly sampled codes are list decodable with high probability, if the

original code C has good average distance.

74

Corollary 3.12. Let C0 = {c1, . . . , cN} ⊂ Fn0
q be any linear code with

1(
L
2

) ∑
i<j∈Λ

δ(ci, cj) ≥
(

1− 1

q

)
(1− η)

for all sets Λ ⊂ [N] of size L. Set

ε2 := 4

(
1

L
+ η

(
1− 1

L

))
.

There is some R = Ω(ε2) so that if C = C(C0) is as in Definition 3.11 with rate R,

then C is ((1− 1/q) (1− ε) , L− 1)-list decodable with probability 1− o(1).

The average-distance Johnson bound implies that if C is as in the statement of

Corollary 3.12, then the original code C0 is ((1− 1/q) (1− ε) , O(1/ε2))-list decodable,

for ε as above. Thus, Corollary 3.12 implies that C has the same list decodability

properties as C0, but perhaps a much better rate.

As a example of this construction, consider the family of (binary) degree r Reed-

Muller codes, RM(r,m) ⊂ Fm2 . RM(r,m) can be viewed as the set of degree r,

m-variate polynomials over F2. It is easily checked that RM(r,m) is a linear code of

dimension k = 1 +
(
m
1

)
+
(
m
2

)
+ · · · +

(
m
r

)
and minimum relative distance 2−r. The

random sampling C of RM(r,m) is a natural class of codes: decoding C is equivalent

to learning a degree r polynomial over Fm2 from random samples, in the presence of

(worst case) noise.

We cannot hope for short list sizes in this case, but we can hope for nontrivial

ones. Kaufman, Lovett, and Porat [76] have given tight asymptotic bounds on the

list sizes for RM(r,m) for all radii, and in particular have shown that RM(r,m) is

list decodable up to 1/2− ε with list sizes on the order of εΘr(mr−1). As |RM(r,m)| is

exponential in mr, this is a nontrivial bound. We will show that randomly sampled

Reed-Muller codes, with rate Ω(ε2), have basically the same list decoding parameters

as their un-punctured progenitors.

75

Proposition 3.13. Let C = C(RM(r,m)) be as in Definition 3.11, with rate O(ε2).

Then C is (1/2(1− ε), L(ε))-list decodable with probability 1− o(1), where

L(ε) =

(
1

ε

)Or(mr−1)

,

where Or hides constants depending only on r.

Proof. We aim to find η so that (3.11) is satisfied. As usual, let N = |RM(r,m)|.

We borrow a computation from the proof of Lemma 6 in [20]. Let A = A(ε) be

the number of codewords of RM(r,m) with relative weight at most 1/2(1 − ε2). Let

L = A/ε2 and choose a set Λ ⊂ [N] of size L. By linearity, for each codeword ci

with i ∈ Λ, there are at most A − 1 codewords cj within 1/2(1 − ε2) of ci, out of

L − 1 choices for cj. Thus, the sum of the relative distances over j 6= i is at most

(L− A) · 1/2(1− ε2). This implies

1(
L
2

) ∑
i<j∈Λ

δ(ci, cj) ≥
L− A
L− 1

(
1

2
(1− ε2)

)

=

(
1− A− 1

L− 1

)(
1

2
(1− ε2)

)
≥ 1

2

(
1− ε2 − A− 1

L− 1

)
=

1

2

(
1−O(ε2)

)
,

using the choice L = A/ε2 in the final line. Thus, in Corollary 3.12, we may take

η = O(ε2).

We conclude that the randomly punctured code C(RM(r,m)) of rate O(ε2) is

(1/2(1− ε), L− 1) list decodable, with list size L on the order of A/ε2. It remains to

estimate A = A(ε). It is shown in [76] that

A = A(ε) =

(
1

ε

)Θr(mr−1)

,

which finishes the proof.

76

Another popular ensemble of linear codes is the Wozencraft ensemble [74, 109],

which encodes an element x ∈ Fqk as (x, α1x, α2x, . . . , αrx) for uniformly random

αj ∈ F2k . In this case, the symbols within a codeword are not all independent, so

Lemma 3.10 does not apply. However, the techniques above extend immediately to

imply that a code from this ensemble (with r ∼ k/ε2) is ((1− 1/q) (1− ε) , O(1/ε))-

list decodable with rate ε2/k. (Previously, the only known result about the list

decodability of the Wozencraft ensemble follows from the Johnson bound, which

implies a rate on the order of ε4 for the same radius, so for very small ε this is

better). It would be interesting to see if this argument could be modified to obtain

constant rate for the Wozencraft ensemble, or for other ensembles of linear codes.

3.6 Conclusion

In this chapter, we have shown that a random linear code of rate Ω
(

ε2

log(q)

)
is

((1− 1/q) (1− ε) , O(1/ε))-list decodable with probability 1 − o(1). Our result im-

proves the results of [20] in three ways. First, we remove the logarithmic dependence

on ε in the rate, achieving the optimal dependence on ε. Second, it improves the

dependence on q in the rate, from 1/ log4(q) to 1/ log(q). Finally, we show that list

decodability holds with probability 1 − o(1), rather than with constant probability.

As an added benefit, the proof is relatively short and straightforward. For constant

alphabet sizes q, this closes a question asked by [28]: Random linear codes are (up

to constant factors, with high probability) optimally list-decodable. For q > 2, this

work is the first to establish even existence of such codes.

We also extended our argument to randomly punctured codes (modulo Remark

5). As an example, we considered Reed-Muller codes, and showed that they retain

their combinatorial list decoding properties with high probability when randomly

77

punctured down to constant rate.

However, some questions remain. While these results are optimal for constant q,

they are not correct if q is allowed to grow with ε. We recall Corollary 2.5, which

gave upper bounds on the rate R when ρ = (1− 1/q) (1− ε): we had

R ≤ 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

In particular, our dependence on q in Theorem 3.2 is off by a factor of q. Additionally,

when q is large, say, larger than 1/ε2, then our quadratic dependence on ε is not

correct. In Chapter 4, we will address these questions, and see how to extend the

argument in this chapter to large alphabet sizes.

Acknowledgements

The results in this chapter first appeared as [111]. I thank Atri Rudra and Martin

Strauss for very helpful conversations when working on this.

CHAPTER 4

List Decoding: large alphabets and Reed-Solomon codes

When we last left our heroes (Alice and Bob) in Chapter 3, they had been able

(combinatorially speaking) to communicate using a random linear code, provided

the alphabet size was constant. However, the chapter ended on a cliff-hanger of

sorts. If Alice and Bob want to communicate over a larger alphabet, say, q � 1/ε2,

the results of Chapter 3 wouldn’t help much. There are several reasons to consider

larger alphabet sizes. In addition to the complexity-theoretic applications mentioned

in Chapter 2, our primary motivation for the work in the current chapter was the

Reed-Solomon codes of Definition 2.1. Because the symbols of Reed-Solomon codes

are indexed by the evaluation points α1, . . . , αn ∈ Fq, we must have q ≥ n to define

them; in particular, q cannot be constant if we are going to allow n→∞. As a final

piece of motivation, we like to resolve cliff-hangers.

4.1 Introduction

We will continue our exploration of list decoding, this time over larger alphabet

sizes. We recall that our goal is to understand list-decodability in the parameter

regime where ρ = 1− 1/q− ε is very large. The optimal rate to correct ρ fraction of

78

79

errors is given by Theorem 2.4 and Corollary 2.5:

R∗(q, ε) := 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

As we mentioned in Chapter 2, for complexity applications it is often enough to

design a code with rate Ω(R∗(q, ε)) with the same error correction capability.

In Chapter 3, we got the right dependence on ε, when q was constant. In this

chapter, we will also try to get the right dependence on q. That is, we seek to

correct a ρ = 1 − 1/q − ε fraction of errors, with rate Ω(R∗(q, ε)). The quest for

such codes comes in two flavors: one can ask about the list decodability of a specific

family of codes, or one can ask for the most general conditions which guarantee

list decodability. The results in this chapter address open problems of both flavors,

discussed more below.

Specific families of codes with near-optimal rate. There has been significant

effort directed at designing efficiently-decodable codes with optimal rate. This has

led to the study of very specific families of list-decodable codes. The first non-trivial

progress towards this goal was due to work of Sudan [101] and Guruswami-Sudan [57]

who showed that Reed-Solomon (RS) codes 1 can be list decoded efficiently from 1−ε

fraction of errors with rate ε2. This matches the Johnson bound (Theorem 2.7).

The work of Guruswami and Sudan held the record for seven years, during

which time RS codes enjoyed the best known tradeoff between rate and fraction

of correctable errors. However, Parvaresh and Vardy showed that a variant of

Reed-Solomon codes can beat the Johnson bound [87]. This was then improved

by Guruswami and Rudra who achieved the optimal rate of ε with Folded Reed-

Solomon codes [51]. Since then this optimal rate result has been achieved with other

1Recall Definition 2.1: an RS code encodes a low-degree univariate polynomial f over Fq as a list of evaluations
(f(α1), . . . , f(αn)) for a predetermined set of n ≤ q evaluation points in Fq .

80

codes: derivative codes [62], multiplicity codes [78], folded Algebraic Geometric (AG)

codes [63] as well as subcodes of RS and AG codes [64]. There has also been a lot of

recent work on reducing the runtime and list size for folded RS codes [23, 48,62].

Even though many of the recent developments on list decoding are based on

Reed-Solomon codes, there has been no non-trivial progress on the list decodability

of Reed-Solomon codes themselves since the work of Guruswami-Sudan. This is true

even if we only ask for combinatorial (not necessarily efficient) decoding guarantees,

and even for rates only slightly beyond the Johnson bound. The question of whether

or not Reed-Solomon codes can be list decoded beyond the Johnson bound was our

main motivation for this work:

Question 4.1. Are there Reed-Solomon codes which can be combinatorially list de-

coded from a 1− ε fraction of errors, with rate ω (ε2)?

This question, which has been well-studied, is interesting for several reasons. First,

Reed-Solomon codes themselves are arguably the most well-studied codes in the

literature. Secondly, there are complexity applications where one needs to be able

to list decode Reed-Solomon codes in particular: e.g. the average-case hardness of

the permanent [17]. Finally, the Johnson bound is a natural barrier and it is an

interesting to ask whether it can be overcome by natural codes.2

There have been some indications that Reed-Solomon codes might not be list

decodable beyond the Johnson bound. Guruswami and Rudra [50] showed that for

a generalization of list decoding called list recovery, the Johnson bound indeed gives

the correct answer for RS codes. Further, Ben-Sasson et al. [12] showed that for

RS code where the evaluation set is all of Fq, the correct answer is close to the

2We note that it is easy to come up with codes that have artificially small distance and hence can beat the
Johnson bound; it is also known that Reed-Muller codes (Definition 2.12) can be list decoded beyond the Johnson
bound [39,40].

81

Johnson bound. In particular, they show that to correct 1 − ε fraction of errors

with polynomial list sizes, the RS code with Fq as its evaluation points cannot have

rate better than ε2−γ for any constant γ > 0. However, this result leaves open the

possibility that one could choose the evaluation points carefully and obtain an RS

code which can be combinatorially list decoded significantly beyond the Johnson

bound.

Resolving the above possibility has been open since [56]: see e.g. [43, 94, 108] for

explicit formulations of this question.

Large families of codes with near-optimal rate. While the work on list decodability

of specific families of codes have typically also been accompanied with list decoding

algorithms, results on larger classes of codes are typically combinatorial. Two classic

results along these lines are (i) that random (linear) codes have optimal rate with

high probability, and (ii) the fact, following from the Johnson bound, that any code

with distance 1− 1/q − ε2 can be list decoded from 1− 1/q − ε fraction of errors.

Results of the second type are attractive since they guarantee list decodability for

any code, deterministically, as long as the code has large enough distance. Unfortu-

nately, it is known that the Johnson bound is tight for some codes [55], and so we

cannot obtain a stronger form of (ii). However, one can hope for a result of the first

type for list decodability, based on distance. More specifically, it is plausible that

most puncturings of a code with good distance can beat the Johnson bound.

In Chapter 3, we obtained such a result for constant q. In particular, we showed

that any code with distance 1− 1/q − ε2 has many puncturings of rate Ω(ε2/ log q)

that are list decodable from a 1− 1/q − ε fraction of errors. This rate is optimal up

to constant factors when q is small, but is far from the optimal bound of R∗(q, ε) for

82

larger values of q, even when q depends only on ε and is otherwise constant. This

leads to our second motivating question, the cliff-hanger at the end of Chapter 3:

Question 4.2. Is it true that any code with distance 1−1/q−ε2 has many puncturings

of rate Ω̃(R∗(q, ε)) that can list decode from 1− 1/q − ε fraction of errors?

4.1.1 Contributions of Chapter 4

We answer Questions 4.1 and 4.2 in the affirmative. Our main result addresses

Question 4.2. We show that random puncturings of any code with distance 1−1/q−ε2

can list decode from 1− 1/q − ε fraction of errors with rate

min {ε, qε2}
log(q) log5(1/ε)

.

A corollary of this is that random linear codes are list decodable from 1 − 1/q − ε

fraction of errors with the same rate. This improves upon our answers of Chapter 3

for q & log5(1/ε), and is optimal up to polylogarithmic factors.

Our main result also implies a positive answer to Question 4.1, and we show that

there do exist RS codes that are list decodable beyond the Johnson bound. In fact,

most sets of evaluation points will work: we show that if an appropriate number of

evaluation points are chosen at random, then with constant probability the resulting

RS code is list decodable from 1− ε fraction of errors with rate

ε

log(q) log5(1/ε)
.

This beats the Johnson bound for

ε ≤ Õ

(
1

log(q)

)
.

Finally, we prove some new average-distance, average-radius Johnson bounds,

which we will need for our main results. We saw such a bound for q = 2 in Theorem

83

2.8, and here we extend it to large alphabets. The proofs of these bounds are very

similar to some of the proofs of the standard Johnson bound, and the fact that these

proofs extend to the average case appears to be folklore. However, it’s probably

worth writing them down, so we’ll do that in this chapter.

Relationship to impossibility results. Before we get into the details, we digress a

bit to explain why our result on Reed-Solomon codes does not contradict the known

impossibility results on this question. The lower bound of [50] works for list recovery

but does not apply to our results about list decoding.3 The lower bound of [12]

does work for list decoding, but critically needs the set of evaluation points to be

all of Fq (or more precisely the evaluation set should contain particularly structured

subsets Fq). Since we pick the evaluation points at random, this property is no

longer satisfied. Finally, Cheng and Wan [19] showed that efficiently solving the list

decoding problem for RS codes from 1 − ε fraction of errors with rate Ω(ε) would

imply an efficient algorithm to solve the discrete log problem. However, this result

does not rule out the list size being small (which is what our results imply), just that

computing the list quickly is unlikely.

4.1.2 Chapter Organization

Our main technical result addresses Question 4.2 and states that a randomly punc-

tured code4 will retain the list decoding properties of the original code as long as the

original code has good distance. Our results for RS codes (answering Question 4.1)

and random linear codes follow by starting from the RS code evaluated on all of Fq

and the q-ary Hadamard code, respectively.

3Our results can be extended to the list recovery setting, and the resulting parameters obey the lower bound
of [50].

4Technically, our construction is slightly different than randomly punctured codes: see Remark 6.

84

We’ll go over notation and review definitions in Section 4.2. In Section 4.3 we’ll

prove some average-radius, average-distance Johnson bounds which we will need.

Preliminaries over with, we give a more detailed technical overview of our approach

in Section 4.4. In Section 4.5 we state our main result, Theorem 4.6, about randomly

punctured codes, and we apply it to Reed-Solomon codes and random linear codes.

The remainder of the paper, Sections 4.6 and 4.7, are devoted to the proof of Theorem

4.6. Finally, we conclude with Section 4.8.

4.2 Yet more definitions

Motivated by Reed-Solomon codes, we consider random ensembles of linear codes

C ⊂ Fnq , where the field size q is large. We recall that a code C ⊆ Fnq is linear if it

forms a subspace of Fnq . Equivalently, C =
{
xTG : x ∈ Fkq

}
for a generator matrix

G ∈ Fk×nq . We will study the list decodability of these codes, up to “large” error

rates 1 − 1/q − ε, which is 1 − Θ(ε) when q & 1/ε. We recall Definition 2.3 and

say that a code C ⊆ Fnq is (ρ, L)-list-decodable if for all z ∈ Fnq , the number of

codewords c ∈ C with δ(z, c) ≤ ρ is at most L. As usual, δ(z, c) denotes the relative

Hamming distance between z and c. We will actually study a slightly stronger notion

of list decodability, which we waved our hands about in Chapters 2 and 3 and which

was explicitly studied in [49]. We say that a code C ⊂ Fnq is (ρ, L)-average-radius

list-decodable if for all z ∈ Fnq and all sets Λ of L + 1 codewords c ∈ C, the average

distance between elements of Λ and z is at least ρ. Notice that standard list decoding

can be written in this language with the average replaced by a maximum.

As before, we are interested in the trade-off between ε, L, and the rate of the

code C. The rate of a linear code C is defined to be dim(C)/n, where dim(C) refers to

the dimension of C as a subspace of Fnq . As in the small-alphabet case in Chapter 3,

85

We’ll consider ensembles of linear codes where the generator vectors are independent;

this includes random linear codes and Reed Solomon codes with random evaluation

points. More precisely, a distribution on the matrices G induces a distribution on

linear codes. We say that such a distribution on linear codes C has independent

symbols if the columns of the generator matrix G are selected independently.

We will be especially interested in codes with randomly sampled symbols, where a

new code (with a shorter block length) is created from an old code by including a few

symbols of the codeword at random. We recall Definition 3.11 of a randomly sampled

code: suppose that C0 ⊂ Fn0
q is a q-ary code with block length n0. Form a new code

C ⊂ Fnq from C0 by choosing n symbols uniformly at random, with replacement

from [n0]. That is, choose a multiset {t1, . . . , tn} ⊂ [n0] by choosing each ij ∈ [n0]

independently, uniformly. Then for each x ∈ Fkq , define C(x) by

C(x) = (C0(x)t1 , C0(x)t2 , . . . , C0(x)tn).

Notice that randomly sampled codes have independent symbols by definition.

Remark 6 (Sampling vs. Puncturing). We make the same remark here as we did

in Chapter 3, Remark 5. That is, the operation of randomly sampling a code is very

similar to that of randomly puncturing a code. The only difference is that we sample

with replacement, while a randomly punctured code can be viewed as a code where

the sampling is done without replacement. Our method of sampling is convenient

for our analysis because of the independence. However, for the parameter regimes we

will work in, collisions are overwhelmingly unlikely, and the distribution on randomly

sampled codes is indeed very similar to that of randomly punctured codes.

A few more bits of notation: as in Chapter 3, the size of C will be |C| = N , and

throughout we will consider linear codes C ⊆ Fnq of block length n and message length

86

k, with generator matrices G ∈ Fk×nq . For a message x ∈ Fkq , we will write c = C(x)

for the encoding C(x) = xTG. We will be interested in subsets Λ ⊆ Fkq of size L (the

list size), which we will identify, when convenient, with the corresponding subset of

C.

For x, y ∈ Fnq , let agr(x, y) = n(1− δ(x, y)) be the number of symbols in which x

and y agree. For a vector v = (v1, v2, . . . , vn) ∈ Rn and a set S ⊆ [n], we will use vS

to denote the restriction of v to the coordinates indexed by S. We use log to denote

the logarithm base 2, and ln to denote the natural log.

4.3 Average-radius Johnson bounds

Now, we’ll prove two average-radius, average-distance variants on the Johnson

bound. These two statements are based on two proofs of of the (standard) Johnson

bound, found in [59] and [84], respectively. It appears to be folklore that such

statements are true (and follow from the proofs in the two works cited above), but

we include them below for completeness.

Theorem 4.3. Let C : Fkq → Fnq be any code. Then for all Λ ⊂ Fkq of size L and for

all z ∈ Fnq , and for all ε ∈ (0, 1),

∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y)).

Remark 7. As with Theorem 2.8, a “normal” Johnson-bound (a la Theorem 2.7) fol-

lows by bounding δ(C(x), C(y)) ≥ δ(C) for all x, y, and by bounding
∑

x∈Λ agr(C(x), z) ≥

Lminx∈Λ agr(C(x), z).

Proof. Fix a z ∈ Fnq . The crux of the proof is to map the relevant vectors over

Fnq to vectors in Rnq as follows. Given a vector u ∈ Fnq , let u′ ∈ Rnq denote the

87

concatenation

u′ = (eu1 , eu2 , . . . , eun),

where eui ∈ {0, 1}q is the vector which is one in the ui’th index and zero elsewhere.

(Above, we fix an arbitrary mapping of Fq to [q]). In particular, for an x ∈ Λ, we

will use C ′(x) to denote the mapping of the codeword C(x). Finally let v ∈ Rnq be

v = ε · z′ +
(

1− ε
q

)
· 1,

where 1 denotes the all-ones vector.

Given the definitions above, it can be verified that the identities below hold for

every x 6= y ∈ Λ:

(4.1) 〈C ′(x), v〉 = ε · agr(C(x), z) +
(1− ε)n

q
,

(4.2) 〈v, v〉 =
n

q
+ ε2

(
1− 1

q

)
n,

(4.3) 〈C ′(x), C ′(y)〉 = n(1− δ(C(x), C(y)),

and

(4.4) 〈C ′(x), C ′(x)〉 = n.

88

Now consider the following sequence of relations:

0 ≤

〈∑
x∈Λ

(C ′(x)− v) ,
∑
x∈Λ

(C ′(x)− v)

〉(4.5)

=
∑
x,y∈Λ

〈C ′(x), C ′(y)〉 −
∑
x,y∈Λ

(〈C ′(x), v〉+ 〈C ′(y), v〉) +
∑
x,y∈Λ

〈v, v〉

=
∑
x∈Λ

〈C ′(x), C ′(x)〉+
∑
x 6=y∈Λ

〈C ′(x), C ′(y)〉 − 2L ·
∑
x∈Λ

〈C ′(x), v〉+
∑
x,y∈Λ

〈v, v〉

= nL+ n
∑
x 6=y∈Λ

(1− δ(C(x), C(y)))

(4.6)

− 2L ·
∑
x∈Λ

(
ε · agr(C(x), z) +

(1− ε)n
q

)
+ L2 ·

(
n

q
+ ε2

(
1− 1

q

)
n

)
= nL2 ·

(
1 +

1

q
+ ε2

(
1− 1

q

)
− 2(1− ε)

q

)
− n

∑
x 6=y∈Λ

δ(C(x), C(y))− 2Lε ·
∑
x∈Λ

agr(C(x), z)

= nL2 ·
(

(1 + ε2)

(
1− 1

q

)
+

2ε

q

)
− n

∑
x 6=y∈Λ

δ(C(x), C(y))− 2Lε ·
∑
x∈Λ

agr(C(x), z)

(4.7)

In the above, (4.5) follows from the fact that the norm of a vector is always positive

and (4.6) follows from (4.1), (4.2), (4.3) and (4.4).

Equation (4.7) then implies that

2Lε ·
∑
x∈Λ

agr(C(x), z) ≤ nL2 ·
(

(1 + ε2)

(
1− 1

q

)
+

2ε

q

)
− n

∑
x6=y∈Λ

δ(C(x), C(y)),

which implies the statement after rearranging terms.

Next, we prove a second average-radius variant of the Johnson bound, which has

been copied almost verbatim from [84].

Theorem 4.4. Let C : Fkq → Fnq be any code. Then for all Λ ⊂ Fkq of size L and for

89

all z ∈ Fnq ,

∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

 .

Proof. For every j ∈ [n], define

aj = | {x ∈ Λ|C(x)j = zj} |.

Note that

(4.8)
n∑
j=1

aj =
∑
x∈Λ

agr(C(x), z),

and

n∑
j=1

(
aj
2

)
=

1

2
·

n∑
j=1

∑
x 6=y∈Λ

1C(x)j=zj1C(y)j=zj

≤
n∑
j=1

∑
x6=y∈Λ

1C(x)j=C(y)j

=
1

2
·
∑
x 6=y∈Λ

agr(C(x), C(y))

=
L(L− 1)n

2
− n

2

∑
x 6=y∈Λ

δ(C(x), C(y)).(4.9)

Next, note that by the Cauchy-Schwartz inequality,

n∑
j=1

(
ai
2

)
=

1

2

(
n∑
j=1

a2
j −

n∑
j=1

aj

)
≥ 1

2n

(
n∑
j=1

aj

)2

− 1

2

n∑
j=1

aj.

Combining the above with (4.8) and (4.9) implies that(∑
x∈Λ

agr(C(x), z)

)2

−n·
∑
x∈Λ

agr(C(x), z)−

(
n2L(L− 1)− n2

∑
x 6=y∈Λ

δ(C(x), C(y))

)
≤ 0,

which in turn implies (by the fact that the sum we care about lies in between the

two roots of the quadratic equation) that

∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

 ,

which completes the proof.

90

4.4 Overview of approach

In this section, we give a technical overview of our argument, and point out

where it differs from previous approaches, and in particular from the approach in

Chapter 3. The main difficulty that arose in Chapter 3, and again arises here, is

that the codewords are not independent. When the codewords are independent, as

with a general random code, we saw in the proof of Theorem 2.4 that optimal list-

decodability follows from a simple union bound: for a given set of messages Λ and

a received word z, the probability that z lies close to the encodings of all messages

in Λ is extremely small. However, without independence, this probability is not so

small, and this approach fails.

In Proposition 2.6, we got around this by considering only the linearly independent

messages in Λ, but at the cost of exponentially large list sizes. The exponential

dependence on ε can actually be removed for a constant fraction of errors, by a careful

analysis of the dependence between codewords corresponding to linearly dependent

messages [44]. However, such techniques do not seem to work in the large-error

regime that we consider. Instead, in Chapter 3, we avoided analyzing the dependence

between the codewords by (impicitly) doing the union bound in a smarter way. By

considering the geometry of these sets Λ, we used a mean-width argument to take

advantage of the fact that the well-behaved-ness of the all of the Λ followed from

the well-behaved-ness of a few extreme cases. We could indeed afford a union bound

over these few cases.

However, the argument in Chapter 3 did not scale well with q; we pointed out

in Remark 3 where we gave up on large alphabet sizes. Handling large alphabets is

necessary for the application to Reed-Solomon codes. In this chapter, we’ll follow

91

the same basic idea of Chapter 3—avoiding the naive union bound using techniques

from high-dimensional probability—but we will handle large alphabets. Instead of

a simple mean-width argument, we’ll have to get our hands a little dirtier and do

a chaining argument, like we outlined in Chapter 2, Section 2.4. We outline the

approach in slightly more detail below.

As before, our proof actually establishes average-radius list decodability, which

has the advantage of linearizing the problem. However, instead of using the simplex

embedding to formulate a sufficient condition, like we did in of Section 3.3 in the

previous chapter, we will be a little more direct. After some rearranging (which is

encapsulated in Proposition 4.5), it turns out that it’s sufficient to control

∑
c∈Λ

agr(z, c) =
∑
c∈Λ

n∑
j=1

1cj=zj

uniformly over all Λ ⊆ C and all z ∈ Fnq .

We will show that this is true in expectation; that is, we will bound

(4.10) Emax
Λ,z

∑
c∈Λ

n∑
j=1

1cj=zj .

The proof proceeds in two steps. The first (more straightforward) step is to argue

that if the expectation and the maximum over Λ were reversed in (4.10), then we

would have the control we need. To that end, we introduce a parameter

E = max
|Λ|=L

Emax
z∈Fnq

∑
c∈Λ

n∑
j=1

1cj=zj .

It is not hard to see that the received word z which maximizes the agreement is the

one which, for each j, agrees with the plurality of the cj for c ∈ Λ. That is,

max
z∈Fnq

∑
c∈Λ

n∑
j=1

1cj=zj =
n∑
j=1

max
α∈Fq
|{c ∈ Λ : cj = α}| =:

n∑
j=1

pluralityj (Λ) .

Thus, to control E , we must understand the expected pluralities. For our applica-

tions, this follows from standard Johnson-bound type arguments.

92

Of course, it is generally not okay to switch expectations and maxima; we must

also argue that the quantity inside the maximum does not deviate too much from

its mean in the worst case. This is the second and more complicated step of our

argument. We must control the deviation

(4.11)
n∑
j=1

(
pluralityj(Λ)− Epluralityj(Λ)

)
uniformly over all Λ of size L. By the assumption of independent symbols (that is,

independently chosen evaluation points for the Reed-Solomon code, or independent

generator vectors for random linear codes), each summand in (4.11) is independent.

Sums of independent random variables tend to be reasonably concentrated, but,

as pointed out above, because the codewords are not independent there is no reason

that the pluralities themselves need to be particularly well-concentrated. Thus, we

cannot handle a union bound over all Λ ⊆ C of size L. Instead, we use a chaining

argument to deal with the union bound; the idea is that if the set Λ is close to

the set Λ′ (say they overlap significantly), then we should not have to union bound

over both of them as though they were unrelated. Our main theorem, Theorem 4.6,

bounds the deviation (4.11), and thus bounds (4.10) in terms of E . We control E

in the Corollaries 4.7 and 4.8, and then explain the consequences for Reed-Solomon

codes and random linear codes in Sections 4.5.2 and 4.5.3.

We prove Theorem 4.6 in Section 4.6. To carry out the intuition above, we first

pass to the language of Gaussian processes, as per Figure 2.12. Through some stan-

dard tricks from high dimensional probability (the symmetrization and comparison

arguments that we saw in Section 2.4), it will suffice to instead bound the Gaussian

process

(4.12) X(Λ) =
n∑
j=1

gjpluralityj(Λ).

93

uniformly over all Λ of size L, where the gj are independent standard normal random

variables.

Now, we condition on C, considering only the randomness over the Gaussians. We

control this process in Theorem 4.9, the proof of which is contained in Section 4.7.

The process (4.12) induces a metric on the space of sets Λ: Λ is close to Λ′ if the

vectors of their pluralities are close, in `2 distance. Indeed, if Λ is close to Λ′ in this

sense, then the corresponding increment X(Λ)−X(Λ′) is small with high probability.

Now the situation is more in line with that discussed in Section 2.4 in Chapter 2,

and our intuition about “wasting” the union bound on close-together Λ and Λ′ can

be made precise. In particular, Dudley’s theorem [80, 104] bounds the supremum of

the process in terms of the size of ε-nets with respect to this distance.

Thus, our proof of Theorem 4.9 boils down to constructing nets on the space of

Λ’s. In fact, our nets are quite simple—smaller nets consist of all of the sets of size

L/2t, for t = 1, . . . , log(L). However, showing that the width of these nets is small

is trickier. Our argument actually uses the structure of the chaining argument that

is at the heart of the proof of Dudley’s theorem: instead of arguing that the width

of the net is small, we argue that each successive net cannot have points that are

too far from the previous net, and thus build the “chain” step-by-step. With some

work, one can abtract out a distance argument and apply Dudley’s theorem as a

black box. However, at the point that we are explicitly constructing the chains,

it actually takes a bit longer to package things up for Dudley’s theorem than to

write out the chaining argument directly. To this end, (and to keep the dissertation

self-contained), we unwrap Dudley’s theorem in Section 4.7.2, as part of our proof.

We construct and control our nets in Lemma 4.10, which we prove in Section 4.7.3.

Briefly, the idea is as follows. In order to show that a set Λ of size L/2t is “close” to

94

some set Λ′ of size L/2t+1, we use the probabilistic method. We choose a set Λ′ ⊆ Λ

at random, and argue that in expectation (after some appropriate normalization),

the two are “close.” Thus, the desired Λ′ exists. However, the expected distance of

Λ to Λ′ in fact depends on the quantity

Qt = max
|Λ|=L/2t

n∑
j=1

pluralityj(Λ).

For t = 0, this is the quantity that we were trying to control in the first place in

(4.10). Carrying this quantity through our argument, we are able to solve for it at

the end and obtain our bound.

Controlling Qt for t > 0 requires a bit of delicacy. In particular, as defined

above Qlog(L) is deterministically equal to n, which it turns out is too large for our

applications. To deal with this, we actually chain over not just the Λ, but also the

set of the symbols j ∈ [n] that we consider.5 In fact, if we did not do this trick, we

would recover (with some extra logarithmic factors) our results from Chapter 3.

Our argument has a similar flavor to some existing arguments in other domains,

for example [92, 93], where a quantity analogous to Q0 arises, and where analogous

nets will work; indeed, those works are a major inspiration for our approach. There

are a few main differences between that work and what we do here, although it is

possible that one could re-frame our argument to mimic those. The first difference is

that our proof of distance is structurally quite different; we actually prove distance

step-by-step, by constructing the chains. The second difference is the trick described

above, where we chain over the symbols j ∈ [n] as well as the sets Λ. This is the

part that makes the argument obnoxious to repackage for Dudley’s theorem. One

informal way to describe this trick is to say that we use qualitatively different chains

for different sets Λ; how the set I ⊂ [n] of evaluation points changes over the chain

5In particular we lied a little bit above, and (4.12) is not actually the Gaussian process we end up analyzing.

95

depends on the initial set Λ. In this sense, our argument smells a bit more like the

“generic chaining” of [104].

4.5 Main theorem

In this section, we state our main technical result, Theorem 4.6. To begin, we first

give a sufficient condition for list decodability, which is weaker than the sufficient

condition we gave in Chapter 3. This sufficient condition is known as average-radius

list-decodability. It’s been implicitly studied for a long time (indeed, we used it

implicitly in Chapter 3, and this is the condition that our average-radius Johnson

bounds of Section 4.3 show), and it was first explicitly studied in [49]. All of our

results in this chapter will actually show average-radius list decodability, and the

following proposition shows that this will imply the standard notion of list decod-

ability.

Proposition 4.5. Suppose that

max
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) < nL

(
ε+

1

q

)
.

Then C is (1− 1/q − ε, L− 1)-list decodable.

Proof. By definition, C is (1− 1/q− ε, L− 1)-list decodable if for any z ∈ Fnq and any

set Λ ⊂ Fkq of size L, there is at least one message x ∈ Λ so that agr(C(x), z) is at

most n (ε+ 1/q), that is, if

max
z∈Fnq

max
|Λ|=L

min
x∈Λ

agr(C(x), z) < n

(
ε+

1

q

)
.

Since the average is always larger than the minimum, it suffices for

max
z∈Fnq

max
|Λ|=L

∑
x∈Λ

agr(C(x), z) < Ln

(
ε+

1

q

)
,

as claimed.

96

Our main theorem gives conditions on ensembles of linear codes under which

Emaxz,Λ
∑

x∈Λ agr(C(x), z) is bounded. Thus, it gives conditions under which Propo-

sition 4.5 holds.

Theorem 4.6. Fix ε > 0. Let C be a random linear code with independent symbols.

Let

E = max
Λ⊂Fkq ,|Λ|=L

ECmax
z∈Fkq

(∑
x∈Λ

agr(C(x), z)

)
.

Then

ECmax
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY ,

where

Y = C0L log(N) log5(L)

for an absolute constant C0.

Together with Proposition 4.5, Theorem 4.6 implies results about the list decod-

ability of random codes with independent symbols, which we present next.

Remark 8. We have chosen the statement of the theorem which gives the best bounds

for Reed-Solomon codes, where q � L is a reasonable parameter regime. An inspec-

tion of the proof shows that we may replace one log(L) factor with min{log(L), log(q)}.

Before we prove Theorem 4.6, we derive some consequences of it for randomly

sampled codes, in terms of the distance of the original code. We work out two

corollaries to this effect in Section 4.5.1 below. Our motivating examples are Reed-

Solomon codes with random evaluation points, and random linear codes, which both

fit within this framework. Indeed, Reed-Solomon codes with random evaluation

points are obtained by sampling symbols from the Reed-Solomon code with block

length n = q, and a random linear code is a randomly sampled Hadamard code.

97

We’ll discuss the implications and optimality for the two motivating examples below

in Sections 4.5.2 and 4.5.3 respectively.

4.5.1 Codes with good distance have abundant optimally-list-decodable puncturings

We’ll prove two statements. The first holds for all q, but only yields the correct

list size when q is small. The second holds for q & 1/ε2, and gives an improved

list size in this regime. As discussed below in Section 4.5.3, our results are nearly

optimal in both regimes. The proofs of both results follow from the average-radius

Johnson bounds of Section 4.3; they amount to controlling the quantity E . We state

both results first, and then prove them.

The following result is intended for use with small q.

Corollary 4.7 (Small q). Let C0 be a linear code over Fq with distance 1 − 1
q
− ε2

2
.

Suppose that

n ≥ C0 log(N) log5(L)

min {ε, qε2}
,

and choose C to be a randomly sampled version of C0, of block length n. Then, with

constant probability over the choice of C, the code C is (1−1/q−ε′, 2/ε2)-list decodable,

where ε′ =
(
2 +
√

2
)
ε.

Corollary 4.7 holds for all values of q, but the list size L & ε−2 is suboptimal when

q & 1/ε. To that end, we include the following corollary, which holds when q & 1/ε2

and attains the “correct” list size.6

Corollary 4.8 (Large q). Suppose that q > 1/ε2, and that ε is sufficiently small.

Let C0 be a linear code over Fq with distance 1− ε2. Let

n ≥ 2C0 log(N) log5(L)

ε
,

6As discussed below, we do not know good lower bounds on list sizes for large q; by “correct” we mean matching
the performance of a general random code.

98

and choose C to be a randomly sampled version of C0, of block length n. Then, with

constant probability over the choice of C, the code C is (1 − ε′, 1/ε)-list decodable,

where ε′ = 5ε.

Remark 9 (Average-radius list decodability). We remark that the proofs of both

Corollaries 4.7 and 4.8 go through Proposition 4.5, and thus actually show average-

radius list decodability, not just list decodability. In particular, the applications to

both Reed-Solomon codes and random linear codes hold under this stronger notion as

well.

We prove Corollaries 4.7 and 4.8 below.

Proof of Corollary 4.7. Suppose that L ≥ 2/ε2 and that the distance of C0 is at least

1− 1/q − ε2/2. We need an average-radius version of the Johnson bound, which we

provide in Theorem 4.3 in Appendix 4.3. By Theorem 4.3, for any z ∈ Fnq and for

all Λ ⊂ Fkq of size L,

(4.13)
∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y)).

By Theorem 4.6, it suffices to control E . Since the right hand side above does not

depend on z,

E = max
|Λ|=L

ECmax
z∈Fkq

∑
x∈Λ

agr(C(x), z)

≤ max
|Λ|=L

ECmax
z∈Fkq

(
nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y))

)

= max
|Λ|=L

(
nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

ECδ(C(x), C(y))

)

≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
−
n(L− 1)

(
1− 1

q
− ε2

2

)
2ε

(4.14)

99

=
nL

q
+
nLε

2

(
3

2
− 1

q

)
+
n
(

1− 1
q
− ε2

2

)
2ε

≤ nL

q
+

3nLε

4
+
n

2ε

≤ nL

(
1

q
+ ε

)
.(4.15)

In the above, (4.14) follows from the fact that the original code had (relative)

distance 1−1/q− ε2/2 and that in the construction of C from C0, pairwise Hamming

distances are preserved in expectation. Finally, (4.15) follows from the assumption

that L ≥ 2/ε2.

Recall from the statement of Theorem 4.6 that we have defined

Y = C0L log(N) log5(L),

so the assumption on n implies that

Y ≤ nLmin{ε, qε2}.

Suppose that qε ≤ 1, so that Y ≤ nLqε2. Plugging this along with (4.15) into

Theorem 4.6, we obtain

ECmax
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ nL

(
1

q
+ ε

)
+ nLqε2 + nL

√
qε2

(
1

q
+ ε

)
= nL

(
1

q
+ ε

(
1 + qε+

√
1 + qε

))
≤ nL

(
1

q
+ ε

(
2 +
√

2
))

,

using the assumption that qε ≤ 1 in the final line. Thus, Proposition 4.5 implies

that C is
(
1− 1/q − (2 +

√
2)ε, 2/ε2

)
-list-decodable.

100

On the other hand, suppose that qε ≥ 1, so that Y ≤ nLε. Then following the

same outline, we have

ECmax
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ nL

(
1

q
+ ε

)
+ nLε+ nL

√
ε

(
1

q
+ ε

)
= nL

(
1

q
+ ε

(
2 +

√
1

qε
+ 1

))
≤ nL

(
1

q
+ ε

(
2 +
√

2
))

,

using the assumption that qε ≥ 1 in the final line. Thus, in this case as well, C is(
1− 1/q − (2 +

√
2)ε, 2/ε2

)
-list-decodable.

This completes the proof of Corollary 4.7.

Proof of Corollary 4.8. As with Corollary 4.7, we need an average-radius version of

the Johnson bound. In this case, we follow a proof of the Johnson bound from [84],

which gives a better dependence on ε in the list size when q is large. For completeness,

our average-radius version of the proof is given in Appendix 4.3, Theorem 4.4.

We proceed with the proof of Corollary 4.8. By Theorem 4.4, for any z ∈ Fnq and

for all Λ ⊂ Fkq of size L,

(4.16)
∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x6=y∈Λ

δ(C(x), C(y))

 .

By Theorem 4.6, it suffices to control E . Since the right hand side above does not

depend on z,

E = max
|Λ|=L

ECmax
z∈Fkq

∑
x∈Λ

agr(C(x), z)

≤ max
|Λ|=L

ECmax
z∈Fkq

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

(4.17)

101

≤ max
|Λ|=L

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

ECδ(C(x), C(y))

(4.18)

≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

(1− ε2)

(4.19)

≤ 1

2

(
n+

√
n2 + 4n2L(L− 1)ε2

)
<

1

2

(
n+
√
n2 + 4n2L2ε2

)
≤ 2nLε.(4.20)

In the above, (4.17) follows from (4.16). (4.18) follows from Jensen’s inequality.

(4.19) follows from the fact that the original code had (relative) distance 1− ε2 and

that in the construction of C from C0, pairwise Hamming distances are preserved in

expectation. Finally, (4.20) follows from the assumption that L ≥ 1/ε.

Now, Theorem 4.6 implies that

ECmax
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ 2 (E + Y)

≤ 2 (2nLε+ Y)

≤ 5nLε

where as before

Y = C0L log(N) log5(L)

and where we used the choice of n in the final line. Choose ε′ = 5ε, so that whenever

5ε > 1/q, Proposition 4.5 applies and completes the proof. Because we have chosen

ε > 1/
√
q (which is necessary in order for C0 to have distance 1− ε2), the condition

that 5ε > 1/q holds for sufficiently small ε.

102

Next, we’ll show how to apply Corollaries 4.7 and 4.8 to our headline results,

about Reed-Solomon codes and random linear codes.

4.5.2 Most Reed-Solomon codes are list-decodable beyond the Johnson bound

Our results imply that a Reed-Solomon code with random evaluation points is,

with high probability, list decodable beyond the Johnson bound. Recall Definition

2.1 of Reed-Solomon codes: For q ≥ n, and an integer k, and let {α1, . . . , αn} ⊆ Fq be

a list of “evaluation points.” The corresponding Reed-Solomon code C ⊂ Fnq encodes

a polynomial (message) f ∈ Fq[x] of degree at most k − 1 as

C(f) = (f(α1), f(α2), . . . , f(αn)) ∈ Fnq .

Note that there are qk polynomials of degree at most k − 1, and thus |C| = qk.

For Reed-Solomon codes, we are often interested in the parameter regime when

q ≥ n is quite large. In particular, below we will be especially interested in the

regime when q � 1/ε2, and so we will use Corollary 4.8 for this application. To

apply Corollary 4.8, let C0 be the Reed-Solomon code of block length q (that is,

every point in Fq is evaluated), and choose the n evaluation points (αi)
n
i=1 for C

independently from Fq. We will choose the block length n so that

n .
log(N) log5(1/ε)

ε
.

As we discussed in Chapter 2, the generator matrix for C will have full rank, and so

the rate of C is at least

(4.21) R &
ε

log(q) log5(1/ε)
.

Before we investigate the result of Corollary 4.8, let us pause to observe what the

Johnson bound predicts for C. The distance of C is exactly 1−(k−1)/n. Indeed, any

103

two polynomials of degree k−1 agree on at most k−1 points, and this is attained by,

say, the zero polynomial and any polynomial with k distinct roots in {α1, . . . , αn}.

Thus, letting ε = (k − 1)/n, the Johnson bound predicts that C has rate ε, distance

1− ε, and is list decodable up to 1−O(
√
ε), with polynomial list sizes.

Now, we compare this to the result of Corollary 4.8. The distance of C0 is 1 −

(k − 1)/q, so as long as q & k/ε2, we may apply Corollary 4.8. Then, Corollary 4.8

implies that the resulting Reed-Solomon code C has rate

Ω

(
ε

log(q) log5(1/ε)

)
,

distance 1− ε, and is list decodable up to radius 1− 5ε, with list sizes at most 1/ε.

In particular, the tolerable error rate may be as large as 1 − O(ε), rather than

1−O(
√
ε), and the rate suffers only by logarithmic factors.

4.5.3 Near-optimal bounds for random linear codes over large alphabets

In addition to implying that most Reed-Solomon codes are list decodable beyond

the Johnson bound, Corollaries 4.7 and 4.8 provide the best known bounds on random

linear codes over large fields; this improves on the results of Chapter 3 for large q.

Our new results are tight up to constant factors.

Suppose that C0 is the Hadamard code over Fq of dimension k; that is, the gen-

erator matrix of C0 ∈ Fk×qkq has all the elements of Fkq as its columns. The relative

distance of C0 is 1− 1/q, and so we may apply the corollaries with any ε > 0 that we

choose.

To this end, fix ε > 0, and let C be a randomly sampled version of C0, of block

length

n =
2C0 log(qk) log5(1/ε)

ε
.

104

Best known
rate for random

linear codes

Upper bound
on rate

Best known list
size for random

linear codes

Lower bound
on list size

ε2

log(q) ,

Chapter 3

qε2

log(q) log5(1/ε)

Cor. 4.7

ε

log(q) log5(1/ε)

Cors. 4.7, 4.8

qε2

log(q)

1−Hq
(

1− 1
q
− ε

)

ε

1

ε2

[20],
Chapter 3,

and Cor. 4.7

1

ε

Cor. 4.8

1

q5ε2

[61]

q = log5(1/ε)

q = 1/ε

q = 1/ε2

Regime

Figure 4.1: The state of affairs for q-ary random linear codes. Above, the list decoding radius is
1− 1/q − ε, and we have suppressed constant factors.

It is not hard to see that the generator matrix of C will have full rank with high

probability, and so the rate of C will be at least

(4.22) R = k/n =
min {ε, qε2}

2C0 log(q) log5(1/ε)
.

By Corollary 4.7, C is list decodable up to error radius 1− 1/q−O(ε), with list sizes

at most 2/ε2. When q & 1/ε2, Corollary 4.8 applies, and we get the same result with

an improved list size of 1/ε.

We compare these results to known results on random linear codes in Figure 4.1.

The best known results on the list decodability of random linear codes, from [111],

state that a random linear code of rate on the order of ε2/ log(q) is (1 − 1/q −

ε,O(1/ε2))-list decodable. This is optimal (up to constant factors) for constant q,

but it is suboptimal for large q. In particular, the bound on the rate is surpassed by

our bound (4.22) when q & log5(1/ε).

105

When the error rate is 1− 1/q− ε, the optimal information rate for list decodable

codes is given by the list decoding capacity theorem, which implies that we must have

R ≤ 1−Hq(1− 1/q− ε). This expression behaves differently for different parameter

regimes; in particular, when q ≤ 1/ε and ε is sufficiently small, we have

1−Hq(1− 1/q − ε) =
qε2

2 log(q)(1− 1/q)
+O(ε3),

while when q ≥ 2Ω(1/ε), the optimal rate is linear in ε. For the first of these two

regimes—and indeed whenever q ≤ 1/poly(ε)—our bound (4.22) is optimal up to

polylogarithmic factors in 1/ε. In the second regime, when q is exponentially large,

our bound slips by an additional factor of log(q).

For the q ≤ 1/ε2 regime, our list size of 1/ε2 matches existing results, and when

q is constant it matches the lower bounds of [61]. For q ≥ 1/ε2, our list size of 1/ε is

the best known. There is a large gap between the lower bound of [61] and our upper

bounds for large q. However, there is evidence that the most of discrepancy is due

to the difficulty of obtaining lower bounds on list sizes. Indeed, a (general) random

code of rate 1 − Hq(1 − 1/q − ε) − 1/L is list-decodable with list size L, implying

that L = O(1/ε) is the correct answer for q & 1/ε. Thus, while our bound seems

like it is probably weak for q super-constant but smaller than 1/ε2, it seems correct

for q & 1/ε2.

4.6 Proof of Theorem 4.6: reduction to Gaussian processes

In this section, we prove Theorem 4.6. For the reader’s convenience, we restate

the theorem here.

Theorem (Theorem 4.6, restated). Fix ε > 0. Let C be a random linear code with

106

independent symbols. Let

E = max
Λ⊂Fkq ,|Λ|=L

ECmax
z∈Fkq

(∑
x∈Λ

agr(C(x), z)

)
.

Then

ECmax
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(c(x), z) ≤ E + Y +
√
EY ,

where

Y = C0L log(N) log5(L)

for an absolute constant C0.

To begin, we introduce some notation.

Notation 4.1. For a set Λ ⊆ Fkq , let plCj denote the (fractional) plurality of index

j ∈ [n]:

plCj (Λ) =
1

|Λ|
max
α∈Fq
|{x ∈ Λ : C(x)j = α}| .

For a set I ⊆ [n], let

plCI (Λ) ∈ [0, 1]n

be the the vector (plCj (Λ))nj=1 restricted to the coordinates in I, with the remaining

coordinates set to zero. When C is fixed, we will drop the superscript for notational

clarity.

Rephrasing the goal in terms of our new notation, the quantity we wish to bound

is

(4.23) ECmax
z∈Fnq

max
|Λ|=L

∑
x∈Λ

agr(C(x), z) = L · EC max
|Λ|=L

∑
j∈[n]

plCj (Λ).

Moving the expectation inside the maximum recovers the quantity

E = L · max
|Λ|=L

EC
∑
j∈[n]

plCj (Λ),

107

which appears in the statement of Theorem 4.6. Since Theorem 4.6 outsources a

bound on E to the user (in our case, Corollaries 4.7 and 4.8), we seek to control the

worst deviation

F := L · EC max
|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ)

∣∣∣∣∣∣
= L · EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

(
plCj (Λ)− EC plCj (Λ)

)∣∣∣∣∣∣ .(4.24)

Indeed, let

Q = Q(C) = max
|Λ|=L

∑
j∈[n]

plCj (Λ),

so that L · ECQ is the quantity in (4.23). Then,

ECQ = EC max
|Λ|=L

∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ) + EC
∑
j∈[n]

plCj (Λ)

≤ EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ)

∣∣∣∣∣∣+ max
|Λ|=L

EC
∑
j∈[n]

plCj (Λ)

=
1

L
(F + E) ,(4.25)

so getting a handle on F would be enough. With that in mind, we return our

attention to (4.24). By the assumption of independent symbols, the summands

in (4.24) are independent. By a standard symmetrization argument followed by a

comparison argument (Lemmas 2.16 and 2.17, respectively), we may bound

1

L
F = EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

(
plCj (Λ)− EC plCj (Λ)

)∣∣∣∣∣∣(4.26)

≤
√

2π ECEg max
|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

gj plCj (Λ)

∣∣∣∣∣∣(4.27)

Above, gj are independent standard normal random variables.

Let

(4.28) S0 = {[n]} ×
{

Λ ⊂ Fkq : |Λ| = L
}
,

108

so that we wish to control

ECEg max
(I,Λ)∈S0

∣∣∣∣∣∑
j∈I

gj plCj (Λ)

∣∣∣∣∣ .
At this stage, maximimizing I over the one-element collection {[n]} may seem like a

silly use of notation, but we will use the flexibility as the argument progresses.

Condition on the choice of C until further notice, and consider only the randomness

over the Gaussian random vector g = (g1, . . . , gn). In particular, this fixes Q = Q(C),

and also fixes the function plC. In order to take advantage of (4.26), we will study

the Gaussian process

(4.29) X(I,Λ) =
∑
j∈I

gj plCj (Λ)

indexed by (I,Λ) ∈ S0. The bulk of the proof of Theorem 4.6 is the following

theorem, which controls the expected supremum of X(I,Λ), in terms of Q.

Theorem 4.9. Condition on the choice of C. Then

Eg max
(I,Λ)∈S0

|X(I,Λ)| ≤ C3

√
Q log(N) log5(L)

for some constant C3.

We will prove Theorem 4.9 in Section 4.7. First, let us show how it implies

Theorem 4.6. By (4.26), and applying Theorem 4.9, we have

F ≤
√

2π LECEg max
(I,Λ)∈S0

∣∣∣∣∣∑
j∈I

gj plCj (z,Λ)

∣∣∣∣∣
≤ C3

√
2π LEC

[√
Q log(N) log5(L)

]
≤ C3

√
2π L

√
ECQ log(N) log5(L)

Using the fact (4.25) that ECQ ≤ 1
L

(E + F),

F ≤ C3

√
2π

√
L (E + F) log(N) log5(L)

=:
√
Y (E + F),

109

where

Y := C2
32πL log(N) log5(L).

Solving for F , this implies that

F ≤ Y +
√
Y 2 + 4Y E
2

≤ Y +
√
Y E .

Then, from (4.25) and the definition of Q (recall that L · ECQ is the quantity in

(4.23)),

ECmax
I,Λ

∑
x∈Λ

agr(C(x), z) = LECQ

≤ E + F

≤ E + Y +
√
Y E ,

as claimed. This proves Theorem 4.6.

4.7 Proof of Theorem 4.9: controlling a Gaussian process

In this section, we prove Theorem 4.9. Recall that the goal was to control the

Gaussian process (4.29) given by

X(I,Λ) =
∑
j∈I

gj plCj (Λ).

Recall also that we are conditioning on the choice of C. Because of this, for notational

convenience, we will drop the superscript on plC, and additionally identify Λ ⊂ Fkq

with the corresponding set of codewords {C(x) : x ∈ Λ} ⊂ C. That is, for this

section, we will imagine that Λ ⊂ C is a set of codewords.

Notation 4.2. When the code C is fixed (in particular, for the entirety of Section

4.7), we will identify Λ ⊂ Fkq with Λ ⊂ C, given by

Λ← {C(x) : x ∈ Λ} .

110

To control the Gaussian process (4.29), we will use a chaining argument. We

outlined the basic intuition of such an argument in Section 2.4. More precisely, we

will define a series of nets, St ⊂ 2[n] × 2C and write, for any (I0,Λ0) ∈ S0,

|X(I0,Λ0)| ≤

(
tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))|

)
+ |X(πtmax(I0,Λ0))| ,

where πt(I0,Λ0) ∈ St and tmax ∈ Z will shortly be determined, π0(I0,Λ0) = (I0,Λ0).

Then we will argue that each step in this “chain” (that is, each summand in the first

term) is small with high probability, and union bound over all possible chains.

For Gaussian processes, such chaining arguments come in standard packages, for

example Dudley’s integral inequality [80], or Talagrand’s generic chaining inequal-

ity [104]. We choose to unpack the argument for two reasons. The first and main

reason is that our choice of nets is informed by the structure of the chaining argu-

ment. Thus, it is clearer to define the nets in the context of the complete argument.

The second reason is to make the exposition self-contained.

We remark that, due to the nature of our argument, it is convenient for us to start

with the large nets indexed by small t, and the small nets indexed by large t; this is

in contrast with convention.

4.7.1 Defining the nets

We will define nets St, for each t recursively. Begin by defining S0 as in (4.28),

and let π0 : S0 → S0 be the identity map. Given St, we will define St+1, as well as

the maps πt+1 : S0 → St+1. Our maps πt will satisfy the guarantees of the following

lemma.

Lemma 4.10. Fix a parameter η = 1/ log(L), and suppose c0 < L < N/2 is suffi-

ciently large, for some constant c0. Let

(4.30) tmax =
log(L)− 2 log(1/η)− 2

log(2/(1− η))
.

111

Then there is a sequence of maps

πt : S0 → 2[n] × 2C

for t = 0, . . . , tmax so that π0 is the identity map and so that the following hold.

1. For all (I0,Λ0) ∈ S0, and for all t = 0, . . . , tmax, the pair (It,Λt) = πt(I0,Λ0)

obeys

(4.31)
∑
j∈It

plj(Λt) ≤ Qt := (1 + η)tQ.

and

(4.32)

(
1− η

2

)t
L ≤ |Λt| ≤

(
1 + η

2

)t
L.

2. For all (I0,Λ0) ∈ S0, and for all t = 0, . . . , tmax − 1, the pair (It+1,Λt+1) =

πt+1(I0,Λ0) obeys

(4.33)
∥∥plIt(Λt)− plIt+1

(Λt+1)
∥∥

2
≤
C4

√
Qt log(L)

η
√
|Λt|

for some constant C4.

3. For all t = 0, . . . , tmax, define

St := {πt(I0,Λ0) : (I0,Λ0) ∈ S0} .

Then, for t ≥ 1, the size of the net St satisfies

(4.34) |St| ≤ C6

(
N

eL/2t

)(
N

eL/2t−1

)
,

for some constant C6, while |S0| =
(
N
L

)
.

112

4.7.2 Proof of Theorem 4.9 from Lemma 4.10: a chaining argument

Before we prove Lemma 4.10, we will show how to use it to prove Theorem 4.9.

This part of the proof follows the standard proof of Dudley’s theorem [80], and can

be skipped by the reader already familiar with it.7 As outlined above, we will use

a chaining argument to control the Gaussian process in Theorem 4.9. We wish to

control

E max
(I,Λ)∈S0

|X(I,Λ)| .

For any (I0,Λ0) ∈ S0, write

|X(I0,Λ0)| ≤

(
tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))|

)
+ |X(πtmax(I0,Λ0))|

=: S(I0,Λ0) + |X(πtmax(I0,Λ0))| ,(4.35)

where Lemma 4.10 tells us how to pick (It,Λt) := πt(I0,Λ0), and where we have used

the fact that π0(I0,Λ0) = (I0,Λ0).

Each increment

X(πt(I0,Λ0))−X(πt+1(I0,Λ0)) =
n∑
j=1

gj
[
1j∈It plj(Λt)− 1j∈It+1 plj(Λt+1)

]
7Assuming that the reader is willing to take our word on the calculations.

113

is a Gaussian random variable (see Fact 2.13) with variance

n∑
j=1

(
1j∈It plj(Λt)− 1j∈It+1 plj(Λt+1)

)2

=
∥∥plIt(Λt)− plIt+1

(Λt+1)
∥∥2

2

≤ C2
4Qt log(L)

η2|Λt|
by (4.33)

≤ C2
4Qt log(L)

η2
(

1−η
2

)t
L

by (4.32)

≤ C2
4(1 + η)tQ log(L)

η2
(

1−η
2

)t
L

by (4.31)

≤
(
C4

η

)2(
Q log(L)(2(1 + 2η))t

L

)
using η ≤ 1/2.

≤
(
eC4

η

)2(
Q log(L)2t

L

)
using η = 1/ log(L) and tmax ≤ log(L).

Thus, for each 0 ≤ t < tmax, and for any u, at ≥ 0,

P {|X(πt(z,Λ))−X(πt+1(z,Λ))| > u · at} ≤ exp

(
−u2 · a2

t

2
∑n

j=1

(
1j∈It plj(Λt)− 1j∈It+1 plj(Λt+1)

)2

)

≤ exp

 −u2 · a2
t

2
(
eC4

η

)2 (
Q log(L)2t

L

)

=: exp

(
−u2 · a2

t

δ2
t

)
.(4.36)

In the above, we used the fact that for a Gaussian variable g with variance σ,

P {|g| > u} ≤ exp(−u2/(2σ2)). Now we union bound over all possible “chains” (that

is, sequences {πt(I0,Λ0)}t) to bound the probability that there exists a (I0,Λ0) ∈ S0

so that the first term S(I0,Λ0) in (4.35) is large. Consider the event that for all

(I0,Λ0) ∈ S0,

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))| ≤ u · at,

for at to be determined shortly. In the favorable case that this event occurs, the first

114

term in (4.35) is bounded by

S(I0,Λ0) =
tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))| ≤ u ·
tmax−1∑
t=0

at,

for all (I0,Λ0). Let

(4.37) Nt =

C6

(
N

eL/2t

)(
N

eL/2t−1

)
t ≥ 1(

N
L

)
t = 0

be our bound on |St|, given by (4.34) in Lemma 4.10. Then probability that the

above good event fails to occur is at most, by the union bound,

P

{
max

(I0,Λ0)∈S0
S(I0,Λ0) > u ·

tmax−1∑
t=0

at

}
≤

tmax−1∑
t=0

NtNt+1 exp

(
−u2 · a2

t

δ2
t

)
.

Indeed, there are at most NtNt+1 possible “steps” between πt(I0,Λ0) and πt+1(I0,Λ0),

and the probability that any step at level t fails is given by (4.36).

Choose

(4.38) at =
√

2 ln (NtNt+1) δt.

This choice will imply that

(4.39) E max
(I0,Λ0)∈S0

S(I0,Λ0) ≤ 2
tmax−1∑
t=1

at.

Indeed, to establish (4.39), we may follow a (standard) computation similar to that

of Proposition 2.14 that we saw in Chapter 2. Let A =
∑tmax−1

t=1 . Then

E max
(I,Λ)∈S0

S(I,Λ) =

∫ ∞
u=0

P
{

max
(I,Λ)

S(I,Λ) > u

}
du

≤ A+

∫ ∞
u=A

tmax−1∑
t=0

NtNt+1 exp

(
−u2 · a2

t

δ2
tA

2

)
du

= A+

∫ ∞
u=A

tmax−1∑
t=0

NtNt+1 exp

(
−2u2 ln (NtNt+1)

A2

)
du

≤ A+
tmax−1∑
t=0

NtNt+1

∫ ∞
u=A

exp

(
−2u2 ln (NtNt+1)

A2

)
du.

115

Repeating the trick (2.10), we estimate∫ ∞
u=A

exp

(
−2u2 ln (NtNt+1)

A2

)
≤ A

4 ln (NtNt+1)
exp (−2 ln (NtNt+1)) ≤ A

4N2
t N

2
t+1

.

Plugging this in, we get

E max
(I,Λ)∈S0

S(I,Λ) ≤ A

(
1 +

1

4

tmax−1∑
t=0

1

NtNt+1

)
≤ 2A.

In the last inequality, we used the definition of Nt = C6

(
N

eL/2t

)(
N

eL/2t+1

)
if t ≥ 1 and

N0 =
(
N
L

)
. In particular, we have used the fact that Nt ≥ 2 for our setting of

parameters. This establishes (4.39).

Now, plugging in our definition (4.38) of at and then of δt and Nt (Equations

(4.36) and (4.37), respectively),

E max
(z,Λ)∈S0

S(I0,Λ0) ≤ 2
tmax−1∑
t=0

√
2 ln (NtNt+1) δt

.
tmax−1∑
t=0

√
L

2t
log(N)

(
1

η

√
Q log(L)2t

L

)

= tmax

(√
Q log(N) log(L)

η

)

≤ log2(L)
√
Q log(N) log(L),(4.40)

after using the choice of η = 1/ log(L) and tmax ≤ log(L) in the final line.

With the first term S(I0,Λ0) of (4.35) under control by (4.40), we turn to the

second term, and we now bound the probability that the final term X(πtmax(z,Λ)) is

large. Let (Imax,Λmax) = πtmax(I0,Λ0), so we wish to bound the Gaussian random

variable

X(πtmax(I0,Λ0)) =
∑
j∈Imax

gj plj(Λmax).

As with the increments in S(I0,Λ0), we will first bound the variance ofX(πtmax(I0,Λ0)).

By (4.31), we know that ∑
j∈Imax

plj(Λmax) ≤ Qtmax ≤ eQ.

116

Further, since plj(Λmax) is a fraction, we always have

plj(Λmax) ≤ 1.

By Hölder’s inequality,∑
j∈Imax

plj(Λmax)2 ≤

(∑
j∈Imax

plj(Λmax)

)(
max
j∈Imax

plj(Λmax)

)
≤ eQ.

Thus, for each (I0,Λ0) ∈ S0, X(πtmax(I0,Λ0)) is a Gaussian random variable with

variance at most eQ (using Fact 2.13). We recall the choice from (4.30) of

(4.41) tmax =
log(L)− 2 log(1/η)− 2

1 + log(1/(1− η))
≥ log(L)− 2 log log(L)− C7,

for some constant C7, for sufficiently large L. Because there are |Stmax| ≤
(

N
eL/2tmax

)
of these, Proposition 2.14 says that

E max
(I0,Λ0)∈S0

|X(πtmax(I0,Λ0))| .
√

ln |Stmax| ·
√
Q

.

√
LQ log(N)

2tmax

. log(L)
√
Q log(N),

using the choice of tmax (and the bound on it in (4.41)) in the final line. Finally,

putting together the two parts of (4.35), we have

E max
(I0,Λ0)∈S0

X(I0,Λ0) . log2(L)
√
Q log(N) log(L) + log(L)

√
Q log(N)(4.42)

. log2(L)
√
Q log(N) log(L).

This completes the proof of Theorem 4.9 (assuming Lemma 4.10).

4.7.3 Proof of Lemma 4.10: the desired nets exist

Finally, we prove Lemma 4.10. We proceed inductively. In addition to the con-

clusions of the lemma, we will maintain the inductive hypotheses

(4.43) It+1 ⊆ It and Λt+1 ⊆ Λt

117

for all t.

For the base case, t = 0, we set π0(I0,Λ0) = (I0,Λ0). The definition of Q guar-

antees (4.31), and the definition of S0 guarantees (4.32). By definition |S0| ≤
(
N
L

)
.

Further, since by definition I0 = [n], the first part of (4.43) is automatically satisfied.

(We are not yet in a position to verify the base case for the second part of (4.43),

having not yet defined Λ1, but we will do so shortly).

We will need to keep track of how the pluralities plj(Λt) change, and for this we

need the following notation.

Notation 4.3. For α ∈ Fq and Λ ⊂ C, let

vj(α,Λ) =
|{c ∈ Λ : cj = α}|

|Λ|

be the fraction of times the symbol α appears in the j’th symbol in Λ.

Now we define St for t ≥ 1. Suppose we are given (It,Λt) = πt(I0,Λ0) ∈ St

satisfying the hypotheses of the lemma. We need to produce (It+1,Λt+1) ∈ St+1, and

we will use the probabilistic method. We will choose It+1 deterministically based on

Λt. Then we will choose Λt+1 randomly, based on Λt, and show that with positive

probability, (It+1,Λt+1) obey the desired conclusions. Then we will fix a favorable

draw of (It+1,Λt+1) and call it πt+1(I0,Λ0).

We choose It+1 to be the “heavy” coordinates,

It+1 :=
{
j : |Λt|plj(Λt) ≥ γ

}
,

for

(4.44) γ :=
4c1 log(L)

(1− η)2η2
,

where c1 is a suitably large constant to be fixed later. Notice that It+1 depends only

on Λt (and on C, which for the moment is fixed).

118

Now consider drawing Λt+1 ⊂ Λt at random by including each element of Λt in

Λt+1 independently with probability 1/2. We will choose some Λt+1 from the support

of this distribution.

Before we fix Λt+1, observe that we are already in a position to establish (4.43).

Indeed, the second part of (4.43) holds for all t, because Λt+1 ⊆ Λt by construction.

To establish the first part of (4.43) for t, t+ 1, we use that Λt ⊆ Λt−1 (by induction,

using (4.43) for t− 1, t), and this implies that for all j ∈ It+1,

γ ≤ |Λt|plj(Λt)

= max
α
|{c ∈ Λt : cj = α}|

≤ max
α
|{c ∈ Λt−1 : cj = α}|

= |Λt−1|plj(Λt−1),

and hence j ∈ It. Thus,

(4.45) It+1 ⊆ It.

Before we move on to the other inductive hypotheses, stated in Lemma 4.10, we

must fix a “favorable” draw of Λt+1. In expectation, Λt+1 behaves like Λt, and so the

hope is that the “step”

plIt(Λt)− plIt+1
(Λt+1)

is small. We quantify this in the following lemma.

Lemma 4.11. For all j,

E
[
|Λt+1||plj(Λt)− plj(Λt+1)|

]
≤
√
C5|Λt| log(L) plj(Λt)

and

E
[
|Λt+1|2(plj(Λt)− plj(Λt+1))2

]
≤ C5|Λt| log(L) plj(Λt)

for some constant C5.

119

Proof. The second statement implies the first, by Jensen’s inequality, so we prove

only the second statement. For each α ∈ Fq, and each j ∈ [n], consider the random

variable

Yj(α) := |Λt+1| (vj(α,Λt+1)− vj(α,Λt))

=
∑

c∈Λt:cj=α

(
ξc −

|Λt+1|
|Λt|

)

=
∑

c∈Λt:cj=α

(
ξc −

1

2

)
+

∑
c∈Λt:cj=α

(
1

2
− |Λt+1|
|Λt|

)

=
∑

c∈Λt:cj=α

(
ξc −

1

2

)
+ vj(α,Λt)

∑
c∈Λt

(
1

2
− ξc

)

=: Zj(α) +Wj(α),

where above ξc is 1 if c ∈ Λt+1 and 0 otherwise. Both Zj(α) and Wj(α) are sums

of independent mean-zero random variables, and we use Chernoff bounds to control

them. First, Zj(α) is a sum of |Λt|vj(α,Λt) independent mean-zero random variables,

and a Chernoff bound (Theorem 2.15) yields

P {|Zj(α)| > u} ≤ 2 exp

(
−2u2

|Λt|vj(α,Λt)

)
≤ 2 exp

(
−2u2

|Λt|plj(Λt)

)
.

Similarly, Wj(α) is a sum of |Λt| independent mean-zero random variables, each

contained in [
−vj(α,Λt)

2
,
vj(α,Λt)

2

]
⊆
[
−

plj(Λt)

2
,

plj(Λt)

2

]
,

and we have

P {|Wj(α)| > u} ≤ 2 exp

(
−2u2

|Λt|plj(Λt)2

)
≤ 2 exp

(
−2u2

|Λt|plj(Λt)

)
,

using the fact that plj(Λt) ≤ 1. Together,

P {|Yj(α)| > u} ≤ P {|Wj(α)| > u/2}+ P {|Zj(α)| > u/2} ≤ 4 exp

(
−u2

2 plj(Λt)|Λt|

)
,

120

Let

Tj = {α ∈ Fq : ∃c ∈ Λt, cj = α}

be the set of symbols that show up in the j’th coordinates of Λt. Then

|Tj| ≤ min{q, |Λt|} ≤ L.

By the union bound, and letting v = u2,

(4.46) P
{

max
α∈Fq

Yj(α)2 > v

}
= P

{
max
α∈Tj

Yj(α)2 > v

}
≤ 4L exp

(
−v

2 plj(Λt)|Λt|

)
.

Next, we show that if all of the Yj(α) are under control, then so are the pluralities

plj(Λt). For any four numbers A,B,C,D with A ≤ B and C ≤ D, we have

(4.47) |B −D| ≤ max {|B − C|, |D − A|} .

Indeed, we have

B−D ≤ (B−D)+(D−C) = B−C and D−B ≤ (D−B)+(B−A) = D−A.

The claim (4.47) follows. Now, for fixed j, let

α = argmaxσ∈Tjvj(σ,Λt) and β = argmaxσ∈Tjvj(σ,Λt+1),

so that

|Λt+1|vj(α,Λt+1) ≤ |Λt+1|vj(β,Λt+1) and |Λt+1|vj(β,Λt) ≤ |Λt+1|vj(α,Λt).

By (4.47), we have

|Λt+1||plj(Λt+1)− plj(Λt)| = |Λt+1||vj(β,Λt+1)− vj(α,Λt)|

≤ |Λt+1|max {|vj(α,Λt)− vj(α,Λt+1)|, |vj(β,Λt)− vj(β,Λt+1)|}

≤ max
α∈Tj
|Yj(α)|.

121

Thus, the probability that |plj(Λt+1)− plj(Λt)| is large is no more than the proba-

bility that maxα∈Tj |Yj(α)| is large, and we conclude from (4.46) that

P
{
|Λt+1|2(plj(Λt)− plj(Λt+1))2 > v

}
≤ 4L exp

(
−v

2 plj(Λt)|Λt|

)
.

Integrating, we bound the expectation by

E|Λt+1|2(plj(Λt)− plj(Λt+1))2 =

∫ ∞
0

P
{

max
α∈Tj

Yj(α)2 > v

}
dv

≤ A+ 4L

∫ ∞
A

exp

(
−v

2 plj(Λt)|Λt|

)
dv

= A+ 4L · 2 plj(Λt)|Λt| · exp

(
−A

2 plj(Λt)|Λt|

)
for any A ≥ 0. Choosing A = 2 plj(Λt)|Λt| ln(4L) gives

E|Λt+1|2(plj(Λt)− plj(Λt+1))2 ≤ 2|Λt|plj(Λt) (ln(4L) + 1) .

Setting C5 correctly proves the second item in Lemma 4.11, and the first follows from

Jensen’s inequality.

The next lemma uses Lemma 4.11 to argue that a number of good things happen

all at once.

Lemma 4.12. There is some Λt+1 ⊆ Λt so that:

1. (
1− η

2

)t+1

L ≤
(

1− η
2

)
|Λt| ≤ |Λt+1| ≤

(
1 + η

2

)
|Λt| ≤

(
1 + η

2

)t+1

L.

2. ∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

√
c1|Λt| log(L) plj(Λt)

|Λt+1|2

3. ∑
j∈It+1

(plj(Λt+1)− plj(Λt))
2

1/2

≤
√
c1|Λt| log(L)Qt

|Λt+1|

122

for some constant c1.

Proof. We show that (for an appropriate choice of c1), each of these items occurs

with probability at least 2/3, 3/4, and 3/4, respectively. Thus, all three occur with

probability at least 1/6, and in particular there is a set Λt+1 which satisfies all three.

First, we address Item 1. By a Chernoff bound (Theorem 2.15),

P
{∣∣∣∣|Λt+1| −

1

2
|Λt|
∣∣∣∣ > u

}
≤ 2 exp

(
−2u2/|Λt|

)
,

By the inductive hypothesis (4.32),

|Λt| ≥
(

1− η
2

)t
L,

and so by our choice of tmax and the fact that t ≤ tmax, we have

(4.48) |Λt| ≥ 4/η2.

Thus,

P
{∣∣∣∣|Λt+1| −

|Λt|
2

∣∣∣∣ ≥ η|Λt|
2

}
≤ 2e−2 < 1/3.

Again by the inductive hypothesis (4.32) applied to |Λt|, we conclude that(
1− η

2

)t+1

L ≤
(

1− η
2

)
|Λt| ≤ |Λt+1| ≤

(
1 + η

2

)
|Λt| ≤

(
1 + η

2

)t+1

L.

For Item 2, we invoke Lemma 4.11 and linearity of expectation to obtain

E
∑
j∈It+1

|Λt+1||plj(Λt)− plj(Λt+1)| ≤
∑
j∈It+1

√
C5 log(L) plj(Λt)|Λt|.

By Markov’s inequality, as long as c1 ≥ 16C5, with probability at least 3/4,

∑
j∈It+1

|Λt+1||plj(Λt)− plj(Λt+1)| ≤
∑
j∈It+1

√
c1 log(L) plj(Λt)|Λt|,

123

and in the favorable case the triangle inequality implies

∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

|plj(Λt)− plj(Λt+1)|

≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

√
c1 log(L) plj(Λt)|Λt|

|Λt+1|
.

Thus, Item 2 holds with probability at least 3/4.

Similarly, for Item 3, Lemma 4.11 and linearity of expectation (as well as Jensen’s

inequality) implies that

E

 ∑
j∈It+1

|Λt+1|2(plj(Λt+1)− plj(Λt))
2

1/2

≤

 ∑
j∈It+1

C5|Λt| log(L) plj(Λt)

1/2

≤

(∑
j∈It

C5|Λt| log(L) plj(Λt)

)1/2

since It+1 ⊆ It

≤
√
C5|Λt| log(L)Qt by the inductive hypothesis (4.31) .

Again, Markov’s inequality and an appropriate restriction on c1 implies that Item 3

occurs with probability strictly more than 3/4.

This concludes the proof of Lemma 4.12.

Finally, we show how Lemma 4.12 implies the conclusions of Lemma 4.10 for t+1,

notably (4.31), (4.32) and (4.33). First, we observe that (4.32) follows immediately

from Lemma 4.12, Item 1. Next we consider (4.31). The definition of It+1 and the

choice of γ, along with the fact from Lemma 4.12, Item 1 that |Λt+1| ≥
(

1−η
2

)
|Λt|,

imply that for j ∈ It+1,

|Λt|plj(Λt) ≥ γ ≥
(
|Λt|
|Λt+1|

)2
c1 log(L)

η2
,

124

and so

(4.49)

√
c1|Λt| log(L) plj(Λt)

|Λt+1|
≤ η plj(Λt).

Thus,

∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

(1 + η) plj(Λt) by Lemma 4.12, Item 2 and from (4.49)

≤ (1 + η)
∑
j∈It

plj(Λt) since It+1 ⊆ It, by (4.45)

≤ (1 + η)Qt by the inductive hypothesis (4.31) for t

= (1 + η)t+1Q by the definition of Qt

= Qt+1.

This establishes (4.31).

To establish the distance criterion (4.33), we use the triangle inequality to write

‖plIt(Λt)− plIt+1
(Λt+1)‖2 = ‖plIt+1

(Λt) + plIt\It+1
(Λt)− plIt+1

(Λt+1)‖2(4.50)

≤ ‖plIt+1
(Λt)− plIt+1

(Λt+1)‖2(4.51)

+ ‖plIt\It+1
(Λt)‖2(4.52)

The first term (4.51) is bounded by Lemma 4.12, Item 3, by

‖plIt+1
(Λt)− plIt+1

(Λt+1)‖2 ≤
√
c1|Λt| log(L)Qt

|Λt+1|
.

To bound (4.52), we will bound both the `∞ and `1 norms of plIt\It+1
(Λt) and use

Hölder’s inequality to control the `2 norm. By the inductive hypothesis (4.31) and

the fact (4.45) that It+1 ⊆ It,

‖plIt\It+1
(Λt)‖1 ≤ ‖plIt(Λt)‖1 ≤ Qt.

125

Also, by the definition of It+1,

‖plIt\It+1
(Λt)‖∞ ≤

γ

|Λt|
.

Together, Hölder’s inequality implies that

‖plIt\It+1
(Λt)‖2 ≤

√
‖plIt\It+1

(Λt)‖1‖plIt\It+1
(Λt)‖∞ ≤

√
γQt

|Λt|
.

This bounds the second term (4.52) of (4.50), and putting it all together we have

‖plIt(Λt)− plIt+1
(Λt+1)‖2 ≤

√
c1|Λt| log(L)Qt

|Λt+1|
+

√
γQt

|Λt|
.

Using the fact from Lemma 4.12, Item 1 that |Λt|/|Λt+1| ≤ 2/(1− η), as well as the

definition of γ in (4.44), we may bound the above expression by

‖plIt(Λt)− plIt+1
(Λt+1)‖2 ≤

(
1 +

1

η

)(
2

1− η

)√
c1 log(L)Qt

|Λt|
.

This establishes (4.33), for an appropriate choice of C4, and for sufficiently large L

(and hence sufficiently small η).

Finally, we verify the condition (4.34) on the size |St+1|. By (4.32), and the fact

that our choices of η and tmax imply that (1 + η)t ≤ e, |Λt| ≤ eL/2t. We saw earlier

that It+1 depends only on Λt, so (using the fact that L ≤ N/2), there are at most

eL/2t∑
r=1

(
N

r

)
.

(
N

eL/2t

)
choices for It+1. Similarly, we just chose Λt+1 so that |Λt+1| ≤ eL/2t+1, so there are

at most
∑eL/2t

r=1

(
N
r

)
.
(

N
eL/2t+1

)
choices for Λt+1. Altogether, there are at most

C6

(
N

eL/2t

)(
N

eL/2t+1

)
choices for the pair (It+1,Λt+1), for an appropriate constant C6, and this establishes

(4.32).

This completes the proof of Lemma 4.10.

126

4.8 Conclusion and future work

We have shown that “most” Reed-Solomon codes are list decodable beyond the

Johnson bound, answering an open question (Question 4.1) of [43,56,94,108]. More

precisely, we have shown that with high probability, a Reed-Solomon code with

random evaluation points of rate

Ω

(
ε

log(q) log5(1/ε)

)
is list decodable up to a 1− ε fraction of errors with list size O(1/ε). This beats the

Johnson bound whenever ε ≤ Õ (1/ log(q)).

Our proof actually applies more generally to randomly punctured codes, and ex-

tends the results of Chapter 3 to large alphabets. This provides a positive answer (up

to polylogarithmic factors) to our second motivating question, Question 4.2, about

whether randomly punctured codes with good distance are optimally list-decodable.

As an added corollary, we have obtained improved bounds on the list decodability

of random linear codes over large alphabets. Our bounds are nearly optimal (up to

polylogarithmic factors), and are the best known whenever q & log5(1/ε).

The most obvious open question that remains is to remove the polylogarithmic

factors from the rate bound. The factor of log(q) is especially troublesome: it bites

when q = 2Ω(1/ε) is very large, but this parameter regime can be reasonable for Reed-

Solomon codes. Removing this logarithmic factor seems as though it may require

a restructuring of the argument. A second question is to resolve the discrepancy

between our upper bound on list sizes and the bound associated with general random

codes of the same rate; there is a gap of a factor of ε in the parameter regime

1/ε ≤ q ≤ 1/ε2.

To avoid ending the chapter on the shortcomings of our argument, we mention

127

a few hopeful directions for future work. Our argument applies to generally to

randomly punctured codes, and in fact to any code with independent symbols. We

will explore some generalizations in Chapter 5. Additionally, list decodable codes are

connected to many other pseudorandom objects; it would be extremely interesting

to explore the ramifications of our argument for random families of extractors or

expanders, for instance.

Acknowledgments

The results in this chapter first appeared as [96], which is joint work with Atri

Rudra. We are very grateful to Mahmoud Abo Khamis, Venkat Guruswami, Prahladh

Harsha, Yi Li, Anindya Patthak, and Martin Strauss for careful proof-reading and

helpful comments, and to Swastik Kopparty and Shubhangi Saraf for some discus-

sions which led to the questions considered here.

CHAPTER 5

List decoding: more general applications

In Chapters 3 and 4, we built up a general machinery for proving list-decodability

results for randomly punctured codes. In fact, the arguments in those chapters are

even more general. In particular, the only things we used were:

• The coordinates of the random code C are independent, and

• The “expected average-radius-list-decodabiity” of C is good. In Chapter 3, we

controlled this by bounding E‖Φx‖1, and in Chapter 4 we controlled this by

bounding the quantity E .

There’s nothing special about puncturing codes with good (averaged) distance, and

one can imagine a whole host of operations that meet the above two criterion. In this

chapter, we develope a more general theory, which will form a new code C of length n

from an old code C0 of length n0 by applying a randomized function f : C0 → C; the

only requirement will be that the coordinate functions f1, . . . , fn of f are independent

and that f behaves decently in expectation.

This encompasses many operations; as examples, we’ll consider the case where

fi(c) = 〈ai, c〉 for a suitable random vector ai ∈ Fn0 (random inner products); and

the case where fi(c) = (c
j
(i)
1
, c
j
(i)
2
, . . . , c

j
(i)
t

) ∈ Fqt for a random list of t integers

(j
(i)
1 , . . . , j

(i)
t) ∈ [n0]t (random folding). Using these two operations, we’ll show:

128

129

1. The existence of binary codes that are combinatorially list decodable from 1/2−ε

fraction of errors with optimal rate Ω(ε2) that can be encoded in linear time.

2. Show that any code with Ω(1) relative distance when randomly folded (enough

times) lead to codes that can be list decoded from 1− ε fraction of errors. This

formalizes the intuition for why the folding operation has been successful in

obtaining codes with optimal list decoding parameters.

5.1 Introduction

In this chapter we will work in the same regime as Chapters 3 and 4. Namely, we

are interested in list-decoding q-ary codes from a ρ = 1− 1/q − ε fraction of errors,

for small ε > 0. As we have seen in Chapter 2, the best rate one could hope for here

is

R∗(q, ε) := 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

For complexity applications it is often enough to design a code with rate Ω(R∗(q, ε))

with the same error correction capability. We will focus on this parameter regime in

the current paper.

Perhaps the ultimate goal of list decoding research in the parameter regime above

would be to solve the following:

Problem 5.1. Construct codes with rate Ω(R∗(q, ε)) that can correct 1 − 1/q − ε

fraction of errors with linear time encoding and linear time decoding.1

Even though much progress has been made in algorithmic list decoding, we are

far from answering Problem 5.1. In particular, if we are happy with polynomial

time encoding and decoding and large enough alphabet sizes, then the problem was
1One needs to be careful about the machine model when one wants to claim linear runtime. In this chapter we

consider the RAM model—for our purposes, it is fine to consider “linear time” to mean “a linear number of Fq
operations,” and to assume that the alphabet size is small, say polynomial in 1/ε.

130

solved by Guruswami and Rudra [51] and subsequent works [23, 48, 62–64, 78]. If

we are happy with non-algorithmic results, then the work in Chapters 3 and 4 (or,

just plain old random codes) gives combinatorial list-decoding guarantees, over any

alphabet size.

This chapter generalizes the machinery of Chapters 3 and 4 to make some modest

progress on algorithmic questions, and to shed some new light on some of the recent

algorithmic developments in list decoding.

5.1.1 Linear time encoding with near optimal rate

We first consider the special case of Problem 5.1 that concentrates on the encoding

complexity for binary codes:

Question 5.2. Do there exist binary codes with rate Ω(ε2) that can be encoded in

linear time and can be (combinatorially) list decoded from 1/2− ε fraction of errors?

We remark that once we ignore the decoding time, the question above is only

interesting when we talk about linear encoding time. Chapter 3 showed that random

binary linear codes of rate R∗(q, ε) are list-decodable from 1/2− ε fraction of errors;

this immediately implies quadratic encoding time. In fact, near linear time encoding

with optimal rate also follows from known results: e.g. Guruswami and Rudra [53]

showed that folded Reed-Solomon code concatenated with random inner codes (with

at most logarithmic block length) achieve the optimal rate and fraction of correctable

errors tradeoff. This code is overall near linear time encodable since Reed-Solomon

(and hence folded Reed-Solomon) codes can be encoded in near linear time.

However, obtaining linear time encoding with optimal rate is still an open ques-

tion. For q-ary codes (for q sufficiently large that depends only on ε), Guruswami

and Indyk showed that one can get linear time encoding and decoding with near

131

optimal rate but for unique decoding [47]. For list decoding, they prove a similar

result for list decoding but the rate is exponentially small in 1/ε [46]. This result

can be used with code concatenation to give a similar result for binary codes, but

also suffers from an exponentially small rate.2

5.1.2 Folded codes

The aforementioned result of Guruswami and Rudra [51] showed that if one ap-

plied the folding operation on Reed-Solomon codes, then the resulting codes (called

folded Reed-Solomon codes) can be list decoded in polynomial time with optimal

rate. The folding operation is illustrated in Figure 5.1: given a q-ary code C0 of

block length n0 and a folding parameter t (that divides n0) and a partition of [n0]

into n0/t sets of size t positions in them, the new “folded” code C is the same as

C0 except it is now a qt-ary code, where each set of t symbols in each of the parti-

tioned sets is now a bigger symbol. For large enough t, and appropriate partitions,

this results in codes that can list decode from 1 − ε fraction of errors with opti-

mal rate [51, 63, 65] when one starts with Reed-Solomon or more generally certain

algebraic-geometric codes.

There is a natural intuition for the effectiveness of the folding operation [51, 52].

Folding effectively reduces the number of error patterns that a decoder has to handle.

For example, consider the case when q = 2. Consider an error pattern that corrupts

a 1−2ε fraction of the odd positions (the rest do not have errors). This error pattern

must be handled by any decoder which can list decode from 1/2−ε fraction of errors.

On the other hand, consider a 2-folding (with partition as above) of the code; now

the alphabet size has increased, so we hope to correct 1−1/22−ε = 3/4−ε fraction of

errors. However, the earlier error pattern affects a 1−2ε of the new, folded symbols.

2We thank Venkat Guruswami for pointing out this fact.

132

c ∈ C0

α3 ∈ Fq
α2 ∈ Fq
α1 ∈ Fq

t β = (α1, α2, α3) ∈ Ftq ' Fqt

f(c) ∈ C

Figure 5.1: The folding operation. f(c) is a folded version of c ∈ C0. The folded code C ∈ Fn0/t
qt the

image f(C0) of C0 ∈ Fn0
q .

Thus, in the folded scenario, an optimal decoder need not handle this error pattern,

since 1− 2ε > 3/4− ε (for small enough ε).

In some sense, this intuition is the reason that random codes over large alphabets

can tolerate more error than random codes over small alphabets: because the smallest

“corruptable unit” is larger when the alphabet is larger, there are fewer error patterns

to worry about. Indeed, an inspection of the proof that random codes obtain optimal

list-decoding parameters shows that this is the crucial difference. Since a random

code over a large alphabet is in fact a folding of a random code over a small alphabet,

the story we told above is at work here.

Despite this nice-sounding intuition—which doesn’t use anything specific about

the code—the arguments for folding of specific codes crucially exploit algebraic prop-

erties of the unfolded codes. It is natural to wonder if the intuition above can be

made rigorous. In particular,

Question 5.3. Given any code with distance Ω(1) and rate O(ε) does there exist a

133

folding (for sufficiently large but constant folding parameter m) such that the resulting

code can be (combinatorially) list decoded from 1− ε fraction of errors?

We note that we do need an Ω(1) lower bound on the distance of the original code

as otherwise it is easy to come up with codes where the answer to the above question

is no. The bound of O(ε) on the rate of the original code is also needed, as folding

preserves the rate and the list-decoding capacity theorem implies that any code that

can be list decoded from 1− ε fraction of errors must have rate O(ε).

5.1.3 Contributions of Chapter 5

We generalize the framework of Chapters 3 and 4 to address Problem 5.1. Specif-

ically, we answer both Questions 5.2 and 5.3. This yields modest progress in both

linear-time algorithms (in the case of 5.2) and in understanding why (from a philo-

sophical point of view) existing algorithmic techniques work.

Another contribution is the generalization itself. From a technical point of view,

this chapter does not contain much mathematics beyond what has been presented

in earlier chapters, but it is our hope that the approach of the previous chapters can

be applied fruitfully to answer many more algorithmic questions in list decoding.3

5.1.4 Chapter organization

In Section 5.2, we will introduce a general framework for the results of the previous

two chapters. In Section 5.3, we’ll address Question 5.2, and give a family of linear-

time encodable binary codes. In Section 5.4, we’ll address Question 5.3, and prove

that randomly folded codes are optimally list-decodably with high probability. This

provides some rigor behind the intuition generally invoked for algorithmic folding

results.
3...and beyond!

134

5.2 Setup, and still more definitions

In this chapter, we will intrepret the results of Chapters 3 and 4 as the following

intuition:

If you take a code with alphabet Σ0 which is list-decodable (enough) up to

ρ0 = 1 − 1/|Σ0| − ε, and do some random (enough) stuff to the symbols,

you will obtain a new code (possibly over a different alphabet Σ) which is

list-decodable up to ρ = 1− 1/|Σ| −O(ε).

In order to make this intuition precise, we will recall (and set up) a bit of notation.

So far in this dissertation, we have only ever dealt with linear codes, and so it has

been convenient to take the alphabet to always be a finite field. We will deviate from

this notation slightly, to emphasize that the generalizations in this chapter do not

require linearity. Thus, we will consider codes C ⊂ Σn of length n over the alphabet

Σ. As usual, the rate of C is defined to be

R :=
log|Σ|(|C|)

n
.

For x, y ∈ Σn, δ(x, y) is the relative Hamming distance, and agr(x, y) := n(1−δ(x, y))

denotes the agreement between x and y. For x ∈ Fn, nnz(x) will denote the number

of nonzero entries in x.

As in previous chapters, we study the average-radius list-decodability of C:

Definition 5.4. A code C ⊂ Σn is (ρ, L)-average-radius list-decodable if for all sets

Λ ⊂ C with |Λ| = L,

max
z

∑
c∈Λ

agr(c, z) ≤ nLρ.

As we have seen, average-radius list-decodability implies the standard notion of

list-decodability (Definition 2.3).

135

In the following, we will always start with some code C0 ∈ Σn0
0 and a distribution

D on functions f : C0 → Σn. We will draw a function f from D, and define C ⊂ Σn

to be the image of f . Thus, C will be a random code, with |C| = |C0|.

Now we are ready to make the intuition about precise: we need to define “random

enough” and “list-decodable enough.” We will make the phrase “random enough”

precise in the following definition.

Definition 5.5. Let D be a distribution on functions f : C0 → Σn, as above; write

such an f as f(x) = (f1(x), . . . , fn(x)). We say that D has independent symbols if

the fi are independent for i = 1, . . . , n.

For example, we may take fj(c) to be a random symbol from the codeword c ∈ C0,

chosen independently for each j; this results (up to some abuse of notation about

sampling with replacement) in a randomly punctured code. Or, if Σ0 is a finite field

F, we could take fj(c) = 〈aj, c〉 for a independent random vectors aj ∈ Fn.

Now, we will quantify what it means to be “list-decodable enough.” We introduce

a parameter E = E(C0,D), defined as follows:

(5.1) E(C0,D) := max
Λ⊂C0,|Λ|=L

Ef∼Dmax
z∈Σn

∑
c∈C0

agr(f(c), z).

The quantity E , which is the same as E from Chapter 4, captures how list-decodable

C is in expectation. Indeed, maxz
∑

c inC0 agr(f(c), z) is the quantity controlled by

average-radius list-decodability (Definition 5.4). To make a statement about the

actual average-radius list-decodability of C (as opposed to in expectation), we will

need to understand E when the expectation and the maximum are reversed:

Ef∼D max
Λ⊂C0,|Λ|=L

max
z∈Σn

∑
c∈C0

agr(f(c), z).

In this notation, we can combine Theorems 3.2 and 4.6 in the following statement:

136

Theorem 5.6. [Follows from Theorems 3.2 and 4.6] Let C0,D and C be as above,

and suppose that D has independent symbols. Fix ε > 0. Then

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + Y +
√
EY ,

where

Y = CL log(N) log5(L)

for an absolute constant C. For |Σ| = 2, we have

Ef max
x∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + CL
√
n ln(N).

Theorem 5.6 makes the intuition above more precise: Any “random enough”

operation (that is, an operation with independent symbols) of a code with good

“average-radius list-decodability” (that is, good E(C0,D)) will result in a code which

is also list-decodable.

In this work, we answer Questions 5.2 and 5.3 by coming up with useful distri-

butions D on functions f and computing the parameter E . To control E , we will

make use of some average-radius Johnson bounds that we’ve already encountered:

Theorems 2.8, 4.3, and 4.4. For the reader’s convenience, we restate these bounds

here.

Theorem 5.7 (Average-radius Johnson bounds). Let C : Fkq → Fnq be any code.

Then for all Λ ⊂ Fkq of size L and for all z ∈ Fnq :

• If q = 2,

∑
x∈Λ

agr(C(x), z) ≤ n

2

L+

√
L2 − 2

∑
x 6=y∈Λ

d(C(x), C(y))

 .

• For all ε ∈ (0, 1),∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

d(C(x), C(y)).

137

•

∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

d(C(x), C(y))

 .

5.3 Efficiently encodable list-decodable codes from expander graphs

In this section, we answer Question 5.2, and give linear-time encodable binary

codes with the optimal trade-off between rate and list-decoding radius.

Theorem 5.8. There is a randomized construction of binary codes C ∈ Fn2 so that

the following hold with probability 1 − o(1), for any sufficiently small ε and any

sufficiently large n.

1. C is encodable in time O(n ln(1/ε)).

2. C is (ρ, L)-average-radius list-decodable with ρ = 1
2
(1−Cε) and L = ε−2, where

C is an absolute constant.

3. C has rate Ω(ε2).

The rest of this section is devoted to the proof of Theorem 5.8. Our codes will

work as follows. We begin with a linear-time encodable code with constant rate and

constant distance; we will use Spielman’s variant on expander codes [100, Theorem

19]. These codes have rate 1/4, and distance δ0 ≥ 0 (a small positive constant). In

this case, a random puncturing of C0 (as in the previous chapters) will not work, as

C0 does not have good enough distance. Instead, we will use a different operation,

which can be viewed as a generalization of puncturing: we will take random inner

products with vectors of weight t.

138

Definition 5.9 (Random t-wise XOR). Let C0 ∈ Fn0
2 . Choose t ≤ n0. For v ∈ Fn0

2

with nnz(v) = t, define fv : Fn0
2 → F2 by fv(c) = 〈v, c〉. Define a distribution Dip(t)

on functions f : C0 → Fn2 by choosing v1, . . . , vn independently, uniformly at random

with replacement from {v ∈ Fn0
2 : nnz(v) = t}, and setting f = (fv1 , fv2 , . . . , fvn).

We call this distribution random t-wise inner product.

We will choose C to be the ensemble of codes arising from C0 and Dip(t) for t =

4 ln(1/ε)δ−1
0 . We first verify Item 1 of Theorem 5.8, that C is linear-time encodable.

Indeed, we have

C(x) = AC0(x),

where A ∈ Fn×n0
2 is a matrix whose rows are the vectors vi, which have nnz(vi) ≤ t.

In particular, the time to multiply by A is nt = O(n ln(1/ε)), as claimed.

To verify Item 2 about the list-decodability, we begin by computing the quantity

E(C0,Dip(t)).

Lemma 5.10. Let C0 ∈ Fn0
2 be a code with distance δ0, and suppose t ≥ 4 ln(1/ε)

δ0
.

Then

E(C0,Dip(t)) ≤
n

2

(
L(1 + ε) +

√
L
)
.

Proof. We will use the average-radius Johnson bound, Theorem 5.7, Item 1. Thus,

we start by computing the expected distance between two symbols of the code C ∈ Fn2

139

obtained from C0 and Dip(t). Let c, c′ denote two distinct codewords in C0. Then

Eδ(f(c), f(c′)) =
1

n

n∑
i=1

P {fi(c) 6= fi(c
′)}

= P {〈ai, c〉 6= 〈ai, c′〉}

=
1

2
P {(c− c′)Suppai 6= 0}

=
1

2

(
1− (1− δ0)t

)
≤ 1

2

(
1− e−δ0t/2

)
.

In particular, if t = 4 ln(1/ε)
δ0

, then this is 1
2
(1− ε2). Then Theorem 5.7 implies that

E(C0,Dip(t)) = max
Λ⊂C0

Ef∼Dip(t) max
z∈Fn2

∑
c∈Λ

agr(f(c), z)

≤ max
Λ

Ef max
z∈Fn2

n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

δ(f(c), f(c′))

≤ max

Λ

n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

Efδ(f(c), f(c′))

≤ n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

1

2
(1− ε2)

=
n

2

(
L+

√
L2ε2 + L(1− ε2)

)
≤ n

2

(
L(1 + ε) +

√
L
)
.

Thus, Theorem 5.6 implies that with constant probability,

max
z∈Fn2

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ E
L

+ C
√
n ln(N)

≤ n

2

(
1 + ε+

1√
L

)
+ C
√
n lnN.

In particular, if C
√
n lnN ≤ εn, then in the favorable case C is (ρ, L − 1)-average-

radius list-decodable, for L = ε−2 and ρ = 1/2(1− C ′ε) for some constant C ′.

140

It remains to verify Item 3, about the rate R of C. Notice that if |C| = N , then

we are done, because then the requirement C
√
n ln(N) ≤ εn reads

R =
log2(N)

n
≤ ε2

C ln(2)
.

Thus, to complete the proof we will argue that f is injective with high probability, and

so in the favorable case |C| = N . Fix c 6= c′ ∈ C0. Then, by the same computations

as above,

P {f(c) = f(c′)} =

(
1

2

(
1 + (1− δ0)t

))n
≤
(

1 + ε2

2

)n
.

Using the fact that we will choose n ≥ C ln(N)/ε2, the right hand side is(
1 + ε2

2

)C ln(N)/ε2

= N
− ln

(
2

1+ε2

)
C/ε2 ≤ N−3

for sufficiently small ε. Thus, by the union bound on the
(
N
2

)
≤ N2 choices for the

pairs of distinct codewords (c, c′), we see that P {|C| < N} ≤ 1/N , which is o(1) as

desired. This completes the proof of Theorem 5.8.

Remark 10 (Random inner products for q > 2). For this application, q = 2 is the

interesting case. However, the argument above works just fine for q > 2. In this

case, we define fv(c) = 〈v, c〉 for v uniform in
{
v ∈ Fn0

q : nnz(a) = t
}

, and define

Dip(t) as before. We may use the first statement of Theorem 5.6, and statements 2

or 3 of Theorem 5.7 for the average-radius Johnson bound.

5.4 Random folding

In this section, we answer Question 5.3, and show that every code with good

distance has a folding which is optimally list-decodable. We must first define the

“random folding” operation.

141

Definition 5.11 (Random t-wise folding). Let C0 ∈ Σn0
0 . Choose t ≤ n0, and let

Σ = Σt
0. For S ⊂ [n0] with |S| = t, define fS : Σn0

0 → Σn by fS(c) = (ci)i∈S. Define a

distribution Dfold(t) on functions f : C0 → Σn by choosing S1, . . . , Sn independently,

uniformly at random with replacement from {S ⊂ [n0] : |S| = t}, and setting f =

(fS1 , fS2 , . . . , fSn). We call this distribution random t-wise folding.

Remark 11 (Definition 5.11 vs. standard folding). The definition above is slightly

different from a uniformly random t-wise folding, which would correspond to a ran-

dom partition of [n0] into n pieces of size t. Because the elements for each of the

symbols are chosen with replacement, it’s possible that the new symbols “overlap”

slightly, and that other symbols from the original code are not represented at all in

C0. However, sampling with replacement makes the computations significantly sim-

pler. Since the goal of this section is to provide some rigor behind the intuition

discussed around Question 5.3, we will go with the simpler case.

Theorem 5.12 below analyzes folding in two parameter regimes. In the first param-

eter regime, we address Question 5.3, and we consider t-wise folding where n0 = nt.

In this case, the folded code C will have the same rate as the original code C0, and

so in order for C to be list-decodable up to radius 1 − ε, the rate R0 of C0 must be

O(ε). Item 1 shows that if this necessary condition is met (with some logarithmic

slack), then C is indeed list-decodable up to 1− ε. In the second parameter regime,

we consider what can happen when the rate R0 of C0 is significantly larger. In this

case, we cannot hope to take n as small as n0/t and hope for list-decodability up to

1 − ε. The second part of Theorem 5.12 shows that we may take n nearly as small

as the list-decoding capacity theorem allows.

Theorem 5.12. There are constants Ci, i = 0, . . . , 5, so that the following holds.

142

Suppose q > 1/ε2. Let C0 ⊂ Fn0
q be a code with distance δ0 ≥ C2 > 0.

1. Suppose t ≥ C0 log(1/ε) ≥ 4 ln(1/ε)/δ0. Suppose that C0 has rate

R0 ≤
C1ε

log(q)t log5(1/ε)
.

Let C ⊂ Fqt be a random t-wise folding of C0 of length n = n0/t. Then with high

probability, C is (1−C3ε, 1/ε)-average-radius list-decodable, and further the rate

R of C satisfies R = R0.

2. Suppose that t ≥ 4 ln(1/ε)/δ0, and suppose that C0 has rate R0 so that

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
.

Let C be a random t-wise folding of C0 of length

n ≥ log(N) log(1/ε)

ε
.

Then with high probability, C is (1−C4ε, 1/ε)-average-radius list-decodable, and

the rate R of C is at least

R ≥ C5ε

t log(q) log5(1/ε)
.

The rest of this section is devoted to the proof of Theorem 5.12. As before, it

suffices to control E(C0,Dfold(t)), which we do via the average-radius Johnson bound

(Theorem 5.7). Because we are interested in the parameter regime where q ≥ 1/ε2,

we use the third statement in Theorem 5.7.

143

Suppose t ≥ 4 ln(1/ε)/δ0 and set L = 1/ε. For c 6= c′ ∈ C0, we compute

Ef∼Dfold(t)δ(f(c), f(c′)) =
1

n

n∑
i=1

P {fj(c) 6= fj(c
′)}

= P
{
∃j ∈ Si : cj 6= c′j

}
= 1− (1− δ0)t

≤ 1− ε2,

using the choice of t in the final line. Thus, by Theorem 5.7, Item 3,

E(C0,Dfold(t)) = max
Λ⊂C0

Ef∼Dfold(t) max
z∈Fnq

∑
c∈Λ

agr(f(c), z)

≤ max
Λ⊂C0

Ef∼Dfold(t) max
z∈Fnq

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

δ(f(c), f(c′))

= max

Λ⊂C0

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

Efδ(f(c), f(c′))

≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

(1− ε2)

=
n

2

(
1 +

√
1 + 4L(L− 1)ε2

)
≤ Cn,

using the choice of L and defining C = (1 +
√

5)/2. Then, by Theorem 5.6, recalling

that

Y = CL log(N) log5(L),

and N = |C0|, we have with high probability that

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E(C0,Dfold(t)) + Y +
√
E(C0,Dfold(t)Y

≤ O
(
L log(N) log5(L) + n

)
.

144

In the favorable case,

(5.2)

Ef max
z∈Σn

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ O
(
log(N) log5(L) + n/L

)
= O

(
log(N) log5(1/ε) + nε

)
.

As before, C is (1 − Cε, L − 1) average-radius list-decodable, for some constant C,

as long as the right hand side is no more than O(nε). This holds as long as

(5.3) log(N) log5(1/ε) ≤ nε.

Equation (5.3) holds for any choice of n. First, we prove item 1 and we focus on

the case that n0 = nt; this mimics the parameter regime the standard definition of

folding. Given n0 = nt, we can translate (5.3) into a condition on R0, the rate of C0.

We have

R0 =
logq(N)

n0

=
logq(N)

nt
,

and so translating (5.3) into a requirement on R(C0), we see that as long as

R0 .
ε

log(q)t log5(1/ε)
.

ε

log(q) log6(1/ε)
,

then with high probability C is (1 − Cε, L)-list-decodable. Choose n so that this

holds.

It remains to verify that the rate R of C is the same as the rate R0 of C0. For

standard folding, it is immediate that the rate of the code does not change. With

our slightly randomized tweak on it (Definition 5.11), this requires some argument:

it might be the case that |C| < N , in which case the rate would decrease.

Claim 5.13. With C0 as above and with n0 = nt, |C| = N with probability at least

1− o(1).

145

Proof. The only way that |C| < N is if two codewords c 6= c′ ∈ C0 collide, that is, if

f(c) = f(c′). This is unlikely: we have

P {f(c) = f(c′)} = (1− δ0)nt ≤ ε2nt.

By a union bound over
(
N
2

)
≤ N2 pairs c 6= c′, we conclude that the probability that

|C| < N is at most

(5.4) P {|C| < N} ≤ N2ε2nt.

If nt = n0, we have

P {|C| < N} ≤ q2n0R0ε2nt =
(
qR0ε

)2n0
.

In particular, when qR0 < 1/ε, this is o(1). By our assumption, R0 < ε, and so this

is always true for sufficiently small ε.

By a union bound, with high probability both the favorable event (5.2) occurs,

and Claim 5.13 holds. In this case, C is (1−Cε, L)-list-decodable, and the rate R of

C is

R = R0.

Next, we consider a general case, where we may choose n < n0/t, thus increasing

the rate. It remains true that as long as (5.3) holds, then C is (1 − Cε, L)-list-

decodable. Again translating the condition (5.3) into a condition on logqt(N)/n, we

see that as long as

(5.5)
logqt(N)

n
≤ ε

t log(q) log5(1/ε)
,

then C is (1 − Cε, L)-list-decodable. Now we must verify that the left-hand-side of

(5.5) is indeed the rate R of C, that is, that |C| = N .

146

Claim 5.14. With C0 as above and with n arbitrary, |C| = N with probability at least

1− o(1).

Proof. As in (5.4), we have

P {|C| < N} ≤ N2ε2nt.

We may bound the right-hand-side by

N2ε2nt =
(
qR0n0/nεt

)2n
,

and for this to be o(1), it is sufficient for

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
,

which was our assumption for part 2 of the theorem.

Now, recalling our choice of n in (5.5), with high probability both (5.2) occurs

and Claim 5.14 holds. In the favorable case, C is (1− Cε, L)-list-decodable, as long

as the rate R satisfies

R =
logqt(|C|)

n
=

logqt(N)

n
≤ Cε

t log5(1/ε) log(q)
.

This completes the proof of Theorem 5.12.

5.5 Conclusion

We generalized the results of Chapters 3 and 4 to a large class of random opera-

tions, beyond just random puncturing. The purpose of these generalizations (beyond

generalization for generalization’s sake) was to begin to bridge the gap between the

combinatorial statements of the preceding chapters and the algorithmic statements

that dominate the list decoding literature. First, we used our new framework to

147

obtain families of linear-time-encodable binary codes. Second, we used our frame-

work to provide some insight to a successful algorithmic technique, namely, folding.

Informal combinatorial arguments are often invoked as an intuition for folding, but

making these rigorous has proved challenging. We made this combinatorial intuition

more precise, and showed that a random folding of any code with nontrivial distance

and appropriate rate is nearly optimally list-decodable with high probability.

Acknowledgments

This chapter is based on ongoing work with Atri Rudra. We thank Swastik

Kopparty and Shubhangi Saraf for initial discussions on the two main questions

considered in this paper (and for indeed suggesting the random XOR as an operation

to consider).

CHAPTER 6

Local decoding: expander codes

In this chapter, we switch gears from list decoding to local decoding. We discussed

locally decodable codes in Chapter 2. The idea is that Bob must work extremely

quickly—so quickly that he doesn’t have time to look at the entire codeword. We

will focus on expander codes, which we introduced in Chapter 2.

We will present a local-decoding (actually, local-correcting) algorithm for ex-

pander codes. Our codes will have rate approaching 1. Bob will make nε queries

(where n is the block length of the code) for an arbitrarily small constant ε, and

he’ll be able to handle a constant fraction of errors. In addition to providing new lo-

cally correctible codes in this regime (joining two existing constructions, multiplicity

codes [79] and lifted codes [41]), this gives a sublinear-time decoding algorithm for

expander codes.

Our techniques are rather different than they have been in previous chapters.

Before, we had to take a union bound over several (related) events that were not suf-

ficiently unlikely. Now, we will still have to take a union bound over not-improbable-

enough events, but no amount of clever union-bounding will save us. Instead, we

will see how to deal with the situation algorithmically.

148

149

6.1 Introduction

Expander codes, introduced in [98], are linear codes which are notable for their

efficient decoding algorithms. In this paper, we show that when appropriately in-

stantiated, expander codes are also locally decodable, and we give a sublinear time

local-decoding algorithm.

We introduced locally decodable codes in Chapter 2. As in the standard model of

coding theory, Alice encodes a message x ∈ Fkq as a codeword c ∈ Fnq , and transmits

it to Bob across a (malicious) noisy channel. Bob’s goal is to recover x from the

corrupted codeword w. Decoding algorithms typically process all of w and in turn

recover all of x. The goal of local decoding is to recover only a single symbol of x, with

the benefit of querying only a few bits of w. The number of symbols of w needed to

recover a single bit x is known as the query complexity, and we will denote this by Q.

The important trade-off in local decoding is between query complexity and the rate

R = k/n of the code. When Q is constant or even logarithmic in k, the best known

codes have rates which tend to zero as n grows. The first locally decodable codes

to achieve sublinear locality and rate approaching one were the multiplicity codes

of Kopparty, Saraf and Yekhanin [79]. Prior to this work, only two constructions

of locally decodable codes were known with sublinear locality and rate approaching

one [41,79]. In this paper, we show that expander codes provide a third construction

of efficiently locally decodable codes with rate approaching one.

6.1.1 Notation and preliminaries

Before we state our main results, we set notation and give a few definitions. We

will construct linear codes C of length n and message length k, over a finite field

F = Fq That is, C ⊂ Fn is a linear subspace of dimension k. As usual, the rate

150

of C is the ratio R = k/n. We will also use expander graphs; we will give a brief

introduction to expanders in Section 6.2. For n ∈ Z, [n] denotes the set {1, 2, . . . , n}.

For x, y ∈ FN , δ(x, y) denotes relative Hamming distance. In contrast with previous

chapters, we will use x[i], rather than xi, to denote the ith symbol of x. The reason for

the switch is that this chapter will be somewhat more subscript-heavy than previous

ones. For x ∈ Fn and S ⊂ [n], we will use x|S to denote x restricted to symbols

indexed by S.

We recall Definitions 2.9 and 2.10 of locally decodable and locally correctable

codes. A code (along with an encoding algorithm) is locally decodable if there is an

algorithm which can recover a symbol x[i] of the message, making only a few queries

to the received word.

Definition 6.1 (Locally Decodable Codes (LDCs)). Let C ⊂ Fn be a code of size

|F|k, and let E : Fk → Fn be an encoding map. Then (C, E) is (Q, ρ)-locally decodable

with error probability η if there is a randomized algorithm ∆, so that for any w ∈ Fb

with ∆(w,E(x)) < ρ, for each i ∈ [k],

P {∆(w, i) = x[i]} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over

the internal randomness of the decoding algorithm R.

In this work, we will actually construct locally correctable codes, which we will see

below imply locally decodable codes.

Definition 6.2 (Locally Correctable Codes (LCCs)). Let C ⊂ Fn be a code, and let

E : Fk → Fn be an encoding map. Then C is (Q, ρ)-locally correctable with error

probability η if there is a randomized algorithm, ∆, so that for any w ∈ Fn with

151

∆(w,E(x)) < ρ, for each j ∈ [n],

P {∆(w, j) = w[j]} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over

the internal randomness of the decoding algorithm ∆.

The difference between locally correctable codes and locally decodable codes is

that locally correctable codes can recover symbols of the codeword while locally

decodable codes recover symbols of the message.

When there is a constant ρ > 0 and a failure probability η = o(1) so that C is

(Q, ρ)-locally correctable with error probability η, we will simply say that C is locally

correctable with query complexity Q (and similarly for locally decodable).

When C is a linear code, writing the generator matrix in systematic form gives

an encoding function E : Fk → Fn so that for every x ∈ Fk and for all i ∈ [k],

E(x)[i] = x[i]. In particular, if C is a (Q, ρ) linear LCC, then (E, C) is a (Q, ρ) LDC.

Because of this connection, we will focus our attention on creating locally correctable

linear codes.

Many LCCs work on the following principle: suppose, for each i ∈ [N], there

is a set of Q query positions S(i), which are smooth—that is, each query is almost

uniformly distributed within the codeword—and a method to determine c[i] from

{c[j] : j ∈ S(i)} for any uncorrupted codeword c ∈ C. If Q is constant, this smooth

local reconstruction algorithm yields a local correction algorithm: with high proba-

bility none of the locations queried are corrupted. In particular, by a union bound,

the smooth local reconstruction algorithm is a local correction algorithm that fails

with probability at most ρ ·Q. This argument is effective when Q = O(1); however,

when Q is merely sublinear in n, as is the case for us, this reasoning fails. This

152

paper demonstrates how to turn codes which only possess a local reconstruction pro-

cedure (in the noiseless setting) into LCCs with constant rate and sublinear query

complexity.

Definition 6.3 (Smooth reconstruction). For a code C ⊂ Fn, consider a pair of

algorithms (S,A), where S is a randomized query algorithm with inputs in [n] and

outputs in 2n, and A : FQ× [n]→ F is a deterministic reconstruction algorithm. We

say that (S,A) is a s-smooth local reconstruction algorithm with query complexity

Q if the following hold.

1. For each i ∈ [n], the query set S(i) has |S(i)| ≤ Q.

2. For each i ∈ [n], there is some set B ⊂ [N] of size s, so that each query in S(i)

is uniformly distributed in B.

3. For all i ∈ [n] and for all codewords c ∈ C, A(c|S(i) , i) = c[i].

If s = n, then we say the reconstruction is perfectly smooth, since all symbols

are equally likely to be queried. Notice that the queries need not be independent.

The codes we consider in this work decode a symbol indexed by x ∈ Fm by querying

random subspaces through x (but not x itself), and thus will have s = n− 1.

6.1.2 Related work

The first local-decoding procedure for an error-correcting code was the majority-

logic decoder for Reed-Muller codes proposed by Reed [89]. Local-decoding proce-

dures have found many applications in theoretical computer science including proof-

checking [5,82,88], self-testing [16,33,34] and fault-tolerant circuits [99]. While these

applications implicitly used local-decoding procedures, the first explicit definition of

locally decodable codes did not appear until later [75]. For an excellent survey of

153

locally decodable codes, we refer the reader to [114]. The study of locally decodable

codes focuses on the trade-off between rate (the ratio of message length to codeword

length) and query complexity (the number of queries made by the decoder). Re-

search in this area is separated into two distinct areas: the first seeks to minimize

the query complexity, while the second seeks to maximize the rate. In the low-query-

complexity regime, Yekhanin was the first to exhibit codes with a constant number of

queries and a subexponential rate [113]. Following Yekhanin’s work, there has been

significant progress in constructing locally decodable codes with constant query-

complexity [10,11,18,22,25,26,71,113]. On the other hand, in the high-rate regime,

there has been less progress. In 2011, Kopparty, Saraf and Yekhanin introduced

multiplicity codes, the first codes with a sublinear local-decoding algorithm [79] and

rate approaching one. Like Reed-Muller codes, multiplicity codes treat the message

as a multivariate polynomial, and create codewords by evaluating the polynomial at

a sequence of points. Multiplicity codes are able to improve on the performance of

Reed-Muller codes by also including evaluations of the partial derivatives of the mes-

sage polynomial in the codeword. A separate line of work has developed high-rate

locally decodable codes by “lifting” shorter codes [41]. The work of Guo, Kopparty

and Sudan takes a short code C0 of length |F|t, and lifts it to a longer code C, of

length |F|m for m > t over F, such that every restriction of a codeword in C to

an affine subspace of dimension t yields a codeword in C0. The definition provides

a natural local-correcting procedure for the outer code: to decode a symbol of the

outer code, pick a random affine subspace of dimension t that contains the symbol,

read the coordinates and decode the resulting codeword using the code C0. Guo,

Kopparty and Sudan show how to lift explicit inner codes so that the outer code has

constant rate and query complexity nε.

154

In this work, we show that expander codes can also give locally decodable codes

with rate approaching one, and with query complexity nε. Expander codes, intro-

duced by Sipser and Spielman [98], are formed by choosing a d-regular expander

graph, G on n vertices, and a code C0 of length d (called the inner code), and defin-

ing the codeword to be all assignments of symbols to the edges of G so that for

every vertex in G, its edges form a codeword in C0. We discussed this construction

(for general graphs) in Chapter 2. The connection between error-correcting codes

and graphs was first noticed by Gallager [32] who showed that a random bipartite

graph induces a good error-correcting code. Gallager’s construction was refined by

Tanner [105], who suggested the use of an inner code. Sipser and Spielman [98] were

the first to consider this type of code with an expander graph (which we will formally

define in Section 6.2 below). Spielman [100] showed that these expander codes could

be encoded and decoded in linear time. Spielman’s work provided the first family

of error-correcting codes with linear-time encoding and decoding procedures. The

decoding procedure has since been improved by Barg and Zemor [7–9,115].

6.1.3 Contributions of Chapter 6

We show that certain expander codes can be efficiently locally decoded, and we

instantiate our results to obtain novel families of (nε, ρ)-LCCs of rate 1− α, for any

positive constants α, ε and some positive constant ρ. Our decoding algorithm runs in

time linear in the number of queries, and hence sublinear in the length of the message.

We provide a general method for turning codes with smooth local reconstruction

algorithms into LCCs: our main result, Theorem 6.13, states that as long as the

inner code C0 has rate at least 1/2 and possesses a smooth local reconstruction

algorithm, then the corresponding family of expander codes are constant rate LCCs.

In Section 6.4, we give some examples of appropriate inner codes, leading to the

155

parameters claimed above.

In addition to providing a sublinear time local decoding algorithm for an impor-

tant family of codes, our constructions are only the third known example of LDCs

with rate approaching one, after multiplicity codes [79] and lifted Reed-Solomon

codes [41]. Our approach (and the resulting codes) are very different from earlier

approaches. Both multiplicity codes and lifted Reed-Solomon codes use the same

basic principle, also at work in Reed-Muller codes: in these schemes, for any two

codewords c1 and c2 which differ at index i, the corresponding queries c1|S(i) and

c2|S(i) differ in many places. Thus, if the queries are smooth, with high probability

they will not have too many errors, and the correct symbol can be recovered. In

contrast, our decoder works differently: while our queries are smooth, they will not

have this distance property. In fact, changing a mere log(Q) out of our Q queries

may change the correct answer. The trick is that these problematic error patterns

must have a lot of structure, and we will show that they are unlikely to occur.

Finally, our results port a typical argument from the low-query regime to the

high-rate regime. As mentioned above, when the query complexity Q is constant, a

smooth local reconstruction algorithm is sufficient for local correctability. However,

this reasoning fails when Q grows with n. In this paper, we show how to make

this argument go through: via Theorem 6.13, any family of codes C0 with good rate

and a smooth local decoder can be used to obtain a family of LCCs with similar

parameters.

6.1.4 Chapter organization

Before getting into our local correction algorithm, we state some basic results

about expander graphs. In particular, we will need a slightly nonstandard Chernoff

bound for expander graphs, which we will prove in Section 6.2. Next, in Section 6.3,

156

we will give our local correction algorithm and prove that it works, provided that

the inner code C0 satisfies a few locality conditions. At this point, the reader will

likely be asking themselves if these inner codes exist, and if so, whether or not they

produce interesting results. In Section 6.4, we will give two examples of inner codes,

which will produce a locally correctable outer code with the advertised parameters.

6.2 Overview of expander graphs

In this section, we give a brief overview of expander graphs and codes arising from

them. We saw in Chapter 2 how to make a code C ∈ Fnq out of an inner code C0 ⊂ Fdq

and a d-regular bipartite graph G on 2N vertices. Briefly, the block length n of C

will be |E(G)| = Nd, and we will identify elements of Fnq with labelings of the edges

of G. A labeling is in C if at every vertex of G, the edges leaving that vertex (in

some prescribed order) form a codeword in C0.

In this chapter, we will consider the case when the underlying graph arises from

an expander graph. A complete exposition of expander graphs is beyond the scope of

this thesis: the reader is referred to [69] for an excellent survey. In the meantime, we

will briefly recap the basic notions that we will need. Let G = (V,E) be a d-regular

graph on N vertices. (Not necessarily bipartite). Let A be the normalized adjacency

matrix of G; that is, A ∈ {0, 1/d}N×N and

Aij =

1
d

(i, j) ∈ E

0 (i, j) 6∈ E

Consider the spectrum of A. It is not hard to see that the largest eigenvalue of A

is 1, and that the corresponding eigenvector is the all-ones vector 1 ∈ RN . If G is

connected, it turns out that the second-largest eigenvalue is strictly less than 1.

157

Definition 6.4. Let G be a connected d-regular graph with normalized adjacency

matrix A. The second-largest eigenvalue of A is called the expansion parameter of

G, and is denoted λ = λ(G).

We will see a few reasons for the name “expansion parameter” later; it turns out

that the smaller λ is, the more “connected” G is. If λ is smallish, we say that G is an

expander graph. If λ is basically as small as it can be, we say that G is a Ramanujan

graph:

Definition 6.5. A d-regular graph G = (V,E) is a Ramanujan graph if λ(G) ≤

2
√
d−1
d

.

It is known that this is basically the smallest λ(G) can be; more precisely, λ(G) ≥

2
√
d−1
d
−o(1). Not surprisingly (given what we’ve seen so far in this thesis), a random

d-regular graph is Ramanujan with high probability. Much more surprisingly, there

exist explicit constructions of Ramanujan graphs [83,85,86] for arbitrarily large values

of d. We will use the existence (and explicitness) of these constructions as a black

box.

To get a suitable bipartite graph H out of G, we will take the double cover of G.

Definition 6.6. Let G be any graph on N vertices. The double cover H of G is a

bipartite graph on 2N vertices, as follows. The vertices V (H) of H are two disjoint

copies V0 and V1 of V (G). For each edge (u, v) ∈ E(G), there are two edges (u0, v1)

and (v0, u1) in E(H), where ui is the copy of u in Vi.

The notation for double covers is illustrated in Figure 6.1.

We return to the expansion parameter λ. What does λ tell us about a graph

G, or its double-cover H? Generally, as it turns out, the smaller λ is, the more

like the complete graph (or the complete bipartite graph) G (or H) behaves. More

158

u v

w

G

u0 u1

v0 v1

w0 w1

H

Figure 6.1: A graph G and its double-cover H.

specifically, suppose that a subset of B of vertices are “bad,” and consider a random

walk on G. Let X be the number of bad vertices that this walk hits. If G is a

complete graph, then each step of the random walk is an independent, uniformly

random vertex, and the number of bad vertices is controlled by a Chernoff bound

(Theorem 2.15). We would like to mimic this behavior when G is degree d, rather

than N − 1. The well-known expander Chernoff bound [35, 70] says that we may do

this, and the quality of the result depends on the expansion parameter λ. In this

chapter, we’ll need a slight variant on the expander Chernoff bound, which we state

and prove below.

Lemma 6.7. Let G be a d-regular graph on N vertices, and H be its double cover. Let

B ⊂ E(H) best a set of ρ|E(H)| edges, and suppose that ρ > 6λ, where λ = λ(G) is

the expansion parameter. Let v0, . . . , vL be a random walk of length L on H, starting

from the left side at a vertex chosen from a distribution1 ν with
∥∥ν − 1

n
1n
∥∥

2
≤ 1√

n
.

Let X denote the number of edges in B included in the walk, and choose γ so that

ρ+ 2λ < γ < 1/2. Then

P {X ≥ γL} ≤ exp (−LD (γ||ρ+ 2λ)) .

In particular, when ρ+ 2λ ≤ ln(1/(1− γ)), we have

P {X ≥ γL} ≤
(
ρ+ 2λ

γ

)γL
.

1We think of a distribution ν on V0 as a vector ν ∈ RN≥0 so that ‖ν‖1 = 1. Thus, ν[u] is the probability mass on
vertex u.

159

As mentioned above, this is very much like the expander Chernoff bound [35,70].

In this case, H is the double cover of an expander, not an expander itself, and the

edges, rather than vertices, are corrupted, but the proof remains basically the same.

For completeness, we include the proof of Lemma 6.7 here.

6.2.1 Proof of Lemma 6.7

The lemma follows with only a few tweaks from standard results. The only differ-

ences between this and a standard analysis of random walks on expander graphs are

that (a) we are walking on the edges of the bipartite graph H, rather than on the

vertices of G, and (b) our starting distribution is not uniform but instead close to

uniform. Dealing with this differences is straightforward, but we document it below

for completeness.

First, we need the relationship between a walk on the edges of a bipartite graph

H and the corresponding walk on the vertices of G. For ease of analysis, we will

treat H as directed, with one copy of each edge in each direction.

Lemma 6.8. Let G be a degree d undirected graph on d vertices with normalized

adjacency matrix A, and let H be the double cover of G. For each vertex v of G,

label the edges incident to v arbitrarily, and let v(i) denote the ith edge of v. Let H ′

be the graph with vertices V (G)× [d]× {0, 1} and edges

E(H ′) = {((u, i, b), (v, j, b′)) : (u, v) ∈ E(G), b 6= b′, u(i) = v} .

Then H ′ is a directed graph with 2dN edges, and in-degree and out-degree both equal

to d. Further, the normalized adjacency matrix A′ is given by

A′ = R⊗ S

where S : R2 → R2 is S =

0 1

1 0

 and R : Rnd → Rnd is an operator with the same

160

rank and spectrum as A.

Proof. We will write down A′ in terms of A. Index [N] by vertices of V , so that

ev ∈ Rn refers to the standard basis vector with support on v. Let ⊗ denote the

Kronecker product. We will need some linear operators. Let B : RN2 → RN2
so that

B(eu ⊗ ev) = ev ⊗ ev

and P : RN2 → RNd so that

P (eu ⊗ ev) =

eu ⊗ ei v = u(i)

0 (u, v) 6∈ E(G)

.

Finally, let S : R2 → R2 be the cyclic shift operator. Then a computation shows

that the adjacency matrix A′ of H ′ is given by

(P (I ⊗ A)BP T)⊗ S.

Let R = P (I ⊗ A)BP T . To see that the rank of R is at most N , note that for any

i ∈ [d] and any u ∈ V (G),

R(eu ⊗ ej) = eu(j) ⊗
1

d
1d.

In particular, it does not depend on the choice of j. Since {eu ⊗ ej : u ∈ V (G), j ∈ [d]}

is a basis for RNd, the image of R has dimension at most n. Finally, a similar compu-

tation shows that if p is an eigenvector of A with eigenvalue λ, then p⊗ 1
d
1d is a right

eigenvector of R, also with eigenvalue λ. (The left eigenvectors are P (1
N

1N ⊗ p)).

This proves the claim.

With a characterization of A′ in hand, we now wish to apply an expander Chernoff

bound. Existing bounds require slight modification for this case (since the graph H ′

161

is directed and also not itself an expander), so for completeness we sketch the changes

required. The proof below follows the strategies in [2] and [70]. We begin with the

following lemma, following from the analysis of [2].

Lemma 6.9. Let G and H be as in Lemma 6.8, and let v0, v1, . . . , vT be a random

walk on the vertices of H, beginning at a vertex of H, chosen as follows: the side of

H is chosen according to a distribution σ0 = (s, 1 − s), and the vertex within that

side is chosen independently according to a distribution ν with ‖ν − 1
N

1N‖2 ≤ 1√
N

.

Let W be any set of edges in H, with |W | ≤ ρnd. Suppose that ρ > 6λ. Then for

any set S ⊂ {0, 1, . . . , T − 1},

P {(vt, vt+1) ∈ W,∀t ∈ S} ≤ (ρ+ 2λ)|S|.

Proof. As in Lemma 6.8, we will consider H as directed, with one edge in each

direction. As before, we will index these edges by triples (u, i, `) ∈ V (G)×[d]×{0, 1},

so that (u, i, `) refers to the ith edge leaving vertex u on the `th side of H. Let µ be

the distribution on the first step (v0, v1) of the walk, so

µ = ν ⊗ 1

d
1d ⊗ σ0.

Let M ∈ R2Nd be the projector onto the edges in W . Let M (0) be the restriction

to edges emanating from the left side of H, and M (1) from the right side, so that both

M (0) and M (1) are Nd × Nd binary diagonal matrices with at most ρNd nonzero

entries. Let A′ = R ⊗ S be as in the conclusion of Lemma 6.8. After running the

random walk for T steps, consider the distribution on directed edges of H, conditional

on the bad event that (vt, vt+1) ∈ W for all t ∈ S. As in the analysis in [2], this

distribution is given by

µT =
(MT1A

′)(MT−2A
′) · · · (M1A

′)(M0µ)

P {(vt, vt+1) ∈ W,∀t ∈ S}
,

162

where

Mt =

M t ∈ S

I t 6∈ S
.

Since the `1 norm of any distribution is 1, we have

P {(vt, vt+1) ∈ W,∀t ∈ S} = ‖(MT−1A
′)(MT−2A

′) · · · (M1A
′)(M0µ)‖1(6.1)

Let

µ0 := M0µ,

and

µt := MtA
′µt−1,

so we seek an estimate on ‖µT‖1.

The following claim will be sufficient to prove the theorem.

Claim 6.10. If ρ ≥ 6λ, and t ∈ S,

(µ− 2λ) ‖µt‖1 ≤ ‖µt+1‖1 ≤ (µ+ 2λ) ‖µt‖1 .

On the other hand, if t 6∈ S,

‖µt‖1 = ‖µt+1‖1 .

The second half of the claim follows immediately from the definition of µt. To

prove the first half, suppose that t ∈ S. We will proceed by induction. Again, we

follow the analysis of [2].

Write µ0 = v0⊗σ0, and write σ0 = (s, 1− s) Part of our inductive hypothesis will

be that for all t,

µt = v
(0)
t ⊗ ste0 + v

(1)
t ⊗ (1− st)e1,

163

where st = s if t is even and 1− s if t is odd, and where v
(i)
t ∈ RNd. For i ∈ {0, 1},

write

v
(i)
t = x

(i)
t + y

(i)
t ,

where x
(i)
t ‖1 and y

(i)
t ⊥ 1. The second part of the inductive hypothesis will be

(6.2) ‖y(i)
t ‖2 ≤ q‖x(i)

t ‖2,

for a parameter q to be chosen later, and for i ∈ {0, 1}.

Because

‖µt‖1 = st‖v(0)
t ‖1 + (1− st)‖v(1)

t ‖1

= st‖x(0)
t ‖1 + (1− st)‖x(1)

t ‖1

=
√
nd
(
st‖x(0)

t ‖2 + (1− st)‖x(1)
t ‖2

)
,

it suffices to show that

(6.3) (µ− 2λ)
∥∥∥x(0)

t

∥∥∥
2
≤
∥∥∥x(1)

t+1

∥∥∥
2
≤ (µ+ 2λ)

∥∥∥x(0)
t

∥∥∥
2

and similarly with the 0 and 1 switched. The analysis is the same for the two cases,

so we just establish (6.3). Using the decomposition A′ = R⊗ S from Lemma 6.8,

µt+1 = Mt(R⊗ S)(v
(0)
t ⊗ ste0 + v

(1)
t ⊗ (1− st)e1)

= Mt

(
Rv

(0)
t ⊗ (1− st+1)e1 +Rv

(1)
t ⊗ st+1e0

)
=
(
M

(1)
t Rv

(0)
t

)
⊗ (1− st+1)e1 +

(
M

(0)
t Rv

(1)
t

)
⊗ st+1e0

This establishes the first inductive claim about the structure of µt+1, and

v
(0)
t+1 = M

(0)
t Rv

(1)
t and v

(1)
t+1 = M

(1)
t Rv

(0)
t .

Consider just v
(1)
t+1. We have

v
(1)
t+1 = M

(1)
t R(x

(0)
t + y

(0)
t).

164

Because t ∈ S, we know that M
(1)
t is diagonal with at most ρnd nonzeros, and further

we know that R has second normalized eigenvalue at most λ, by Lemma 6.8. The

analysis in [2] now shows that, using the inductive hypothesis (6.2),

(6.4) ρ‖x(0)
t ‖2 − qλ

√
ρ(1− ρ)‖x(0)

t ‖2 ≤ ‖x(1)
t+1‖2 ≤ ρ‖x(0)

t ‖2 + qλ
√
ρ(1− ρ)‖x(0)

t ‖2,

and that

‖y(1)
t+1‖2 ≤ qλ‖x(0)

t ‖2 +
√
ρ(1− ρ)‖x(0)

t ‖2.

We must ensure that (6.2) is satisfied for the next round. As long as λ < ρ/6, this

follows from the above when

q = 2

√
1− ρ
ρ

.

With this choice of q, the (6.3) follows from (6.4). Further, the hypotheses on ν show

that the (6.2) is satisfied in the initial step.

Finally, we invoke the following theorem, from [70].

Theorem 6.11 (Theorem 3.1 in [70]). Let X1, . . . , XL be binary random variables

so that for all S ⊂ [L],

P

{∧
i∈S

Xi = 1

}
≤ δ|S|.

Then for all γ > δ,

P

{
L∑
i=1

Xi ≥ γL

}
≤ e−LD(γ||δ).

Lemma 6.7 follows immediately.

6.3 Local correctability of expander codes

Preliminaries dispensed with, we are ready to present our local correction algo-

rithm for expander codes. We use a formulation of expander codes due to [115]. Let

G be a d-regular expander graph on N vertices with expansion parameter λ, as in

165

Definition 6.4. We will take G to be a Ramanujan graph, that is, so that λ ≤ 2
√
d−1
d

;

as mentioned above, explicit constructions of Ramanujan graphs are known [83,85,86]

for arbitrarily large values of d. Let H be the double cover of G, as in Definition 6.6.

Fix a linear inner code C0 over F of rate R0 and relative distance δ0. Let N = nd.

For vi ∈ V (H), let Γ(vi) = (Γ1(vi), . . . ,Γd(vi)) denote the edges attached to v, with

an arbitrary order. The expander code C ⊂ Fn of length n arising from G and C0 is

the Tanner code (as in Definition 2.2) defined by H and C0. That is,

(6.5) C = Cn(C0, G) =
{
x ∈ Fn : x|Γ(vi)

∈ C0 for all vi ∈ V (H)
}

As we saw in Chapter 2, as long as the inner code C0 has good rate and distance, so

does the resulting code C.

Theorem 6.12 ([98,105]). The code C has rate R ≥ 2R0−1, and as long as 2λ ≤ δ0,

the relative distance of C is at least δ2
0/2.

Notice that when R0 <
1
2
, Theorem 6.12 is meaningless. The rate in Theorem

6.12 comes from the fact that C0 has rate R0, so each vertex induces (1−R0)d linear

constraints, and there are N vertices, so the outer code has Nd(1−R0) constraints.

Since the outer code has length n = Nd/2, its rate is at least 2R0 − 1. This näıve

lower bound on the rate ignores the possibility that the constraints induced by the

different vertices may not all be independent. It is an interesting question whether

for certain inner codes, a more careful counting of constraints could yield a better

lower bound on the rate. The ability to use inner codes of rate less than 1
2

would

permit much more flexibility in the choice of inner code in our constructions.

The difficulty of a more sophisticated lower bound on the rate was noticed by

Tanner, who pointed out that simply permuting the codewords associated with a

given vertex could drastically alter the parameters of the outer code [105].

166

6.3.1 Local Correction

If the inner code C0 has a smooth local reconstruction procedure, then not only

does C have good distance, but we show it can also be efficiently locally corrected.

Our main result is the following theorem.

Theorem 6.13. Let C0 be a linear code over F of length d and rate R0 > 1/2.

Suppose that C0 has a s0-smooth local reconstruction procedure with query complexity

Q0. Let C = Cn(C0, G) be the expander code of length n arising from the inner

code C0 and a Ramanujan graph G. Choose any γ < 1/2 and any ζ > 0 satisfying

γ
(
eζQ0

)−1/γ
> 8λ. Then C is (Q, ρ)-locally correctable, for any error rate ρ, with

ρ < γ
(
eζQ0

)−1/γ − 2λ. The success probability is

1−
(n
d

)−1/ ln(d/4)

and the query complexity is

Q =
(n
d

)ε
where ε =

(
1 +

ln(Q′0) + 1

ζ

)
· ln(Q′0)

ln(d/4)
.

Further, when the length of the inner code, d, is constant, the correction algorithm

runs in time O(|F|Q′0+1Q), where Q′0 = Q0 + (d− s0).

Remark 12. We will choose d (and hence Q′0 < d) and |F| to be constant. Thus,

the rate of C, as well as the parameters ρ and ε, will be constants independent of

the block length n. The parameter ζ trades off between the query complexity and the

allowable error rate. When Q0 is much smaller than d (for example, Q0 = 3 and d

is reasonably large), we will want to take ζ = O(1). On the other hand, if Q0 = dε

and d is chosen to be a sufficiently large constant, we should take ζ on the order of

ln(Q0).

167

Before diving into the details, we outline the correction algorithm. First, we

observe that it suffices to consider the case when the local correction algorithm S0 of

the inner code is perfectly smooth: that is, the queries of the inner code are uniformly

random. Otherwise, if S0 is s0-smooth with Q0 queries, we may modify it so that

it is d-smooth with Q0 + (d− s0) queries, by having it query extra points and then

ignore them. Thus, we set Q′0 = Q0 and assume in the following that S0 makes Q0

perfectly smooth queries.

Suppose that C0 has local reconstruction algorithm (S0, A0), and we receive a

corrupted codeword, w, which differs from a correct codeword c∗ in at most a ρ

fraction of the entries. Say we wish to determine c∗[(u0, v1)], for (u0, v1) ∈ E(H).

The algorithm proceeds in two steps. The first step is to find a set of about nε/2

query positions which are nearly uniform in [n], and whose correct values together

determine c∗[(u0, v1)]. The second step is to correct each of these queries with very

high probability—for each, we will make another nε/2 or so queries.

Step 1. By construction, c∗[(u0, v1)] is a symbol in a codeword of the inner code,

C0, which lies on the edges emanating from u0. By applying S0, we may choose Q0

of these edges, S = S0(u0) =
{

(u0, s
(i)
1) : i ∈ [Q0]

}
, so that

A0 (c∗|S , (u0, v1)) = c[(u0, v1)].

Now we repeat on each of these edges: each (u0, s
(i)
1) is part of a codeword emanating

from s
(i)
1 , and so Q0 more queries determine each of those, and so on. Repeating this

L1 times yields a Q0-ary tree T of depth L1, whose nodes are labeled by of edges of H.

This tree-making procedure is given more precisely below in Algorithm 4. Because

the queries are smooth, each path down this tree is a random walk in H; because G is

an expander, this means that the leaves themselves, while not independent, are each

168

close to uniform on E(H). Note that at this point, we have not made any queries,

merely documented a tree, T , of edges we could query.

Step 2. Our next step is to actually make queries to determine the correct values

on the edges represented in the leaves of T . By construction, these values determine

c∗[(u0, v1)]. Unfortunately, in expectation a ρ fraction of the leaves are corrupted,

and without further constraints on C0, even one corrupted leaf is enough to give the

wrong answer. To make sure that we get all of the leaves correct, we use the fact

that each leaf corresponds to a position in the codeword that is nearly uniform (and

in particular nearly independent of the location we are trying to reconstruct). For

each edge, e, of H that shows up on a leaf of T , we repeat the tree-making process

beginning at this edge, resulting in new Q0-ary trees Te of depth L2. This time, we

make all the queries along the way, resulting in an evaluated tree τe, whose nodes

are labeled by elements of F; the root of τe is the e-th position in the corrupted

codeword, w[e], and we hope to correct it to c∗[e].

For a fixed edge, e, on a leaf of T , we will correct the root of τ = τe with very

high probability, large enough to tolerate a union bound over all the trees τe. For

two labelings σ and ν of the same tree by elements of F, we define the distance

(6.6) D(σ, ν) = max
P

δ (σ|P , ν|P) ,

where the maximum is over all paths P from the root to a leaf, and σ|P denotes the

restriction of σ to P . We will show below in Section 6.3.2 that it is very unlikely that

τ contains a path from the root to a leaf with more than a constant fraction γ < 1/2

of errors. Thus, in the favorable case, the distance between the correct tree τ ∗ arising

from c∗ and the observed tree τ is at most D(τ ∗, τ) ≤ γ. In contrast, we will show

that if σ∗ and τ ∗ are both trees arising from legitimate codewords with distinct roots,

169

then σ∗ and τ ∗ must differ on an entire path P , and so D(σ∗, τ) > 1 − γ. To take

advantage of this, we show in Algorithm 5 how to efficiently compute

Score(a) = min
σ∗:root(σ∗)=a

D(σ∗, τ)

for all a, where root(σ∗) denotes the label on the root of σ∗. The above argument

(made precise below in Section 6.3.2) shows that there will be a unique a ∈ F with

score less than γ, and this will be the correct symbol c∗[e].

Finally, with all of the leaves of T correctly evaluated, we may use A0 to work our

way back up T and determine the correct symbol corresponding to the edge at the

root of T . The complete correction algorithm is given below in Algorithm 3.

Algorithm 3: correct: Local correcting protocol.

Input: An index e0 ∈ E(H), and a corrupted codeword w ∈ FE(H).
Output: With high probability, the correct value of the e0’th symbol.
Set L1 = log(N)/ log(d/4) and fix a parameter L2.
T = makeTree(e0, L1)
for each edge e of H that showed up on a leaf of T do

Te = makeTree(e, L2).
Let τe = Te|w be the tree of symbols from w.
w∗[e] = correctSubtree(τe).

Initialize a Q0-ary tree τ∗ of depth L1.
Label the leaves of τ∗ according to T and w∗: if a leaf of T is labeled e, label the
corresponding leaf of τ∗ with w∗[e].
Use the local reconstruction algorithm A0 of C0 to label all the nodes in τ∗.
return the label on the root of τ∗.

The number of queries made by Algorithm 3 is

(6.7) Q = QL1+L2
0

and the running time is O(td|F|Q0+1Q), where td is the time required to run the

local correction algorithm of C0. For us, both d and |F| will be constant, and so the

running time is O(Q).

170

Algorithm 4: makeTree: Uses the local correction property of C0 to construct a tree of indices.

Input: An initial edge e0 = (u0, v1) ∈ E(H), and a depth L.
Output: A Q0-ary tree T of depth L, whose nodes are indexed by edges of H, with root e0
Initialize a tree T with a single node labeled e0
s = 0
for ` ∈ [L] do

Let leaves be the current leaves of T .
for e = (us, v1−s) ∈ leaves do

Let
{
v
(i)
1−s : i ∈ [d]

}
be the neighbors of us in H.

Choose queries Q0(e) ⊂
{

(us, v
(i)
1−s) : i ∈ [d]

}
, and add each query in T as a child at

e.

s = 1− s
return T

Algorithm 5: correctSubtree: Correct the root of a fully evaluated tree τ .

Input: τ , a Q0-ary tree of depth L whose nodes are labeled with elements of F.
Output: A guess at the root of the correct tree τ .
For a node x of τ , let τ [x] denote the label on x.
for leaves x of τ and a ∈ F do

besta(x) =

{
1 τ [x] 6= a

0 τ [x] = a

for ` = L− 1, L− 2, . . . , 0 do
for nodes x at level ` in τ and a ∈ F do

Let y1, . . . , yQ0
be the children of x.

Let Sa ⊂ FQ0 be the set of query responses for the children of x so that A0 returns a
on those responses.

besta(x) = min(a0,...,aQ0
)∈Sa

maxr∈[Q0]

(
bestar (yr) + 1τ(yr)6=ar

)
Let r be the root of τ .
for a ∈ F do

Score(a) =
besta(r) + 1τ(r)6=a

L

return a ∈ F with the smallest Score(a).

6.3.2 Proof of Theorem 6.13

Suppose that c∗ ∈ C, and Algorithm 3 is run on a received word w with δ(c∗, w) ≤

ρ. To prove Theorem 6.13, we must show that Algorithm 3 returns c∗[e0] with high

probability. As remarked above, we assume that the inner recovery algorithm S0 is

perfectly smooth.

We follow the proof outline sketched in Section 6.3.1, which rests on the following

171

observation.

Proposition 6.14. Let c1, c2 ∈ C and let e ∈ E(H) so that c1[e] 6= c2[e]. Let the

distance D between trees with labels in F be as in (6.6). Let T = makeTree(e), and

let τ = T |c1 and σ = T |c2 be the labeled trees corresponding to c1 and c2 respectively.

Then D(τ, σ) = 1. That is, there is some path from the root to the leaf of T so that

τ and σ disagree on the entire path.

Proof. Since c1[e] 6= c2[e], τ and σ have different symbols at their root. Since the

labels on the children of any node determine the label on the node itself (via the

local correction algorithm), it must be that τ and σ differ on some child of the root.

Repeating the argument proves the claim.

Let τe be the tree arising from the received word w, starting at e, as in Algorithm

3. Let

Te = {makeTree(e)|c : c ∈ C}

be the set of query trees arising from uncorrupted codewords, and let τ ∗e ∈ Te be the

“correct” tree, corresponding to the original uncorrupted codeword c∗. Suppose that

(6.8) D(τe, τ
∗
e) ≤ γ

for some γ ∈ [0, 1/2). Then Proposition 6.14 implies that for any σ∗e ∈ Te with a

different root from τ ∗e has

(6.9) D(τe, σ
∗
e) ≥ 1− γ.

Indeed, there is some path along which τ ∗e and σ∗e differ in every place, and along this

path, τe agrees with τ ∗e in at least a 1− γ fraction of the places. Thus, τe disagrees

with σ∗e in those same places, establishing (6.9). Consider the quantity

(6.10) Score(a) = min
σ∗e∈Te:root(σ∗e)=a

D(τe, σ
∗
e).

172

Equations (6.8) and (6.9) imply that if a∗ is the label on the root of τ ∗e , then

Score(a) ≤ γ, and otherwise, Score(a) ≥ 1 − γ. Thus, to establish the correct-

ness of Algorithm 3, it suffices to argue first that Algorithm 5 correctly computes

Score(a) for each a, and second that (6.8) holds for all trees τe in Algorithm 3.

The first claim follows by inspection. Indeed, for a node x ∈ τe, let (τe)x denote

the subtree below x. Let T (x,a)
e denote the set of trees in Te so that the node x is

labeled a. Throughout Algorithm 3, the quantity besta(x) gives the distance from

the observed tree rooted at x to the best tree in Te, rooted at x, with the additional

restriction that the label at x should be a. That is,

(6.11) besta(x) = min
σ∗e∈T

(x,a)
e

D̃ ((σ∗e)x , (τe)x) ,

where D̃ is the same as D except it does not count the root, and it is not normalized.

It is easy to see that (6.11) is satisfied for leaves x of τe. Then for each node,

Algorithm 5 updates besta(x) by considering the best labeling on the children of x

consistent with τ(x) = a, taking the distance of the worst of those children, and

adding one if necessary.

To establish the second claim, that (6.8) holds for all trees τe, we will use Lemma

6.7 from Section 6.2. Applying Lemma 6.7 with B equal to the set of corrupted

edges, we see that a random walk on H will not hit too many corrupted edges. The

conditions on ρ and λ in the statement of Theorem 6.13 implies that ρ > 6λ, and so

Lemma 6.7 applies to random walks on H.

Suppose that L1 is even, and consider any leaf of T . This leaf has label (u0, v1) ∈

E(H), where u is the result of a random walk of length L1 on G and v is a randomly

chosen neighbor of u. Because G is a Ramanujan graph, the distribution µ on u

173

satisfies ∥∥∥∥µ− 1

N
1N

∥∥∥∥
2

≤ λL1 ≤ 1√
N

as long as

L1 ≥
log(N)

log(d/4)
.

Thus, Lemma 6.7 applies to random walks in H starting at e. Fix a leaf of τe; by

the smoothness of the query algorithm S0, each path from the root to the leaf of

each tree τe is a uniform random walk, and so with high probability, the number of

corrupted edges on this walk is not more than γL2, which was the desired outcome.

Finally, we union bound over QL1
0 trees τe and QL2

0 paths in each tree. We will

set L2 = CL1, for a constant C to be determined. Thus, (6.8) holds (and hence

Algorithm 3 is correct) except with probability at most

(6.12) P {Algorithm 3 fails} ≤ exp

(
(C + 1)L1 ln(Q0)− CγL1 ln

(
γ

ρ+ 2λ

))
.

Our goal is to show that P {Algorithm 3 fails} ≤ exp(−L1), which is equivalent

to showing

(C + 1) ln(Q0)− Cγ ln

(
γ

ρ+ 2λ

)
< −1

Rearranging, this means our goal is to find C so that

C

(
ln(Q0)− γ ln

(
γ

ρ+ 2λ

))
< −1− ln(Q0)

By hypothesis in Theorem 6.13 we have ρ < γ
(
eζQ0

)−1/γ − 2λ, which means that

γ ln

(
γ

ρ+ 2λ

)
> γ ln

(
γ

γ (eζQ0)−1/γ

)
= γ ln

((
eζQ0

)1/γ
)

= ζ + lnQ0

Thus

ln(Q0)− γ ln

(
γ

ρ+ 2λ

)
< −ζ

Thus choosing C = ln(Q0)+1
ζ

is sufficient to bound the failure probability by exp(−L1).

From (6.7), Q = Q
(C+1)L1

0 , which completes the proof of Theorem 6.13.

174

6.4 Examples

In this section, we provide two examples of choices for C0, both of which result in

(nε, ρ)-LCCs of rate 1 − α for any constants ε, α > 0 and for some constant ρ > 0.

Our first and main example is a generalization of Reed-Muller codes, based on finite

geometries. With these codes as C0, we provide LCCs over Fp—unlike multiplicity

codes, these codes work naturally over small fields.

Our second example comes from the observation that if the C0 is itself an LCC (of

a fixed length) our construction provides a new family of (nε, ρ)-LCCs. In particular,

plugging the multiplicity codes of [79] into our construction yields a novel family of

LCCs. This new family of LCCs has a very different structure than the underlying

multiplicity codes, but achieves roughly the same rate and locality.

Codes from Affine Geometries. One advantage of our construction is that the

inner code C0 need not actually be a good locally decodable or correctable code.

Rather, we only need a smooth reconstruction procedure, which is easier to come by.

One example comes from affine geometries; in this example, we will show how use

Theorem 6.13 to make LCCs of length n, rate 1 − α and query complexity nε, for

any α, ε > 0.

For a prime power h = p` and parameters r and m, consider the r-dimensional

affine subspaces L1, . . . , Lt of the vector space Fmh . let H be the t × hm incidence

matrix of the Li and the points of Fmh , and let A∗(r,m, h) be the code over Fp

whose parity check matrix is H. These codes, examples of finite geometry codes, are

well-studied, and their ranks can be exactly computed—see [3, 4] for an overview.

The definition of of A∗(r,m, h) gives a reconstruction procedure: we may query all

the points in a random r-dimensional affine subspace of Fmh and use the corresponding

175

parity check. In particular, if we index the positions of the codeword by elements of

Fmh . Then given the position x ∈ Fmh , the query set S(x) is all the points other than

x in a random r-flat L that passes through x. Given a codeword c ∈ A∗(r,m, h), we

may reconstruct cx by

A
(
c|S(x)

)
= −

∑
y∈Q(x)

cy.

By definition, (A, S) is a smooth reconstruction procedure which makes hr queries.

The locality of A∗(r,m, h) has been noticed before, for example in [41], where it

was observed that these codes could be viewed as lifted parity check codes. However,

as they note, these codes do not themselves make good LCCs—the reconstruction

procedure cannot tolerate any errors in the chosen subspace, and thus the error rate

ρ must tend to zero as the block length grows. Even though these codes are not good

LCCs, we can use them in Theorem 6.13 to obtain good LCCs with sublinear query

complexity, which can correct a constant fraction of errors. We will use the bound

on the rate of A∗(1,m, h) from [41]:

Lemma 6.15 (Lemma 3.7 in [41]). Choose ` = εm, with h = p` as above. The

dimension of A∗(1,m, h) is at least hm − hm(1−β), for β = β(ε′) = Ω(2−2/ε′).

We will apply Lemma 6.15 with

ε′ =
ε

2
and m =

√
ln(2/α)

ε′β(ε′) ln(p)
,

to obtain a p-ary code C0 of length d = pε
′m2

with rate R0 at least 1−α/2 and which

has a (d − 1)-smooth reconstruction algorithm with query complexity Q0 = dε
′
. To

apply Theorem 6.13, fix any ε, α > 0, sufficiently small. We set ζ = 2 ln(Q0), and

choose γ = 1/4 in Theorem 6.13, and use C0: the resulting expander code C has rate

1− α and query complexity

Q ≤
(n
d

)ε

176

for sufficiently large d. Finally, using the fact that λ ≤ 2/
√
d, we see that C corrects

against a ρ fraction of errors, where

ρ =
1

5
d−6ε′

again for sufficiently large d, as long as ε < 1/12. Assuming ε and α are small enough

that d is a suitably large constant, this rate ρ is a positive constant, and we achieve

the advertised results.

Multiplicity codes. Multiplicity codes [79] are themselves a family of constant-rate

locally decodable codes. We can, however, use a multiplicity code of constant length

as the inner code C0 in our construction. This results in a new family of constant-

rate locally decodable codes. The parameters we obtain from this construction are

slightly worse than the original multiplicity codes, and the main reason we include

this example is novelty—these new codes have a very different structure than the

original multiplicity codes.

For constants α′, ε′ > 0, the multiplicity codes of [79] have length d and rate

R0 = 1−α′ and a (d−1)-smooth local reconstruction algorithm with query complexity

Q0 = O(dε
′
). To apply Theorem 6.13, we will choose ζ = C ln(Q0) for a sufficiently

large constant C, and so the query complexity of C will be

Q =
(n
d

)(1+β)ε′

for an arbitrarily small constant β. Thus, setting ε = ε′(1 + β), and α = 2α′, we

obtain codes C with rate 1−ε and query complexity (n/d)ε. As long as ε is sufficiently

small, C can tolerate errors up to ρ = C ′d−C
′′ε for constants C ′ and C ′′ (depending

on the constants in the constructions of the multiplicity code, as well as on C above).

177

Multiplicity codes require sufficiently large block length d, on the order of

d ≈
(

1

α2ε3

)1/ε

log

(
1

αε

)
.

Choosing this d results in a requirement ρ ≤ 1/poly(αε). We remark that the

distance of the multiplicity codes is on the order of δ0 = Ω(α2ε), and so the distance

of the resulting expander code C is Ω(α4ε2).

6.5 Conclusion

In the constant-rate regime, all known LDCs work by using a smooth local recon-

struction algorithm. When the locality is, say, three, then with very high probability

none of the queried positions will be corrupted. This reasoning fails for constant

rate codes, which have larger query complexity: we expect a ρ fraction of errors in

our queries, and this is often difficult to deal with. In this chapter, we made the

low-query argument valid in a high-rate setting—any code with large enough rate

and with a good local reconstruction algorithm can be used to make a full-blown

locally correctable code.

The payoff of our approach is the first sublinear time algorithm for decoding

expander codes. More precisely, we have shown that as long as the inner code C0

admits a smooth local reconstruction algorithm with appropriate parameters, then

the resulting expander code C is a (nε, ρ)-LCC with rate 1− α, for any α, ε > 0 and

some constant ρ. Further, we presented a decoding algorithm with runtime linear in

the number of queries.

There are only two other constructions known in this regime, and and our con-

structions are substantially different. Expander codes are a natural construction,

and it is our hope that the additional structure of our codes, as well as the extremely

fast decoding time, will lead to new applications of local decodability.

178

Acknowledgements

The work in Chapter 6 originally appeared as [67] (conference version) and [68]

(journal version), and is joint work with Brett Hemenway and Rafail Ostrovsky.

CHAPTER 7

Summary and conclusions

7.1 Summary of contributions

We have investigated two variants of coding theory from a rather non-standard

view. In list decoding, we worked very hard to ignore some very nice algebraic

structure, and focused instead on probabilistic and geometric considerations. In

local decoding, we used a combinatorial and probabilistic approach to provide new

constructions of LCCs, while to date only algebraic constructions were known.

As punchlines of our work on list decoding, we showed that random linear codes

are (nearly) optimally list-decodable with high probability, and that there exist Reed-

Solomon codes which are list-decodable beyond the Johnson bound. These questions

had each been open for over 15 years. Along the way, we developed a toolkit which

complements existing algebraic approaches. Our toolkit could be described as a gen-

eral theory of “random stuff you can do to codes.” This theory gives us some insight

about the structure of list-decodability: while it may not be the case that a simple

structural property (like distance) is enough to guarantee optimal list-decodability,

it is the case that a simple structural property and a little bit of randomness (like

distance and some random puncturing) is enough.

In local-decoding, we gave examples of constant-rate locally correctible codes,

179

180

using expander graphs and some probabilistic arguments. Our constructions are the

third known family of codes in this regime, and they are of a very different flavor:

while existing approaches are algebraic, ours are are combinatorial. In fact, “our”

constructions are actually expander codes, which are neither ours nor new. Thus,

our work also gives sublinear time decoding algorithms for a well-studied family of

codes.

Finally, and most importantly, we have perhaps improved life for Alice and Bob

(Figure 7.1.)

Alice Bob

Figure 7.1: Concrete results of the work in this dissertation.

7.2 Future work and open questions

Fortunately (from the perspective of obtaining future employment) we did not

solve all of the problems.1 We conclude with a few open problems raised by our

work.

7.2.1 List decoding

In Chapter 3, we gave a very simple argument for the optimal list-decodability of

random linear codes over constant-sized alphabets. The major open question of that

chapter was to extend the argument to large alphabet sizes. We nearly did this in

Chapter 4, but there were some obnoxious logarithmic factors, and our proof became

1Clearly, this was a deliberate decision.

181

much more complicated. It is natural to ask if either or both of these issues could

be ameliorated.

Question 7.1. Is it true that random linear codes of rate Ω(ε) are list-decodable up

to radius ρ = (1 − ε) for sufficiently large alphabet sizes q? And, if so, is there a

simple proof?

In Chapter 4, our main motivation was Reed-Solomon codes, and we showed that

there exist Reed-Solomon codes which are list-decodable beyond the Johnson bound.

Again, there is the open question of removing the logarithmic factors. Additionally,

there’s the problem of actually finding such a code.

Question 7.2. For any R = ω(ε2), is there a set of explicit evaluation points

α1, . . . , αn so that the Reed-Solomon code of rate R with these evaluation points is

list-decodable up to radius ρ = 1− ε?

One way to try to attack Question 7.2 is to find evaluation points that are suit-

able “structure-free.” More precisely, the work of [12] shows that certain algebraic

structure in the evaluation points is bad (in that it hinders list-decodability); our

work shows that a lack of structure (random evaluation points) are good. Making

this rigorous is an interesting direction.

Question 7.3. Charactize algebraic structure that hinders list-decodability. More

precisely, is there some (nontrivial) algebraic property so that

(a) any Reed-Solomon code whose evaluation points avoid this property is list-decodable

beyond the Johnson bound, and

(b) any Reed-Solomon code whose evaluation points have this property get stuck at

the Johnson bound?

182

Even finding a nontrivial property so that (a) is true would be interesting, and, de-

pending on the property, could answer Question 7.2.

Choosing evaluation points to be subspace evasive sets seems like a good candi-

date.

Question 7.3 leads naturally to a more general question about the structure of

list-decoding. Our work on list-decoding gave a theory of “random stuff you can do

to codes,” and one take-away is that “most codes (derived from) codes with good

structural properties are optimally list-decodable.” When the structural property

was distance, this gave a sort of randomized version of the Johnson bound. This was

satisfying because it went beyond the actual Johnson bound, but unsatisfying because

of the randomness. A very ambitious goal is to derandomize this approach, and

to characterize (deterministically) the pathological cases which prevent the actual

Johnson bound from working.

Question 7.4. Is there a simple structural property A (like distance) and another

simple structural property B (a generalization of an answer to Question 7.3 to arbi-

trary codes) so that having A and not B is a sufficient condition for (near) optimal

list-decodability?

Whether or not we can derandomize our results, we might ask whether or not we

can do anything efficient with them. In Chapter 5, we focused our machinery on

closing the gap between the combinatorial and probabilistic approach of this thesis

and the existing algorithmic approaches. The holy grail for list-decoding is Problem

5.1, and we did not come close. Any further progress in this direction would be

exciting.2

2Especially if it rests on the work in this dissertation.

183

Question 7.5. Is there any way to apply Theorem 4.6 to obtain efficiently decodable

list-decodable codes, with any nontrivial parameters?

Finally, list-decodable codes are related to many pseudorandom objects. (See [107]

for a nice overview of many of these connections). It is natural to ask if our machinery

could be used there as well.

Question 7.6. Can one extend the tools from this dissertation to answer open ques-

tions in pseudorandomness? As a concrete question, is a random linear extractor3

an optimal strong extractor?

The machinery of Gaussian processes, well-understood and also well-exploited in

other areas, has a great deal of potential in coding theory and pseudorandomness.

The problem of controlling the worst case of a random process, a.k.a., bounding

E sup[stuff], is ubiquitous in coding theory, pseudorandomness, and other areas of

theoretical computer science. It is exciting to think how tools from (continuous)

probability might be brought to bear in these (generally discrete) domains.

7.2.2 Local decoding

In Chapter 6, we gave a general framework for turning codes C0 with smooth

local reconstruction algorithms into full-blown locally correctible codes. We gave

two instantiations of such inner codes, both of which gave codes of arbitrarily high

rate and query complexity nε. Many questions remain about how to choose inner

codes. A major limitation on allowable inner codes is that the rate needs to be at

least 1/2 in order to obtain an expander code with nontrivial rate. However, the

argument for the rate of expander codes (which we sketched in Chapter 2) is known

3That is, use a random seed to choose a m × n matrix from some random subset of all such matrices, and use
this matrix to map a low-entropy n-bit source to m bits of near-uniform randomness. This form of the question was
asked to me by Swastik Kopparty and David Zuckerman. One can say something about strong Renyi extractors
(that is, extractors for Renyi entropy) without too much trouble, but the question is for the standard definition of a
strong extractor.

184

not to be tight [105]. If we could overcome this obstacle, it would give us access to a

much larger class of codes to use as inner codes (for example, perhaps we could use

Reed-Muller codes as an inner code).

Question 7.7. What other families of inner codes result in locally correctible ex-

pander codes?

A more specific form of Question 7.7, which was asked of me by Avi Wigderson

and Shubhangi Saraf, is whether we can find suitable inner codes over R. There

are no known locally correctable codes over the reals in this regime, and currect

evidence [6, 24] indicates that finding LCCs over R is harder than over finite fields.

Question 7.8. Are there suitable inner codes which are linear over R?

A final question is whether or not techniques like this could be used to obtain

codes with logarithmic query complexity.

Question 7.9. Can the techniques of Chapter 6 be extended to produce codes with

rate tending to 1 and query complexity (poly)logarithmic in n?

In [21], it was conjectured that no such codes exist—if they did not, it would

imply explicit families of rigid matrices.

Finally, we conclude with the obvious question raised by this dissertation.

Question 7.10. May I please have a Ph.D.?

BIBLIOGRAPHY

185

186

BIBLIOGRAPHY

[1] Erik Agrell, Alexander Vardy, and Kenneth Zeger. Upper bounds for constant-weight codes.
Information Theory, IEEE Transactions on, 46(7):2373–2395, 2000.

[2] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph prod-
ucts. Computational Complexity, 5(1):60–75, 1995.

[3] Edward F. Assmus and Jennifer D. Key. Designs and their Codes. Cambridge University
Press, 1994.

[4] Edward F. Assmus and Jennifer D. Key. Polynomial codes and finite geometries. In Vera
Pless, Richard A Brualdi, and William Cary Huffman, editors, Handbook of Coding Theory,
volume 2, pages 1269–1343. Elsevier, 1998.

[5] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing (STOC), pages 21–32, New York, NY, USA, 1991.

[6] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matri-
ces with applications to combinatorial geometry and locally correctable codes. In Proceedings
of the 43rd Annual ACM Symposium on Theory of Computing, pages 519–528, 2011.

[7] Alexander Barg and Gilles Zemor. Error exponents of expander codes. Information Theory,
IEEE Transactions on, 48(6):1725–1729, June 2002.

[8] Alexander Barg and Gilles Zemor. Concatenated codes: serial and parallel. Information
Theory, IEEE Transactions on, 51(5):1625–1634, May 2005.

[9] Alexander Barg and Gilles Zemor. Distance properties of expander codes. Information The-
ory, IEEE Transactions on, 52(1):78–90, January 2006.

[10] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share Conversion and Private
Information Retrieval. In Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC), pages 258–268, Los Alamitos, CA, USA, 2012.

[11] Avraham Ben-Aroya, Klim Efremenko, and Amon Ta-Shma. Local List Decoding with a Con-
stant Number of Queries. In Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 715–722. IEEE, October 2010.

[12] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polynomials and
limits to list decoding of reed-solomon codes. Information Theory, IEEE Transactions on,
56(1):113–120, 2010.

[13] Vladamir .M. Blinovsky. Code bounds for multiple packings over a nonbinary finite alphabet.
Problems of Information Transmission, 41(1):23–32, 2005.

[14] Vladamir M. Blinovsky. On the convexity of one coding-theory function. Problems of Infor-
mation Transmission, 44(1):34–39, 2008.

187

[15] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[16] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, December
1993.

[17] Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of permanent. In Proceedings
of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
90–99, 1999.

[18] Yeow M. Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang F. Zhang. Query-Efficient
Locally Decodable Codes of Subexponential Length. Computational Complexity, pages 1–31,
August 2011.

[19] Qi Cheng and Daqing Wan. On the list and bounded distance decodability of reed-solomon
codes. SIAM Journal on Computing, 37(1):195–209, 2007.

[20] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry of
fourier matrices and list decodability of random linear codes. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 432–442, 2013.

[21] Zeev Dvir. On matrix rigidity and locally self-correctable codes. Computational Complexity,
20(2):367–388, 2011.

[22] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching Vector Codes. SIAM Journal
on Computing, 40(4):1154–1178, January 2011.

[23] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC), pages 351–358, 2012.

[24] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-lccs
over the reals. arXiv preprint arXiv:1311.5102, 2013.

[25] Klim Efremenko. 3-query locally decodable codes of subexponential length. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 39–44. ACM,
2009.

[26] Klim Efremenko. From irreducible representations to locally decodable codes. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 327–338, New
York, NY, USA, 2012.

[27] Peter Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of
Electronics, MIT, 1957.

[28] Peter Elias. Error-correcting codes for list decoding. Information Theory, IEEE Transactions
on, 37(1):5–12, 1991.

[29] Thomas Ericson and Victor Zinoviev. Spherical codes generated by binary partitions of
symmetric pointsets. IEEE transactions on information theory, 41(1):107–129, 1995.

[30] Vitali Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 563–574, 2006.

[31] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing.
Springer, 2013.

[32] Robert G. Gallager. Low Density Parity-Check Codes. Technical report, MIT, 1963.

188

[33] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson.
Self-testing/correcting for polynomials and for approximate functions. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing (STOC), pages 33–42, New York,
NY, USA, 1991.

[34] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information
Processing Letters, 43(4):169–174, September 1992.

[35] David Gillman. A chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4):1203–1220, 1998.

[36] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first Annual ACM Symposium on Theory of Computing, pages 25–
32, 1989.

[37] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with errors. In Pro-
ceedings of the thirty-first Annual ACM Symposium on Theory of Computing, pages 225–234,
1999.

[38] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries:
The highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535–570, 2000.

[39] Parikshit Gopalan. A fourier-analytic approach to reed-muller decoding. In Proceedings of the
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 685–694,
2010.

[40] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding reed-muller codes
over small fields. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 265–274, 2008.

[41] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
Proceedings of the 4th conference on Innovations in Theoretical Computer Science (ITCS),
pages 529–540, 2013.

[42] Venkatesan Guruswami. Limits to list decodability of linear codes. In Proceedings of the 34th
annual ACM symposium on theory of computing (STOC), pages 802–811. ACM, 2002.

[43] Venkatesan Guruswami. List Decoding of Error-Correcting Codes (Winning Thesis of the
2002 ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes in Computer
Science. Springer, 2004.

[44] Venkatesan Guruswami, Johan H̊astad, and Swastik Kopparty. On the list-decodability of
random linear codes. Information Theory, IEEE Transactions on, 57(2):718–725, 2011.

[45] Venkatesan Guruswami, Johan H̊astad, M. Sudan, and David Zuckerman. Combinatorial
bounds for list decoding. Information Theory, IEEE Transactions on, 48(5):1021–1034, 2002.

[46] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable codes. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages
126–135, 2003.

[47] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[48] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
608–617, 2013.

189

[49] Venkatesan Guruswami and Srivatsan Narayanan. Combinatorial limitations of average-
radius list decoding. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 591–606. Springer, 2013.

[50] Venkatesan Guruswami and Atri Rudra. Limits to list decoding reed-solomon codes. Infor-
mation Theory, IEEE Transactions on, 52(8):3642–3649, 2006.

[51] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[52] Venkatesan Guruswami and Atri Rudra. Error correction up to the information-theoretic
limit. Commun. ACM, 52(3):87–95, 2009.

[53] Venkatesan Guruswami and Atri Rudra. The existence of concatenated codes list-decodable
up to the hamming bound. IEEE Transactions on Information Theory, 56(10):5195–5206,
2010.

[54] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory. 2014.
In progress; available from http://www.cse.buffalo.edu/~atri/courses/coding-theory/

book/.

[55] Venkatesan Guruswami and Igor Shparlinski. Unconditional proof of tightness of johnson
bound. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 754–755, 2003.

[56] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Proceedings of 39th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 28–39, 1998.

[57] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[58] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concatenated
codes. In Proceedings of the thirty-second Annual ACM Symposium on Theory of Computing,
pages 181–190, 2000.

[59] Venkatesan Guruswami and Madhu Sudan. Extensions to the johnson bound, 2001.
Manuscript.

[60] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from parvaresh–vardy codes. Journal of the ACM (JACM), 56(4):20,
2009.

[61] Venkatesan Guruswami and Salil Vadhan. A lower bound on list size for list decoding. In-
formation Theory, IEEE Transactions on, 56(11):5681–5688, 2010.

[62] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of reed-
solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

[63] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. In Proceedings of the 44th Symposium on Theory of
Computing (STOC), pages 339–350, 2012.

[64] Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-geometric,
and gabidulin subcodes up to the singleton bound. In Proceedings of the 45th Annual ACM
Symposium on the Theory of Computing (STOC), pages 843–852, 2013.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/

190

[65] Venkatesan Guruswami and Chaoping Xing. Optimal rate list decoding of folded algebraic-
geometric codes over constant-sized alphabets. In Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1858–1866, 2014.

[66] Richard W Hamming. Error detecting and error correcting codes. Bell System technical
journal, 29(2):147–160, 1950.

[67] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Locally correctability of expander
codes. In Proceedings of the 40th International Colloquium on Automata, Languages and
Programming (ICALP), pages 540–551, 2013.

[68] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Locally correctability of expander
codes. Information and Computation, 2014. To appear.

[69] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–562, 2006.

[70] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 617–631, 2010.

[71] Toshiya Itoh and Yasuhiro Suzuki. New Constructions for Query-Efficient Locally Decodable
Codes of Subexponential Length. Information and Systems, IEICE Transactions on, E93-
D(2):263–270, October 2010.

[72] Selmer Johnson. A new upper bound for error-correcting codes. Information Theory, IEEE
Transactions on, 8(3):203–207, 1962.

[73] Selmer Johnson. Improved asymptotic bounds for error-correcting codes. Information The-
ory, IEEE Transactions on, 9(3):198–205, 1963.

[74] Jørn Justesen. Class of constructive asymptotically good algebraic codes. Information The-
ory, IEEE Transactions on, 18(5):652–656, 1972.

[75] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the 32nd Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 80–86, 2000.

[76] Tali Kaufman, Shachar Lovett, and Ely Porat. Weight distribution and list-decoding size of
reed–muller codes. Information Theory, IEEE Transactions on, 58(5):2689–2696, 2012.

[77] Iordanis Kerenidis and Ronald De Wolf. Exponential lower bound for 2-query locally decod-
able codes via a quantum argument. In Proceedings of the thirty-fifth Annual ACM Symposium
on Theory of Computing, pages 106–115, 2003.

[78] Swastik Kopparty. List-decoding multiplicity codes. Electronic Colloquium on Computational
Complexity (ECCC), 19:44, 2012.

[79] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 167–176, 2011.

[80] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and pro-
cesses, volume 23. Springer, 1991.

[81] Vladimir I Levenshtein. Universal bounds for codes and designs. In Vera Pless, Richard A
Brualdi, and William Cary Huffman, editors, Handbook of Coding Theory. Elsevier Science
Inc., 1998.

191

[82] Richard J. Lipton. Efficient checking of computations. In Proceedings of the 7th Annual
Symposium on Theoretical aspects of computer science (STACS), pages 207–215, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

[83] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[84] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting
codes. Elsevier, 1977.

[85] Grigory A. Margulis. Explicit group theoretical constructions of combinatorial schemes and
their application to the design of expanders and concentrators. Problems of Information
Transmission, 9(1):39–46, 1988.

[86] Moshe Morgenstern. Existence and explicit constructions of q + 1 regular ramanujan graphs
for every prime power q. Journal of Combinatorial Theory, Series B, 62(1):44–62, 1994.

[87] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the guruswami-sudan ra-
dius in polynomial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 285–294, 2005.

[88] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC), pages
194–203, New York, NY, USA, 1994. ACM.

[89] Irving Reed. A class of multiple-error-correcting codes and the decoding scheme. Information
Theory, Transactions of the IRE Professional Group on, 4(4):38–49, September 1954.

[90] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial & Applied Mathematics, 8(2):300–304, 1960.

[91] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
84–93, New York, NY, USA, 2005.

[92] Mark Rudelson. Contact points of convex bodies. Israel Journal of Mathematics, 101(1):93–
124, 1997.

[93] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian
measurements. Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.

[94] Atri Rudra. List decoding and property testing of error-correcting codes. PhD thesis, Univer-
sity of Washington, 2007.

[95] Atri Rudra. Limits to list decoding of random codes. Information Theory, IEEE Transactions
on, 57(3):1398–1408, 2011.

[96] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abundant near-
optimal-rate puncturings. In Proceedings of the 46th Annual ACM Symposium on the Theory
of Computing (STOC), 2014. To appear.

[97] Claude Elwood Shannon. A mathematical theory of communication. Bell System technical
journal, 27(3):379–423, 1948.

[98] Michael Sipser and Daniel A. Spielman. Expander codes. Information Theory, IEEE Trans-
actions on, 42(6):1710–1722, 1996.

[99] D. A. Spielman. Highly fault-tolerant parallel computation. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, pages 154–163. IEEE, October 1996.

192

[100] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. Information
Theory, IEEE Transactions on, 42(6):1723–1731, November 1996.

[101] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal
of Complexity, 13(1):180–193, 1997.

[102] Madhu Sudan. List decoding: algorithms and applications. SIGACT News, 31(1):16–27,
2000.

[103] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[104] Michel Talagrand. The generic chaining: upper and lower bounds for stochastic processes.
Springer, 2005.

[105] R. Michael Tanner. A recursive approach to low complexity codes. Information Theory,
IEEE Transactions on, 27(5):533–547, 1981.

[106] Nicolas Thierry-Mieg. A new pooling strategy for high-throughput screening: the shifted
transversal design. BMC bioinformatics, 7(1):28, 2006.

[107] Salil Vadhan. The unified theory of pseudorandomness: guest column. ACM SIGACT News,
38(3):39–54, 2007.

[108] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Sci-
ence, 7(1-3):1–336, 2012.

[109] Edward J. Weldon. Justesen’s construction–the low-rate case (corresp.). Information Theory,
IEEE Transactions on, 19(5):711–713, 1973.

[110] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications. John
Wiley & Sons, 1999.

[111] Mary Wootters. On the list decodability of random linear codes with large error rates. In
Proceedings of the 45th Annual ACM Symposium on the Theory of Computing (STOC), pages
853–860, 2013.

[112] John M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory of
Electronics, MIT, 48:90–95, 1958.

[113] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Journal
of the ACM, 55(1), 2008.

[114] Sergey Yekhanin. Locally Decodable Codes. Foundations and Trends in Theoretical Computer
Science, 2010.

[115] Gilles Zemor. On expander codes. Information Theory, IEEE Transactions on, 47(2):835–
837, 2001.

[116] Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems of Information
Transmission, 17(4):29–34, 1981.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Overview of contributions
	List decoding
	Contributions in list decoding.

	Local decoding
	Contributions in local decoding

	Dissertation outline

	Set up and Preliminaries
	Basic coding theory: background and definitions
	The rate-distance trade-off: some basic bounds
	Examples of codes
	Reed-Solomon codes
	Expander codes

	List-Decodable codes
	List-decoding radius vs. rate
	The ``large-" parameter regime

	List-decoding radius vs. distance, and the Johnson bound
	Average-radius, average-distance Johnson bound

	List decoding of Reed-Solomon codes and beyond
	Summary

	Locally Decodable codes
	Two examples: Hadamard codes and Reed-Muller codes
	Two parameter regimes

	Random tools
	Gaussian random variables
	Suprema of Gaussian processes
	Getting to Gaussians

	Overview of notation

	List Decoding: small alphabets
	Introduction
	Related work
	Contributions of Chapter 3
	Overview of the approach
	Chapter organization

	A few more definitions
	Sufficient conditions for list decodability
	Aside: the Restricted Isometry Property

	Random linear codes are optimally list-decodable over small alphabets
	Generalization to randomly punctured codes
	Conclusion

	List Decoding: large alphabets and Reed-Solomon codes
	Introduction
	Contributions of Chapter 4
	Chapter Organization

	Yet more definitions
	Average-radius Johnson bounds
	Overview of approach
	Main theorem
	Codes with good distance have abundant optimally-list-decodable puncturings
	Most Reed-Solomon codes are list-decodable beyond the Johnson bound
	Near-optimal bounds for random linear codes over large alphabets

	Proof of Theorem 4.6: reduction to Gaussian processes
	Proof of Theorem 4.9: controlling a Gaussian process
	Defining the nets
	Proof of Theorem 4.9 from Lemma 4.10: a chaining argument
	Proof of Lemma 4.10: the desired nets exist

	Conclusion and future work

	List decoding: more general applications
	Introduction
	Linear time encoding with near optimal rate
	Folded codes
	Contributions of Chapter 5
	Chapter organization

	Setup, and still more definitions
	Efficiently encodable list-decodable codes from expander graphs
	Random folding
	Conclusion

	Local decoding: expander codes
	Introduction
	Notation and preliminaries
	Related work
	Contributions of Chapter 6
	Chapter organization

	Overview of expander graphs
	Proof of Lemma 6.7

	Local correctability of expander codes
	Local Correction
	Proof of Theorem 6.13

	Examples
	Conclusion

	Summary and conclusions
	Summary of contributions
	Future work and open questions
	List decoding
	Local decoding

	BIBLIOGRAPHY

