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Abstract 

Assessment of molecular biomarkers expressed in cells and tissues can inform 

scientists and clinicians of physiological and disease processes.  Optical techniques can 

quantitatively and noninvasively assess molecular biomarkers in living tissues.  This 

dramatically improves our ability to study detailed behavior of disease, perform earlier 

detection of disease, and assess functional cellular information.  However, small animals, 

which play an important role in the study of molecular biomarkers, pose a challenge for 

intravital optical assessment.  In this dissertation, we engineer and demonstrate 

methodologies for performing intravital optical assessments, in living mice, of fluorescent 

biomarkers that indicate molecular expressions of disease or viability. 

First, we engineered a flexible fiber-optic microendoscope for longitudinal optical 

imaging studies in a mouse model of disseminated ovarian cancer.  This microendoscope 

has an outer diameter of 680 µm and achieves a lateral resolution of 4 µm.  The instrument 

repetitively monitored the growth of fluorescence-expressing ovarian cancer cells in mice 

for over 4 weeks, visualizing single cells, cell clusters, and tumor masses.  By establishing 

longitudinal (non-terminal) studies, this technology allows each animal to be used as its 

own control, significantly reducing the number of animals needed for experimentation. 

We then employed fluorescence microendoscopy to validate the specific binding 

activity of a fluorescence-labeled peptide to colorectal dysplasia in a genetically-engineered 

mouse model.  The microendoscope was passed through the instrument channel of a small 

animal endoscope for simultaneous wide-field and microscopic imaging.  More than two-

fold greater fluorescence intensity was measured from dysplastic tissue compared to 

adjacent normal mucosa. 

In the third part of this dissertation we developed a label-free methodology 

employing a handheld fluorescence lifetime spectroscopy probe to optically assess tissue 
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engineered constructs that were implanted in living mice.  Clinical translation of tissue 

engineered constructs requires noninvasive methods for assessing their integration with 

host tissue after grafting.  Our instrumentation noninvasively sensed endogenous 

fluorophores in the tissue constructs that correlate to in vitro measures of cellular viability.  

Finally, we report the design and construction of a depth-resolved fluorescence lifetime 

spectroscopy system, which could be used for assessing the viability of tissue-engineered 

constructs with greater specificity than the demonstrated probe. 
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Chapter 1.  
Introduction 

By combining innovative molecular biology with high resolution, fiber-based 

optical instrumentation, researchers and clinicians can now directly assess cellular 

and molecular processes in living tissues.  In vivo assessment of molecular 

biomarkers in small animals can provide unique insights into disease pathogenesis, 

drug development, and effects of therapy [1].  Methods of intravital microscopy and 

spectroscopy that are based on fluorescence enable the quantitative and 

noninvasive assessment of a wealth of fluorescent molecular biomarkers that report 

on functional cellular information.  These biomarkers include exogenous contrast 

agents for detecting over-expressed cell surface targets, fluorescent proteins that 

are engineered to be constitutively-expressed by cells, and endogenous 

fluorophores that are native to the tissues and allow label-free optical assessment.  

Advancement in this field will make a substantial impact on both basic and 

translational medical research. 

This dissertation contains four projects that contribute to the technological 

advancement of intravital microscopy and spectroscopy of small animals.  

Applications of the projects include single cell imaging of tumor development, early 

detection of colon cancer, and label-free assessment of tissue engineered construct 

viability.  Assessment modalities include fluorescence intensity imaging by 

microendoscopy and fluorescence lifetime spectroscopy.  All of the instruments 

were designed with the potential for clinical translation as a key objective.  In this 

chapter, we will introduce the concepts necessary to understand the four projects in 

the dissertation.  We also review some other intravital assessment instruments and 

molecular biomarkers so that the reader may place this work into the context of the 

field. 
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1.1 Importance of Using Small Animal Models for Biomedical Research 

Small animal models play an important role in the study of cellular and 

molecular function and disease.  Small animal models allow the assessment of 

biology in its intact and native physiological state, rather than in reductionist 

systems such as cells in culture dishes or on slides [2].  The mouse is one of the most 

commonly used animal model systems.  Mice are small in size, can be relatively 

quickly and easily bred in captivity, have a lifespan of 3 years, and have extensive 

physiological and molecular similarities to humans.  Xenograft models are those in 

which tumor tissue or cell lines from one species are propagated in 

immunodeficiency mice.  Genetically engineered mice harbor genetic modifications, 

and are often used to engineer mice that will develop tumors that accurately mimic 

pathophysiological and molecular features of human malignancies [3]. 

Mouse models have been especially critical in cancer research.  The best 

mouse models are able to accurately recapitulate many aspects of human tumor 

physiology such as angiogenesis, tumor-stromal interaction, and hormone 

dependency [4].  For example, intravital imaging of mouse models of cancer has 

made it possible to quantify the behavior and function of the cellular and molecular 

components of the immune system that control tumor growth.  These studies 

indicated that the behavior of immune cells in tissues is dictated by local factors in 

the tumor microenvironment that often cannot be reproduced in vitro [5].  

In Chapter 2 of this dissertation we employ a xenograft model of human 

ovarian carcinoma with extensive intraperitoneal dissemination [6].  This model 

provides a means to assess the ability of our intravital assessment tool to monitor 

tumor growth and metastasis.  In Chapter 3 we employ a genetically engineered 

mouse model of colon cancer, the CPC;Apc mouse [7].  CPC;Apc mice spontaneously 

develop colonic polyps in the distal intestine, which are accessible by our intravital 

instruments.  In Chapter 4 we employ a xenograft model in which a tissue 

engineered construct manufactured from human cells is implanted under the skin of 

a mouse [8].  This enables pre-clinical evaluation of the efficacy of the construct. 
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1.2 Need for Intravital Assessment of Molecular Biomarkers 

Whole-body imaging modalities available for intravital optical assessment of 

molecular biomarkers in small animals include bioluminescence imaging (BLI) and 

whole body fluorescence imaging.  Advantages of these macroscopic techniques 

include true noninvasive assessment and high sensitivity.  However, the spatial 

resolution of these modalities ranges from 1-10 mm.  In this dissertation, we will 

focus on intravital microscopy and spectroscopy modalities based on fiber-optics 

that enable single cell and sub-cellular level resolution.  We refer the reader to 

Weissleder and Pittet [9], and Massoud and Gambhir [10], for excellent 

comprehensive reviews of many intravital imaging modalities.  In this section, we 

will discuss the need for intravital assessment for two of the applications contained 

in this dissertation: early detection of colon cancer and noninvasive assessment of 

tissue engineered construct viability. 

1.2.1 Intravital Imaging of Tissue Epithelium for Colon Cancer 

 

Fig. 1.1.  Carcinoma of the colon arises from a transformation of normal epithelium 
to dysplasia.  Subtle molecular changes develop first in the crypts prior to 

morphological changes in the tissue.  An intravital microscope placed on the luminal 
surface of the tissue can be used to study the molecular progression of this disease 

longitudinally in small animal models. 

Transformed cells that develop into colon cancer originate within the 

epithelium of the mucosa and ducts, as shown in Fig. 1.1.  Normal colonic 

epithelium transforms into a pre-malignant condition (dysplasia) prior to evolving 



4 

into carcinoma [11].  Molecular changes develop well in advance of morphological 

changes.  Intravital microscopy is a powerful tool for studying the molecular 

mechanisms of epithelial cancer biology in vivo because this technique can directly 

access this thin, superficial layer of tissue to provide the highest resolution possible 

in live animals [12-17].  A miniature fiber optic instrument can be placed in contact 

with the tissue surface to collect real time images with sub-cellular resolution.  This 

technique can detect molecular changes in the study of the progression of colon 

cancer that cannot be observed by any other imaging modality.  Additionally, 

intravital imaging allows for longitudinal (non-terminal) studies to be performed 

where each animal is used as its own control.  This approach can significantly 

reduce the number of animals needed and can provide a more robust study design. 

1.2.2 Intravital Spectroscopy of Engineered Tissues 

The fields of tissue engineering and regenerative medicine (TERM) are at a 

stage where scientific advances are rapidly transitioning to clinical applications 

[18].  Compliance with regulatory oversight procedures established by government 

agencies is critical to ensure product safety and efficacy.  Clinical translation in 

TERM requires evaluative tools to assess engineered tissue products and ensure 

manufacturing consistency (before implantation) and validate clinical efficacy (after 

implantation) [19]. 

Engineered tissues, like other drugs, can be validated for safety and efficacy 

using pre-clinical animal models.  Intravital assessment of engineered tissues 

implanted in living mice can serve as an in vivo assay for testing safety and efficacy.  

Noninvasive optical assessments can characterize the specimens without interfering 

with their biochemical and physiological state.  In particular, fluorescence 

spectroscopy (see Section 1.3.4) can quantitatively assess the metabolic state of the 

engineered tissues.  Cell metabolism is critical to the health and integration of 

engineered tissues, and intravital spectroscopy allows quantitative characterization 

of metabolism in a noninvasive manner that is not possible with traditional punch 

biopsies [20, 21]. 
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1.3 Overview of Intravital Fluorescence Imaging and Spectroscopy 

Techniques 

1.3.1 Challenge for Miniaturizing Intravital Microscopes 

One of the greatest challenges of performing high resolution (sub-cellular) 

optical assessments in live animal models is the ability to overcome motion artifact, 

including respiratory displacement, heart beating, and organ peristalsis.  

Conventional intravital microscopes use bulk optic objectives that are fixed to large, 

stationary platforms.  As a result, motion will occur in live animals relative to the 

objective that appear exaggerated in the relatively small fields-of-view of intravital 

microscopes, typically on the order of several hundred microns.  On the other hand, 

a miniaturized intravital microscope can have sufficiently small size and weight to 

move relative to the bodily motion of the animal during the imaging session, thus 

substantially reducing the motion artifact.  Fiber coupling allows for the signal to be 

transmitted to the detector.  Furthermore, the small size of these instruments 

provides much greater positioning accuracy onto target organs in the animal [22]. 

1.3.2 High Resolution Fluorescence Microendoscopy 

High resolution fluorescence microendoscopy (HRME) involves optical 

probes that are typically less than 1 mm in outer diameter.  HRMEs are based on 

coherent fiber-optic bundles that consist of up to ~100,000 individual step-index 

fibers.  By placing all illumination and detection optics on the proximal end of the 

bundle, HRMEs are among the smallest diameter intravital microscopes available, 

some with outer diameter as small as 350 µm.  However, this small diameter is only 

possible when using the HRME in a configuration without distal focusing optics, 

enabling only epifluorescence imaging of the sample surface (essentially, a working 

distance of zero).  Thus, the size reduction comes with a sacrifice of functionality.  

Nonetheless, the HRME is a powerful, versatile modality that has been 

demonstrated for in vivo pre-clinical and even clinical use by several groups [23-30].  

We use HRME instrumentation in Chapters 2 and 3. 
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1.3.3 Confocal Endomicroscopy 

The use of light is a very powerful tool for measurement because this 

modality can achieve sub-cellular resolution in real time, a level of performance that 

cannot be matched by any other imaging modality.  However, light is highly 

scattered by tissue, and sophisticated methods are needed to produce clear images.  

Confocal microscopy uses a pinhole placed in between the objective lens and the 

detector to allow only the light that originates from within a tiny volume below the 

tissue surface to be collected [31].  All other sources of scattered light do not have 

the correct path to be detected, and thus become spatially filtered.  This process is 

known as optical sectioning and can produce a high resolution image from a thin 

slice of tissue below the surface.  

In confocal endomicroscopy, the core of a single mode optical fiber acts as a 

spatial filter to reject scattered light that originates out of the focal plane [32].  

Confocal endomicroscopy systems for real-time optical biopsies have been 

extensively developed since the first demonstration of a fiber-optic instrument in 

1993 [33].  Two endoscope-compatible confocal systems are now commercially 

available.  One is based on a miniaturized confocal microscope (Optiscan Pty. Ltd., 

Victoria, Australia) that is integrated into the distal tip of a videoendoscope 

(EC3870K, Pentax, Tokyo, Japan) [16].  The other (Mauna Kea Technologies, Paris, 

France) is based on a coherent fiber bundle that can be passed down the instrument 

channel of most standard medical endoscopes [15].  Several groups have 

demonstrated high resolution imaging in hollow organs throughout the body using 

these instruments [34-42]. 

1.3.4 Fiber-Optic Probe-Based Fluorescence Lifetime Spectroscopy 

The modalities discussed thus far have all been examples of steady-state 

fluorescence intensity imaging.  Fluorescence data can also be acquired as a function 

of wavelength, obtaining fluorescence spectra that reflect tissue morphology, optical 

absorption and scattering properties, and local biochemistry of the sample [43].  
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However, steady-state fluorescence spectroscopy neglects the dynamics of 

fluorescence decay, in the dimension of time.  Fluorescence lifetime, the average 

time spent by a fluorophore in the excited state, is extremely sensitive to the local 

biochemical environment, and can therefore provide additional information about 

various biological parameters, such as pH, enzymatic activity, and redox state.  

Another advantage of fluorescence lifetime is that it can provide a contrast 

parameter for biological tissues that have overlapping emission spectra.  Finally, 

fluorescence lifetime is especially beneficial for in vivo measurements, as it is 

independent of intensity variations, and can therefore provide robust quantitative 

results [43-45]. 

Acquisition of time-resolved spectra requires a pulsed laser excitation source 

with a pulse width on the order of 1 ns and high speed, highly sensitive detectors 

such as photomultiplier tubes, avalanche photodiodes, and streak cameras [46].  

Fluorescence lifetime spectroscopy can be adapted for intravital applications by 

implementing fiber-optic probe configurations that enable remote light delivery and 

collection.  Our group has previously described the design and development of a 

clinically-compatible, fiber-optic probe-based fluorescence lifetime spectroscopy 

system [47-49].  Utzinger and Richards-Kortum provide a comprehensive review of 

various fiber-optic probe designs that enable noninvasive, nondestructive, and 

repetitive spectral measurements [50]. 

1.4 Fluorescent Molecular Biomarkers 

The clinical utility of the instruments described above can be greatly 

supplemented by integrating them with fluorescent molecular biomarkers that are 

highly specific for known targets.  Intravital optical technologies allow for in vivo 

visualization and characterization of biological processes that occur on a cellular or 

sub-cellular scale based on protein expression [51].  These imaging agents are 

usually integrated with advanced endoscopic instruments that are sensitive to 

fluorescence.  Targets for fluorescence assessment may be endogenous molecules 

that are intrinsic to the tissue (such as collagen or NADH), fluorescent proteins 
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(such as green fluorescent protein (GFP) or related molecules), or exogenous optical 

contrast agents with fluorescent molecules [1].  Applications include 1) basic 

research of studying signaling pathways and molecules by engineering fluorescent 

protein reporting mechanisms, 2) early cancer detection by imaging molecular 

changes that occur before gross morphological abnormalities; 3) personalized 

medicine by visualizing molecular targets specific to individual patients; 4) image 

guided therapy by localizing tumor margins and monitoring for recurrence [52], and 

5) in vivo assays for testing of drugs and therapeutics. 

1.4.1 Genetically Encoded Fluorescent Proteins for Basic Biomedical Research 

The use of genetically encoded fluorescent proteins is widespread in basic 

biological sciences [9].  By imaging gene expression in small animal models, 

researchers can image cellular and molecular events.  Constitutively-expressed 

fluorescent proteins could act as markers for localizing and tracking cells [4], such 

as for assessing tumor burden and metastasis as we did in Chapter 2.  Or, cells could 

be engineered to express fluorescence to report on a specific biological process or 

pathway [10].  Other applications of fluorescent proteins in cancer research include 

the visualization of tumor cell invasion, metastatic seeding and colonization, 

angiogenesis, and the interaction between the tumor and its local environment.  

Since fluorescent proteins are genetically encoded, their use evades the need for 

systematic delivery of an imaging agent [2].  

1.4.2 Endogenous Fluorophores for Label-Free Optical Assessment 

Endogenous fluorophores naturally occur in living cells and tissues.  The 

major advantage of assessing endogenous fluorescence (also called 

autofluorescence) is that the methodologies are label-free, and hence truly 

noninvasive.  This is of great benefit to clinical translation, as it evades the need for 

regulatory approval of a drug that is administered to the patient, as is the case for 

exogenous contrast agents.  Furthermore, label-free methods reduce the risk of 

compromising the sterility or integrity of the sample, when that is of concern, as in 
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the case of engineered tissue assessment in Chapters 3 and 4.  A challenge for 

assessing autofluorescence is low quantum yield compared to exogenous agents, 

possibly necessitating longer exposures or more highly sensitive detectors to 

increase the signal-to-noise ratio. 

Some endogenous fluorophores include NADH, flavins (e.g. FAD), tryptophan, 

and porphyrins [53].  Methodologies have been developed to optically assess cell 

redox ratios using autofluorescence measured from NADH and FAD [54, 55].  Highly 

relevant to intravital assessment methodologies is that the extracellular matrix 

(ECM) contains collagen and elastin, both of which are highly autofluorescent [43, 

44, 53].  This is beneficial when the ECM is the target of interest, for example for the 

noninvasive evaluation of engineered articular cartilage [56, 57] and engineered 

bone constructs [58].  However, when the fluorescence target is epithelial cells or 

other targets surrounded by ECM, autofluorescence may reduce the target-to-

background ratio.  

1.4.3 Exogenous Molecular Probes for Targeting of Cancer Biomarkers 

The best exogenous molecular probes are highly specific for their biological 

targets, active only in the presence of disease, and much more intense than the 

surrounding background.  For clinical use, the ideal probe should have rapid binding 

kinetics (time scale of minutes), be easy to label with fluorescent agents in multiple 

colors, and have capability for low cost, large scale synthesis [59].  The two most 

common classes of probes being developed for clinical use include antibodies and 

peptides.  Antibodies are highly specific for known targets, but have been difficult to 

translate into the clinic because of delivery challenges, long serum half-lives, and 

immunogenicity.  Peptides are short chains of amino acids that have been 

successfully selected using phage display technologies that consist of high diversity, 

unbiased libraries.  However, the process for selecting specific peptides and 

identifying their molecular targets can be challenging.  While their binding affinity is 

not as high as that of antibodies, peptides are much smaller in size, easy to label 

with fluorescent dyes, have rapid binding kinetics, and minimal immunogenicity. 
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Molecular probe platforms include activatable, antibody/affibody, small 

molecule, peptide, and aptamer, as shown in Fig. 1.2.  Activatable probes are 

designed to generate fluorescence only after coming into contact with the target.  

These "smart" probes are fluorescently quenched in their native state, and are 

activated when cleaved by tumor-associated proteases, such as cathepsin and 

matrix metalloproteinases which play an important role in cell proliferation, 

invasion, apoptosis, angiogenesis, and metastasis [60].  Antibodies are widely used 

Y-shaped gamma globulins (IgG) that bind specifically to antigenic targets.  They can 

be labeled with a large selection of fluorescent dyes, and have been developed for 

several molecular targets that have great clinical relevance, including human 

epidermal growth factor receptor (HER2) and epidermal growth factor receptor 

(EGFR) [38].  Antibodies may elicit an immune reaction with repeated use, and are 

costly to produce in large quantities.  Affibodies are small single domain proteins 

that are desirable because of their small size, leading to rapid tumor localization and 

fast clearance [61].  Their utility has been demonstrated for in vivo targeting and 

detection of tumors that over express HER2.  “Small molecule" probes have been 

developed for imaging that are activated by a change in pH after entering a target 

cell and merging with lysosomes [62].  These probes require a targeting moiety such 

as HER2 antibody to attach to the cell.  Since non-activated probes do not emit a 

signal, the target-to-background ratio is greatly improved.  Aptamers are single-

stranded, nuclease-resistant DNA or RNA molecules [63], and have recently been 

developed with high affinity and specificity for DLD-1 and HCT 116 colorectal 

cancer cell lines in vitro, but this has not yet been demonstrated in vivo. 
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Fig. 1.2.  Exogenous molecular probe platforms.  Strengths and weaknesses of 
various probe platforms being developed for targeted imaging are presented [64]. 

Targets unique to disease can be over-expressed both on the cell-surface as 

well as within the cytoplasm.  For purposes of imaging, the pharmacokinetics of 

molecular probes that bind to the cell surface are more predictable than those that 

are internalized and broken down by proteolytic enzymes.  Epidermal growth factor 

receptor (EGFR), HER2/neu (ERBB2), and vascular endothelial growth factor 

(VEGF) receptor are over-expressed in several cancers, including esophageal, 

colorectal, breast, and ovarian.  Somatostatin receptors (SSTR) are overexpressed in 

neuroendocrine tumors [65].  Over-expressed proteolytic enzymes activate “smart” 

probes such as cathepsin-B and matrix metalloproteinases (MMPs) [66, 67].  

Apoptosis reporters frequently utilize effector caspases as targets [68]. 

Targeted molecular imaging has been demonstrated mostly in the colon thus 

far, using different types of probes on a variety of instrumentation platforms.  A 

fluorescein-labeled monoclonal antibody against EGFR has been imaged using 

confocal laser endomicroscopy in a xenograft mouse model of colorectal cancer [38].  

Image analysis indicated that fluorescence intensity was higher in tumors that have 

high EGFR expression than those with low EGFR expression.  Clinical use of peptides 

was demonstrated for early detection of colorectal cancer using the FITC-labeled 

sequence VRPMPLQ [39].  The peptide bound more specifically to dysplastic 
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colonocytes than to adjacent normal cells with 81% sensitivity and 82% specificity 

on confocal laser endomicroscopy.  Molecular imaging has also been demonstrated 

for early detection of esophageal cancer.  Li et al. recently identified the peptide 

SNFYMPL that preferentially binds to high-grade dysplasia in Barrett’s esophagus 

on excised human specimens, and plans have been made to study this peptide in a 

Phase 1 clinical trial [69].  Another FITC-labeled peptide, ASYNYDA, has been 

selected to target dysplastic esophageal mucosa [52].  This peptide has recently 

been demonstrated to identify esophageal neoplasia over Barrett’s esophagus and 

squamous epithelium with 75% sensitivity and 97% specificity in a clinical study 

using an intravital confocal endomicroscope [42]. 

1.5 Dissertation Objectives 

The global aim for all projects in this dissertation is to develop intravital 

methodologies based on fluorescence for assessing molecular biomarkers in living 

mice, in real time.  The four projects contained in this dissertation can be split into 

two categories: 1) Minimally-invasive fluorescence microendoscopy of exogenous 

fluorescent biomarkers for assessing molecular expressions of cancer, and 2) 

Noninvasive label-free fluorescence lifetime spectroscopy of endogenous 

fluorescent biomarkers for assessing integration of tissue engineered constructs. 

Specific Aim 1:  Engineer a flexible fiber-optic microendoscope for 

longitudinal optical imaging studies in a mouse model of disseminated 

ovarian cancer.  Large dimensions of fiber bundle-based microendoscopes 

necessitate terminal procedures in mice.  Longitudinal imaging allows observation 

of disease development and/or response to therapy over time, and use of each 

animal as its own control, significantly reducing the number of animals needed.  

Here, we repetitively monitored intraperitoneal growth of GFP-positive ovarian 

cancer tumors in mice for over 4 weeks.  This project established technology for 

minimally-invasive, longitudinal imaging with single cell resolution, advancing 

future molecular imaging studies of ovarian cancer and other diseases. 
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Specific Aim 2:  Validate specific binding of a targeted fluorescence-

labeled peptide, in vivo, to murine colorectal dysplasia using fiber-bundle 

based fluorescence microendoscopy.  Molecular changes in pre-malignant 

colorectal mucosa develop prior to morphological changes.  Intravital imaging of 

targeted molecular probes on a sub-cellular level in small animals can be used to 

study molecular progression of cancer over time.  Here, we used a microendoscope 

similar to that developed in Specific Aim 1 in combination with a wide-field small 

animal endoscope to perform targeted molecular imaging of colorectal dysplasia in 

living mice.  This project demonstrated a rigorous methodology for multi-scale 

validation of a novel targeting agent being developed to localize disease that can be 

generalized to hollow organs. 

Specific Aim 3:  Assess post-implantation integration of tissue 

engineered constructs with native mouse tissue using label-free, quantitative, 

noninvasive fluorescence lifetime spectroscopy.  Clinical translation of ex vivo 

tissue engineered constructs requires noninvasive methods to assess construct 

health and viability.  Current practices for post-implantation assessment are either 

qualitative or destructive.  Here, we employed a hand-held fluorescence lifetime 

spectroscopy probe to optically assess constructs that were implanted in living 

mice.  Optical parameters measured from endogenous fluorophores correlated with 

in vitro measures of cellular viability.  This project demonstrated feasibility of 

clinical optical diagnostic tools based on fluorescence lifetime sensing to non-

invasively monitor post-implantation integration of engineered tissues, which is 

currently an unmet clinical need. 

Specific Aim 4:  Engineer a portable depth-resolved fluorescence 

lifetime spectrometer for preferential optical assessment of the living cell 

layer of tissue engineered constructs.  Bulk fluorescence spectroscopy systems, 

such as that demonstrated in Specific Aim 3, have low spatial resolution.  This 

creates a challenge for assessing epithelial tissue engineered constructs, because 

strong background fluorescence signal from the dermal and keratin layers interferes 
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with the fluorescence signal of interest, originating from the thin living cell layer.  

Here, we design and construct a depth-resolved fluorescence lifetime spectrometer 

that effectively suppresses the strong keratin and collagen fluorescence and extracts 

the epithelial fluorescence.  The instrument is portable and designed for intravital 

assessment of living mice.  This project is in progress, and plans to overcome design 

challenges are discussed. 

 

Fig. 1.3.  Overview of dissertation projects.  Chapters 2 and 3 use fluorescence 
imaging techniques for applications in cancer.  Chapters 4 and 5 use fluorescence 
lifetime spectroscopy techniques for assessing tissue engineered construct health.  
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1.6 Dissertation Overview 

Chapter 1 introduces background and motivation for fluorescence-based optical 

technologies for intravital assessment of molecular biomarkers.  Portions of this 

chapter have been published in a review paper in the Journal of Biophotonics. 

Elahi SF and Wang TD, “Future and advances in endoscopy,” J Biophotonics 4(7-8): 471-

481, 2011. 

Chapter 2 corresponds to Specific Aim 1.  We describe the development of a LED-

based flexible fiber-optic microendoscope and demonstrate repetitive molecular 

imaging of disseminated ovarian cancer in living mice.  This study represents a 

significant improvement over existing instruments, delivering high illumination 

power through a fiber bundle that is sufficiently small to allow repetitive imaging 

studies to monitor tumor growth deep within living animals over a longer time span 

than previously demonstrated.  This chapter has been published in the journal 

Molecular Imaging and Biology. 

Elahi SF, Liu Z, Luker KE, Kwon RS, Luker GD, Wang TD, “Longitudinal molecular 

imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-

based confocal microendoscope,” Mol Imaging Biol 13(6): 1157-1162, 2011. 

Chapter 3 corresponds to Specific Aim 2.  We demonstrate a methodology for 

validation of selective binding of a fluorescence-labeled peptide to colonic dysplasia 

with sub-cellular resolution in living mice using a microendoscope.  This 

methodology was the first demonstration of multi-scale, simultaneous wide-field 

fluorescence endoscopy and high resolution microendoscopy in living mice.  This 

chapter has been published in the journal Biomedical Optics Express. 

Elahi SF, Miller SJ, Joshi B, Wang TD, “Targeted imaging of colorectal dysplasia in living 

mice with fluorescence microendoscopy,” Biomedical Optics Express 2(4): 981-986, 

2011. 

Chapter 4 corresponds to Specific Aim 3.  We employ a hand-held fluorescence 

lifetime spectroscopy probe for quantitative, label-free noninvasive assessment 
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post-implantation tissue integration of tissue engineered constructs in mice.  We 

develop quantitative data analysis methods and correlated optical parameters 

measured in vivo to in vitro measures of cellular viability.  At the time of this writing, 

this chapter is in preparation to be submitted to the journal Tissue Engineering Part 

C: Methods. 

Chapter 5 corresponds to Specific Aim 4.  We describe the design and construction 

of an instrument capable of finer resolution depth-sectioning than the system 

presented in Chapter 4.  This chapter includes detailed engineering analyses of the 

optical design of the instrument.  Pitfalls and challenges are discussed.  This chapter 

serves as a manual and guide for future researchers to progress this work and use 

the system to quantitatively assess cellular metabolic activity of the thin living cell 

layer of epithelial tissue engineered constructs. 

Chapter 6 concludes the dissertation, emphasizing scientific contributions 

described in this dissertation and future work. 
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Chapter 2.  
Longitudinal Imaging of Mice using a LED-Based Microendoscope 

2.1 Introduction 

Intravital microscopes are extremely powerful tools for performing in vivo 

cellular and molecular imaging in small animal models [1].  Unlike whole body 

imaging techniques that detect light remotely [2], intravital microscopy allows 

monitoring of signal transduction and cell functions at single cell or even sub-

cellular resolution.  Microscopic imaging can be performed repetitively in mice to 

observe disease development and/or response to therapy over time if instruments 

are sufficiently small in dimension.  A key benefit of longitudinal imaging is that 

each animal can be used as its own control, thus significantly reducing the numbers 

needed to achieve statistical validity [3].   

Although repetitive intravital imaging has been performed using surgically-

implanted optical windows, this approach is highly invasive and is limited to 

imaging superficial structures [4].  Furthermore, objectives on conventional 

microscopes used for intravital imaging are bulky and require wide exposure, often 

necessitating terminal procedures rather than serial studies [5,6].  Thus, a miniature 

intravital microscope that can access regions deep within the body to perform 

longitudinal (survival) studies with sub-cellular resolution represents a significant 

advance in the field of molecular imaging. 

The development of flexible optical fibers has led to important advances in 

the miniaturization of these instruments for high resolution in vivo imaging in the 

clinic [7-9] as well as in small animals [10-12].  In general, these systems use a laser 



21 

source and a scanning mechanism to create the image.  However, these components 

can increase the cost and size of the instrument.  Recently, inexpensive but powerful 

LEDs have become available in a wide range of colors, providing a Lambertian 

radiation pattern that delivers a relatively uniform beam to individual fibers over 

the face of a bundle and eliminates the need for a scanning mechanism.  This simple 

approach has been demonstrated previously to achieve a robust, low-cost system 

using charge-coupled device (CCD) imaging [13,14].  A longitudinal study using this 

type of instrument to monitor tumor response to therapy in two imaging sessions 

over a span of 5 days was recently demonstrated, albeit using a more expensive 

electron-multiplying CCD (EMCCD) camera [15]. 

In this study, we developed an optical model to improve the system design 

parameters to maximize light throughput, allowing for use of smaller caliber optical 

bundles with more output power.  This model is needed because light emerges from 

the source with a large divergence angle and renders efficient coupling into the 

bundle to be a challenge.  This new system provides greater sensitivity for 

fluorescence detection using a lower-cost CCD camera, while minimizing trauma to 

the animal.  To test this instrument for in vivo imaging, we established ovarian 

cancer cells stably transduced with green fluorescent protein (GFP) and used these 

cells in a mouse model of disseminated, intraperitoneal ovarian cancer.  The smaller 

size of the microendoscope allowed for repetitive imaging studies to monitor tumor 

growth deep within living animals over a longer time span than previously 

demonstrated. 

2.2 Methods 

2.2.1 System design of LED-based fluorescence microendoscope 

A schematic of the imaging system is shown in Fig. 2.1.  A LED light source 

(Luxeon K2, Philips Lumileds, San Jose, CA) produces emission centered at 470 nm 

with a spectral bandwidth of 25 nm at full-width-half-max (FWHM) with a power of 

21 lumens [16].  A 488 nm short pass filter (SPF, Semrock FF01-518/SP-25) is used 
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to limit the excitation bandwidth.  An aspheric lens collimates the beam onto the 

back aperture of an infinity-corrected objective lens (Olympus UIS2 PLN 20X, Tokyo, 

Japan) after reflection by a 495 nm dichroic beamsplitter (Semrock FF495-Di02-

25x36).  The flexible optical fiber bundle (Sumitomo IGN-06/17, Osaka, Japan) has 

~17,000 individual fibers with NA = 0.35, a core diameter of 2.4 µm, and core-to-

core spacing of ~4 µm.  The outer diameter is 680 µm, the diameter of the active 

optical area is 540 µm, and the length is 2.1 m.  The fluorescence image is 

transferred back through the bundle through the objective and dichroic and focused 

by a condenser onto a CCD camera (Photometrics CoolSnapEZ, Tucson, AZ).  A 500 

nm long-pass filter (LPF, Semrock BLP01-488R-25) blocks the reflected excitation 

light.  The distal face of the fiber bundle (Fig. 2.1, inset) is polished using 5-, 3-, and 

1-µm grit paper using a custom chuck that keeps the bundle flat. 

 

Fig. 2.1.  LED-based microendoscope design schematic.  Excitation from LED at 470 
nm is collimated by an asphere, reflected by a dichroic beamsplitter, and focused 

into a 680 µm (O.D.) coherent fiber bundle.  Fluorescence is transmitted to the CCD.  
The distal end of the fiber (inset) is placed into contact with the tissue. 

2.2.2 Optical model to optimize coupling efficiency of LED source into fiber bundle 

We developed an optical model to optimize the system parameters for 

coupling the LED source into the fiber bundle.  We used a 20X objective lens (NA = 

0.4, f = 9 mm) to closely match the NA of the fiber bundle.  The condenser contains 

the image of the active area on the proximal face of the fiber bundle within the 
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surface area of the CCD detector.  In order to achieve this requirement, the relay 

magnification must meet the condition M ≤ WCCD/Dfb, where WCCD is the dimension 

of the CCD and Dfb is the active diameter of the fiber bundle.  The CCD array has 

dimensions of 8.98 x 6.71 mm, and Dfb = 540 µm, so Mmax = 12.4.  In order to 

optimally fill the CCD, we chose an off-the-shelf condenser lens with f = 100 mm, 

providing a relay magnification M = 11.1.  The CCD pixels are square with a 

dimension of 6.45 µm, and with magnification, the core spacing of the image of the 

bundle face on the CCD is ~44 µm.  Thus, the system resolution is limited by the core 

spacing of fibers in the bundle rather than by the pixels of the CCD detector. 

Light from the LED is produced by a square die with dimensions of 1 mm x 1 

mm and is emitted with a FWHM angle of ~150 deg [16].  We designed a telescopic 

lens system to effectively couple light that emerges with this high divergence angle 

into the fiber bundle.  An asphere provides a larger effective aperture than a 

comparable spherical lens.  We developed an optical model in Zemax® to simulate 

the intensity after the fiber bundle to optimize the parameters L1, L2, and L3.  The 

transmission of light through the various components of the system is addressed by 

this model in four areas: 1) Only rays incident within the clear aperture of the 

asphere are collected; 2) Light transmitted by the objective is determined by the 

dimension of the back aperture; 3) Light captured by the bundle is determined by 

the NA of the individual fibers; and 4) Excitation collected by the bundle is 

determined by the area of the LED die imaged onto the proximal face. 

2.2.3 Transduction and in vitro imaging of GFP-expressing ovarian cancer cells  

We used a lentiviral vector to stably transduce human HeyA8 ovarian cancer 

cells with GFP [17,18].  Cells were cultured in DMEM with 10% FBS.  The distal end 

of the optical fiber bundle was positioned in direct contact with the cells.  We also 

collected fluorescence images using a standard epifluorescence microscope (Nikon 

Eclipse TE2000-U).  The target-background ratio was determined by dividing the 

mean intensity of a 10x10 pixel array from the cytoplasm of 5 cells by the average 

value of a 10x10 pixel array from 5 regions in between cells.  The signal-to-noise 
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ratio (SNR) was evaluated by dividing the mean intensity of a 10x10 pixel array in 

the cytoplasm by the standard deviation of the array, using 5 cells.  All images were 

analyzed using NIH Image J® software. 

2.2.4 Longitudinal in vivo imaging of tumor xenografts in mice 

All animal experiments were approved by the University of Michigan 

Committee for Use and Care of Animals (UCUCA).  We implanted 106 HeyA8-GFP 

cells into the peritoneal cavity of n = 10 adult female nude mice (Taconic, NCRNU-M-

FHomozygousCrTac:NCr-Foxn1nu).  Imaging started 1 week later and continued at 

weekly intervals.  Mice were placed supine and administered 0.1 mg/kg 

buprenorphine s.c. for analgesia and 2% isoflurane via nose cone for anesthesia.  

The abdomen was prepared in sterile fashion.  An 18G needle was passed 

percutaneously into the peritoneum to introduce a 16G angiocatheter.  The needle 

was removed and the fiber-optic bundle was passed through the catheter and 

manipulated through the peritoneal cavity as shown in Fig. 2.2.  Images were 

acquired with an exposure of 100 ms.  Each imaging study lasted 5 to 10 minutes.  

Control images were obtained from the capsule of the liver and from the liver of a 

mouse not injected with tumor cells, and autofluorescence intensity was measured 

using NIH Image J® software.  Imaging was repeated on the same cohort of mice for 

up to 4 weeks or until mice were euthanized due to tumor burden. 

 

Fig. 2.2.  Longitudinal imaging approach.  The distal tip of the microendoscope is 
introduced with an 18G needle into the peritoneum through a catheter to collect 

fluorescence (green) from implanted HeyA8 ovarian tumor.  The mice survive 
without need for closure of the wound. 
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2.3 Results 

2.3.1 Microendoscope characterization 

We measured a field of view of 540 µm and a lateral resolution of 3.9 µm 

using a standard resolution target (USAF).  This result is consistent with the average 

spacing in between the cores of the individual fibers.  We measured a power of 0.70 

mW of excitation light at the distal end of the fiber bundle.  Since there is no lens at 

the distal end of the bundle, the working distance is zero. 

2.3.2 Optical model prediction of fiber bundle output light intensity 

Based on our analysis and simulated results, we selected an asphere with fasp 

= 18 mm.  The results of our model reveal that the excitation intensity increases 

with L1' = fasp - L1, as the LED is moved away from aspheric lens along the optical 

axis, to a maximum value at L1' = -3.0 mm.  In order to get more accurate 

measurements and to compare our results directly with previously developed LED-

based microendoscope systems, we used the Sumitomo IGN-08/30 fiber bundle 

(outer diameter 950 µm, active diameter 790 µm) that has ~30,000 individual 

fibers.  The maximum power at the distal end of this fiber bundle was measured to 

be 1.7 mW at L1' = -3.0 mm. 

We also used our model to predict the output intensity of the smaller fiber 

bundle (O.D. 680 µm) as a function of the parameters L1' and L2, resulting in the 

family of curves shown in Fig. 2.3.  Each curve represents the simulated output as a 

function of L1', given a fixed distance L2 between the asphere and the objective.  The 

results are shown for values of L2 that range between 20 and 80 mm in increments 

of 10 mm.  The model predicts that a maximum power of 0.9 mW can be transmitted 

to the distal end of the fiber bundle with L2 = 40 mm.  However, due to the size of 

the dichroic mirror located in between the aspheric and objective lenses, the 

minimum distance in our system is L2 = 80 mm.  From the simulation we found that 

a maximum power of 0.76 mW can be delivered with this parameter.  We 

experimentally measured a value of 0.70 mW.  The small difference between this 
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result and our model can be explained by the presence of aberrations in the optical 

train. 

 

Fig. 2.3.  Simulated fiber bundle power throughput.  Dependence of the output 
intensity on L1' and L2 from our model is shown.  Maximum power of 0.9 mW can 

be transmitted with L2 = 40 mm, but size constraints require L2 = 80 mm for 
maximum simulated power of 0.76 mW. 
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2.3.3 In vitro validation of fluorescence imaging using microendoscope  

Images of HeyA8-GFP cells in culture collected with a bench-top 

epifluorescence microscope and with the microendoscope are shown in Fig. 2.4a 

and b, respectively, and demonstrate that the morphology of the single cells imaged 

is similar.  The average target-to-background ratios for the images collected with the 

epifluorescence microscope and the microendoscope were found to be 6.1±2.4 and 

6.9±1.7, respectively.  The average SNR were found to be 41.8±14.7 and 5.9±1.0, 

respectively.  As the image of the fiber bundle face on the CCD array after relay 

magnification is 44 µm, and the CCD pixels are square with a dimension of 6.45 µm, 

the SNR of the microendoscope can be increased by binning image pixels 2x2 

without loss of resolution. 

 

Fig. 2.4.  In vitro imaging of cells.  Fluorescence images of HeyA8-GFP cells in culture 
collected with an (a) epifluorescence microscope and the (b) microendoscope reveal 

similar GFP fluorescence patterns constitutively expressed by the cells. 
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2.3.4 Longitudinal in vivo imaging of tumor xenografts in mice 

No external signs of the tumor could be seen or palpated at 1 week after 

implantation, and single cells (arrow) could be visualized on imaging (Fig. 2.5a).  

Small masses (1 to 3 mm) were externally visible and palpable at 2 weeks, and small 

clusters of cells could be visualized (Fig. 2.5b).  The mice exhibited large (>4 mm) 

tumors and showed evidence of weight loss at 3 weeks, and single cells could be 

resolved on the surface of the bulk tumor masses (Fig. 2.5c).  Small clusters of cells 

were still detectable 4 weeks after implantation.  Also, by inserting the 

microendoscope through the needle into a tumor, single cells within the mass could 

be visualized.  Microvasculature (arrow) could also be visualized below the surface 

of the tumors at week 4 (Fig. 2.5d).  After the third week, 3 of the 10 mice were 

euthanized due to tumor burden.  The remaining 7 mice were imaged again at 4 

weeks, and did not reveal additional changes in tumor morphology or distribution.  

All mice were euthanized after the final imaging session in week 4 due to tumor 

burden.  Images from control mice showed minimal autofluorescence intensity, with 

a ratio of images in which the entire field-of-view is coated with tumor (such as the 

vasculature image in Fig. 2.5d) to control images of 4.1 ± 1.2 (data not shown). 

 

Fig. 2.5.  In vivo imaging after implantation of HeyA8-GFP cells.  a) Single cells (week 
1).  b) Small cluster of cells (week 2).  c) Bulk tumor mass (week 3).  d) 

Neovasculature detected as branching, non-fluorescent structures within a GFP-
positive tumor (week 4). 
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2.4 Discussion 

Here, we demonstrate a miniature fluorescence microscope that uses a LED 

source to collect images with sub-cellular resolution in real-time.  The large 

divergence angle of the light source allows for all of the individual fibers of the 

bundle to be illuminated simultaneously, thus eliminating the need for a scanner.  

Not only is this system relatively inexpensive and easy to implement, the small size 

and fast frame rate that can be achieved are well-suited for high resolution imaging 

in small animals.  The small size of the instrument allowed for repeated insertion 

into the peritoneum of living mice to study the progression of ovarian cancer cells 

over a period of 4 weeks.  At that time, co-morbidities from the tumor rather than 

from the procedure resulted in termination of the study.  Over this time course, we 

observed the following progression: 1) individual and small clusters of sporadic 

cells, 2) development of masses, and 3) emergence of tumor vasculature.  The 

microendoscope could be inserted into the peritoneum and then removed without 

requiring sutures or clips to close the entry site. 

Muldoon et al. demonstrated an LED-based microendoscope that used a fiber 

bundle with an outer diameter of 1.0 mm, and inserted it subcutaneously in mice in 

a terminal study [13].  The excitation power through this bundle was 1.0 mW.  

Zhong et al. built a system which delivered only 0.035 mW through a 1.0 mm outer 

diameter fiber bundle, necessitating use of a highly sensitive EMCCD to have 

sufficient sensitivity to detect fluorescence in vivo [15].  By comparison, our optical 

model helped us to achieve an output power of 1.7 mW through a bundle of 

comparable size, and allowed us to build an even smaller microendoscope with 

0.680 mm diameter and output power 0.7 mW that can pass harmlessly into the 

peritoneum, while using a low-cost CCD camera.  Once the microendoscope is 

inserted into this cavity, it can be moved freely by hand to any location within this 

space.  We also achieved high SNR at a fast frame rate of 10 Hz.  This image 

acquisition speed is critical to minimize motion artifact, which is exaggerated in 
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small animals due to their higher respiratory rate and larger relative lung 

displacement. 

Although the system presented here was demonstrated in small animals, the 

same instrument can also be applied in the clinic.  Colon, esophagus, and lung have 

been imaged extensively using commercialized fibered confocal endoscopes, 

however deep tissues inaccessible to endoscopes have not been studied.  A fibered 

micro-laparoscope has been recently developed and used to image human ovaries 

[19,20], but the procedure is invasive compared to endoscopy.  Our microendoscope 

can enter the cannula of a 19G needle and could potentially enter deep tissues in 

humans with less invasiveness than laparoscopy, potentially leading to molecular 

analysis of human cancers in situ. 

In order to reduce trauma to the animals for in vivo imaging, we minimized 

the outer diameter of the instrument by not adding an objective lens to the distal 

end of the fiber bundle.  In our application, the absence of an objective lens does not 

limit our ability to image deep tissue structures throughout the peritoneum.  

However, this design does result in a sacrifice in both lateral and axial resolution 

compared to that of commercial systems.  Additionally, without a lens to protect the 

fiber bundle, the distal fiber face must be polished frequently to remove scratches.  

Finally, a limitation of all fiber bundle instruments is the appearance of pixilation 

artifact from the bundle geometry, which can be minimized by image processing 

techniques [11]. 

While imaging the same group of cells on serial sessions would be difficult, 

longitudinal studies can be performed by collecting representative images and 

drawing conclusions using statistical arguments, tracking measures such as mean 

fluorescence intensity or the average number of cells within the field-of-view.  

Moreover, histologic confirmation can be performed after euthanasia of the animal.  

The ability to conduct longitudinal imaging studies at the cellular level in small 

animals has important implications for translational research.  Molecular changes 

are expressed in transformed cells well in advance of morphological differences, and 
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produce targets that reveal biological function.  While we used cells engineered to 

express GFP constitutively to demonstrate the proof-of-concept, resolution of this 

system is sufficient to detect changes in sub-cellular localization or expression of 

fluorescent reporter proteins.  Since functions of many signaling molecules in 

ovarian cancer and other malignancies are regulated by changes in subcellular 

compartmentalization, this imaging technology will enable single cell analysis of 

signal transduction and inhibition with chemotherapeutic agents.  Molecular targets 

in ovarian cancer or other diseases also can be detected with imaging probes, 

including monoclonal antibodies, peptides, and small molecules [21-24].  The small 

size of this instrument allows for minimally-invasive detection of molecular changes 

in progression of cancer and intercellular variations in signal transduction that may 

regulate susceptibility versus resistance to therapy.  Moreover, the imaging bundle 

can accommodate a wide variety of LED sources, ranging in color from blue (λ = 455 

nm) to red (λ = 630 nm).  The flexibility to accommodate different colors of LED 

sources opens the opportunity to perform multi-spectral imaging of multiple 

molecular targets in real time in vivo. 

In conclusion, we have developed a miniature confocal microendoscope 

based on a LED source and a flexible fiber to collect fluorescence images with sub-

cellular resolution and perform longitudinal studies of tumor progression in living 

mice. 
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Chapter 3.  
Targeted Imaging of Colorectal Dysplasia in 

Living Mice using Fluorescence Microendoscopy 

3.1 Introduction 

Although use of colonoscopy for early detection of colorectal cancer has led 

to a decreased incidence over the past two decades, this disease is still one of the 

most common cancers in the U.S. [1].  Traditional white-light endoscopy relies on 

gross architectural changes and is not sensitive to molecular changes that develop 

as normal colonic epithelium transforms into a pre-malignant condition (dysplasia) 

prior to evolving into adenocarcinoma [2].  Furthermore, white-light endoscopy 

cannot distinguish between dysplasia and hyperplasia, a benign epithelial 

proliferation.  Intravital microscopes can be used to validate the unique expression 

pattern of molecular targets in diseased tissues with use of highly specific 

exogenous probes [3-4].  Additionally, these probes can be used to guide therapy 

[5], stratify risk, and localize margins, aiding the clinician’s decision-making ability 

on a patient-to-patient basis [6]. 

Genetically engineered small animal models can be used to study the 

molecular progression of cancer that develops spontaneously over time [7].  While 

non-invasive techniques such as PET, bioluminescence, and MRI can serially image 

an animal, they cannot provide cellular detail in real time due to limitations in 

spatial resolution [8].  On the other hand, conventional intravital microscopes can 

achieve sub-cellular resolution, but their large dimensions in general require either 

an invasive incision or use of optical windows, limiting serial studies or working 

distance, respectively [9].  We have recently demonstrated a miniature 

microendoscope that can directly and repetitively image the epithelium of deep 

tissues with sub-cellular resolution in living mice [10]. 



35 

Our laboratory has previously discovered a fluorescent peptide probe that 

specifically binds to murine colorectal dysplasia.  This peptide (QPIHPNNM) was 

FITC-tagged and used to localize colonic dysplasia in vivo on wide-field fluorescence 

endoscopy [11].  Here, we aim to demonstrate the use of microendoscopy to validate 

selective binding by this peptide on a sub-cellular scale.  This microendoscope is 

sufficiently small to pass through the instrument channel of the endoscope for direct 

placement onto the mucosal surface.  Its fast frame rate can overcome motion 

artifact from the live animal introduced by organ peristalsis, heart beating, and 

breathing.  We use this instrument to validate specific binding activity of 

QPIHPNNM to dysplasia in comparison to adjacent normal mucosa and to 

hyperplasia.  Additionally, we validate the in vivo images with conventional confocal 

images collected with a bench top instrument.  This study demonstrates a rigorous 

methodology for the validation of novel molecular probes being developed as a 

targeting agent for disease in hollow organs. 

3.2 Methods 

3.2.1 Design of fluorescence microendoscope for small animal colonoscopy 

A schematic of the imaging system is shown in Fig. 3.1.  A diode pumped 

solid state laser (CNI MBL-III-473, Changchun, China) produces emission centered 

at 473 nm.  The power is adjusted to achieve 1 mW at the distal end of the 

microendoscope.  The beam is collimated by an aspheric lens (L1, f = 18 mm), 

reflected by a 495 nm dichroic beamsplitter (Semrock FF495-Di02-25x36), and 

focused into a coherent fiber bundle (Sumitomo IGN-06/17, Osaka, Japan) by an 

infinity corrected objective lens (Olympus UIS2 PLN 20X, Tokyo, Japan).  The bundle 

has ~17,000 fibers with core-to-core spacing of ~4 µm.  The fluorescence image is 

magnified by the objective, passes through the dichroic, and is focused by a 

condenser lens (L2, f = 100 mm) onto a CCD camera (Hamamatsu Orca R2, 

Hamamatsu City, Japan).  A 500 nm long-pass filter (LPF, Semrock BLP01-488R-25) 

blocks the reflected excitation light. 
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Fig. 3.1.  Small animal fluorescence microendoscope design schematic.  Excitation 
from the laser diode at 473 nm is collimated by an asphere (L1), reflected by a 
dichroic beamsplitter, and focused into a 680 µm (O.D.) coherent fiber bundle.  

Fluorescence is transmitted to the CCD.  The bundle is sufficiently small in 
dimension to pass through the instrument channel of a small animal endoscope 

(inset). 

The 680 µm outer diameter fiber bundle is sufficiently small to pass through 

the 3 Fr (~1 mm diameter) instrument channel of the rigid endoscope (Karl Storz, 

Tuttlingen, Germany) (Fig. 3.1, inset).  This endoscope has outer dimensions of 2.7 

mm x 3.5 mm, and is used to localize the adenomas with white light illumination 

[12].  The instrument channel is also used to administer the peptides and to provide 

insufflation to distend the lumen of the colon for imaging. 

3.2.2 Animal models 

All animal experiments were approved by the University of Michigan 

Committee for Use and Care of Animals (UCUCA).  We used the CPC;Apc mouse 

model of spontaneous colorectal dysplasia, developed by Hinoi et al [13], to validate 

the peptide probe.  APC is a tumor suppressor gene that is mutated in over 75% in 

human colorectal tumors [14].  In this mouse, the Apc gene locus is deleted by a Cre 

recombinase, resulting in the development of adenomas in the distal colon and 

rectum beginning at 10 weeks of age.  Cre(+) mice develop adenomas; Cre(-) mice 
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and the Kras mouse model of colorectal hyperplasia are used as controls [15].  The 

CPC;Apc mice ranged in age from 5 to 6 months, and the Kras mice from 1 to 2 

months. 

3.2.3 In vivo microendoscopy 

The target (QPIHPNNM) and control (GGGAGGGA) peptides were synthesized 

with Fmoc chemistry, conjugated with 5’-fluorescein isothiocyanate (FITC) via 

amino hexanoic acid linker, and purified with HPLC, as previously described [11].  

These peptides were diluted to 100 µM in 1X phosphate buffered saline (PBS).  Mice 

were placed prone and anesthetized with isoflurane.  After rinsing the colon with 

water to remove debris and mucous, approximately 1 mL of the peptide solution 

was administered intra-luminally to the mucosa.  The peptide was allowed to 

incubate for 5 minutes, and subsequently, the unbound peptide was rinsed 3X with 

water.  The endoscope was used to localize adenomas with white light illumination.  

The microendoscope was then passed through the instrument channel, and the 

distal end was positioned for complete contact with the mucosal surface.  The white 

light source was turned off, and fluorescence images were collected with an 

exposure of 100 ms (frame rate of 10 Hz).  All microendoscopy images are 

presented as single frames extracted from video recordings. 

The target and control peptides are individually applied to the mucosa of 

Cre(+) mice (n = 6 and n = 4, respectively).  Microendoscopic images were acquired 

from the surface of the one adenoma and the adjacent normal-appearing mucosa in 

each mouse.  The specificity of QPIHPNNM for dysplasia was further validated by 

applying the peptide to normal mucosa of Cre(-) mice (n = 1) that do not develop 

adenomas, and to hyperplastic mucosa of Kras mice (n = 2).  Autofluorescence 

images were taken from Cre(+) mice (n = 1) and Kras mice (n = 2) for purposes of 

comparison. 
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3.2.4 Ex vivo confocal microscopy 

To validate the in vivo images collected with the microendoscope, we 

collected fluorescence images from freshly excised tissues with a bench top confocal 

microscope (Olympus FluoView 500, Tokyo, Japan).  The mice were euthanized, and 

a pair of adenomas were excised (n = 3 mice, n = 5 adenoma pairs) from each 

mouse.  Adenomas were incubated in 100 µM solution of either QPIHPNNM or 

GGGAGGGA for 5 minutes, and then rinsed 3X with PBS.  The adenomas were then 

placed with the mucosal surface facing the objective lens and imaged using 488 nm 

excitation. 

3.2.5 Data analysis 

Microendoscopic images were collected at 12-bit resolution (0 – 4095 AU).  

All images were acquired as videos of 2 second duration, and contained 21 frames.  

Criteria for frame selection include: 1) entire image being in focus (flat contact of 

microendoscope with the mucosal surface), and 2) no saturated pixels.  The mean 

fluorescence intensity ± one standard deviation error was then determined for each 

image.  Those mean intensities were then averaged for all adenomas and normal 

tissues from each mouse.  Additionally, we measured autofluorescence from the 

adenomas and hyperplastic mucosa.  Statistical significance was determined by 2-

sample t-test, α<0.05 (Minitab 16, State College, PA, USA). 

The target-to-background ratios (T/B) of peptide binding to adenomas 

versus normal-appearing adjacent mucosa for each peptide were calculated by 

dividing the average mean intensity from adenomas by that from normal mucosa for 

each mouse.  The results from all mice were then averaged to determine the overall 

T/B for each peptide. 
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3.3 Results 

3.3.1 System design 

The microendoscope achieves a field-of-view with a diameter of 540 µm and 

has a lateral resolution of 4 µm, verified by a standard (USAF) resolution target. 

3.3.2 In vivo microendoscopy 

The microendoscopy images revealed that the target peptide QPIHPNNM 

demonstrates greater binding to adenomas than to the normal-appearing 

surrounding mucosa, as demonstrated by the greater fluorescence intensity (Fig. 

3.2a-b).  In addition, the binding pattern reflects cellular features specific to the 

mucosal surface. In contrast, the control peptide (GGGAGGGA) shows minimal 

fluorescence and does not reveal cellular features for either dysplastic or normal 

mucosa (Fig. 3.2c-d).  Furthermore, QPIHPNNM shows minimal fluorescence signal 

from the normal mucosa, demonstrating little non-specific binding (Fig. 3.2e).  The 

autofluorescence signal from adenomas is also minimal (Fig. 3.2f).  Fluorescence 

intensity from QPIHPNNM applied to the hyperplastic mucosa of the Kras mouse 

model (Fig. 3.2g) is comparable to the autofluorescence signal from the same tissue 

(Fig. 3.2h). 

The mean fluorescence intensity from adenomas averaged across all mice, 

773±99, is significantly higher than that from the normal-appearing surrounding 

mucosa, 384±93, (p<0.001).  The T/B of QPIHPNNM from adenomas to the adjacent 

normal mucosa, 2.11±0.61, is significantly higher than that of the control peptide 

GGGAGGGA, 1.16±0.10 (p=0.016) (Fig. 3.3a).  The autofluorescence, measured from 

adenomas on the Cre(+) mice and hyperplasia on the Kras mice, are 297±48 and 

471±36, respectively.  After subtraction of autofluorescence, the mean intensity 

from QPIHPNNM applied to adenomas, normal-surrounding mucosa of Cre(+) mice, 

hyperplasia, and normal mucosa of Cre(-) mice are 476±110, 87±105, 46±64, and 

81±62, respectively (Fig. 3b), resulting in a T/B for dysplasia to normal (Cre+), 

hyperplasia, and normal (Cre-) of 5.5, 10.3, and 5.9, respectively. 
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Fig. 3.2.  In vivo microendoscopy images of murine colonic tissue.  QPIHPNNM 
applied to the surface of a) an adenoma (Media 1) and b) normal-appearing adjacent 
mucosa.  GGGAGGGA (control peptide) applied to the surface of c) an adenoma and 

d) normal-appearing adjacent mucosa.  e) QPIHPNNM applied to normal colonic 
mucosa in Cre(-) mice.  f) Autofluorescence from adenoma in Cre(+) mice.  g) 

QPIHPNNM applied to hyperplastic mucosa of Kras mouse.  h) Autofluorescence 
signal from Kras mouse.  Scale bar = 100 µm. 

 

Fig. 3.3.  Quantification of average fluorescence intensities.  (a) Boxplot of T/B of 
peptides from adenomas to adjacent normal mucosa.  T/B of QPIHPNNM is 

significantly higher than that of GGGAGGGA.  Lower, middle, and top lines of boxes 
indicate lower quartile, median, and upper quartile, respectively.  Whiskers indicate 

minima and maxima, and crosshairs indicate means.  (b) Mean fluorescence 
intensity of QPIHPNNM, after autofluorescence subtraction.  Fluorescence signal 

from dysplasia is at least five-fold greater than from all other tissues. 
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3.3.3 Comparison of in vivo microendoscopy to ex vivo confocal microscopy 

Fluorescence images of freshly excised adenomas incubated with QPIHPNNM 

and GGGAGGGA collected with a bench top confocal microscope are shown in Fig. 

3.4.  The image of QPIHPNNM (Fig. 4a) demonstrates binding pattern of the target 

peptide to single epithelial cells, representing similar morphological features to that 

seen on microendoscopy.  Comparatively, the ex vivo confocal microscopy (Fig. 4b) 

image shows minimal fluorescence signal and no resolvable cellular features using 

the GGGAGGGA (control) peptide.  Hematoxylin and eosin stained biopsy specimens 

of adenomas reveal enlarged nuclei and distorted crypts characteristic of dysplasia 

(Fig. 4c), as previously shown [11]. 

 

Fig. 3.4.  Confocal microscopy images of excised colonic adenomas.  (a) QPIHPNNM 
shows binding to single epithelial cells (arrow).  (b) Minimal binding was revealed 

on using the GGGAGGGA peptide.  (c) Histology confirms dysplastic crypts in 
adenoma biopsy specimens.  Scale bar = 20 µm. 

3.4 Discussion 

Here, we demonstrate a methodology for validation of selective binding of a 

fluorescence-labeled peptide to colonic dysplasia with sub-cellular resolution in 

living mice using a microendoscope.  The experiments confirm specific binding 

activity of the target peptide (QPIHPNNM) to dysplasia in comparison to 

hyperplastic and normal colonic mucosa and to the control peptide (GGGAGGGA) on 

a microscopic scale.  The T/B of both the target and control peptides for adenomas 

and to adjacent normal mucosa on microendoscopy, shown in Fig. 3a, are consistent 

with those found for the same peptides on wide-field fluorescence endoscopy [11].  
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This result is expected because the microendoscope images the mucosal surface, as 

does the wide-field fluorescence endoscope.  Moreover, The T/B of the target 

peptide improves with subtraction of mucosal autofluorescence.  This integrated 

strategy combines the use of a wide-area endoscope to guide placement of the 

microendoscope to achieve both a large field of view for localization and sub-

cellular resolution for validation in real time. 

In addition, a comparison of the microendoscope to bench top confocal 

images of peptide binding to adenomas reveals similar spatial patterns.  This result 

demonstrates the ability of the microendoscope to acquire sub-cellular images in 

living mice, in real time, allowing for the study of molecular expression patterns of 

pre-malignant epithelial cells in vivo, using each animal as its own control.  This 

enabling technology can greatly reduce the number, hence cost, of animals needed 

to perform validation studies with robust statistics.  In addition, the process of 

euthanizing animals and excising tissue may introduce artifacts in the data.  Given 

the time needed to dissect the animal, resect the specimen, and bring the tissue to 

the microscope, the fluorescent probes may undergo enzymatic degradation or 

photobleaching, and the cells may undergo apoptosis or desiccation.  Moreover, 

surgical incisions may introduce trauma, hypoxia, and bleeding that can alter the 

molecular expression patterns. 

These results demonstrate a rigorous methodology for multi-scale validation 

of a novel targeting agent being developed to localize disease that can be 

generalized to hollow organs. 
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Chapter 4.  
Noninvasive Optical Assessment of Implanted Engineered Tissues  

Correlates with Pre-Implantation Cytokine Secretion 

4.1 Introduction 

The fields of tissue engineering and regenerative medicine (TERM) are at a 

stage where scientific advances are rapidly transitioning to clinical applications [1].  

Compliance with regulatory oversight procedures established by government 

agencies is critical to ensure product safety and efficacy.  The U.S. Food and Drug 

Administration (FDA) specifically noted that a key hurdle to translation of TERM 

products is the difficulty in characterizing the product to enable development of 

meaningful quality controls [2].  Further, a 2012 survey of investment organizations 

found that the top two perceived barriers to investing in TERM technologies are 

regulatory pathway clarity and clinical validation [3].  Therefore, clinical translation 

in TERM requires evaluative tools to assess engineered tissue products and ensure 

manufacturing consistency (before implantation) and validate clinical efficacy (after 

implantation) [4].  Here, we focus on combination tissue-engineered constructs 

comprised of an acellular dermal extracellular matrix and an engineered cultured 

living epithelial cell layer, commonly used for skin [5,6] and oral mucosa [7] 

applications. 

The evaluative tools must assess tissue construct viability quantitatively and 

noninvasively.  This is achievable for pre-implantation assessment by measuring the 

release of constitutively produced cytokines in the spent culture medium.  Certain 

growth factors and cytokines regulate wound healing [8,9].  A mechanism by which 

tissue engineered constructs promote integration is to supply these cytokines to the 

surrounding native tissue [10].  The cytokine release level measured during the 

construct manufacturing process correlates to the number of viable functional cells 
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in the living cell layer [11], which therefore assists in predicting in vivo tissue 

integration [12].  However, current practices for post-implantation assessment are 

either qualitative (visual assessment) or destructive (histology).  There is an unmet 

clinical need for a quantitative and noninvasive methodology for evaluating the 

integration of engineered tissue with native tissue.  

Optical techniques including fluorescence spectroscopy [13-15], optical 

coherence tomography [16,17], laser speckle imaging [18], and Raman spectroscopy 

[19] offer the potential to quantitatively and noninvasively assess engineered 

tissues in real time during the in vivo tissue integration process [20].  Of these, 

fluorescence spectroscopy can sense endogenous reporters of cellular metabolism, 

enabling label-free assessment of construct viability [21,22].  Using multiphoton 

microscopy, our group has recently demonstrated that fluorescence lifetime 

parameters—time-resolved spectral measurements [23-26]—can indicate local 

cellular viability of tissue-engineered constructs in vitro [27].  That study motivated 

us to implement fluorescence lifetime spectroscopy (FLS) in vivo to interrogate 

tissue-engineered constructs implanted in a murine model.  Here, we employed 

handheld, fiber-optic based fluorescence lifetime spectroscopy (FLS) 

instrumentation.  Fiber-optic FLS has been previously demonstrated as a 

quantitative approach for noninvasive optical characterization of biological tissues 

[28-31], including by our group [32-34]. 

Our model system is Ex Vivo Produced Oral Mucosa Equivalent (EVPOME), a 

cell-based device manufactured from primary human oral keratinocytes [35-41].  

The instrumentation was designed to be suitable for intravital measurements: rapid 

data acquisition, portability, precise maneuverability, and localization at multiple 

sites per construct.  Quantitative data analysis methods were developed to assess 

the health of the implanted constructs in vivo.  We found that optical parameters 

measured in vivo 1 week after implantation correlated with concentrations of 

cytokines secreted by the constructs prior to implantation, and that this correlation 

was not present at 3 weeks after implantation, when histology showed that 
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constructs had integrated with the native tissue.  This study demonstrates that 

clinical optical diagnostic tools based on fluorescence lifetime sensing are promising 

to monitor the integration of tissue-engineered constructs, an unmet clinical need. 

4.2 Methods 

4.2.1 Manufacturing of EVPOME Human Keratinocyte-Based Tissue Engineered 

Constructs 

The clinical study protocol was approved by the University of Michigan (UM) 

Medical School Institutional Review Board.  Discarded, surgically-resected oral 

mucosa samples were obtained from patients undergoing minor oral surgical 

procedures.  All study practices were in accordance with the Declarations of 

Helsinki Guidelines. 

The detailed protocols for culturing human oral keratinocytes and 

manufacturing EVPOME have been previously published [35,36].  Briefly, primary 

human oral keratinocytes were enzymatically dissociated from the tissue samples.  

Isolated cell cultures were established in a chemically-defined, serum-free culture 

medium (EpiLife and EDGS, Invitrogen/Life Sciences) containing 0.06 mM calcium, 

25 µg/mL gentamicin, and 0.375 µg/mL fungizone (Sigma).  After harvesting, cells 

were cryopreserved until needed for EVPOME manufacturing.  Prior to EVPOME 

manufacturing, the frozen keratinocytes were thawed and passaged up to two times.  

2×105 cells were seeded onto a 1 cm2 acellular cadaver dermis (AlloDerm®, 

LifeCell), hereafter referred to as the dermal equivalent, pre-coated with type IV 

collagen (Sigma) to promote cell attachment.  The seeded EVPOME was immersed 

for 4 days in a culture medium containing 1.2 mM calcium to promote cell 

proliferation.  The EVPOME was then raised to an air-liquid interface for an 

additional 7 days to enhance stratification of the epithelial layer.  This 11 day 

culture protocol was chosen because EVPOMEs cultured at an air-liquid interface for 

7 days are at the optimal stage of development for in vivo grafting [37]. 
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To create a range of pre-implantation health states, half of the EVPOMEs 

were manufactured according to standard protocol (control) and the other half was 

thermally stressed to reduce cell viability and proliferation capabilities (stressed).  

Control EVPOMEs were incubated at 37°C with 5% CO2 for all culture days.  The 

incubation temperature of the stressed EVPOMEs was increased to 43°C on Day 9 

for 24 hours and then returned to 37°C [19,27]. 

4.2.2 Pre-Implantation Assessment of Construct Health by Biochemical Assay and 

Histology 

To quantitatively assess the pre-implantation health of the constructs, 

cytokine concentrations in the culture medium were measured by biochemical 

assay on the day of implantation (Day 11).  The three cytokines of interest were 

interleukin-8 (IL-8), human β-defensin 1 (hBD-1), and vascular endothelial growth 

factor (VEGF).  These were selected because they are constitutively secreted by oral 

keratinocytes and play an important role in tissue integration (IL-8 and VEGF) and 

function (hBD-1).  IL-8 enhances wound healing by promoting re-epithelialization 

by inducing host keratinocyte migration and proliferation [42-44].  The 

antimicrobial peptide hBD-1 promotes differentiation by protecting keratinocytes 

from apoptosis [45-47].  VEGF induces angiogenesis in vivo, a critical factor in tissue 

integration [11,48]. 

Cytokine concentrations were measured by the microfluidic enzyme-linked 

immunosorbent assay (ELISA) kit Optimiser™ (Siloam Biosciences) according to the 

manufacturer’s instructions.  IL-8 and VEGF antibody pairs were obtained from 

LifeTechnologies and hBD-1 antibody pairs were obtained from Peprotech.  IL-8 and 

hBD-8 samples needed to be 1:3 diluted by Optiblock™ buffer to reduce the 

concentration to the linear range of the calibration curve.  To decrease the blank 

signal without compromising sensitivity, 10 µL of wash and block buffer was used 

instead of 5 µL.  Since the VEGF assay was not sensitive enough to be detected by 

this procedure, 100 µL of sample needed to be added to the plate in increments of 5 

µL, as suggested in the user manual. 
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Histological sections were also collected on Day 11 to directly observe the 

pre-implantation health of the constructs.  Approximately one-fifth of the construct 

was cut, fixed in 10% formalin, washed with phosphate buffered saline, and stored 

in a 70% ethanol solution.  Specimens were stained with hematoxylin and eosin, cut 

into 5 µm sections, and preserved for future analysis. 

4.2.3 Experimental Study Design 

Primary human cells from 4 distinct patients were used in this study.  Fig. 

4.1 depicts the experimental study design per patient.  Harvested cells from each 

patient were used to manufacture EVPOMEs in two implantation cohorts.  The two 

timelines correspond to the two cohorts: EVPOMEs to be implanted for 1 week or 3 

weeks.  Note that although the two timelines are depicted as aligned at Day 0, in fact, 

the cell seeding was staggered by two weeks so that in vivo measurements could be 

performed on the same day for both cohorts. 

EVPOMEs in each cohort were split into stressed and control groups at Day 9 

of the manufacturing protocol, each group containing duplicates.  Therefore, 8 

EVPOMEs were manufactured from each patient (2 cohorts per patient x 2 groups 

per cohort x 2 EVPOMEs per group = 8 EVPOMEs per patient).  One exception was 

the 1-week cohort of patient #1, which contained triplicates instead of duplicates. 
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Fig. 4.1.  Study design for each patient.  Cells from one patient were seeded on 
AlloDerm® (Day 0) in two cohorts, one to be implanted in mice for 1 week, the 

other for 3 weeks.  The incubation temperature of stressed constructs (red) was 
increased to 43°C, while control constructs (blue) were maintained at 37°C (Day 9-

10).  At day 11 for each construct, three aliquots of spent culture medium were 
collected for ELISA, one-fifth of the construct was cut for histology, and the 

remainder was implanted into a SCID mouse.  Constructs were optically assessed by 
fluorescence lifetime spectroscopy (FLS) for both 1-week and 3-week post-

implantation cohorts (Day 18 and 32).  After optical assessment, the mice were 
sacrificed, and the construct processed for histology.  Note that “Day 0” for 1-week 

and 3-week cohorts was staggered so that FLS measurements could be taken on the 
same day. 

Two assessments were performed on Day 11 to characterize pre-

implantation construct viability as described above: ELISA to measure cytokine 

secretion levels and histology to directly observe construct morphology.  The 

EVPOME was then implanted into a mouse.  Representative pre-implantation 

construct histology is shown in the left-most column of Fig. 4.2.  Control constructs 

developed three characteristic layers: a top keratin layer, a middle living cell layer 

and a bottom dermal equivalent layer.  Stressed constructs typically did not develop 

healthy cell layers. 
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Fig. 4.2.  Representative EVPOME histology.  Control pre-implantation constructs 
developed three distinct layers: a top keratin layer (K), a middle living cell layer 

(LC), and a bottom dermal equivalent layer (DE).  Stressed constructs did not 
develop a healthy cell layer pre-implantation.  One week after implantation, cell 

layers in control constructs were thicker and more organized than those of stressed 
constructs.  However, cell layers of both control and stressed groups were 

comparably healthy 3 weeks after implantation, consisting re-epithelialized cell 
layers and neovasculature (arrowheads).  All scale bars are 50 µm. 

The implanted EVPOMEs were noninvasively assessed by fluorescence 

lifetime spectroscopy (FLS) either 1 week or 3 weeks after implantation (Day 18 or 

Day 32 post-seeding for 1-week and 3-week cohorts, respectively).  After in vivo 

optical assessment, mice were euthanized and EVPOMEs sectioned and processed 

for histological assessment of tissue integration.  The post-implantation histology 

protocol was the same as the pre-implantation protocol described above.  

Representative post-implantation construct histology is shown in the right-most 

column of Fig. 4.2.  After 3 weeks, both control and stressed constructs consisted of 

re-epithelialized cell layers and neovasculature originating from the mouse. 
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4.2.4 Construct Implantation Protocol 

All animal experiments were approved by the University of Michigan 

Committee on Use and Care of Animals.  After procedures for pre-implantation 

assessments were completed on Day 11, constructs were implanted in dorsal 

subcutaneous pouches of 7- to 8-week old female severe combined 

immunodeficiency (SCID) mice as previously described [37].  Briefly, mice were 

administered isoflurane via nose cone for anesthesia.  The dorsal skin was 

disinfected with betadine (Purdue Products L.P.).  A full-thickness curvilinear 

incision was made down to the panniculus carnosus to create a skin pouch 

approximately twice the size of the construct (~2 cm2).  The construct was oriented 

such that the dermal equivalent was in contact with the muscular fascia.  A thin 

silastic sheet (~130 µm thick, ~2 cm2) was placed over the construct to prevent 

adhesion with the skin.  The skin pouch was secured using removable surgical 

staples (Autoclip™, Becton Dickinson). 

4.2.5 Fluorescence Lifetime Spectroscopy Instrumentation 

Time-resolved fluorescence decays were acquired in situ from the implanted 

constructs by employing clinically-compatible prototype fluorescence lifetime 

spectroscopy (FLS) instrumentation [32-34], shown in Fig. 4.3.  A pulsed 355 nm 

laser (1 kHz repetition rate; 500 ps pulse width) excited endogenous fluorophores 

in the constructs.  The 355 nm wavelength was selected to maximize excitation of 

the endogenous fluorophore nicotinamide adenine dinucleotide (phosphate) 

(NAD(P)H), an indicator of cellular metabolism [27,49].  Excitation light was 

directed to the constructs by a central optical fiber of 200 μm core diameter that 

was surrounded by six 200 μm core diameter optical fibers (R200-ANGLE-UV, Ocean 

Optics).  This optical fiber probe has a 30° angled window tip.  The angled probe was 

selected for two reasons.  First, angling the probe increases the optical interrogation 

volume of the superficial tissue layers relative to the underlying native mouse tissue 

[50-52].  Second, the angle reduces collection of reflected excitation light from the 

tissue surface. 
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Fig. 4.3.  Schematic of fluorescence lifetime spectroscopy (FLS) system components.  
The distal end of the fiber probe is positioned at varying stand-off distances from 
the top of the tissue sample.  The system acquires data in less than one second per 

measurement.  The handheld probe is sufficiently small to be positioned at multiple 
sites on each construct.  The angled probe design aids in localizing optical 

interrogation to the top living cell layer of the construct, and reduces collection of 
reflected excitation light.  ND: neutral density filter.  PD: photodiode.  L1, L2, L3: 
lenses.  LP:  long pass filter.  BP:  band pass filter.  APD: avalanche photodiode. 

The emitted fluorescence signal was focused onto an avalanche photodiode 

(APD, C5658, Hamamatsu) by a series of lenses (L2, L3).  A 387 nm long pass filter 

(LP) blocked reflected excitation light.  An additional band-pass filter (centered at 

540 ± 20 nm) was employed to increase sensitivity of NAD(P)H fluorescence sensing 

relative to collagen (peak fluorescence emission wavelength 460 nm) [34].  The 

time-resolved fluorescence intensity detected by the APD was digitized by a 4 MHz 

oscilloscope (TDS 784A, Tektronix).  A small portion of the laser excitation pulse 

was reflected to a photodiode (PD) by a neutral density filter (ND) to synchronize 

the oscilloscope data acquisition to the excitation.  Instrument response functions 

(IRFs) were recorded for the APD by placing a cuvette of 0.54 µm diameter silica 
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microspheres suspended in de-ionized water (1.7%) at the distal end of the probe 

and removing the LP filter from the light path.  The excitation laser pulse was 

diffusely reflected off the microspheres and passed to the APDs for characterization 

of the IRF. 

4.2.6 Fluorescence Lifetime Spectroscopy Measurement Protocol 

Implanted constructs were assessed in situ by noninvasive fluorescence 

lifetime spectroscopy either 1 week or 3 weeks post-implantation.  Mice were 

placed prone and anesthetized using isoflurane administered via nose cone.  A 

curvilinear incision was made in the area where constructs were implanted, and the 

silastic sheet was removed to expose the implanted constructs for measurement.  

Mice were placed on a stage equipped with a heating pad set to 100°F to maintain 

body temperature.  The stage could be tilted to align the construct perpendicularly 

to the optical axis of the FLS probe.  Measurements were acquired from 2 randomly 

selected sites on the implanted constructs at 5 stand-off distances from the tissue 

surface (0 to 2 mm in increments of 0.5 mm).  A computer-controlled, micrometer-

guided 3-axis linear translation stage precisely (~10 µm resolution) located the FLS 

probe to carefully select measurement sites and set stand-off distances.  Control 

measurements were acquired from exposed muscle tissue adjacent to the construct 

and from neighboring bare skin.  The duration of each FLS measurement was ~500 

msec. 

4.2.7 Fluorescence Lifetime Spectroscopy Data Analysis 

The protocol for analyzing fluorescence decays acquired by the FLS has been 

previously reported32,34.  Briefly, time-resolved fluorescence measurements 

acquired from the mice were interpreted as a convolution of the intrinsic 

fluorescence decay from the animal and the instrument response function (IRF).  

Extraction of quantitative fluorescence parameters of biological interest from these 

measurements consists of two main steps: 1) deconvolution of the IRF from the 

intrinsic fluorescence decay, and 2) fitting of the intrinsic fluorescence decay to a 
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simulated exponential model.  The data was well-fitted to a double-exponential 

model: 

 𝑓(𝑡) =  𝐴1𝑒−𝑡 𝜏1⁄  + 𝐴2𝑒−𝑡 𝜏2⁄  (Eq. 1) 

Here, τ1 and τ2 represent fluorescence lifetimes of long-lived and short-lived 

component fluorophores within the sample, respectively.  A1 and A2 are amplitudes 

that represent the weighted contribution of these components. 

Only measurements that met certain criteria were included for data analysis.  

First, the peak fluorescence intensity of the measurement, Ipeak, must have been 

greater than the threshold defined by Eq. 2: 

 𝐼𝑝𝑒𝑎𝑘 > 𝜇𝐼,𝑝𝑒𝑎𝑘 − 𝜎𝐼,𝑝𝑒𝑎𝑘 (Eq. 2) 

where μI,peak and σI,peak are the average and standard deviation, respectively, of the 

peak signal intensities for all measurements.  The thresholds were set 

independently per cohort. 

The second criteria for measurements to be included was that the Pearson's 

cumulative chi-squared test statistic, χ2,of the simulation model fit (described 

below) was less than 0.1, indicating that the least-squares algorithm and IRF 

selected produced an excellent fit to the data, ensuring that the extracted optical 

parameters are valid.  Finally, the fluorescence decay must not have contained 

saturated signal.  The number of measurements that met these three inclusion 

criteria for each experimental group within each cohort is listed in Table 4.1. 
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Table 4.1.  Table of Measurements.  Optical measurements were acquired from 2 
sites per construct, and from 5 stand-offs per site.  Included measurements met 

criteria for raw signal strength and quality of model fit. 

1 Week Post-Implantation 

Condition Patients  Constructs Sites 
Meas. 

Acquired 
Meas. 

Included 

Control 4  7 14 70 48 

Stressed 4  9 18 90 80 

 
Total: 16 32 160 128 

       

3 Weeks Post-Implantation 

Condition Patients  Constructs Sites 
Meas. 

Acquired 
Meas. 

Included 

Control 4  7 14 70 52 

Stressed 4  7 14 70 40 

 Total: 14 28 140 92 

 

All fluorescence decays were background-corrected for ambient light prior to 

analysis.  Because the travel time of light through the fiber-optic probe can change 

the temporal alignment between the delivered laser pulse and the detected 

fluorescence, certain IRF measurements required temporal shifting with respect to 

the fluorescence decay to produce a good fit to the data.  Therefore, we iteratively 

shifted the IRF and performed the Levenberg-Marquardt least-squares fitting 

algorithm (MATLAB R2013b) for all measurements on each mouse, for each IRF 

measurement.  The IRF measurement and temporal shift that produced the smallest 

χ2 value, after applying the three inclusion criteria above, was used as the best-fit 

IRF for that mouse. 

To quantitatively assess the viability of the constructs, we calculated the 

optical parameter A1/A2 for each measurement after fitting the fluorescence decay 

profiles according to Eq. 1.  This parameter is the ratio of contribution of the short-

lifetime term to the long-lifetime term and has been previously shown to correlate 

to cell metabolism [53,54]. 
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4.2.8 Statistical Analysis 

We were interested in the relationship between the pre-implantation 

construct health and the post-implantation optically measured parameter A1/A2.  

Given the hierarchical grouping of the measurements (stand-offs within sites, sites 

within constructs, constructs within patients), we fit the data using a linear mixed-

effects model [55]. Mixed-effects models consist of fixed-effects terms that contain 

the conventional linear regression part, and random-effects terms that contain the 

common random effects within grouping levels.  In our model, the response variable 

is the post-implantation optically measured parameter A1/A2.  The primary 

independent variable is the pre-implantation construct health, quantified as the 

concentration of secreted cytokines, IL-8, hBD-1, or VEGF.  Patients and constructs 

are each included as random intercepts, accounting for correlations from sites 

sampled within constructs and constructs sampled within patients.  Five levels of 

stand-offs are also included as dummy variables; only standoff of 2mm shows 

significantly higher A1/A2 levels from those of the other stand-off levels (0 mm, 0.5 

mm, 1 mm, 1.5 mm). 

The linear mixed-effects model was fit for the parameter A1/A2 versus each of 

the three cytokines, for each cohort (1-week and 3-week) separately.  Significance 

was determined at alpha < 0.05.  Analysis was performed using the Statistics 

Toolbox (v. 8.3) in MATLAB (R2013b). 

4.3 Results 

4.3.1 Characterization of In Vivo Fluorescence Lifetime Spectroscopy Measurements 

Fig. 4.4A shows representative fluorescence decays, acquired from one 

mouse, from the construct (On Site), adjacent exposed muscle tissue (Off Site), and 

neighboring bare skin, for the purpose of visualizing characterization of the 

fluorescence lifetime spectroscopy (FLS) system.  All measurements shown were 

taken at the same stand-off distance (0.5 mm).  Fluorescence intensities are 

normalized to the maximum intensity of all depicted measurements.  Raw signal 
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intensity of control measurements acquired from muscle tissue off site of the 

construct was less than 30% of that from on site of the construct.  Raw signal 

intensity acquired from neighboring bare skin was less than 6% of the intensity 

from the construct. 

 

Fig. 4.4.  Fluorescence lifetime spectroscopy (FLS) data analysis.  A) Representative 
time-resolved fluorescence decays acquired from one mouse, at one stand-off.  

Fluorescence data acquired from the construct (On Site, diamonds) were fit to a bi-
exponential decay (Simulation Fit, solid line), for extraction of fluorescence lifetime 

parameters τ1, τ2, A1, and A2.  The residual difference between the data and the 
simulation fit is no more than 2% (gray line).  Signals acquired from muscle tissue 
adjacent to the construct (Off Site, dashed line) and neighboring skin (dotted line) 

are significantly lower than signal from the construct.  B) Box plots of peak 
fluorescence intensity, categorized by stand-off distance of probe from tissue 

sample.  Peak fluorescence intensity from the constructs decreased consistently as 
the stand-off distance increased.  C) However, the extracted fluorescence lifetime 

parameter A1/A2 was consistent for all stand-off distances.  Therefore, the 
fluorescence lifetime parameters from all stand-offs per construct may be combined 
for data analysis.  Data for box plots is for week 1 control measurements (N = 9, 12, 

12, 8, 7 for stand-offs 0.0 – 2.0 mm, respectively). 
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The solid curve represents the simulation fit resulting from the least-squares 

iterative reconvolution algorithm.  The goodness of fit can be visualized from the 

residual gray curve, which has been multiplied 5-fold to be visible on the plot.  For 

this representative decay, the residual difference between the measured data and 

the simulation fit is less than 2%.  The average reduced chi-squared for all included 

measurements in the study was 0.05, indicating that this double-exponential model 

provides an excellent fit to the data, and ensuring confidence in the extracted 

fluorescence lifetime parameters A1, A2, τ1 and τ2. 

Fig. 4.4B shows a box plot that categorizes fluorescence intensities 

measured from the implanted constructs by stand-off distance of the probe from the 

tissue sample.  The data shown here is for the control group of the 1-week cohort.  

Each measurement is normalized to the intensity at the stand-off distance that has 

the strongest raw signal intensity within that site.  As shown in the box plot, the 

strongest fluorescence intensity was always at a stand-off distance of 0.0 mm, when 

the probe is in contact with the tissue surface.  The fluorescence intensity 

consistently decreased as the stand-off distance increased.  However, as shown in 

Fig. 4.4C, the variability and range of the extracted fluorescence lifetime parameter 

A1/A2 does not depend on stand-off distance.  This result indicates that the 

parameter A1/A2 is insensitive to stand-off distance, and therefore measurements 

from all stand-off distances taken per site may be combined for analysis. 

4.3.2 Correlation between In Vivo Optical Parameters and In Vitro Cytokine 

Secretion 

Since the optical parameter A1/A2 is insensitive to stand-off distance, A1/A2 

measured for each construct (in other words, each mouse) was averaged.  The 

scatter plots in Fig. 4.5 show the relationship between A1/A2 and each of the three 

pre-implantation cytokine secretion levels, for the 1-week cohort mice only.  In vivo 

fluorescence sensing found that A1/A2 values vary across the 1-week implantation 

study population.  This ratio correlated negatively with pre-implantation cytokine 

secretion levels.  Constructs that exhibited high cytokine secretion levels prior to 
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implantation yielded smaller A1/A2 values after 1-week of tissue integration.  The 

linear regression coefficients are -0.030 (p = 0.012), -0.009 (p = 0.000), and -0.006 

(p = 0.001) for IL-8, hBD-1, and VEGF, respectively, indicating a significant 

correlation between A1/A2 values and cytokine concentration for all three proteins. 

By contrast, although A1/A2 values also varied across the 3-week population 

with similar range and variability as the 1-week population, the data did not 

indicate any correlation with respect to pre-implantation cytokine concentrations 

(scatter plots not shown).  The linear regression coefficients are -0.018 (p = 0.122), 

0.001 (p = 0.335), and 0.000 (p = 0.819) for IL-8, hBD-1, and VEGF, respectively, 

indicating no significant correlation between A1/A2 values and cytokine 

concentration for all three proteins for the 3-week cohort. 

 

Fig. 4.5.  Noninvasive optical sensing of implanted constructs.  The fluorescence 
lifetime parameter A1/A2 varied across the 1-week implantation study population.  

This ratio correlated negatively with pre-implantation protein concentration levels 
for all three constitutively secreted proteins (linear mixed effects model, p < 0.05 for 

all three).  Each data point represents the average value per construct, with 
standard error. 

4.4 Discussion 

Our results suggest that optical parameters measured from implanted tissue 

engineered constructs by fluorescence lifetime spectroscopy can noninvasively 

assess the integration of engineered tissue with native tissue.  We showed that the 

optical parameter A1/A2, measured 1 week after implantation in mice, tended to be 

lower for constructs that secreted higher levels of IL-8, hBD-1, and VEGF prior to 

implantation.  These three cytokines are direct indicators of the cellular viability and 
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function of the constructs and promote integration, and post-implantation histology 

confirmed that control constructs (which have high cytokine secretion levels) had 

thicker living cell layers than stressed constructs at this time point.  A1/A2 did not 

correlate with pre-implantation cytokine secretion after the constructs had been 

implanted in mice for 3 weeks.  Histology showed that native mouse cells had 

infiltrated most of these constructs, regardless of their pre-implantation health 

state.  This is expected, as even the implantation of bare dermal equivalent aids re-

epithelialization and revascularization by providing a substrate [5].  The infiltration 

of mouse cells may explain the lack of correlation of A1/A2 with cytokine secretion. 

FLS technology was employed for its ability to assess biochemical changes 

that can characterize cellular metabolism.  This was motivated by our recently 

published finding that fluorescence lifetime-based sensing differentiates between 

control and stressed constructs in vitro [27].  In that study, we found that the 

percent contribution of the long-lived fluorophore is significantly lower for control 

constructs than stressed constructs.  Therefore, our in vivo results for the 1-week 

implantation cohort are consistent with our previously in vitro results.  

Furthermore, Wu et al. used depth-resolved fluorescence lifetime spectroscopy to 

find that the percent contribution of the short-lived fluorophore was greater in the 

epithelial cell layer of excised oral mucosa than in the dermal layer [53].  They 

attributed the difference to the presence of NADH in the cell layer, which has a 

shorter fluorescence lifetime than the collagen in the dermal layer.  Similarly, we 

found that implanted constructs with high pre-implantation cytokine secretion 

levels, and therefore more viable cells, had lower A1/A2 values, indicating greater 

contribution from short-lived fluorophores (A2). 

Characterization of the instrument demonstrates some advantages of 

employing FLS for this application.  The optical fluorescence lifetime parameter is 

insensitive to stand-off distance from the probe to the tissue surface.  This is further 

evidenced by the small standard errors shown on the scatter plots of Fig. 4.5, where 

all stand-offs from each construct are averaged.  This is beneficial for the challenging 
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clinical environment, where the clinician may not be able to easily and precisely 

handle the probe while accessing small confines, such as inside a patient’s mouth.  

Fluorescence lifetime methods are also less sensitive to local tissue absorption and 

scattering properties that can affect the collected spectral lineshape in 

unpredictable ways.  Further, the acquisition time per measurement is less than 500 

milliseconds, which allows for rapid real-time assessment, and overcomes patient-

related motion artifacts. 

One of the drawbacks of bulk tissue sensing, such as in this demonstration, is 

that the instrument has limited spatial resolution.  In the example of our model 

tissue construct, EVPOME, even healthy constructs will have living cell layers ~30 

µm thick, whereas the underlying dermal equivalent could be ~500 µm thick.  

Therefore, even the healthiest constructs with the thickest cell layers will detect a 

larger fluorescence contribution from the underlying dermal equivalent rather than 

the living cells.  This effect is apparent in our results, as A1/A2 is always greater than 

1, indicating that the long-lived fluorescence contribution from the dermal layer 

overwhelms the short-lived fluorescence contribution from the cell layer.  Our 

recently published in vitro study [27] was based on multiphoton microscopy (MPM) 

technology, which has inherent optical sectioning properties to enhance spatial 

targeting of the epithelial cell layer, as well as increased tissue penetration depth.  

However, the large size of multiphoton laser sources creates a barrier to clinical 

translation.  Therefore in this implementation we have used single-photon 

fluorescence spectroscopy.  Cheng et al. have recently demonstrated a handheld 

fluorescence lifetime imaging system for oral cancer imaging in vivo based on single-

photon excitation, demonstrating promise that our system could be used in human 

applications [56]. 

We demonstrated a methodology to rapidly and noninvasively assess 

engineered tissue constructs in situ by measuring endogenous optical signals using 

fluorescence lifetime spectroscopy.  This is the first demonstration of post-

implantation assessment of the cellular metabolic activity of engineered epithelial 
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tissues in situ, to our knowledge.  Since optical parameters measured in vivo 

correlated with pre-implantation cytokine concentrations, which indicate cell 

viability and functionality and predict healthy construct integration [12], FLS can be 

a promising tool for assessing tissue integration and graft success. 
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Chapter 5.  
Design and Construction of an Intravital 

Depth-Resolved Fluorescence Lifetime Spectrometer 

5.1 Introduction 

The fluorescence lifetime spectroscopy (FLS) system reported in Chapter 4 is 

a bulk fluorescence sensing technology.  Advantages of bulk fluorescence sensing 

based on fiber-optic probes include fairly simple and portable instrumentation, fast 

data acquisition, and straightforward data analysis methods that can be 

implemented in real time [1].  However, these methods have low spatial resolution.  

Detected fluorescence photons originate within the volume of overlapping 

illumination and collection areas.  In a typical fiber-optic probe this volume can 

extend about 1 mm deep into the tissue [2].  Utzinger and Richards-Kortum have 

published a comprehensive review of fiber-optic probe geometries that can be 

employed to control this interrogation volume [3].  Lloyd et al. review some recent 

applications of bulk fluorescence sensing in tissue engineering [4]. 

Nonetheless, Wu et al. found that keratin, which comprises the top layer of 

our healthy epithelial tissue constructs, produces a strong fluorescence signal at 349 

nm excitation, and that its spectral characteristics are similar to that of collagen [5].  

This creates a serious challenge in interpreting bulk fluorescence spectra measured 

using conventional fiber-optic probe methods.  The fluorescence from collagen in 

the dermal layer and from keratin in the top layer can interfere with the 

fluorescence of interest originating from the NADH in the thin living cell layer.  

Confocal spectroscopy is a depth-resolved technique that effectively suppresses the 

strong keratin and collagen fluorescence and extracts the epithelial fluorescence.  

See Chapter 1 for a brief theoretical description of confocal optical sectioning. 
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In this chapter, we describe the design and construction of an instrument 

capable of finer resolution depth-sectioning than the FLS system presented in 

Chapter 4.  This confocal fluorescence lifetime spectroscopy (CFLS) system is based 

on a configuration demonstrated by several groups that utilizes the core of a 

multimode fiber as a confocal aperture to reject light from out-of-focus planes [6-8].  

We engineered a portable, clinically-compatible CFLS system that could be used for 

assessing tissue engineered construct viability in living mice.  We demonstrated 

depth resolution of tens of microns.  We discuss the pitfalls we encountered in the 

construction of the system, and make recommendations for future work to fully 

translate this instrument for in vivo use. 

5.2 Methods 

5.2.1 Overall Design Concept 

 

Fig. 5.1.  Schematic of confocal fluorescence lifetime spectroscopy (CFLS) system 
components.  Excitation is coupled to a single mode fiber for coherent delivery to 

the sample arm of the system.  Emitted fluorescence signal from the sample is 
coupled to a multimode fiber, which acts as a confocal pinhole, for delivery to the 

detection arm of the system.  FAD and NADH signals are separated and detected on 
two channels by photomultiplier tubes and a digitizing oscilloscope.  L1-L7: Lenses. 

DM1 and DM2: Dichroic beamsplitters.  LP1: Long pass filter.  BP1 and BP2: Band 
pass filters. 
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A schematic of the CFLS system is shown in Fig. 5.1.  The excitation source is 

a diode pumped solid state laser (CryLas, FTSS 355-Q2, Berlin) that produces 

emission centered at 355 nm with a repetition rate of 10 kHz and a pulse width of 

<1.1 ns.  An excitation wavelength of 355 nm has been shown to provide the 

greatest contrast in spectral characteristics between epithelial and stromal layers of 

tissue, and to strongly excite endogenous NADH fluorescence in the cell layer [9].  

The excitation is coupled to a single mode fiber (ThorLabs, P1-305A-FC, Newton, 

New Jersey) to coherently transmit the excitation to the “sample arm” of the 

instrument, which can be placed over the animal for intravital assessment.  Coupling 

of the laser source to the single mode fiber by lenses L1, L2, and L3 is described in 

the next section. 

At the sample arm, a UV fused silica lens (L4, ThorLabs, LA4917-UV) 

collimates the divergent laser light emitting from the single mode fiber.  A UV fused 

silica aspheric lens (L5, Edmund Optics, 49-587, Barrington, New Jersey) with NA = 

0.50 and  focal length = 15 mm focuses the excitation beam into the sample and 

collects the backscattered fluorescence signals.  The excitation and emission are 

separated by a 365 nm dichroic beamsplitter (DM1, Semrock, FF365-Di01, 

Rochester, New York).  A 360 nm edge wavelength long pass filter (LP1, Semrock, 

LP02-355RS-25) further blocks stray excitation light.  Lens L6 (ThorLabs, LA1131-

A) couples the emission spectra to a 50 µm core diameter multimode fiber 

(ThorLabs, SFS50/125Y).  The core of the fiber is used as a pinhole to collect the 

confocal fluorescence and conducts the signal to the “detection arm” of the system, 

which consists of the filtering optics, detection sensors and electronics, and data 

acquisition equipment. 

At the detection arm, to enable cell metabolism sensing, we employed two 

detection channels.  Channel 1 is preferential to FAD and Channel 2 is preferential to 

NADH.  The divergent fluorescence signal emitting from the multimode fiber was 

collimated by an aspheric lens (L7, Asphericon, 12-20 FPX-S, f = 20 mm, NA = 0.29, 

Jena, Germany).  FAD and NADH fluorescence signal were preferentially separated 
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by the filtering optics DM2, BP1, and BP2 as described in Section 5.2.4 below.  The 

fluorescence signals of each channel were detected by separate identical 

photomultiplier tubes (PMT 1 and PMT 2, Hamamatsu, H10721, Tokyo).  The time-

resolved fluorescence intensity detected by the PMTs was digitized on a 1 GHz 

oscilloscope (TDS-680C Tektronix, Wilsonville, OR) after pre-amplification (Pre-

Amp 1 and Pre-Amp 2, XP Power, ECL30UT03-S, Sunnyvale, California).  The 

oscilloscope data acquisition was electronically triggered by a TTL signal from the 

laser pulse for synchronization with the excitation.  The laser and data acquisition 

were controlled using software provided by CryLas and Tektronix, respectively. 

The sample arm was mounted on a motorized three-axis linear translation 

stage.  This stage allows precise control of the of the interrogation volume on the 

sample.  An automated control program was written in Matlab for axial scanning of 

the focal point through the sample and data acquisition.  The sample arm is 

positioned over a tilting stage that can be equipped with a heating pad and 

anesthesia equipment for intravital assessment of living mice. 

All equipment was mounted on optical breadboards that were secured to a 

portable cart, including a surge protector for power supply, for transportation to 

animal facilities and clinics. 

5.2.2 Galilean Beam Expander for Single Mode Fiber Coupling 

To achieve confocal optical sectioning using optical fibers, the TEM00 mode 

of the laser must be preserved so that the excitation can be focused to a diffraction-

limited spot [10].  Therefore, the excitation light must be transferred to the sample 

arm via a single mode fiber, which maintains coherence.  To efficiently couple the 

laser beam to the single mode fiber, we must solve a Gaussian beam optics mode-

matching problem to determine the focal length of the coupling lens.  Fig. 5.2 below 

describes the problem. 
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Fig. 5.2.  Coupling of laser excitation source to single mode fiber.  A Galilean beam 
expander constructed by lenses L1 and L2 magnifies the laser beam, which has 

radius y1, to fill the back aperture y3 of the focusing objective L3.  The focal length f3 
of the objective lens must be determined to match the Gaussian mode of the fiber. 

The focal length f3 of the focusing objective L3 must be determined to focus 

the beam to a spot size that matches the mode field diameter of the fiber, MFD.  This 

can be calculated using Eq. 5.1, as a function of MFD, the collimated 1/e2 laser beam 

diameter d, and the excitation wavelength λ 

 𝑓3 = 𝑑 (𝜋𝑀𝐹𝐷) (4𝜆)⁄  Eq. 5.1 

To achieve the smallest spot size of the focused laser beam, the beam must be 

expanded and collimated to completely fill the back aperture of the focusing 

objective L3.  This is achieved by the Galilean beam expander constructed by the 

plano-concave lens L1 and plano-convex lens L2.  This telescope system magnifies 

the laser beam of radius y1 by a magnification factor M, to expand the beam radius to 

y3. 

 𝑀 = 𝑦3 𝑦1⁄ = 2𝑑 𝑦1⁄ = −𝑓2 𝑓1⁄  Eq. 5.2 

Note that the term d in Eq. 5.1 equals twice the term y3 in Eq. 5.2.  We are 

given the laser beam radius y1 = 0.115 mm and λ = 355 nm from the laser 

specifications and MFD = 2.28 µm from the fiber specifications.  First, we used Eq. 

5.2 to expand the laser beam to a diameter near the entrance aperture of typical 

focusing objectives, about 10 mm.  We therefore used UV-fused silica lenses L1 

(ThorLabs LC4210-UV) and L2 (ThorLabs LA4663-UV) with f1 = -25 mm and f2 = 

1000 mm to achieve M = 40 and expand the beam diameter D to 9.2 mm.  We then 
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used this d in Eq. 5.1 to determine that the focusing objective should have f3 = 46.4 

mm.   

Additional requirements of the focusing objective lens L3 are: 1) that the NA 

matches the NA of the single mode fiber, 0.13, and 2) that the material efficiently 

transmits UV light with little autofluorescence.   We selected the ThorLabs LMU-5X-

NUV high-power UV focusing objective lens to meet these requirements.  This lens 

has a focal length of 40 mm, the closest match available to the calculated f3 = 46.4 

mm.  The NA of 0.13 matches that of the fiber.  The theoretical focal spot size is only 

3 µm.  All of the lens elements within the objective are made from excimer grade UV 

fused silica and CaF2, and have an anti-reflection coating for the 325-500 nm 

spectral range. 

5.2.3 Theoretical Calculation of Axial Resolution 

We can control three parameters to affect the axial resolution of the system 

[11]: 1) the numerical aperture of the focusing lens (L5) that illuminates the sample 

and collects signal, 2) the magnification determined by the collecting lens (L6) that 

focuses the emission signal into the multimode fiber, and 3) the pinhole diameter, 

i.e. the multimode fiber core diameter.  To optimize the system design for the 

smallest axial resolution, we simulated the axial point spread function of the system 

for varying numerical apertures, magnifications, and pinhole diameters. 

T. Wilson described the point spread function in both radial (v) and axial (u) 

dimensions when sectioning with a finite-sized circular detector, such as the core of 

the multimode fiber, in our case.  The spatial intensity of detected fluorescence 

signal is: 

Eq. 5.3a 

Eq. 5.3b 
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where the radial dimension v is related to the real radial distance r by 𝑣 =  
2𝜋

𝜆
𝑟(𝑁𝐴) 

and the axial dimension u is related to the real axial distance z by 𝑢 =  
8𝜋

𝜆
𝑧(𝑁𝐴2).  h 

is the point spread function and vp is the pinhole radius in optical units [12]. 

We solved Eq. 5.3a and b using MATLAB R2013a for an 81x81x81 pixel 

detection volume (optical units) centered at the focal point of the focusing lens L5.  

This was repeated for varying pinhole radii from 0 to 120 optical units in 

increments of 2 optical units.  This range was selected because 120 optical units is 

the equivalent of approximately a 50 µm diameter pinhole, which is the core 

diameter of our multimode fiber.  Representative lateral point spread functions are 

shown at varying axial depths (in real z axial units) in Fig. 5.3.  An axial depth of z = 

0 µm is defined as the focal point of L5.  Transformations from optical to real units 

were calculated by the equations defined above. 

 

Fig. 5.3.  Representative lateral point spread function at varying axial depths.  This 
simulation of the spatial intensity of the detected fluorescence for varying pinhole 
diameters was used to optimize the numerical aperture and magnification of the 

optical system. 

After completing the simulations for all pinhole diameters from 0 to 50 µm, 

the axial point spread function full width at half maximum (FWHM) was plotted 

against the pinhole radius.  The results in optical units were transformed to real 

spatial units for varying numerical apertures and magnifications.  Fig. 5.4a shows 

the relationship when magnification is fixed at 3 and NA is varied from 0.1 to 0.7.  

Fig. 5.4b shows the relationship when NA is fixed at 0.4 and magnification is varied 

from 1 to 20.  From these plots, we can see that axial resolution improves for 

increasing NA and increasing magnification. 
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From Fig. 5.4a, it is apparent that for magnification of 3 and NA of 0.4 and 

greater, the axial resolution of the system reaches a plateau, no matter the radius of 

the pinhole.  This can guide our selection of lenses L5 and L6.  Since we are using a 

multimode fiber of 50 µm core diameter (the maximum radius shown on the plot), a 

NA of at least 0.4 is necessary for small axial resolution.  According to Fig. 5.4b, at 

NA = 0.4, the magnification must be at least 10 to achieve axial resolution of 10 µm.  

This would result in using a lens L6 of very long focal length, which would make 

physical construction of the sample arm difficult.  However, as can be seen in Fig. 

5.4a, using NA = 0.5 would achieve axial resolution of ~12 µm with a magnification 

of 3.  Therefore, we selected an aspheric lens with NA = 0.50 and f = 15 mm for L5.  

We selected a lens with f = 57 mm for L6, for a magnification of 3.8, and NA of 0.22 

to match that of the multimode fiber.  

 

 

Fig. 5.4.  Relationship of axial point spread function to pinhole radius.  a) When 
magnification is fixed at 3, the axial resolution improves with increasing NA.  

Beyond an NA of 0.4, the axial resolution reaches a plateau even for very large 
pinhole radii.  b) When NA is fixed at 0.4, the axial resolution improved with 

increasing magnification.  
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5.2.4 Theoretical Temporal Resolution and Sensitivity 

 The theoretical temporal characteristics can be estimated following the 

calculations described by Urayama et al. [13].  The fluorescence intensity as a 

function of time is detected by the PMTs and digitized on a 1 GHz (5 GS/s) 

oscilloscope (TDS-680C Tektronix, Wilsonville, OR).  The PMTs have a system 

response FWHM of 1.1 ns (SRAPD).  For each transient decay, 500 data points are 

acquired, with 200 ps intervals between each data point.  The laser pulse duration 

has a FWHM of 1.1 ns.  Using SRexPMT2 = √(SRex2 + SRPMT2) from ref. [13], the overall 

system response is calculated to be 1.6 ns.   

 The combined noise (Shot, readout, and thermal) was measured on the PMT 

by taking the average and standard deviation of the first 30 data points of the data 

acquisition.  The relative standard deviation (RSD) of the noise was 3.6% and a 

mean voltage of 10 mV.  Reasonable signal-to-noise ratios (SNR) for biological 

studies would ideally be no less than 25 [14].  This corresponds to a PMT output 

voltage of 257 mV.  Fluorescein concentration of 1 μM yielded a maximum voltage of 

1.46 V.  Assuming a linear relationship of dye concentration to fluorescence signal, 

the instrument is theoretically sensitive to detect concentration level as low as 180 

nM.  

5.2.5 Filters and Dichroic Mirrors 

Fig. 5.5 shows the spectral positions of the band-pass filters and dichroic 

mirrors relative to the normalized fluorescence emission spectra of NADH, FAD, and 

collagen.  The emission spectra at 355 nm excitation were measured by our group 

previously [15].  The transmission data for the filters and mirrors were downloaded 

from the manufacturer’s website as ASCII files.  The first dichroic mirror, DM1, with 

edge wavelength 365 nm, separates the excitation light from all emission spectra at 

the sample arm of the instrument.  At the detection arm, a second dichroic mirror, 

DM2, with edge wavelength 550 nm, transmits mostly FAD signal towards Channel 

1, and reflects both NADH and collagen signal towards Channel 2.  BP1, with 
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transmission band 520-700 nm, aids in rejecting additional NADH and collagen 

signal that may have transmitted through DM2, increasing the relative FAD signal 

collected on Channel 1.  BP2, with transmission band 500-550 nm, increases signal 

collection in the spectral region that is dominated by NADH signal over collagen. 

 

Fig. 5.5.  Filtering design to preferentially detect NADH and FAD signal in CFLS.  
Solid lines show normalized emission spectra of NADH, FAD, and collagen.  Dashed 

lines show transmission spectra of dichroic mirrors and band-pass filters.  DM2 
separates FAD signal from NADH and collagen signal.  BP1 further rejects leaked 
collagen and NADH signal transmitted towards Channel 1 to preferentially detect 

FAD.  BP2 selects the spectral region dominated by NADH signal over collagen. 

5.2.6 Automated Motorized Control and Data Acquisition 

Since the lateral and axial resolution of the instrument is on the order of 

microns, precise spatial localization of the optical interrogation volume is critical.  

The sample arm was mounted on a computer-controlled, motorized three-axis 

linear translation stage.  The DC servo driven linear actuators (Newport, LTA-HS, 

Irvine, CA) have sub-micron resolution.  The actuators are computer-controlled by a 

motor control driver (Newport, ESP300).  Home-built software in MATLAB 

controlled axial scanning of the focal volume through the sample, synchronized with 

data acquisition from the oscilloscope.  The axial step size and scanning depth could 

be set within the program. 
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5.3 Results 

5.3.1 Single Mode Fiber Coupling 

The Galilean beam expander was built for coupling the laser excitation to the 

single mode fiber, pictured in Fig. 5.6.  The energy per pulse at the source was 

measured to be 4.1 µJ.  The energy at the proximal face of the single mode fiber, 

after the light has passed through the Galilean beam expander, was 3.6 µJ (12% loss 

through the optics).  The energy at the distal end of the fiber was 3.54 µJ (98% 

coupling efficiency).  However, as the spot size is only ~3 µm, the energy density is 

extremely high and the single mode fiber quickly becomes thermally damaged and 

unusable.  Therefore, it is important to always place a neutral density filter (ND) 

with optical density (OD) no less than 0.3 to prevent burning of the fiber.  When 

using a ND filter with OD = 0.3, 0.77 µJ/pulse is transmitted to the distal end of the 

fiber. 

 

Fig. 5.6.  Constructed Galilean beam expander for coupling laser excitation to single 
mode fiber.  The maximum measured coupling efficiency was 98%.  However, at this 

high energy density the fiber would become damaged.  A neutral density filter of 
optical density at least 0.3 is necessary to prevent thermal damage of the fiber. 
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5.3.2 Construction of portable CFLS system 

All components of the CFLS have been constructed and secured to a portable cart, 

pictured in Fig. 5.7. 

 

Fig. 5.7.  Portable CFLS system.  a) The whole system is mounted on a portable cart 
for clinical use.  The lower shelf contains the CPU, oscilloscope, and motor control 

driver.   The middle shelf contains the illumination optics, detection optics and 
electronics.  The top shelf contains the sample arm and the animal stage for 

intravital assessment.  b) The detection electronics are secured to the middle shelf.  
c) The sample arm is positioned over a titling stage that can hold the animal.  The 

yellow fiber is the illumination single mode fiber.  The orange fiber is the emission 
multimode fiber. 
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5.3.3 Reflectance Axial Resolution Testing 

The axial resolution of the CFLS was measured by converting the system to a 

reflectance configuration and translating a reflective mirror axially across the focal 

volume.  The dichroic mirror in the sample arm was replaced with a 50/50 

beamsplitter, and the 360 nm long pass filter and 500-550 nm band-pass filter were 

removed for reflectance assessment.  A UV-reflective mirror was placed as the 

sample.  The axial position of the mirror was translated in 10 µm steps, 100 µm on 

both sides of the focal point, and the reflected laser pulse was acquired at each step.  

Fig. 5.8 shows the peak reflectance intensity at each axial step.  The axial resolution 

of the CFLS, estimated from the FWHM of this peak, is 78 µm. 

 

Fig. 5.8.  Axial resolution knife edge experiment results.  The reflected laser pulse 
intensity measured from a mirror translated axially across the focal volume has a 

FWHM of 78 µm, serving as an estimate of the axial resolution of the CFLS. 

5.4 Discussion 

In this chapter we have reported the design and construction of the CFLS for 

depth-resolved fluorescence lifetime spectroscopy.  We have completed the optical 

design of the system, including the design of highly efficient single mode fiber 

coupling, theoretical optical simulation to achieve confocal axial resolution, and 
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spectral filtering to preferentially detect endogenous NADH and FAD in samples for 

cellular metabolism assessment.  We have constructed the whole system and 

packaged it on a portable cart for future intravital experiments.  The system 

includes several features to facilitate live animal imaging.  These include a tilting 

stage that can be equipped with a heating pad and anesthesia equipment, and 

computer-controlled high-resolution linear actuators for precisely localized and 

automated axial scanning of the tissue.  The system is equipped with highly sensitive 

photomultiplier tubes for rapid data acquisition, which is critical for overcoming 

motion artifacts introduced by the animal. 

The CFLS only achieved an axial resolution of 78 µm, over six-fold greater 

than the theoretical calculation, which is less than 12 µm.  This is likely due to 

misalignment of the focal point of the collecting lens L5 to the conjugate focal point 

of the objective lens L6.  To achieve confocal optical sectioning, the illumination and 

detection focal volumes must exactly spatially coincide, and the resolution will be 

smallest when this coincident point is at the focal point of the objective lens.  The 

method for aligning the multimode fiber (pinhole) to the collecting lens focal point 

has been to carefully translate the fiber until the detected signal from the sample is 

maximal.  However, if the position of the sample is not at the true focal point of the 

objective lens, the pinhole is not in fact aligned with the conjugate focal point.  The 

best way to find the true conjugate point will be to iteratively translate the sample at 

very small axial steps, align the multimode fiber, and collect the axial response at 

each increment.  The axial step that produces the smallest FWHM of the response is 

the true focal point of the system, and the optical mounts should be locked at this 

position. 

Another challenge in aligning the multimode fiber in this manner is the use of 

the reflective mirror to conduct the knife edge experiment instead of a fluorescent 

sample.  Switching the configuration of the system from reflectance to the 

fluorescence mode affects the alignment of the optics, and therefore the resolution 

achieved in reflectance mode is likely lost.  The fluorescent samples we have 
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attempted to test in the lab were either too thick (spin coated fluorescent tissue 

phantoms, fluorescent detection cards, evaporated fluorescent dyes), or too photo-

unstable (papers, highlighters) to be used for this experiment.  Fluorescent beads, 

which serve very well for confocal microscopy experiments, have been too difficult 

to locate with the CFLS, with the lack of imaging capability.  The development of a 

fluorescent sample for conducting the knife edge experiment is the most important 

next step for the progress of this project. 

After the optimization of the CFLS axial resolution is completed, the 

instrument should be tested on fluorescent tissue phantoms.  These phantoms 

should consist of very sharp axial transitions between two spectrally distinct 

fluorophore layers.  Most fluorescent tissue phantoms are separated by a thin 

plastic wrap (such as Saran® Wrap) to prevent diffusion of fluorophores across the 

interface.  However, for high-resolution instruments such as the CFLS, the thickness 

of the wrap will affect the assessment.  Furthermore, the fluorescence properties of 

the wrap itself are usually unknown. 

The CFLS will be an excellent instrument for assessing cellular metabolism of 

tissue engineered constructs in living mice.  Unlike the FLS presented in Chapter 4, 

the CFLS will be capable of extracting fluorescence signal from the thin epithelial 

cell layers while suppressing background fluorescence from the keratin and dermal 

layer.  Furthermore, unlike the FLS, the CFLS is capable of detecting NADH and FAD 

fluorescence separately, enabling quantitative assessment of cell redox ratio [15].  

Finally, unlike the Ti:Sapphire high-energy, ultra-fast pulse width lasers used for 

multiphoton microscopy, the CFLS uses a small, light-weight excitation source that 

can be easily transported into the clinic. 
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Chapter 6.  
Conclusions and Future Directions 

6.1 Major contributions of this dissertation 

The major contributions of this dissertation can be summarized as follows: 

Chapter 2 

- We developed and experimentally validated an optical model to predict the output 

light intensity when coupling a LED light source with a large divergence angle to a 

small diameter fiber-optic bundle.  

- We used this model to improve system design parameters to maximize light 

throughput, allowing for use of smaller caliber optical bundles with more output 

power.  We achieved a distal fiber output power of 1.7 mW through a fiber bundle of 

outer diameter 950 µm, the highest power throughput achieved using an LED-based 

microendoscopy system of this outer diameter, to our knowledge. 

- We characterized the microendoscope performance using standard resolution 

targets and by comparison to bench-top epifluorescence microscopy of plated cells.  

Target-to-background ratio was consistent between the microendoscope and the 

epifluorescence microscope. 

- We developed a microendoscope with outer diameter 680 µm and lateral 

resolution 4 µm that can enter the cannula of a 19G needle and pass harmlessly into 

the peritoneum of an anesthetized mouse for high resolution fluorescence 

microendoscopy of deep tissues.  We demonstrated repetitive imaging for up to 4 

weeks, a longer time span that ever previously demonstrated, to our knowledge. 

Chapter 3 
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- We developed a microendoscope with outer diameter 680 µm and lateral 

resolution 4 µm that can pass through the instrument channel of a wide-field small 

animal endoscope.  This methodology can be used to administer targeted imaging 

agents to the colon, provide insufflation to the colon for intravital imaging, localize 

colonic adenomas, and image the epithelial cells of the colonic mucosa in real time 

for “optical biopsy”. 

- We demonstrated the ability for this microendoscope to acquire sub-cellular 

images in living mice, in real time, allowing for the study of molecular expression 

patterns of pre-malignant epithelial cells in vivo, using each animal as its own 

control. 

- We validated in vivo images collected with the microendoscope with ex vivo images 

of freshly excised colonic mucosa tissues using a bench-top confocal microscope.  

The binding pattern of the target peptide to single epithelial cells was similar 

between in vivo microendoscopy and ex vivo confocal microscopy. 

- We validated quantitative imaging of targeted molecular probe using the 

microendoscope.  Target-to-background ratios measured by the microendoscope 

were consistent with those measured by wide-field fluorescence endoscopy. 

Chapter 4 

- We employed a hand-held fluorescence lifetime spectroscopy (FLS) probe and 

instrumentation for label-free, noninvasive, and real-time assessment of ex vivo 

tissue engineered constructs implanted in living mice, to assess integration with 

native tissue.   

- We developed quantitative data analysis methods to assess the health of the 

implanted constructs in vivo. 

- We correlated optical parameters measured in vivo 1 week after implantation to in 

vitro measures of cellular viability, measured prior to implantation.  We found that 
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this correlation was not present at 3 weeks after implantation when most constructs 

had re-epithelialized.  Histological analysis qualitatively confirmed the findings. 

Chapter 5 

- We engineered a depth-resolved fluorescence lifetime spectroscopy system for 

label-free, noninvasive, and real-time assessment of ex vivo tissue engineered 

constructs implanted in living mice.  Confocal axial sectioning is intended to extract 

fluorescence preferentially from the thin epithelial cell layer and suppress 

background fluorescence from the dermal and keratin layers. 

- We engineered a beam expander and constructed a focusing setup to couple the 

laser excitation source to a single mode fiber with 98% efficiency. 

- We developed a mathematical simulation for the axial point spread function of the 

optical system as a function of numerical aperture, magnification, and multimode 

fiber core diameter to optimize system parameters and achieve good axial 

sectioning ability. 

- We engineered dual-channel detection with band-pass filtering and highly-

sensitive photomultiplier tubes to enable preferential high-speed acquisition of 

NADH and FAD.  These endogenous fluorophores can report on cellular metabolism. 

- We engineered automated axial scanning using motorized linear actuators and 

synchronized axial scanning with data acquisition.  This enables fast data 

acquisition through the depth of the depth of the construct, from the keratin layer to 

the dermal layer. 

- We adapted the system to be suitable for intravital assessments of living mice, 

including constructing the whole system on a portable cart, and configuring a tilting 

animal stage that can be equipped with a heating pad and anesthesia equipment. 

 



86 

6.2 Future Directions 

6.2.1 In Vivo Monitoring of Ovarian Cancer Cell Apoptosis Using a Dual-Color Flexible 

Fiber Microendoscope 

Having established the ability to conduct longitudinal studies in living mice with 

single cell resolution, the next step of this project is to use this instrument to assess 

tumor burden and response to therapy.  Two advancements to the instrument 

would allow this capability: 

1) Add dual-color imaging capability to the instrument.  LEDs are now available in 

many colors.  A green LED could be added to the system to excite red fluorescent 

protein (RFP), and a filter wheel that switches between long pass filters that pass 

green or red light.  GFP and RFP can then be simultaneously imaged. 

2) Engineer a genetic reporter that expresses RFP in the ovarian cancer cells when 

the cell is undergoing apoptosis.  These cells will constitutively-express GFP, as 

before, and express RFP only while undergoing apoptosis. 

After adding these two capabilities to the system, the methodology for longitudinal 

imaging can be carried out as in Chapter 2.  During the course of the study, 

chemotherapeutics can be administered to the mice.  Effectiveness of treatment can 

be monitored and quantified as the ratio of cells undergoing apoptosis (cells 

expressing RFP and GFP) to the cells not undergoing apoptosis (cells expressing 

only GFP).  This study would enable the study of heterogeneity of response to 

therapy of individual cells in ovarian cancer, and could aid in the screening of novel 

chemotherapeutic agents. 

6.2.2 Confocal Fiber Bundle Based Microendoscopy 

The lack of optical sectioning ability is a major limitation of the HRME demonstrated 

in Chapters 2 and 3.  Though the epithelial targets were on the surface of the colonic 

mucosa, assessment could greatly benefit from more clear, high-resolution imaging, 

allowing the visualization of the cellular morphology.  Assessment of the molecular 
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targets in the crypts of the mucosa, which are not visible with the current 

instrumentation, could lead to earlier detection of cancer. 

The instrument channel of the small animal does not allow passage of any fiber of 

larger caliber than the 680 µm fiber we demonstrated here.  Confocal sectioning 

could be implemented using a small GRIN lens cemented at the distal tip of the 

bundle to increase magnification, increase the resolution of the instrument beyond 

the pixel-to-pixel core-spacing.  The laser beam would require scanning across the 

proximal face of the fiber at high speed.  This study would enable earlier and more 

accurate detection of colorectal cancer by “optical biopsy”. 

6.2.3 Phantom for Simulating Epithelial Tissue Fluorescence 

For both the fiber-optic FLS demonstrated in Chapter 4, and depth-resolved CFLS 

engineered in Chapter 5, there is a need for standardized phantoms—engineered 

devices that simulate properties of living tissues—for characterizing and validating 

the instruments.  The optical instruments must be sufficiently sensitive and well-

resolved to acquire signal from the thin, microscopic target cell layer that is 

sandwiched between a scattering and absorbing keratin layer and a strongly 

fluorescent dermal layer.  For testing of optical instruments, there is a need for 

multi-layered optical phantoms that simulate scattering, absorption, and 

fluorescence properties of epithelial tissues.  These can be used to quantitatively 

test the sensitivity and depth-resolution of optical instrumentation. 

6.2.4 Characterization of Depth-Resolved Fluorescence Lifetime Spectrometer 

As described in Chapter 5, the axial resolution of the depth-resolved fluorescence 

lifetime spectrometer is not yet optimized.  Future work must solve this problem, 

following suggestions and ideas outlined in Section 5.4.  After axial resolution is 

demonstrated near the theoretical calculation of ~10 µm, the system should be fully 

characterized for fluorescence sensitivity, fluorescence lifetime resolution, and the 

ability to spectrally separate NADH and FAD fluorescence.  Finally, the system 

should be used for in vivo assessments of EVPOME and other epithelial tissues. 


