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ABSTRACT

Interaction Dynamics in Oscillator and Human-in-the-loop Systems

by

Bo Yu

Chair: R. Brent Gillespie

This dissertation addresses control system analysis and system identification in three

areas: error propagation in synchronization of harmonic oscillators, modeling of

human active movement while grasping objects, and identification of human feedback

and feedforward control in manual pursuit tracking. Commonly occurring within

systems in these three areas are two types of communication: one-way communica-

tion between system elements by information signals and two-way interaction across

mechanical contacts (involving force and motion signals in pairs).

While most studies of synchronization in oscillator systems have focused on the

existence of synchronous solutions in steady state, many problems pertaining to the

transient dynamics have not been fully resolved. We extend the well-established

theory of fundamental limitations to study the transient error propagation (string

stability) in a string of synchronized harmonic oscillators. We first develop a new

Bode integral to accommodate the pure imaginary poles of oscillator dynamics. We

then translate design requirements in terms of time-domain response and hardware

limitations into a set of constraints on closed-loop frequency response. We further

capture the conflict between string stability on the one hand and time-domain design

requirements and hardware limitations on the other.

Modeling human active movement is a challenging problem not only because mus-

cle has very sophisticated and highly nonlinear dynamics but also because neural and

other signals internal to the body are difficult to observe directly. We seek a simple

yet general and competent model to describe active movement in object manipulation

tasks. Inspired by the Norton equivalent circuit in electrical engineering, we build

a model based on the motion and force/torque signals that may be observed at the

xi



points of contact between a human hand and the environment. The model consists of

a motion source to represent a human’s motor plan and a spring-mass-damper coupler

to capture the time-varying driving point impedance of the human hand. The model

is validated using occasional experimental trials in which a participant experiences

unexpected loads in a grasp and twist task.

Although a large amount of literature has provided methods to identify feedback

control in manual tracking tasks, very little research has been undertaken to exper-

imentally identify feedforward control. We capitalize on the theory of fundamental

limitations to study the link between a human’s ability to simultaneously reject

disturbances and perform pursuit tracking. We further develop an identification

method to separate human feedback and feedforward control strategies in sinusoidal

tracking tasks.

The control models of human operators in this work have applications in many

fields involving a human in the loop. Examples include human interaction with

virtual haptic systems, human skill transfer, assist for neurodegenerative disorders,

and rehabilitation after neurological injury.

xii



CHAPTER I

Introduction

The rapid proliferation of embedded and networked microprocessors has created

many new opportunities for controls. One of these is the replacement of traditional

mechanical linkages with cyber (or virtual) connections. Another opportunity is

the possibility for multiple independent agents to coordinate their activity through

communication networks in order to achieve a common goal. Examples arise in

many application domains, including vehicle platooning in transportation systems

[90], consensus in formation control [73], synchronization of network-coupled oscil-

lators [21], and the design of steer-by-wire and fly-by-wire systems [83]. In these

applications, information exchange takes place through virtual connections instead of

physical linkages.

Physical connections inherently provide two-way information flow between agents,

through the reaction forces that they impose upon one another [40]. This observation

was first made by Newton in his famous third law: “To every action there is always

opposed an equal reaction; or the mutual actions of two bodies upon each other

are always equal, and directed to contrary parts.” Moreover, physical connection-

s fundamentally result in energy exchange through the power-conjugate force and

motion variables. On the other hand, virtual connections allow greater flexibility in

the information exchanged between agents, yet pose another set of issues not present

when agents are connected physically1. For example, the failure modes of virtual

connections may be poorly understood. If the coupling is virtual, there may be no

physical intuition for the behavior of the system as a whole, especially when a human

and computer are cooperating to achieve a desired goal. Use of visual feedback by a

human driver controlling headway to the preceding vehicle is an example of a virtual

link that lacks a simple physical equivalent. Actions transmitted through such a

1Two-way interactions may also be present in a virtual connection, but that would be a
consequence of design rather than physics.
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virtual link need not be accompanied by reactions, and need not carry energy or

power. Whether the human or computerized agent is interfaced to a physical link

has very important implications in achievable cooperative control performance or

human/machine interaction.

The goal in this dissertation is to describe relationships between properties and

performance in the framework of controls for systems that mix human and computer

and that include physical and virtual links. Specifically, this dissertation aims to

study control system analysis and system identification in three different areas:

1) the error propagation phenomenon in synchronization of coupled oscillators;

2) human movement modeling for grasp and twist tasks;

3) identification of human feedback and feedforward control in manual pursuit

tracking of sinusoidal signals.

1.1 Synchronization of Coupled Oscillators

Synchronization of a network of coupled oscillators has been a hot topic in various

scientific areas ranging from biology, physics, and chemistry to social networks and

engineering [93, 45, 21]. Here synchronization means the adjustment of rhythms of

oscillating objects to achieve a uniform oscillatory state through inter-agent virtual

or physical interactions. Maybe the first observed phenomenon of coupled oscillation

in inanimate objects was discovered by the great Dutch scientist Christiaan Huygens

in 1665 [7]. He observed the synchronization of two pendulum clocks mounted in one

wooden beam: no matter how the pendulums started out, eventually they always

ended up swinging in exactly opposite directions; Further, if this agreement was

disturbed by some interference, it reestablished itself in a short time. Since then

a rich body of literature has grown on synchronization among coupled oscillators

and it still fascinates the scientific community nowadays due to the existence of

certain applications in science and engineering. Application examples include flashing

fireflies, chirping crickets, central pattern generators for animal locomotion, Hodgkin-

Huxley model of neurons, phase locking in solid-state circuit oscillators, ground vehi-

cle coordination, synchronization in semiconductor laser arrays, clock synchronization

in decentralized computing networks, and network-reduced power system models,

to name just a few [67, 22]. The past twenty years have witnessed considerable

theoretical progress and novel applications in different disciplines.
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The control community has also contributed to the field by providing novel re-

sults. Most of the results are focused on synchronization (rather than more complex

phenomena) among a finite number of oscillators with simple (e.g. a string structure

or tree structure) topologies [56, 88, 14]. Some of the work used graph theory to

describe the virtual or physical links in such oscillator systems [103, 81]. A commonly

used model of coupled oscillators is the Kuramoto oscillator or its variations [14].

In many studies each oscillator is coupled only to a subset of the others, and the

coupling constants are allowed to vary with time, perhaps modeling a situation in

which the oscillators are coupled through communication over a switching network.

Achieving synchronization in coupled oscillators implies the existence and stability of

synchronous solutions in steady state. Various interaction laws and communication

topologies have been designed to guarantee synchronization in steady state. However,

many problems pertaining to the transient response have received little attention and

still need to be fully resolved. The analysis of transient dynamics aims to characterize

what happens before a multi-agent system settles to the synchronized states after

a disturbance or perturbation. Other research areas in multi-agent systems have

illustrated that the poor transient dynamic response may produce alarming behaviors

even when the whole system is able to achieve consensus eventually.

String instability in vehicle platooning is one example of a behavior that emerges

from a multi-agent system with virtual links and has long been recognized. String

instability is an error propagation phenomenon in which a disturbance to the lead

vehicle will necessarily be amplified as it propagates along the vehicle platoon. Early

studies of string instability were undertaken in the context of specific control laws,

such as PID and optimal control [75, 59]. This made comparison between different

communication schemes problematic, in that the observed string instability may have

been due to a poor choice of controller gains rather than to the particular commu-

nication scheme adopted. Only very recently have such statements been made for

agents using arbitrary control policies, using analysis from the theory of fundamental

design limitations [87, 66]. In these studies the agent model contained a single or

double integrator. Significant gaps remain in the determination of fundamental design

limits for cyber-physical systems with more complex agent models such as harmonic

oscillators.

Our objective is to extend fundamental design limitations theory to cover systems

with mixed cyber and physical components. Specifically, we contribute tools that

delineate tradeoffs between performance and feedback properties for control systems

involving hardware dynamics, controllers, communication topology, and time delays.

3



We assess the contribution to system behavior (e.g. string stability) of each agent’s

realization in hardware (whose behavior is subject to the laws of Newton) as well as

realization in software and communication (where behavior is subject to the funda-

mental limitations of Shannon and Bode). The ability to express such relationships

for classes of dynamics, controllers, and topologies significantly extends the tools

available to predict behaviors emerging within multi-agent systems. The results in this

dissertation contribute to the literature of synchronization of linear coupled oscillators

by illustrating the fundamental relationship between transient response behavior and

system properties.

1.2 Human Movement Modeling for Manual Tasks Involving

Anticipatory Control

The maxim of “practice makes perfect”applies widely to our everyday activities

that involve the development of motor skills. Dexterous object manipulation is

learned from previous body-object interactions. For example, we learn how to make

agile and quick maneuvering to play soccer games, which require dexterity with the

legs and feet. We also establish well-organized actions to achieve desired outcomes in

our daily life. For instance, consider grasping a water cup to take a drink. We use

proper grip forces that balance grasp stability and effort to lift cups with different

weights. Depending on how full the water cup is, we choose appropriate grip force

and trajectories to move the cup and carefully avoid spills.

The simple grasp and lift task has attracted research in the scientific community

for decades. Much research has focused on the fine coordination of grip force and

load force during grasp and lift tasks [48, 46, 51]. Experimental results have shown

that the grip force is precisely controlled so that it is just slightly greater than the

minimum grip force needed to prevent slip under normal conditions [47]. Such grip-

force load-force coordination also exists when gripping objects with different surfaces

[48], curvatures [43], and shapes [44] as well as when gripping objects in virtual haptic

environments [26].

The human hand trajectories during these grasp and lift or similar grasp and

twist movements have not received much attention compared with the grip-force

load-force coordination. Ample research results have shown that human movement

trajectories have certain patterns. Some famous examples include Fitts’s law [25], the

bell-shaped velocity profile in fast reaching tasks, and the minimum jerk performance

index [102, 28]. The movement trajectories of human hands in grasp and lift or

4



grasp and twist tasks probably also display very repeatable patterns, e.g. the smooth

velocity profiles [47, 46] and the overshoots in position signals for catch trials [47].

However no mechanical models that can produce such trajectories have been proposed

and experimentally tested. In this dissertation, we attempt to establish a simple and

competent mechanical model for a prototypical grasp and twist task. Our model

is based on the observed interactive behavior in the mechanical domain of motions

and forces at the points of contact between human hands and the physical or virtual

environments.

The dynamic interaction between the human musculoskeletal system and the

environment results in the transmission of power because the force and motion are

energetically conjugate at the point of contact. The two-way interaction with power

transmission may be partially characterized by mechanical impedance [38, 80, 12].

Mechanical impedance describes the relationship between a displacement imposed

on a system and the evoked force. This property is very important for human

posture control [20, 97], movement [96], and even the stability of haptic interfaces

[105]. Humans can also voluntarily control mechanical impedance to achieve certain

goals, such as to stabilize an unstable environment [12]. Sometimes, humans can also

choose the appropriate impedance of the body to take advantage of the interactive

environment to perform certain tasks.

The structure of various models used to describe mechanical impedance of the

human body differs significantly in the literature. The difference is in part due to the

intrinsic properties of various body structures. It can be as simple as a pure spring [31]

and it can also be as complex as a double spring-damper-mass system that has five

parameters [30]. Maybe the most common impedance model is a second-order spring-

damper-mass system, which has been used to model the finite impedance of finger

tips [34], human hands grasping a knob or a wheel [35], and joint dynamics [55].

Experimental identification of impedance requires mechanical perturbation. Both

time-domain identification methods (e.g. least square fit of time-domain data) [97, 34,

35] and stochastic identification methods [91, 105, 58] (e.g. white noise perturbation)

have been utilized to characterize the mechanical impedance. Moreover, the human

body’s mechanical impedance has strong adaptability [12, 1] and evidence shows that

in certain tasks the impedance values depend on grip force [34, 35] or postures [97].

The physically measurable mechanical impedance itself cannot fully describe a

human’s active movement to realize a desired trajectory. Generating active movement

requires the participation of some biological actuators like muscles. In engineering,

any actuator has two important aspects: the “driving point impedance” and “forward-
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path response function” [39, 40]. The forward-path response function for human

active movement describes how the neural input from the central nervous system

(CNS) affects the movement trajectory. How to characterize the human neural input

or motor plan that is generated by the CNS when he or she is interacting with physical

or virtual worlds is a common problem in various fields such as biological neuromotor

control, haptic interface design, and teleoperation. Even for a simple grasp and twist

task, it is not easy to decipher the motor plans produced by the CNS that control

active movement. Clearly, when grasping and twisting an object, a human’s hands

are neither a pure position source nor a pure force source because such pure position

or force sources are not backdrivable. The simplest way to incorporate the mechanical

impedance and forward-path response function is to combine a position source that

represents the motor plans with a mechanical impedance. The position source is

coupled to the mechanical impedance in a manner that is analogous to the current

source in the Norton-equivalent electrical circuit. Several papers in the literature have

attempted to identify such a motion source [37] by designing algorithms to eliminate

the interaction torque or force between the motion source and the environment.

However, the identified motion source may not be able to model normal human

and object interaction due to the presence of interaction force and humans’ strong

adaptability to different tasks.

Despite the success of identifying the mechanical impedance and motion source,

these two important parts have not been put together to predict human active

movement nor has the simple model been validated against experimental data. The

difficulty in validating this model is partially due to humans’ adaptability for different

tasks [12, 1]. In this dissertation, we attempt to build an active movement model

that captures the adaptability to different environments in a grasp and twist task

and also validate this model using “catch trial” experimental data. A motorized

haptic device was used to render two different virtual environments that the human

user interacted with. One is a heavy load and the other is a light load. We assume

the impedance values change with grip force and hence we identify the relation-

ship between impedance values and grip forces from separate system identification

experiments. We also assume the same relationship between grip force and twist

impedance holds for the active grasp and twist task. An algorithm was formulated

to estimate the position sources from the experimental data. We demonstrated that

subjects generally use different position source and grip force for these two virtual

loads. When the virtual environment changed and the subjects were not aware of

the change (we call this a “Catch Trial”), the human hand movement trajectories
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would be distorted relative to the normal trajectories with overshoot or undershoot.

We checked our proposed model using catch trial data by comparing the predicted

trajectory distortion with the experimental data.

Our proposed simple model can be extended to study other human movement

behaviors and human-machine interfaces. Of particular interest to us is the phenom-

ena in human interaction with virtual haptic systems in our teaching lab (Embedded

Control Lab). Studying interactive behaviors in such systems containing a human

in the loop sometimes requires an active human model [105]. Another application

is to utilize our proposed model for human skill transfer. The proposed model can

be used not only for transferring human movement strategy to robots [42], but also

for helping less-skilled humans improve their performance. Automotive industry is

another domain that the simple human model can find applications, e.g. the active-

steering control system design [95, 68, 4] in which most human models only contain

passive driving point impedance or if they contain active control, they lack backdrive

impedance [2].

1.3 Human Feedback and Feedforward Control in Manual

Pursuit Tracking of Sinusoidal Signals

We carry out various control tasks in our lives that range from the simple grasp

and twist tasks like opening a door knob to relatively complex tasks such as driving a

vehicle or piloting an airplane. Human operator models are important in integrated

man-machine systems. The capabilities and limitations of the human operator in

operating the man-machine system need to be measured and described as accurately

as possible. An accurate and robust human operator model provides constraints for

the design of such man-machine systems and also enables the test of the integrated

system with human operator models in a closed-loop fashion.

Models for the human operator can be dated back to 1940s. Early studies in

this area were motivated by a need for pilot models that could be used in the design

of warplanes and spaceships for space exploration [98, 24, 64]. Most of the research

during this early stage was devoted to understanding the characteristics of the human

as a controller of single variable, single display linear time-invariant (LTI) systems.

The proposed quasi-linear models in [98, 24, 64] are surprisingly adept at predicting

human behavior in this simple but important class of tracking tasks.

Some of the recent studies on human operator modeling concentrate on models

for drivers’ control behavior in part due to the research in advanced active safety
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engineering and autonomous vehicles [60, 13, 15, 99]. In the literature, a wide range

of driver models employ various modern control methods. These range from the use

of optimal control [15] to those using PID controllers [99] or complex models for

modelling human behaviour using fuzzy logic and Markov dynamic models [13, 74].

Most of the human operator models focus on the feedback control representation

of human operators in response to unpredictable reference signals. Several research

papers have indicated that human operators may use a combination of feedforward

control on the reference signal and feedback on the remaining error for pursuit display

[100, 76, 104, 78]. Here feedforward control is defined as control actions based on the

target signal: either from perceiving the target on the display or from memorized

or inferred knowledge on the target signal properties. Feedforward control can be

made without the sensory feedback information that evolves during the tracking

tasks, and may require internal models of the reference signal and the controlled

dynamics for accuracy. Hence feedforward control actions can occur rapidly, as no

delay from the feedback loop is involved. On the other hand, feedback control involves

modification of the ongoing movement to reduce errors using sensory information.

Therefore feedback control allows for better accuracy and error correction, but is

relatively slow. Despite ample empirical evidence supporting the existence of feed-

forward control, feedforward behavior has not been found by system identification

techniques nor were feedforward models developed and validated by experimental

data until the appearance of [23]. The authors of [23] used two independent system

identification techniques to identify the feedback and feedforward controllers in human

operators when tracking predictable ramp signals. These techniques were ARX model

analysis and a time-domain maximum-likelihood method. The feedforward controller

identified was similar to the inverse of the system dynamics.

In this dissertation, we propose a different identification method to separate

the feedforward and feedback control when human operators track pseudo random

signals and single sine waves. In contrast to the approach in [23] in which the

methods were developed from the viewpoint of system identification theory, we will

capitalize on fundamental limitations theory [89]. It is well-known that human

operators can reject low frequency disturbances but not the ability to suppress high

frequency disturbances. Through an analysis using fundamental limitations theory,

the ability for disturbance rejection determines the ability for reference tracking

using feedback control due to a fundamental limit in unity feedback control systems.

Once the feedback control is identified from disturbance rejection performance, the

feedforward control can be separated from the reference tracking performance. Our
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results show that the feedback controller resembles McRuer’s “crossover model” [64],

and the feedforward controller attempts to invert the system dynamics that the human

operator is manipulating if the reference signal is predictable, which matched the

results in [23]. And when the reference is not predictable, the feedforward controller

loses the ability to invert the system dynamics and the tracking performance mostly

depends on the feedback controller.

We have used the proposed identification methods to study the phase lag discrep-

ancies in tracking pseudo-random signals and single sine waves [41, Section 13] in

this dissertation. The proposed methods would also have applications in other areas,

such as motor control and rehabilitation. The identification method can be incor-

porated with other observable brain processes through the fMRI or EEG techniques

to characterize the motor performance. With these brain processes, researchers have

examined which brain regions contribute to feedback and feedforward motor control

processes [86]. Also, the pursuit tracking tasks in this dissertation have been used as

common tasks to study the impairment of voluntary movement by patients suffering

from Parkinson’s disease [29, 8, 18, 71]. So far, linear dynamic system approaches to

separate the feedback and feedforward behaviors have not been used in human motor

control. The proposed novel methods can be further extended for clinical rating

scale development and rehabilitation performance estimation for neurodegenerative

disorders [71, 5].

1.4 Contributions

The contributions of this dissertation fit directly into the research gaps discussed

in the previous sections. In brief, the novel contributions are

1. Development of a new Bode integral for systems with oscillator dynamics

2. Interpretation of design specifications in a synchronized oscillator system as fre-

quency domain constraints imposed on the complementary sensitivity function

3. Analysis of a conflict between certain design specifications and string stability

in synchronized oscillator strings

4. Identification of a human active movement model containing a motion source

and a grip force dependent mechanical impedance that describes motor behavior

in grasp and lift tasks

9



5. Experimental validation of the human active movement model through the use

of catch trials, in which human subjects occasionally experience unexpected

loads

6. Development of a novel identification method that incorporates fundamental

limitations theory to separate feedback and feedforward control in human man-

ual tracking tasks

7. Analysis of the relationship between disturbance rejection and pursuit tracking

in human manual tracking tasks

1.5 Dissertation outline

This dissertation is organized as follows. Chapter II introduces the string in-

stability problem in a string of coupled harmonic oscillators. A new Bode integral

is first developed to accommodate the pure imaginary poles of oscillator dynamics.

Design requirements in time-domain responses and hardware limitations are then

translated into a set of specifications on closed-loop frequency responses. We further

analyze conflicts between design specifications, communication time delays, and string

stability due to the Bode integral. We capture the severity of string instability in

oscillator systems that depends on the design specifications and time delays. Several

methods to improve string stability are also discussed.

Grasping and twisting are basic motor skills for the execution of activities in daily

life such as opening a door with a door knob. Chapter III studies the relationship

between grip force and hand trajectory during a grasp and twist task when unexpected

load torques are encountered. The experimental results on grip force development

and hand trajectories are consistent with similar studies on grasp and lift tasks in the

literature. We also seek to build a simple model to study human feedforward control

during grasp and twist movement. Our model includes a position source and driving

point impedance. We provide detailed procedures to identify the relationship between

the impedance values and grip forces and the algorithm to estimate the position

source. We check our model by comparing the model prediction and experimental

data on certain catch trial trajectories.

Chapter IV proposes a method to identify human feedback and feedforward control

in manual tracking systems. Instead of only using the reference signals in most

tracking tasks, we add a disturbance signal in order to investigate the human’s

ability to suppress output disturbances. Through the theory of fundamental limits,
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we illustrate that the ability to reject disturbances also determines the ability for

pursuit tracking using feedback control, and then separate the feedforward control

based on pursuit tracking performance. The experiments involving tracking pseudo

random signals and single sine waves are designed to demonstrate the effectiveness

of the proposed method. Our results show that the feedforward controller is similar

to the inverse of the system dynamics that the human users are manipulating if the

reference signal is predictable while the feedforward controller is no longer the inverse

of the controlled dynamics if the reference signal is unpredictable.

In Chapter V, we summarize the results in this work. Future extensions and

possible research directions are also provided.
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CHAPTER II

Beyond Synchronization: String Instability in

Coupled Harmonic Oscillator Systems

2.1 Introduction

Many researchers have studied the problem of synchronization in systems of cou-

pled oscillators. As noted in [72, 82, 107], this problem may be viewed as a special case

of consensus control in multi-agent systems, in which each oscillator communicates

with a subset of its neighbors for the purpose of achieving synchronization. The

synchronization of oscillators finds applications in many different areas [93, 14, 22],

e.g. synchronously flashing fireflies, microwave oscillations, and electrical power

networks. Depending on the communication topology, the oscillators may or may

not be able to achieve synchronization. The ability to do so also depends on the

presence of communication time delays and changes in the communication topology.

In this chapter, we study the effect of a disturbance on a system of coupled oscillators.

Specifically, we wish to know whether the effect of a disturbance to one oscillator

will be amplified or diminished as it propagates through the synchronized oscillator

system.

Our approach to the problem of disturbance propagation for a system of oscillators

is inspired by the literature on the problem of string instability that may arise in

vehicle platooning (e.g. [75, 94, 87, 50, 66, 69]). Specifically, we first consider a string

of oscillators, in which one is the leader, and with which the remainder attempt to syn-

chronize their oscillations by tracking only their immediate predecessor in the string.

It is known that this predecessor-following strategy will exhibit string instability under

certain conditions for vehicle platoons. More complex communication schemes, on

the other hand, may allow the design of control laws that are string stable. For

example, when each vehicle may communicate with both its immediate predecessor
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and successor a controller supporting string stability exists. Early studies of string

instability were undertaken in the context of specific control laws, such as PID [75].

This made comparison between different communication schemes problematic, in that

the observed string instability may have been due to a poor choice of controller gains

rather than the communication scheme adopted. The authors of [87], on the other

hand, show that, under appropriate hypotheses, certain communication topologies

will lead to string instability for any linear controller. To show this, they applied the

theory of fundamental design limitations [89], which enables such general statements

to be made assuming only that the controller is stabilizing. In [87], it is assumed that

all the vehicles have the same model and use the same control law, and it is shown

that the predecessor-following control law will necessarily lead to problems of string

instability for constant spacing between vehicles. The authors of [66] greatly extend

the results in [87] by considering heterogeneous platoons and more general spacing

policies and communication topologies. However, this string instability analysis in

vehicle platooning cannot directly be used to study the disturbance response and

error propagation problems in synchronized oscillator systems mainly due to the fact

that vehicles are modelled by integrators with one or two poles at origin and harmonic

oscillators’ model has two purely imaginary poles.

Many papers on oscillator synchronization use the first order, nonlinear Kuramoto

model [14], or an appropriate extension thereof [82, 72]. In order to apply the theory

of fundamental design limitations, we instead use the second order, linear oscillator

model described in [81]. This will enable us to use the fact that such oscillators

have poles on the imaginary axis, and to generalize the results from the theory of

fundamental limitations that were used in [87, 66]. We start our analysis by studying

the problem of string instability in a string of identical harmonic oscillators, each

trying to track its immediate predecessor using an identical control law corresponding

to the predecessor-following strategy used in vehicle platooning studies. By applying

the theory of fundamental design limitations [89], we develop a Bode-like integral

relation that holds for any stabilizing control law. This integral relation may be used

to show that any string of oscillators that satisfies certain time domain performance

specifications, bandwidth limitations, and communication delays must necessarily be

string unstable.

String instability is clearly not a desirable feature in a string of oscillators. We

therefore study strategies that may enable string stability to be present. These are

motivated by similar studies of vehicle platooning that include the use of heteroge-

neous control laws, an extended communication range, and time headway [87, 66].
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In this chapter, we develop an extension of the concept of time headway that is

applicable to oscillator systems, and show that including such headway in the control

law can also result in string stability. We then extend our string instability analysis

to consider the heterogeneous controller design and a more general communication

range between oscillators.

The remainder of this chapter is outlined as follows. In Section 2.2, we provide

some background on oscillator synchronization and review the integral constraint on

the complementary sensitivity function that was used in [87] to study the string insta-

bility problem in vehicle platooning. This integral constraint is not applicable to our

problem, and thus in Section 2.3 we propose a more general integral relation that may

be applied to oscillator systems. We use this result to derive three sufficient conditions

for string instability in Section 2.4. Specifically, we assume that a controller has been

designed that satisfies certain time and frequency domain design specifications, and

show that this assumption implies a lower bound on the peak in magnitude response

of the complementary sensitivity function; if this lower bound exceeds one, then string

instability is present. We then introduce the time headway concept for the oscillator

system to improve the string stability and extend our string instability analysis to

consider heterogeneous strings and a more general communication range in Section

2.5. The results of the chapter are illustrated with numerical examples in Section 2.6.

Conclusions and future research directions are given in Section 2.7.

Notation: Denote by OLHP, CLHP, ORHP, and CRHP respectively the open-left,

closed-left, open-right and closed-right halves of the complex plane. We use Re and

Im to represent the real and imaginary parts of a complex number, respectively. We

use log to denote the natural logarithm and arg to denote the principal branch of the

argument of a complex number. The relative degree r of a rational transfer function

is the degree of its denominator minus the degree of its numerator polynomial. The

notation P (s) ⋆ u(t) is used to denote the time response with zero initial conditions

of a linear time-invariant system with transfer function P (s) and input u(t). The

notation ⌈x⌉ represents the smallest integer no smaller than x. The product notation

that includes matrices is defined as follows:
∏n

i=1Mi , MnMn−1 · · ·M2M1.

2.2 Preliminary Results on Synchronization of Oscillators

and String Instability

The objective of synchronization is to find the conditions on network topology

and coupling algorithms that guarantee the oscillators can collectively achieve syn-
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chronized behaviors. The existing literature shows that the ability to achieve syn-

chronization in oscillator systems depends on both the communication topology and

the control algorithms that prescribe how one oscillator interacts with its neighbors

[81]. Even if an oscillator system can achieve synchronization, other issues such as

disturbance response will affect its performance and practicality. In the following,

we will demonstrate the problem of disturbance response and error amplification in a

synchronized homogeneous oscillator system with a simple communication topology.

Consider the series connection, or string, of n single-loop feedback systems de-

picted in Figure 2.1. We assume that these systems are all identical, with each plant

1r
1e 1

y
( )C s ( )P  s

−

. . .2e 2y
( )C s ( )P  s

−

ne ny
( )C s ( )P  s

n-1y

−

d
out

Figure 2.1: Block diagram depicting a string of stabilized oscillators with length n.

described by a proper rational transfer function of the form

P (s) = P0(s)
1

s2 + α2
, (2.1)

where P0(s) has no zeros at s = ±jα, and with rational and stabilizing controller

C(s). Each plant thus contains the dynamics of a harmonic oscillator with natural

frequency α radians/second.

Suppose that we desire each oscillator in the string to track the position of its

immediate predecessor. Following the terminology used in vehicle platooning, we

refer to the system in Figure 2.1 as a predecessor-following control architecture.

Denote the commanded position to the lead oscillator by r1(t), and the positions

and tracking errors of the ith oscillator as yi(t) and ei(t), respectively. Let dout(t)

denote a disturbance entering at the output of the first oscillator. Each error signal

can thus be expressed as

ei(t) =







r1(t)− y1(t), i = 1,

yi−1(t)− yi(t), i ≥ 2.
(2.2)

Define the open loop transfer function L(s) = P (s)C(s), and the sensitivity and

complementary sensitivity functions by

S(s) =
1

1 + L(s)
, T (s) =

L(s)

1 + L(s)
, (2.3)
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respectively. Then the Laplace transforms of the tracking error signals satisfy

E1(s) = S(s)R1(s)− S(s)Dout(s),

Ek(s) = T (s)Ek−1(s), k ≥ 2,
(2.4)

and thus

Ek(s) = T k−1(s)E1(s), k ≥ 1. (2.5)

The presence of the plant poles at ±jα implies that T (±jα) = 1 and S(±jα) = 0.

Hence the steady state error in response to an input of the form r1(t) = A sin(αt+φ)

will be equal to zero for each oscillator in the string. In this way the motion of all

the oscillators in the string will synchronize to that of the lead oscillator. We see

from (2.4) that the command r1(t) and output disturbance dout(t) affect the system

symmetrically, and thus conclusions drawn about the command response also apply

to the disturbance response.

In such a homogeneous oscillator system, the synchronization problem reduces

to the design of a controller C(s) such that T (s) is stable. Suppose T (s) is stable

and there exists a frequency ω for which |T (jω)| > 1. Then (2.5) implies that any

disturbance to the lead oscillator at this frequency will be amplified as it propagates

to successive oscillators. As the number of oscillators increases, the error will be

amplified without bound, and the string in Figure 2.1 will be string unstable.

Similar phenomena of string instability have appeared in vehicle platooning. One

approach to study the string instability problem in vehicle platooning is to use theory

of fundamental limitations [89] to derive conditions for string instability that apply

to all linear time-invariant controllers. In studies of string instability in vehicle pla-

tooning, one may derive sufficient conditions for string instability using the following

integral relation, dual to the Bode sensitivity integral, that must be satisfied by the

complementary sensitivity function [89, Theorem 3.1.5].

Theorem II.1. (a) Consider a unity feedback system with plant P (s) and stabilizing

controller C(s). Assume that L(s) is rational and proper, with Nz zeros in the ORHP,

{zi : i = 1, . . . , Nz}. Assume further that L(s) may be factored as L(s) = L0(s)/s
k,

where k ≥ 1 and L0(s) has neither poles nor zeros at s = 0. Then

∞∫

0

log |T (jω)|
dω

ω2
=

π

2
T ′(0) + π

Nz∑

i=1

1

zi
, (2.6)

where T ′(0) = lims→0 dT (s)/ds.
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(b) Suppose, in addition, that k ≥ 2. Then T ′(0) = 0, and

∞∫

0

log |T (jω)|
dω

ω2
= π

Nz∑

i=1

1

zi
. (2.7)

Since complex zeros must occur in conjugate pairs, it follows that the right hand

side of (2.7) is real and nonnegative. It follows immediately from (2.7) that if L(s)

has a double integrator, then necessarily there must exist a frequency for which

|T (jω)| > 1. This fact was used in [87] to show that a platoon of identical vehicles

in the predecessor-following control architecture must be string unstable. Recently,

the results of [87] were generalized in [66] to provide sufficient conditions for string

instability with heterogeneous platoons and more general control architectures. The

assumption of a double integrator is reasonable for study of vehicle platoons to model

the vehicle with torque as input and position as output. If only a single integrator is

present, then an integral constraint still holds, but need not imply that |T (jω)| > 1

due to the term T ′(0), which may be negative. As discussed in [89], this term is

inversely proportional to the velocity constant of a Type 1 feedback system.

Theorem II.1 is not applicable to our study of oscillators because it is based on

the double integrator model and the harmonic oscillator has a pair of pure imaginary

poles. In the following section, we will derive a new generalized complementary

sensitivity integral, which can be used for harmonic oscillator systems and includes

the integrals in Theorem II.1 as special cases.

2.3 A New Generalized Complementary Sensitivity Integral

We propose a new integral relation that the complementary sensitivity function

must satisfy whenever L(s) contains a pair of poles on the imaginary axis.

Theorem II.2. Consider a feedback system with plant P (s) given by (2.1), and

stabilizing controller C(s). Suppose that L(s) has Nz ORHP zeros {zi : i = 1, . . . , Nz}

and may be factored as

L(s) = e−sτL0(s)
1

(s2 + α2)k
, (2.8)

where k ≥ 1, L0(s)
1

(s2+α2)k
is proper, L0(s) is rational with no zeros at s = ±jα, and
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τ ≥ 0. Then

∞∫

0

log |T (jω)|W (ω, α)dω =
π

2
Re (Kα) + π

Nz∑

i=1

(
zi

z2i + α2

)

+
π

2
τ, (2.9)

where

Kα , lim
s→jα

dT (s)

ds
, (2.10)

and the weighting function W (ω, α) is defined as

W (ω, α) =
ω2 + α2

(ω2 − α2)2
. (2.11)

Suppose, in addition, that k ≥ 2 and τ = 0. Then Kα = 0, and

∞∫

0

log |T (jω)|W (ω, α)dω = π

Nz∑

i=1

(
zi

z2i + α2

)

. (2.12)

Proof. We prove this theorem by making the integration through a contour that

includes the ORHP and imaginary axis. The contour is shown in Figure 2.2. Several

indentations are made to avoid the singularities of log T (s). The integral around the

jω

σ

jα

-jα

1C

2C

3C

2δ

Ι

ΙΙ

ΙΙΙ

ρ

γ

0C

4C

5C

ε

Figure 2.2: Contour for complex s-plane used to prove Theorem II.2.

total contour C = C0 + C1 + C2 + C3 + C4 + C5 is zero. The integral along the
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imaginary axis, C0, satisfies

lim
ǫ→0 δ→0 R→∞

∫

C0

log [T (s)]
−s2 + α2

(s2 + α2)2
ds

=j

∞∫

−∞

log |T (jω)|
ω2 + α2

(ω2 − α2)2
dω −

∞∫

−∞

arg [T (jω)]
ω2 + α2

(ω2 − α2)2
dω

=2j

∞∫

0

log |T (jω)|
ω2 + α2

(ω2 − α2)2
dω.

(2.13)

The curve C1 is a semicircle, which has infinity radius in the ORHP. Hence s =

Rejθ and ds = jRejθdθ. Then the contribution of this integral C1 can be evaluated

as

lim
R→∞

∫

C1

log [T (s)]
−s2 + α2

(s2 + α2)2
ds = −jπτ. (2.14)

The integration for C2 can be calculated as follows. The radius of the semicircle

is ǫ. Hence s = jα + ǫejθ, −π
2
≤ θ ≤ π

2
and ds = jǫejθdθ. Then

lim
ǫ→0

∫

C2

log [T (s)]
−s2 + α2

(s2 + α2)2
ds = j

π
2∫

−π
2

lim
ǫ→0

log
[
T (jα + ǫejθ)

] 1

−2ǫejθ
dθ = −j

π

2
lim
s→jα

dT (s)

ds
.

Following a similar strategy to calculate the integration for C3, we have

lim
ǫ→0

∫

C3

log [T (s)]
−s2 + α2

(s2 + α2)2
ds = −j

π

2
lim

s→−jα

dT (s)

ds
.

Furthermore, considering the reflection principal of the analytic function, we obtain

lim
ǫ→0

∫

C2+C3

log |T (s)|
−s2 + α2

(s2 + α2)2
ds = −jπRe

[

lim
s→jα

dT (s)

ds

]

. (2.15)

The contribution of integrals for C4 and C5 can be calculated as follows. We first

assume that the nonminimum phase zeros are ρ± jγ. First, we need to rewrite T (s)

as

T (s) = (s− ρ− jγ) (s− ρ+ jγ) T̄ (s). (2.16)
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Further, we have

∫

C4,C5

log [T (s)]
−s2 + α2

(s2 + α2)2
ds =

∫

C4,C5

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds

+

∫

C4,C5

log(s− ρ+ jγ)
−s2 + α2

(s2 + α2)2
ds+

∫

C4,C5

log T̄ (s)
−s2 + α2

(s2 + α2)2
ds. (2.17)

The third term in the right hand side of (2.17) is zero because the integrand is

analytic inside and on the semicircle C4 and C5. Hence we focus on the integration of

the first and second terms. Consider the line part I, where s = x+j(γ+δ), 0 ≤ x ≤ ρ.

Then ds = dx.

∫

I

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds =

0∫

ρ

log(x− ρ+ jδ)
−(x+ jγ + jδ)2 + α2

[(x+ jγ + jδ)2 + α2]2
dx

=

0∫

ρ

ln
√

(ρ− x)2 + δ2
−(x+ jγ + jδ)2 + α2

[(x+ jγ + jδ)2 + α2]2
dx

+ j

0∫

ρ

[

π + arctan

(
δ

x− ρ

)]
−(x+ jγ + jδ)2 + α2

[(x+ jγ + jδ)2 + α2]2
dx. (2.18)

Following a similar strategy, the integration for II can be calculated as

∫

II

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds

=

ρ∫

0

ln
√

(ρ− x)2 + δ2
−(x+ jγ − jδ)2 + α2

[(x+ jγ − jδ)2 + α2]2
dx

+ j

ρ∫

0

[

−π + arctan

(
−δ

x− ρ

)]
−(x+ jγ − jδ)2 + α2

[(x+ jγ − jδ)2 + α2]2
dx. (2.19)

Now consider the integration for III. Here, s = ρ + jγ + δejθ, −π
2
≤ θ ≤ π

2
and

20



ds = jδejθdθ.

lim
δ→0

∫

III

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds

= lim
δ→0

π
2∫

−π
2

log(δejθ)
−(ρ+ jγ + δejθ)2 + α2

[(ρ+ jγ + δejθ)2 + α2]2
jδejθdθ

= lim
δ→0

π
2∫

−π
2

(log δ + jθ)
−(ρ+ jγ)2 + α2

[(ρ+ jγ)2 + α2]2
jδejθdθ

=0.

Note that the first terms in (2.18) and (2.19) cancel out and the second terms are

identical when taking δ → 0. Hence we have

lim
δ→0

∫

C4

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds = −2πj

[
ρ+ jγ

(ρ+ jγ)2 + α2
−

jγ

−γ2 + α2

]

. (2.20)

Similarly, the integration about the curves for ρ−jγ, e.g. C5, has the following results

lim
δ→0

∫

C5

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds = −2πj

[
ρ− jγ

(ρ− jγ)2 + α2
−

−jγ

−γ2 + α2

]

. (2.21)

Adding (2.20) and (2.21) yields

lim
δ→0

∫

C4+C5

log(s− ρ− jγ)
−s2 + α2

(s2 + α2)2
ds = −2πj

[
ρ− jγ

(ρ− jγ)2 + α2
+

ρ+ jγ

(ρ+ jγ)2 + α2

]

.

(2.22)

The final result then follows considering (2.13), (2.14), (2.15), (2.22) and noting

that the zeros in Theorem II.2 occur in conjugate pairs.

In the following section, we will use the integrals in Theorem II.2 to derive three

sufficient conditions for string instability for a string of oscillators in Section 2.2. Also

it is worth noting that when α is 0, the integrals in Theorem II.2 reduce to those in

Theorem II.1.
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2.4 Homogeneous Oscillator String

An immediate result of Theorem II.2 is the following sufficient condition for string

instability for the homogeneous oscillator system in Section 2.2.

Theorem II.3. Consider the series connection of feedback systems in Figure 2.1,

with plant (2.1) and stabilizing compensator C(s). If L(s) has at least two pairs of

poles at ±jα, then the string of oscillators in Figure 2.1 is string unstable.

Proof. Note that the right hand side of (2.12) is nonnegative, the time delay term π
2
τ

is nonnegative and that W (ω, α) > 0 for all frequencies except ω = α. It follows that

if L(s) has at least two pairs of poles at ±jα, then Kα = 0. Hence there must exist

a frequency for which |T (jω)| > 1, and the string of oscillators in Figure 2.1 is string

unstable.

Suppose that L(s) contains only a single pair of poles at ±jα, namely, those due

to the plant (2.1). Then Kα defined in (2.10) may be negative and, as a consequence,

|T (jω)| may be less than one at all frequencies and string instability may not be

present.

Recall that the term corresponding toKα in Theorem II.1 is inversely proportional

to the velocity constant that describes the steady state error of a Type 1 feedback

system in response to a ramp input. The following result provides a corresponding

interpretation for Kα, and shows that it describes the steady state error in response

to an input of the form r1(t) = t sinαt.

Theorem II.4 (Interpretation of Kα). (a) Consider the series connection of feedback

systems in Figure 2.1, with plant (2.1) and stabilizing compensator C(s). Assume that

r1(t) = t sinαt, and define the steady state error for the first system as the response

that persists after the transient response decays, denoted by ess1 (t). Then

ess1 (t) = |Kα| sin (αt+ arg (−Kα)) . (2.23)

(b) Suppose in addition that arg (−Kα) = 0. Then in steady state y1(t) is in phase

with r1(t), and the steady state response yss1 (t) is given by

yss1 (t) = (t− |Kα|) sinαt. (2.24)

Proof. (a) The Laplace transform of t sin(αt) is given by 2αs/ (s2 + α2)
2
. This fact,
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together with (2.4), yields

E1(s) = (1− T (s))
2αs

(s2 + α2)2
.

Noting that 1− T (s) has zeros at ±jα, it follows that the partial fraction expansion

of E1(s) has the form

E1(s) = Etr
1 (s) +

a1s+ b1
s2 + α2

, (2.25)

where Etr
1 (s) has poles only in the OLHP, and thus contributes only to the transient

response. The constants a1 and b1 are given by

a1 = Im (−Kα) , b1 = αRe (−Kα) . (2.26)

The steady state response ess1 (t) may be evaluated by computing the inverse Laplace

transform of the second term on the right hand side of (2.25).

(b) If arg (−Kα) = 0, then (2.24) follows from (2.2).

Our next result uses Theorem II.4, together with the fact that all the subsystems

in Figure 2.1 are identical, to show that the steady state tracking errors for each

subsystem are identical.

Corollary II.5. (a) Let essk (t) denote the steady state tracking error of the k’th

subsystem in Figure 2.1 in response to the input r1(t) = t sinαt. Then

essk (t) = ess1 (t), k = 1, . . . , n. (2.27)

(b) Suppose in addition that arg(−Kα) = 0. Then in steady state yk(t) is in phase

with r1(t):

yssk (t) = (t− k|Kα|) sinαt, k = 1, . . . , n. (2.28)

Proof. Theorem II.4 shows that ess1 (t) is a sinusoid with frequency α, and (a) follows

from (2.5) and the fact that T k−1(jα) = 1. Together, equations (2.2), (2.24), and

(2.27) yield (b).

Motivated by (2.28), we say that if arg(−Kα) = 0, then the steady state phase

error for each oscillator is equal to zero. We now show that if the steady state phase

error is nonzero, then the string of oscillators will be string unstable. This is another

sufficient condition for string instability.

23



Theorem II.6. Suppose that arg(−Kα) 6= 0. Then there exists a frequency ω such

that |T (jω)| > 1 and the system of oscillators in Figure 2.1 is string unstable.

Proof. First consider the case arg(−Kα) = π. Then Kα is real and positive and the

result follows immediately from (2.9). Suppose next that arg(−Kα) 6= 0, π. Then

Kα has a nonzero imaginary component. Using the fact that T (jα) = 1, we have by

definition (2.10) of Kα that

Kα = lim
s→jα

d log |T (s)|

ds
+ j lim

s→jα

d arg T (s)

ds
.

Letting s = σ+jω, it follows from the Cauchy-Riemann equations [11, Section 21],[16,

p. 41] that

Kα = lim
ω→α

∂ arg T (jω)

∂ω
− j lim

ω→α

∂ log |T (jω)|

∂ω
.

Together, the facts that |T (jα)| = 1 and that limω→α
∂ log |T (jω)|

∂ω
6= 0 imply that there

exists a frequency ω near α such that |T (jω)| > 1.

Theorem II.3 and Theorem II.6 provide two sufficient conditions for string insta-

bility. Suppose that neither of these sufficient conditions is satisfied. Then it is easy

to find examples of systems that are string stable.

Example II.7. Suppose that P (s) = 1/(s2 + α2) and C(s) = ks, k > 0. Then T (s)

has stable poles, and Kα = −2/k, so that arg(−Kα) = 0. It is easy to verify that

|T (jω)| ≤ 1, ∀ω, and thus the system is string stable.

2.4.1 A Lower Bound on the Peak in Complementary Sensitivity

Our goal in the present section is to derive a lower bound on supω |T (jω)| that

holds whenever the system is assumed to satisfy appropriate performance specifica-

tions. If this lower bound exceeds unity, then we may conclude that the system in

Figure 2.1 is string unstable. We will be interested in the case for which neither

sufficient condition for string instability derived in Theorems II.3 and II.6 is satisfied;

however, our methods will also yield a lower bound for the case in which L(s) has at

least two pairs of poles at ±jα.

We first assume that a specification on the steady state error (SSE) in response

to an input t sinαt must be satisfied.
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Assumption II.8 (Magnitude Bound on SSE). Assume that the steady state error

(2.23) is uniformly bounded by q > 0:

|ess1 (t)| ≤ q, ∀t ≥ 0. (2.29)

Recall from Corollary II.5 that the steady state error for each of the oscillators is

identical. The transient error, defined by

etri (t) , ei(t)− essi (t), (2.30)

will in general be different for different oscillators. We assume an IATE performance

specification on the sum of the integrals of the absolute values of the transient errors

(IATE).

Assumption II.9 (IATE Specification). Let etri (t) in (2.30) denote the transient

error response of the ith oscillator in response to the command r1(t) = t sin(αt). We

assume that the sum of the integrals of the absolute values of the transient errors must

satisfy the specification
n∑

i=1

∞∫

0

∣
∣etri (t)

∣
∣ dt ≤ u(n), (2.31)

for some positive function u(n).

We now show that Assumptions II.8 and II.9, combined with one additional

hypothesis, imply an upper bound on the gain of T (jω).

Lemma II.10. Suppose that Assumptions II.8 and II.9 are satisfied.

(a) Assume in addition that C(s)P (s) possesses one pair of poles at ±jα, and that

the phase error is zero: arg(−Kα) = 0. Then

|T (jω)| ≤
(

1 + η(u(n), q, α, ω)
(
ω2 − α2

)2
) 1

2n

, (2.32)

where

η(u(n), q, α, ω) =
u(n)

αω
+

n2q2

4ω2
+
∣
∣ω2 − α2

∣
∣
nu(n)q

2αω2
+ (ω2 − α2)2

u(n)2

2α2ω2
.

(b) Assume instead that C(s)P (s) possesses at least two pairs of poles at ±jα. Then

|T (jω)| ≤

(

1 +
(ω2 − α2)

2

2αω
u(n)

) 1

n

. (2.33)
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Proof. (a) The assumption that arg(−Kα) = 0 implies that a1 = 0 and b1 = −αKα,

where a1 and b1 are defined in (2.26). Hence the Laplace transform of each steady

state error satisfies

Ess
i (s) =

b1
s2 + α2

. (2.34)

Furthermore, it follows from Assumption II.8 and (2.23) that |b1| ≤ αq. Recalling

from Corollary II.5 that the steady state error is identical for each oscillator, we have,

for each i ≥ 1, that

∞∫

0

e−stetri (t)dt = T (s)i−1(1− T (s))
2αs

(s2 + α2)2
−

b1
s2 + α2

.

The sum of all n error signals satisfies

n∑

i=1

∞∫

0

e−stetri (t)dt = (1− T (s)n)
2αs

(s2 + α2)2
−

nb1
s2 + α2

.

Rearranging the previous equation yields

T (s)n = 1−
(s2 + α2)2

2αs




nb1

s2 + α2
+

n∑

i=1

∞∫

0

e−stetri (t)dt



 ,

and evaluating this equation at s = jω gives

T (jω)n = 1−
(ω2 − α2)2

j2αω




−nb1

ω2 − α2
+

n∑

i=1

∞∫

0

e−jωtetri (t)dt



 .

Using Euler’s formula, we have

T (jω)n = 1 +
(ω2 − α2)2

2αω

n∑

i=1

∞∫

0

sin(ωt)etri (t)dt

+ j




(ω2 − α2)2

2αω

n∑

i=1

∞∫

0

cos(ωt)etri (t)dt−
nb1(ω

2 − α2)

2αω



 .

Furthermore, taking the absolute value, using the fact that |b1| ≤ αq, and invoking
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(2.31) from Assumption II.9 yield

|T (jω)|2n =



1 +
(ω2 − α2)2

2αω

n∑

i=1

∞∫

0

sin(ωt)etri (t)dt





2

+




(ω2 − α2)2

2αω

n∑

i=1

∞∫

0

cos(ωt)etri (t)dt−
nb1(ω

2 − α2)

2αω





2

≤

(

1 +
(ω2 − α2)2

2αω
u(n)

)2

+

(
(ω2 − α2)2

2αω
u(n) +

nq |ω2 − α2|

2ω

)2

=1 + (ω2 − α2)2
(
u(n)

αω
+

n2q2

4ω2

)

+
∣
∣ω2 − α2

∣
∣
3 nu(n)q

2αω2
+ (ω2 − α2)4

u(n)2

2α2ω2
,

from which (2.32) follows immediately.

(b) If the open loop transfer function C(s)P (s) has at least two pairs of complex

poles at ±jα, then Ess
i (s) defined in (2.34) is identically zero. Using this fact and

following steps similar to those used to prove (2.32) yields (2.33).

In either case, T (jα) = 1 due to the presence of the oscillator poles. The

bounds (2.32) and (2.33) constrain the rate at which |T (jω)| converges to one as

ω approaches α, and are a consequence of the requirement (2.31) that the transient

response converges rapidly to zero.

The following assumption implies that the system in Figure 2.1 has the ability to

track low frequency commands with a specified error. On the other hand, although

Lemma II.10 is applicable for any frequency, system properties in certain frequency

ranges tend to be dominated by additional constraints and limitations. For example,

at low frequency T (s) may be required to approximate a unity gain low-pass filter.

Hence we make the following assumption for the low frequency behavior of T (s).

Assumption II.11 (Low Frequency Behavior). Let 0 < ωl < α. For ω ∈ (0, ωl),

the following inequality holds

|T (jω)n − 1| < ǫ, (2.35)

where 0 ≤ ǫ < 1.

Finally, we assume that the system satisfies a bandwidth limitation.

Assumption II.12 (Bandwidth Limitation). The transfer function T (s) obeys the

high frequency roll-off constraint

|T (jω)| ≤
(ωh

ω

)r

, for all ω > ωh (2.36)

27



for some ωh > α and relative degree r ≥ 1.

The following theorem shows that Assumptions II.8-II.12, together with one ad-

ditional hypothesis, imply the existence of a lower bound on the peak magnitude

response of the complementary sensitivity function (2.3).

Theorem II.13. Suppose that Assumptions II.8-II.12 are satisfied.

(a) Assume in addition that C(s)P (s) possesses one pair of poles at ±jα, and that

the phase error is zero: arg(−Kα) = 0. Then for any ωm ∈ (α, ωh), we have the

following inequality:

max
ω∈[ωm,ωh]

log |T (jω)| ≥
ΩH − Ωα − ΩL − π

2
q + π

∑Nz

i=1

(
zi

z2i +α2

)

+ π
2
τ

∫ ωH

ωM
W (ω, α)dω

, (2.37)

where ΩL, Ωα, and ΩH are bounds on the integral of log |T (jω)| over different

frequency ranges:

ΩL ,
1

n

ωl∫

0

log(1 + ǫ)W (ω, α)dω, (2.38)

Ωα ,
1

2n

ωm∫

ωl

log
(

1 + η(u(n), q, α, ω)
(
ω2 − α2

)2
)

W (ω, α)dω, (2.39)

ΩH , r

∞∫

ωh

log
ω

ωh

W (ω, α)dω. (2.40)

(b) Assume instead that C(s)P (s) possesses at least two pairs of poles at ±jα. Then

T (s) must satisfy the lower bound (2.37), where ΩH and ΩL are as defined in

(2.38) and (2.40), and

Ωα ,
1

n

ωm∫

ωl

log

(

1 +
(ω2 − α2)

2

2αω
u(n)

)

W (ω, α)dω. (2.41)

Proof. We establish this result by splitting the integration interval in (2.9). In
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particular,

ωh∫

ωm

log |T (jω)|W (ω, α)dω = −

ωl∫

0

log |T (jω)|W (ω, α)dω−

ωm∫

ωl

log |T (jω)|W (ω, α)dω

−

∞∫

ωh

log |T (jω)|W (ω, α)dω +
π

2
Re (Kα) + π

Nz∑

i=1

(
zi

z2i + α2

)

+
π

2
τ. (2.42)

It follows from Assumption II.11 and the triangle inequality that

−

ωl∫

0

log |T (jω)|W (ω, α)dω ≥ −ΩL.

Similarly, Lemma II.10 implies that

−

ωm∫

ωl

log |T (jω)|W (ω, α)dω ≥ −Ωα,

where Ωα is defined either by (2.39) or (2.41). Together, Assumption II.8 and (2.23)

imply that Re (Kα) ≥ −q. Also note

ωh∫

ωm

log |T (jω)|W (ω, α)dω ≤ max
ω∈[ωm,ωh]

{log |T (jω)|}

ωh∫

ωm

W (ω, α)dω.

The result follows by combining the preceding inequalities and applying the high

frequency bound (2.36).

It follows from Theorem II.13 that time and frequency domain specifications, such

as those in Assumptions II.8-II.12, impose a lower bound on the peak value of |T (jω)|.

For case (a), should this lower bound prove to be greater than unity, then it provides

another sufficient condition for string instability. For case (b), already known to be

string unstable, the lower bound provides an estimate of the severity of the instability.

In fact, the lower bound (2.37) is conservative for the purpose of predicting string

instability in case (a). To see this, note that the first two terms on the right hand

side of (2.42) will be nonnegative if |T (jω)| ≤ 1 in the frequency range (0, ωm). (If

|T (jω)| > 1 in this frequency range, then the system is known to be string unstable

without considering behavior at other frequencies.) Hence we have the following

corollary to the proof of Theorem II.13. For purposes of simplicity, we also assume
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that L(s) has no ORHP zeros and the time delay τ is zero.

Corollary II.14. In addition to the hypotheses of Theorem II.13, assume that |T (jω)| ≤

1, ∀ω ∈ (0, ωm), and that Nz = 0, τ = 0. Then, for any ωm ∈ (α, ωH), we have that

max
ω∈[ωm,ωh]

log |T (jω)| ≥
ΩH − π

2
q

∫ ωh

ωm
W (ω, α)dω

. (2.43)

It follows immediately from (2.43) that a necessary condition for string stability

is that

q >
2

π
ΩH , (2.44)

where ΩH is defined by (2.40) and q is defined in Assumption II.8. If (2.44) is not

satisfied, then the limit as ωm → ωh of the right hand side of (2.43) is equal to

infinity, and thus the specifications are infeasible. Hence, the desirability of string

stability imposes a tradeoff between bandwidth limitations of the form imposed

in Assumption II.12, and steady state tracking error requirements as imposed in

Assumption II.8.

2.5 Heterogeneous Feedback Loop and Extended Communi-

cation Range

The string instability analysis in the previous section is limited to the homogeneous

oscillator string with predecessor-following control architecture depicted in Figure 2.1.

It cannot be applied to heterogeneous oscillator strings where the controllers can be

designed differently. In such a system, there is no complementary sensitivity function

T (s) in (2.4) that describes how the error signal is amplified from one oscillator to

its successor. Hence, the heterogeneous oscillator string avoids error amplification

at the same frequency and some of the existing works use this approach to improve

string stability [6]. Other methods in the area of vehicle platooning to improve and

even regain string stability include speed-dependent separation policy and extended

communication ranges. We want to extend our analysis in the previous section to

include heterogeneous feedback loop design, a new tracking policy, and an extended

communication range. For simplicity, we also assume there is no time delay in the

feedback loop.
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2.5.1 Time Headway Operator for Harmonic Oscillators

We start our analysis by introducing a new separation policy for a heterogeneous

oscillator string shown in Figure 2.3. Here, the plants can be different and each con-

tains the dynamics of a harmonic oscillator with natural frequency α radians/second.

We write the scalar transfer function Pi(s) as

Pi(s) = P̄i(s)
1

s2 + α2
, for i = 1, 2, · · · , n, (2.45)

where P̄i(s) has no zeros at s = ±jα. We also assume the controllers can be designed

differently and each controller has harmonic oscillator dynamics. That is

Ci(s) = C̄i(s)
1

s2 + α2
, for i = 1, 2, · · · , n. (2.46)

−
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Figure 2.3: Block diagram depicting an oscillator string with time headway.

Due to the presence of the poles at ±jα in the controller dynamics, the system

can achieve asymptotically zero tracking errors for any ramp-enveloped sinusoidal

signal of the form r1(t) = (At+B) sin (αt) asymptotically and perfect rejection of

any disturbance signal di(t) of the form A sin (αt) [17]. Theorem II.3 has shown that

if the oscillator string is homogeneous, the whole system is string unstable if δi(t)

in Figure 2.3 is zero. δi(t) is the desired distance that the oscillator is kept with its

predecessor and this signal represents the separation policy between oscillators.

We can design δi(t) to improve the string stability of the whole system. The

concept is similar to the time headway in vehicle platooning, that is to make the

intervehicle spacing increase linearly with the vehicle’s own velocity. In this section,

we limit our discussion to track the ramp-enveloped sinusoidal signal:

r1(t) = (δp + δvt) sin(αt). (2.47)

Here we term δv the amplitude velocity of this ramp-enveloped sinusoidal signal.
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Further, we define the following time headway operator ∇TH:

∇TH [f(t)] ,
1

2

t∫

0

(
d2

dτ 2
f(τ) + α2f(τ)

)

dτ (2.48)

where f(t) is assumed twice differentiable. It follows that

∇TH [(δp,i + δvt) sin(αt)] = δv sin(αt),

which is not difficult to prove. Note that the transfer function of the time headway

operator ∇TH is s2+α2

2s
. Then we propose the following oscillator separation policy

that ensures the amplitude of the sinusoidal spacing signal δi(t) linearly increases

with the amplitude velocity of yi(t) in steady state:

δi(t) = δ̄i − hi∇TH [yi(t)] . (2.49)

Here, hi is the time headway constant for each oscillator, and δ̄i is a vector of sinusoidal

signals of the form A sin (αt). The separation policy (2.49) ensures that the amplitude

velocities of yi(t) are all identical in steady state. We assume the time headway

constants are the same: hi = h for each oscillator in this string.

With time headway, the complementary sensitivity function Th(s) in Figure 2.3 is

now given by

Th(s) =
Pi(s)Ci(s)

1 + Pi(s)Ci(s)
(
1 + h s2+α2

2s

) . (2.50)

The transfer function Th(s) describes how errors propagate in a manner similar to

T (s) in (2.5). Applying Theorem II.2 to the new Th(s) yields the following integral:
1

∞∫

0

log |Th(jω)|W (ω, α)dω ≥ −
π

2
h.

The integral above shows that string stability is potentially feasible because the right

hand side is negative due to the time headway operator.

Example II.15. Suppose that Pi(s) = s+1
s2+4

and Ci(s) = s2+2s+5
s2+4

. Then T (s) =
s3+3s2+7s+5

s4+s3+11s2+7s+21
. By evaluating ‖T (s)‖H∞

, we found that supω |T (jω)| = 5.06 and is

achieved at ω = 2.87. Hence we can conclude that the peak magnitude response of

1It follows from the proof of Theorem II.2 that the integral relation (2.9) holds for any stable,
proper, rational transfer function T (s) that satisfies T (jα) = 1. Hence (a) holds for Th(s) defined
in (2.50).
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T (s) is greater than 1 and thus the oscillator string is string unstable. By applying the

separation policy in (2.49) and letting h = 2, we have Th(s) =
0.5s4+1.5s3+3.5s2+2.5s

s5+2s4+11s3+12s2+24.5s+10

and supω |T (jω)| = 1 achieved at ω = 2. Hence the oscillator string regains string

stability.

2.5.2 Multi-Variable Representation of the Oscillator String

We also want to consider the more general communication range adopted in [66]

and assume that the oscillators are permitted to communicate with a few neighbors

forward and backward. This is different from the communication range used in Figure

2.1 and 2.3. With the extended communication strategies, the transfer function from

a disturbance at the lead oscillator to the error in the nth oscillator is no longer equal

to the product of the individual transfer functions. Hence in this section we examine

the disturbance propagation from the first oscillator to the last one for an arbitrarily

large string of oscillators. Doing so requires us to use a multi-variable representation

of the oscillator string.

We augment the output, control, error, separation, and disturbance variables as:

y(t) =
[

y1(t) y2(t) · · · yn(t)
]T

,

u(t) =
[

u1(t) u2(t) · · · un(t)
]T

,

e(t) =
[

e1(t) e2(t) · · · en(t)
]T

,

d(t) =
[

d1(t) d2(t) · · · dn(t)
]T

,

δ(t) =
[

0 δ2(t) · · · δn(t)
]T

.

(2.51)

We make the following assumptions by considering the extended communication

ranges, heterogeneous feedback loop, and the new separation policy.

Assumption II.16 (Communication Range). We assume that the ith oscillator is

permitted to communicate with cf oscillators in front and cr oscillators behind itself.

Here cr, cf are fixed natural numbers and cf ≥ 1. Further, for simplicity, we assume

the number of oscillators n to be divisible by the forward communication range cf ,

that is n = Ncf . �

Assumption II.17 (Heterogeneous Feedback Loop ). Considering the extended com-

munication range in Assumption II.16, the control policy can be written using a

multivariable transfer function matrix C(s), where C(s) is a (cf , cr)-banded transfer
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matrix. That is

u(t) = C(s) ⋆ e(t), (2.52)

where u(t) and e(t) are the augmented control and error signals defined in (2.51).

In addition, we assume each non-zero element in C(s) contains the dynamics of a

harmonic oscillator with natural frequency α radians/second. Thus we write C(s) as

C(s) = C̄(s)
1

s2 + α2
,

with C̄(jα) non-singular. �

Assumption II.18 (Oscillator Separation Policy). We adopt the separation policy

in (2.49). Further, we define H, the matrix of time headway, as H = diag{hi} ≥ 0,

and δ0 =
[

0 δ̄2 · · · δ̄n

]T

to be a vector of sinusoidal signals of the form A sin (αt).

The separation policy can be rewritten as

δ(t) = δ0 −H∇TH

[
y(t)

]
, (2.53)

where y(t) and δ(t) are the augmented output and separation signals defined in (2.51).

�

To describe the oscillator string under Assumptions II.16 to II.18, we first define

the multivariable plant transfer function: P(s) = diag{Pi(s)}, P̄(s) = diag{P̄i(s)}.

Then equation (2.45) can be rewritten as

y(t) = P(s) ⋆ u(t), (2.54)

where P(s) can be factored as

P(s) = P̄(s)
1

s2 + α2
.

Similarly, we define the error signal as

e(t) = δ(t)−My(t) + V n
1 r1(t), (2.55)
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where V n
1 =

[

1 0 · · · 0
]T

and M denotes the coupling matrix

M =









1 0 · · · 0

−1 1 · · · 0
...

. . .
. . . 0

0 · · · −1 1









. (2.56)

−

1( )r t
1

nV

0δ

+
+ ( )e t ( )u t

( )d t
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2
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s

α+
+

( )y t

Figure 2.4: Multivariable feedback loop representation of the oscillator string.

The multivariable system representation of the oscillator string is shown in Fig-

ure 2.4. Using (2.52)-(2.55), the output variable y(t) can be related to the target

separation variable δ0 and the lead oscillator target position r1(t) by the following

equation

y(t) = (I + L(s))−1P(s)C(s) ⋆ (δ0 + V n
1 r1(t)) , (2.57)

where

L(s) = P(s)C(s)

(

M +
s2 + α2

2s
H

)

. (2.58)

Hence we can define the closed-loop multivariable transfer function matrix Hyr(s) as

Hyr(s) = (I + L(s))−1P(s)C(s) =
(
I − (I + L(s))−1)

(

M +
s2 + α2

2s
H

)−1

. (2.59)

Assumptions II.16 to II.18 allow us to establish some properties of the closed-loop

matrix Hyr(s) at frequency α.

Lemma II.19 (Values of Hyr at s = jα). Consider Hyr as defined in (2.59). Then

subject to Assumptions II.16 to II.18, we have

Hyr(jα) = M−1, (2.60)

H′
yr(jα) = −M−1HM−1. (2.61)

35



Proof. From the definition of Hyr(s) in (2.59) we have

Hyr(s) =

[

I + P(s)C(s)

(

M +
s2 + α2

2s
H

)]−1

P(s)C(s)

=

(

M−1 (P(s)C(s))−1 + I +
s2 + α2

2s
M−1H

)−1

M−1

=

[

I + (s2 + α2)2M−1
(
P̄(s)C̄(s)

)−1
+

s2 + α2

2s
M−1H

]−1

M−1.

(2.62)

Evaluating (2.62) at s = jα gives (2.60) and differentiating (2.62) at s = jα gives

(2.61).

The lower left element of Hyr(s) describes the response of the output of the last

oscillator to an output disturbance at the first oscillator:

Hynr1(s) = (V n
n )

THyr(s)V
n
1 , (2.63)

where V n
1 and V n

n are the 1st and nth canonical basis vectors respectively. We then

apply Theorem II.2 to the transfer functionHynr1(s) and obtain the following theorem.

Theorem II.20. Consider Hynr1(s) as defined in (2.63). Then subject to Assump-

tions II.16 to II.18, we have

∞∫

0

log |Hynr1(jω)|W (ω, α)dω ≥ −
π

2
nh̄, (2.64)

where h̄ is the average time headway

h̄ =
1

n

n∑

i=1

hi. (2.65)

Proof. Note from the definition of M in (2.56) that

M−1 =









1 0 · · · 0

1 1 · · · 0
...

. . .
. . . 0

1 · · · 1 1









.
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Then from Lemma II.19, we have

Hynr1(jα) = 1, and H′
ynr1

(jα) = −nh̄.

The result then follows by using (2.9).

2.5.3 Lower Bound on Disturbance Amplification

In this section, we present a lower bound on the worst case disturbance amplifi-

cation along the string when the system is assumed to satisfy certain communication

constraints, a high frequency bandwidth limitation, and certain transient performance

in response to a ramp-enveloped sinusoidal signal. If this lower bound grows at least

linearly with the number of oscillators n, then we may conclude that the system in

Figure 2.4 is string unstable.

We first present some assumptions on the system structural properties induced by

the communications range and high frequency bandwidth limitation. From Assump-

tion II.16, it is easy to show L(s) is a (cf , cr)-banded transfer matrix. Then L(s) can

be written as an N ×N block matrix, with N = n/cf :

L(s) =












L1,1(s) L1,2(s) L1,3(s) · · · 0

L2,1(s) L2,2(s) L2,3(s) · · · 0

0 L3,2(s) L3,3(s)
. . .

...
...

. . .
. . .

. . . LN−1,N(s)

0 · · · 0 LN,N−1(s) LN,N(s)












(2.66)

where each block element Li,j(s) is a cf × cf dimensional transfer function matrix,

and Li,j(s) = 0 for j > i + lr, where lr = ⌈cr/cf⌉ is the communication range ratio

introduced in Assumption II.16.

It follows that I+L(s) can be conveniently factorized in a block LU form described

in the following lemma [66].

Lemma II.21 (Block LU Factorization of L(s)). Under Assumption II.16, let L(s)

be the (cf , cr)-banded transfer function matrix defined in (2.66). Then

I + L(s) , ML(s)MU(s) (2.67)
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where MU(s) is given as

MU(s) =












I U1,2(s) U1,3(s) · · · 0

0 I U2,3(s) · · · 0

0 0 I
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 I












(2.68)

and ML(s) as

ML(s) =












S̃−1
1,1 (s) 0 0 · · · 0

L2,1(s) S̃−1
2,2 (s) 0 · · · 0

0 L3,2(s) S̃−1
3,3 (s)

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 LN,N−1(s) S̃−1
N,N(s)












(2.69)

and S̃k,k and Uk,j are defined recursively by

S̃1,1(s) = (1 + L1,1(s))
−1

U1,j(s) =S̃1,1(s)L1,j(s) : j = 2, 3, . . . , N

S̃k,k(s) = (1 + Lk,k(s)−Lk,k−1(s)Uk−1,k(s))
−1 : k = 2, 3, . . . , N

Uk,j(s) =S̃k,k(s) (Lk,j(s)−Lk,k−1(s)Uk−1,j(s)) : 1 < k < j ≤ N.

(2.70)

From these equations, it follows that the multivariable sensitivity function S(s) =

(I + L(s))−1 can be written as a product of upper and lower block triangular matrices

S(s) = M−1
U (s)M−1

L (s) =










I ∗ · · · ∗

0 I
. . .

...
...

. . .
. . . ∗

0 · · · 0 I



















S̃1,1(s) 0 · · · 0

S̃2,1(s) S̃2,2(s)
. . .

...
...

. . .
. . . 0

S̃N,1(s) · · · S̃N,N−1(s) S̃N,N (s)










(2.71)

where ∗ denotes possibly non-zero transfer function blocks within the matrix M−1
U (s).

Further, we have

SN,i(s) = S̃N,i(s) = S̃N,N (s)
N−1∏

k=i

T̃k+1,k(s) (2.72)
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where

T̃k+1,k(s) , −Lk+1,k(s)S̃k,k(s) for k = 1, 2, · · · , N − 1. (2.73)

Further, noting that S̃k,k(s) is exactly the lower right hand block of the multivari-

able sensitivity function S(s) in (2.71), we assume the following uniform bounds on

S̃k,k(s).

Assumption II.22 (Uniform Bounds on S̃k,k(s)). There exists a finite number σ ≥ 0

such that
∥
∥
∥S̃k,k(s)

∥
∥
∥
H∞

≤ σ for k = 1, 2, · · · , N. �

We also assume each T̃k+1,k(jω) satisfies a high frequency bandwidth limitation

based on its definition in (2.73).

Assumption II.23 (Loop High Frequency Bound). The loop transfer functions

T̃k+1,k(s) with k ∈ {1, 2, . . . , N−1}, defined in (2.73), obey the uniform high frequency

bound
∥
∥
∥T̃k+1,k(jω)

∥
∥
∥ ≤

(ωH

ω

)r

, for all ω > ωH (2.74)

for some ωH > 0 independent of N and (relative degree) r ≥ 1 and all k ∈ {1, 2, . . . , N−

1}. In addition, we assume that ∀ω ≥ ωH

∥
∥
∥(P(s)C(s))1,1 (jω)V

cf
1

∥
∥
∥ ≤ p̄ (2.75)

for some p̄ < ∞. �

We now show that Assumptions II.22 and II.23 imply a bound on the integral of

the magnitude response of Hynr1(s) over a high frequency range.

Corollary II.24. Under Assumptions II.16 to II.23, we have

∞∫

ωH

log |Hynr1(jω)|W (ω, α)dω ≤ log(σp̄)
ωH

ω2
H − α2

+
(N − 1)r

2α
log

ωH − α

ωH + α
. (2.76)

Proof. The proof is similar to the proof of Corollary 5 in [66]. By following the same

line of logic, we have the following inequality:

|Hynr1(jω)| ≤ σp̄
(ωH

ω

)r(N−1)

, for all ω > ωH . (2.77)
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Then we have

∞∫

ωH

log |Hynr1(jω)|W (ω, α)dω ≤ [log (σp̄) + (N − 1)r logωH ]

∞∫

ωH

W (ω, α)dω

− (N − 1)r

∞∫

ωH

W (ω, α) logωdω.

The result in (2.76) follows by solving the integrals in the inequality above.

As P(s)C(s) contains a double oscillator dynamics in Assumption II.17, the oscil-

lator string can achieve asymptotically zero tracking error for a sinusoidal signal in the

form of (2.47). We assume the oscillator string satisfies a performance specification on

the sum of integral absolute errors (IAE) that describes how fast the errors converge

to zero.

Assumption II.25 (IAE Specification on Transient Response). For i = 1, 2, · · · , n,

let eramp
i (t) be the error response of the ith oscillator to a ramp-enveloped sinusoidal

signal: r1(t) = t sin(αt). We assume that for all n oscillators the integral of the

absolute value of eramp
i (t) is bounded as

n∑

i=1

∞∫

0

|eramp
i (t)| dt ≤ u(n) (2.78)

for some positive function u(n). �

One immediate consequence of Assumption II.25 is a bound on the frequency

response of Hynr1(s).

Lemma II.26. Let Assumption II.25 hold. Then, for all ω ∈ R

|Hynr1(jω)| ≤ 1 + u(n)
(ω2 − α2)

2

2αω
. (2.79)

Proof. This lemma can be proved by following a line similar to the proof of Lemma

6 in [66].

In addition, Hynr1(s) typically has low-pass characteristics. Hence we make the

following assumption for the low frequency behavior of Hynr1(s).
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Assumption II.27 (Low Frequency Behavior). Let 0 < ωL < α. For ω ∈ (0, ωL),

the following inequality holds

|Hynr1(jω)− 1| < ǫ, (2.80)

where 0 ≤ ǫ < 1. �

The following theorem provides a lower bound on the peak magnitude response

of Hynr1(s).

Theorem II.28. Consider a system subject to Assumptions II.16 to II.27. Then for

any ωM ∈ (α, ωH), we have the following inequality:

max
ω∈[ωM ,ωH ]

log |Hynr1(jω)| ≥
Ω̄H − Ω̄α − Ω̄L − π

2
nh̄

∫ ωH

ωM
W (ω, α)dω

, (2.81)

where Ω̄L, Ω̄α, Ω̄H are bounds on different frequency ranges of the integral of log |Hynr1(jω)|

and defined as

Ω̄L ,

ωL∫

0

log(1 + ǫ)W (ω, α)dω = − log (1 + ǫ)
ωL

ω2
L − α2

,

Ω̄α ,

ωM∫

ωL

log

[

1 + u(n)
(ω2 − α2)

2

2αω

]

W (ω, α)dω

Ω̄H , − log(σp̄)
ωH

ω2
H − α2

+
(N − 1)r

2α
log

ωH + α

ωH − α
.

In addition, assume that |Hynr1(jω)| ≤ 1, ∀ω ∈ (0, α). Then if Ω̄H − π
2
nh̄ > 0, we

have

max
ω∈(ωM ,ωH )

|Hynr1(jω)| ≥ exp

(
α3(Ω̄H − π

2
nh̄)2

ωHu(n)(ω
2
H + α2)

)

. (2.82)

Furthermore, if u(n) < nū and n is sufficiently large, then

max
ω∈(ωM ,ωH)

|Hynr1(jω)| ≥ exp
(
nβ
(
α, ωH, ū, r, cf , h̄

))
, (2.83)

where β
(
α, ωH, ū, r, cf , h̄

)
represents the lower bound of the growth per oscillator in

the peak of the frequency response and is defined as

β
(
α, ωH, ū, r, cf , h̄

)
=

α3

ωH ū(ω2
H + α2)

(
r

2αcf
log

ωH + α

ωH − α
−

π

2
h̄

)2

.
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Proof. The inequality (2.81) can be proved following the same line of logic as the

proof of Theorem II.13.

From Lemma II.26, we have

ωM∫

α

log |Hynr1(jω)|W (ω, α)dω

≤

ωM∫

α

log

(

1 + u(n)
(ω2 − α2)2

2αω

)

×
ω2 + α2

(ω2 − α2)2
dω

≤ (ωM − α) (ω2
H + α2) max

ω∈(α,ωM )

log
(

1 + u(n) (ω
2−α2)2

2αω

)

(ω2 − α2)2
.

Then it is not difficult to prove

max
ω∈(α,ωM )

log
(

1 + u(n) (ω
2−α2)2

2αω

)

(ω2 − α2)2
=

u(n)

2α2
.

Hence, we obtain

ωM∫

α

log |Hynr1(jω)|W (ω, α)dω ≤
u(n)(ω2

H + α2)

2α2
(ωM − α) . (2.84)

Applying (2.84) to inequality (2.81) yields the following inequality

max
ω∈(ωM ,ωH)

log |Hynr1(jω)| ≥
Ω̄H − π

2
nh̄−

u(n)(ω2

H+α2)

2α2 (ωM − α)
∫∞

ωM
W (ω, α)dω

≥
2α

ωH

(ωM − α)

(

Ω̄H −
π

2
nh̄−

u(n)(ω2
H + α2)

2α2
(ωM − α)

)

=
2α

ωH

[

−
u(n)(ω2

H + α2)

2α2
(ωM − α)2 +

(

Ω̄H −
π

2
nh̄
)

(ωM − α)

]

.

If we take ωM = α +
α2(Ω̄H−π

2
nh̄)

u(n)(ω2

H
+α2)

, the inequality (2.82) is obtained.

Theorem II.28 shows that the lower bound of maxω∈(ωM ,ωH) log |Hynr1(jω)| will

increase at least linearly with the number of oscillators under certain conditions.

Hence the peak will grow without bound and the oscillator string will be string

unstable.
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2.6 Numerical Examples

We present a few examples to illustrate the results.

2.6.1 Homogeneous Oscillator String

We present a numerical example to illustrate the results in Theorem II.13. Consid-

er a string of n identical oscillators with frequency α = 1 and plant transfer function

P (s) = (s + 0.5)/(s2 + 1). A controller that achieves zero steady state phase error,

arg(−Kα) = 0, is given by

C(s) =
40(s+ 10)(s+ 2)

s2 + 0.05s+ 1.5
. (2.85)

A plot of the lower bound (2.37) as a function of ωh, the frequency at which the

bandwidth limitation becomes effective, is given in Figure 2.5 for various values of

the parameter q that governs the size of the tracking error via (2.29). As expected,

smaller values of ωh increase the size of the lower bound, and for a given value of ωh,

the bound increases as the constraint on the tracking error decreases.
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Figure 2.5: The lower bound (2.37) vs. ωh, for parameters n = 10, r = 1, ǫ = 0.1,
u(10) = 1, and ωl = 0.6.

The corresponding complementary sensitivity function is

T (s) =
40s3 + 500s2 + 1040s+ 400

s4 + 40.05s3 + 502.5s2 + 1040s+ 401.5
. (2.86)

As it happens, the DC gain of |T (jω)| is nearly unity, and it is straightforward to

verify that T (j1) = 1 and Kα = −0.001. The Bode magnitude plot for (2.86),
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depicted in Figure 2.6, shows a peak value of 1.70 dB, or 1.22 in absolute terms. As

a consequence, the string of oscillators is string unstable. The tracking errors (2.2)
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Figure 2.6: Magnitude response of T (s).

in response to an input r1(t) = t sin t are plotted in Figure 2.7, and show transient

peaks that, as expected, increase in magnitude along the string. In all cases, the

steady state value of the tracking error is given by essk (t) = 0.001 sin t, as predicted

from Theorem II.4 and Corollary II.5.
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Figure 2.7: Tracking errors ei(t) defined in (2.2).

To illustrate the bound (2.37), we find that the various parameters used to con-

struct the bound have the values depicted in Table 2.1. With these parameter values,

we predict that |T (jω)| must have a peak greater than 1.0146 (0.126 dB), which

is less than the observed peak value of 1.70 dB. The difference is due in part to

conservativeness in the lower bound (2.37), and in part due to controller design. A
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different controller might yield a smaller peak, but no smaller than the guaranteed

lower bound provided that the rest of the design satisfies the parameter values from

Table 2.1.

Table 2.1: Parameters to Calculate the Lower Bound
n ǫ u(n) q r ωh ωl ωm

10 0.0367 0.072 0.001 1 40 0.536 1.95

2.6.2 Heterogeneous Oscillator String

We will illustrate the result in Theorem II.28 in this section. We first show the

lower bound on peak growth of the frequency response per oscillator for different

bandwidth limitations ωH and IAE specifications ū in (2.83). The plot is shown in

Figure 2.8. The parameter values are r = 1, cf = 2, α = 1, and h̄ = 0.1.
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Figure 2.8: Lower bound on peak growth of magnitude response per oscillator v.s.
ωH for different values of ū.

We can see from Figure 2.8 that the lower bound on peak growth per oscillator in

(2.83) (20× β
(
α, ωH, ū, r, cf , h̄

)
in dB) increases as the value of ωH becomes smaller.

For the same value of ωH , the lower bound increases as the tracking error ū decreases.

This conclusion is similar to the results in the homogeneous case.

We also present several design examples to illustrate the results in Section 2.5.

Consider a string of n identical harmonic oscillators with frequency α = 1 defined by

the plant transfer function

Pi(s) =
5(s+ 2)

s2 + 1
, for i = 1, 2, · · · , n. (2.87)
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We first consider the homogeneous string with a predecessor following control

strategy and assume no time headway policy, that is δi(t) = 0. In this case, we have

already shown that the system is string unstable from the analysis in Section 2.4.

Here we apply Theorem II.28 for the analysis of string instability. The control policy

for each oscillator is fully decentralized, that is C(s) = Ci(s)I and

Ci(s) =
10(s2 + 2s+ 6)

s2 + 1
, for i = 1, 2, · · · , n. (2.88)

In this case, we can show that T̃k+1,k(s) = (50s3 + 200s2 + 500s+ 600)/(s4 + 50s3 +

202s2 + 500s + 601), for i = 1, 2, · · · , n. This transfer function has relative degree

r = 1, with ωH = 50 as shown in Figure 2.9 (left).
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Figure 2.9: String transfer function T̃k+1,k(s) (left) and numerical evaluation of IAEs
(right) for an homogeneous string.

By examining the transient response for a small range of string sizes, we obtain

the IAE values shown in Figure 2.9 (right). If we assume that u(n) = 0.009n, then

we predict from Theorem II.28

|Hynr1(jω)|H∞

≥ exp

(

nαr2

4ωH ūc2f(ω
2
H + α2)

(

log
ωH + α

ωH − α

)2
)

.

Hence, we predict string instability with a growth in the peak of the frequency

response of at least a factor of exp(3.56× 10−7), that is 3.09× 10−6dB per oscillator.

It is worth noting that the predicted string instability growth per oscillator in this

case is a lower bound. The growth of |Hynr1(jω)|H∞

per oscillator may be more severe
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than the predicted value. For example, the observed of |T̃k+1,k(jω)|H∞
is 0.65dB and

it is clear the peak in disturbance response grows at this rate. The difference is due

to conservativeness in the lower bound in Theorem II.28.
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Figure 2.10: String transfer function T̃k+1,k(s) (left) and numerical evaluation of IAEs
(right) for an heterogeneous string.

We now turn to the effect of heterogeneous control and an increased forward

communications range of 2. The control law we consider is

ui(t) =
10(s2 + 4s+ 10

i
+ 1)

s2 + 1
⋆ ei(t) +

s2 + 4s+ 1

s2 + 1
⋆ ei−1(t), for i = 2, 3, · · · , n.

(2.89)

This results in a (2×2) multivariable transfer function T̃k+1,k(s), whose magnitude plot

is shown in Figure 2.10 (left). Also if we compute numerically the IAE performance

for this situation, we obtain ū = 0.005 as illustrated in Figure 2.10 (right). By

applying Theorem II.28, we predict string instability with a growth of 2.23× 10−6dB

per oscillator. Numerical evaluation of the frequency response gives the results in

Figure 2.11.

We further introduce the time headway policy. We assume the controllers are

(2.89) and take hi = 0.5, for i = 2, 3, · · · , n. The simulation results on error

responses are shown in Figure 2.12 and it is shown we can recover string stability

in this case.
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Figure 2.11: Frequency response of Hynr1(jω) in an heterogeneous oscillator string.
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Figure 2.12: Frequency response of Henr1(jω) in an heterogeneous oscillator string
with time headway spacing.

2.7 Conclusion

In this chapter we have studied the problem of string instability in synchronized

harmonic oscillator systems. By using a new integral relation that must be satisfied

by the complementary sensitivity function, we provided three sufficient conditions

for string instability in homogeneous oscillator systems. We also extended our string

instability analysis to heterogeneous oscillator systems where the controllers for dif-

ferent oscillators may be tuned differently and each oscillator can communicate with

a few neighbors.
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CHAPTER III

Identification of Human Feedforward Control in

Grasp and Twist Tasks

3.1 Introduction

People are not very good at holding their position. The human body, whether

considered at a finger, hand, or even shoulder, gives or bends under load. Even when

a person co-contracts their muscles or changes posture to gird a hand with the weight

of their torso, a sufficiently large unexpected force will still produce an excursion in

intended position. Likewise, deviations accompany position trajectories if a load is

encountered while moving. Since the human motor system cannot impose a motion

on the environment independent of the loads encountered, it can hardly be described

as a pure motion source. Modeling the motor system as a pure force source has

similar shortcomings1. A truly competent model of the arm and hand as a motor

system must contain a description of how the hand moves in response to a force

applied through a contact with the environment. That is, a competent model will

contain a finite mechanical admittance to describe the relationship between applied

force and response motion that the environment sees of the body at the point of

contact. Alternatively, a model in the dual operational form can be given, which

would contain a finite impedance to describe the relationship between applied motion

and response force that the environment sees of the body.

But the motion (force) at a point of contact with the environment depends on

the neural activation of muscle in addition to the contact force (motion). That is,

a competent model of the human motor system must also describe an actuator—a

1A pure force source imposes a force trajectory at a contact with the environment no matter the
motion response. Thus modeling the motor system as a force source would not capture the manner
in which a contact force drops if the environment suddenly moves away.
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system capable of driving motion or force at a point of contact with the environment.

While we have argued against the use of a pure force or motion source, a source of some

kind is nevertheless needed alongside the immittance2 that describes the relationship

between contact force and motion. A source is required to drive energy into the

mechanical system comprising the body in contact with a part of the environment or

the body by itself.

To develop a model that can both drive energy across a mechanical contact and

bend appropriately under a load, we may draw on the theory of Equivalent Networks.

In particular, the Norton equivalent network allows us to build a linear model of

the human motor system that generalizes all other linear models using a single

motion source connected in series with an immittance. Owing to the fundamental

role of the Norton equivalent network in systems theory and its general applicability

across electrical, mechanical, and other domains, a model of the neural response and

mechanics of the human motor system in the form of a Norton network cannot be

claimed as a novel contribution. Hodgson and Hogan [37] used a Norton network

to model the upper limb moving a manipulandum in the horizontal plane. To

identify the motion trajectory generated by the motion source in the model, Hodgson

and Hogan adapted the motor drive on the manipulandum to null the interaction

force while human subjects repeated a reaching motion several times. Like short-

circuiting the output terminals of a Norton circuit, nulling the interaction force

enables direct measurement of the sourced motion without having an estimate of

the Norton impedance. Recently, Hogan [40] has generalized the Norton Equivalent

to nonlinear systems, showing that the forces acting on inertia elements combine

linearly. The Norton network also generalizes the equilibrium point model [31] and

so-called virtual trajectory model [37] of the human motor system.

In this chapter we develop a complete Norton-type model of the human motor

system, identifying both the impedance and the motion source. Note that in the work

by Hodgson and Hogan [37], only the sourced motion was identified. The resulting

model captures all observable aspects of the arm functioning as an actuator driven

by a neural command and subject to loading.

2After Bode [9], we use the term immittance to stand for either admittance or impedance, as
appropriate to the operational form of a model. An admittance function describes a relationship in
which motion is input and force is output whereas an impedance function describes a relationship
in which force is input and motion is output.
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3.1.1 Feedback and Feedfoward Control

An actuator under neural control can be used to close a loop—to realize feedback

control. Feedback control can contribute several useful properties to a system—one

of the most useful being the ability to reject disturbances. Thus feedback control can

minimize the deviations from intended motion that are induced by disturbance loads

by commanding muscles with a neural signal that depends on sensory readings of the

deviation or the disturbance load itself (or both). However, feedback control in the

human neuromotor system is hampered by slow neural communication speeds that

contribute at least 100ms of loop delay [19, 85]. Even reflex loops suffer 40-70ms of

loop delay [48, 53, 85], limiting the degree to which feedback can be used to eliminate

position errors. Thus feedback control is not available in the first 40-100ms of any

response to a sudden onset load.

The only sure-fire way to eliminate the effects of load on the mechanics of the

body is to anticipate those loads and cancel them with carefully timed and scaled

muscle activations. This is feedforward control, often called anticipatory control in the

motor behavior literature. Muscle actions can be harnessed to drive the impedance

so that the applied loads are perfectly balanced at the point of contact and their

effects nulled. The existence proof for anticipatory control is provided by the tight

link between whether the size and timing of a load can be anticipated, and whether

excursions are eliminated from the intended motion trajectory.

The challenge, then, is to estimate both the sourced motion and the driving point

impedance from measurements of force and motion at the point of contact with

the environment. Measuring the sourced motion directly is not possible, at least

not by ethical means. Thus we shall seek a means to identify the sourced motion

and series immittance by manipulating and observing the force and motion at the

interaction port (point of contact with the environment). Once the sourced motion

and immittance are identified, however, it will be imperative to validate the model

in both of its parts under different conditions than those used for identification. By

manipulating the expectations of our experiment participants, we can create such

altered conditions. The opportunities to manipulate expectation are provided by the

grasp and lift task, as we describe next.

3.1.2 The Grasp and Lift Task

A great deal of insight into human motor control can be generated from the study

of object manipulation. In the case of manipulating known objects, certain principles
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contribute to one’s ability to anticipate loads applied by the object. First, loads follow

from the motor actions imposed on the object according to invariant laws of physics.

Second, insofar that a person knows their own actions and has prior experience with

a given object, a mental representation of the relationship between action and object

response can be used to predict the ensuing load produced by a given object acted

upon in certain ways. Loads that are predictable can be accounted for in adjusted

motor plans so that these loads do not produce deviations from the intended object

motion.

A very common object manipulation activity in which loads must be anticipated

to enable their accommodation is the grasp and lift task. Grasp and lift is particularly

valuable for the study of anticipatory (feedfoward) control because the easily measured

grip force can be considered a reading of the anticipated load. Starting with the paper

by Johansson and Westling [48], many papers have shown that grip forces are finely

coordinated with lifting actions to prevent slip under the load force that develops as

the object leaves a tabletop [26, 46, 43].

In particular, Johansson and Westling [47] showed that grasp forces are finely

coordinated with the load forces produced during lifting. Even the peaks in the

grip force rate and load force rate are carefully timed within the first 100 ms when

adults grasp and lift objects. The grip force in the contact normal direction is just

sufficient to produce a friction force in the direction of motion that will prevent slip.

This fine coordination is clear evidence that muscle activations are pre-planned—a

feedforward controller is acting to balance expected loads and produce the desired

outcome. Studies have shown that the CNS can accommodate expected changes in

weight [47], friction properties [48], and shape [44], so long as prior experience is

available to build a feedforward control strategy. Unexpected changes in load result

in the application of insufficient or excessive grip forces and distortions in hand/object

movement trajectories. Nonetheless, within one or two subsequent lifts with the same

object, an appropriate feedforward control strategy is recalled and employed to re-

establish the characteristic coordination patterns. Even after 100ms within the same

lift, the characteristic patterns can appear, indicating the appropriate feedforward

control can be quickly swapped into play based on the sensory feedback [101]. Virtual

environments rendered through haptic devices have also been used to show that the

CNS can accommodate stiffness, damping, and inertial loads in addition to gravity

loads [26] and the object can be twisted or turned like a door knob as well as lifted

[46].

In this chapter we measure the position of an object as it is grasped and lifted
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in addition to the grip and load forces. From published studies [47] we can expect

the position trajectory to be perturbed if the weight of the object (load) is different

than expected (not properly anticipated). We can also expect the grip force to be

insufficient or excessive to prevent slip depending on whether the load is greater or

smaller than anticipated. But even further, we can expect that the impedance in

the axis of lift will vary with the anticipated load, because (as has been shown in an

altogether different body of research) the driving point impedance depends on grip

force [35, 34].

3.1.3 Model Validation

The perturbations that occur in the lift trajectory when unexpected loads are

encountered can serve as test cases for a model of human motor control. In particular,

both the motion trajectory (unloaded motion) and the impedance (tendency to bend

under load) features of our proposed model can be tested using lifts of an object in

which a different load is expected than that encountered. As in many motor behavior

experiments, we call trials in which the human participant prepares for one load but

encounters another “catch trials”. We use catch trials to test our proposed model.

We use a set of experiments in which the participant correctly anticipates the load

to determine the sourced motion. In particular, we formulate an input estimation

problem to determine the sourced motion, but for this problem the driving point

impedance must already be known. Using a separate experiment in which the lift-

axis impedance is measured as a function of grip force, we assume the same impedance

may be used to describe how the hand bends under unexpected loads in short time-

scales.

In fact we use a grasp and twist task, rendered in a virtual environment, rather

than a grasp and lift task. Both tasks involve grip forces that must be modulated to

prevent slip during the development of load forces, as highlighted in Figure 3.1.

The remainder of the chapter is organized as follows. The proposed model of

human hand movement for grasp and twist tasks is developed in Section 3.3. We also

provide detailed experimental procedures to set parameters of the impedance model

in Section 3.3. Section 3.4 details the experimental results including a relationship

between impedance values and grip force, the grip force profiles, and the comparison

of our model prediction to experimental data. This chapter ends with a discussion

and concluding remarks.

53



Load Force

Grip Force

Load Torque

Grip Force

Figure 3.1: Schematics of grasp and twist, grasp and lift tasks.

3.2 Background

3.2.1 Equivalent Networks: A General Model

Network theory was first developed to describe the behavior of linear circuits

in the early 20th century. A theorem by Norton [49] (developed independently by

Mayer [49]) states (in mechanical terms) that any linear interconnection of force

sources, motion sources, and inertia, damping, or stiffness elements may be replaced

by an equivalent parallel interconnection of a single pure motion source with a single

impedance. This simple interconnection will be indistinguishable from the more

complicated network that it replaces when viewed from its connections—the (neu-

ral) command signal and the (mechanical) input/output signals at the mechanical

contact (interaction port). The dual Thévinin Theorem states that a given network

is indistinguishable from a mechanical parallel interconnection of a pure force source

and an impedance, when observed from its connections. Thus the Thévinin actuator

model contains a force source (driven by neural command) connected in parallel with

an impedance.

Note that the input and output variables associated with an impedance model

both pertain to a common point of contact, and are called power-conjugate variables

or port variables, since their product expresses power (when the motion variable is

velocity). The neural input, on the other hand, is a signal without an associated

power-conjugate output signal.

The source motion and driving point immittance in the Norton model can be

identified using various methods, though most of these require two identification

experiments. In complete analogy with circuit theory, the sourced motion can be

determined if the load is completely removed from the contact port. This corresponds

to measuring the “closed circuit” current flow. This is basically the approach adopted
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by Hodgson and Hogan [37]. Subsequently the immittance can be found if the motion

and force at the contact port are both known. Note that Hodgson and Hogan did not

estimate the Norton immittance.

In our work we adopt an alternative approach. We first estimate the immittance

using measurements of force and motion at the contact point when the participant is

not moving. Human participants can be instructed to not move while a perturbing

force pulse is administered and the response motion recorded. We are careful to

characterize the immittance under various grip forces, however, since it is known that

impedance varies with grip force [34]. Once the immittance is known, it is possible

to estimate the sourced motion by formulating an input estimation problem, as we

describe below. It is necessary, however, to assume that the immittance measured

when the participant’s hand is stationary remains the same for a task in which the

participant’s hand is moving.

3.2.2 Identifying the Impedance Component

Impedance models of the body have been fit to force and motion recordings from

experiments conducted with instrumented and actuated plates, handles, and braces.

Reported models describe a finger pressing a plate [34], a finger and thumb pinching

a rotary knob [35], a hand grasping a handle [105] and others. Also, measurements

of torque and angular motion across a joint can be used to determine the impedance

of individual joints [97, 55, 57]. Impedance can even be characterized during motion

or task execution using small perturbations on a handle[61]. When two or more

dimensions are involved, as in the grip of a handle moving in a plane, an impedance

matrix is required to describe the relationship of all combinations of force and motion

in the various directions [32]. The impedance has been shown to systematically vary

with configuration (posture) [97] and muscle activation. For small motions, a linear

description of the impedance (or each entry in an impedance matrix) can be justified,

reportable using stiffness, damping, and inertial components that correspond to the

displacement, velocity, and acceleration components of motion. In particular, with

increasing contact force or [34] or grip force [35] or with increasing co-contraction

[77], the inertia remains relatively constant; the damping increases; and the stiffness

increases. Impedance models such as these, however, must assume that neural control

is not at play and reflex loops, if any, operate at steady state.

55



3.2.3 Identifying the Motion Source: Input Estimation

From a system viewpoint, the motion source is the input that drives the human

hand through the impedance model to interact with the loads. As the loads and the

output trajectories are recorded in our experiment and the impedance is already

available as a function of grip force, the identification of the motion source can

be formulated as an input estimation problem. To facilitate this input estimation

problem, the velocity and acceleration variables during hand movement that are

associated with the damping and inertia components in the impedance model can

be obtained through the differentiation and filtering techniques in signal processing.

3.3 Model and Methods

3.3.1 Model of Human Hand Movement

Our model consists of a position source and a spring-damper coupler that cap-

tures the variable driving-point impedance of the hand. The position source is an

embodiment of a human user’s volitional control, in this case control of the twisting

movement.

α

β
zJ

rθ zθ

loadτ

Figure 3.2: Coupled model of human hand, wheel, and external loads

Although we study the rotational motion of the human hand holding the haptic

wheel, for convenience we draw the motion as an equivalent translational motion

system, as depicted in Figure 3.2. Figure 3.2 shows a mechanical system translating

along a single axis that models the arm, hand, and wheel that rotate about a single

axis3. Here α and β are the stiffness and damping coefficients of a torsional spring

and damper. The parameter Jz captures the combined inertia of the hand and the

3A similar model of the human hand is used in [105] to explain dissipativity in a system comprising
a hand and virtual harmonic oscillator.
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wheel gripped by the hand. The variable θz is the angular position of the hand and

wheel. The signal θr is a smooth reference angular position source that is planned

and imposed by the human neuromuscular system. The signal τload is the external

load torque generated by the motor through the wheel. In this study, τload is one

of two saturated springs, that present what we call a Light load and Heavy load as

shown in Figure 3.3. We will quantify differences in the way our study participants

grasp and twist the Light Load and the Heavy Load. The two loads are designed to

lift off from zero and saturate already when the wheel passes 0.1 rad (5.7 degrees).

Heavy

Light

(N·m)

(rad)

0.5

0.1

0.1

loadτ

zθ
1.0

Figure 3.3: External loads: Heavy and Light.

Previous work [35] has shown that the impedance (in particular, values for Jz,

α, β) changes with grip force when humans grasp a small knob. Here, we also

assume that the values of Jz, α, and β are grip-force dependent (this will be shown

experimentally in Section 3.3.3 and Section 3.4.1). Hence our model is a parameter-

varying system. To highlight this parameter-dependence, we write the equation of

motion for the system in Figure 3.2 with the parameter-dependence shown explicitly:

Jz(fgrip)θ̈z + β(fgrip)θ̇z + α(fgrip)θz = α(fgrip)θr + β(fgrip)θ̇r − τload(θz), (3.1)

where fgrip is the grip force.

The proposed model in Figure 3.2 may have some connections with other research

areas such as muscle models [62]. We might hypothesize that there are two sets
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of muscles in the forearm that work cooperatively to realize the grasp and twist

movement. One set of muscles is responsible for grasping and the other set of muscles

in the forearm is for twisting. These two sets of muscles are closely coordinated

during the movement. To activate the movement, the CNS first sends neural signals

to muscles and the muscles change their lengths depending on the firing rate of the

neuron signals. The change of length in muscles generates forces and drives the

limbs to achieve certain movements. Figure 3.4 shows a schematic of the Hill muscle

model that describes how muscle drives a limb. The set of muscles responsible for

the twist movement can be abstracted into a muscle model that includes a contractile

component, a parallel elastic component, and a series elastic component [62]. Hence

θr in our model might be considered as the length of the contractile element and the

spring of stiffness α is the series elastic element in the Hill muscle model.

Contractile

Component

Parallel Elastic

Component

Series Elastic

Component

Limb

rθ
zθ

Environment

Figure 3.4: Schematic of the limb and muscle system.

3.3.2 Apparatus

We asked our study participants to grasp the wheel shown in Figure 3.5 using

thumb and middle finger in the grip position shown. The grip force was measured

by a load cell (Transducer Techniques, LSP-10). The wheel with the integrated load

cell was connected to a DC motor (Maxon Motor, RE63). The motor was powered

by a power amplifier (Maxon Motor, ADS 50/10) and the angular position of the

wheel is reported by an optical encoder attached to the motor (Avago Technologies,

HEDL-556x series). The resolution of the angular position is 0.09 degree (4000 counts

per revolution in quadrature mode).

A PC computer with a Sensoray Model 626 data acquisition card was used to

sample the position at 10 kHz and the grip force measured by the load cell was

sampled at 1 kHz. The computer was used to control the load torque shown in
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Figure 3.5: Experimental device.

Figure 3.3, resisting the movement on the basis of the angular position of the wheel.

The torque servo rate was 10 kHz.

3.3.3 Experimental Protocol

Nine test participants (all males, 20 to 50 years old, right-handed) participated

in this study. Prior to starting the study, each participant was consented according

to the University of Michigan’s Institutional Review Board and given an overview of

the study. The IRB Registration Number was IRB00000245.

The experimental procedure consists of two parts. The first part is to obtain the

participants’ impedance values in the twist axis which depend on the grip force. The

second part is the grasp and twist task.

3.3.3.1 System Identification for Human Hands

The participant was asked to grip the wheel using thumb and middle finger, to

slowly increase the grip force, and keep the hand still. When the participant’s grip

force reached a preset threshold, the motor applied a 70 ms counterclockwise torque

pulse to perturb the participant’s hand. The magnitude of the pulse increased with

the grip force thresholds, ranging from 0.5 to 1 N·m. The values of pulse magnitude

were chosen to ensure that the displacement of the participant’s rotation was roughly

the same for different grip forces. The range of rotation was 20 − 30 degrees, large
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enough to engage rotation of the participant’s forearm.

Each participant completed six identical blocks with ten trials each. Each block

of ten trials included force thresholds of 5.0, 7.5, 10.0, 12.5, 15, 17.5, 20.0, 22.5, 25.0,

27.5 Newtons, in order. The participant was invited to rest between blocks. Acquired

data included wheel displacement, the pulse perturbing signal, and the grip force.

3.3.3.2 Grasp and Twist Task

Each participant performed five to eight blocks of grasp and twist movements. In

each block, the participants repeatedly grasped the wheel using thumb and middle

finger when the green LED was illuminated, turned the wheel clockwise against the

external load torques shown in Figure 3.3 to the end position, and then turned the

wheel back to the initial position. The initial position was marked by the green LED

and the end position with the red LED. The angle between the green and red LEDs

was 45 degrees. In each grasp and twist movement, the rise time, defined as the time of

movement from 5 degrees to 40 degrees, was calculated. If the rise time was less than

65 ms, the red LED was illuminated. We used the rise time configuration to regulate

the speed and consistency of participants’ movement. Participants were instructed

to make each movement a single action and were told not to be too concerned about

the accuracy of end point positioning. Each block lasted for three minutes, and the

participants usually grasped and twisted about 40 times in one block.

During the experiments, we presented two types of external loads: a heavy load

torque of 0.5 N·m and a light load torque of 0.1 N·m as already described in Figure

3.3. One external load (heavy or light) appeared repeatedly between 3 and 7 times

without change, where the number between 3 and 7 was chosen randomly. Then the

external load switched from light to heavy or heavy to light and repeated without

change 3-7 times, and then switched back again. Thus the participants could not

anticipate the changes in load torque. One sample sequence of the load torque type

is

One Block
︷ ︸︸ ︷

LLL
︸︷︷︸

3

HHHHH
︸ ︷︷ ︸

5

LLLL
︸ ︷︷ ︸

4

HHHHHHH
︸ ︷︷ ︸

7

LLLLLL
︸ ︷︷ ︸

6

· · ·,

where L stands for light load torque and H represents heavy load torque. The

participants were also instructed to try their best to turn the wheel quickly so that

the red LED is illuminated after each movement.

Each participant completed five to eight blocks for the grasp and twist task. Only
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the data of the last three blocks were used for analysis. All test data including the

displacement of handle, the load torque signal, and grip force were saved.

3.3.4 Data Analysis

3.3.4.1 System Identification of Human Hand Impedance

The objective of the experiments described in Section 3.3.3.1 is to obtain the

dependence of the impedance parameters (α, β, Jz) on grip force. Because 70 ms

is too short for the subject to voluntarily change the motor command, only the

arm and hand’s passive biomechanics and short-latency reflexes contribute to the

estimated impedance values. In this chapter, we assume that the grip force and with

it the hand inertia, viscosity, and stiffness remain constant after the onset of the pulse

signal in each trial. Recordings showed that the grip force stayed relatively constant.

Then we have the linear impedance model of the hand dynamics

Jz θ̈z + βθ̇z + αθz = τpulse, (3.2)

where τpulse is the 70ms long pulse torque signal used to perturb the participant’s

hand. Since the equation is linear in the parameters, the estimation problem can be

solved using the standard least squares procedure. Also considering that integration

is numerically a more robust operator than differentiation and we only have position

signals, we applied the least squares method to the following equation, obtained by

integrating (3.2) twice over time

Jzθz + β

∫

θzdt+ α

∫∫

θzdt
2 =

∫∫

τpulsedt
2. (3.3)

Using this method, we can obtain the impedance parameters of the human hand

for all grip force thresholds. Also the participants performed six identical blocks for

the impedance identification task and hence we can compute the means and standard

deviations.

3.3.4.2 Grasp and Twist Data Analysis

Using the characterization of impedance as a function of grip force from the first

part of the experiment, we can assume that the same impedance estimate describes the

twisting action during the grasp and twist task. And we assume the same dependence

of twist action impedance on grip force. Thus the impedance can be estimated so
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long as a grip force measurement is available. The load τload is known because it is

programmed through the PC. It now remains to estimate the position source θr(t).

Before we introduce the method to estimate θr(t), we first classify trials into four

categories depending on the loads encountered in the current and previous trials. We

assume that the participant prepares for the current trial based on the experience

in the previous trial. If the previous trial load is light and the current trial load is

light, we call this a normal Light trial because the participant has prepared for the

light load. Similarly, if the previous and current trial load is heavy, we call this is a

normal Heavy trial. If the previous is light and the current is heavy, this is a catch

trial and called a Light-Heavy trial because the participant erroneously prepares for

light torque when in fact the load torque is heavy. Similarly, the other catch trial is

when the previous is heavy and current is light, and called a Heavy-Light trial. The

classification of the trials with the sample sequence in Section 3.3.3.2 is shown below

Light
︷︸︸︷

LLL

Light-Heavy
︷︸︸︷

H

Heavy
︷ ︸︸ ︷

HHHH

Heavy-Light
︷︸︸︷

L

Light
︷︸︸︷

LLL

Light-Heavy
︷︸︸︷

H

Heavy
︷ ︸︸ ︷

HHHHHH

Heavy-Light
︷︸︸︷

L

Light
︷ ︸︸ ︷

LLLLL · · · .

The data of normal Light and Heavy are used to estimate θr. The data of catch trials

Heavy-Light and Light-Heavy are used to check the proposed model.

The calculation of θr based on θz and impedance values is an input estimation

problem, to which we apply a two-step process. The first step is to calculate the

auxiliary signal θauxr

θauxr =
Jz(fgrip)θ̈z + β(fgrip)θ̇z + α(fgrip)θz + τload(θz)

α(fgrip)
, (3.4)

where θ̇z is obtained by digitally differentiating and then smoothing the position signal

θz (using an equiripple FIR lowpass filter and also the filtfilt function in matlab) and

θ̈z is obtained in same way based on θ̇z. Then we have the following differential

equation

θr +
β(fgrip)

α(fgrip)
θ̇r = θauxr . (3.5)

θr can be calculated from θauxr using the Forward Rectangular rule, that is θ̇r(k) ≈
θr(k+1)−θr(k)

ts
, where ts is the sampling period.

Since we have two kinds of load torques shown in Figure 3.3, we can derive two

θr signals: one for normal Heavy and one for normal Light trials, which we name:

θr(Heavy) and θr(Light), respectively. Based on these two θrs together with the grip
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forces, we can predict the human hand movement during a catch trial and test our

model by comparing the predicted trajectories with the experimental trajectories.

3.4 Experimental Results

The results are presented in two sections. The first focuses on the impedance

values of the human hand. In the second section, we build a model of human hand

movement during grasp and twist tasks based on the impedance profiles and the data

in grasp and twist trials. We also use this model to predict the trajectories of catch

trials and check these against experimental data from catch trials.

3.4.1 Human Hand Impedance Profile

We use the least squares algorithm in Section 3.3.4.1 to estimate the impedance

values. Figure 3.6 shows the inertia, damping, and spring value estimates vs. different

grip force thresholds for Participant 4. Each participant completed six blocks of the

impedance identification task. Here, the units for Jz, β, and α are kg ·m2, N·m/rad/s,

and α are N ·m/rad, respectively.
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Figure 3.6: Impedance estimate vs. grip force thresholds for Subject 4. Error bars
represent one standard deviation of the mean.

All other participants’ impedance profiles are very similar to the results in Figure

3.6. The mean values of all participants’ impedances are shown in Figure 3.7. We
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can see that the inertia estimate is almost constant and the damping and spring

estimates increase approximately linearly with grip force. It is also worth noting that

the trends of the impedance values are consistent with previous research results on

human hand/finger impedance [34, 35]. The human hand impedance when grasping

a small knob [35] and the finger tip impedance [34] show similar trends.
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Figure 3.7: Mean values of impedance vs. grip forces for all participants.

To capture the relationship between grip force and impedance values, we can

fit a constant value to the mean of the inertia estimate and linear functions to the

mean values of the damping and spring estimates. The fitted functions that describe

how impedance parameters change with grip force will be used later to produce a

description of impedance that applies during grasp and twist movements. For the

participant whose data is depicted in Figure 3.6, the fitted parameter functions are

Jz = 4.41× 10−4 kg ·m2,

β = 8.77× 10−4 × fgrip + 2.11× 10−2 N ·m/rad/s,

α = 4.87× 10−2 × fgrip + 5.19× 10−1 N ·m/rad,

(3.6)

where fgrip is the grip force measured by the load cell and the unit is Newton. The

fitted parameter functions for all subjects are summarized in Table 3.1.

3.4.2 Grasp and Twist Movement Results

We plot the grip force and the hand position data for one subject in Figure 3.8.

Here the time 0 is defined as the moment when the hand starts to move based on

64



Table 3.1: Fitted functions for all subjects’ impedance profiles

Participant
Number

Jz = J0 β = β1 × fgrip + β0 α = α1 × fgrip + α0

J0 β1 β0 α1 α0

1 4.55× 10−4 4.56× 10−4 2.51× 10−2 4.81× 10−2 5.22× 10−1

2 5.13× 10−4 5.17× 10−4 2.40× 10−2 5.93× 10−2 1.66× 10−1

3 4.54× 10−4 5.80× 10−4 2.98× 10−2 3.28× 10−2 6.61× 10−1

4 4.41× 10−4 8.77× 10−4 2.11× 10−2 4.87× 10−2 5.19× 10−1

5 4.12× 10−4 8.12× 10−4 2.53× 10−2 3.21× 10−2 8.49× 10−1

6 4.31× 10−4 8.71× 10−4 1.90× 10−2 5.54× 10−2 10.50× 10−1

7 4.30× 10−4 7.70× 10−4 2.03× 10−2 2.33× 10−2 13.95× 10−1

8 4.48× 10−4 8.53× 10−4 1.71× 10−2 3.26× 10−2 11.09× 10−1

9 4.61× 10−4 6.22× 10−4 2.68× 10−2 3.14× 10−2 11.31× 10−1

the measurement of wheel position. The upper figure shows the grip force and the

lower figure shows the hand position of all trials. Each pair of grip force and hand

position data corresponds to a single grip and twist movement trial. Different colors

of trajectories stand for different categories defined in Section 3.3.4.2. Very rarely, the

participant may experience slips during the movement and the corresponding data

are excluded from our analysis. In Figure 3.8, we have 50 Light trajectories, 42 Heavy

trajectories, 13 Light-Heavy trajectories, and 9 Heavy-Light trajectories.
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Figure 3.8: Grip force and hand position data of Subject 4.

Taking a closer look at these data, we averaged the grip force and hand position

trials of each category as shown in Figure 3.9. The solid lines stand for the mean

value and the shaded areas represent the 95% confidence interval. The upper figure

shows the average grip force for these four categories in different colors. For Light and

Heavy load torques, we have two distinct grip force trajectories. It is clear that the
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participant needs to grip harder for heavy load torques than for light load torques.

This phenomenon is consistent with results in [46].

Figure 3.9: Averaged grip force and hand position data of Subject 4. The solid
lines stand for the mean value and the shaded areas represent the 95%
confidence interval.

Figure 3.9 also illustrates the catch trial grip force properties for our grasp and

twist tasks. We can see from the average grip force trajectory of Heavy-Light catch

trial data, the grip force follows the grip force of the previous Heavy trial at the

beginning and then the participant realizes the actual torque is light at about 0.10s

and starts to decrease the grip force to the level of a Light trial in the end. Similar

trends are found in the grip force trajectories of Light-Heavy catch trial data. Because

the previous trial is Light and the current load is the Heavy torque, the grip force of

Light-Heavy starts like the Light grip force and then changes to Heavy.

Other participants’ grip force trajectories are very similar to the results in Figure

3.9. We also observed that the trend of the separation of catch trial from its previous

trial was more obvious in Light-Heavy catch trials than Heavy-Light ones. Thus, we

measure the time when the grip force of Light-Heavy is separated from Light for all

participants and the results are reported in Table 3.2. The results in Table 3.2 show

that the time for all participants is very consistent, with a mean value of 0.1108s and

standard deviation of 0.0119s.
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Table 3.2: Time when the grip force of Light-Heavy is separated from Light for all
participants

Participant Number Time when feedback comes in (s)
1 0.101
2 0.097
3 0.102
4 0.107
5 0.103
6 0.116
7 0.125
8 0.132
9 0.114

mean (all participant) 0.1108±0.0119

3.4.3 Model Validation Using Catch Trial Movements

Figure 3.9 also shows the trajectories of hand movement. All other participants’

hand movement trajectories are similar to the results in Figure 3.9. Although we

instructed participants to turn the wheel at the same rate, the Light trial hand

trajectory is clearly above the Heavy trial trajectory showing the participants’ hands

move faster for the Light load than the Heavy load. All participants’ hand trajectories

have the same order from the top to bottom: Heavy-Light, Light, Heavy, and Light-

Heavy. For each participant separately, we use the averaged trajectories of Light

and Heavy together with grip forces of Light and Heavy to estimate θr for normal

trials. Figure 3.10 shows the estimated θr for heavy and light load torques as well

as θz(Heavy) and θz(Light) that were used to estimate θr trajectories. We can see

that although the hand movement θz(Heavy) is lagging behind θz(Light) in time, the

motor plan θr(Heavy) is ahead of θr(Light) in order to compensate for the heavy load.

We have identified the proposed model with position source θr and impedance

parameters α, β, Jz (from the measured grip force and (3.6)) for both the Heavy

and Light loads. We now use this model to predict the catch trial hand movement

trajectories: Heavy-Light and Light-Heavy. From the grip force analysis of Heavy-

Light data, the subject starts the movement using the pre-planned grip force for heavy

load torques and it is also reasonable to assume that the participant uses the position

source θr for Heavy at the beginning. Hence the way to calculate the Heavy-Light

trajectory θz is to use θr and grip force (impedance) for heavy torques, and apply

the light τload. Similarly, the predicted trajectory θz for Light-Heavy is to use θr and
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Figure 3.10: θz and estimated θr.

grip force for light torques, and apply the heavy τload. We notice that the participant

will use feedback information to determine the actual torque as we can see from the

changes of grip force in catch trial data, which also indicate the possible change of

θr. However, our current model only focuses on the use of feedforward control to

predict the catch trial trajectories before the time at which feedback comes into play.

Hence in our prediction we assume no change in the position source and grip force in

calculating catch trial trajectories.
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for Subject 4.
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Figure 3.11 shows that the predicted trajectories of θz(Light) and θz(Heavy) are

very close to the experimental data because we use the experimental data to estimate

θr for heavy and light torques. This also verifies the effectiveness of the algorithm for

θr estimation. The small differences result from the calculation error of θ̇z and θ̈z in

estimating θr due to encoder resolution.
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Figure 3.12: Experimental data vs model prediction of catch trials for Subject 4.

To validate the model, we will compare the predicted catch trial trajectories with

the experimental data. The results are shown in Figure 3.12. The predicted trajectory

of catch trial θz(Light-Heavy) matches the experimental data up to 0.13s, which is

roughly the time when the participant uses feedback information to change grip force

and position source. Similar trends can be seen for the θz(Heavy-Light) trajectory.

The predicted trajectory matches the experimental result up to 0.25s and then these

two curves are separated.

In order to compute the similarity between our model prediction and the exper-

imental catch trial data, we define a “fitness score”, by estimating the percentage

of the catch trial trajectories predicted by the model. The fitness score depends on

the difference between the experimental catch trial data and the model prediction,

normalized by experimental data. Similar model validation metrics are used in

[84, 23]. The two fitness scores for θz(Heavy-Light) and θz(Light-Heavy) are shown
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in the following equations.

Fitness scoreHeavy-Light = 1−
‖θz(Heavy-Light)− θ̂z(Heavy-Light)‖

‖θz(Heavy-Light)‖
,

Fitness scoreLight-Heavy = 1−
‖θz(Light-Heavy)− θ̂z(Light-Heavy)‖

‖θz(Light-Heavy)‖
.

(3.7)

Here, θz(Heavy-Light) is the experimental trajectory for Heavy-Light catch trial and

θ̄z(Heavy-Light) is the mean value of θz(Heavy-Light); θ̂z(Heavy-Light) is the model

prediction trajectory for Heavy-Light catch trial; θz(Light -Heavy) is the experimental

trajectory for Light-Heavy catch trial and θ̄z(Light -Heavy) is the mean value of

θz(Light -Heavy); θ̂z(Light-Heavy) is the model prediction trajectory for Light-Heavy

catch trial; The notation ‖ · ‖ denotes the Euclidean norm of a vector. We only

calculate the fitness scores in(3.7) up to 0.10s before the feedback takes effect for all

participants. The following table shows the fitness score to calculate the fit of our

model to the experimental data for all participants. The mean of the fitness score

for Heavy-Light catch trial is 92.66% with standard deviation of 5.49%. The mean of

fitness score for Light-Heavy catch trial is 76.38% with standard deviation of 13.35%.

Table 3.3: Model fit for all participants

Participant Number Fitness scoreHeavy-Light Fitness scoreLight-Heavy

1 93.83% 85.01%
2 96.73% 89.77%
3 97.92% 80.17%
4 96.88% 85.65%
5 94.82% 75.60%
6 82.99% 69.47%
7 86.33% 74.93%
8 96.57% 81.93%
9 96.08% 71.53%

mean (all participants) 92.66±5.49% 76.38±13.55%

Our model in Figure 3.4 is structurally simple. It contains a position source,

a spring-damper-mass impedance representation, and the external loads. Yet the

impedance model is both user-specific and time varying. The impedance model is

user-specific because each user has his or her own fitted functions shown in Table

3.1. The impedance value also depends on grip forces and we show in Figure 3.8

and Figure 3.9 that the grip forces are not constant. Hence the impedance values
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(β and α) are time varying during the twist movement. Now we will first simplify

the impedance model to a non-user-specific one and then further simplify it to be a

non-user-specific and time-invariant one. We want to see if the model prediction will

become worse after these simplifications and if so, how bad the simplified models are

compared with the user-specific and time varying model.

3.4.3.1 Non-user-specific and Time Varying Impedance Model

To obtain the non-user-specific impedance model, we fit the mean values of all

subjects’ impedance in Figure 3.7 and the results are

Jz = 4.50× 10−4 kg ·m2,

β = 6.47× 10−4 × fgrip + 2.43× 10−2 N ·m/rad/s,

α = 3.74× 10−2 × fgrip + 8.90× 10−1 N ·m/rad.

(3.8)

With the impedance profiles in (3.8) for all subjects, the fitness scores for catch

trials are shown in Table 3.5. The mean of the fitness score for Heavy-Light catch

trial is 92.51% with standard deviation of 3.60%. The mean of the fitness score for

Light-Heavy catch trial is 75.45% with standard deviation of 8.59%.

Table 3.4: Non-user specific and time varying impedance model fit for all subjects

Participant Number Fitness scoreHeavy-Light Fitness scoreLight-Heavy

1 91.61% 77.55%
2 94.23% 76.04%
3 95.09% 74.28%
4 95.95% 78.11%
5 94.98% 74.69%
6 88.00% 78.02%
7 87.01% 83.04%
8 96.27% 83.16%
9 90.27% 57.99%

mean (all participants) 92.51±3.60% 75.45±8.59%
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3.4.3.2 Non-user-specific and Time-invariant Impedance Model

To further simplify the impedance models, we use constants to fit the mean values

of all subjects’ impedance in Figure 3.7 and the results are

Jz = 4.50× 10−4 kg ·m2,

β = 3.65× 10−2 N ·m/rad/s,

α = 15.97× 10−1 N ·m/rad.

(3.9)

With the impedance profiles in (3.9) for all subjects, the fitness scores for catch trials

are shown in Table 3.5. The mean fitness score for Heavy-Light catch trial is 92.35%

with standard deviation of 4.01%. The mean fitness score for Light-Heavy catch trial

is 66.04% with standard deviation of 12.58%.

Table 3.5: Non-user-specific and time-invariant model fit for all subjects

Participant Number Fitness scoreHeavy-Light Fitness scoreLight-Heavy

1 91.95% 70.64%
2 91.82% 58.35%
3 96.88% 70.66%
4 97.98% 70.21%
5 90.97% 79.57%
6 85.51% 58.55%
7 90.88% 73.62%
8 96.13% 74.64%
9 89.07% 38.16%

mean (all participants) 92.35±4.01% 66.04±12.58%

3.4.3.3 Comparison of the Three Models

Now we have the results of three models:

• Model 1: User-specific and time varying impedance model;

• Model 2: Non-user-specific and time varying impedance model;

• Model 3: Non-user-specific and time-invariant impedance model.

We want to compare the how well these three models’s prediction fit the experimental

data. Figure 3.13 and Figure 3.14 shows the fitness scores for Heavy-Light and Light-

Heavy catch trials respectively. The bar indicates the mean values and the error bar

indicates 95% confidence intervals. The red dot stands for each participant’s fitness
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score. We can see the fitness scores of Heavy-Light catch trials do not differ a lot and

the fitness scores of Light-Heavy catch trials have certain discrepancies.
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Figure 3.13: Comparison of fitness scores for Heavy-Light catch trials. The bar
indicates the mean values and the error bar indicates 95% confidence
intervals. The red dot stands for each participant’s fitness score.
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Figure 3.14: Comparison of fitness scores for Light-Heavy catch trials. The bar
indicates the mean values and the error bar indicates 95% confidence
intervals. The red dot stands for each participant’s fitness score.

We further applied one-way ANOVA tests for statistical analysis to the data

in Figures 3.13 and 3.14. For Heavy-Light fitness scores, ANOVA reported that

there was no significant difference among the three models (F (2, 24) = 0.216, p =
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0.807). For Light-Heavy fitness scores, there was a statistically significant difference

(F (2, 24) = 4.511,p = 0.022). A Tukey post-hoc test revealed that the means of

Model 1 and Model 3 are significantly different (p = 0.02) while no models have

means significantly different from Model 2.

3.5 Discussion

We have proposed a model of the neuromuscular system that can predict motion

of the hand in the grasp and lift (twist) task. Our model takes the form of a Norton

network with a motion source and series-connected impedance and describes both the

actuation behavior and the bending under load observed in the grasp and lift task.

Our work is different than most of the existing grasp and lift literature, which focuses

on the coordination of grip force and load force [48, 47, 46]. We focus instead on

the position trajectory of the lifted (twisted) object rather than on the coordination

between grip and load forces. We further made use of the coordination between grip

and load forces to design experiments containing catch trials in order to validate our

model. The predicted position trajectory of our model for unexpected loads matched

the experimental data well (Figure 3.12 and Table 3.3)

3.5.1 A Generalized Norton Equivalent Circuit Model

The motion source in our model is analogous to the current source in the Norton

equivalent electrical circuit [40]. The spring-damper-mass impedance is comparable

to the electrical impedance in a Norton equivalent circuit. Our input estimation

approach is built on the assumption that impedance is dependent on grip force. This is

novel compared with existing motion source estimation methods. The motion source

estimation method in [37] is based on the development of an online algorithm that

eliminates the interaction force between the human body and environment, which is

similar to the idea of “short-circuiting the electrical terminal” in a Norton equivalent

circuit. A potential shortcoming of a method that avoids identifying the impedance

such as that used in [37] is that any dependance of the model on a time-varying

impedance is lost. Any dependence of impedance on the conditions imposed as part

of the estimation method is also lost. The motion source identified in [37] may not

be generalized to model common human active movement with interactive forces or

torques between the human body and environment. Ample evidence has shown the

strong adaptability of humans’ impedance in different tasks [1]. Hence it is unlikely

that the motion source for different tasks would be the same. Also, the motion source
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identified in [37] was not validated by other experiments.

3.5.2 Relation to the Equilibrium-Point Hypothesis

Our model and the motion source identification method are similar to some of the

work involving the equilibrium-point hypothesis [31, 32] but are also distinct from it

in important ways. While the focus of the equilibrium-point hypothesis work is on

the existence and properties of the equilibrium-point, the focus of our work is to build

a simple yet competent model to describe human movement.

Several papers by Gomi, Kawato, and Flash [27, 31, 32] have compared the joint

stiffness measured at rest and the joint stiffness measured during motion. Their results

show that the stiffness measured during movement is usually larger than the stiffness

measured at rest. In order to capture the difference and obtain accurate impedance

values for motion source identification, we allow for a dependence of the impedance

values on grip force. The difference between the stiffness at rest and during movement

may be explained by the different grip force employed. On the other hand, identifying

impedance during movement provides another approach to estimate the motion source

[31, 32]. In the approach used in references [31, 32], the impedance values (including

viscosity and stiffness matrices) were identified at discrete point-to-point movement

positions and the motion source was estimated based on the interpolated impedance

values.

The catch trial data in our work was used to validate the proposed model and the

fitness scores in Table 3.3 illustrated the effectiveness of our model. Such validation

of estimated models were not provided in the equilibrium-point hypothesis work [31,

32, 37].

3.5.3 Twist Impedance during Motion is Estimated While Stationary

The dependance of the identified impedance values on grip force in Figure 3.7

matches the results of existing work on human body/joint impedance [34, 35]. The

nearly linear increase in damping and stiffness with increasing grip force and relatively

constant inertia compare well to results on the impedance that other researchers

[35, 34] have identified of the hand or fingers in contact with stationary objects.

During grasp and lift tasks, a set of muscles are engaged to generate the lifting force

that is perpendicular to the grip force. Note that the grip force is produced in part

by some of the same muscles and neural circuits used to generate a twist torque.

It is reasonable that the relationship between the stationary impedance and grip
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force remains valid during active movement, which is an assumption in our model.

However, we have not tested this assumption through additional experiments. For hu-

man active movement that is very fast or sensitive to perturbations during movement,

the impedance should be estimated through separate experiments.

3.5.4 Comparison with Simplified Models

Successful models should account for variation in impedance. We tested the fitness

scores of Heavy-Light and Light-Heavy for three models: the user-specific and time

varying model, the non-user-specific and time varying model, and the neither user-

specific nor time varying model. The results of Light-Heavy fitness scores in Figure

3.14 show that 1) there is a statistically significant difference between the user-specific

and time varying model and the neither user-specific nor time varying model; 2) there

is no statistically significant difference between the user-specific and time varying

model and the non-user-specific and time varying model. This indicates that the

variation of impedance should at least be accounted for in the model.

The significant decrease of the fitness scores using constant impedance values is

not surprising considering the highly nonlinear dynamics of the human body. A large

amount of work has shown that the impedance values differ significantly depending

on the grip force and posture [97, 35]. The estimated impedance during movement

reported in [31, 32] were also highly variable.

3.5.5 The Effect of Feedback and Feedforward Control

The grip force produced by our participants for normal trials and catch trials in

Figure 3.9 is consistent with the work in [47, 46]. The change of grip force in catch

trials indicated the effect of feedback control through the CNS. The results in Table

3.2 reported the time at which feedback apparently comes into play. The reason why

the change of grip force in Figure 3.9 is more obvious in Light-Heavy catch trials is

that the participants need to increase the grip force to accommodate the Heavy load

in order to avoid slips and achieve the rise time requirement. For the Heavy-Light

trial, even if the participants do not decrease the grip force, slips can still be avoided

and the rise time requirement can be achieved due to the Light load. Hence the

change of grip force in Heavy-Light trials is not obvious.

As we only considered human feedforward control in this chapter, it is not sur-

prising to see in Figure 3.12 that the prediction of the Light-Heavy trajectory did

not match the experimental data after 0.13s. The predicted Heavy-Light trajectory
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matched the experimental data for up to at least 0.25 s because this participant uses

the motor plan and grip force for the Heavy load even when he or she realized the

load is Light. This can be observed from this participant’s grip force trajectories in

Figure 3.9.

The overshoot of the position signal in Heavy-Light catch trials is consonant with

the results in [47]. However, the undershoot of the position signal in Light-Heavy

catch trials in our work was not found in [47] probably due to the different time

synchronization method and the speed that objects were lifted. Also, our work has

an identified model to predict the overshoot and undershoot.

3.5.6 Generalization of the Model to Different Areas

The model of a motion source and variable impedance in Figure 3.2 may be

generalized to describe other biological and mechatronic movements. Some recent

results by Hogan [40] have demonstrated the possibility of generalizing the Norton

equivalent circuit to model nonlinear systems in robotics and mechatronics.

3.6 Conclusion

We studied the grip force development and hand trajectories in grasp and twist

tasks. We built a simple model to investigate feedforward control during this task.

This model depends on parameter values identified individually for each subject and

subsequently used to explain the hand trajectories for catch trials with unexpected

torque changes. The proposed model can fit the experimental results before feedback

takes effect. The grip force development for catch trials indicates the possibility of

a change in motion source after 0.11s. Hence in future work we shall study how the

motion source in our model depends on feedback signals beyond 0.11s.

Either a motion source or an impedance alone cannot fully describe the human

body’s interactive dynamics during active movement. However, this fact is frequently

ignored in different areas e.g. the active-steering control system design [2, 95, 68, 4].

Most human models in these models only contain passive driving point impedance

or if they contain active control, they lack backdrive impedance. The integration of

a motion source and impedance can enable these models to predict active movement

and interactions with the environment such as lane changing.

Extending our model to study human interaction with cyber-physical systems is

also one of our future research directions. Of particular interest to us is to further

investigate the dissipativity phenomenon when human users interact with virtual
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harmonic oscillator systems, which has been studied in our previous work [105]. The

results in this chapter describes how impedance values change with grip force, which

was not considered in our previous oscillator work [105].
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CHAPTER IV

Human Control Strategies in Pursuit Tracking

with a Disturbance Input

4.1 Introduction

Human tracking performance while pursuing a moving target by manipulating a

control device such as a joystick has been studied since the early years of human-

machine and aircraft pilot research [70]. Tracking experiments with a random input

or pseudo random (sum-of-sins) reference and/or disturbance are often used to model

real-world situations, e.g. driving a car along a windy road or flying an airplane.

Human operators can use various control strategies during tracking tasks. McRuer et

al. [54] proposed a scheme that he called successive organization of perception. Three

types of control strategies are classified in this scheme depending on the predictability

of the reference signals and skill development of the human operator: compensatory,

pursuit, and precognitive control. The lowest level is compensatory control, in which

only the tracking error is visually available and the human operator largely relies

on a feedback control loop to achieve tracking performance. In pursuit control, past

experience may provide the human operator with information about what to expect

in the near future if the input is predictable, but closed-loop feedback control with

visual feedback is also needed to correct his or her response. If the human operator

has complete information about the reference signal’s future, he or she may use

precognitive control. A visual stimulus can then serve to trigger a properly sequenced

response on the part of the operator. Closed-loop feedback control is not needed and

hence precognitive behavior is essentially open loop control.

Early research on manual tracking behavior in pilot modeling has primarily fo-

cused on the feedback control model with a compensatory display [63], wherein the

reference signal or disturbance were subjectively random-appearing. The human op-
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erator behavior for these simple yet important tasks was largely captured in McRuer’s

crossover model [64]. Even nowadays, some human/machine interface research has

found new applications of McRuer’s models in various areas, e.g., the operation of a

crane [79].

With a pursuit display, a human operator may use both feedback and feedforward

control [100, 64, 3, 23]. With merely the reference signal as input, it is not possible

to identify both feedback and feedforward controllers simultaneously in a human

operator using classical spectral measurement techniques [100, 36, 23]. Instead, an

“equivalent open-loop” controller that depends on both feedback and feedforward

controllers was used in [100, 36] to study human tracking performance. Experimen-

tally identifying the feedforward controllers has been a challenging problem. So far,

there are only two proposed methods appearing in the literature that attempted to

solve this problem. The first method was proposed by McRuer et al. in [100]. These

authors hypothesized that an implied or indirectly measured feedforward controller

can be calculated from the assumption that the feedback controller for the pursuit

display was the same as the estimated feedback controllers for the corresponding

compensatory display. The experimental results reported in [100] showed that under

this assumption the feedforward was close to the inverse of the controlled dynamics.

Another approach to identify both feedback and feedforward controllers is to

add a disturbance signal as a second input [3, 23]. In [3], the authors studied

human manual tracking performance with a pursuit display and a disturbance input.

However, no mathematical models were developed to fit the data using classical

spectral measurement techniques. In [23], the authors investigated human control

behavior in pursuit tracking of a ramp signal while being perturbed by a quasi-

random multisine disturbance signal. Well-established time-domain identification

methods were used to fit the time-domain data with ARX models that contains

both parameterized feedback and parameterized feedforward controllers. The results

showed that the feedforward controller is similar to the inverse of the controlled system

dynamics.

In this chapter we propose a novel identification method that simultaneously

estimates the feedback and feedforward controller. The method uses classical spectral

measurement techniques and does not need the assumption made in [100]. We develop

this method by taking advantage of the fundamental limitations theory [89], which

lies at the very heart of feedback theory since it reveals performance constraints

in feedback systems. The Bode sensitivity integral and complementary sensitivity

integral are famous examples of such constraints. In [92], Gunter Stein provided theo-
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retical explanation and application examples to illustrate the importance of respecting

these constraints. The results in Chapter II also illustrated the importance of Bode

integrals in the control of transient behavior in coupled oscillators. Another important

constraint in fundamental limitations theory is the complementarity constraint [89,

Chapter 1], which is of fundamental importance to feedback control design. In control

systems, the complementarity constraint is used to illustrate a design tradeoff between

disturbance rejection and measurement noise suppression. We will make use of the

complementarity constraint to illustrate the relationship between reference tracking

and disturbance rejection and then separate the feedback and feedforward control.

We aim to identify the feedback and feedforward control strategies of human

operators in tracking single sine and pseudo random reference signals while being

perturbed by a pseudo random disturbance signal. We will use frequency domain

methods to identify non-parametric models for feedback and feedforward control.

Furthermore, we will investigate a human operator’s ability to reject disturbances

using feedback control. Our experimentally identified non-parametric models for

feedback and feedforward controllers show that a human operator’s tracking of sine

signals is largely dependent on feedforward control while tracking of pseudo random

signals relies mostly on feedback control. The different control strategies in tracking

single sine and pseudo random signals may be the key to explain several phenomena

in human tracking activities. The phase lag difference in tracking single sine waves

and sum-of-sines signals has been reported in the literature [41, Section 13]. The

identified feedback and feedforward controllers in human tracking can explain the

difference in phase lag identified in the present work and likely also in previous work.

The remainder of this chapter is organized as follows. Section 4.2 reviews the

compensatory control model and feedforward control model in the literature on human

manual tracking. Section 4.3 details the experimental procedures to track single sine

waves and pseudo random signals. The identification method to estimate the feedback

and feedforward controllers is also provided. The results about the identified human

operator models are shown in Section 4.4. A discussion is offered in Section 4.5 and

concluding remarks are given in Section 4.6.

4.2 Human Operator Models in Manual Control

Depending on the display type as well as the properties of reference and distur-

bance signals, the tracking strategies of human operators can be characterized as fully

compensatory or combined feedforward and compensatory.
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4.2.1 Compensatory Control Model

A model of compensatory human behavior is shown in Figure 4.1. The com-

pensatory model describes the behavior of human operators when only the error

signal is available to the human operator and the reference/disturbance signals are

unpredictable.

0y y

d

uer
ueH P

Human Operator

y

Figure 4.1: Human operator model: Compensatory.

The feedback model in Figure 4.1 is a unity feedback system. Define the feedback

open loop transfer function

L(s) = Hue(s)P (s), (4.1)

and the sensitivity and complementary sensitivity functions by

S(s) =
1

1 + L(s)
, (4.2)

T (s) =
L(s)

1 + L(s)
, (4.3)

respectively. Then the human operator model in Figure 4.1 can be described by

Y (s) = T (s)R(s) + S(s)D(s). (4.4)

A useful and widely used model to describe a human operator’s compensatory

control in Figure 4.1 is McRuer’s crossover model. The crossover model has been

used to analyze manual control performance in a variety of circumstances [65]. The

crossover model assumes that a human operator and plant together approximate an

integrator kc/s with a time delay τ around the crossover frequency ωc, that is

L(s) ≈
kce

−sτ

s
. (4.5)

The compensatory control structure in Figure 4.1 also places a fundamental limit

between reference tracking and disturbance rejection performance. Here T (s) is the
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transfer function for pursuit tracking (in the Laplace domain, Y (s)
R(s)

= T (s)) and S(s)

is the transfer function for disturbance rejection (Y (s)
D(s)

= S(s)). Furthermore, the sum

of T (s) and S(s) must be unity:

T (s) + S(s) = 1. (4.6)

This identity is called “complementarity constraint” and is well-known in the theory

of fundamental limitations [89] due to its fundamental importance to feedback control

system analysis.

A robust feedback control system provides good tracking performance between r(t)

and y(t), and it also suppresses disturbances d(t). We will show in Section 4.4 that

human operators can reject low-frequency disturbances very well, that is S(jω) ≈ 0

when ω is small. To have S(jω) ≈ 0, the feedback loop gain |L(jω)| is very large at

low frequencies. S(jω) ≈ 0 also implies T (jω) ≈ 1 from (4.6), which implies human

operators can achieve good tracking and disturbance rejection performance for low

frequencies using only the feedback control. Near the crossover frequency, L(s) will

have a slope of −20dB/decade and T (s) is not close to 1. Hence, human operators’

tracking and disturbance rejection performance will be worse. For signals with much

higher frequencies than the crossover frequency, human operators will lose the ability

to track reference signals and suppress disturbance due to neuromuscular limits. In

other words, the feedback control loop has a bandwidth limitation that is roughly the

same as the crossover frequency in McRuer’s model.

4.2.2 Feedforward Control Model

If the reference signal is predictable and both reference and output signals are

available, human operators may use combined feedforward and compensatory control

strategies [100, 23] as shown in Figure 4.2. Then the response of the signals in the

loop is

Y (s) = Tpursuit(s)R(s) + S(s)D(s), (4.7a)

E(s) = Terror(s)R(s)− S(s)D(s), (4.7b)

where Tpursuit(s) is the summation of two transfer functions and defined as

Tpursuit = T (s) +Hur(s)P (s)S(s), (4.8)
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and Terror(s) is defined as

Terror(s) = 1− Tpursuit(s) = [1−Hur(s)P (s)]S(s). (4.9)
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Figure 4.2: Human operator model: Combined compensatory and feedforward.

Compared with the compensatory model, the combined feedforward and compen-

satory control can use both feedback and feedforward controllers to achieve pursuit

tracking and can only use the feedback controller to reject disturbances. The transfer

function for feedback loop tracking is T (s) and the transfer function for feedforward

loop tracking isHur(s)P (s)S(s). The addition of the feedforward loop can improve the

tracking performance. Some papers [65, 23] assume that the feedforward controller of

the human operator will invert the dynamic system that he or she is controlling, that

is Hur(s)P (s) ≈ 1. In this case, the control action u(t) is mostly from the feedforward

controller Hur(s).

We can see from (4.7) that the feedforward control loop cannot reject distur-

bances. Rather, disturbances can only be suppressed through the feedback loop. The

relationship between T (s) and S(s) in (4.6) still holds in the combined feedforward

and compensatory control setup. Moreover, the feedforward loop tracking transfer

function Hur(s)P (s)S(s) is also affected by S(s). As discussed in Section 4.2.1, S(s)

is very small at low frequencies and then Hur(s)P (s)S(s) is small too. In other words,

the contribution of feedforward loop tracking is attenuated by S(s) at low frequencies,

even if the feedforward controller is the inverse of the system dynamics. Hence,

the addition of a feedforward tracking loop may not significantly improve tracking

performance at low frequencies compared with the compensatory control model. The

feedforward controller will improve the tracking performance at frequencies around

the crossover frequency where the compensatory control loop starts to lose authority

to achieve perfect tracking.

Our objective in this chapter is to design algorithms to simultaneously identify

the feedback controller Hue(s) and feedforward controller Hur(s) in Figure 4.2 based
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on the control system analysis in this section.

4.3 Methods

To identify the human operator model, a manual visual tracking experiment has

been conducted.

4.3.1 Apparatus

The tracking task was presented on a LCD display in a “pursuit” configuration as

shown in Figure 4.3. The animation update rate was 50 Hz. The display is measured

55× 36 cm with 1920× 1200 pixel resolution and was placed at a distance of around

120 cm from the participants’ eyes.

Cursor Reference

(t)y (t)e
(t)r

Figure 4.3: Display type for tracking tasks.

The manual tracking experiment was implemented in Matlab. Participants used a

motorized haptic wheel [105] shown in Figure 4.4 to generate their control inputs, i.e.,

u(t). Participants used a range of ±90 degrees from the wheel’s initial position. The

angular position of the wheel, which was the control input u(t), was measured by an

optical encoder attached to the motor (Avago Technologies, HEDL-556x series). The

resolution of the angular position was 0.09 degree (4000 counts per revolution). The

rotational stiffness of the wheel was set to 0.14 N·m/rad over the full rotational range.

The inertia of the wheel and rotor was 4.5×10−4 kg·m and the damping coefficient was

0.0013 N·m/(rad/s). These values were identified from separate system identification

experiments.

A PC computer with a Sensoray Model 626 data acquisition card was used to

record the data including the reference, error, control, disturbance, and output signals.

All the signals were saved at 200 Hz for later analysis. The torque servo rate was 10

kHz.
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Figure 4.4: Single axis haptic interface used at ETH Zurich.

4.3.2 Experimental Design

Single-integrator dynamics for the plant P (s) were considered in the present

experiment: P (s) = Kp/s, where the input is u(t) (the angular position of the wheel

in degrees) and the output is y0(t) (the position of the cursor in pixels). The gain

Kp was chosen to be Kp = 40. With this gain value, subjects usually turn the wheel

within a comfortable range (±90 degrees) and also can have fine control of the cursor.

The pseudo random reference function is a sum-of-sines signal and has 9 frequency

components:

r(t)pseudo random =

9∑

i=1

Ai sin (ω
r
i t+ φi) , (4.10)

where the amplitude Ai and frequency ωi of these components are shown in Table

4.1 and φi is randomly generated at the beginning of each trial. For the single sine

reference signal, the frequencies of individual reference signals are the same as ωr
i in

Table 4.1 and the amplitude is 540 pixels for all single sine reference signals.

The disturbance signal is a sum-of-sines signal that has 10 frequency components.

The frequency components are different from the reference signals and the amplitude

of the disturbance signals is smaller than that of the reference signals. These values
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Table 4.1: Frequency components of the sum-of-sines reference input
Frequency Number i Frequency ωr

i (rad) Amplitude Ai (pixel)
1 0.18 230.85
2 0.349 218.79
3 0.628 187.11
4 0.977 163.26
5 1.606 136.44
6 2.583 110.79
7 4.189 84.69
8 6.772 58.68
9 10.961 32.67

are shown in Table 4.2. For comparison, the amplitudes and frequencies of r(t) and

d(t) are plotted in Figure 4.5.

Table 4.2: Frequency components of the disturbance signal
Frequency Number i Frequency ωd

i (rad) Amplitude Bi (pixel)
1 0.10 57.71
2 0.265 54.70
3 0.488 46.78
4 0.801 40.82
5 1.292 34.11
6 2.095 27.70
7 3.386 21.17
8 5.481 14.67
9 8.867 8.168
10 12.481 4.5

4.3.3 Protocol and Participants

Eight subjects, all males, aged 20–31 years, were instructed to minimize the

tracking error e(t) presented on the display. All participants reported normal or

corrected-to-normal vision, and no neurological or motor deficit. All participants

gave written informed consent. The experiment was approved under the University

of Michigan’s Health and Behavioral Sciences Institutional Review Board. The IRB

Registration Number was IRB00000245.

Prior to the formal tracking tasks, subjects were invited to perform a training

session in which they could familiarize themselves with the tracking apparatus and

tasks. The training session lasted 4 minutes during which the first 2 minutes were for
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Figure 4.5: The amplitude and frequency of sum-of-sines r(t) and d(t).

tracking sum-of-sines signals and the second 2 minutes were for tracking single sine

waves with different frequencies.

Subjects performed 10 formal tracking tasks after training. Nine of the 10 tracking

tasks were to track the single sine waves with frequencies from ωr
1 to ωr

9 respectively.

The 10th tracking task was to track the pseudo random reference signal in (4.10).

The order of these tasks for each subject was randomized. Table 4.3 lists the reference

signals and disturbance signals for each task.

Table 4.3: Reference and disturbance signals for each task
Task r(t) (pixel) d(t) (pixel)
Task 1 540 sin (ωr

1t+ φ1)

∑10
i=1Bi sin

(
ωd
i t+ φi

)

Task 2 540 sin (ωr
2t+ φ2)

Task 3 540 sin (ωr
3t+ φ3)

Task 4 540 sin (ωr
4t+ φ4)

Task 5 540 sin (ωr
5t+ φ5)

Task 6 540 sin (ωr
6t+ φ6)

Task 7 540 sin (ωr
7t+ φ7)

Task 8 540 sin (ωr
8t+ φ8)

Task 9 540 sin (ωr
9t+ φ9)

Task 10
∑9

i=1Ai sin (ω
r
i t+ φi)

Each trial comprising one tracking task lasted 240s, of which the last 220s were

used as the measurement data. On average, the whole experiment took about one

hour for each participant.

88



4.3.4 Model Identification Methods

In this chapter, we will focus on the identification of the feedforward control model

Hur(s) in Figure 4.2. The disturbance signal is indispensable in order to identify both

the feedback and feedforward controllers [100]. For the identification, the frequencies

of d(t) should be different from the frequencies of r(t) as shown in Figure 4.5. We also

do not assume any model structures for Hur(s) and Hue(s). Instead, we will estimate

these controllers’ frequency response.

In Figure 4.2, there are six variables r, e, u, y0, d, y. Given that P (s) is known,

there are only three independent variables. The signals r(t) and d(t) are two input

variables. We use y0(t) as the output for identification instead of y(t). Then we have

Y0(s) = T (s)R(s) +Hur(s)P (s)S(s)R(s)− T (s)D(s).

Rearranging (4.3.4) yields

Y0(s)

D(s)
= −T (s), (4.11)

Y0(s)

R(s)
= T (s) +Hur(s)P (s)S(s). (4.12)

To identify T (s), a fast Fourier transform (FFT) with a Hanning window was applied

to both signals d(t) and y0(t). Then the frequency estimate of T (s) can be evaluated

as

T̂ (jω) = −
Ŷ0(jω)

D̂(jω)
, at frequencies ωd

1 , ω
d
2, · · · , ω

d
m, (4.13)

where Ŷ0(jω) is the FFT of y0(t) and D̂(jω) is the FFT of d(t). The frequency

response of T (s) at frequencies ωr
1, ω

r
2, · · · , ω

r
n can be obtained through interpolation

of T̂ (jω) at frequencies ωd
1 , ω

d
2, · · · , ω

d
m. The estimate of the feedback controller Hue(s)

can be obtained from T̂ (s) based on (4.3). The estimate of S(s) can be obtained as:

Ŝ(s) = 1− T̂ (s).

The feedforward controller can be identified at frequencies ωr
1, ω

r
2, · · · , ω

r
n using (4.12)

Ĥur(s)P̂ (s) =

Ŷ0(s)

R̂(s)
− T̂ (s)

Ŝ(s)
.
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4.4 Results

4.4.1 Phase Lag Difference in Pursuit Response

The phase lag differs when tracking single sine and pseudo random signals with the

pursuit and disturbance display. These phenomena have been observed in humans [41,

Section 13]. The frequency response of Tpursuit(s) is estimated by calculating the ratio

of FFTs of the output signal y(t) and reference signal r(t): Ŷ (jω)

R̂(jω)
. In the frequency

domain, perfect pursuit tracking means Tpursuit(s) = 1 (0 dB in magnitude response

and 0 degree in phase response). Figure 4.6 depicts the average frequency response

estimates of Tpursuit(s) for all subjects. Line segments are drawn between data points

to make the curves easier to visualize, not to infer interpolation between the points.

The error bars indicate the lower and upper bounds with 95% confidence intervals,

to indicate between-subject variability1. The pursuit response Tpursuit(s) in Task 10

(black line) can be estimated at frequencies ωr
1, ω

r
2, · · · , ω

r
9 because the sum-of-sines

reference signal has components at these frequencies. Each data set of Task 1 to Task

9 can be used to estimate the pursuit response Tpursuit(s) at a single frequency (red

line) ωr
1 to ωr

9, respectively. Figure 4.7 depicts average frequency response estimates

of Terror(s) for all subjects.

From Figure 4.6, we can see that human operators can track low-frequency signals

very well (close to 0 dB in magnitude response and 0 degree in phase response) up to

0.06 Hz in our experimental setup. The tracking performance shows little difference

in tracking single sine waves and pseudo random signals up to 0.06 Hz. As frequency

increases, the phase lag discrepancy becomes obvious over the range of 0.1 to 1 Hz.

Over this range, the tracking performance for single sine waves is much better than

for pseudo random signals. From Figure 4.7, we can see the magnitude response of

Terror(s) is smaller in tracking single sines than in tracking pseudo random.

4.4.2 Disturbance Rejection Through Feedback Loop

Disturbance rejection can only be achieved through the feedback loop. Human

operators are able to reject low-frequency disturbances but lack the ability to reject

high-frequency disturbances. Figure 4.8 shows the average FFTs of d(t) and y(t) for

tracking pseudo random signals in Task 10 for all subjects. The error bars indicate the

lower and upper bounds with 95% confidence intervals. We can see that although d(t)

has significant low-frequency components (less than 0.05 Hz), these components have

1These notations also apply to Figures 4.8 to 4.14 in this section.
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Figure 4.6: A comparison in pursuit responses Tpursuit(s) between tracking single
sine (red) and pseudo random (black) signals shows significant phase lag
discrepancy.

mostly been suppressed in y(t) through the feedback control loop. Human operators

start to lose the ability to reject the disturbance signal as the frequency increases (0.05

to 0.3 Hz). For components with frequencies higher than 0.3 Hz, human operators

cannot suppress them at all because of the feedback loop’s bandwidth limitation. This

limitation may be due to sensory delays, cognitive information processing limits, or

neuromuscular response limits.

As discussed in Section 4.2, the transfer function from d(t) to y(t) is S(s), which

describes the ability to reject disturbances. Figure 4.9 shows the estimated S(s) for

tracking single sine and pseudo random signals. Despite the varied low-frequency

components in y(t), we averaged the frequency response estimates of S(s) in Tasks

1-9 for all subjects. Again, the error bars indicate the 95% confidence intervals. We

can see that the magnitude of S(s) is small at very low frequencies and then increases

to 1 with increasing frequency. Also, the estimated S(s) looks very similar for both

tracking pseudo random and single sine waves, at least for the frequency range 0.1 to
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Figure 4.7: A comparison in Terror(s) between tracking single sine (red) and pseudo
random (black) signals shows the difference in tracking performance.

2 Hz.

We can further derive the estimated feedback open-loop transfer function L(s)

based on S(s). The average estimates of frequency responses for all subjects are

shown in Figure 4.10. The estimated L(s) is almost identical for tracking both pseudo

random and single sines. Also we can see that L(s) resembles McRuer’s crossover

model. The crossover frequency is about 0.3 to 0.4 Hz and the phase is about 135

degrees.

The transfer function of feedback loop tracking T (s) can be derived from S(s)

based on the identity (4.6). The estimated T (s) is shown in Figure 4.11. We can see

that T (s) makes little difference between tracking single sine and pseudo random

signals, and there is little phase lag difference in T (s) although both estimated

frequency responses have an obvious phase lag starting from 0.1 Hz.

As discussed in Section 4.2.2, the pursuit response Tpursuit(s) consists of two parts:

T (s) and Hur(s)P (s)S(s). We then compare estimated T (s) with Tpursuit(s) and

see if the feedback control is the dominant one. Figure 4.12 shows the comparison

results between T (s) and Tpursuit(s) in Task 10 for tracking pseudo random signals.

From Figure 4.12, there is no pronounced difference between T (s) and Tpursuit(s). This

indicates that feedback control is dominant in tracking pseudo random signals. Figure

92



0.01 0.1 1 2 3
0

5

10

15

20

25

30

Frequency (Hz)

A
m

pl
itu

de
 (

P
ix

el
)

FFT of d(t)

FFT of y(t)

Figure 4.8: A comparison in amplitude between FFTs of d(t) and y(t) at frequencies
ωd
1 , ω

d
2 , · · · , ω

d
m illustrates human operators can reject low-frequency dis-

turbances but lack the ability to suppress high-frequency disturbances in
Task 10.

4.13 shows the comparison results between T (s) and Tpursuit(s) in Task 1-9 for tracking

single sine signals. There are significant differences in both magnitude response

(above 0.7 Hz) and phase response (above 0.06 Hz) between T (s) and Tpursuit(s).

This indicates that for tracking single sine signals with frequency above 0.06 Hz, the

feedback control is not the dominant one and the feedforward controller Hur(s) may

be used to compensate for the difference between T (s) and Tpursuit(s).

4.4.3 Estimated Feedforward Control in Human Operators

From our analysis in Section 4.4.2, the feedback controllers in human operators are

not the cause for the phase lag difference discussed in Section 4.4.1. Using the method

in Section 4.3.4, we can identify the feedforward controller Hur(s). Figure 4.14 shows

the estimated frequency responses of Hur(s)P (s). The black line represents the mean

values of frequency responses at ωr
1 to ωr

9 in Task 10 and the error bars stand for

the lower and upper bounds with 95% confidence intervals. The results of frequency

responses in Task 1 to 9 are shown in red.

The difference of frequency responses of Hur(s)P (s) in tracking single sine and
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Figure 4.9: Frequency response estimates of S(s) determine the ability to reject
disturbances in tracking single sine (red) and pseudo random (black)
signals.

pseudo random is obvious. In tracking single sine waves, Hur(s)P (s) is close to 1

over the range of 0.06 to 0.7 Hz while Hur(s)P (s) is not close to 1 in tracking pseudo

random signals. Over this frequency range, the control action u(t) for pursuit tracking

is mostly generated by the feedforward controller in tracking single sines signals. In

other words, if the signal is a single sine wave, human operators can generate the

proper control signal u(t) based on the model of P (s) and prediction of r(t) so that

Hur(s)P (s) ≈ 1. If the signal is pseudo random, human operators will lose the

ability to predict the reference signal and cannot use feedforward control to generate

the proper u(t). The difference in feedforward control is the cause of the phase lag

difference in Section 4.4.1.

4.5 Discussion

The identification method in this chapter takes advantage of the relationship

between disturbance rejection and pursuit tracking through fundamental limitations
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Figure 4.10: Frequency response estimates of L(s) for tracking single sine (red)
and pseudo random (black) signals are similar and resemble McRuer’s
crossover model.

theory. Although the complementary constraint in (4.6) is well-known in control

system design, this fundamental constraint has not been used to identify feedback

and feedforward controllers in the existing literature on human operator modeling

[100, 64, 3, 23].

4.5.1 Feedback Control

The feedback control identified in this chapter matched McRuer’s crossover model.

From Figure 4.10, we can see that the crossover frequency is about 0.3 Hz and the

phase at crossover frequency is about −135 degrees. Fitting these values to the

crossover model in (4.5), we obtain that ωc ≈ 0.3 Hz, kc ≈ 1.89, and τ ≈ 0.32 s. The

corresponding parameter values reported in [64] by McRuer are ωc ≈ 0.75 Hz and

τ ≈ 0.12− 0.26 s, which indicate higher crossover frequency and shorter time delays.

The differences between McRuer’s values and our values are likely due to the fact

that the participants in McRuer’s work were highly experienced civilian and naval

test pilots while our participants were mostly university students.
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Figure 4.11: Frequency response estimates of T (s) for tracking single sine (red) and
pseudo random (black) signals are almost identical.

We also notice that the variation of the phase response of S(s) and L(s) in Figure

4.9 and Figure 4.10 for tracking pseudo random signals is larger at low frequencies

than high frequencies. The data reported in [100] exhibit similar phenomena. One

possible reason for this large variation is that the gain of L(s) is very large at these

low frequencies, which guarantees that the feedback tracking transfer function T (s) is

close to one no matter what values the phase responses have (see Figure 4.11). Since

the function T (s) is not sensitive to the phase response of L(s) and S(s), it is not

surprising that humans may exhibit different phase response at these frequencies.

4.5.2 Feedforward Control

The identified feedforward control when tracking predicable signals in this chapter

is consistent with the ARX model and MLE estimation results in [23] over the

frequency range of 0.06 to 0.6 Hz. Our estimated frequency response of feedforward

control in Figure 4.14 at frequency around 0.03 Hz is different from the results of the

ARX model in [23]. The data at ωr
1 in Figure 4.14 indicate that Hur(s)P (s) is not
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Figure 4.12: The overlay of frequency response estimates of T (s) and Tpursuit(s) in
Task 10 indicates feedback control is dominant for tracking pseudo
random signals.

as close to unity as other frequencies such as ωr
2 to ωr

6. This illustrated that human

operators may use feedback control to achieve good tracking performance at this low

frequency as ωr
1 is way below the crossover frequency. This trend is not found in [23]

probably due to the different reference signals (ramp in [23] and sinusoidal signals in

our work) as well as the different identification methods employed in [23].

McRuer et al. identified the feedforward control in human operators [100] based

on the untested hypothesis that feedback controllers are the same for compensatory

and pursuit tracking. The results of the feedforward control in [100] generally coin-

cide with the identified feedforward control in this work. However, there are some

differences. The identified Hur(s)P (s) in our work is very close to one with nearly 0

dB in magnitude response and 0 degree in phase response over the frequency range

of 0.06 to 0.6 Hz (Figure 4.14). In [100], the magnitude of the identified Hur(s)P (s)

is not so close to 0 dB (-6 dB when P (s) is a pure gain) and the phase can be 20 to

60 degrees at certain frequencies. The fact that Hur(s)P (s) in [100] is not close to
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Figure 4.13: The difference in frequency response estimates of T (s) and Tpursuit(s) in
Tasks 1-9 indicates the use of feedforward control for tracking single sine
signals.

1 may be due to the hypothesized assumption. The assumption may not be totally

true. The results in [23] show that the estimated feedback control gain is lower for

the ramp pursuit tracking conditions than for the compensatory tracking conditions.

4.5.3 Limitations

Finally, it is acknowledged that the current study only focuses on the steady-state

response. Whether the identified models are also applicable to transient responses

has not been tested. How the models (especially the feedforward control) vary with

other signals or different plant dynamics have not been investigated, although some

results on the variation of feedback control have been reported in [64].
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Figure 4.14: Hur(s)P (s) is close to 1 over a broad frequency range for tracking single
sine signals.

4.6 Conclusion

In this chapter, we designed experiments and proposed identification methods to

estimate both feedback and feedforward control in human manual tracking tasks.

Our models explained the phase lag difference in tracking pseudo random and single

sine signals. Using the theory of fundamental limits, we also showed the relationship

between disturbance rejection and pursuit tracking. In future work, we will investigate

the model variation for different plant dynamics.

The identification method can be incorporated with other observable brain pro-

cesses through the fMRI or EEG techniques to characterize the motor performance.

With these brain processes, researchers have examined which brain regions contribute

to feedback and feedforward motor control processes [86]. Also, the pursuit tracking

tasks in this chapter have been used as common tasks to study the impairment of

voluntary movement by patients suffering from Parkinson’s disease [29, 8, 18, 71].

So far, linear dynamic system approaches to separate the feedback and feedforward

behaviors have not been used in human motor control. The proposed novel meth-
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ods can be further extended for clinical rating scale development and rehabilitation

performance estimation for neurodegenerative disorders [71, 5].
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CHAPTER V

Conclusion and Future Work

5.1 Conclusion

Multi-agent systems are capable of displaying a larger and more interesting set

of behaviors than single-agent systems. Common to the multi-agent systems is

information exchange through virtual connection rather than physical linkage. String

instability is one example of a behavior that emerges from a multi-agent system with

virtual links (e.g. vehicle platooning). Only very recently have infeasible specifications

been delineated for agents using arbitrary control policies, using analysis from the

theory of fundamental design limitations, where the agent model contains a single

or double integrator. Significant gaps remain in the determination of fundamental

design limits for cyber-physical systems with more complex agent models such as

harmonic oscillators. Our model in this dissertation is a second order, linear oscillator

model that allows us to study how applied forces translate into oscillator motion.

We have contributed theoretical tools to the study of string instability in coupled

harmonic oscillator strings. We developed a new Bode-like integral relation that

must be satisfied by the complementary sensitivity function in oscillator systems

using the Cauchy integral theorem. We also derived a relationship between time

domain specifications (steady-state and transient errors) to track a ramp-enveloped

sinusoidal signal and frequency domain constraint (bound in magnitude response).

We can say that certain design specifications will necessarily lead to string instability

in oscillator systems based on our results. We also studied how constant time delays

in the communication networks affect string instability. A time-headway operator is

further proposed to improve string stability in the oscillator strings. Heterogeneous

harmonic oscillators have also been considered.

When mechanical linkages are replaced by electronic communication and control

systems (virtual links), certain undesirable phenomena can arise that may be difficult
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to anticipate. In simple cases the lack of dissipativity in the cyber link unmasks

instabilities that were present but suppressed in the system with a mechanical or

physical link. The system of particular interest for us in this work is a system

containing a human in the loop. We can call these “cyber-physiological” systems, to

highlight the role of biomechanics in such systems. But even further, the physiological

part of such systems contains control loops implemented in very complex and not-to-

be-deciphered neural circuits. We have developed appropriate models that capture

phenomena observable in cyber-physiological systems, especially those related to the

realization of certain “links” in neural circuits, certain links in electronic circuits (and

embedded control code), and yet other links in physical components.

Our model is partially inspired by the idea of Norton theorem in electrical engineer-

ing. Similar to the construction of Norton equivalent circuit at electrical terminals,

the developed model is based on the observed mechanical behaviors of motion and

force at the point of contact between human body and environment. The model

contains a motion source and variable driving point impedance. Hence it features

both a forward path dynamics (describing how the motion source affects the active

movement) and interactive dynamics (describing how external loads affect the active

movement). Experimentally validating such a model in human active movement tasks

has not been undertaken in the literature. We applied system identification techniques

and modeling principles guided by controls to experimentally identify the proposed

model. We have used a prototypical manual task, the grasp and twist task, which

involves a significant amount of coordination that produces interesting observable

phenomena under perturbations and unexpected catch trials. In terms of the grasp

and twist task, the proposed simple model has captured all the necessary aspects of

motion planning, force control, biomechanics, and feedforward control.

Some tasks in our everyday life require the use of both virtual links and physical

interactions like driving a vehicle along the highway. Similar to driving tasks, human

operators can manipulate an integrator plant and manually track a single sine wave

very well with almost unity amplitude ratio and zero phase lag as long as the frequency

of the sine wave is not too high. However, the pattern of responses across single

sine signals of different frequencies does not resemble the pattern of response across

random appearing sum-of-sines signals for moderate to high frequencies. There is

a significantly larger phase lag in tracking a pseudo random signal than tracking a

single sine wave for moderate to high frequencies. This phenomenon suggests that

humans utilize different control strategies for predictable tasks than for unpredictable

tasks.
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How to identify human control strategies especially the feedback and feedforward

control has been studied for more than sixty years and so far most work with ex-

perimental support has been limited to the identification of feedback control. The

identification of feedforward control has been a very challenging problem. A few

papers that appeared very recently attempted to tackle this problem experimentally

in the viewpoint of system identification. On the other hand, the well-established

theory of fundamental limitations has proved its pivotal role in control system analysis

but has not been utilized in human operator modeling. In this dissertation, we took

advantage of theory of fundamental limitations to reveal the relationship between

disturbance rejection and pursuit tracking using feedback control, which has been

neglected in the literature of human operator modeling. Based on this relationship, we

can further separate the feedforward control from the pursuit tracking performance.

Specifically, we designed experiments and methodologies to identify non-parametric

feedback and feedforward controllers in human operators for manual tracking with

an explicit display of the sinusoidal reference signals and a disturbance input. Our

results show that the feedback controller resembles McRuer’s “crossover model”, and

the feedforward controller attempts to invert the system dynamics that the human

operator is manipulating if the reference signal is predictable.

5.2 Future Work

5.2.1 Synchronization of Oscillators

The work in string instability of coupled oscillators can be extended in several

ways. Extension of the simple string topology to more complex ones such as tree

topologies [72] will be very useful, practical, yet challenging. To study more complex

topologies, graph theory, which is mostly used in mathematics and computer science,

may be needed and incorporated with fundamental limitations theory in controls.

Similar to the synchronization of oscillators, the consensus problem in multi-agent

systems encountered in control community is mostly focused on the steady-state

responses while transient dynamics are still poorly understood. A general framework

to incorporate both graph theory and fundamental limitations theory remains to be

established.

Another direction is to extend the oscillator model to damped oscillators and

nonlinear oscillators (such as the Kuramoto model that appears in much of the

oscillator synchronization literature). Similar limitations exist in nonlinear systems,

see [89, Chapter 4]. To the best of the our knowledge, using these fundamental limits
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to study the transient dynamics in synchronization of nonlinear oscillators has not

been considered in the literature.

The third extension of our current work is to consider more complex models of

communication channels. In our current work, we merely modelled the communica-

tion channels as a constant time delay. In fact, most communication networks include

complex features in addition to a constant time delay. The communication network

may introduce stochastic time delays, packet dropouts, and noise. The stochastic

time delay models build on Markov chains [106] and the signal-to-noise ratio [10]

may be composed together with Bode’s integrals to study more realistic multi-agent

systems.

5.2.2 Human Movement Model with A Motion Source and Grip Force

Dependent Impedance

Our work on the model of grasp and twist movements has also led to several

future research directions. Our current model assumes that the impedance values

depend only on grip force. A more appropriate study design for impedance trend

analysis would require a wider selection of variables other than grip force, e.g., the

rotational position and velocity of the human subject’s hand, the grip force rate, and

the amplitude of hand rotation. It has been shown that a smaller rotational range

leads to larger impedance values for the dynamics of the human ankle [52]. The

forearm posture when grasping the haptic wheel also changes the impedance value

significantly.

The assumption that the static impedance values identified through the pulse

disturbance are the same as those when turning the wheel was not verified in our

current work. Some papers have shown these values can be different [33]. Estimating

the dynamic impedance during movement may not be possible in the current grasp

and twist setup because the turning time is only about 0.1 second and the time for

human subjects to feel the difference in these two load torques is very short. It is

still possible to do the impedance identification during the movement [31] if we can

upgrade the apparatus and redesign the experiment. There are several ways to modify

the experimental setup to prolong the moving time. One way is to change the grasp

and twist tasks to a reaching task with a longer moving range. Also the virtual loads

are not necessarily to be saturated springs and instead more complex haptic worlds

like spring-damper-mass systems can be rendered, provided that more sensors are

added to the current device.

Another limitation of our current work is that the impedance model is a second
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order system, which combines the dynamics of the human hand and the haptic wheel

itself. If we can identify the model of the haptic wheel, we might be able to separate

the dynamics of the human hand and haptic wheel. Moreover, the human hand itself

may be a fourth order system consisting of two cascaded second order systems and

the second order system in this work is only an approximation over a frequency range.

How to identify these higher order systems during movement is a challenging problem.

It is also interesting to apply the ideas in this work to real world applications.

A simple yet competent model of human motor behavior would enable the design

of cyber-physical systems capable of sharing control and collaborating with humans.

In particular, predicting human behavior during unexpected conditions is critical to

engineering reliable active safety systems.

5.2.3 Feedforward and Feedback Control in Human Pursuit Tracking

The feedback and feedforward model in human pursuit tracking tasks can be

improved in various ways. With increased frequency of the single sine wave, it is

harder for human subjects to detect disturbance signals. The current human model

lacks such a detection representation and we assume the subject can perceive all the

disturbance signals. The assumption is not totally valid especially when the reference

signals are fast sine waves. The ability of human perception or detection is important

in determining the human disturbance rejection and tracking performance. To model

human perception using control system methods is challenging yet very useful in

human operator models.

In the current work, the plant is a single integrator and it will be valuable to

perform experiments for different plants such as unity gain, double integrator, or

a single integrator with delays. Application of the identification method to motor

control areas could be another future research direction. We have demonstrated a

method to model tracking performance with linear dynamical systems, that separates

the feedforward and feedback features. As neuroscientists attempt to elucidate the

function of different neural structures for various tasks [86], it is natural to consider

control system methods like the approach used in this dissertation to provide a the-

oretical framework for interpreting these studies as the proposed models incorporate

concepts of feedback, model selection, and feedforward models.
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