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ABSTRACT

Hamilton-Jacobi equations for sorting and percolation problems

by

Jeff Calder

Co-Chair: Professor Selim Esedoḡlu
Co-Chair: Professor Alfred O. Hero III

In this dissertation we prove continuum limits for some sorting and percolation

problems that are important in mathematical, scientific, and engineering contexts.

The first problem we study is non-dominated sorting, which is a fundamental com-

binatorial problem in multi-objective optimization. The sorting can be viewed as

arranging points in Euclidean space into fronts according to a partial order. We

show that these fronts converge almost surely to the level sets of a function that sat-

isfies a Hamilton-Jacobi equation in the viscosity sense. Of course, multi-objective

optimization is ubiquitous in scientific and engineering contexts, and, as it turns

out, non-dominated sorting is also equivalent to the longest chain problem, which

has a long history in probability and combinatorics. We present a fast numerical

scheme for solving this Hamilton-Jacobi equation and prove convergence and various

properties of the scheme. We then show how to use the scheme to design a fast

approximate non-dominated sorting algorithm and we demonstrate the algorithm on

xi



synthetic data as well as a large-scale real-world dataset.

The second problem we study is directed last passage percolation (DLPP), which

is a stochastic growth model with applications in directed polymer growth, queuing

systems, and stochastic particle systems. DLPP is closely related to the longest

chain problem, and by using similar techniques we prove that a DLPP model with

macroscopic and discontinuous weights has a continuum limit that corresponds to

solving a Hamilton-Jacobi equation. We further prove convergence of a numerical

scheme for this Hamilton-Jacobi equation and present an algorithm based on dynamic

programming for finding the asymptotic shapes of maximal directed paths.
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CHAPTER I

Introduction

In this dissertation we prove continuum limits for some sorting and percolation

problems that are important in mathematical, scientific, and engineering contexts.

The problems we study are non-dominated sorting, or the longest chain problem, and

directed last passage percolation. Non-dominated sorting is a type of sorting widely

used in multi-objective optimization, which is ubiquitous in science and engineering.

It is also equivalent to the longest chain problem, which has applications in materials

science, pure mathematics, and computational biology, among other fields. Directed

last passage percolation is a stochastic growth process closely to the longest chain

problem, and has applications in directed polymer growth, queuing systems, and

stochastic particle systems.

A common thread tying these combinatorial problems together is their formula-

tion as discrete variational problems. The continuum limits are continuous varia-

tional problems obtained by a type of homogenization. These variational problems

are then associated with Hamilton-Jacobi equations through a well-known technique

from optimal control. One of the fundamental contributions of this work is the

identification of Hamilton-Jacobi equations for these continuum limits. This allows

efficient and accurate computation of the limits, as well as opening up another avenue

1
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for theoretical study.

We give some applications of these continuum limits as well. As a theoretical

application, we are able to show, using techniques from the theory of viscosity so-

lutions of Hamilton-Jacobi equations, that non-dominated sorting is asymptotically

stable under bounded random perturbations. We then show how to design a fast

approximate non-dominated sorting algorithm based on a fast numerical scheme for

the continuum limit Hamilton-Jacobi equation. We evaluate the algorithm on a real-

world large-scale dataset and show that it is significantly faster than non-dominated

sorting while maintaining a high degree of sorting accuracy. For directed last passage

percolation, we show how to efficiently compute the asymptotic shapes of optimal

paths by solving the continuum limit Hamilton-Jacobi equation and applying dy-

namic programming. Aside from these applications, there are undoubtedly many

others that we leave for future work, and we discuss some possibilities in Chapter

VI. Let us now describe each of these combinatorial problems in further detail.

1.1 Non-dominated sorting

Consider the following discrete multi-objective optimization problem: Given sev-

eral objective functions fi : S → [0,∞), where i = 1, . . . , d and S = {x1, . . . , xn} is

a finite set, find x ∈ S minimizing all of the objectives in some appropriate sense.

Since it is generally impossible to find x ∈ S that minimizing all of the objectives

simultaneously when d > 1, a basic approach is to combine the objectives together

into one objective. Such approaches are typically called scalarization [32], and a

basic, though commonly used technique is to form a linear combination

fα = α1f1 + · · ·αdfd.
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Such an approach, which is called linear scalarization, suffers from two significant

drawbacks. First, the minimizer or minimizers of fα depend on the choice of weights

α = (α1, . . . , αd). There is in general no principled approach for selecting the weights

without some a priori knowledge about the relative importance of each objective,

and searching over all possible combinations of weights is prohibitively expensive.

Second, linear scalarization misses many important and relevant solutions. For ex-

ample, suppose our set has three elements S = {a, b, c} and (f1(a), f2(a)) = (1, 0),

(f1(b), f2(b)) = (0, 1) and (f1(c), f2(c)) = (0.6, 0.6). It is easy to see that for any

selection of weights α = (α1, α2), either a or b (or both) will be the minimizer of fα,

and the solution c will be ignored. However, c is more desirable than a in terms of

f1 and more desirable than b in terms of f2. There is therefore no a priori reason we

should prefer a and b over c.

A more natural notion of solution to a multi-objective optimization problem is

the notion of Pareto-optimality. We say a feasible solution x ∈ S is Pareto-optimal

if for every y ∈ S, we have fi(y) > fi(x) for some i, or fi(y) = fi(x) for all i. In other

words, there are no feasible solutions that are at least as desirable in all objectives and

strictly better in one. The notion of Pareto-optimality is originally due to Vilfredo

Pareto, an Italian economist who pioneered the idea for problems in economics, and

it has since proven to be a powerful concept with applications in numerous other

fields of science and engineering [32]. For example, multi-objective optimization

problems alone have found applications in control theory and path planning [72,

63, 67], gene selection and ranking [88, 49, 48, 50, 36, 37, 38], data clustering [47],

database systems [60, 75] and image processing and computer vision [73, 24].

We denote the collection of Pareto-optimal elements by F1 and it is called the first

Pareto front. The second Pareto front, F2, consists of the Pareto-optimal elements
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(a) (b)

Figure 1.1: (a) Depiction of nonconvexities in the first Pareto front. The large
points are Pareto-optimal, but only the hollow points can be obtained by linear
scalarization. (b) Depiction of nonconvexities in the Pareto fronts in a real-world
example discussed in more detail in Chapter IV.

of S \ F1, and in general

Fk = Pareto optimal elements of S \
⋃
j<k

Fj.

The Pareto front that a particular feasible solution lies on is useful for ranking

feasible solutions to the multi-objective optimization problem. Any minimizer of a

linear scalarization fα is Pareto-optimal, however, not all Pareto-optimal solutions

are minimizers of fα for some choice of weights. In our simple example above, a, b and

c are all Pareto-optimal, though c is not the minimizer of any linear scalarization. In

general, linear scalarization finds the Pareto-optimal points on the boundary of the

convex hull of the Pareto front. See Figure 1.1 for an illustration. We will explore

this more in Chapter II.

We should mention at this point that there are other non-linear scalarization ap-

proaches that are capable of finding most (or even all) of the Pareto-optimal feasible

solutions. For example, Athan and Papalambros [4] consider a linear combination of

powers of the objectives as follows:

fα,p = α1f
p
1 + · · ·+ αdf

p
d .
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(b) n = 106 points

Figure 1.2: Examples of Pareto fronts for X1, . . . Xn chosen from the uniform distri-
bution on [0, 1]2. In (b), 29 equally spaced fronts are depicted.

It turns out that every Pareto-optimal solution can be obtained by appropriate

choices of α and p. As is the case for linear scalarization, the selection of appro-

priate weights and exponent is challenging, and the search space grows exponentially

with dimension. Furthermore, depending on the geometry of the first front, the ex-

ponent p may have to be quite large in order to obtain all Pareto-optimal points,

and this can become difficult computationally [4].

The process of arranging the set S into Pareto-fronts is called non-dominated

sorting [28, 29]. If we set Xi = (f1(xi), . . . , fd(x
i)) ∈ Rd for i = 1, . . . , n, then

it is clear that non-dominated sorting depends only on the points X1, . . . , Xn ∈ Rd.

Thus, we will from now on consider non-dominated sorting as a combinatorial sorting

problem applied to points in Rd. Figure 1.2(a) shows the Pareto-fronts obtained by

non-dominated sorting of n = 50 points X1, . . . , Xn independent and identically

distributed on [0, 1]2, and Figure 1.2(b) shows the same for n = 106 points.

Although we have described non-dominated sorting in the context of a discrete

optimization problem, it is a fundamental tool in continuous optimization as well.

Many state of the art algorithms for continuous optimization involve a large num-

ber of discrete subproblems, each of which requires non-dominated sorting. The
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most common examples are the so-called genetic and evolutionary algorithms for

continuous multi-objective optimization [29, 39, 40, 28, 89]. The applications of

non-dominated sorting are not restricted to optimization; indeed, there are further

striking applications in combinatorics [34, 66], molecular biology [76, 1], graph the-

ory [66], Young Tableaux [95, 34] and even in physical layout problems in the design

of integrated circuits [1].

1.2 Longest chain in Euclidean space

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random vari-

ables on Rd with density function f ∈ L1(Rd). The points form a partially ordered

set Xn = {X1, . . . , Xn} under the partial order

(1.1) x 5 y ⇐⇒ xi ≤ yi for i = 1, . . . , d.

Let `(n) denote the length of a longest chain—a totally ordered subset—in Xn. For

x ∈ Rd let un(x) denote the length of a longest chain in Xn consisting of points less

than or equal to x.

When f is a smooth density on [0, 1]d, hence `(n) = un(1, . . . , 1), the problem of

studying the asymptotics of `(n) has a long history. It begins with Ulam’s famous

problem [92] of finding the length of a longest increasing subsequence of a random

permutation. Hammersley [46] made some of the first breakthroughs in understand-

ing Ulam’s problem. He observed that the distribution of the length of a longest

increasing subsequence among n numbers chosen uniformly at random is the same

as the distribution of `(n) for uniformly distributed points on [0, 1]2. Using subaddi-

tive ergodic theory, Hammersley showed that n−
1
2 `(n) converges almost surely to a

constant c as n→∞, and he conjectured that c = 2. In subsequent papers, Vershik

and Kerov [93] and Logan and Shepp [65] showed that c ≤ 2 and c ≥ 2, respectively.
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Hammersley’s results were generalized by Bollobás and Winkler [17] to uniformly

distributed points on [0, 1]d; they showed that there exist positive constants cd such

that n−
1
d `(n)→ cd almost surely as n→∞, and cd 1 e as d→∞. The only known

values of cd are c1 = 1 and c2 = 2. Deuschel and Zeitouni [31] generalized Hammer-

sley’s results in another direction. For X1, . . . , Xn i.i.d. on [0, 1]2 with C1 density

function f : [0, 1]2 → R, bounded away from zero, they showed that n−
1
2 `(n) → 2J

in probability, where J is the supremum of the energy

J(ϕ) =

∫ 1

0

√
ϕ′(x)f(x, ϕ(x)) dx,

over all ϕ : [0, 1]→ [0, 1] nondecreasing and right continuous.

The longest chain problem is actually equivalent to non-dominated sorting. To

see this, let us first give a definition of non-dominated sorting that is independent

of the underlying multi-objective optimization problem. Given a set of points Xn =

{X1, . . . , Xn}, the first Pareto front is the collection of minimal points in Xn with

respect to the partial order 5, i.e.,

F1 = minimal elements of Xn.

As before, the deeper Pareto fronts are defined recursively as follows:

Fk = minimal elements of Xn \
⋃
j<k

Fj.

Let us suppose now that the points X1, . . . , Xn are all distinct. Then it is clear that

a point Xi is in the first Pareto front if and only if the longest chain consisting of

points less than or equal to Xi has length 1, i.e.,

Xi ∈ F1 ⇐⇒ un(Xi) = 1.

By stripping off the first Pareto front and repeating the same argument, it is clear
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that in general we have

Xi ∈ Fk ⇐⇒ un(Xi) = k.

This observation is essential. It says that studying the asymptotic shapes of the

Pareto fronts F1,F2, . . . is equivalent to studying the longest chain function un.

Notice in Figure 1.2, the points Xi that are on the same Pareto front are connected

by a continuous staircase curve that represents the jump set of un. It is interesting

to note that in the combinatorics literature, the partition Xn = F1∪F2∪· · · is called

the canonical antichain partition [34]. The longest chain problem in two dimensions

is also closely related to patience sorting [3].

1.3 Directed last passage percolation

The directed last passage percolation (DLPP) problem can be formulated as

follows: Let X(i, j) be nonnegative independent random variables defined on the

lattice N2, and define the last passage time from (1, 1) to (M,N) by

(1.2) L(M,N) = max
p∈ΠM,N

∑
(i,j)∈p

X(i, j),

where ΠM,N denotes the set of up/right paths from (1, 1) to (M,N) in N2. Of interest

are the asymptotics of L as M,N →∞, and their first order fluctuations.

DLPP is a stochastic growth model that has many applications in mathemati-

cal and scientific contexts. One important application of DLPP is zero-temperature

directed polymer growth in a random environment, which is an important model in

statistical mechanics [25, 52, 54, 18]. The model describes a hydrophilic polymer

chain wafting in a water solution containing randomly placed hydrophobic molecules

(impurities) that repel the individual monomers in the polymer chain. Due to ther-

mal fluctuations and the random positions of impurities, the shape of the polymer
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chain is best understood as a random object. The statistical mechanical model for

a directed polymer assumes that the shape of the polymer can be described by a

directed path p ∈ ΠM,N , thus suppressing entanglement and U-turns. The presence,

or strength, of an impurity at site (i, j) is described by a random variable X(i, j),

and the energy of a path p ∈ ΠM,N is given by

(1.3) −β
∑

(i,j)∈p

X(i, j),

where β = 1/T > 0 is the inverse temperature. The typical shape of a polymer is

one that minimizes (1.3). Of interest is the quenched polymer distribution on paths

defined by

(1.4) Q(p;M,N) =
1

Z(M,N)
exp

β ∑
(i,j)∈p

X(i, j)

 ,

where p ∈ ΠM,N and the normalization factor Z(M,N) is called the partition func-

tion, and is given by

(1.5) Z(M,N) =
∑

p∈ΠM,N

exp

β ∑
(i,j)∈p

X(i, j)

 .

In the zero-temperature limit, i.e., β →∞, the quenched polymer distribution con-

centrates around paths maximizing (1.3), and we formally have

lim
β→∞

1

β
log (Z(M,N)) = max

p∈ΠM,N

∑
(i,j)∈p

X(i, j) = L(M,N),

Directed polymers are related to several other stochastic models for growing surfaces,

such as directed invasion percolation, ballistic deposition, polynuclear growth, and

low temperature Ising models [62].

DLPP with i.i.d. exponential weightsX(i, j) is also equivalent to the totally asym-

metric simple exclusion process (TASEP), which is an important stochastic interact-

ing particle system [35, 82], and to randomly growing Young diagrams [58, 94, 83].
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The dynamics of TASEP involve a particle configuration on the lattice Z, evolving in

time, with the dynamical rule that a particle jumps to the right after an exponential

waiting time if the right neighboring site is empty. The correspondence between

DLPP and TASEP proceeds via the following stochastic corner growth model: Par-

tition R2 into squares defined by the edges of the lattice Z2. Imagine that at time

t = 0, all the squares in [0,∞)2 are colored white, while the remaining squares are

colored black. For each (i, j) ∈ N2, assign a passage time random variable X(i, j)

to square (i, j). The dynamic rule governing the growth process is the following: A

white square at location (i, j) is colored black exactly X(i, j) time units after both

its south and west neighbors become black. The time until square (M,N) is colored

black is exactly L(M,N)—the last passage time from (1, 1) to (M,N)—and the set

of all black squares is a randomly growing Young diagram.

There is a one-to-one correspondence between TASEP configurations, and con-

figurations of black and white squares in the corner growth model. The idea is that

when a white square is colored black, it corresponds to a particle jumping from a site

j to its necessarily vacant neighbor j + 1. The explicit correspondence is as follows:

For every edge separating a white and black square, assign a value of 1 to vertical

edges, and a value of 0 to horizontal edges. The TASEP configuration corresponds

exactly to reading these binary values sequentially from (1,∞) to (∞, 1). We give

this correspondence more rigorously in Section 5.1.2 (see Figure 5.2). There are fur-

ther applications of DLPP in queueing theory [5, 45], and the model is also related

to greedy lattice animals [70].

One quantity of interest in DLPP is the time constant, U , given by

(1.6) U(x) := lim
N→∞

1

N
L (bNxc) .
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The exact form of U is known for i.i.d. geometric weights [58], and i.i.d. exponential

weights [82], and is given by

(1.7) U(x) = µ(x1 + x2) + 2σ
√
x1x2,

where µ and σ2 are the mean and variance, respectively, of the either geometric or

exponential weights. For more general distributions, Martin [71] showed that U is

continuous on [0,∞)2 and gave the following asymptotics at the boundary:

U(1, α) = µ+ 2σ
√
α + o(

√
α).

The fluctuations of L for geometric and exponential weights are non-Gaussian, and

instead follow the Tracy-Widom distribution asymptotically [58]. It is an open prob-

lem to determine U(x) and the fluctuations of L for weights other than geometric

and exponential.

Several authors have considered the DLPP problem with independent weights

X(i, j) that are either geometric or exponential, but not identically distributed and

instead have a macroscopic inhomogeneity. For example, in the exponential DLPP

setting, one would assume that X(i, j) are independent and exponentially distributed

with mean λ(i, N−1, jN−1) where λ : Rd → R is the macroscopic inhomogeneity and

N is the asymptotic parameter. In the exponential case with continuous λ, Rolla

and Teixeira [81] showed that U has a variational interpretation. Their result is in

many ways analogous to the variational problem for the longest chain problem [31].

Macroscopic inhomogeneities have also been considered for TASEP [43], and for other

similar growth models [80]. In particular, Georgiu et al. [43] proved a hydrodynamic

limit for TASEP with a spatially (but not temporally) inhomogeneous jump rate c,

which may admit discontinuities. Their result gives the limiting density profile in

terms of a variational problem, and they connected this to a conservation law in the



12

special case that the rate c(s) is piecewise constant with one jump, i.e.,

c(s) =


c1, s ≤ 0

c2, s > 0.

In the context of exponential DLPP, this would be equivalent to assuming that the

macroscopic mean λ : [0,∞)2 → [0,∞) is given by λ(x) = c−1
1 for x1 >= x2 and

λ(x) = c−1
2 otherwise.

1.4 Summary

For each of the aforementioned combinatorial problems, we have discovered con-

tinuum limits that correspond to solving certain Hamilton-Jacobi equations in the

viscosity sense. For non-dominated sorting, the solution of the Hamilton-Jacobi

equation gives the asymptotic shapes of the Pareto fronts, which are the level sets

of the longest chain function; while for directed last passage percolation (DLPP),

it gives the limiting time constant in the presence of macroscopic inhomogeneities.

Much of this dissertation is devoted to rigorously proving these continuum limits,

while the rest is devoted to applications of these new results.

This dissertation is organized as follows: In Chapter II, we give some statistical

results concerning the convexity (or lack-thereof) of the first Pareto front. In Chapter

III, we give the continuum limit for non-dominated sorting and rigorously prove the

convergence. In Chapter IV, we explore applications of this continuum limit. In

particular, we prove convergence of a fast numerical scheme and show how it can be

used to perform fast approximate non-dominated sorting. Finally, in Chapter V we

prove an analogous continuum limit for DLPP and show how to efficiently compute

the asymptotic shapes of optimal paths via dynamic programming.



CHAPTER II

Statistical properties of Pareto fronts

The distribution of the number of points on the first Pareto front was first studied

by Barndorff-Nielsen and Sobel [13]. The problem has garnered much attention since.

Bai et al. [6] and Hwang and Tsai [53] provide good surveys of recent results. We

study here the statistical properties of the Pareto-optimal points that are missed by

linear scalarization. Special cases of the results in this section were published in [51].

2.1 Asymptotic convexity of Pareto fronts

Let X1, . . . , Xn be i.i.d. on [0, 1]d with density f : [0, 1]d → [0,∞), and let

F1,F2, . . . denote the Pareto fronts associated with Xn = {X1, . . . , Xn}. Let hn :

[0, 1]d → R denote the Pareto depth function defined by

(2.1) hn(x) = max{i ∈ N : Fi 5 x},

where for simplicity we set F0 = {(−1, . . . ,−1)}, and we write Fi 5 x if there exists

y ∈ Fi such that y 5 x. The function hn is a (random) piecewise constant function

that “counts” the Pareto fronts associated with X1, . . . , Xn.

It is immediate, based on the discussion in Chapter I, that we have the following

alternative characterization of hn:

13
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Proposition II.1. Suppose f ∈ L1([0, 1]d) is a density. Then hn(x) = un(x) with

probability one for all x ∈ [0, 1]d.

It is well-known [32] that Pareto methods outperform more traditional linear

scalarization methods when the Pareto fronts are non-convex. Qualitatively, there

are two types of non-convexities in Pareto fronts: 1) Non-convexities in the asymp-

totic shapes of the fronts induced by the density f and 2) local small-scale non-

convexities due to the random positions of the samples X1, . . . , Xn. We study here

non-convexities of the first kind, for which we make the following definition:

Definition II.2. Given a density f : [0, 1]d → [0,∞), we say that f yields macro-

scopically convex Pareto fronts if for X1, . . . , Xn drawn i.i.d. from f we have that

the almost sure limit U(x) := limn→∞ n
− 1
dhn(x) exists for all x and U : [0, 1]d → R

is quasiconcave.

Recall that U is said to be quasiconcave if the super level sets

{
x ∈ [0, 1]d : U(x) ≥ a

}
are convex for all a ∈ R. Since the Pareto fronts are encoded into the level sets of hn,

the asymptotic shape of the Pareto fronts is dictated by the level sets of the function

U . Hence the fronts are asymptotically convex on a macroscopic scale exactly when

U is quasiconcave.

We now give a partial characterization of densities f that yield macroscopically

convex Pareto fronts.

Theorem II.3. Let f : [0, 1]d → (0,∞) be a continuous, log-concave, and separable

density, i.e., f(x) = f1(x1) · · · fd(xd). Then f yields macroscopically convex Pareto

fronts.
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Proof. We denote by F : [0, 1]d → R the cumulative distribution function (CDF)

associated with the density f , which is defined by

(2.2) F (x) =

∫ x1

0

· · ·
∫ xd

0

f(y1, . . . , yd) dy1 · · · dyd.

Let X1, . . . , Xn be i.i.d. with density f , and let hn denote the associated Pareto

depth function, and un the associated longest chain function.

We claim that

(2.3) n−
1
dun(x) −→ U(x) almost surely as n→∞,

where U(x) = cdF (x)
1
d , and cd is a positive constant. In fact, the convergence is

actually uniform on [0, 1]d with probability one, but this is not necessary for the

proof. To see this: Define Φ : [0, 1]d → [0, 1]d by

Φ(x) =

(∫ x1

0

f1(t) dt, . . . ,

∫ xd

0

fd(t) dt

)
.

Since f is continuous and strictly positive, Φ : [0, 1]d → [0, 1]d is a C1-diffeomorphism.

Setting Yi = Φ(Xi), we easily see that Y1, . . . , Yd are independent and uniformly

distributed on [0, 1]d. It is also easy to see that Φ preserves the partial order 5, i.e.,

x 5 z ⇐⇒ Φ(x) 5 Φ(z).

Let x ∈ [0, 1]d, set y = Φ(x), and define Yn = Φ(Xn). By our above observations we

have

un(x) = max{` ∈ N : ∃ y1 5 · · · 5 y` 5 y in Yn}.

Let i1 < · · · < iN denote the indices of the random variables among Y1, . . . , Yn that

are less than or equal to y and set Zk = Yik for k = 1, . . . , N . Note that N is

binomially distributed with parameter p := F (x) and that un(x) is the length of the

longest chain among N uniformly distributed points in the hypercube {z ∈ [0, 1]d :



16

z 5 y}. By [17, Remark 1] we have N−
1
dun(x)→ cd almost surely as n→∞ where

cd < e are dimensional constants. Since n−1N → p almost surely as n→∞, we have

n−
1
dun(x) =

(
n−

1
dN

1
d

)
N−

1
dun(x)→ cdp

1
d

almost surely as n → ∞. The proof of (2.3) is completed by recalling Proposition

II.1.

In the context of Definition II.2, we have U(x) = cdF (x)
1
d . Hence U is qua-

siconcave if and only if the cumulative distribution function F is quasiconcave. A

sufficient condition for quasiconcavity of F is log-concavity of f [79], which completes

the proof.

Theorem II.3 indicates that Pareto methods are largely redundant when f is a

log-concave separable density.

It would be very interesting to extend Theorem II.3 to arbitrary non-separable

density functions f . When f is non-separable there is no simple integral expression

like (2.2) for U . We show in Chapter III that U is instead characterized as the

viscosity solution of a Hamilton-Jacobi partial differential equation. This makes the

non-separable case substantially more difficult.

2.2 Microscopic non-convexities

We now present some results concerning microscopic non-convexities in the Pareto

fronts. These are non-convexities that exist even when the fronts are macroscopically

convex, and are due to the random positions of the samples X1, . . . , Xn.

By non-convexities, we mean Pareto-optimal points that cannot be obtained by

linear scalarization, as defined in Chapter I. It is well known [32] that linear scalariza-

tion will identify exactly those Pareto-optimal points on the boundary of the convex
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hull of

Gn :=
⋃
x∈Fn1

(x+ Rd+),

where Rd+ = (0,∞)d, and Fn1 denotes the first Pareto front of the set Xn = {X1, . . . , Xn}.

Although this is a common motivation for Pareto optimization methods, there are,

to the best of our knowledge, no results in the literature regarding how many points

on the Pareto front are missed by scalarization.

We define

Ln =
⋃
α∈Rd+

argmin
x∈Xn

{
d∑
i=1

αixi

}
.

The subset Ln ⊂ Fn1 contains all Pareto-optimal points that can be obtained by

some selection of non-negative weights for linear scalarization. Let Kn denote the

cardinality of Fn1 , and let Ln denote the cardinality of Ln.

When X1, . . . , Xn are uniformly distributed on the unit hypercube, Barndorff-

Nielsen and Sobel [13] showed that

E(Kn) =
n

(d− 1)!

∫ 1

0

(1− x)n−1(− log x)d−1 dx,

from which one can easily obtain the asymptotics

E(Kn) =
(log n)d−1

(d− 1)!
+O((log n)d−2).

Many more recent works have studied the variance of Kn and have proven central

limit theorems for Kn. All of these works assume that X1, . . . , Xn are uniformly

distributed on [0, 1]d. For a summary, see [6] and [53]. Other works have studied

Kn for more general distributions on domains that have smooth “non-horizontal”

boundaries near the Pareto front [14] and for multivariate normal distributions on

Rd [55]. The “non-horizontal” condition excludes hypercubes. To the best of our

knowledge there are no results on the asymptotics ofKn for non-uniformly distributed
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points on the unit hypercube. This is of great importance as it is impractical in multi-

criteria optimization (or anomaly detection) to assume that the coordinates of the

points are independent. Typically the coordinates of Xi ∈ Rd are the images of the

same feasible solution under several different criteria, which will not in general be

independent.

Here we develop results on the size of the gap between the number of items Ln

discoverable by scalarization compared to the number of items Kn discovered on the

Pareto front. The larger the gap, the more suboptimal scalarization is relative to

Pareto depth analysis. Since x ∈ Ln if and only if x is on the boundary of the convex

hull of Gn, the size of Ln is related to the convexity (or lack thereof) of the Pareto

front.

Suppose first that X1, . . . , Xn are distributed on some domain Ω ⊂ Rd with a

continuous density function f : Ω→ R that is strictly positive on Ω. Let T ⊂ ∂Ω be

a portion of the boundary of Ω such that

inf
z∈T

min(ν1(z), . . . , νd(z)) > 0,

and

{y ∈ Ω : ∀i yi ≤ xi} = {x}, for all x ∈ T,

where ν : ∂Ω→ Rd is the unit inward normal to ∂Ω. The conditions on T guarantee

that a portion of the first Pareto front will concentrate near T as n → ∞. If we

suppose that T is contained in the interior of the convex hull of Ω, then points on

the portion of the Pareto front near T cannot be obtained by linear scalarization,

as they are on a non-convex portion of the front. Such non-convexities are a direct

result of the geometry of the domain Ω and are depicted in Fig. 2.1(a). As before,
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Figure 2.1: (a) Non-convexities in the Pareto front induced by the geometry of the
domain Ω. (b) Non-convexities due to randomness in the points. In each case, the
larger points are Pareto-optimal, and the large black points cannot be obtained by
scalarization.

we call such non-convexities macroscopic non-convexities. We showed in [51] that

E(Kn − Ln) ≥ γn
d−1
d +O(n

d−2
d ),

as n→∞, where γ is a positive constant given by

γ =
1

d
(d!)

1
dΓ

(
1

d

)∫
T

f(z)
d−1
d (ν1(z) · · · νd(z))

1
ddz.

This gives a lower bound on the asymptotic expectation of the number of Pareto-

optimal points missed by linear scalarization due to macroscopic non-convexities. It

has recently come to our attention that a stronger result was proven previously by

Baryshnikov and Yukich [14] in an unpublished manuscript.

Here, we study microscopic non-convexities in the Pareto front. These non-

convexities are strictly due to randomness in the positions of the points and occur

even when the domain Ω is convex (see Fig. 2.1(b) for a depiction of such non-

convexities). In the following, we assume that X1, . . . , Xn are i.i.d. on the unit

hypercube [0, 1]d with a bounded density function f : [0, 1]d → Rd that is continuous

at the origin and strictly positive on [0, 1]d. Under these assumptions on f , it turns

out that the asymptotics of E(Kn) and E(Ln) are independent of f . Hence our
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results are applicable to a wide range of problems without the need to know detailed

information about the density f .

Our first result is

Theorem II.4. Assume f : [0, 1]d → [σ,M ] is continuous at the origin, and 0 <

σ < M <∞. Then

E(Kn) ∼ cn,d :=
(log n)d−1

(d− 1)!
as n→∞.

We give the proof of Theorem II.4 after some preliminary results. Our second

result concerns E(Ln). We are not able to get the exact asymptotics of E(Ln), so

we provide upper and lower asymptotic bounds.

Theorem II.5. Assume f : [0, 1]d → [σ,M ] is continuous at the origin, and 0 <

σ < M <∞. Then

d!
dd
cn,d + o((log n)d−1) ≤ E(Ln) ≤ 3d−1

4d−2
cn,d + o((log n)d−1)

as n→∞.

The proof of Theorem II.5 is also given after some preliminary results. Combining

Theorems II.4 and II.5, we arrive at our main result:

Theorem II.6 (Scalarization Gap Theorem). Assume f : [0, 1]d → [σ,M ] is contin-

uous at the origin, and 0 < σ < M <∞. Then

(2.4)
d− 1

4d− 2
cn,d + o((log n)d−1) ≤ E(Kn − Ln) ≤

(
1− d!

dd

)
cn,d + o((log n)d−1),

as n→∞.

The scalarization gap theorem shows that the fraction of Pareto-optimal points

that cannot be obtained by linear scalarization is at least d−1
4d−2

.
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2.2.1 Proofs

We first present a general result on the expectation of Kn. Let F : [0, 1]d → R

denote the cumulative distribution function of f , defined by

F (x) =

∫ x1

0

· · ·
∫ xd

0

f(y1, . . . , yd) dy1 · · · dyd.

Proposition II.7. For any n ≥ 1 we have

E(Kn) = n

∫
[0,1]d

f(x) (1− F (x))n−1 dx.

Proof. Let Ei be the event that Xi ∈ Fn and let χEi be indicator random variables

for Ei. Then

E(Kn) = E

(
n∑
i=1

χEi

)
=

n∑
i=1

P (Ei) = nP (E1).

Conditioning on X1 we obtain

E(Kn) = n

∫
[0,1]d

f(x)P (E1 |X1 = x)dx.

Noting that P (E1 |X1 = x) = (1− F (x))n−1 completes the proof.

The following simple proposition is essential in the proofs of Theorem II.4 and

II.5:

Proposition II.8. Let 0 < δ ≤ 1 and a > 0. For a ≤ δ−d we have

(2.5) n

∫
[0,δ]d

(1− ax1 · · ·xd)n−1 dx =
cn,d
a

+O((log n)d−2),

and for a ≤ 1 we have

(2.6) n

∫
[0,1]d\[0,δ]d

(1− ax1 · · ·xd)n−1 dx = O((log n)d−2).
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Proof. We will give a sketch of the proof as similar results are well-known [6]. Assume

δ = 1 and let Qn denote the quantity on the left hand side of (2.5). Making the

change of variables yi = xi for i = 1, . . . , d− 1 and t = x1 · · ·xd, we see that

Qn = n

∫ 1

0

∫ 1

t

∫ 1

t
yd−1

· · ·
∫ 1

t
y2···yd−1

(1− at)n−1

y1 · · · yd−1

dy1 · · · dyd−1dt.

By computing the inner d− 1 integrals we find that

Qn =
n

(d− 1)!

∫ 1

0

(− log t)d−1(1− at)n−1dt,

from which the asymptotics (2.5) can be easily obtained by another change of vari-

ables u = nat, provided a ≤ 1. For 0 < δ < 1, we make the change of variables

y = x/δ to find that

Qn = δdn

∫
[0,1]d

(1− aδdy1 · · · yd)n−1 dy.

We can now apply the above result provided aδd ≤ 1. The asymptotics in (2.5) show

that

n

∫
[0,1]d

(1− ax1 · · ·xd)n−1 dx = n

∫
[0,δ]d

(1− ax1 · · ·xd)n−1 dx+O((log n)d−2),

when a ≤ 1, which gives the second result (2.6).

We now give the proof of Theorem II.4.

Proof. Let ε > 0 and choose δ > 0 such that

f(0)− ε ≤ f(x) ≤ f(0) + ε for any x ∈ [0, δ]d,

and f(0) < δ−d. Since σ ≤ f ≤M , we have that F (x) ≥ σx1 · · ·xd for all x ∈ [0, 1]d.

Since f is a probability density on [0, 1]d, we must have σ ≤ 1. Since σ > 0, we can
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apply Proposition II.8 to find that

n

∫
[0,1]d\[0,δ]d

f(x)(1− F (x))n−1 dx ≤Mn

∫
[0,1]d\[0,δ]d

(1− σx1 · · · xd)n−1 dx

= O((log n)d−2).(2.7)

For x ∈ [0, δ]d, we have

(f(0)− ε)x1 · · ·xd ≤ F (x) ≤ (f(0) + ε)x1 · · ·xd.

Combining this with Proposition II.8, and the fact that f(0)− ε < δ−d we have

n

∫
[0,δ]d

f(x)(1− F (x))n−1 dx

≤ (f(0) + ε)n

∫
[0,δ]d

(1− (f(0)− ε)x1 · · ·xd)n−1 dx

=
f(0) + ε

f(0)− ε
· cn,d +O((log n)d−2).(2.8)

Combining (2.7) and (2.8) with Proposition (II.7) we have

E(Kn) ≤ f(0) + ε

f(0)− ε
· cn,d +O((log n)d−2).

It follows that

lim sup
n→∞

c−1
n,dE(Kn) ≤ f(0) + ε

f(0)− ε
.

By a similar argument we can obtain

lim inf
n→∞

c−1
n,dE(Kn) ≥ f(0)− ε

f(0) + ε
.

Since ε > 0 was arbitrary, we see that

lim
n→∞

c−1
n,dE(Kn) = 1.

The proof of Theorem II.5 is split into the following two lemmas. It is well-known,

and easy to see, that x ∈ Ln if and only if x ∈ Fn and x is on the boundary of the

convex hull of Gn [32]. This fact will be used in the proof of Lemma II.9.
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Lemma II.9. Assume f : [0, 1]d → R is continuous at the origin and there exists

σ,M > 0 such that σ ≤ f ≤M . Then

E(Ln) ≤ 3d− 1

4d− 2
· cn,d + o((log n)d−1) as n→∞.

Proof. Let ε > 0 and choose 0 < δ < 1
2

so that

(2.9) f(0)− ε ≤ f(x) ≤ f(0) + ε for any x ∈ [0, 2δ]d,

and 3f(0) ≤ δ−d. As in the proof of Proposition II.7 we have E(Ln) = nP (X1 ∈ Ln),

so conditioning on X1 we have

E(Ln) = n

∫
[0,1]d

f(x)P (X1 ∈ Ln |X1 = x) dx.

As in the proof of Theorem II.4, we have

n

∫
[0,1]d\[0,δ]d

f(x)P (X1 ∈ Ln |X1 = x) dx ≤ n

∫
[0,1]d\[0,δ]d

f(x)(1− F (x))n−1 dx

= O((log n)d−2),

and hence

(2.10) E(Ln) = n

∫
[0,δ]d

f(x)P (X1 ∈ Ln |X1 = x) dx+O((log n)d−2).

Fix x ∈ [0, δ]d and define A = {y ∈ [0, 1]d : ∀i, yi ≤ xi} and

Bi =

{
y ∈ [0, 1]d : ∀j 6= i, yj < xj and xi < yi < 2xi −

xi
xj
yj

}
,

for i = 1, . . . , d, and note that Bi ⊂ [0, 2δ]d for all i. See Fig. 2.2 for an illustration

of these sets for d = 3.

We claim that if at least two of B1, . . . , Bd contain samples from X2, . . . , Xn, and

X1 = x, then X1 6∈ Ln. To see this, assume without loss of generality that B1 and

B2 are nonempty and let y ∈ B1 and z ∈ B2. Set

ỹ =

(
y1, 2x2 −

x2

x1

y1, x3, . . . , xd

)
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Figure 2.2: Depiction of the sets B1, B2 and B3 from the proof of Lemma II.9 in the
case that d = 3.

z̃ =

(
2x1 −

x1

x2

z2, z2, x3, . . . , xd

)
.

By the definitions of B1 and B2 we see that yi ≤ ỹi and zi ≤ z̃i for all i, hence

ỹ, z̃ ∈ Gn. Let α ∈ (0, 1) such that

αy1 + (1− α)

(
2x1 −

x1

x2

z2

)
= x1.

A short calculation shows that x = αỹ + (1 − α)z̃ which implies that x is in the

interior of the convex hull of Gn, proving the claim.

Let E denote the event that at most one of B1, . . . , Bd contains a sample from

X2, . . . , Xn, and let F denote the event that A contains no samples from X2, . . . , Xn.

Then by the observation above we have

(2.11) P (X1 ∈ Ln |X1 = x) ≤ P (E ∩ F |X1 = x) = P (E ∩ F ).

For i = 1, . . . , d, let Ei denote the event that Bi contains no samples from X2, . . . , Xn.

It is not hard to see that

E =
d⋃
i=1

(⋂
j 6=i

Ej \
⋂
j

Ej

)⋃(⋂
j

Ej

)
.
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Furthermore, the events in the unions above are mutually exclusive (disjoint) and

∩jEj ⊂ ∩j 6=iEj for i = 1, . . . , d. It follows that

P (E ∩ F )

=
d∑
i=1

(P (∩j 6=iEj ∩ F )− P (∩jEj ∩ F )) + P (∩jEj ∩ F )

=
d∑
i=1

P (∩j 6=iEj ∩ F )− (d− 1)P (∩jEj ∩ F )

=
d∑
i=1

(
1− F (x)−

∫
∪j 6=iBj
f(y) dy

)n−1

− (d− 1)

(
1− F (x)−

∫
∪jBj
f(y) dy

)n−1

.(2.12)

A simple computation shows that |Bj| = 1
d
x1 · · ·xd for j = 1, . . . , d. Since A,Bi ⊂

[0, 2δ]d, we have by (2.9) that

(f(0)− ε)x1 · · ·xd ≤ F (x) ≤ (f(0) + ε)x1 · · ·xd,

and

1

d
(f(0)− ε)x1 · · ·xd ≤

∫
Bj

f(y) dy ≤ 1

d
(f(0) + ε)x1 · · ·xd.

Inserting these into (2.12) and combining with (2.11) we have

P (X1 ∈ Ln |X1 = x) ≤ d

(
1− 2d− 1

d
(f(0)− ε)x1 · · ·xd

)n−1

− (d− 1) (1− 2(f(0) + ε)x1 · · ·xd)n−1 .

We can now insert this into (2.10) and apply Proposition II.8 (since 3f(0) ≤ δ−d) to

obtain

E(Ln) ≤
(

d2

2d− 1

f(0) + ε

f(0)− ε
− d− 1

2

f(0)− ε
f(0) + ε

)
cn,d +O((log n)d−2).

Since ε > 0 was arbitrary, we find that

lim sup
n→∞

c−1
n,dE(Ln) ≤

(
d2

2d− 1
− d− 1

2

)
=

3d− 1

4d− 2
.
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Lemma II.10. Assume f : [0, 1]d → R is continuous and there exists σ,M > 0 such

that σ ≤ f ≤M . Then

E(Ln) ≥ d!

dd
· cn,d + o((log n)d−1) as n→∞.

Proof. Let ε > 0 and choose 0 < δ < 1/d so that

(2.13) f(0)− ε ≤ f(x) ≤ f(0) + ε for x ∈ [0, dδ]d,

and

(2.14)
dd

d!
(f(0) + ε) ≤ δ−d.

As in the proof of Lemma II.9 we have

(2.15) E(Ln) = n

∫
[0,δ]d

f(x)P (X1 ∈ Ln |X1 = x) dx+O((log n)d−2).

Fix x ∈ (0, δ)d, set ν =
(

1
x1
, . . . , 1

xd

)
and

A =
{
y ∈ [0, 1]d | y · ν ≤ x · ν

}
.

Note that A is a simplex with an orthogonal corner at the origin and side lengths

d · x1, . . . , d · xd. A simple computation shows that |A| = dd

d!
x1 · · ·xd. By (2.13) we

have ∫
A

f(y) dy ≤ (f(0) + ε)|A| = dd

d!
(f(0) + ε)x1 · · ·xd.

It is easy to see that if A is empty and X1 = x then X1 ∈ Ln, hence

P (X1 ∈ Ln |X1 = x) ≥
(

1−
∫
A

f(y) dy

)n−1

≥
(

1− dd

d!
(f(0) + ε)x1 · · ·xd

)n−1

.

Inserting this into (2.15) and noting (2.14), we can apply Proposition II.8 to obtain

E(Ln) ≥ d!

dd
f(0)− ε
f(0) + ε

cn,d +O((log n)d−2),



28

and hence

lim sup
n→∞

c−1
n,dE(Ln) ≥ d!

dd
.



CHAPTER III

Continuum limit for non-dominated sorting

Let X1, . . . , Xn be i.i.d. random variables on Rd with density function f ∈ L1(Rd).

The points form a partially ordered set Xn = {X1, . . . , Xn} under the partial order

(3.1) x 5 y ⇐⇒ xi ≤ yi for i = 1, . . . , d.

Let un(x) denote the length of a longest chain1 in Xn consisting of points less than

or equal to x.

The goal of this chapter is to study the asymptotics of un, and hence the asymp-

totics of non-dominated sorting—the link between the two problems was discussed

in Chapter I. Our main result, Theorem III.2, states that n−
1
dun converges almost

surely to a continuous function U that can be characterized as the viscosity solution

of a Hamilton-Jacobi equation. Our proof is based on linking the asymptotics of un to

a variational problem, which is a generalization of the variational problem discovered

by Deuschel and Zeitouni [31] to higher dimensions. The Hamilton-Jacobi equation

satisfied by U is the Hamilton-Jacobi-Bellman equation [10] for the corresponding

variational problem. We describe our main result in Section 3.1, and postpone the

proofs to Sections 3.3 and 3.5. Most of the results in this chapter have been published

1A chain is a totally ordered subset of Xn.

29
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in the SIAM Journal on Mathematical Analysis [20]. Theorems III.11 and III.16 are

generalizations of the corresponding theorems from [20].

3.1 Main result

For x, y ∈ Rd, we write x ≤ y if x 5 y and x 6= y. When xi < yi for i = 1, . . . , d,

we write x < y, and we set Rd+ = {x ∈ Rd : x > 0}. We will always assume d ≥ 2.

For s, t ∈ R, s ≤ t and s < t will retain their usual definitions. Let Ω ⊂ Rd and let

f : Rd → [0,∞). We place the following assumptions on f and Ω:

(H0) There exists an open and bounded set Ω ⊂ Rd+ with Lipschitz boundary such

that f is non-negative and uniformly continuous on Ω and f = 0 on Rd \ Ω.

It is worthwhile to take a moment to motivate the hypothesis (H0). Consider the

following multi-objective optimization problem

(3.2) min{F (x) : x ∈ K},

where F (x) = (f1(x), . . . , fd(x)) with fi : K → [0,∞) for all i, and K is the set of

feasible solutions. This formulation includes many types of constrained optimiza-

tion problems, where the constraints are implicitly encoded into K. If x1, . . . , xn are

feasible solutions in K, then these solutions are ranked, with respect to the optimiza-

tion problem (3.2), by performing non-dominated sorting on X1 = F (x1), . . . , Xn =

F (xn). Thus the domain Ω of X1, . . . , Xn is given by Ω = F (K). Supposing

that x1, . . . , xn are, say, uniformly distributed on K, then the induced density f

of X1, . . . , Xn on Rd will be nonzero on Ω and identically zero on Rd \ Ω. Thus, the

constraint that feasible solutions must lie in K directly induces a discontinuity in f

along ∂Ω.
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Set

(3.3) A =
{
γ ∈ C1([0, 1];Rd) : γ′(t) ≥ 0 for all t ∈ [0, 1]

}
.

Recall that γ ′(t) ≥ 0 means that γ′i(t) ≥ 0 for i = 1, . . . , d and γ ′(t) 6= 0. Define

J : A → [0,∞) by

(3.4) J(γ) =

∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt,

and U : Rd → R by

(3.5) U(x) = sup
γ∈A : γ(1)5x

J(γ).

We make the following definition.

Definition III.1. Given a domain O ⊂ Rd, we say that a function u : O → R is

Pareto-monotone if x 5 y =⇒ u(x) ≤ u(y) for all x, y ∈ O.

In Section 3.3, we show that U is a Pareto-monotone viscosity solution of the

Hamilton-Jacobi partial differential equation (PDE)

(P)


Ux1 · · ·Uxd =

1

dd
f on Rd+

U = 0 on ∂Rd+.

The PDE (P) should be interpreted as the Hamilton-Jacobi-Bellman equation for

the value function U . We note that f need only be Borel-measurable, bounded and

have compact support in Rd+ for U to be a viscosity solution of (P). The stronger

assumption (H0) is needed to prove that U is the unique Pareto-monotone viscosity

solution of (P) (see Theorem III.19). Our main result is

Theorem III.2. Assume f satisfies (H0) and let X1, . . . , Xn be i.i.d. with density

f . Then there exists a positive constant cd such that

n−
1
dun −→ cdU in L∞(Rd) almost surely.
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(c) n = 106 points

Figure 3.1: Comparison of the Pareto fronts for n = 104 and n = 106 samples
X1, . . . , Xn, and the level sets of U for the multi-modal density f depicted in a).

Figure 3.1 gives an illustration of the convergence given in Theorem III.2 for

a multi-modal density f depicted in the figure. The constants cd are the same as

those given by Bollobás and Winkler [17]. In particular, c1 = 1, c2 = 2 and cd 1 e

as d → ∞. When f is a product density, i.e., f(x) = f1(x1) · · · fd(xd), the value

function U is given by

(3.6) U(x) =

(∫
05y5x

f(y) dy

) 1
d

=

(∫ xi

0

f1(t) dt

) 1
d

· · ·
(∫ xd

0

fd(t) dt

) 1
d

.

For the case f = 1 and d = 2, Aldous and Diaconis [2, p. 204] provided a

non-rigorous derivation of (P) by viewing the problem as an interacting particle

process. They used this to motivate their proof that c = 2 in Ulam’s problem, but

make no rigorous statements about the relationship between (P) and the longest

chain problem. A similar, though tangentially related, PDE also appears in growth

models in multiple dimensions that are defined through the height of a random partial

order [85, p. 209].

Theorem III.2 provides a new tool with which to study the asymptotics of non-

dominated sorting and the longest chain problem. As an example of the applicability

of this result, we show in Theorem III.26 that non-dominated sorting is asymptoti-

cally stable under bounded random perturbations. Evidently, Theorem III.2 reduces
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the problem of non-dominated sorting to solving a Hamilton-Jacobi equation. In

Chapter IV we explore fast non-dominated sorting algorithms based on the contin-

uum limit given by Theorem III.2.

3.2 Motivation

As motivation, let us give an informal derivation of the Hamilton-Jacobi PDE (P).

Suppose f : Rd → R is continuous and n−
1
dun → u ∈ C1(Rd) uniformly. Fix n large

enough so that n−
1
dun ≈ u. Then the kth Pareto front should be well approximated

by the level set {y : u(y) = n−
1
dk}. It is not hard to see that u should be Pareto-

monotone (recall Definition III.1), and hence it is reasonable to assume that uxi > 0

for all i. Fix x, v ∈ Rd with 〈Du(x), v〉 > 0, where Du(x) denotes the gradient of

u at x, and consider the quantity n
1
d (u(x + v) − u(x)). This is approximately the

number of Pareto fronts passing between x and x + v. When counting these fronts,

we may restrict ourselves to the region

A = {y : u(y) ≥ u(x) and y 5 x+ v}.

This is because any samples in {y : u(y) < u(x)} will be on a previous Pareto

front and only samples that are less than x + v can influence the Pareto rank of

x + v. See Figure 3.2 for a depiction of this region and some quantities from the

derivation. Since uxi(x) > 0 for all i, and u is C1, A is well approximated by

a simplex for small |v|, and furthermore, the samples within A are approximately

uniformly distributed. Let m denote the number of samples falling in A. By scaling

the simplex into a standard simplex, without disrupting the Pareto ordering within

A, it is reasonable to conjecture that the number of Pareto fronts within A (or the

length of a longest chain in A) is approximately cm
1
d for some constant c, independent

of x. For simplicity we take c = 1.
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Figure 3.2: Some quantities from the informal derivation of the Hamilton-Jacobi
PDE (P).

By the law of large numbers, we have m ≈ n
∫
A
f(y) dy. Hence when |v| > 0 is

small we have

(3.7) n
1
d (u(x+ v)− u(x)) ≈

(
n

∫
A

f(y) dy

) 1
d

≈ n
1
d |A|

1
df(x)

1
d ,

where |A| denotes the Lebesgue measure of A. Let `1, . . . , `d denote the side lengths

of the simplex A. Then |A| ≈ c `1 · · · `d for a constant c which we again take to

be 1. Since x + v − `iei lies approximately on the tangent plane to the level set

{y : u(y) = u(x)}, we see that

〈Du(x), v − `iei〉 ≈ 0.

Rearranging the above we see that `i ≈ uxi(x)−1〈Du(x), v〉, and hence

(3.8) |A| ≈ ux1(x)−1 · · ·uxd(x)−1〈Du(x), v〉d.

For small |v|, we can combine (3.8) and (3.7) to obtain

〈Du(x), v〉 ≈ u(x+ v)− u(x) ≈ f(x)
1
dux1(x)−

1
d · · ·uxd(x)−

1
d 〈Du(x), v〉.
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Simplifying, we see that u should satisfy

(3.9) ux1 · · ·uxd = f on Rd,

up to scaling by a constant.

Although this derivation is informal, it is straightforward and conveys the essence

of the result. It is difficult, however, to construct a rigorous proof based on these

heuristics. There are two main reasons for this. First, it supposes that n−
1
dun

converges to a limit u, which is not obvious. Second, it is essential that u ∈ C1, as

we require A to be an approximate simplex. Solutions of (3.9) are in general not

smooth, and can have points of non-differentiability due to crossing characteristics.

This is true even in the case that f is smooth, and is related to the geometry of Ω.

3.3 Analysis of variational problem

Before studying the variational problem (3.5), we recall some aspects of the the-

ory of optimal control [10] that are relevant to our problem. We will describe the

infinite horizon optimal control problem, but the discussion below applies with minor

modifications to other variants of optimal control, such as finite horizon or undis-

counted problems with exit times. The state of the control problem, y(t), is assumed

to obey the dynamics

(3.10)


y′(t) = g(y(t), α(t)), t > 0

y(0) = x,

where α : [0,∞)→ A is the control, A is a topological space, and g : Rd × A→ Rd.

Given an initial condition x ∈ Rd, the solution of (3.10) is denoted yx(·). Let

A := {measurable functions [0,∞)→ A}.



36

The goal in optimal control is to select the control α ∈ A to minimize the cost

functional

(3.11) J(x, α) :=

∫ ∞
0

c(yx(t), α(t))e−λt dt,

where λ > 0 and c : Rd × A→ R. The value function for this problem is

(3.12) v(x) := inf
α∈A

J(x, α).

Under sufficient regularity assumptions on c and g (discussed below), the value func-

tion is a Hölder- (or Lipschitz) continuous viscosity solution of the Hamilton-Jacobi-

Bellman equation

(3.13) λv +H(x,Dv) = 0 on Rd,

where

(3.14) H(x, p) = sup
a∈A
{−〈g(x, a), p〉 − c(x, a)}.

Although the variational problem (3.5) can be cast in this framework, the as-

sumptions on the running cost c(·, ·) in the existing literature are too restrictive. For

our variational problem, we have λ = 0, g(x, a) = a, A = Rd+,

(3.15) c(x, a) = −f(x)
1
d (a1 · · · ad)

1
d ,

and U(x) = −v(x). In the proofs of Theorems III.24 and III.25, we require the

standard optimal control theory to hold for f piecewise constant on arbitrarily small

grids. In the standard reference on optimal control [10], it is assumed that x 7→ c(x, a)

is uniformly continuous. This assumption is then used to prove regularity of the

value function v. There is relatively little research devoted to relaxing the regularity

condition on c. There are some results for the optimal control problem associated
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with the Eikonal equation [74, 21, 30], which allow c to have discontinuities. These

results assume that A = Rd and make essential use of either Lipschitzness of v, or

uniform continuity and/or coercivity of p 7→ H(x, p), none of which hold for the

variational problem (3.5). Soravia [86] and Garavello and Soravia [41] considered a

running cost of the form c(x, a) = c1(x, a) + c2(x), where c1 is continuous and c2 is

Borel-measurable, and showed that the standard optimal control results hold with

minor modifications. This is incompatible with (3.15) when f is not continuous. A

similar program is carried out for differential games here [42]. Barles et al. [11] study

optimal control on multi-domains, where the discontinuity in c is assumed to lie in

a half-space.

Under the assumption that f is compactly supported, bounded and Borel-measurable,

the standard results on optimal control hold for the variational problem (3.5) with

minor modifications to the proofs. In particular, in Lemma III.3 we show that U

is Hölder-continuous with exponent 1
d
, and in Theorem III.10 we show that U is

a viscosity solution of (P). The uniqueness of viscosity solutions of (P) under the

assumption that f satisfies (H0) is a more delicate problem. This is addressed in

Section 3.4.

In our main result, Theorem III.2, we assume that f satisfies (H0), which is

stronger than Borel-measurability. We assume Borel-measurability in much of this

section so that our results apply to piecewise constant densities, which are used to

approximate f in the proofs of Theorems III.24 and III.25. To be more precise, we

set

(3.16)

B = {f : Rd → R : f is bounded, Borel-measurable, and supp(f) ⊂ [0, 1]d}.

We note that the assumption supp(f) ⊂ [0, 1]d is not restrictive, as we can make
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a simple scaling argument to obtain the case where f has compact, but arbitrary,

support in Rd. The compact support assumption is not essential; it is mainly invoked

to simplify the exposition. Following arguments similar to those in Chapter V, it is

relatively straightforward to accommodate densities f with unbounded supports as

well.

We now introduce some new notation. We will write γ 5 x whenever γ(t) 5 x

for all t ∈ [0, 1]. We write γ1 5 γ2 whenever γ1(1) 5 γ2(0). The same definitions

apply to ≤, <,=,= and > with obvious modifications. For y ∈ Rd and r > 0 we set

Br(y) = {x ∈ Rd : |x− y| < r}. For x, y ∈ Rd we set

(3.17) w(x, y) =


sup{J(γ) : γ ∈ A and x 5 γ 5 y} if x 5 y

0 otherwise.

3.3.1 Basic properties of U

We establish here some basic properties of U . Namely, in Lemma III.3 we estab-

lish Hölder-continuity of U , and in Lemma III.7, we establish a dynamic programming

principle for U .

Lemma III.3. Let f ∈ B. Then U is Hölder-continuous with exponent 1
d

and Hölder

seminorm [U ] 1
d
≤ ‖f‖

1
d

L∞(Rd)
.

Proof. Let x, z ∈ Rd and let ε > 0. Choose γ ∈ A with γ 5 x and J(γ) ≥ U(x)− ε.

Since f(x) = 0 for x 6∈ [0, 1]d, we may assume that γ(t) ∈ [0, 1]d for all t ∈ [0, 1]. Set

s = sup{t ∈ [0, 1] : γ(t) 5 z}.

If for all t ∈ [0, 1] we have γ(t) 65 z, then set s = 0. We claim that

(3.18) U(z) ≥ U(x)−
∫ 1

s

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt− ε.
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To see this: In the case that s > 0, we have γ(s) 5 z and hence

U(z) ≥
∫ s

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt

= J(γ)−
∫ 1

s

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt

≥ U(x)−
∫ 1

s

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt− ε.

In the case that s = 0, we have

U(z) ≥ 0 = J(γ)−
∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt

≥ U(x)−
∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt− ε.

Hence (3.18) is established. Suppose s < 1. Then there must exist i such that

γi(s) ≥ zi. It follows that∫ 1

s

γ′i(t) dt = γi(1)− γi(s) ≤ xi − zi = |xi − zi|.

Applying the generalized Hölder inequality we see that∫ 1

s

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt ≤ ‖f‖

1
d

L∞(Rd)

(∫ 1

s

γ′1(t) dt

) 1
d

· · ·
(∫ 1

s

γ′d(t) dt

) 1
d

≤ ‖f‖
1
d

L∞(Rd)
|xi − zi|

1
d

∏
j 6=i

(γj(1)− γj(s))
1
d

≤ ‖f‖
1
d

L∞(Rd)
|xi − zi|

1
d .

Inserting this into 3.18 we obtain

(3.19) U(x)− U(z) ≤ ‖f‖
1
d

L∞(Rd)
|xi − zi|

1
d + ε ≤ ‖f‖

1
d

L∞(Rd)
|x− z|

1
d + ε

If s = 1 then inspecting (3.18), we see that U(x) − U(z) ≤ ε, which implies (3.19).

Sending ε → 0 we find that U(x) − U(z) ≤ ‖f‖
1
d

L∞(Rd)
|x − z| 1d . We can reverse the

roles of x and z in the preceding argument to obtain the opposite inequality.
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Remark III.4. By a similar argument, we can show that w : Rd×Rd → R is Hölder-

continuous with exponent 1/d and [w] 1
d
≤ ‖f‖

1
d

L∞(Rd)
.

In general, the statement in Lemma III.3 cannot be strengthened. For example,

if f ≡ 1 then we have U(x) = (x1 . . . xd)
1
d 6∈ C0,α([0,∞)d) for any α > 1/d. However,

it is easy to see that U(x) = (x1 · · ·xd)
1
d ∈ C0,1([h,R]d) for any 0 < h < R < ∞.

Our next result shows that this is true a more general class of densities f .

Lemma III.5. Let 0 < h < R, and suppose that f is Lipschitz and f ≥ m > 0 on

[0, R]d. Then we have

(3.20) ‖U‖C0,1([h,R]d) ≤ C (h,R,m)
(
1 + ‖f‖C0,1([0,R]d)

)
.

Proof. Let x, y ∈ [h,R]d and let us first suppose that x 5 y. Let ε > 0 and γ ∈ A

such that γ(1) = y and J(γ) ≥ U(y)− ε. Define the mapping Ψ : [0, y]→ [0, x] by

(3.21) Ψ(z) =

(
x1

y1

z1, . . . ,
xd
yd
zd

)
,

and set γ(t) = Ψ(γ(t)) for t ∈ [0, 1]. Notice that we have γ(1) = y and hence

γ(1) = x. Therefore we have

(3.22) |U(x)− U(y)| = U(y)− U(x) ≤ J(γ)− J(γ) + ε.

Since x, y ∈ [h,R]d we have

(3.23) |z −Ψ(z)| =
∣∣∣∣(z1 −

x1

y1

z1, . . . , zd −
xd
yd
zd

)∣∣∣∣ ≤ Rh−1|x− y|

for any z ∈ [0, R]d. It follows that

(3.24) |γ(t)− γ(t)| ≤ Rh−1|x− y| for all t ∈ [0, 1].

Since f ≥ m > 0 and f is Lipschitz, it follows that

(3.25) |f(γ(t))
1
d − f(γ(t))

1
d | ≤ d−1m

1
d
−1|f(γ(t))− f(γ(t))|

(3.24)

≤ C[f ]1|x− y|,
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for all t ∈ [0, 1], where C = C(h,R,m).

By the definition of Ψ and γ we have

(3.26) γ′1(t) · · · γ′d(t) =
x1 · · ·xd
y1 · · · yd

γ′1(t) · · · γ′d(t) for all t ∈ [0, 1].

Now set Φ(z) = (z1 · · · zd)
1
d . Then we have |DΦ(z)| ≤ CR/h for z ∈ [h,R]d, and it

follows that

(3.27)
(x1 · · ·xd)

1
d

(y1 · · · yd)
1
d

=
Φ(y) + Φ(x)− Φ(y)

Φ(y)
≥ 1− C|x− y|,

where C = C(h,R). Combining (3.25), (3.26) and (3.27) we have

J(γ)
(3.26)

=

∫ 1

0

f(γ(t))
1
d

(x1 · · · xd)
1
d

(y1 · · · yd)
1
d

(γ′1(t) · · · γ′d(t))
1
d dt

(3.25),(3.27)

≥
∫ 1

0

(
f(γ(t))

1
d − C[f ]1|x− y|

)
(1− C|x− y|) (γ′1(t) · · · γ′d(t))

1
d dt

≥ J(γ)− C
(
1 + ‖f‖C0,1([0,R]d)

)
|x− y|

∫ 1

0

(γ′1(t) · · · γ′d(t))
1
d dt

≥ J(γ)− CR
(
1 + ‖f‖C0,1([0,R]d)

)
|x− y|,(3.28)

where C = C(h,R,m) and we applied the generalized Hölder inequality in the last

line. Combining (3.28) with (3.22) and sending ε→ 0 we have

(3.29) |U(x)− U(y)| ≤ C
(
1 + ‖f‖C0,1([0,R]d)

)
|x− y|

for all x, y ∈ [h,R]d with x 5 y. If we do not have x 5 y, then we set

x̂ = (min(x1, y1), . . . ,min(xd, yd))

and note that x̂ 5 x, x̂ 5 y and x̂ ∈ [h,R]d. Then since we have

|U(x)− U(y)| ≤ |U(x̂)− U(x)|+ |U(x̂)− U(y)|,

we see that (3.29) holds for all x, y ∈ [h,R]d.
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To complete the proof, we note that a straightforward application of Hölder’s

inequality yields

‖U‖L∞([0,R]d) ≤ R‖f‖
1
d

L∞([0,R]d)
≤ R

(
1 + ‖f‖L∞([0,R]d)

)
.

Remark III.6. A natural question is whether U ∈ W 1,p([0, 1]d) for some p ≥ 1. In

the special case of f ≡ 1 we have U = (x1 · · ·xd)
1
d , and it is easily verified that

U ∈ W 1,p([0, 1]d) for any p < d/(d − 1). It is reasonable to suspect that such an

estimate holds for more general densities f . By Lemma III.5, we see that for f

Lipschitz and strictly positive, U is Lipschitz away from the boundary ∂Rd+, hence

the issue boils down to obtaining estimates on the size of DU near ∂Rd+. Inspecting

Lemma III.5, one can see that if y − x = tei for some t > 0, i, then the constant

in the statement of the Lemma is given by C(h,R,m) = C(R,m)h−1. This implies

that xiUxi ∈ L∞([0, 1]d), but unfortunately does not give us any information about

membership in W 1,p([0, 1]d). We suspect that the constant in Lemma III.5 can be

improved to C(h,R,m) = C(R,m)h
1
d
−1, but at present we are not able to prove this.

We now have the following dynamic programming principle for U .

Lemma III.7 (Dynamic Programming Principle). Let f ∈ B. Then for any r > 0

and y ∈ Rd we have

(3.30) U(y) = max
x∈∂Br(y) :x≤y

{
U(x) + w(x, y)

}
.

Proof. Let us denote the right hand side of (3.30) by v(y). We first show that

U(y) ≤ v(y). Let ε > 0 and let γ ∈ A such that γ 5 y and J(γ) ≥ U(y) − ε.

Suppose that |γ(1) − y| ≥ r. Then there exists x ∈ ∂Br(y) such that γ(1) 5 x 5 y

and hence

U(y) ≤ J(γ) + ε ≤ U(x) + ε ≤ v(y) + ε.
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If |γ(0)− y| ≤ r then there exists x ∈ ∂Br(y) such that x ≤ γ ≤ y and hence

v(y) ≥ w(x, y) ≥ J(γ) ≥ U(y)− ε.

Finally, suppose that |γ(1)− y| < r and |γ(0)− y| > r. Then there exists 0 < s < 1

such that |γ(s)− y| = r. Set x = γ(s) and define γ1, γ2 ∈ A by

γ1(t) = γ(st) and γ2(t) = γ(s+ t(1− s)) for t ∈ [0, 1].

Note that γ1 5 x and x 5 γ2 5 y. Since J is invariant under a change of parametriza-

tion of γ, we see that

U(y) ≤ J(γ) + ε = J(γ1) + J(γ2) + ε ≤ U(x) + w(x, y) + ε ≤ v(y) + ε.

Sending ε→ 0 we obtain U(y) ≤ v(y).

We now show that U(y) ≥ v(y). By Lemma III.3 and Remark III.4, there exists

x ∈ ∂Br(y) with x ≤ y such that

v(y) = U(x) + w(x, y).

Let ε > 0 and let γ1, γ2 ∈ A with γ1 5 x and x 5 γ2 5 y such that

J(γ1) ≥ U(x)− ε

2
and J(γ2) ≥ w(x, y)− ε

2
.

Since γ1 5 γ2 5 y, we can concatenate γ1 and γ2 to find that U(y) ≥ J(γ1) + J(γ2).

Thus we have

U(y) ≥ U(x) + w(x, y)− ε = v(y)− ε.

Sending ε→ 0 yields U(y) ≥ v(y).

3.3.2 Hamilton-Jacobi-Bellman equation for U

We digress momentarily to recall the definition of viscosity solution of

(3.31) H(x,Du) = 0 on O,
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where O ⊂ Rd is open, H : O × Rd → R is locally bounded with p 7→ H(x, p)

continuous for every x ∈ O, and u : O → R is the unknown function. For more

information on viscosity solutions of Hamilton-Jacobi equations, we refer the reader

to [10, 27].

We denote by USC(O) (resp. LSC(O)) the set of upper semicontinuous (resp. lower

semicontinuous) functions on O. For u : O → R, the superdifferential of u at x ∈ O,

denoted D+u(x), is the set of all p ∈ Rd satisfying

(3.32) u(y) ≤ u(x) + 〈p, y − x〉+ o(|x− y|) as O 3 y → x.

Similarly, the subdifferential of u at x ∈ O, denoted D−u(x), is the set of all p ∈ Rd

satisfying

(3.33) u(y) ≥ u(x) + 〈p, y − x〉+ o(|x− y|) as O 3 y → x.

Equivalently, we may set

D+u(x) = {Dϕ(x) : ϕ ∈ C1(O) and u− ϕ has a local max at x},

and

D−u(x) = {Dϕ(x) : ϕ ∈ C1(O) and u− ϕ has a local min at x}.

Definition III.8. A viscosity subsolution of (3.31) is a function u ∈ USC(O) satis-

fying

(3.34) lim inf
y→x

H(y, p) =: H∗(x, p) ≤ 0 for all x ∈ O and p ∈ D+u(x).

Similarly, a viscosity supersolution of (3.31) is a function u ∈ LSC(O) satisfying

(3.35) lim sup
y→x

H(y, p) =: H∗(x, p) ≥ 0 for all x ∈ O and p ∈ D−u(x).
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The functions H∗ and H∗ are the lower and upper semicontinuous envelopes of

H with respect to the spatial variable, respectively. We will often say u is a viscosity

solution of

H(x,Du) ≤ 0 (resp. H(x,Du) ≥ 0) on O,

to indicate that u is a viscosity subsolution (resp. supersolution) of (3.31). If u is a

viscosity subsolution and supersolution of (3.31), then we say that u is a viscosity

solution of (3.31). Notice that viscosity solutions defined in this way are necessarily

continuous.

After a basic proposition, we establish in Theorem III.10 that U is a Pareto-

monotone viscosity solution of (P).

Proposition III.9. Let O ⊂ Rd be open and let v : O → R be Pareto-monotone.

Then

D+v(x) ∪D−v(x) ⊂ Rd+ for all x ∈ O.

Proof. Let x ∈ O and p ∈ D+v(x). For any index i and small enough t > 0, we have

x 5 x+ tei ∈ O. Since v is Pareto-monotone, we have

v(x) ≤ v(x+ tei) ≤ v(x) + pit+ o(t) as t % 0.

Hence pi ≥ o(t)/t as t % 0 which implies that pi ≥ 0. The proof for D−v(x) is

similar.

Theorem III.10. Let f ∈ B. Then the value function U defined by (3.5) is a

Pareto-monotone viscosity solution of the Hamilton-Jacobi equation

(3.36) Ux1 · · ·Uxd =
1

dd
f on Rd.

Furthermore, U satisfies
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(i) Whenever supp(f) ⊂ {x ∈ Rd : 0 5 x 5 z}, we have

U(x1, . . . , xd) = U(min(x1, z1), · · ·min(xd, zd)) for all x ∈ Rd+,

(ii) U(x) = 0 for every x ∈ Rd \ Rd+.

Proof. It follows from the definition of U (3.5) that U is Pareto-monotone, and (ii)

follows from the fact that supp(f) ⊂ [0, 1]d.

For (i), let z ∈ Rd such that supp(f) ⊂ {x ∈ Rd : 0 5 x 5 z} and let x ∈ Rd+

such that xi > zi for some i. Set x̂ = (min(x1, z1), . . . ,min(xd, zd)). Since U is

Pareto-monotone we have U(x̂) ≤ U(x). Let ε > 0 and γ ∈ A such that γ 5 x and

U(x) ≤ J(γ) + ε. Let

s = sup{t : γ(t) 5 x̂}.

If for all t ∈ [0, 1] we have γ(t) 65 x̂, then set s = 0. If s = 1, then γ 5 x̂ and hence

U(x) ≤ J(γ) + ε ≤ U(x̂) + ε. If s = 0 then for every t ∈ [0, 1], γ(t) 6∈ supp(f), and

hence J(γ) = 0. It follows that

U(x) ≤ J(γ) + ε = ε ≤ U(x̂) + ε.

If 0 < s < 1, then for any t > s, γi(t) > zi for some i, and hence f(γ(t)) = 0.

Set γ1(t) = γ(st) for t ∈ [0, 1]. Then γ1 5 x̂ and J(γ) = J(γ1), hence U(x) ≤

J(γ) + ε = J(γ1) + ε ≤ U(x̂) + ε. Sending ε→ 0 we see that U(x) ≤ U(x̂) and hence

U(x) = U(x̂).

We now show that U is a viscosity supersolution of (3.36). Let y ∈ Rd, let a ∈ Rd+,

and set γ(t) = y − a(1− t). By Lemma III.7 we have

U(y) ≥ U(y − a(1− t)) +

∫ 1

t

f(y − a(1− s))
1
d (a1 · · · ad)

1
d ds

≥ U(y − a(1− t)) + (1− t)f∗(y)(a1 · · · ad)
1
d + o(1− t) as t 1 1.(3.37)
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Let p ∈ D−U(y). Since y − a(1− t)→ y as t 1 1, we have

〈p, (1− t)a〉
(3.33)

≥ U(y)− U(y − a(1− t)) + o(1− t)
(3.37)

≥ (1− t)f∗(y)(a1 · · · ad)
1
d + o(1− t) as t 1 1.

Sending t 1 1 we obtain

〈p, a〉 ≥ f∗(y)
1
d (a1 · · · ad)

1
d .

Since a > 0 was arbitrary, we obtain

(3.38) sup
a>0

{
−〈p, a〉+ f∗(y)

1
d (a1 · · · ad)

1
d

}
≤ 0.

Since U is Pareto-monotone, Proposition III.9 yields p ≥ 0. Hence if f∗(y) = 0 then

U is trivially a viscosity supersolution of (3.36) at y. We may therefore suppose that

f∗(y) > 0. Fix i and set aj = 1 for j 6= i. By (3.38) we have

sup
ai>0

{
−
∑
j 6=i

pj + a
1
d
i f∗(y)

1
d − aipi

}
≤ 0.

Since ai can be arbitrarily large, we must have pi > 0 for the above to hold. Substi-

tuting ai = p−1
i into (3.38) and simplifying we obtain

p1 · · · pd ≥
1

dd
f∗(y).

Thus U is a viscosity supersolution of (3.36).

We now show that U is a viscosity subsolution of (3.36). Let y ∈ Rd, let ε > 0,

and let p ∈ D+U(y). By Lemmas III.3 and III.7 and Remark III.4, for every r > 0

there exists x ∈ ∂Br(y) with x ≤ y such that U(y) = U(x) + w(x, y). Hence there

exists γ ∈ A with x 5 γ 5 y such that

U(y) ≤
∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt+ U(x) + εr.
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By Hölder’s inequality

U(y)− U(x) ≤
∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt+ εr

≤ (f ∗(y)
1
d + o(1))

(∫ 1

0

γ′1(t) dt

) 1
d

· · ·
(∫ 1

0

γ′d(t) dt

) 1
d

+ εr

≤ f ∗(y)
1
d |x1 − y1|

1
d · · · |xd − yd|

1
d + o(r) + εr,

as r % 0. Since x→ y as r % 0, we have

〈p, y − x〉
(3.32)

≤ U(y)− U(x) + o(r) ≤ f ∗(y)
1
d |x1 − y1|

1
d · · · |xd − yd|

1
d + o(r) + εr,

as r % 0. Choose r > 0 small enough so that o(r)/r ≤ ε, and set a = (y − x)/r.

Then we have

−〈p, a〉+ f ∗(y)
1
d (a1 · · · ad)

1
d ≥ −2ε.

Since ε > 0 was arbitrary, we see that

sup
a≥0 : |a|=1

{
−〈p, a〉+ f ∗(y)

1
d (a1 · · · ad)

1
d

}
≥ 0.

Since U is Pareto-monotone, we have p ≥ 0. If pi = 0 for some i, then p1 · · · pd ≤

f ∗(y)/dd. Thus we may assume that pi > 0 for all i. Then the supremum above is

attained at some a > 0 with |a| = 1. By scaling a so that a1 · · · ad = 1, we see that

(3.39) sup
a>0 : a1···ad=1

{
−〈p, a〉+ f ∗(y)

1
d

}
≥ 0.

Since pi > 0 for all i, we have that

lim sup
|a|→∞, a>0

−〈p, a〉+ f ∗(y)
1
d = −∞.

It follows that the supremum in (3.39) is attained at some a∗ > 0. Introducing a

Lagrange multiplier λ > 0, the necessary conditions for a∗ to be a maximizer of the

above constrained optimization problem are

pi =
λ

a∗i
for all i ∈ {1, . . . , d} and a∗1 · · · a∗d = 1.
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It follows that λ = (p1 · · · pd)
1
d and a∗i = p−1

i (p1 · · · pd)
1
d . Substituting this into (3.39)

we have

p1 · · · pd ≤
1

dd
f ∗(y),

which completes the proof.

3.4 Comparison principle

We aim here to establish that U is the unique viscosity solution of (P) under

hypothesis (H0) on f , which in general allows f to be discontinuous. The standard

results on uniqueness of viscosity solutions [10, 27] assume uniformly continuous

dependence on spatial variables. There has been some recent work relaxing this

condition, as it is important in many applications. Tourin [90] considered Hamilton-

Jacobi equations of the form H(x,Du) = 0, where x 7→ H(x, p) is allowed to have a

discontinuity along a smooth surface, and proved a comparison principle under the as-

sumption that p 7→ H(x, p) is convex and uniformly continuous. Neither assumption

holds for (P), although the non-convexity can be easily remedied. Deckelnick and El-

liot [30] prove a comparison principle for Lipschitz viscosity solutions of Eikonal-type

equations of the form H(Du) = f , where f satisfies a regularity condition similar to

(H0), but slightly more general. As exhibited by the solution U(x) = (x1 · · · xd)
1
d of

(P) for f = 1, solutions of (P) are not in general Lipschitz continuous. Camilli and

Siconolfi [22] proposed a new notion of viscosity solution for Hamilton-Jacobi equa-

tions in which H has measurable dependence on the spatial variable x. They obtain

general uniqueness results under the assumption that p 7→ H(x, p) is quasiconvex

and coercive. Their results do not apply to (P) due to the coercivity assumption.

The main result in this section, Theorem III.19, establishes uniqueness for (P)

under hypothesis (H0). Let us give a sketch of the proof now. Let u be a Pareto-
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monotone viscosity solution of (P). We first prove a standard comparison principle,

in Theorem III.11, for uniformly continuous f . We can then define the regularized

value functions Uε and U ε by replacing f by its inf and sup convolutions fε and

f ε, respectively, in (3.5). Since f ε and fε are Lipschitz continuous, the comparison

principle from Theorem III.11 yields Uε ≤ u ≤ U ε. The proof is completed by

showing that Uε, U
ε → U as ε → 0, where U is the value function defined by (3.5).

We establish a more general result in Lemma III.18, the proof of which relies on the

second comparison principle, Theorem III.16. This comparison principle holds for f

satisfying (H0) under the additional assumption that the subsolution is truncatable,

as per Definition III.14. As pointed out in Remark III.15, the value function U is

truncatable, so Theorem III.16 is applicable in the proof of Lemma III.18.

So that our results apply to the Hamilton-Jacobi equations that appear later in

Chapter V, we will consider the following general Hamilton-Jacobi equation

(3.40)


H(x,Du) = 0 on Rd+,

u = ϕ on ∂Rd+.

Here, ϕ : ∂Rd+ → R is continuous and Pareto-monotone, H : Rd+ × Rd → R is the

Hamiltonian, and u : [0,∞)d → R is the unknown function.

For now, we place the following assumptions on H:

(H1) For every x ∈ Rd+, the mapping H(x, ·) : Rd → R is monotone non-decreasing.

(H2) There exists a modulus of continuity m such that

(3.41) H(x, p)−H(y, p) ≤ m(|p||x− y|+ |x− y|)

for all p ∈ [0,∞)d and x, y ∈ Rd+.

Assumption (H1) generalizes our Hamlitonian H(x, p) = p1 · · · pd − f(x), and as-

sumption (H2) is the standard spatial regularity assumption [10, 27]. We will relax
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(H2) later to allow for discontinuous spatial dependence.

We now give a comparison principle for Hamiltonians H satisfying (H1) and (H2).

Theorem III.11. Suppose that H satisfies (H1) and (H2). Let u ∈ USC([0,∞)d)

be a viscosity solution of

(3.42) H(x,Du) ≤ 0 in Rd+,

let v ∈ LSC([0,∞)d) be a Pareto-monotone viscosity solution of

(3.43) H(x,Dv) ≥ a in Rd+,

where a > 0, and suppose that u ≤ v on ∂Rd+. Then u ≤ v on Rd+.

The proof of Theorem III.11 is based on the auxiliary function technique, which

is standard in the theory of viscosity solutions [27, 10], with modifications to incorpo-

rate the lack of compactness resulting from the unbounded domain Rd+. A standard

technique for dealing with unbounded domains is to assume the Hamiltonian H is

uniformly continuous in the gradient p and modify the auxiliary function (see, for

example [10, Theorem 3.5]). Since (P) is not uniformly continuous in the gradient,

we cannot use this technique. In our previous work [20], we included an additional

boundary condition at infinity to induce compactness. It turns out that this is not

necessary, and in the proof of Theorem III.11, we instead heavily exploit the structure

of the Hamiltonian, namely (H1), to produce the required compactness.

Proof. Since v is Pareto-monotone, it is bounded below by v(0). Without loss of

generality we may assume that v(0) = 0. Let h > 0 and set vh(x) = v(x) + h(x1 +

x2). It follows from (H1) that vh is a viscosity solution of (3.43). Assume that
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supRd+(u− vh) > 0. Let Ψ : R→ R be a C1 function satisfying

(3.44)



Ψ(t) = t for all t ≤ 1,

Ψ(t) ≤ 2 for all t ∈ R,

0 < Ψ′(t) ≤ 1 for all t ∈ R.

For c > 0 set u(x) = cΨ(c−1u(x)), and choose c large enough so that

δ := sup
Rd+

(u− vh) > 0.

Since Ψ is C1 and Ψ′ > 0, it is a standard application of the chain rule [10] to show

that u is a viscosity solution of

(3.45) H
(
x,Ψ′(c−1u(x))−1Du

)
≤ 0 on Rd+.

Since Ψ′(t) ∈ (0, 1] for all t ≥ 0, we can apply (H1) to (3.45) to find that u is a

viscosity solution of (3.42).

For α > 0 we define

(3.46) Φα(x, y) = u(x)− vh(y)− α

2
|x− y|2,

and Mα = supRd+×Rd+ Φα. Since u ≤ 2c and vh ≥ 0, we have by (3.46) that

(3.47) |x− y| ≤ 2c√
α

whenever Φα(x, y) ≥ 0.

Since vh(y) ≥ h(y1 + y2) we have

(3.48) Φα(x, y) ≤ 2c− h(y1 + y2).

Since Φα is upper semicontinuous and Mα ≥ δ > 0, it follows from (3.47) and (3.48)

that for every α > 0 there exist xα, yα ∈ [0,∞)d such that

(3.49) Φα(xα, yα) = Mα ≥ δ > 0,
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and

(3.50) yα,1 + yα,2 ≤
2c

h
.

Furthermore, by (3.47) and (3.50) we see that, upon passing to a subsequence if

necessary, we have xα, yα → x0 for some x0 ∈ [0,∞)d. Since (x, y) 7→ u(x)− vh(y) is

upper semicontinuous we have

lim sup
α→∞

Mα ≤ lim sup
α→∞

u(xα)− vh(yα) ≤ u(x0)− vh(x0).

Since Mα ≥ u(x0) − vh(x0) for all α we have that Mα → u(x0) − v(x0) = δ > 0 as

α→∞ and hence

(3.51) α|xα − yα|2 −→ 0.

Since u ≤ vh on ∂Rd+ we must have x0 ∈ Rd+, and therefore xα, yα ∈ Rd+ for α large

enough.

Set p = α(xα − yα). By (3.49) we have that

p ∈ D+u(xα) ∩D−vh(yα).

Therefore we have

H(xα, p) ≤ 0 and H(yα, p) ≥ a.

Subtracting the above inequalities and invoking (H2) we have

0 < a ≤ H(yα, p)−H(xα, p) ≤ m(|p||xα−yα|+|xα−yα|) ≤ m(α|xα−yα|2+|xα−yα|).

Sending α→∞ we arrive at a contradiction. Therefore u ≤ vh, and sending h→ 0+

completes the proof.

We now specialize Theorem III.11 to our PDE (P).
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Corollary III.12. Suppose f : Rd+ → R is uniformly continuous with supp(f) ⊂

[0, 1]d. Let u ∈ USC([0,∞)d) and v ∈ LSC([0,∞)d) be viscosity sub- and supersolu-

tions, respectively, of

(3.52) ux1 · · ·uxd = f on Rd+,

and suppose that v is Pareto-monotone. If u ≤ v on ∂Rd+ then u ≤ v on Rd+.

Proof. Consider the Hamiltonian

H(x, p) = max(p1, 0) · · ·max(pd, 0)− f(x).

It is easy to verify that H satisfies (H1) and (H2), and we have H(x,Du) ≤ 0 in the

viscosity sense.

For θ > 0, set vθ(x) = v(x) + θ
1
d (x1 + · · ·xd). Fix x ∈ Rd+ and p ∈ D−vθ(x). It is

easy to see that p− θ 1
d (1, . . . , 1) ∈ D−v(x). Hence we have

(p1 − θ
1
d ) · · · (pd − θ

1
d )− f(x) ≥ 0.

Since v is Pareto-monotone, it follows from Proposition III.9 that pi− θ
1
d ≥ 0 for all

i, and therefore

p1 · · · pd = (p1 − θ
1
d + θ

1
d ) · · · (pd − θ

1
d + θ

1
d ) ≥ (p1 − θ

1
d ) · · · (pd − θ

1
d ) + θ

≥ f(x) + θ.

Since pi ≥ 0 for all i, it follows that H(x,Dvθ) ≥ θ > 0 in the viscosity sense. Since

u ≤ v ≤ vθ on ∂Rd+, we can apply Theorem III.11 to find that u ≤ vθ on Rd+. The

proof is completed by sending θ → 0.

We now aim to extend this comparison principle to Hamiltonians with discon-

tinuous spatial dependence. We first introduce some notation. Let us denote an



55

interval associated to 5 by

[x, y] = {z ∈ Rd : x 5 z 5 y},

where x, y ∈ Rd and x 5 y. For ξ ∈ [0,∞)d, let us denote by πξ : Rd → [0, ξ] the

projection mapping [0,∞)d onto the convex set [0, ξ]. For x ∈ [0,∞)d, we have

πξ(x) =
(

min(x1, ξ1), . . . ,min(xd, ξd)
)
.

We now make the following definitions.

Definition III.13. Given a function u : [0,∞)d → R and ξ ∈ [0,∞)d, we define the

ξ-truncation of u by uξ := u ◦ πξ.

Definition III.14. Let u be a viscosity solution of

(3.53) H(x,Du) ≤ 0 on Rd+.

We say that u is truncatable if for every ξ ∈ Rd+, the ξ-truncation uξ is a viscosity

solution of (3.53).

Remark III.15. We remark that the value function U given by (3.5) is a truncatable

viscosity solution of (3.36). To see this, fix ξ ∈ Rd+ and set U ξ = U ◦ πξ. Then it

follows from Theorem III.10 and (3.5) that

U ξ(x) = sup
γ∈A : γ5x

∫ 1

0

χ(γ(t))f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt,

where χ : Rd → {0, 1} is the characteristic function of [0, ξ]. Therefore we have

U ξ
x1
· · ·U ξ

xd
= χf ≤ f on Rd

in the viscosity sense, hence U is truncatable.
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We now relax (H2) and allow the Hamiltonian H to have discontinuous spatial

dependence. Given a set O ⊂ Rd+ we assume H satisfies

(H3)O There exists a modulus of continuity m such that for all ξ ∈ O there exists

εξ > 0 and vξ ∈ Sd−1 such that

(3.54) H(y, p)−H(y + εv, p) ≤ m(|p|ε+ ε)

for all p ∈ Rd, y ∈ Bεξ(ξ), ε ∈ (0, εξ), and v ∈ Sd−1 with |v − vξ| < εξ.

This hypothesis is similar to one used by Deckelnick and Elliott [30] to prove unique-

ness of viscosity solutions to Eikonal-type Hamilton-Jacobi equations with discon-

tinuous spatial dependence.

If we assume the subsolution is truncatable, then we can prove the following

comparison principle, which holds for Hamiltonians H with discontinuous spatial

dependence.

Theorem III.16. Suppose that H satisfies (H3)O for some O ⊂ Rd+. Let u ∈

C([0,∞)d) be a truncatable viscosity solution of (3.42) and let v ∈ C([0,∞)d) be a

Pareto-monotone viscosity solution of (3.43). Suppose that u ≤ v on [0,∞)d \ O.

Then u ≤ v on Rd+.

As in the proof of Theorem III.11, the proof below is based on the standard

auxiliary function technique [27]. The proof is similar to [30, Theorem 2.3] in the way

that (H3)O is used, however, we cannot assume Lipschitzness of v. The truncatability

condition on u in a sense replaces the Lipschitz condition on v in [30, Theorem 2.3].

Proof. Suppose that

λ := sup
Rd+

(u− v) > 0.
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Let

(3.55) R = sup

{
r > 0 : u ≤ v +

λ

2
on Dr

}
,

where

(3.56) Dr = {x ∈ Rd+ : x1 + · · ·+ xd < r}.

Since O ⊂ Rd+, we have by hypothesis that u ≤ v on ∂Rd+. Therefore, since u and v

are continuous we have R ∈ (0,∞). By (3.55) there exists ξ0 ∈ Rd+ ∩ ∂DR such that

u(ξ0) = v(ξ0) +
λ

2
and

every neighborhood of ξ0 contains some y ∈ Rd+ with u(y) > v(y) +
λ

2
.(3.57)

For t > 0 set ξ = ξ0 + (t, . . . , t) and

(3.58) G = {x ∈ [0,∞)d : x 5 ξ}.

Let uξ denote the ξ-truncation of u. By (3.57) and (3.55) we see that

(3.59) δ := sup
Rd+

(uξ − v) >
λ

2
> 0

By (3.57) we have u(ξ0) > v(ξ0), and hence ξ0 ∈ O. Let εξ0 and vξ0 ∈ S1 be as

given in (H3)O. Choose t > 0 small enough, and εξ0 > 0 smaller if necessary, so that

G \DR ∈ Bεξ0
(ξ0) ⊂ Rd+. For α > 0 define

(3.60) Φα(x, y) = uξ(x)− v(y)− α

2

∣∣∣∣x− y − 1√
α

vξ0

∣∣∣∣2 .
We claim that for α large enough, there exists xα, yα ∈ Bεξ0

(ξ0) such that

(3.61) Mα := sup
Rd+×Rd+

Φα = Φα(xα, yα).

To see this, first substitute y = x− 1√
α
vξ0 into (3.61) to find

Mα ≥ uξ(x)− v
(
x− 1√

α
vξ0

)
,
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for any x ∈ Rd+ such that x − 1√
α
∈ Rd+. Since uξ and v are continuous, it follows

from (3.59) that

(3.62) lim inf
α→∞

Mα ≥ sup
Rd+

(uξ − v) = δ >
λ

2
> 0.

Since uξ is bounded, and v is monotone, we have by (3.60) that

(3.63) |x− y| ≤ C√
α

whenever Φα(x, y) ≥ 0.

Let x, y ∈ Rd+ such that Φα(x, y) ≥ 0. Set w = πx(y) = πy(x) and ŵ = πξ(w), and

define

(3.64) x̂ = x+ ŵ − w and ŷ = y + ŵ − w.

A short calculation shows that πξ(x) = πξ(x̂). Since uξ = u ◦ πξ we have

(3.65) uξ(x̂) = uξ(πξ(x̂)) = uξ(πξ(x)) = uξ(x).

Since v is Pareto-monotone and ŷ 5 y we have by (3.65) that

(3.66) uξ(x̂)− v(ŷ) ≥ uξ(x)− v(y)

Since x̂− ŷ = x− y, we see from (3.66) and (3.60) that

(3.67) Φα(x̂, ŷ) ≥ Φα(x, y).

Furthermore, by (3.63) we have

|x̂− ŵ| = |x− w| ≤ |x− y| ≤ C√
α
.

Similarly we have |ŷ − ŵ| ≤ C√
α

. Since ŵ 5 ξ we have

x̂, ŷ ∈ Gα :=

{
x′ ∈ [0,∞)d : x′ 5 ξ +

C√
α

(1, . . . , 1)

}
.



59

It follows from this and (3.67) that for every α > 0 there exists xα, yα ∈ Gα such

that Mα = Φα(xα, yα). By (3.63) we may pass to a subsequence if necessary to find

x0 ∈ G such that xα, yα → x0 as α→∞. Then we have

lim sup
α→∞

Mα ≤ lim
α→∞

uξ(xα)− v(yα) ≤ δ.

Combining this with (3.62) we have Mα → δ = uξ(x0)− v(x0) and

(3.68)
α

2

∣∣∣∣xα − yα − 1√
α

vξ0

∣∣∣∣2 −→ 0.

Since δ > λ/2, it follows from the definition of R (3.55) that x0 ∈ G \DR ⊂ Bεξ0
(ξ0).

Therefore, for α > 0 large enough we have xα, yα ∈ Bεξ0
(ξ0), which establishes the

claim.

Letting p = α
(
xα − yα − 1√

α

)
we have by (3.61) that p ∈ D+uξ(xα) ∩D−v(yα).

By hypothesis we have

(3.69) H∗(yα, p) ≥ a.

Since u is truncatable, uξ is a viscosity solution of (3.42) and therefore

(3.70) H∗(xα, p) ≤ 0.

Subtracting (3.70) from (3.69) we have

(3.71) a ≤ H∗(yα, p)−H∗(xα, p).

Let wα = xα − yα − 1√
α
vξ0 and note that

xα = yα + εv,

where

ε =
1√
α
|vξ0 +

√
αwα| = |xα − yα| and v =

vξ0 +
√
αwα

|vξ0 +
√
αwα|

.
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By (3.68) we have
√
αwα → 0. Therefore, for α large enough we have |vξ0 −v| < εξ0

and ε < εξ0 . Since yα ∈ Bεξ0
(ξ0) we can invoke (H3)O to find that

(3.72) H∗(yα, p)−H∗(xα, p) = H∗(yα, p)−H∗(yα+εv, p) ≤ m(|p||xα−yα|+|xα−yα|).

Note that

|p||xα − yα| = α

∣∣∣∣xα − yα − 1√
α

vξ0

∣∣∣∣ |xα − yα|
= α

∣∣∣∣xα − yα − 1√
α

vξ0

∣∣∣∣ ∣∣∣∣xα − yα − 1√
α

vξ0 +
1√
α

vξ0

∣∣∣∣
≤ αw2

α +
√
αwα.

Combining this with (3.72) and (3.71) we have

0 < a ≤ m(αw2
α +
√
αwα + |xα − yα|).

Sending α→∞ yields a contradiction.

We now specialize Theorem III.16 to our Hamilton-Jacobi equation (P). Let us

first recall the assumption on f : Rd → [0,∞):

(H0) There exists an open and bounded set Ω ⊂ Rd+ with Lipschitz boundary such

that f is non-negative and uniformly continuous on Ω and f = 0 on Rd \ Ω.

The assumption (H0) implies that (H3)Rd+ holds. To see this: We only need to verify

(H3)Rd+ for ξ ∈ ∂Ω, since f is uniformly continuous away from ∂Ω. For any ξ ∈ ∂Ω

there exists, by Lipchitzness of ∂Ω, a real number r > 0 and a Lipschitz continuous

function Ψ : Rd−1 → R such that, upon relabelling and reorienting the coordinate

axes if necessary, we have

Ω ∩Br(ξ) =
{
y ∈ Br(ξ) : yd < Ψ(y1, . . . , yd−1)

}
.
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One can then use any vξ ∈ Sd−1 in the interior of the cone

Kx =
{
y ∈ Rd : yd ≥ 2Lip(Ψ)

√
y2

1 + · · · y2
d−1

}
provided εξ is chosen small enough.

Corollary III.17. Assume f satisfies (H0). Let u and v be viscosity sub- and

supersolutions, respectively, of

(3.73) ux1 · · ·uxd = f on Rd+,

and assume that u is truncatable and v is Pareto-monotone. Then u ≤ v on ∂Rd+

implies that u ≤ v on Rd+.

Proof. For θ > 0, set vθ(x) = v(x) + θ
1
d (x1 + · · ·+ xd). Then u < vθ on ∂Rd+. As in

the proof of Corollary III.12, vθ satisfies

(3.74) vθ,x1 · · · vθ,xd ≥ f + θ on Rd+

in the viscosity sense. As remarked above, (H0) implies that (H3)Rd+ holds, hence

we can apply Theorem III.16 to find that u ≤ vθ. Sending θ → 0 completes the

proof.

In order to prove a general uniqueness result without the truncatability assump-

tion we require a perturbation result for the value function U with respect to sup

and inf convolutions of the density f . Since a similar result, for a different type of

perturbation, is required in the proof of our main result, Theorem III.2, we state a

more general result in Lemma III.18. We first recall some notation standard in the

theory of viscosity solutions. For a sequence of bounded functions fn : Rd+ → R, the

upper and lower limits are defined by

lim sup∗
n→∞

fn(x) := lim
j→∞

sup

{
fn(y) : n ≥ j, y ∈ Rd, and |x− y| ≤ 1

j

}
,
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and

lim inf∗
n→∞

fn(x) := lim
j→∞

inf

{
fn(y) : n ≥ j, y ∈ Rd, and |x− y| ≤ 1

j

}
.

Lemma III.18. Assume f satisfies (H0). Let {fn}∞n=1 ⊂ B and suppose that

(3.75) f∗ ≤ lim inf∗
n→∞

fn and lim sup∗
n→∞

fn ≤ f ∗.

For each n, set

vn(x) = sup
γ∈A : γ5x

∫ 1

0

fn(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

Then vn → U uniformly where U is the value function given by (3.5).

Proof. We claim that {fn}∞n=1 is a uniformly bounded sequence. To see this, suppose

to the contrary that there exists a sequence xn in [0, 1]d such that fn(xn) → ∞ as

n→∞. By passing to a subsequence, if necessary, we may assume that xn → x0 ∈

[0, 1]2 as n→∞. By the definition of the upper limit and (3.75), we have

f ∗(x0) ≥ lim sup∗
n→∞

fn(x0) =∞,

which contradicts the assumption that f is uniformly continuous on Ω and hence

bounded. This establishes the claim.

Since {fn}∞n=1 is uniformly bounded, there exists (by Lemma III.3) a constant C

such that [vn] 1
d
≤ C for all n. The sequence vn is therefore bounded and equicon-

tinuous, and by the Arzela-Ascoli theorem there exists a subsequence vnk and a

Hölder-continuous function v : Rd → R such that vnk → v uniformly on compact

sets in Rd as k → ∞. By Theorem III.10 (i), (ii), we conclude that the conver-

gence is actually uniform on Rd. By Theorem III.10, each vn is a Pareto-monotone

truncatable viscosity solution of

vn,x1 · · · vn,xd =
1

dd
fn on Rd+.
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By standard results on viscosity solutions (see [27, Remark 6.3]) and (3.75), we have

that v is a Pareto-monotone viscosity solution of

vx1 · · · vxd =
1

dd
f on Rd+.

By the assumption that supp(fn) ⊂ [0, 1]d, we have that vn(x) = 0 for all x 6∈ Rd+,

hence v(x) = 0 for all x 6∈ Rd+.

We claim that v is truncatable. To see this, fix ξ ∈ Rd+ and define vξ = v ◦ πξ,

vξn = vn ◦ πξ, and let χ denote the characteristic function of [0, ξ]. Since vn is

truncatable, vξn is a viscosity solution of

vξn,x1 · · · v
ξ
n,xd
≤ 1

dd
fn on Rd+.

Since (3.75) holds and vξn → vξ uniformly, we can again apply standard results on

viscosity solutions [27] to find that vξ is a viscosity subsolution of

vξx1 · · · v
ξ
xd

=
1

dd
f on Rd+,

which proves the claim.

By Corollary III.17 we have v = U on Rd+. Since U(x) = v(x) = 0 for x 6∈ Rd+ we

have v = U on Rd. The above argument can be used to show that every subsequence

of vn contains a uniformly convergent subsequence converging to U . It follows that

vn → U uniformly in Rd as n→∞.

We now establish uniqueness of viscosity solutions of (P).

Theorem III.19. Assume f satisfies (H0). Then there exists a unique Pareto-

monotone viscosity solution u of

(3.76)


ux1 · · ·uxd = f on Rd+

u = 0 on ∂Rd+.
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Proof. Existence is established by Theorem III.10. To prove uniqueness, let u be a

Pareto-monotone viscosity solution of (3.76). We will show that u = d · U , where

U is the value function defined by (3.5). Let ε > 0 and consider the inf and sup

convolutions of f , defined for x ∈ Rd+ by

fε(x) = inf
y∈Rd+

{
f(y) +

1

ε
|x− y|

}
and f ε(x) = sup

y∈Rd+

{
f(y)− 1

ε
|x− y|

}
.

Recall that fε and f ε are Lipschitz continuous with constant 1/ε and fε ≤ f ≤ f ε.

Without loss of generality, we may assume that Ω ⊂ (0, 1)d, and hence for ε > 0

small enough, we have supp(fε), supp(f ε) ⊂ [0, 1]d. For x ∈ Rd+, set

U ε(x) = sup
γ∈A : γ5x

∫ 1

0

f ε(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt,

and

Uε(x) = sup
γ∈A : γ5x

∫ 1

0

fε(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

By Theorem III.10, d · U ε is a viscosity solution of

(3.77) vx1 · · · vxd = f ε on Rd+.

Since f ≤ f ε and u is a viscosity solution of (3.76), we see that u is a viscosity

subsolution of (3.77). Since u = U = 0 on ∂Rd+ we can apply Corollary III.12 to find

that u ≤ d ·U ε. By a similar argument, we have that u ≥ d ·Uε. Since fε, f
ε ∈ B and

(3.75) is satisfied for the sequences {f ε}ε>0 and {fε}ε>0, we have by Lemma III.18

that Uε, U
ε → U uniformly in Rd as ε→ 0, and hence u = d · U .

3.5 Large sample asymptotics of un

The proof of Theorem III.2 is split into several steps. In Section 3.5.1, we prove

a basic convergence result for piecewise constant density functions, which is a gen-

eralization of the results of Deuschel and Zeitouni [31]. In Section 3.5.2, we extend
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the convergence result to densities that are continuous on Ω and vanish on Rd \ Ω

by considering a sequence of piecewise constant approximations to f , applying the

results from Section 3.5.1, and passing to the limit. This requires a perturbation

result for the energy J , which we obtained from the comparison principle for the

associated Hamilton-Jacobi PDE (P) in Lemma III.18.

3.5.1 Piecewise constant densities

We aim to prove a basic convergence result for piecewise constant densities here.

The proof is split into a lower bound, Theorem III.20, and an upper bound, Theorem

III.23. We should note that the techniques used here are similar to those used by

Deuschel and Zeitouni [31], who showed the same convergence result for C1 densities

on the unit hypercube in dimension d = 2.

Let us introduce some notation. For a finite set S ⊂ Rd, let `(S) denote the

length of a longest increasing chain in S. The set function ` has an important

invariance. If Ψ : Rd → Rd is a mapping that preserves the partial order 5, i.e.,

x 5 y ⇐⇒ Ψ(x) ≤ Ψ(y), then

(3.78) `(S) = `(Ψ(S)) for any S ⊂ Rd.

For A ⊂ Rd we denote by χA : Rd → R the characteristic function of the set A,

which takes the value 1 on A and 0 on Rd \ A. When A is Lebesgue measurable,

we denote by |A| the Lebesgue measure of A. We set 0d = (0, . . . , 0) ∈ Rd and

1d = (1, . . . , 1) ∈ Rd. Given an integer L, we partition [0, 1)d into Ld hypercubes of

side length 1/L. More precisely, for a multiindex α ∈ NL with ‖α‖∞ ≤ L, where

‖α‖∞ = max(α1, . . . , αL), we set

(3.79) QL,α = {x ∈ [0, 1)d : α− 1d 5 Lx < α}.
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Figure 3.3: An illustration of some quantities from the proof of Theorem III.20.

We say that f : [0, 1)d → [0,∞) is L-piecewise constant if f is constant on QL,α for

all α. If f is L-piecewise constant then f is kL-piecewise constant for all k ∈ N. For

convenience, we also set

J = sup
γ∈A

J(γ) = sup
γ∈A

∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

We now establish an asymptotic lower bound on `({X1, . . . , Xn}).

Theorem III.20. Let f : [0, 1)d → [0,∞) be L-piecewise constant, and let X1, . . . , Xn

be i.i.d. with density f . Then

lim inf
n→∞

n−
1
d ` ({X1, . . . , Xn}) ≥ cdJ a.s.

Proof. Let ε > 0 and select γ ∈ A with J(γ) ≥ J − ε
cd

. Without loss of generality,

we may assume that γ ′(t) > 0 for all t ∈ [0, 1]. Let s1, . . . , sk denote the k ≤ dL

times at which γ intersects the set

⋃
α

∂QL,α ∩ (0, 1)d.
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Set s0 = 0 and sk+1 = 1. For j = 0, . . . , k set Ij = [sj, sj+1) and

(3.80) Rj = {x ∈ [0, 1)d : γ(sj) 5 x < γ(sj+1)}.

See Figure 3.3 for an illustration of these quantities. For every j we have Rj ⊂ QL,α

for some α. Recalling the definition of J (3.4) we have

(3.81)

J(γ) =
k∑
j=0

∫
Ij

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt =

k∑
j=0

f(γ(sj))
1
d

∫
Ij

(γ′1(t) · · · γ′d(t))
1
d dt,

where the second equality follows from the fact that f is constant on Rj ⊂ QL,α.

Applying the generalized Hölder inequality to (3.81) we have

J(γ) ≤
k∑
j=0

f(γ(sj))
1
d

d∏
i=1

(∫
Ij

γ′i(t) dt

) 1
d

=
k∑
j=0

f(γ(sj))
1
d |Rj|

1
d .

Setting pj =
∫
Rj
f(x) dx = f(γ(sj))|Rj| we have

(3.82) J ≤ J(γ) +
ε

cd
≤

k∑
j=0

p
1
d
j +

ε

cd
.

Fix j ∈ {0, . . . , k}. Let nj denote the number of points from X1, . . . , Xn falling

in Rj and set

(3.83) `j(n) = ` ({X1, . . . , Xn} ∩Rj) .

Then nj is Binomially distributed with parameters n and pj. If f is identically zero

on Rj then `j(n) = 0 with probability one for all n, and pj = 0, hence

(3.84) n−
1
d `j(n) = cdp

1
d
j a.s.

If f is not identically zero on Rj, then since γ ′(t) > 0 for all t, we have |Rj| > 0

and hence pj > 0. The conditional law ρj := p−1
j · f · χRj is then uniform on Rj. Let

i1, . . . , inj be the indices of the nj random variables out of X1, . . . , Xn that belong
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to Rj. Let Ψ : Rj → [0, 1)d be the injective affine transformation mapping Rj

onto [0, 1)d. Then Ψ(Xi1), . . . ,Ψ(Xinj
) are independent and uniformly distributed

on [0, 1)d. By [17, Remark 1], we have

n
− 1
d

j `
(
{Ψ(Xi1), . . . ,Ψ(Xinj

)}
)
→ cd a.s.

Since Ψ preserves the partial order 5, we have by (3.78) that

`j(n) = `
(
{Xi1 , . . . , Xinj

}
)

= `
(
{Ψ(Xi1), . . . ,Ψ(Xinj

)}
)
.

Since n−1nj → pj almost surely we have

(3.85) n−
1
d `j(n) = n

− 1
d

j (n−1nj)
1
d `j(n)→ cdp

1
d
j a.s.

Combining this (3.82), (3.84) and (3.85), we see that

(3.86) n−
1
d

k∑
j=0

`j(n)→ cd

k∑
j=0

p
1
d
j ≥ cdJ − ε a.s.

Since γ is a monotone curve (i.e., γ ′(t) ≥ 0), we can connect longest chains from

each rectangle Rj together to form a chain in [0, 1)d. It follows that

(3.87) ` ({X1, . . . , Xn}) ≥
k∑
j=0

`j(n).

Combining this with (3.86) we have

lim inf
n→∞

n−
1
d ` ({X1, . . . , Xn}) ≥ cdJ − ε a.s.,

which completes the proof.

For the proof of the upper bound, we need to introduce some new notation. Let k1

be an integer and set ∆x = 1/k1. Let k2 be another integer and set ∆y = ∆x/k2. For

given k1, k2, we say that a sequence of multiindices b = (bj)
k1
j=1 ⊂ Nd−1 is admissible

if b1 5 · · · 5 bk1 and ‖bj‖∞ ≤ k1k2 for all j. We denote the set of admissible
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multiindices by Φ(k1, k2). For b ∈ Φ(k1, k2), define zb,0, zb,1, . . . , zb,k1 in [0, 1]d by

zb,0 = 0d and zb,j = (bj∆y, j∆x) for j ≥ 1. Since b is admissible, zb,0, . . . , zb,k1

defines a chain in [0, 1]d. Define γb : [0, 1] → [0, 1]d to be the polygonal curve

connecting the points zb,0, . . . , zb,k1 , i.e.,

γb(t) = zb,j−1 +
1

∆x
(zb,j − zb,j−1)(t− (j − 1)∆x)

for t ∈ [(j − 1)∆x, j∆x]. For b ∈ Φ(k1, k2) and 1 ≤ j ≤ k1, set

Rb,j =
{
x ∈ [0, 1)d : zb,j−1 − (1d−1, 0)∆y 5 x < zb,j

}
.

For each rectangle Rb,j, we set pb,j =
∫
Rb,j

f(x) dx. We say that a chain x1 5 x2 5

· · · 5 xm in [0, 1)d is b-increasing if

{x1, . . . , xm} ⊂
k1⋃
j=1

Rb,j.

It is not hard to see that for any k1, k2, every chain in [0, 1)d is b-increasing for some

b ∈ Φ(k1, k2). See Figure 3.4 for an illustration of the above definitions.

We first need a preliminary lemma which bounds the length of a longest chain

within the narrow strip

(3.88) Tj := [0, 1]d−1 × [(j − 1)∆x, j∆x),

for any j ∈ {1, . . . , k1}. We note that the following lemma is a generalization of [31,

Lemma 7]. The proof is based on the same idea of using a mixing process to em-

bed X1, . . . , Xn into another set of i.i.d. random variables that are uniform when

restricted to the strip Tj.

Lemma III.21. Let f : [0, 1)d → [0,∞) be L-piecewise constant, and let X1, . . . , Xn

be i.i.d. with density f . Fix an integer j ∈ {1, . . . , k1} and let 0 < ∆x ≤ ‖f‖−1
L∞((0,1)d)

.

Then

(3.89) lim sup
n→∞

n−
1
d ` ({X1, . . . , Xn} ∩ Tj) ≤ cd

(
2∆x‖f‖L∞((0,1)d)

) 1
d a.s.
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Figure 3.4: An illustration of the quantities Rb,j, zb,j, QL,α and γb in two dimensions
with b = (b1, b2, b3, b4) = (7, 7, 10, 11). In this case, the unit square is partitioned
into four squares, QL,(1,1), QL,(1,2), QL,(2,1) and QL,(2,2), which are separated by dotted
lines in the figure.

Proof. Set M = ‖f‖L∞((0,1)d) and let g = f + (M − f) · χTj . Let Y1, . . . , Yn be

i.i.d. according to the conditional density β−1(M−f)·χTj where β =
∫
Tj
M−f(x) dx.

Let m1, . . . ,mn be Bernoulli zero-one random variables with parameter (1+β)−1 and

set

(3.90) ik = m1 + · · ·+mk.

Define Z1, . . . , Zn through the mixture process

Zk = mkXik + (1−mk)Yk.

Then Z1, . . . , Zn are i.i.d. with density (1 + β)−1g. Let W denote the cardinality of

the set {Z1, . . . , Zn} ∩ Tj. Then W is binomially distributed with parameters n and

p := (1 + β)−1∆xM . Since g is constant on Tj, we can use a similar argument to
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that in Theorem III.20 to show that

(3.91) n−
1
d ` ({Z1, . . . , Zn} ∩ Tj)→ cdp

1
d a.s.

Let m = in and note that

` ({X1, . . . , Xm}) = ` ({Zk : mk = 1} ∩ Tj) ≤ ` ({Z1, . . . , Zn} ∩ Tj) ,

and that p ≤ ∆xM . Combining this with (3.91) we have

(3.92) lim sup
n→∞

n−
1
d ` ({X1, . . . , Xm}) ≤ cd(∆xM)

1
d a.s.

Since m is Binomially distributed with parameters n and (1+β)−1, we have nm−1 →

1 + β almost surely and hence

lim sup
n→∞

m−
1
d ` ({X1, . . . , Xm}) = lim sup

n→∞
(nm−1)

1
dn−

1
d ` ({X1, . . . , Xm})

≤ (1 + β)
1
d cd(∆xM)

1
d a.s.

Since β ≤ ∆xM ≤ 1 we have

lim sup
n→∞

m−
1
d ` ({X1, . . . , Xm}) ≤ cd(2∆xM)

1
d a.s.

The desired result (3.89) follows from noting that n 7→ m(n) is monotone nonde-

creasing along every sample path and m→∞ as n→∞ with probability one.

The following short technical lemma is essential in the proof of Theorem III.23

Lemma III.22. Let f : [0, 1)d → [0,∞) be L-piecewise constant. For every ε > 0

and k1 ≥ L we have

(3.93)
∑
j∈Hb

p
1
d
b,j ≤ J + ε.

for all b ∈ Φ(k1, k2), the admissible multiindices, and k2 ≥ C‖f‖L∞((0,1)d)k
d−1
1 /εd,

where

(3.94) Hb = {j : Rb,j ⊂ QL,α for some α}.
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Proof. Let k1, k2, ε > 0, and b ∈ Φ(k1, k2). Set Ij = [(j − 1)∆x, j∆x) and fix

j ∈ {1, . . . , k1} and t ∈ Ij. Note that

|Rb,j| =


∆yd−1∆x

∏d−1
i=1 (bj,i − bj−1,i + 1) if j ≥ 2

∆yd−1∆x
∏d−1

i=1 (bj,i − bj−1,i) if j = 1,

and

∆xdγb,1(t) · · · γb,d(t) = ∆yd−1∆x
d−1∏
i=1

(bj,i − bj−1,i),

where we set b0 = 0 for convenience. A short computation shows that

(3.95) |∆x(γb,1(t) · · · γb,d(t))
1
d − |Rb,j|

1
d | ≤ C∆x

1
d∆y

1
d ,

where C = (d− 1)
1
d . Since f is L-piecewise constant we have

(3.96) f(γb(t)) = f(zb,j−1) =
pb,j
|Rb,j|

,

for all j ∈ Hb and t ∈ Ij. Noting that ∆x = |Ij| and recalling the definition of J

(3.4) we have

J ≥ J(γb)
(3.95)

≥
∑
j∈Hb

1

|Ij|

∫
Ij

f(γb(t))
1
d (|Rb,j|

1
d − C∆x

1
d∆y

1
d ) dt

=
∑
j∈Hb

|Rb,j|
1
d

|Ij|

∫
Ij

f(γb(t))
1
d dt− C

∑
j∈Hb

1

|Ij|

∫
Ij

f(γb(t))
1
d∆x

1
d∆y

1
d dt

(3.96)

≥
∑
j∈Hb

p
1
d
b,j − ‖f‖

1
d

L∞((0,1)d)
k
d−1
d

1 k
− 1
d

2 .(3.97)

Taking k2 ≥ (C/ε)d‖f‖L∞((0,1)d)k
d−1
1 completes the proof.

We now establish an asymptotic upper bound on ` ({X1, . . . , Xn}).

Theorem III.23. Let f : [0, 1)d → [0,∞) be L-piecewise constant, and let X1, . . . , Xn

be i.i.d. with density f . Then

lim sup
n→∞

n−
1
d ` ({X1, . . . , Xn}) ≤ cdJ a.s.
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Proof. Let k2 > 0, k1 ≥ L, ε > 0, and b ∈ Φ(k1, k2). We suppose that k1 ≥ L is a

multiple of L so that f is k1-piecewise constant. Let `b(n) denote the length of a

longest b-increasing chain. Let nj denote the number of X1, . . . , Xn that belong Rb,j

and set

(3.98) `b,j(n) = ` ({X1, . . . , Xn} ∩Rb,j) .

Due to the monotonicity of zb,0, . . . , zb,k1 , at most (d − 1)L of Rb,1, . . . , Rb,k1 can

have a non-empty intersection with more than one hypercube QL,α. It follows that

|Hc
b| ≤ (d− 1)L, where Hc

b = {1, . . . , k1} \ Hb.

Since each b-increasing chain is the union of chains in Rb,1, . . . , Rb,k1 , we have

(3.99) `b(n) ≤
k1∑
j=1

`b,j(n) =
∑
j∈Hcb

`b,j(n) +
∑
j∈Hb

`b,j(n).

We will deal with each of the above sums separately. For the first term, set M =

‖f‖L∞((0,1)d) and let k1 be large enough so that ∆x ≤ 1/M . Since Rb,j ⊂ Tj for each

j, we have by Lemma III.21 that

lim sup
n→∞

n−
1
d

∑
j∈Hcb

`b,j(n) ≤ cd|Hc
b|(2∆xM)

1
d ≤ cd(d− 1)L(2M)

1
dk
− 1
d

1 a.s.

Choose k1 large enough so that

(3.100) lim sup
n→∞

n−
1
d

∑
j∈Hcb

`b,j(n) ≤ ε

2
a.s.

We now bound the second sum in (3.99). By Lemma III.22, choose k2 = k(M,k1, ε)

so that

(3.101)
∑
j∈Hb

p
1
d
b,j ≤ J +

ε

2cd
,

for all b ∈ Φ(k1, k2). For any j ∈ Hb, the conditional density ρj on Rb,j is uniform.

By a similar argument as in the proof of Theorem III.20, we have that

n−
1
d `b,j(n)→ cdp

1
d
b,j a.s.
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Combining this with (3.99), (3.100), and (3.101) we have

(3.102) lim sup
n→∞

n−
1
d `b(n) ≤ cdJ + ε a.s.

Since every chain in X1, . . . , Xn is b-increasing for some b ∈ Φ(k1, k2), we have

` ({X1, . . . , Xn}) ≤ max
b∈Φ(k1,k2)

`b(n),

for every n. It follows that

lim sup
n→∞

` ({X1, . . . , Xn}) ≤ cdJ + ε a.s.,

which completes the proof.

3.5.2 Continuous densities on Ω

We now generalize the convergence results on piecewise constant densities, The-

orems III.20 and III.23, to continuous densities on Ω. Our main result, Theorem

III.2, is proved at the end of the section. The idea of our approach is to divide [0, 1)d

into a large number of hypercubes, and to flatten f on each sub-cube. We can then

apply the results from Section 3.5.1 and take the limit as the size of the sub-cubes

tends to zero. In order to pass to the limit, we apply the perturbation result given

in Lemma III.18.

Let X1, . . . , Xn be i.i.d. with density f . We recall that un(x) denotes the length

of a longest chain among X1, . . . , Xn consisting of points less than or equal to x under

the partial order 5. In other words

un(x) = ` ({Xi : Xi 5 x}) .

We also recall the definition of the value function U , defined in (3.5) by

U(x) = sup
γ∈A : γ5x

∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

We now establish pointwise asymptotic upper and lower bounds on un.
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Theorem III.24. Let f satisfy (H0). Then for every z ∈ Rd we have

(3.103) lim sup
n→∞

n−
1
dun(z) ≤ cdU(z) a.s.

Proof. Set D = {x ∈ Rd : 0 5 x < z} and p =
∫
D
f(x) dx. Suppose that p = 0.

It follows from (H0) that f is lower semicontinuous, and hence f(x) = 0 for x 5 z.

Thus un(z) = 0 = U(z) almost surely.

Suppose that p > 0 and let ε > 0. Let k ∈ N and partition D into kd hypercubes

Qk,α for multiindices α with ‖α‖∞ ≤ k. Define fk : Rd → [0,∞) by

(3.104) fk(x) =
∑
α

(
sup
Qk,α

f
)
χQk,α(x) + f(x)χRd\D(x),

and set pk =
∫
D
fk(x) dx. For every integer k, fk is k-piecewise constant on D and

f ≤ fk. Define vk : Rd → R by

(3.105) vk(x) = sup
γ∈A : γ5x

∫ 1

0

fk(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

Note that the sequence fk is uniformly bounded, Borel-measurable, and has compact

support in [0, 1]d. Furthermore, it follows from (3.104) that (3.75) holds for the

sequence fk. Hence by Lemma III.18 we have that vk → U uniformly as k → ∞.

Now fix k large enough so that

(3.106) |vk(z)− U(z)| ≤ ε

cd
.

Set

(3.107) λ =

(∫
Rd
fk(x) dx

)−1

,

and define g = λfk. Then λf ≤ g and we can write g as a convex combination of

two distributions as follows:

g = λf + (g − λf).
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Let Y1, . . . , Yn be i.i.d. with density (1 − λ)−1(g − λf), let m1, . . . ,mn be Bernoulli

random variables with parameter λ, and set

ij = m1 + · · ·+mj.

Define

Zj = mjXij + (1−mj)Yj.

Then a simple computation shows that Z1, . . . , Zn are i.i.d. with density g. Let W

denote the cardinality of {Z1, . . . , Zn}∩D. Since g is k-piecewise constant on D, we

can apply Theorems III.20 and III.23 to obtain

(3.108) lim
n→∞

W− 1
d ` ({Z1, . . . , Zn} ∩D}) = cdp

− 1
d

k vk(z) a.s.

Note that W is Binomially distributed with parameters n and λpk, hence n−1W →

λpk almost surely. Applying this to (3.108) we have

lim
n→∞

n−
1
d ` ({Z1, . . . , Zn} ∩D) = lim

n→∞
(n−1W )

1
dW− 1

d ` ({Z1, . . . , Zn} ∩D)

= cdλ
1
dvk(z) a.s.(3.109)

Set m = in. Note that m is Binomially distributed with parameters n and λ, and

(3.110) um(z) = ` ({X1, . . . , Xm} ∩D) ≤ ` ({Z1, . . . , Zn} ∩D) .

Combining (3.110) with (3.109) and the fact that n−1m→ λ as n→∞ we have

lim sup
n→∞

m−
1
dum(z)

(3.110)

≤ lim
n→∞

(m−1n)
1
dn−

1
d ` ({Z1, . . . , Zn} ∩D)

(3.109)
= cdvk(z) a.s.(3.111)

Recalling (3.106) we have

lim sup
n→∞

m−
1
dum(z) ≤ cdU(z) + ε a.s.
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As in the proof of Lemma III.21, the proof is completed by noting that n 7→ m(n)

is monotone nondecreasing along every sample path and m → ∞ as n → ∞ with

probability one.

Theorem III.25. Let f : Rd → R satisfy (H0). Then for every z ∈ Rd we have

(3.112) lim inf
n→∞

n−
1
dun(z) ≥ cdU(z) a.s.

Proof. Let ε > 0. As in the proof of Theorem III.24, we set D := {x ∈ Rd : 0 5

x < z} and we may suppose that p :=
∫
D
f(x) dx > 0. As before, let k ∈ N and

partition D into kd hypercubes Qk,α for multiindices α with ‖α‖∞ ≤ k. Define

fk : Rd → [0,∞) by

(3.113) fk(x) =
∑
α

(
inf
Qk,α

f
)
χQk,α(x) + f(x)χRd\D(x),

and set pk =
∫
D
fk(x) dx. Define

(3.114) q(x) =


fk(x)
f(x)

, if f(x) > 0

0, otherwise.

For any α such that Qk,α ⊂ Ω, we have by (H0) and (3.113) that

fk(x) ≥ f(x)−m

(√
d

k

)
for x ∈ Qk,α.

It follows that ‖q‖L∞(Rd) 1 1 as k →∞. As in the proof of Theorem III.24, we have

that vk → U uniformly as k →∞, where vk is defined by (3.105). We can therefore

fix k large enough so that

(3.115) cd‖q‖
− 1
d

L∞(Rd)
vk(z) ≥ cdU(z)− ε.

For i = 1, . . . , n, let mi be a Bernoulli zero-one random variable with parameter

‖q‖−1
L∞(Rd)

q(Xi). Let m = m1 + · · · + mn and let i1, . . . , im denote the indices for
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which mi = 1. We claim that Xi1 , . . . , Xim are i.i.d. with density g := λfk where λ

is defined in (3.107). To see this, first note since f(x) = 0 implies fk(x) = 0, we have

q(x)f(x) = fk(x) for all x ∈ Rd. Thus

(3.116) P (mi = 1) =

∫
Rd
P (mi = 1 |Xi = x)f(x) dx =

∫
Rd

q(x)

‖q‖
f(x) dx =

1

λ‖q‖
,

where ‖q‖ = ‖q‖L∞(Rd). Let j ≥ 1 and let A ⊂ Rd be measurable. We have

P (Xij ∈ A) = P (Xi ∈ A |mi = 1)

=
P (Xi ∈ A and mi = 1)

P (mi = 1)

(3.116)
= λ‖q‖

∫
A

P (mi = 1 |Xi = x)f(x) dx

= λ‖q‖
∫
A

q(x)

‖q‖
f(x) dx

=

∫
A

λfk(x) dx.

By the construction of Xi1 , . . . , Xim , they are independent random variables, hence

the claim is established.

Let W denote the cardinality of {Xi1 , . . . , Xim} ∩ D. By Theorems III.20 and

III.23, we have

(3.117) lim
n→∞

W− 1
d ` ({Xi1 , . . . , Xim} ∩D) = cdp

− 1
d

k vk(z) a.s.

Define

wi =


1, if mi = 1 and Xi ∈ D

0, otherwise.

Then W = w1 + · · ·wn. Each wi is a Bernoulli zero-one random variable with

parameter

P (wi = 1) = P (mi = 1 and Xi ∈ D) =

∫
D

P (mi = 1 |Xi = x)f(x) dx =
pk
‖q‖

.
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It follows that W is Binomially distributed with parameters n and ‖q‖−1pk, and

hence n−1W → ‖q‖−1pk almost surely. Combining this with (3.117) yields

lim
n→∞

n−
1
d ` ({Xi1 , . . . , Xim} ∩D) = lim

n→∞
(n−1W )

1
dW− 1

d ` ({Xi1 , . . . , Xim} ∩D)

= cd‖q‖−
1
dvk(z) a.s.(3.118)

Noting that

un(z) = ` ({X1, . . . , Xn} ∩D) ≥ ` ({Xi1 , . . . , Xim} ∩D) ,

we have

lim inf
n→∞

n−
1
dun(z) ≥ lim

n→∞
n−

1
d ` ({Xi1 , . . . , Xim} ∩D)

(3.118)
= cd‖q‖−

1
dvk(z) a.s.(3.119)

Recalling (3.115) we have

lim inf
n→∞

n−
1
dun(z) ≥ cdU(z)− ε a.s.,

which completes the proof.

We now have the proof of Theorem III.2.

Proof. Let ε > 0. Let k ∈ N and for a multiindex α ∈ Zd, set xα = α/k. Since U is

uniformly continuous (by Lemma III.3) we can choose k large enough so that

(3.120) |U(xα+1d)− U(xα)| ≤ ε

cd

for all α ∈ Zd. Let I be the set of multiindices α for which xα ∈ [0, 1]d. Note that

the cardinality of I is (k + 1)d. Since I is finite with cardinality independent of n,

Theorems III.24 and III.25 yield

(3.121) lim
n→∞

sup
α∈I
|n−

1
dun(xα)− cdU(xα)| = 0 a.s.
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Let z ∈ (0, 1]d. Then there exists α ∈ I such that xα < z 5 xα+1d . By the Pareto-

monotonicity of un and (3.120) we have

n−
1
dun(z)− cdU(z) ≤ n−

1
dun(xα+1d)− cdU(z)

(3.120)

≤ n−
1
dun(xα+1d)− cdU(xα+1d) + ε.

By a similar argument, we have

n−
1
dun(z)− cdU(z) ≥ n−

1
dun(xα)− cdU(xα)− ε,

and hence

(3.122) ‖n−
1
dun − cdU‖L∞((0,1)d) ≤ sup

α∈I
|n−

1
dun(xα)− cdU(xα)|+ ε.

Combining (3.121) and (3.122) we have

lim sup
n→∞

‖n−
1
dun − cdU‖L∞((0,1)d) ≤ ε a.s.,

and hence limn→∞ ‖n−
1
dun− cdU‖L∞((0,1)d) = 0 almost surely. The desired result now

follows immediately from the boundary conditions on U proved in Theorem III.10

(i), (ii) and the fact that there are almost surely no samples in Rd \ (0, 1)d.

As a straightforward application of Theorem III.2, we can show that non-dominated

sorting is stable under bounded random perturbations in the samples X1, . . . , Xn.

For δ > 0, we set

Zi = Xi + Yiδ for i = 1, . . . , n,

where Y1, . . . , Yn are i.i.d. with a continuous compactly supported density function

g : Rd → R. For x ∈ Rd, set

uδn(x) = ` ({Zi : Zi 5 x}) .
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Theorem III.26 (Stability of non-dominated sorting). Let f satisfy (H0). There

exist constants Cδ, depending only on δ, f , and g, such that

lim sup
n→∞

n−
1
d‖uδn − un‖L∞(Rd) ≤ Cδ a.s.

and Cδ → 0 as δ → 0.

Proof. Set gδ(x) = 1
δd
g
(
x
δ

)
. Then Z1, . . . , Zn are i.i.d. with density fδ := gδ ∗ f . Set

U δ(x) = sup
γ∈A : γ5x

∫ 1

0

fδ(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

Without loss of generality, we may suppose that Ω ⊂ (0, 1)d. Since supp(f) ⊂ Ω and

g has compact support, we can take δ > 0 small enough so that supp(fδ) ⊂ [0, 1]d. It

is not hard to see that (3.75) holds for the sequence fδ. Since each fδ is continuous

and bounded with compact support in [0, 1]d, it follows from Lemma III.18 that

U δ → U uniformly on Rd. Note that

n−
1
d‖uδn − un‖L∞(Rd) ≤ ‖n−

1
duδn − cdU δ‖L∞(Rd) + ‖n−

1
dun − cdU‖L∞(Rd)

+ cd‖U δ − U‖L∞(Rd),

for every n. Since fδ is continuous on (0, 1)d and fδ(x) = 0 for x 6∈ (0, 1)d, (H0)

is satisfied for fδ by taking Ω′ = (0, 1)d. We can therefore apply Theorem III.2 to

obtain

‖n−
1
duδn − cdU δ‖L∞(Rd) + ‖n−

1
dun − cdU‖L∞(Rd) → 0 a.s.

The proof is completed by setting Cδ = cd‖U δ − U‖L∞(Rd).



CHAPTER IV

A PDE-based approach to non-dominated sorting

In this chapter we propose and study a fast numerical scheme for the Hamilton-

Jacobi equation (P), and prove convergence of this scheme. We then show how the

scheme can be used to design a fast approximate non-dominated sorting algorithm,

and we evaluate the sorting accuracy of the new algorithm on both synthetic and

real data. A fast approximate algorithm for non-dominated sorting has the potential

to be a valuable tool for multiobjective optimization, especially in evolutionary algo-

rithms which require frequent non-dominated sorting [29]. There are also potential

applications in polynuclear growth of crystals in materials science [77], where the

scheme could be used to simulate crystal growth in the presence of inhomogeneous

growth rates.

We introduce the numerical scheme in Section 4.1 and prove convergence and

regularity results for the scheme in Section 4.2. In Section 4.3 we demonstrate the

numerical scheme on several density functions, and in Section 4.4 we propose a fast

algorithm for approximate non-dominated sorting that is based on numerical solving

(P).
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4.1 Numerical scheme

Let us first fix some additional notation. Given x, y ∈ Rd with x 5 y we define

the open and half-open intervals by

(x, y) = {z ∈ Rd : x < z < y}, (x, y] = {z ∈ Rd : x < z 5 y},

and make a similar definition for [x, y). For any x ∈ Rd and h > 0, there exists

unique y ∈ hZd and z ∈ [0, h)d such that x = y + z. We will denote y by bxch so

that z = x− bxch. We also denote 0 = (0, . . . , 0) ∈ Rd and 1 = (1, . . . , 1) ∈ Rd. For

z ∈ [0,∞), we recall that πz : Rd → [0, z] denotes the projection mapping Rd onto

[0, z]. For x ∈ [0,∞) this mapping is given explicitly by

πz(x) = (min(x1, z1), . . . ,min(xd, zd)).

In order to simplify notation in the chapter, let us consider the following Hamilton-

Jacobi equation

(P)


Ux1 · · ·Uxd = f on Rd+

U = 0 on ∂Rd+.

Notice we have simply removed the d−d factor from the right hand side, compared

to (P) in Chapter III. With this new definition of (P), Theorem III.2 gives that

n−
1
dun → d−1cdU uniformly with probability one.

We now present a numerical scheme for (P). For a given x ∈ [0,∞), the domain

of dependence for (P) is {y : y 5 x}. This can be seen from the connection to

non-dominated sorting and the longest chain problem. It is thus natural to consider

a scheme for (P) based on backward difference quotients, yielding

(4.1)
d∏
i=1

(Uh(x)− Uh(x− hei)) = hdf(x),
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where Uh : hNd0 → R is the numerical solution of (P) and e1, . . . , ed are the stan-

dard basis vectors in Rd. Under reasonable hypotheses on f , described in Sec-

tion 4.2.2, there exists a unique Pareto-monotone viscosity solution of (P). As we

wish to numerically approximate this Pareto-monotone solution we may assume that

Uh(x) ≥ Uh(x − hei) for all i. Given that f is non-negative, for any f(x), Uh(x −

e1), . . . , Uh(x− ed), there is a unique Uh(x) with

Uh(x) ≥ max(Uh(x− he1), . . . , Uh(x− hed)),

satisfying (4.1). Hence the numerical solution Uh can be computed by visiting each

grid point exactly once via any sweeping pattern that respects the partial order 5.

The scheme therefore has linear complexity in the number of gridpoints. At each grid

point, the scheme (4.1) can be solved numerically by either a binary search and/or

Newton’s method restricted to the interval

[max(Uh(x− he1), . . . , Uh(x− hed)),max(Uh(x− he1), . . . , Uh(x− hed)) + hf(x)1/d].

In the case of d = 2, we can solve the scheme (4.1) explicitly via the quadratic

formula

Uh(x) =
1

2
(Uh(x−he1)+Uh(x−he2))+

1

2

√
(Uh(x− he1)− Uh(x− he2))2 + 4h2f(x).

Now extend Uh to a function Uh : [0,∞) → R by setting Uh(x) = Uh(bxch).

Defining

Γh = [0,∞) \ (h1,∞),

we see that Uh is a Pareto-monotone solution of the discrete scheme

(S)

{
S(h, x, Uh) = f(bxch), if x ∈ (h1,∞)

Uh(x) = 0, if x ∈ Γh,



85

where S : R+ × (h1,∞)×X → R is defined by

(4.2) S(h, x, u) =
d∏
i=1

u(x)− u(x− hei)
h

.

Here, X is the space of functions u : [0,∞) → R. In the next section we will study

properties of solutions Uh of (S).

4.2 Convergence of numerical scheme

In this section we prove that the numerical solutions Uh defined by (S) converge

uniformly to the viscosity solution of (P). A general framework for proving conver-

gence of a finite-difference scheme to the viscosity solution of a non-linear second

order PDE was developed by Barles and Souganidis [12]. Their framework requires

that the scheme be stable, monotone, consistent, and that the PDE satisfy a strong

uniqueness property [12]. The monotonicity condition is equivalent to ellipticity for

second order equations, and plays a similar role for first order equations, enabling one

to prove maximum and/or comparison principles for the discrete scheme. The strong

uniqueness property refers to a comparison principle that holds for semicontinuous

viscosity sub- and supersolutions.

The numerical scheme (S) is easily seen to be consistent; this simply means that

lim
y→x
h→0

S(h, y, ϕ) = ϕx1(x) · · ·ϕxd(x),

for all ϕ ∈ C1(Rd+). The scheme is stable [12] if the numerical solutions Uh are

uniformly bounded in L∞, independent of h. It is not immediately obvious that (S) is

stable; stability follows from the discrete comparison principle for (S) (Lemma IV.1)

and is proved in Lemma IV.3. The monotonicity property requires the following:

S(h, x, u) ≤ S(h, x, v) whenever u ≥ v and u(x) = v(x).
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It is straightforward to verify that (S) is monotone when restricted to Pareto-monotone

u, v. This is sufficient since we are only interested in the Pareto-monotone viscosity

solution of (P). All that is left is to establish a strong uniqueness result for (P).

Unfortunately such a result is not available under the hypothesis (H0) from Chapter

III. Since f may be discontinuous along ∂Ω, we can only establish a comparison

principle for continuous viscosity sub- and supersolutions.

One way to rectify this situation is to break the proof into two steps. First prove

convergence of the numerical scheme for f Lipschitz on Rd+. It is straightforward in

this case to establish a strong uniqueness result for (P). Second, extend the result

to f satisfying (H0) by an approximation argument using inf and sup convolutions.

Although this approach is fruitful, we take an alternative approach as it yields an

interesting regularity property for the numerical solutions. In particular, in Lemma

IV.3 we establish approximate Hölder regularity of Uh of the form

(4.3) |Uh(x)− Uh(y)| ≤ C(|x− y|
1
d + h

1
d ).

As we verify in Appendix A, the approximate Hölder estimate (4.3) along with the

stability of (S) allows us to apply the Arzelà-Ascoli Theorem, with a slightly modified

proof, to the sequence Uh. This allows us to substitute the ordinary uniqueness result

given by Theorem III.19 in place of strong uniqueness.

4.2.1 Analysis of the numerical scheme

We first prove a discrete comparison principle for the scheme (S). This comparison

principle is essential in proving stability of (S) and the approximate Hölder regularity

result in Lemma IV.3. For the remainder of this section, we fix h > 0.

Lemma IV.1 (Comparison principle). Let z ∈ (h1,∞) and suppose u, v ∈ L∞loc([0,∞))
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are Pareto-monotone and satisfy

(4.4) S(h, x, u) ≤ S(h, x, v) for all x ∈ (h1, z].

Then u ≤ v on Γh ∩ [0, z] implies that u ≤ v on [0, z].

Proof. Suppose that sup[0,z](u− v) > 0 and set

Tr =

{
x ∈ [0,∞) :

1

d
(x1 + · · ·+ xd) ≤ r

}
,

and

R = sup{r > 0 : u ≤ v on Tr ∩ [0, z]}.

Since u ≤ v on Γh ∩ [0, z) and sup[0,z](u − v) > 0, we must have R ∈ [h, s], where

s = d−1(z1 + · · · + zd). By the definition of R, there exists x ∈ (h1, z] and s < R

such that

u(x) > v(x) and x− hei ∈ Ts for i = 1, . . . , d.

Since s < R, we have u ≤ v on Ts ∩ [0, z] and hence

(4.5) u(x− hei) ≤ v(x− hei) ≤ v(x) for i = 1, . . . , d.

The second inequality above follows from Pareto-monotonicity of v. Since u and v

are Pareto-monotone and u(x) > v(x) we have

d∏
i=1

(u(x)− u(x− hei)) >
d∏
i=1

(v(x)− u(x− hei))
(4.5)

≥
d∏
i=1

(v(x)− v(x− hei)).

Hence S(h, x, u) > S(h, x, v), contradicting the hypothesis.

Using the comparison principle, we can establish that numerical solutions of (S)

satisfy an additional boundary condition at infinity.
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Proposition IV.2. Let u ∈ L∞loc([0,∞)) be Pareto-monotone with u = 0 on Γh.

Suppose that for some z ∈ (h1,∞) we have

(4.6) supp{x 7→ S(h, x, u)} ⊂ [0, z].

Then we have u = u ◦ πz.

Proof. Define v = u ◦ πz and fix x ∈ [0,∞). Since u is Pareto-monotone and

πz(x) 5 x, we have v(x) = u(πz(x)) ≤ u(x). Hence v ≤ u. Since u = v on [0, z] we

have

S(h, x, u) = S(h, x, v) for all x ∈ [0, z] \ Γh.

For x 6∈ [0, z]∪Γh we have S(h, x, u) = 0 by assumption. Since v is Pareto-monotone

we have S(h, x, v) ≥ 0 = S(h, x, u) for such x, and hence S(h, x, v) ≥ S(h, x, u) for

all x ∈ [0,∞) \ Γh. Since v = u = 0 on Γh we can apply Lemma IV.1 to find that

u ≤ v on [0,∞), and hence u = v = u ◦ πz.

An important consequence of the comparison principle is the following approxi-

mate Hölder regularity result.

Lemma IV.3. Let u ∈ L∞loc([0,∞)) be Pareto-monotone with u = 0 on Γh. Then

for any R > 0 we have

(4.7) |u(x)− u(y)| ≤ 2d2R
d−1
d ‖S(h, ·, u)‖

1
d

L∞((h,R]d)
(|x− y|

1
d + h

1
d )

for all x, y ∈ (h,R]d.

Proof. Let R > 0 and x0, y0 ∈ (h,R]d. We first deal with the case where x0 5 y0.

Set û(x) = u(πx0(x)) and define ψ : Rd → R by

(4.8) ψ(x) =


d(x1 · · ·xd)

1
d if x ∈ (0,∞),

0 otherwise.
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By the concavity of t 7→ t
1
d we have

ψ(x)− ψ(x− hei) = d(x1 · · ·xd)
1
dx
− 1
d

i (x
1
d
i − (xi − h)

1
d ) ≥ x−1

i (x1 · · · xd)
1
dh,

for any x ∈ (h1,∞) and hence

(4.9) S(h, x, ψ) ≥ 1 for all x ∈ (h1,∞).

By the translation invariance of S and (4.9) we have

(4.10) S(h, x, ψ(· − b)) ≥ 1 for all b ∈ [0,∞), x ∈ (b+ h1,∞).

Set bi = (x0,i − h)ei ∈ Rd. For x ∈ [0,∞) set

w(x) = û(x) + ‖S(h, ·, u)‖
1
d

L∞((h,R]d)

d∑
i=1

ψ(x− bi),

and note that w is Pareto-monotone. Let x ∈ (h1,∞) \ (h1, x0]. Then for some k

we have xk > x0,k, and hence x > bk + h1. We therefore have

S(h, x, w) ≥ 1

hd

d∏
i=1

(
û(x)− û(x− hei)

+ ‖S(h, ·, u)‖
1
d

L∞((h,R]d)
(ψ(x− bk)− ψ(x− bk − hei))

)

≥ S(h, x, û) + ‖S(h, ·, u)‖L∞((h,R]d)S(h, x, ψ(· − bk))
(4.10)

≥ S(h, x, û) + ‖S(h, ·, u)‖L∞((h,R]d)

≥ S(h, x, u).

Suppose now that x ∈ (h1, x0]. Then since u = û on [0, x0] we have S(h, x, û) =

S(h, x, u) and hence S(h, x, w) ≥ S(h, x, u). Since w ≥ u = 0 on Γh ∩ [0, R]d, we can
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apply Lemma IV.1 to obtain w ≥ u on [0, R]d, which yields

u(y0)− û(y0) ≤ ‖S(h, ·, u)‖
1
d

L∞((h,R]d)

d∑
i=1

ψ(y0 − bi)

≤ dR
d−1
d ‖S(h, ·, u)‖

1
d

L∞((h,R]d)

d∑
i=1

(y0,i − x0,i + h)
1
d

≤ d2R
d−1
d ‖S(h, ·, u)‖

1
d

L∞((h,R]d)
(|x0 − y0|

1
d + h

1
d ).(4.11)

Noting that πx0(y0) = x0 we have û(y0) = u(πx0(y0)) = u(x0), which completes the

proof for the case that x0 5 y0.

Suppose now that x0, y0 ∈ (h,R]d such that x0 65 y0. Set

x = πx0(y0) = πy0(x0).

Then |x0 − x| ≤ |x0 − y0|, |y0 − x| ≤ |x0 − y0|, x 5 x0, and x 5 y0. It follows that

|u(x0)− u(y0)| ≤ |u(x0)− u(x)|+ |u(y0)− u(x)|

≤ 2d2R
d−1
d ‖S(h, ·, u)‖

1
d

L∞((h,R]d)
(|x0 − y0|

1
d + h

1
d ),

which completes the proof.

4.2.2 Main convergence result

Our main result is the following convergence statement for the scheme (S). Let

us first recall the assumption (H0) on f from Chapter III:

(H0) There exists an open and bounded set Ω ⊂ Rd+ with Lipschitz boundary such

that f is non-negative and uniformly continuous on Ω and f = 0 on Rd \ Ω.

Theorem IV.4. Let f be nonnegative and satisfy (H0). Let U be the unique Pareto-

monotone viscosity solution of (P). For every h > 0 let Uh : [0,∞)→ R be the unique

Pareto-monotone solution of (S). Then Uh → U uniformly on [0,∞) as h→ 0.
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Proof. By (H0) we have that f(x) = 0 for x 6∈ (0, 1)d, and hence supp(f(b·ch)) ⊂

[0, 1]d. Therefore, by Proposition IV.2 and Lemma IV.3 we have

(4.12) ‖Uh‖L∞([0,∞)) ≤ C‖f‖
1
d

L∞([0,∞)),

for all h > 0. Similarly, combining Proposition IV.2 with Lemma IV.3 we have

(4.13) |Uh(x)− Uh(y)| ≤ 2d2‖f‖
1
d

L∞([0,∞))(|x− y|
1
d + h

1
d ) for all x, y ∈ [0,∞),

for every h > 0. The estimates in (4.12) and (4.13) show uniform boundedness,

and a type of equicontinuity, respectively, for the sequence Uh. By an argument

similar to the proof of the Arzelà-Ascoli Theorem (see the Appendix), there exists a

subsequence hk → 0 and u ∈ C0, 1
d ([0,∞)) such that Uhk → u uniformly on compact

sets in [0,∞). By Proposition IV.2, we actually have Uhk → u uniformly on [0,∞).

Since the scheme (S) is monotone and consistent, it is a standard result that u is a

viscosity solution of (P) [12]. Note that Uh is Pareto-monotone and Uh = 0 on Γh.

Since Uhk → u uniformly, it follows that u is Pareto-monotone and u = 0 on ∂Rd+.

By Theorem III.19 we have u = U . Since we can apply the same argument to any

subsequence of Uh, it follows that Uh → U uniformly on [0,∞).

In Section 4.3, we observe that the numerical scheme provides a fairly consistent

underestimate of the exact solution of (P). The following lemma shows that this is

indeed the case whenever the solution U of (P) is concave.

Lemma IV.5. Let f be nonnegative and satisfy (H0). Let U be the unique Pareto-

monotone viscosity solution of (P). For every h > 0 let Uh : [0,∞) → R be the

unique Pareto-monotone solution of (S). If U is concave on [0,∞) then Uh ≤ U for

every h > 0.
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Proof. Fix h > 0. Since U is concave, it is differentiable almost everywhere.1 Let

x ∈ (h1,∞) be a point at which U is differentiable and f is continuous. Since U is

concave we have

U(x)− U(x− hei) ≥ hUxi(x) for all i.

Since U is a viscosity solution of (P) and f is continuous at x we have

S(h, x, U) ≥ Ux1(x) · · ·Uxd(x) = f(x).

Since x 7→ S(h, x, U) is continuous, we see that S(h, x, U) ≥ f∗(x) = f(x) for all

x ∈ (h1,∞]. Now define Wh(x) = U(bxch). Then we have

S(h, x,Wh) ≥ f(bxch) for all x ∈ (h1, x],

and Wh = 0 on Γh. It follows from Lemma IV.1 that Uh ≤ Wh. Since U is Pareto-

monotone, we have Wh ≤ U , which completes the proof.

4.3 Numerical Results

We now present some numerical results using the scheme (S) to approximate the

viscosity solution of (P). We consider four special cases where the exact solution of

(P) can be expressed in analytical form. Let f1(x) = 1, f2(x) = 2d

πd/2
e−|x|

2
,

f3(x) = 1− χ[0,1/2]d(x) and f4(x) =

(
d∑
i=1

x9
i

)1−d d∏
i=1

(
9x9

i +
d∑
i=1

x9
i

)
.

Here, χA denotes the characteristic function of the setA. The corresponding solutions

of (P) are U1(x) = d(x1 · · · xd)
1
d , U2(x) = d

(∏d
i=1 erf (xi)

) 1
d
, and

U3(x) = d max
i∈{1,...,d}

{(
xi −

1

2

)
+

∏
j 6=i

xj

} 1
d

, U4(x) = d

(
d∏
i=1

xi ·
d∑
i=1

x9
i

) 1
d

,

1The fact that U is Pareto-monotone also implies differentiability almost everywhere.
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Figure 4.1: Comparison of numerical solutions and exact solutions of (P) for d = 2.
The thin and thick lines represent the level sets of the exact and numerical solutions,
respectively.

where erf (x) is the error function defined by erf (x) = 2/
√
π
∫ x

0
e−t

2
dt, and x+ :=

max(0, x). The solutions U1 and U2 are special cases of the formula

(4.14) U(x) = d

(∫
[0,x]

f(y) dy

) 1
d

,

which holds when f is separable, i.e., f(x) = f1(x1) · · · fd(xd). The solution U3 can

be obtained by the method of characteristics. We chose to evaluate the proposed

numerical scheme for U4 because it has non-convex level sets, and then computed

f4 via (P). In the probabilistic interpretation of (P) as the continuum limit of non-

dominated sorting, non-convex Pareto fronts play an important role [32].

We computed the numerical solutions for d = 2 and d = 3. For d = 2 we used a



94

(a) U1 (b) U2

(c) U3 (d) U4

Figure 4.2: Comparison of numerical solutions and exact solutions of (P) for d =
3. The light and dark surfaces represent the level sets of the exact and numerical
solutions, respectively.

100 × 100 grid, and for d = 3, we used a 50 × 50 × 50 grid and solved the scheme

at each grid point via a binary search with precision ε = 10−4. Figures 4.1 and

4.2 compare the level sets of the exact solutions to those of the numerical solutions

for d = 2 and d = 3, respectively. In Figure 4.1, the thin lines correspond to the

exact solution while the thick lines correspond to the numerical solutions, with the

exception of 4.1(d) where both are thin lines for increased visibility. In Figure 4.2,

the darker surfaces correspond to the numerical solution while the lighter surfaces

represent the exact solution. For both d = 2 and d = 3, we can see that the level

sets of the numerical solutions consistently overestimate the true solution, indicating
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that the numerical solutions are converging from below to the exact solutions. We

proved in Lemma IV.5 that Uh 1 U whenever U is concave, so this observation is

to be expected. Note however, that U3 is not convex, yet the overestimation is still

present, indicating that Lemma IV.5 may hold under more general hypotheses on U .

We also observe that U3 has a shock, which is resolved reasonably well for d = 2 and

d = 3, given the grid sizes used.

4.3.1 Rate of convergence

We show here the results of some numerical experiments concerning the rate of

convergence of Uh → U and n−
1
dun → cdd

−1U . Figure 4.3(a) shows ‖Uh−U‖L1([0,1]2)

and ‖Uh−U‖L∞(Rd+) versus h for the density f3(x) = 1−χ[0,1/2]d(x) from the beginning

of Section 4.3. Both norms appear to have convergence rates on the order of O(hα),

and a regression analysis yields α = 0.5006 for the L∞ norm and α = 0.8787 for the

L1 norm. Thus, it is reasonable to suspect an L∞ convergence rate of the form

(4.15) ‖Uh − U‖L∞(Rd+) ≤ Ch
1
d ,

for some constant C > 0. It is quite natural that the convergence rate for the L1

norm is substantially better than the L∞ norm, due to the non-differentiability of

U3 at the boundary ∂R2
+. This induces a large error near ∂R2

+ which has a more

significant impact on the L∞ norm.

To measure the rate of convergence of n−
1
dun → cdd

−1U , we consider the following

two norms

(4.16) |n−
1
dun − cdd−1U |L∞ := max

1≤i≤n
|n−

1
dun(Xi)− cdd−1U(Xi)|

and

(4.17) |n−
1
dun − cdd−1U |L1 :=

1

n

n∑
i=1

|n−
1
dun(Xi)− cdd−1U(Xi)|
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Figure 4.3: Convergence rates for (a) the scheme (S) as a function of the grid reso-

lution h, and (b) the stochastic convergence n−
1
dun → cdd

−1U as a function of the
number n of random samples.

Figure 4.3(b) shows (4.16) and (4.17) versus n for the same density f3. For each

n the values of (4.16) and (4.17) were computed by taking the average over 10

independent realizations. It appears that both norms decay on the order of O(n−α),

and a regression analysis yields α = 0.3281 for the L1 norm (4.17) and α = 0.3144

for the L∞ norm (4.16). These results are in line with the known convergence rates

for the longest chain problem with a uniform distribution on [0, 1]d [16].

The results for the other densities f1, f2, and f4 are similar. We demonstrated

the convergence rates on f3 due to the fact that it has many important features;

namely, it is discontinuous, yields non-convex Pareto-fronts, and induces a shock in

the viscosity solution U3 of (P).

4.4 Fast approximate non-dominated sorting

We demonstrate now how the numerical scheme (S) can be used for fast approxi-

mate non-dominated sorting, and give a real-world application to anomaly detection

in Section 4.4.4. We assume here that the given data X1, . . . , Xn are drawn i.i.d. from
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a reasonably smooth density function f , and that n is large enough so that n−
1
dun is

well approximated by cdd
−1U . In this regime, it is reasonable to consider an approx-

imate non-dominated sorting algorithm based on numerically solving (P). A natural

algorithm is as follows.

Since the density f is rarely known in practice, the first step is to form an estimate

f̂ of f using the samples X1, . . . , Xn. In the large sample regime, this can be done

very accurately using, for example, a kernel density estimator [91] or a k-nearest

neighbor estimator [64]. To keep the algorithm as simple as possible, we opt for

a simple histogram to estimate f , aligned with the same grid used for numerically

solving (P). When n is large, the estimation of f can be done with only a random

subset of X1, . . . , Xn of cardinality k � n, which avoids considering all n samples.

The second step is to use the numerical scheme (S) to solve (P) on a fixed grid of

size h, using the estimated density f̂ on the right hand side of (P). This yields an

estimate Ûh of U , and the final step is to evaluate Ûh at each sample X1, . . . , Xn

to yield approximate Pareto ranks for each point. The final evaluation step can be

viewed as an interpolation; we know the values of Ûh on each grid point and wish

to evaluate Ûh at an arbitrary point. A simple linear interpolation is sufficient for

this step. However, in the spirit of utilizing the PDE (P), we solve the scheme (S) at

each point X1, . . . , Xn using the values of Ûh at neighboring grid points, i.e., given

Ûh(x− hei) for all i, and y ∈ [x− h1, x], we compute Ûh(y) by solving

(4.18)
d∏
i=1

(Ûh(y)− Ûh(y − hiei)) = h1 · · ·hdf̂(x),

where hi = yi − (xi − h). In (4.18) we compute Ûh(y − hiei) by linear interpolation

using adjacent grid points. Figure 4.4 illustrates the grid used for computing Ûh(y).
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Figure 4.4: Depiction of the grid used for computing Ûh(y) according to (4.18). The

values of Ûh(y − h1e1) and Ûh(y − h2e2) are computed by linear interpolation using

adjacent grid points, i.e., Ûh(y−h1e1) is computed via linearly interpolating between

Ûh(x− he1) and Ûh(x− h(e1 + e2)).

The entire algorithm is summarized in Algorithm IV.1. For simplicity of dis-

Algorithm IV.1: Fast approximate non-dominated sorting

1. Select k points from X1, . . . , Xn at random. Call them Y1, . . . , Yk.

2. Select a grid spacing h for solving the PDE and estimate f with a histogram
aligned to the grid hNd0, i.e.,

(4.19) f̂h(x) =
1

khd
·#
{
Yi : x 5 Yi 5 x+ h1

}
for x ∈ hNd0.

3. Compute the numerical solution Ûh on hNd0 ∩ [0, 1]d via (S).

4. Evaluate Ûh(Xi) for i = 1, . . . , n via interpolation.

cussion, we have assumed that X1, . . . , Xn are drawn from [0, 1]d, but this is not

essential as the scheme (S) can be easily adapted to any hypercube in Rd, and this

is in fact what we do in our implementation of Algorithm IV.1.

4.4.1 Convergence rates in Algorithm IV.1

It is important to understand how the parameters k and h in Algorithm IV.1

affect the accuracy of the estimate Ûh. We first consider the estimate f̂h. By (4.19),
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we can write

hdf̂h(x) =
1

k

k∑
i=1

χ[x,x+h1](Yi).

Hence hdf̂h(x) is the average of i.i.d. Bernoulli random variables with parameter

(4.20) p =

∫
[x,x+h1]

f(y) dy.

By the central limit theorem, the fluctuations of f̂h(x) about its mean satisfy

(4.21)
∣∣∣f̂h(x)− p

hd

∣∣∣ ≤ C
1√
khd

,

with high probability.

Let us suppose now that f is globally Lipschitz. The following can be easily

modified for f more or less regular, yielding similar results. Then by (4.20) we have

∣∣∣f(x)− p

hd

∣∣∣ ≤ C
√
dh.

Combining this with (4.21) we have

(4.22) ‖f̂h − f‖L∞([0,1]d∩hNd) ≤ C

(
1√
khd

+ h

)
,

with high probability. By the discrete comparison principle (Lemma IV.1) and (4.22)

we have that

(4.23) ‖Ûh − Uh‖L∞([0,1]d) ≤ d‖f̂h − f‖
1
d

L∞([0,1]d∩hNd)
≤ C

(
k−

1
2dh−1 + h

1
d

)
,

with high probability. Based on the numerical evidence presented in Section 4.3.1,

it is reasonable to suspect that ‖U − Uh‖L∞([0,1]d) ≤ Ch
1
d . If this is indeed the case,

then in light of (4.23) we have

(4.24) ‖Ûh − U‖L∞([0,1]d) ≤ C
(
k−

1
2dh−1 + h

1
d

)
,

with high probability.
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The right side of the inequality (4.24) is composed of two competing additive

terms. The first term Ck−
1
2dh−1 captures the effect of random errors (variance) due

to an insufficient number k of samples. The second term Ch
1
d captures the effect of

non-random errors (bias) due to insufficient resolution h of the proposed numerical

scheme (S). This decomposition into random and non-random errors is analogous to

the mean integrated squared error decomposition in the theory of non-parametric

regression and image reconstruction [59]. Similarly to [59] we can use the bound in

(4.24) to obtain rules of thumb on how to choose k and h. For example, we may first

choose some value for k, and then choose h so as to equate the two competing terms

in (4.24). This yields h = k−
1

2(d+1) and (4.24) becomes

(4.25) ‖Ûh − U‖L∞([0,1]d) ≤ Ck−
1

2d(d+1) = Ch
1
d ,

with high probability.

Notice that Steps 1-3 in Algorithm IV.1, i.e., computing Ûh, require O(kh−d) op-

erations. If we choose the equalizing value h = k−
1

2(d+1) , then we find that computing

Ûh has complexity O
(
k

3d+2
2d+2

)
. Thus Algorithm IV.1 is sublinear in the following

sense. Given ε > 0, we can choose k large enough so that

‖Ûh − U‖L∞([0,1]d) ≤
ε

2cd
,

with high probability. The L1 sorting accuracy of using Ûh in place of un is then

given by

1

n

n∑
i=1

|cdÛh(Xi)− dn−
1
dun(Xi)| ≤

1

n

n∑
i=1

(
cd|Ûh(Xi)− U(Xi)|

+ |cdU(Xi)− dn−
1
dun(Xi)|

)
≤ ε

2
+

1

n

n∑
i=1

|cdU(Xi)− dn−
1
dun(Xi)|,
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with high probability. By the stochastic convergence dn−
1
dun → cdU , and the rates

presented in Section 4.3.1, there exists N > 0 such that for all n ≥ N we have

(4.26)
1

n

n∑
i=1

|cdÛh(Xi)− dn−
1
dun(Xi)| ≤ ε

with high probability. Thus, for any ε > 0 there exists N, k and h such that Ûh is

an O(ε) approximation of un for all n ≥ N , and Ûh can be computed in constant

time with respect to n. We emphasize that the sublinear nature of the algorithm

lies in the computation of Ûh. Ranking all samples, i.e., evaluating Ûh at each of

X1, . . . , Xn, and computing the L1 error in (4.26) of course requires O(n) operations.

In practice, it is often the case that one need not rank all n samples (e.g., in a

streaming application [44]), and in such cases the entire algorithm is constant or

sublinear in n in the sense described above.

4.4.2 Evaluation of Algorithm IV.1

We evaluated our proposed algorithm in dimension d = 2 for a uniform density

and a mixture of Gaussians given by f(x) = 1
4

∑4
i=1 gi(x), where each gi : R2 → R is

a multivariate Gaussian density with covariance matrix Σi and mean µi. We write

the covariance matrix in the form Σi = Rθidiag(λi,1, λi,2)RT
θi

, where Rθ denotes a

rotation matrix, and λi,1, λi,2 are the eigenvalues. The values for λi,j, µi and θi are

given in Table 4.1, and the density is illustrated in Figure 4.5.

It is important to evaluate the accuracy of the approximate sorting obtained by

Algorithm IV.1. In practice, the numerical ranks assigned to each point are largely

irrelevant, provided the relative orderings between samples are correct. Hence a

natural accuracy measure for a given ranking is the fraction of pairs (Xi, Xj) that

are ordered correctly. Recalling that the true Pareto rank is given by un(Xi), this
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λi,1 λi,2 θi (µi,1,µi,2)

g1 0.01 0.00025 π
3

(0.2,0.5)

g2 0.0576 0.00064 0 (0.5,0.3)

g3 0.04 0.00025 −π
6

(0.4,0.8)

g4 0.01 0.01 0 (0.8,0.8)

Table 4.1: Parameter values for
mixture of Gaussians density

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.5: Depiction of random samples
from the mixture of Gaussians density.

can be expressed as

(4.27) Accuracy =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

ψ(un(Xi)− un(Xj), Ûh(Xi)− Ûh(Xj)),

where ψ(x, y) = 1 if xy > 0 and ψ(x, y) = 0 otherwise. It turns out that the accuracy

scores (4.27) for our algorithm are often very close to 1. In order to make the plots

easier to interpret visually, we have chosen to plot − log(1 − Accuracy) instead of

Accuracy in all plots.

Unfortunately, the complexity of computing the accuracy score via (4.27) is

O(n2), which is intractable for even moderate values of n. We note however that

(4.27) is, at least formally, a Monte-Carlo approximation of∫
Rd

∫
Rd
ψ(U(x)− U(y), Uh(x)− Uh(y))f(x)f(y) dxdy.

Hence it is natural to use a truncated Monte-Carlo approximation to estimate (4.27).

This is done by selecting n pairs (Xi1 , Xj1), . . . , (Xin , Xjn) at random and computing

1

n

n∑
k=1

ψ(un(Xik)− un(Xjk), Ûh(Xik)− Ûh(Xjk)).

The complexity of the Monte-Carlo approximation is O(n). In all plots in the paper,

we computed the Monte-Carlo approximation 10 times and plotted means and error

bars corresponding to a 95% confidence interval. In all of the figures, the confidence

intervals are sufficiently small so that they are contained within the data point itself.
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Figure 4.6: Comparison of accuracy versus number of samples for various grid sizes
and number of subsamples k used to estimate f .

We can see in Figure 4.6 that we can achieve excellent accuracy while maintaining

a fixed grid and subsample size as a function of n. We also see that, as expected,

the accuracy increases when one uses more grid points for solving the PDE and/or

more subsamples for estimating the density. We also see that the algorithm works

better on uniformly distributed samples than on the mixture of Gaussians. Indeed,

it is quite natural to expect the density estimation and numerical scheme to be less

accurate when f changes rapidly.

We compared the performance of our algorithm against the fast two dimensional

non-dominated sorting algorithm presented in [34], which takes O(n log n) operations

to sort n points. The code for both algorithms was written in C++ and was com-

piled on the same architecture with the same compiler optimization flags. Figure

4.7(a) shows a comparison of the CPU time used by each algorithm. For our fast

approximate sorting, we show the CPU time required to solve the PDE (Steps 1-3 in

Algorithm IV.1) separately from the CPU time required to execute all of Algorithm

IV.1, since the former is sublinear in n.

It is also interesting to consider the relationship between the grid size and the

number of subsamples k. In Figure 4.7(b), we show accuracy versus grid size for
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Figure 4.7: (a) Comparison of CPU time versus number of samples for a grid size
of 250× 250 and k = 107 subsamples for estimating the density. (b) Comparison of
accuracy versus grid size for k = 106 and k = 3× 108 subsamples for non-dominated
sorting of n = 3 × 108 points. Notice that when k is small compared to n it is not
always beneficial to use a finer grid for solving the PDE and estimating the density.

k = 106 and k = 3 × 108 subsamples for non-dominated sorting of n = 3 × 108

points. Notice that for k = 106 subsamples, it is not beneficial to use a finer grid

than approximately 500× 500. This is quite natural in light of the error estimate on

Algorithm IV.1 (4.24).

4.4.3 Subset ranking

There are certainly other ways one may think of to perform fast approximate

sorting without invoking the PDE (P). One natural idea would be to perform non-

dominated sorting on a random subset of X1, . . . , Xn, and then rank all n points via

some form of interpolation. We will call such an algorithm subset ranking (in contrast

to the PDE-based ranking we have proposed). Although such an approach is quite

intuitive, it is important to note that there is, at present, no theoretical justification

for such an approach. Nonetheless, it is important to compare the performance of

our algorithm against such an algorithm.

Let us describe how one might implement a subset ranking algorithm. As de-

scribed above, the first step is to select a random subset of size k from X1, . . . , Xn.
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Let us call the subset Y1, . . . , Yk. We then apply non-dominated sorting to Y1, . . . , Yk,

which generates Pareto rankings uk(Yi) for each Yi. The final step is to rank

X1, . . . , Xn via interpolation. There are many ways one might approach this. In

similar spirit to our PDE-based ranking (Algorithm IV.1), we use grid interpolation,

using the same grid size as used to solve the PDE. We compute a ranking at each

grid point by averaging the ranks of all samples from Y1, . . . , Yk that fall inside the

corresponding grid cell. The ranking of an arbitrary sample Xi is then computed by

linear interpolation using the ranks of neighboring grid points. In this way, the rank

of Xi is an average of the ranks of nearby samples from Y1, . . . , Yk, and there is a

grid size parameter which allows a meaningful comparison with PDE-based ranking

(Algorithm IV.1).

Figure 4.8 shows the accuracy scores for PDE-based ranking (Algorithm IV.1)

and subset ranking of n = 108 samples drawn from the uniform and mixture of Gaus-

sians distributions. A grid size of 250 × 250 was used for both algorithms, and we

varied the number of subsamples from k = 103 to k = 108. Notice a consistent accu-

racy improvement when using PDE-based ranking versus subset ranking, when the

number of subsamples is significantly less than n. It is somewhat surprising to note

that subset ranking has much better than expected performance. As mentioned pre-

viously, to our knowledge there is no theoretical justification for such a performance

when k is small.

4.4.4 Application in anomaly detection

We now demonstrate Algorithm IV.1 on a large scale real data application of

anomaly detection [51]. The data consists of thousands of pedestrian trajectories,

captured from an overhead camera, and the goal is to differentiate nominal from
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(c) Pareto fronts

Figure 4.9: (a) Example pedestrian trajectories, (b) Plot of 50000 of the approxi-
mately 6× 109 Pareto points, (c) 30 evenly spaced Pareto fronts computed from the
50000 points in (b).

anomalous pedestrian behavior in an unsupervised setting. The data is part of the

Edinburgh Informatics Forum Pedestrian Database and was captured in the main

building of the School of Informatics at the University of Edinburgh [68]. Figure

4.9(a) shows 100 of the over 100,000 trajectories captured from the overhead camera.

The approach to anomaly detection employed in [51] utilizes multiple criteria

to measure the dissimilarity between trajectories, and combines the information us-

ing a Pareto-front method, and in particular, non-dominated sorting. The database

consists of a collection of trajectories {γ1, . . . , γM}, where M = 110035, and the

criteria used in [51] are a walking speed dissimilarity, and a trajectory shape dis-
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similarity. Given two trajectories γi, γj : [0, 1] → [0, 1]2, the walking speed dis-

similarity cspeed(γi, γj) is the L2 distance between velocity histograms of each tra-

jectory, and the trajectory shape dissimilarity is the L2 distance between the tra-

jectories themselves, i.e., cshape(γi, γj) = ‖γi − γj‖L2(0,1). There is then a Pareto

point Xi,j = (cspeed(γi, γj), cshape(γi, γj)) for every pair of trajectories (γi, γj), yield-

ing
(
M
2

)
≈ 6 × 109 Pareto points. Figure 4.9(b) shows an example of 50000 Pareto

points and Figure 4.9(c) shows the respective Pareto fronts. In [51], only 1666 tra-

jectories from one day were used, due to the computational complexity of computing

the dissimilarities and non-dominated sorting.

The anomaly detection algorithm from [51] performs non-dominated sorting on

the Pareto points {Xi,j}1≤i<j≤M , and uses this sorting to define an anomaly score

for every trajectory γi. Let n =
(
M
2

)
and let un : R2 → R denote the longest

chain function corresponding to this non-dominated sorting. The anomaly score for

a particular trajectory γi is defined as

si =
1

M

M∑
j=1

un(cspeed(γi, γj), cshape(γi, γj)),

and trajectories with an anomaly score higher than a predefined threshold σ are

deemed anomalous.

Using Algorithm IV.1, we can approximate un using only a small fraction of the

Pareto points {Xi,j}1≤1<j≤M , thus alleviating the computational burden of comput-

ing all pairwise dissimilarities. Figure 4.10 shows the accuracy scores for Algorithm

IV.1 and subset ranking versus the number of subsamples k used in each algorithm.

Due to the memory requirements for non-dominated sorting, we cannot sort datasets

significantly larger than than 109 points. Although there is no such limitation on

Algorithm IV.1, it is important to have a ground truth sorting to compare against.
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Figure 4.10: Accuracy scores for Algorithm IV.1 and subset ranking for sorting 109

Pareto points from the pedestrian anomaly detection problem versus the number of
subsamples k.

Therefore we have used only 44722 out of 110035 trajectories, yielding approximately

109 Pareto points. For both algorithms, a 500 × 500 grid was used for solving the

PDE and interpolation. Notice the accuracy scores are similar to those obtained for

the test data in Figure 4.6. This is an intriguing observation in light of the fact

that {Xi,j}1≤i<j≤M are not i.i.d., since they are elements of a Euclidean dissimilarity

matrix.

4.5 Discussion

We have provided theory that demonstrates that, when X1, . . . , Xn are i.i.d. in

R2 with a nicely behaved density function f , the numerical scheme (S) for (P) can

be utilized to perform fast approximate non-dominated sorting with a high degree of

accuracy. We have also shown that in a real world example with non-i.i.d. data, the

scheme (S) still obtains excellent sorting accuracy. We expect the same algorithm

to be useful in dimensions d = 3 and d = 4 as well, but of course the complexity

of solving (P) on a grid increases exponentially fast in d. In higher dimensions, one

could explore other numerical techniques for solving (P) which do not utilize a fixed

grid [23]. At present, there is also no good algorithm for non-dominated sorting in
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high dimensions. The fastest known algorithm is O(n(log n)d−1) [57], which becomes

intractable when n and d are large.

This algorithm has the potential to be particularly useful in the context of big

data streaming problems [44], where it would be important to be able to construct

an approximation of the Pareto depth function un without visiting all the datapoints

X1, . . . , Xn, as they may be arriving in a data stream and it may be impossible to

keep a history of all samples. In such a setting, one could slightly modify Algorithm

IV.1 so that upon receiving a new sample, the estimate f̂h is updated, and every so

often the scheme (S) is applied to recompute the estimate of Ûh.

There are certainly many situations in practice where the samples X1, . . . , Xn

are not i.i.d., or the density f is not nicely behaved. In these cases, there is no

reason to expect our algorithm to have much success, and hence we make no claim

of universal applicability. However, there are many cases of practical interest where

these assumptions are valid, and hence this algorithm can be used to perform fast

non-dominated sorting in these cases. Furthermore, as we have demonstrated in

Section 4.4.4, there are situations in practice where the i.i.d. assumption is violated,

yet our proposed algorithm maintains excellent accuracy and performance.

We proposed a simple subset ranking algorithm based on sorting a small subset

of size k and then performing interpolation to rank all n samples. Although there is

currently no theoretical basis for such an algorithm, we showed that subset ranking

achieves surprisingly high accuracy scores and is only narrowly outperformed by our

proposed PDE-based ranking. The simplicity of subset ranking makes it particularly

appealing, but more research is needed to prove that it will always achieve such high

accuracy scores for moderate values of k.

We should note that there are many obvious ways to improve our algorithm.
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Histogram approximation to probability densities is quite literally the most basic

density estimation algorithm, and one would expect to obtain better results with

more sophisticated estimators. It would also be natural to perform some sort of his-

togram equalization to X1, . . . , Xn prior to applying our algorithm in order to spread

the samples out more uniformly and smooth out the effective density f . Provided

such a transformation preserves the partial order 5 it would not affect the non-

dominated sorting of X1, . . . , Xn. In the case that f is separable (a product density),

one can perform histogram equalization on each coordinate independently to obtain

uniformly distributed samples. We leave these and other potential improvements to

future work; our purpose in this paper has been to demonstrate that one can obtain

excellent results with a very basic algorithm.

Appendix

We use the following minor extension of the Arzelà-Ascoli Theorem in Section

4.2.2. It has recently come to our attention that a similar result is used in stochastic

games to prove the convergence of value functions (see [69, Lemma 4.2]).

Let X be a compact metric space. We say that a sequence {fn}∞n=1 of real-valued

functions on X is approximately equicontinuous if for every ε > 0 there exists δ > 0

such that

(4.28) ∀x, y ∈ X, |x− y| < δ =⇒ |fn(x)− fn(y)| < ε+
1

n
,

for every n ∈ N.

Theorem IV.6. Let {fn}∞n=1 be approximately equicontinuous and uniformly bounded.

Then there exists a subsequence of {fn}∞n=1 converging uniformly on X to a contin-

uous function f : X → R.
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Proof. Let {xi}∞i=1 be a countably dense set in X. By a Cantor diagonal argument,

we can extract a subsequence {fnk}∞k=1 such that for all i ∈ N, {fnk(xi)}∞k=1 is a

convergent sequence.

Let ε > 0. Since {fn}∞n=1 is approximately equicontinuous there exists δ > 0 such

that for all n we have

(4.29) |fn(x)− fn(y)| < ε

4
+

1

n
for all x, y ∈ X with |x− y| < δ.

The collection of open balls {Bδ/2(z)}z∈X forms an open cover of X. Since X is

compact, there exists a finite subcover B1, . . . , BM for some integer M . Without loss

of generality we may assume that xi ∈ Bi. Now let x ∈ X. By (4.29) we have

|fnk(x)− fnj(x)| ≤ |fnk(x)− fnk(xi)|+ |fnk(xi)− fnj(xi)|+ |fnj(xi)− fnj(x)|

<
ε

2
+

1

nk
+

1

nj
+ |fnk(xi)− fnj(xi)|,

for some i ∈ {1,M} and any k, j. Hence we have

‖fnk − fnj‖L∞(X) ≤
ε

2
+

1

nk
+

1

nj
+ sup

1≤i≤M
|fnk(xi)− fnj(xi)|.

It follows that {fnk}∞k=1 is Cauchy in L∞, which completes the proof.



CHAPTER V

Directed last passage percolation

Let us recall the directed last passage percolation (DLPP) problem formulated

in Chapter I. Let X(i, j) be nonnegative independent random variables defined on

the lattice N2, and define the last passage time from (1, 1) to (M,N) by

(5.1) L(M,N) = max
p∈ΠM,N

∑
(i,j)∈p

X(i, j),

where ΠM,N denotes the set of up/right paths from (1, 1) to (M,N) in N2.

One quantity of interest in DLPP is the time constant, U , given by

(5.2) U(x) := lim
N→∞

1

N
L (bNxc) .

We study the time constant U for the DLPP problem with independent weights

X(i, j) that are either geometric or exponential, but not identically distributed.

For exponential DLPP, we assume that X(i, j) is exponentially distributed with

mean λ(iN−1, jN−1) where λ : [0,∞)2 → [0,∞), and we consider the aymptotics as

N → ∞. The setup is identical for geometric DLPP, except that the macroscopic

inhomogeneity is in the parameter q of the geometric distribution. For directed

polymers, this models a macroscopic (non-random) inhomogeneity in the strength

of impurities; while for TASEP, it corresponds to an inhomogeneity in the rate at

which particles move to the right. It turns out that one can employ ideas similar to

112
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those in Chapter III to derive a Hamilton-Jacobi equation for U . This allows us to

efficiently compute U via a numerical scheme related to the one studied in Chapter

IV, and even compute the asymptotic shapes of optimal DLPP paths via dynamic

programming. We summarize our main results in Section 5.1 and present the proofs

thereafter.

5.1 Main result

Let us mention the conventions used in this paper. We say X is geometrically

distributed with parameter q if

P(X = k) = (1− q)kq,

for k ∈ {0, 1, 2, 3, . . . } and 0 < q ≤ 1, so that we have

(5.3) E(X) =
1− q
q

and Var(X) =
1− q
q2

.

We say that X is exponentially distributed with mean λ ≥ 0 if

P(X ∈ dx) =
1

λ
e−

x
λdx for x ∈ [0,∞),

when λ > 0, and X = 0 with probability one when λ = 0. Here we have

(5.4) E(X) = λ and Var(X) = λ2.

In order to ensure that our results are applicable to both exponential and geomet-

ric DLPP, we parameterize these distributions instead by their mean µ. For the

exponential distribution there is no change; we have λ = µ. For the geometric dis-

tribution, we have by (5.3) that a geometric random variable with mean µ ≥ 0 has

parameter

(5.5) q =
1

1 + µ
.
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For both cases, the variance is of course a function of the mean; in the exponential

case we have σ = µ, and in the geometric case we have σ =
√
µ(1 + µ).

Let us now present our main result. We consider the following two-sided DLPP

model, similar to [7, 15, 26, 9, 19]. Let X(i, j) be independent nonnegative random

variables defined on the lattice N2
0, where N0 = {0, 1, 2, . . . }. Let L(M,N ;Q,P )

denote the last passage time from (M,N) ∈ N2
0 to (Q,P ) ∈ N2

0, where M ≤ Q and

N ≤ P . This is defined as follows:

(5.6) L(M,N ;Q,P ) = max
p∈Π(M,N),(Q,P )

∑
(i,j)∈p

X(i, j),

where Π(M,N),(Q,P ) denotes the set of up/right paths from (M,N) to (Q,P ) in N2
0.

The macroscopic inhomogeneity is described by functions µ : [0,∞)2 → [0,∞) and

µs : ∂R2
+ → [0,∞), where R+ = (0,∞). Specifically, given a parameter N we make

the following assumption:

The weights X(i, j) are independent with mean

E(X(i, j)) =


µ(iN−1, jN−1), if (i, j) ∈ N2,

µ(iN−1, jN−1) + µs(iN
−1, jN−1), if i = 0 or j = 0.

(5.7)

The term µ corresponds to the macroscopic mean within the bulk R2
+, and the term µs

corresponds to an additional source active only on the boundary ∂R2
+. We postpone

the, somewhat technical, hypotheses on µ and µs to Section 5.1.1. Roughly speaking,

we assume µ is piecewise Lipschitz continuous, with discontinuities restricted to a

family of monotone increasing curves. Our main result is the following continuum

limit:

Theorem V.1. Let µ : [0,∞)2 → [0,∞) satisfy (F1) and (F3), and let µs : ∂R2
+ →

[0,∞) satisfy (F2). Suppose that the weights X(i, j) satisfy (5.7) and are either all
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exponential, or all geometric random variables. In the exponential case, set σ = µ,

and in the geometric case, set σ =
√
µ(1 + µ). Then with probability one we have

(5.8)
1

N
L(0; bN ·c) −→ U locally uniformly on [0,∞)2,

where U is the unique Pareto-monotone viscosity solution of

(P)


(Ux1 − µ)+(Ux2 − µ)+ = σ2 on R2

+,

U = ϕ on ∂R2
+,

and ϕ(x) = (x1 + x2)
∫ 1

0
µ(tx) + µs(tx) dt.

Here, t+ denotes the positive part of t given by max(t, 0). The hypotheses (F1),

(F2) and (F3) are described in Section 5.1.1. From now on, (P) will refer to the

Hamilton-Jacobi equation above, and not the equations given in Chapters III and

IV. Note that (P) generalizes the Hamilton-Jacobi equations from the previous

chapters; indeed, if we take µ ≡ 0 and σ2 = f , then we obtain the Hamilton-Jacobi

equation for the continuum limit of non-dominated sorting.

Theorem V.1 is in many ways analogous to the continuum limit for non-dominated

sorting and the longest chain problem given by Theorem III.2. Both of these results

can be viewed as a type of stochastic homogenization [87], where the effective Hamil-

tonian is given in (P). A similar stochastic homogenization result has been obtained

recently for first passage percolation [61], though in that case the exact form of the

effective Hamiltonian is unknown. The Hamilton-Jacobi equation (P) is also closely

related to the conservation law for the hydrodynamic limit of TASEP [43], and in

Section 5.1.2 we show a formal equivalence between the two continuum limits.

We believe this new Hamilton-Jacobi equation will prove to be a useful tool for

studying the DLPP problem, both theoretically and numerically. As an example, in

Section 5.5.2 we show how to combine the numerical solution of this Hamilton-Jacobi
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equation with dynamic programming to find the asymptotic shapes of optimal paths.

We also believe that this work will provide a new perspective on the hydrodynamic

limit of TASEP, and may be useful for studying the corresponding conservation law.

The rest of the chapter is organized as follows: We give the technical assumptions

on µ and µs in Section 5.1.1, and in Section 5.1.2 we show formally that (P) is

equivalent to the conservation law for the hydrodynamic limit of TASEP [43]. The

proof of Theorem V.1 is given in Section 5.4 after some preliminary results. In

particular, in Section 5.2 we present and analyze a variational problem for (P), and

in Section 5.3, we prove a comparison principle for (P). In Section 5.5, we present a

fast numerical scheme for computing the viscosity solution of (P), and we present the

results of various numerical simulations in Section 5.5.1. Finally, in Section 5.5.2, we

give an algorithm based on dynamic programming for finding the asymptotic shape

of optimal DLPP paths, and in Section 5.6 we discuss possible directions for future

work.

5.1.1 Hypotheses

Let us first introduce some notation. We say a curve Γ in R2 is continuous and

strictly increasing if it can be parameterized in the form

Γ : t 7→ (t, f(t)) for t ∈ I,

where f : I → R is continuous and strictly increasing, and I is an interval in

R. We make a similar definition for strictly decreasing. Notice that a continuous

strictly increasing (resp. decreasing) curve can also be parameterized in the form

t 7→ (f(t), t) where f : I → R is continuous and strictly increasing (resp. decreasing).

For simplicity, we will also use Γ to denote the locus of points that lie on the curve

Γ.
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Figure 5.1: Depiction of quantities Ωi and Γi. The function µ is assumed to be
Lipschitz with constant Clip when restricted to any Ωi, and µ = 0 on Ω.

We now describe the assumptions (F1)–(F3). Let Γ be a continuous strictly

decreasing curve in [0, 1]2 with endpoints (1, 0) and (0, 1), and let Ω ⊂ [0,∞)2 denote

the bounded component of the complement of Γ in [0,∞)2. Let {Γi}i∈Z be a locally

finite non-intersecting collection of continuous strictly increasing curves. For each i

we assume one endpoint of Γi is on ∂([0,∞)2 \ Ω) and the other endpoint is at ∞,

i.e., the curve is unbounded. The complement of ∪iΓi in [0,∞)2\Ω therefore consists

of a family {Ωi}i∈Z of connected components. Each curve Γi is on the boundary of

exactly two components, which we may assume are labeled Ωi and Ωi−1. See Figure

5.1 for an illustration of these quantities.

We place the following assumptions on µ and µs:

(F1) The function µ : [0,∞)2 → [0,∞) is bounded and upper semicontinuous,

µ|Ω = 0, and there exists a constant Clip such that for every i ∈ Z, µ|Ωi is

Lipschitz continuous with constant Clip.

(F2) The source term µs : ∂R2
+ → [0,∞) is bounded and upper semicontinuous with
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a locally finite set of discontinuities.

Throughout the paper we will regard µs as a function on [0,∞)2 by setting µs = 0

on R2
+.

We also make the following technical assumption:

(F3) For every i ∈ Z and x ∈ Γi, there exists ε > 0 and ζ ∈ {−1,+1} such that for

all y ∈ Bε(x) ∩ Γi we have

(5.9) ζ

(
lim

Ωi−13z→y
µ(z)− lim

Ωi3z→y
µ(z)

)
≥ 0.

The hypothesis (F3) is used to prove uniqueness of viscosity solutions of (P). Roughly

speaking, (F3) requires that any jumps (discontinuities) in µ are locally in the ‘same

direction’.

In the exponential case, we have σ2 = µ2, and in the geometric case, we have

σ2 = µ(1 + µ). Thus, if µ satisfies (F1), (F3), then so will σ2, though possibly with

a larger Lipschitz constant Clip. Since it is convenient for the analysis, we will often

regard µ and σ2 as independent functions both satisfying (F1) and (F3). We will only

need to recall the relationship between µ and σ at a few key points. In particular,

the uniqueness proof for (P) (see Section 5.3) requires that µ and σ2 satisfy (F3)

simultaneously with the same choice of ζ. This is of course always true, since σ is a

monotone increasing function of µ in both the exponential and geometric cases.

Let us briefly comment on the significance of Γ and Ω. The correspondence

between exponential DLPP and TASEP (described in detail in Section 5.1.2) implies

that the initial macroscopic density ρ0 for TASEP is encoded into the curve Γ. If Γ

and Ω are not present, then we have TASEP with the common step initial condition

ρ0(s) = 1 for s ≤ 0 and ρ0(s) = 0 for s > 0. Suppose now that Γ and Ω are present,

and parameterize Γ by t 7→ (t, f(t)) where f is continuous and strictly decreasing
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with f(0) = 1 and f(1) = 0. Let us assume additionally that f is continuously

differentiable. Based on the correspondence between TASEP and exponential DLPP,

the initial density will be given by

ρ0(s) =



1, if s ≤ −1

−f ′(ts)/(1− f ′(ts)), if s ∈ (−1, 1)

0, if s ≥ 1.

where for s ∈ (−1, 1), ts is the unique t ∈ (0, 1) satisfying s = t − f(t). Thus

by choosing f appropriately, one can obtain a large class of initial densities ρ0 for

TASEP with this setup.

5.1.2 Formal equivalence to hydrodynamic limit of TASEP

We show here a formal equivalence between (P) and the hydrodynamic limit of

TASEP, given in [43]. TASEP is an interacting stochastic particle system on Z with

state space {0, 1}Z, whose elements, η, represent particle configurations. If a particle

is present at site j ∈ Z, then ηj = 1, and if no particle is present, then ηj = 0. The

process is exclusionary in the sense that at most one particle can occupy each site at

a given time. The stochastic dynamics proceed as follows: a particle at site j jumps

to site j + 1 after an exponential waiting time, provided the site j + 1 is empty.

The exponential waiting times are independent and begin at the exact moment the

right neighboring site is vacated. These dynamics, along with an initial condition

η(0) : Z→ {0, 1}, generate the stochastic process η = {ηi(t) : i ∈ Z, t ∈ [0,∞)}.

In the standard TASEP model, the exponential waiting times are independent

with rate c = 1. As in [43], we allow the rates to have a macroscopic spatial

(and temporal) dependence, i.e., the rate at position j ∈ Z and time t ∈ [0,∞)

is c(jN−1, tN−1), where c : R× [0,∞)→ (0,∞), and N is a parameter that we will
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send to ∞. A central object of study is the macroscopic density ρ(s, t), which is the

almost sure limit (assuming it exists) of the discrete densities as follows:

(5.10) lim
N→∞

1

N

bNbc∑
i=bNac+1

ηi(Nt) =

∫ b

a

ρ(s, t) ds.

Georgiu et al. [43] showed that for

c(s, t) = c(s) =


c1, s ≤ 0

c2, s > 0,

ρ can be identified as the unique entropy solution of the scalar conservation law

(5.11) ρt + (c(s)ρ(1− ρ))s = 0, ρ(s, 0) = ρ0(s),

where ρ0 denotes the initial macroscopic density. We are using s for the spatial

variable in (5.11) to avoid confusion with the spatial variables in (P). In what follows,

we show formally that the conservation law (5.11) is equivalent to (P). For simplicity,

we will ignore the initial condition ρ0 and the boundary condition in (P), and restrict

ourselves to showing that the (P) and (5.11) are equivalent in the bulk. We shall

also assume that ρ ∈ C1.

Consider now the exponential DLPP model with macroscopic mean λ : [0,∞)2 →

(0,∞), i.e., µ = σ = λ. Let L denote the last passage time given by (5.6), and

let us write L(m,n) = L(1, 1;m,n) for convenience. Let U be the unique Pareto-

monotone viscosity solution of (P), and let us assume that U ∈ C1 and λ > 0 so that

Ux1 , Ux2 > λ > 0. By Theorem V.1 we have

(5.12)
1

N
L(bNxc) −→ U(x) with probability one.

We also note that (P) can be rearranged as follows:

(5.13)
Ux1(x)Ux2(x)

Ux1(x) + Ux2(x)
= λ(x).
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Let us now describe in detail the correspondence between TASEP and DLPP,

which can also be found here [78, 8]. We assign to a TASEP configuration η the site

counter

(5.14) Ij(t) = # of particles that have jumped from site j to j + 1 up to time t.

and the height function

(5.15) hj(t) =



2I0(t) +
∑j

i=1

(
1− 2ηi(t)

)
, j ≥ 1,

2I0(t), j = 0,

2I0(t) +
∑0

i=j+1

(
1− 2ηi(t)

)
, j ≤ −1.

Then we have h0(0) = 0, and hj(t) − hj(0) = 2Ij(t). The height function hj(t) is a

stochastically growing interface, and is related to the corner growth model described

earlier. Roughly speaking, the dynamical rule for the growth of hj(t) is that when

a particle jumps to the right (from j to j + 1), a valley �� turns into a mountain

��, and the height at site j increases by 2.

Let us now define the random set

A(t) =
{

(m,n) ∈ Z2
+ : L(m,n) ≤ t

}
.

Since L is non-decreasing in both arguments, it implicitly defines its own height

function, h̃j(t), which describes the boundary of A(t) as follows:

A(t) =
{

(m,n) ∈ Z2
+ : h̃m−n(t) ≥ m+ n

}
.

The correspondence between TASEP and DLPP is the identification h̃j(t) = hj(t)

in the sense of joint distributions. This connection is made rigorous by choosing

appropriate boundary rates for DLPP [78]. Visually, the correspondence is obtained
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Figure 5.2: A visual depiction of the correspondence between TASEP and DLPP.
On the left, the gray region is the set A(t)—the t sub-level set of L—and on the
right we show the corresponding TASEP height function hj(t) obtained by rotating
the boundary of A(t) by π/4.

by rotating the boundary of A(t) by π/4 to obtain the height function hj(t) (see

Figure 5.2).

The correspondence between TASEP and DLPP says, at least formally, that

(5.16)
{

(m,n) ∈ Z2
+ : L(m,n) ≤ t

}
=
{

(m,n) ∈ Z2
+ : hm−n(t) ≥ m+ n

}
.

By (5.10) and (5.15), hj(t) has a macroscopic continuum limit, h∞, such that

(5.17)
1

N
hbsNc(btNc) −→ h∞(s, t) = g(t) + s− 2

∫ s

0

ρ(s′, t) ds′,

with probability one, where g(t) := limN→∞ 2N−1I0(tN). It follows from (5.17) that

(5.18) h∞s (s, t) = 1− 2ρ(s, t).

Combining (5.12), (5.16), and (5.17) we have that

(5.19)
{
x ∈ R2

+ : U(x) = t
}

=
{
x ∈ R2

+ : h∞(x1 − x2, t) = x1 + x2

}
.

It follows from (5.19) that

(5.20) h∞
(
x1 − x2, U(x)

)
= x1 + x2.
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This is in some sense the “master equation” relating the continuum limits of TASEP

and DLPP. Let us illustrate how to use (5.20) to derive the conservation law (5.11)

from (P); deriving (P) from (5.11) follows in a similar fashion.

Differentiating (5.20) in both x1 and x2 we have

h∞s (s, t) + h∞t (s, t)Ux1(x) = 1(5.21)

−h∞s (s, t) + h∞t (s, t)Ux2(x) = 1.(5.22)

where t = U(x) and s = x1 − x2. Adding (5.21) and (5.22) we have

(5.23) h∞t (s, t) =
2

Ux1(x) + Ux2(x)
.

Similarly, by rearranging and dividing (5.21) by (5.22) we have

(5.24)
Ux1(x)

Ux2(x)
=

1− h∞s (s, t)

1 + h∞s (s, t)

(5.18)
=

ρ(s, t)

1− ρ(s, t)
.

This equality can also be obtained by noting that the slope of the level set {U(x) = t}

is given locally by the ratio of ones to zeros in the TASEP configuration.

Solving for ρ in (5.24) we have ρ = Ux1/(Ux1 + Ux2), which yields

(5.25) ρ(s, t)
(
1− ρ(s, t)

)
=

Ux1(x)Ux2(x)

(Ux1(x) + Ux2(x))2

(5.13)
=

λ(x)

Ux1(x) + Ux2(x)
,

where we invoked the Hamilton-Jacobi equation (P) in the second equality above.

Since U is strictly monotone increasing in both x1 and x2, there is a one-to-one

correspondence between the coordinates x = (x1, x2) and (s, t) = (x1 − x2, U(x)).

Let us write c(s, t) := λ(x)−1. Since λ is the exponential mean, c is the exponential

rate for TASEP. Then combining (5.25) with (5.23) we have

(5.26) h∞t (s, t) = 2c(s, t)ρ(s, t)
(
1− ρ(s, t)

)
.

Differentiating with respect to s on both sides of (5.26) and applying (5.18) we have

(5.27) −2ρt(s, t) = 2
(
c(s, t)ρ(s, t)(1− ρ(s, t))

)
s
,
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which is precisely the conservation law (5.11). Furthermore, by combining (5.26)

and (5.18), we have the following Hamilton-Jacobi equation for h∞:

(5.28) h∞t (s, t) =
c(s, t)

2

(
1− h∞s (s, t)2

)
.

5.2 Variational problem

In this section we give a variational interpretation for U and analyze its relevant

properties. This variational problem first appeared in [81], in a different form, for

exponential DLPP with a continuous macroscopic rate λ, and is similar to the well-

known variational problem for the longest chain problem [31].

Let A denote the set of C1 monotone curves, given by

(5.29) A =
{
γ ∈ C1([0, 1]; [0,∞)2) : γ′(t) = 0 for all t ∈ [0, 1]

}
.

We write γ(t) = (γ1(t), γ2(t)) to denote the components of γ. For µ, σ : [0,∞)2 → R,

let us define `µ,σ : [0,∞)2 × [0,∞)2 → [0,∞) by

(5.30) `µ,σ(x, p) = µ(x)(p1 + p2) + 2σ(x)
√
p1p2,

and for γ ∈ A we set

(5.31) Jµ,σ(γ) =

∫ 1

0

`µ,σ(γ(t), γ′(t)) dt.

We finally define

(5.32) Uµ,σ(x) = sup
{
Jµ,σ(γ) : γ ∈ A, γ(0) = 0, and γ(1) = x

}
,

for x ∈ [0,∞)2. Borrowing language from optimal control theory [10], we will call

Uµ,σ the value function for this variational problem. We will often write J, ` and U

in place of Jµ,σ, `µ,σ and Uµ,σ, respectively, when it is clear from the context what µ
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and σ are. Notice that when x ∈ ∂R2
+ with x2 = 0 we have

(5.33) U(x) =

∫ x1

0

µ(t, 0) dt.

A similar formula holds when x ∈ ∂R2
+ with x1 = 0, and in general we can write

(5.34) U(x) = (x1 + x2)

∫ 1

0

µ(tx) dt,

for x ∈ ∂R2
+.

We also define

(5.35) Wµ,σ(x, y) = sup
{
Jµ,σ(γ) : γ ∈ A, γ(0) = x, and γ(1) = y

}
,

for x, y ∈ [0,∞)2 with x 5 y. As before, we will often drop the subscripts on Wµ,σ

when convenient. Similar to (5.33)–(5.34), when x, y ∈ [0,∞)2 with x 5 y and

x2 = y2, we can write

(5.36) W (x, y) =

∫ y1

x1

µ(t, x2) dt,

with a similar formula holding when x1 = y1. In general, whenever x 5 y but xi = yi

for some i we can write

(5.37) W (x, y) = (y1 − x1 + y2 − x2)

∫ 1

0

µ(x+ (y − x)t) dt.

The remainder of this section is organized as follows. In Section 5.2.1 we prove

that U and W are uniformly continuous, under assumptions on µ and σ that are

similar to (F1) and (F3), but slightly weaker. Then in Section 5.2.2, we show that

Uµ+µs,σ is a viscosity solution of (P), and prove a similar result for Wµ,σ. This result,

Theorem V.8, follows from classical optimal control theory [10], and (P) is exactly

the Hamilton-Jacobi-Bellman equation for the variational (optimal-control) problem

(5.32). For more information on Hamilton-Jacobi equations and optimal control, we

refer the reader to [10].
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5.2.1 Regularity

Hölder or Lipschitz regularity of the value function in optimal control theory is

a standard classical result [10]. However, it is typically assumed that x 7→ `µ,σ(x, p)

is uniformly continuous, which is not compatible with (F1). We show here that the

specific form of `µ,σ allows us to show that Uµ+µs,σ and Wµ,σ are uniformly continuous,

provided the discontinuities in µ occur along monotone increasing curves.

Since it is useful later, we will slightly weaken the hypothesis (F1), and allow µ to

be “badly behaved” within a narrow tube of the monotone curves Γi. This weakened

hypothesis is specifically designed so that the regularity result applies to inf- and

sup-convolutions of functions satisfying (F1). Inf- and sup-convolutions (defined

in Remark V.18) are commonly used for regularization in the theory of viscosity

solutions [10, 27].

The weakened hypothesis requires the following notation; for θ ≥ 0 define

Γi,θ =
{
x ∈ [0,∞)2 : dist(x,Γi) ≤ θ

}
,(5.38)

Ωi,θ =
{
x ∈ Ωi : dist(x,Γi) > θ and dist(x,Γi+1) > θ

}
,(5.39)

Γθ =
{
x ∈ [0,∞)2 : dist(x,Γ) ≤ θ

}
,(5.40)

Ωθ =
{
x ∈ Ω : dist(x,Γ) > θ

}
.(5.41)

The weakened version of (F1) is the following:

(F1*) The function µ : [0,∞)2 → [0,∞) is bounded and upper semicontinuous,

µ|Ωθ = 0, and there exists a constant Clip such that for every i ∈ Z, µ|Ωi,θ is

Lipschitz continuous with constant Clip.

We now give the regularity result for W .
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Theorem V.2. Suppose that µ satisfies (F1*) for θ ≥ 0, and suppose that σ :

[0,∞)2 → [0,∞) is bounded and Borel-measurable. Then for every R > 0 there exist

a modulus of continuity ω, and a constant C = C(Clip, ‖µ‖∞, ‖σ‖∞, R) > 0 such that

(5.42) |Wµ,σ(z, x)−Wµ,σ(z, y)| ≤ C
(√
|x− y|+ ω(|x− y|) + ω(θ)

)
,

for all x, y, z ∈ [0, R]2 with x, y = z. Furthermore, ω depends only on Γ, {Γi}i∈Z and

R > 0.

Proof. Let R > 0. We will prove the result for z = 0; the case of z 6= 0 is very

similar. For simplicity of notation, let us set V (x) = Wµ,σ(0, x). Notice that we can

reduce the proof to the case where x, y ∈ [0, R]2 with x 5 y. Indeed, let x, y ∈ [0, R]2

and set x′ = (min(x1, y1),min(x2, y2)). Then we have

|U(x)− U(y)| ≤ |U(x)− U(x′)|+ |U(y)− U(x′)|,

and x′ 5 x and x′ 5 y.

Thus let us assume that x 5 y. Let ε > 0 and let γ ∈ A such that γ(0) = 0,

γ(1) = y, and V (y) ≤ J(γ) + ε. Define

s1 = sup
{
t > 0 : γ(t) 5 x

}
and s2 = inf

{
t > 0 : γ(t) = x

}
.

Without loss of generality, we may assume that γ2(s2) = x2. Define

γ(t) =
(

min
(
x1, γ1(t)

)
, γ2(t)

)
for t ∈ [0, s2].

The proof is split into two steps now.

1. We claim that

(5.43) |V (x)− V (y)| ≤
∫ s2

s1

|µ(γ(t))− µ(γ(t))| γ′2(t) dt+ C
√
|x− y|+ ε.
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where C = C(‖µ‖∞, ‖σ‖∞, R).

To see this: First note that γ(s2) = x and γ(1) = y. It follows that∫ 1

s2

`(γ(t), γ′(t)) dt ≤ ‖µ‖∞
∫ 1

s2

γ′1(t) + γ′2(t) dt+ 2‖σ‖∞
∫ 1

s2

√
γ′1(t)γ′2(t) dt

≤ 2‖µ‖∞|x− y|+ 2‖σ‖∞
(∫ 1

s2

γ′1(t) dt

∫ 1

s2

γ′2(t) dt

) 1
2

≤ 2‖µ‖∞|x− y|+ 2‖σ‖∞|x− y|

= 2(‖µ‖∞ + ‖σ‖∞)|x− y|,(5.44)

where the second line follows from Hölder’s inequality. We claim now that γ1(s1) =

x1. To see this: suppose to the contrary that γ1(s1) < x1, which implies that s1 < s2.

By the definition of s1 we must have γ2(s1) = x2 and γ2(s) > x2 for s > s1. This

contradicts our assumption that γ2(s2) = x2. Hence γ1(s1) = x1.

Now we have

(5.45)

∫ s2

s1

γ′1(t) dt = γ1(s2)− γ1(s1) ≤ y1 − x1 ≤ |x− y|.

Since γ = γ on [0, s1] and γ(s2) = x we have

V (y)− V (x) ≤ J(γ) + ε−
∫ s2

0

`(γ(t), γ′(t)) dt

=

∫ s2

s1

`(γ(t), γ′(t))− `(γ(t), γ′(t)) dt+

∫ 1

s2

`(γ(t), γ′(t)) dt+ ε

(5.44)

≤
∫ s2

s1

`(γ(t), γ′(t))− `(γ(t), γ′(t)) dt︸ ︷︷ ︸
A

+C(‖µ‖∞, ‖σ‖∞)|x− y|+ ε.(5.46)

If s1 = s2 then the claim (5.43) follows from (5.46). So suppose that s1 < s2. Since
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γ′1(t) = 0 and γ′2(t) = γ′2(t) for t ∈ (s1, s2), we have

A =

∫ s2

s1

(µ(γ(t))− µ(γ(t))) γ′2(t) + µ(γ(t))γ′1(t) + 2σ(γ(t))
√
γ′1(t)γ′2(t) dt

≤
∫ s2

s1

|µ(γ(t))− µ(γ(t))| γ′2(t) dt+ ‖µ‖∞
∫ s2

s1

γ′1(t) dt

+ 2‖σ‖∞
(∫ s2

s1

γ′1(t) dt

∫ s2

s1

γ′2(t) dt

) 1
2

(5.45)

≤
∫ s2

s1

|µ(γ(t))− µ(γ(t))| γ′2(t) dt+ C(‖µ‖∞, ‖σ‖∞, R)
√
|x− y|(5.47)

which establishes (5.43).

2. We claim that

(5.48)

∫ s2

s1

|µ(γ(t))− µ(γ(t))| γ′2(t) dt ≤ C
(√
|x− y|+ ω(|x− y|) + ω(θ) + θ

)
,

where C = C(Clip, R, ‖µ‖∞, ‖σ‖∞). Notice that once (5.48) is established, the proof

is completed by combining (5.48) with (5.43) and sending ε→ 0.

Since the collection of curves {Γi}∞i=−∞ is locally finite, we may assume that

Γ1,θ, . . . ,ΓM,θ are the only tubular neighborhoods that have a non-empty with inter-

section [0, R]2. Since Γi is continuous and strictly increasing, we can parameterize

the portion of Γi that intersects [0, R]2 as follows:

Γi : t 7→ (t, fi(t)), t ∈ Ii,

where fi : Ii → [0,∞) is continuous and strictly increasing, and Ii is a closed interval

in [0, R]. Similarly we can parameterize Γ as

Γ : t 7→ (t, f(t)), t ∈ [0, 1],

where f : [0, 1]→ [0, 1] is continuous and strictly decreasing. Note that the functions

f1, . . . , fM , f share a common modulus of continuity ω, by virtue of their compact

domains. We also note that ω and M depend only on Γ, {Γi}i∈Z, and R > 0.
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To prove (5.48), first set c = ω(θ) + θ. A simple computation shows that

(5.49) dist((t, fi(t) + c),Γi) > θ and dist((t, fi(t)− c),Γi) > θ,

for any t ∈ Ii. A similar statement holds for Γ and f . For each i ∈ {1, . . . ,M}, we

define

m+
i = sup

Ii∩[x1,y1]

fi, and m−i = inf
Ii∩[x1,y1]

fi,

and

(5.50) Ki =
{
t ∈ (s1, s2) : (x1,m

−
i − c) 5 γ(t) 5 (y1,m

+
i + c)

}
.

Similarly we set

m+ = sup
[0,1]∩[x1,y1]

f, and m− = inf
[0,1]∩[x1,y1]

f,

(5.51) K =
{
t ∈ (s1, s2) : (x1,m

− − c) 5 γ(t) 5 (y1,m
+ + c)

}
.

and

(5.52) H = (s1, s2) \ (K ∪K1 ∪ · · · ∪KM)

By the definition of m±i and m± we have

(5.53) m+
i −m−i ≤ ω(y1 − x1) and m+ −m− ≤ ω(y1 − x1).

It follows from (5.49)–(5.52), (F1*), and the fact that γ is monotone, that whenever

t ∈ H we have either µ(γ(t)) = µ(γ(t)) = 0 or

µ(γ(t))− µ(γ(t)) = µi,θ(γ(t))− µi,θ(γ(t)),

for some i ∈ {0, . . . ,M}. Thus, invoking (F1*), we have

(5.54) |µ(γ(t))− µ(γ(t))| ≤ Clip|γ(t)− γ(t)| ≤ Clip|x− y|,
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for all t ∈ H.

For any i ∈ {1, . . . ,M}, we have∫
Ki

|µ(γ(t))− µ(γ(t))|γ′2(t) dt ≤ 2‖µ‖∞
∫
Ki

γ′2(t) dt

≤ 2‖µ‖∞|m+
i −m−i + 2c|

(5.53)

≤ 2‖µ‖∞ω(|x− y|) + 4‖µ‖∞(ω(θ) + θ).(5.55)

We have an identical estimate when Ki is replaced by K. Combining (5.54) with

(5.55) we have∫ s2

s1

|µ(γ(t))− µ(γ(t))| γ′2(t) dt

=

∫
H
|µ(γ(t))− µ(γ(t))| γ′2(t) dt+

∫
K∪K1∪···∪KM

|µ(γ(t))− µ(γ(t))| γ′2(t) dt

≤ Clip|x− y|
∫ s2

s1

γ′2(t) dt+
M∑
i=1

∫
Ki

|µ(γ(t))− µ(γ(t))| γ′2(t) dt

+

∫
K

|µ(γ(t))− µ(γ(t))| γ′2(t) dt

≤ ClipR|x− y|+ 2(M + 1)‖µ‖∞ω(|x− y|) + 4(M + 1)‖µ‖∞(ω(θ) + θ),(5.56)

which establishes (5.48) and completes the proof.

Corollary V.3. Suppose that µ satisfies (F1*) for θ ≥ 0, and suppose that σ is

bounded and Borel-measurable. Then for every R > 0 there exist a modulus of

continuity ω, and a constant C = C(Clip, ‖µ‖∞, ‖σ‖∞, R) > 0 such that

(5.57) |Wµ,σ(x, z)−Wµ,σ(y, z)| ≤ C
(√
|x− y|+ ω(|x− y|) + ω(θ)

)
,

for all x, y, z ∈ [0, R]2 with x, y 5 z. As in Theorem V.2, ω depends only on

Γ, {Γi}i∈Z and R > 0.

Proof. The proof follows from Theorem V.2 by symmetry.
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Remark V.4. Notice in Theorem V.2 that if θ = 0 then we have the estimate

(5.58) |Wµ,σ(z, x)−Wµ,σ(z, y)| ≤ C
(√
|x− y|+ ω(|x− y|)

)
,

for all x, y, z ∈ [0, R]2 with x, y ≥ z. Inspecting the proof of Theorem V.2, we

see that ω is the modulus of continuity of the curves Γ, {Γi}i∈Z as functions over

both coordinate axes. Thus, the regularity of W is inherited from the regularity of

the curves Γ, {Γi}i∈Z. For example, if the curves Γ, {Γi}i∈Z are Hölder-continuous

with exponent α ≤ 1/2 as functions over both coordinate axes, then we have that

W (z, ·) ∈ C0,α([z1, R] × [z2, R]) for every R > 0 and its Hölder seminorm depends

only on ‖µ‖∞, ‖σ‖∞, R, and Clip. The same remark holds for Corollary V.3 and

(5.57).

We now plan to use Theorem V.2 to prove a similar regularity result for Uµ+µs,σ.

To do this, we relate W and U via the following dynamic programming principle:

Proposition V.5. Suppose that µ satisfies (F1*) for θ ≥ 0, µs satisfies (F2), and

suppose that σ is bounded and Borel-measurable. Then for any y ∈ [0,∞)2 we have

(5.59) Uµ+µs,σ(y) = max
x∈∂R2

+ :x5y

{
Uµ+µs,σ(x) +Wµ,σ(x, y)

}
.

Notice that the boundary source µs is absent in the term Wµ,σ in (5.59). This

allows us to concentrate much of our analysis on Wµ,σ, which involves only the

macroscopic inhomogeneities in the bulk R2
+, and then extend our results to hold for

Uµ+µs,σ via the dynamic programming principle (5.59).

Proof. We first note that the maximum in (5.59) is indeed attained, due to the

continuity of Uµ+µs,σ restricted to ∂R2
+ and Corollary V.3.

If y ∈ ∂R2
+, then in light of (5.34), (5.37) and the fact that µs ≥ 0, the maximum

in (5.59) is attained at x = y and the validity of (5.59) is trivial.
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Suppose now that y ∈ R2
+ and let v(y) denote the right hand side in (5.59), and

set U = Uµ+µs,σ. We first show that U ≤ v. Let ε > 0 and γ ∈ A such that γ(0) = 0,

γ(1) = y and Jµ+µs,σ(γ) ≥ U(y)− ε. Let

s = sup
{
t ∈ [0, 1] : γ(t) ∈ ∂R2

+

}
.

Then we have 0 ≤ s < 1. Set x = γ(s) and

γ1(t) = γ(st) and γ2(t) = γ
(
s+ t(1− s)

)
,

for t ∈ [0, 1]. Then we have

U(y) ≤ Jµ+µs,σ(γ) + ε = Jµ+µs,σ(γ1) + Jµ,σ(γ2) + ε ≤ U(x) +W (x, y) + ε.

Sending ε→ 0 we have U ≤ v.

We now show that v ≤ U . Let x ∈ ∂R2
+ be a point at which the maximum is

attained in (5.59) and let ε > 0. Let γ1 ∈ A with γ1(0) = 0, γ1(1) = x such that

U(x) ≤ Jµ+µs,σ(γ1) + ε
3
. Let z ∈ [x, y] such that z ∈ R2

+ and W (x, y) ≤ W (z, y) + ε
3
.

Let γ2 ∈ A with γ2(0) = z, γ2(1) = y such that W (z, y) ≤ Jµ,σ(γ2) + ε
3
. We can

stitch together γ1 and γ2 as follows

γ(t) =



γ1(3t), if 0 ≤ t < 1
3
,

x+ (3t− 1)(z − x), if 1
3
≤ t < 2

3
,

γ2(3t− 2), if 2
3
≤ t ≤ 1.

Then we have

v(y) = U(x) +W (x, y) ≤ U(x) +W (z, y) +
ε

3

≤ Jµ+µs,σ(γ1) + Jµ,σ(γ2) + ε ≤ Jµ+µs,σ(γ) + ε ≤ U(y) + ε,

where we used the fact that γ2(t) ∈ R2
+ for all t, hence Jµ,σ(γ2) = Jµ+µs,σ(γ2).

Sending ε→ 0 we have v ≤ U .
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Before continuing with the regularity result for Uµ+µs,σ, let us introduce a bit of

notation. For ξ ∈ Rd+, let πξ : Rd → [0, ξ] denote the projection mapping Rd onto

the convex set [0, ξ]. For x ∈ [0,∞)d, πξ is given explicitly by

(5.60) πξ(x) =
(

min(x1, ξ1), . . . ,min(xd, ξd)
)
.

Corollary V.6. Suppose that µ satisfies (F1*) for θ ≥ 0, µs satisfies (F2), and

suppose that σ is bounded and Borel-measurable. Then for every R > 0 there exists

a modulus of continuity ω, and a constant C = C(Clip, ‖µ‖∞, ‖σ‖∞, ‖µs‖∞, R) > 0

such that

(5.61) |Uµ+µs,σ(x)− Uµ+µs,σ(y)| ≤ C
(√
|x− y|+ ω(|x− y|) + ω(θ)

)
,

for all x, y ∈ [0, R]2. As in Theorem V.2, ω depends only on Γ, {Γi}i∈Z and R > 0.

Proof. Let x, y ∈ [0, R]2 and set U = Uµ+µs,σ and W = Wµ,σ. As in Theorem V.2 we

may assume that x 5 y. By Proposition V.5, there exists y′ ∈ ∂R2
+ with y′ 5 y such

that

(5.62) U(y) = U(y′) +W (y′, y).

Set x′ = πx(y
′). Then since x′ ∈ ∂R2

+ and x′ 5 x, we have by Proposition V.5 that

(5.63) U(x) ≥ U(x′) +W (x′, x).

By subtracting (5.63) from (5.62) and recalling (5.34) we have

|U(x)− U(y)| = U(y)− U(x)

≤ U(y′)− U(x′) +W (y′, y)−W (x′, x)

≤ ‖µ+ µs‖∞|x′ − y′|+ |W (y′, y)−W (x′, y)|+ |W (x′, y)−W (x′, x)|.

The proof is completed by applying Theorem V.2 and Corollary V.3 and noting that

|x′ − y′| ≤ |x− y|.
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Of course, Remark V.4 holds with obvious modifications for U and (5.61).

Remark V.7. The hypothesis that the curves Γi are continuous and strictly increasing

cannot in general be weakened to continuous and non-decreasing. For example,

consider the case where µ = σ = 1 on [0.5, 1]× [0, 1] and µ = σ = 0 on [0, 0.5)× [0, 1].

Then we have

Uµ,σ(x) =


0, if x ∈ [0, 0.5)× [0, 1],

x1 + x2 − 0.5 + 2
√

(x1 − 0.5)x2, if x ∈ [0.5, 1]× [0, 1],

which has a discontinuity along the vertical line {x1 = 0.5}, which would correspond

to one of the curves Γi on which µ is discontinuous.

5.2.2 Hamilton-Jacobi-Bellman equation

In this section we show in Theorem V.8 that Uµ+µs,σ is a viscosity solution of (P).

In fact, (P) is the Hamilton-Jacobi-Bellman equation for the simple optimal control

problem [10] defined by Uµ+µs,σ. For more information on the connection between

Hamilton-Jacobi equations and optimal control problems, we refer the reader to [10].

Theorem V.8. Suppose that µ, σ : [0,∞)2 → [0,∞) are Borel-measurable and

bounded. Let z ∈ [0,∞)2 and set V (x) = Wµ,σ(z, x) for x ∈ [z,∞). If V is continu-

ous then V satisfies

(5.64)


(Vx1 − µ)+(Vx2 − µ)+ = σ2 on (z,∞),

min(Vx1 , Vx2) ≥ µ on (z,∞),

in the viscosity sense.

Proof. The proof is based on a standard technique from optimal control theory for

relating variational problems to Hamilton-Jacobi equations [10]. The proof is very

similar to Theorem III.10. We will only sketch parts of the proof here.
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The proof is based on the following dynamic programming principle

(5.65) V (y) = sup
x∈∂Br(y) :x5y

{
V (x) +W (x, y)

}
,

which holds for y ∈ (z,∞) and r > 0 small enough so that Br(y) ⊂ (z,∞). The

proof of (5.65) is very similar to the proof of Proposition V.5.

Let us now show that V is a viscosity supersolution of (5.64). Let y ∈ (z,∞)

and let p ∈ D−V (y). As in the proof of Theorem III.10, we can use the dynamic

programing principle to obtain

(5.66) sup
a∈R2

+

{
−
〈
p− µ∗(y)(1, 1), a

〉
+ 2σ∗(y)

√
a1a2

}
≤ 0.

Suppose now that σ∗(y) = 0. It follows from (5.66) that min(p1, p2) ≥ µ∗(y), and

hence U is a viscosity supersolution of (5.64) at y. Consider now σ∗(y) > 0. Setting

a1 = 1 in (5.66) we have

sup
a2>0

{
− (p1 − µ∗(y))− (p2 − µ∗(y))a2 + 2σ∗(y)

√
a2

}
≤ 0.

It follows that p2 > µ∗(y). By a similar argument we have p1 > µ∗(y). Now set

(5.67) a1 =

√
p2 − µ∗(y)

p1 − µ∗(y)
and a2 =

√
p1 − µ∗(y)

p2 − µ∗(y)

in (5.66) and simplify to find that

(p1 − µ∗(y))(p2 − µ∗(y)) ≥ σ∗2(y).

Therefore V is a viscosity supersolution of (5.64).

Let us now show that V is a viscosity subsolution of (5.64). Let y ∈ (z,∞) and

let p ∈ D+U(y). Utilizing the dynamic programing principle (5.65) again we have

(5.68) sup
a∈R2

+ : a1a2=1

{
−
〈
p− µ∗(y)(1, 1), a

〉
+ 2σ∗(y)

}
≥ 0.
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If min(p1, p2) ≤ µ∗(y) then we have

(p1 − µ∗(y))+(p2 − µ∗(y))+ ≤ 0 ≤ σ∗2,

and hence U is a viscosity subsolution of (5.64). Thus we may assume that min(p1, p2) >

µ∗(y), and hence

lim sup
|a|→∞ : a∈R2

+

−
〈
p− µ∗(y)(1, 1), a

〉
+ 2σ∗(y) = −∞.

It follows that the supremum in (5.68) is attained at some a∗ ∈ R2
+. Introducing a

Lagrange multiplier λ > 0, the necessary conditions for a∗ to be a maximizer of the

constrained maximization problem (5.68) are

a∗1 = λ(p2 − µ∗(y)), a∗2 = λ(p1 − µ∗(y)), and a∗1a
∗
2 = 1.

It follows that λ = (p1−µ∗(y))−
1
2 (p2−µ∗(y))

1
2 and a∗ is given by (5.67). Substituting

this into (5.68) we find that

(p1 − µ∗(y))(p2 − µ∗(y)) ≤ σ∗2(y),

and hence V is a viscosity subsolution of (5.64).

Remark V.9. It follows from Theorem V.8 that U = Uµ+µs,σ is a viscosity solution

of (P) and satisfies

(5.69) min(Ux1 , Ux2) ≥ µ on R2
+

in the viscosity sense. Indeed, we can simply apply Theorem V.8 with µ+µs in place

of µ and z = 0, in which case we have U(x) = Wµ+µs,σ(0, x).



138

5.3 Comparison Principle

We study here the general Hamilton-Jacobi equation

(5.70)


H(x,Du) = 0 on (z,∞),

u = ϕ on ∂(z,∞).

Here, z ∈ [0,∞)d, ϕ : ∂(z,∞) → R is continuous and Pareto-monotone, H : Rd+ ×

Rd → R is the Hamiltonian, and u : [z,∞) → R is the unknown function. For

simplicity of notation, we will set z = 0 throughout much of this section. The case

where z 6= 0 follows by a simple translation argument.

Let us recall the assumptions from the comparison principles in Chapter III:

(H1) For every x ∈ Rd+, the mapping H(x, ·) : Rd → R is Pareto-monotone.

(H2) There exists a modulus of continuity m such that

(5.71) H(x, p)−H(y, p) ≤ m(|p||x− y|+ |x− y|)

for all p ∈ [0,∞)d and x, y ∈ Rd+.

The assumption (H1) is clearly satisfied by (P). We first show that the value function

W is truncatable, as per Definition III.14.

Proposition V.10. Suppose that µ, σ : [0,∞)2 → [0,∞) are Borel-measurable and

bounded. Let z ∈ [0,∞)2 and define V (x) = Wµ,σ(z, x) for x ∈ [z,∞). If V is

continuous then V is a truncatable viscosity solution of

(5.72) (Vx1 − µ)+(Vx2 − µ)+ = σ2 on (z,∞).

Proof. It follows from Theorem V.8 that V is a viscosity solution of (5.72). We need

only show that V is truncatable. Let ξ ∈ (z,∞), let χ : [0,∞)2 → {0, 1} denote
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the characteristic function of [z, ξ], and set V = Wχ·µ,χ·σ(z, ·). By the definition of

V and χ we have V (x) = V (x) = V ξ(x) for any x ∈ [z, ξ]. Let x ∈ [z,∞) \ [z, ξ],

ε > 0, and let γ ∈ A with γ(0) = z, γ(1) = x such that V (x) ≤ Jχ·µ,χ·σ(γ) + ε. Let

γ1 denote the portion of γ inside [z, ξ], let γ2 denote the remaining portion of γ, and

reparametrize γ1 and γ2 so that γ1, γ2 : [0, 1] → R2. Letting y = γ1(1) ∈ [z, ξ] we

have

V (x) ≤ Jχ·µ,χ·σ(γ1) + Jχ·µ,χ·σ(γ2) + ε = Jµ,σ(γ1) + ε ≤ V (y) + ε.

Since y 5 x and y ∈ [z, ξ], we also have V (x) ≥ V (y) = V (y). It follows that

V (x) = sup
y∈[z,ξ] : y5x

V (y).

By continuity of V , the supremum above is attained, and the maximizing argument

of y is exactly y = πξ(x)—the projection of x onto [0, ξ]. Therefore we have V (x) =

V (πξ(x)). Since x is arbitrary, we see that V = V ◦ πξ = V ξ, the ξ-truncation of V .

Since V ξ = V ◦πξ is continuous, it follows from Theorem V.8 that V ξ is a viscosity

solution of

(Vx1 − χµ)+(Vx2 − χµ)+ ≤ χσ2 on (z,∞).

Since 0 ≤ χ ≤ 1 and t 7→ (p1 − t)+(p2 − t)+ is monotone decreasing, it follows that

V ξ is viscosity subsolution of (5.72), which completes the proof.

We now show that truncatability enjoys a useful L∞-stability property.

Proposition V.11. Let z ∈ R2
+ and for each k ≥ 1 suppose that uk ∈ C([z,∞)) is

a truncatable viscosity solution of

(5.73) Hk(x,Duk) ≤ 0 on (z,∞).
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If uk → u locally uniformly, for some u ∈ C([z,∞)), then u is a truncatable viscosity

solution of

(5.74) H (x,Du) ≤ 0 on (z,∞),

where

H (x, p) := lim inf
k→∞
y→x

Hk(y, p).

Proof. It is a standard result (see [27, Remark 6.3]) that u is a viscosity solution of

(5.74). To see that u is truncatable: Fix ξ ∈ (z,∞), let uξ be the ξ-truncation of

u, and let uξk be the ξ-truncation of uk. Since uk is truncatable, we have that uξk

is a viscosity solution of (5.73) for every k. Furthermore, we have uξk → uξ locally

uniformly, and therefore uξ is a viscosity solution of (5.74). Thus u is truncatable.

Note that Proposition V.11 was used implicitly in the proof of Lemma III.18.

For the remainder of the section we set

(5.75) H(x, p) = (p1 − µ(x))+(p2 − µ(x))+ − σ2(x).

Our aim now is to apply the comparison principles from Chapter III—namely Theo-

rems III.11 and III.16—to obtain a comparison principle, and a perturbation result,

for the Hamilton-Jacobi equation (P). First we need to show that (H2) and (H3)O

are satisfied by H given in (5.75).

Proposition V.12. Suppose that µ, σ : [0,∞)2 → [0,∞), and let H be given by

(5.75). Then for any x, y ∈ R2
+

(5.76) H(y, p)−H(x, p) ≤ 2|p|(µ(x)− µ(y))+ + σ2(x)− σ2(y).

Proof. Let p ∈ [0,∞)2, and set h(t) = (p1 − t)+(p2 − t)+ so that

H(x, p) = h(µ(x))− σ2(x).
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Suppose first that µ(y) < min(p1, p2). Since h is convex, we have

h(µ(x))− h(µ(y)) ≥ h′(µ(y))(µ(x)− µ(y)) = −(p1 + p2 − 2µ(y))(µ(x)− µ(y)).

Since p1 + p2 − 2µ(y) ≥ 0 we have

h(µ(y))− h(µ(x)) ≤ (p1 + p2 − 2µ(y))(µ(x)− µ(y))

≤ (p1 + p2 − 2µ(y))(µ(x)− µ(y))+

≤ (p1 + p2)(µ(x)− µ(y))+.

Therefore we have

(5.77) h(µ(y))− h(µ(x)) ≤ 2|p|(µ(x)− µ(y))+.

If µ(y) ≥ min(p1, p2) then we have h(µ(y)) = 0 ≤ h(µ(x)), and hence (5.77) holds.

Remark V.13. It follows from Proposition V.12 that H satisfies (H2) if µ and σ2 are

globally Lipschitz continuous on R2
+.

Corollary V.14. Suppose that µ and σ2 are non-negative and globally Lipschitz

continuous on R2
+. Let u ∈ USC([0,∞)2) be a viscosity solution of

(5.78) (ux1 − µ)+(ux2 − µ)+ ≤ σ2 on R2
+,

and let v ∈ LSC([0,∞)2) be a Pareto-monotone viscosity solution of

(5.79) (vx1 − µ)+(vx2 − µ)+ ≥ σ2 on R2
+.

Furthermore, suppose that

(5.80)
{
x ∈ R2

+ : µ(x) = 0
}
⊃
{
x ∈ R2

+ : σ(x) = 0
}
.

Then u ≤ v on ∂R2
+ implies u ≤ v on R2

+.
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Proof. We claim that

(5.81) min(vx1 , vx2) ≥ µ on R2
+,

in the viscosity sense. To see this, let x ∈ R2
+ and let p ∈ D−v(x). Then we have

(p1 − µ(x))+(p2 − µ(x))+ ≥ σ(x)2.

If σ(x) > 0, then we must have min(p1, p2) ≥ µ(x) as desired. If σ(x) = 0, then

by (5.80) we have µ(x) = 0, and we have min(p1, p2) ≥ 0 = µ(x) by virtue of the

monotonicity of v.

Let a > 0 and set v(x) = v(x) +
√
a(x1 + x2). By (5.79) and (5.81) we see that v

is a viscosity solution of

(vx1 − µ)+(vx2 − µ)+ ≥ σ2 + a on R2
+.

By Proposition V.12 and Remark V.13 we see that (H1) and (H2) are satisfied.

Therefore we can apply Theorem III.11 to find that u ≤ v. Sending a→ 0 completes

the proof.

Recall that µ and σ2 are not independent functions in the DLPP problem, even

though we have treated them as such for much of the analysis. From this point on,

we will need to recall their relationship, as it is important for proving uniqueness in

(P). Specifically, we need to assume that µ and σ2 satisfy (F3) for the same choice

of ζ at each x ∈ Γi. When this holds, we say that µ and σ2 simultaneously satisfy

(F3). Since σ = µ for exponential DLPP and σ =
√
µ(1 + µ) for geometric DLPP,

σ is always a monotone increasing function of µ, and hence µ and σ2 simultaneously

satisfy (F3) in both cases.

Proposition V.15. Let µ and σ2 simultaneously satisfy (F1) and (F3). Then H

given by (5.75) satisfies (H3)O with O = R2
+ \ Ω.
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Proof. Let ξ ∈ O. If ξ ∈ Ωi, then we can choose εξ small enough so that B2εξ(ξ) ⊂ Ωi.

By Proposition V.12 we see that any choice for vξ will suffice since µ and σ2 are

Lipschitz with constant Clip when restricted to Ωi.

If ξ ∈ Γi for some i, then let ζ be as given in (F3). Assume for now that ζ = −1,

and set vξ = (1,−1)/
√

2. Let εξ > 0 be less than half the value of ε from (F3), and

then choose εξ > 0 smaller, if necessary, so that B2εξ(ξ) has an empty intersection

with Γ and all other Γj, and εξ ≤ 1/2. Let µi and σ2
i denote the Lipschitz extensions

of µ|Ωi and σ2|Ωi to Ωi, respectively, and make the same definitions for µi−1 and σ2
i−1.

Then (F3) implies that µi ≥ µi−1 and σ2
i ≥ σ2

i−1 on B2εξ(ξ) ∩ Γi. Furthermore, since

µ and σ2 are upper semicontinuous, we have µ = µi and σ = σi on B2εξ(ξ) ∩ Γi.

Let y ∈ Bεξ(ξ), ε < εξ, p ∈ R2, and v ∈ Sd−1 with |v − vξ| < εξ. If y + εv ∈ Ωi,

then since Γi is monotone, |v− vξ| ≤ 1
2
, and y ∈ B2εξ(ξ), we must have that y ∈ Ωi.

Since µi and σ2
i are Lipschitz on Ωi ∩ B2εξ(ξ), we can invoke Proposition V.12 to

show that (H3)O holds.

Now suppose that y + εv ∈ Ωi−1. If y ∈ Ωi−1, then (H3)O holds as before, so

assume that y ∈ Ωi. Let ε′ > 0 such that y + ε′v ∈ Γi. Then we have

µ(y + εv)− µ(y) = µi−1(y + εv)− µi(y + ε′v) + µi(y + ε′v)− µi(y)

≤ µi−1(y + εv)− µi−1(y + ε′v) + µi(y + ε′v)− µi(y)

≤ 2Clipε,

where we used the fact that µi ≥ µi−1 on Γi∩B2εξ(ξ). We have an identical estimate

for σ2, and the proof is completed by invoking Proposition V.12.

Corollary V.16. Let µ and σ2 simultaneously satisfy (F1) and (F3). Let u ∈

C([0,∞)2) be a truncatable viscosity solution of (5.78), let v ∈ C([0,∞)2) be a

Pareto-monotone viscosity solution of (5.79), and suppose that (5.80) holds. Then
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u ≤ v on Ω ∪ ∂R2
+ implies u ≤ v on R2

+.

The proof of Corollary V.16 is similar to Corollary V.14.

We now prove an important perturbation result. Roughly speaking, it says that

if we smooth out the macroscopic mean µ and variance σ (i.e., remove the disconti-

nuities), then the resulting change in the value function W is uniformly small. This

result is used in the proof of our main result, Theorem V.1. The proof relies on

the uniqueness of truncatable viscosity solutions of (P) (Theorem III.16 and Corol-

lary V.16), and the result can then be used to prove a comparison principle for (P)

without the truncatability assumption (see Theorem V.20).

Theorem V.17. Let µ and σ2 satisfy (5.80) and simultaneously satisfy (F1), (F3).

Let µk, σ
2
k ∈ C0,1([0,∞)2) satisfy (F1*) with θ = 1

k
. Furthermore suppose that

(5.82) µ∗(x) ≤ lim inf
k→∞
y→x

µk(y), µ∗(x) ≥ lim sup
k→∞
y→x

µk(y),

and

(5.83) σ∗(x) ≤ lim inf
k→∞
y→x

σk(y), σ∗(x) ≥ lim sup
k→∞
y→x

σk(y),

for all x ∈ R2
+. Then for every z ∈ [0,∞)2 we have

Wµk,σk(z, ·) −→ Wµ,σ(z, ·) locally uniformly on [z,∞).

Proof. For simplicity, let us set Vk(x) = Wµk,σk(z, x) and V (x) = Wµ,σ(z, x) for

x ∈ [z,∞). Since µk, σ
2
k ∈ C0,1([0,∞)2), we can apply Theorem V.2 with θ = 0 to

find that Vk is continuous on [z,∞). We can apply Theorem V.2 again with θ = 1/k

to show that for every R > max(z1, z2), there exists C = C(Clip, ‖µ‖∞, ‖σ‖∞, R) and

a modulus of continuity ω such that

(5.84)

|Vk(x)− Vk(y)| ≤ C(
√
|x− y|+ ω(|x− y|) + ω(k−1)) for all x, y ∈ [z1, R]× [z2, R].
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This approximate Hölder estimate is sufficient to apply a slightly modified version

of the Arzelà-Ascoli theorem (see Theorem IV.6). Therefore, by passing to a subse-

quence if necessary, there exists v ∈ C([z,∞)) such that Vk → v locally uniformly on

[z,∞). By Proposition V.10, Vk is a Pareto-monotone truncatable viscosity solution

of

(5.85) (Vk,x1 − µk)+(Vk,x2 − µk)+ = σk
2 on (z,∞).

Since Vk → v locally uniformly and (5.82)-(5.83) hold, we can apply Proposition

V.11, and classical results from the viscosity solution theore [27], to find that v is a

Pareto-monotone truncatable viscosity solution of

(5.86) (vx1 − µ)+(vx2 − µ)+ = σ2 on (z,∞).

We claim that v = V on ∂(z,∞). To see this: Let x ∈ ∂(z,∞), hence xi = zi for

some i. Without loss of generality, assume that x1 = z1. Then by (5.36) and Fatou’s

lemma we have

v(x) = lim
k→∞

Vk(x) = lim
k→∞

∫ x2

z2

µk(z1, t) dt

≤
∫ x2

z2

lim sup
k→∞

µk(z1, t) dt

≤
∫ x2

z2

µ(z1, t) dt = V (x),

where the last line follows from (5.82) and the fact that µ is upper semicontinuous.

By a similar argument with Fatou’s lemma we have

(5.87) v(x) ≥
∫ x2

z2

µ∗(z1, t) dt.

Notice that (F1) implies that µ∗ = µ on Ωi for all i and on Ω. Hence, all the points

x ∈ [0,∞)2 for which µ∗(x) 6= µ(x) are contained in ∪i∈ZΓi ∪ Γ. Since the curves Γi
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are strictly increasing and Γ is strictly decreasing, the curve t 7→ (z1, t) for t ∈ [z2, x2]

has a finite number of intersections with ∪i∈ZΓi ∪ Γ. It follows that

v(x)
(5.87)

≥
∫ x2

z2

µ∗(z1, t) dt =

∫ x2

z2

µ(z1, t) dt = V (x),

and hence v(x) = V (x), which establishes the claim.

By Proposition V.15, H given by (5.75) satisfies (H3)O for O = R2
+ \ Ω. By

(F1*) and (5.35) we have Vk(x) = 0 for x ∈ Ωθ ∩ [z,∞), and hence v(x) = 0 for

x ∈ Ω ∩ [z,∞). Similarly, we have that V (x) = 0 for x ∈ Ω ∩ [z,∞). It follows that

v = V on [z,∞) \O. Therefore we can apply a translated form of Corollary V.16 to

find that v = V on [z,∞)2.

Remark V.18. Sequences generated by inf- and sup-convolutions of µ and σ2 satisfy

the hypotheses of Theorem V.17. Recall that the sup-convolution of µ : [0,∞)2 → R

is defined by

(5.88) µk(x) = sup
y∈[0,∞)2

{
µ(y)− k|x− y|

}
,

and the inf-convolution by µk := −(−µ)k.

Corollary V.19. Let µ and σ2 simultaneously satisfy (F1), (F3) and (5.80), let

µk, σ
2
k ∈ C0,1([0,∞)2) satisfy (F1*) with θ = 1

k
, and let µs satisfy (F2). If (5.82)–

(5.83) hold for all x ∈ R2
+ then

Uµk+µs,σk −→ Uµ+µs,σ locally uniformly on [0,∞)2.

Proof. Fix y ∈ [0,∞)2. By Proposition V.5 we have

(5.89) Uµk+µs,σk(y) = max
x∈∂R2

+ :x5y

{
Uµk+µs,σk(x) +Wµk,σk(x, y)

}
,

and

(5.90) Uµ+µs,σ(y) = max
x∈∂R2

+ :x5y

{
Uµ+µs,σ(x) +Wµ,σ(x, y)

}
.
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Arguing by symmetry, it follows from Theorem V.17 that

(5.91) Wµk,σk(·, y) −→ W (·, y) uniformly on [0, y].

It follows from (5.33) and a similar argument as in Theorem V.17 that Uµk+µs,σk(x)→

Uµ+µs,σ(x) for any x ∈ ∂R2
+. By the Arzelà-Ascoli Theorem we find that

(5.92) Uµk+µs,σk −→ Uµ+µs,σ uniformly on [0, y] ∩ ∂R2
+.

Combining (5.89)–(5.92), we have that Uµk+µs,σk(y) → Uµ+µs,σ(y). Locally uniform

convergence follows again from the Arzelà-Ascoli Theorem.

Theorem V.20. Let µ and σ2 simultaneously satisfy (F1), (F3) and (5.80), and

let µs satisfy (F2). Let u ∈ C([0,∞)2) be a viscosity solution of (5.78) and let

v ∈ C([0,∞)2) be a Pareto-monotone viscosity solution of (5.79). Then if u ≤ ϕ ≤ v

on ∂R2
+, where ϕ is given in the statement of Theorem V.1, then u ≤ v on R2

+.

Proof. Let µk, σ2,k and µk, σ
2
k be the sup- and inf-convolutions of µ and σ2 as defined

in Remark V.18, respectively. To simplify notation, let us write Uk := Uµk+µs,σk ,

Uk := Uµk+µs,σk , and U := Uµ+µs,σ. By definition we have Uk ≤ U ≤ Uk, and by

Corollary V.19 and Remark V.18 we have Uk, U
k → U locally uniformly on [0,∞)2

as k →∞.

Since µk ≤ µ and σk ≤ σ we have that v is a viscosity solution of

(vx1 − µk)+(vx2 − µk)+ ≥ σk
2 on R2

+.

By Theorem V.8, Uk is a viscosity solution of

(Uk,x1 − µk)+(Uk,x2 − µk)+ = σk
2 on R2

+.

Furthermore, we have Uk = ϕk ≤ ϕ ≤ v on ∂R2
+ where ϕk(x) = (x1 +x2)

∫ 1

0
µk(tx) +

µs(tx) dt. Since µk and σ2
k are globally Lipschitz we can apply Corollary V.14 to
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obtain Uk ≤ v. Sending k →∞ we have U ≤ v. By a similar argument we can prove

that u ≤ U , which completes the proof.

5.4 Proof of main result

In this section we give the proof of our main result, Theorem V.1. We first have

a preliminary convergence result on the interior (0,∞)2, which we later adapt to

account for the boundary source µs. For N ≥ 1 we define

(5.93) wN(x, y) := L
(
bNxc+ 1x; bNyc

)
,

where

(5.94) 1x =
(
χ{x1=0}, χ{x2=0}

)
,

and L is defined in (5.6).

Lemma V.21. Assume µ satisfies (F1) and (F3). Suppose that the weights X(i, j)

satisfy (5.7) and are either all exponential, or all geometric random variables. In the

exponential case, set σ = µ, and in the geometric case, set σ =
√
µ(1 + µ). Then

for every y ∈ (0,∞)2 we have

1

N
wN(·, y) −→ Wµ,σ(·, y) uniformly on [0, y],

with probability one.

Proof. Let y ∈ (0,∞)2. Let µk and µk be the sup- and inf-convolutions of µ, defined

in Remark V.18. In the exponential case, set σk = µk and σk = µk, and in the

geometric case, set σk =
√
µk(1 + µk) and σk =

√
µk(1 + µk). To simplify notation,

let us also set W k := Wµk,σk , Wk := Wµk,σk , and W := Wµ,σ, and note that Wk ≤



149

W ≤ W k. Notice that by the definition of σ, we have that (5.80) holds for both the

exponential and geometric cases. We can therefore invoke Theorem V.17 to find that

(5.95) Wk(x, y) −→ W (x, y) and W k(x, y) −→ W (x, y) for all x ∈ [0, y].

Let N ≥ 1. In the exponential case, for (i, j) ∈ N2 let Xk(i, j) be independent

and exponentially distributed with parameter λ = µk(iN−1, jN−1), and let Xk(i, j)

be independent and exponentially distributed with parameter λ = µk(iN
−1, jN−1).

In the geometric case, for (i, j) ∈ N2 let Xk(i, j) be independent and geometrically

distributed with parameter q = (1 +µk(iN−1, jN−1))−1, and let Xk(i, j) be indepen-

dent and geometrically distributed with parameter q = (1 + µk(iN
−1, jN−1))−1. In

either case, set

(5.96) Lk(M,N ;Q,P ) = max
p∈Π(M,N),(Q,P )

∑
(i,j)∈p

Xk(i, j),

(5.97) Lk(M,N ;Q,P ) = max
p∈Π(M,N),(Q,P )

∑
(i,j)∈p

Xk(i, j),

and set

(5.98)

wk,N(x, y) := Lk

(
bNxc+ 1x; bNyc

)
, and wkN(x, y) := Lk

(
bNxc+ 1x; bNyc

)
.

We can define Xk(i, j) and Xk(i, j) on the same probability space as X(i, j) in such

a way that Xk(i, j) ≤ X(i, j) ≤ Xk(i, j) for all (i, j) ∈ N2 with probability one. We

therefore have wk,N ≤ wN ≤ wkN with probability one. Since µk, σk, µ
k, and σk are

continuous on [0,∞)2, we can invoke Theorem [81, Theorem 1] to find that

1

N
wk,N(x, y) −→ Wk(x, y) and

1

N
wkN(x, y) −→ W k(x, y),

with probability one, for fixed x ∈ [0, y]. We should note that [81, Theorem 1] as

stated applies only to exponential DLPP, but one can check that the proof holds for
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geometric DLPP as well, with minor modifications. It follows that for every k ≥ 1

we have

Wk(x, y) ≤ lim inf
N→∞

1

N
wN(x, y) ≤ lim sup

N→∞

1

N
wN(x, y) ≤ W k(x, y),

with probability one. Sending k →∞ and recalling (5.95) we have for every x ∈ [0, y]

that

(5.99)
1

N
wN(x, y) −→ W (x, y) with probability one.

Uniform convergence follows from the fact that x 7→ wN(x, y) and x 7→ W (x, y) are

monotone decreasing (in the Pareto sense) and x 7→ W (x, y) is uniformly continuous

on [0, y]; the proof is similar to Theorem III.2.

We now have the proof of Theorem V.1.

Proof. By the law of large numbers we have

(5.100)
1

N
L(0; bN ·c) −→ U = ϕ

locally uniformly on ∂R2
+ with probability one.

Let y ∈ R2
+. From the definition of L we have the following dynamic programming

principle

(5.101) L(0; bNyc) = max
x∈R2

+ :x5y

{
L(0; bNxc) + wN(x, y)

}
.

Combining Lemma V.21, Proposition V.5, and (5.100), we can pass to the limit in

(5.101) to obtain

1

N
L(0; bNyc) −→ max

x∈R2
+ :x5y

{
U(x) +W (x, y)

}
= U(y),

with probability one. As in Lemma V.21, locally uniform convergence follows from

the monotonicity of U and x 7→ N−1L(0; bNxc), along with the uniform continuity

given by Theorem V.2; the proof is similar to Theorem III.2.
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5.5 Numerical scheme

We present here a fast numerical scheme for computing the viscosity solution U

of (P). The scheme is a minor modification of the scheme used in Chapter IV. Since

information propagates along coordinate axes in the definition of the variational

problem (5.35) for U , it is natural to consider using backward difference quotients

to approximate (P). Letting Uh
i,j denote the numerical solution on the grid hN2

0 of

spacing h, we have

(5.102)
(
Uh
i,j − Uh

i−1,j − hµi,j
)

+

(
Uh
i,j − Uh

i,j−1 − hµi,j
)

+
= h2σ2

i,j,

where µi,j = µ(hi, hj) + µs(hi, hj) and σi,j = σ(hi, hj). Given Uh
i−1,j and Uh

i,j−1,

we can solve (5.102) for Uh
i,j ≥ max(Uh

i−1,j + hµi,j, U
h
i,j−1 + hµi,j) via the quadratic

formula to obtain

(5.103) Uh
i,j =

1

2

(
Uh
i−1,j + Uh

i,j−1

)
+ hµi,j +

1

2

√(
Uh
i−1,j − Uh

i,j−1

)2

+ 4h2σ2
i,j,

for i, j ≥ 1. The choice of the positive root in (5.103) reflects the monotonicity of

the scheme, and ensures that it captures the viscosity solution of (P). When i = 0

or j = 0, we recall the boundary condition (5.33) to obtain

(5.104) Uh
0,j = Uh

0,j−1 + hµ0,j and Uh
i,0 = Uh

i−1,0 + hµi,0.

Notice that when i = 0, if we set Uh
−1,j = 0 and σi,j = 0 in (5.103), then (5.103)

and (5.104) are equivalent. In fact, even when σi,j 6= 0, (5.103) and (5.104) are

asymptotically equivalent as h→ 0 provided Uh
0,j � h. The same observations hold

when j = 0 if we set Uh
i,−1 = 0. Thus, to account for the boundary condition in (P),

we can simply set

(5.105) Uh
i,j = 0 for (i, j) 6∈ N2

0,
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and compute Uh
i,j via (5.103) for all (i, j) ∈ N2

0 ∩ [0, R]2, for any R > 0. In summary,

we propose the following numerical scheme for approximating viscosity solutions of

(P):

(S)


Uh
i,j =

1

2

(
Uh
i–1,j + Uh

i,j–1

)
+ hµi,j +

1

2

√(
Uh
i–1,j − Uh

i,j–1

)2
+ 4h2σ2

i,j , if (i, j) ∈ N2
0

Uh
i,j = 0, otherwise.

Note that we can visit the grid points in any sweeping pattern that visits (i − 1, j)

and (i, j − 1) before (i, j), which reflects the cone of influence in the percolation

problem. This scheme requires visiting each grid point exactly once and hence has

linear complexity.

Our first result guarantees that the simple boundary condition in (S) agrees with

the boundary condition in (P) as h→ 0.

Lemma V.22. Let Uh
i,j satisfy the scheme (S) and suppose that σi,j is bounded by

M for all (i, j) ∈ N2
0 ∩ ∂R2

+. If i, j ≤ h−1R then there exists a constant C > 0 such

that

(5.106)

∣∣∣∣∣Uh
i,0 − h

i∑
k=0

µk,0

∣∣∣∣∣ ,
∣∣∣∣∣Uh

0,j − h
j∑

k=0

µ0,k

∣∣∣∣∣ ≤ C(1 +RM2)
√
h.

Proof. Let us give the proof for i = 0. The case of j = 0 is similar. Define

J := sup
{
j ≥ 0 : Uh

0,j ≤
√
h
}
.

For j ≥ J it follows from the scheme (S) and a Taylor expansion that

(5.107) Uh
0,j =

1

2
Uh

0,j−1 +hµ0,j +
1

2
Uh

0,j−1 +O
(
h

3
2M2

)
= Uh

0,j−1 +hµ0,j +O
(
h

3
2M2

)
.

Iterating (5.107) we have

Uh
0,j = h

(
j∑

k=J+1

µ0,k

)
+ Uh

0,J +O
(
h

3
2 jM2

)
= h

(
j∑

k=J+1

µ0,k

)
+O

(√
h+ jh

3
2M2

)
.
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Since j ≤ h−1R we have

(5.108) Uh
0,j ≤ h

(
j∑

k=0

µ0,k

)
+O

((
1 +RM2

)√
h
)
.

Noting the equivalence of (5.103) and (5.104) when σ0,j = 0, we can set σ0,j = 0 in

(5.103) and iterate as before to obtain

Uh
0,j ≥ h

(
j∑

k=0

µ0,k

)
.

Combining this with (5.108) completes the proof.

Theorem V.23. Suppose that µ and σ2 are non-negative, globally Lipschitz con-

tinuous on [0,∞)2 and satisfy (5.80), and let µs satisfy (F2). For h > 0 let

Uh(x) = Ubh−1x1c,bh−1x2c denote the extension of the numerical solution Uh
i,j of (S)

to [0,∞)2. Then we have

(5.109) Uh −→ U locally uniformly on [0,∞)2,

where U is the unique Pareto-monotone viscosity solution of (P).

Proof. The proof follows the standard framework outlined by Barles and Sougani-

dis [12]. This general theory guarantees convergence of any scheme that is monotone,

stable, and consistent, provided the PDE enjoys strong uniqueness—a comparison

principle for semicontinuous sub- and supersolutions. Corollary V.14 is the required

strong uniqueness result, and it is easy to see that the scheme (5.102) is both mono-

tone and consistent. Indeed, for any ψ ∈ C1([0,∞)2) we have

1

h2

(
ψ(x)− ψ(x− he1)− hµ(x)

)
+

(
ψ(x)− ψ(x− he2)− hµ(x)

)
+

−→
(
ψx1(x)− µ(x)

)
+

(
ψx2(x)− µ(x)

)
+
,
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as h→ 0, which is the required consistency. To show monotonicity, let u, v : [0,∞)2

such that u(x) = v(x) and u ≤ v. Then we have

(
v(x)− v(x− he1)− hµ(x)

)
+

(
v(x)− v(x− he2)− hµ(x)

)
+

=
(
u(x)− v(x− he1)− hµ(x)

)
+

(
u(x)− v(x− he2)− hµ(x)

)
+

≤
(
u(x)− u(x− he1)− hµ(x)

)
+

(
u(x)− u(x− he2)− hµ(x)

)
+
,

where the last line follows from the monotonicity of t 7→ (p1 − t)+(p2 − t)+.

Therefore, to complete the proof, we need to show that the scheme is stable,

and that the boundary condition is satisfied. Stability refers to a bound on Uh,

independent of h. By Lemma V.22, (F2), and the continuity of µ, we have that

(5.110) Uh −→ ϕ locally uniformly on ∂R2
+ as h→ 0,

where ϕ(x) = (x1 + x2)
∫ 1

0
µ(tx) + µs(tx) dt, which verifies the boundary condition.

Stability follows from a comparison principle for (S), and is similar to Lemma

IV.3. We give the argument here for completeness. Let

V (x) = ‖µ+ µs‖∞(x1 + x2) + 2‖σ‖∞
√
x1x2 + 1.

We claim that Uh(x) ≤ V (x). To see this, suppose to the contrary that Uh(x) > V (x)

for some x ∈ [0, R]2, R > 0. First note that

ϕ(x) ≤ (x1 + x2)‖µ+ µs‖∞ = V (x)− 1,

for x ∈ ∂R2
+. Therefore, by (5.110), we have that Uh ≤ V − 1

2
on [0, R]2 ∩ ∂R2

+ for h

small enough. Therefore, there exists z ∈ [h,R]2 such that

(5.111) Uh(z) > V (z) and Uh(z − hei) ≤ V (z − hei) for i = 1, 2.
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Note that by the concavity of t 7→
√
t we have that

V (z)− V (z − hei) ≥ h‖µ+ µs‖∞ + h‖σ‖∞
√
z1z2

zi
.

It follows that

(
V (z)− V (z − he1)− h‖µ+ µs‖∞

)(
V (z)− V (z − he2)− h‖µ+ µs‖∞

)
≥ h2‖σ‖2

∞.

By monotonicity of t 7→ (p1 − t)+(p2 − t)+ we therefore have

(
V (z)− V (z − he1)− hµ(z)

)(
V (z)− V (z − he2)− hµ(z)

)
≥ h2‖σ‖2

∞

≥
(
Uh(z)− Uh(z − he1)− hµ(z)

)(
Uh(z)− Uh(z − he2)− hµ(z)

)
.

(5.112)

This contradicts (5.111), hence Uh ≤ V . The proof is completed by invoking [12,

Theorem 2.1].

We now extend the numerical convergence result to µ and σ2 satisfying (F1) and

(F3).

Corollary V.24. Suppose that µ and σ2 simultaneously satisfy (F1), (F3) and

(5.80), and let µs satisfy (F2). Define Uh as in Theorem V.23. Then we have

(5.113) Uh −→ U locally uniformly on [0,∞)2,

where U is the unique Pareto-monotone viscosity solution of (P).

Proof. Define µk, σk, µk, σk, Uk and Uk as in the proof of Theorem V.20. By definition

we have Uk ≤ U ≤ Uk, and by Corollary V.19 and Remark V.18 we have Uk, U
k → U

locally uniformly on [0,∞)2 as k →∞.

Let Uh
k and Uk,h denote the numerical solutions defined by (S) for µk +µs, σk and

µk + µs, σ
k, respectively, extended to [0,∞)2 as in Theorem V.23. Since µk, σ2,k, µk,
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and σ2
k are Lipschitz continuous and µs satisfies (F2), we can apply Theorem V.23

to show that

(5.114) Uh
k −→ Uk and Uk,h −→ Uk,

locally uniformly on [0,∞)2 as h→ 0. Since µk ≤ µ ≤ µk and σk ≤ σ ≤ σk, we can

make an argument, as in Theorem V.23, based on a comparison principle for (S), to

show that Uh
k ≤ Uh ≤ Uk,h for all h, k. The proof is completed by combining this

with (5.114) and the locally uniform convergence Uk, U
k → U .

5.5.1 Numerical simulations

We present here some numerical simulations comparing the numerical solutions

of (P), computed by (S), to realizations of directed last passage percolation (DLPP).

We restrict our attention to the box [0, 1]2 for simplicity. For the case of exponential

DLPP, we consider three macroscopic means, λ1, λ2, and λ3 given by

(5.115) λ1(x) =


1, if x1 ≥ 0.5 or x2 ≥ 0.5,

0, otherwise,

(5.116) λ2(x) = exp
(
−10 |x− (0.25, 0.75)|2

)
+ exp

(
−10 |x− (0.75, 0.25)|2

)
,

and

(5.117) λ3(x) =


0.5, if |x− (1, 0)|2 ≤ 0.49 or |x− (0, 1)|2 ≤ 0.49,

1, otherwise.

Since the results are very similar for geometric DLPP, we consider only one macro-

scopic parameter q given by

(5.118) q(x) =


0.5, if x1 ≥ 0.5 or x2 ≥ 0.5,

1, otherwise.
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Figure 5.3: Comparisons of the level sets of numerical solutions of (P), computed via
(S), and the level sets of exponential/geometric DLPP simulations on a 1000× 1000
grid. The smooth lines correspond to the numerical solutions of (P), while the rough
lines correspond to the DLPP simulations.

Figure 5.3 compares the level sets of the numerical solutions of (P) with simu-

lations of exponential/geometric DLPP on a 1000 × 1000 grid. The smooth curves

correspond to the level sets of the numerical solution of (P) while the rough curves

correspond to the level sets of the last passage time from the DLPP simulation. Fig-

ure 5.4 shows the same comparison, except for DLPP simulations on a 5000× 5000

grid. In both cases, the numerical solutions of (P) were computed on a 1000× 1000

grid. To give an idea of the computational complexity, it takes approximately a

quarter of a second to numerically solve the PDE on this grid in MATLAB on an

average laptop.
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Figure 5.4: Comparisons of the level sets of numerical solutions of (P), computed via
(S), and the level sets of exponential/geometric DLPP simulations on a 5000× 5000
grid.

5.5.2 Finding maximal curves

We now propose an algorithm based on dynamic programming for finding maxi-

mizing curves, and we prove in Theorem V.25 and Corollary V.26 that the curve pro-

duced by our algorithm is approximately optimal for the variational problem (5.32)

defining U . Other approaches to finding maximizing curves, such as the method of

characteristics [33], or solving the Euler-Lagrange equations [81], are not guaranteed

to produce optimal curves, due to crossing characteristics, and the possibility of lo-

cal minima. Our method is related to the method of synthesis in optimal control

theory for computing optimal controls from solutions of Hamilton-Jacobi-Bellman
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equations [10].

Our algorithm has a parameter ε > 0 and a starting point x ∈ R2
+, and computes

a curve γε with γε(0) = 0 and γε(1) = x that nearly maximizes J . The algorithm

works by starting at x and tracing our way back to the origin by solving a series

of dynamic programming problems. We set x0 = x, and generate x1, . . . , xk, . . .

as follows: Given we are at step k ≥ 0, we use a dynamic programming principle

(similar to Proposition V.5) to write

(5.119) U(xk) = max
s∈[0,1]

{
U(y(s)) +W (y(s), xk)

}
,

where y(s) = xk − (1− s, s)ε. An application of Hölder’s inequality yields

(5.120) J(γ) ≤ µ∗(xk)ε+ 2σ∗(xk)ε
√
s(1− s) + o(ε),

for any γ ∈ A with γ(0) = y(s) and γ(1) = xk. When µ and σ are continuous,

this upper bound can be attained (in the limit as ε → 0) by the diagonal curve

γ(t) = (1− t)y(s)+xkt. Thus we are justified in making the following approximation

(5.121) W (y(s), xk) = sup
γ∈A : γ(0)=y(s),γ(1)=xk

J(γ) ≈ µ(xk)ε+ 2σ(xk)ε
√
s(1− s).

Substituting (5.121) into (5.119) we find that

(5.122) U(xk) ≈ µ(xk)ε+ max
s∈[0,1]

{
U(y(s)) + 2σ(xk)ε

√
s(1− s)

}
.

We then define

(5.123) xk+1 := y(s∗k)+ = (xk − (1− s∗k, s∗k)ε)+,

where s∗k ∈ [0, 1] is the maximizing argument in (5.122) and x+ = (max(x1, 0),max(x2, 0)).

The algorithm is terminated as soon as xk ∈ ∂R2
+ and we append the final terminal

point xk+1 = 0. In (5.122), we set U(y(s)) = 0 whenever y(s) 6∈ [0,∞)2. The al-

gorithm is summarized in Algorithm V.1. Notice that the boundary source µs does
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not appear explicitly in Algorithm V.1, though it does appear implicitly through the

solution U of (P).

Algorithm V.1: Find nearly maximizing path

Given a step size ε > 0 and x0 ∈ R2
+, we generate x1, . . . , xk, . . . as follows:

k = 0;
while xk ∈ R2

+ do

s∗k = argmaxs∈[0,1]

{
U(xk − (1− s, s)ε) + 2σ(xk)ε

√
s(1− s)

}
;

xk+1 = (xk − (1− s∗k, s∗k)ε)+;

end
xk+1 = 0;

Each step of the algorithm moves a distance of at least ε/2 in the direction (−1, 0)

or (0,−1). If x0 ∈ [0, R]2, then the algorithm will terminate in at most 4R/ε steps.

Furthermore, when µ and σ2 are Lipschitz, we can show that the polygonal curve γε

generated by Algorithm V.1 has energy within O(ε) of the maximizing curve. This

is summarized in the following result.

Theorem V.25. Let R > 0, suppose that µ and σ2 are non-negative, globally Lip-

schitz continuous on [0, R]2 with constant Clip > 0, and suppose that µs satisfies

(F2). Let ε > 0, x0 ∈ (0, R]2, and let x1, . . . , xK be the points generated by Algo-

rithm V.1. Let γε : [0, 1]→ [0,∞)2 be the monotone polygonal curve passing through

xK , xK−1, . . . , x1, x0. Then there exists a constant C = C(‖µ‖∞, ‖σ‖∞) > 0 such

that

(5.124) Uµ+µs,σ(x0) ≤ Jµ+µs,σ(γε) + C(1 + ClipR)ε.

Proof. For convenience, we set U = Uµ+µs,σ, J = Jµ+µs,σ, and we extend µ, σ and

U to functions on R2 by setting µ(x) = σ(x) = U(x) = 0 for x 6∈ [0,∞)2. Writing

∆t = 1/K and tj = j∆t for j = 0, . . . , K, we can parameterize γε so that

(5.125) γ′ε(t) =
1

∆t
(xK−j − xK−j+1) =

ε

∆t
(1− s∗K−j, s∗K−j),
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for t ∈ (tj−1, tj) and j ≥ 3. It follows that∫ 1

t2

`(γε(t), γ
′
ε(t)) dt =

K∑
j=3

∫ tj

tj−1

`(γε(t), γ
′
ε(t)) dt

= ε

K∑
j=3

1

∆t

∫ tj

tj−1

µ(γε(t)) + 2σ(γε(t))
√

(1− s∗K−j)s∗K−j dt

≥ ε
K∑
j=3

(
1

∆t

∫ tj

tj−1

µ(xK−j) + 2σ(xK−j)
√

(1− s∗K−j)s∗K−j dt− 3Clipε

)

=

(
K∑
j=3

µ(xK−j) + 2σ(xK−j)
√

(1− s∗K−j)s∗K−j

)
ε− 3KClipε

2.(5.126)

An application of Hölder’s inequality gives

(5.127) J(γ) ≤
(
µ(xK−j) + 2σ(xK−j)

√
s(1− s)

)
ε+ 3Clipε

2,

for j ≥ 2 and any γ ∈ A with γ(0) = y(s) and γ(1) = xK−j. Combining this with

the dynamic programming principle (5.119) we have

(5.128) U(xK−j) ≤ µ(xK−j)ε+ max
s∈[0,1]

{
U(y(s)) + 2σ(xK−j)ε

√
s(1− s))

}
+ 3Clipε

2,

for all j ≥ 2. By the definition of s∗K−j we have

(5.129)

U(xK−j) ≤ U(xK−j+1) + ε
(
µ(xK−j) + 2σ(xK−j)

√
(1− s∗K−j)s∗K−j

)
+ 3Clipε

2,

for j ≥ 3. By iterating this inequality for j = K, . . . , 3 we have

U(x0) ≤ U(xK−2) +

(
K∑
j=3

µ(xK−j) + 2σ(xK−j)
√

(1− s∗K−j)s∗K−j

)
ε+ 3KClipε

2

(5.126)

≤ U(xK−2) +

∫ 1

t2

`(γε(t), γ
′
ε(t)) dt+ 6KClipε

2.(5.130)

We have two cases now. Suppose first that y(s∗K−2) 6∈ [0,∞)2. Then U(y(s∗K−2)) =

0 and by (5.128) we have that U(xK−2) ≤ Cε. Combining this with (5.130) we have

(5.131) U(x0) ≤ J(γε) + Cε+ 6KClipε
2.
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The proof is completed by noting that K ≤ 4R/ε.

Suppose now that y(s∗K−2) ∈ [0,∞)2. Then (5.129) holds for j = 2 and combining

this with (5.130) we have

(5.132) U(x0) ≤ U(xK−1) +

∫ 1

t2

`(γε(t), γ
′
ε(t)) dt+ 6(K + 1)Clipε

2.

Since xK = 0 we must have xK−1 ∈ ∂R2
+. It follows that∫ t1

0

`(γε(t), γ
′
ε(t)) dt = U(xK−1).

Inserting this into (5.132) we see that

U(x0) ≤ J(γε) + 6(K + 1)Clipε
2.

If µ and σ2 are not globally Lipschitz continuous, then Algorithm V.1 is not

guaranteed to yield optimal curves. However, it can be easily modified to give an

algorithm that does.

Corollary V.26. Suppose that µ and σ2 simultaneously satisfy (F1), (F3) and

(5.80), and let µs satisfy (F2). Let µk and σk be sequences of functions such that µk

and σ2
k are Lipschitz with constant k, µk ≤ µ, σk ≤ σ and Uµk+µs,σk → Uµ+µs,σ

locally uniformly. Let x0 ∈ (0, R]2 and let γk : [0, 1] → [0,∞)2 be the mono-

tone polygonal curve generated by applying Algorithm V.1 to x0, µk, σk and Uk with

ε = k−1(Uµ+µs,σ(x0)− Uµk+µs,σk(x0)). Then we have

(5.133) U(x0) ≤ J(γk) + o(1) as k →∞.

Proof. Let us set Jk = Jµk+µs,σk , J = Jµ+µs,σ, Uk = Uµk+µs,σk , and U = Uµ+µs,σ. By

Theorem V.25 there exists a constant C = C(‖µ‖∞, ‖σ‖∞) > 0 such that

Uk(x0) ≤ Jk(γk)+C(1+kR)k−1(U(x0)−Uk(x0)) ≤ J(γk)+C(1+R)(U(x0)−Uk(x0)).
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(a) Exponential DLPP with mean λ1
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(b) Geometric DLPP with parameter q
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Figure 5.5: Comparisons of the curve γε (ε = 0.01) generated by Algorithm V.1 to the
optimal paths from 10 realizations of DLPP for the macroscopic weights considered
in Section 5.5.1. In each experiment, we show the curve γε and optimal paths for
several different terminal points x0 ∈ (0, 1)2. Notice that in a), b) and c), there are
multiple optimizing curves, and Algorithm V.1 finds only one curve, depending on
the choice one makes when there are multiple maximizing arguments for s∗k. The
DLPP simulations were performed on a 1000 × 1000 grid, s∗k was computed via an
exhaustive search with a grid size of 0.01.

It follows that

U(x0) ≤ J(γk) + C(2 +R)(U(x0)− Uk(x0)).

We now show some simulation results using Algorithm V.1 to compute approx-

imately optimal curves for the exponential/geometric DLPP simulations presented

in Section 5.5.1. Figure 5.5 shows the curves generated by Algorithm V.1 along with

optimal paths for 10 realizations of DLPP on a 1000× 1000 grid. We also show the
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(a) Source at {x2 = 0}
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(b) Source at {x2 = 0.25}
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(c) Source at {x2 = 0.5}
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(d) Source at {x2 = 0.75}

Figure 5.6: Comparisons of the optimal curve γε (ε = 0.01) generated by Algorithm
V.1 to the optimal paths from 10 realizations of exponential DLPP. The macroscopic
weight functions are constant µ = 1 on [0, 1]2 plus a source term µs = 2 concentrated
on a horizontal line. The simulations were performed on a 1000× 1000 grid.

level sets of the numerical solutions of (P) to give points of reference. In all cases,

we used a step size of ε = 0.01 and computed s∗k in Algorithm V.1 by an exhaustive

search with a grid size of 0.01. With these choices of parameters, Algorithm V.1

runs in approximately a quarter of a second, assuming the numerical solution U is

already available. Note also that we implemented Algorithm V.1 exactly as written,

even when µ and σ are discontinuous, and do not substitute continuous versions as

in Corollary V.26.

As in [81], it is expected that the optimal paths for DLPP will asymptotically

concentrate around optimal curves for the variational problem, and this is clearly
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reflected in the simulations in Figure 5.5. Notice that for exponential DLPP with

means λ1, λ2 and geometric DLPP with parameter q, there are multiple maximizing

curves for any terminal point x along the diagonal {x1 = x2}. We see that some

of the DLPP realizations concentrate around one optimal path, while the remaining

realizations concentrate around the other. Algorithm V.1 will of course only find

one of the maximizing curves, depending on the choice one makes when there are

multiple maximizing arguments in the definition of s∗k.

We now show some simulations with a source term µs. Here we consider expo-

nential DLPP with mean λ = 1 on [0, 1] × (0, 1] and λ = 3 on [0, 1] × {0}. Figure

5.6(a) shows the optimal curve generated by Algorithm V.1, along with the level

sets of the numerical solution of (P) and the optimal paths from 10 realizations of

exponential DLPP on a 1000× 1000 grid.

Although our assumptions only allow sources on the boundary ∂R2
+, many of the

results in the paper can be shown to hold for sources along horizontal or vertical lines

in R2
+. The idea is to find the appropriate dynamic programming principle that plays

the role of Proposition V.5, so that the effect of the weights in the bulk is separated

from the source. In the case of a source along the line {x2 = α} for α ∈ (0, 1), and

assuming no boundary sources, the dynamic programming principle would be

U(y) = max
0≤x1≤x′1≤y1

{
W (0, (x1, α)) +

∫ x′1

x1

µ(t, α) + µs(t, α) dt+W ((x′1, α), y)

}
,

where U = Uµ+µs,σ, W = Wµ,σ, and µ and σ2 are, say, Lipschitz on [0,∞)2, and µs

represents the source, which is nonzero only on the line {x2 = α}. We can then use

this dynamic programming principle and its discrete version (similar to (5.101)) in

the proof of Theorem V.1. The one caveat is that U is in general discontinuous along

the line containing the source, though U remains locally uniformly continuous on each
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of the components of R2
+ obtained by removing the source line. Thus, U can only be

identified via the variational problem (5.35), since we have not proven uniqueness of

discontinuous viscosity solutions of (P). However, our numerical results suggest that

either uniqueness holds for (P) in some special cases where U is discontinuous, or at

the very least our numerical scheme for (P) selects the “correct” viscosity solution

for the percolation problem.

Figure 5.6(b), 5.6(c), and 5.6(d) show the optimal curve generated by Algorithm

V.1, along with DLPP simulations for sources on the horizontal lines {x2 = 0.25},

{x2 = 0.5}, and {x2 = 0.75}, respectively.

5.5.3 TASEP with slow bond rate

Finally, we consider the totally asymmetric simple exclusion process (TASEP)

with a slow bond rate at the origin. This model was originally introduced by

Janowsky and Lebowitz [56], and some partial results were obtained more recently by

Seppäläinen [84]. The process of interest is the usual TASEP with exponential rates

of 1 at all locations in Z except for the origin, which has a slower rate of r ∈ (0, 1].

One can think of this as modeling traffic flow on a road with a single toll both that

every car must pass through.

Through the correspondence with DLPP, the slow bond rate corresponds to a

source on the diagonal {x1 = x2}. In the context of our paper, we would have

(5.134) µ(x) =


1/r, if x1 = x2,

1, otherwise.

Notice that µ does not satisfy the assumptions of Theorem V.1, and we do not expect

the continuum limit (P) to hold in this case.
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A quantity of interest is

κ(r) := lim
N→∞

1

N
L(N,N) for r ≤ 1,

which corresponds to the reciprocal of the maximum TASEP current [84]. It is known

that κ(1) = 4 and Seppäläinen [84] proved the following bounds:

(5.135) max

{
4,
r2 + 2(1 + r)

2r(1 + r)

}
≤ κ(r) ≤ 3 +

1

r
.

It is an open problem to determine κ(r) for r < 1. In particular, one is interested

in whether κ(r) > 4 for all r < 1, or if there are some values of r close to r = 1 for

which the inverse current κ(r) remains unchanged.

Even though we do not expect our continuum limit Hamilton-Jacobi equation to

hold for the slow bond rate problem, it is nevertheless interesting to see what our

results would say about this open problem were they to hold. It is easy to see that

Uµ,σ(1, 1) = 4/r for µ = σ given by (5.134). Indeed, one can see that the optimal

curve in the variational problem (5.32) must lie on the diagonal {x1 = x2}, which

gives the energy 4/r. This would suggest that

κ(r) = lim
N→∞

1

N
L(N,N) = Uµ,σ(1, 1) =

4

r
.

Notice that this violates the bounds in (5.135), which indicates that the Hamilton-

Jacobi equation continuum limit (Theorem V.1) does not hold for sources along

diagonal lines.

5.6 Discussion and future work

In this chapter, we identified a Hamilton-Jacobi equation for the continuum limit

of a macroscopic two-sided directed last passage percolation (DLPP) problem. We

rigorously proved the continuum limit when the macroscopic rates are discontinuous.
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Furthermore, we presented a numerical scheme for solving the Hamilton-Jacobi equa-

tion, and an algorithm for finding optimal curves based on a dynamic programming

principle. Below we make some remarks, discuss simple extensions of this work, and

ideas for future work.

• Regularity of µ, σ: There are many simple modifications of (F1) under

which one can prove Theorem V.1. For example, the existence of the set Ω

bounded by the strictly decreasing curve Γ and ∂R2
+ on which µ = σ = 0 is

not necessary, and one can check that the proofs hold without this assumption.

This would correspond to a TASEP model with step initial condition. The

curves Γi on which µ and σ may admit discontinuities can all be chosen to be

strictly decreasing instead of increasing, with appropriate modifications in the

proofs. In fact, we can even allow the curves to switch from strictly increasing

to strictly decreasing, provided the critical point is isolated, and we make an

additional cone condition assumption at this point. However, the curves Γi

cannot have any positive measure flat regions, as this can induce discontinuities

in U , as shown in Remark V.7.

• Discontinuous viscosity solutions: The regularity assumption (F1) was

chosen to ensure that U is locally uniformly continuous. This is essential for

invoking the Arzelà-Ascoli Theorem in the proof of Theorem V.17, and in the

proof of the comparison principle for (P) (Theorem III.16). We believe that

Theorem V.1 holds under far more general assumptions on µ, allowing U to

be discontinuous. Presently, we do not know how to prove this. The largest

obstacle seems to be proving uniqueness of viscosity solutions of (P) when the

solutions U and the macroscopic weights µ are discontinuous. Our numerical
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results seem to support this conjecture, as the numerical scheme is able to very

accurately capture discontinuities in U .

• Hydrodynamic limit of TASEP: As we showed in Section 5.1.2, the Hamilton-

Jacobi equation (P) is formally equivalent to the conservation law governing

the hydrodynamic limit of TASEP [43, 83]. It would be very interesting to

make this connection rigorous.

• Higher dimensions: The main obstacle in generalizing the Hamilton-Jacobi

equation (P), and the results in this paper, to dimensions d ≥ 3, is the fact

that the exact form of the time constant (5.2) for i.i.d. random variables X(i, j)

is unknown. If an exact form for the time constant U were to be discovered

for d ≥ 3, then we anticipate no problems in generalizing the results in this

paper to higher dimensions. We should note that although the exact form of

U is unknown for d ≥ 3, it is known that U is continuous, 1-homogeneous,

symmetric in all variables, and superadditive, under fairly broad assumptions

on the distribution of X(i, j) [71]. This is enough to show that U is the vis-

cosity solution of some Hamilton-Jacobi equation, but the explicit form of the

equation is unknown.



CHAPTER VI

Conclusion

In this dissertation we discovered and rigorously proved continuum limits for some

sorting and percolation problems of interest in mathematical and scientific contexts.

The first problem we addressed was non-dominated sorting, which is fundamental

in multi-objective optimization problems. The sorting is akin to arranging points in

Euclidean space into fronts according to a partial order. We proved that the fronts

converge in the (random) large sample size limit to the level sets of a function that

satisfies a Hamilton-Jacobi equation in the viscosity sense. As an application of this,

we proved that non-dominated sorting is stable under bounded random perturba-

tions. We then proposed, and proved convergence for, a linear complexity numerical

scheme for solving this Hamilton-Jacobi equation. This allowed us to design a fast,

potentially sublinear, algorithm for approximate non-dominated sorting of massive

datasets. We evaluated our algorithm on a set of synthetic data, and on a massive

dataset from a real-world anomaly detection problem. Our results indicate that the

algorithm can significantly reduce the computational complexity of non-dominated

sorting while obtaining excellent accuracy in the asymptotic regime. We believe this

algorithm may be particularly useful in the big-data streaming context, where the

sorting would have to be efficiently updated upon the arrival of each new sample

170
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without keeping a history of previous samples.

The second problem we studied was directed last passage percolation (DLPP),

which is a stochastic growth model with many applications in scientific and math-

ematical contexts. The DLPP model is equivalent to a model of zero-temperature

directed polymer growth, to stochastic interacting particle systems, such as the to-

tally asymmetric simple exclusion process (TASEP), and to queuing systems, among

others. The DLPP model is also closely related to non-dominated sorting via the

longest chain problem, and we showed that by applying similar techniques, we could

derive and rigorously prove a Hamilton-Jacobi equation continuum limit for the time-

constant in a macroscopic two-sided DLPP model with discontinuous exponential or

geometric weights. We proved convergence of a fast numerical scheme and showed

how to use dynamic programming to find the asymptotic shapes of optimal DLPP

paths. We also showed formally that this Hamilton-Jacobi equation is equivalent to

the conservation law for the hydrodynamic limit of TASEP. This Hamilton-Jacobi

equation is new in the context of DLPP and TASEP, and we believe it will prove to

be a useful tool for studying properties of the hydrodynamic limits of these important

stochastic processes.

This dissertation opens up several avenues for future research, so let us say a few

words about some of these possibilities. First, we can view the PDE-based approach

to non-dominated sorting presented in Chapter IV as merely one particular technique

for estimating the viscosity solution U of the Hamilton-Jacobi equation (P) for non-

dominated sorting from i.i.d. samples X1, . . . , Xn. There are certainly many other

approaches one could take to perform this estimation, e.g., one could use a different

density estimator, or one could consider invoking the variational problem associated

to the Hamilton-Jacobi equation. Thus, an important question is the following:
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Among all estimators of U from X1, . . . , Xn, what is the best rate of convergence in

n? A related problem is to construct an estimator that achieves the optimal rate.

The question of optimal convergence rates is critical in practice, because it tells us

in a very precise sense how large we need to make n to achieve a desired degree of

ranking accuracy. This is particularly useful in the context of big data streaming

problems, as it would tell us how much of the incoming data we can discard without

sacrificing sorting accuracy.

A second direction for future work concerns the numerical scheme for solving

the Hamilton-Jacobi equation (P). Since the complexity of our scheme grows expo-

nentially fast in dimension, we found the algorithm useful in only relatively small

dimensions, i.e., d = 2, 3, 4. Thus, one important questions is: How do we numeri-

cally solve (P) efficiently in higher dimensions? This is a crucial question if one is to

use the Hamilton-Jacobi equation (P) for non-dominated sorting in even moderately

high dimensions. Some ideas one could pursue include using the method of charac-

teristics, and performing gradient ascent to find maximizing curves in the variational

interpretation of (P). We provide evidence in Chapter IV indicating that our scheme

has an accuracy on the order of O(h
1
d ), which scales poorly in dimension. Thus

another important question is the following: Is there a more accurate scheme for

solving (P) even in low dimensions? One would hope to obtain an O(h) scheme for

a particular class of density functions, and we would like to discover such a scheme

and prove the increased accuracy rigorously. Such a scheme would allow us to use a

coarser grid, and may possibly allows us to use the scheme for non-dominated sorting

in a higher dimension then we are currently able to.
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[83] T. Seppäläinen. Hydrodynamic scaling, convex duality, and asymptotic shapes
of growth models. Unpublished, 1996.
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