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ABSTRACT

Robust and Efficient Modeling for Gene-Environment and Gene-Gene Interactions
in Longitudinal Cohort Studies

by
Yi-An Ko

Chair: Bhramar Mukherjee

While there have been extensive statistical methods on gene-environment interaction
(GEI) in case-control studies, little attention has been given to robust and efficient
modeling of GEI in longitudinal cohort studies. In a two-way table for GEI with row
and column as categorical variables, a conventional saturated model involves estima-
tion of distinct interaction effect for each cell. However, the degrees of freedom (df) for
testing interaction can grow quickly with increasing number of categories, resulting
in decreased efficiency and reduced power for detecting interaction. This dissertation
considers the problem of modeling GEI with repeated measures data on a quanti-
tative trait using parsimonious models for non-additivity proposed in the classical
Analysis of Variance literature. We first provide an overview of these classical models
and explore the interaction structures by simply reducing repeated measurements to
summary level cell means. In the first project, we modify the cell-mean method and
propose a parametric bootstrap approach using these interaction models. Both meth-
ods account for the unbalanced and longitudinal nature of the data. In the second

project, we propose a shrinkage estimator that combines estimates from a saturated

Xiv



interaction model and Tukey’s single df model for non-additivity. It is useful for con-
ducting multiple GEI tests where distinct interaction patterns could occur in different
genetic markers. The proposed estimator is robust to various interaction structures
and the corresponding test is valid based on simulation results. In the third project,
we focus on additive main effects and multiplicative interaction (AMMI) models. We
develop an alternating maximum likelihood estimation procedure for AMMI mod-
els and approximate the null distribution of the likelihood ratio test statistic by a
chi-square with fractional df. The proposed methods are illustrated using data from
the Normative Aging Study and the Multi-Ethnic Study of Atherosclerosis. Both
datasets come from longitudinal cohort studies involving rich genetic data and sev-
eral environmental exposure factors that could be time varying or time invariant.
Overall, this dissertation contributes to adaptation of classical interaction models to
longitudinal studies, with the goal of understanding the dynamic interplay between

genes and environment over time.
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CHAPTER I

Introduction

1.1 Gene-Environment Interaction and Gene-Gene Interaction

Genome-wide association studies (GWAS), in which millions of single nucleotide
polymorphisms (SNPs) are measured on thousands of samples, have identified many
genetic variants that are associated with complex diseases and disorders. In the
post-GWAS era, there is growing recognition that additive effects of genetic variants
alone may not explain all the variation in complex disease traits. The development of
complex diseases may be related to interactions between genes (i.e., epistasis used in
population genetics) and/or interactions between genetic variants and environmental
exposures and health behavioral factors (i.e., gene-environment interactions).

The presence of gene-environment interaction (GEI), or gene-gene interaction
(GGI), indicates that the association between an outcome and an environmental
exposure (or gene) depends on genotype. In other words, the effect of an environ-
mental exposure (or a gene) on a disease outcome may be enhanced or reduced in a
particular genotype group. GEI/GGI is important in genetic studies because if a true
interaction remains unidentified, it can mask the detection of a genetic effect and lead
to inconsistencies in the findings of genetic associations with disease. Given as such,
the search for GEI and GGI has been receiving considerable attention in recent years
(Khoury and Wacholder, 2009). Specifically, interaction models have been of interest

in genetic association studies since appropriate modeling may lead to increased sta-



tistical power (Brem et al., 2005; Marchini et al., 2005; Evans et al., 2006) and help
discover the underlying biological mechanisms of GEI/GGI. A better understanding
of GEI will assist in developing practical strategies for disease prevention by modi-
fying behavioral factors and/or avoiding harmful exposure to genetically susceptible
sub-groups to attenuate or modify the effects of deleterious genes by avoiding the
harmful environmental exposure.

Given that many of the GWAS consortia are based on case-control studies, there
has been extensive statistical research for testing GGI and GEI in case-control studies.
On the other hand, prospective longitudinal cohort studies have gained interest over
the years because they not only are a natural choice for assessing causal relationship
(not subject to recall bias), but also provide time dependent information of exposure
history for detecting potential GEI. Furthermore, prospective longitudinal studies
allow for the study of GEI effects on quantitative traits that are linked to chronic
diseases, rather than a binary disease occurrence outcome as in case-control studies.
Several large-scale longitudinal environmental epidemiology studies with characteri-
zation of exposure history, such as the UK Biobank (www.ukbiobank.ac.uk) and the
Multi-Ethnic Study of Atherosclerosis (www.mesa-nhlbi.org), have been collecting
genetic data to study GEI. Therefore, it is warranted to develop powerful and valid

statistical methods for interactions in longitudinal cohort studies.

1.2 Motivation

For the analysis of GGI or GEI in prospective cohort studies, current statistical
strategies typically attempt to model the interaction effect by fitting a regression
model to the conditional mean structure of an outcome Y with main effects of G, E and
GXxE terms while adjusting for confounding factors. A product term for interaction
reflects that the effect of the row and the column variables may not be additive.

However, this simple regression model may prevent the identification of the actual



interaction structure with time varying exposure. Moreover, a product form (i.e.,
saturated interaction form) for GEI may not yield efficient estimates when both G
and E are categorical variables. Alternatively, one can try to model the interaction
term using the generalized additive mixed model framework (Lin and Zhang, 1999),
but tests for such non-parametric, smoothed interaction terms will also result in
reduced power for studies with moderate sample size. Therefore, robust and efficient
modeling of GGI and GEI should be considered when constructing powerful tests for
longitudinal data.

In this dissertation, we borrow several parsimonious models for non-additivity
proposed in the classical analysis of variance (ANOVA) literature to address the
issue of efficient modeling of GEI/GGI in longitudinal cohort studies. Genetic and
environmental exposure factors are considered as categorical variables. Any main
effect and interaction effect are considered as fixed effects (i.e., population-average
effects as opposed to subject-specific effects) although extensions to random-effects
models have been studied (Oman, 1991; Piepho, 1997, 1998; Smith et al., 2001). We
restrict ourselves to the models in which the error terms and the random effects
are normally distributed. Missingness in longitudinal data is assumed to be missing

completely at random or missing at random.

1.3 Organization of This Dissertation

Chapter II provides an overview of classical ANOVA models for non-additivity in
a two-way table context, including Tukey’s one degree of freedom (df) model (Tukey,
1949), Mandel’s row or column regression model (Mandel, 1961), Tukey’s row-column
regression model (Tukey, 1962), and additive main effects and multiplicative inter-
action (AMMI) models (Gollob, 1968; Mandel, 1971; Gauch Jr., 1992). We explore
interaction structures using these models in a two-way classification array for lon-

gitudinal cohort studies by simply reducing data to cell means. In Chapter III, we



modify the cell-mean approach to account for within-subject correlation and propose
a parametric bootstrap resampling procedure to test interaction effects using these
classical interaction models. In addition, we describe a visual and diagnostic tool
for characterizing subject-specific and time-specific contributions to the interaction
factors. In Chapter IV, we propose a shrinkage estimator that combines the estimates
from Tukey’s one df model and a saturated interaction model. This shrinkage esti-
mator is found to be robust to misspecification of interaction structure and is very
useful when searching for GEI across multiple SNPs. In Chapter V, we specifically
focus on AMMI models and develop an alternating maximum likelihood estimation
algorithm and propose a likelihood-based test for AMMI models. We further explore
the possibility of time-varying GEI effects. Throughout the chapters, we illustrate the
proposed methods using data from the Normative Aging Study and the Multi-Ethnic
Study of Atherosclerosis. Overall, the dissertation contributes to the adaptation of
classical interaction models to longitudinal cohort studies, with the goal of under-

standing the dynamic interplay between genes and environment over time.

Remark: Part of the work presented in this dissertation has been published in peer-
reviewed journals. Chapter II is extracted from Mukherjee et al. (2012). For more
details, please refer to Mukherjee, B., Ko, Y.A., VanderWeele, T., Roy, A., Park,
S.K., Chen, J. 2012. Principal interactions analysis for repeated measures data:
application to gene—gene and gene—environment interactions. Statistics in Medicine
31(22): 2531-2551. Chapter III has been published in Genetic Epidemiology in 2013
(Ko, Y.A., Saha-Chaudhuri. P., Park, S.K., Vokonas, P.S., Mukherjee, B. 2013. Novel
likelihood ratio tests for screening gene-gene and gene-environment interactions with
unbalanced repeated-measures data. Genetic Epidemiology 37(6): 581-591). Chapter

IV has been accepted for publication in Statistics in Medicine.



CHAPTER II

Overview of Classical Interaction Models and AMMI Models

2.1 Introduction

This chapter gives an overview of several parsimonious models for the struc-
ture of interaction (or non-additivity) in a two-way table context in the classical
ANOVA literature. We explore interaction structures using these models for longi-
tudinal cohort studies by considering the average of repeated measures as a single
observation per subject and then examining the cell-mean structure corresponding
to the G = ¢g,F = e in a two-way genotype X environment classification array
(G = g1,Go = go for a two-way gene x gene array). Due to the two-way ANOVA
formulation, the methods presented are applicable to genotype data on single nu-
cleotide polymorphisms (SNP) and categorical environmental exposures. Though we
study the methods in the context of GGI or GEI, they are applicable to exploring
interactions in any two-way classification array.

In Section 2.2, we describe four classical models, Tukey’s (Tukey, 1949), Mandel’s
row and column regression (Mandel, 1961), and Tukey’s row-column models (Tukey,
1962). In Section 2.2.2, we introduce the “principal interactions analysis (PIA)”
via the additive main effects and multiplicative interaction effects (AMMI) model
(Gollob, 1968; Mandel, 1971). In Section 2.3, we present the analysis results of the
Normative Aging Study (NAS) data using the five models described in Section 2.2.

In Section 2.4, we conduct simulation studies using cell-mean based approaches to



examine the robustness of the classical models for a general I x J table and under

common epistasis models.

2.2 Model

Since the models are generic to any two-way table, instead of using G and F for
the two factors, we use R to denote the row variable with I levels, and C' to denote
the column variable with J levels. Let y;;., be the h-th observation corresponding to

the k-th subject in the (7, j)-th cell of this I x J array. We consider a simple model:

Yijkh = 1+ R + Cj 4 vij + biji + €ijin, (2.1)

hzl,...,nijk,k:1,...,Nij,

i=1,...,0j=1,...,1.

Here p describes the overall mean, R; and C; are the row and column main effects
and 7;; describes the interaction between the row and column factors. The standard
constraints, >, R, = >, Cj = > ;vi; = >_;7i; = 0, are placed on the fixed effects
parameters. Let N = 7,5 . N;; denote the total number of subjects. We assume
that the possible subject-specific random effect b, ~ N(0, 07) and the random errors
eijin ~ N(0,02).

We create a two-way cell-mean array, first averaging all observations corresponding
to the k-th subject in the (i, j)-th cell, namely 7,;;. , and then averaging 7,;;, over all
subjects in the (7, j)-th cell, to obtain {%;; }. These cell means will have different
variability, depending on the random effects structure and the number of observations
per subject as well as number of subjects per cell. We abuse our notations slightly
by dropping the {-} suffixes and describe the models in terms of the I x J array of
cell means y,; =7, .

The implied mean model by (2.1) of a general saturated model for interaction for



the two-way table in terms of cell means y;; is given by
yij :,U/—FRZ—FCJ—F")/” —f—EU,Z = 1,...,[,j = 1,...,J. (22)

where €;; is the mean of the errors of ey, in (2.1). In the following, we denote 7;;
by y;; and €;; by e;;, pretending that it represents a single observation corresponding
to the (4, j)-th cell (Barhdadi and Dubé, 2010). We assume that e;; ~ N(0,72). This
assumption does not recognize the non-constant variance in the cell-means due to
unbalanced nature of the data. The maximum likelihood estimates (MLEs) of main

effects and interaction parameters are given by

~

p=vy, Ri=vi—y.,Ci=vy,—vy. (2.3)

Define the estimated residual contrast after fitting the additive terms as z;; = y;; —
i — RZ — C’j = Yi; — Yi. — y; + y.. The df attributed to testing interaction in a
saturated model is (/ — 1)(J — 1), and, in that case 7;; = z;;. With more than one
replication per cell, one can test for interaction in a saturated model; however, with
a single observation per cell, one exhausts the df for a saturated interaction model,
with no df left for errors. Thus, a test of interaction cannot be carried out. In such
situation, several reduced df tests have been proposed by imposing special structures
on the interaction parameters. These structures can be used for testing interactions

in general regression models for a more powerful test with reduced df (Chatterjee

et al., 2006; Maity et al., 2009).

2.2.1 Classical Models for Interaction

One Degree of Freedom Test for Non-Additivity

The essential idea behind this model (Tukey, 1949) is to think of interaction as
vij = OR;C; + &;;, namely, a leading term and some residual noise &;; that can be

absorbed with the error term e;;. Thus, of the (I — 1)(J — 1) df attributed to the



interaction term, only 1 is used to test Hy : # = 0 and the rest is attributed to the
residual error term, making it possible to test for non-additivity with no replication.

Tukey’s model is given by:

where @ is the coefficient for the linear by linear interaction effect. The least square
estimate of 6, denoted as 6, is given by
205 20 2y 20205y s

Ei Ej R?CJZ Zz Zj R?CJ2

Where z;; = yi; —yi. — y,; + .. is again the estimated residual contrast after removing

0=

additive main effects. This essentially reduces to regressing the cell residuals after
fitting the additive terms on the product of estimated row and column main effects
(Tukey, 1962). The model is not identifiable if there are no main effects present as
any value of 6 yields the same likelihood. Tukey’s single df test for non-additivity
is obtained by using the test statistic F' = M Sy, /MSE as presented in Table 2.3 in
Appendix that has an F' distribution with 1 and (I —1)(J — 1) — 1 degrees of freedom
under Hy : § = 0.

Column (Row) Regression Model

Mandel (1961) proposed the column regression model and row regression model
for testing interactions. In the column-regression model, the interaction effect is a

linear function of the column main effects, i.e.,
Yij = i+ Ri + Cj + NG5 + ey, (2.5)

where ); is the coefficient corresponding to the i-th row, and ) . A; = 0. The maxi-

mum likelihood estimate of )\;, denoted as ;\Z-, is



The MLE of g and R; remain unchanged. A test of non-additivity is obtained by
constructing an F-statistic for the hypothesis Hy : \; = 0,7 = 1,...,I. Under the
null hypothesis and normality, this test statistic as described in Appendix, has an F'
distribution with (I —1) and (/ —1)(J — 1) — (I — 1) degrees of freedom. Table 2.4 in
the Appendix presents the ANOVA table for this model. By replacing the columns
with the rows, one can equivalently posit a row regression model of the following
form:

Yij = 1 + Rz + Cj + Rlﬁ] + €ij;s (26)

with >, n; = 0 and testing Hy : n; = 0,5 = 1,...,J, with the resultant F-statistic
having df {J —1,(I - 1)(J—-1)—(J = 1)}.

Row-Column Regression Model

Tukey (1962) extended Mandel’s column- or row-regression model in his seminal
paper where he introduced the vacuum cleaner strategy for analyzing two-way arrays

where a row regression was followed up with a column regression (or vice versa).

where A; and 7; are the row- and column-specific coefficients, with additional con-
straints > ;A\ = > m; = 0 and 3, iRy = >;n;C; = 0. The MLEs of y, R;, Cj
remain unchanged. The maximum likelihood estimates of 0, \;, and n; are obtained

as:

> 2 zidtC - 2,750 oo 7 = >, 2
~_ ~ 5 7 N (3] v 7~
>0 T > C3 > B

Table 2.5 in Appendix presents the ANOVA Table corresponding to this model. The

6 — —0C;.  (28)

F-statistic for testing Hy : 6 = \; = n; = 0, V 7,5 under the above constraints
have numerator df 1 4+ (I —2) + (J —2) = (I + J — 3). The denominator df is thus
(I —1)(J—-1)— (I +J—3). For a 3 x 3 table for studying GGI, Tukey’s row-

column model has 3 df for the interaction term, offering little power gain over the



saturated model with 4 df. Thus, we refrain from presenting results for this model in
our simulation studies in Section 2.4.

Models (2.4)-(2.7) are hierarchically built in an increasing order of complexity in
the interaction structure. They provide different degrees of efficiency gain and model
robustness. For a large two-way array, say a 9 X 5 array, the interaction tests will
have 1 (Tukey’s 1-df), 8 (Mandel’s column), 4 (Mandel’s row) for the numerator of the
F-statistic and 31, 24, and, 28 df for the denominator, respectively. thus providing
different degrees of efficiency gain and model robustness. The F-test statistics and
the corresponding df for testing interaction effects of the classical models as well as
the MLEs for interaction parameters are provided in Appendix (Section 2.5).

Given that the interaction structures in these classical models are functions of main
effects, the models would encounter problem with likelihood identifiability when main
effects do not exist. Even in presence of main effects, under any form of misspecifi-

cation of this specific structure, all of the above tests lose tremendous power.

2.2.2 Principal Interactions Analysis via the AMMI Model

The principle of AMMI is to first fit additive main effects and then to apply
singular value decomposition (SVD) to the matrix of residuals that remain after the
fitting of main effects. The general class of AMMI models (Gollob, 1968; Mandel,
1971) is given by

M
Yij = b+ R+ 05+ Z AinCtim Bjm + €45 (2.9)

m=1

In AMMI models, the I x J interaction matrix I' = ((v;;)) is expressed by the
representation: I' = ADB'. Here A = ((an)) and B = ((Bim)) are I x M and
J x M orthonormal matrices (A'A = B'B = I) and D is a M x M diagonal
matrix with elements d; > dy--- > dy;, where M < min(/ — 1,J — 1). Eckart and
Young (1936) showed that for a fixed M, the least square estimates of (A, B, D)

can be found by expressing the estimated matrix T' of interaction parameters with
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entries 4;; = v;; — ¥i. — y; + y.. in terms of a SVD as specified by the factor model,
I'= ADB'.

An alternative interpretation is that the interaction parameter is expressed as a
sum of several successive multiplicative contrasts Up,, = >, > ; QimBjmij such that
each contrast is orthogonal to all previous contrasts and accounts for a maximum
of the remaining variance. Let U denote the estimated normalized orthogonal
multiplicative contrast among the interaction parameters {v;;} and SSpg,, denote the
sum of squares due to the m-th interaction factor. Then from the classical contrast
theory, SSpm = W2, where Wy, can be obtained by

@Fm = Z Z dimﬁjm’%j = Z Z dimBjmyij-
i i
Because I' = A]:)BT, we have D = ATf‘B, implying d,,, = > Zj @imﬁjm’yij. So,
Uy, and d,,, are equivalent. They both are ), > i dimﬁ’jm%j. Hence, SSg,, = \TJQFm =
an Let SSgrc denote the total sum of squares due to row-column interaction. The
sum of squares corresponding to the residual interaction after M successive interaction
factors being extracted from {v;;} is therefore

M M I-1
SSpres = SSpc — Y SSpm=SSre — Y A%, = Y &,
m=1 m=1

m=M+1
SSkre = ZZ(?JU —vi—y;+y.) = ZZ’AYZQJ ~T'r=D'D= dz,.
i g (2

This method integrates ANOVA and principal component analysis (PCA). The
AMMI models also target towards a sparse representation of interaction terms, but
not through main effects. By considering a reduced rank approximation (rank one
approximation if only the first component is retained) to the interaction matrix, one
is able to save df and enhance efficiency when compared to the saturated interaction
model. To this end, we call this method “Principal Interactions Analysis” (PIA) due

to its similarity with PCA.
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A special case of (2.9) is of particular interest when M = 1. Namely,
Yij = H+Rz + Cj +d10¢iﬁj +€ij,zai = ZBJ = O, ZQZZ = Zﬁ? = 1. (210)
% i i 7

The test of no interaction is equivalent to testing Hy : d; = 0. Johnson and Graybill
(1972a) derived the distributional properties for the likelihood ratio test (LRT) of
Hy : diy = 0. They showed that the MLE of dy, d; say, is given by the square-root
of the largest characteristic root of f‘Tf‘, say [1. The maximum likelihood is attained
when {«;} and {f;} are given by the normalized characteristic vector corresponding
to [ in f‘Tf‘ and f‘f‘T respectively. Consequently, the LRT for Hy : d; = 0 vs.
H, : dy # 0 (denoted by AMMI-LRT) is given by

A= <Zzzj'%2] - ll>U/27

S A2 (2.11)

~ AT A~
where [; = d? again is the maximum non-zero (characteristic) root of I' T'. That is,
l1 is the maximum value of (3, >_; a;Bjy;;)? with respect to o; and j3; subject to the

restriction that 37, a; = 7. 85 = 0 and 37, af = 3. 7 = 1. The critical region for

Hy : diy = 0 can equivalently be expressed as,

{ d?
A = ! = ! > Constant.

YA DY

Critical points of A* for several choices of I and J are provided previously (Johnson

and Graybill, 1972b; Hanumara and Thompson Jr, 1968), which are based on deriving
asymptotic property of the ratio of the largest characteristic root to the trace of a
Wishart matrix.

In general, the number of components M should be chosen in such a way that
the residual ¢;; represents noise and can again be absorbed with e;; leading to a
more powerful test with reduced df. Several studies have investigated cross-validation
and significance testing approaches for determining M, the appropriate number of

multiplicative interaction terms to be retained (Gauch Jr, 1988; Gauch and Zobel,
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1988; Piepho, 1994). When the above model is saturated, M = I — 1. Here we focus
on AMMI models with M = 1 (AMMI1) and do not address the issue of data-adaptive
selection of M. A primary reason for this strategy is that analytical power assessments
become intractable if another layer of such a data-adaptive selection procedure is

implemented. In our NAS data example M = 1 component was sufficient.

2.2.3 Biplot

In this section, we discuss the best rank-two approximation to an interaction
matrix as presented by a biplot (Gabriel, 1971). The biplot is a graphical planar
display of the elements, rows and columns of a matrix. Any matrix of rank two can
be displayed as a biplot which is defined through a vector for each row and a vector
for each column, such that the inner product represents each matrix element. For
a matrix with higher rank, one may use the biplot corresponding to the best rank-
two approximation to the original matrix. With the factor analytic representation
[ = AﬁBT, each entry of the estimated interaction matrix can be approximated by

the first two terms of the corresponding factor representation by
Nij = d1&1 B + dadvaBio.

For GGI interaction, for example, the matrix of interest is a (I = 3) x (J = 3)
matrix with maximal rank I — 1 = 2 and this representation is exact. There are
several choices of defining the vectors, we define the points a P, = (CE/ Q&il, CE/ Z&ig)
representing row ¢ and the points @); = (aﬁ/ 25]-1, CZ;/ 23]-2) describes column j.

Bradu and Gabriel (1978) explained the use of biplots for interaction models. The
patterns of the points indicate certain models: additivity (the case of two orthogonal
lines), Mandel’s row regression model when P; are collinear and (); are scattered or
column regression when (); are collinear and F; are scattered. The AMMI model typ-

ically will give rise to a configuration where F;, ); are both scattered. For the special
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case of AMMII1 the points are not collinear, but co-planar on the three-dimensional
plane. We use this representation for repeated measures data with the cell means

residual as described before, to visualize the interaction structure.

2.3 Exploring GGI and GEI in the Normative Aging Study

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study of
aging in Eastern Massachusetts established by the Veterans Administration in 1963
(Bell et al., 1966). Data were collected every 3-5 years, including extensive physical
examination, laboratory, anthropometric, and questionnaire data. The outcome we
consider is hearing threshold as measured by pure tone average (PTA) of thresholds
at frequencies of 0.5, 1, 2, and 4 kHz. Smaller threshold represents better hearing
ability (Cruickshanks et al., 1998). The dataset contained a total of 662 individuals.
Each individual had at least two measurements, and 62% of them had at least 4 mea-
surements over time. Descriptive characteristics of the study population is provided
in Table 2.1.

We considered two SNPs on genes related to oxidative stress pathway and one
environmental exposure, namely, occupational noise. The two genetic markers were
rs2071746 (T/A) on it HMOX-1 (heme-oxygenase 1), a stress response protein which
may offer protection against oxidative stress, and rs1001179 (C/T) on CAT (catalase),
a gene that decomposes hydrogen peroxide. Both of these SNPs have been studied
in NAS as an effect modifier in a recent study of black carbon on blood pressure
(Mordukhovich et al., 2009). However, the role of these genetic markers related to
oxidative stress defense has not been studied for hearing threshold outcomes. An
ordinal measure for lifetime exposure to noise with 5 levels (1 reflecting lowest noise
exposure and 5 indicating highest) was created based on prior literature (Park et al.,
2010). The estimated minor allele frequencies (MAF) for the SNPs considered on
CAT and HMOX-1 were 0.19 and 0.46, respectively, and both SNPs were in Hardy-
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Weinberg Equilibrium (HWE) (p = 0.30,0.67 respectively). There can be a maximal
number of M = [ —1 = 3 — 1 = 2 principal interaction factors here and the biplot

representation is exact.

2.3.1 CAT x HMOX-1

The cell means corresponding to the GGI cross-classification, the matrix [ and
the corresponding SVD, along with the corresponding biplot is presented in the upper
panel of Figure 2.1. The plot of cell means suggest evidence for interaction. In
the biplot, the points representing the column array appear to be nearly collinear,
suggesting possible evidence for Mandel’s column regression model. Table 2.2 presents
the results from the different fitted models along with a random intercept mixed
model (under a compound symmetry covariance) with main effects of both SNPs
and pairwise interaction. The interaction is marginally significant in only Mandel’s
column regression model where the interaction is assumed to be proportional to the
main effect of rs2071746 on HMOX-1 (p = 0.06) and not significant in any other
model. There is evidence of main effect of HMOX-1 as well in the column regression
model (p = 0.05) and from the descriptive statistics.

The AMMI model using the LRT with M = 1 has a p-value between 0.1 and 0.2
for the leading principal factor, whereas the pseudo F-test (Mandel, 1971) and used in
the AMMI Macro in SAS (Lee, Lee) has a much larger p-value of 0.61. The 5% upper
critical value of AMMI-LRT (Johnson and Graybill, 1972a) for a 3 x 3 array is 0.9994
whereas our observed value is 0.9533. The leading characteristic root of I namely,
Iy = d2 is 6.82 and I, = d2 = 0.33. Since the LRT statistic also represents the fraction
of the total variability due to the interaction term explained by the first component,
(LRT = d2/(d2 +d2)), we note that the first principal interaction component explains
95% of the interaction sum of squares and the second principal interaction component

can be attributed to random noise.
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2.3.2 HMOX-1 x Occupational Noise Exposure

We carried out the same analysis for GEI model with a 3 x 5 table for HMOX-1
and occupational noise exposure. The maximal number of interaction factors is still
3 —1 = 2. The lower panel of Figure 2.1 displays the cell means corresponding to
the GEI cross-classification, the matrix f, and the corresponding biplot. No obvious
pattern was observed in the cell means plot and biplot. The results of fitting different
models for the interaction between HMOX-1 and noise exposure and fitting a mixed
model with random intercepts are also shown in Table 2.2. No main effects of gene,
exposure or GEI was detected in any of the models. The AMMI model using the LRT
with M = 1 has a p-value greater than 0.4 for the leading principal factor, whereas
the pseudo F-test used in the AMMI Macro in SAS has a larger p-value of 0.50. The
5% upper critical value of AMMI-LRT from Johnson and Graybill for a 3 x 5 array
is 0.9648 whereas our observed value is 0.8476. The leading characteristic root of
T, equivalently, I, = CZ% is 4.14 and I, = d? = 0.74. Thus only the first principal
interaction component explains 85% of the interaction sum of squares and the second
principal interaction component explains the remaining noise. A LRT based on fitting

the two nested models also supports the same conclusion.

2.4 Simulation Study

We carried out a simulation study to assess the power and Type I error proper-
ties of the four tests for interaction (Tukey’s one df, Mandel’s row and column, and
AMMI1). We also considered common epistasis models beyond these four models. In
each simulation, we generated individual level data on outcome Y with four repeated
measures on each subject for a total of N subjects. The general description of the
model is given by (2.1). The structure of 7;; was changed according to the different
simulation models. Cell means were first generated and then the vector of observa-

tions per individual with given mean and covariance structure were generated from a
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multivariate normal distribution. A total of 1000 simulations were used under each

setting.

2.4.1 General Two-Way Interaction Models

Design and Parameter Setting

Under each model, for a 3 x 3 table, the interaction terms were scaled in such a
way that they contributed to 15% of the total effect while the remainder is attributed
to row and column main effects. We mimicked the simulation as if we had two
unlinked causal loci with minor allele frequency (MAF) 0.3 and 0.4 to generate all
3 x 3 tables. For the larger 9 x 5 table, we considered combinations of the two loci
with MAF 0.3 and 0.4 respectively, along with an environmental exposure with five
categories with prevalence 0.2 in each category. For the 9 x 5 table, interaction terms
were scaled to contribute to 20% of the total effect while the rest was attributed to
main effects. To assess the Type I error, we generated data with only additive main
effects for N = 1800, 3600.

Main Results

Figure 2.2 shows the simulation results corresponding to four tests for a 3 x 3 and
a 9x5 table. When the true model is Tukey’s one df, Mandel-row and Mandel-column
models can capture the interaction structure. AMMI1 is the worst in this setting,
but still can detect some interactions. Under Mandel’s row model, Tukey’s one df
and Mandel’s column model can not detect any interaction. Again AMMII is less
powerful. Similar features hold for simulations under Mandel-column model. Under
AMMI1, all other alternatives fail to capture the interaction except the true model.

Figure 2.3 presents the percentage of false rejections at 5% significance level. All
Type I error rates are inflated. This is due to use of the cell-mean based model and
ignoring the unbalanced nature of the data.

In summary, AMMI1 model follows the “mediocrity” principle of not being the
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best, but perform reasonably across a spectrum of general interaction models, a ro-

bustness feature that is desirable in agnostic search for interaction.

2.4.2 Common Epistasis Models

Design and Parameter Setting

Data were simulated according to 10 common epistasis models (Barhdadi and
Dubé, 2010) The left panel in Figure 2.4 gives a visual representation of the interaction
pattern with true cell means overlayed. The general model (10) has an arbitrary
interaction pattern which was simulated without main effects. MAF for the two loci
are still set at 0.3 and 0.4 respectively.

Main Results

The right panel of Figure 2.4 shows that Tukey’s model and Mandel’s row and
column models perform well for epistasis models with main effects (1)-(8). When
main effects do not exist (models 9 and 10), AMMII is the only model that can
detect interaction. Thus to conclude, AMMI model does not appear to be a desirable
choice for common epistasis structures compared to the classical models except for

the case when there is no main effect of either loci but epistasis is present.

2.5 Discussion

We have made an initial attempt to explore PIA for repeated measures data on
quantitative traits. We compared PIA and alternative reduced df tests for interaction
and established robustness properties of the AMMI-LRT for repeated measures data
via simulation studies across a spectrum of interaction models. Our simulation study
indicates that the AMMI test may not be very powerful for common epistasis models
unless epistasis occurs in the absence of main effects.

We have primarily concentrated on the AMMI model with M = 1 and used the

LRT (Johnson and Graybill, 1972a). The F-tests proposed by Gollob (1968) have
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significantly inflated Type I error rates compared to LRT based on our simulations
and thus have not been presented in numerical results. The use of pseudo F-tests
needs to be investigated further for longitudinal data.

The cell-mean based approach can be viewed as a screening tool or an exploratory
idea about the interaction structure and longitudinal effects. In that sense, PIA for
this problem provides an exploratory analysis of interaction structures. The idea of
first fitting additive terms and then representing the residual matrix via a sparse
decomposition appears to be a promising approach to study interaction. Further
development of likelihood-based estimation approaches with asymptotic theory are

warranted to properly account for repeated measures data.
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Table 2.1: Descriptive characteristics of 662 study participants in the Normative Ag-
ing Study considered in our data analysis. Age, BMI, Health Status and
Smoking variables are measured at baseline. PTA hearing threshold is av-
eraged over all repeated measures.

Variable Mean SD
PTA hearing threshold (dB) (Y) 10.86 6.54
Age (years) 41.66  8.77
Body Mass Index (kg/m2) 25.71 2.76
N Percent

Race (white) 645 97.43
Education (> 12 years) 381 57.55
Type-2 Diabetes 13 1.96
Hypertension 28 4.23
Pack-Years of Cigarettes

0 205 30.97

<30 336 50.76

> 30 121 18.28
Genes (G)
CAT(C/T) rs1001179

CC 403 65.96

CT 179 29.3

TT 29 4.75
HMOX-1(T/A) rs2071746

TT 171 27.67

TA 320 51.78

AA 127 20.55

Environment (F)
Level of Noise Exposure

1 120 18.13
2 95 14.35
3 182 27.49
4 153 23.11
5 112 16.92

Number of Repeated Measures
on PTA Per Subject

2 129 19.49
3 122 18.43
4 155 23.41
5 147 22.21
6 85 12.84
7 20 3.02
8 4 0.60
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Figure 2.1: Cell means, residuals after eliminating additive row and column main ef-
fects and the SVD of the estimated I’ matrix for GGI (top panel) and
GEI (bottom panel) analyses. The numerical arrays are accompanied by
graphical displays of the cell means, entries of T and the biplot represen-
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tation. Results are based on the Normative Aging Study data.
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Figure 2.2: Percentage of interactions detected by each of the four tests in the simula-
tion settings corresponding to 3 x 3 and 9 x 5 array from 1000 simulated
datasets with N = 3600. The top label within each box represents the
true simulation model whereas the horizontal axis labels indicate the tests.
The error variance o2 is set at 4 in all cases.

O o2=1 O oi=4

N =1800 N = 3600
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T-1DF M-R M-C AMMI T-1DF M-R M-C AMMI
Test Model

Percentage of False Rejections

Figure 2.3: Empirical estimates of Type I error rates corresponding to the four inter-
action tests in a 3 x 3 array setting. Data are generated under additive
model which has only main effects.
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2.6 Appendix

2.6.1 Tables of Analysis of Variance

Table 2.3: ANOVA Table corresponding to Tukey’s one df non-additivity test

Source SS df F
Mean SSm = I.Jj? 1
Row Main SSgp=JS, R -1 MSp/MSE
Column Main SSc =13, C'jQ J—-1 MSc/MSE
Interaction SSy =02y, > RiQC’jQ 1 MSy/MSE
Error SSE =S88T —-SSm—-SSg (I—-1)(J—-1)—-1

—SSc — SSu
Total SST:Ziijfj 1J

Table 2.4: ANOVA Table corresponding to Mandel’s column-regression model

Source SS df F
Mean SSm = I.J > 1
Row Main SSr=JY, Rﬁ I-1 MSgr/MSres
Column Main SSc = IZ]- Aj2 J—-1 MSc/MSres
Column Slopes S8s=7322"; ):1-26']-2 I-1 MSs/MSres
Residuals SSres =SST —SSm—SSgp (I —1)(J—1)

—SSc — SSs —(I-1)
Total SST =322, yfj J
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Table 2.5: ANOVA Table corresponding to Tukey’s row-column model

Source SS df F
Mean SSm = I.Jj? 1
Row Main SSR:JZi}%; I-1 MSgr/MSres
Column Main SSc =13, Aj2 J—1 MSc/MSres
Linear by Linear SSy =62 D2 R? AJZ 1 M Sy /M Sres
Row Slopes SSrs =Y, Zj ):Z-QOJ? I-2 MSprg/MSres
Column Slopes SScs =3, %, Ry’ J -2 MScs/MSres
Residuals SSres =SST —SSm—SSp (I-1)(J—-1)—1

—SSc —SSy—SSrs —SScs —(I—2)—(J—2)
Total SST =5, Zj y% 1J

Table 2.6: ANOVA Table corresponding to Gollob’s F' test for the AMMI model with

M < (I —1) components, I < J.

Source SS df F
Mean SSm = I.Jj? 1
Row Main SSp=JY, ]%z? I—-1 MSg/MSres
Column Main SSe=13%; (f'jQ J—1 MSc/MSres
Row by Column SSre =322, yfj —SSm (I-1)(J—-1)
—SSr— SSc
Fm SSpm = d2, I+J—-1-2m MSpy,/MSres
Fres SSpres = SSpc — M SSpy, (I —1— M)x
(J—1-M)

Total SST =322, yizj J

2.6.2 Maximum Likelihood Estimation

This section shows derivation of maximum likelihood estimators (MLEs) for pa-

rameters in the four models listed previously.
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Define the parameter vector v’ =



(u, RT,CT, 4T, 0?), the likelihood can then be expressed as

L) = (5

2w o?

)1 eXP{—%,g Z Z(%j —p=Ri—Cj=7;)"}
= (L)”/Q P{_ Z Z zij+ Y. — )+ W —y. — R)+ (y;—y. — Cj) — %’j]2}

2w o2

where, (2i; = vij —vi. — Y, +v.)

— ()2 exp{— 1[1J(y — ) +JZ —y.—R +IZ i—y. —C)

2mo?

+ Z Z(Zij — 7)1}
< (Flaz)”ﬂ exp{—%‘z[z Z(Zij — 7)1}

The maximum value of L(v) is attained when

With the above estimates i, R, C substituted in the likelihood, the log likelihood that

needs to be maximized as a function of +;; is simply,

_ZZVZ +2(ZZ%%‘)- (2.12)

Special Cases: Tukey 1-df: In this case, v;; = 0R,;C; (Tukey 1949),
I"(0) = —GQZZRQCQ+QQZZRC %

o - o
—66 = —29;;R§Of+2;zj:3icjzijzo

S, RiCyz

0= .
22 BT
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Mandel’s Column Model: In this case, v;; = \;C; (Mandel 1961),
Z Z )\202 + 2 Z Z )\iéjzij

az = -2\ ZCQJrQZC’z”:

- > Cjzz‘j
25}

Tukey’s Row-Column Model: If v;; = 0R,C; + \,C; + R;n; (Tukey 1962),
— = 5
= =Y S TIPREC? + 20RiCy(NC + Rany) + (NG + Riny)?)

+2 Z Z (OR.C; + NCj + Riny)zi;

M _ _QQZZRQCQ+2ZZR@%:O
T g

é:ZZ R'C'Zij
ZZ R202
OO0 o) ZCQ+2R ch + 20R, 202—2202 =0
a>\ 713 ij
S\l:Z]C]ZZ]—AQRZCQ Z CZW _éRZ
>G5 56
o\ ) -
o= 27,323 +2C; ZRA +20C; ZR 223%_0
J

Rizij 5
ﬁjZ%—QCj

Principal Interactions or AMMI Model: In this case, v;; = dio;3;. John-
son and Graybill (1972) showed that the maximum likelihood for AMMI model with
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M =1 is attained when the MLE 6212 is equal to the largest root of Z'Z (I1). We

present the following simpler argument to derive MLEs for the interaction terms.

Note that in that case, from (2.12),
l*<d1, ay, 5J> = —d% Z CY? Z 5]2 + 2d1 Z Z aiﬁjzij.
i j i
Under the constraints, Y, a7 = >, 7 = 1, this reduces to maximizing (37, >~ a;f;zi;)?
subject to the normalization constraints. It is well-known from the eigen-theory of
matrices that this quadratic form is maximized by the values of {c;, 3;} that are give
by the left and right normalized characteristic vectors corresponding to Z'Z and ZZ'
where Z has the (i, j)-th entry z;; = %i; = vij — vi. — v; +y... The maximum value of
> Zj @;Bjzi;)? is l;. With these estimates of a; and f3;, it can be seen easily seen

from the expression of I*(dy, oy, 5;), that cf% = [;. Hence the proof.
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CHAPTER III

Novel Likelihood Ratio Tests for Screening Gene-Gene and
Gene-Environment Interactions with Unbalanced Repeated-Measures

Data

3.1 Introduction

Prospective cohort studies examining gene-gene or gene-environment interaction
(GGI or GEI) effects on disease-related quantitative traits have received considerable
attention in recent years (Bookman et al., 2011; Fan et al., 2012). The detection of
GEI plays a critical role in identifying a sub-population of the genetically susceptible
individuals that are strongly affected by an adverse exposure. A better understanding
of GEI may lead to the development of more effective disease prevention and inter-
vention strategies. Studies of GEI in relation to disease development are facilitated
by life-time characterization of exposure data, which are often available in prospec-
tive cohort studies. Repeated measures design in a prospective cohort study may
increase power to detect interaction effects (Wong et al., 2003) and provide better
ways to handle exposure measurement error. In addition, repeated measures data
provide valuable information for delineating potentially time-dependent form of GGI
or GEI, thereby permitting a much more detailed assessment of the dynamic interplay
between genes and environment.

Cohort studies for GGI or GEI are typically characterized by unequal sample size

in each genotype-genotype or genotype-exposure configuration as a result of unbal-
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anced allele frequencies and heterogeneous environmental exposure distributions in a
population. A common analysis strategy for such unbalanced data involves model-
ing GGI or GEI by a product term in a regression setting, implying that the effect
of two factors may not be purely additive in their contribution to the quantitative
trait. Alternatively, one can try to model the interaction term in the generalized
additive mixed model framework with nonlinear exposure and time effects (Lin and
Zhang, 1999), but tests for such non-parametric, smoothed interaction terms may
yield reduced power for moderate sample size. Therefore, flexible yet parsimonious
modeling of GGI or GEI is of interest in the longitudinal setting. In this paper, we
propose likelihood ratio tests (LRT) for GGI and GEI using a sparse representation
of interaction borrowing ideas from the classical ANOVA literature.

Genetic factors (G) and environmental exposures (E) are frequently treated as bi-
nary or ordered categorical variables. Consequently, GGI and GEI are often analyzed
in the form of a two-way table. Considering G as a row variable with I categories and
E as a column variable with J categories, the mean structure of a general two-way

classification model for analyzing row x column interactions is given by
,U/ij:/L—i-RZ’—l-Cj—'—’}/ij,'i:l,...,l,jzl,...,J, (31)

where 11;; is the the expected (mean) value of a quantitative trait corresponding to the
1th row and the jth column, p is the grand mean, R; is the additive main effect of the
1th row, C} is the additive main effect of the jth column, and -;; is the non-additive

effect of the ¢th row and the jth column. The sum-to-zero conditions,

i J i J

ensure identifiability of the parameters in (3.1), so the degrees of freedom (df) for
testing v;; in a fully saturated model is (/ —1)(J —1). While a saturated model (3.1)

is flexible for estimation of +;;, the df for interaction tests can increase considerably
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for finely cross-classified tables, which is inefficient and may result in low power for
detecting GGI or GEI.

To improve the power of the test for GGI and GEI in longitudinal cohort studies,
we explore alternative parsimonious interaction structures that were proposed in the
classical ANOVA literature for testing interaction with only one observation per cell.

Several models are summarized in the following:

Model (a): p;; = p+ R; + C; + R;C; (Tukey, 1949)
Model (b): wi; = p+ R; + C; + \;C; (Mandel, 1961)
Model (c): wij = pp+ R; + C; + R;in; (Mandel, 1961)
Model (d): pi; = p+ R; + C; + 0R,C; + \,C; + Rm; (Tukey, 1962)

with constraints Zfil Ai = ijl n; = 0 for models (b) and (c), respectively, and

additional constraints >>1_ A\ R; = Z;’Zl n;C; = 0 for model (d). The multiplicative
interaction term is proportional to the main effects of one or both factors. The null
hypotheses of no interaction for models (a)—(d) are § = 0,0\, =0 (i = 1,...,1 —
,n=0(y=1,....,J=1),and 0=\ =n=00=1,...,1—=2;j=1,...,J —2),
corresponding to 1,/ — 1, J — 1, and [ + J — 3 df for the tests of interaction effects,
respectively. A more flexible potential alternative is the additive main effects and

multiplicative interactions (AMMI) model (Gollob, 1968; Mandel, 1971)

M
Model (e): Hij = H + R, + Oj + Z dmaimﬂjm + ’V;ja

m=1
where M represents the number of interaction factors being extracted, M < min(I —
1,J — 1), and a residual 7;; remains if not all interaction factors are used. The
terms {m/Sjm} can the considered as the weights corresponding to a multiplicative
contrast among {v;;} with >, a;, = Z]. Bim =0 and ), Qim iy = Zj BimBim =0
for m # m’. For normalized contrasts (32,07, = >, 8%, = 1), {dm, Qim, Bjm} can

be obtained by applying singular value decomposition (SVD) to {v;;}. Since the
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motivation for using an AMMI model is to extract a low rank approximation to the
interaction matrix to save df and thus to enhance efficiency for the test, we focus
on AMMI models with M =1 (AMMI1). For all subsequent discussions, model (e)
refers to AMMI1 model. The null hypothesis of no interaction for AMMI1 model is
Hy:dy =0.

Models (a)—(e) were conceived from a statistical objective of reducing df and
enhancing power of tests for interaction. They have been used in designed genotype-
by-environment yield trials in agricultural studies (Freeman et al., 1973; Zobel et al.,
1988; Crossa et al., 1990). These models were not conceived from a mechanistic or
human biological perspective. Model (a) has recently been used to test for genetic
effects in case-control studies (Chatterjee et al., 2006) and repeated measures data
of complex traits (Maity et al., 2009). Models (a), (b), (c), and (e) have also been
applied for GGI effects on quantitative traits in cross-sectional studies (Barhdadi
and Dubé, 2010). In unbalanced designs, the sums of squares associated with the
two factors and their interaction are not orthogonal to one another. Consequently,
the difficulties that arise in applying these nonlinear interaction models to unbal-
anced data involve obtaining unbiased parameter estimates, partitioning the sums of
squares, deriving the appropriate test statistics and their null distributions. Mukher-
jee et al. (2012) proposed a screening tool for GGI and GEI using cell means from an
unbalanced repeated measures array. This approach is appealing due to a closed-form
analytical expression of the test statistic. However, violations in the homoscedastic-
ity assumption of cell mean error distributions result in inflated type I error. While
their proposed resampling-based method recognizes unbalanced, repeated measures
data structure, the test implemented for AMMI models lacks power because it was
not based on a theoretically derived pivot but an ad hoc extension of the balanced,
cross-sectional case.

To overcome some limitations of the previous methods, we propose alternate ap-
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proaches to explore GGI and GEI using models (a)—(e). We first describe our im-
proved cell-mean approach that properly handles unbalanced data. Specifically, we
adapt and modify the test proposed by Boik (1989) under a reduced-rank model for
application to GGI/GEI using AMMI models. Next, we extend models (a)—(e) to
the repeated measures setting using a mixed-effects modeling framework. We then
develop a parametric bootstrap resampling approach by replacing the ad hoc pivot in
Mukherjee et al. (2012) with a LRT-based pivot derived from the maximum likelihood
under a nonlinear mixed-effects model. The power and type I error of our proposed
tests are examined through a series of simulation studies. Lastly, we apply the pro-
posed methods to a GEI study concerning the modifying effects of polymorphisms
in the hemochromatosis gene (HFE) on the association between cumulative lead ex-
posure and pulse pressure (Zhang et al., 2010). Subject-specific and time-specific

contributions to GEI are investigated using outputs from the AMMI model.

3.2 Methods

3.2.1 Likelihood Ratio Test based on Cell Means

Following the notations in (3.1), let y;jx, be the hth measurement corresponding
to the kth individual in the (7, j)th cell (or equivalently, row ¢ and column j) in a
longitudinal cohort study, ¢ = 1,...,I,7 = 1,...,JJk = 1,..., Ny, h = 1,... ngs.
Let N denote the total number of individuals, N = 3, > Nj;. Let Y = {V;;} be
the I x J matrix of sample means with V;; = 109 STk g0 /S5 . Let L
be the matrix of main effects, parameterized as L = 1;u1’; + R1/;, + 1;C’, where
1, is a length-v vector of ones, and R = (Ry,...,R;)’, and C = (C4,...,C;) are
the parameter vectors representing row and column effects, respectively. Let T' be
the I x J matrix of interaction effects, so the mean structures of models (a)—(e) can

be expressed as E(Y) = L + I". Throughout our treatment of the problem, we

consider the drop-outs in longitudinal studies to be missing at random, leading to the
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unbalanced data structure.

We propose to use an empirical variance estimate for the variance of Yij (denoted
as 07;) that accounts for within-subject correlation. Let 0”P(p) be a symmetric
N4jk X Ny Within-subject covariance matrix, where p is a s x 1 parameter vector that
fully characterizes the correlation matrix P(p), and o2 is a scale parameter. Both p
and o2 can be estimated by Pearson residuals, namely, Tijkh = Yijkh — Yiji (Liang and

Zeger, 1986). The pooled estimate of o2 is

Ni;

- Z Z(Nlj B 1)63]/(2 Z Nij N IJ)’ where 12 - Z zykh/ ank - 1

The estimation of p is conditional on the correlation structure. For a compound
symmetric correlation structure, s = 1, corr(yijkn, Yijkn) = p for h # h'. The pooled

estimate for p is

p—zz ij sz/ZZsz—U%

7]

=

N | —

where p;; = Z Z rzgkhrwkh’/{g [

k=1 h>h’

ik (nige — 1) = 1]}

b
Il

1

Finally, the empirical variance estimate for Y;; is given by

Ni]'
05 = — Z > cOrr(yijun: Yigrw), where ngg =Y nyjp. (3.3)
k=1

i k=1 h>h'

Given &j, we maximize the likelihood of Y under the normality assumption on
the cell means, namely, Vec(Y') ~ N (Vec(L) + Vec(T'), Diag(0?)). Maximizing the
log-likelihood is equivalent to least squares fitting of p;; subject to weights 1/ 5%
For classical interaction models (a)—(d) involving nonlinearity in the parameters, the
maximum likelihood (ML) estimates for L and I' are obtained using a quasi-Newton
method in R (R Core Team, 2012) with function ’optim’ and L-BFGS-B algorithm
(Nocedal and Wright, 1999). Quasi-Newton methods are sequential line search algo-

rithms, and generally require only the gradient of the objective to be computed at
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each iterate. When convergence is reached, we calculate the log-likelihood under the
null (/o) and under the alternative (£;) to construct the LRT statistic: —2(ly — ;).
Under Hy, the LRT statistic approximately follows a central chi-square distribution
withdf = 1,7 —1,J — 1, and I + J — 3 for models (a), (b), (c), and (d), respectively.
The comparison of empirical quantiles of the LRT statistics with chi-square quantiles
is presented in Appendix (Figure 3.7).

Boik (1989) proposed the likelihood ratio criterion to test the rank of I' for un-
balanced data without repeated measures. For AMMII models, the test for non-
additivity is Hy : dy = 0 vs. H, : d; = 1, which is equivalent to Hy: rank(T") = 0
vs. H,: rank(I') = 1. Let H, be the row-space or column-space projection operator,
H,=1,—-(1/v)1,1, (v=1,J), and let K,K/ be a full-rank factorization of H,

with dimension v x (v — 1) satisfying K K, = I. We have
'=HTH;=K/KTK;K,=K;®K',, =K'/ TK,

with rank(I") = rank(®) = r < p =min(/ —1,J —1). The elements of ® form a basis

for the set of interaction contrasts. Define K = (K ;® K ) so that K'Vec(Y) is a lin-
ear function of Vec(Y’) without containing the main effects (because K'Vec(L) = 0).
Hence, E[K'Vec(Y)] = K'Vec(T) = Vec(®) and var(K'Vec(Y)) = K'Diag(6%) K.
The goal is to maximize the likelihood function of Y subject to the constraint
rank(T") = r, which is the same as computing
S(r) = ran?{l(gl)ﬂ [K'Vec(Y) — Vee(®)]' W [K'Vee(Y) — Vee(®)], (3.4)
where W = K'Diag(67;) K, and &7, is replaced by 512] in (3.3). The constrained ML
estimate ® is the solution to S(r). Due to the weight matrix W, a direct SVD
solution does not exist. Instead, ® can be obtained by criss-cross regression (Gabriel

and Zamir, 1979). Write ® = AB’, where A and B are (I —1) x r and (J — 1) X r,

respectively. Now (3.4) becomes a standard weighted least squares problem. Given
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A™_ B is updated as
B = (I, 0 A)YW NI, @ A™)] (I, , @ AWYWK'Vec(Y) (3.5)
In turn, given B™Y | A is updated as

A = (B o 1, YW Y{(B™V o1, )] (B"Y @I, )W 'K'Vee(Y)
(3.6)
We alternate (3.5) and (3.6) until convergence of (3.4) is reached, and & = AB'. The
LRT statistic is S(0) — S(1), where S(0) = K'Vec(Y)W 'K'Vec(Y). The asymp-
totic null distribution of this LRT statistic converges in distribution to the maximum
root of a p—variate Wishart matrix with df = max(/ — 1, J — 1) in balanced designs
(Boik, 1989). The corresponding 95th and 99th percentiles of this distribution can
be found in Hanumara and Thompson Jr (1968). With unbalanced data, under the
assumption that Ny = > Ny > Nij/ > .; Nij, the null distribution of the LRT is
known to be identical to that in balanced designs. Due to correlated nature of the
outcome data, these approximations are not directly applicable to our context. How-
ever, our numerical work illustrates that using this reference distribution provides a

conservative approximation to the test.

3.2.2 Parameter Estimation based on Individual Observations

The cell-means approach provides a quick way of summarizing interaction ef-
fects for repeated measures data. In presence of confounders and other covariates,
a mixed-effects regression model uses all individual observations and provides a gen-
eral framework for handling repeated measurements. Let y,;; denote the length-n;;;

observation vector for subject (i, j, k),

yijk = :uij]'m]'k + Zijkbijk: + €ijk, 1= 1, .. .,], j = 1, Ce J, k= 1, R 7Nij7 (37)
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where p;; is the mean response value for the (¢, j)th cell, Z,j; is a n;;, < ¢ design matrix
for the random effects, e;;, ~ N (0, %), not depending on i, j, or k except that its
size is njr X Nk, and by, is a length-g vector of subject-specific random effects,
independent of e;;x. The random effects are distributed as N(0, ¥), where W is the
q X q covariance matrix for the random effects. It follows that the variance-covariance
matrix for y,;,. is Vi = Zwk\IIZW,C + Xk

Classical Interaction Models

To avoid computationally intensive iterations associated with ML estimation for
models (a)—(d), we propose a two-step regression procedure to approximate the inter-
action parameters. The idea is similar to Milliken and Johnson (1989), who applied
a two-step regression procedure in two-way tables to estimate nonlinear interaction
effects. Let X i be the design matrix with dimension n;;, x I.J that allows estimation
of all plausible effects from the row and column factors. In the first step, we fit a

saturated interaction model to the data using a linear mixed-effects model:
Yijr = Xije€ + Zijebijr + €iji, (3.8)

where §& = (u,Ry,...,Ri—1,C1,...,Cy_1,71, .-, Ya-1)s-1))-  The log-likelihood

function is

Nij

I J
1 .
(g, v, %) D) ZZ ”ukl@g (27)+log(|V i)+ (yz‘jk_Xijké)lvijllc(yz’jk_XijkE)]-

i=1 j=1 k=1

.

(3.9)
The variance components are estimated by restricted maximum likelihood (REML)

(Patterson and Thompson, 1971), and the I x J fixed effect estimates are

_z

lj

I J
- ~ —1

1

B
Il

i=1 j=1
In the second step, we extract the main effect estimates from é and compute the

residuals

~ A

Tijk = Yijp — Moy, — Rily,, — Cila,,. (3.11)

38



Since the interaction term of Tukey’s and Mandel’s models involves main effects, we
perform a second regression (without intercept) where the residuals r;;;, are treated
as the response variable and the respective specific forms of main effect estimates are
treated as the regressors to obtain the corresponding slope estimates. The second-step

regression equations for models (a)-(c) are:

Tijk = QRiéjlnijk + €iji (3.12)
Tijk = )\iéjlnijk + € (3.13)
Tijk = Rinjlnijk + €ijk (3.14)

with €;;, ~ N (0, Qe(nijkxn”k))- One can select a covariance structure 2¢ depending
on the criterion of model fitting. Note that parameter constraints in (3.2) are handled
in the regressors, and there are / — 1 and J — 1 regression equations in (3.13) and
(3.14), respectively. For model (d), we first obtain the estimates of A; and 7; then
compute the second-step residuals using {}A%Z, C’j, i, n;}, and finally estimate 6 (see
Appendix in Section 3.4 for details).

AMMI1 Model

Given that the interaction structure of model (e) is derived from a SVD of the
matrix of residuals after removing additive effects, we propose to perform SVD to the
saturated I' matrix as obtained from (3.10). The resulting largest singular value of
I is an approximation of d;. The corresponding left and right singular vectors are
approximations of &; and Bj, fori=1,...,1,5=1,...,J.

Remark: We evaluated the bias and mean squared error (MSE) properties of the
two-step regression estimators through simulation. The empirical results indicate that
the two-step regression estimators appear to be unbiased, even under misspecified
correlation structures (Table 3.4 in Appendix). The estimator of d; for AMMI1
models (obtained by SVD of the estimated saturated interaction matrix), however,

slightly over-estimates d;.
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3.2.3 Parametric Bootstrap using a LRT Pivot

We construct a LRT statistic based on the non-iterative two-step regression es-
timates. First, the log-likelihood under the null hypothesis is obtained by fitting
an additive mixed model (denoted as éo), and the log-likelihood under the alterna-
tive hypothesis is obtained by the previous two-step regression procedure (denoted
as @1) Specifically for calculating /,, we extract i, R;, and C’j from (3.10) and ob-
tain the interaction effect estimates from the second-step regression of residuals on
a pre-specified structure of main effect estimates for models (a)—(d). Subsequently,
an approximate LRT pivot is created, A= —2(@0 — él) Because the parameter es-
timates used in A are not proper ML estimates, the resulting test statistic does not
have a standard asymptotic distribution. We use parametric bootstrap to elicit the
null distribution of this LRT-based pivot. Since permuting Y or subjects across the
configurations of G and E factors can remove both interaction and main effects, we
generate pseudo data y;;, under the null hypothesis of no interaction while preserving
the main effects using the model: y;,; = i1, + Rilmjk + éjlnijk + Zijebi + €l
where b ~ N(0, ), e, ~ N (0, 3)). ¥ and 3 are REML estimates from the satu-
rated mixed-effects model in (3.8). For each simulated null sample, a A is computed.
Repeating the procedure for a large number of times (e.g., we use 1000) provides an
approximate distribution of A under Hy. F inally, an empirical p-value is obtained by

calculating the proportion of all A that exceeds the observed A.

3.2.4 Simulation Settings

We carried out a series of simulation studies to examine the following properties
of the proposed tests: [1] type I error for the LRT using cell means (LRT-CM) and
for the parametric bootstrap approach with the LRT-based statistic A (LRT-PB); 2]
power comparison of AMMI1 to saturated interaction model if AMMI1 model holds;

[3] power comparison of LRT-PB to LRT-CM; and [4] performance of models (a)—(e)
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across classical interaction structures. In addition, we compared relative performances
of our proposed tests to existing strategies for testing GGI or GEI, including the
standard saturated interaction model and the naive cell mean approach of Barhdadi
and Dubé (2010) (not accounting for correlated data). Furthermore, we evaluated the
performance of each model in detecting GGI with repeated measures on a quantitative
trait under 12 epistasis patterns.

Individual-level outcome Y with n;;; repeated measures on subject (i, j, k) were

generated for a total of N subjects. The general description of the model is given by
yijk; = ,uijlmjk + bijklnijk + eijk, k= ]., <y Nij; (315)

where e;;r ~ N(0,021), bijr ~ N(0,0%), and {e, b} are mutually independent. Cell
means were first generated according to models (a)—(e), and the data vector for each
individual with a given mean and a covariance structure was generated from a multi-
variate normal distribution. The interaction terms in all models were scaled in such
a way that they contributed to 15% of the total variation explained by the model,
and the remainder was attributed to row and column main effects. While simulating
data under an AMMI1 model, we assigned the entire contribution due to interaction
effect to the first interaction factor.

To evaluate model performance in terms of detecting common patterns of GGI,
data were simulated according to 12 epistasis models (Barhdadi and Dubé, 2010): (1)
dominant or dominant; (2) dominant or recessive; (3) modified model; (4) dominant
and dominant; (5) recessive or recessive; (6) dominant and recessive; (7) recessive and
recessive [(1)—(7) from (Jung et al., 2009)]; (8) checkerboard; (9) diagonal [(8) and
(9) from (Culverhouse et al., 2004)]; (10) threshold; (11) additive and additive; and
(12) a general model. The additive and additive model and the general model are
purely epistatic models, that is, the quantitative trait depends on genotype from two

loci in the absence of any marginal effects. Figure 3.1 gives a visual representation of
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the true cell means for the 12 epistasis patterns in our simulation.

We considered 3 x 3 table settings for all simulations to mimic studies of GGI. In
addition, we evaluated the power of AMMI1 models in 9 x 5 table settings as described
in [2]. For 3 x 3 tables, minor allele frequencies for the two loci were set at 0.3 and
0.4, respectively. For 9 x 5 tables, combinations of the two loci with allele frequencies
0.3 and 0.4 (resulting in nine categories) along with an environmental exposure with
five levels (each with probability 0.2) were considered. Hardy-Weinberg equilibrium
was assumed to hold for both loci. We set (i) 0® = 8,p = 0.5 (or 07 = 02 = 4)
and (ii) 0? = 16,p = 0.5 (or 07 = 02 = 8). We also considered p = {0.2,0.5,0.8}
for the power evaluation of AMMI1 models. Under each simulation setting, 1000
datasets were generated with 1800 and 3600 subjects for 3 x 3 and 9 x 5 tables,
respectively. The number of repeated measurements per subject was generated from
a multinomial distribution similar to the analysis dataset: n;;x, € {2,3,4,5,6}, n =
{nir: 1<k <Ny, 1<i<I,1<j<J}~mult(N,p), p=(0.15020.3020.15).

This is equivalent to generating outcome data missing completely at random.

3.3 Results

3.3.1 Simulation Findings

Type I Error

We generated data under an additive model, Hy : v;; = 0 (while R;,C; # 0) as
well as under a completely null model, Hy : v;; = R; = C; = 0 for all 4,5. Figure
3.2 shows the percentage of false rejections for the five interaction models from 1000
simulations at 5% significance level. Under the additive model, the type I error rates
for all models using LRT-CM and LRT-PB are maintained at the nominal 5%. Under
the null model, type I error rates for models (a)—(e) using LRT-PB as well as for model
(e) using LRT-CM are still maintained at 5%. LRT-CM for classical models (a)-(d),

however, are either too liberal or too conservative (>12% for model (a), >8% for
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models (b) and (c), and <3% for model (d)).
Power

The gain in power using an AMMI1 model compared to a saturated interaction
model increases as the table dimension increases. In the 3 x 3 array setting, saturated
models (4 df for the interaction effects) appear to have similar power to AMMI1
models (data not shown). In the 9 x 5 array setting, AMMI1 models using LRT-
CM and LRT-PB clearly have greater power than saturated models when the true
interaction only has one interaction factor (Figure 3.3). The highest observed gain
in power for AMMI1 using LRT-PB compared to the saturated model (32 df for the
interaction effects) is 11% under three correlation settings. As p increases from 0.2
to 0.8, AMMI1 begins to show power gain across a wider range of d;.

Figure 3.4 shows the percentage of interactions detected by each test across a
set of true simulation models. Overall, the power of LRT-PB is increased by 2-5%
compared to LRT-CM. When Tukey’s model (a) is the true model, all other models
are able to capture some interactions (70-82% when o7 = o2 = 4, 38-53% when
o2 = 02 = 8). Under Mandel’s column model (b), Tukey’s row-column (d) and
AMMI1 (e) are able to detect the interaction (both power >99% when o7 = 02 = 4
and >90% when o7 = ¢2 = 8); whereas Tukey’s 1-df model (a) and Mandel’s row
model (c) have very low power (both <50% with LRT-CM and <6% with LRT-PB).
Similar properties are observed for simulations under Mandel’s row model (c). With
Tukey’s row-column model (d) being the simulation model, all alternatives, except
model (a), are able to detect the interaction with power greater than 60%. When
the true model is an AMMI1 model (e), models (a)—(c) have relatively low power to
detect interaction (<50% when o7 = 62 = 4 and <32% when ¢} = 02 = 8). Saturated
model has lower power than AMMI1 in most cases.

Figure 3.5 shows the percentages of interaction detected by six interaction models

using LRT-PB under 12 common epistasis models. Given the robust performance of
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model (e), AMMI1 model appears to be a desirable approach for evaluating common
epistasis structures, especially when main effects do not exist (e.g., epistasis models
(10) and (12)).

We also compared our proposed methods with those in Barhdadi and Dubé (2010)
in terms of type I error and power. As expected, the tests in Barhdadi and Dubé
(2010) assuming balanced data structure and not accounting for within-subject cor-
relation yield inflated type I error (especially for Tukey’s and Mandel’s models) and

lower power (see Figure 3.8 in the Appendix).

3.3.2 Application to the Normative Aging Study (INAS)

The NAS is a multidisciplinary longitudinal study initiated by the U.S. Veterans
Administration in 1963 (Bell et al., 1966). We analyzed 671 participants from a
subset of the NAS data who were successfully genotyped for the HFE gene and had
baseline measurements of tibia bone lead (a measure of cumulative lead exposure)
(Zhang et al., 2010). The analysis goal was to investigate effect modification by the
different HFE alleles on the association between lead exposure and pulse pressure
(PP), which is a strong predictor of heart problems for older adults. Since 1991, data
had been collected every 3-5 years until 2011 with a median follow-up time of 12
years, including physical examination, blood pressure and laboratory measurements,
and questionnaire data. The majority (97%) of the participants were Caucasian.
The average age was 66.29 + 7.14 (range 48-93) at the time of tibia bone lead
measurement. More than 96% of subjects had repeated measurements on blood
pressure, and over 65% of them had at least four measurements during the study
period contributing to a total of 2914 observations.

Two major mutations in the HFE gene (C282Y and H63D mutations) were con-
sidered for analysis following Zhang et al. (2010). Let (AA, Aa, aa) and (BB, Bb, bb)

denote wild type, having one variant allele, and having two variant alleles for C282Y
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and H63D, respectively. As a result of small sample sizes in certain homozygote
genotypes (N=5 for aaBB, N=17 for AAbb) and compound heterozygotes (N=14 for
AaBb and N=0 for Aabb, aaBb, aabb), we were unable to test for interaction between
the two loci. Since the research interest was to compare three mutually exclusive
groups (wild type, H63D, C282Y), 14 subjects with compound heterozygotes (AaBb)
were excluded from analysis. Consequently, the HFE genotypes were classified into
three categories for analysis: AABB, AaBB or aaBB, and AABb or AAbb. The en-
vironmental exposure (cumulative lead) was a continuous variable, but to illustrate
the proposed methods, we categorized bone lead levels into three groups (Low: <15,
Medium: (15, 25], and High: >25 ug/g). Table 3.1 lists the observed cell means of
PP and the number of participants for each G x E configuration.

We applied LRT-CM and LRT-PB to test this GEI effect. According to the Akaike
information criterion (AIC) for model fit, we chose a random-intercept mixed-effects

model for analysis:
yijk = :uij]‘nijk + bijklnijk + €ijk, with Wij = + RZ + Cj + Vijs (316)

where b ~ N(0,072) is the random-effect coefficient for subject (i,j, k), eyn ~
N(0,02I) is the random error term, and {07, 02} are assumed to be constant across
individuals. We also considered the model adjusting for baseline age, time since

baseline in years, and squared time.
Yiji = MijLn,, + BrAgey, + o Timej, + Sy Time, + byjily,, +egr.  (3.17)

For LRT-CM adjusting for covariates, cell means were formed by the residuals from
a regression of the outcome on covariates other than G and E. This is an ad hoc
approach for covariate adjustment since correlations of covariates with G and E are
ignored. In general, LRT-PB based on a full regression model with G, E, and covari-

ates will yield more power.
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Results for GEI

Table 3.2 shows the p-values for testing HFE x Lead Exposure interaction using
LRT-CM and LRT-PB and the saturated interaction model. Using LRT-CM without
adjusting for any covariate, the interaction was significant in all four classical models
(p < 0.05), whereas (e) gave a p-value between 0.05 and 0.10. After adjusting for the
covariates, model (e) detected the interaction using LRT-CM (p < 0.01). Regardless
of covariate adjustment, the interaction was significant for models (a)—(e) using LRT-
PB (p < 0.01), and also for the saturated interaction model (p < 0.02). P-values
for the GEI effect decreased further for all tests with adjustment for baseline age,
time since baseline, and squared time. Given the significant GEI on all models, this
interaction may be real and not model dependent.

According to the SVD of f‘GX g under a saturated interaction model with covariate
adjustment, the first and second characteristic roots of fo £ were a?l = 5.65 and CZQ =
1.24, respectively (Table 3.5). The first interaction factor contributed to over 80% of
the total contribution to the interaction term. The association between PP and bone
lead levels was strongest among H63D variant (AABb or AAbb) carriers, compared to
C282Y variant (AaBB or aaBB) carriers and wild-type (AABB) participants. Based
on the saturated interaction model estimates, the estimated difference in mean PP for
H63D variant carriers with High versus Low lead levels was 9.6 mmHg [95% confidence
interval (CI), 0.43-14.83 mmHg]. The same estimated differences were 3.52 mmHg
[95% CI, -3.39-10.43 mmHg] and -0.33 mmHg [95% CI, -2.95-2.29 mmHg] for C282
variant carriers and wild-type participants, respectively.

Subject-specific and Age-specific Contributions to GEI

Using the estimates of singular vectors (&, Bjm), we investigated subject-specific
and age-specific contributions to GEI in the first and the second interaction factors
(m = 1,2) via the sum of squared deviations (Mukherjee et al., 2012). Briefly, the

variation due to subject (i, j, k) can be calculated by ciijkm = &imﬁjmf’ijk_, where 7.
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is the mean of n,j; subject-level residuals from (3.11) after removing main effects.
The variation in the contribution of subject (i,j, k) is then (cZUkm — cf,m)Q, where
d,, = Do ; Dok ci,-jkm /N. For the age-specific contribution, we constructed eight
three-year age intervals. The first and last intervals contained observations from
those who were younger than 65 and who were 83 or older, respectively. The cell
means of PP and numbers of participants for genotypes and lead levels based on
different age categories are presented in Figure 3.9 in Appendix. The contribution

due to the ¢-th age interval is calculated as dyyy = Do i dimﬁjmftij,, where 7. is the

average of residuals (3.11) in the ¢-th age interval among individuals in the (i, 7)th

~

cell, t = 1,...,8. The variation in the contribution of the ¢-th interval is (thm —d.)?,

where d,, = Zle cztm/&

Figure 3.6 displays subject-specific contributions from the 671 individuals (left
panel) and contributions of eight age intervals to the first interaction factor of GEI
(right panel). The plot indicates that the modifying effect of the HFE gene on the
effect of cumulative lead exposure on PP spiked around age 75. This was due to the
fact that the mean difference in PP between the Low and the High bone lead groups
became largest in that age interval with H63D (AABbor AAbb), whereas the difference
in PP among those with wild-type of HFE (AABB) was the smallest. A stratified
analysis by baseline age also indicates time-dependent evidence of interaction effects
(see Appendix). Figure 3.10 shows patterns corresponding to the second interaction
factor with substantially less subject-specific and age-specific variability for the GEI.
These graphical diagnostics can provide important insight into longitudinal features

of the interaction factors.

3.4 Discussion

We have proposed new likelihood ratio tests for GGI and GEI effects in longitudi-

nal cohort studies using a sparse representation of interaction structure via Tukey’s
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and Mandel’s models as well as AMMI1 models. AMMI1 appears to be a robust
and flexible model in detecting interaction effects across a spectrum of interaction
structures. Moreover, it is relatively powerful in detecting certain epistasis structures
with no appreciable main effects but potential interaction. In contrast, Tukey’s and
Mandel’s models fail to detect interactions if the interaction structure is misspecified.

Both of our approaches require prior assumptions of the mean structure under the
null hypothesis of no interaction and an underlying correlation structure for within-
subject measurements. When either part of the model is misspecified, the power
and the false rejection rate might be affected. Although this is a generic limitation of
parametric modeling, we performed additional simulations to evaluate the influence of
misspecification of covariance structure on the proposed tests. We generated data un-
der several common correlation structures (e.g., compound symmetry, autoregressive,
unstructured) and analyzed interactions assuming a different correlation structure.
The results show that under a misspecification of covariance structure, type I error
rates are maintained for LRT-PB but can be slightly inflated for LRT-CM.

In our simulation studies, we did not see a vast difference in the power between
LRT-CM and LRT-PB. The correlation across repeated measurements in the LRT-
CM approach is accounted for by the weight matrix W. Therefore, the test is not
based on naive subject-level averages as in Mukherjee et al. (2012). The main advan-
tage of LRT-PB is the flexible regression structure that allows all readily available
mixed model estimation tools to be used.

We have focused on developing valid tests for the five interaction models, yet there
are some limitations. First, a caveat of the ML estimation for classical interaction
models (a)—(d) based on cell means is that when the underlying main effects are
relatively small, the estimation for interaction parameters would become numerically
unstable. Depending on initial values, the final converged estimates might be local ML

estimates instead of global ML estimates. Second, SVD of the estimated saturated
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interaction matrix yields approximate estimates rather than proper ML estimates for
AMMI model parameters. Our simulation results indicate that this estimator leads
to slight over-estimation of d1. Nevertheless, LRT-PB for AMMII1 still maintains the
nominal type I error rate and in general possesses greater power than a saturated
interaction model. In addition, how to connect the parameters of the AMMI model
to directly interpretable quantities for biological interactions are not clear. At this
stage, AMMI model remains a screening strategy for testing non-additivity. Third,
covariate adjustment was not considered in our simulation studies. In practice, one
can incorporate time effect and other (time-varying) covariates with LRT-CM and
LRT-PB, as we did in our data example. Lastly, to our knowledge, no replication
study has examined the interaction effect between the HFE gene and cumulative lead
exposure on pulse pressure. We randomly split the data in half and analyzed the
two halves for GEI as an assessment of internal consistency, and the results were
consistent with our findings. As discussed in Zhang et al. (2010), the conclusion
from the NAS data analysis may not be generalizable to other populations given that
the study population was exclusively white men. Besides, unmeasured confounding
factors and interactions with other genetic polymorphisms or environmental factors
were not considered.

The proposed analysis strategies are useful for detecting GGI and GEI effects in
longitudinal data. A full likelihood-based approach using a general nonlinear mixed-
effects model set-up would be more appealing if the appropriate test statistics and
their closed form null distributions can be obtained. Further work is required to
investigate specialized nonlinear optimization algorithms in the ML framework to
replace the two-step estimation and to construct a valid and more efficient test. It is
also important to develop a formal test for individual- and time-specific contributions

to interactions, which will ultimately lead to better understanding of GGI and GEI.
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Table 3.1: Cell means corresponding to pulse pressure and number of participants (in
parentheses) for each configuration of the HFE genotypes and bone lead
levels in the Normative Aging Study

Tibia lead levels (ug/g)

HFFE gene Low: <15 Medium: > 15 and < 25 High: >25
Wild-type (AABB) 52.94 (161) 56.16 (149) 56.61 (131)
C282Y (AaBB or aaBB)  51.89 (23) 56.65 (39) 59.10 (23)
H63D (AABb or AAbD) 52.58 (54) 57.72 (53) 64.49 (38)

Table 3.2: P-values for testing GEI between HFE genotypes and tibia lead levels in
the Normative Aging Study using the proposed likelihood ratio test with
cell means (LRT-CM) and the parametric bootstrap (LRT-PB) approach
(1000 replicates simulated under the null hypothesis)

Model Hypothesis LRT-CM®  LRT-CM’ LRT-PB® LRT-PB?
Model (a) Hp:6=0 0.008 0.002 0.002 0.003
Model (b) Hp: \; = 0 (Lead) 0.029 0.007 0.009 0.008
Model (¢) Hp:nj =0 (HFE) 0.015 0.002 0.002 0.001
Model (d) Hp:0=X=n;=0 0.035 0.005 0.007 0.002
Model (e) Hy:dy =0 <0.10 <0.01 0.009 0.002
Saturated HFFE x Lead 0.015 0.006

& No covariate adjustment.

b Adjusting for baseline age, time since baseline, and squared time. For LRT-CM, residuals
from a regression of pulse pressure on all other covariates except lead levels and genotype
were used to form the cell means.
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Figure 3.2: Type I error for the five interaction tests in a 3 x 3 array setting using
the likelihood ratio test with the cell-mean approach (LRT-CM) and the
parametric bootstrap test (LRT-PB). 1000 simulation datasets are gener-
ated under an additive model (only main effects) and under a completely
null model (no main or interaction effects). T1 = Tukey’s one degree-
of-freedom non-additivity test (a), MC = Mandel’s column model (b),
MR = Mandel’s row model (c¢), TRC = Tukey’s row-column model (d),
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Figure 3.3: Empirical power (or true positive rate) of AMMI1 model (at a=0.05)
using the likelihood ratio test with the cell-mean approach (LRT-CM)
and the parametric bootstrap test (LRT-PB), and a saturated interaction
model in a 9 x 5 array setting with 02 = 8 and p = 0.2,0.5, and 0.8.

T T T T T T
10 15 20 25 30 35

1.0

0.8

0.6

0.2

0.0

1 — AMMIL (LRT-CM)
- — AMMIL (LRT-PB)
- Saturated .

1.0

- Saturated

Power
0.6 0.8

0.4

0.2

0.0

T T
0 5

— T —
10 15 20 25 30 35 0o 5
d; (p=0.5)

71 — AMMIL (LRT-CM)
- - AMMIL (LRT-PB)

52

— T
10 15 20 25 30 35
d; (p=0.8)



W ol=0’=4 [0 0°=0°=8

Tukey’s one df Mandel’s Col Mandel's Row Tukey’s Row-Col AMMI1
100 ~ F

80 -
60 -
40 -
20 -

<> QO ®Q~ «Q_O@@\'\/ < ®0 @Q-,\Q‘C‘@@» Y @0 ®Q~ &Qs"@@\\’ < @0 @Q- «Q_C)@@\N < @0 @Q‘&Qg)@@\
v v v v v

Percent of Interactions Detected (%)

Test Model
(a)

2 _ 2 _ 2 _ 2 _
B o,=0,=4 O o,=0,=8

Tukey’s one df Mandel's Col Mandel's Row Tukey's Row—Col AMMI1
100 + r

80 -
60 -
40 - -
20 - -

04 L

Percent of Interactions Detected (%)

& Qo QQ.&QS‘@&\/@?’S <> Qo @Q‘&Q{@\"/@é <> Qo @Q“,\Q@@@“’@é O @0 “\Q’\Q'O@ \\’é\ < \‘o @Q}&o@@\\’@?ﬁ
A v A A v
Test Model
(b)

Figure 3.4: Percentage of interactions detected by different interaction models in the
simulation settings corresponding to a 3 x 3 array. Results are based on
(a) the likelihood ratio test with the cell-mean approach (LRT-CM) and
(b) the parametric bootstrap test (LRT-PB) with test results of using a
saturated model for interaction as a comparison. The top label within
each box represents the true simulation model. The horizontal-axis labels
indicate the models used for testing interaction. T1 = Tukey’s one degree-
of-freedom non-additivity test (a), MC = Mandel’s column model (b),
MR = Mandel’s row model (c¢), TRC = Tukey’s row-column model (d),
AMMI1 = model (e), SAT = saturated interaction model.

23



2 _ 2 _ 2 _ 2 _
® o,=0,=4 0O o,=0,=8

Percent of Interactions Detected (%)
o
1

100 -
80 +
60 4
40 4
20 4
OA

Figure 3.5:

1000 2000

HFE x Tibia Lead

0

Figure 3.6:

(1) Dom or Dom (2) Dom or Rec (3) Modified
I 100
- 80
- 60
40
20
Fo

(4) Dom and Dom (5) Rec or Rec (6) Threshold

(7) Dom and Rec (8) Rec and Rec (9) Checkboard
I 100
- 80
F 60
40
20
Fo

(10) Add and Add (11) Diagonal (12) General

& E &Q_o @9\\/ %‘; & E /\Qp @@ @‘;\ & E &o @\@ %‘;\
A A A
Test Model

Percentage of interactions detected (or null hypotheses of no interaction
rejected) by each of the interaction models using parametric bootstrap
test (LRT-PB) and a saturated model for interaction under 12 common
epistasis models. T1 = Tukey’s one degree-of-freedom non-additivity test
(a), MC = Mandel’s column model (b), MR = Mandel’s row model (c),
TRC = Tukey’s row-column model (d), AMMI1 = model (e), SAT =
saturated interaction model.

Subject-Specific Contribution Age Contribution
o
N
_ R . 3
L]
o . 3 3 n
- . - <
* o o _|
. .:, * . - . . e = —
* o 40t - . x °
MK LRI IR SR PN - -~ n - °
* o, * * I T e
s g“‘"{a’vﬁ Sakipd ‘3 i & . .
. o ° °
T T T T T T T I T T T T T I
0 100 200 300 400 500 600 700 60 65 70 75 80 85
Subject ID Age (years)

Subject-specific contributions (left) and age-specific contributions (right)
to the first interaction factor in the HF'E x Lead interaction based on the
Normative Aging Study data.

o4



3.5 Appendix

3.5.1 Sensitivity of Using the Empirical Variance Estimate for LRT-CM

We studied the sensitivity of using the empirical variance estimates by compar-
ing the power and type I error under true and misspecified correlation structures
across a variety of commonly used correlation structures (e.g., compound symmetric,
autoregressive, unstructured). Table 3.3 shows the simulation results of the LRT-
CM method with and without a misspecified correlation structure under compound
symmetric (CS) and autoregressive-1 (AR-1) correlation structures.

Overall, the power of the tests decreases when the assumed correlation struc-
ture is more complicated (i.e., more parameters need to be estimated) than the true
underlying correlation structure. In our simulation setting, the power of LRT-CM
decreases by 16% (at most) when assuming an AR-1 correlation while the true corre-
lation structure is a CS. In contrast, the power of the LRT-CM is not affected as much
(less than 6%) when the assumed correlation structure requires fewer parameters to
be estimated than the true underlying correlation structure. Concerning the type I
error under misspecified correlation structure, we again investigated the type I error
under two null hypotheses: (1) no interaction with the presence of main effects and
(2) no interaction without the presence of main effects. Under the null hypothesis of
(2), the estimates can become quite unstable for models (a)—(d). The type I error
can be inflated or deflated under misspecified correlation structure but always remain

less than 10% in our simulations.

3.5.2 Estimation for Tukey’s Row-Column Model in Two-Step Regression

We can express the interaction term 0R;C; + N\;C; + R;n; in the model as v;; =
(OR; + X))C; + Rin; or (0C; + n;)R; + N\;C;. If we regress the residuals r;;;, after

removing the additive main effects (from a saturated model fit) on C; and R; (again
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without intercept) separately:

Tijk = uiéjlnijk + €k, (3-18)
Tijk = UjRi]-nijk + €ijks (3.19)

we have 4; = OR; + \;, and 0 = éé’j + 7;. Model (d) has a total of I + J 41
interaction parameters. Together with four sum-to-zero identifiability constraints,
I+ J—3 parameters (i.e., Ay ..., A\;_2,M1,...,7M_2) are left to be estimated. By (3.18)
and (3.19), we have (I — 1) + (J — 1) equations, which are sufficient for estimating
the I + J — 3 parameters. After obtaining @; and 9; from (3.18) and (3.19), each A;
and 7); can be calculated using the constraints. Finally, we estimate 6 by regressing
on Riéj,

the residuals from the second step, s;;; = 741 — Riﬁj 1o, — S\ZC'] Lo

Siji = OR;Ci1y,, + Eiji,

where €, ~ N(0,¢). Again, Q¢ can be a user-defined covariance structure based

on model fitting criterion.

3.5.3 Comparison with Other Exisiting GGI/GEI Methods

The existing GGI or GEI methods for handling (longitudinal) continuous traits
are very limited. Barhdadi and Dubé (2010) have applied Tukey’s and Mandel’s
models as well as AMMI models to testing GGI effects on quantitative traits for
unbalanced data. They reduced data to cell means and applied F tests that assume
equal variance of all cell means as described in the original papers of Tukey (1949) and
Mandel (1961). The likelihood ratio test proposed by Johnson and Graybill (1972a)
was used for GGI tests with AMMI models, which is also based on single observation
per cell. Despite these complex classical models, a saturated model for interaction is
commonly used for testing GGI and GEI in practice for its computational simplicity

and flexibility.
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We generated interaction data in the same simulation setting as described in the
main text (unbalanced correlated data in 3 x 3 table settings) and applied the GGI
tests summarized in Barhdadi and Dubé (2010) for Tukey’s, Mandel’s, and AMMI
models (any within-subject correlation is ignored). Figure 3.8 shows type I error (left
panel) and power (right panel) for each of the five multiplicative models using tests
in Barhdadi and Dubé and our proposed tests (LRT-CM and LRT-PB) under the
same simulation settings as described in the section of Simulation Settings in the
main text. As expected, the tests in Barhdadi and Dubé (2010) assuming balanced
data structure and not accounting for within-subject correlations yield inflated type
I error (especially for Tukey’s and Mandel’s models) and low power, compared to
our proposed methods. For example, when the simulation model is AMMI1 with
o2 = 02 = 8, AMMII has 65% and 69% power for detecting interactions using our
proposed LRT-CM and LRT-PB, respectively; whereas AMMI1 using the test by

Barhdadi and Dubé only has 8% power (far right column).

3.5.4 Stratified Analysis of GEI in the NAS Data

To further investigate the potential three-way interaction (age contributions to
HFE x Lead interaction), we performed stratified analysis for by baseline age: one
for those who started the study at age < 66 years old (N=316) and the other one
with those who started at age > 66 years old (N=355). We then analyzed the two
subsets separately. The p-values for GEI using models (a)—-(e) are shown in Table
3.6. The results indicate that HFE x Lead interaction was found for the older group
of participants but not for the younger group. The stratified analysis results may

indicate some evidence of three-way (age-dependent) interaction.
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Table 3.3: Power and type I error of the LRT-CM method with and without a mis-
specified correlation structure. Two covariance structures were compound
symmetric and autoregressive-1 correlation (02 = 16, p = 0.5).

Corr. Structure Model
True  Assumed (a) T1 (b) MC (c) MR (d) TRC (e) AMMIL
Power CS CS 0.592 0.947 0.747 0.825 0.651
CS AR-1 0.528 0.924 0.660 0.750 0.544
AR-1 AR-1 0.693 0.973 0.858 0.921 0.779
AR-1 CS 0.722 0.977 0.888 0.940 0.830
Type I Error CS CS 0.054 0.052 0.054 0.053 0.055
(Additive) CS AR-1 0.044 0.034 0.035 0.024 0.027
AR-1 AR-1 0.055 0.057 0.053 0.058 0.056
AR-1 CS 0.074 0.079 0.082 0.087 0.088
Type I Error CS CS 0.127 0.087 0.081 0.023 0.057
(Null) CS AR-1 0.091 0.057 0.050 0.012 0.027
AR-1 AR-1 0.125 0.083 0.080 0.023 0.056
AR-1 CS 0.147 0.116 0.098 0.037 0.088

CS = compound symmetric; AR-1 = autoregressive-1
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Table 3.4: Percent bias and mean squared error (MSE) corresponding to the interac-
tion parameter estimates from Tukey’s 1-df model (#) and AMMI1 model
(dy) using a two-step regression procedure under compound symmetric and
autoregressive-1 correlation structures (both with p = 0.5)

Assumed Correlation Structure for Analysis

Parameter  True o2 CS AR-1 ARH UN IND
Percent Bias (%)

1 -0.2 -0.2 -0.2 -0.2 -0.2
0 CS 4 0.2 0.3 0.3 0.2 0.3
8 0.8 0.8 0.8 0.8 0.7
1 0.1 0.1 0.1 0.1 0.1
AR-1 4 0.7 0.7 0.7 0.7 0.7
8 -0.4 -0.4 -0.4 -0.4 -0.4
1 1.2 1.2 1.2 1.2 1.2
dq CS 4 3.0 3.0 3.0 3.0 3.1
8 6.8 6.8 6.9 6.8 7.0
1 1.0 1.0 1.0 1.0 1.0
AR-1 4 1.9 1.9 1.9 1.9 1.8
8 3.6 3.3 3.3 3.3 3.7
MSE
1 0.090 0.090 0.090 0.090 0.090
0 CS 4 0.182 0.185 0.185 0.183 0.185
8 0.263 0.268 0.268 0.263 0.270
1 0.078 0.077 0.077 0.077 0.078
AR-1 4 0.163 0.162 0.162 0.162 0.163
8 0.239 0.239 0.239 0.239 0.239
CS 1 0.101 0.102 0.103 0.101 0.104
di 4 0.199 0.204 0.204 0.200 0.206
8 0.278 0.282 0.282 0.278 0.284
AR-1 1 0.096 0.093 0.093 0.093 0.095
4 0.178 0.175 0.176 0.176 0.179
8 0.252 0.250 0.250 0.251 0.253

CS = compound symmetric; AR-1 = autoregressive-1; ARH = autoregressive heterogeneous;
UN = unstructured; IND = independence
True 0 =d; =1
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Table 3.5: Estimated interaction matrices from fitting a saturated model (adjusted for
baseline age, time, and squared time) and the corresponding singular value
decompositions: T'gyp for gene-environment (HFE x Lead) interaction
analysis based on the Normative Aging Study data

| ey AnrE D B'lcad
1.92 0.77 -2.68 -0.59 0.57 | 5.65 0 -0.43 -0.38 0.82
-0.19 1.14 -0.94 -0.20 -0.79 0 1.24 | 0.69 -0.72 0.03
-1.73 -1.90 3.63 0.79 0.22

Table 3.6: P-values corresponding to different tests for GEI between HFFE genotypes
and tibia lead levels in the Normative Aging Study stratified by baseline
age at the time of recruitment are reported. LRT-CM and LRT-PB stand
for the two likelihood ratio tests based on cell means and al mixed-effects
regression model, respectively. The model adjusts for baseline age (years),
time since baseline, and squared time. For LRT-CM, the residuals from
the adjusted model were used to form cell means corresponding to GxE
cross-tables.

Baseline Age < 66 Baseline Age > 66
Model Hypothesis LRT-CM LRT-PB LRT-CM LRT-PB
Model (a) Hy:0=0 0.054 0.208 0.001 0.001
Model (b) Hp: \; =0 (Lead) 0.143 0.080 0.003 0.001
Model (c) Hp:n; =0 (HFE) 0.133 0.142 0.001 0.002
Model (d) Hp:0 =X\ =n;=0 0.234 0.184 0.002 <.0001
Model () Hy:dy =0 <0.10 0.250 <0.005 0.001
Saturated HFFE x Lead NA 0.284 NA 0.002
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Model (a): Tukey's one df Model (b): Mandel's column Model (c): Mandel's row
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Figure 3.7: Comparison of empirical quantiles of the likelihood ratio test (LRT) statis-
tics to the corresponding theoretical quantiles of chi-squares under the
null hypothesis based on I x J cell means. The LRT statistic follows a
chi-square distribution with df = 1,1 —1,J — 1, and I + J — 3 for models

(a), (b), (c), and (d), respectively (I = J = 3).
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Figure 3.8: (a) Type I error and (b) percentage of interactions detected by each of the

five multiplicative models using tests in Barhdadi and Dubé (2010) and
the proposed methods in the same simulation settings as described in the
section of Simulation Settings. The top label within each box represents
the true simulation model. The horizontal-axis labels indicate the tests
carried out.

62



70

65

60

55

50

45

Mean Pulse Pressure (mmHg)

Age (year)

+ Low
o Medium
e High

| | | |
Wild Type (AABB)

| | | | | |
C282Y (AaBB or aaBB)

I I I I I I
HE3D (AABb or AAbb)

] - L
-
- °
o o ?' 3 o kb
+ L
- ) £l
=] = *+ ® O . IS . * g--o + L
(=] 4 O -E
-l I O |
LR S St ¢ + * ! g--2 7 \ . -
o - i % 4 '_
t 7 © & E t
41z B &8 n
+

+——F + B

T T T T T T T T T T T T T T T T T T T T T T T T

63 66 69 72 75 78 8l 84 63 66 69 72 75 78 8l 8 63 66 69 72 75 78 81 84

196 100 116 97 86 71 45 43|21 14 15 15 14 10 6 4 |56 34 34 34 37 25 17 17

103 76 85 88 78 73 59 57|34 24 25 32 19 16 14 7 |36 18 26 31 30 38 24 29

40 40 71 79 89 77 68 89| 4 8 9 12 12 14 10 8 |12 15 21 24 28 22 16 17

Figure 3.9: Cell means of pulse pressure and numbers of observations (shown in table
below the graph) for three genotypes of the HF'E gene and lead exposure
levels (Low, Medium, High) across eight age intervals in the Normative

HFE x Tibia Lead
1000

0
|

2000
1

Aging Study

0 100 200 300 400 500 600 700

Subject ID

HFE x Tibia Lead

20

15

10

Figure 3.10: Subject-specific contributions and
ond interaction factor in the HFE x Lead interaction based on the Nor-
mative Aging Study data

63

60 65 70 75 80 85

Age (years)

age-specific contributions to the sec-



CHAPTER IV

Testing Departure from Additivity in Tukey’s Model using Shrinkage:

Application to a Longitudinal Setting

4.1 Introduction

The presence of gene-environment interactions (GEI) implies that the effect of
an environmental exposure (E) is enhanced or reduced for a sub-group with a cer-
tain genotype or vice versa. Investigation of GEI is essential to better understand
the etiology and development of common, complex diseases. Many longitudinal en-
vironmental epidemiology studies have been collecting genetic data with the goal of
identifying GEIL. In these cohort studies, GEI is often investigated by focusing on
an established association between an exposure biomarker (e.g., lead levels in blood
or bone) and a quantitative trait (e.g., pulse pressure), and how this association is
modified by a selected set of genetic markers. The set of genes (candidate genes)
to be studied is often determined by the metabolic pathway related to the exposure
instead of an agnostic search across the genome.

While there has been extensive literature on GEI regarding ways to enhance the
efficiency of interaction test in case-control studies (Kraft et al., 2007; Mukherjee and
Chatterjee, 2008; Mukherjee et al., 2012), statistical methods for GEI in longitudinal
settings remain limited. Methods to study disease-gene association in longitudinal
settings, however, have started to receive attention. For instance, Wang et al. (2012)

proposed to estimate and test for time-varying genetic effects using semiparametric
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models with penalized splines. Fan et al. (2012) also used penalized spline models
to estimate the mean function and genetic regression coefficients with extensions to
linkage disequilibrium (LD) mapping. Nevertheless, limited number of studies have
focused on testing of gene-gene interactions (GGI) or GEI for complex traits in longi-
tudinal settings. The multivariate adaptive splines presented by Zhang (1997, 2004)
have been applied to analyze GEI in longitudinal cohort studies (e.g., Zhu et al., 2009).
Xu (2007) developed an empirical Bayes method to estimate GGI effects under the
mixed model framework and compared it with several variable selection procedures.
Malzahn et al. (2010) developed a nonparametric test for investigation of GGI in
repeated measures data using a rank procedure. Mukherjee et al. (2012) proposed to
explore the GEI structure with various parsimonious classical ANOVA models for non-
additivity by taking the average of repeated measurements and forming cell means of
a two-way GEI table. Along the same lines, Ko et al. (2013) extended the classical
ANOVA models under a mixed model framework and developed a resampling-based
test for GEI that accounts for correlation within repeated measures.

Typically, an interaction model including cross-product terms of gene and en-
vironment under the mixed model framework is used for testing GGI and GEI in
longitudinal studies (Moreno-Macias et al., 2010). In considering the estimation of
GEI for longitudinal data where both the genetic factor (G) and E are categorical vari-
ables, this conventional modeling approach involves distinct parameter estimation for
each configuration of GEI (i.e., a saturated interaction form) with sum-to-zero type
constraints to ensure identifiability. Estimation bias is minimized since the model
does not impose any structural assumptions on the interaction term. However, the
number of parameters and hence the corresponding degrees of freedom (df) for the in-
teraction test can become substantially large as the number of categories of G and/or
E increases. In addition, under a saturated interaction model only observations in

a cell can contribute to the parameter estimation for that cell. This may result in
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reduced efficiency and loss of power for detecting interactions because of small cell
sample size in human studies involving a gene with a modest minor allele frequency.

Tukey’s one df model for non-additivity (Tukey, 1949), originally proposed for data
with no replication per cell, has been applied to the modeling of GGI in cohort studies
(Maity et al., 2009). The interaction term in Tukey’s model is treated as a scaled
product of main effects, implying that the existence of interaction is conditional on the
presence of main effects. When a GEI study is based on a two-stage strategy, namely,
the candidate genes are selected based on marginal genetic associations (Kooperberg
and LeBlanc, 2008; Murcray et al., 2009), it may be reasonable to adopt Tukey’s
interaction form for GEI. Chatterjee et al. (2006) proposed that Tukey’s model is also
consistent with the notion that individual markers within a gene are associated with
disease through a common biological mechanism. However, when candidate genes
are chosen in relation to an exposure pathway, genes may not necessarily have main
effects. Also, when the assumption of Tukey’s interaction structure is violated (e.g.,
absence of genetic main effects), the estimate for the interaction effect using Tukey’s
model will be biased and the corresponding one-df test can result in extremely low
power (Mukherjee et al., 2012; Barhdadi and Dubé, 2010).

When searching for GEI across multiple genetic markers, it is possible that GEIs
exhibit distinct interaction patterns, departing from Tukey’s model. Conducting mul-
tiple tests under a fixed interaction structure (e.g., Tukey) may not capture interac-
tions of alternative forms. At the same time, it would be advantageous to leverage the
power of Tukey’s test if it is indeed a plausible model. Given as such, we propose to
model GEI using a shrinkage estimator that combines estimates from Tukey’s model
and from the saturated interaction model. An adaptive framework is utilized similar
to Mukherjee and Chatterjee (2008). This estimator will shrink the maximum likeli-
hood estimates (MLEs) under a flexible interaction structure toward Tukey’s model

estimates. The amount of shrinkage is data adaptive, so that in large samples, such
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estimator is unbiased even if Tukey’s assumption is violated. More importantly, when
compared to a saturated model, the shrinkage estimator has reduced mean squared
error (MSE) for small samples (Chen et al., 2009). Although Tukey’s model has been
used to model GEI or GGI under a generalized linear model setting (Maity et al.,
2009; Chatterjee et al., 2006; Barhdadi and Dubé, 2010), no prior work has been car-
ried out to data-adaptively combine Tukey’s model and saturated interaction model
to take advantage of both models for testing GEI. Thus, the shrinkage approach is
not only novel for longitudinal data but also a new approach for cross-sectional data.

In Section 4.2, we introduce notations for GEI models using a mixed-effects model
framework. The parameter estimation for Tukey’s model with repeated measures data
is described in Section 4.3. In Section 4.4, we propose a shrinkage estimator and derive
its approximate variance estimate. In Section 4.5, we summarize the test for interac-
tion corresponding to each method. In Section 4.6, we evaluate the performance of
our proposed methods via simulation studies. In particular, we compare the average
performance by generating GEIs with different interaction structures to mimic a hy-
pothetical GEI search study involving multiple genetic markers. In Section 4.7, we
apply the proposed methods to search GEI between 105 single-nucleotide polymor-
phisms (SNPs) within 22 genes in the iron metabolism pathway and cumulative lead
exposure on pulse pressure using the Normative Aging Study (NAS) data. We also
test GEI between 27 SNPs and energy intake and intentional exercise on body mass
index (BMI) using data from the Multi-Ethnic Study of Atherosclerosis (MESA).
These 27 SNPs have been shown to be significantly associated with BMI in previous
genome wide association studies (GWAS). In NAS, genes are chosen in relation to the
exposure pathway. In MESA, the question is whether the loci identified by GWAS
(with marginal effects) modify the effect of certain exposures. Another distinction
between the two data examples is that one of the exposure variables considered in

MESA, intentional exercise, is a time-varying variable, while the other two, energy
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intake in MESA and cumulative lead exposure in NAS, are time-invariant (i.e., both

are baseline measurements).

4.2 Model

Let yi: be the value of the t-th repeated measure on a phenotypic response Y
corresponding to the k-th individual (¢ = 1,...,nx, k =1,...,N). Define a mixed-
effects model for the nj x 1 response vector ¥y, = (Yr1,Yk2, - - - > Ykn,, )| such that it
is related to an nj X v matrix of explanatory variables Xy = (@g1, Tgo, - - . ,:I:knk)T,
with each x;; a v X 1 vector associated with g, through some nonlinear function f.
Namely,

Yp = (0, Xu) + Zibi + e, (4.1)

where 1 is the p-dimensional vector of fixed effects, f(n, X}) is the ngy X 1 mean
vector, by ~ N (0, ®) is the g-dimensional vector of random effects, Z;, is the design
matrix of size ny X ¢ for the random effects satisfying rank(Zy) = g < ny, for all k, and
er = (€r1,- - ern,) ~N(0,X;) is the nj-dimensional vector of random errors. The
random effects by are assumed to be independent of e;. Let Vi (w) be the variance
matrix of y,, Vi(w) = Z,¥Z, + 3. Here w consists of parameters in ¥ and ;.

We use (4.1) to model the association between the phenotypic response of interest
and genetic and environmental exposure factors. Let Gy be the genotype and Ej; be
the exposure level for the k-th subject at the ¢t-th measurement, G, =i,1 =1,2,...,1,
Ew =34,7=12,...,J. Both G} and E}; are assumed to be categorical variables.
Without considering any covariates, the mean structure for y; under Tukey’s model

(Tukey, 1949) has the following form

I J
fmaw) = [(B,0,) = fo+ > BINGL=i)+ Y B 1(Ew = j)+
=1 =1
I J !
0> ) BYBI(GE =i, By = j). (4.2)
i=1 j=1
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Here m has two components, n = (,BT,Q)T. B consists of the intercept Sy, the pa-
rameters for genetic main effects, 8% = (B, ..., BT, and exposure main effects,
B = (BF,..., BEYT. 6 is a scale parameter representing the interaction effect. A
saturated interaction model, on the other hand, allows for separate interaction pa-

rameters for each GEI configuration:

I J
fm @) = f(B. 7 @) =Bo+ Y _BI(Gr=1i)+ > BII(Ew = j)+
i=1 Jj=1
I
YN Gy =i, Ey = j), (4.3)
i=1 j=1
where 7 = (711,...,77s)" is the interaction parameter vector with length I.J. Due

to the constraints for parameter identifiability, >, 8% = Z BE =0, B¢ and B are
left with (I — 1) and (J — 1) independent parameters to be estimated, respectively.
Similarly, >, 7; = >_;7; = 0, so (I — 1)(J — 1) parameters in 7 are left to be

estimated.

4.3 Parameter Estimation for Tukey’s Model with Repeated Measures

Data

We describe the estimation strategy for the parameters in Tukey’s model. The

log-likelihood for the data y,,...,yy is

Mz

{(n,w,o” Zlong {[yk — £, X1)] Viw) [y, — £, X3)] }

(4.4)

k=1

Given Vi (w), maximizing the likelihood is equivalent to minimizing the objective

function

f(n, X/g)}TVk(W)i1 [y — F(n, X1)] (4.5)

Mz

Q(n|w) =
k=1

with respect to 1. The solution for 7 is the generalized least squares (GLS) estimator.

Since the estimation for fixed effects in Tukey’s model does not have a closed-form
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solution, the iterative linearization method is considered.

The linearization method uses a first-order Taylor series expansion to approximate
solutions of a general function by a linear function (Bates and Watts, 1988), which has
been applied to nonlinear mixed-effects models (Lindstrom and Bates, 1990; Vonesh
and Carter, 1992; Crainiceanu and Ruppert, 2004). Let n* = O = (B(O)T,é(o))T

denote the initial estimate of n = (,BT, 0)". The first-order Taylor series expansion

of f(n, X) about n = n* is

f(n, X)) = f(n', Xy) + Di(n —n), (4.6)

where D} is an nj, x p matrix D}’ = D] (n*) = {8]‘(77)/8771,...,af(n)/anp}

n
Initial values of »* can be obtained by fitting a saturated interaction model (via

standard linear mixed effects model) and using the main effect estimates as 3*. After
removing main effects, the residuals can then be regressed on the product term 3%* ﬂjE *
(without intercept) to obtain #*. The mean function of Tukey’s model for the k-th

subject at the t-th measurement is
Fom ) = f(0", ) + (Bo— B3) + DY [(1+0°87)(87 — )+
(L+0°B7)(B] = B7) + B B0 — 0] 1(Gr = i, Eyy = ),

where f(n*, @) = Bi+32; B (G = i) +32; B 1B = §)+0° 32, 52, BB 1 (Gr =

i, Exe = j). Following (4.1), the expansion in (4.6) yields the approximation

Y = F(0", Xy) + Di(n —n") + Zby + e,
which can be expressed as a linear model

Yy, = Din+ Ziby + ey, (4.7)

70



where y; =y, — f(n*, X\) + D;n*. Then the GLS estimator for n is given by

N N

fors = (Y_DyV D) Y DIV i (48)

k=1 k=1
where VZ, is the assumed covariance matrix of y; evaluated at w = w*. When 1 and
w are unknown, a common strategy is to replace V(w) with a consistent estimate
and minimize the corresponding weighted sum of squares to yield an initial estimate
of 7. The MLE of w is obtained by maximizing (4.4) with respect to w, after n is
replaced by the estimate in (4.8).

This iteratively reweighted generalized least-squares (IRGLS) algorithm involves
iterations between [a] Taylor series linearization — given the w-th iterates ﬁ(w) and
&™) construct D,(:“) = D(#™) and 'f',(gw) =y, — (™, X,) + D,(Cw)ﬁ(w) to yield a
pseudo model that is of the form of (4.7) — and [b] updating estimates 7™V in (4.8)
and @Y. Steps [a] and [b] are repeated until a convergence criterion is achieved.

The linearization method provides an easy calculation for nonlinear models by
translating the nonlinear estimation problem into a linear model. Only the first-
order derivatives are required. Though the assumption of normality is not required
for estimates from this IRGLS procedure, minimizing the objective function (4.5) is
equivalent to maximizing the joint log-likelihood function of y, in (4.4). Hence, this
procedure yields MLEs (Gallant, 2009). Vonesh et al. (2001) argued that the IRGLS
estimator is consistent and asymptotically normal even when the variance-covariance
structure is misspecified if the mean function f(m, Xy) is correctly specified. Our
experience is that the proposed estimation algorithm for Tukey’s model converges
relatively fast and the final estimates are insensitive to initial values. Nevertheless,
seriously slow convergence or possibly non-convergence could occur when one or both

of the main effects are truly absent, a situation where 6 is not identifiable.

71



4.4 Shrinkage Estimator

We now construct a shrinkage estimator for interaction that is a weighted aver-
age of the estimators from Tukey’s model and a saturated interaction model. De-
note the interaction parameters to be estimated for an I x J GEI table by 7 =
(T11, To1s - - s TI=1)1, T125 - - - ,7(1_1)(J_1))T. Let 7, and T4, be the asymptotic limits
of the estimator of 7 from Tukey’s model and saturated interaction model, respec-
tively, each being a length-(I — 1)(J — 1) vector. When the true model is a Tukey’s
one-df model, we have T, — Tsqot = 0(say) = 0. To relax the model assumption, let
d ~ N(0,0). A conservative estimate of © is given by 53T, where & = 1y — Toat
and Fp, = 0(BCBE, BSBE. ... 3% 3% )T, We define B =V, (VT + 33T)_1, where
VT is the estimated variance-covariance matrix of 74,. Then the proposed shrinkage

estimator for 7 is given by
+shk = 7A_sat + B<7A-tuk - %sat)u (49)

where T, and 74, are MLEs from (4.2) and (4.3), respectively.

The shrinkage factor B in (4.9) determines the amount of shrinkage of 7, toward
Tk AS 5 —0and B — I, 74 — T (data are indicative of a Tukey’s interaction
structure). On the other hand, as the bias of Tukey’s model estimator 5 increases, the
largest eigenvalue of B goes to 0 and T4, — T (data are not in favor of Tukey’s
form of interaction). Now express the shrinkage estimator in (4.9) as

flan T 1 AT —1s
Fonk = Toat + V7<VZ1 - %)5 = Foat + 0 — 5(‘”{—5)
1+6 V_ 6 146 V_ o
When data are under Tukey’s model, § — 0 as N — oo. When data are not under
Tukey’s model, the largest eigenvalue of vV, goes to 0 and 5TVT_13 — o0 as N — o0.
So, the term (STV;I(AS)/(l + 5T‘7;15) converges to 1. This indicates that 7 is

asymptotically equivalent to 7T,,, which is an unbiased estimator of 7. But with
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moderate sample size, d creates a small bias in Tsnk that can be traded for a larger
decrease in variance, leading to an improvement in finite sample MSE (Mukherjee
and Chatterjee, 2008). In addition, when main effects are not present, the shrinkage
estimator will guard against the instability of parameter estimates under Tukey’s

model by shrinking 74, toward 7.

4.4.1 Variance Estimation for the Shrinkage Estimator

We proceed to estimate the covariance matrix for 74,,. As a result of asymptotic
equivalence of T4, and T4, the covariance matrix for 7, can be used as an estimator
for the covariance matrix of T, in large samples. Since this estimator is often too
conservative in finite samples, we develop an approximate covariance matrix estimator
for 74,5 using the delta method.

Define ¢ = (7,7 ,)7 as the MLEs under a saturated form of interaction and

sat?

Tukey’s model with n,,, = (Bf, - ,Bﬁl,ﬁf, . ,Bffl,é)T. Further define & =
(Fsat, Trur) | = h(@) such that 745 = g(€) = g(h(¢)), where € and g(€) have
2(I = 1)(J —1) and (I — 1)(J — 1) elements, respectively. We first derive the joint
distribution of the components in qAﬁ Let Z be the information matrix with dimen-
sion (I —1)(J —1) x (I —1)(J — 1) and ¢ be the log-likelihood corresponding to a
saturated interaction model (4.3). Let Z; be the information matrix with dimension
(I+J—1)x(I4+J—1) and ¢y be the log-likelihood for Tukey’s model (4.2). By the
consistency of é&, the MLE T, has an asymptotic linear representation

1

N
~ ZI’lfk +0,(1) as N — oo, where £, = 00(Xy)/0T.

k=1

\/N(+sat - T) -

2

Similarly,
1 X . .
\/N(ﬁtuk —n) = \/_N ZISI&M +0,(1) as N — oo, where {op = 0lo(X4)/0MN, -
k=1

Denote the asymptotic variance-covariance matrix of é’) by ¥ & Then by multi-
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variate Taylor series expansion, the variance-covariance matrix of é = h(g?b) is ap-
proximated by

B¢~ {Vh()} S5 7 h(9),
where s7h = 0h/0¢ is the gradient matrix of h evaluated at (}5 Finally, the variance-

covariance matrix of 74, is approximated by applying the delta method:

A

St = COV(Tam) = cov(g(§)) = {Vg(&)} ¢ v 9(&), (4.10)

where \7g = 0g/0€ evaluated at £ (refer to Appendix for Vh(&) and vg(é)) Com-
paring 27‘3% to the empirical estimate of variance-covariance matrix through simu-
lations, we found that variance components can be estimated very well by 2+Shk but
not necessarily the covariance. Either a small variance for the random measurement
errors or a large sample size is needed to obtain accurate estimates of covariance
terms (see Table 4.5 in Appendix). Since the magnitudes of covariance estimates are
smaller compared to the variance estimates, the influence of covariance estimates on
the Wald test statistic is expected to be small. Thus, the proposed shrinkage test

(see below) is still an approximately valid test with conservative Type 1 error rates.

4.5 Tests for Interaction Effects

We are interested in testing the null hypothesis of no interaction effects Hy : 7 = 0
versus H; : 7 # 0. For Tukey’s model, it is equivalent to Hy : 8 = 0 versus H; : 6 # 0.
A likelihood ratio test (LRT) statistic is given by T, = —2(lyp — l1), where Iy and [y
are the maximized log-likelihoods obtained under H, and H;, respectively. Under
regularity conditions, Ty, ~ x? for Tukey’s model and T}, ~ X%I—l)( s_1) for saturated
model under H, for large samples. Based on (4.9) and Chen et al. (2009), the limiting
distribution of the shrinkage estimator is technically not normal. The simulation
results, however, reveal that this estimator is well approximated by a normal density

and the amount of departure from normality is small (see Figure 4.1 in Appendix).
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Hence, the Wald test is used as an approximate test for interaction. The test statistic

for Hy : 7 = 0 is given by Ty, = %thi;lshﬁ'shka where 27‘5% can be found in (4.10).

4.6 Simulation Study

4.6.1 Evaluation of Test Properties for a Single GEI Test

We investigated the Type I error and power properties of the following three test
procedures for interaction: the LRT under Tukey’s model of interaction, the Wald
test using the proposed adaptive shrinkage estimator, and the LRT using a saturated
interaction model. Two null hypotheses of no interactions were considered: (i) the
genetic main effects were present (additive) and (ii) the genetic main effect were absent
(null). The main effects of the exposure were always present in our simulations to
represent a study looking for genetic modification effects on an established phenotype-
exposure association. For these comparisons, we used 3x3 table settings for GEI with
N=1200. The number of repeated measurements per subject was generated from a
multinomial distribution similar to the example data: n;;, € {2,3,4,5,6}, n = {n;j; :
1<kE<N;,1<i<I,1<j<J}~Mult(N,p), p=(0.15,0.2,0.3,0.2,0.15), which
implies that dropouts are missing completely at random. Data were were simulated
under a first-order autoregressive (AR-1) correlation structure for X (02 = 4,8 and
p = 0.7). Additionally, the test properties were evaluated under misspecification of
correlation structure. Again, data were still generated under the AR-1 correlation
structure but were analyzed using a compound symmetric covariance structure. A
total of 1000 datasets were generated for each setting. Type I error and power were
estimated by the sample proportions of null hypothesis being rejected under various
simulation settings.

In the 3x3 GEI table settings, three genotype categories were considered for G
with minor allele frequency 0.4 and following the Hardy-Weinberg equilibrium. An

environmental exposure with three categories (with probabilities 0.25, 0.25, and 0.50)
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was considered. Cell means for all GEI configurations were first generated under a
pre-specified interaction model. Given a mean and covariance structure, the vector of
observations per individual were generated from a multivariate normal distribution.
In addition to Tukey’s and saturated models, we considered simulations under addi-
tive main effects and multiplicative interaction models (Gollob, 1968; Mandel, 1971).
AMMI models are a class of interaction models that have a flexible structure, which
essentially entails a singular value decomposition (SVD) of the cell residual matrix
after removing the additive main effects. Following the notations in (4.2), the mean

structure for yg; under an AMMI model is given by

J

I
fm @) = f(B.d, oy, @) = o+ Y _BI(Gr=1)+ > B I(Ew = j)+
=1

J=1
I J M

Z Z Z A Cim YVim I (G = 1, By = 7).

i=1 j=1 m=1

The m-th interaction factor is subject to the constraints Zilzl al = Z;}:l Vim =1
and Zle iy = Z}]:l%‘m = 0, as well as the 2(M — 1) orthogonality restrictions
Y i Qim Qi = Y VjmYjm = 0 for m # m/. Specifically, AMMI models with M =1
(AMMI1) were considered in the simulation as an intermediate model between Tukey
and saturated model. AMMI2 would be equivalent to a saturated interaction model
in the 3x3 table settings. We compared test performance under AMMI1 models
because Tukey’s test may not be capable of capturing interaction of AMMI1 form.
Though AMMI1 is nested within the saturated interaction model, the test based on

a saturated interaction model may not have as much power to detect the interaction.

4.6.2 Assessment of Average Performance for Multiple GEI Tests

When GEI tests are conducted across a moderately large number of SNPs within
several gene regions, the average performance of each method over many GEI tests

is of particular interest rather than a single specific GEI test. As such, we assessed
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the Type I error and power of the tests for interaction using Tukey’s model, satu-
rated interaction model, and the proposed shrinkage estimator, averaged over a set
of genetic markers. We based our simulation studies on the setting of the NAS data
example where the candidate genes were chosen based on some pathway analysis.
For each dataset, one exposure factor and 100 independent SNPs (without LD) were
generated, with the minor allele frequencies ranging from 0.3 to 0.5. The exposure
had five categories, each with probability 0.2. Thus, a 3x5 table was constructed for
each GEI test.

We considered two simulation schemes for multiple GEI tests: (i) 100 marginal
models, Y;|G;, E,i = 1,...,100, were generated with a common E for each subject,
and (ii) a joint multivariate model, Y|G1, Gs, ..., G, E, was generated. In both
(i) and (ii), 15 out of 100 SNPs were assigned to have GEI effects on Y. Another
five SNPs were generated to have only additive main effects on Y. The rest 80 SNPs
were not associated with Y. The simulation design represents a study where GEI over
multiple SNPs are being tested, the majority of SNPs do not have GEI effects and
only a relatively small number of SNPs exhibit GEI effects.

To assess the sensitivity of tests in response to the underlying composition of dif-
ferent interaction models, we created three scenarios by assigning each of the 15 GEI
to have either a Tukey’s or a saturated form of interaction: Scenario (A): all 15 were
of Tukey’s form of interaction; Scenario (B): 10 were of Tukey’s form, and 5 had sat-
urated interaction structures; Scenario (C): 10 had saturated interaction structures,
and 5 were of Tukey’s form. For example, the mean function of the simulation model
for subject k under scenario (B) in simulation scheme (ii), following the notations in

(4.3), is given by
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J s
f(n>wk‘t):60+ZﬁjE[(Ekt:j)+ZZ B (G = i)

S S G~ )+ G = =)

i=1 j=1 s=6

20

s=16
where %% represents the genetic main effect of the i-th genotype from the s-th SNP,
Gk is the genotype of the s-th SNP for the k-th subject, and 6° and 7 are the
interaction parameter corresponding to the s-th SNP. An individual-level outcome
Y with repeated measures were generated for 1000 subjects in each simulation using
(4.1) with e, ~ N(0,021,,),b, = bil,,, b, ~ N(0,02). We set 07 = 2.8, and
02 = 1.2. The number of repeated measurements per subject was generated using
the same multinomial distribution described previously.

The average performance for each test procedure was quantified by true positive
rate (TPR) and false positive rate (FPR). The TPR is defined as the proportion of
interactions detected in the 15 simulated SNPs with GEI associations. The FPR is
the proportion of interactions detected among the 85 simulated SNPs without GEI
effects. The TPR and FPR were then averaged over 10,000 simulation datasets.
To control the family-wise error rate (FWER), the significance level was adjusted
according to the total number of SNPs (i.e., number of GEI tests) using Bonferroni

correction, o* = 0.05/100 = 5 x 107

4.6.3 Power and Type I Error

The upper panel of Table 4.1 shows the power and Type I error of tests using
Tukey’s, the saturated model, and the shrinkage estimator for GEI. In general, the
saturated interaction model has less power to detect interactions when the true in-

teraction has a Tukey’s form. For example, the LRT for Tukey’s form of interaction
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has power 0.76 for 02 = 4, while the saturated model has a power of 0.54. On the
other hand, when the true interaction has a saturated form, Tukey’s model can hardly
detect the interaction effects. The saturated model has a power of 0.81 for o2 = 4,
but Tukey’s model using the LRT only has power 0.09. Under both situations, the
interaction test using the shrinkage estimator has power 0.69. When the true interac-
tion has an AMMI1 form, the saturated interaction and the shrinkage estimator can
detect 82% and 72% of interactions, respectively, but Tukey’s model can only detect
30% of interactions. The Type I error rates are maintained at the nominal level for
all testing procedures under additive models except the Wald test using the shrink-
age estimator being a slightly conservative test. However, both Tukey’s test and the
shrinkage estimator have inflated Type I error under the completely null model when
one of the main effects is not present.

When the within-subject correlation structure is misspecified (lower panel of Table
4.1), the patterns of power comparison are similar to the upper panel. Under the null
hypothesis of an additive model where both main effects are present, the Type I error
rates for the two LRTs are still maintained at the 0.05 level when o? = 4 but are
inflated when o2 = 8. Only the proposed Wald test using the shrinkage estimator
maintains the nominal level of Type I erorr. Under the null that genetic main effects

are absent, the Type I error is no longer maintained at 0.05 for all of the tests.

4.6.4 Average Performance for Multiple GEI Tests

The upper panel of Table 4.2 shows the average performance of the three GEI
tests for marginal models under three scenarios. Under scenario (A) where all 15
simulated GEI are of Tukey’s form, the LRT using Tukey’s model has a TPR of 0.72,
whereas the saturated model has a TPR of 0.43. Under scenario (B) where 2/3 of the
simulated GEI are of Tukey’s form, the LRT using Tukey’s model and the saturated

interaction test have comparable performance. Under scenario (C) where 2/3 of
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the interactions are of saturated forms, the Wald test using the shrinkage estimator
and the saturated interaction tests have comparable performance, but the TPR for
the LRT using Tukey’s model is substantially lower. The FPRs are maintained at
the nominal level for the tests using a saturated model and slightly inflated for the
shrinkage estimator. However, the LRT for Tukey’s model has the highest FPR.
The lower panel of Table 4.2 shows the results of a multivariate model (single out-
come) from 100 simulated GEI. The LRT using a saturated interaction form yields
relatively low TPRs. The test based on the shrinkage estimator still maintains at
the same level of TPR across scenarios. In summary, the GEI test using the shrink-
age estimator has the most robust average performance with respect to various GEI

structures compared to the tests using Tukey’s and saturated interaction models.

4.7 Application

4.7.1 Normative Aging Study (NAS)

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study initi-
ated by the U.S. Veterans Administration in 1963 to investigate the effects of aging on
various health outcomes (Bell et al., 1966). We focus on pulse pressure (PP), which
is an important risk factor for heart disease (Franklin et al., 1999). Several studies
have indicated a relationship between iron deficiency and increased lead absorption
(Kwong et al., 2004; Bradman et al., 2001), and increased cumulative lead exposure
has been shown to be associated with elevated PP (Perlstein et al., 2007). Thus, it
may be reasonable to hypothesize that genes responsible for iron metabolism could
potentially alter lead absorption and modify the effect of lead exposure on PP. The
objective of this pathway-driven GEI study was to test the GEI between cumulative
lead exposure and the iron metabolic genes on PP.

Zhang et al. (2010) observed a significant interaction between polymorphisms in

the hemochromatosis (HFE) gene (rs1799945) and cumulative lead exposure on PP.
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We revisited the study to include 105 SNPs in 22 genes with minor allele frequency>0.1
in the iron metabolic pathway to test for GEI using the proposed shrinkage esti-
mation framework. Candidate genes were chosen based on a priori knowledge of
iron metabolism and previous studies on iron-related genes (Knutson and Wessling-
Resnick, 2003; Chung and Wessling-Resnick, 2003). We analyzed 729 participants
from a subset of the NAS data who were successfully genotyped for the iron metabolism
genes and had baseline measurements of cumulative lead concentrations (measured
at the tibia bone and patella bone). The majority (97%) of the participants were
Caucasian. The average age was 66.37+7.12 (range 48-93) at the time of bone lead
measurement. Since 1991, blood pressure had been measured every 3-5 years un-
til 2011 with a median follow-up time of 12 years. More than 94% of subjects had
repeated measurements of blood pressure, and over 48% of them had at least four
measurements during the study period contributing to a total of 3013 observations
(see Table 4.8 in Appendix).

Each of the 105 SNPs had three possible genotypes (homozygous wild-type, het-
erozygous, and homozygous mutant). For illustration purposes, we categorized bone
lead concentrations into three groups — Low: <15, Medium: (15, 25|, and High:
>25 pg/g for the tibia bone lead and Low: <22, Medium: (22, 30], and High:
>30 pg/g for the patella bone lead. We used Tukey’s model, saturated interaction
model, and the shrinkage approach to model the GEI structures for each SNPx Lead
interaction. Covariates in the model included baseline age, time since baseline,
and squared time. According to the Akaike information criterion (AIC) for model
fit, we chose a random-intercept mixed-effects model for analysis given by y, =
f(n, X¢) + b1, + ex, where b ~N(0,07),ex ~ N (0,021 ,y).

Given that these SNPs are located in a small number of genomic regions, they
are in close proximity to each other and thus may exhibit LD. To control for the

FWER while accounting for the potentially correlated SNPs in the multiple testing
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procedure, we adjusted the significance level according to the effective number of
independent tests (denoted by Mg) using the simpleM method (Gao et al., 2008).
This method involves first estimating the correlation matrix among the 105 SNPs by
the composite LD, calculating the corresponding eigenvalues, Ay > Ay > -+ > Aqp5,
and then finding Mg through principal component analysis: Zi\ielff A/ SN > C
We chose Mg = 89 so that the corresponding eigenvalues explained at least C' =
99.5% of the variation for the SNP data. Thus, the adjusted significance level was
a* =0.05/M.g = 0.05/89 = 5.6 x 1074

Table 4.3 lists the smallest p-values of GEI tests for the three top-ranked SNPs
by using Tukey’s model, the proposed shrinkage estimator, and saturated interaction
model within iron gene regions in the NAS data. The Wald test via the shrinkage
estimator yielded the smallest p-values across all top ranked SNPs listed in the table
(and three of which reached statistical significance), compared to Tukey’s and satu-
rated interaction models. For tibia bone lead, we found a significant modifying effect
of SNP 151799945 in the HFE gene using the shrinkage estimator (p = 1 x 107%). For
the wild-type participants, mean PP remained nearly unchanged between the High
and the Low tibia lead groups. In contrast, mean PP was estimated to be 20.35
mmHg (95% CI = [14.53, 26.17]) higher for the High tibia lead group than the Low
tibia lead group among the homozygous mutant carriers. The results replicate the
findings in Zhang et al. (2010) that the positive association between PP and lead
exposure was strongest among HFF homozygous mutant carriers. For patella bone
lead, significant modifying effects of SNP rs17484524 in the IREB2 (iron-responsive
element binding protein 2) gene (p = 3 x 10™*) and SNP rs7165535 in the B2M (beta-
2-microglobulin) gene (p = 4 x 10~*) were detected using the Wald test based on the
shrinkage estimator (but were not captured by the LRTs using Tukey’s or saturated
interaction model). For the wild-type and the heterozygous mutant participants,

higher lead levels corresponded to higher mean PP (the estimated difference in mean
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PP between High and Low patella lead groups ranged from 3.12 to 4.32 mmHg at
both SNPs). However, mean PP was estimated to be 3.90 (95% CI = [1.45, 6.35])
and 7.73 (95% CI = [1.88, 13.58]) mmHg lower for the High lead group than the Low
lead group among the homozygous mutant carriers at SNP rs17484524 in the IREB2
gene and SNP rs7165535 in the B2M gene, respectively. As such, the two homozygous
mutant genotypes may indicate protective effects (i.e., preventing PP from elevating

with increased lead exposure).

4.7.2 Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) is a longitudinal study to
investigate characteristics related to progression of subclinical to clinical cardiovas-
cular disease (Bild et al., 2002). More than 6,800 men and women aged 45-84 years
were recruited from six U.S. communities. Participants had a baseline examination
(exam 1) in 2000-2002 and three additional follow-up examinations 18-24 months
apart (exams 2-4). We aimed to explore GEI effects on BMI in the four race groups:
Caucasians (N=2526), Chinese (N=775), African Americans (N=1611), and Hispan-
ics (N=1449). Most (84%) of the participants had four BMI measurements, and over
92% had at least two measurements during the study period from 2000 to 2007 (see
Table 4.9 in Appendix). A total of 27 SNPs that have demonstrated significant and
replicated evidence of marginal association with BMI were selected as the candidate
SNPs (Speliotes et al., 2010). The environmental exposures of interest were energy
intake, measured at exam 1, and total intentional exercise, measured at exams 1-3.
Both exposure variables were categorized into five groups: 0, (0, 7], (7, 14], (14, 28],
>28 (hr/week) for total intentional exercise and <1000, (1000, 1300}, (1300, 1600},
(1600, 2000], >2000 (kcal/day) for energy intake.

We applied Tukey’s model, saturated interaction model, and the shrinkage test to

examine the GEI structure for each SNP xEnergy Intake and SNP x Exercise interac-
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tion. Covariates in the model included age at the time of data collection (centered),
squared age, gender, having a college degree, household income, and the exposure
variable (either intentional exercise or energy intake). We also accounted for pop-
ulation stratification by including the first two principal components. Except age,
BMI, and intentional exercise that changed with time, all other variables were time-
invariant. We chose an unstructured covariance matrix for this analysis based on
AIC. A random gender effect was added to allow men and women to have different
variances in BMI. Let F = 1,, for women and F = 0,,, for men. The analysis model
is given by y, = f(n, Xy) + Fib, + e, where b, ~ (0,07), e, ~ N(0,X;). We first
analyzed data by race group (see Table 4.10 in Appendix) and then applied Fisher’s
method (Fisher, 1925) to combine four race groups into a single meta-analysis p-value
for each SNP. Not every race group allowed for GEI tests across all 27 SNPs because
of small sample size in certain GEI configurations. The df for deriving the combined
p-values was based on the number of available race groups. The adjusted p-value to
control for the FWER was set at 0.05/27 = 0.0019.

Table 4.10 lists the combined p-values for significant SNPs using the three inter-
action tests. For the association of energy intake with BMI, significant modifying
effect of SNP rs543874 on the SEC16B gene was observed using all three tests. SNP
51558902 within the FTO gene was detected by Tukey’s model (p = 4.8 x 107°) and
the shrinkage test (p = 7.4 x 107%). SNP rs10767664 (on the BDNF gene) was also
detected by Tukey’s model (p = 1.2 x 1073). For the association between intentional
exercise and BMI, we found significant modifying effect of SNP rs206936 within the
NUDTS and HMGA1 genes using Tukey’s model (p = 1.4 x 107%). Overall, only
one interaction was detected by a standard saturated interaction model used in the
current practice. Both the examples illustrate the utility of enhancing power of a
test for interaction by leveraging Tukey’s model. The shrinkage estimator also offers

protection against false positive.The findings require further replication studies.
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4.8 Discussion

We proposed a novel adaptive shrinkage estimator that combines estimates from
Tukey’s one-df model and a saturated interaction model for GEI effects. The shrink-
age estimator shrinks the MLEs under a general, saturated interaction structure to-
ward Tukey’s one-df model estimator that allows for data-adaptive relaxation of the
structural assumption in Tukey’s product form.

The unique simulation setting of multiple GEI tests represents the search for GEI
over many candidate SNPs with different interaction patterns. The results indicate
that the test based on the shrinkage estimator can be considered as a robust and
unified approach for interaction detection. More importantly, the shrinkage method
not only can be applied to the context of GEI or GGI detection but also can be
extended to any two-way table.

We evaluated MSE and bias of these estimators of interaction effects through
simulations (Table 4.6 in Appendix). The performance of the shrinkage estimator
was compared with the MLE under a general saturated interaction model using the
ratio of MSE, E{ > 2 (Tsnny —Tij)Q}/E{ > i 2 (Tsaty; —Tij)Q}. Based on simulation
results, the ratio is uniformly less than 1, suggesting an efficiency advantage for the
shrinkage estimator via bias-variance trade-off. In our simulation studies, we noted
that the Wald test using the shrinkage estimator is slightly conservative, so the small
bias of the shrinkage estimator in finite samples does not lead to inflated Type I error.
In addition, we compared the shrinkage estimates of interaction parameters using only
the diagonal elements of B (i.e., scalar shrinkage) versus using the whole B matrix
(i.e., multivariate shrinkage). We found that multivariate shrinkage is required under
certain situations (see Table 4.7 in Appendix). Chen et al. (2009) proposed both
multivariate and scalar shrinkage estimators in case-control studies, and they also
found that the scalar shrinkage estimator can lead to appreciable bias.

Although the methods we discussed have been developed for a two-dimensional
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interaction structure (i.e., the genetic and interaction effects are assumed to be in-
variant with time), they can be easily modified to allow for time-dependent effects.
To allow for temporal changes in the main effects and interaction effects, one may
use spline functions. For example, the mean function for Tukey’s model at time (or

age) of measurement ¢ can be expressed as

fmt), i) = F(B(L),0(t), i) = Bo(t) + B9 (E)gr + B (t)ers + 0(t) B (¢) B (t) grene,

where the genotype gr and the exposure variable e;; for subject k at time ¢ can
be treated as continuous, fy(t) is the baseline function, 3%(t) and B¥(t) are the
time-varying genetic and exposure function, and 6(t) is the time-varying interaction
function. These functions can be approximated by a linear combination of basis
functions (Hoover et al., 1998). We plan to address the issues of estimation and testing
for the temporal dynamic changes in interaction effects using alternative models in
future studies.

We have proposed a new approach in the area of longitudinal GEI cohort studies.
The Tukey’s one-df test for non-additivity can be very powerful in terms of detect-
ing GEI for studies where the search for GEI is based on the presence of genetic
main effects (e.g., MESA), but the test can suffer from misspecification of interaction
structure. The proposed shrinkage estimation procedure, on the other hand, is useful
for pathway-driven GEI studies (e.g., NAS) where there is no prior knowledge of the
existence of genetic main effects. It also performs well across many scenarios. Despite
the advantage of efficiency, the adaptive shrinkage estimation approach still uses the
same df for interaction parameters as a saturated model. As such, the increase in
power by shrinking parameter estimates toward Tukey’s model estimates may be lim-
ited. However, the robust performance across multiple loci with different interaction

structures remain an appealing feature of such adaptive screening tests.
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Table 4.2: Average performance of tests using Tukey’s model, saturated interaction
model, and the adaptive shrinkage estimator for detecting GEI across 100
simulated SNPs under scenarios (A): all simulated GEI are of Tukey’s form,
(B): 2/3 of simulated GEI are of Tukey’s form and 1/3 are of saturated form,
and (C): 2/3 of simulated GEI are of saturated form and 1/3 are of Tukey’s
form

Tukey Shrinkage Saturated
Measure Scenario  LRT Wald LRT

Marginal Models
True Positive Rate (A) 0.7221  0.5766 0.4302
(B) 0.5611 0.6317 0.5769
(C) 0.4923 0.6699 0.7357
False Positive Rate 0.0024 0.0007 0.0006

Multivariate Models
True Positive Rate (A) 0.3264  0.2810 0.0706
(B) 0.2882 0.2602 0.2247
(C) 0.2073 0.2507 0.2911
False Positive Rate 0.0045 0.0027 0.0006
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Table 4.3: The p-values of GEI tests for the top three (ranks in parentheses) single-
nucleotide polymorphisms (SNPs) by using Tukey’s model, the proposed
shrinkage estimator, and saturated interaction model within iron gene re-
gions in the NAS data (adjusted a = 5.6 x 107%).

Bone Tukey Shrinkage Saturated
Lead SNP ID Gene LRT Wald LRT
Tibia  rs1799945 HFE 0.003 (1) 1x1074 (1) 0.006 (1)
rs2285228  DMT1 0.005 (2) 0.001 (2) 0.017 (2)
rs3821716  MFI2 0.014 (3) 0.012 0.120
1rs422982 DMT1 0.016 0.003 (3) 0.072 (3)
Patella 157165535  B2M 0.001 (1)  4x107* (2) 0.014 (1)
rs17484524 IREB2 0.002 (2) 3x1074 (1) 0.021 (2)
rs7866419  ACO1 0.009 (3) 0.005 0.054
rs1358024 TF 0.016 0.004 (3) 0.038
rs2304704  SLC40A1 0.044 0.030 0.034 (3)

Table 4.4: Findings of GEI with significant meta-analysis p-values for the single-
nucleotide polymorphisms (SNPs) that have demonstrated significant and
replicated evidence of marginal association with BMI in the MESA data
(adjusted o = 1.9 x 1073).

Tukey Shrinkage  Saturated
Exposure SNP ID Gene LRT Wald LRT
Energy  rsb43874 SEC16B <1.0x107%  <1.0x107® 1.8x1074
Intake rs1558902  FTO 4.8x107%  7.4x107%*  0.130
rs10767664 BDNF 1.2x1073 0.103 0.124
Exercise  1rs206936 NUDT3.HMGA1 1.4x1074 0.006 0.005
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4.9 Appendix

4.9.1 Variance Estimation for the Shrinkage Estimator

The asymptotic variance-covariance matrix of g%, denoted by X & is given by

I_lVal“(Zk gk) (I_I)T I_ICOV(Zk gkazkgﬂk) (IO_I)T
Ialcov( Yok Cor, >k Ek) (zHT Ialvar( Dok é[)k) (Z,H’

where Ek and éOk are the individual score functions for the saturated interaction model
and Tukey’s model, respectively. When N — oo, var(3, £x) — Z and var(3_, for) —
Z,. To estimate X & we replace Z and Z by observed information matrices evaluated
at é’) The covariance of ¥ b can be estimated as

(3 0 S k) = 33 D el o)) = 2 S i) S o)

k

and its transpose. Recall that

~

~ - T sat
he) =é= |
T tuk
The gradient matrix 7h(¢) is given by
Lir-1-y 0
MNBE 0 0 NBE 0
0  AE ... MBE 0
. 0
Vh(¢) = e
\BE ABS 0 0
B MBS
_ sepe ags _
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Next, we want to derive \7g(&). The shrinkage estimator can be expressed as

+shk = g(é) = g(+tuk7 7A-sat) = 7A_sat + B(+tuk - 7A_sat)
= 7A-sat + V‘I’(V‘F + 38T)718
A laaT a—1
- A V_60 V A
:+sat+v7’<vrl - ﬁ)é
146 V.5
P e
= Tsat +0 — ——=
146 V.'5
F7 I 7
T AT A 1 o
1+6'V.'s

~

= Tiuk —
Then the (I —1)(J — 1) x 2(1 — 1)(J — 1) matrix vg&) = % : is given by

's 206 V
Iy t—= 2|
) 1+ V

265V L, 5V
= T A~ 1~ T ~ 1~ Lt{I-1)(J-1) T ~
146V '6 146 V.S 146V

T

vg(€)

SR

T

4.9.2 Estimates of Variance and Covariance Components for the Shrink-

age Estimator

We compared model-based covariance estimates with empirical covariance esti-
mates corresponding to the shrinkage estimator in a simulation study. The estimates
for the off-diagonal entries in the dispersion matrix do not work uniformly well across
simulation scenarios as the variance estimates of the diagonal entries of the same ma-
trix. We noted that a much larger sample is required to obtain unbiased estimates of
the covariance terms. Table 4.5 shows the simulation results of comparisons between
empirical estimates and model-based estimates of the variances and covariances for
the vector of shrinkage estimator (i.e., 2+3hk) under the same simulation settings as

described in Section 4.6.1.
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4.9.3 Empirical Distribution of the Shrinkage Estimator and the Approx-

imate Wald Test Statistic

Though the limiting distribution of the shrinkage estimator is technically not
normal, the simulation results reveal that this shrinkage estimator is approximately
normal and the amount of departure from normality is small. Figure 4.1 shows the
quantile-quantile plots of comparing the distribution of shrinkage estimator with the
normal distribution (refer to Section 4.6.1 for simulation settings).

Figure 4.2 shows the quantile-quantile plots of comparing the distribution of Tw
with a y2 distribution, indicating that Ty approximately follows a x2 with df =
(I —1)(J — 1) under Hy. In fact, using the x* null distribution would result in a

slightly conservative test.

4.9.4 Efficiency and Bias

Table 4.6 shows the bias and MSE for the interaction estimators 7 from three
models. We report only the results with p = 0.5 to save space. The results indicate
that the linearization and IRGLS gives numerically consistent and unbiased parameter
estimates for Tukey’s one-df model. However, when the underlying interaction model
is not a Tukey’s model (e.g., AMMI1), Tukey’s model yields severely biased estimates.
In contrast, the saturated model has the least biased estimates. The performance
of the proposed shrinkage estimator always lies between Tukey’s and the saturated

model.

4.9.5 Multivariate Shrinkage versus Scalar Shrinkage

We compared the shrinkage estimates of interaction parameters using only the
diagonal elements of B versus using the whole B matrix (Table 4.7). Using scalar
shrinkage (or so-called ”component-wise shrinkage”, the table shows the mean es-

timated weights Wtuk corresponding to Tk, Wsat corresponding to T, and the
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resulting mean shrinkage estimator 77%,,. We found that using the scalar version of
B, 73, is very close to T4, under Tukey’s model since more weights are assigned
to Tk compared to oo In fact, Toup & Tear & Tk = Tap, under Tukey’s model.
However, this is not the case under AMMI1 or saturated interaction structures. In
these cases, W, dominates over W,,,. As such, T ok 1S a biased estimate. The results
indicate important contributions of the off-diagonal elements (covariances) of B and

that multivariate shrinkage is required under certain situations.
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Table 4.8: Baseline characteristics of 729 study participants in the Normative Aging
Study (NAS)

Variable Mean + SD, N (percent)
Pulse Pressure (mmHg) 54.26 £ 14.62
Age (years) 66.37 + 7.12
Body Mass Index (kg/m?) 2797 £ 3.77
Race (white) 705 (97%)
Type-2 Diabetes 95 (13%)
Hypertension 397 (54%)
Pack-Years of Cigarette Smoking
0 226 (31%)
< 30 283 (40%)
> 30 206 (29%)
Cumulative Lead Exposure (ug/g): Tibia Bone
<15 259 (36%)
(15,25] 263 (36%)
>25 207 (28%)
Cumulative Lead Exposure (ug/g): Patella Bone
<20 244 (33%)
(20,32] 223 (31%)
>32 262 (36%)
Number of Repeated Measures on Pulse Pressure Per Subject
1-2 147 (20%)
3-4 236 (32%)
5-6 286 (39%)
7-8 60 (9%)
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Figure 4.1: Quantile-Quantile (Q-Q) plots for comparing the distribution of the pro-
posed shrinkage estimator with the normal distribution. The shrinkage es-
timates, Tonk = (Fshhyyy Tshbors Tshkias Tshikas) > are obtained from the simu-
lations of GEI in a 3x 3 two-way table under Hy of no interaction (N=1200
with repeated measures).
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Figure 4.2: Quantile-Quantile (Q-Q) plot for comparing the distribution of the Wald
statistics with the chi-squared distribution. The shrinkage estimates are
obtained from the simulations of 3x3 GEI two-way table under H, of no
interaction (N=1200 with repeated measures).
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CHAPTER V

Likelihood-Based Test for Interactions in AMMI Models: Application to

Gene-Environment Interactions in Multi-Ethnic Study of Atherosclerosis

5.1 Introduction

There has been a great deal of recent interest in identifying and delineating gene-
environment interaction (GEI) effects on quantitative traits associated with common
complex human diseases in prospective cohort studies (Fan et al., 2012). While most
of the statistical literature has focused on GEI methods in case-control studies (Chat-
terjee et al., 2006; Mukherjee and Chatterjee, 2008; Mukherjee et al., 2008, 2012; Van-
derWeele et al., 2012), little attention has been given to efficient modeling and testing
of interactions in longitudinal studies because the attempt to characterize complex
interactions via longitudinal studies poses several statistical challenges. First, pro-
hibitive sample sizes are required when traditional models for interaction analysis are
used to detect modest interactions. Furthermore, cohort studies for GEI are typically
characterized by substantially unequal sample sizes in GxExTime configurations as
a result of unbalanced allele-frequency, heterogeneous environmental exposure distri-
butions in the population, and loss to follow up that are expected in a longitudinal
study. This unbalanced data structure reduces statistical power for testing any kind
of time varying pattern in the interaction parameter. In addition, there may be mea-
surement error or nonlinear relations between genotypes, environmental exposures,

and phenotypes, and it is challenging to detect any genetic modifying effect when
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the model is not correctly specified. Moreover, the effect of GEI may be time or
age dependent. This dynamic interaction between genetic and environmental factors
over time further increases the complexity of the problem and may contribute to the
difficulty of replicating GEI studies.

An interaction model including cross-product terms of gene (G) and environmental
exposure (E) under the mixed model framework is typically used for testing gene-gene
interaction (GGI) and GEI in longitudinal studies (Moreno-Macias et al., 2010). The
interaction term in a product form is appropriate and straightforward for continuous
or binary G and E. However, continuous exposure variables are often grouped into
quantiles (e.g., tertiles, quartiles or quintiles) in epidemiologic practice to avoid issues
with skewed distributions, outliers, and measurement error (Schaffrath Rosario et al.,
2006; Siahpush et al., 2007). When G and E are treated as categorical variables,
using a product form for GEI results in a saturated interaction structure. A saturated
interaction structure consists of estimating a parameter for each configuration of G
and E factors without any structural assumption for the interaction term. The number
of parameters to be estimated and the degrees of freedom (df) for the interaction
test, however, increase substantially with the number of categories of G or E. This
may yield inefficient parameter estimates and may result in loss of power compared
to a more parsimonious model. In previous chapters, we have proposed to model
the interaction structure using parsimonious interaction models borrowed from the
classical ANOVA literature, where the interaction structures depend on one or both of
the main effects. However, given that the underlying interaction structure is usually
unknown, the classical interaction models could have limited power for detecting
interactions if the model is misspecified.

The class of additive main effects and multiplicative interaction (AMMI) models
(Gauch Jr., 1992), frequently used in multi-location crop cultivar trials, may provide

a solution to the problem of modeling interaction. AMMI models were previously
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proposed as the “FANOVA” (factor analysis of variance) model by Gollob (1968)
and were also studied in Mandel (1971). AMMI models entail a singular value de-
composition (SVD) of the cell residual matrix after fitting the additive main effects,
so the models do not have structural assumptions on the interaction term. Using
AMMI models for GEI involves approximating the interaction term by one or a few
multiplicative terms consisted of coefficients from genetic and environmental effects.
By choosing a small number of leading multiplicative terms (or interaction factors),
one is able to reduce the effective df of the resultant test. AMMI has been shown to
perform well across a spectrum of interaction structures (Barhdadi and Dubé, 2010;
Mukherjee et al., 2012). In chapter 111, AMMI model has been shown to be a use-
ful screening tool for detecting interaction effects specifically in the absence of main
effects based on a parametric bootstrap approach.

The parameter estimation for AMMI models involves reduced rank approximation,
which has been used to detect marginal genetic (Vounou et al., 2012) and exposure
(Nettleton et al., 2007) associations to disease. Typically, GEI cohort studies have
considerable heteroscedasticity amog genotype and/or exposure groups. Setting the
weights inversely proportional to the variance can lead to a better estimation of the
underlying GEI structure (e.g., by minimizing the weighted residual sum of squares).
A variety of methods have been proposed for weighted lower rank approximation
(LRA), and they primarily differ in the problem representation and the nonlinear opti-
mization approach. Gabriel and Zamir (1979) introduced the “criss-cross regression”,
also called “alternating regression” in Croux et al. (2003), which is an iterative method
to obtain LRA of the interaction matrix with least squares fit. Wentzell et al. (1997)
extended the alternating regression and proposed a maximum likelihood principal
component analysis algorithm that allows the inclusion of error covariance. However,
as the dimension of the interaction matrix becomes large, convergence problems may

occur. Similarly, Hwang and Takane (2004) proposed a multivariate reduced-rank
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growth curve model with unbalanced data using the alternating maximum likelihood
(AML) procedure. They attempted to find a reduced-rank representation for the
whole data matrix constructed by individual observations instead of the interaction
matrix. The main limitation of the criss-cross or alternating regression is that it
may converge to local optima instead of a global optimum. Chen et al. (2008) dis-
cussed situations when a dead cycle happens in alternating regression. As such, the
convergence criteria should include both convergence in the objective function and
the parameter estimates. Srebro and Jaakkola (2003) considered the weighted LRA
problem as a maximum-likelihood problem with missing values and implemented an
Expectation-Maximization (EM) procedure. However, when the low rank matrix be-
comes undetectable (e.g., signal-to-noise ratio less than 1), EM often converges to a
non-global minimum.

In addition to parameter estimation, testing for the multiplicative terms of AMMI
models in non-replicated two-way table settings has been discussed in Mandel (1971).
Johnson and Graybill (1972a) derived the maximum likelhood estimators and a like-
lihood ratio test specifically for the first multiplivative term of the AMMI model by
partitioning the sum of squares. For replicated data, Gollob (1968) proposed a F-
test for judging the significance of interaction factors through computing the sums
of squares and mean squares for the interaction factors and the residual interaction.
All of these researches assume that errors are normally distributed with a common
variance. Piepho (1995) investigated the robustness of several F-tests (Gollob, 1968;
Cornelius, 1980; Cornelius et al., 1992; Cornelius, 1993) to departures from the as-
sumptions of normality and homogeneity of error variances. The most robust test,
however, is equivalent to a saturated interaction test.

In this chapter, we propose to develop a likelihood-based test for AMMI models to
detect GGI and GEI in longitudinal cohort studies with repeated outcome measures.

The two-step regression estimation procedure for AMMI models in Chapter IIT does
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not yield maximum likelihood estimates (MLEs). Here we aim to develop a likelihood-
based estimation algorithm for AMMI models by applying LRA techniques and to
establish the corresponding likelihood ratio test (LRT) for detecting interaction ef-
fects. In Section 5.3, we propose the ML estimation algorithm for AMMI models with
the first interaction factor (denoted as AMMIL). In Section 5.4, we describe the LRT
statistic for interaction and approximate the corresponding null distribution by a chi-
square distribution. The MLEs and the proposed null distribution for approximating
the LRT statistic are evaluated in a simulation study. In Section 5.5, we apply AMMI
models to the search of interactions between genes related to body mass index (BMI)
and several exposure variables (e.g., dietary intake, physical activity, psychosocial fac-
tors) using the Multi-Ethnic Study of Atherosclerosis (MESA) data. Specifically, to
accommodate multiple exposures in the framework of categorical G and E, we create
a health profile with “exposure categories” to summarize information of all exposure
variables via various clustering and classification methods. In Section 5.6, we extend
the model to allow for time-dependent changes in main and interaction effects over

time. The chapter concludes with a discussion in Section 5.7.

5.2 Model

We use (4.1) to model the association between the phenotypic response of interest
and genetic factors and environmental exposures. Please refer to Section 4.2 for nota-
tions. Here we focus on modeling the mean structure f(n, X) using AMMI models.
Write n = (B7,d",a",4")", where B are the parameters corresponding to main
effects of gene and environment and {d, a, v} represent departure from additivity.
Let d = (dy,ds,...)" be a vector of scale parameters, and o and - are interaction
parameters for row (gene) and column (environment) effects, respectively. We first
ignore covariates such that the design matrix X is mainly constructed by the indi-

cator functions /(-) for row and column factors, for the ¢-th observation for the k-th
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subject, the mean of an AMMI model (Gollob, 1968; Mandel, 1971) has the form

J

I

i=1 j=1

I J M
ZZ Z A CimYjmI (G =i, B = j),  (5.1)

i=1 j=1 m=1
where di > dy > --+ > dy. @ and 7,,; are distinct interaction parameters cor-
responding to the i-th row and j-th column for the m-th interaction factor, respec-
tively. They are subject to constraints 3.1_ a2, = Z}]:1 Yim = 1 and S Qi =
ijl Yim = 0, as well as orthogonality restrictions ), dimQim: = > _; VjmVjm = 0 for
m # m’. The first few terms in the SVD of the GEI matrix are believed to contain the
signal of interaction, while the higher-order terms relate to noise due to measurement
error. Given that at most three genotype groups on a SNP are considered in most
candidate gene studies and an AMMI model with M = min(/ — 1, J — 1) = 2 would

be equivalent to a fully saturated interaction model, we concentrate on AMMI models

with only one multiplicative term

I J
f(n;mkt) = f(IBJ d7a777wkt) - 60 +ZﬁzG‘[<Gk = Z) + ZBJE‘[(Ekt :j)+
i=1 =1
1 J
Z Zdlaz’YjI(Gk = i, Ekt = j)? (52)

i=1 j=1
where we simplify the notations replacing «; = ay; and v; = ;1. The v; corresponds
to a hypothetical latent environmental variable that describes the largest amount of
the environment interactions. Similarly, a; describes the axis of genetic susceptibility
accounting for the largest amount of genetic interactions. Omne could incorporate
time-varying parameters into the above models to capture time-dependent changes in
repeated measurements. Extension to including time-varying coefficients is discussed

in Section 5.6.
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5.3 Parameter Estimation

The log-likelihood corresponding to y,,..., Yy is

N
{(n,0,V) —% Zlog\Vk(B)\ - % Z [(yk; — (0, X)) ' Vi(0) " (y, — f(, Xk))},

k=1 k=1 (53
where y is the stacked n-dimensional response vector (n = E]kvzl ng). If the variance
components of y is known, maximizing the likelihood is equivalent to minimizing the

objective function with respect to n

min Qnl6) =" [y — (0, Xx)] V(O [y, — F(n, Xp)]. (5.4)

k=1
The solution for n, 7)., is the generalized least squares estimator, that is asymptoti-
cally normal and efficient under certain regularity conditions (Gumpertz and Pantula,
1992). We may express the multiplicative interaction term in (5.2) in a product form,
dia;y; = A;B;, for example, A, = dl/zoz“ B; di/Q’yJ Letn = (8,A", B")" , where
A= (A, ...,A) T isan I x 1 vector and B = (By,...,By)" is a J x 1 vector. The
linearization method as described in Chapter IV, unfortunately, does not work for

AMMI models. If one attempts to linearize an AMMI1 model,

fn,zr) = f(n", zwe) + Di(n —n")

= J (@) + /%—@]+§j§j[ — BEVI(Gr = i) + (B — BEV (B = )
+ BH(A; — ANI(Gy = i, By = j) + AX(B; — B)I(Gy = i, By = j)}

=ﬂmwm+%—%H§j§{®f+@&+@+@&>
i

where n* = (8%, A*", B*T)" is the approximation of 9, and D} = Dy (n*) is the first

derivative of f(n) with respect to n evaluated at a given n*. It involves indicators of
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row and column as well as current estimates of row and column interaction param-
eters A* and B*. Given as such, the main effects and interaction effects cannot be
simultaneously identified under the regression setting using linearization.

To find the MLE of n for AMMI1 models, we employ the alternating maximum
likelihood (AML) estimation in the spirit of Hwang and Takane (2004). The algorithm
consists of two global steps: (i) fix variance parameters 6, minimize the objective
function and obtain estimates of all coefficients until convergence is reached; (ii)
Given m, estimate variance component parameters. Specifically in (i), AML performs
estimation of main effects and interaction effects sequentially. Provided a set of initial
values of main effects 3%, we first use the residuals after removing the main effects,

rr =Y — 05 — BFI(Gy = i) — BF*I(E, = j), to form an objective function

— UVec(ABT)] 'V (6) ' [r; — UVec(ABT)] for fixed V(6),

Mz

Q(n0) =
k=1

where U}, is the indicator function matrix with dimension n, x IJ corresponding to
the configuration of G and Ej, for the k-th subject. Then for the whole n x 1 residual

vector r and n x IJ matrix U,

Q(n]6) = tr{[r — UVec(ABT)|V(6) ' [r — UVec(ABT)] "}
— tr{C[r — UVec(ABT)] }{C[r — UVec(ABT)]}'

= SS[# — UVec(ABT)], (5.5)

where # = Cr,U = CU, SS(M) = tr(MM "), and C is the Cholesky decompo-
sition of the n x n inverse variance-covariance matrix V', A closed form of least
squares solution for A and B does not exist. We minimize the objective function by

alternating least squares. Write (5.5) as
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Q = SS[# — UVec(ABT)]
= SS[F - (A® U)B] (5.6)

= SS[F — (BeU)A]. (5.7)

Then the solution is analogous to that for generalized least squares regression. We
repeat the following two local steps: (a) update B for fixed A: using (5.6), the least

squares estimate of B is

till convergence is reached.
We adapt the estimation algorithm for V() in linear mixed models to this non-

linear setting of AMMI1 model. First, we take the derivative of [ with respect to each

0, of 0,
o —1 _,0V(0) - _,0V(0) .
g6, = 5 [BV(O) 5= = (Y — () TV(O) ==V (O) (Y — f(m))|

(5.8)
The ML equations for V' are obtained by equating 0¢/90s to 0. The equations for
V(0) in (5.8) and the AML algorithm for 1 need to be solved simultaneously. Note
that the regressors (a;y;) for the fixed interaction effects are unobservable. To resolve
the issue of nonlinearity in d;a;y; in ML equations, we replace one column for the
fixed interaction term to account for the loss of df for estimating d;, that is, in each
iteration &;%; is treated as the regressors for individuals in the i-th row and j-th

column, as the alternating regression (Croux et al., 2003).
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Initial values of main effect estimates and variance components can be obtained by
a fully saturated regression model. As studied in Chen et al. (2008), two conditions
need to be satisfied to achieve the final convergence: (1) the first condition requires
convergence in both the row and the column interaction parameters (A, B); (2) the
second condition requires convergence in the objective function. The procedure of

parameter estimation for AMMI models is summarized in the following.

1. Given a set of initial values of main effects, obtain the residuals by removing
the main effects to form an objective function.
2. Given an initial value of B, update A by minimizing the objective function.

Given the updated A, update B.

-~ W

Given A, B, update the variance components and main effect estimates.

ot

Repeat steps 1-4 until convergence is achieved.
6. Find dl,@i,&j fori=1,...,1,7=1,...,J by rescaling A and B obtained in 5

according to the orthonormal constraints.

Based on our simulation settings and data analysis examples, we found that this
algorithm converges within about 50 iterations.

We performed a simulation study to evaluate the bias and mean squared error
(MSE) of MLEs of AMMI1 models using the proposed AML estimation algorithm.
Data were generated under AMMI1 models. Each dataset consisted of N=2000 sub-
jects with repeated measures (see Section 4.6 for the simulation of repeated measure-
ments). We used compound symmetric correlation structure for within-subject obser-
vations with error variance o? = 2,4 and within-subject correlation p = 0.2,0.5,0.8.
Table 5.2 and Table 5.3 list the bias and MSE of the MLEs for AMMI1 models from
1000 simulations in a 3x3 and a 3x5 table, respectively. Based on the simulation
results, the main effect parameter estimates appeared to be unbiased estimates. Even
though the estimate for d; had positive bias and much larger MSE compared to main

effect estimates (which may be due to the rescaling procedure), the estimated product
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terms (dldﬁj) appeared to be unbiased estimates.

5.4 Test for Interaction Effects with AMMI1 Models

The null hypothesis of no interaction is given by Hy : d; = 0, and the alternative

hypothesis is H, : d; # 0. After obtaining the MLEs under Hy and H,, we have
. ~ n 1 N
((iharz0,00) = — Slog(2m) — o Zlog!Vk(Go)l
- —Z{ £ (20, Xl V(80)~ o — £ (0, X )]}
and £(i)y;;,,8) = — Slog(2m) — 5 Zlog!ffk(éﬂ
- —Z{ £(7, X0 TVi(8) Ty, — £(7, X},
respectively. The LRT statistic is given by

LRT = — 2[£<'f7ML,O7 éo) - f(ﬁMLa é)]
= StV - Sl Vil@)l+
k

Z {lyr — £ (1o, X)) Vi(80) i — (0, X )]} —

Z{ £, X0)) " Vi(0) [y — f(0, X))}
= Zlog

k
where RSSj; = Z [y/rC — f(n,, Xk)]TVk(éo)_l[yk — f(1,, Xk)]

k

and RSS* = Z [yi — £, X)) Vi(0) [y, — f(n, X))
k

+ RSS; — RSS”, (5.9)

%>o

The null distribution of the LRT statistic is not distributed in accordance with the
standard chi-square distribution. One could apply the parametric bootstrap strategy
discussed in Chapter III to derive its null distribution. However, the whole process

may be quite computationally burdensome. In fact, we found that the LRT statistic
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in (5.9) under H, is well approximated by a x? with a fractional df v. The density

function of the x? distribution with v df is given by

1
I 7 b G )
f(x)_QVﬂF(y/Q)x e 0<z< oo,

where I'(s) = fooo t*~te7tdt is the gamma function. Here we provide heuristic jus-
tification for the null distribution of the LRT statistic. The heuristic argument is
supported by Monte-Carlo simulations. Through our empirical studies, we noted
that similar results may hold for both cross-sectional and repeated measures cases.
In order to deduce the fractional df v, we borrow the idea from the construction
of a hypothetical ANOVA table in balanced designs. In the case of single observation
per cell in a I x J table (Mandel, 1971), if the AMMI model in (5.1) can be represented
by an ANOVA table containing sums of squares, numbers of df, and mean squares,
the sum of squares corresponding to the m-th multiplicative interaction term can be

expressed as

I J R
Z Z mamz/ymj = dfn

i=1 j=1
Under normality assumptions, an, m =1,..., M, are distributed as the characteristic
roots of a Wishart matrix. Under Hy when interaction is absent, the mean square
corresponding to each multiplicative interaction term in an AMMI model should be
an estimate of random measurement error. Let o denote the variance for the random
error, SS;,; and df;,; be the sum of squares and df due to interaction, respectively.
For the interaction of an AMMI1 form, we have

S Sint dt ) B, (d3)
E =FK — | =FE MSerror = d nt — —.
Ho(dfint ) Ho(dfint) ( ) 7= f ! 02

We propose to estimate df;,; using the empirical mean of cff /o? by generating balanced
data in a two-way table under Hy. Then we consider the estimated df;,; as the
estimate of the fractional df v in our case.

Mandel (1971) evaluated the mean and variance of d%/0? by Monte Carlo tech-
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niques for various values of I and J and provided Monte Carlo values of £ Ho(cifn /o?)
for m = 1,2,3 under Hy : d,, = 0. To use the results of Mandel to derive an esti-
mate for v for arbitrary numbers of rows and columns, we proceed as follows: (1) A
large number of I x J matrices Z = ((z;;)) with z;; ~ N(0,0?) are generated. (2)
Constructing a basis set of interaction functions to remove row/column main effects,
we estimate d; using the largest singular value by applying SVD to the residual (or
interaction) matrix. (3) Repeat (1) and (2) for 10,000 simulations and compute the
mean of d2, then 7 = E(d?)/o?. Finally, the null distribution of the LRT statistic in
(5.9) is approximated by 2.

To assess the validity of the approximation of LRT by a x?2, we examined the em-
pirical null distribution of the LRT statistic in unbalanced two-way table settings with
various variances and within-subject correlations. The empirical null distribution of
LRT is compared to a x% using both the first three moments and quantile-quantile
plots. Table 5.1 lists the first three moments of the LRT under H, and the correspond-
ing x2 under 3x3 and 3x5 table settings for N=2000 with repeated measures. The
repeated measures are either uncorrelated (i.e., cross-sectional data, within-subject
correlation p = 0) or correlated (within-subject correlation p = 0.2,0.7). Under the
same simulation settings, Figure 5.7 shows the quantile-quantile plots of the LRT
statistics for AMMI1 model against x2. The results indicated that the null distri-
bution of the LRT statistic is only dependent on the table dimension and remains

unchanged with respect to different variances and within-subject correlations.

5.5 MESA Data Analysis

Obesity is an important risk factor for many disorders, such as type 2 diabetes and
cardiovascular disease (Hubert et al., 1983; Mokdad et al., 2003). Lifestyle patterns
associated with dietary pattern, physical activity, and mental health have been known

to contribute to increasing prevalence of obesity and overweight (Wadden et al., 2012;
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Onyike et al., 2003). In addition, heritability studies have suggested a considerable
genetic contribution to obesity risk (Stunkard et al., 1986; Maes et al., 1997). Body
mass index (BMI) is a convenient, inexpensive measure of obesity. The identification
of genetic modifying effects on the association between lifestyle patterns and BMI
may lead to a better strategy of lifestyle intervention to reduce the risk of obesity.
The analysis dataset comes from the Multi-Ethnic Study of Atherosclerosis (MESA).

The description of this longitudinal cohort study was described in Section 4.7.2. The
outcome variable of interest was BMI, which was calculated as weight (kg)/height
(m)?. The analysis included 6429 MESA participants who had both BMI data in
at least one of MESA exams 1-4 and genotype data for the selected BMI-related
SNPs. Table 5.4 provides baseline demographic information for the MESA study
population in each self-reported ethnic group as well as in the combined sample.
The primary analysis goal was to investigate GEI effects on the relationship between
several exposures, including behavioral and psychosocial factors, and BMI. We ana-
lyzed the interactions separately for each individual exposure and for the exposure
groups/categories generated by some clustering methods that summarize multiple ex-
posures. We also used data from the MESA Neighborhood Study, an ancillary study
to MESA, to conduct ExE interaction analysis. As such, the secondary analysis goal
was to assess the effects of neighborhood environments on individual’s dietary intake
and physical activity and how neighborhood environments modify the associations
between dietary intake and physical activity and BMI. Below we describe the genetic
variables in Section 5.5.1, environmental exposure variables in Section 5.5.2, and
neighborhood environment measures in Section 5.5.6, respectively. We applied the
proposed AMMI1 model (5.2) to model these interactions and compared the results

with a saturated interaction model.
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5.5.1 Genes

Twenty-seven SNPs previously associated with BMI were selected for genotyping
in all racial /ethnic groups based on prior GWAS findings (Speliotes et al., 2010). Fur-
ther details of genotyping in MESA has been described previously (Bielinski et al.,
2008). We adopted the best-guess approach that essentially uses the genotype with
the highest imputed genotype probability. For initial exploratory analysis, we con-
sidered an additive model (i.e., allele counts). When demonstrating the use of AMMI
models under the framework of categorical G and categorical E, we treated it as a
nominal variable. That is, three genotype groups (wildtype, heterozygous, or ho-
mozygous) were considered for each SNP. Table 5.6 displays information on the 27
BMI SNPs that have been shown to reach genome-wide significance (p<5x1078) lev-
els in prior meta-analysis. In addition, the genetic risk score (GRS), calculated by
summing BMI-increasing allele counts, was created as a summarized variable corre-
sponding to the 27 SNPs. The GRS was also categorized into five categories using
quintiles in order to illustrate the use of AMMI1 models and the comparison with

saturated interaction models.

5.5.2 Environmental Exposures

The 11 exposure variables we considered for analysis are listed in Table 5.5. They
involved variables in the following three domains: (1) dietary intake, (2) physical
activity, and (3) psychosocial/mental health. The diet variables included total en-
ergy intake (kcal/day), percent calories from carbohydrate intake, percent calories
from protein intake, percent calories from saturated fat intake, and percent calo-
ries from trans fat intake. The physical activity variables included total intentional
exercise (MET-minute/week) and moderate and vigorous physical activity (MET-
minute/week). The psychosocial (or mental health) variables included trait anxiety,

trait anger, chronic burden, and depressive symptoms. In our analysis, total energy
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intake, intentional exercise, physical activities, and the four psychosocial variables
were log-transformed to approximate normality. See Appendix for details of each
exposure measure. Given that not every variable was measured at all four exams by
the study design, we replaced missing values by the last observed values (i.e., last
observation carried forward). We examined Pearson’s correlations among the expo-
sure measures and BMI at baseline (Figures 5.8 and 5.9 in Appendix). As expected,
higher energy intake, higher consumptions of carbohydrates and fats, more chronic
burdens, and increased depressive symptoms were significantly positively correlated
with higher values of BMI, while more intentional exercise and physical activities were

associated with lower values of BMI.

5.5.3 Methods to Define Exposure Groups

Given that multiple exposures were considered for analysis, any existing GEI signal
may be washed out by the adjustment of multiple testing if GEI test were repeated for
each exposure variable. We combined information from the 11 exposure variables by
utilizing three clustering and classification techniques (described below) to discover
natural grouping patterns of overall health profile in the data. The overall health
profile represented by the exposure groups/categories were then used for the analysis
of GEI as a way of reducing the number of tests. For all clustering analyses, subject-
level means corresponding to the repeated measurements of the exposure variables
were used.

K-Means Clustering

K-means cluster analysis, one of the most popular clustering methods, is a dynamic
nonparametric partitioning method and is suitable for quantitative-type variables
(Jain, 2010). The k-means algorithm (1) randomly selects k centroids (k less than
the number of data points) and assigns each data point to its closet centroid by

minimizing the within-cluster sum of squares and (2) recalculates the centroids as
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the average of all data points in a cluster and again assigns data points to their
closest centroids. Step (2) is continued until the observations are not reassigned or
the maximum number of iterations is reached. The number of clusters was chosen
based on plotting the number of clusters and the corresponding total within-cluster
sum of squares, and we chose six clusters. An efficient algorithm by Hartigan and
Wong (1979) that minimizes the sum of squares of the observations to their assigned
cluster centers was used. The means for six clusters determined by k-means are shown
in Figure 5.2.

Latent Class Analysis (LCA)

Latent class analysis (LCA) is used to detect the presence of latent classes and
to cluster a set of observed variables into groups based on their maximum likelihood
class membership (Lazarsfeld and Henry, 1968). We used the mclust package in R
that performs LCA on continuous data (Fraley, Raftery, Murphy, and Scrucca, Fraley
et al.). The model parameters were estimated using maximum likelihood via the EM
algorithm, and the best normal mixture model was chosen according to the maximum
Bayesian information criterion (BIC) values among different covariance structures and
different numbers of clusters. The various covariance restrictions result in a different
combination of cluster shapes in each model. The constraints yield parsimonious
models which facilitate a more flexible modeling strategy beyond assuming unequal
covariance or equal covariance. The best model was reached with an eight-cluster
solution, but six clusters appeared to be sufficient (Figure 5.10 in Appendix). The
cluster means determined by mclust are shown in Figure 5.3.

Classification and Regression Trees (CART)

Classification and regression tree (CART) analysis is a machine-learning method
that recursively partitions data into smaller groups that involves a categorical (for
classification trees) or continuous (for regression trees) dependent variable and one or

more independent variables (Breiman et al., 1984). At each split, data are partitioned
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into two mutually exclusive groups based on a single independent variable. Then
the splitting procedure is applied to each group separately. To have a reasonable
number of splits, CART generates a sequence of sub-trees by growing a large tree and
pruning it back. Specifically, it sequentially collapses nodes that result in the smallest
change in purity. Then it uses cross-validation to select the optimal tree (i.e., the
one with the lowest cross-validation misclassification rate). We implemented CART
analysis via the rpart package in R to generate groups of overall health based on these
behavioral and psychosocial factors. To prune the tree, we selected the complexity
parameter associated with the smallest cross-validated error. The minimum number
of observations in a node was set to be 500 before attempting a split and that a split
must decrease the overall lack of fit by a factor of 0.004 (cost complexity factor) before
being attempted. Percent calories from trans fats, chronic burden, and intentional
exercise were shown to be significant predictors for classification. The resultant model

separated the MESA participants into five groups (Figure 5.4).

5.5.4 Main Effects

We first investigated the genetic main effects and the exposure main effects on
BMI using fixed effects models with unstructured correlation structure (which was
chosen based on smallest AIC values) for within-subject correlation due to repeated
measures data. Covariates considered included age at the time of data collection
(centered at 65), age squared, gender, race/ethnicity, education, household income,
and diagnosis of cancer. Race/ethnicity was classified as Caucasian, Chinese, African
American, and Hispanic. Participants selected their highest education level from
eight categories that were later collapsed into two categories: whether having a college
degree or not. Participants selected their annual household income from 13 categories
with different ranges of income ($0-$9,999, $10,000-$19,999, etc.) at MESA exams

1, 2, and 3. Continuous income in US dollars was assigned as the interval midpoint
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of the selected category. Furthermore, we considered the adjustment for the first
three principal components (PCs) to adequately remove confounding effect due to
population stratification in analysis. The first three PCs together explained about
96% of the total observed variation according to the principal component analysis
results of the MESA-SHARe data (see Appendix). Except for age and income, all
other covariates were collected once at the baseline visit. For the analysis of genetic
main effects, covariates included were age, age squared, gender, and the first three PCs
following Speliotes et al. (2010). For the analysis of exposure main effects, covariates
included age, age squared, gender, race, education, income, and diagnosis of cancer.

The last column of Table 5.6 shows the test results of genetic main effects on BMI
(using additive models) in the MESA data. Out of 27 SNPs, only SNP #5 (rs2867125
near the TMEM18 gene) and SNP #23 (rs7359397 near the SH2B1, APOB/8R, and
SULT1A2 genes) were significantly associated with BMI considering the adjustment
for multiple testing (adjusted p-value = 0.05/27 = 0.0019). Table 5.7 shows the
estimated main effects of each environmental exposure variables on BMI. Except
for trait anger and trait anxiety, all other variables were significantly associated with
BMI. In particular, percent calories from trans fat intake appeared to have a profound
impact on BMI. Mean BMI was estimated to increase by 1.74 (95% CI = [1.34, 2.14])
kg/m? for one percent increase in trans fat intake, adjusting for age, age squared,
gender, race, education, income, and diagnosis of cancer.

In general, the overall health profile (exposure groups defined by k-means, LCA,
and CART) was significantly associated with BMI (all p<0.0001). Table 5.8 shows the
estimates of the cluster main effects (using k-means, LCA, and CART with subject-
level means) on BMI, adjusted for age, age squared, gender, race, education, income,

diagnosis of cancer, and the first three PCs.
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5.5.5 Interaction Effects

SNP/GRS x E: One-at-a-time Analysis

As a data exploration and screening for possibly important SNPs, we investigated
all pairwise interactions between the 27 BMI SNPs and the 11 exposure variables
by treating both SNP data and exposure variables as continuous variables. Again, a
linear fixed effects model was utilized with unstructured correlation structure. Co-
variates considered were age, age squared, gender, race, education, income, diagnosis
of cancer, and the first three PCs. Table 5.9 shows the p-values for the 27 x 11 =
297 tests of GEIs. The test results of interactions between GRS and the exposure
variables are displayed in the last row of Table 5.9. (We also considered generating
GRS weighted by the published standardized effect sizes of BMI-increasing alleles.
Since the results are similar to the unweighted GRS, the results for weighted GRS
are not shown.) To reduce the number of subsequent tests, SNPs with a p-value
corresponding to the GEI test less than 0.10 in Table 5.9 were preserved for further
SNP xE interaction analysis using the aforementioned clustering methods for the 11
exposures. According to Table 5.9, SNPs #2, #6, #10, #16, #19, #22, and #23 were
chosen for the following analysis. Due to a very small minor allele frequency, SNP
#10 was excluded because one of the cells in the GEI two-way table had observations
from only one participant.

SNP/GRS x Ezxposure Groups

To illustrate the use of AMMI1 model and saturated interaction model for the
GEI structures, both G and E were treated as categorical variables. For G, we con-
sidered three genotype groups for each SNP. For E, we considered the overall health
profile defined by exposure groups (obtained by k-means, LCA, and CART). Table
5.10 shows the test results of interactions between the six BMI SNPs (and GRS)
and overall health profile (by using k-means, LCA and CART methods for grouping)

using AMMI1 and saturated interaction models. When using k-means to generate
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the overall health profile, significant modifying effects of SNP rs1558902 near the
FTO gene and SNP rs7359397 near the SH2B1, APOB4S8R, and SULT1A2 gene re-
gions on the association between the health status and BMI were found using the
AMMII1 model (p=0.029 and p=0.047, respectively). Significant modifying effects
of SNP rs3817334 near MTCH2, NDUFS3, and CUGBP1 and also SNP rs7359397
near the SH2B1, APOB48R, and SULT1A2 gene regions were found using the sat-
urated interaction model (p=0.020 and p=0.043, respectively). The GRS was found
to have a significant modifying effect on the association between k-means clustering
and BMI using both AMMI1 (p=0.022) and saturated interaction models (p=0.003).
When using CART, SNPs rs543874 near the SEC16B gene and again SNP rs7359397
were found to have significant interaction effects using both AMMI model (p=0.018
and p=0.007, respectively) and saturated interaction model (p=0.006 and p=0.005,
respectively). The GRS was found to have a significant modifying effect using the
saturated interaction model (p=0.014) but not the AMMI1 model, indicating that the
interactions between GRS and overall health profile (either grouped by k-means or
CART) may require more than one interaction factors (e.g., AMMI2) to characterize
the effects. Nevertheless, when taking multiple tests into account, these findings may
not be regarded as statistically significant.

Remark: This is an ad hoc interaction analysis to illustrate the use of AMMI models
with the exposure groups in a categorical framework. The uncertainty in clustering

was not taken into account.

5.5.6 Neighborhood Environments

Neighborhood environments could have a profound impact on BMI. The availabil-
ity of high-quality fruits and vegetables and low-fat foods may contribute to a healthy
diet. Density of facilities for physical activity in a neighborhood, such as parks and

recreational centers, may increase the likelihood that residents will be physically ac-
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tive. A healthy diet with a good amount of physical activities may contribute to a
normal range of BMI. In fact, the associations between neighborhood environments
and BMI or obesity have been reported in several studies using the MESA data (Mu-
jahid et al., 2008; Moore et al., 2013; Hirsch et al., 2014). Given as such, our secondary
analysis goal was to investigate the interaction between neighborhood environments
and overall health profile, that is, whether the effect of overall health profile on BMI
was dependent on resources for physical activity and availability of healthy foods.

The neighborhood environment measures included in the MESA data were: 1-mile
simple densities of supermarkets and fruits and vegetable markets, 1-mile recreational
density, perceived healthy food availability, and perceived walkability. Simple den-
sities of supermarkets and fruits and vegetable markets and recreational resources
surrounding participant households were calculated using ArcGIS 9.3 for each follow-
up year. Address information (time-dependent) was used to link study participants
to density measures for the corresponding calendar year. Details of the questionnaires
designed for perceived healthy food availability and walkability are described in Sec-
tion 5.7. All neighborhood environment measures were collected at each MESA exam,
and higher values indicated better neighborhood environments. We considered two
summary measures for analysis, combined healthy food environment and combined
physical activity environment, which were obtained by summing the standardized
density and perceived availability variables. For the ease of interpretation, the two
summary neighborhood variables were centered according to the median as well as
rescaled such that a one unit increase equals the difference between the 10th and the
90th percentile of their baseline distribution in the sample.

Neighborhood Environments x Individual’s Diet and Physical Activity

Given the significant associations between both dietary intake and physical activ-
ity and BMI (Table 5.7) and the significant marginal effects of physical neighborhood

environments on BMI (Mujahid et al., 2008; Hirsch et al., 2014), we investigated the
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interactions between the combined healthy food environment index and individual’s
diet and between the combined physical activity environment index and individual’s
physical activities on BMI. As before, we used an unstructured correlation structure
to account for within-subject correlation of repeated measured BMI. All models were
adjusted for age, gender, race, education, household income, and diagnosis of cancer.

The result indicated a significant interaction between the combined healthy food
environment and saturated fat consumption (p=0.02). For people living within the
neighborhood with a median healthy food environment index of the MESA popu-
lation, one percent increase in saturated fat intake was associated with 0.19 (95%
CI = [0.14, 0.23]) kg/m? increase in BMI. But this association was estimated to de-
crease by 0.03 (95% CI = [0.005, 0.05]) kg/m? for an increase from the 50th to the
90th percentile in the combined healthy food environment index. No other significant
interactions were detected.

Neighborhood Characteristic Groups X Ezxposure Groups

To demonstrate the analysis under the categorical framework, we categorized the
participants into four neighborhood characteristic groups according to the signs of
their combined healthy food and physical activity neighborhood environment indices.
The first group had both positive combined healthy food environment and combined
physical activity environment indices, representing better healthy food and physical
activity neighborhoods. The second group had a positive healthy food environment
index but a non-positive physical activity environment index. The third group had a
positive physical activity environment index but a non-positive healthy food environ-
ment index. The last group had both non-positive combined healthy food environ-
ment and combined physical activity environment indices, indicating worse healthy
food and physical activity neighborhood environments.

We investigated the interaction effects between the neighborhood characteristic

groups and overall health profile groups on BMI. A multilevel mixed-effects model
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was utilized with measurement occasions nested within persons and persons nested
within similar or different neighborhoods (according to their census tracts). The

AMMI1 model is given by

Yore = Bo + B I(NBHD,,, = i) + ' I(Health, = j) + dic;y;I(NBHD,;, = 4, Healthy, = j)

+ B Z ) 4 an + bk + enre, an ~ N(0,072), b ~ N(0,07), en ~ N(0,07),

where Y,,; is the BMI value measured at time ¢ for individual k£ in neighborhood
n, NHBH,,;, is the neighborhood characteristics (i = 1,...,4) for individual %k in
neighborhood n, Healthy, is the overall health profile (using k-means, LCA, or CART)
for individual k, Z Skt is a 9x 1 vector for covariates including age, age?, gender, race,
education, income, and cancer diagnosis. a, is a random neighborhood component,
by is a random subject-level intercept, and e,;; is the random measurement error.
The results indicated a LRT statistic of 18.24 (p=0.023) when using an AMMI1
model and a LRT statistic of 28.87 (p=0.004) when using a saturated interaction
model for the interaction between exposure groups defined by CART (Figure 5.4)
and neighborhood characteristic groups. The two-way interaction forms a 5x4 table,
resulting in df==8.35 for the interaction test using an AMMI1 model and df=12 using
a saturated interaction model. On the other hand, the interaction wa s not significant
for exposure groups defined by k-means (p=0.46 and p=0.19 for AMMII1 and satu-
rated interaction structures, respectively) or LCA (p=0.50 and p=0.67 for AMMI1
and saturated interaction structures, respectively). Figure 5.5 shows the estimated ef-
fects of exposure groups defined by CART on BMI for each healthy food and physical
activity neighborhood environment group. Both healthy food and physical activity
environments appeared to have a significant interaction effect on the association be-
tween exposure groups and BMI (or vise versa). Specifically, less intake of trans fats,
more intentional exercise, and fewer chronic burdens did not seem to affect BMI under

worse healthy food and physical activity neighborhood environments (both combined
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indices were negative), as compared to better neighborhood environments (one of the

combined indices were not negative).

5.6 Time-Varying Interaction

In addition to testing the presence of GEI, one may want to know whether the
GEI is time or age dependent and if so, how to characterize the temporal trend of
GEIL In this section, we explored the possibility of allowing time-varying GEI under
the AMMI1 model and considered to further analyze the interaction between SNP
#23 (rs7359397) and exposure groups defined by CART (Table 5.10). Specifically,
we examined how the GEI matrix of an AMMI1 form may change across age.

To evaluate the possible change in GEI across age, we first define five age intervals
(40-49, 50-59, 60-69, 70-79, 80-89) for the MESA data and categorized observations
into the five age groups according to participant’s age at the time of measurement.
Subsequently, we fit an AMMI1 model using the proposed AML estimation algorithm
in Section 5.3 but allowing both main effects and interaction effects to change over
time by incorporating indicator functions for age groups in the model. Let A;; denote
age group for the k-th subject at the ¢-th observation, Ay, =1 =1,..., L, where we
defined L = 5 age groups. Following the notations in (5.2), the mean AMMI1 model

(dropping the covariates) is given by
Fmaw) =Y B Ay =0+> > BIIGr =i, Ay =)+
I il
Z Z 5JEZI(Ekt = J, At = l)"’
il
Z Z Z duocayl (G =i, By = j, Ak = 1), (5.10)
il

where 3{ is the intercept, 35 is the genetic main effect of the i-th genotype, and
ﬁ is the exposure main effect effect of the j-th exposure category, specifically for

the [-th age group. The interaction parameters (dy;, o, ;) are also specific to the
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I-th age group. Model (5.10) ultimately yields five sets of age-specific main-effect
and interaction-effect parameters as a three-way GxExAge interaction model. The
model used an unstructured within-subject correlation structure and adjusted for the
same set of covariates as described previously. To prevent building an over-specified
model and to remain consistent with the analyses in other MESA studies, any possible
time-varying effects of covariates on BMI were not considered here. To compare the
likelihoods of models with time-varying versus the models with time-invariant effects
and determine whether the interaction is significantly dependent on age, we also fit
model (5.2) without time-varying effects and the following model with only time-

varying main effects (covariates were dropped)
Fm ) =Y BT A =1+ BTG =i, Ay = 1)+
1 i1
SN BI(Ew =5, Au=0+>_> diayI(Gy=i,E,=j).  (5.11)
i 1 ()

Table 5.11 shows the log-likelihoods of models (5.2), (5.10), and (5.11) and the
corresponding estimates for the interaction parameters. The likelihood increased as
the model incorporated time-varying coefficients. Based on the estimates of d; from
the AMMI1 model (5.10), the magnitude of interaction effects appeared to be age
dependent. We observed that d; was largest for age less than 50 and age greater than
80, thereby implying that the effect of interaction between SNP rs7359397 and the
exposure groups determined by the criteria of CART — intentional exercise, chronic
burden, and trans fat intake — may be particularly manifest in these two age groups.

We also investigated age contributions to the interaction using the same approach
described in the data analysis section in Chapter III. Here we replaced &; and #; with
the estimates from model (5.2) via the proposed AML estimation algorithm. Figure
5.6 shows contributions of the five age intervals to the first interaction factor. The

plot indicates that the modifying effect of health profile (through exposure groups
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determined by CART) on the effect of SNP rs7359397 on BMI was largest bewteen
age 80 and 89. This was somewhat consistent with the findings of the time-varying
interaction model (5.10). Moreover, to evaluate the potential contribution of the
second interaction factor, we fit the data with a three-way saturated GxExAge
interaction model and decomposed the estimated interaction matrix for each age
group via SVD. The results indicate that the contribution of the second interaction
factor to the overall interaction was the largest (27%) for the age interval of 60-69 as
opposed to the age intervals of 40-49 and 80-89 (around 10%). As such, a saturated
interaction (AMMI2) or another interaction model, rather than AMMI1, may be
required to better describe the interaction structure for age 50-79 in this particular

GEI example.

5.7 Discussion

We have developed the estimation algorithm and proposed a likelihood-based test
for AMMI models to detect GGI and GEI in longitudinal cohort studies. The prob-
lem of testing interactions of the AMMI form in unbalanced repeated measures data
is complex because the statistic under the null does not have a standard distribution.
We approximated the null distribution of the LRT statistic by a y? with fractional
df. We applied AMMI models to test for interactions between BMI SNPs and several
exposure variables using the MESA data. To reduce the number of tests due to mul-
tiple exposures, we used various clustering and classification methods to summarize
information of all exposure variables to create an overall health profile with exposure
groups. We also considered to extend the AMMI1 model to allow for time-varying
effects by categorizing the MESA data into a reasonable number of age groups.

In this chapter, we mainly considered the modeling and test for the first inter-
action factor in AMMI models. Testing the significance of each multiplicative term

and selecting an optimal number of multiplicative terms for a given longitudinal
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dataset are natural follow-up questions. Many researchers have studied this prob-
lem primarily under the balanced setting in crop cultivar trials. See Cornelius et al.
(2001) for a review of several earlier papers concerning sequential testing procedures
for AMMI components. Cross validation is another option (Gauch Jr, 1988; Dias
and Krzanowski, 2003, 2006). Forkman and Piepho (2014) recently proposed two
parametric bootstrap methods for determining the number of multiplicative terms in
AMMI models. A comprehensive comparison of model-building strategies using the
MESA data would be worthwhile but is beyond the scope of this chapter. In addition,
the simulations for assessing the heuristic null distribution of the LRT statistic for
AMMI1 were done only for 3x3 and 3x5 table settings according to the data analysis
example. It was conjectured that results for tables with other dimension would be
similar. This conjecture needs to be examined by further extensive simulation studies.

Inference concerning time-varying interaction was not provided in the present
work. Future study is warranted to evaluate time-varying interaction effects appro-
priately and efficiently. One can use a smooth function to account for the temporal
trend of genetic and exposure main effects as well as GEI effects that allows the pa-
rameters to change over time. Functional principal component analysis, an effective
dimension reduction method, is a potential approach to investigate time-varying GEI.
The residual vector (after removing the main effects and covariate effects) can be con-
sidered as a random curve, and the time-varying interaction may be investigated by
observing the trajectory of functional principal component score with respect to age
or time. More research in the area of longitudinal GEI is neede. With an adequate
and powerful statistical tool and the availability of rich longitudinal data, we may be
able to identify distinctive GEI effects at different stages of life and ultimately have a
better understanding of the sophisticated relationship among gene, environment, and

complex diseases.
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Table 5.1: Moments of the likelihood ratio test statistic for AMMI1 model correspond-
ing to 3x3 and 3x5 table settings from 1000 simulations and moments of

X3

Table o2 Moment p=20 p=0.2 p=0.7 b
3x3 4 Mean 3.55 3.53 3.58 3.55
Variance 6.56 6.64 6.90 7.10

Skewness 1.63 1.77 1.77 1.50

10 Mean 3.53 3.68 3.53 3.55

Variance 7.01 7.87 7.34 7.10

Skewness 1.59 1.61 1.89 1.50

3x5 4 Mean 6.26 6.26 6.30 6.34
Variance 11.47 11.39 11.38 12.68

Skewness 1.21 1.27 1.33 1.12

10 Mean 6.58 6.26 6.27 6.34
Variance 12.31 12.17 12.23 12.68

Skewness 1.30 1.18 1.18 1.12

*v is estimated through 10000 simulations described in Section 5.4.
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Table 5.2: Bias and mean squared error (MSE) of the maximum likelihood estimates of
AMMI1 model parameters using the proposed AML estimation procedure
(3% 3 tables, 1000 simulations)

o2 =2 o? =14

Parameter True p=0.2 p=0.5 p=0.8 p=0.2 p=0.5 p=0.8
Bias (x1073)

7 12.00 2.4 2.8 3.2 3.4 4.0 4.6
Ry -0.27 -2.5 -3.3 -3.9 -3.7 -4.6 -5.4
Ry -0.54 -0.2 -0.2 -0.2 -0.2 -0.2 -0.5
Ch -0.27 0.9 1.0 1.0 1.3 14 1.5
Co -0.54 -0.9 -1.0 -1.2 -1.3 -1.5 -2.0
o -0.41 0.2 1.1 1.7 1.9 2.9 4.2
Y -0.71 4.9 7.6 10.1 9.6 16.0 22.2
dy 1.00 6.9 11.2 15.5 14.8 24.4 33.5
MSE

1 12.00 0.90 1.39 1.87 1.79 2.78 3.74
Ry -0.27 1.85 2.89 3.90 3.72 5.79 7.83
Ry -0.54 1.41 2.19 2.93 2.84 4.40 5.89
Ch -0.27 1.53 2.36 3.17 3.03 4.71 6.32
Co -0.54 1.59 2.47 3.31 3.17 4.96 6.64
o -0.41 2.71 4.28 5.82 5.54 8.72 11.79
Y1 -0.71 2.11 3.30 4.48 4.24 8.36 12.79
dy 1.00 6.21 9.64 12.95 12.38 19.20 25.72

Results of Rg, ég, Qg, (3,2, and 43 are not presented as these estimates can be obtained
by constraints: Y7, R =Y, Cj =3, =y ;75 =0and ), a? = >, 7]2, —1
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Table 5.3: Bias and mean squared error (MSE) of the maximum likelihood estimates of
AMMI1 model parameters using the proposed AML estimation procedure
(3x5 tables, 1000 simulations)

o =2 o2 =4

Parameter True p=0.2 p=0.5 p=0.8 p=0.2 p=0.5 p=0.8
Bias (x1073)

I 12.00 2.3 2.8 3.2 3.3 4.0 4.6
Ry -0.27 -0.4 -0.3 -0.5 -0.6 -0.6 -0.6
Ry -0.54 0.9 1.3 1.3 1.2 1.6 1.9
Ch -0.62 2.1 2.8 3.1 2.7 3.7 4.3
Co 0.34 0.3 0.4 0.6 0.6 1.0 1.1
Cs -0.56 -3.4 -4.5 -5.2 -5.0 -6.5 -7.5
Cy -0.22 0.0 -0.1 -0.3 -0.1 -0.1 -0.4
o1 -0.71 3.5 5.8 8.5 7.8 14.1 21.3
Y1 -0.27 8.0 12.2 15.0 14.7 21.6 29.6
Y2 -0.27 6.4 9.6 13.7 13.2 20.0 27.1
3 -0.54 8.7 14.2 19.9 18.6 31.7 44.6
dy 1.00 31.0 46.3 61.0 59.2 88.6 117.3
MSE

1 12.00 0.75 1.16 1.55 1.48 2.30 3.10
Ry -0.27 1.77 2.74 3.70 3.54 5.52 7.43
Ry -0.54 1.22 1.89 2.53 2.45 3.79 5.07
Ch -0.62 2.72 4.22 5.69 5.45 8.50 11.49
Co 0.34 3.04 4.72 6.34 6.09 9.44 12.72
Cs -0.56 3.14 4.87 6.54 6.26 9.77 13.13
Cy -0.22 2.84 4.39 5.92 5.69 8.87 11.92
o -0.71 1.65 2.69 3.82 3.59 6.58 10.01
v -0.27 9.77 15.15 20.62 19.72 31.01 42.43
Y2 -0.27 10.15 15.76 21.05 20.18 31.15 41.47
3 -0.54 7.24 11.16 14.88 14.23 22.75 31.14
dy 1.00 14.70 22.27 29.31 28.55 42.59 55.12

Results of Rg, 6'5, Qg, 03,74, and 45 are not presented as these estimates can be obtained
by constraints: 3, R; =, Cj =3, a; =3 ;v =0and ), a? = > 7]2 = 1.
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Table 5.7: Estimated main effects of exposure and neighborhood environment vari-
ables on BMI adjusted for age, age?, gender, race, education, income, and
diagnosis of cancer in the MESA data

Variable Estimate SE p-value
Total Energy Intake (kcal/day) 6.4x107% 8.5x107° <0.0001
Percent Calories from Carbohydrate -0.060 0.007 <0.0001
Percent Calories from Protein 0.053 0.020 0.007
Percent Calories from Saturated Fat 0.180 0.021 <0.0001
Percent Calories from Trans Fat 1.737 0.205 <0.0001
Total Intentional Exercise (MET-min/wk) — —4.4 x 107° 6.4 x 1076 <0.0001
Physical Activity* (MET-min/wk) —1.4x 107° 2.7 x 1076 <0.0001
Trait Anger 0.005 0.006 0.410
Trait Anxiety -0.004 0.005 0.383
Chronic Burden 0.032 0.015 0.029
Depressive Symptoms (CESD) -0.004 0.002 0.029
Density of Favorable Food Stores -0.047 0.010 <0.0001
Recreational Resources Density -0.011 0.003 0.001
Perceived Healthy Foods Availability 0.054 0.050 0.284
Perceived Walkability -0.136 0.090 0.132
Combined Healthy Food Environment -0.020 0.020 0.313
Combined Physical Activity Environment -0.063 0.021 0.002

* Moderate and vigorous physical activity
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Table 5.8: Estimates of the exposure cluster main effects on BMI adjusted for age,
age?, gender, race, education, income, diagnosis of cancer, and the first
three principal components in the MESA data

Effect Estimate SE p-value
K-means: Group B vs. Group A 1.982 0.300 <0.0001
K-means: Group C vs. Group A 0.434 0.297 0.143
K-means: Group D vs. Group A -0.189 0.288 0.512
K-means: Group E vs. Group A 0.944 0.307 0.002
K-means: Group F vs. Group A 0.671 0.281 0.017
LCA: Group B vs. Group A 0.056 0.211 0.792
LCA: Group C vs. Group A 1.214 0.259 <0.0001
LCA: Group D vs. Group A 0.825 0.203 <0.0001
LCA: Group E vs. Group A 0.021 0.214 0.922
LCA: Group F vs. Group A 1.560 0.236 <0.0001
CART: Group 2 vs. Group 1 1.205 0.215 <0.0001
CART: Group 3 vs. Group 1 1.107 0.179 <0.0001
CART: Group 4 vs. Group 1 1.995 0.219 <0.0001
CART: Group 5 vs. Group 1 3.252 0.248 <0.0001

See Figure 5.2, Figure 5.3, and Figure 5.4 for the characteristics of each group classified
by k-means, latent class analysis (LCA), and classification and regression tree (CART),
respectively.
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Figure 5.1: Quantile-Quantile (Q-Q) plot for comparing the distribution of the LRT

statistics for AMMI1 with the coorresponding x? distribution under Hj :
d; = 0. Data were simulated under (a) 3 x 3 and (b) 3 x 5 GEI two-way

tables (N=2000 with repeated measures).
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Figure 5.2: Cluster means of the 11 health profile variables (standardized) using k-
means in the MESA data
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Figure 5.3: Cluster means of the 11 health profile variables (standardized) from the
results of LCA in the MESA data. Except for percent calories from car-
bohydrates, percent calories from protein, and percent calories from satu-
rated and trans fats, all others variables were log-transformed to achieve
normality.
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Figure 5.4: Grouping criteria of classification and regression tree (CART) analysis
results. Means of BMI for the five groups are shown.
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Figure 5.5: Estimated effect of CART group on BMI and the corresponding confi-
dence intervals for four neighborhood environment groups based on com-
bined healthy food (HF) and combined physical activity (PA) environ-

ment indices
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Figure 5.6: Age-specific contributions to the first interaction factor in SNP rs7359397
x exposure groups (determined by CART) based on the MESA data
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5.8 Appendix

5.8.1 Variables in the MESA Data Analysis

e Body mass index (BMI) [exams 1, 2, 3 ,4] was calculated as weight (in
kilograms) divided by height squared (in meters?). Weight and height were
measured using a balanced beam scale and a vertical ruler, respectively, with
participants wearing light clothing and no shoes. Height was recorded to the
nearest 0.5 cm and weight to the nearest 0.5 Ib. Out of 6429 MESA par-
ticipants, 393 (6%) had only one BMI measurement, 342 (5%) had two BMI
measurements, 502 (8%) had three BMI measurements, and 5192 (81%) had

four BMI measurements.

e Total energy intakes (kcal/day), percent calories from carbohydrate
intake, percent calories from protein intake, percent calories from
saturated fat intake, and percent calories from trans fat intake [exam
1] were measured through dietary intake from a self-administered, 120-item,
modified-Block style food frequency questionnaire (Nettleton et al., 2006). Par-
ticipants recorded the serving size (small, medium, or large) and frequency of
consumption (average times per day, week, or month) of specific beverages and
foods. Daily frequency responses were weighted according to reported serving
sizes (small: frequency x 0.5; medium: frequency x 1.0; large: frequency x
1.5) and consequent servings/day were categorized into 47 food groups and the

corresponding calorie intakes were calculated.

e Moderate and vigorous physical activity (MET-minute/week)[exams
1, 2, 3] was obtained from MESA Typical Week Physical Activity Survey,
which is a self-report questionnaire developed for the MESA. The questionnaire
was designed to identify the time spent in and frequency of various physical

activities during a typical week in the past month to capture typical activity
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patterns in one’s daily life. The survey has 28 items in 9 categories: household
chores, lawn/yard/garden/farm, care of children/adults, transportation, walk-
ing (not at work), dancing and sport activities, conditioning activities, leisure
activities, and occupational and volunteer activities. The questions differenti-
ated between light-, moderate-, and vigorous-intensity activities. Participants
reported the average number of days per week and time per day engaged in
these activities. Minutes of activity were summed for each discrete activity
type and multiplied by metabolic equivalent (MET) level to compute the total
MET-minutes per week. Moderate and vigorous physical activity was derived

by the sum of moderate and vigorous MET-minutes/week (Bertoni et al., 2009).

e Total intentional exercise (MET-minute/week)[exams 1, 2, 3] was also
derived from MESA Typical Week Physical Activity Survey. It was the sum
of walking for exercise, sports/dancing, and conditioning MET-minutes/week
(Bertoni et al., 2009). The average daily time spent on doing intentional exercise
among the participants was 210 MET-minutes (equivalent to approximately two
hours of running per week), and the median daily time was 120 MET-minutes

(equivalent to approximately 1.2 hours of running per week).

e The trait anger and trait anxiety scales (Spielberger Trait Anger and
Anxiety Inventory) [exams 1, 3]: the trait anger scale was designed to
assess an individuals disposition to feeling angry, and trait scales were chosen
over state scales to better capture the relations that occur over longer periods.
The trait anxiety scale captures differences between people in their disposition
to respond to stressful situations with varying amounts of state anxiety. Possible
ranges are 10 to 40 for trait anger and 10 to 40 for trait anxiety. Higher scores

indicated higher levels of anger and anxiety, respectively.

e The chronic burden scale [exams 1, 3]: Respondents were asked to indicate
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whether they had experienced any ongoing difficulties in five domains (personal
health, health of close others, relationship, work, and finances) (Bromberger
and Matthews, 1996). For each of the five domains, respondents were classified
as having chronic burden if they had experienced the circumstance for six or
more months and it was moderately or very stressful. The number of domains
in which chronic burden was experienced was the estimate of overall chronic

burden. The range of the scale was 0 to 5.

Depressive symptoms [exams 1, 3, 4] were evaluated by the Center for
Epidemiologic Studies Depression (CESD) Scale (Radloff, 1977). The range of

the scale was 0 to 60. Higher scores indicating greater symptoms.

Perceived healthy food availability and walkability [exams 1, 2, 3,
4] were obtained by integrating responses from questionnaires administered to
MESA participants during MESA exams 2 and 3 (2002-2005) and MESA exam
5 (2010-2011) and two auxiliary surveys, the community surveys (CS), admin-
istered in 2004 and 2010 to random samples of other residents of MESA neigh-
borhoods. In both surveys, respondents were asked to consider their "neighbor-
hood” as the area within 20-minute walk or 1 mile from their home. Questions
regarding healthy food availability and walkability were answered using a 5-
point Likert scale (see Table 5.12 for the questions). To maximize the use of
available data, measures were aggregated at the census tract level by pooling all
available MESA and CS respondents in each tract using conditional empirical
Bayes estimates (Mujahid et al., 2008) adjusted for respondents age, sex, source,
and site. For example, a mean walkability for neighborhood k is a weighted av-
erage of the estimated crude mean walking environment for neighborhood k
and the estimated grand neighborhood walking environment mean. The range

of walkability is from 1 to 5. These estimates of neighborhood conditions were
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linked to each study participant based on the census tract of residence. Higher

values represent better neighborhood conditions.

5.8.2 Principal Component Analysis of the MESA data

Population stratification and admixture can result in nonhomogeneous distribu-
tion of allele frequencies for some genes in the study population. Consequently, it
can cause type I error inflation and/or loss of power in genetic association studies.
They are known to affect studies that collect data from multi-ethnic samples and
even those that target a single ethnicity and structured association tests (Pritchard
and Donnelly, 2001). Recent studies have shown that principal component analysis
(PCA) can provide control variables that yield type I error control similar to what was
previously observed with structured association tests (Patterson et al., 2006; Price
et al., 2006; Zhang et al., 2003). More importantly, this method does not require that
a panel of ancestry informative markers and is readily available as is the case with the
structured association tests approach. Here, we describe our approach to compute
principal components (PCs) in the MESA-SHARe study.

The PCs were computed on 8227 individuals. 2590 self-report as African-Americans,
2174 as Hispanics-Americans, 2686 as European-Americans and 777 as Chinese. The
PCs were computed separately in each self-reported ethnic group as well as in the
combined sample. Only the results of the combined analysis are relevant to this
chapter thus are reported here. Chromosome-specific PCs were first computed to
help reduce the computational burden, and these PCs were later combined to provide
the final set of eigenvalues and eigenvectors.

The combined analysis results show that the first three PCs should be considered
for further analysis according to the scree plot (elbow rule). The first PC explained
about 78%, the second explained about 16%, and the third accounted for less than

1% of the observed variation. These three PCs together explained about 96% of the
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total observed variation. The projection in the space represented by the first two
PCs in the combined analysis revealed two clines: variations between European and
African and variations between European and Chinese. The Hispanics appeared to
be the most heterogeneous group with some clustering with one of the other three
ethnicities in MESA and others displaying various levels of admixture, implying that

the third PC in the combined analyses seemed to explain a forth ancestral population.

Table 5.12: Questions for healthy food availability and walkability in MESA

Walking Environment:

1. My neighborhood offers many opportunities to be physically active.

2. Local sports clubs and other facilities in my neighborhood offer many
opportunities to get exercise.

3. It is pleasant to walk in my neighborhood.

4. The trees in my neighborhood provide enough shade.

5. In my neighborhood it is easy to walk places.

6. I often see other people walking in my neighborhood.

7. T often see other people exercising (e.g., jogging, bicycling, and playing sports)
in my neighborhood.

8. My neighborhood has heavy traffic.

9. There are busy roads to cross when out for walks in my neighborhood.

10. In my neighborhood it is easy to walk places.

Availability of Healthy Foods:

1. A large selection of fresh fruits and vegetables is available in my neighborhood.
2. The fresh fruits and vegetables in my neighborhood are of high quality.

3. A large selection of low-fat products is available in my neighborhood.

4. There are many opportunities to purchase fast foods in my neighborhood.
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Figure 5.7: Boxplot of genetic risk scores (count of BMI-increasing alleles) using 27
SNPs for the four race groups from the MESA data
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Figure 5.8: Baseline Pearson’s correlation coefficients and the corresponding p-values
among the five dietary variables (total energy intake was log-transformed),
intentional exercise (log-transformed), moderate and vigorous physical
activities (log-transformed), and BMI (log-transformed) in the MESA
data
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CHAPTER VI

Conclusions and Future Work

This chapter reviews the dissertation, summarizes its contributions, and discusses
directions for future study. This dissertation has concentrated on the problem of
adapting classical models for non-additivity proposed in the ANOVA literature, orig-
inally designed for single observations per cell, to modeling of GEI/GGI in longitu-
dinal cohort studies. There are, however, still many extensions of this research that

deserve further investigation.

6.1 Summary of This Dissertation

In Chapter 11, we first provided an overview of the classical interaction models that
use a sparse representation of interaction structure to save df for the interaction term.
Then we explored the interaction structures by simply reducing repeated measures
data to summary level cell means in a two-way layout. Even though the unbalanced
repeated measures data structures were not taken into account, the cell-mean based
method can still provide an exploratory analysis of interaction structures.

In Chapter III, we modified the cell-mean based method to properly account for
the correlation across repeated measurements. Moreover, we developed a unique para-
metric bootstrap procedure for testing GEI and GGI in the form of Tukey’s, Mendel’s,
and AMMI models. Specifically, the proposed two-stage estimation approach was
performed in a regression setting that can be incorporated into any standard mixed

model estimation tools. Both proposed methods accounted for the unbalanced and
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longitudinal nature of the outcome data and were developed based on likelihood ratio
test. These classical interaction and AMMI models were compared to a fully satu-
rated interaction model. Our simulation studies showed that AMMI1 appeared to be
a robust and flexible model in detecting interaction effects across a spectrum of inter-
action structures. More importantly, it was relatively powerful in detecting certain
epistasis structures when main effects were absent. Tukey’s and Mandel’s models,
unfortunately, could fail to detect interactions when the structure was misspecified.
In Chapter IV, we proposed the estimation algorithm for Tukey’s 1-df model and
showed that it may be a useful model for GEI when both G and E have strong main
effects. We also proposed an adaptive shrinkage estimator that combines estimates
from Tukey’s one-df model and a saturated interaction model for GEI. The shrinkage
estimator shrinks the MLEs under a general, saturated interaction structure toward
Tukey’s one-df model estimator that allows for data-adaptive relaxation of the struc-
tural assumption in Tukey’s product form. Our unique simulation setting of multiple
GEI tests represented the search for GEI over many candidate SNPs with different
interaction patterns. The results indicated that the test based on the shrinkage esti-
mator can be considered as a robust and unified approach for interaction detection.
In Chapter V, we developed the estimation algorithm specifically for AMMI1
models and proposed a corresponding likelihood-based test for GEI in longitudinal
cohort studies. The null distribution of the test statistic was approximated by a
chi-square with an estimated fractional df. We applied AMMI models to tests for
interactions between BMI SNPs and several exposure variables (e.g., diet, exercise,
psychosocial factors) using the data in MESA. To illustrate the analysis in a two-way
table under the framework of categorical G and E, we summarized information from
multiple exposures to create an overall health profile using various clustering and
classification methods. In addition, we considered to extend the model to allow for

time-varying effects by categorizing the MESA data into several age groups.

155



6.2 Future Work

Statistical methods specifically designed for GEI/GGI in longitudinal cohort stud-
ies are still very limited. There are several interesting research questions pertinent
to this dissertation that deserve future work. First, the problem of selecting an op-
timal number of interaction factors under the AMMI model is an important topic
that needs further research to obtain appropriate inference. Second, new strategies
are needed to efficiently assess time-varying interaction effects using data from lon-
gitudinal cohort studies in order to better understand the long-term implications of
GEI in public health. Third, given that we have only focused on normally distributed
random effects and errors, future study could investigate the application of these
classical interaction models to outcome data following other common distributions.
Fourth, instead of considering the interaction as fixed effect, one could treat it as
random effect or assuming that G is fixed and E is random (or vice versa), which will
lead to a totally different interpretation. Lastly, given that the classical interaction
models and AMMI models were developed under the balanced design setting for crop
cultivar performance trials, the impact of missingness on interaction tests using these
models has not been considered. However, missing data or dropouts during follow-up
visits is an inevitable issue in human studies and deserves future investigation. In
conclusion, the development of a comprehensive modeling approach and a powerful
testing device tailored to GEI/GGI in longitudinal settings is necessary to provide a
thorough understanding of the contributions of genes and environmental exposures

to complex diseases.
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