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ABSTRACT

Group, Lattice and Polar Codes for Multi-terminal Communications

by

Aria Ghasemian Sahebi

Chair: S. Sandeep Pradhan

We study the performance of algebraic codes for multi-terminal communications.

This thesis consists of three parts: In the first part, we analyze the performance of

group codes for communications systems. We observe that although group codes are

not optimal for point-to-point scenarios, they can improve the achievable rate region

for several multi-terminal communications settings such as the Distributed Source

Coding and Interference Channels. The gains in the rates are particularly significant

when the structure of the source/channel is matched to the structure of the underlying

group. In the second part, we study the continuous alphabet version of group/linear

codes, namely lattice codes. We show that similarly to group codes, lattice codes

can improve the achievable rate region for multi-terminal problems. In the third part

of the thesis, we present coding schemes based on polar codes to practically achieve

the performance limits derived in the two earlier parts. We also present polar coding

schemes to achieve the known achievable rate regions for multi-terminal communi-

cations problems such as the Distributed Source Coding, the Multiple Description

Coding, Broadcast Channels, Interference Channels and Multiple Access Channels.

x



CHAPTER I

Introduction

Approaching information theoretic performance limits of communications using

structured codes has been of great interest for the last several decades. The ear-

lier attempts to design computationally efficient encoding and decoding algorithms

for point-to-point communication (both channel coding and source coding) resulted

in injection of finite field structures to the coding schemes. In the channel coding

problem, the channel input alphabets are replaced with algebraic fields and encoders

are replaced with matrices. Similarly in source coding problem, the reconstruction

alphabets are replaced with a finite fields and decoders are replaced with matrices.

Later, these coding approaches were extended to weaker algebraic structures such as

rings and groups [1–3, 7, 18, 19, 23, 24, 28, 29, 35, 42, 45]1. The motivation for this are

two fold: a) Finite fields exist only for alphabets with size equal to a prime power,

and b) For communication under certain constraints, codes with weaker algebraic

structures have better properties. For example, when communicating over an addi-

tive white Gaussian noise channel with 8-PSK constellation, codes over Z8, the cyclic

group of size 8, are more desirable over binary linear codes because the structure

of the code is matched to the structure of the signal set [2], and hence the former

have superior error correcting properties. As another example, construction of polar

1Note that this is an incomplete list. There is a vast body of work on group codes. See [19] for
a more complete bibliography.
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codes over alphabets of size pr, for r > 1 and p prime, is simpler with a module

structure rather than a vector space structure [54,58,66]. Subsequently, as interest in

network information theory grew, these codes were used to approach the information-

theoretic performance limits of certain special cases of multi-terminal communication

problems [26, 57, 75, 78]. These limits were obtained earlier using the random coding

ensembles in the information theory literature.

In 1979, Korner and Marton, in a significant departure from tradition, showed that

for a binary distributed source coding problem, the asymptotic average performance

of binary linear code ensembles can be superior to that of the standard random cod-

ing ensembles. Although structured codes were being used in communication mainly

for computational complexity reasons, the duo showed that, in contrast, even when

computational complexity is not an issue, the use of structured codes leads to su-

perior asymptotic performance limits in multi-terminal communication problems. In

the recent past, such gains were shown for a wide class of problems [4, 42, 50, 56, 72].

In [42, 60], an inner bound to the optimal rate-distortion region for the distributed

source coding problem is developed in which Abelian group codes were used as build-

ing blocks in the coding schemes. Similar coding approaches were applied for the in-

terference channel and the broadcast channel in [52,53]. The motivation for studying

Abelian group codes beyond the non-existence of finite fields over arbitrary alphabets

is the following: The algebraic structure of the code imposes certain restrictions on the

performance. For certain problems, linear codes were shown to be not optimal [42],

and finite Abelian group codes exhibit a superior performance. For example, consider

a distributed source coding problem with two statistically correlated but individually

uniform quaternary sources X and Y that are related via the relation X = Y + Z,

where + denotes addition modulo-4 and Z is a hidden quaternary random variable

that has a non-uniform distribution and is independent of Y . The joint decoder wishes

to reconstruct Z losslessly. In this problem, Abelian group codes over the cyclic group

2



Z4 perform better than linear codes over the Galois field of size 4. In summary,

the main reason for using algebraic structured codes in this context is performance

rather than complexity of encoding and decoding. Hence information-theoretic char-

acterizations of asymptotic performance of Abelian group code ensembles for various

communication problems and under various decoding constraints became important.

Such performance limits have been characterized in certain special cases. It is

well-known that binary linear codes achieve the capacity of binary symmetric chan-

nels [25]. More generally, it has also been shown that q-ary linear codes can achieve

the capacity of symmetric memoryless channels [23] and linear codes can be used to

compress a source losslessly down to its entropy [41]. Goblick [3] showed that bi-

nary linear codes achieve the rate-distortion function of binary uniform sources with

Hamming distortion criterion. Group codes were first studied by Slepian [68] for the

Gaussian channel. In [6], the capacity of group codes for certain classes of channels

has been computed. Further results on the capacity of group codes were established

in [7, 8]. The capacity of group codes over a class of channels exhibiting symmetries

with respect to the action of a finite Abelian group has been investigated in [18].

The thesis is organized as follows: Chapter II is devoted to the introduction of

finite Abelian group codes and the performance of such codes is studied for point-to-

point problems. We study both the channel coding and the source coding problems

for arbitrary discrete memoryless sources and channels. Our contribution in this

chapter is the source coding result and the generality of the channel coding result.

Furthermore, we employ joint encoding and decoding schemes based on joint typical-

ity, resulting in a simplified derivation. The existing results on the performance of

Abelian group codes include [18] in which the performance of Abelian group codes over

symmetric channels is investigated and [42] in which Zpr alphabets are considered.

In Chapter III, we study the performance of these codes for some multi-terminal

3



problems. We derive an achievable rate region for the distributed source coding

problem and interference channels as examples of multi-terminal problems in which

structured codes prove to be superior to traditional random codes. Further results

for other problems can be obtained in the same fashion. In Chapter IV, we con-

sider a class of non-Abelian groups and investigate the coding performance of codes

over these groups. The contribution of this chapter is the characterization of the

ensemble of all group codes over Dihedral groups and showing that the average per-

formance of this ensemble can be superior to other coding schemes for some examples.

Lattice codes are the analogue of linear/group codes for the the case where the

channel inputs or the source reconstructions take values from a continuous alphabet

(R for example). In Chapter V, we discuss the performance of lattice codes for some

multi-terminal communications problems namely the Gelfand-Pinsker, the Wyner-

Ziv and the distributed source coding problems. For the Gelfand-Pinsker and the

Wyner-Ziv problems, we show that nested lattice codes are optimal. For the dis-

tributed source coding problem, we derive an achievable rate region which is strictly

larger that known achievable regions.

In Chapters VI and VII, we study polar codes. Polar codes were originally intro-

duced as linear codes achieving the symmetric capacity of channels with binary input

alphabets. They were later generalized to achieve the symmetric rate-distortion func-

tion for sources with binary reconstructions. Traditionally in information and coding

theory, random ensembles of codes are considered and the average performance over

the ensemble is evaluated. In contrast, polar codes constitute the first class of codes

with an explicit construction with a (sub)-optimal performance. We make the obser-

vation that polar codes can be extended for arbitrary DMCs and DMSs if they are

considered as nested group codes. In other words, we extend polar codes to achieve

4



the symmetric capacity of arbitrary DMCs and the symmetric rate-distortion func-

tion for arbitrary DMSs.

Our next contribution is to show that polar codes are optimal (in the Shannon

sense) for both channel coding and source coding problems. We also show that polar

codes are optimal for many multi-terminal communication problems in the sense that

they achieve the best known achievable rate regions for such problems. This includes

the distributed source coding problem, the Korner-Marton problem, the multiple ac-

cess channel, and computation over MAC. For the broadcast channel, we show that

polar codes achieve Marton’s inner bound with one additional constraint on auxiliary

random variables.

In summary, the thesis consists of results on the performance of structured codes

for the following problems:

• Abelian group codes:

– Point-to-point channel coding

– Lossy source coding

– Distributed source coding

– The interference channel

• Non-Abelian group codes (over D2p only):

– Point-to-point channel coding

– Computation over multiple-access channels

• Lattice Codes

– Point-to-point channel coding problem with state information (Gelfand-

Pinsker problem).
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– Lossy source coding with state information (Wyner-Ziv problem)

– Distributed source coding

• Polar codes

– Point-to-point channel coding (symmetric capacity)

– Lossy source coding (Symmetric rate-distortion)

– Point-to-point channel coding (Shannon capacity)

– Lossy source coding (Shannon rate-distortion)

– Distributed source coding (Berger-Tung and Korner-Marton problems)

– Multiple access channels and computation over MAC

– Broadcast channels

– Multiple descriptions Coding

6



CHAPTER II

Abelian Group Codes for Point-to-Point

Communications

In this chapter, we focus on two problems. First, we consider the lossy source

coding problem for arbitrary discrete memoryless sources in which the distortion in

measured using a single-letter criterion and the reconstruction alphabet is equipped

with the structure of a finite Abelian group G. We derive an upper bound on the

achievable rate-distortion function using group codes over G of some arbitrarily large

block-length n. The average performance of the ensemble is shown to be the sym-

metric rate-distortion function of the source when the underlying group is a field i.e.

the Shannon rate-distortion function with the additional constraint that the recon-

struction variable is uniformly distributed. For the general case, it turns out that

several additional terms appear corresponding to subgroups of the underlying group

in the form of a maximization and this can result in a larger rate compared to the

symmetric rate for a given distortion level.

In the second part, we consider the channel coding problem for arbitrary discrete

memoryless channels. Without a loss of generality, we assume that the channel input

alphabet is equipped with the structure of a finite Abelian group G. We derive a

lower bound on the capacity of such channels achievable using group codes which

are subgroups of Gn. We show that the achievable rate is equal to the symmetric
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capacity of the channel when the underlying group is a field; i.e., it is equal to the

Shannon mutual information between the channel input and the channel output when

the channel input is uniformly distributed. Similarly to the source coding problem,

we show that in the general case, several additional terms appear corresponding to

subgroups of the underlying group in the form of a minimization and the achievable

rate can be smaller than the symmetric capacity of the channel.

It can be noted that the bounds on the performance limits as mentioned above

apply to any arbitrary discrete memoryless case. Moreover, we use joint typicality

encoding and decoding [21] for both problems at hand. This will make the analysis

more tractable. In this approach we use a synergy of information-theoretic and group-

theoretic tools. The traditional approaches have looked at encoding and decoding of

structured codes based on either minimum distance or maximum likelihood. We in-

troduce two information quantities that capture the performance limits achievable

using Abelian group codes that are analogous to the mutual information which cap-

tures the Shannon performance limits when no algebraic structure is enforced on the

codes. They are source coding group mutual information and channel coding group

mutual information. The converse bounds for both problems will be addressed in a

future work.

2.1 Preliminaries

The Source Model

The source is modeled as a discrete-time memoryless random process with each

sample taking values from a finite set X called alphabet according to the distribution

pX . The reconstruction alphabet is denoted by U and the quality of reconstruction

is measured by a single-letter distortion functions d : X × U → R+. We denote

this source by (X ,U , pX , d). For two sequences x = (x1, · · · , xn) ∈ X n and u =

8



(u1, · · · , un) ∈ U n, with a slight abuse of notation, we denote the average distortion

by

d(x,u) =
1

n

n∑

i=1

d(xi, ui)

The Channel Model

We consider discrete memoryless channels used without feedback. We associate

two finite sets X and Y with the channel as the input and output alphabets. The

input-output relation of the channel is characterized by a conditional probability law

WY |X(y|x) for x ∈X and y ∈ Y . The channel is specified by (X ,Y ,WY |X).

Review of Groups

In this section, we review some of the basic concepts of group theory. For a more

complete discussion, we refer the reader to [16]. A group (G,+) is a set G together

with a binary operation + such that

• For all a, b ∈ G, a+ b ∈ G.

• For all a, b, c ∈ G, a+ (b+ c) = (a+ b) + c.

• There exists 0 ∈ G such that a+ 0 + 0 + a = a ∈ G.

• For all a ∈ G, there exists b ∈ G such that a+ b = b+ a = 0.

If in addition to the above, the following condition is satisfied

• For all a, b ∈ G, a+ b = b+ a.

then the group is called Abelian. We focus on finite groups, i.e., groups whose set is

finite. When the group operation is clear from the context, we sometimes denote the

group (G,+) simply as G. Given a group G, a subset H of G is called a subgroup of

G if it is closed under the group operation. In this case, (H,+) is a group in its own

9



right. This is denoted by H ≤ G. A coset C of a subgroup H is a shift of H by an

arbitrary element a ∈ G (i.e., C = a + H for some a ∈ G). For a subgroup H of G,

cosets of H is G form a partition of G. The number of cosets of H in G is called the

index of H in G and is denoted by |G : H|. The index of H in G is equal to |G|/|H|

where |G| and |H| are the cardinalities of G and H respectively. If |G| is a power

of a prime p, we say G is a p-group. For a prime p dividing the cardinality of G, a

Sylow -p subgroup of G is a subgroup of G whose cardinality is a power of p which is

not contained in another p-subgroup of G.

Given two groups (G,+G) and (K,+K), a mapping φ : G→ K is called a homomor-

phism if for all a, b ∈ G, φ(a +G b) = φ(a) +K φ(b). The groups G and K are called

to be isomorphic if there exists a bijective homomorphism φ between G and K. In

this case, we write G ∼= K.

All groups referred to in this chapter are Abelian groups.

Group Codes

Given a group G, a group code C over G with block length n is any subgroup

of Gn. A shifted group code over G, C + b is a translation of a group code C by a

fixed vector b ∈ Gn. When the underlying group G is a finite field, the group code is

a subspace over G and is called a linear code. Group codes generalize the notion of

linear codes over fields to sources with reconstruction alphabets (and channels with

input alphabets) having composite sizes.

Achievability for Source Coding and the Rate-Distortion Function

For a group G, a group transmission system with parameters (n,Θ,∆, τ) for com-

pressing a given source (X ,U = G,PX , d) consists of a codebook C, an encoding

mapping Enc(·), and a decoding mapping Dec. The codebook C is a shifted group

10



code over G whose size is equal to Θ and the mappings are defined as

Enc : X n → {1, 2, . . . , Θ},

Dec : {1, 2, . . . , Θ} → C

such that

P
[
d
(
Xn,Dec

(
Enc(Xn)

))
> ∆

]
≤ τ

where Xn is the random vector of length n generated by the source. In this transmis-

sion system, n denotes the block length, logΘ denotes the number of “channel uses”,

∆ denotes the distortion level, and τ is a bound on the probability of exceeding the

distortion level ∆.

Given a source (X ,U = G,PX , d), a pair of non-negative real numbers (R,D) is

said to be achievable using group codes if for every ε > 0 and for all sufficiently large

numbers n, there exists a group transmission system with parameters (n,Θ,∆, τ) for

compressing the source such that

1

n
logΘ ≤ R + ε, ∆ ≤ D + ε, τ ≤ ε

The optimal group rate-distortion function R∗(D) of the source is given by the infi-

mum of the rates R such that (R,D) is achievable using group codes.

Achievability for Channel Coding

For a group G, a group transmission system with parameters (n,Θ, τ) for reliable

communication over a given channel (X = G,Y ,WY |X) consists of a codebook C,

an encoding mapping Enc(·), and a decoding mapping Dec(·). The codebook C is a

shifted subgroup of Gn group code over G whose size is equal to Θ and the mappings

are defined as

Enc : {1, 2, · · · , Θ} → C

Dec : Y n → {1, 2, · · · , Θ}

11



such that

Θ∑

m=1

1

Θ

∑

y:Dec(y)6=m

W n(y|Enc(m)) ≤ τ

or equivalently,

Θ∑

m=1

1

Θ

∑

x∈X n

1{x=Enc(m)}
∑

y∈Y n

W n(y|x)1{m 6=Dec(y)} ≤ τ

Given a channel (X = G,Y ,WY |X), the rate R is said to be achievable using group

codes if for all ε > 0 and for all sufficiently large n, there exists a group transmission

system for reliable communication with parameters (n,Θ, τ) such that

1

n
logΘ ≥ R− ε, τ ≤ ε

The group capacity of the channel C is defined as the supremum of the set of all

achievable rates using group codes.

Typicality

Consider two random variables X and Y with joint probability mass function

pXY (x, y) for (x, y) ∈X ×Y . Let n be an integer and let ε be a positive real number.

The sequence pair (x,y) belonging to X n × Y n is said to be jointly ε-typical with

respect to pXY if

∀a ∈X , ∀b ∈ Y :

∣∣∣∣
1

n
N (a, b|x,y)− pXY (a, b)

∣∣∣∣ ≤
ε

|X ||Y |

and none of the pairs (a, b) with pXY (a, b) = 0 occurs in (x,y). Here, N(a, b|x,y)

counts the number of occurrences of the pair (a, b) in the sequence pair (x,y). We

denote the set of all jointly ε-typical sequence pairs in X n × Y n by Anε (X, Y ).

Given a sequence x ∈ Anε (X), the set of conditionally ε-typical sequences Anε (Y |x) is

defined as

Anε (Y |x) = {y ∈ Y n |(x,y) ∈ Anε (X, Y )}

12



Notation

In our notation, P is the set of all primes, Z+ is the set of positive integers, R+

is the set of non-negative reals, and for a prime p and a positive integer r, Zpr is the

cyclic group of order pr. Since we deal with summations over several groups in this

thesis, when not clear from the context, we indicate the underlying group in each

summation, e.g., summation over the group G is denoted by

(G)︷︸︸︷∑
. Direct sum of

groups is denoted by
⊕

and direct product of sets is denoted by
⊗

.

2.2 The Ensemble of Abelian Group Codes

In this section, we use a standard characterization of Abelian groups and introduce

the ensemble of Abelian group codes used in the thesis.

2.2.1 A Characterization of Abelian Groups

For an Abelian group G, let P(G) denote the set of all prime divisors of |G| and

for a prime p ∈ P(G) let Sp(G) be the corresponding Sylow subgroup of G. It is

known [36, Theorem 3.3.1] that any Abelian group G can be decomposed into a direct

sum of its Sylow subgroups in the following manner

G =
⊕

p∈P(G)

Sp(G) (2.1)

Furthermore, each Sylow subgroup Sp(G) can be decomposed into Zpr groups as

follows:

Sp(G) ∼=
⊕

r∈Rp(G)

Z
Mp,r

pr (2.2)

where Rp(G) ⊆ Z+ and for r ∈ Rp(G), Mp,r is a positive integer. Note that Z
Mp,r

pr

is defined as the direct sum of the ring Zpr with itself for Mp,r times. Combining

13



Equations (2.1) and (2.2), we can represent any Abelian group as follows:

G ∼=
⊕

p∈P(G)

⊕

r∈Rp(G)

Z
Mp,r

pr =
⊕

p∈P(G)

⊕

r∈Rp(G)

Mp,r⊕

m=1

Z
(m)
pr (2.3)

where Z
(m)
pr is called the mth Zpr ring of G or the (p, r,m)th ring of G. Equivalently,

this can be written as follows

G ∼=
⊕

(p,r,m)∈G (G)

Z
(m)
pr

where G (G) ⊆ P× Z+ × Z+ is defined as:

G (G) = {(p, r,m) ∈ P× Z+ × Z+|p ∈P(G), r ∈ Rp(G),m ∈ {1, 2, · · · ,Mp,r}}

This means that any element a of the Abelian group G can be regarded as a vector

whose components are indexed by (p, r,m) ∈ G (G) and whose (p, r,m)th component

ap,r,m takes values from the ring Zpr . With a slight abuse of notation, we represent

an element a of G as

a =
⊕

(p,r,m)∈G (G)

ap,r,m

Furthermore, for two elements a, b ∈ G, we have

a+ b =
⊕

(p,r,m)∈G (G)

ap,r,m +pr bp,r,m

where + denotes the group operation and +pr denotes addition mod-pr. More gener-

ally, let a, b, · · · , z be any number of elements of G. Then we have

a+ b+ · · ·+ z =
⊕

(p,r,m)∈G (G)

(ap,r,m +pr bp,r,m +pr · · ·+pr zp,r,m) (2.4)

This can equivalently be written as

[a+ b+ · · ·+ z]p,r,m = ap,r,m +pr bp,r,m +pr · · ·+pr zp,r,m

where [·]p,r,m denotes the (p, r,m)th component of it’s argument.
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Let IG:p,r,m ∈ G be a generator for the group which is isomorphic to the (p, r,m)th

ring of G. Then we have

a =

(G)︷︸︸︷∑

(p,r,m)∈G (G)

ap,r,mIG:p,r,m (2.5)

where the summations are done with respect to the group operation and the mul-

tiplication ap,r,mIG:p,r,m is by definition the summation (with respect to the group

operation) of IG:p,r,m to itself for ap,r,m times. In other words, ap,r,mIG:p,r,m is the short

hand notation for

ap,r,mIG:p,r,m =

(G)︷︸︸︷∑

i∈{1,··· ,ap,r,m}

IG:p,r,m

where the summation is the group operation.

Example: Let G = Z4 ⊕ Z3 ⊕ Z2
9. Then we have P(G) = {2, 3}, S2(G) = Z4 and

S3(G) = Z3 ⊕ Z2
9, R2(G) = {2}, R3(G) = {1, 2}, M2,2 = 1, M3,1 = 1, M3,2 = 2 and

G (G) = {(2, 2, 1), (3, 1, 1), (3, 2, 1), (3, 2, 2)}

Each element a of G can be represented by a quadruple (a2,2,1, a3,1,1, a3,2,1, a3,2,2) where

a2,2,1 ∈ Z4, a3,1,1 ∈ Z3 and a3,2,1, a3,2,2 ∈ Z9. Finally, we have IG:2,2,1 = (1, 0, 0, 0),

IG:3,1,1 = (0, 1, 0, 0), IG:3,2,1 = (0, 0, 1, 0), IG:3,2,2 = (0, 0, 0, 1) so that Equation (2.5)

holds.

In the following section, we introduce the ensemble of Abelian group codes which

we use in this chapter.

2.2.2 The Image Ensemble

Recall that for a positive integer n, an Abelian group code of length n over the

group G is a subgroup of Gn. Our ensemble of codes consists of all Abelian group

codes over G, i.e., we consider all subgroups of Gn. We use the following fact to

characterize all subgroups of Gn:
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Lemma II.1. For an Abelian group G̃, let φ : J → G̃ be a homomorphism from

some Abelian group J to G̃. Then φ(J) ≤ G̃, i.e., the image of the homomorphism

is a subgroup of G̃. Moreover, for any subgroup H̃ of G̃ there exists a corresponding

Abelian group J and a homomorphism φ : J → G̃ such that H̃ = φ(J).

Proof. The first part of the lemma is proved in [16, Theorem 12-1]. For the second

part, Let J be isomorphic to H̃ and let φ be the identity mapping (more rigorously,

let φ be the isomorphism between J and H̃).

In order to use the above lemma to construct an ensemble of subgroups of Gn, we

need to identify all groups J from which there exist non-trivial homomorphisms to

Gn. Then the above lemma implies that for each such J and for each homomorphism

φ : J → Gn, the image of the homomorphism is a group code over G of length n and

for each group code C ≤ Gn, there exists a group J and a homomorphism such that

C is the image of the homomorphism. This ensemble corresponds to the ensemble of

linear codes characterized by their generator matrix when the underlying group is a

field of prime size. Note that as in the case of standard ensembles of linear codes, the

correspondence between this ensemble and the set of Abelian group codes over G of

length n may not be one-to-one.

Let G̃ and J be two Abelian groups with decompositions:

G̃ =
⊕

(p,r,m)∈G (G̃)

Z
(m)
pr

J =
⊕

(q,s,l)∈G (J)

Z
(l)
qs

and let φ be a homomorphism from J to G̃. For (q, s, l) ∈ G (J) and (p, r,m) ∈ G (G̃),

let

g(q,s,l)→(p,r,m) = [φ(IJ :q,s,l)]p,r,m

16



where IJ :q,s,l ∈ J is the standard generator for the (q, s, l)th ring of J and [φ(IJ :q,s,l)]p,r,m

is the (p, r,m)th component of φ(IJ :q,s,l) ∈ G̃. For a =
⊕

(q,s,l)∈G (J) aq,s,l ∈ J , let

b = φ(a) and write b =
⊕

(p,r,m)∈G (G̃) bp,r,m. Note that as in Equation (2.5), we can

write:

a =

(J)︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lIJ :q,s,l

=

(J)︷︸︸︷∑

(q,s,l)∈G (J)

(J)︷︸︸︷∑

i∈{1,··· ,aq,s,l}

IJ :q,s,l

where the summations are the group summations. We have

bp,r,m = [φ(a)]p,r,m

=


φ




(J)︷︸︸︷∑

(q,s,l)∈G (J)

(J)︷︸︸︷∑

i∈{1,··· ,aq,s,l}

IJ :q,s,l






p,r,m

(a)
=




(G̃)︷︸︸︷∑

(q,s,l)∈G (J)

(G̃)︷︸︸︷∑

i∈{1,··· ,aq,s,l}

φ (IJ :q,s,l)



p,r,m

(b)
=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i∈{1,··· ,aq,s,l}

[φ (IJ :q,s,l)]p,r,m

(c)
=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,l [φ (IJ :q,s,l)]p,r,m

=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lg(q,s,l)→(p,r,m)

Note that (a) follows since φ is a homomorphism; (b) follows from Equation (2.4); and

(c) follows by using aq,s,l [φ (IJ :q,s,l)]p,r,m as the short hand notation for the summation

of [φ (IJ :q,s,l)]p,r,m to itself for aq,s,l times.

Note that g(q,s,l)→(p,r,m) represents the effect of the (q, s, l)th component of a on

the (p, r,m)th component of b dictated by the homomorphism. This means that the
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homomorphism φ can be represented by

φ(a) =
⊕

(p,r,m)∈G (G̃)

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lg(q,s,l)→(p,r,m) (2.6)

where aq,s,lg(q,s,l)→(p,r,m) is the short-hand notation for the mod-pr addition of g(q,s,l)→(p,r,m)

to itself for aq,s,l times. We have the following lemma on g(q,s,l)→(p,r,m):

Lemma II.2. For a homomorphism described by (2.6), we have

g(q,s,l)→(p,r,m) = 0 If p 6= q

g(q,s,l)→(p,r,m) ∈ pr−sZpr If p = q, r ≥ s

Moreover, any mapping described by (2.6) and satisfying these conditions is a homo-

morphism.

Proof. The proof is provided in Appendix 2.7.0.1.

This lemma implies that in order to construct a subgroup of G̃, we only need to

consider homomorphisms from an Abelian group J to G̃ such that

P(J) ⊆P(G̃)

since if for some (q, s, l) ∈ G (J), q /∈P(G̃) then φ(a) would not depend on aq,s,l. For

p ∈P(G̃), define

rp = max Rp(G) (2.7)

We show that we can restrict ourselves to J ’s such that for all (q, s, l) ∈ G (J), s ≤ rq.

For (q, s, l) ∈ G (J), assume s > rp. Then for all (p, r,m) ∈ G (G̃), if p = q, we have

s > r. Let (p, r,m) ∈ G (G̃) be such that p = q. Since g(q,s,l)→(p,r,m) ∈ Zpr and r ≤ rq,

we have

(
aq,s,lg(q,s,l)→(p,r,m)

)
(mod pr) =

(
(aq,s,l) (mod pr)g(q,s,l)→(p,r,m)

)
(mod pr)

=
(
(aq,s,l) (mod prq)g(q,s,l)→(p,r,m)

)
(mod pr)
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This implies that for all a ∈ J and all (q, s, l) ∈ G (J), in the expression for the

(p, r,m)th component of φ(a) with p = q, aq,s,l appears as (aq,s,l) (mod qrq). There-

fore, it suffices for aq,s,l to take values from Zqrq and this happens if s ≤ rq.

To construct Abelian group codes of length n over G, let G̃ = Gn. we have

Gn ∼=
⊕

p∈P(G)

⊕

r∈Rp

Z
nMp,r

pr =
⊕

p∈P(G)

⊕

r∈Rp

nMp,r⊕

m=1

Z
(m)
pr =

⊕

(p,r,m)∈G (Gn)

Z
(m)
pr (2.8)

Define J as

J =
⊕

q∈P(G)

rq⊕

s=1

Z
kq,s
qs =

⊕

q∈P(G)

rq⊕

s=1

kq,s⊕

l=1

Z
(l)
qs =

⊕

(q,s,l)∈G (J)

Z
(l)
qs (2.9)

for some positive integers kq,s.

Example: Let G = Z8 ⊕ Z9 ⊕ Z5. Then we have

J = Z
k2,1
2 ⊕ Zk2,24 ⊕ Zk2,38 ⊕ Zk3,13 ⊕ Zk3,29 ⊕ Zk5,15

Define

k =
∑

q∈P(G)

rq∑

s=1

kq,s

and wq,s = kq,s
k

for q ∈P(G) and s = 1, · · · , rq so that we can write

J =
⊕

q∈P(G)

rq⊕

s=1

kwq,s⊕

l=1

Z
(l)
qs (2.10)

for some constants wq,s adding up to one.

The ensemble of Abelian group encoders consists of all mappings φ : J → Gn of

the form

φ(a) =
⊕

(p,r,m)∈G (Gn)

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lg(q,s,l)→(p,r,m) (2.11)
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for a ∈ J where g(q,s,l)→(p,r,m) = 0 if p 6= q, g(q,s,l)→(p,r,m) is a uniform random variable

over Zpr if p = q, r ≤ s, and g(q,s,l)→(p,r,m) is a uniform random variable over pr−sZpr

if p = q, r ≥ s. The corresponding shifted group code is defined by

C = {φ(a) +B|a ∈ J} (2.12)

where B is a uniform random variable over Gn.

Remark II.3. An alternate approach to characterizing Abelian group codes is to con-

sider kernels of homomorphisms (the kernel ensemble). To construct an ensemble of

Abelian group codes in this manner, let φ be a homomorphism from Gn into J such

that for a ∈ Gn,

φ(a) =
⊕

(q,s,l)∈G (J)

(Zqs )︷︸︸︷∑

(p,r,m)∈G (Gn)

ap,r,mg(p,r,m)→(q,s,l)

where g(p,r,m)→(q,s,l) = 0 if q 6= p, g(p,r,m)→(q,s,l) is a uniform random variable over

Zqs if q = p, s ≤ r, and g(p,r,m)→(q,s,l) is a uniform random variable over ps−rZqs if

q = p, s ≥ r. The code is given by C = {a ∈ Gn|φ(a) = c} where c is a uniform

random variable over J .

In this paper, we use the image ensemble for both the channel and the source coding

problem; however, similar results can be derived using the kernel ensemble as well.

Remark II.4. For an Abelian group G, define

Q(G) = {(p, r)|p ∈P(G), r ∈ Rp(G)} (2.13)

Consider the smaller ensemble of codes consisting of homomorphisms from Abelian

groups J of the form

J =
⊕

(p,r)∈Q(G)

Z
kwp,r
pr (2.14)

for some integer k and some wp,r’s adding up to one. The rate of a code in this

ensemble is equal to

R =
1

n
log |J | = k

n

∑

(p,r)∈Q(G)

rwp,r log p (2.15)
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It can be shown that the average performance of codes over this ensemble is equal to

the average performance of the ensemble of all codes considered above. In the rest of

this paper, we consider this simpler ensemble to prove the achievability results.

2.3 The Performance of Abelian Group Codes

In this section, we provide an upper bound on the rate-distortion function for a

given source and a lower bound on the capacity of a given channel using group codes

when the underlying group is an arbitrary Abelian group represented by Equation

(2.3). We start by defining seven objects and then state two theorems using these

objects, and finally provide an interpretation of the results and these objects with

two examples.

2.3.1 Definitions

For an Abelian group G, define

Q(G) = {(p, r)|p ∈P(G), r ∈ Rp(G)} (2.16)

We denote vectors θ̂, w and θ whose components are indexed by (p, r) ∈ Q(G) by

(θ̂p,r)(p,r)∈Q(G), (wp,r)(p,r)∈Q(G) and (θp,r)(p,r)∈Q(G) respectively. For θ̂ = (θ̂p,r)(p,r)∈Q(G),

define

θθθ(θ̂) =


 min

(q,s)∈Q(G)
q=p

|r − s|+ + θ̂q,s




(p,r)∈Q(G)

Note that θ̂ and θ = θθθ(θ̂) correspond to unique subgroups Hθ̂ and Hθ of J and G

respectively where

Hθ̂ =
⊕

(p,r)∈Q(G)

pθ̂p,rZ
kwp,r
pr ≤ J

Hθ =
⊕

(p,r,m)∈G (G)

pθp,rZ
(m)
pr ≤ G
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To give some intuition about the function θθθ(·), we state that for any homomorphism

φ : J → Gn, we have φ(Hθ̂) ≤ Hθ and for some homomorphism φ : J → Gn, we have

φ(Hθ̂) = Hθ. Let

Θ =
{
θθθ(θ̂)

∣∣∣(θ̂q,s)(q,s)∈Q(G) : 0 ≤ θ̂q,s ≤ s
}

(2.17)

This set corresponds to a collection of subgroups of G which appear in the rate-

distortion function. In other words only certain subgroups of the underlying group

rather than all of them become important in the rate-distortion function. This will

be clarified in the proof of the theorem. For θ ∈ Θ, define

ωθ =

∑
(p,r)∈Q(G) θp,rwp,r log p
∑

(p,r)∈Q(G) rwp,r log p
(2.18)

Let X and U be jointly distributed random variables and let [U ]θ = U + Hθ be a

random variable taking values from the cosets of Hθ in G. We define the source coding

group mutual information between U and X as

IGs.c.(U ;X) = min
wp,r,(p,r)∈Q(G)∑

wp,r=1

max
θ∈Θ
θ 6=000

1

ωθ

(
log
|G|
|Hθ|

−H([U ]θ|X)

)
(2.19)

where 000 is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th

component is equal to 0.

Let X and Y be jointly distributed random variables and let [X]θ = X + Hθ be

a random variable taking values from the cosets of Hθ in G. We define the channel

coding group mutual information between X and Y as

IGc.c.(X;Y ) = max
wp,r,(p,r)∈Q(G)∑

wp,r=1

min
θ∈Θ
θ 6=rrr

1

1− ωθ

(
log |Hθ| −H(X|Y [X]θ)

)
(2.20)

where rrr is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th

component is equal to r.

2.3.2 Main Results

The following theorem provides an upper bound on the rate-distortion function

achievable using group codes..
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Theorem II.5. For a source (X ,U = G, pX , d) and a given distortion level D,

let pXU be a joint distribution over X × U such that its first marginal is equal to

the source distribution pX , its second marginal pU is uniform over U = G and such

that E{d(X,U)} ≤ D. Then the rate-distortion pair (R,D) is achievable using group

codes where R = IGs.c.(U ;X).

Proof. The proof is provided in Section 2.4.2.

When the underlying group is a Zpr ring, this result can be simplified. We state

this result in the form of a corollary:

Corollary II.6. Let X, U be jointly distributed random variables such that U is

uniform over U = G = Zpr for some prime p and positive integer r. For θ =

1, 2, · · · , r, let Hθ be a subgroup of Zpr defined by Hθ = pθZpr and let [U ]θ = U +Hθ.

Then,

IGs.c.(U ;X) =
r

max
θ=1

r

θ
I([U ]θ;X)

Proof. Immediate from the theorem.

The following theorem is the dual channel coding result to Theorem II.5.

Theorem II.7. For a channel (X = G,Y ,WY |X), the rate R = IGc.c.(X;Y ) is achiev-

able using group codes over G.

Proof. The proof is provided in Section 2.5.2.

When the underlying group is a Zpr ring, this result can be simplified. We state

this result in the form of a corollary:

Corollary II.8. Let X, Y be jointly distributed random variables such that X is

uniform over X = G = Zpr for some prime p and a positive integer r. For θ =
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0, 1, · · · , r − 1, let Hθ be a subgroup of Zpr defined by Hθ = pθZpr and let [X]θ =

X +Hθ. Then,

IGc.c.(X;Y ) =
r−1

max
θ=0

r

r − θI(X;Y |[X]θ)

Proof. Immediate from the theorem.

When dealing with group codes for the purpose of channel coding, an important

case is when the channel exhibits some sort of symmetry. The capacity of group

codes for channels with some notion of symmetry is found in [18]. The next corollary

states that the result of this paper simplifies to the result of [18] when the channel is

symmetric in the sense defined in [18].

Corollary II.9. When the channel (X = G,Y ,WY |X) is G-symmetric in the sense

defined in [18], i.e. if

1. G acts simply transitively on X (trivially holds for this case)

2. G acts isometrically on Y

3. For all x, g ∈ G, y ∈ Y , W (y|x) = W (g · y|g + x)

then IGc.c(X;Y ) is equal to the rate provided in [18, Equation (33)].

Proof. The proof is provided in Section 2.5.3.

2.3.3 Interpretation of the Results

In this section, we try to give some intuition about the result and the quantities

defined above using several examples. At a high level, wp,r denotes the normalized

weight given to the Zpr component of the input group J in constructing the homo-

morphism from J to Gn, and θ indexes a subgroup Hθ of G that comes from a set

Θ. 1
ωθ
I([U ]θ;X) in source coding and 1

(1−ωθ)
I(X;Y |[X]θ) in channel coding denote

the rate constraints imposed by the subgroup Hθ. Due to the algebraic structure
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of the code in the ensemble, two random codewords corresponding to two distinct

indexes are statistically dependent, unless G is a finite field. For the source coding

problem, when the code is chosen randomly, consider the event that all components

of their difference belong to a proper subgroup Hθ of G. Then if one of them is a

poor representation of a given source sequence, so is the other with a probability that

is higher than the case when no algebraic structure on the code is enforced. This

means that the code size has to be larger so that with high probability one can find a

good representation of the source. For the channel coding problem, when a random

codeword corresponding to a given message index is transmitted over the channel,

consider the event that all components of the difference between the codeword trans-

mitted and a random codeword corresponding to another message index belong to a

proper subgroup Hθ of G. Then the probability that the latter is decoded instead of

the former is higher than the case when no algebraic structure on the code is enforced.

Example: We start with the simple example where G = Z8. In this case, we have

P(G) = {2} and Q(G) = {(2, 3)}. For vectors w, θ̂ and θ defined as above, we have

w = w2,3 = 1, θ̂ = θ̂2,3 and θ = θ2,3. Recall that the ensemble of Abelian group codes

used in the random coding argument consists of the set of all homomorphisms from

some J = Z
kw2,3

8 = Zk8. Any θ̂ = θ̂2,3 with 0 ≤ θ̂2,3 ≤ 3 corresponds to a subgroup Kθ̂

of the input group J given by

Kθ̂ = 2θ̂2,3Zk8

Similarly, any θ = θ2,3 with 0 ≤ θ2,3 ≤ 3 corresponds to a subgroup Hθ of the group

space Gn given by

Hθ = 2θ2,3Zn8

In this case, it turns out that if

θ = θθθ(θ̂) = θ̂2,3 = θ̂ (2.21)
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then for any random homomorphism φ from J into Gn, and for any a ∈ J with

a ∈ 2θ̂2,3Zk8\2θ̂2,3+1Zk8, φ(a) is uniformly distributed over Hn
θ . The set Θ consists of

all vectors θ for which there exists at least one such a. Note that this set corresponds

to a collection of subgroups of Gn. The quantity 1−ωθ is a measure of the number of

elements a of J for which φ(a) is uniform over Hθ. It turns out that for this example,

Θ = {0, 1, 2, 3} and ω0 = 0, ω1 = 1
3
, ω2 = 2

3
and ω3 = 1.

Example: Next, we consider the case where G = Z4 ⊕ Z3. In this case, we have

P(G) = {2, 3} and Q(G) = {(2, 2), (3, 1)}. For vectors w, θ̂ and θ defined as before,

we have w = (w2,2, w3,1), θ̂ = (θ̂2,2, θ̂3,1) and θ = (θ2,2, θ3,1). The ensemble of Abelian

group codes consists of the set of all homomorphisms from some J = Z
kw2,2

4 ⊕Zkw3,1

3 .

Any vector θ̂ = (θ̂2,2, θ̂3,1) with 0 ≤ θ̂2,2 ≤ 2 and 0 ≤ θ̂3,1 ≤ 1 corresponds to a

subgroup Kθ̂ of the input group J given by

Kθ̂ = 2θ̂2,2Z
kw2,2

4 ⊕ 3θ̂3,1Z
kw3,1

8

Similarly, any θ = (θ2,2, θ3,1) with 0 ≤ θ2,2 ≤ 2 and 0 ≤ θ3,1 ≤ 1 corresponds to a

subgroup Hθ of the group space Gn given by

Hθ = 2θ2,2Zn4 ⊕ 3θ3,1Zn3

It turns out that if

θ2,2 = θ̂2,2 (2.22)

θ3,1 = θ̂3,1 (2.23)

then for any random homomorphism φ from J into Gn, and for any a = (β, γ) ∈ J

with β ∈ 2θ̂2,2Z
kw2,2

4 \2θ̂2,2+1Z
kw2,2

4 and γ ∈ 3θ̂3,1Z
kw3,1

3 \3θ̂3,1+1Z
kw3,1

3 , φ(a) is uniformly

distributed over Hn
θ . Moreover, for this example we have

Θ = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)}
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2.4 Proof for the Source Coding Problem

2.4.1 The Coding Scheme

Following the analysis of Section 2.2.2, we construct the ensemble of group codes

of length n over G as the image of all homomorphisms φ from some Abelian group

J into Gn where J and Gn are as in Equations (2.10) and (2.8) respectively. The

random homomorphism φ is described in Equation (2.11).

To find an achievable rate for a distortion level D, we use a random coding argu-

ment in which the random encoder is characterized by the random homomorphism φ,

a random vector B uniformly distributed over Gn and a joint distribution pXU over

X ×U such that its first marginal is equal to the source distribution pX , its second

marginal pU is uniform over U = G and such that E{d(X,U)} ≤ D. The code is

defined as in (2.12) and its rate is given by (2.15).

Given the source output sequence x ∈X n, the random encoder looks for a code-

word u ∈ C such that u is jointly typical with x with respect to pXU . If it finds at

least one such u, it encodes x to u (if it finds more than one such u it picks one of

them at random). Otherwise, it declares error. The decoder outputs u as the source

reconstruction.

2.4.2 Error Analysis

Let x = (x1, · · · , xn) and u = (u1, · · · , un) be the source output and the en-

coder/decoder output respectively. Note that if the encoder declares no error then

since x and u are jointly typical, (d(xi, ui))i=1,··· ,n is typical with respect to the distri-

bution of d(X,U). Therefore for large n, 1
n
d(x, u) = 1

n

∑n
i=1 d(xi, ui) ≈ E{d(X,U)} ≤

D. It remains to show that the rate can be as small as IGs.c.(X;U) while keeping the

probability of encoding error small.
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Given the source output x ∈X n, define

α(x) =
∑

u∈Anε (U |x)

1{u∈C} =
∑

u∈Anε (U |x)

∑

a∈J

1{φ(a)+B=u}

An encoding error occurs if and only if α(x) = 0. We use the following Chebyshev’s

inequality to show that under certain conditions the probability of error can be made

arbitrarily small:

P (α(x) = 0) ≤ var{α(x)}
E{α(x)}2

We need the following lemmas to proceed:

Lemma II.10. For a, ã ∈ J , u, ũ ∈ Gn and for (q, s, l) ∈ G (J), let θ̂q,s,l ∈ {0, 1, · · · , s}

be such that

ãq,s,l − aq,s,l ∈ qθ̂q,s,lZqs\qθ̂q,s,l+1Zqs

For (p, r) ∈ Q(G) define

θθθp,r(a, ã) = min
(q,s,l)∈G (J)

q=p

|r − s|+ + θ̂q,s,l

and let θp,r = θθθp,r(a, ã). Define the subgroup Hθ of G as

Hθ =
⊕

(p,r,m)∈G (G)

pθp,rZ
(m)
pr

Then,

P (φ(a) +B = u, φ(ã) +B = ũ) =





1
|G|n

1
|Hθ|n

If ũ− u ∈ Hn
θ

0 Otherwise

Proof. The proof is provided in Appendix 2.7.0.2

Lemma II.11. For a ∈ J and θ = (θp,r)(p,r)∈Q(G), let

Tθ(a) = {ã ∈ J |∀(p, r) ∈ Q(G), θθθp,r(a, ã) = θp,r}
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where θθθp,r(a, ã) is defined as in the previous lemma. Then we have

|Tθ(a)| ≤
∏

(p,r)∈Q(G)

p(r−θp,r)kwp,r = 2nR(1−ωθ)

In particular, |Tθ(a)| does not depend on a. We denote this by |Tθ| = |Tθ(a)|.

Proof. The proof is provided in Appendix 2.7.0.3

Lemma II.12. For a ∈ J and u ∈ Gn, we have

P (φ(a) +B = u) =
1

|G|n

Proof. Immediate from Lemma II.10.

We have

E{α(x)} =
∑

u∈Anε (U |x)

∑

a∈J

P (φ(a) +B = u)

=
|Anε (U |x)| · |J |

|G|n

and

E{α(x)2} = E





∑

u,ũ∈Anε (U |x)

∑

a,ã∈J

1{φ(a)+B=u,φ(ã)+B=ũ}





=
∑

u,ũ∈Anε (U |x)

∑

a,ã∈J

P ({φ(a) +B = u, φ(ã) +B = ũ})

=
∑

θ∈Θ

∑

a∈J

∑

u∈Anε (U |x)

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |x)
ũ−u∈Hn

θ

1

|G|n ·
1

|Hθ|n

Note that the term corresponding to θ = 000 is upper bounded by E{α(x)}2. Using

Lemma II.14, we have

|Anε (U |x) ∩ (u+Hn
θ )| ≤ 2n[H(U |[U ]θX)+O(ε)]

Therefore,

var{α} = E{α(x)2} − E{α(x)}2

≤
∑

θ∈Θ
θ 6=000

|J | · |Anε (U |x)| · |Tθ| ·
2n[H(U |[U ]θX)+O(ε)]

|G|n · |Hθ|n
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Therefore,

P (α(x) = 0) ≤ var{α(x)}
E{α(x)}2

≤
∑

θ∈Θ
θ 6=000

2nR(1−ωθ) · 2−n[H(U |X)−H(U |[U ]θX)−O(ε)] · |G|n
|J | · |Hθ|n

Note that H(U |X)−H(U |[U ]θX) = H([U ]θ|X) and |J | = 2nR; therefore,

P (α(x) = 0) ≤
∑

θ∈Θ
θ 6=000

exp2

{
− n

[
H([U ]θ|X)− log |G : Hθ|+ ωθR−O(ε)

]}

In order for the probability of error to go to zero as n increases, we require the

exponent of all the terms to be negative; or equivalently,

R >
1

ωθ

(
log |G : Hθ| −H([U ]θ|X)

)

with the convention 1
0

=∞. Therefore, the achievable rate is equal to

R = min
wp,r,(p,r)∈Q(G)∑

wp,r=1

max
θ∈Θ
θ 6=000

1

ωθ

(
log |G : Hθ| −H([U ]θ|X)

)

2.5 Proof for the Channel Coding Problem

2.5.1 The Coding Scheme

Following the analysis of Section 2.2.2, we construct the ensemble of group codes

of length n over G as the image of all homomorphisms φ from some Abelian group

J into Gn where J and Gn are as in Equations (2.10) and (2.8) respectively. The

random homomorphism φ is described in Equation (2.11).

To find an achievable rate, we use a random coding argument in which the ran-

dom encoder is characterized by the random homomorphism φ and a random vector

B uniformly distributed over Gn. Given a message u ∈ J , the encoder maps it to

x = φ(u) + B and x is then fed to the channel. At the receiver, after receiving the
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channel output y ∈ Y n, the decoder looks for a unique ũ ∈ J such that φ(ũ) + B is

jointly typical with y with respect to the distribution pXWY |X where pX is uniform

over G. If the decoder does not find such ũ or if such ũ is not unique, it declares error.

2.5.2 Error Analysis

Let u, x and y be the message, the channel input and the channel output respec-

tively. The error event can be characterized by the union of two events: E(u) =

E1(u) ∪ E2(u) where E1(u) is the event that φ(u) + B is not jointly typical with

y and E2(u) is the event that there exists a ũ 6= u such that φ(ũ) + B is jointly

typical with y. We can provide an upper bound on the probability of the error

event as P (E(u)) ≤ P (E1(u)) + P (E2(u) ∩ (E1(u))c). Using the standard approach,

one can show that P (E1(u)) → 0 as n → ∞. The probability of the error event

E2(u) ∩ (E1(u))c averaged over all messages can be written as

Pavg(E2(u) ∩ (E1(u))c) =
∑

u∈J

1

|J |
∑

x∈Gn
1{φ(u)+B=x}

∑

y∈Anε (Y |x)

W n
Y |X(y|x)1{∃ũ∈J :ũ6=u,φ(ũ)+B∈Anε (X|y)}

The expected value of this probability over the ensemble is given by E{Pavg(E2(u) ∩

(E1(u))c)} = Perr where

Perr =
∑

u∈J

1

|J |
∑

x∈Gn

∑

y∈Anε (Y |x)

W n
Y |X(y|x)P (φ(u) +B = x, ∃ũ ∈ J : ũ 6= u, φ(ũ) +B ∈ Anε (X|y))

Using the union bound, we have

Perr ≤
∑

u∈J

1

|J |
∑

x∈Gn

∑

y∈Anε (Y |x)

∑

ũ∈J
ũ6=u

∑

x̃∈Anε (X|y)

W n
Y |X(y|x)P (φ(u) +B = x, φ(ũ) +B = x̃)

Define Θ as in Equation (2.17) and for θ ∈ Θ and u ∈ J , define Tθ(u) as in Lemma

II.11. It follows that

Perr ≤
∑

u∈J

1

|J |
∑

x∈Gn

∑

y∈Anε (Y |x)

∑

θ∈Θ
θ 6=rrr

∑

ũ∈Tθ(u)

∑

x̃∈Anε (X|y)

W n
Y |X(y|x)P (φ(u) +B = x, φ(ũ) +B = x̃)
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Using Lemmas II.10, II.14 and II.11, we have

Perr ≤
∑

θ∈Θ
θ 6=rrr

∑

u∈J

1

|J |
∑

x∈Gn

∑

y∈Anε (Y |x)

∑

ũ∈Tθ(u)

∑

x̃∈Anε (X|y)
x̃∈x+Hθn

W n
Y |X(y|x)

1

|G|n
1

|Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

∑

u∈J

1

|J |
∑

x∈Gn

∑

y∈Anε (Y |x)

∑

ũ∈Tθ(u)

W n
Y |X(y|x)2n[H(X|Y [X]θ)+O(ε)] 1

|G|n
1

|Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

|Tθ| · 2n[H(X|Y [X]θ)+O(ε)]

|Hθ|n

Equivalently, this can be written as

Perr ≤
∑

θ∈Θ
θ 6=rrr

exp2

{
− n

[
− (1− ωθ)R−H(X|Y [X]θ) + log |Hθ| −O(ε)

]}

Therefore, the achievability condition is

R = min
θ∈Θ
θ 6=rrr

1

1− ωθ

(
log |Hθ| −H(X|Y [X]θ)

)

If we maximize over the choice of w, we can conclude that the rate R = IGc.c(X;Y ) is

achievable.

2.5.3 Simplification of the Result for Symmetric Channels

In this section, we provide a proof of corollary II.9. Note that since we take

X = G, we can take the action of G on X to be the group operation. We need to

show that for all subgroups H of G, I(X;Y |[X]) = CH where X = X +H and CH is

the mutual information between the channel input and the channel output when the

input is uniformly distributed over H; in other words, CH = I(X;Y |[X] = H). This

in turn follows by showing that for all g ∈ G

I(X;Y |[X] = g +H) = I(X;Y |[X] = H)
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This can be shown as follows:

I(X;Y |[X] = g +H) =
∑

x∈g+H

∑

y∈Y

1

|H|W (y|x) log
W (y|x)

P (y)

=
∑

x̃∈H

∑

y∈Y

1

|H|W (y|x̃+ g) log
W (y|x̃+ g)

P (y)

(a)
=
∑

x̃∈H

∑

y∈Y

1

|H|W (g · y|x̃+ g) log
W (g · y|x̃+ g)

P (y)

(b)
=
∑

x̃∈H

∑

y∈Y

1

|H|W (y|x̃) log
W (y|x̃)

P (y)

= I(X;Y |[X] = H)

where (a) follows since the action of g on Y is a bijection of Y and (b) follows from

the symmetric property of the channel. Using this result, it can be shown that the

rate provided in [18, Equation (33)] is equal to IGc.c.(X;Y ). The difference in the

appearance of the two expressions is due to the fact that in [18, Equation (33)] the

minimization is carried out over the subgroups of the input group whereas in the

expression for IGc.c.(X;Y ) the minimization is carried out over the resulting subgroups

of the output group.

2.6 Examples

In this section, we provide a few examples for both the source coding problem

as well as the channel coding problem. We show that when the underlying group is

a field, the source coding group mutual information and the channel coding group

mutual information are both equal to the Shannon mutual information. We also

provide several non-field examples for both problems.

2.6.1 Examples for Source Coding

In this section, we find the rate-distortion region for a few examples. First, we

consider the case where the underlying group is a field i.e. when G = Zmp for some
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prime p and positive integer m. In this case, we have P(G) = {p}, Rp(G) = {1},

Mp,1 = m and Q(G) = {(p, 1)}. Since the set Q(G) is a singleton, the only choice

for the weights is w = wp,1 = 1 and

Θ = {0, 1}

For θ = 1, we have wθ = 0 and [U ]θ = U . Therefore,

IGs.c. = I(U ;X)

This means when the underlying group is a field, the rate is equal to the regular

mutual information between U and X when U is a uniform random variable.

Next, we consider the case where the reconstruction alphabet is Z4. In this case,

we have p = 2 and r = 2. Therefore,

R =
2

max
θ=1

2

θ
I([U ]θ;X)

= max(2I([U ]1;X), I(U ;X))

where U is uniform over Z4, X is the source output and [U ]1 = U+21Z4 = X+{0, 2}

and the joint distribution is such that E{d(U,X)} ≤ D. Therefore,

2I([U ]1;X) = I(U + {0, 2};X) + I(U + {1, 3};X)

Hence,

R = max (I(U ;X), I(U + {0, 2};X) + I(U + {1, 3};X))

Next, we consider the case where the reconstruction alphabet is Z8. For this

source, we have p = 2 and r = 3. Following a similar argument as above we have:

R = max

(
I(U ;X),

3

2
I([U ]2;X), 3I([U ]1;X)

)

where U is uniform over Z8, X is the source output, [U ]1 = U + {0, 2, 4, 6} and

[U ]2 = U + {0, 4}.
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Similarly, for channels with input Z9, we have p = 3, r = 2 and

R = max (I(U ;X), 2I([U ]1;X))

where U is uniform over Z9, X is the source output and [U ]1 = U + {0, 3, 6}.

Finally, we consider G = Z2 × Z4. In this case, P(G) = {2}, R2(G) = {1, 2},

Q(G) = {(2, 1), (2, 2)}, 000 = (0, 0) and w = (w1, w2) such that w1 + w2 = 1. We

have Θ = {(0, 0), (0, 1), (1, 1), (1, 2)}. For θ = (0, 1) we have ωθ = w1+w2

w1+2w2
= 1

1+w2
, for

θ = (1, 1) we have ωθ = w2

1+w2
, and for θ = (1, 2) we have ωθ = 0; therefore,

R = min
w1,w2

max

(
(1 + w2)I([U ]θ=(0,1);X),

1 + w2

w2

I([U ]θ=(1,1);X), I([U ]θ=(1,2);X)

)

= min
w1,w2

max

(
(1 + w2)I([U ]θ=(0,1);X),

1 + w2

w2

I([U ]θ=(1,1);X), I(U ;X)

)

The minimum of R is achieved when

(1 + w2)I([U ]θ=(0,1);X) =
1 + w2

w2

I([U ]θ=(1,1);X)

or equivalently

w2 =
I([U ]θ=(1,1);X)

I([U ]θ=(0,1);X)

Therefore,

R = max
(
I([U ]θ=(1,1);X) + I([U ]θ=(0,1);X), I(X;Y )

)

2.6.2 Examples for Channel Coding

In this section, we find the achievable rate for a few examples: First, we consider

the case where the underlying group is a field i.e. when G = Zmp for some prime p

and positive integer m. As in the source coding case, the only choice for the weights

is w = wp,1 = 1 and Θ = {0, 1}. For θ = 0, we have wθ = 1 and [U ]θ is a trivial

random variable. Hence

IGs.c. = I(U ;X)
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This means when the underlying group is a field, the rate is equal to the regular

mutual information between U and X when U is a uniform random variable.

Next, we consider the case where the channel input alphabet is Z4. In this case,

we have p = 2 and r = 2. Therefore,

R =
1

min
θ=0

2

2− θI(X;Y |[X]θ)

= min(I(X;Y ), 2I(X;Y |[X]1))

where the channel input X is uniform over Z4, Y is the channel output and [X]1 =

X + 21Z4 = X + {0, 2}. Therefore,

2I(X;Y |[X]1) = I(X;Y |X ∈ {0, 2}) + I(X;Y |X ∈ {1, 3})

Hence,

R = min (I(X;Y ), I(X;Y |X ∈ {0, 2}) + I(X;Y |X ∈ {1, 3}))

Next, we consider a channel of input alphabet Z8. For this channel we have p = 2

and r = 3. Following a similar argument as above we have:

R = min

(
I(X;Y ),

3

2
I(X;Y |[X]1), 3I(X;Y |[X]2)

)

where the channel input X is uniform over Z8, Y is the channel output, [X]1 =

X + {0, 2, 4, 6} and [X]2 = X + {0, 4}.

Similarly, for channels with input Z9, we have p = 3, r = 2 and

R = min (I(X;Y ), 2I(X;Y |[X]1))

where the channel input X is uniform over Z9, Y is the channel output and [X]1 =

X + {0, 3, 6}.

Finally, we consider G = Z2 × Z4. In this case, P(G) = {2}, R2(G) = {1, 2},

Q(G) = {(2, 1), (2, 2)}, rrr = (1, 2) and w = (w1, w2) such that w1 + w2 = 1. We have
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Θ = {(0, 0), (0, 1), (1, 1), (1, 2)}. For θ = (0, 0) we have ωθ = 1, for θ = (0, 1) we have

ωθ = w1+w2

w1+2w2
= 1

1+w2
and for θ = (1, 1) we have ωθ = w2

1+w2
therefore,

R = max
w1,w2

min

(
1 + w2

w2

I(X;Y |[X]θ=(1,1)), (1 + w2)I(X;Y |[X]θ=(0,1)), I(X;Y |[X]θ=(0,0))

)

= max
w1,w2

min

(
1 + w2

w2

I(X;Y |[X]θ=(1,1)), (1 + w2)I(X;Y |[X]θ=(0,1)), I(X;Y )

)

The maximum of R is achieved when

1 + w2

w2

I(X;Y |[X]θ=(1,1)) = (1 + w2)I(X;Y |[X]θ=(0,1)

or equivalently

w2 =
I(X;Y |[X]θ=(1,1))

I(X;Y |[X]θ=(0,1))

Therefore,

R = min
(
I(X;Y |[X]θ=(1,1)) + I(X;Y |[X]θ=(0,1)), I(X;Y )

)

2.7 Appendix

2.7.0.1 Proof of Lemma II.2

We first prove that for a homomorphism φ, g(q,s,l)→(p,r,m) satisfies the above con-

ditions. First assume p 6= q. Note that the only nonzero component of IJ :q,s,l takes

values from Zqs and therefore

qsIJ :q,s,l =

(J)︷︸︸︷∑

i=1,··· ,qs
IJ :q,s,l = 0
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Note that since φ is a homomorphism, we have φ(qsIJ :q,s,l) = 0. On the other hand,

φ(qsIJ :q,s,l) = φ(

(J)︷︸︸︷∑

i=1,··· ,qs
IJ :q,s,l)

=

(G̃)︷︸︸︷∑

i=1,··· ,qs
φ(IJ :q,s,l)

=
⊕

(p,r,m)∈G (G̃)




(G̃)︷︸︸︷∑

i=1,··· ,qs
φ(IJ :q,s,l)



p,r,m

=
⊕

(p,r,m)∈G (G̃)

(Zpr )︷︸︸︷∑

i=1,··· ,qs
[φ(IJ :q,s,l)]p,r,m

=
⊕

(p,r,m)∈G (G̃)

qs [φ(IJ :q,s,l)]p,r,m

=
⊕

(p,r,m)∈G (G̃)

qsg(q,s,l)→(p,r,m)

Therefore, we have qsg(q,s,l)→(p,r,m) = 0 (mod pr) or equivalently qsg(q,s,l)→(p,r,m) = Cpr

for some integer C. Since p 6= q, this implies pr|g(q,s,l)→(p,r,m) and since g(q,s,l)→(p,r,m)

takes value from Zpr , we have g(q,s,l)→(p,r,m) = 0.

Next, assume p = q and r ≥ s. Note that same as above, we have φ(qsIJ :q,s,l) = 0 and

φ(qsIJ :q,s,l) =
⊕

(p,r,m)∈G (G̃)

qsg(q,s,l)→(p,r,m)

and therefore, qsg(q,s,l)→(p,r,m) = 0 (mod pr). Since g(q,s,l)→(p,r,m) takes values from Zpr

and p = q, this implies pr−s|g(q,s,l)→(p,r,m) or equivalently g(q,s,l)→(p,r,m) ∈ pr−sZpr .

Next we show that any mapping described by (2.6) satisfying the conditions of

the lemma is a homomorphism. For two elements a, b ∈ J and for (p, r,m) ∈ G (G̃)
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we have

[φ(a+ b)]p,r,m =


φ


 ⊕

(q,s,l)∈G (J)

(aq,s,l +qs bq,s,l)





p,r,m

=


φ




(J)︷︸︸︷∑

(q,s,l)∈G (J)

(aq,s,l +qs bq,s,l)IJ :q,s,l






p,r,m

=


φ




(J)︷︸︸︷∑

(q,s,l)∈G (J)

(J)︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

IJ :q,s,l






p,r,m

=




(G̃)︷︸︸︷∑

(q,s,l)∈G (J)

(G̃)︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

φ (IJ :q,s,l)



p,r,m

=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

[φ (IJ :q,s,l)]p,r,m

=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

g(q,s,l)→(p,r,m) (2.24)

On the other hand, we have

[φ(a) + φ(b)]p,r,m = [φ(a)]p,r,m +pr [φ(b)]p,r,m

=




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lg(q,s,l)→(p,r,m)


+pr




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

bq,s,lg(q,s,l)→(p,r,m)




=




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l

g(q,s,l)→(p,r,m)


+pr




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i=1,··· ,bq,s,l

g(q,s,l)→(p,r,m)




=

(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+bq,s,l

g(q,s,l)→(p,r,m) (2.25)

where the addition in aq,s,l + bq,s,l is the integer addition.

In order to show that φ is a homomorphism, it suffices to show that under the condi-

tions of the lemma, Equations (2.24) and (2.25) are equivalent. We show that for a
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fixed (q, s, l) ∈ G (J), if the conditions of the lemma are satisfied, then

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+bq,s,l

g(q,s,l)→(p,r,m) =

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

g(q,s,l)→(p,r,m) (2.26)

Note that if p 6= q, then both summations are zero. Note that we have

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+bq,s,l

g(q,s,l)→(p,r,m) =

(Zpr )︷︸︸︷∑

i=1,··· ,(aq,s,l+bq,s,l) (mod pr)

g(q,s,l)→(p,r,m)

and

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+qsbq,s,l

g(q,s,l)→(p,r,m) =

(Zpr )︷︸︸︷∑

i=1,··· ,(aq,s,l+qsbq,s,l) (mod pr)

g(q,s,l)→(p,r,m)

If p = q and r ≤ s, then we have (aq,s,l +qs bq,s,l) (mod pr) = (aq,s,l + bq,s,l) (mod pr)

and hence it follows that Equation (2.26) is satisfied. If p = q and r ≥ s, since

g(q,s,l)→(p,r,m) ∈ pr−sZpr we have

(Zpr )︷︸︸︷∑

i=1,··· ,aq,s,l+bq,s,l

g(q,s,l)→(p,r,m) =

(Zpr )︷︸︸︷∑

i=1,··· ,(aq,s,l+bq,s,l) (mod ps)

g(q,s,l)→(p,r,m)

and hence it follows that Equation (2.26) is satisfied.

2.7.0.2 Proof of Lemma II.10

Note that since g(q,s,l)→(p,r,m)’s and B are uniformly distributed, in order to find

the desired joint probability, we need to count the number of choices for g(q,s,l)→(p,r,m)’s

and B such that for (p, r,m) ∈ G (Gn),



(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

aq,s,lg(q,s,l)→(p,r,m)


+pr Bp,r,m = up,r,m




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

ãq,s,lg(q,s,l)→(p,r,m)


+pr Bp,r,m = ũp,r,m
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and divide this number by the total number of choices which is equal to

|G|n ·
∏

(p,r,m)∈G (Gn)

∏

(q,s,l)∈G (J)
q=p

pmin(r,s) = |G|n ·




∏

(p,r,m)∈G (G)

∏

(q,s,l)∈G (J)
q=p

pmin(r,s)




n

where the term pmin(r,s) appears since the number of choices for g(q,s,l)→(p,r,m) is pr if

p = q, r ≤ s and is equal to ps if p = q, r ≥ s. Since B can take values arbitrarily

from Gn, the number of choices for the above set of conditions is equal to the number

of choices for g(q,s,l)→(p,r,m)’s such that,




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)

(ãq,s,l − aq,s,l)g(q,s,l)→(p,r,m)


 = ũp,r,m − up,r,m

Note that for all (q, s, l) ∈ G (J), (ãq,s,l − aq,s,l)g(q,s,l)→(p,r,m) ∈ pθp,rZpr . Therefore we

require ũp,r,m−up,r,m ∈ pθp,rZpr and therefore we require ũ−u ∈ Hn
θ or otherwise the

probability would be zero.

For fixed p ∈P(G) and r ∈ Rp(G), let (q∗, s∗, l∗) ∈ G (J) be such that q∗ = p and

θp,r = |r − s∗|+ + θ̂q∗,s∗,l∗

For fixed (p, r,m) ∈ G (Gn), and for (q, s, l) 6= (q∗, s∗, l∗), choose g(q,s,l)→(p,r,m) arbi-

trarily from it’s domain. The number of choices for this is equal to




∏

(p,r,m)∈G (G)

∏

(q,s,l)∈G (J)
q=p

(q,s,l)6=(q∗,s∗,l∗)

pmin(r,s)




n
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For each (p, r,m) ∈ G (Gn), we need to have

(ãq∗,s∗,l∗ − aq∗,s∗,l∗)g(q∗,s∗,l∗)→(p,r,m)

= ũp,r,m − up,r,m −




(Zpr )︷︸︸︷∑

(q,s,l)∈G (J)
(q,s,l)6=(q∗,s∗,l∗)

(ãq,s,l − aq,s,l)g(q,s,l)→(p,r,m)




Note that the right hand side is included in pθp,rZpr and (ãq∗,s∗,l∗−aq∗,s∗,l∗) is included

in pθ̂q∗,s∗,l∗Z(q∗)(s∗) . We need to count the number of solutions for g(q∗,s∗,l∗)→(p,r,m) in

p|r−s
∗|+Zpr . Using Lemma II.13, we can show that the number of solutions is equal

to pθ̂q∗,s∗,l∗ . The total number of solutions for φ is equal to







∏

(p,r,m)∈G

∏

(q,s,l)∈G (J)
q=p

(q,s,l) 6=(q∗,s∗,l∗)

pmin(r,s)



· pθ̂q∗,s∗,l∗




n

Hence we have

P (φ(a)+B=u, φ(ã)+B= ũ) =


∏

(p,r,m)∈G (G)


pθ̂q∗,s∗,l∗·∏ (q,s,l)∈G (J)

q=p
(q,s,l) 6=(q∗,s∗,l∗)

pmin(r,s)





n

[∏
(p,r,m)∈G (G)

∏
(q,s,l)∈G (J)

q=p
pmin(r,s)

]n

=




∏

(p,r,m)∈G (G)

∏

(q,s,l)∈G (J)
q=p

(q,s,l)=(q∗,s∗,l∗)

pθ̂q∗,s∗,l∗

pmin(r,s)




n

Note that for (q, s, l) = (q∗, s∗, l∗) we have

min(r, s) = min(r, s∗) = r − |r − s∗|+ = r −
(
θp,r − θ̂q∗,s∗,l∗

)
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Therefore, the above probability is equal to




∏

(p,r,m)∈G

∏

(q,s,l)∈G (J)
q=p

(q,s,l)=(q∗,s∗,l∗)

pθ̂q∗,s∗,l∗

pr−(θp,r−θ̂q∗,s∗,l∗)




n

=




∏

(p,r,m)∈G

∏

(q,s,l)∈G (J)
q=p

(q,s,l)=(q∗,s∗,l∗)

1

pr−θp,r




n

=


 ∏

(p,r,m)∈G

pθp,r

pr



n

=
1

|Hθ|n

Since the dither B is uniform, we conclude that

P




φ(u) +B = x

φ(ũ) +B = x̃


 =

1

|G|n
1

|Hθ|n

2.7.0.3 Proof of Lemma II.11

Let ã ∈ Tθ(a) be such that for (q, s, l) ∈ G (J),

ãq,s,l − aq,s,l ∈ qθ̂q,s,lZqs\qθ̂q,s,l+1Zqs

for some 0 ≤ θ̂q,s,l ≤ s. Since for all ã ∈ Tθ(a) and all (p, r) ∈ Q(G)

min
(p,s,l)∈G (J)

|r − s|+ + θ̂q,s,l = θp,r

we require θ̂p,s,l ≥ θp,s for all (p, s, l) ∈ G (J). This means for (q, s, l) ∈ G (J), ãq,s,l

can only take values from

aq,s,l + qθq,sZqs

The cardinality of this set is equal to qs−θq,s . Therefore,

|Tθ(a)| ≤
∏

(q,s,l)∈G (J)

qs−θq,s =
∏

(q,s)∈Q(G)

q(s−θq,s)kwq,s

The last part of the proof is straightforward given the definitions of ωθ and R.
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2.7.0.4 Useful Lemmas

Lemma II.13. Let p be a prime and s, r a positive integer such that s ≤ r. For

a ∈ Zps and b ∈ Zpr , let 0 ≤ θ̂ ≤ s and θ̂ ≤ θ ≤ r be such that

a ∈ pθ̂Zps\pθ̂+1Zps

b ∈ pθZpr

Write a = pθ̂α for some invertible element α ∈ Zpr and b = pθβ for some β ∈ β ∈

{0, 1, · · · , pr−θ − 1}. Then, the set of solutions to the equation ax (mod pr) = b is

{
pθ−θ̂α−1β + iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

Proof. Note that the representation of b as b = pθβ is not unique and for any β̃

of the form β̃ = β + ipr−θ for i = 0, 1, · · · , pθ − 1, b can be written as pθβ̃. Also,

the representation of a as a = pθ̂α is not unique and for any α̃ = α + ipr−θ̂ for

i = 0, 1, · · · , pθ̂ − 1, we have a = pθ̂α̃. The set of solutions to ax = b is identical to

the set of solutions to pθ̂x = pθα−1β. The set of solutions to the latter is

{
pθ−θ̂α−1β + iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

It remains to show that this set of solutions is independent of the choice of α and

β. First, we show that the set of solutions is independent of the choice of β. For

β̃ = β + jpr−θ for some j ∈ {0, 1, · · · , pθ2 − 1}, we have

{
pθ−θ̂α−1β̃ + iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

=
{
pθ−θ̂α−1

(
β + jpr−θ

)
+ iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

=
{
pθ−θ̂α−1β + (i+ j)α−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

(a)
=
{
pθ−θ̂α−1β + iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

where (a) follows since the set pr−θ̂{0, 1, · · · , pθ̂ − 1} is a subgroup of Zpr and jpr−θ̂

lies in this set.
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Next, we show that the set of solutions is independent of the choice of α. For

α̃ = α + jpr−θ̂ for some j ∈ {0, 1, · · · , pθ̂ − 1}, we have

α̃
(
α−1 − α−1jpr−θ̂α̃−1

)
= 1

Therefore, it follows that the unique inverse of α̃ satisfies α−1− α̃−1 ∈ α−1pr−θ̂Zpr .

Assume α̃−1 = α−1 + kα−1pr−θ̂. We have,

{
pθ−θ̂α̃−1β + iα̃−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

=
{
pθ−θ̂

(
α−1 + kα−1pr−θ̂

)
β + i

(
α−1 + kα−1pr−θ̂

)
pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

=
{
pθ−θ̂α−1β +

(
i+ ikpr−θ̂ + kβpθ−θ̂

)
α−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

(a)
=
{
pθ−θ̂α−1β + iα−1pr−θ̂|i = 0, 1, · · · , pθ̂ − 1

}

where same as above, (a) follows since the set pr−θ̂{0, 1, · · · , pθ̂ − 1} is a subgroup of

Zpr and (ikpr−θ̂ + kβpθ−θ̂)pr−θ̂ lies in this set.

Lemma II.14. Let X be a random variable taking values from the group G and for

a subgroup H of G, define [X] = X + H. For y ∈ Anε (Y ) and x ∈ Anε (X|y), let

z = [x] = x+Hn. Then we have

(x+Hn) ∩ Anε (X|y) = Anε (X|zy)

and

(1− ε)2n[H(X|Y [X])−O(ε)] ≤ |(x+Hn) ∩ Anε (X|y)| ≤ 2n[H(X|Y [X])+O(ε)]

Proof. First, we show that (x+Hn) ∩ Anε (X|y) is contained in Anε (X|zy). Since z

is a function of x, we have (x, z, y) ∈ Anε (X, [X], Y ). For x′ ∈ (x+Hn) ∩ Anε (X|y),

we have [x′] = x′ + Hn = x + Hn = z and (x′, z, y) = (x′, [x′], y) ∈ Anε (X, [X], Y ).

Therefore, x′ ∈ Anε (X|zy) and hence,

(x+Hn) ∩ Anε (X|y) ⊆ Anε (X|zy)
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Conversely, for x′ ∈ Anε (X|zy), since (x, z) ∈ Anε (X, [X]) where [X] is a function of

X, we have [x′] = z. This implies x′ ∈ z + Hn = x + Hn. Clearly, we also have

x′ ∈ Anε (X|y). The claim on the size of the set follows since (z, y) ∈ Anε ([X]Y ).

2.7.0.5 How to Compute the Rate

For (p, r) ∈ Q(G), define

Θp,r = {θ ∈ Θ|∀(p, r′) ∈ Q(G) :
θp,r
r
≥ θp,r′

r′
}

and distribute the break evens so that Θp,r, (p, r) ∈ Q(G) forms a partition of Θ. Let

(w∗p,r)(p,r)∈Q(G) be the optimal weights (need not be unique) and let Θ∗ be set of the

maximizing θ’s for the optimal rate. Define S (G) = {(p′, r′) ∈ Q(G)|w∗p′,r′ 6= 0}.

Since Θp,r, (p, r) ∈ Q(G) forms a partition of Θ, we have θ∗ ∈ Θp,r for some (p, r) ∈

Q(G). For (p′, r′) ∈ Q(G) such that (p′, r′) 6= (p, r), if there is no θ∗ ∈ Θ∗ such

that θ∗ ∈ Θp′,r′ , we can decrease w∗p′,r′ and increase some of the other weights to get

a better rate which is a contradiction. Hence, the optimal weight can be found as

follows:

Let S (G) be a subset of Q(G) and Let R(S (G)) be an empty set. For (p, r) ∈ S (G),

choose θp,r from Θp,r and solve the system of equations:

For all (p, r) ∈ S (G) and θ = θp,r,
1

ωθ
I([U ]θ;X) = C

∑

(p,r)∈S (G)

wp,r = 1

where C is an arbitrary constant. Given the solutions wp,r, (p, r) ∈ S (G), find C and

add it to the set R(S (G)). Do this for all choices of θp,r’s and take the maximum of

the set R(S (G)). We also minimize the rate over the choice of S (G).
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CHAPTER III

Abelian Group Codes for Multi-terminal

Communications

3.1 Nested Codes for Channels with State Information

Consider a point-to-point channel coding problem with channel state information

available at the transmitter. Denote the channel by (X ,S ,Y ,W ) where X is

the channel input alphabet, S is the channel state alphabet and Y is the channel

output alphabet and for the channel input x ∈ X and the channel state s ∈ S ,

W (y|x, s) denotes the conditional probability of observing y ∈ Y in the channel

output. We assume X = G for some Abelian group G. We study the performance

of “nested random/group codes” and “nested group/random codes” for this problem.

These ensembles are important because they can be used in many multi-terminal

communications such as broadcast channels and interference channels.

3.1.1 Nested Random/Group Codes for Channel Coding

A nested code consists of an outer code which is partitioned into smaller inner

codes and the set of messages is equal to the set of inner codes. We employ a nested

code in which the inner code is a group code and the outer code consists of random

shifts of the inner code. Let Cin = {φ(a)|a ∈ J} where φ and J are defined in (2.11)
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and (2.14) respectively and let

Cout =
2nR⋃

m=1

(
Cin +Bm

)

where Bm’s are iid random variables distributed uniformly over Gn. Note that the

rates of the inner and outer codes are equal to Rin = 1
n

log |J | and Rout = Rin + R

where R is the communication rate of our coding scheme.

The encoding and decoding rules are as follows: Given a messagem ∈ {1, 2, · · · , 2nR},

and the channel state s ∈ S n, define

α(m, s) =
∑

a∈J

∑

x∈Anε (X|s)

1{φ(a)+Bm=x}

Note that if α(m, s) > 0, then there exists at least one a ∈ J with φ(a) + Bm ∈

Anε (X|s). In this case, the encoder picks one such a and sends x = φ(a) + Bm over

the channel. The encoder will declare an encoding error if α(m, s) = 0. Although it

may be unnecessary, it is convenient in the proofs to assume that the encoder declares

error if α(m, s) ≤ |J |·|Anε (X|s)|
2·|G|n . We denote this error event by Erre. We also assume

that a ∈ J is picked with probability
∑

x∈Anε (X|s) 1{φ(a)+Bm=x}

α(m,s)
.

At the decoder, after receiving the channel output y ∈ Y n, the decoder looks for

a unique message m̂ ∈ {1, 2, · · · , 2nR} for which there exists a ∈ J with φ(a) +Bm̂ ∈

Aε(X|y). If it doesn’t find such m̂ (Errd1) or if it finds multiple such m̂’s (Errd2), it

declares error.

We show that if

R ≤ Ī(X;Y )− IGs.c.(X;S)

then the probability of all the errors (Erre, Errd1 and Errd2) approach zero as the

block length approaches infinity. Note that by the standard typicality results [20,
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Theorem 3.1.2] one can show that with probability approaching one as the block

length increases, φ(a) +Bm ∈ Aε(X|y). Therefore, the probability of the error event

Errd1 vanishes as the block length increases. It suffices to show that for any choice of

weights (wp,r)(p,r)∈Q(G), the probability of the two error events Erre and Errd2 vanish

if

Rin >
1

ωθ

(
log |G : Hθ| −H([X]θ|S)

)

R +Rin < Ī(X;Y )

3.1.1.1 The Error Event Erre

Note that given the message m and the channel state sn, the error event Erre

occurs if α(m, s) ≤ |J |·|Anε (X|s)|
2·|G|n . We bound the probability of error using the following

Chebyshev’s inequality:

P
(
Erre|m, s

)
= P

(
α(m, s) ≤ |J | · |A

n
ε (X|s)|

2 · |G|n
)
≤ var{α(m, s)}
E{α(m, s)}2

We have

E{α(m, s)} =
∑

a∈J

∑

x∈Anε (X|s)

P
(
φ(a) +Bm = x

)

=
|J | · |Anε (X|s)|

|G|n

and

E{α(m, s)2} =
∑

a,ã∈J

∑

x,x̃∈Anε (X|s)

P
(
φ(a) +Bm = x, φ(ã) +Bm = x̃

)

=
∑

a∈J

∑

x∈Anε (X|s)

∑

θ∈Θ

∑

ã∈Tθ(a)

∑

x̃∈Anε (X|s)
x̃∈x+Hn

θ

1

|G|n · |Hθ|n
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Therefore,

var{α(m, s)} = E{α(m, s)2} − E{α(m, s)}2

≤
∑

θ∈Θ
θ 6=000

∑

a∈J

∑

x∈Anε (X|s)

∑

ã∈Tθ(a)

∑

x̃∈Anε (X|s)
x̃∈x+Hn

θ

1

|G|n · |Hθ|n

≤
∑

θ∈Θ
θ 6=000

|J | · 2n[H(X|S)+δ] · |Tθ| · 2n[H(X|[X]θS)+δ]

|G|n · |Hθ|n

Hence,

P
(
Erre|m, s

)
≤
∑

θ∈Θ
θ 6=000

|G|n · |Tθ| · 2n[H(X|[X]θS)+δ]

|J | · 2n[H(X|S)+δ] · |Hθ|n

Note that |J | = 2nRin and |Tθ| = 2n(1−ωθ)Rin and H(X|S)−H(X|[X]θS) = H([X]θ|S).

Therefore, for θ ∈ Θ and θ 6= 000, we require

Rin >
1

ωθ

(
log |G : Hθ| −H([X]θ|

)

3.1.1.2 The Error Event Errd2

Let Err = Errd2 ∩ Errce ∩ Errcd1. Then the probability of the error event Err is

equal to

P
(
Err

)
=

1

2nR

2nR∑

m=1

∑

sn∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

1{α(m,s)>
|J|·|Anε (X|s)|

2·|G|n }
1

α(m, s)
1{φ(a)+Bm=x}

∑

y∈Y n

W n(y|x, s)
2nR∑

m̃=1
m̃6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

1{φ(ã)+Bm̃=x̃}

≤ 1

2nR

2nR∑

m=1

∑

s∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · |G|n
|J | · |Anε (X|s)|1{φ(a)+Bm=x}

∑

y∈Y n

W n(y|x, s)
2nR∑

m̃=1
m̃6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

1{φ(ã)+Bm̃=x̃}
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Therefore,

E
{
P (Err)

}
≤ 1

2nR

2nR∑

m=1

∑

s∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · |G|n
|J | · |Anε (X|s)|

∑

y∈Y n

W n(y|x, s)

2nR∑

m̃=1
m̃ 6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

P
(
φ(a) +Bm = x, φ(ã) +Bm̃ = x̃

)

=
1

2nR

2nR∑

m=1

∑

s∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · |G|n
|J | · |Anε (X|s)|

∑

y∈Y n

W n(y|x, s)

2nR∑

m̃=1
m̃6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

1

|G|2n

≤ 2nR · |J | · 2n[H(X|Y )+δ] · 2
|G|n

Therefore, we require to have

R +Rin < log |G| −H(X|Y ) = Ī(X;Y )

3.1.2 Nested Group/Random Codes for Channel Coding

We employ a nested code in which the outer code is a group code and the inner

code is obtained by random binning of the outer code. Let Cout = {φ(a) + B|a ∈ J}

where φ and J are defined in (2.11) and (2.14) respectively and B is uniformly dis-

tributed over Gn. Define the random mapping s : J → {1, 2, · · · , 2nR} where R is

the rate of communication and for a ∈ J , s(a)’s are independent and uniformly dis-

tributed over {1, 2, · · · , 2nR}. Note the rate of the outer code is Rout = 1
n

log |J |.

The encoding and decoding rules are as follows: Given a message m from the set

{1, 2, · · · , 2nR}, and the channel state s ∈ S n, define

α(m, s) =
∑

a∈J

∑

x∈Anε (X|s)

1{φ(a)+B=x,s(a)=m}

Note that if α(m, s) > 0, then there exists at least one a ∈ J with s(a) = m and

φ(a)+B ∈ Anε (X|s). In this case, the encoder picks one such a and sends x = φ(a)+B
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over the channel. The encoder will declare an encoding error if α(m, s) = 0. Although

it may be unnecessary, it is convenient in the proofs to assume that the encoder de-

clares error if α(m, s) ≤ |J |·|Anε (X|s)|
2·2nR·|G|n . We denote this error event by Erre. We also

assume that a ∈ J is picked with probability
∑

x∈Anε (X|s) 1{φ(a)+B=x,s(a)=m}

α(m,s)
.

At the decoder, after receiving the channel output y ∈ Y n, the decoder looks for

a unique message m̂ ∈ {1, 2, · · · , 2nR} for which there exists a ∈ J with s(a) = m̂

and φ(a) + B+ ∈ Aε(X|y). If it doesn’t find such m̂ (Errd1) or if it finds multiple

such m̂’s (Errd2), it declares error.

We show that if IGs.c.(X;S) ≤ IGc.c(X;Y ), then for any rate

R ≤ IGc.c.(X;Y )− Ī(X;S)

the probability of all the errors (Erre, Errd1 and Errd2) approach zero as the block

length approaches infinity. Note that by the standard typicality results [20, Theo-

rem 3.1.2] one can show that with probability approaching one as the block length

increases, φ(a) + B ∈ Aε(X|y). Therefore, the probability of the error event Errd1

vanishes as the block length increases. It suffices to show that for any choice of

weights (wp,r)(p,r)∈Q(G), the probability of the two error events Erre and Errd2 vanish

if

Rout −R > Ī(X;S)

Rout <
1

ωθ

(
log |Hθ| −H(X|[X]θY )

)

assuming IGs.c.(X;S) ≤ IGc.c(X;Y ).

3.1.2.1 The Error Event Erre

Note that given the message m and the channel state s, the error event Erre

occurs if α(m, s) ≤ |J |·|Anε (X|s)|
2·2nR·|G|n . We bound the probability of error using the following

52



Chebyshev’s inequality:

P
(
Erre|m, s

)
= P

(
α(m, s) ≤ |J | · |A

n
ε (X|s)|

2 · 2nR · |G|n
)
≤ var{α(m, s)}
E{α(m, s)}2

We have

E{α(m, s)} =
∑

a∈J

∑

x∈Anε (X|s)

P
(
φ(a) +B = x, s(a) = m

)

=
|J | · |Anε (X|s)|

2nR · |G|n

and

E{α(m, s)2} =
∑

a,ã∈J

∑

x,x̃∈Anε (X|s)

P
(
φ(a) +B = x, φ(ã) +B = x̃, s(a) = m, s(ã) = m

)

=
∑

a∈J

∑

x∈Anε (X|s)

1

2nR · |G|n

+
∑

a∈J

∑

x∈Anε (X|s)

∑

θ∈Θ
θ 6=rrr

∑

ã∈Tθ(a)

∑

x̃∈Anε (X|s)
x̃∈x+Hn

θ

1

22nR · |G|n · |Hθ|n

Therefore,

var{α(m, s)} = E{α(m, s)2} − E{α(m, s)}2

=
|J | · |Anε (X|s)|

2nR · |G|n +
∑

θ∈Θ
θ 6=000
θ 6=rrr

∑

a∈J

∑

x∈Anε (X|s)

∑

ã∈Tθ(a)

∑

x̃∈Anε (X|s)
x̃∈x+Hn

θ

1

22nR · |G|n · |Hθ|n

≤ |J | · |A
n
ε (X|s)|

2nR · |G|n +
∑

θ∈Θ
θ 6=000
θ 6=rrr

|J | · 2n[H(X|S)+δ] · |Tθ| · 2n[H(X|[X]θS)+δ]

22nR · |G|n · |Hθ|n

Hence,

P
(
Erre|m, s

)
≤ 2nR · |G|n
|J | · 2n[H(X|S)+δ]

+
∑

θ∈Θ
θ 6=000
θ 6=rrr

|G|n · |Tθ| · 2n[H(X|[X]θS)+δ]

|J | · 2n[H(X|S)+δ] · |Hθ|n

Note that |J | = 2nRout and |Tθ| = 2n(1−ωθ)Rout andH(X|S)−H(X|[X]θS) = H([X]θ|S).

Therefore, for θ ∈ Θ, θ 6= 000, and θ 6= rrr, we require

Rout >
1

ωθ

(
log |G : Hθ| −H([X]θ|S)

)

Rout −R > log |G| −H(X|S)

53



These conditions are equivalent to the following conditions:

Rout >
1

ωθ

(
log |G : Hθ| −H([X]θ|S)

)

Rout −R > log |G| −H(X|S)

for θ ∈ Θ and θ 6= rrr.

3.1.2.2 The Error Event Errd2

Let Err = Errd2 ∩ Errce ∩ Errcd1. Then the probability of the error event Err is

equal to

P
(
Err

)
=

1

2nR

2nR∑

m=1

∑

sn∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

1{α(m,s)>
|J|·|Anε (X|s)|
2·2nR·|G|n

}
1

α(m, s)
1{φ(a)+B=x,s(a)=m}

∑

y∈Y n

W n(y|x, s)
2nR∑

m̃=1
m̃ 6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

1{φ(ã)+B=x̃,s(ã)=m̃}

≤ 1

2nR

2nR∑

m=1

∑

sn∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · 2nR · |G|n
|J | · |Anε (X|sn)|1{φ(a)+B=x,s(a)=m}

∑

y∈Y n

W n(y|x, s)
2nR∑

m̃=1
m̃ 6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

1{φ(ã)+B=x̃,s(ã)=m̃}
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Therefore,

E
{
P (Err)

}
≤ 1

2nR

2nR∑

m=1

∑

s∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · 2nR · |G|n
|J | · |Anε (X|sn)|

∑

y∈Y n

W n(y|x, s)

2nR∑

m̃=1
m̃ 6=m

∑

ã∈J

∑

x̃∈Anε (X|y)

P
(
φ(a)+B = x, φ(ã)+B = x̃, s(a) = m, s(ã) = m̃

)

≤ 1

2nR

2nR∑

m=1

∑

sn∈S n

pnS(s)
∑

a∈J

∑

x∈Anε (X|s)

2 · 2nR · |G|n
|J | · |Anε (X|sn)|

∑

y∈Y n

W n(y|x, s)

2nR∑

m̃=1
m̃ 6=m

∑

θ∈Θ

∑

ã∈Tθ(a)

∑

x̃∈Anε (X|y)
x̃∈x+Hn

θ

1

|G|n · |Hθ|n · 22nR

≤
∑

θ∈Θ
θ 6=rrr

|Tθ| · 2n[H(X|[X]θY )+δ] · 2
|Hθ|n

Therefore, we require to have

Rout < IGc.c.(X;Y )

3.2 Nested Codes for Sources with Side Information

Consider a point to point source coding problem with side information available

at the decoder. Denote the source by (X ,S ,U , pXS, d) where X , S and U are

the source, side information and reconstruction alphabets correspondingly, pXS is the

joint distribution of the source and the side information and d : X ×U → R+ is the

measure of reconstruction. We assume U = G for some Abelian group G. We study

the performance of “nested random/group codes” and “nested group/random codes”

for this problem. These ensembles can be used in multi-terminal communications

problems such as the distributed source coding and the multiple description coding.

3.2.1 Nested Random/Group Codes for Source Coding

We employ a nested code in which the inner code is a group code and the outer

code consists of random shifts of the inner code. Let Cin = {φ(a)|a ∈ J} where φ and
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J are defined in (2.11) and (2.14) respectively and let

Cout =
2nR⋃

m=1

(
Cin +Bm

)

where Bm’s are iid random variables distributed uniformly over Gn. Note that the

rates of the inner and outer codes are equal to Rin = 1
n

log |J | and Rout = Rin + R

where R is the compression rate of our coding scheme.

The encoding and decoding rules are as follows: Given a source sequence x ∈X n,

define

α(x) =
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

1{φ(a)+Bm=u}

Note that if α(x) > 0, then there exists at least one m ∈ {1, · · · , 2nR} and one a ∈ J

with φ(a)+Bm ∈ Anε (U |x). In this case, the encoder picks one such pair and sends m

to the channel. The encoder will declare an encoding error if α(x) = 0. Although it

may be unnecessary, it is convenient in the proofs to assume that the encoder declares

error if α(x) ≤ 2nR·|J |·|Anε (U |x)|
2·|G|n . We denote this error event by Erre. We also assume

that the pair (a,m) is picked with probability
∑

u∈Anε (U|x) 1{φ(a)+si=u}

α(x)
.

At the decoder, having access to s and m, the decoder looks for a unique â ∈ J

such that φ(â|)+Bm ∈ Anε (U |s). If it doesn’t find such â (Errd1) or if it finds multiple

such â’s (Errd2), it declares error.

We show that if

R ≤ Ī(U ;X)− IGc.c.(U ;S)

then the probability of all the errors (Erre, Errd1 and Errd2) approach zero as the

block length approaches infinity. Note that by the standard typicality results [20,
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Theorem 3.1.2] one can show that with probability approaching one as the block

length increases, φ(a) +Bm ∈ Aε(U |x). Therefore, the probability of the error event

Errd1 vanishes as the block length increases. It suffices to show that for any choice of

weights (wp,r)(p,r)∈Q(G), the probability of the two error events Erre and Errd2 vanish

if

R +Rin > Ī(U ;X)

Rin < IGc.c.(U ;S)

We first show that the error events vanish if for any θ ∈ Θ, θ 6= 000,

R + ωθRin > Ī([U ]θ;X)

Rin < IGc.c.(U ;S)

3.2.1.1 The Error Event Erre

Note that given the source sequence x, the error event Erre occurs if α(x) ≤
2nR·|J |·|Anε (U |x)|

2·|G|n . We bound the probability of error using the following Chebyshev’s

inequality:

P
(
Erre|x

)
= P

(
α(x) ≤ 2nR · |J | · |Anε (U |x)|

2 · |G|n
)
≤ var{α(x)}
E{α(x)}2

We have

E{α(x)} =
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

P
(
φ(a) +Bm = u

)

=
2nR · |J | · |Anε (U |x)|

|G|n
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and

E{α(x)2} =
2nR∑

m,m̃=1

∑

a,ã∈J

∑

u,ũ∈Anε (U |s)

P
(
φ(a) +Bm = u, φ(ã) +Bm = ũ

)

=
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

∑

θ∈Θ

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |x)
ũ∈u+Hn

θ

1

|G|n · |Hθ|n

+
2nR∑

m,m̃=1
m̃6=m

∑

a,ã∈J

∑

u,ũ∈Anε (U |s)

1

|G|2n

≤
∑

θ∈Θ
θ 6=000

2nR · |J | · 2n[H(U |X)+δ] · |Tθ| · 2n[H(U |[U ]θX)+δ]

|G|n · |Hθ|n
+

22nR · |J |2 · |Anε (U |x)|2
|G|2n

Therefore,

var{α(x)} = E{α(x)2} − E{α(x)}2

≤
∑

θ∈Θ
θ 6=000

2nR · |J | · 2n[H(U |X)+δ] · |Tθ| · 2n[H(U |[U ]θX)+δ]

|G|n · |Hθ|n

Hence,

P
(
Erre|x

)
≤
∑

θ∈Θ
θ 6=000

|G|n · |Tθ| · 2n[H(X|[X]θS)+δ]

2nR · |J | · 2n[H(X|S)+δ] · |Hθ|n

Note that |J | = 2nRin and |Tθ| = 2n(1−ωθ)Rin and H(U |X)−H(U |[U ]θX) = H([U ]θ|X).

Therefore, for θ ∈ Θ and θ 6= 000, we require

R + ωθRin >
(

log |G : Hθ| −H([U ]θ|X)
)

3.2.1.2 The Error Event Errd2

Let Err = Errd2 ∩ Errce ∩ Errcd1. Then the probability of the error event Err is

equal to

P
(
Err

)
≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

1{φ(a)+Bm=u}

α(x)

∑

ã∈J
ã6=a

∑

ũ∈Anε (U |s)

1{φ(ã)+Bm=ũ}
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Therefore,

E
{
P (Err)

}
≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

2 · |G|n
2nR · |J | · |Anε (U |x)|

∑

ã∈J
ã6=a

∑

ũ∈Anε (U |s)

P
(
φ(a) +Bm = u, φ(ã) +Bm = ũ

)

≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

2 · |G|n
2nR · |J | · |Anε (U |x)|

∑

θ∈Θ
θ 6=rrr

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |s)
ũ∈u+Hn

θ

1

|G|n · |Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

|Tθ| · 2n[H(U |[U ]θS)+δ]

|Hθ|n

Therefore, we require to have Rin < 1
1−ωθ

(
log |Hθ| − H(U |[U ]θX)

)
for all θ ∈ Θ,

θ 6= rrr. Equivalently,

Rin < IGc.c.(U ;S)

3.2.1.3 Simplification of the Rate Region

In this section, we show that if Rin < IGc.c.(U ;S) then

max
θ∈Θ
θ 6=000

(
log |G : Hθ| −H([U ]θ|X)− ωθRin

)
= log |G| −H(U |X)−Rin

We show this by contradiction. Note that the right-hand-side is equal to the left-

hand-side for θ = rrr. Assume for some θ ∈ Θ, θ 6= 000,

log |G : Hθ| −H(U |[U ]θX)− ωθRin > log |G| −H(U |X)−Rin

Then we have

(1− ωθ)Rin > log |G| −H(U |X)−
(

log |G : Hθ| −H(U |[U ]θX)
)

= log |Hθ| −H([U ]θ|X)

which is a contradiction by the definition of IGc.c.(U ;S) if we have the Markov chain

U ↔ X ↔ S.
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3.2.2 Nested Group/Random Codes for Source Coding

We employ a nested code in which the outer code is a group code and the inner

code is a random subset of the outer code. Let Cout = {φ(a) + B|a ∈ J} where φ

and J are defined in (2.11) and (2.14) respectively and B is uniformly distributed

over Gn. Define the mapping s : J → {1, 2, · · · , 2nR} such that for a ∈ J , s(a)’s

are iid random variables uniformly distributed over {1, 2, · · · , 2nR} where R is the

communication rate of the coding scheme. Note that the rates of the inner and outer

codes are equal to Rout = 1
n

log |J | and Rin = Rout −R.

The encoding and decoding rules are as follows: Given a source sequence x ∈X n,

define

α(x) =
∑

a∈J

∑

u∈Anε (U |x)

1{φ(a)+B=u}

Note that if α(x) > 0, then there exists at least one a ∈ J with φ(a) +B ∈ Anε (U |x).

In this case, the encoder picks one such pair and sends m = s(a) to the channel.

The encoder will declare an encoding error if α(x) = 0. Although it may be un-

necessary, it is convenient in the proofs to assume that the encoder declares error if

α(x) ≤ |J |·|Anε (U |x)|
2·|G|n . We denote this error event by Erre. We also assume that a ∈ J

is picked with probability
∑

u∈Anε (U|x) 1{φ(a)+B=u}

α(x)
.

At the decoder, having access to s and m, the decoder looks for a unique â ∈ J

such that φ(â|) + B ∈ Anε (U |s) and s(â) = m. If it doesn’t find such â (Errd1) or if

it finds multiple such â’s (Errd2), it declares error.

We show that if

R ≤ IGs.c.(U ;X)− Ī(U ;S)
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then the probability of all the errors (Erre, Errd1 and Errd2) approach zero as the

block length approaches infinity. Note that by the standard typicality results [20,

Theorem 3.1.2] one can show that with probability approaching one as the block

length increases, φ(a) + B ∈ Aε(U |x). Therefore, the probability of the error event

Errd1 vanishes as the block length increases. It suffices to show that for any choice of

weights (wp,r)(p,r)∈Q(G), the probability of the two error events Erre and Errd2 vanish

if

Rout > IGs.c.(U ;X)

Rout −R < Ī(U ;S)

3.2.2.1 The Error Event Erre

Note that given the source sequence x, the error event Erre occurs if α(x) ≤
|J |·|Anε (U |x)|

2·|G|n . We bound the probability of error using the following Chebyshev’s in-

equality:

P
(
Erre|x

)
= P

(
α(x) ≤ |J | · |A

n
ε (U |x)|

2 · |G|n
)
≤ var{α(x)}
E{α(x)}2

We have

E{α(x)} =
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

P
(
φ(a) +B = u, s(a) = m

)

=
|J | · |Anε (U |x)|

|G|n

and

E{α(x)2} =
2nR∑

m,m̃=1

∑

a,ã∈J

∑

u,ũ∈Anε (U |s)

P
(
φ(a) +Bm = u, φ(ã) +Bm = ũ, s(a) = m, s(ã) = m̃

)

=
2nR∑

m,m̃=1

∑

a∈J

∑

u∈Anε (U |x)

∑

θ∈Θ

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |x)
ũ∈u+Hn

θ

1

|G|n · |Hθ|n · 22nR

≤
∑

θ∈Θ

|J | · 2n[H(U |X)+δ] · |Tθ| · 2n[H(U |[U ]θX)+δ]

|G|n · |Hθ|n
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Therefore,

var{α(x)} = E{α(x)2} − E{α(x)}2

≤
∑

θ∈Θ
θ 6=000

|J | · 2n[H(U |X)+δ] · |Tθ| · 2n[H(U |[U ]θX)+δ]

|G|n · |Hθ|n

Hence,

P
(
Erre|x

)
≤
∑

θ∈Θ
θ 6=000

|G|n · |Tθ| · 2n[H(X|[X]θS)+δ]

|J | · 2n[H(X|S)+δ] · |Hθ|n

Note that |J | = 2nRout and |Tθ| = 2n(1−ωθ)Rout andH(U |X)−H(U |[U ]θX) = H([U ]θ|X).

Therefore, for θ ∈ Θ and θ 6= 000, we require

ωθRout >
(

log |G : Hθ| −H([U ]θ|X)
)

Equivalently, we require

Rout > IGs.c.(U ;X)

3.2.2.2 The Error Event Errd2

Let Err = Errd2 ∩ Errce ∩ Errcd1. Then the probability of the error event Err is

equal to

P
(
Err

)
≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

1{φ(a)+B=u,s(a)=m}

α(x)

∑

ã∈J
ã6=a

∑

ũ∈Anε (U |s)

1{φ(ã)+Bm=ũ,s(ã)=m}
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Therefore,

E
{
P (Err)

}
≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

2 · |G|n
22nR · |J | · |Anε (U |x)|

∑

ã∈J
ã6=a

∑

ũ∈Anε (U |s)

P
(
φ(a) +Bm = u, φ(ã) +Bm = ũ

)

≤
∑

x∈X n

∑

s∈S n

pnXS(x, s)
2nR∑

m=1

∑

a∈J

∑

u∈Anε (U |x)

2 · |G|n
22nR · |J | · |Anε (U |x)|

∑

θ∈Θ
θ 6=rrr

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |s)
ũ∈u+Hθn

1

|G|n · |Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

|Tθ| · 2n[H(U |[U ]θS)+δ]

2nR · |Hθ|n

Therefore, we require to have (1 − ωθ)Rout − R <
(

log |Hθ| − H(U |[U ]θS)
)

for all

θ ∈ Θ, θ 6= rrr.

3.2.2.3 Simplification of the Rate Region

In this section, we show that if Rout > IGs.c.(U ;X) then

max
θ∈Θ
θ 6=rrr

(1− ωθ)Rout −
(

log |Hθ| −H(U |[U ]θS)
)

= Rout −
(

log |G| −H(U |S)
)

We show this by contradiction. Note that the right-hand-side is equal to the left-

hand-side for θ = 000. Assume for some θ ∈ Θ, θ 6= rrr,

(1− ωθ)Rout −
(

log |Hθ| −H(U |[U ]θS)
)
> Rout −

(
log |G| −H(U |S)

)

Then we have

ωθRout < log |G| −H(U |S)−
(

log |Hθ| −H(U |[U ]θS)
)

= log |G : Hθ| −H([U ]θ|S)

which is a contradiction by the definition of IGs.c.(U ;S) if the Markov chain U ↔ X ↔

S holds.
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3.3 Distributed Source Coding

In this section, we consider a distributed source coding problem with one distortion

constraint and provide an information-theoretic inner bound to the optimal rate-

distortion region using group codes. This inner bound strictly contains the available

bounds based on random codes.

3.3.1 Preliminaries

3.3.1.1 The Source Model

Consider two distributed sources generating discrete random variables X and Y .

Assume X and Y take values from alphabets X and Y respectively with joint dis-

tribution pXY (·, ·). The source sequence (Xn, Y n) is independent over time and

has the product distribution P ((Xn, Y n) = (x,y)) =
∏n

i=1 pXY (xi, yi) for x =

(x1, · · · , xn) ∈ X n and y = (y1, · · · , yn) ∈ Y n. We consider the following dis-

tributed source coding problem: The two components, X and Y , of the source are

observed by two encoders which do not communicate with each other. Each encoder

communicates a compressed version of its input through a noiseless channel to a

joint decoder. For a discrete set Z , the decoder wishes to reconstruct a function

f : X × Y → Z of the sources with respect to a general fidelity criterion. Let Ẑ

denote the reconstruction alphabet, and the fidelity criterion is characterized by a

mapping: d : X × Y × Ẑ → R+. We restrict our attention to additive distortion

measures, i.e., the distortion among three n-length sequences x = (x1, · · · , xn) ∈X n,

y = (y1, · · · , yn) ∈ Y n and ẑ = (ẑ1, · · · , ẑn) ∈ Ẑ n is given by

d(x,y, ẑ) ,
1

n

n∑

i=1

d(xi, yi, ẑi).

We denote this distributed source by (X ,Y ,Z , pXY , d).
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3.3.1.2 Achievability and the Rate-Distortion Region

Given a distributed source (X ,Y ,Z , pXY , d), a transmission system with param-

eters (n,Θ1, Θ2, ∆) is defined by the set of mappings

Enc1 : X n → {1, 2, . . . , Θ1}, Enc2 : Y n → {1, 2, . . . , Θ2} (3.1)

Dec: {1, . . . , Θ1} × {1, . . . , Θ2} → Ẑ n (3.2)

such that the following constraint is satisfied.

E
{
d
(
Xn, Y n,Dec

(
Enc1(Xn),Enc2(Y n)

))}
≤ ∆. (3.3)

We say that a tuple (R1, R2, D) is achievable if for all ε > 0 and for all sufficiently

large n, there exists a transmission system with parameters (n,Θ1, Θ2, ∆) such that

1

n
logΘi ≤ Ri + ε for i = 1, 2

∆ ≤ D + ε.

The performance limit is given by the optimal rate-distortion region which is defined

as the set of all achievable tuples (R1, R2, D).

3.3.1.3 The Berger-Tung Region

An achievable rate region for the problem defined in Section 3.3.1.2 can be ob-

tained based on the Berger-Tung coding scheme [15,70] as follows: Let U and V be

two finite sets and let U and V be two auxiliary random variables distributed over U

and V according to the conditional probabilities PU |X and PV |Y respectively. Define

g : U × V → Ẑ as that function of U and V that gives the optimal reconstruction

Ẑ with respect to the distortion measure d(·, ·, ·) so that E{d(X, Y, g(U, V ))} is min-

imized.
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With these definitions, an achievable rate region for this problem is as follows:

For a given distributed source (X ,Y ,Z , pXY , d) let D be a distortion level for the

reconstruction. Let U and V be auxiliary random variables for which there exists a

function g(·, ·) such that E{d(X, Y, g(U, V ))} ≤ D. Then the rate-distortion tuple

(R1, R2, D) is achievable if

R1 ≥ I(X;U |V )

R2 ≥ I(Y ;V |U)

R1 +R2 ≥ I(XY ;UV )

This assertion follows from the analysis of the Berger-Tung problem [15, 70] in a

straightforward way.

3.3.1.4 The Korner-Marton and the Ahlswede-Han Schemes

Consider a distributed source coding problem in which two distributed binary

sources X and Y seek to communicate the sum of the two sources Z = X + Y to a

centralized decoder losslessly. Korner and Marton [41] propose a coding scheme based

on binary linear codes to achieve the rates R1 = R2 = H(Z). For certain cases, this

rate is not achievable using the Berger-Tung scheme. Ahlswede and Han [9] propose

a two layered coding scheme, consisting a Berger-Tung layer and a Korner-Marton

layer to achieve the following rate region: Let P and Q be finite auxiliary random

variables satisfying the Markov chain P ↔ X ↔ Y ↔ Q. Then the rate pair (R1, R2)

is achievable if

R1 ≥ I(X;P |Q) +H(Z|PQ)

R2 ≥ I(Y ;Q|P ) +H(Z|PQ)

R1 +R2 ≥ I(XY ;PQ) + 2H(Z|PQ)
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3.3.2 The Main Result

In this section, we provide an inner bound to the achievable rate-distortion region

which strictly contains the Berger-Tung rate region. The following theorem is the

main result of this section.

Theorem III.1. For the distributed source (X ,Y ,Z , pXY , d), let U , V , P and Q

be random variables jointly distributed with XY such that U and V take values from

an Abelian group G, and P and Q take values from finite sets P and Q respectively.

Assume the following Markov chains hold

P ↔ X ↔ Y ↔ Q

U ↔ (P,X)↔ (Y,Q)↔ V

and assume there exists a function g : G×P ×Q → Ẑ such that

E
{
d(X, Y, g(Z, P,Q))

}
≤ D

for Z = U + V where + is the group operation. We show that with these definitions

the rate-distortion triple (R1, R2, D) is achievable where

R1 ≥ I(X;P |Q) + Ī(U ;XP )− IGc.c.(Z;PQ)

R2 ≥ I(Y ;Q|P ) + Ī(V ;Y Q)− IGc.c.(Z;PQ)

R1 +R2 ≥ I(XY ;PQ) + Ī(UV |XY PQ)− 2IGc.c.(Z;PQ)

Note that the case where U and V are trivial, corresponds to the Berger-Tung

scheme and the case where P and Q are trivial, U = X, V = Y and the alphabets

are binary corresponds to the Korner-Marton scheme. When P and Q are non-

trivial, U = X, V = Y and the alphabets are binary this scheme corresponds to the

Ahlswede-Han scheme.
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3.3.3 The Coding Scheme

In order to show the achievability, it suffices to show the achievability of the

following corner point:

R1 = I(X;P ) + Ī(U ;XP )− IGc.c.(Z;PQ)

R2 = I(Y ;Q|P ) + Ī(V ;Y Q)− IGc.c.(Z;PQ)

To show the achievability, we use a random coding argument as follows: Let Cp be

the code designed for the random variable P defined as follows:

Cp =
{
Cp(1),Cp(2), · · · ,Cp(2nRp)

}

where Rp is the rate of this code and for i = 1, · · · , 2nRp , Cp(i)’s are iid random

variables uniformly distributed over Anε (P ). For the random variable Q, we use a

nested code in which the outer code is defined as

Cqo =
{
Cqo(1),Cp(2), · · · ,Cp(2nRqo)

}

where Rqo is the rate of the outer code and for i = 1, · · · , 2nRqo , Cqo(i)’s are iid random

variables uniformly distributed over Anε (Q). The outer code is partitioned into inner

codes using the mapping

m : Cqo → {1, 2, · · · , 2nRq}

where Rq is the transmission rate for sending Q and for c ∈ Cqo, m(c)’s are iid

random variables uniformly distributed over {1, 2, · · · , 2nRq}. Note that the codes

for P and Q are unstructured random codes. In the next layer of coding, we use

structured random codes to transmit U +V where the random variables U and V are

transmitted using nested codes with a common inner code. Let Cg be a group code

over G defined as follows:

Cg = {φ(a)|a ∈ J}
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where the Abelian group J and the homomorphism φ are defined according to (2.14)

and (2.11) respectively. The code Cg is the common inner code between U and V

and its rate is given by (2.15). The outer code for U is defined as

Cuo =
⋃

i∈{1,··· ,2nRu}

si + Cg

where Ru is the transmission rate for sending U and for i = 1, · · · , 2nRu , si’s are iid

random variables uniformly distributed over Gn. Similarly, the outer code for V is

defined as

Cvo = ∪i∈{1,··· ,2nRv}ti + Cg

where Rv is the transmission rate for sending V and for i = 1, · · · , 2nRv , ti’s are

iid random variables uniformly distributed over Gn. In the above code construc-

tions, different random variables are assumed to be independent unless otherwise

stated. For convenience, we also define the mappings s : Cuo → {1, · · · , 2nRu} and

t : Cvo → {1, · · · , 2nRv} where for i ∈ {1, · · · , 2nRu} and c ∈ si + Cg, s(c) = si and

the map t is similarly defined.

The encoding and decoding rules are as follows: Given a source pair (x,y) ∈

X n ×Y n, if x /∈ Anε (X), the X-encoder declares error (Errx); otherwise it looks for

p ∈ Cp such that p ∈ Anε (P |x). If it finds such p, it is sent to the decoder; otherwise,

it declares error (Errp). Similarly, if y /∈ Anε (Y ), the Y -encoder declares error (Erry);

otherwise it looks for q ∈ Cqo such that q ∈ Anε (Q|y). If it finds such q, m(q) is

sent to the decoder; otherwise, it declares error (Errq). This stage of encoding is

essentially the Berger-Tung layer of the coding scheme.

In the second stage of encoding, assuming that no error occurred in the first stage,

the X-encoder looks for u ∈ Cuo such that u ∈ Anε (U |xp). Given the sequences
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x ∈X n and p ∈Pn, define

α(x,p) =
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

1{φ(a)+si=u}

Note that if α(x,p) > 0, then there exists at least one i ∈ {1, · · · , 2nRu} and one a ∈ J

with φ(a) + si ∈ Anε (U |x,p). In this case, the encoder picks one such pair and sends

i to the channel. The encoder will declare an encoding error if α(x,p) = 0. Although

it may be unnecessary, it is convenient in the proofs to assume that the encoder

declares error if α(x,p) ≤ 2nRu ·|J |·|Anε (U |x,p)|
2·|G|n . We denote this error event by Erru. We

also assume that the pair (a, i) is picked with probability
∑

u∈Anε (U|x,p) 1{φ(a)+si=u}

α(x,p)
.

Similarly, assuming that no error occurred in the first stage, the Y -encoder looks for

v ∈ Cvo such that v ∈ Anε (V |yq). Given the sequences y ∈ Y n and q ∈ Qn, define

β(x,p) =
2nRv∑

j=1

∑

b∈J

∑

v∈Anε (V |y,q)

1{φ(b)+tj=v}

Note that if β(y, q) > 0, then there exists at least one j ∈ {1, · · · , 2nRv} and one

b ∈ J with φ(b) + tj ∈ Anε (V |y, q). In this case, the encoder picks one such pair and

sends j to the channel. The encoder will declare an encoding error if β(y, q) = 0.

Same as above, it is convenient in the proofs to assume that the encoder declares error

if β(y, q) ≤ 2nRv ·|J |·|Anε (V |y,q)|
2·|G|n . We denote this error event by Errv. We also assume

that the pair (b, j) is picked with probability
∑

v∈Anε (V |y,q) 1{φ(b)+tj=v}

β(y,q)
.

At the receiver, assuming no encoding errors occurred in either of the terminals,

p, m(q), s(u) and t(v) are available. The decoder sets p̂ = p and looks for q̂ ∈ Cqo
such that q̂ ∈ Anε (Q|p̂). If it does not find such q̂ it declares error (Errq̂). In the next

stage of decoding, assuming no error occurred in the first stage, the decoder looks

for ẑ ∈ Anε (Z|p̂q̂) for which there exist û ∈ Cuo and v̂ ∈ Cvo such that s(û) = s(u),

t(v̂) = t(v) and û + v̂ = ẑ. If it does not find such ẑ, it declares error (Errẑ).
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3.3.4 Error Analysis

In Section 3.3.3, we defined the error events Errx, Errp, Erry, Errq, Erru,

Errv, Errq̂ and Errẑ. In addition, we define the following error events which may

not be necessarily observable at any terminal: The error event Errxy is the event

(x,y) /∈ Anε (XY ); Errq 6=q̂ is the event that q̂ 6= q; and Errz 6=ẑ is the event that

ẑ 6= z.

First we show that if none of the error events occur, then (x,y, p̂, q̂, ẑ) ∈ Anε (XY PQZ).

This is equivalent to showing (x,y,p, q, z) ∈ Anε (XY PQZ) where z = u + v and in

turn, it suffices to show (x,y,p, q,u,v) ∈ Anε (XY PQUV ). Note that (x,y, p̂, q̂, ẑ) ∈

Anε (XY PQZ) implies x, y and g(ẑ, p̂, q̂) are jointly typical which in turn implies

d(x,y, g(ẑ, p̂, q̂)) ≈ E{d(X, Y, g(Z, P,Q))} ≤ D. We need the following Markov

lemma:

Lemma III.2. Let X, Y, Z be random variables taking values from finite sets X ,Y ,Z

respectively such that the Markov chain X ↔ Y ↔ Z holds. For n = 1, 2, · · · , let

(x(n),y(n)) ∈ Anε (XY ) and let K(n) be a random vector taking values from Z n with

distribution satisfying (for simplicity of notation we call them x,y, K respectively)

P (K = z) ≤ pnZ|Y (z|y)eεnn

for some εn → 0 as n→∞. Then, as n→∞

P ((x,y, K) ∈ Anε (XY Z))→ 1

Proof. Provided in Section 3.3.6.1.

Note that if the error event Errxy does not happen, (x,y) ∈ Anε (XY ) and there-

fore, the regular Markov lemma implies that (x,y,p, q) ∈ Anε (XY ) since the Markov

chain P ↔ X ↔ Y ↔ Q holds. Assuming that Erru does not occur, let K ∈ U n be
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the output of the encoder. We have

P (K = u|φ, s1, s2, · · · ) =
∑

a∈J

2nRu∑

i=1

∑
ũ∈Anε (U |x,p) 1{φ(a)+si=ũ}

α(x,p)
1{φ(a)+si=u}

=
∑

a∈J

2nRu∑

i=1

1

α(x,p)
1{φ(a)+si=u,u∈Anε (U |x,p)}

≤
∑

a∈J

2nRu∑

i=1

2|G|n
2nRu · |J | · |Anε (U |x,p)|1{φ(a)+si=u,u∈Anε (U |x,p)}

Therefore,

P (K = u) ≤ 2

|Anε (U |x,p)|1{u∈Anε (U |x,p)}

Let Un be distributed according to pnU |XY PQ(·|x,y,p, q) = pnU |XP (·|x,p). It is known

that for u ∈ Anε (U |x,p), P (Un = u) ≥ eδnn

|Anε (U |x,p)| for some δn converging to zero.

This implies that there exist a sequence εn converging to zero such that

P (K = u) ≤ P (Un = u)eεnn = pnU |XP (u|x,p)eεnn

Consider the Markov chain U ↔ (P,X)↔ (Y,Q) and use Lemma III.2 for (x,p), (y, q), K.

It follows that with high probability, (x,y,p, q,u) ∈ Anε (XY PQU). Similarly, using

the above argument for v and considering the Markov chain (U, P,X)↔ (Y,Q)↔ V ,

we can show that with high probability

(x,y,p, q,u,v) ∈ Anε (XY PQUV ) (3.4)

Next we show that the expected value of the probability of all of the error events

vanish zero as n increases for the following rates:

Rp > I(X;P )

Rqo > I(Y ;Q)

Rq > I(Y ;Q)− I(P ;Q) = I(Y ;Q|P )

Rg < IGc.c(Z;PQ)

Rg +Ru > Ī(U ;XP )⇒ Ru > Ī(U ;XP )− IGc.c(Z;PQ)

Rg +Rv > Ī(V ;Y Q)⇒ Rv > Ī(V ;Y Q)− IGc.c(Z;PQ)
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This will show that the claimed rates are achievable since R1 = Rp + Ru and

R2 = Rq +Rv.

It is straightforward to show that the probabilities of the error events Errx, Erry,

Errxy fall exponentially by n. It also follows from the standard approaches that the

probabilities of the error events Errp, Errq and Errq 6=q̂ vanish as n increases [15,70].

It remains to show the same for Erru, Errv, Errẑ, Errq̂ and Errz 6=ẑ

3.3.4.1 The Error Events Erru and Errv

For the source output x ∈ X n, assuming that Errp did not occur, let p be

the output of the first step of encoding. The error event Erru occurs if α(x,p) ≤
2nRu ·|J |·|Anε (U |x,p)|

2·|G|n . We bound the probability of error using the following Chebyshev’s

inequality:

P
(
Erru|x,p

)
= P

(
α(x,p) ≤ 2nRu · |J | · |Anε (U |x,p)|

2 · |G|n
)
≤ var{α(x,p)}
E{α(x,p)}2

We have

E{α(x,p)} =
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

P (φ(a) + si = u)

Note that φ(a) + si is uniform over Gn; therefore,

E{α(x,p)} =
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

1

|G|n

= 2nRu · |J | · |Anε (U |x,p)| · 1

|G|n
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Furthermore,

E{α(x,p)2} =
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2nRu∑

j=1

∑

ã∈J

∑

ũ∈Anε (U |x,p)

P (φ(a) + si = u, φ(ã) + sj = ũ)

=
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

∑

ã∈J

∑

ũ∈Anε (U |x,p)

P (φ(a) + si = u, φ(ã) + si = ũ)

+
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2nRu∑

j=1
j 6=i

∑

ã∈J

∑

ũ∈Anε (U |x,p)

P (φ(a) + si = u, φ(ã) + sj = ũ)

=
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

∑

ã∈J

∑

ũ∈Anε (U |x,p)

1

|G|nP (φ(ã− a) = ũ− u)

+
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2nRu∑

j=1
j 6=i

∑

ã∈J

∑

ũ∈Anε (U |x,p)

1

|G|2n

≤ E{α(x,p)}2 +
∑

θ∈Θ

2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |x,p)
ũ−u∈Hn

θ

1

|G|n
1

|Hθ|n

Therefore,

var{α(x,p)} ≤
∑

θ∈Θ

2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

∑

ã∈Tθ(a)

∑

ũ∈Anε (U |x,p)
ũ−u∈Hn

θ

1

|G|n
1

|Hθ|n

≤
∑

θ∈Θ

2nRu · |J | · |Tθ| · 2n[H(U |XP )+ε]2n[H(U |XP [U ]θ)+ε] 1

|G|n
1

|Hθ|n

Therefore,

P
(
Erru|x,p

)
≤
∑

θ∈Θ

|G|n
|J | · 2nRu2nH(U |XP )

· |Tθ| · 2
nH(U |XP [U ]θ)

|Hθ|n

Note that by Lemma II.11, |Tθ| = 2nR(1−ωθ). Therefore, Rg < IGc.c.(Z;PQ) implies for

all θ ∈ Θ such that θ 6= rrr,

|Tθ| · 2nH(Z|PQ[Z]θ)

|Hθ|n
→ 0
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as n increases. Note that

H(U |XP [U ]θ)
(a)
= H(U |XP )−H([U ]θ|XP )

(b)
= H(U |XPQV )−H([U ]θ|XPQV )

= H(U |XPQV [U ]θ)

= H(UV |XPQV [U ]θ)

(c)
= H(V Z|XPQV [Z]θ)

= H(Z|XPQV [Z]θ)

≤ H(Z|PQ[Z]θ)

where (a) follows since [U ]θ is a function of U ; (b) follows since the Markov chains

U ↔ (P,X) ↔ (Q, V ) and [U ]θ ↔ P ↔ (Q, V ) hold; and (c) holds since there are

one to one correspondences between (U, V ) and (V, Z) and between ([U ]θ, V ) and

(V, [Z]θ). Therefore, for θ 6= rrr,

|Tθ| · 2nH(U |XP [U ]θ)

|Hθ|n
≤ |Tθ| · 2

nH(Z|PQ[Z]θ)

|Hθ|n
→ 0

Note that for θ = rrr, we have

|Tθ| · 2nH(U |XP [U ]θ)

|Hθ|n
= 1

Therefore, it remains to show that

|G|n
|J | · 2nRu2nH(U |XP )

→ 0

as n→∞. Note that |J | = 2nRg ; therefore,

|G|n
|J | · 2nRu2nH(U |XP )

=
|G|n

2n(Rg+Ru)2nH(U |XP )
→ 0

since Rg +Ru > log |G|−H(U |XP ). With a similar argument, we can show that the

probability of the event Errv approaches zero as n increases.

75



3.3.4.2 The Error Events Errq̂ and Errẑ

Equation (3.4) implies that with hight probability, the choice of q̂ = q satisfies

the conditions q̂ ∈ Cqo and q̂ ∈ Anε (Q|p̂). Therefore, the probability of the error

event Errq̂ vanishes as n increases. Similarly, ẑ = z = u + v satisfies the necessary

conditions and it is straightforward to show that the probability of the event Errẑ

approaches zero as n→∞.

3.3.4.3 The Error Event Errz 6=ẑ

Let Err be the event that the error Errz 6=ẑ occurs but none of the other error

events occur. Then the probability of the error event Err is equal to

P
(
Err

)
≤

∑

(x,y,p,q)∈Anε (XY PQ)

pnXY (x,y)
2nRp∑

k=1

2nRqo∑

l=1

1{Cp(k)=p,Cqo(l)=q}

2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

1

α(x,p)
1{φ(a)+si=u}

2nRv∑

j=1

∑

b∈J

∑

v∈Anε (V |y,q)

1

β(y, q)
1{φ(b)+tj=v}

∑

z̃∈Anε (Z|p,q)
z̃ 6=z

∑

c̃∈J

1{φ(c̃)+si+tj=z̃}

≤
∑

(x,y,p,q)∈Anε (XY PQ)

pnXY (x,y)
2nRp∑

k=1

2nRqo∑

l=1

1{Cp(k)=p,Cqo(l)=q}

2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2|G|n
2nRu · |J | · |Anε (U |x,p)|1{φ(a)+si=u}

2nRv∑

j=1

∑

b∈J

∑

v∈Anε (V |y,q)

2|G|n
2nRv · |J | · |Anε (V |y, q)|1{φ(b)+tj=v}

∑

z̃∈Anε (Z|p,q)
z̃ 6=z

∑

c̃∈J

1{φ(c̃)+si+tj=z̃}
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Therefore,

E
{
P (Err)

}
≤
∑

(x,y)∈Anε (XY )

pnXY (x,y)
2nRp · |Aε(P |x)|
|Aε(P )| · 2nRqo · |Aε(Q|y)|

|Aε(Q)|
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2|G|n
2nRu · |J | · |Anε (U |x,p)|

2nRv∑

j=1

∑

c∈J

∑

v∈Anε (V |y,q)

2|G|n
2nRv · |J | · |Anε (V |y, q)|

∑

z̃∈Anε (Z|p,q)
z̃ 6=z

∑

c̃∈J

P
(
φ(a)+si=u, φ(c)+si+tj =u+v, φ(c̃)+si+tj = z̃

)

≤
∑

(x,y)∈Anε (XY )

pnXY (x,y)2nε
2nRu∑

i=1

∑

a∈J

∑

u∈Anε (U |x,p)

2|G|n
2nRu · |J | · |Anε (U |x,p)|

2nRv∑

j=1

∑

c∈J

∑

v∈Anε (V |y,q)

2|G|n
2nRv · |J | · |Anε (V |y, q)|

∑

θ∈Θ
θ 6=rrr

∑

z̃∈Anε (Z|p,q)
z̃∈z+Hn

θ

∑

c̃∈Tθ(c)

1

|G|2n · |Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

4 · 2nε · |Tθ| · 2n[H(Z|[Z]θPQ)+ε]

|Hθ|n

Therefore, we require to have Rg <
1

1−ωθ

(
log |Hθ| − H(Z|[Z]θPQ)

)
for all θ ∈ Θ,

θ 6= rrr. Equivalently,

Rg < IGc.c.(Z;PQ)

3.3.5 Examples

Consider a two-user distributed source coding problem in which the two sources X

and Y take values from Z4 and a centralized decoder in interested in decoding the sum

of the two sources losslessly. Furthermore, assume that X is uniformly distributed

over Z4 and Y = −X + Z where Z is independent from X and is distributed over

Z4 such that pZ(0) = 1− τ and pZ(1) = pZ(2) = pZ(3) = τ
3

for some τ ∈ (0, 1). Let

R1 and R2 be the rates of the two encoders. Using unstructured codes (Slepian-Wolf
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coding), a sum rate of R = R1 +R2 = H(X, Y ) is achievable. We have

R = H(X, Y ) = H(X,−X + Z) = H(X) +H(Z) = 2 + h(τ) + τ log 3

where h(·) denotes the binary entropy function. Using the scheme proposed by

Krithivasan and Pradhan [42], the mod-4 operation can be embedded in Abelian

groups Z4, Z7, Z3
2 and Z2

4. Let the auxiliary random variables U and V be equal to

X and Y respectively and let P and Q be trivial random variables. It turns out that

the rate pair (R1, R2) is achievable where

R1 = R2 = 2−min
(

2−H(Z), 2− 2H([Z])
)

= max
(
H(Z), 2H([Z])

)

where [Z] = Z+{0, 2}. Therefore, a sum rate ofR = R1+R2 = 2 max
(
H(Z), 2H([Z])

)

is achievable using the scheme proposed in [42]. Note that any a ∈ Z4 can be uniquely

represented by a = â+ ã where â ∈ {0, 1} and ã ∈ {0, 2}. Now consider the following

assignments for the auxiliary random variables: Let P = X̂, Q = Ŷ , U = X̃ and

V = Ỹ . It can be verified that X+Y = g(U +V, P,Q) =
(
X̂+ Ŷ

)
(mod 2)+ X̃+ Ỹ .

Therefore the new coding theorem implies that the following sum rate is achievable:

R = R1 +R2 = I(XY ; X̂Ŷ ) +H(X̃ + Ỹ |X̂Ŷ )

= H(X̂Ŷ ) +H(X̃ + Ỹ |X̂Ŷ )

= H(X̂Ẑ) +H(Z̃|X̂Ẑ)

= H(X̂ẐZ̃)

= H(X̂) +H(Z)

Figure 3.3.5 compares the sum rate for the coding schemes for different values of

τ . As can be seen in the figure, the scheme based on group codes presented in this

section outperforms the other schemes.
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Figure 3.1: Comparison of the performance of random codes vs. group codes for a dis-
tributed source coding problem. As can be seen in the picture, group codes
outperform random codes as the structure of the code is matched to the desired
function of the two sources.

3.3.6 Appendix

3.3.6.1 Proof of Lemma III.2

It suffices to show that for all a ∈X , b ∈ Y and c ∈ Z ,

∣∣∣∣
1

n
N(a, b, c|x,y, K)− pXY Z(a, b, c)

∣∣∣∣→ 0

with probability one as n →∞ where N(a, b, c|x, y,K) counts the number of occur-

rences of the triple (a, b, c) in the vector of triples (x,y, K). We have

∣∣∣∣
1

n
N(a, b, c|x,y, K)− pXY Z(a, b, c)

∣∣∣∣ ≤
∣∣∣∣pXY Z(a, b, c)− 1

n
N(a, b|x,y)W n

Z|Y (K|y)

∣∣∣∣

+

∣∣∣∣
1

n
N(a, b|x,y)W n

Z|Y (K|y)− 1

n
N(a, b, c|x,y, K)

∣∣∣∣

Note that it follows from standard typicality results that the first term in the equation

above vanishes as n increases almost surely. Next, we show that the second term also
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vanishes almost surely. We have

1

n
N(a, b|x,y)W n

Z|Y (K|y)− 1

n
N(a, b, c|x,y, K)=

1

n

n∑

i=1

1{xi=a,yi=b}
[
pY |Z(c|yi)−1{Ki=c}

]

≤ 1

n

n∑

i=1

θi

where for i = 1, 2, · · · , n,

θi = pY |Z(c|yi)− 1{Ki=c}

Let Zn be a random vector generated according to pZ|Y (·|y) and define

θ̃i = pY |Z(c|yi)− 1{Zi=c}

Note that both θi and θ̃i are binary random variables taking values from the set

{pZ|Y (c|yi), pZ|Y (c|yi)− 1} and |θi|, |θ̃i| ≤ 1. We have E{θ̃i} = 0 and var{θ̃i} ≤ 1. It

follows from [Proposition 1, Zhiyi Chi’s paper] that θ̃i satisfied the large deviations

principle with a good rate function I(·) such that

P

(
θ̃1 + · · ·+ θ̃n

n
≥ t

)
≤ e−nI(t)

where I(t) is positive. For b ∈ {pZ|Y (c|yi), pZ|Y (c|yi)− 1}n, we have

P (θ = b) =
∑

z∈Z n

zi 6=c if bi=pZ|Y (c|yi)
zi=c if bi=pZ|Y (c|yi)−1

P (K = z)

≤
∑

z∈Z n

zi 6=c if bi=pZ|Y (c|yi)
zi=c if bi=pZ|Y (c|yi)−1

pnZ|Y (z|y)eεnn

= eεnnP
(
θ̃ = b

)
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We have

P

(
θ1 + · · ·+ θn

n
≥ t

)
=

∑

b:| b1+···+bnn |≥nt
P (θ = b)

≤ eεnn
∑

b:| b1+···+bnn |≥nt
P
(
θ̃ = b

)

≤ e−n(I(t)−εn)

Note that since e−n(I(t)−εn) is summable, the Borel-Cantelli lemma implies that for all

t > 0,

lim sup
n→∞

| 1
n

n∑

i=1

θi| ≤ t

Therefore, | 1
n

∑n
i=1 θi| → 0 as n→∞ almost surely.

3.4 The 3-User Interference Channel

3.4.1 Problem Definition and the Coding Scheme

Consider a three-user discrete memoryless interference channel with inputs X1,

X2 and X3 and outputs Y1, Y2 and Y3. Assume that X1 takes values from a finite set

X1 and X2 and X3 take values from an Abelian group G. The decoder 1 decodes

X1 and Z = X2 + X3 jointly where + is the group operation and decoders 2 and 3

decode X2 and X3 respectively.

The encoder 1 uses the random code

Cr1 = {Cr1(1), · · · ,Cr1(2nR1)}

whereR1 is the rate of the first user and Cr1(1), · · · , Cr1(2nR1) are iid random variables

uniformly distributed over Anε (X1). The encoder 2 uses a nested code whose outer

code is a shifted group code Cg + b2 over G where b2 is uniform over Gn and

Cg = {φ(a)|a ∈ J}
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where φ and J are defined in (2.11) and (2.14) respectively. The code Cg is the

common code between X2 and X3 and its rate is equal to

Rg =
k

n

∑

(p,r)∈Q(G)

rwp,r log p

The outer code is partitioned into inner codes by the mapping

s : J → {1, 2, · · · , 2nR2}

where R2 is the rate of the second encoder and {s(a)}a∈J are iid and uniformly

distributed over {1, 2, · · · , 2nR2}. Similarly, encoder 3 uses a nested code whose outer

code is Cg + b3 where b3 is uniform over Gn and whose inner code is determined by

a mapping

t : J → {1, 2, · · · , 2nR3}

where R3 is the rate of the third encoder and {t(a)}a∈J are iid and uniformly dis-

tributed over {1, 2, · · · , 2nR3}. Note that the above random codes and random map-

pings are independent from each other unless otherwise stated.

The encoding and decoding rules are as follows: Given a message m1 ∈ {1, · · · , 2nR1},

the encoder 1 sends Cr1(m1). Given a message m2 ∈ {1, · · · , 2nR2}, the encoder 2

looks for a ∈ J such that φ(a) + b2 ∈ Anε (X2) and s(a) = m2. If it finds such a,

it sends x2 = φ(a) + b2 over the channel; otherwise it declares error (Erre2). Simi-

larly, given a message m3 ∈ {1, · · · , 2nR3}, the encoder 3 looks for b ∈ J such that

φ(b) + b3 ∈ Anε (X3) and t(b) = m3. If it finds such b, it sends x3 = φ(b) + b3 over the

channel; otherwise it declares error (Erre3).

At the receiver side, the decoder 1 after receiving y1 ∈ Y n
1 , looks for an index

m̂1 ∈ {1, · · · , 2nR1} and z ∈ Cg+b2+b3 such that (Cr1(m̂1), z) ∈ Anε (X1, X2+X3|y1).

If it does not find such a pair or if it finds more than one such index m̂, it de-

clares error (Errd1). The receiver 2 after receiving y2 ∈ Y n
2 , looks for the index

m̂2 ∈ {1, · · · , 2nR2} for which there exists a unique â ∈ J with φ(â) +b2 ∈ Anε (X2|y2)
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and s(â) = m̂2. If it does not find such m̂2, it declares error (Errd2). The decoding

rule for the third receiver is similar to that of the second receiver.

In the following, we show that the expected value of the probability of all the error

events over the ensemble approach zero as the block length increases if

R1 < I(X1;Y1Z)

R1 +Rg < I(X1;Y1) + Ic.c.(Z;X1Y1)

Rg −R2 > log |G| −H(X2)

Rg < IGc.c.(X2;Y2)

Rg −R3 > log |G| −H(X3)

Rg < IGc.c.(X3;Y3)

and Rg > IGs.c.(X2;X2). In the following analysis, for simplicity we are assume

H(X2) = H(X3) so that one group code can be used for both terminals.

3.4.2 Error Analysis

3.4.2.1 The Error Event Erre2:

Given a message m2 ∈ {1, 2, · · · , 2nR2}, define

θ2(m2) =
∑

a∈J

∑

x2∈Anε (X2)

1{φ(a)+b2=x2,s(a)=m2}

To simplify the analysis, we use the following modified encoding rule: If θ2(m2) <

E{θ2(m2)}
2

declare error otherwise pick one such a uniformly and send x2 = φ(a) + b2.

We use Chebyshev’s inequality as follows.

P (Erre2|m2) = P (θ2(m2) <
E{θ2(m2)}

2
) ≤ var{θ2(m2)}

E {θ2(m2)}2
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We have

E {θ2(m2)} =
∑

a∈J

∑

x2∈Anε (X2)

P (φ(a) + b2 = x2, s(a) = m2)

=
∑

a∈J

∑

x2∈Anε (X2)

1

|G|n ·
1

2nR2

=
|J | · |Anε (X2)|
|G|n · 2nR2

and

E
{
θ2(m2)2

}
=
∑

a,ã∈J

∑

x2,x̃2∈Anε (X2)

P (φ(a)+b2 =x2, φ(ã)+b2 = x̃2, s(a)=m2, s(ã)=m2)

=
∑

θ∈Θ

∑

a∈J

∑

ã∈Tθ(a)

∑

x2∈Anε (X2)

∑

x̃2∈Anε (X2)
x̃2∈x2+Hn

θ

1

|G|n ·
1

|Hθ|n
·P (s(a)=m2, s(ã)=m2)

=
∑

a∈J

∑

x2∈Anε (X2)

1

|G|n ·
1

2nR2

+
∑

θ∈Θ
θ 6=rrr

∑

a∈J

∑

ã∈Tθ(a)

∑

x2∈Anε (X2)

∑

x̃2∈Anε (X2)
x̃2∈x2+Hn

θ

1

|G|n ·
1

|Hθ|n
· 1

22nR2

≤ |J | · |A
n
ε (X2)|

|G|n · 2nR2
+
∑

θ∈Θ
θ 6=rrr

|J | · |Tθ| · |Anε (X2)| · |Anε (X2) ∩ (x2 +Hn
θ )|

|G|n · |Hθ|n · 22nR2

where, rrr is a vector whose components are indexed by (p, r) ∈ Q(G) and whose

(p, r)th component is equal to r. Using Lemma II.14, we get

var
{
θ2(m2)2

}
≤ |J | · |A

n
ε (X2)|

|G|n · 2nR2
+

∑

θ∈Θ
θ 6=000,θ 6=rrr

|J | · |Tθ| · 2n[H(X2)+ε]2n[H(X2|[X2]θ)+ε]

|G|n · |Hθ|n · 22nR2
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For some ε > 0 such that ε → 0 as n → ∞. Here, 000 is a vector whose components

are indexed by (p, r) ∈ Q(G) and whose (p, r)th component is equal to 0. We have

P (Erre2|m2) ≤ |G|n · 2nR2

|J | · 2n[H(X2)−ε] +
∑

θ∈Θ
θ 6=000,θ 6=rrr

|G|n · |Tθ| · 2n[H(X2|[X2]θ)+ε]

|Hθ|n · |J | · 2n[H(X2)−ε]

Note that |J | = 2nRg , |Tθ| = 2n(1−ωθ)Rg and |G|n
|Hθ|n

= |G : Hθ|n. In order for the

probability of error to go to zero, we require

Rg −R2 > log |G| −H(X2)

Rg > max
θ∈Θ

θ 6=000,θ 6=rrr

1

ωθ
[log |G : Hθ| −H([X2]θ)]

which is equivalent to

Rg −R2 > log |G| −H(X2)

Rg > max
θ∈Θ
θ 6=000

1

ωθ
[log |G : Hθ| −H([X2]θ)]

or

Rg −R2 > log |G| −H(X2)

Rg > IGs.c.(X2;X2)

3.4.2.2 The Error Event Errd2:

We have

Pavg(Errd2 ∩ Errce2) =
1

2nR2

2nR2∑

m2=1

∑

x2∈Anε (X2)

1{∪a∈J{φ(a)+b2=x2,s(a)=m2}}P (x2 is sent)

∑

y2∈Y n
2

pnY2|X2
(y2|x2)1∪2nR2

m̃2=1
m̃2 6=m2

∪x̃2∈Anε (X2|y2) ∪ã∈J{φ(ã) + b2 = x̃2, s(ã) = m̃2}
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Therefore,

E{P (Errd2)} ≤ 1

2nR2

2nR2∑

m2=1

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

a∈J

∑

y2∈Y n
2

pnY2|X2
(y2|x2)

2nR2∑

m̃2=1
m̃2 6=m2

∑

x̃2∈Anε (X2|y2)

∑

ã∈J

P (φ(ã)+b2 = x̃2, φ(a)+b2 =x2)P (s(a)=m2, s(ã)=m̃2)

=
1

2nR2

2nR2∑

m2=1

2nR2∑

m̃2=1
m̃2 6=m2

∑

a∈J

∑

ã∈J
ã6=a

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

y2∈Y n
2

pnY2|X2
(y2|x2)

∑

x̃2∈Anε (X2|y2)

P (φ(ã)+b2 = x̃2, φ(a)+b2 =x2)P (s(a)=m2, s(ã)=m̃2)

=
1

2nR2

2nR2∑

m2=1

2nR2∑

m̃2=1
m̃2 6=m2

∑

a∈J

∑

θ∈Θ
θ 6=rrr

∑

ã∈Tθ(a)

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

y2∈Y n
2

pnY2|X2
(y2|x2)

∑

x̃2∈Anε (X2|y2)
x̃2∈x2+Hn

θ

1

|G|n · |Hθ|n
1

22nR2

≤ 2
∑

θ∈Θ
θ 6=rrr

|Tθ| · 2n[H(X2|[X2]θY2)+ε]

|Hθ|n

Therefore, in order for the probability of error to go to zero, we require

2nH(X2|[X2]θY2) · |Tθ|
|Hθ|n

=
2nH(X2|[X2]θY2) · 2n(1−ωθ)Rg

|Hθ|n
→ 0

for θ 6= rrr or equivalently, we need to have

Rg <
1

1− ωθ
[log |Hθ| −H(X2|[X2]θY2)]

for θ 6= rrr. Therefore, it is sufficient to have Rg < IGc.c.(X2;Y2).

3.4.2.3 The Error Event Errd1:

Let P1 be the probability that both x1 and x2 +x3 are decoded incorrectly and let

P2 be the probability that x1 is decoded incorrectly but x2 +x3 is decoded correctly.

We have

Pavg(Errd1 ∩ Errce1 ∩ Errce2 ∩ Errce3) ≤ P1 + P2
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where

P1≤
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

x3∈Anε (X3)

2

E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

1{φ(a)+b2=x2,φ(b)+b3=x3,s(a)=m2,t(b)=m3}

∑

(x̃1,z̃)∈Anε (X1,X2+X3|y1)
z̃ 6=x2+x3

1{x̃1=Cr1(m̃1)}1{∃ã,b̃∈J :φ(ã)+b2+φ(b̃)+b3=z̃}

and

P2≤
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

x3∈Anε (X3)

2

E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

1{φ(a)+b2=x2,φ(b)+b3=x3,s(a)=m2,t(b)=m3}
∑

(x̃1,x2+x3)∈Anε (X1,X2+X3|y1)

1{x̃1=Cr1(m̃1)}

Note that the event {∃ã, b̃ ∈ J : φ(ã) + b2 + φ(b̃) + b3 = z̃} is equal to the event

{∃c̃ ∈ J : φ(c̃) + b2 + b3 = z̃}. Therefore, using the union bound, we get

P1≤
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

x3∈Anε (X3)

2

E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

1{φ(a)+b2=x2,φ(b)+b3=x3,s(a)=m2,t(b)=m3}
∑

(x̃1,z̃)∈Anε (X1,X2+X3|y1)
z̃ 6=x2+x3

1{x̃1=Cr1(m̃1)}
∑

c̃ 6=a+b

1{φ(c̃)+b2+b3=z̃}
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Therefore,

E{P1}≤
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)
x3∈Anε (X3)

4

E{θ2(m2)} · E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

∑

θ∈Θ
θ 6=rrr

∑

(x̃1,z̃)∈Anε (X1,X2+X3|y1)
z̃ 6=x2+x3

∑

c̃∈Tθ(a+b)

1

|G|n ·
1

|Anε (X1)| ·

P (φ(a+ b) + b2 + b3 = x2 + x3, φ(c̃) + b2 + b3 = z̃)

=
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)
x3∈Anε (X3)

4

E{θ2(m2)} · E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

∑

θ∈Θ
θ 6=rrr

∑

(x̃1,z̃)∈Anε (X1,X2+X3|y1)
z̃∈x2+x3+Hn

θ

∑

c̃∈Tθ(a+b)

1

|G|n ·
1

|Anε (X1)| ·
1

|G|n · |Hθ|n

≤
∑

θ∈Θ
θ 6=rrr

2nR1 · 2n[H(X1|Y1)+ε] · 2n[H(Z|[Z]θX1Y1)+ε] · |Tθ|
2n[H(X1)−ε] · |Hn

θ |

Note that |Tθ| = 2n(1−ωθ)Rg . Therefore, in order for the probability of error to go to

zero, it suffices to have

R1 + (1− ωθ)Rg < I(X1;Y1) + log |Hθ| −H(Z|[Z]θX1Y1)

for θ 6= rrr. For optimum weights {wp,r}(p,r)∈Q(G), the condition R1 +Rg < I(X1;Y1) +

Ic.c.(Z;X1Y1) implies

Rg < (I(X1;Y1)−R1) + min
θ∈Θ
θ 6=rrr

1

1− ωθ
[log |Hθ| −H(Z|[Z]θX1Y1)]

(a)
= min

θ∈Θ
θ 6=rrr

1

1− ωθ
[I(X1;Y1)−R1] + min

θ∈Θ
θ 6=rrr

1

1− ωθ
[log |Hθ| −H(Z|[Z]θX1Y1)]

≤ min
θ∈Θ
θ 6=rrr

1

1− ωθ
[I(X1;Y1)−R1 + log |Hθ| −H(Z|[Z]θX1Y1)]
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which is the desired condition. In the above equations, (a) follows since the maximum

of 1− ωθ is attained for θ = 000 and is equal to 1.

Similarly, for P2 we have

E{P2}≤
1

2nR1

2nR1∑

m1=1

∑

x1∈Anε (X1)

1{Cr1(m1)=x1}
1

2nR2

2nR2∑

m2=1

1

2nR3

2nR3∑

m3=1

∑

x2∈Anε (X2)

2

E{θ2(m2)}
∑

x3∈Anε (X3)

2

E{θ3(m3)}
∑

y1∈Y n
1

pnY1|X1
(y1|x1,x2,x3)

2nR1∑

m̃1=1
m̃1 6=m1

∑

a,b∈J

1

|G|2n
1

2nR2 · 2nR2

∑

(x̃1,x2+x3)∈Anε (X1,X2+X3|y1)

1

|Anε (X1)|

≤ 2nR1 · 2n[H(X1|Y1,X2+X3)+ε]

2n[H(X1)−ε]

Therefore, it suffices to have R1 < I(X1;Y1, X2 +X3).
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CHAPTER IV

Non-Abelian Group Codes

There are several results in the literature suggesting that non-Abelian group block

codes do not exhibit a good coding performance. Although there is no known general

method to construct such codes, it is believed that these codes have poor Hamming

distance properties and are inferior to Abelian group codes. In this paper, we show

that to the contrary of this view, non-Abelian group codes can have a good coding

performance and should not be ignored. We show that these codes can be superior

to their Abelian counterpart if they are employed with joint typicality decoding.

Moreover, we show that in certain multi-terminal communication problems such codes

outperform random codes and other known structured codes by achieving points

outside the known rate region. To do so, we construct the ensemble of non-Abelian

group codes over Dihedral groups which constitute an important class of non-Abelian

groups.

4.1 Introduction

Algebraic codes are an important class of codes in coding and information theory

and the information-theoretic performance limits of such codes have been studied

extensively in the literature [7, 18, 23, 35, 42, 57, 61]. It is known that linear codes are

optimal for the point-to-point symmetric channel coding problem when the size of
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the channel input alphabet is a prime power [23, 25]. These codes are also optimal

for the lossless compression of a binary source [41]. Linear codes are a special class

of algebraic codes which can only be defined over finite fields, hence over alphabets

of size a power of a prime. The natural extensions of linear codes over arbitrary

alphabets are called group codes which are classified as Abelian (commutative) and

non-Abelian (non-commutative) group codes.

Structured codes are equally important in the multi-terminal communications

problems. It is shown in [41] that for a special case of the distributed source coding

problem, the average performance of the ensemble of linear codes can be superior

to that of random codes. In recent years, this phenomenon has been observed for

a wide class of multi-termianl problems [42, 50, 55]. Thus, characterizations of the

information-theoretic performance limits of these codes became important. However,

the structure of the code restricts the encoder to abide by certain algebraic constraints

and hence the performance of such codes is inferior to random codes in some com-

munication settings. For example, linear codes are the most structured class of codes

and for some problems in multi-terminal communications, they are not optimal.

Abelian group codes are a generalization of linear codes which are algebraically

structured and can be defined for any alphabet. Group codes were first studied by

Slepian [68] for the Gaussian channel. In [6], the capacity of group codes for certain

classes of channels has been found. Further results on the capacity of group codes

were established in [7,8,61]. Abelian group codes can outperform unstructured codes

as well as linear codes in certain communications problems [42]. It turns out that

for the point-to-point communications, Abelian group codes are inferior to linear and

random codes.

The class of Abelian group codes is a small fraction of group codes. Another

step towards reducing the constraints of the code while maintaining some algebraic

structure would be to consider non-Abelian group codes. However, It has been sug-
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gested by several authors that non-Abelian group codes are inferior to Abelian group

codes [27] [34] [46]. Moreover, they suggest that asymptotically good group codes

over non-Abelian groups may not exist.

In this chapter, we consider the problem of evaluating the performance of non-

Abelian group codes. Since there is no known method to construct such codes, we

first characterize an ensemble of non-Abelian group block codes over an important

class of non-Abelian groups, namely the Dihedral groups. We show that these codes

can be characterized by the product two “dependent” linear subcodes each built on

one of the two generators of the group. The dependency of the two linear subcodes

is dictated by the fact the the two subcodes must commute to ensure the closure of

the code under the group operation. This is much like any code over Abelian groups;

the difference is that in the Abelian case, the commutativity of the linear subcodes

is automatically satisfied and hence the subcodes can be chosen independently.

We use this ensemble for a simple point-to-point channel and observe that typical

codes in this ensemble achieve the symmetric capacity of this specific channel. We

show that this could not have been possible if we were to restrict ourselves to any

Abelian subgroup of the input alphabet. Moreover, we show that this performance is

superior to the performance of Abelian group codes built for this channel. We also

consider a multi-terminal communications problem in which two users send codewords

over a multiple access channel and at the receiver, we wish to reconstruct the product

of the two codewords where the product is the group operation. We show that these

codes are superior to random codes as well as linear codes in certain cases. We use a

combination of algebraic and information-theoretic tools for this task.
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4.2 Preliminaries

4.2.0.4 Dihedral Groups

A dihedral group of order 2p is the group of symmetries of a regular p-gon, in-

cluding reflections and rotations and any combination of these operations. A dihedral

group can be represented as a quotient of a free group as follows: D2p = 〈x, y|xp =

1, y2 = 1, xyxy = 1〉. Dihedral groups are an important class of non-Abelian groups.

Note that N = 〈x|xp = 1〉 = {1, x, · · · , xp−1} is a normal subgroup of D2p. The group

D6 is the smallest non-Abelian group. Note that for two elements g, h in D6, g · h

may not be equal to h · g.

4.2.0.5 Typicality

We use the notion of strong typicality throughout this chapter (See Section 2.1).

4.2.0.6 Notation

For a set A, |A| denotes its size (cardinality) and for g an element of a group G, |g|

denotes its order. Let x be a generator of the group G whose order is a non-negative

integer p and let u = (u1, · · · , un) be a vector in Znp . Then xu denote the element

(xu1 , · · · , xun) of Gn.

4.3 Group Codes over D2p

Although there has been a lot of work on the properties of group codes in the

literature, there is no universal approach to constructing the ensemble of such codes

over arbitrary groups. Indeed, even for the smallest non-Abelian group, namely

D6, the ensemble of group codes is not characterized. We do so in this section by

constructing an ensemble of group codes over the group D2p. First, we consider the

case where p is a prime. The following theorem is the main result of this section:
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Theorem IV.1. Direct: Let N be a subgroup of {1, x, · · · , xp−1}n ∼= Znp and let M be

a subgroup of
⊕n

i=1{1, xαiy} ∼= Zn2 for some α1, · · · , αn ∈ {0, 1, · · · , p− 1}. If N and

M commute i.e. if N ·M = M ·N, then C = N ·M = M ·N is a group code over D2p.

Converse: Let C be any group code over D2p of length n. Then, C can be decomposed

as C = N ·M where N ≤ {1, x, · · · , xp−1}n ∼= Znp and M ≤⊕n
i=1{1, xαiy} ∼= Zn2 for

some α1, · · · , αn ∈ {0, 1, · · · , p− 1} such that N ·M = M ·N.

Note that this theorem facilitates the construction of group codes over D2p. Note

that the two subcodes N and M are linear codes which can be easily constructed

by taking the images of homomorphisms i.e. for some positive integer l and matrix

G ∈ Zl×np , N = {xuG|u ∈ Zlp} and for some positive integer k and matrix H ∈ Zk×n2

and numbers α1, · · · , αn ∈ {0, 1, · · · , p − 1}, M = {(xα1y, · · · , xαny)vH |v ∈ Zk2}

where (xα1 , · · · , xαny)vH is an element of Dn
2p whose ith component is xαiy if the ith

component of vH is one and is 1 otherwise. Note that some care should be taken

when choosing the matrices G and H to ensure that the two subcodes commute.

The proof of the direct part of Theorem IV.1 is standard and will be provided in a

more complete version of this work. The converse part of the theorem guarantees

that all group codes can be constructed in this manner; i.e. all group codes can be

decomposed into two subcodes which commute. The rest of this section is devoted to

proving the converse. We do so using the following lemmas.

Lemma IV.2. For all g ∈ Dn
2p, we have

a) |g| ∈ {1, 2, p, 2p}. Specially g2p = 1.

b) g2 ∈ Nn.

c) gp ∈ {1, y, xy, · · · , xp−1y}n.

d) If |g| = 2 then g ∈ {1, y, xy, · · · , xp−1y}n.

e) If |g| = p then g ∈ Nn.

Proof. The proof is standard and will be provided in a more complete version of this

work.
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Lemma IV.3. For C ≤ Dn
2p, let N = C ∩ Nn. Then we have |C| = 2r|N| for some

non-negative integer r.

Proof. Note that Nn is a normal subgroup of Dn
p . Therefore the product CNn is also

a subgroup of Dn
p and hence |CNn| divides |Dn

p | = (2p)n. Furthermore, we have

|CNn| = |C| · |N
n|

|C ∩Nn| =
|C| · pn
|N|

It follows that |C|
|N| divides 2n and this implies |C| = 2r|N| for some non-negative

integer r.

In the following, we consider the implications of this lemma for a few special cases.

These special cases are useful in proving the general case described in Lemmas IV.4

and IV.5.

Special Case r = 0: In this case, the code C is contained in the subgroup Nn

of Dn
2p. This means C is a linear code.

Special Case r = 1: In this case, we have |C| = 2|N|. Since N = C ∩Nn 6= C,

there exist an element g1 ∈ C such that g1 /∈ Nn. Since N ⊆ C and g1 ∈ C, we must

have N ∪ Ng1 ⊆ C. Note that different cosets of a subgroup are disjoint, therefore

|N ∪ Ng1| = 2|N| = |C|. Therefore, we must have C = N ∪ Ng1. By part (b) of

Lemma IV.2 we have g2
1 ∈ Nn. By the closure of the code C under multiplication,

we also have g2
1 ∈ C. Therefore, we have g2

1 ∈ N or equivalently N = Ng2
1. Note that

since g1 /∈ N, N and g1N are disjoint. Since g1N ⊆ C, we have Ng1 = g1N. Note

that g2
1 ∈ N implies Ng1 = Ng3

1. Let h1 = g3
1. By part (c) of Lemma IV.2 the order

of h1 is at most two. Therefore, we have C = N ∪ Nh1 where h1 takes values from

{1, y, xy, · · · , xp−1y}n. Furthermore, Ng1 = g1N implies Nh1 = h1N and g1 /∈ Nn

implies h1 6= 1. Note that always h2
1 = 1 ∈ N.
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To summarize this case, for r = 1, we have C = N ∪ Nh1 for some h1 ∈

{1, y, xy, · · · , xp−1y}n such that h1 6= 1 and Nh1 = h1N. These conditions imply

N ∪Nh1 = 〈N, h1〉.

Now Assume C = 〈N, g1〉 where C ∩ Nn = N. Then similarly to the above ar-

guments, we have g2
1 ∈ N. Also note that for integers a, b, if a + b is even, then

ga1Ng
b
1 ⊆ Nn and ga1Ng

b
1 ⊆ C. Since |ga1Ngb1| = |N|, we require ga1Ng

b
1 = N. Similarly,

we can show that if a+b is odd, then ga1Ng
b
1 = Ng1. This implies any sequence formed

by N and g1 can be reduced in one of the following two forms: N or Ng1. Hence, the

size of C = 〈N, g1〉 can be at most 2|N| if we require N = C ∩Nn.

Special Case r = 2: Similarly to the above case, for r = 2, we can show

C = N ∪ Nh1 ∪ Nh2 ∪ Nh1h2 for some h1, h2 ∈ {1, y, xy, · · · , xp−1y}n such that

h1, h2 6= 1, h1 6= h2, Nhj = hjN for j = 1, 2 and h1, h2 commute. These conditions

imply N ∪Nh1 ∪Nh2 ∪Nh1h2 = 〈N, h1, h2〉.

We address the general case in the following lemma:

Lemma IV.4. For C ≤ Dn
2p let N = C ∩ Nn. Write C = 〈N, g1, · · · , gk〉 for some

elements g1, · · · , gk ∈ C. Then we have

(a) For all j = 1, · · · , k, gjN = Ngj and g2
j ∈ N.

(b) For all A ⊆ [1, k] and for all permutations π : A→ A,

N

(∏

j∈A

gπ(j)

)
= N

(∏

j∈A

gj

)
(4.1)

(c) C =
⋃
A⊆[1,k]

[
N
(∏

j∈A gj

)]

Proof. The proofs of parts (a) and (b) are through induction on k. We have shown

above that these statement are valid for k = 1, 2. Assume that they are true for all
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k ≤ K−1 for some positive integer K > 3. We show that this implies the statements

are true for k = K.

Proof of (a): For j = 1, · · · , K, let C′ = 〈N, gj〉. We have N ⊆ C′ ∩ Nn ⊆

C∩Nn = N . Therefore, C′∩Nn = N and hence we can use the induction hypothesis

to conclude gjN = Ngj and g2
j ∈ N.

Proof of (b): If |A| ≤ K − 1, let C′ = 〈N, gj : j ∈ A〉. Similarly to the argument

above, we can show that C′ ∩ Nn = N and therefore we can use the induction

hypothesis to conclude (4.1). Now assume |A| = K or equivalently A = [1, K] and

fix a permutation π : A→ A. If π(K) 6= 1, use part (a) to write

gπ(1) · · · gπ(K−1)gπ(K)N = gπ(1) · · · gπ(K−1)Ngπ(K)

(i)
= g1


 ∏

j∈[2,K]\{π(K)}

gj


Ngπ(K)

= g1


 ∏

j∈[2,K]\{π(K)}

gj


 gπ(K)N

(ii)
= g1


 ∏

j∈[2,K]

gj


N=g1g2 · · · gKN

where in (i) and (ii) we use the induction hypothesis for k = K − 1. If π(K) = 1,

use the induction hypothesis for k = 2 to write

gπ(1) · · · gπ(K−1)gπ(K)N = gπ(1) · · · gπ(K)gπ(K−1)N

After this step, we can use the same argument as above to show (4.1).

Proof of (c): For any w ∈ C = 〈N, g1, · · · , gk〉 we can find a sequence of integers

αi1, · · · , αik and βi for i ∈ Z such that w ∈ N∏i∈Z
(
gαi11 · · · gαikk Nβ

)
. Using the

result of part (a) and the fact that N2 = N, we get w ∈ N
∏

i∈Z (gαi11 · · · gαikk ).

Using the result of part (b) to reorder elements we obtain w ∈ N
(
g
∑
i αi1

1 · · · g
∑
i αik

k

)
.

Using the result of part (b) and the fact that g2
j ∈ N for j = 1, · · · , k, we get

w ∈ N
(
g
∑
i αi1 (mod 2)

1 · · · g
∑
i αik (mod 2)

k

)
. This is equivalent to w ∈ N

(∏
j∈A gj

)
for

A = {j = 1, · · · , k|∑i αi1 (mod 2) = 1}.
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Lemma IV.5. For C ≤ Dn
2p, we can find elements h1, · · · , hk ∈ {1, y, xy, · · · , xp−1y}

and a subgroup N ≤ Nn such that C = 〈N, h1, · · · , hk〉 and

(a) For all j = 1, · · · , k, hjN = Nhj.

(b) All hj’s commute.

Proof. Let N = C∩Nn and write C = 〈N, g1, · · · , gk〉 for some elements g1, · · · , gk ∈

C. For j = 1, · · · , k, define h
(0)
j = g3

j . Define h1 = h
(0)
1 and for j = 2, · · · , k,

define hj sequentially as follows: For l = 1, · · · , j − 1, let h
(l)
j = h

(l−1)
j hlh

(l−1)
j hlh

(l−1)
j

and finally let hj = h
(j−1)
j . It is straightforward to verify that with these definitions

C = 〈N, h1, · · · , hk〉 and (a) and (b) are satisfied. The complete proof will be provided

in a more complete version of this work.

We are ready to prove the converse part of Theorem IV.1. For any C ≤ Dn
2p, let

N = C ∩Nn and let M = 〈h1, · · · , hk〉 where h1, · · · , hk are as in Lemma IV.5. Is it

straightforward to verify that N and M satisfy the conditions of the theorem.

Remark IV.6. Although in this section we addressed the case where p is a prime,

Theorem IV.1 is valid for arbitrary Dihedral groups D2q for an arbitrary integer q ≥ 3.

The difference is that in the general case, the subcode N need not be a linear code

but rather it is an Abelian group codes over the cyclic group Zq. The construction

of Abelian group codes has been addressed in [61].

4.4 The Ensemble of Codes

In this section, we present an ensemble of codes which consists of all non-Abelian

group codes over D2p for some prime p. We make use of Lemma IV.5 to construct an

ensemble of codes of length n as follows:

• For i = 1, · · · , n, choose α1, · · · , αn ∈ {0, 1, · · · , p}.

• For some 1 ≤ m ≤ n, choose a partition P = {P1, · · · , Pm} of [1, n] so that for

i = 1, · · · ,m, |Pi| = rin for some 0 < ri ≤ 1.
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• For some 0 ≤ k ≤ n, choose subsets I1, · · · , Ik of [1,m].

• For j = 1, · · · , k, let Aj = ∪i∈IjPi.

• For j = 1, · · · , k, let hj = (h1j, · · · , hnj) ∈ Dn
2p where hij = 1 if i ∈ Aj and

hij = xαiy if i ∈ Acj.

• For some 0 ≤ κ ≤ 1 and for i = 1, · · · ,m, LetGi be a matrix in {0, 1, 2}[1,κrin]×Pm .

• A message is indexed by a set J ⊆ [1, k] and by ui ∈ Z[1,κrin]
p for i = 1, · · · ,m.

The encoder maps the message (J, u1, · · · , um) to

Enc(J, u1, · · · , um) = xu1G1+···umGm
∏

j∈J

hj

The rate of each code in this ensemble is equal to R = 1
n
(k +

∑n
i=1 κri log p).

The rest of this section is devoted to proving that this ensemble contains all group

codes. As in the statement of Lemma IV.5, let C = 〈N, h1, · · · , hk〉 and for j =

1, · · · , k, let hj = (h1j, · · · , hnj).

Lemma IV.7. For i = 1, · · · , n, there exists αi such that for all j = 1, · · · , k,

hji ∈ {1, xαiy}.

Proof. Fix an i ∈ [1, n] and assume there exists a j ∈ [1, k] with hij 6= 1. Since hij ∈

{1, y, xy, · · · , xp−1y}, we can let hij = xαiy for some αi. Since all of hj’s commute,

for all j′ = 1, · · · , k, we have hijhij′ = hij′hij where hij′ ∈ {1, y, xy, · · · , xp−1y}. This

can only happen if hij′ ∈ {1, xαiy}. This proves the claim.

For j = 1, · · · , k, let Aj = {i|hij = 1}.

Lemma IV.8. If Nh1 = h1N, then N = NA1 ⊕NAc1
such that ProjA1

(NAc1
) = 0 and

ProjAc1(NA1) = 0.
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Proof. Let g = (g1, · · · , g2) be a vector in N and with a slight abuse of notation

let’s write g = gA1 ⊕ gAc1 and h1 = hA1,1 ⊕ hAc1,1 (Note that hA1,1 is a vector of

all ones by definition and hAc1,1 is a vector of elements of the form xαy). We have

h1gh1 = gA1 ⊕ g−1
Ac1
∈ C. Since h1gh1 ∈ Nn, we must have h1gh1 = gA1 ⊕ g−1

Ac1
∈ N.

Therefore, (g1h1gh1)
p+1
2 = gA1 ⊕ 1Ac1 ∈ N. With a similar argument, we can show

that 1A1 ⊕ gAc1 ∈ N. To complete the proof, let

NA1 = {gA1 ⊕ 1Ac1|g ∈ N} = ProjA1
(N)

NAc1
= {1A1 ⊕ gAc1|g ∈ N} = ProjAc1(N)

In other words, we have shown that if Nh1 = h1N, then N = ProjA1
(N)⊕ProjAc1(N).

Lemma IV.9. The subcode N can be decomposed as

⊕

J⊆[1,k]

Proj(
∩j∈JAj

)
∩
(
∩j∈JcAcj

)(N)

Proof. By Lemma IV.8, for all j = 1, · · · , k, we have N = ProjAj(N) ⊕ ProjAcj(N).

We have

N = ProjA2

(
ProjA1

(N)⊕ ProjAc1(N)
)
⊕

ProjAc2

(
ProjA1

(N)⊕ ProjAc1(N)
)

= ProjA1∩A2
(N)⊕ ProjAc1∩A2

(N)⊕

ProjA1∩Ac2(N)⊕ ProjAc1∩Ac2(N)

This proves the lemma for k = 2. The general case can be proved in a similar

fashion.

Define the collection of sets P as

P =
{(
∩j∈J Aj

)
∩
(
∩j∈Jc Acj

)∣∣J ⊆ [1, k]
}
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Then P forms a partition of [1, n] as P = {P1, · · · , Pm} such that each Aj can be

written as union of Pi’s. To summarize, we have N =
⊕m

i=1 ProjPi(N). In the

construction above, the matrix Gi is used to form the subgroup ProjPi(N).

4.5 Examples: Non-Abelian Group Codes Can Have a Good

Performance

In this section, we consider two simple examples. These examples are chosen so

that the construction and analysis of the ensemble of non-Abelian group codes and

the computation of the achievable rate becomes simple. In the first example, we show

that the achievable rate using non-Abelian group codes can be strictly larger than the

rate achievable using Abelian group codes for the point-to-point problem. We also

show that this rate is not achievable if we restrict ourselves to any Abelian subgroup

of the alphabet. In the second example, we consider a scenario in which two users

try to communicate the sum of two symbol streams with a joint decoder through a

multiple access channel. We show that for this specific example, the achievable rate

using non-Abelian codes can be strictly larger than the rate achievable using random

codes. This shows in certain multi-terminal communications problems non-Abelian

group codes can be beneficial by achieving points which are not achievable using other

type of codes.

In both examples, the parameters of the ensemble of codes is as follows: β0 =

· · · = βn = 0, m = n, Pi = {i}, ri = 1
n
, l is a fixed parameter determined by the

rate of the code, I1, · · · , Il are uniformly random, κ = 1 and Gi is uniformly random.

Note that with these parameters, N = Nn and M = {yvH |v ∈ Zk2} for some uniformly

random k × n matrix H.
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4.5.1 Example 1: Point-to-Point Problem

Consider the channel depicted in Figure 4.1. The Shannon capacity of this channel

1

x

x2

y

xy

x2y

ε

1−ε

1−ε

1−ε

1−ε

1−ε

1−ε

ε

ε

ε

ε

ε

a

b

c

d

e

f

Figure 4.1: A simple channel with input D6.

is C = log 6 − h(ε) bits per channel use. It turns out that using the joint typicality

decoding, the average code in the ensemble of non-Abelian group codes can achieve

the shannon capacity R = log 6− h(ε). If we restrict ourselves to Abelian subgroups

of D6 we can achieve (in bits per channel use) 1.585 for {1, x, x2}, 1− h(ε) for {1, y}

and 1.000 for {1, xy}and {1, x2y}. All of these rates are less than the rate achievable

using non-Abelian group codes.

4.5.2 Example 2: Computation Over MAC

In this section, we use the ensemble of codes constructed in Section 4.4 for a

problem of computation over multiple access channels. Consider the two-user MAC

depicted in Figure 4.2 where X, Z take values from the Dihedral group D6 and Y

takes values from a finite set Y .

X

Z

Y
W = X · Z

WY |WD6 Multiplier

Figure 4.2: Two user MAC: Computation of D6 operation.

When the inputs of the channel are x, z ∈ D6, the channel output is y ∈ Y with

conditional probability WY |XZ(y|x, z). Let n be the block length and let C1 ⊆ Dn
6

and C2 ⊆ Dn
6 be codebooks corresponding to Users 1 and 2 respectively. If User 1
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sends a message x ∈ C1 and User 2 sends a message z ∈ C2, the decoder wishes

to reconstruct x · z losslessly where the multiplication is the component-wise group

operation.

Note that in this example, the MAC is multiplicative in the sense that the two ter-

minals get multiplied (the group operation) and then the result is passed through a

point-to-point channel. The channel WY |W is taken to be the channel of Example 1.

The encoding/decoding strategy is as follows: Let C1 = {B1x
uyHv|u ∈ Zn3 , v ∈ Zk2}

and C2 = {yHvxuB2|u ∈ Zn3 , v ∈ Zk2} for some H ∈ Zk×n2 . The decoder, after receiv-

ing the channel output, looks for a unique codeword in C1 ·C2 which is jointly typical

with the channel output. If it doesn’t find such a codeword, it declares error. The

average probability of error for the codes in this ensemble is given by

Perr =
1

32n22k

∑

xxx∈C1

∑

zzz∈C2

∑

yyy∈Y n

W n
Y |W (yyy|xxx · zzz)

∑

www∈C1·C2
www 6=xxx·zzz

1{www∈Anε (W |yyy)}

This probability of error approaches zero as n increase for R < log 6 − h(ε) bits

per channel use which is equal to the point-to-point capacity of the channel. If

we restrict ourselves to the Abelian subgroup {1, x, x2}, we can show that the rate

R = 1.585 is achievable. The achievable rate using random codes is equal to R =

I(XZ;Y )/2 = (log 6−h(ε))/2. We observe that for this example, non-Abelian group

codes outperform Abelian group codes and Abelian group codes outperform random

codes. This is due to the fact that the structure of the channel is matched to the

structure of non-Abelian group codes.
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CHAPTER V

Lattice Codes for Multi-terminal Communications

5.1 Nested Lattices for Point-to-Point Communications

In this section, we show that nested lattice codes achieve the capacity of arbitrary

channels with or without non-casual state information at the transmitter. We also

show that nested lattice codes are optimal for source coding with or without non-

causal side information at the receiver for arbitrary continuous sources.

Lattice codes for continuous sources and channels are the analogue of linear codes

for discrete sources and channels and play an important role in information theory

and communications. Linear/lattice and nested linear/lattice codes have been used

in many communication settings to improve upon the existing random coding bounds

[17,41–44,50,55,69].

In [17] and [43] the existence of lattice codes satisfying Shannon’s bound has been

shown. These results have been generalized and the close relation between linear and

lattice codes has been pointed out in [44]. In [76], several results regarding lattice

quantization noise in high resolution has been derived and the problem of constructing

lattices with an arbitrary quantization noise distribution has been studied in [30].

Nested lattice codes were introduced in [79] where the concept of structured bin-

ning is presented. Nested linear/lattice code are important because in many com-
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munication problems, specially multi-terminal settings, such codes can be superior

in average performance compared to random codes [42]. It has been shown in [77]

that nested lattice codes are optimal for the Wyner-Ziv problem when the source

and side information are jointly Gaussian. The dual problem of channel coding with

state information has been addressed in [71] and the optimality of lattice codes for

Gaussian channels has been shown. In [51] it has been shown that nested linear codes

are optimal for discrete channels with state information at the transmitter.

In this section, we focus on two problems: 1) The point to point channel coding

with state information at the encoder (the Gelfand-Pinsker problem [31]) and 2) Lossy

source coding with side information at the decoder (the Winer-Ziv problem [74] [73]).

We consider these two problems in their most general settings i.e. when the source and

the channel are arbitrary. We use nested lattice codes with joint typicality decoding

rather than lattice decoding. We show that in both settings, from an information-

theoretic point of view, nested lattice codes are optimal.

5.1.1 Preliminaries

5.1.1.1 Channel Model

We consider continuous alphabet memoryless channels with knowledge of channel

state information at the transmitter used without feedback. We associate two sets X

and Y with the channel as the channel input and output alphabets. The set of chan-

nel states is denoted by S and it is assumed that the channel state is distributed

over S according to PS. When the state of the channel S is s ∈ S , the input-

output relation of the channel is characterized by a transition kernel WY |XS(y|x, s)

for x ∈ X and y ∈ Y . We assume that the state of the channel is known at the

transmitter non-causally. The channel is specified by (X ,Y ,S , PS,WY |XS, w) where

w : X ×S → R+ is the cost function.
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5.1.1.2 Source Model

The source is modeled as a discrete-time random process X with each sample tak-

ing values in a fixed set X called alphabet. Assume X is distributed jointly with a

random variable S according to the measure PXS over X ×S where S is an arbitrary

set. We assume that the side information S is known to the receiver non-causally.

The reconstruction alphabet is denoted by U and the quality of reconstruction is

measured by the average of a single-letter distortion functions d : X ×U → R+. We

denote such sources by (X ,S ,U , PXS, d).

5.1.1.3 Linear and Coset Codes Over Zp

For a prime number p, a linear code over Zp of length n and rate R = k
n

log p is

a collection of pk codewords of length n which is closed under mod-p addition (and

hence mod-p multiplication). In other words, linear codes over Zp are subspaces of

Znp . Any such code can be characterized by its generator matrix G ∈ Zk×np . This

follow from the fact that any subgroup of an Abelian group corresponds to the image

of a homomorphism into that group. The linear encoder maps a message tuple u ∈ Zkp
to the codeword x where x = uG and the operations are done mod-p. The set of all

message tuples for this code is Zkp and the set of all codewords is the range of the

matrix G. i.e.

C =
{
uG|u ∈ Zkp

}
(5.1)

A coset code over Zp is a shift of a linear code by a fixed vector. A coset code of

length n and rate R = k
n

log p is characterized by its generator matrix G ∈ Zk×np and

it’s shift vector (dither) B ∈ Znp . The encoding rule for the corresponding coset code

is given by x = uG + B, where u is the message tuple and x is the corresponding
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codeword. i.e.

C =
{
uG+B|u ∈ Zkp

}
(5.2)

In a similar manner, any linear code over Zp of length n and rate (at least)

R = n−k
n

log p is characterized by its parity check matrix H ∈ Zk×np . This follows

from the fact that any subgroup of an Abelian group corresponds to the kernel of a

homomorphism from that group. The set of all codewords of the code is the kernel

of the matrix H; i.e.

C =
{
u ∈ Znp |Hu = 0

}
(5.3)

where the operations are done mod-p. Note that there are at least pn−k codewords

in this set. A coset code over Zp is a shift of a linear code by a fixed vector. A coset

code of length n and rate (at least) R = n−k
n

log p can be characterized by its parity

check matrix H ∈ Zk×np and it’s bias vector c ∈ Zkp as follows:

C =
{
u ∈ Znp |Hu = c

}
(5.4)

where the operations are done mod-p.

5.1.1.4 Lattice Codes and Shifted Lattice Codes

A lattice code of length n is a collection of codewords in Rn which is closed under

real addition. A shifted lattice code is any translation of a lattice code by a real vector.

In this paper, we use coset codes to construct (shifted) lattice codes as follows: Given

a coset code C of length n over Zp and a step size γ, define

Λ(C, γ, p) = γ(C− p− 1

2
1) (5.5)

where 1 = (1, · · · , 1) ∈ Znp . The corresponding mod-p lattice code Λ̄(C, γ, p) is the

disjoint union of shifts of Λ by vectors in γpZn. i.e.

Λ̄(C, γ, p) =
⋃

v∈pZn
(γv + Λ)
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It can be shown that this definition is equivalent to:

Λ̄(C, γ, p) =

{
γ(v − p− 1

2
) |v ∈ Zn, v mod p ∈ C

}

Note that Λ(C, γ, p) ⊆ Λ̄(C, γ, p) is a scaled and shifted copy of the linear code C.

5.1.1.5 Nested Linear Codes

A nested linear code consists of two linear codes, with the property than one of

the codes (the inner linear code) is a subset of the other code (the outer linear code).

For positive integers k and l, let the outer and inner codes Ci and Co be linear codes

over Zp characterized by their generator matrices G ∈ Zl×np and G′ ∈ Z(k+l)×n
p and

their shift vectors B ∈ Znp and B′ ∈ Znp respectively. Furthermore, assume

G′ =



G

∆G


 , B′ = B

For some ∆G ∈ Zk×np . In this case,

Co =
{
aG+m∆G+B|a ∈ Zlp,m ∈ Zkp

}
, (5.6)

Ci =
{
aG+B|a ∈ Zlp

}
(5.7)

It is clear that the inner code is contained in the outer code. Furthermore, the inner

code induces a partition of the outer code through its shifts. For m ∈ Zkp define the

mth bin of Ci in Co as

Bm =
{
aG+m∆G+B|a ∈ Zlp

}

Similarly, Nested linear codes can be characterized by the parity check representa-

tion of linear codes. For positive integers k and l, let the outer and inner codes Co and

Ci be linear codes over Zp characterized by their parity check matrices H ∈ Zl×np and
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H ′ ∈ Z(k+l)×n
p and their bias vectors c ∈ Zlp and c′ ∈ Zk+l

p respectively. Furthermore

assume:

H ′ =




H

∆H


 , c′ =




c

∆c




For some ∆H ∈ Zk×np and ∆c ∈ Zkp. In this case,

Co =
{
u ∈ Znp |Hu = c

}
, (5.8)

Ci =
{
u ∈ Znp |Hu = c,∆Hu = ∆c

}
(5.9)

For m ∈ Zkp define the mth bin of Ci in Co as

Bm =
{
u ∈ Znp |Hu = c,∆Hu = m

}

The outer code is the disjoint union of all the bins and each bin index m ∈ Zkp is

considered as a message. We denote a nested linear code by a pair (Ci,Co).

5.1.1.6 Nested Lattice Codes

Given a nested linear code (Ci,Co) over Zp and a step size γ, define

Λi(Ci, γ, p) = γ(Ci −
p− 1

2
), (5.10)

Λo(Co, γ, p) = γ(Co −
p− 1

2
) (5.11)

Then the corresponding nested lattice code consists of an inner lattice code and an

outer lattice code

Λ̄i(Ci, γ, p) = ∪v∈pZn(γv + Λi) (5.12)

Λ̄o(Co, γ, p) = ∪v∈pZn(γv + Λo) (5.13)

In this case as well, the inner lattice code induces a partition of the outer lattice code.

For m ∈ Zkp, define

Bm = γ(Bm −
p− 1

2
) (5.14)
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where Bm is the mth bin of Ci in Co. The mth bin of the inner lattice code in the

outer lattice code is defined by:

B̄m = ∪v∈pZn(γv + Bm)

The set of messages consists of the set of all bins of Λ̄i in Λ̄o. We denote a nested

lattice code by a pair (Λ̄i, Λ̄o).

5.1.1.7 Achievability for Channel Coding and the Capacity-Cost Function

A transmission system with parameters (n,M, Γ, τ) for reliable communication

over a given channel (X ,Y ,S , PS,WY |XS, w) with cost function w : X ×S → R+

consists of an encoding mapping and a decoding mapping

e : S n × {1, 2, . . . ,M} →X n

f : Y n → {1, 2, . . . ,M}

such that for all m = 1, 2, . . . ,M , if s = (s1, · · · , sn) and x = e(s,m) = (x1, · · · , xn),

then

1

n

n∑

i=1

w(xi, si) < Γ

and

EPS

{
M∑

m=1

1

M
Pr (f(Y n) 6= m|Xn = e(Sn,m))

}
≤ τ

Given a channel (X ,Y ,S , PS,WY |XS, w), a pair of non negative numbers (R,W )

is said to be achievable if for all ε > 0 and for all sufficiently large n, there exists

a transmission system for reliable communication with parameters (n,M, Γ, τ) such

that

1

n
logM ≥ R− ε, Γ ≤ W + ε, τ ≤ ε
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The optimal capacity cost function C(W ) is given by the supremum of C such that

(C,W ) is achievable.

5.1.1.8 Achievability for Source Coding and the Rate-Distortion Function

A transmission system with parameters (n,Θ,∆, τ) for compressing a given source

(X ,S ,U , PXS, d) consists of an encoding mapping and a decoding mapping

e : X n → {1, 2, · · · , Θ},

g : S n × {1, 2, · · · , Θ} → U n

such that the following condition is met:

P (d(Xn, g(e(Xn))) > ∆) ≤ τ

where Xn is the random vector of length n generated by the source. In this transmis-

sion system, n denotes the block length, logΘ denotes the number of channel uses, ∆

denotes the distortion level and τ denotes the probability of exceeding the distortion

level ∆.

Given a source, a pair of non-negative real numbers (R,D) is said to be achievable

if there exists for every ε > 0, and for all sufficiently large numbers n a transmission

system with parameters (n,Θ,∆, τ) for compressing the source such that

1

n
logΘ ≤ R + ε, ∆ ≤ D + ε, τ ≤ ε

The optimal rate distortion function R∗(D) of the source is given by the infimum of

the rates R such that (R,D) is achievable.

5.1.1.9 Typicality

We use the notion of weak* typicality with Prokhorov metric introduced in [47].

Let M(Rd) be the set of probability measures on Rd. For a subset A of Rd define its
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ε-neighborhood by

Aε = {x ∈ Rd|∃y ∈ A such that ‖x− y‖ < ε}

where ‖ · ‖ denotes the Euclidean norm in Rd. The Prokhorov distance between two

probability measures P1, P2 ∈M(Rd) is defined as follows:

πd(P1, P2) = inf{ε > 0|P1(A) < P2(Aε) + ε and

P2(A) < P1(Aε) + ε ∀ Borel set A in Rd}

Consider two random variables X and Y with joint distribution PXY (·, ·) over X ×

Y ⊆ R2. Let n be an integer and ε be a positive real number. For the sequence pair

(x, y) belonging to X n ×Y n where x = (x1, · · · , xn) and y = (y1, · · · , yn) define the

empirical joint distribution by

P̄xy(A,B) =
1

n

n∑

i=1

1{xi∈A,yi∈B}

for Borel sets A and B. Let P̄x and P̄y be the corresponding marginal probability

measures. It is said that the sequence x is weakly* ε-typical with respect to PX if

π1(P̄x, PX) < ε

We denote the set of all weakly* ε-typical sequences of length n by Anε (X). Similarly,

x and y are said to be jointly weakly* ε-typical with respect to PXY if

π2(P̄xy, PXY ) < ε

We denote the set of all weakly* ε-typical sequence pairs of length n by Anε (XY ).

Given a sequence x ∈ Anε , the set of conditionally ε-typical sequences Anε (Y |x) is

defined as

Anε (Y |x) = {y ∈ Y n |(x, y) ∈ Anε (X, Y )}
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5.1.1.10 Notation

In our notation, O(ε) is any function of ε such that limε→0O(ε) = 0 and for a set

G, |G| denotes the cardinality (size) of G.

5.1.2 Nested Lattice Codes for Channel Coding

We show the achievability of the rate R = I(U ;Y ) − I(U ;S) for the Gelfand-

Pinsker channel using nested lattice code for U .

Theorem V.1. For the channel (X ,Y ,S , PS,WY |XS, w), let w : X → R+ be a

continuous cost function. Let U be an arbitrary set and let SUXY be distributed over

S ×U ×X ×Y according to PSPU |SWX|USWY |SX where the conditional distribution

PU |S and the transition kernel WX|US are such that E{w(X)} ≤ W . Then the pair

(R,W ) is achievable using nested lattice codes over U where R = I(U ;Y )− I(U ;S).

5.1.2.1 Discrete U and Bounded Continuous Cost Function

In this section we prove the theorem for the case when U = Û takes values from

the discrete set γ(Zp − p−1
2

) where p is a prime and γ is a positive number. We

use a random coding argument over the ensemble of mod-p lattice codes to prove

the achievability. Let Co and Ci be defined as (5.6) and (5.7) where G is a random

matrix in Zl×np , ∆G is a random matrix in Zk×np and B is a random vector in Znp .

Define Λ̄i(Ci, γ, p) and Λ̄o(Co, γ, p) accordingly. The ensemble of nested lattice codes

consists of all lattices of the form (5.10) and (5.11). The set of messages consists of

all bins Bm indexed by m ∈ Zkp.

The encoder observes the massage m ∈ Zkp and the channel state s ∈ S n and looks

for a vector u in the mth bin Bm which is jointly weakly* typical with s and encodes

the massage m to x according to WX|SU . The encoder declares error if it does not

find such a vector.
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After receiving y ∈ Y n, the decoder decodes it to m ∈ Zkp if m is the unique tuple

such that the mth bin Bm contains a sequence jointly typical with y. Otherwise it

declares error.

Encoding Error

We begin with some definitions and lemmas. Let

S ′ = [
−γp

2
,
γp

2
]n ∩ γZn (5.15)

For a ∈ Zkp, m ∈ Zlp, define

g(a,m) = γ

(
(aG+m∆G+B)− (p− 1)

2

)

g(a,m) has the following properties:

Lemma V.2. For a ∈ Zlp and m ∈ Zkp, g(a,m) is uniformly distributed over S ′. i.e.

For u ∈ S ′,

P (g(a,m) = u) =
1

pn

Proof. Note that B is independent of G and ∆G and therefore aG + m∆G + B is a

uniform variable over Znp . The lemma follows by noting that

S ′ = γ

(
Znp −

(p− 1)

2

)

Lemma V.3. For a, ã ∈ Zlp and m ∈ Zkp if a 6= ã then g(a,m) and g(ã,m) are

independent. i.e. For u ∈ S ′ and ũ ∈ S ′,

P (g(a,m) = u, g(ã,m) = ũ) =
1

p2n
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Proof. It suffices to show that aG+m∆G+B and ãG+m∆G+B are uniform over

Znp and independent. Note that for u, ũ ∈ Znp ,

P (aG+m∆G+B = u, ãG+m∆G+B = ũ)

= P (aG+m∆G+B = u, (ã− a)G = ũ− u)

(a)
= P (aG+m∆G+B = u)× P ((ã− a)G = ũ− u)

(b)
=

1

p2n

where (a) follows since the B is uniform over Znp and independent of G and (b) follows

since B and G are uniform and ã− a 6= 0

Lemma V.4. For a, ã ∈ Zlp and m, m̃ ∈ Zkp if m 6= m̃ then g(a,m) and g(ã, m̃) are

independent. i.e. For u ∈ S ′ and ũ ∈ S ′,

P (g(a,m) = u, g(ã, m̃) = ũ) =
1

p2n

Proof. The proof is similar to the proof of the previous lemma and is omitted.

For a message m ∈ Zkp and state s ∈ S n, the encoder declares error if there is no

sequence in Bm jointly typical with s. Define

θ(s) =
∑

u∈Bm

1{u∈Anε (Û |s)} =
∑

a∈Zlp

1{g(a,m)∈Anε (Û |s)}

Let Z be a uniform random variable over γ
(
Zp − (p−1)

2

)
and hence Zn a uniform

random variable over S ′. Then we have

E{θ(s)} =
∑

a∈Zlp

P
(
Zn ∈ Anε (Û |s)

)

we need the following lemmas from to proceed:

Lemma V.5. Let PXY be a joint distribution on R2 and PX and PY denote its

marginals. Let Zn be a random sequence drawn according to P n
Z . If D(PXY ‖PZPY ) is

finite then for each δ > 0, there exist ε(δ) such that if ε < ε(δ) and y ∈ Anε (PY ) then

lim sup
1

n
logP n

Z ((Zn, y)∈Anε (PXY )≤−D(PXY ‖PZPY )+δ
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Proof. This lemma is a generalization of Theorem 21 of [47]. The proof is provided

in the Appendix.

Lemma V.6. Let PXY be a joint distribution on R2 and PX and PY denote its

marginals. Let Zn be a random sequence drawn according to P n
Z . Then for each

ε, δ > 0, there exist ε̄(ε, δ) such that if y ∈ Anε̄ (PY ) then

lim inf
1

n
logP n

Z ((Zn, y)∈Anε (PXY )≥−D(PXY ‖PZPY )−δ

Proof. This lemma is a generalization of Theorem 22 of [47]. The proof is provided

in the Appendix.

Using these lemmas we get

E{θ(s)} = pl2−n[D(PÛS‖PZPS)+O(ε)]

Similarly, let Zn = g(a,m) and Z̃n = g(ã,m). Note that Zn and Z̃n are equal if a = ã

and are independent if a 6= ã. We have

E{θ(s)2} =
∑

a,ã∈Zlp

P
(
Zn, Z̃n ∈ Anε (Û |s)

)

=
∑

a∈Zlp

P
(
Zn ∈ Anε (Û |s)

)

+
∑

a,ã∈Zlp
a6=ã

P
(
Zn ∈ Anε (Û |s)

)2

= pl2−n[D(PÛS‖PZPS)+O(ε)]

+ pl(pl − 1)2−2n[D(PÛS‖PZPS)+O(ε)]

Therefore

var{θ(s)} = E{θ(s)2} − E{θ(s)}2

≤ pl2−n[D(PÛS‖PZPS)+O(ε)]
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Hence,

P (θ(s) = 0) ≤ P (|θ(s)− E{θ(s)}| ≥ E{θ(s))
(a)

≤ var{θ(s)}
E{θ(s)}2

≤ pl2−n[D(PÛS‖PZPS ]+O(ε)]

Where (a) follows from Chebyshev’s inequality. This bound is valid for all s ∈ Sn.

Therefore if

l

n
log p > D(PÛS‖PZPS) (5.16)

then the probability of encoding error goes to zero as the block length increases.

Decoding Error

The decoder declares error if there is no bin Bm containing a sequence jointly

typical with y where y is the received channel output or if there are multiple bins

containing sequences jointly typical with y. Assume that the message m has been

encoded to x according to WX|SU where u = g(a,m) and the channel state is s. The

channel output y is jointly typical with u with high probability. Given m, s, a and u,

the probability of decoding error is upper bounded by

Perr ≤
∑

m̃∈Zkp
m̃6=m

∑

ã∈Zlp

P
(
g(ã, m̃) ∈ Anε (Û |y)|g(a,m) ∈ Anε (Û |y)

)

(a)
= plpk2−n[D(PÛY ‖PZPY )+O(ε)]

Where in (a) we use Lemmas V.4, V.5 and V.6. Hence the probability of decoding

error goes to zero if

k + l

n
log p < D(PÛY ‖PZPY ) (5.17)
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The Achievable Rate

Using (5.16) and (5.17), we conclude that if we choose l
n

log p sufficiently close

to D(PÛS‖PZPS) and k+l
n

log p sufficiently close to D(PÛS‖PZPS) we can achieve the

rate

R =
k

n
log p ≈ D(PÛY ‖PZPY )−D(PÛS‖PZPS)

= I(Û ;Y )− I(Û ;S)

5.1.2.2 Arbitrary U and Bounded Continuous Cost Function

Let Q = {A1, A2, · · · , Ar} be a finite measurable partition of Rd. For random

variables U and Y on Rd with measure PUY define the quantized random variables

UQ and YQ on Q with measure

PUQYQ(Ai, Aj) = PUY (Ai, Aj)

The Kullback-Leibler divergence between U and Y is defined as

D(U‖Y ) = sup
Q
D(UQ‖YQ)

where D(UQ‖YQ) is the discrete Kullback-Leibler divergence and the supremum is

taken over all finite partitions Q of Rd. Similarly, the mutual information between U

and Y is defined as

I(U ;Y ) = sup
Q
I(UQ;YQ)

where I(UQ;YQ) is the discrete mutual information between the two random variables

and the supremum is taken over all finite partitions Q of Rd.

We have shown in Section 5.1.2.1 that for discrete random variables the region given

in Theorem V.1 is achievable. In this part, we make a quantization argument to

generalize this result to arbitrary auxiliary random variables. Let S, U,X, Y be dis-

tributed according to PSPU |SWX|USWY |X where in this case U is an arbitrary random

variable. We start with the following theorem:
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Theorem V.7. Let F1 ⊆ F2 ⊆ · · · be an increasing sequence of σ-algebras on a

measurable set A. Let F∞ denote the σ-algebra generated by the union ∪∞n=1Fn. Let

P and Q be probability measures on A. Then

D(P |Fn‖Q|Fn)→ D(P |F∞‖Q|F∞) as n→∞

where P |F denotes the restriction of P on F .

Proof. Provided in [33] and [14] for example.

For a prime p > 2, a real positive number γ and for i = 0 · · · , p− 1 define

ai =
−γ(p− 1)

2
+ γi

Define the quantization Qγ,p as Qγ,p = {A0, A2, · · · , Ap−1} where

A0 = (−∞, a0]

Ai = (ai−1, ai], for i = 1, · · · , p− 2

Ap−1 = (ap−2,+∞)

Let the random variable Ûγ,p take values from {a0, · · · , ap−1} according to joint mea-

sure

PSÛXY (Û = ai, SXY ∈ B) = PSUXY (U ∈ Ai, SXY ∈ B) (5.18)

For all Borel sets B ⊆ R3. For a fixed γ, let p ≤ q be two primes. Then the σ-algebra

induced by Qγ,p is included in the σ-algebra induced by Qγ,q. Therefore, for a fixed

γ, we can use the above theorem to get

I(U |Fγ,p ;Y |Fγ,p)→ I(U |Fγ,∞ ;Y |Fγ,∞) as p→∞ (5.19)

where U |Fγ,∞ is a random variable overQγ,∞ = {Ai|i ∈ Z} where Ai = γ
2
+(γi, γ(i+1)]

with measure PU |Fγ,∞
(Ai) = PU(Ai).

Let γ0 = 1 and define γn = 1
2n

. Note that if m > n then Fγn,∞ is included in Fγm,∞.
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Also, since dyadic intervals generate the Borel Sigma field ( [49] for example), the

restriction of U to the sigma algebra generated by ∪∞n=1Fγn,∞ is U itself. We can use

Theorem V.7 to get

I(U |Fγn,∞ ;Y |Fγn,∞)→ I(U ;Y ) as n→∞ (5.20)

Combining (5.19) and (5.20) we conclude that for all ε > 0, there exist Γ and P such

that if γ ≤ Γ and p ≥ Γ then

∣∣I(U |Fγ,p ;Y |Fγ,p)− I(U ;Y )
∣∣ < ε

Since quantization reduces the mutual information (XQ → X → Y ), we have

I(U |Fγ,p ;Y |Fγ,p) ≤ I(U |Fγ,p ;Y ) ≤ I(U ;Y )

Therefore
∣∣I(U |Fγ,p ;Y )− I(U ;Y )

∣∣ < ε. Also note that I(U |Fγ,p ;Y ) = I(Ûγ,p;Y ) since

we define the joint measure to be the same. Therefore

∣∣∣I(Ûγ,p;Y )− I(U ;Y )
∣∣∣ ≤ ε (5.21)

With a similar argument, for all ε > 0 there exist γ and p such that

∣∣∣I(Ûγ,p;S)− I(U ;S)
∣∣∣ ≤ ε (5.22)

if we take the maximum of the two p’s and the minimum of the two γ’s, we can say

for all ε > 0 there exist γ and p such that both (5.21) and (5.22) happen.

consider the sequence PSÛγn,pX as n, p→∞. In the next lemma we show that under

certain conditions this sequence converges in the weak* sense to PSUX .

Lemma V.8. Consider the sequence PSÛγn,pX where n → ∞ and p is such that

γnp→∞ as n→∞ (Take p to be the smallest prime larger than 22n for example.).

Then the sequence converges to PSUX in the weak* sense as n→∞.
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Proof. It suffices to show that the three dimensional cumulative distribution function

FSÛγn,pX converges to FSUX point-wise in all points (s, u, x) ∈ R3 where F is contin-

uous. Let (s, u, x) be a point where F is continuous and for an arbitrary ε > 0, let δ

be such that

|FSUX(s, u− δ, x)− FSUX(s, u, x)| < ε

|FSUX(s, u+ δ, x)− FSUX(s, u, x)| < ε

Let p be such that γn = 1
2n
< δ and find p accordingly. Then there exist points ai, aj

such that ai ∈ [u− δ, u] and aj ∈ [u, u+ δ]. We have

FSUX(s, u− δ, x) ≤ FSÛγn,pX(s, ai, x)

≤ FSÛγn,pX(s, u, x)

≤ FSÛγn,pX(s, aj, x)

≤ FSUX(s, u+ δ, x)

Therefore
∣∣∣FSÛγn,pX(s, u, x)− FSUX(s, u, x)

∣∣∣ ≤ ε. This shows the point-wise conver-

gence of FSÛγn,pX .

The above lemma implies EPSÛγn,pX
{w(X,S)} converges to EPSUX{w(X,S)} ≤ W

since w is assumed to be bounded continuous.

We have shown that for arbitrary PU |S and WX|SU , one can find PÛ |S and WX|SÛ

induced from (5.18) such that Û is a discrete variable and

I(Û ;Y )− I(Û ;S) ≈ I(U ;Y )− I(U ;S)

EPSÛX{w(X,S)} ≈ EPSUX{w(X,S)}

Hence, using the result of section 5.1.2.1, we have shown the achievability of the rate

region given in Theorem V.1 for arbitrary auxiliary random variables when the cost

function is bounded and continuous.
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5.1.2.3 Arbitrary U and Continuous Cost Function

For a positive number l, define the clipped random variable X̂ by X̂ = sign(X) min(l, |X|)

and let Ŷ be distributed according to WŶ |X̂(·, x̂) = WY |X(·, x̂).

Lemma V.9. As l→∞, I(U ; Ŷ )→ I(U ;Y ).

Proof. Note that for Borel sets B1, B2, B3 if B2 ⊆ (−l, l) then

PUX̂Ŷ (B1, B2, B3) = PUXY (B1, B2, B3)

For any ε > 0, let Q = {A1, · · · , Ar} be a quantization such that

|I(UQ;YQ)− I(U ;Y )| < ε

For an arbitrary δ > 0, assume l is large enough such that PX((−l, l)) > 1− δ. Then

PUQYQ(Ai, Aj) = PUXY (Ai,R, Aj)

= PUXY (Ai, (−l, l), Aj)+PUXY (Ai, (−∞,−l]∪[l,∞), Aj)

≤ PUXY (Ai, (−l, l), Aj) + PUXY (R, (−∞,−l] ∪ [l,∞),R)

= PUX̂Ŷ (Ai, (−l, l), Aj) + PX((−∞,−l] ∪ [l,∞))

≤ PUŶ (Ai, Aj) + δ

= PUQŶQ(Ai, Aj) + δ

Also,

PUQYQ(Ai, Aj) = PUXY (Ai,R, Aj)

≥ PUXY (Ai, (−l, l), Aj)

= PUX̂Ŷ (Ai, (−l, l), Aj)

≥ PUX̂Ŷ (Ai,R, Aj)− δ

= PUŶ (Ai, Aj)− δ

= PUQŶQ(Ai, Aj)− δ
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Since the choice of δ is arbitrary and since the discrete mutual information is

continuous, we conclude that as ε, δ → 0 (hence l→∞), I(U ; Ŷ )→ I(U ;Y ).

Since X̂ is bounded and w is assumed to be continuous, w is also bounded. This

completes the proof.

5.1.3 Nested Lattice Codes for Source Coding

In this section, we show the achievability of the rate R = I(U ;X) − I(U ;S) for

the Wyner-Ziv problem using nested lattice codes for U .

Theorem V.10. For the source (X ,S ,U , PXS, d) assume d : X × U → R+

is continuous. Let U be a random variable taking values from the set U jointly

distributed with X and S according to PXSWU |X where WU |X(·|·) is a transition kernel.

Further assume that there exists a measurable function f : S × U → X̂ such that

E{d(X, f(S, U))} ≤ D. Then the rate R∗(D) = I(X;U)−I(S;U) is achievable using

nested lattice codes.

5.1.3.1 Discrete U and Bounded Continuous Distortion Function

In this section we prove the theorem for the case when U takes values from the

discrete set γ(Zp − p−1
2

) where p is a prime and γ is a positive number. The gener-

alization to the case where U is arbitrary and the distortion function is continuous

is similar to the channel coding problem and is omitted. We use a random coding

argument over the ensemble of mod-p lattice codes to prove the achievability. The

ensemble of codes used for source coding is based on the parity check matrix rep-

resentation of linear and lattice codes. Define the inner and outer linear codes as

in (5.8) and (5.9) where H is a random matrix in Zl×np , ∆H is a random matrix in

Zk×np , c is a random vector in Zlp and ∆c is a random vector in Zkp. Define Λ̄i(Ci, γ, p)

and Λ̄o(Co, γ, p) accordingly. The set of messages consists of all bins Bm indexed by

m ∈ Zkp.
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For m ∈ Zkp, Let Bm be the mth bin of Λi in Λo. The encoder observes the source

sequence x ∈X n and looks for a vector u in the outer code Λo which is typical with x

and encodes the sequence x to the bin of Λi in Λo containing u. The encoder declares

error if it does not find such a vector.

Having observed the index of the bin m and the side information s, the decoder looks

for a unique sequence u in the mth bin which is jointly typical with s and outputs

f(u, s). Otherwise it declares error.

Encoding Error

Define S ′ as in (5.15). For u ∈ S ′ define

g(u) =
1

γ
u+

p− 1

2

g(u) has the following properties:

Lemma V.11. For u ∈ S ′,

P (u ∈ Λo) = P (Hg(u) = c) =
1

pl

i.e. All points of S ′ lie on the outer lattice equiprobably.

Proof. Follows from the fact that c is independent of H and is uniformly distributed

over Zlp.

Lemma V.12. For u ∈ S ′ and ũ ∈ S ′, if u 6= ũ,

P (u ∈ Λo, ũ ∈ Λo) = P (Hg(u) = c,Hg(ũ) = c) =
1

p2l

i.e. All points of S ′ lie on the outer lattice independently.
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Proof. Note that

P (Hg(u) = c,Hg(ũ) = c)

= P (Hg(u) = c,H(g(ũ)− g(u)) = 0)

(a)
= P (Hg(u) = c)× P (H(g(ũ)− g(u)) = 0)

(b)
=

1

p2l

Where (a) follows since c is uniform and independent of H and (b) follows since H

and c are uniform and g(ũ)− g(u) is nonzero.

For a source sequence x ∈ X n, the encoder declare error if there is no sequence

u ∈ Λo jointly typical with x. Define

θ(x) =
∑

u∈Λo

1{u∈Anε (Û |x)}

Let Z be a uniform random variable over γ(Zp − p−1
2

)) and Zn a uniform random

variable over S ′. We need the following lemmas to proceed:

Lemma V.13. With the above construction |Λo| = pn−l with high probability. Specif-

ically,

P (rank(H) = l) =
(pn − 1)(pn − p)(pn − p2) · · · (pn − pl−1)

pnl

≥ 1− 1

pn−l

and hence the probability that |Λo| = pn−l is close to one if n is large. Furthermore,

for i = 1, 2, · · · , l,

P (rank(H) = i) ≤
(
l

i

)
pi(l−i)

pn(l−i)

Proof. The first part of the lemma follows since the total number of choices for H

is equal to pnl and the number of choices with independent rows is equal to (pn −

1)(pn−p)(pn−p2) · · · (pn−pl−1). Now we show the upper bounds. For a matrix H to
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have a rank i, there should exist i independent rows and the rest of the rows must be

a linear combination of these rows (There are pi of such linear combinations). Hence

the total number of such matrices is upper bounded by

(
l

i

)
(pn − 1)(pn − p)(pn − p2) · · · (pn − pi−1)(pi)l−i

The lemma follows if we upper bound this quantity by

(
l

i

)
pnipi(l−i)

Lemma V.14. With θ(x) and Zn defined as above, we have

E{θ(x)} ≤ pn−lP
(
Zn ∈ Anε (Û |s)

)
+

2l

pn(l−1)

E{θ(x)} ≥ (1− 1

pn−l
)pn−lP

(
Zn ∈ Anε (Û |s)

)

Proof. Write the random lattice Λo as {u1(Λo), u2(Λo), · · · , ur(Λo)} where r is the

cardinality of Λo and u1(Λo), u2(Λo), · · · , ur(Λo) are picked without replacement from

Λo. It follow from Lemma V.11 that given |Λo| = r = pn−l, u1(Λo), u2(Λo), · · · , ur(Λo)

are each uniformly distributed random variables over S ′. To see this note that for

arbitrary u ∈ S ′, since u1(Λo), u2(Λo), · · · , ur(Λo) are picked randomly from Λo,

P (u = u1(Λo)) = P (u = u2(Λo)) = · · · = P (u = ur(Λo))

Therefore

P (u ∈ Λo) =
r∑

i=1

P (u = ui(Λo))

= rP (u = u1(Λo)) =
1

pl

Hence if r = pn−l then u1(Λo) is uniform over S ′. This argument is valid for all

i = 1, · · · , r and hence if r = pn−l then ui(Λo) is uniform over S ′. Note that

E{θ(x)} = E{E{θ(x)||Λo| = r}}
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The conditional expectation on the right hand side of this equation is upper bounded

by pn−l and for r = pn−l it is equal to

E{θ(x)||Λo| = pn−l} = E{
∑

u∈Λo

1{u∈Anε (Û |x)}}

= E{
pn−l∑

i=1

1{ui(Λo)∈Anε (Û |x)}}

=

pn−l∑

i=1

P
(
ui(Λo) ∈ Anε (Û |x)

)

(a)
=

pn−l∑

i=1

P
(
Zn ∈ Anε (Û |x)

)

= pn−lP
(
Zn ∈ Anε (Û |x)

)

Where (a) follows since ui(Λo) is uniformly distributed over S ′ for all i = 1, · · · , r.

Next note that

E{θ(x)} =

pn∑

r=0

P (|Λo| = r)E{θ(x)||Λo| = r}

≤ P
(
|Λo| = pn−l

)
rP
(
Zn ∈ Anε (Û |x)

)

+
l−1∑

i=0

P
(
|Λo| = pn−i

)
pn−i

≤ pn−lP
(
Zn ∈ Anε (Û |s)

)
+

2l

pn(l−1)

Similarly,

E{θ(x)} =

pn∑

r=0

P (|Λo| = r)E{θ(x)||Λo| = r}

≥ P
(
|Λo| = pn−l

)
rP
(
Zn ∈ Anε (Û |x)

)

≥ (1− 1

pn−l
)pn−lP

(
Zn ∈ Anε (Û |s)

)

Therefore,

E{θ(s)} = pn−l2−n[D(PÛX‖PZPX)+O(ε)]
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Similarly,

θ(x)2 =
∑

u,ũ∈Λo

1{u,ũ∈Anε (Û |x)}

=
∑

u∈Λo

1{u∈Anε (Û |x)} +
∑

u6=ũ∈Λo

1{u,ũ∈Anε (Û |x)}

≤
∑

u∈Λo

1{u∈Anε (Û |x)} +
∑

u,ũ∈Λo

1{u,ũ∈Anε (Û |x)}

It can be shown that

E{θ(x)2} = E{|Λo|}P
(
Zn ∈ Anε (Û |x)

)

+ E{|Λo|}2P
(
Zn ∈ Anε (Û |x)

)2

≤ pn−l2−n[D(PÛX‖PZPX)+O(ε)]

+ p2(n−l)2−2n[D(PÛX‖PZPX)+O(ε)]

Hence

var{θ(x)} ≤ pk2−n[D(PÛX‖PZPX)+O(ε)]

Hence,

P (θ(s) = 0) ≤ var{θ(x)}
E{θ(x)}2

≤ p−(n−l)2n[D(PÛX‖PZPX)+O(ε)]

Therefore if

l

n
log p < log p−D(PÛX‖PZPX) (5.23)

then the probability of encoding error goes to zero as the block length increases.

Decoding Error

After observing m and the side information s, the decoder declares error if it does

not find a sequence in the bin Bm jointly typical with s or if there are multiple of
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such sequences. We will show that the probability that a sequence ũ 6= u is in the

same bin as u and is jointly typical with s goes to zero as the block length increases if

k+l
n

log p > log p−D(PÛS‖PZPS). The probability of decoding error is upper bounded

by

Perr ≤
∑

ũ∈′Sn
P
(
u ∈ Bm, u ∈ Anε (Û |s)

)

=
∑

ũ∈′Sn
P (u ∈ Bm)P

(
Zn ∈ Anε (Û |s)

)

=
pn

pk+l
2−n[D(PÛS‖PZPS)+O(ε)]

Hence the probability of decoding error goes to zero if

k + l

n
log p > log p−D(PÛS‖PZPS) (5.24)

The Achievable Rate

Using (5.24) and (5.24), we conclude that if we choose l
n

log p sufficiently close to

log p−D(PÛX‖PZPX) and k+l
n

log p sufficiently close to log p−D(PÛS‖PZPS) we can

achieve the rate

R =
k

n
log p

≈ D(PÛX‖PZPX)−D(PÛS‖PZPS)

= I(X; Û)− I(S; Û)

5.1.4 Appendix

5.1.4.1 Proof of Lemma V.5

The proof follows along the lines of the proof of Theorem 21 of [47]. Let Q =

{A1, A2, · · · , Ar} be a finite partition of R. Let QXY Z , QXY , QXZ , QY Z , QX , QY and

QZ be measures induced by this partition, corresponding to PXY Z , PXY , PXZ , PY Z ,

PX , PY and PZ respectively. For the random sequence Zn = (Z1, · · · , Zn) and the
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deterministic sequence y = (y1, · · · , yn) let Q̄y be the deterministic empirical measure

of y and define the random empirical measures

Q̄Zy(Ai, Aj) =
1

n

n∑

i=1

1{Zi∈Ai,yi∈Aj}

Q̄Z(Ai) =
1

n

n∑

i=1

1{Zi∈Ai}

for i, j = 1, 2, · · · , r. As a property of weakly* typical sequences, for a fixed ε1 > 0,

there exists a sufficiently small ε > 0 such that for a sequence pair (x, y) ∈ Anε (XY )

and for all i, j = 1, 2, · · · , r,

∣∣Q̄xy(Ai, Aj)−QXY (Ai, Aj)
∣∣ ≤ ε1

where Q̄xy is the joint empirical measure of (x, y). It follows that the rare event

(Zn, y) ∈ Anε (XY ) is included in the intersection of events

{∣∣Q̄Zy(Ai, Aj)−QXY (Ai, Aj)
∣∣ ≤ ε1

}
(5.25)

for i, j = 1, 2, · · · , r. Therefore

Qn
Z ((Zn, y) ∈ Anε (XY )) ≤

Qn
Z

(
r⋂

i,j=1

{∣∣Q̄Zy(Ai, Aj)−QXY (Ai, Aj)
∣∣ ≤ ε1

}
)

Let ε(δ) be such that for j = 1, · · · , r,

∣∣Q̄y(Aj)−QY (Aj)
∣∣ ≤ ε1

1− ε1 <
Q̄y(Aj)

QY (Aj)
< 1 + ε1

Note that if QY (Aj) = 0 then QXY (Ai, Aj) = 0 and hence

∣∣Q̄Zy(Ai, Aj)−QXY (Ai, Aj)
∣∣ = Q̄Zy(Ai, Aj)

≤ Q̄y(Aj) ≤ ε1
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and (5.25) is satisfied. If we choose ε1 smaller than any nonzero QY (Aj) it follows

that Q̄y(Aj) > 0 whenever QY (Aj) > 0. Now assume that QY (Aj) > 0 and hence

Q̄y(Aj) > 0. Define

QX|Y (Ai|Aj) =
QXY (Ai, Aj)

QY (Aj)

Q̄Z|y(Ai|Aj) =
Q̄Zy(Ai, Aj)

Q̄y(Aj)

If QY (Aj) > 0, the event in (5.25) is included in the event

{
∣∣Q̄Z|y(Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)Q̄y(Aj)

+QX|Y (Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)QY (Aj)
∣∣≤ε1} (5.26)

Note that

∣∣QX|Y (Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)QY (Aj)
∣∣

= QX|Y (Ai|Aj)
∣∣Q̄y(Aj)−QY (Aj)

∣∣

≤ ε1

Therefore (5.26) implies

{
∣∣Q̄Z|y(Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)

∣∣ Q̄y(Aj) ≤ 2ε1}

And this implies

{
∣∣Q̄Z|y(Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)

∣∣≤ 2ε1
Q̄y(Aj)(1−ε1)

}

Let

ε2 =
r

max
j=1

QY (Aj)>0

2ε1
Q̄y(Aj)(1− ε1)

then the event in (5.25) is included in the event

{
∣∣Q̄Z|y(Ai|Aj)Q̄y(Aj)−QX|Y (Ai|Aj)

∣∣ ≤ ε2
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Therefore

Qn
Z ((Zn, y) ∈ Anε (XY )) ≤

Qn
Z




r⋂

i,j=1
QY (Aj)>0

{∣∣Q̄Z|y(Ai|Aj)−QX|Y (Ai|Aj)
∣∣ ≤ ε2

}



Note that since y is a deterministic sequence and Zi’s are iid, the events

{∣∣Q̄Z|y(Ai|Aj)−QX|Y (Ai|Aj)
∣∣ ≤ ε2

}

are independent for different values of j = 1, · · · , r. Let nj = nQ̄y(Aj). Then,

Qn
Z ((Zn, y) ∈ Anε (XY )) ≤
r∏

j=1
QY (Aj)>0

Q
nj
Z

(
r⋂

i=1

{∣∣Q̄Z|y(Ai|Aj)−QX|Y (Ai|Aj)
∣∣ ≤ ε2

}
)

Since for QY (Aj) > 0, nj →∞ as n→∞, it follows from Sanov’s theorem [22] that

lim
n→∞

sup
1

nj
log

Q
nj
Z

(
r⋂

i=1

{∣∣Q̄Z|y(Ai|Aj)−QX|Y (Ai|Aj)
∣∣ ≤ ε2

}
)

≤ −
[
D(QX|Y (·|Aj)||QZ(·))− δj

]

where δj → 0 as ε2 → 0. Therefore

lim
n→∞

sup
1

n
logQn

Z ((Zn, y) ∈ Anε (XY ))

≤
r∑

j=1
QY (Aj)>0

lim
n→∞

sup
nj
n
D(QX|Y (·|Aj)||QZ(·))

≤
r∑

j=1
QY (Aj)>0

−(1− ε1)QY (Aj)
[
D(QX|Y (·|Aj)||QZ(·))−δj

]

≤ −(1− ε1)D(QXY ||QZQY ) + δ′

where δ′ → 0 as ε2 → 0. For finite D(PXY ||PZPY ) the statement of the lemma

follows by choosing the quantization Q such that D(QXY ||QZQY ) is sufficiently close

to D(PXY ||PZPY ).
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5.1.4.2 Proof of Lemma V.6

The proof follows along the lines of the proof of Theorem 22 of [47]. Let Q =

{A1, A2, · · · , Ar} be a finite partition of R. Let QXY Z , QXY , QXZ , QY Z , QX , QY and

QZ be measures induced by this partition, corresponding to PXY Z , PXY , PXZ , PY Z ,

PX , PY and PZ respectively. For the random sequence Zn = (Z1, · · · , Zn) and the

deterministic sequence y = (y1, · · · , yn) let Q̄y be the deterministic empirical measure

of y and define the random empirical measures

Q̄Zy(Ai, Aj) =
1

n

n∑

i=1

1{Zi∈Ai,yi∈Aj}

Q̄Z(Ai) =
1

n

n∑

i=1

1{Zi∈Ai}

For arbitrary δ > 0, let Q be such that

π(QXY , PXY ) < ε

π(QZY , PZY ) < ε

|D(PXY ||PZPY )−D(QXY ||QZQY )| < ε

We show that for such a quantization, under certain conditions, the probability of

the event

{
π(Q̄Zy, QXY ) < ε

}

is close to the probability of the event

{
π(P̄Zy, PXY ) < 5ε

}

It follows from Theorem 18 of [47] that for arbitrary ε, δ′ > 0, there exists some ε̄ > 0

such that for all n greater than some N if y ∈ Anε̄ (Y ), then

lim
n→∞

P
(
π(P̄Zy, PZY ) < ε

)
> 1− δ

lim
n→∞

P
(
π(Q̄Zy, QZY ) < ε

)
> 1− δ
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Consider the event

{
π(Q̄Zy, QXY ) < ε, π(P̄Zy, PZY ) < ε, π(Q̄Zy, QZY ) < ε

}

This event implies

π(P̄Zy, PXY ) ≤ π(P̄Zy, PZY ) + π(QZY , PZY )

+ π(Q̄Zy, QZY ) + π(Q̄Zy, QXY )

+ π(QXY , PXY ) ≤ 5ε

Therefore

P
(
π(P̄Zy, PXY ) ≤ 5ε

)
≥

P
(
π(Q̄Zy, QXY ) < ε, π(P̄Zy, PZY ) < ε, Q̄Zy, QZY ) < ε

)

The right hand side can be lower bounded by

1− P
(
π(Q̄Zy, QXY ) ≥ ε

)
(5.27)

− P
(
π(P̄Zy, PZY ) ≥ ε

)
− P

(
Q̄Zy, QZY ) ≥ ε

)
(5.28)

≥ P
(
π(Q̄Zy, QXY ) < ε

)
− δ − δ (5.29)

Note that for arbitrary δ′ and for sufficiently large n,

P
(
π(Q̄Zy, QXY )

)
≥ 2−n[D(QXY ||QZQY )+δ′]

Since δ, δ′ are arbitrary and D(QXY ||QZQY ) ≈ D(PXY ||PZPY ), it follows that

P
(
π(P̄Zy, PXY ) ≤ 5ε

)
≥ 2−n[D(PXY ||PZPY )+δ+ε′] − 2δ

5.2 Distributed Source Coding

In this section, we consider a distributed source coding problem in which the

sources can take values from continuous alphabets and there is one distortion con-

straint. We provide an information-theoretic inner bound to the optimal rate-distortion
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region using group codes which strictly contains the available bounds based on random

codes. The problem definition and the Berger-Tung rate regions are the continuous

alphabets versions of those provided in Section 5.2.

5.2.1 The Main Result

In this section, we provide an inner bound to the achievable rate-distortion region

which strictly contains the Berger-Tung rate region. Without a loss of generality,

we assume that all the alphabets X ,Y , Ẑ ,P,Q,U ,V ,Z are included in a Polish

space R.

5.2.1.1 Finite Auxiliary Random variables and Bounded Continuous Dis-

tortion Function

In this section, we consider the case where the sources are not necessarily discrete

but all of the auxiliary random variables are finite (subsets of R). We generalize the

definition of the channel coding mutual information as follows:

IGc.c.(X;Y ) = max
wp,r,(p,r)∈Q(G)∑

wp,r=1

min
θ∈Θ
θ 6=rrr

1

1− ωθ
D(pX[X]θY ||pWp[X]θY ) (5.30)

where W is uniformly distributed over G. The following theorem is a generalization

of Theorem III.1 to the case where the sources are not necessarily finite.

Theorem V.15. For the distributed source (X ,Y ,Z , pXY , d) assume the distortion

function d is bounded and continuous. Let Û , V̂ , P̂ and Q̂ be finite random variables

jointly distributed with XY according to the channel pP̂ Q̂Û V̂ |XY such that Û and V̂

take values from a finite Abelian group G, and P̂ and Q̂ take values from finite sets

P and Q respectively. Assume the following Markov chains hold

P̂ ↔ X ↔ Y ↔ Q̂

Û ↔ (P̂ , X)↔ (Y, Q̂)↔ V̂
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and assume there exists a bounded and continuous (with respect to its first argument)

function g : G×P ×Q → Ẑ such that

E
{
d(X, Y, g(Ẑ, P̂ , Q̂))

}
≤ D

for Ẑ = Û + V̂ where + is the group operation. We show that with these definitions

the rate-distortion triple (R1, R2, D) is achievable where

R1 ≥ I(X; P̂ |Q̂) +D(pÛXP̂ ||pŴpXP̂ )− IGc.c.(Ẑ; P̂ Q̂)

R2 ≥ I(Y ; Q̂|P̂ ) +D(pV̂ Y Q̂||pŴ ′pY Q̂)− IGc.c.(Ẑ; P̂ Q̂)

R1 +R2 ≥ I(XY ; P̂ Q̂) +D(pÛ V̂ XY P̂ Q̂||pŴŴ ′pXY P̂ Q̂)− 2IGc.c.(Z;PQ)

where Ŵ and Ŵ ′ are independent random variables uniformly distributed over G.

The rest of this section is devoted to proving this theorem. In order to prove the

theorem, it suffices to show the achievability of the following corner point:

R1 = I(X; P̂ ) +D(pÛXP̂ ||pŴpXP̂ )− IGc.c.(Ẑ; P̂ Q̂)

R2 = I(Y ; Q̂|P̂ ) +D(pV̂ Y Q̂||pŴ ′pY Q̂)− IGc.c.(Ẑ; P̂ Q̂)

The proof of this theorem is similar or the proof of Theorem III.1 with the difference

that we use the notion of weak* typicality instead of the strong typicality. We need

to show the following for the proof to go through:

Size of the Typical Set:

Lemma V.16. Let X and P̂ be jointly distributed random variables distributed ac-

cording to the measure pXP̂ such that X is a random variable over a Polish alphabet

X and P̂ is a finite random variable over P. Let x be a weakly* typical sequence in

X n then for any ε > 0 there exists a δ > 0 such that

2log |P|−D(pXP̂ ||pXpŴ )−δ ≤ |Anε (P̂ |x)| ≤ 2log |P|−D(pXP̂ ||pXpŴ )+δ
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where Ŵ is a uniform random variable over P independent of X and P̂ and δ can

be made to go to zero as ε→ 0.

Proof. Let Ŵ n be random variable uniformly distributed over Pn. Then we have

|Anε (P̂ |x)| = |P|npn
Ŵ

(Ŵ n ∈ Anε (P̂ |x) ∈) = |P|npn
Ŵ

((x, Ŵ n) ∈ Anε (XP̂ ) ∈)

The rest of the proof follows from Lemmas V.5 and V.6. A special case is where

both X = X̂ and P̂ are finite which is the standard strong typicality result since

log |P| −D(pX̂P̂ ||pX̂pP̂ ) = H(P̂ |X̂).

Probability of the Typical Set and the Regular Markov Lemma:

Let X and Y be two random variables over polish alphabets with joint distribution

pXY . It is shown in [47] that the probability of the typical set P ((Xn, Y n) ∈ Anε (XY ))

approaches one as ε → 0 and n → ∞. Let x ∈ Anε (X) and let Y n be distributed

according to pnY |X(·|x) then it is shown in [47] that P ((x, Y n) ∈ Anε (XY )) approaches

one as ε→ 0 and n→∞ (the regular Markov Lemma).

Probability of a Typical Sequence:

Let X and P̂ be jointly distributed random variables distributed according to the

measure pXP such that X is a random variable over a Polish alphabet X and P̂ is a

finite random variable over P. Let x be a weakly* typical sequence in X n. Then,

for any p̂ ∈ Anε (P̂ |x) and for any such ε > 0 there exists a δ > 0 such that

1

2log |P|−D(pXP̂ ||pXpŴ )+δ
≤ pn

P̂ |X(p̂|x) ≤ 1

2log |P|−D(pXP̂ ||pXpŴ )−δ

where Ŵ is a uniform random variable over P independent of X and P̂ and δ can be

made to go to zero as ε → 0. To show this, let Q1, Q2, · be a sequence of increasing

finite quantizations such that the sigma field generated by ∪∞i=1FQi is equal to FX and

let [X]Qi and [x]Qi be the corresponding quantized random variables and sequences.
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Such a sequence exists by [47, Lemma]. It remains to show that

lim
i→∞

pP̂ |[X]Qi
(p̂|[x]Qi) = pP̂ |X(p̂|x)

lim
i→∞

1

2
log |P|−D(p[X]Qi

P̂ ||p[X]Qi
pŴ )

=
1

2log |P|−D(pXP̂ ||pXpŴ )

The first equality holds since pP̂ |X is a channel (see [47, Definition 2]). The second

equality holds since by definition, D(p[X]Qi P̂
||p[X]Qi

pŴ ) → D(pXP̂ ||pXpP̂ ) and since

1
2log |P|−x

is a continuous function of x.

The Strong Markov Lemma:

Lemma III.2 can be extended to the case where X and Y are not necessarily finite:

Lemma V.17. Let X, Y, Z be random variables taking values from Polish alphabets

X ,Y ,Z respectively such that Z is finite and the Markov chain X ↔ Y ↔ Z holds.

For n = 1, 2, · · · , let (x(n),y(n)) ∈ Anε (XY ) and let K(n) be a random vector taking

values from Z n with distribution satisfying (for simplicity of notation we call them

x,y, K respectively)

P (K = z) ≤ pnZ|Y (z|y)eεnn

for some εn → 0 as n→∞. Then, as n→∞

P ((x,y, K) ∈ Anε (XY Z))→ 1

Proof. Provided in Section 5.2.3.1.

Law of Large Numbers and the Convergence of the Average Distortion:

We need to show that for (x,y, z,p, q) ∈ Anε (XY ZPQ),

1

n

n∑

i=1

d(xi, yi, zi, pi, qi)→ E{d(X, Y, g(Z, P,Q))}

By definition of weak* typicality (and weak convergence of measures), the above

happens if the function d(X, Y, g(Z, P,Q)) is bounded and continuous. A sufficient

condition is to have d bounded and both d and g continuous.
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5.2.1.2 Arbitrary Auxiliary Random Variables and Bounded Continuous

Distortion Function

If we restrict the result of the previous section to the case where the Abelian

groups are finite fields, then the following rates are achievable for finite auxiliary

random variables:

R1 = I(X; P̂ ) +D(pÛXP̂ ||pŴpXP̂ )−D(pẐP̂ Q̂||pWpP̂ Q̂)

R2 = I(Y ; Q̂|P̂ ) +D(pV̂ Y Q̂||pWpY Q̂)−D(pẐP̂ Q̂||pŴpP̂ Q̂)

Where Ẑ = Û + V̂ and Ŵ is a uniform random variable over the finite field. For

random variables X,P,Q, U, Z, let the random variables Z ′, P ′, Q′ be identically dis-

tributed to Z, P,Q and be independent of X,P,Q, U, Z. Define

r(X,P,Q, U, Z) = sup
Q1

inf
Q2

E{log
p[U ]Q1

|[X]Q1
[P ]Q1

([U ]Q1|[X]Q1 [P ]Q1)

p[Z′]Q2
|[P ′]Q2

[Q′]Q2
([Z ′]Q2|[P ′]Q2 [Q

′]Q2)
}

where the supremum and infimum are taken over the set of all finite partitions of the

Polish space and similarly define r(Y, P,Q, V, Z). Then, the above rates are equivalent

to

R1 = I(X; P̂ ) + r(X, P̂ , Q̂, Û , Ẑ)

R2 = I(Y ; Q̂|P̂ ) + r(Y, P̂ , Q̂, V̂ , Ẑ)

It is straightforward to generalize the above result to the case where P and Q are

not necessarily discrete to achieve the following corner point:

R1 = I(X;P ) + r(X,P,Q, Û , Ẑ)

R2 = I(Y ;Q|P ) + r(Y, P,Q, V̂ , Ẑ)

Definition 5.2.1. Let U = V = Z = R be Polish spaces and let f : U × V → Z

be an arbitrary function. Let G1, G2, G3, · · · be a sequence of finite fields and with

a slight abuse of notation, for i = 1, 2, · · · , define the corresponding quantization
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mappings as follows:

qi : R → Gi

q−1
i : Gi → R

For i = 1, 2, · · · , let Ûi = q−1
i (qi(U)), V̂i = q−1

i (qi(V )) and Ẑi = q−1
i

(
qi(U) +Gi qi(V )

)
.

We say that the function f(·, ·) is embeddable in the sequence G1, G2, · · · if there exist

quantization mappings so that the sequence (X, Y, P,Q, Ûi, V̂i, Ẑi) converges weakly

(in distribution) to (X, Y, P,Q, U, V, Z).

Lemma V.18. Let (X, Y, P,Q, Ûi, V̂i, Ẑi) be a sequence of random variables converg-

ing in distribution to (X, Y, P,Q, U, V, Z). Then

r(X,P,Q, Ûi, Ẑi)→ r(X,P,Q, U, Z)

r(Y, P,Q, V̂i, Ẑi)→ r(Y, P,Q, V, Z)

if the quantities on the right-hand-side exist.

Proof. For any ε > 0, let Q1 and Q2 be finite partitions such that
∣∣∣∣∣r(X,P,Q, U, Z)− E{log

p[U ]Q1
|[X]Q1

[P ]Q1
([U ]Q1 |[X]Q1 [P ]Q1)

p[Z′]Q2
|[P ′]Q2

[Q′]Q2
([Z ′]Q2|[P ′]Q2 [Q

′]Q2)
}
∣∣∣∣∣ ≤ ε

Using [47, Lemma 7], we can restrict attention to partitions Q1 and Q2 consisting of

continuity sets. It can be verified that r(X̂, P̂ , Q̂, Û , Ẑ) is a continuous function of the

probability masses when all random variables are finite. Let δ > 0 be such that if the

total variation distance between a probability mass functions of (X̂, P̂ , P̂ ′, Q̂′, Û , Ẑ ′)

and ([X]Q1 , [P ]Q1 , [P ]Q2 [Q]Q2 , [U ]Q1 , [Z]Q2) is less than δ then
∣∣∣∣∣r(X̂, P̂ , Q̂, Û , Ẑ)− E{log

p[U ]Q1
|[X]Q1

[P ]Q1
([U ]Q1 |[X]Q1 [P ]Q1)

p[Z′]Q2
|[P ′]Q2

[Q′]Q2
([Z ′]Q2|[P ′]Q2 [Q

′]Q2)
}
∣∣∣∣∣ ≤

ε

2

Let N be such that for i > N , the total variation distance between the probability

mass density of ([X̂i]Q1 , [P̂i]Q1 , [P̂
′
i ]Q2 , [Q̂

′
i]Q2 , [Ûi]Q1 , [Ẑ

′
i]Q2) and the probability mass
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density of ([X]Q1 , [P ]Q1 , [P
′]Q1 , [Q

′]Q2 , [U ]Q1 , [Z
′]Q2) is less than δ. Then for i > N ,

we have
∣∣∣∣∣r(X̂i, P̂i, Q̂i, Ûi, Ẑi)− E{log

p[U ]Q1
|[X]Q1

[P ]Q1
([U ]Q1|[X]Q1 [P ]Q1)

p[Z′]Q2
|[P ′]Q2

[Q′]Q2
([Z ′]Q2|[P ′]Q2 [Q

′]Q2)
}
∣∣∣∣∣ ≤

ε

2

Therefore,

∣∣∣r(X,P,Q, U, Z)− r(X̂i, P̂i, Q̂i, Ûi, Ẑi)
∣∣∣ ≤ ε

for all i > N .

Theorem V.19. For the distributed source (X ,Y ,Z , pXY , d) assume X , Y and

Ẑ are polish spaces and assume the distortion function d : X × Y × Ẑ → R+ is

bounded and continuous. Let U , V , P and Q be random variables jointly distributed

with XY according to the channel pPQUV |XY such that U and V take values from a

polish spaces U = V = R, and P and Q take values from sets P and Q respectively.

Assume the following Markov chains hold

P ↔ X ↔ Y ↔ Q

U ↔ (P,X)↔ (Y,Q)↔ V

Let Z = f(U, V ) for some function f(·, ·) which is embeddable in a sequence G1, G2, · · ·

of finite fields. Assume there exists a continuous function g : R ×P ×Q → Ẑ such

that

E
{
d(X, Y, g(Z, P,Q))

}
≤ D

Then, if r(X,P,Q, U, Z) and r(Y, P,Q, V, Z) exist, the rate-distortion triple (R1, R2, D)

is achievable where

R1 = I(X;P ) + r(X,P,Q, U, Z)

R2 = I(Y ;Q|P ) + r(Y, P,Q, V, Z)
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Proof. Note that for i = 1, 2, · · · , Ûi and V̂i are functions of U and V respectively.

Therefore, the following Markov chains hold:

P ↔ X ↔ Y ↔ Q

Ûi ↔ (P,X)↔ (Y,Q)↔ V̂i

The weak convergence of (X, Y, P,Q, Ûi, V̂i, Ẑi) to (X, Y, P,Q, U, V, Z) and the conti-

nuity of the functions g and d and the boundedness of d imply that

E
{
d(X, Y, g(Ẑi, P,Q))

}
→ E

{
d(X, Y, g(Z, P,Q))

}
≤ D

Therefore, the rate-distortion tuple (R1, R2, D) is achievable where

R1 = I(X;P ) + r(X,P,Q, Ûi, Ẑi)

R2 = I(Y ;Q|P ) + r(Y, P,Q, V̂i, Ẑi)

The proofs follows since

r(X,P,Q, Ûi, Ẑi)→ r(X,P,Q, U, Z)

r(Y, P,Q, V̂i, Ẑi)→ r(Y, P,Q, V, Z)

5.2.1.3 Arbitrary Auxiliary Random Variables and Bounded Continuous

Distortion Function

The result above can be generalized to the case where the distortion function is

continuous but not necessarily bounded. The approach is similar to the one proposed

in Section 5.1.2.3 and is omitted.

5.2.1.4 Calculation of the Rates for Distributions with Densities

In this section, we calculate the rates r(X,P,Q, U, Z) and r(Y, P,Q, V, Z) for the

case where all probability density functions are defined. It is straightforward to show
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that in this case,

r(X,P,Q, U, Z) = E
{

log
fU |XP (U |XP )

fZ′|P ′Q′(Z ′|P ′Q′)
}

= h(Z|PQ)− h(U |XP )

Similarly, we can show that

r(Y, P,Q, V, Z) = h(Z|PQ)− h(V |Y Q)

so that the rate-distortion tuple (R1, R2, D) is achievable where

R1 = I(X;P ) + h(Z|PQ)− h(U |XP )

R2 = I(Y ;Q|P ) + h(Z|PQ)− h(V |Y Q)

5.2.2 Examples

In this section, we present two examples of mappings which are embeddable in a

sequence of finite fields.

Real Addition is Embeddable in a Sequence of Fields:

Let all alphabets be equal to R and let f(U, V ) = U +V where + is the real addition.

For i = 1, 2, · · · , let γi = 1
2i

and let pi be the smallest prime larger than 22i (so that

γipi → ∞ as i → ∞). Let the sequence of finite fields be defined by Gi = Fpi for

i = 1, 2, · · · . Define the quantization mappings qi : R → Gi and q−1
i : Gi → R as

follow:

qi(x) =





0 x < −γipi
2

+ γi

k − 1 x ∈
(
− γipi

2
+ kγi,−γipi

2
+ (k + 1)γi

)
, k = 2, · · · , pi − 1

pi − 1 x > −γipi
2

+ (pi − 1)γi = γipi
2
− γi

q−1
i (k) =

2k + 1− pi
2

γi k = 0, · · · , pi − 1
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Note that this is essentially a uniform quantizer. We show that with these quantizers,

the real addition is embeddable in the sequence G1, G2, · · · . It suffices to show that

(X, Y, P,Q, Ûi, V̂i, Ẑi) converges in probability to (X, Y, P,Q, U, V, Z). We need to

show that for any ε, δ > 0, there exists N > 0 such that for all i > N ,

P (|U − Ûi| < δ, |V − V̂i| < δ, |Z − Ẑi| < δ) ≥ 1− ε

Let L be such that P (U ∈ (−L,L), V ∈ (−L,L)) > 1 − ε
3

and let N be such that

for i = N , γi ≤ δ
2

and γipi > 4L. These conditions guarantee that |U − Ûi| < δ
2

and

|V − V̂i| < δ
2

with probability larger than 1 − ε
3
. Furthermore, under the condition

γipi > 4L and for |u|, |v| ≤ L we have q−1
i (qi(u) +Gi qi(v)) = q−1

i (qi(u)) + q−1
i (qi(v))

where the addition on the right-hand-side is the real addition. We have

P (|Z − Ẑi| ≥ δ) ≤ P (|Z − Ẑi| ≥ δ, |U | ≤ L, |V | ≤ L) +
ε

3

= P (|U + V − Ûi − V̂i| ≥ δ, |U | ≤ L, |V | ≤ L) +
ε

3

≤ P (|U − Ûi|+ |V − V̂i| ≥ δ, |U | ≤ L, |V | ≤ L) +
ε

3

=
ε

3

Mod-2π Addition is Embeddable in a Sequence of Fields:

This case is similar to the previous case. The rate-distortion tuple (R1, R2, D) is

achievable where

R1 = I(X;P ) + h(Z|PQ)− h(U |XP )

R2 = I(Y ;Q|P ) + h(Z|PQ)− h(V |Y Q)

where Z = U + V (mod 2π).

Other examples:

Real addition in Rn and mod-2π addition in Rn can be embedded in the sequence Fnpi .

R+ with multiplication operation is embeddable in Fpi with pre-mappings u→ log u
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and v → log v and the post mapping log z → z. (2R, ·) is embeddable in Fpi with log

pre-mappings.

5.2.3 Appendix

5.2.3.1 Proof of Lemma V.17

Let fXY Z be a generating field defined over X ×Y ×Z according to [47, Cor. 8].

By definition of weak* typicality (see Definition 11 and Theorem 1 of [47]), we need

to show that for any set S in fXY Z , limn→∞ P̄x,y,K(S) = PXY Z(S) with probability

one. Any open set in fXY Z can be represented as a disjoint countable union of sets

of the form A × B × C where A ∈ X , B ∈ Y and C ∈ Z . Let fX , fY and fZ be

generating fields over X , Y and Z respectively defined as in [47, Cor. 8]. It suffices

to show that for all A ∈ fX , B ∈ fY and C ∈ fZ ,

∣∣P̄x,y,K(A,B,C)− PXY Z(A,B,C)
∣∣→ 0

with probability one as n→∞. We have

∣∣P̄x,y,K(A,B,C)− pXY Z(A,B,C)
∣∣ ≤

∣∣pXY Z(A,B,C)− P̄x,yWZ|Y (A,B,C)
∣∣+
∣∣P̄x,yWZ|Y (A,B,C)− P̄x,y,K(A,B,C)

∣∣

Note that w-limn→∞ P̄x,y = pXY . Therefore, [47, Lemma 16] implies w-limn→∞ P̄x,y,K =

pXY Z with probability one. This implies limn→∞ P̄x,y,K(A,B,C) = pXY Z with proba-

bility one or equivalently, the first term in the equation above vanishes as n increases

almost surely. Next, we show that the second term also vanishes almost surely. We

have

P̄x,yWZ|Y (A,B,C)− P̄x,y,K(A,B,C) =
1

n

n∑

i=1

1{xi∈A,yi∈B}
[
WY |Z(C|yi)− 1{Ki∈C}

]

=
1

n

n∑

i=1

θi
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where for i = 1, 2, · · · , n,

θi = 1{xi∈A,yi∈B}
[
WY |Z(C|yi)− 1{Ki∈C}

]

It suffices to show that

| 1
n

n∑

i=1

θ̃i| → 0

almost surely as n→∞ where

θi = WY |Z(C|yi)− 1{Ki∈C}

Let Zn be a random vector generated according to WZ|Y (·|y) and define

θ̃i = WY |Z(C|yi)− 1{Zi∈C}

Note that both θi and θ̃i are binary random variables taking values from the set

{WZ|Y (C|yi),WZ|Y (C|yi)− 1} and |θi|, |θ̃i| ≤ 1. We have E{θ̃i} = 0 and var{θ̃i} ≤ 1.

It follows from [Proposition 1, Zhiyi Chi’s paper] that θ̃i satisfied the large deviations

principle with a good rate function I(·) such that

P

(
θ̃′1 + · · ·+ θ̃′n

n
≥ t

)
≤ e−nI(t)

where I(t) is positive. For b ∈ {WZ|Y (C|yi),WZ|Y (C|yi)− 1}n, we have

P
(
θ̃ = b

)
=

∑

z∈Z n

bi=WZ|Y (C|yi)⇒zi /∈C
bi=WZ|Y (C|yi)−1⇒zi∈C

P (K = z)

≤
∑

z∈Z n

bi=WZ|Y (C|yi)⇒zi /∈C
bi=WZ|Y (C|yi)−1⇒zi∈C

W n
Z|Y (z|y)eεnn

= eεnnP
(
θ̃′ = b

)
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We have

P

(
θ̃1 + · · ·+ θ̃n

n
≥ t

)
=

∑

b:| b1+···+bnn |≥nt
P
(
θ̃ = b

)

≤ eεnn
∑

b:| b1+···+bnn |≥nt
P
(
θ̃′ = b

)

≤ e−n(I(t)−εn)

Note that since e−n(I(t)−εn) is summable, the Borel-Cantelli lemma implies that for all

t > 0,

lim sup
n→∞

| 1
n

n∑

i=1

θ̃i| ≤ t

Therefore, | 1
n

∑n
i=1 θ̃i| → 0 as n→∞ almost surely.
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CHAPTER VI

Polar Codes for Point-to-Point Communications

6.1 Polar Codes for Arbitrary DMCs

In this section, we show that polar codes with their original (u, u + v) kernel,

achieve the symmetric capacity of discrete memoryless channels with arbitrary input

alphabet sizes. It is shown that in general, channel polarization happens in several,

rather than only two levels so that the synthesized channels are either useless, perfect

or “partially perfect”. Any subset of the channel input alphabet which is closed under

addition, induces a coset partition of the alphabet through its shifts. For any such

partition of the input alphabet, there exists a corresponding partially perfect channel

whose outputs uniquely determine the coset to which the channel input belongs. By

a slight modification of the encoding and decoding rules, it is shown that perfect

transmission of certain information symbols over partially perfect channels is possi-

ble. Our result is general regarding both the cardinality and the algebraic structure

of the channel input alphabet; i.e we show that for any channel input alphabet size

and any Abelian group structure on the alphabet, polar codes are optimal. Due to

the modifications we make to the encoding rule of polar codes, the constructed codes

fall into a larger class of structured codes called nested group codes.

Polar codes were originally proposed by Arikan in [10] for discrete memoryless
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channels with a binary input alphabet. Polar codes over binary input channels are

shifted linear (coset) codes capable of achieving the symmetric capacity of chan-

nels. These codes are constructed based on the Kronecker power of the 2× 2 matrix


1 0

1 1


 and are the first known class of capacity achieving codes with an explicit

construction.

It is known that non-binary codes outperform binary codes in certain commu-

nication settings. Therefore, constructing capacity achieving codes for channels of

arbitrary input alphabet sizes is of great interest. In order to construct capacity

achieving codes over non-binary channels, there have been attempts to extend polar

coding techniques to channels of arbitrary input alphabet sizes. It is shown in [66]

that polar codes achieve the symmetric capacity of channels when the size of the

input alphabet is a prime. For channels of arbitrary input alphabet sizes, it is shown

in [66] that the original construction of polar codes does not necessarily achieve the

symmetric capacity of the channel due to the fact that polarization (into two levels)

may not occur for arbitrary channels. In the same paper, a randomized construction

of polar codes based on permutations is proposed. In this approach, the existence

of a polarizing transformation is shown by a random coding argument over the en-

semble of permutations of the input alphabet. In another approach in [66], a code

construction method is proposed which is based on the decomposition of the compos-

ite input channel into sub-channels of prime input alphabet sizes. In this multilevel

code construction method, a separate polar code is designed for each sub-channel of

prime input alphabet size. In [48], the problem of channel polarization using arbitrary

kernels is studied and several sufficient conditions are provided under which a kernel

can polarize a non-binary channels. It is shown in [65] that the two-level polarization

of arbitrary DMC’s can be achieved using a variety of non-linear polarizing transforms.
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Another related work is [5], in which the authors have shown that polar codes,

with their original (u, u + v) kernel, are sufficient to achieve the uniform sum rate

on any binary input MAC and it is stated that the same technique can be used for

the point-to-point problem to achieve the symmetric capacity of the channel when

the size of the alphabet is a power of 2. In a recent work, it has been shown in [54]

that polar codes achieve the symmetric capacity of channels with input alphabet size

a power of 2. The difference between the approach proposed in [5] and the result

of [54] is that in the former, the channel’s input alphabet is assumed to be the group

Zr2 (with componentwise mod-2 operation) for some integer r and in the latter, the

channel’s input alphabet is assumed to be the group Z2r (with mod-2r operation)

for some integer r. Both of these cases can be recovered from the general result we

propose in this paper depending on how the channel input alphabet is endowed with

an Abelian group structure. The techniques used in [54] to prove the polarization,

although not explicitly using the group-theoretical terminology, are similar to the

techniques used in [58] and the current paper when they are specialized to channels

of size 2r with mod-2r operation. However in [54], the convergence of Bhattacharyya

parameters is shown through a new “martingale convergence” type result which is

different from the approach of this paper.

In this section, we show that with a slight modification of the encoding and decod-

ing rules, polar codes, with their original (u, u+v) kernel, are sufficient to achieve the

symmetric capacity of all discrete memoryless channels. Our result is general regard-

ing both the cardinality and the algebraic structure of the channel input alphabet; i.e

we show that for any channel input alphabet size and any Abelian group structure on

the alphabet, polar codes are optimal. This result was first reported in [58]. We use

a combination of algebraic and coding techniques and show that in general, channel
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polarization occurs in several levels rather than only two: Suppose the channel input

alphabet is G and is endowed with an Abelian group structure. Then for any subset

H of the channel input alphabet G which is closed under addition (i.e any subgroup of

G), there may exist a corresponding polarized channel which can perfectly transmit

the index of the shift (coset) of H in G which contains the input. As an example, for

a channel of input alphabet Z6, there are four subgroups of the input alphabet: i) {0}

with cosets {0}, {1}, {2}, {3}, {4} and {5}, ii) {0, 3} with cosets {0, 3}, {1, 4} and

{2, 5}, iii) {0, 2, 4} with cosets {0, 2, 4} and {1, 3, 5} and iv) Z6. For polar codes over

Z6, the asymptotic synthesized channels can exist in four forms: i) can determine

which one of the cosets {0}, {1}, {2}, {3}, {4} or {5} contains the input symbol,

(perfect channels with capacity log2 6 bits per channel use), ii) can determine which

one of the cosets {0, 3}, {1, 4} or {2, 5} contains the input symbol (partially perfect

channels with capacity log2 3 bits per channel use), iii) can determine which one of

the cosets {0, 2, 4} or {1, 3, 5} contains the input symbol (partially perfect channels

with capacity 1 bit per channel use), iv) can only determine the input belongs to

{0, 1, 2, 3, 4, 5} (useless channel). Cases i,ii,iii and iv correspond to coset decomposi-

tions of Z6 based on subgroups {0}, {0, 3}, {0, 2, 4} and {0, 1, 2, 3, 4, 5} respectively.

Although standard binary polar codes are group (linear) codes, the class of ca-

pacity achieving codes constructed and analyzed in this paper are not group codes.

If polar codes are used in their standard form, i.e. when only perfect channels are

used and partially perfect and useless channels are ignored, it can be shown that they

will form group codes. It is known that group codes do not generally achieve the

symmetric capacity of discrete memoryless channels [6, 18]. Hence, one could have

predicted that standard polar codes cannot achieve the symmetric capacity of arbi-

trary channels and a modification of the encoding rule is indeed necessary to achieve

that goal. Due to the modifications we make to the encoding rule of polar codes, the
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constructed codes fall into a larger class of structured codes called nested group codes.

6.1.1 Preliminaries

6.1.1.1 Symmetric Capacity and the Bhattacharyya Parameter

For a channel (X ,Y ,W ), the symmetric capacity is defined as I0(W ) = I(X;Y )

where the channel input X is uniformly distributed over X and Y is the output of

the channel; i.e. for q = |X |,

I0(W ) =
∑

x∈X

∑

y∈Y

1

q
W (y|x) log

W (y|x)
∑

x̃∈X

1

q
W (y|x̃)

The Bhattacharyya distance between two distinct input symbols x and x̃ is defined

as

Z(W{x,x̃}) =
∑

y∈Y

√
W (y|x)W (y|x̃)

and the average Bhattacharyya distance is defined as

Z(W ) =
∑

x,x̃∈X
x 6=x̃

1

q(q − 1)
Z(W{x,x̃})

6.1.1.2 Binary Polar Codes

For any N = 2n, a polar code of length N designed for the channel (Z2,Y ,W )

is a linear (coset) code characterized by a generator matrix GN and a set of indices

A ⊆ {1, · · · , N} of almost perfect channels. The generator matrix for polar codes is

defined as GN = BNF
⊗n where BN is a permutation of rows, F =




1 0

1 1


 and ⊗

denotes the Kronecker product. The set A is a function of the channel and deter-

mines the locations of the information bits. The decoding algorithm for polar codes

is a specific form of successive cancellation [10].
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6.1.1.3 Polar Codes Over Abelian Groups

For any discrete memoryless channel, there always exists an Abelian group of the

same size as that of the channel input alphabet. In general, for an Abelian group,

there may not exist a multiplication operation. Since polar encoders are character-

ized by a matrix multiplication, before using these codes for channels of arbitrary

input alphabet sizes, a generator matrix for codes over Abelian groups needs to be

properly defined. In Appendix 6.1.6.1, a convention is introduced to generate codes

over groups using {0, 1}-valued generator matrices.

6.1.1.4 Notation

We denote by O(ε) any function of ε which is right-continuous around 0 and that

O(ε)→ 0 as ε ↓ 0.

For positive integers N and r, let {A0, A1, · · · , Ar} be a partition of the index set

{1, 2, · · · , N}. Given sets Tt for t = 0, · · · , r, the direct sum
⊕r

t=0 T
At
t is defined as

the set of all tuples uN1 = (u1, · · · , uN) such that ui ∈ Tt whenever i ∈ At.

6.1.2 Motivating Examples

A key property of the basic polarizing transforms used for binary polar codes

is that they have perfect and useless channels as their “fixed points”; in the sense

that, if these transforms are applied to a perfect (useless) channel, the resulting

channel is also perfect (useless). Moreover, these type of channels are the only fixed

points of these transformations. In the following, we try to demonstrate that for

non-binary channels, the basic transforms have fixed points which are neither perfect

nor useless. Consider a 4-ary channel (Z4,Y ,W ) and assume the channel is such

that W (y|u) = W (y|u + 2) for all y ∈ Y and all u ∈ Z4; i.e. the channel cannot

distinguish between inputs u and u+ 2. Consider the transformed channels W− and
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W+ originally introduced in [10] (Refer to Equations (6.32) and (6.33) of the current

paper). It turns out that

W+(y1, y2, u1|u2) = W+(y1, y2, u1|u2 + 2)

W−(y1, y2|u1) = W−(y1, y2|u1 + 2)

for all y1, y2 ∈ Y and all u1, u2 ∈ Z4. This observation is closely related to the fact

that {0, 2} is closed under addition mod-4; i.e. the fact that {0, 2} forms a subgroup

of Z4. This means that the transformed channels inherit this characteristic feature of

the original channel, in the sense that they cannot distinguish between inputs ui and

ui + 2 (i = 2 for W+ and i = 1 for W−). This suggests that even in the asymptotic

regime, the transformed channels can only distinguish between the sets {0, 2} and

{1, 3}, and not within each set. In the following, we give an example for which such

cases indeed exist in the asymptotic regime.

Consider the channel depicted in Figure 6.1. For this channel, the symmetric

capacity is equal to C = I(X;Y ) = 2− ε−2λ bits per channel use. Depending on the

values of the parameters ε and λ, this channel can present three extreme cases: 1) If

λ = 1, this channel is useless. 2) If ε = 1, this channel cannot distinguish between

inputs u and u+ 2 and has a capacity of 1 bit per channel use. 3) If ε = λ = 0, this

channel is perfect and has a capacity of 2 bits per channel use.

Given a sequence of bits b1b2 · · · bn, define W b1b2···bn as in [10, Section IV], and

let I(W b1b2···bn) be the mutual information between the input and output of W b1b2···bn

when the input is uniformly distributed. We can find I(W b1b2···bn) using the following

recursion for which the proof can be found in Appendix 6.1.6.2.

Define ε0 = ε and λ0 = λ. For i = 1, · · · , n,
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Figure 6.1: Channel 1: The input of the channel has the structure of the group Z4. The
parameters ε and λ take values from [0, 1] such that ε+ λ ≤ 1. E1 and E2 are
erasures connected to cosets of the subgroup {0, 2}. The lines connecting the
output symbols 0, 2, 1, 3 to their corresponding inputs, represent a conditional
probability of 1 − ε − λ. For this channel, the process I(W b1b2···bn) can be
explicitly found for each n and the multilevel polarization can be observed.

• If bi = 1, let




εi = ε2i−1 + 2εi−1λi−1

λi = λ2
i−1

(6.1)

• If bi = 0, let




εi = 2εi−1 −
(
ε2i−1 + 2εi−1λi−1

)

λi = 2λi−1 − λ2
i−1

(6.2)

Then we have I(W b1b2···bn) = 2− εn − 2λn bits per channel use.

Consider the function f : [0, 1]2 → [0, 1]2, f(ε, λ) = (ε2 + 2ελ, λ2) corresponding to

Equation (6.1). The fixed points of this function are given by (0, 1), (1, 0) and (0, 0).

Similarly, consider the function g : [0, 1]2 → [0, 1]2, g(ε, λ) = (2ε− (ε2 + 2ελ), 2λ−λ2)

corresponding to Equation (6.2). It turns out that the fixed points of g are the same

as those of f . This suggests that in the limit, the transformed channels converge to

one of three extreme cases discussed above. Figures 6.2 and 6.3 show that it is indeed

the case and depict the three level polarization of the mutual information process

I(W b1b2···bn) to a discrete random variable I∞ as n grows.

When N = 2n is large, let N0 be the number of useless channels (corresponding

to the width of the first step in Figure 6.3), N1 be the number of partially perfect
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channels (corresponding to the width of the second step in Figure 6.3) and N2 be the

number of perfect channels (corresponding to the width of the third step in Figure

6.3). Since the mutual information process is a martingale, it follows that

C = E{I∞} ≈ N0

N
× 0 +

N1

N
× 1 +

N2

N
× 2

where C is the symmetric capacity of the channel. Consider the following encod-

ing rule: For indices corresponding to useless channels, let the input symbol take

values from {0} (from the transversal of the subgroup Z4 of Z4 i.e. fix the input).

For indices corresponding to partially perfect channels, let the input symbol take

values from {0, 1} (from the transversal of the subgroup {0, 2} of Z4). For indices

corresponding to perfect channels, let the input symbol take values from Z4 (choose

information symbols from the transversal of the subgroup {0} of Z4). It turns out

that this encoding rule used with an appropriate decoding rule has a vanishingly small

probability of error as N becomes large. The rate of this code is equal to

R =
1

N
(N0 log2 1 +N1 log2 2 +N2 log2 4)

This means R = C is achievable using polar codes.

Next, we consider a channel with a composite input alphabet size. Consider the

channel depicted in Figure 6.4. We call this Channel 2. It turns out that given

a sequence of bits b1b2 · · · bn, the transformed channel W b1b2···bn is (equivalent to) a

channel of the same type as Channel 2 but with possibly different parameters ε, λ and

γ. At each step n, the corresponding parameters can be found using the following

recursion: Define ε0 = ε, λ0 = λ and γ0 = γ. For i = 1, · · · , n,

• If bi = 1, let




γi = γ2
i−1 + 2γi−1εi−1 + 2γi−1λi−1

εi = ε2i−1 + 2γi−1εi−1 + 2εi−1λi−1

λi = λ2
i−1 − 2γi−1εi−1

(6.3)
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• If bi = 0, let 



γi = 2γi−1 −
(
γ2
i−1 + 2γi−1εi−1 + 2γi−1λi−1

)

εi = 2εi−1 −
(
ε2i−1 + 2γi−1εi−1 + 2εi−1λi−1

)

λi = 2λi−1 + 2γi−1εi−1 −
(
λ2
i−1

)
(6.4)

Then we have

I(W b1b2···bn) = log2 6− γn log2 2− εn log2 3− λn log2 6

The proof of the recursion formulas for Channel 2 is similar to that of Channel 1 and

is omitted. The fixed points of the functions corresponding to Equations (6.3) and

(6.4) are given by (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 1), (0,−1, 1), (1, 1,−1),

and (−1,−1, 2), out of which (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) are admissible.

Note that (0, 0, 0) corresponds to a perfect channel with a capacity of log2 6 bits per

channel use, (1, 0, 0) corresponds to a partially perfect channel which can perfectly

send the index of the coset of the subgroup {0, 3} to which the input belongs and has

a capacity of log2 3 bits per channel use, (0, 1, 0) corresponds to a partially perfect

channel which can perfectly send the index of the coset of the subgroup {0, 2, 4} to

which the input belongs and has a capacity of log2 2 bits per channel use, and (0, 0, 1)

corresponds to a useless channel. This suggests that in the limit, the transformed

channels converge to one of these four extreme cases. This can be confirmed using

the recursion formulas for this channel as depicted in Figures 6.5 and 6.6. With

encoding and decoding rules similar to those of Channel 1, we can show that polar

codes achieve the symmetric capacity of this channel.

In the next section, we show that polar codes achieve the symmetric capacity of

channels with input alphabet size equal to a power of a prime.

6.1.3 Polar Codes Over Channels with input Zpr

In this section, we consider channels of input alphabet size q = pr for some prime

number p and a positive integer r. In this case, the input alphabet of the channel can
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be considered as a ring with addition and multiplication modulo pr. We prove the

achievability of the symmetric capacity of these channels using polar codes and later

in Section 6.1.4 we will generalize this result to channels of arbitrary input alphabet

sizes and arbitrary group operations.

6.1.3.1 Zpr Rings

Let G = Zpr = {0, 1, 2, · · · , pr − 1} with addition and multiplication modulo pr

be the input alphabet of the channel, where p is a prime and r is an integer. For

t = 0, 1, · · · , r, define the subgroup Ht of G as the set:

Ht = ptG = {0, pt, 2pt, · · · , (pr−t − 1)pt}

and define Hr+1 = ∅. For t = 0, 1, · · · , r, define the subset Kt of G as Kt = Ht\Ht+1;

i.e. Kt is defined as the set of elements of G which are a multiple of pt but are not

a multiple of pt+1. Note that K0 is the set of all invertible elements (i.e. set of all

elements with a multiplicative inverse) of G and Kr = {0}. Let Tt be a transversal

of Ht in G; i.e. a subset of G containing one and only one element from each coset

of Ht in G. One valid choice for Tt is {0, 1, · · · , pt − 1}. Note that given Ht and Tt,

each element g of G can be represented uniquely as a sum g = ĝ + g̃ where ĝ ∈ Tt
and g̃ ∈ Ht.

6.1.3.2 Recursive Channel Transformation

It has been shown in [10] that the error probability of polar codes over binary

input channels is upper bounded by the sum of Bhattacharyya parameters of certain

channels defined by a recursive channel transformation. Hence, the study of these

channels is essential to show that polar codes achieve the symmetric capacity of

channels. A similar set of synthesized channels appear for polar codes over channels
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with arbitrary input alphabet sizes. The channel transformations are given by:

W−(y1, y2|u1) =
∑

u′2∈G

1

q
W (y1|u1 + u′2)W (y2|u′2) (6.5)

W+(y1, y2, u1|u2) =
1

q
W (y1|u1 + u2)W (y2|u2) (6.6)

for y1, y2 ∈ Y and u1, u2 ∈ G. Repeating these operations n times recursively, we

obtain N = 2n channels W
(1)
N , · · · ,W (N)

N . For i = 1, · · · , N , these channels are given

by:

W
(i)
N (yN1 , u

i−1
1 |ui) =

∑

uNi+1∈GN−i

1

qN−1
WN(yN1 |uN1 GN)

where GN is the generator matrix for polar codes.

For the case of binary input channels, it has been shown in [10] that as N → ∞,

these channels polarize in the sense that their Bhattacharyya parameters approaches

either zero (perfect channels) or one (useless channels). In the next part, we formally

state the following multilevel polarization result: In general, when the input alphabet

is a prime power, polarization happens in multiple levels so that as N → ∞, these

channels become useless, perfect or “partially perfect”.

6.1.3.3 The Multilevel Polarization Result

In this section, we state the multilevel polarization result for the Zpr case and we

prove it in the subsequent section. First, we define some quantities which are used in

the statement and the proof of multilevel polarization. For an integer n, let Jn be a

uniform random variable over the set {1, 2, · · · , N = 2n}.

1) Define the random variable In(W ) as

In(W ) = I(X;Y ) (6.7)

where X and Y are the input and the output of W
(Jn)
N respectively and X is uniformly

distributed. It has been shown in [10] that the process I0, I1, I2, · · · is a martingale
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for the binary case. The same proof is valid for the general case as well. Hence

E{In} = I0.

2) For an integer n and for d ∈ G, define the random variable Zn
d (W ) = Zd(W

(Jn)
N )

where for a channel (G,Y ,W ),

Zd(W ) =
1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ d)

=
1

q

∑

x∈G

Z(W{x,x+d}) (6.8)

Note that similar to the Bhattacharyya parameter, Zd(W ) takes values from [0, 1].

In the extreme case when Zd(W ) is zero, for any x ∈ G, the channel can completely

distinguish between x and x + d. On the other hand, when Zd(W ) is one, for any

x ∈ G, the two input symbols x and x+ d are equilikely given any channel output.

3) Let H be an arbitrary subgroup of G. Note that any uniform random variable de-

fined over G can be decomposed into two uniform and independent random variables

X̂ and X̃ where X̂ takes values from the transversal T of H and X̃ takes values from

H. For an integer n, define the random variable InH(W ) as

InH(W ) = I(X;Y |X̂) = I(X̃;Y |X̂) (6.9)

where X and Y are the input and the output of W
(Jn)
N respectively. These processes

along with Zn
d (W ) processes are used to show the convergence of the mutual infor-

mation process to a discrete random variable.

4) For t = 0, · · · , r, define the random variable Zt(W
(i)
N ) =

∑
d/∈Ht Zd(W

(i)
N ) and the

random process (Zt)(n)(W ) = Zt(W
(Jn)
N ) where Jn is a uniform random variable over

{1, 2, · · · , N = 2n}. We will see later that these processes are related to the proba-

bility of error incurred by polar codes.

The following theorem states the multilevel polarization result for the Zpr case:
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Theorem VI.1. For all ε > 0 and β < 1
2
, there exists a number N = N(ε) = 2n(ε) and

disjoint subsets Aε0, A
ε
1, · · · , Aεr of {1, · · · , N} such that for t = 0, · · · , r and i ∈ Aεt,∣∣∣I(W

(i)
N )− t log2 p

∣∣∣ ≤ ε and Zt(W
(i)
N ) < 2−2βn(ε). Moreover, as ε → 0,

|Aεt |
N
→ pt for

some probabilities p0, · · · , pr adding up to one.

6.1.3.4 Proof of Multilevel Polarization

In this section, we prove the multilevel polarization through a series of lemmas.

In the first lemma, we show that InH(W ) is a super-martingale.

Lemma VI.2. For an arbitrary group G and for any subgroup H of G, the random

process InH(W ) defined by Equation (6.9) is a super-martingale.

Proof. Define the channels W− and W+ as in (6.32) and (6.33). Define the random

variables U1, U2, X1, X2, Y1 and Y2 where U1 and U2 are uniformly distributed over

G, X1 = U1 +U2 where addition is the group operation, X2 = U2 and Y1 (respectively

Y2) is the channel output when the input is X1 (respectively X2). Decompose the

random variable U1 into two uniform and independent random variables Û1 and Ũ1

where Û1 takes values from the transversal T of H and Ũ1 takes values from H.

Similarly define, Û2, X̂1, X̂2 and Ũ2, X̃1, X̃2. We need to show that

I(Ũ1;Y1Y2|Û1) + I(Ũ2;Y1Y2U1|Û2) ≤ 2I(X̃1;Y1|X̂1)

Note that I(X̃1;Y1|X̂1) = I(X1;Y1)− I(X̂1;Y1). Since In is a martingale, we have

I(U1;Y1Y2) + I(U2;Y1Y2U1) = 2I(X;Y )

Therefore, it suffices to show

I(Û1;Y1Y2) + I(Û2;Y1Y2U1) ≥ 2I(X̂1;Y1)
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We have

I(Û2;Y1Y2U1) = I(Û2;Y1Y2Û1Ũ1)

= I(Û2;Y1Y2Û1) + I(Û2; Ũ1|Y1Y2Û1)

≥ I(Û2;Y1Y2Û1)

Hence,

I(Û1;Y1Y2)+I(Û2;Y1Y2U1)≥I(Û1;Y1Y2)+I(Û2;Y1Y2Û1)

= I(Û1Û2;Y1Y2)

(a)
= I(X̂1X̂2;Y1Y2)=2I(X̂1;Y1)

where (a) follows since Û1 and Û2 are recoverable from X̂1 and X̂2 and vice versa as

shown in the following: To show the forward direction, let U ′1 and U ′2 take values from

G and let X ′1 = U ′1 +U ′2 and X ′2 = U ′2. We need to show that if X ′1 is in the same coset

of H as X1 (i.e. if X ′1−X1 ∈ H or equivalently X̂ ′1 = X̂1) and X ′2 is in the same coset

of H as X2 (i.e. if X ′2−X2 ∈ H or equivalently X̂ ′2 = X̂2), then U ′1 is in the same coset

of H as U1 (i.e. U ′1 − U1 ∈ H or equivalently Û ′1 = Û1) and U ′2 is in the same coset of

H as U2 (i.e. U ′2 −U2 ∈ H or equivalently Û ′2 = Û2). Note that X ′2 −X2 ∈ H implies

U ′2 − U2 ∈ H and X ′1 −X1 ∈ H implies U ′1 + U ′2 − U1 − U2 ∈ H. Since U ′2 − U2 ∈ H

(and hence U2−U ′2 ∈ H), U ′1−U1 ∈ H +U2−U ′2 implies U ′1−U1 ∈ H. For the other

direction, note that X̂1 = T ∩
(
Û1 + Û2 +H

)
and X̂2 = Û2.

The next lemma is a restatement of Lemma 2 of [66] with a slight generalization:

Lemma VI.3. Suppose Bn, n ∈ Z+ is a {−,+}-valued process with P (Bn = −) =

P (Bn = +) = 1
2
. Suppose In and Tn are two processes adapted to the process Bn

satisfying the following conditions

1. In takes values in the interval [0, 1].

2. In converges almost surely to a random variable I∞.
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3. Tn takes values in the interval [0, 1].

4. Tn+1 = T 2
n when Bn+1 = +.

5. For all ε > 0, there exists δ > 0 such that for n ∈ Z+, Tn ≤ δ implies In ≥ 1−ε.

6. For all ε > 0, there exists δ > 0 such that for n ∈ Z+, Tn ≥ 1−δ implies In ≤ ε.

Then T∞ = limn→∞ Tn exists with probability 1 and I∞, T∞ both take values in {0, 1}.

Proof. The proof follows from Lemma 2 of [66] in a straightforward fashion.

In the next lemma, we show that for any d ∈ G, the random process Zn
d converges

to a Bernoulli random variable.

Lemma VI.4. For all d ∈ G, Zn
d (W ) converges almost surely to a {0, 1}-valued

random variable Z∞d (W ) as n grows. Moreover, if d̃ ∈ G is such that 〈d̃〉 = 〈d〉

then Z∞
d̃

(W ) = Z∞d (W ) almost surely; i.e. the random processes Zn
d̃
(W ) and Zn

d (W )

converge to the same random variable.

Proof. Let H = 〈d〉 be the subgroup of G generated by d and let M be a maximal

subgroup of H. Let

d′ = argmax
a∈H
a/∈M

Za(W ) (6.10)

In Lemma VI.3, let In (Here we use the notation In instead of In for notational

convenience) be equal to the process InH(W )− InM(W ) where InH(W ) and InM(W ) are

defined by Equation (6.9) and let Tn be equal to the process Zn
d′(W ) defined in (6.8).

We claim that In and Tn satisfy the conditions of Lemma VI.3. The proof is given in

the following:

Recall that a uniform random variable X over G can be decomposed into two uniform

and independent random variables X̃ taking values from H and X̂ taking values from
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the transversal of H in G. Similarly, the uniform random variable X̃ over H can

be decomposed into two uniform and independent random variables
˜̃
X taking values

from M ≤ H and
̂̃
X taking values from the transversal of M in H. Using the chain

rule, we have:

I(X̃;Y |X̂) = I(
˜̃
X
̂̃
X;Y |X̂)

= I(
̂̃
X;Y |X̂) + I(

˜̃
X;Y |X̂ ̂̃X)

Note that
˜̃
X ∈ M and (X̂,

̂̃
X) indicate the coset of M in G to which X belongs.

Therefore, the equation above implies that for each n, InH(W )− InM(W ) = I(
̂̃
X;Y |X̂)

where X and Y are the input and the output of the channel W
(Jn)
N . Note that

̂̃
X

takes values from cosets of M in H and X̂ takes values from cosets of H in G. There-

fore, I(
̂̃
X;Y |X̂) is the mutual information between the coset of M in H to which X

belongs and Y given the coset of H in G to which X belongs. Since
̂̃
X can at most

take |H||M | values, by choosing the base of the log function to be equal to |H|
|M | condition

(1) of Lemma VI.3 is satisfied.

We have shown in Lemma VI.2 that both processes InH(W ) and InM(W ) are super-

martingales and hence both converge almost surely. This means that the vector valued

random process (InH(W ), InM(W )) converges almost surely (refer to Proposition 5.25

of [37]). Hence condition (2) is satisfied.

Condition (3) trivially holds and condition (4) is shown in Lemma VI.16 in Ap-

pendix 6.1.6.3.

To show (5), assume Zn
d′(W ) ≤ δ for some δ > 0 to be determined later. Let TH

be a transversal of H in G and let TM be a transversal of M in H. Given X ∈ tH +H

for some tH ∈ TH , the joint probability distribution of cosets of M in tH +H and the
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channel output is given by:

p̄(tH+tM+M, y),
∑

m∈M

P (X= tH+tM+m,Y=y|X∈ tH+H)

=
∑

m∈M

P (X = tH + tM +m,Y = y)

P (X ∈ tH +H)

=
∑

m∈M

P (X = tH + tM +m,Y = y)

|H|/|G|

=
|G|
|H|

∑

m∈M

1

|G|W (y|tH + tM +m)

=
1

|H|
∑

m∈M

W (y|tH + tM +m)

where tM takes values from TM . The corresponding channel is defined as:

W̄ (y|tH + tM +M) =

1
|H|
∑

m∈M W (y|tH + tM +m)

P (X ∈ tH + tM +M |X ∈ tH +H)

=
1

|M |
∑

m∈M

W (y|tH + tM +m) (6.11)

Note that the input of this channel takes values from the set {tH + tM +M |tM ∈ TM}

uniformly and the size of the input alphabet is q̄ , |H|
|M | which is a prime (since M is

maximal in H). Furthermore, by definition I(W̄ ) = I(
̂̃
X;Y |X̂ = tH). It is shown in

Appendix 6.1.6.4 that Zd′(W ) ≤ δ implies Z(W̄ ) ≤ Cδ for a constant C = |M |·|H|·|G|
|H|−|M | .

Therefore, part (1) of Lemma VI.14 in Appendix 6.1.6.3 implies

I(W̄ ) ≥ logq̄
q̄

1 + C(q̄ − 1)δ
= logq̄

q̄

1 + |H| · |G|δ

where the base of the logarithm in the calculation of the mutual information is set to

be q̄. This result is valid for all tH ∈ TH . Therefore

IH(W )− IM(W ) =
∑

tH∈TH

P (X̂ = tH)I(
̂̃
X;Y |X̂ = tH)

≥ logq̄
q̄

1 + |H| · |G|δ

Hence, for any ε > 0, any choice of 0 < δ ≤ q̄ε−1
|H|·|G| guarantees for n ∈ Z+,

Zn
d′(W ) ≤ δ ⇒ IH(W )− IM(W ) ≥ 1− ε.
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To show condition (6), assume that Zn
d′(W ) ≥ 1 − δ. For the channel W̄ defined

as above, it is shown in Appendix 6.1.6.5 (An alternate proof for the Zpr case is pro-

vided in Appendix 6.1.6.6) that Zd′(W ) ≥ 1− δ implies Zd′+tH+M(W̄ ) ≥ 1− 2q
√

2δ−δ2
q̄|M | .

Since the input alphabet of the channel W̄ has a prime size and d′ ∈ H\M , we can

use Lemma VI.15 in Appendix 6.1.6.3 to conclude that Z(W̄ ) > 1 − 2qq̄2
√

2δ−δ2
|M | and

therefore, 1 − Z(W̄ )2 = (1 + Z(W̄ ))(1 − Z(W̄ )) ≤ 2(1 − Z(W̄ )) ≤ 4qq̄2
√

2δ−δ2
|M | . Now

we use part (2) of Lemma VI.14 in Appendix 6.1.6.3 to conclude

I(W̄ ) ≤ 2(q̄ − 1) logq̄ e

√
4qq̄2
√

2δ − δ2

|M | ≤ C
4
√
δ

for a constant C = 4q̄(q̄− 1) logq̄ e
√

q
√

2
|M | where as above, the base of the logarithm in

the calculation of the mutual information is set to be q̄. This implies:

IH(W )− IM(W ) =
∑

tH∈TH

P (X̂ = tH)I(
̂̃
X;Y |X̂ = tH)

≤ C
4
√
δ

Hence, for any ε > 0, any choice of 0 < δ ≤
(
ε
C

)4
guarantees for n ∈ Z+, Zn

d′(W ) ≥

1− δ ⇒ IH(W )− IM(W ) ≤ ε.

So far, we have shown that for any d ∈ G, for H = 〈d〉 and d′ defined as in (6.10), the

random variable Zn
d′(W ) converges to a Bernoulli random variable. Note that so far

the proof is general and applies to arbitrary groups as well. We will use this part of

the proof later in Section 6.1.4. Next, we show that when G = Zpr , for any d̃ ∈ H\M

(including d itself), Zn
d̃
(W ) converges to a Bernoulli random variable. Moreover, us-

ing the fact that they all take values from {0, 1}, we show that for all such d̃’s, they

converge to the same random variable. To see this, note that if Zn
d′ ≤ δ, it follows

that Zn
d̃
≤ δ for all d̃ ∈ H\M (since by definition, a = d′ achieves the maximum

of Za(W ) among all a ∈ H\M) and if Zn
d′ ≥ 1 − δ it follows from Lemma VI.17 in
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Appendix 6.1.6.3 that for all d̃ ∈ 〈d′〉 = H, Zn
d̃
≥ 1− q3δ. Note that when G = Zpr ,

H\M is the set of all elements d̃ such that 〈d̃〉 = 〈d〉. This completes the proof of the

lemma.

The next lemma gives a sufficient condition for two processes Zn
d and Zn

d̃
to con-

verge to the same random variable. Recall that for 0 ≤ t ≤ r − 1, Kt = Ht\Ht+1.

Lemma VI.5. If d, d̃ ∈ Kt for some 0 ≤ t ≤ r − 1, then Zn
d and Zn

d̃
converge to the

same Bernoulli random variable.

Proof. Note that d, d̃ ∈ Kt implies 〈d〉 = 〈d̃〉 = Ht. Therefore, Lemma VI.4 implies

Zn
d and Zn

d̃
converge to the same Bernoulli random variable.

For t = 0, 1, · · · , r − 1, pick an arbitrary element kt ∈ Kt. The lemma above

suggests that we only need to study Zkt ’s rather than all Zd’s.

Lemma VI.6. For t ≤ s ≤ r−1, if Zkt ≥ 1− δ for some kt ∈ Kt, then Zks ≥ 1− q3δ

for all ks ∈ Ks.

Proof. Follows from Lemma VI.17 in Appendix 6.1.6.3 and the fact that ks ∈ 〈kt〉.

This lemma implies that for the group G = Zpr all possible asymptotic cases are:

• Case 0: Zk0 = 1, Zk1 = 1, Zk2 = 1, · · · , Zkr−1 = 1

• Case 1: Zk0 = 0, Zk1 = 1, Zk2 = 1, · · · , Zkr−1 = 1

• Case 2: Zk0 = 0, Zk1 = 0, Zk2 = 1, · · · , Zkr−1 = 1

...

• Case r: Zk0 = 0, Zk1 = 0, Zk2 = 0, · · · , Zkr−1 = 0,

where for t = 0, · · · , r, case t happens with some probability pt. This implies

(Zt)(n)(W ) converges to a random variable (Zt)(∞)(W ) almost surely and P
(
(Zt)(∞) = 0

)
=

∑r
s=t ps.

Next, we study the behavior of In in each of these asymptotic cases.
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Lemma VI.7. For a channel (Zpr ,Y ,W ), let t be an integer taking values from

{0, 1, · · · , r}. For any ε > 0, there exists a δ > 0 such that if Zk0 ≤ δ, Zk1 ≤

δ, · · · , Zkt−1 ≤ δ, Zkt ≥ 1 − δ, · · · , Zkr−1 ≥ 1 − δ for all ks ∈ Ks (s = 0, · · · , r − 1),

then t log2 p− ε ≤ I0(W ) ≤ t log2 p+ ε.

Proof. Note that for all s = 0, · · · , r− 1, Ms , 〈ks+1〉 is a maximal subgroup of 〈ks〉.

In the proof of Lemma VI.4, if we let d = k0 and M0 = 〈k1〉, the choice of δ = pε/ log2 q−1
|H|·|G|

guarantees that (1− ε/ log2 q) log2 p ≤ IG(W )− IM0(W ) = I(W )− IM0(W ) ≤ log2 p

(in bits). Similarly, it follows that (1− ε/ log2 q) log2 p ≤ IMs(W )−IMs+1(W ) ≤ log2 p

for all 0 ≤ s ≤ t− 1. For s ≥ t, the choice of δ =
(

ε
C log2 q

)4

guarantees IMs − IMs+1 ≤

(ε/ log2 q) log2 p = ε/r (in bits). Therefore,

I0(W ) = IG(W ) =
r−1∑

s=0

(
IMs(W )− IMs+1(W )

)

=
t−1∑

s=0

(
IMs(W )− IMs+1(W )

)
+

r−1∑

s=t

(
IMs(W )− IMs+1(W )

)

≤
t−1∑

s=0

log2 p+
r−1∑

s=t

ε/r

≤ t log2 p+ ε

and

I0(W ) = IG(W ) =
t−1∑

s=0

(
IMs(W )− IMs+1(W )

)
+

r−1∑

s=t

(
IMs(W )− IMs+1(W )

)

≥
t−1∑

s=0

(1− ε/ log2 q) log2 p

≥ t log2 p− ε
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We have shown that the process In converges to the following r+1 valued discrete

random variable: I∞ = t log2 p with probability pt for t = 0, · · · , r.

We are now ready to prove the theorem: For the channel (Zpr ,Y ,W ), consider the

vector random process Vn = (Zn
k0
, Zn

k1
, · · · , Zn

kr−1
, In). We have seen in the previous

section that each component of this vector random process converges almost surely.

Proposition 5.25 of [37] implies that the vector random process Vn also converges

almost surely to a random vector V∞. The random vector V∞ is a discrete random

variable defined as follows:

P


V∞ = (

t times︷ ︸︸ ︷
0, · · · , 0,

r−t times︷ ︸︸ ︷
1, · · · , 1, t log2 p)


 = pt

for t = 0, 1, · · · , r where pt’s are some probabilities. This implies that for all δ >

0, there exists a number N = N(δ) = 2n(δ) and disjoint subsets Aδ0, A
δ
1, · · · , Aδr of

{1, · · · , N} such that for t = 0, · · · , r and i ∈ Aδt , Zks(W
(i)
N ) ≤ δ if 0 ≤ s < t and

Zks(W
(i)
N ) ≥ 1− δ if t ≤ s < r. This implies if i ∈ Aδt then Zt(W

(i)
N ) ≤ qδ. Moreover,

as δ → 0,
|Aδt |
N
→ pt for some probabilities p0, · · · , pr adding up to one.

For ε > 0, let δ be as in Lemma VI.7. Then, for t = 0, · · · , r and i ∈ Aδt , we have
∣∣∣I(W

(i)
N )− t log2 p

∣∣∣ ≤ ε. Similarly, for ε > 0 if we let δ = ε/q, we get Zt(W
(i)
N ) ≤ ε.

For any ε > 0, taking the minimum of the two δ’s guarantees the existence of a

number N = N(ε) = 2n(ε) and disjoint subsets Aε0, A
ε
1, · · · , Aεr of {1, · · · , N} such

that for t = 0, · · · , r and i ∈ Aεt,
∣∣∣I(W

(i)
N )− t log2 p

∣∣∣ ≤ ε and Zt(W
(i)
N ) < ε. Finally,

in Appendix 6.1.6.7, we show that for any β < 1
2

and for t = 0, · · · , r,

lim
n→∞

P
(

(Zt)(n) < 2−2βn
)
≥ P

(
(Zt)(∞) = 0

)
(6.12)

=
r∑

s=t

ps

This rate of polarization result concludes the proof of Theorem VI.1.
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6.1.3.5 Encoding and Decoding

In the original construction of polar codes, we fix the input symbols corresponding

to useless channels and send information symbols over perfect channels. Here, since

the channels do not polarize into two levels, the encoding is slightly different and we

send “some” information bits over “partially perfect” channels. At the encoder, if

i ∈ Aεt for some t = 0, · · · , r, the information symbol is chosen from the transversal

Tt uniformly and not from the whole set G. As we will see later, the channel W
(i)
N is

perfect for symbols chosen from Tt and perfect decoding is possible at the decoder.

Let X ε
N =

⊕r
t=0 T

Aεt
t be the set of all valid input sequences. For the sake of analysis, as

in the binary case, the message uN1 is dithered with a uniformly distributed random

vector bN1 ∈
⊕r

t=0H
Aεt
t revealed to both the encoder and the decoder. A message

vN1 ∈ X ε
N is encoded to the vector xN1 = (vN1 + bN1 )GN . Note that uN1 = vN1 + bN1 is

uniformly distributed over GN .

At the decoder, after observing the output vector yN1 , for t = 0, · · · , r and i ∈ Aεt ,

use the following decoding rule:

ûi = fi(y
N
1 , û

i−1
1 ) = argmax

g∈bi+Tt
W

(i)
N (yN1 , û

i−1
1 |g)

where the ties are broken arbitrarily. Finally, the message is decoded as v̂N1 = ûN1 −bN1 .

The total number of valid input sequences is equal to

2NR =
r∏

t=0

|Tt||At| =
r∏

t=0

pt|At| ≈
r∏

t=0

ptptN

Therefore, R ≈∑r
t=0 ptt log2 p. On the other hand, since In is a martingale, we have

E{I∞} = I0. Since E{I∞} =
∑r

t=0 ptt log2 p, we observe that the rate R is equal to

the symmetric capacity I0. We will see in the next section that this rate is achievable.
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6.1.3.6 Error Analysis

In this section, we show that the error probability of polar codes approaches zero

as the block length increases when the rate of transmission is equal to the symmetric

capacity of the channel.

Let Bi be the event that the first error occurs when the decoder decodes the ith

symbol:

Bi =
{

(uN1 , y
N
1 ) ∈ GN × Y N

∣∣∀j < i, uj = fj(y
N
1 , u

j−1
1 ),

ui 6= fi(y
N
1 , u

i−1
1 )
}

(6.13)

⊆
{

(uN1 , y
N
1 ) ∈ GN × Y N |ui 6= fi(y

N
1 , u

i−1
1 )
}

For t = 0, · · · , r and i ∈ Aεt, define

Ei =
{

(uN1 , y
N
1 ) ∈ GN × Y N

∣∣∣W (i)
N (yN1 , u

i−1
1 |ui) ≤

W
(i)
N (yN1 , u

i−1
1 |ũi) for some ũi ∈ bi + Tt, ũi 6= ui

}
(6.14)

Lemma VI.8. For t = 0, · · · , r and i ∈ Aεt, P (Ei) ≤ q2Zt(W
(i)
N ).

Proof. For ui ∈ G, write ui = bi(ui) + vi(ui) where bi(ui) ∈ Ht and vi(ui) ∈ Tt. We
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have

P (Ei) =
∑

uN1 ,y
N
1

1

qN
WN(yN1 |uN1 )1Ei(u

N
1 , y

N
1 )

≤
∑

uN1 ,y
N
1

1

qN
WN(yN1 |uN1 )

∑

ũi∈bi(ui)+Tt
ũi 6=ui

√√√√W
(i)
N (yN1 , u

i−1
1 |ũi)

W
(i)
N (yN1 , u

i−1
1 |ui)

=
∑

ui1,y
N
1

1

q


∑

uNi+1

1

qN−1
WN(yN1 |uN1 )




∑

ũi∈bi(ui)+Tt
ũi 6=ui

√√√√W
(i)
N (yN1 , u

i−1
1 |ũi)

W
(i)
N (yN1 , u

i−1
1 |ui)

=
∑

ui1,y
N
1

1

q
W

(i)
N (yN1, u

i−1
1 |ui)

∑

ũi∈bi(ui)+Tt
ũi 6=ui

√√√√W
(i)
N (yN1, u

i−1
1 |ũi)

W
(i)
N (yN1, u

i−1
1 |ui)

=
∑

ui∈G
ũi∈bi(ui)+Tt

ũi 6=ui

1

q

∑

ui−1
1 ,yN1

√
W

(i)
N (yN1, u

i−1
1 |ũi)W (i)

N (yN1, u
i−1
1 |ui)

=
∑

ui∈G
ũi∈bi(ui)+Tt

ũi 6=ui

1

q
Z{ui,ũi}(W

(i)
N )

For ui ∈ G and ũi ∈ bi(ui) + Tt, if ui 6= ũi, then ui, ũi are not in the same coset

of Ht and hence ui − ũi /∈ Ht. Therefore, ui − ũi ∈ G\Ht. Note that for d = ui − ũi,

Z{ui,ũi}(W
(i)
N ) ≤ qZd(W

(i)
N ). Since d ∈ G\Ht, we have Zd(W

(i)
N ) ≤ Zt(W

(i)
N ) and hence,

Z{ui,ũi}(W
(i)
N ) ≤ qZt(W

(i)
N )

Therefore, P (Ei) ≤ q|Tt|Zt(W
(i)
N ) ≤ q2Zt(W

(i)
N ).

The probability of block error is given by P (err) =
∑r

t=0

∑
i∈Aεt

P (Bi). Since
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Bi ⊆ Ei, we get

P (err) ≤
r∑

t=0

∑

i∈Aεt

q2Zt(W
(i)
N ) (6.15)

(a)

≤
r∑

t=0

|Aεt|q22−2βn (6.16)

≤ q2N2−2βn (6.17)

for any β < 1
2

where (a) follows from Theorem VI.1. Therefore, the probability of

error goes to zero as ε→ 0 (and hence n→∞).

6.1.4 Polar Codes Over Arbitrary Channels

For any channel input alphabet there always exist an Abelian group of the same

size. In this section, we generalize the result of the previous section to channels of

arbitrary input alphabet sizes and arbitrary group operations.

6.1.4.1 Abelian Groups

Let the Abelian group G be the input alphabet of the channel. It is known

that any Abelian group can be decomposed into a direct sum of Zpr rings [16]. Let

G =
⊕L

l=1 Rl with Rl = Zprll
where pl’s are prime numbers and rl’s are positive

integers. For t = (t1, t2, · · · , tL) with tl ∈ {0, 1, · · · , rl}, there exists a corresponding

subgroup H of G defined by H =
⊕L

l=1 p
tl
l Rl. For a subgroup H of G define TH to

be a transversal of H in G.

6.1.4.2 Recursive Channel Transformation

The Basic Channel Transforms

The transformed channels W+ and W− and the process In(W ) are defined the

same way as the Zpr case through Equations (6.32), (6.33) and (6.7).
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Asymptotic Behavior of Synthesized Channels

For d ∈ G, define Zn
d (W ) similarly to (6.8) where q = |G| and for H ≤ G, define

InH(W ) by Equation (6.9). The following lemma is a restatement of Lemma VI.4.

Here, we prove it for arbitrary groups.

Lemma VI.9. For all d ∈ G, Zn
d (W ) converges almost surely to a {0, 1}-valued

random variable Z∞d (W ) as n grows. Moreover, if d̃ ∈ G is such that 〈d̃〉 = 〈d〉

then Z∞
d̃

(W ) = Z∞d (W ) almost surely; i.e. the random processes Zn
d̃
(W ) and Zn

d (W )

converge to the same random variable.

Proof. Similarly to the proof of Lemma VI.4, let H = 〈d〉 and let M be any maximal

subgroup of H. Define

d′ = argmax
a∈H
a/∈M

Za(W ) (6.18)

It is relatively straightforward to show that in the general case as well, Zn
d′(W ) con-

verges to a {0, 1}-valued random variable Z∞d′ (W ). Indeed this part of the proof of

Lemma VI.4 is general enough for arbitrary Abelian groups. Here we show that this

implies Zn
d (W ) also converges to a Bernoulli random variable.

Let |H| = ∏k
i=1 q

ai
i where qi’s are distinct primes and ai’s are positive integers. Note

that H is isomorphic to the cyclic group Z|H|. For i = 1, · · · , k, define the subgroup

Mi = 〈qi〉 of Z|H| (and isomorphically of H) and let d′i = argmax a∈H
a/∈Mi

Za(W ). Note

that for i = 1, · · · , k, Mi is a maximal subgroup of Z|H| (and isomorphically of H).

Therefore, for i = 1, · · · , k, Zn
d′i

(W ) converges to a {0, 1}-valued random variable. If

for some i = 1, · · · , k, Zd′i(W ) ≤ δ it follows that Zd(W ) ≤ δ (since d ∈ H\Mi) and

if for all i = 1, · · · , k, Zd′i(W ) ≥ 1 − δ, it follows from Lemma VI.18 in Appendix

6.1.6.3 that Zd̃(W ) ≥ 1 − 2kq3δ for any d̃ ∈ 〈d′1, d′2, · · · , d′k〉. Next, we show that

〈d′1, d′2, · · · , d′k〉 = H and this will prove that if for all i = 1, · · · , k, Zd′i(W ) ≥ 1 − δ
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then Zd(W ) ≥ 1 − 2kq3δ. For i = 1, · · · , k, since d′i /∈ Mi it follows that d′i 6≡ 0

(mod qi). Let

a =
k∑

i=1




k∏

j=1
j 6=i

qj


 d′i

Then we have a 6≡ 0 (mod qi) for all i = 1, · · · , k. This implies 〈a〉 = H and hence

〈d′1, d′2, · · · , d′k〉 = H. Therefore, if in the limit Zd′i(W ) = 0 for some i = 1, · · · , k then

Zd(W ) = 0 and if Zd′i(W ) = 0 for all i = 1, · · · , k then Zd(W ) = 1. This proves that

Zn
d (W ) converges to a Bernoulli random variable.

If d̃ ∈ G is such that 〈d̃〉 = 〈d〉 then it follows that d̃ ∈ H and d̃ /∈Mi for i = 1, · · · , k.

Therefore if in the limit Zd′i(W ) = 0 for some i = 1, · · · , k then Zd̃(W ) = 0 and if

Zd′i(W ) = 1 for all i = 1, · · · , k then Zd̃(W ) = 1. This proves that the random

processes Zn
d̃
(W ) and Zn

d (W ) converge to the same random variable.

In the asymptotic regime, let d1, d2, · · · , dm be all elements of G such that Zdi(W ) =

1 and assume that for all other elements d ∈ G, Zd(W ) = 0 (we can make this as-

sumption since in the limit Zd’s are {0, 1}-valued). It is shown in Lemma VI.18 in Ap-

pendix 6.1.6.3 that if Zdi(W ) = 1 for i = 1, · · · ,m then for any d̃ ∈ 〈d1, d2, · · · , dm〉,

Zd̃(W ) = 1. Therefore, 〈d1, d2, · · · , dm〉 ⊆ {d1, d2, · · · , dm} and hence we must have

{d1, d2, · · · , dm} = 〈d1, d2, · · · , dm〉 = H for some subgroup H of G. This means all

possible asymptotic cases can be indexed by subgroups of G. i.e. for any H ≤ G,

one possible asymptotic case is

• Case H: Zd(W ) =





1 if d ∈ H;

0 Otherwise.

where for H ≤ G, case H happens with some probability pH .

Next, We study the behavior of In in each of these cases.
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Lemma VI.10. For a channel (G,Y ,W ) let S be a subgroup of G. For any ε > 0

there exists a δ > 0 such that if Zd ≥ 1 − δ for d ∈ S and Zd ≤ δ for d /∈ S, then

log2
|G|
|S| − ε ≤ I0(W ) ≤ log2

|G|
|S| + ε.

Proof. Let 0 = M0 ⊆M1 ⊆ · · · ⊆Mt−1 ⊆ S = Mt ⊆Mt+1 ⊆ · · · ⊆ G = Mk for some

positive integer k ≤ log2 |G| be any chain of subgroups such that Ms−1 is maximal in

Ms for s = 1, · · · , k.

Fix some s ∈ {1, · · · , t} and let H = Ms and M = Ms−1 and let TH be a transver-

sal of H in G and let TM be a transversal of M in H. For d ∈ H, we have

Zd(W ) ≥ 1 − δ. For tH ∈ TH define the channel W̄ (y|tH + tM + Ms−1) similar to

(6.11). We have shown in Appendix 6.1.6.5 that if for some d ∈ H\M , Zd(W ) ≥ 1−δ

then Zd+tH+M(W̄ ) ≥ 1− 2q
√

2δ−δ2
q̄|M | . Since the input alphabet of the channel W̄ has a

prime size (see Lemma VI.19 in Appendix 6.1.6.3), we can use Lemma VI.15 in Ap-

pendix 6.1.6.3 to conclude that Z(W̄ ) ≥ 1 − 2qq̄2
√

2δ−δ2
|M | . Now, similarly to the proof

of Lemma VI.4, we use part (2) of Lemma VI.14 in Appendix 6.1.6.3 to conclude

I(W̄ ) ≤ C 4
√
δ for C = 4q̄(q̄−1) log2 e

√
q
√

2
|M | . This result is valid for all tH ∈ TH . Since

I(W̄ ) = I(
̂̃
X;Y |X̂ = tH), we conclude that

IMs(W )− IMs−1(W ) = IH(W )− IM(W )

=
∑

tH∈TH

P (X̂ = tH)I(
̂̃
X;Y |X̂ = tH)

< C
4
√
δ

Fix some s ∈ {t + 1, · · · , k} and let H = Ms and M = Ms−1 and let TH be a

transversal of H in G and let TM be a transversal of M in H. For d ∈ H\M , we have

Zd(W ) ≤ δ. For the channel W̄ defined as above, we have shown in Appendix 6.1.6.4

that if for all d ∈ H\M , Zd(W ) ≤ δ then Z(W̄ ) ≤ |M |·|H|·|G|
|H|−|M | . Therefore, part (1) of
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Lemma VI.14 in Appendix 6.1.6.3 implies I(W̄ ) ≥ log2
q̄

1+·|H|·|G|δ . We conclude that

IMs(W )− IMs−1(W ) = IH(W )− IM(W )

= log2

q̄

1 + ·|H| · |G|δ

≥ log2

|Ms|/|Ms−1|
1 + |G|2δ

Therefore,

IG(W)=
t∑

s=1

(
IMs(W )−IMs−1(W )

)
+

k∑

s=t+1

(
IMs(W )−IMs−1(W )

)

≥
k∑

s=t+1

IMs(W )− IMs−1

≥
k∑

s=t+1

log2

|Ms|/|Ms−1|
1 + |G|2δ

≥ log2

|G|
|S| − k log2(1 + |G|2δ)

The choice of 0 < δ ≤ 2ε/k−1
|G|2 will guarantee that I0(W ) ≥ log2

|G|
|S| − ε. Similarly,

IG(W)=
t∑

s=1

(
IMs(W )−IMs−1(W )

)
+

k∑

s=t+1

(
IMs(W )−IMs−1(W )

)

≤
t∑

s=1

C
4
√
δ +

k∑

s=t+1

log2

|Ms|
|Ms−1|

≤ kC
4
√
δ + log2

|G|
|S|

The choice of 0 < δ ≤
(
ε
kC

)4
will guarantee that I0(W ) ≤ log2

|G|
|S| + ε.

We have shown that the process In converges to the following discrete random

variable: I∞ = log2
|G|
|H| with probability pH for H ≤ G.

For H ≤ G, define the random variable ZH(W
(i)
N ) =

∑
d/∈H Zd(W

(i)
N ) and the ran-

dom process (ZH)(n)(W ) = ZH(W
(Jn)
N ) where Jn is a uniform random variable over

{1, 2, · · · , N = 2n}. Note that (ZH)(n)(W ) converges almost surely to a random vari-

able (ZH)(∞)(W ) and P
(
(ZH)(∞) = 0

)
=
∑

S≤H pS.
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Summary of Channel Transformation

For the channel (G,Y ,W ), the convergence of the processes In and (ZH)n for

H ≤ G implies that for all ε > 0, there exists a number N = N(ε) and a partition

{AεH |H ≤ G} of {1, · · · , N} such that for H ≤ G and i ∈ AεH , I(W
(i)
N ) = log2

|G|
|H| +

O(ε) and ZH(W
(i)
N ) = O(ε). Moreover, as ε → 0,

|AεH |
N
→ pH for some probabilities

pH , H ≤ G.

In Appendix 6.1.6.7, we show that for any β < 1
2

and for H ≤ G,

lim
n→∞

P
(

(ZH)(n) < 2−2βn
)
≥ P

(
(ZH)(∞) = 0

)
(6.19)

=
r∑

S≤H

pS

We have proved the following theorem:

Theorem VI.11. For all ε > 0, there exists a number N = N(ε) = 2n(ε) and a

partition {AεH |H ≤ G} of {1, · · · , N} such that for H ≤ G and i ∈ AεH , I(W
(i)
N ) =

log2
|G|
|H| + O(ε) and ZH(W

(i)
N ) < 2−2βn(ε). Moreover, as ε → 0,

|AεH |
N
→ pH for some

probabilities pH , H ≤ G.

6.1.4.3 Encoding and Decoding

At the encoder, if i ∈ AεH for some H ≤ G, the information symbol is chosen

from the transversal TH arbitrarily. Let X ε
N =

⊕
H≤G T

AεH
H be the set of all valid

input sequences. As in the Zpr case, the message uN1 is dithered with a uniformly

distributed random vector bN1 ∈
⊕

H≤GH
AεH revealed to both the encoder and the

decoder. A message vN1 ∈ X ε
N is encoded to the vector xN1 = (vN1 + bN1 )GN . Note

that uN1 = vN1 + bN1 is uniformly distributed over GN .

At the decoder, after observing the output vector yN1 , for H ≤ G and i ∈ AεH , use

the following decoding rule:

ûi = fi(y
N
1 , û

i−1
1 ) = argmax

g∈bi+TH
W

(i)
N (yN1 , û

i−1
1 |g)
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where the ties are broken arbitrarily. Finally, the message is recovered as v̂N1 =

ûN1 − bN1 .

The total number of valid input sequences is equal to

2NR =
∏

H≤G

|TH ||AH | ≈
∏

H≤G

( |G|
|H|

)|AH |

Therefore, R ≈∑H≤G
|AH |
N

log2
|G|
|H| . On the other hand, since In is a martingale,

we have E{I∞} = I0. Since E{I∞} =
∑

H≤G pH log2
|G|
|H| , we observe that the rate R

converges to the symmetric capacity I0 as ε→ 0. We will see in the next section that

this rate is achievable.

It is worth mentioning the complexity of these codes is similiar to the binary case;

i.e. the complexity of encoding and the complexity of successive cancelation decoding

are both O(N logN) as functions of code blocklength N .

6.1.4.4 Error Analysis

For H ≤ G and i ∈ AεH , define the events Bi and Ei according to Equations (6.13)

and (6.14). Similar to the Zpr case, it is straightforward to show that for H ≤ G and

i ∈ AεH , P (Ei) ≤ q2ZH(W
(i)
N ) where q = |G|. The probability of block error is given

by P (err) =
∑

H≤G
∑

i∈AεH
P (Bi). Since Bi ⊆ Ei, we get

P (err) ≤
∑

H≤G

∑

i∈AεH

q2ZH(W
(i)
N )

≤
∑

H≤G

|AεH |q22−2βn

≤ q2N2−2βn

for any β < 1
2
. Therefore, the probability of block error goes to zero as ε → 0

(n→∞).
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6.1.5 Relation to Group Codes

Recall that for an arbitrary group G, the polar encoder of length N introduced

in this paper maps the set
⊕

H≤G T
AH
H to GN where for a subgroup H of G, TH is

a transversal of H and {AH |H ≤ G} is some partition of {1, · · · , N}. Note that the

set of messages
⊕

H≤G T
AH
H is not necessarily closed under addition and hence in gen-

eral, the set of encoder outputs is not a subgroup of GN ; i.e. polar codes constructed

and analyzed in Sections 6.2.2 and 6.1.4 are not group encoders. To the contrary,

standard polar codes (i.e. polar codes in which only perfect channels are used) are

indeed group codes since their set of messages is of the form GA ⊕ {0}{1,··· ,N}\A for

some A ⊆ {1, · · · , N} which is closed under addition.

It is worth mentioning that polar encoders constructed in this paper fall into a

larger class of structured codes called nested group codes. Nested group codes consist

of two group codes: the inner code Ci and the outer code Co such that the inner code

is a subgroup of the outer code (Ci ≤ Co). The set of messages consists of cosets of

Ci in Co. For the case of polar codes, the inner code is given by

Ci =

[⊕

H≤G

HAH

]
G

=

{
mG

∣∣∣∣∣m ∈
⊕

H≤G

HAH

}

and the outer code is the whole group space: Co = GN . To verify that this is indeed

the case, it suffices to show that the set of codewords of polar codes
[⊕

H≤G T
AH
H

]
G

has only one common element with each coset of Ci. Equivalently, it suffices to

show that for m1,m2 ∈ GN , if m1G − m2G ∈ Ci, then either m1 /∈ ⊕H≤G T
AH
H or

m2 /∈
⊕

H≤G T
AH
H .

Lemma VI.12. For N = 2n where n is a positive integer, the generator matrix

corresponding to polar codes GN = BNF
⊗n is full rank.
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Proof. Since GN = BNF
⊗n where BN is a permutation of rows, it suffices to show

that F⊗n is full rank. Note that the rank of the Kronecker product of two matrices is

equal to the product of the ranks of matrices and the rank of F is equal to 2. Hence

we have rank(G) = rank(F⊗n) = 2n = N .

This lemma implies that if m1G−m2G ∈ Ci then m1 −m2 ∈
⊕

H≤GH
AH . This

means either m1 /∈ ⊕H≤G T
AH
H or m2 /∈ ⊕H≤G T

AH
H . This proves that polar codes

are indeed nested group codes.

In this section, we consider two examples of channels over Z4. The first example

is Channel 1 introduced in Section 6.1.2. Based on the symmetry of this channel, we

show that polar codes achieve the group capacity of this specific channel. The intent

of the second example is to show that in general, polar codes do not achieve the group

capacity of channels. In order to find the capacity of polar codes as group codes, we

use the standard construction of polar codes, i.e. we only use perfect channels and

fix partially perfect and useless channels.

6.1.5.1 Example 1

Consider Channel 1 of Figure 6.1. Define H0 = {0, 1, 2, 3}, H1 = {0, 2} and

H2 = {0} and define K0 = {1, 3}, K1 = {2} and K2 = {0}. For this channel we have:

I0 , I(X;Y ) = 2− ε− 2λ

I0
2 , I(X1;Y ) = 1− (ε+ λ)

(I ′2)0 , I(X ′1;Y ) = 1− (ε+ λ) = I0
2

where X is uniform over Z4, X1 is uniform over H1 and X ′1 is uniform over 1 + H1.

The capacity of group codes over this symmetric channel is equal to [61]:

C = min(I0
4 , I

0
2 + (I ′2)0) = min(2− ε− 2λ, 2− 2ε− 2λ)

= 2− 2ε− 2λ
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All possible cases for this channel are

• Case 0: Z∞1 = Z∞3 = 1, Z∞2 = 1

• Case 1: Z∞1 = Z∞3 = 0, Z∞2 = 1

• Case 2: Z∞1 = Z∞3 = 0, Z∞2 = 0

As we saw in Figures 6.2 and 6.3, this result agrees with the asymptotic behavior

of In predicted by the recursion formulas (6.1) and (6.2).

Define I(W b1b2···bn) = I(X;Y ) where X, Y are the input and output of W b1b2···bn

and X is uniform over Z4. Similarly, define I2(W b1b2···bn) = I(X1;Y ) where X1,

Y are the input and output of W b1b2···bn and X1 is uniform over H1 and define

I ′2(W b1b2···bn) = I(X ′1;Y ) where X ′1, Y are the input and output of W b1b2···bn and

X ′1 is uniform over 1 +H1. Define the mutual information processes In4 , In2 and (I ′2)n

to be equal to I(W b1b2···bn), I2(W b1b2···bn) and I ′2(W b1b2···bn) where for i = 1, · · · , n,

bi’s are iid Bernoulli(0.5) random variables. For this channel, we can show that

I2(W b1b2···bn) = I ′2(W b1b2···bn) = 1− (εn +λn) and conclude that (I2 + I ′2)n , In2 + (I ′2)n

is a martingale. Therefore In4 and (I2 + I ′2)n converge almost surely to random vari-

ables I∞4 and (I2 + I ′2)∞ respectively. This observation provides us with an ad-hoc

way to find the probabilities pt, t = 0, 1, 2 of the limit random variable I∞4 for this

simple channel. We can show the following for the final states:

• case 0 ⇒ I∞4 = 0, (I2 + I ′2)∞ = 0

• case 1 ⇒ I∞4 = 1, (I2 + I ′2)∞ = 0

• case 2 ⇒ I∞4 = 2, (I2 + I ′2)∞ = 2
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Therefore, we obtain the following three equations:

E{I∞4 } = p0 · 0 + p1 · 1 + p2 · 2 = I0
4 = 2− ε− 2λ

E{(I2 + I ′2)∞}=p0 ·0+p1 ·0+p2 ·2=(I2+I ′2)0 =2−2ε−2λ

p0 + p1 + p2 = 1

Solving this system of equations, we obtain:

p2 = 1− ε− λ = C/2

p1 = I0
4 − (I2 + I ′2)0

p0 = 1−
(
I0

4 − (I2 + I ′2)0/2
)

We see that the fraction of perfect channels is equal to the capacity of the channel

achievable using group codes and therefore, polar codes achieve the capacity of group

codes for this channel.

6.1.5.2 Example 2

The channel is depicted in Figure 6.7. We call this Channel 3. For this channel,

when λ = 0.2 we have:

I0 = I(X;Y ) = 0.6390

(I0
2 + I ′2)0 = 0.2161

The rate C = min(I0
4 , (I2 +I ′2)0) = (I2 +I ′2)0 = 0.2161 is achievable using group codes

over this channel [61].

For this channel, we have three possible asymptotic cases:

• Case 0: Z∞1 = 1, Z∞2 = 1⇒ I∞4 = 0, (I2 + I ′2)∞ = 0

• Case 1: Z∞1 = 0, Z∞2 = 1⇒ I∞4 = 1, (I2 + I ′2)∞ = 0

• Case 2: Z∞1 = 0, Z∞2 = 0⇒ I∞4 = 2, (I2 + I ′2)∞ = 2
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Therefore we obtain the following three equations:

E{I∞4 } = p0 · 0 + p1 · 1 + p2 · 2

E{(I2 + I ′2)∞} = p0 · 0 + p1 · 0 + p2 · 2

p0 + p1 + p2 = 1

Therefore, the achievable rate using polar codes over this channel is equal to R =

2p2 = E{(I2 + I ′2)∞}. We have E{(I2 + I ′2)1} = 0.2063 which is strictly less than

(I2 + I ′2)0. The following lemma implies R = E{(I2 + I ′2)∞} ≤ E{(I2 + I ′2)1} < C =

(I2 + I ′2)0 and completes the proof.

Lemma VI.13. For a channel (Z4,Y ,W ), the process (I2 + I ′2)n, n = 0, 1, 2, · · · is

a super-martingale.

Proof. Follow from Lemma VI.2 with H = {0, 2}.

6.1.6 Appendix

6.1.6.1 Polar Codes Over Abelian Groups

Given a k×n matrix Gn of 0’s and 1’s, one can construct a group code as follows:

Given any message tuple uk ∈ Gk, encode it to uk · Gn. Where the elements of Gn

determine whether an element of uk appears as a summand in the encoded word or

not. For example consider the generator matrix

G4 =




1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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Then u4 ·G4 is defined as

[u1u2u3u4] ·




1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1




=




u1 + u2 + u3 + u4

u3 + u4

u2 + u4

u4




Using this convention, we can define a group code based on a given binary matrix

without actually defining a multiplication operation for the group.

6.1.6.2 Recursion Formula for Channel 1

Recursion for W+

We show that W+ (corresponding to b1 = 1) is equivalent to a channel of the

same type as W but with different parameters ε1 and λ1 corresponding to ε and λ

respectively; where,

ε1 = ε2 + 2ελ

λ1 = λ2
1

We say an output tuple (y1, y2, u1) is connected to an input u2 ∈ Z4 ifW+(y1, y2, u1|u2) =

1
4
W (y1|u1 + u2)W (y2|u2) is strictly positive.

First, let us assume the output tuple (y1, y2, u1) is connected to all u2 ∈ Z4. Then

W (y2|u2) must be nonzero for all u2 and hence y2 = E3. Similarly since W (y1|u1 +u2)

is nonzero for all u2 (and hence all u1 + u2) it follows that y1 = E3. Therefore

W+(E3, E3, u1|u2) = 1
4
λ2 for all u1, u2 ∈ Z4 and these are all output tuples connected

to all inputs (with positive probability). Since all of these output tuples are equiva-

lent we can combine them to get a single output symbol connected to all four inputs

with probability λ2.
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Next we show that if an output tuple is connected to an input from {0, 2} and

an input from {1, 3}, then it is connected to all inputs. Consider the case where

the output tuple (y1, y2, u1) is connected to both 0 and 1 i.e. W+(y1, y2, u1|0) and

W+(y1, y2, u1|1) are both nonzero. Then since W (y2|0) 6= 0 and W (y2|1) 6= 0, it

follows that y2 = E3. Similarly since W (y1|u1) 6= 0 and W (y1|u1 + 1) 6= 0, it follows

that y1 = E3. We have already seen that for all u1 ∈ Z4, the output tuple (E3, E3, u1)

is connected to all input symbols. The proof is similar for other three cases i.e. when

(y1, y2, u1) is connected to 0 and 3, when (y1, y2, u1) is connected to 2 and 1, and when

(y1, y2, u1) is connected to 2 and 3.

Next we find all output tuples which are connected to both 0 and 2 but are not

connected to 1 or 3. Let (y1, y2, u1) be an output tuple such that W+(y1, y2, u1|0) 6= 0,

W+(y1, y2, u1|2) 6= 0, W+(y1, y2, u1|1) = 0 and W+(y1, y2, u1|3) = 0.

First assume u1 ∈ {0, 2}. Since W (y2|0) 6= 0 and W (y2|2) 6= 0, it follows that

y2 ∈ {E1, E3} and since W (y1|u1) 6= 0 and W (y1|u1 + 2) 6= 0, it follows that y1 ∈

{E1, E3}. Note that for y1 = E3 and y2 = E3, the output tuple is connected to

all inputs and therefore all possible cases are y1 = E1, y2 = E1, y1 = E1, y2 = E3

and y1 = E3, y2 = E1. In all cases it can be shown that W+(y1, y2, u1|1) = 0 and

W+(y1, y2, u1|3) = 0. Hence for u1 ∈ {0, 2}, (E1, E1, u1) is connected to 0 and 2 with

probabilities 1
4
ε2 and is not connected to 1 or 3. (E1, E3, u1) is connected to 0 and 2

with probabilities 1
4
ελ and is not connected to 1 or 3. (E3, E1, u1) is connected to 0

and 2 with probabilities 1
4
ελ and is not connected to 1 or 3.

Now assume u1 ∈ {1, 3}. Same as above we have y2 ∈ {E1, E3} and since W (y1|u1) 6=

0 and W (y1|u1 + 2) 6= 0, it follows that y1 ∈ {E2, E3}. In this case, all possible cases

are y1 = E2, y2 = E1, y1 = E2, y2 = E3 and y1 = E3, y2 = E1. In all cases it can

be shown that W+(y1, y2, u1|1) = 0 and W+(y1, y2, u1|3) = 0. Hence for u1 ∈ {1, 3},

(E2, E1, u1) is connected to 0 and 2 with probabilities 1
4
ε2 and is not connected to 1 or
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3. (E2, E3, u1) is connected to 0 and 2 with probabilities 1
4
ελ and is not connected to

1 or 3. (E3, E1, u1) is connected to 0 and 2 with probabilities 1
4
ελ and is not connected

to 1 or 3.

Therefore, there are four equivalent outputs connected to 0 and 2 with probabilities

1
4
ε2 and not connected to 1 or 3 and there are eight equivalent outputs connected

to 0 and 2 with probabilities 1
4
ελ and not connected to 1 or 3. Since all of these

outputs are equivalent, we can combine them into one output connected to 0 and 2

with probabilities

4

(
1

4
ε2
)

+ 8

(
1

4
ελ

)
= ε2 + 2ελ

Now we find all output tuples which are connected to both 1 and 3 but are not

connected to 0 or 2. Let (y1, y2, u1) be an output tuple such that W+(y1, y2, u1|1) 6= 0,

W+(y1, y2, u1|3) 6= 0, W+(y1, y2, u1|0) = 0 and W+(y1, y2, u1|2) = 0.

First assume u1 ∈ {0, 2}. Since W (y2|1) 6= 0 and W (y2|3) 6= 0, it follows that

y2 ∈ {E2, E3} and since W (y1|u1 + 1) 6= 0 and W (y1|u1 + 3) 6= 0, it follows that

y1 ∈ {E2, E3}. Note that for y1 = E3 and y3 = E3, the output tuple is connected

to all inputs and therefore all possible cases are y1 = E2, y2 = E2, y1 = E2, y2 = E3

and y1 = E3, y2 = E2. In all cases it can be shown that W+(y1, y2, u1|0) = 0 and

W+(y1, y2, u1|2) = 0. Hence for u1 ∈ {0, 2}, (E2, E2, u1) is connected to 1 and 3 with

probabilities 1
4
ε2 and is not connected to 0 or 2. (E2, E3, u1) is connected to 1 and 3

with probabilities 1
4
ελ and is not connected to 0 or 2. (E3, E2, u1) is connected to 1

and 3 with probabilities 1
4
ελ and is not connected to 0 or 2.

Now assume u1 ∈ {1, 3}. Same as above we have y2 ∈ {E2, E3} and since W (y1|u1 +

1) 6= 0 and W (y1|u1 + 3) 6= 0, it follows that y1 ∈ {E1, E3}. In this case, all possible

cases are y1 = E1, y2 = E2, y1 = E1, y2 = E3 and y1 = E3, y2 = E2. In all cases it can

be shown that W+(y1, y2, u1|0) = 0 and W+(y1, y2, u1|2) = 0. Hence for u1 ∈ {1, 3},

(E1, E2, u1) is connected to 1 and 3 with probabilities 1
4
ε2 and is not connected to 0 or

2. (E1, E3, u1) is connected to 1 and 3 with probabilities 1
4
ελ and is not connected to
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0 or 2. (E3, E2, u1) is connected to 1 and 3 with probabilities 1
4
ελ and is not connected

to 0 or 2.

Therefore, there are four equivalent outputs connected to 1 and 3 with probabilities

1
4
ε2 and not connected to 0 or 2 and there are eight equivalent outputs connected to

1 and 3 with probabilities 1
4
ελ and not connected to 0 or 2. Same as above, since all

of these outputs are equivalent, we can combine them into one output connected to

1 and 3 with probabilities ε2 + 2ελ.

We have shown that there is (equivalently) one channel output (call it E+
3 ) con-

nected to all inputs u2 ∈ Z4 with conditional probability λ1 = λ2 and we have shown

that if a channel output is connected to more that one input but is not connected

to all inputs, it is either connected to {0, 2} and is not connected to {1, 3} (call it

E+
1 ) or it is connected to {0, 2} and is not connected to {1, 3} (call it E+

2 ). 0 and

2 are connected to E+
1 with probabilities ε1 = ε2 + 2ελ and 1 and 3 are connected

to E+
2 with probabilities ε1 = ε2 + 2ελ. Then for each input u2 ∈ Z4 these exist

several outputs which are only connected to u2 and not other inputs and whose sum

of probabilities add up to 1− ε1 − λ1. This completes the proof for W+.

Recursion for W−

We show that W− (corresponding to b1 = 0) is equivalent to a channel of the

same type as W but with different parameters ε1 and λ1 corresponding to ε and λ

respectively; where,

ε1 = 2ε−
(
ε2 + 2ελ

)

λ1 = 2λ− λ2
1

Note that each channel output is a pair (y1, y2) ∈ {0, 1, 2, 3, E1, E2, E3}2. The channel

W− can be shown to be as following:
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Output pairs (0, 0), (1, 1), (2, 2), (3, 3) are only connected to input 0 each with con-

ditional probability 1
4
(1 − ε − λ)2. This is equivalent to one channel output only

connected to 0 with probability (1− ε− λ)2.

Output pairs (0, 2), (1, 3), (2, 0), (3, 1) are only connected to input 2 each with con-

ditional probability 1
4
(1 − ε − λ)2. This is equivalent to one channel output only

connected to 2 with probability (1− ε− λ)2.

Output pairs (0, 3), (1, 0), (2, 1), (3, 2) are only connected to input 1 each with con-

ditional probability 1
4
(1 − ε − λ)2. This is equivalent to one channel output only

connected to 1 with probability (1− ε− λ)2.

Output pairs (0, 1), (1, 2), (2, 3), (3, 0) are only connected to input 3 each with con-

ditional probability 1
4
(1 − ε − λ)2. This is equivalent to one channel output only

connected to 3 with probability (1− ε− λ)2.

Output pairs (0, E1), (1, E2), (2, E1), (3, E2), (E1, 0), (E1, 2), (E2, 1), (E2, 3) are only

connected to inputs 0 and 2 each with conditional probability 1
4
ε(1− ε− λ). Output

pairs (E1, E1), (E2, E2) are only connected to inputs 0 and 2 each with conditional

probability 1
2
ε2. This is equivalent to one channel output only connected to 0 and 2

with probability

ε1 = 8× 1

4
ε(1− ε− λ) + 2× 1

2
ε2

= 2ε−
(
ε2 + 2ελ

)

Output pairs (0, E2), (1, E1), (2, E2), (3, E1), (E1, 1), (E1, 3), (E2, 0), (E2, 2) are only

connected to inputs 1 and 3 each with conditional probability 1
4
ε(1− ε− λ). Output

pairs (E1, E2), (E2, E1) are only connected to inputs 1 and 3 each with conditional

probability 1
2
ε2. This is equivalent to one channel output only connected to 1 and 3

with probability 2ε− (ε2 + 2ελ).

Output pairs (0, E3), (1, E3), (2, E3), (3, E3), (E3, 0), (E3, 1), (E3, 2), (E3, 3) are con-

nected to all inputs each with conditional probability 1
4
λ(1 − ε − λ). Output pairs
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(E1, E3), (E2, E3), (E3, E1), (E3, E2) are connected to all inputs each with conditional

probability 1
2
ελ. Output pair (E3, E3) is connected to all inputs with conditional prob-

ability λ2. This is equivalent to one channel output only connected to all inputs with

probability

ε1 = 8× 1

4
λ(1− ε− λ) + 4× 1

2
ελ+ λ2

= 2λ− λ2

We have listed all 49 channel outputs and the corresponding probabilities. This com-

pletes the proof for W−.

6.1.6.3 Some Useful Lemmas

Lemma VI.14. Let W̄ be a channel with prime input alphabet size q̄. We have the

following relations between I(W̄ ) (in bits) and Z(W̄ ):

1. I(W̄ ) ≥ log2
q̄

1+(q̄−1)Z(W̄ )

2. I(W̄ ) ≤ 2(q̄ − 1)(log2 e)
√

1− Z(W )2

Proof. This lemma is a restatement of Proposition 2 of [66].

Lemma VI.15. Let W̄ be a channel with prime input alphabet size q̄ and define

d′ = argmaxa6=0 Za(W̄ ). If Zd′(W̄ ) ≥ 1−δ for some δ > 0, then Z(W̄ ) ≥ 1−q̄(q̄−1)2δ.

Proof. This lemma has been proved in [66] (Lemma 4).

Lemma VI.16. For any d ∈ G, we have

Zd(W
+) = Zd(W )2
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Proof. By definition, Zd(W
+) is equal to

1

q

∑

u1∈G
u2∈G
y1,y2∈Y

√
1

q2
W(y1|u1+u2)W(y2|u2)W(y1|u1+u2+d)W(y2|u2+d)

=
1

q

∑

u2∈G

∑

y2∈Y

√
W (y2|u2)W (y2|u2 + d)

1

q

∑

u1∈G

∑

y1∈Y

√
W (y1|u1+u2)W (y1|u1+u2+d)

=
1

q

∑

u2∈G

∑

y2∈Y

√
W (y2|u2)W (y2|u2 + d)

1

q

∑

ũ1∈G

∑

y1∈Y

√
W (y1|ũ1)W (y1|ũ1 + d)

= Zd(W )2

Lemma VI.17. For d ∈ G, if Zd(W ) ≥ 1 − δ for some δ > 0, then for d̃ ∈ 〈d〉,

Zd̃(W ) ≥ 1− q3δ where q = |G|.

Proof. First note that

Zd(W ) =
1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ d)

= 1− 1

2q

∑

x∈G

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ d)

]2

Therefore Zd(W ) ≥ 1− δ implies

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ d)

]2

≤ 2qδ
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for all x ∈ G. Since d̃ ∈ 〈d〉, we have d̃ = id for some i ≤ q. Therefore,

1− Zd̃(W ) = 1− 1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ id)

=
1

2q

∑

x∈G

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ id)

]2

=
1

2q

∑

x∈G

∑

y∈Y

[
i−1∑

j=0

(√
W (y|x+ jd)−

√
W (y|x+ (j + 1)d)

)]2

≤ i

2q

∑

x∈G

∑

y∈Y

i−1∑

j=0

[√
W (y|x+ jd)−

√
W (y|x+ (j + 1)d)

]2

=
i

2q

∑

x∈G

i−1∑

j=0

∑

y∈Y

[√
W (y|x+ jd)−

√
W (y|x+ (j + 1)d)

]2

≤ 1

2

∑

x∈G

i−1∑

j=0

2qδ

≤ q3δ

Lemma VI.18. For d1, · · · , dm ∈ G, if Zd1(W ) ≥ 1−δ, Zd2(W ) ≥ 1−δ, · · · , Zdm(W ) ≥

1−δ, then Zd̃(W ) ≥ 1−2mq3δ for any d̃ ∈ 〈d1, d2, · · · , dm〉 where d̃ ∈ 〈d1, d2, · · · , dm〉

is the subgroup of G generated by d1, · · · , dm.

Proof. We prove this theorem for m = 2. The general case is a straightforward

generalization of this case. Similarly to the proof of Lemma VI.17, for all x ∈ G, we

have

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ dl)

]2

≤ 2qδ

for l = 1, 2. Since d̃ ∈ 〈d1, d2〉, it can be written as d̃ = id1 + jd2 for some integers
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i, j ≤ q. Therefore,

1− Zd̃(W ) =
1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ id1 + jd2)

=
1

2q

∑

x∈G

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ id1 + jd2)

]2

=
1

2q

∑

x∈G
y∈Y

[
i−1∑

k=0

(√
W (y|x+ kd1)−

√
W (y|x+ (k + 1)d1)

)

+

j−1∑

k=0

(√
W(y|x+id1+kd2)−

√
W(y|x+id1+(k+1)d2)

)]2

≤ i+j
2q

∑

x∈G
y∈Y

(
i−1∑

k=0

[√
W (y|x+ kd1)−

√
W (y|x+ (k+1)d1)

]2

+

j−1∑

k=0

[√
W(y|x+id1+kd2)−

√
W(y|x+id1+(k+1)d2)

]2
)

≤
∑

x∈G

(
i−1∑

k=0

2qδ +

j−1∑

k=0

2qδ

)

≤ 4q3δ

Lemma VI.19. For an Abelian group G, let M be a maximal subgroup. Then the

index of M in G is a prime.

Proof. Since M is normal in G, there is a one-to-one correspondence between the

subgroups of the quotient group G/M and the subgroups of G containing M . By

maximality of M , the latter only contains G and M (which is not equal to G). Hence,

the only subgroups of G/M are {0} and G/M (which is not equal to {0}). Hence

the order of G/M must be a prime.
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6.1.6.4 Upper Bound on Z(W̄ )

Assume Zd′(W ) ≤ δ. This implies

1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ d̃) ≤ δ

for all d̃ ∈ H\M . Therefore for each x ∈ G,

∑

y∈Y

√
W (y|x)W (y|x+ d̃) ≤ qδ (6.20)

The Bhattacharyya parameter of the channel W̄ , Z(W̄ ), is given by:

1

q̄(q̄ − 1)

∑

y∈Y
tM ,t

′
M∈TM

tM 6=t′M

√
W̄ (y|tH + tM +M)W̄ (y|tH + t′M +M)

=
1/|M |
q̄(q̄−1)

∑

y∈Y
tM ,t

′
M∈TM

tM 6=t′M

√∑

m∈M

W(y|tH+tM+m)
∑

m′∈M

W(y|tH+t′M+m′)

=
1/|M |
q̄(q̄−1)

∑

y∈Y
tM ,t

′
M∈TM

tM 6=t′M

√∑

m,m′

W(y|tH+tM+m)W(y|tH+t′M+m′)

≤ 1/|M |
q̄(q̄−1)

∑

y∈Y
tM ,t

′
M∈TM

tM 6=t′M

∑

m,m′

√
W(y|tH+tM+m)W(y|tH+t′M+m′)

Let x = tH + tM +m and x′ = tH + t′M +m′. Note that x−x′ = tM− t′M +m−m′ ∈ H

since tM , t
′
M ,m,m

′ ∈ H. Also note that since tM 6= t′M and m−m′ ∈M , x−x′ /∈M .

Now we use (6.20) to conclude:

Z(W̄ ) ≤ 1

q̄(q̄ − 1)

1

|M |
∑

tM ,t
′
M∈TM

tM 6=t′M

∑

m,m′∈M

qδ

≤ 1

q̄(q̄ − 1)

1

|M |(
|H|
|M |)

2|M |2qδ =
|M | · |H| · |G|
|H| − |M | δ
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Remark VI.20. For an arbitrary Abelian group G, let H ≤ G be an arbitrary sub-

group and let M be any maximal subgroup of H. If for all d̃ ∈ H\M , Zd̃(W ) ≤ δ

then with a similar argument as above we can show that Z(W̄ ) ≤ |M |·|H|·|G|
|H|−|M | δ where

W̄ is defined by (6.11).

6.1.6.5 Lower Bound on Zd′+tH+M(W̄ )

Assume Zd′(W ) ≥ 1− δ. Define

Dd′(W ) =
1

2q

∑

x∈G

∑

y∈Y

|W (y|x)−W (y|x+ d′)|

First we show that Zd′(W ) ≥ 1− δ implies Dd′(W ) ≤
√

2δ − δ2. Define the following

quantities:

qx,y =
W (y|x) +W (y|x+ d′)

2

δx,y =
1

2
|W (y|x)−W (y|x+ d′)|

Then we have

Zd′(W ) =
1

q

∑

x∈G

∑

y∈Y

√
(qx,y − δx,y)(qx,y + δx,y)

=
1

q

∑

x∈G

∑

y∈Y

√
q2
x,y − δ2

x,y

Also we have

D ,
1

q

∑

x∈G

∑

y∈Y

δx,y = Dd′(W ),

and

0 ≤ δx,y ≤ qx,y

Note that

Zd′(W ) ≤ max
dx,y :

1
q

∑
x∈G

∑
y∈Y dx,y=D

1

q

∑

x∈G

∑

y∈Y

√
q2
x,y − d2

x,y
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The Lagrangian for this optimization problem is given by

L =
1

q

∑

x∈G

∑

y∈Y

√
q2
x,y − d2

x,y − λ
(

1

q

∑

x∈G

∑

y∈Y

dx,y −D
)

we have

∂

∂dx,y
L = − dx,y√

q2
x,y − d2

x,y

− λ

q

and

∂2

∂d2
x,y

L = − q2
x,y

(q2
x,y − d2

x,y)
3
2

≤ 0

Define γ = −λ
q

to get dx,y =
√

γ2

1+γ2
qx,y. We have

∑
y∈Y qx,y = 1, therefore,

1

q

∑

x∈G

∑

y∈Y

dx,y =
1

q

∑

x∈G

∑

y∈Y

√
γ2

1 + γ2
qx,y

=

√
γ2

1 + γ2

1

q

∑

x∈G

∑

y∈Y

qx,y

=

√
γ2

1 + γ2

Therefore we have D =
√

γ2

1+γ2
and hence dx,y = Dqx,y. For this choice of dx,y we

have

1

q

∑

x∈G

∑

y∈Y

√
q2
x,y − d2

x,y =

√
1−D2

q

∑

x∈G

∑

y∈Y

qx,y

=
√

1−D2

Therefore, we have shown that Zd′(W ) ≤
√

1−Dd′(W )2. This implies thatDd′(W ) ≤
√

2δ − δ2.

Next, we show that Dd′(W ) ≤ δ implies Dd′+tH+M(W̄ ) ≤ 2qδ
q̄|M | . By definition,
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Dd′+tH+M(W̄ ) is equal to

1

2̄q

∑

y∈Y
tM∈TM

∣∣W̄ (y|tH+tM+M)− W̄ (y|tH+tM+d′+M)
∣∣

=
1

q̄

1

|M |
∑

y∈Y
tM∈TM

∣∣∣∣∣
∑

m∈M

W(y|tH+tM+m)−
∑

m∈M

W(y|tH+tM+d′+m)

∣∣∣∣∣

≤ 1

q̄

1

|M |
∑

y∈Y
tM∈TM
m∈M

|W (y|tH+tM+m)−W (y|tH+tM+d′+m)|

≤ 1

q̄

1

|M |2qDd′(W )

This shows that Dd′(W ) ≤ δ implies Dd′+tH+M(W̄ ) ≤ 2qδ
q̄|M | .

Next, we show that Dd′(W ) ≤ δ implies Zd′(W ) ≥ 1 − δ. We need the following

lemma:

Lemma VI.21. For constants 0 ≤ a ≤ b ≤ 1, with b− a ≤ δ,

√
ab ≥ a+ b

2
− δ

2

Proof. Note that

a+ b

2
−
√
ab ≤ max

0≤x−a≤δ

a+ x

2
−√ax

We have

∂

∂x

[
a+ x

2
−√ax

]
=

1

2
− a

2
√
ax
≥ 0

for all x ≥ a. Therefore the maximum is attained at x = a+ δ. Therefore,

a+ b

2
−
√
ab ≤ a+ (a+ δ)

2
−
√
a(a+ δ)

The maximum of the right hand side is attained at a = 0, hence,

a+ b

2
−
√
ab ≤ δ

2
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Assume Dd′(W ) ≤ δ. By definition, we have 1− Zd′(W ) is equal to

1− 1

q

∑

x∈G

∑

y∈Y

√
W (y|x)W (y|x+ d′)

=
1

q

∑

y∈Y
x∈G

(
W (y|x)+W (y|x+d′)

2
−
√
W (y|x)W (y|x+d′)

)

(a)

≤ 1

q

∑

x∈G

∑

y∈Y

1

2
|W (y|x)−W (y|x+ d′)|

= Dd′(W )

where (a) follows from Lemma VI.21 with a = W (y|x), b = W (y|x + d′) and

δ = |W (y|x)−W (y|x+ d′)|. This shows that Dd′(W ) ≤ δ implies Zd′(W ) > 1− δ.

We have shown that Zd′(W ) ≥ 1 − δ implies Dd′(W ) ≤
√

2δ − δ2. This implies

Dd′+tH+M(W̄ ) ≤ 2q
√

2δ−δ2
q̄|M | and this in turn implies Zd′+tH+M(W̄ ) ≥ 1− 2q

√
2δ−δ2
q̄|M | .

Remark VI.22. For an arbitrary Abelian group G, let H ≤ G be an arbitrary sub-

group and let M be any maximal subgroup of H. If for some d̃ ∈ H\M , Zd̃(W ) ≥ 1−δ

then with a similar argument as above, we can show that Zd̃+tH+M(W̄ ) ≥ 1− 2q
√

2δ−δ2
q̄|M |

where W̄ is defined by (6.11).

6.1.6.6 Alternate Proof for a Lower Bound on Zd′+tH+M(W̄ )

In Appendix 6.1.6.5, we proved that Zd′(W ) ≥ 1 − δ implies Zd′+tH+M(W̄ ) ≥

1− 2q
√

2δ−δ2
q̄|M | for the general case. In this part, we give a shorter proof for the Zpr case

for a slightly different statement: If Zd′(W ) ≥ 1− δ then Zd′+tH+M(W̄ ) ≥ 1− q2δ

Assume Zd′(W ) ≥ 1− δ. It follows that for all x ∈ G,

1

2

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ d′)

]2

=

1−
∑

y∈Y

√
W (y|x)W (y|x+ d′) ≤ qδ
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For any d̃ ∈ 〈d′〉 we have d̃ = id for some i ≤ q. Therefore, for any x ∈ G,

1−∑y∈Y

√
W (y|x)W (y|x+ d̃) is equal to

1

2

∑

y∈Y

[√
W (y|x)−

√
W (y|x+ d̃)

]2

=
1

2

∑

y∈Y

[
i−1∑

j=0

(√
W (y|x+jd′)−

√
W (y|x+(j+1)d′)

)]2

≤ 1

2

∑

y∈Y

i−1∑

j=0

[√
W (y|x+ jd′)−

√
W (y|x+ (j + 1)d′)

]2

≤
i−1∑

j=0

qδ ≤ q2δ (6.21)

By definition, Zd′+tH+M(W̄ ) is equal to

1

q̄

∑

y∈Y
tM∈TM

√
W̄ (y|tH + tM +M)W̄ (y|tH + tM + d′ +M)

=
1

q̄

∑

y∈Y
tM∈TM

√√√√
∑

m∈M
m′∈M

1

|M |2W(y|tH+tM+m)W(y|tH+tM+d′+m′)

(a)

≥ 1

q̄

∑

y∈Y
tM∈TM
m,m′∈M

1

|M |2
√
W (y|tH+tM+m)W (y|tH+tM+d′+m′)

≥1

q̄

∑

tM∈TM

min
m,m′

∑

y∈Y

√
W(y|tH+tM+m)W(y|tH+tM+d′+m′)

where (a) follows since
√· is a concave function. Let x = tH + tM + m and x′ =

tH + tM + d′+m′. It follows that x′−x = d′+ (m′−m). Since d′,m′,m ∈ H we have

x′ − x ∈ H. Since G and hence H are Zpr rings it follows that d′ ∈ H\M generates

H; hence x′ − x ∈ 〈d′〉. We can use (6.21) to get

Zd′+tH+M(W̄ ) ≥ 1

q̄

∑

tM∈TM

min
m,m′∈M

(1− q2δ) = 1− q2δ

6.1.6.7 The Rate of Polarization

Recall that for t = 0, · · · , r, (Zt)(n) =
∑

d/∈Ht Zd(W
(Jn)
N ) where Jn is uniform over

{1, 2, · · · , 2n}. For t = 0, · · · , r, define (Zt
max)(n) = maxd/∈Ht Zd(W

(Jn)
N ) where Jn is
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same as above. Since for all d ∈ G, Zd(W
+) = Zd(W )2 it follows that Zt

max(W+) ≤

Zt
max(W )2. It has been shown in [66, p. 6] that

Zd(W
−) ≤ 2Zd(W ) +

∑

∆ 6=0
∆ 6=−d

Z∆(W )Zd+∆(W )

Note that for any ∆ ∈ G, d /∈ Ht implies that either ∆ /∈ Ht or d+∆ /∈ Ht. Therefore,

d /∈ Ht implies either Z∆(W ) ≤ Zt
max(W ) or Zd+∆(W ) ≤ Zt

max(W ) (or both). Since

Z∆(W ) and Zd+∆(W ) both take values from [0, 1], it follows that

Z∆(W )Zd+∆(W ) ≤ Zt
max(W )

Therefore, for any d /∈ Ht, Zd(W
−) ≤ 2Zd(W ) + qZt

max(W ). Hence

Zt
max(W−) = max

d/∈Ht
Zd(W

−)

≤ max
d/∈Ht

(
2Zd(W ) + qZt

max(W )
)

≤ (q + 2)Zt
max(W )

Since for all d ∈ G, Zn
d converges to a Bernoulli random variable it follows that

(Zt
max)(n) also converges to a {0, 1}-valued random variable (Zt

max)(∞). Note that

P
(
(Zt

max)(∞) = 0
)

= P ((Zt)∞ = 0) =
∑r

s=t ps. Therefore, (Zt
max)(n) satisfies the

conditions of [13, Theorem 1] and hence

lim
n→∞

P
(

(Zt
max)(n) < 2−2βn

)
= P

(
(Zt

max)(∞) = 0
)

for any β < 1
2
. It clearly follows that limn→∞ P

(
q(Zt

max)(n) < 2−2βn
)

= P
(
(Zt

max)(∞) = 0
)
.

Note that the event {(Zt)(n) < 2−2βn} includes the event {q(Zt
max)(n) < 2−2βn}. There-

fore,

lim
n→∞

P
(

(Zt)(n) < 2−2βn
)
≥ P

(
(Zt)∞ = 0

)

Similarly, for an arbitrary Abelian group G and a subgroup H of G, define

(ZH
max)(n) = maxd/∈H Zd(W

(Jn)
N ) where Jn is defined as above. It is straightforward
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to show that (ZH
max)(n) satisfies the conditions of [13, Theorem 1]. Therefore, with an

argument similar to above, we can show that,

lim
n→∞

P
(

(ZH)(n) < 2−2βn
)
≥ P

(
(ZH)∞ = 0

)

for any β < 1
2
.

6.2 Polar Codes for Arbitrary DMSs

In Section 6.1, we have shown that polar codes can achieve the symmetric capacity

of arbitrary discrete memoryless channels regardless of the size of the channel input

alphabet. It is shown in [39] that polar codes employed with a successive cancelation

encoder can achieve the symmetric rate-distortion function for the lossy source coding

problem when the size of the reconstruction alphabet is two. This result is extended

to the case where the size of the reconstruction alphabet is a prime in [38]. In this

section, we show that polar codes achieve the symmetric rate-distortion bound for

the lossy source coding problem when the size of the reconstruction alphabet is finite.

We show that similarly to the channel coding problem, polar transformations applied

to (test) channels can converge to several asymptotic cases each corresponding to a

subgroup H of the reconstruction alphabet G. We employ a modified randomized

rounding encoding rule to achieve the symmetric rate-distortion bound.

6.2.1 Preliminaries

6.2.1.1 The Rate-Distortion Function

It is known that the optimal rate-distortion function is given by:

R(D) = min
pU|X

EpXpU|X {d(X,U)}≤D

I(X;U)
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where pU |X is the conditional probability of U given X and pXpU |X is the joint dis-

tribution of X and U .

The symmetric rate-distortion function R̄(D) is defined as follows:

R̄(D) = min
pU|X

EpXpU|X {d(X,U)}≤D
pU= 1

q

I(X;U)

where pU is the marginal distribution of U given by pU(u) =
∑

x∈X pX(x)pU |X(u|x)

and q is the size of the reconstruction alphabet U .

6.2.1.2 Channel Parameters

For a test channel (U ,X ,W ) assume U is equipped with the structure of a

group (G,+). The quantities I0(W ) = I(U ;X), Z(W{u,ũ}) and Z(W ) are defined

similarly to Section 6.1.1.1. In addition, we use the following two quantities in the

paper extensively:

Dd(W ) =
1

2q

∑

u∈U

∑

x∈X

|W (x|u)−W (x|u+ d)|

D̃d(W ) =
1

2q

∑

u∈U

∑

x∈X

(W (x|u)−W (x|u+ d))2

where d is some element of G and + is the group operation.

6.2.2 Polar Codes for Sources with reconstruction alphabet Zpr

In this section, we consider sources whose reconstruction alphabet size q is of the

form q = pr for some prime number p and a positive integer r. In this case, the

reconstruction alphabet can be considered as a ring with addition and multiplication

modulo pr. We prove the achievability of the symmetric rate-distortion bound for

these sources using polar codes and later in Section 6.2.3 we will generalize this result

to sources with arbitrary finite reconstruction alphabets.
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6.2.2.1 Recursive Channel Transformation

The Basic Channel Transforms

For a test channel (U = G,X ,W ) where |G| = q, the channel transformations

are given by:

W−(x1, x2|u1) =
∑

u′2∈G

1

q
W (x1|u1 + u′2)W (x2|u′2) (6.22)

W+(x1, x2, u1|u2) =
1

q
W (x1|u1 + u2)W (x2|u2) (6.23)

for x1, x2 ∈ X and u1, u2 ∈ G. Repeating these operations n times recursively, we

obtain N = 2n channels W
(1)
N , · · · ,W (N)

N . For i = 1, · · · , N , these channels are given

by:

W
(i)
N (xN1 , u

i−1
1 |ui) =

∑

uNi+1∈GN−i

1

qN−1
WN(xN1 |uN1 GN) (6.24)

where GN is the generator matrix for polar codes.

Let V N
1 be a random vector uniformly distributed over GN and assume the random

vectors V N
1 , UN

1 and XN
1 are distributed over GN ×GN ×X N according to

pV N1 UN1 XN
1

(vN1 , u
N
1 , x

n
1 ) =

1

qN
1{uN1 =vN1 GN}

N∏

i=1

W (xi|ui)

The conditional probability distribution induced from the above equation is consistent

with (6.24). We use this probability distribution extensively throughout the paper.

6.2.2.2 Encoding and Decoding

Let n be a positive integer and let GN be the generator matrix for polar codes

where N = 2n. Let {At|0 ≤ t ≤ r} be a partition of the index set {1, 2, · · · , N}.

Let bN1 be an arbitrary element from the set
⊕r

t=0H
At
t . Assume that the partition

{At|0 ≤ t ≤ r} and the vector bN1 are known to both the encoder and the decoder.

The encoder maps a source sequence xN1 to a vector vN1 ∈ GN by the following rule:
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For i = 1, · · · , N , if i ∈ At, let vi be a random element g from the set bi + Tt picked

with probability

P (vi = g) =
PVi|V i−1

1 ,XN
1

(g|vi−1
1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + Tt|vi−1

1 , xN1 )

This encoding rule is a generalization of the randomized rounding encoding rule used

for the binary case in [39].

Given a sequence vN1 ∈ GN , the decoder decodes it to vN1 GN .

For the sake of analysis we assume that the vector bN1 is uniformly randomly dis-

tributed over the set
⊕r

t=0H
At
t (Although it’s common information between the en-

coder and the decoder). The average distortion is given by 1
N
E{d(XN

1 , U
N
1 )} and the

rate of the code is given by

R =
1

N

r∑

t=0

|At| log |Tt| =
r∑

t=0

|At|
N

t log p

6.2.2.3 Test Channel Polarization

The following result has been proved in [59]: For all ε > 0, there exists a number

N = N(ε) = 2n(ε) and a partition {Aε0, Aε1, · · · , Aεr} of {1, · · · , N} such that for t =

0, · · · , r and i ∈ Aεt, Zd(W (i)
N ) < O(ε) if d ∈ Hs for 0 ≤ s < t and Zd(W

(i)
N ) > 1−O(ε)

if d ∈ Hs for t ≤ s < r. For t = 0, · · · , r and i ∈ Aεt, we have I(W
(i)
N ) = t log(p)+O(ε)

and Zt(W
(i)
N ) = O(ε) where

Zt(W ) =
1

|Ht|
∑

d∈Ht

Zd(W )

Moreover, as ε→ 0,
|Aεt |
N
→ pt for some probabilities p0, · · · , pr.

In the next section, we show that for any β < 1
2

and for t = 0, · · · , r,

lim
n→∞

P
(

(Zt)(n) > 1− 2−2βn
)
≥ P

(
(Zt)(∞) = 1

)
(6.25)

= 1−
r∑

s=t

ps
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Remark VI.23. This observation implies the following stronger result: For all ε >

0, there exists a number N = N(ε) = 2n(ε) and a partition {Aε0, Aε1, · · · , Aεr} of

{1, · · · , N} such that for t = 0, · · · , r and i ∈ Aεt, I(W
(i)
N ) = t log(p) + O(ε) and

Zt(W
(i)
N ) > 1−2−2βn(ε) . Moreover, as ε→ 0,

|Aεt |
N
→ pt for some probabilities p0, · · · , pr.

6.2.2.4 Rate of Polarization

In this section we derive a rate of polarization result for the source coding problem.

In this proof, we do not assume q is a power of a prime and hence the rate of

polarization result derived in this section is valid for the general case.

It is shown in [13] (with a slight generalization) that if a random process Zn satisfies

the following two properties

Zn+1 ≤ kZn w.p.
1

2
(6.26)

Zn+1 ≤ Z2
n w.p.

1

2
(6.27)

for some constant k, then for any β < 1
2
, limn→∞ P (Zn < 2−2βn) = P (Z∞ = 0).

We prove that the random process D̃n
d satisfied these properties. First note that by

definition

D̃d(W
+) =

1

2q

∑

u2∈G

∑

x1,x2∈X
u1∈G

[
1

q
W (x1|u1 + u2)W (x2|u2)

−1

q
W (x1|u1 + u2 + d)W (x2|u2 + d)

]2

If we add and subtract the term 1
q
W (x1|u1 + u2)W (x2|u2 + d) to the term inside

brackets and use the inequality (a+ b)2 ≤ 2(a2 + b2) with

a = W(x1|u1+u2)W(x2|u2)−W(x1|u1 + u2)W(x2|u2+d)

b = W (x1|u1 + u2)W (x2|u2 + d)

−W (x1|u1 + u2 + d)W (x2|u2 + d)
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we obtain

D̃d(W
+) ≤ 1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

2

q2

[
(W(x1|u1+u2)W(x2|u2)−W(x1|u1+u2)W(x2|u2+d))2

+ (W (x1|u1 + u2)W (x2|u2 + d)

−W (x1|u1 + u2 + d)W (x2|u2 + d))2] (6.28)

This summation can be expanded into two separate summations. For the first sum-

mation, we have

1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

2

q2

(W (x1|u1+u2)W (x2|u2)−W (x1|u1+u2)W (x2|u2+d))2

≤ 2

q2

1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

W (x1|u1 + u2)2 (W (x2|u2)−W (x2|u2 + d))2

≤ 2q

q2

1

2q

∑

u2∈G

∑

x2∈X

(W (x2|u2)−W (x2|u2 + d))2

=
2

q
D̃d(W ) (6.29)

Similarly, for the second summation we can show that

1

2q

∑

u2∈G

∑

x1,x2∈X
u1∈G

2

q2
(W (x1|u1 + u2)W (x2|u2 + d)

−W (x1|u1 + u2 + d)W (x2|u2 + d))2

≤ 2

q
D̃d(W ) (6.30)

Therefore, it follows from (6.28), (6.29) and (6.30) that condition (6.26) is satisfied

for k = 4
q
.
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Next we show that D̃d(W
−) ≤

(
D̃d(W )

)2

. Note that

D̃d(W
−) =

1

2q

∑

v1∈G

∑

x1,x2∈X

[(
1

q

∑

v2∈G

W (x1|v1 + v2)W (x2|v2)

)

−
(

1

q

∑

v2∈G

W (x1|v1 + d+ v2)W (x2|v2)

)]2

=
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

[∑

v2∈G

W (x2|v2) (W (x1|v1 + v2)

−W (x1|v1 + d+ v2))]2

The squared term in the brackets can be expanded as

1

q2

∑

v2,v′2∈G

W (x2|v2)W (x2|v′2) (W (x1|v1 + v2)−

W (x1|v1 + d+ v2)) (W (x1|v1 + v′2)−W (x1|v1 + d+ v′2))

Therefore, D̃d(W
−) can be written as a summation of four terms D̃d(W

−) = D−1 +

D−2 +D−3 +D−4 where

D−1 =
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′2∈G

W (x2|v2)

W (x2|v′2)W (x1|v1 + v2)W (x1|v1 + v′2)

D−2 =
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′2∈G

W (x2|v2)

W (x2|v′2)W (x1|v1 + v2 + d)W (x1|v1 + v′2 + d)

D−3 =
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′2∈G

W (x2|v2)

W (x2|v′2)W (x1|v1 + v2)W (x1|v1 + v′2 + d)

D−4 =
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′2∈G

W (x2|v2)

W (x2|v′2)W (x1|v1 + v2 + d)W (x1|v1 + v′2)
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For d ∈ G define

Sd(W ) =
1

2q

∑

v∈G

∑

x∈X

W (x|v)W (x|v + d)

Note that Sd(W ) = S−d(W ). We have

D−1 =
1

q2

∑

x2∈X

∑

v2,v′2∈G

W (x2|v2)W (x2|v′2)

1

2q

∑

v1∈G

∑

x1∈X

W (x1|v1 + v2)W (x1|v1 + v′2)

=
1

q2

∑

x2∈X

∑

v2,v′2∈G

W (x2|v2)W (x2|v′2)Sv2−v′2(W )

=
1

q2

∑

x2∈X

∑

v2∈G

∑

a∈G
v′2=v2−a

W(x2|v2)W(x2|v2 − a)Sa(W )

=
2

q

∑

a∈G

Sa(W )
1

2q

∑

v2∈G

∑

x2∈X

W (x2|v2)W (x2|v2 − a)

=
2

q

∑

a∈G

Sa(W )S−a(W )

=
2

q

∑

a∈G

Sa(W )2

With similar arguments we can show that

D−2 =
2

q

∑

a∈G

Sa(W )2

D−3 =
2

q

∑

a∈G

Sa(W )Sa−d(W )

D−4 =
2

q

∑

a∈G

Sa(W )Sa−d(W )

Therefore

D̃d(W
−) =

4

q

∑

a∈G

(
Sa(W )2 − Sa(W )Sa−d(W )

)

=
2

q

∑

a∈G

(Sa(W )− Sa−d(W ))2
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Note that

D̃d(W ) =
1

2q

∑

v∈G

∑

x∈X

(W (x|v)−W (x|v + d))2

= 2S0(W )− 2Sd(W )

Therefore

(
D̃d(W )

)2

= 4(S0(W )− Sd(W ))2

To show that D̃d(W
−) ≤

(
D̃d(W )

)2

it suffices to show that Sa(W ) − Sa−d(W ) ≤

S0(W )− Sd(W ). We will make use of the rearrangement inequality:

Lemma VI.24. Let π be an arbitrary permutation of the set {1, · · · , n. If a1 ≤ · · · ≤

an and b1 ≤ · · · ≤ bn then

n∑

i=1

aibi ≥
n∑

i=1

aibπ(i)

The rearrangement inequality implies that S0(W )− Sd(W ) ≥ Sa(W )− Sa−d(W ).

Therefore it follows that condition (6.27) is also satisfied and hence limn→∞ P (D̃n
d <

2−2βn) = P (D̃∞d = 0). It has been shown in Appendix D of [59] that D̃d(W ) < ε

implies Zd(W ) > 1− ε. This completes the rate of polarization result.
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6.2.2.5 Polar Codes Achieve the Rate-Distortion Bound

The average distortion for the encoding and decoding rules described in Section

6.2.2.2 is given by

Davg =
∑

xN1 ∈X N

pNX(xN1 )
∑

bN1 ∈
⊕r
t=0H

At
t

∑

vN1 ∈bN1 +
⊕r
t=0 T

At
t(

r∏

t=0

∏

i∈At

PVi|V i−1
1 ,XN

1
(g|vi−1

1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + Tt|vi−1

1 , xN1 )

)

(
r∏

t=0

1

|Ht||At|

)
d(xN1 , v

N
1 GN)

=
∑

xN1 ∈X N

pNX(xN1 )
∑

bN1 ∈
⊕r
t=0H

At
t

∑

vN1 ∈bN1 +
⊕r
t=0 T

At
t(

r∏

t=0

∏

i∈At

PVi|V i−1
1 ,XN

1
(g|vi−1

1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + Tt|vi−1

1 , xN1 ) · |Ht|

)

d(xN1 , v
N
1 GN)

This can be written as

Davg = EQ{d(XN
1 , V

N
1 GN)}

where the distribution Q is defined by

Q(vi|vi−1
1 , xN1 ) =

PVi|V i−1
1 ,XN

1
(vi|vi−1

1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + Tt|vi−1

1 , xN1 ) · |Ht|

and

Q(xN1 ) = pNX(xN1 )

and hence

Q(vN1 , x
N
1 ) =

N∏

i=1

Q(vi|vi−1
1 , xN1 )

=
r∏

t=0

∏

i∈At

PVi|V i−1
1 ,XN

1
(vi|vi−1

1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + Tt|vi−1

1 , xN1 ) · |Ht|
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Recall that

P (vN1 , x
N
1 ) =

N∏

i=1

PVi|V i−1
1 ,XN

1
(vi|vi−1

1 , xN1 )

The total variation distance between the distributions P and Q is given by

‖P−Q‖t.v. =
∑

vN1 ∈GN ,xN1 ∈X N

∣∣Q(vN1 , x
N
1 )− P (vN1 , x

N
1 )
∣∣

=
∑

xN1 ∈X N

pNX(xN1 )
∑

vN1 ∈GN

∣∣Q(vN1 |xN1 )− P (vN1 |xN1 )
∣∣

We have

∑

vN1 ∈GN

∣∣Q(vN1 |xN1 )− P (vN1 |xN1 )
∣∣

=
∑

vN1 ∈GN

∣∣∣∣∣

(
r∏

t=0

∏

i∈At

P (vi|vi−1
1 , xN1 )

P (bi + Tt|vi−1
1 , xN1 ) · |Ht|

)

−
(

r∏

t=0

∏

i∈At

P (vi|vi−1
1 , xN1 )

)∣∣∣∣∣

(a)
=

∑

vN1 ∈GN

∣∣∣∣∣
r∑

t=0

∑

i∈At
[(

P (vi|vi−1
1 , xN1 )

P (bi + Tt|vi−1
1 , xN1 ) · |Ht|

− P (vi|vi−1
1 , xN1 )

)

·




r∏

t=0

i−1∏

j=1
j∈At

P (vi|vi−1
1 , xN1 )




·




r∏

t=0

N∏

j=i+1
j∈At

P (vi|vi−1
1 , xN1 )

P (bi + Tt|vi−1
1 , xN1 ) · |Ht|







∣∣∣∣∣∣∣∣

where in (a) we used the telescopic inequality introduced in [39]. It is straightforward

to show that

‖P −Q‖t.v.≤
r∑

t=0

∑

i∈At

E

{∣∣∣∣
1

P (bi + Tt|vi−1
1 , xN1 ) · |Ht|

− 1

∣∣∣∣
}
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It has been shown in Appendix D of [59] that if Zd(W ) > 1− ε then Dd(W ) ≤ 2ε− ε2.

Therefore if Zd(W
(i)
N ) > 1− ε for all d ∈ H we have

Dd(W
(i)
N ) =

1

2q

∑

vi∈G

∑

vi−1
1 ∈Gi−1,xN1 ∈X N

∣∣∣W (i)
N (vi−1

1 , xN1 |vi)−W (i)
N (vi−1

1 , xN1 |vi + d)
∣∣∣

≤ 2ε− ε2

Therefore for all vi ∈ G

∑

vi−1
1 ∈Gi−1

xN1 ∈X N

∣∣∣W (i)
N (vi−1

1 , xN1 |vi)−W (i)
N (vi−1

1 , xN1 |vi + d)
∣∣∣

≤ 2q(2ε− ε2)
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We have

E

{∣∣∣∣
1

|Ht|
− P (Tt|V i−1

1 , XN
1 )

∣∣∣∣
}

=
∑

vi−1
1 ∈Gi−1,xN1 ∈X N

P (vi−1
1 , xN1 )

∣∣∣∣
1

|Ht|
− P (Tt|vi−1

1 , xN1 )

∣∣∣∣

=
∑

vi−1
1 ∈Gi−1

xN1 ∈X N

∣∣∣∣∣
1

|Ht|
P (vi−1

1 , xN1 )−
∑

g∈Tt

P (g, vi−1
1 , xN1 )

∣∣∣∣∣

=
∑

vi−1
1 ∈Gi−1,xN1 ∈X N

∣∣∣∣∣
∑

g∈Tt

[
1

|G|W (vi−1
1 , xN1 |g)

−
∑

d∈H

1

|Ht| · |G|
W (vi−1

1 , xN1 |g + d)

]∣∣∣∣∣

≤
∑

vi−1
1 ∈Gi−1,xN1 ∈X N

1

|G|
∑

g∈Tt

∣∣[W (vi−1
1 , xN1 |g)

−
∑

d∈H

1

|Ht|
W (vi−1

1 , xN1 |g + d)

]∣∣∣∣∣

≤ 1

|G|
∑

g∈Tt

1

|Ht|
∑

d∈H

∑

vi−1
1 ∈Gi−1,xN1 ∈X N

∣∣W (vi−1
1 , xN1 |g)−W (vi−1

1 , xN1 |g + d)
∣∣

≤ 2q(2ε− ε2)

|Ht|

Therefore for if for all d ∈ Ht, Zd > 1− ε then for δ = 2q(2ε−ε2)
|Ht| we have

EP

{∣∣∣∣
1

|Ht|
− P (bi + Tt|V i−1

1 , XN
1 )

∣∣∣∣
}
< δ

A similar argument as in [39] implies that

Davg =
1

N
EQ{d(XN

1 , V
N

1 GN)}

≤ 1

N
EP{d(XN

1 , V
N

1 GN)}+
1

N

r∑

t=0

|At|dmaxδ

where dmax is the maximum value of the distortion function. Note that

EP{d(XN
1 , V

N
1 GN)} = ND
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Therefore,

Davg ≤ D +
1

N

r∑

t=0

|At|dmaxδ

Note that from the rate of polarization derived in Section 6.2.2.4 we can choose ε

to be ε = 2−2βn . This implies that as n → ∞, D + 1
N

∑r
t=0 |At|dmaxδ → D. Also

note that the rate of the code R =
∑r

t=0
|At|
N
t log p converges to

∑r
t=0 ptt log p and

this last quantity is equal to the symmetric capacity of the test channel since the

mutual information is a martingale. This means the rate I(X;U) is achievable with

distortion D.

6.2.3 Arbitrary Reconstruction Alphabets

For an arbitrary Abelian group G, The following polarization result has been

provided in [59]: For all ε > 0, there exists a number N = N(ε) = 2n(ε) and a partition

{AεH |H ≤ G} of {1, · · · , N} such that for H ≤ G and i ∈ AεH , Zd(W
(i)
N ) < O(ε) if

d ∈ H and Zd(W
(i)
N ) > 1 − O(ε) if d /∈ H. For H ≤ G and i ∈ AεH , we have

I(W
(i)
N ) = log |G||H| +O(ε) and ZH(W

(i)
N ) = O(ε) where

ZH(W ) =
1

|H|
∑

d∈H

Zd(W )

Moreover, as ε→ 0,
|AεH |
N
→ pH for some probabilities pH , H ≤ G.

As mentioned earlier the rate of polarization result derived in Section 6.2.2.4 is valid

for the general case. Therefore it follows that for any β < 1
2

and for H ≤ G,

lim
n→∞

P
(

(ZH)(n) > 1− 2−2βn
)
≥ P

(
(ZH)(∞) = 1

)
(6.31)

= 1−
∑

S≤H

pH

Remark VI.25. This observation implies the following stronger result: For all ε > 0,

there exists a number N = N(ε) = 2n(ε) and a partition {AεH |H ≤ G} of {1, · · · , N}
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such that for H ≤ G and i ∈ AεH , I(W
(i)
N ) = log |G||H|+O(ε) and ZH(W

(i)
N ) > 1−2−2βn(ε) .

Moreover, as ε→ 0,
|AεH |
N
→ pH for some probabilities pH , H ≤ G.

The encoding and decoding rules for the general case is as follows: Let n be a

positive integer and let GN be the generator matrix for polar codes where N = 2n.

Let {AH |H ≤ G} be a partition of the index set {1, 2, · · · , N}. Let bN1 be an arbitrary

element from the set
⊕

H≤GH
AH . Assume that the partition {AH |H ≤ G} and the

vector bN1 are known to both the encoder and the decoder. The encoder maps a source

sequence xN1 to a vector vN1 ∈ GN by the following rule:

For a subgroup H of G, let TH be a transversal of H in G. For i = 1, · · · , N , if

i ∈ AH , let vi be a random element g from the set bi + TH picked with probability

P (vi = g) =
PVi|V i−1

1 ,XN
1

(g|vi−1
1 , xN1 )

PVi|V i−1
1 ,XN

1
(bi + TH |vi−1

1 , xN1 )

Given a sequence vN1 ∈ GN , the decoder decodes it to vN1 GN .

It follows from the analysis of the Zpr case in a straightforward fashion that this

encoding/decoding scheme achieves the symmetric rate-distortion bound when the

group G is an arbitrary Abelian group.

6.3 Nested Polar Codes for Point-to-Point Communications

In this section, we show that nested polar codes achieve the Shannon rate-distortion

function for arbitrary (binary or non-binary) discrete memoryless sources and the

Shannon capacity of arbitrary discrete memoryless channels.

Polar codes for lossy source coding were investigated in [40] where it is shown

that polar codes achieve the symmetric rate-distortion function for sources with bi-

nary reconstruction alphabets. For the lossless source coding problem, the source

polarization phenomenon is introduced in [11] to compress a source down to its en-

tropy.
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It is well known that linear codes can at most achieve the symmetric capacity of

discrete memoryless channels and the symmetric rate-distortion function for discrete

memoryless sources. This indicates that polar codes are optimal linear codes in terms

of the achievable rate. It is also known that nested linear codes achieve the Shannon

capacity of arbitrary discrete memoryless channels and the Shannon rate-distortion

function for arbitrary discrete memoryless sources. In this paper, we investigate the

performance of nested polar codes for the point-to-point channel and source coding

problems and show that these codes achieve the Shannon capacity of arbitrary (binary

or non-binary) DMCs and the Shannon rate-distortion function for arbitrary DMSs.

The results of this chapter are general regarding the size of the channel and source

alphabets. To generalize the results to non-binary cases, we use the approach of [62]

in which it is shown that polar codes with their original (u, u+ v) kernel, achieve the

symmetric capacity of arbitrary discrete memoryless channels where + is the addition

operation over any finite Abelian group.

6.3.1 The Lossy Source Coding Problem

In this section, we prove the following theorem:

Theorem VI.26. For an arbitrary discrete memoryless source (X ,U , pX , d), nested

polar codes achieve the Shannon rate-distortion function.

For the source (X ,U , pX , d), let U = G where G is an arbitrary Abelian group

and let q = |G| be the size of the group. For a pair (R,D) ∈ R2, let X be distributed

according to pX and let U be a random variable such that E{d(X,U)} ≤ D. We

prove that there exists a pair of polar codes Ci ⊆ Co such that Ci induces a parti-

tion of Co through its shifts, Co is a good source code for X and each shift of Ci is

a good channel code for the test channel pX|U . This will be made clear in the following.
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Given the test channel pX|U , define the artificial channels (G,G,Wc) and (G,X ×

G,Ws) such that for s, z ∈ G and x ∈ X , Wc(z|s) = pU(z − s) and Ws(x, z|s) =

pXU(x, z − s). These channels have been depicted in Figures 6.8 and 6.9.

Let S be a random variable uniformly distributed over G which is independent

from X and U . It is straightforward to show that in this case, Z is also uniformly

distributed over G. The symmetric capacity of the channel Wc is equal to Ī(Wc) =

log q−H(U . For the channel Ws, it is shown in [63] that the symmetric capacity of the

channel Ws is equal to Ī(Ws) = log q −H(U |X). We employ a nested polar code in

which the inner code Ci is a good channel code for the channel Wc and the outer code

Co is a good source code for Ws. The rate of this code is equal to R = Ī(Ws)− Ī(Wc).

Therefore,

R = log q −H(U |X)− (log q −H(U)) = I(X;U)

Note that the channels Wc and Ws are chosen so that the difference of their symmetric

capacities is equal to the Shannon mutual information between U andX. This enables

us to use channel coding polar codes to achieve the symmetric capacity of Wc (as the

inner code) and source coding polar codes to achieve the symmetric capacity of the

test channel Ws (as the outer code). The exact proof is postponed to Section 6.3.1.2

where the result is proved for the binary case and Section 6.3.1.3 in which the general

proof (for arbitrary Abelian groups) is presented.

The next section is devoted to some general definitions and useful lemmas which

are used in the proofs.
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6.3.1.1 Definitions and Lemmas

For a channel (X ,Y ,W ), the basic channel transformations associated with polar

codes are given by:

W−(y1, y2|u1) =
∑

u′2∈G

1

q
W (y1|u1 + u′2)W (y2|u′2) (6.32)

W+(y1, y2, u1|u2) =
1

q
W (y1|u1 + u2)W (y2|u2) (6.33)

for y1, y2 ∈ Y and u1, u2 ∈ G. We apply these transformations to both channels

(G,G,Wc) and (G,X × G,Ws). Repeating these operations n times recursively

for Wc and Ws, we obtain N = 2n channels W
(1)
c,N , · · · ,W

(N)
c,N and W

(1)
s,N , · · · ,W

(N)
s,N

respectively. For i = 1, · · · , N , these channels are given by:

W
(i)
c,N(zn1 , v

i−1
1 |vi) =

∑

vNi+1∈GN−i

1

qN−1
WN
c (zN1 |vN1 G)

W
(i)
s,N(xN1 , z

n
1 , v

i−1
1 |vi) =

∑

vNi+1∈GN−i

1

qN−1
WN
s (xN1 , z

N
1 |vN1 G)

for zN1 , v
N
1 ∈ GN , xN1 ∈ X N where G is the generator matrix of dimensions N × N

for polar codes. For the case of binary input channels, it has been shown in [10] that

as N →∞, these channels polarize in the sense that their Bhattacharyya parameter

gets either close to zero (perfect channels) or close to one (useless channels). For

arbitrary channels, it is shown in [62] that polarization happens in multiple levels so

that as N →∞ channels get useless, perfect or “partially perfect”.

Definition VI.27. The channel (G,Y1,W1) is degraded with respect to the channel

(G,Y2,W2) if there exists a channel (Y2,Y1,W ) such that for x ∈ G and y1 ∈ Y1,

W1(y1|x) =
∑

y2∈Y

W2(y2|x)W (y1|y2)

Lemma VI.28. If the channel (G,Y1,W1) is degraded with respect to the channel

(G,Y2,W2) in the sense of Definition VI.27, then for any d ∈ G, Zd(W1) ≥ Zd(W2).
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Proof. Provided in a more complete version of this work [63].

A special case of this lemma is when G = Z2 and d = 1. In this case, the lemma

implies, Z(W1) ≥ Z(W2) if W1 is degraded with respect to W2.

Lemma VI.29. The channel Wc is degraded with respect to the channel Ws in the

sense of Definition VI.27.

Proof. In Definition VI.27, let the channel (X ×G,G,W ) be such that for z, z′ ∈ G

and x ∈X , W (z|x, z′) = 1{z=z′}.

Let the random vectors XN
1 , U

N
1 be distributed according to PN

XU and let ZN
1 be

a random variable uniformly distributed over GN which is independent of XN
1 , U

N
1 .

Let SN1 = ZN
1 − UN

1 and V N
1 = SN1 G

−1 (Here, G−1 is the inverse of the one-two-one

mapping G : GN → GN). In other words, the joint distribution of these random

vectors is given by

pV N1 SN1 U
N
1 XN

1 Z
N
1

(vN1 , s
N
1 , u

N
1 , x

N
1 , z

N
1 )

=
1

qN
pNXU(xN1 , u

N
1 )1{sN1 =vN1 G,u

n
1 =zN1 −vN1 G}

6.3.1.2 Source Coding: Proof for the Binary Case

The standard result of channel polarization for the binary input channel Wc im-

plies [10] that for any ε > 0 and 0 < β < 1
2
, there exist a large N = 2n and a partition

A0, A1 of [1, N ] such that for t = 0, 1 and i ∈ At,
∣∣∣Ī(W

(i)
c,N)− t

∣∣∣ < ε and such that for

i ∈ A1 Z(W
(i)
c,N) < 2−N

β
. Moreover, as ε→ 0 (and N →∞), |At|

N
→ pt for some p0, p1

adding up to one with p1 = Ī(Wc).

Similarly, for the channel Ws we have the following: For any ε > 0 and 0 < β < 1
2
,

there exist a large N = 2n and a partition B0, B1 of [1, N ] such that for τ = 0, 1 and

i ∈ Bτ ,
∣∣∣Ī(W

(i)
s,N)− τ

∣∣∣ < ε and such that for i ∈ B1, Z(W
(i)
s,N) < 2−N

β
. Moreover, as

ε→ 0 (and N →∞), |Bτ |
N
→ qτ for some q0, q1 adding up to one with q1 = Ī(Ws).
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Lemma VI.30. For i = 1, · · · , N , Z(W
(i)
c,N) ≥ Z(W

(i)
s,N).

Proof. Provided in a more complete version [63].

To introduce the encoding and decoding rules, we need to make the following

definitions:

A0 =
{
i ∈ [1, N ]

∣∣∣Z(W
(i)
c,N) > 2−N

β
}

B0 =
{
i ∈ [1, N ]

∣∣∣Z(W
(i)
s,N) > 1− 2−N

β
}

and A1 = [1, N ]\A0 and B1 = [1, N ]\B0. For t = 0, 1 and τ = 0, 1, define At,τ =

At ∩ Bτ . Note that for large N , 2−N
β
< 1 − 2−N

β
and therefore, Lemma VI.30 im-

plies A1,0 = ∅. Note that the above polarization results imply that as N increases,

|A1|
N
→ Ī(Wc) and |Bτ |

N
→ Ī(Ws).

Encoding and Decoding

Let zN1 ∈ GN be an outcome of the random variable ZN
1 known to both the

encoder and the decoder. Given a source sequence xN1 ∈ X N , the encoding rule is

as follows: For i ∈ [1, N ], if i ∈ B0, then vi is uniformly distributed over G and is

known to both the encoder and the decoder (and is independent from other random

variables). If i ∈ B1, vi = g for some g ∈ G with probability

P (vi = g) = pVi|XN
1 Z

N
1 V

i−1
1

(g|xN1 , zN1 , vi−1
1 )

Note that [1, N ] can be partitioned into A0,0, A0,1 and A1,1 (since A1,0 is empty)

and B0 = A0,0, B1 = A0,1 ∪ A1,1. Therefore, v−1N can be decompose as vN1 =

vA0,0 + vA0,1 + vA1,1 in which vA0,0 is known to the decoder. The encoder sends vA0,1

to the decoder and the decoder uses the channel code to recover vA1,1 . The decoding

rule is as follows: Given zN1 , vA0,0 and vA0,1 , let v̂A0,0 = vA0,0 and v̂A0,1 = vA0,1 . For
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i ∈ A1,1, let

v̂i = argmax
g∈G

W
(i)
c,N(zN1 , v̂

i−1
1 |g)

Finally, the decoder outputs zN1 − v̂N1 G.

Error Analysis

The analysis is a combination of the-point-to point channel coding and source

coding results for polar codes. The average distortion between the encoder input and

the decoder output is upper bounded by

Davg≤
∑

zN1 ∈GN

1

qN

∑

xN1 ∈X N

pNX(xN1 )
∑

vN1 ∈GN

1

q|B0|

(∏

i∈B1

p(vi|xN1, zN1,vi−1
1 )

)

(
dmax · 1{v̂ 6=v} + d(xN1 , z

N
1 − vN1 G)

)

where we have replaced pVi|XN
1 Z

N
1 V

i−1
1

(vi|xN1 , zN1 , vi−1
1 ) with p(vi|xN1 , zN1 , vi−1

1 ) for sim-

plicity of notation and dmax is the maximum value of the d(·, ·) function. Let q(xN1 , z
N
1 ) =

p(xN1 , z
N
1 ) and

q(vi|xN1 zN1 vi−1
1 ) =





1
2

If i ∈ B0

pVi|XN
1 Z

N
1 V

i−1
1

(vi|xN1 zN1 vi−1
1 ) If i ∈ B1

It is shown in [63] that we have Davg ≤ D1 +D2 +D3 where

D1 =
∑

vN1 ,z
N
1 ∈GN

xN1 ∈X N

p(vN1 , x
N
1 , z

N
1 )dmax · 1{v̂ 6=v} (6.34)

D2 =
∑

vN1 ,z
N
1 ∈GN

xN1 ∈X N

p(vN1 , x
N
1 , z

N
1 )d(xN1 , z

N
1 − vN1 G) (6.35)

D3 =
∑

vN1 ,z
N
1 ∈GN

xN1 ∈X N

∣∣q(vN1 , xN1 , zN1 )− p(vN1 , xN1 , zN1 )
∣∣

(
dmax · 1{v̂ 6=v} + d(xN1 , z

N
1 − vN1 G)

)
(6.36)
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The proof proceeds as follows: It is straightforward to show that D1 → D as N

increases. It can also be shown that D2 → 0 as N increases since the inner code is

a good channel code. Finally, it can be shown that D3 → 0 as N increases since the

total variation distance between the P and the Q measures is small (in turn since the

outer code is a good source code). For the complete proof, please see [63].

6.3.1.3 Source Coding: Proof for the General Case

The result of channel polarization for arbitrary discrete memoryless channels

applied to Wc implies [62] that for any ε > 0 and 0 < β < 1
2
, there exist a

large N = 2n and a partition {AH |H ≤ G} of [1, N ] such that for H ≤ G and

i ∈ AH ,
∣∣∣Ī(W

(i)
c,N)− log |G||H|

∣∣∣ < ε and ZH(W
(i)
c,N) < 2−N

β
. Moreover, as ε → 0 (and

N → ∞), |AH |
N
→ pH for some probabilities pH , H ≤ G adding up to one with

∑
H≤G pH log |G||H| = Ī(Wc).

Similarly, for the channel Ws we have the following: For any ε > 0 and 0 < β < 1
2
,

there exist a large N = 2n and a partition {BH |H ≤ G} of [1, N ] such that for

H ≤ G and i ∈ BH ,
∣∣∣Ī(W

(i)
s,N)− log |G||H|

∣∣∣ < ε and ZH(W
(i)
s,N) < 2−N

β
. Moreover, as

ε→ 0 (and N →∞), |BH |
N
→ qH for some probabilities qH , H ≤ G adding up to one

with
∑

H≤G qH log |G||H| = Ī(Ws).

Lemma VI.31. For i = 1, · · · , N and for d ∈ G and H ≤ G, Zd(W
(i)
c,N) ≥ Zd(W

(i)
s,N)

and ZH(W
(i)
c,N) ≥ ZH(W

(i)
s,N).

Proof. Provided in a more complete version [63].

We define some quantities before we introduce the encoding and decoding rules.
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For H ≤ G, define

AH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
c,N) < 2−N

β

,

@K ≤ Hsuch that ZK(W
(i)
c,N) < 2−N

β
}

BH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
s,N) < 1− 2−N

β

,

@K ≤ H such that ZK(W
(i)
s,N) < 1− 2−N

β
}

For H ≤ G and K ≤ G, define AH,K = AH ∩ BK . Note that for large N ,

2−N
β
< 1− 2−N

β
and therefore, if for some i ∈ [1, N ], i ∈ AH , Lemma VI.31 implies

ZH(W
(i)
s,N) < 1 − 2−N

β
and hence i ∈ ∪K≤HBK . Therefore, for K � H, AH,K = ∅.

Therefore {AH,K |K ≤ H ≤ G} is a partition of [1, N ]. Note that the channel polar-

ization results imply that as N increases, |AH |
N
→ pH and |BH |

N
→ qH .

Encoding and Decoding

Let zN1 ∈ GN be an outcome of the random variable ZN
1 known to both the

encoder and the decoder. Given K ≤ H ≤ G, let TH be a transversal of H in G

and let TK≤H be a transversal of K in H. Any element g of G can be represented

by g = [g]K + [g]TK≤H + [g]TH for unique [g]K ∈ K, [g]TK≤H ∈ TK≤H and [g]TH ∈ TH .

Also note that TK≤H + TH is a transversal TK of K in G so that g can be uniquely

represented by g = [g]K + [g]TK for some [g]TK ∈ TK and [g]TK can be uniquely

represented by [g]TK = [g]TK≤H + [g]TH .

Given a source sequence xN1 ∈X N , the encoding rule is as follows: For i ∈ [1, N ],

if i ∈ AH,K for some K ≤ H ≤ G, [vi]K is uniformly distributed over K and is

known to both the encoder and the decoder (and is independent from other random

variables). The component [vi]TK is chosen randomly so that for g ∈ [vi]K + TK ,

P (vi = g) =
pVi|XN

1 Z
N
1 V

i−1
1

(g|xN1 , zN1 , vi−1
1 )

pVi|XN
1 Z

N
1 V

i−1
1

([vi]K + TK |xN1 , zN1 , vi−1
1 )
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Note that vN1 can be decomposed as vN1 = [vN1 ]K + [vN1 ]TK≤H + [vN1 ]TH (with a slight

abuse of notation since K and H depend on the index i) in which [vN1 ]K is known to

the decoder. The encoder sends [vN1 ]TK≤H to the decoder and the decoder uses the

channel code to recover [vN1 ]TH . The decoding rule is as follows: Given zN1 , [vN1 ]K and

[vN1 ]TK≤H , and for i ∈ AH,K , let

v̂i = argmax
g∈[vi]K+[vi]TK≤H+TH

W
(i)
c,N(zN1 , v̂

i−1
1 |g)

Finally, the decoder outputs zN1 − v̂N1 G. Note that the rate of this code is equal to

R =
∑

K≤H≤G

|AH,K |
N

log
|H|
|K|

=
∑

K≤H≤G

|AH,K |
N

log
|G|
|K| −

∑

K≤H≤G

|AH,K |
N

log
|G|
|H|

→ Ī(Ws)− Ī(Wc) = I(X;U)

Error Analysis

The average distortion between the encoder input and the decoder output is upper

bounded by

Davg ≤
∑

zN1 ∈GN

1

qN

∑

xN1 ∈X N

pNX(xN1 )
∑

vN1 ∈GN

1

q|B0|

(∏

K≤G

∏

i∈BK

p(g|xN1 , zN1 , vi−1
1 )

p([vi]K + TK |xN1 , zN1 , vi−1
1 ) · |K|

)

(
dmax · 1{v̂ 6=v} + d(xN1 , z

N
1 − vN1 G)

)

where pVi|XN
1 Z

N
1 V

i−1
1

(·|xN1 , zN1 , vi−1
1 ) is replaced with p(·|xN1 , zN1 , vi−1

1 ) for simplicity of

notation. The rest of the proof is essentially similar to the binary case. For the

complete proof, please see [63].

6.3.2 The Channel Coding Problem

In this section, we prove the following theorem:
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Theorem VI.32. For an arbitrary discrete memoryless channel (X ,Y ,W ), nested

polar codes achieve the Shannon capacity.

For the channel let X = G for some Abelian group G and let |G| = q. Similarly

to the source coding problem, we show that there exists nested polar code Ci ⊆ Co

such that Co is a good channel code and each shift of Ci is a good source code. This

will be made clear later in the following.

Let X be a random variable with the capacity achieving distribution and let

U be uniformly distributed over G. Define the artificial channels (G,G,Ws) and

(G,Y × G,Wc) such that for u, z ∈ G and y ∈ Y , Ws(z|u) = pX(z − u) and

Wc(y, z|u) = pXY (z − u, y). These channels have been depicted in Figures 6.10 and

6.11.

Note that for u, x, z ∈ G and y ∈ Y , pUXY Z(u, x, y, z) = pU(u)pX(x)W (y|x)1{z=u+x}.

Similarly to the source coding case, one can show that the symmetric capacities of

the channels are equal to Ī(Ws) = log q − H(X) and Ī(Wc) = log q − H(X|Y ). We

employ a nested polar code in which the inner code is a good source code for the test

channel Ws and the outer code is a good channel code for Wc. The rate of this code is

equal to R = Ī(Wc)− Ī(Wx) = I(X;Y ). We only present our encoding and decoding

rules here. The proofs can be found in [63]. To introduce our encoding and decoding

rules, we need to make some definitions.

Let n be a positive integer and let N = 2n. Similar to the source coding case, for

i = 1 · · ·N , define the synthesized channels W
(i)
c,N and W

(i)
s,N . Let the random vector

UN
1 be distributed according to pNU (uniform) and let V N

1 = UN
1 G

−1 where G is the

polar coding matrix of dimension N ×N . Note that since G is a one-to-one mapping,

V N
1 is also uniformly distributed. Let Y N

1 and ZN
1 be the outputs of the channel Wc
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when the input is UN
1 . For H ≤ G, define

AH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
s,N) < 1− 2−N

β

,

@K ≤ Hsuch that ZK(W
(i)
s,N) < 1− 2−N

β
}

BH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
c,N) < 2−N

β

,

@K ≤ H such that ZK(W
(i)
c,N) < 2−N

β
}

For H ≤ G and K ≤ G, define AH,K = AH ∩ BK . Note that for K ≤ H ≤ G,

ZH(W ) ≤ ZK(W ). Also note that ZH(W
(i)
c,N) ≤ ZH(W

(i)
s,N) Therefore, if K � H then

AH,K ⊆
{
i ∈ [1, N ]

∣∣∣2−Nβ

< ZH(W
(i)
c,N) ≤

ZH(W
(i)
s,N) < 1− 2−N

β
}

Since ZH(W
(i)
c,N) and ZH(W

(i)
s,N) both polarize to 0, 1, as N increases

AH,K
N
→ 0 if

K � H. Note that the channel polarization results imply that as N increases,

|AH |
N
→ pH and |BH |

N
→ qH .

The encoding and decoding rules are as follows: Let zN1 ∈ GN be an outcome of the

random variable ZN
1 known to both the encoder and the decoder. Given K ≤ H ≤ G,

let TH be a transversal of H in G and let TK≤H be a transversal of K in H. Any

element g of G can be represented by g = [g]K + [g]TK≤H + [g]TH for unique [g]K ∈ K,

[g]TK≤H ∈ TK≤H and [g]TH ∈ TH . Also note that TK≤H + TH is a transversal TK of K

in G so that g can be uniquely represented by g = [g]K + [g]TK for some [g]TK ∈ TK
and [g]TK can be uniquely represented by [g]TK = [g]TK≤H + [g]TH .

Given a source sequence xN1 ∈X N , the encoding rule is as follows: For i ∈ [1, N ],

if i ∈ AH,K for some K ≤ H ≤ G, [vi]K is uniformly distributed over K and is

known to both the encoder and the decoder (and is independent from other random

variables). The component [vi]TK≤H is the message and is uniformly distributed but

is only known to the encoder. The component [vi]TK is chosen randomly so that for
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g ∈ [vi]K + [vi]TK≤H + TH ,

P (vi = g) =

pVi|XN
1 Z

N
1 V

i−1
1

(g|xN1 , zN1 , vi−1
1 )

pVi|XN
1 Z

N
1 V

i−1
1

([vi]K + [vi]TK≤H + TH |xN1 , zN1 , vi−1
1 )

For i ∈ [1, N ], if i ∈ AH,K for some K � H, [vi]H is uniformly distributed over H and

is known to both the encoder and the decoder and the component [vi]TH is chosen

randomly so that for g ∈ [vi]H + TH ,

P (vi = g) =
pVi|XN

1 Z
N
1 V

i−1
1

(g|xN1 , zN1 , vi−1
1 )

pVi|XN
1 Z

N
1 V

i−1
1

([vi]H + TH |xN1 , zN1 , vi−1
1 )

For the moment assume that in this case vi is known at the receiver. Note that

for i ∈ [1, N ], if i ∈ AH,K for some K ≤ H ≤ G, vi can be decomposed as vi =

[vi]K + [vi]TK≤H + [vi]TH in which [vi]K is known to the decoder. The decoding rule is

as follows: Given zN1 and for i ∈ AH,K for some K ≤ H ≤ G, let

v̂i = argmax
g∈[vi]K+[vi]TK≤H+TH

W
(i)
c,N(zN1 , v̂

i−1
1 |g)

It is shown in [63] that with this encoding and decoding rules, the probability of error

goes to zero. It remains to send the vi i ∈ AH,K with K � H to the decoder which

can be done using a regular polar code (which achieves the symmetric capacity of the

channel). Note that since the fraction
|AH,K |
N

vanishes as N increases if K � H, the

rate loss due to this transmission can be made arbitrarily small.
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Figure 6.2: The behavior of I(W b1b2···bn) for n = 14 for Channel 1 when ε = 0.4 and
λ = 0.2. The three solid lines represent the three discrete values of I∞ with
positive probability.
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Figure 6.3: The asymptotic behavior of I(W b1b2···bn), N = 2n = 24, 28, 212, 214 for Channel
1 when the data is sorted. We observe that for this channel, all three extreme
cases appear with positive probability. In general, it is possible to have fewer
cases in the asymptotic regime.
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Channel Inputs. {

Figure 6.4: Channel 2: A channel with a composite input alphabet size. For this channel,
the process In can be explicitly found for each n and the multilevel polarization
can be observed. E1, E2 and E3 are erasures corresponding to cosets of the
subgroup {0, 3} and E4 and E5 are erasures corresponding to cosets of the
subgroup {0, 2, 4}. The lines connected to outputs E1, E2 and E3 correspond
to a conditional probability of γ, the lines connected to outputs E4 and E5

correspond to a conditional probability of ε, the lines connected to the output
E6 correspond to a conditional probability of λ, and the lines connected to
outputs 0, 1, 2, 3, 4 and 5 correspond to a conditional probability of 1−γ−ε−λ.
The parameters γ, ε, λ take values from [0, 1] such that γ + ε+ λ ≤ 1.
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Figure 6.5: Polarization of Channel 2 with parameters γ = 0, ε = 0.4, λ = 0.2. The middle
line represents the subgroup {0, 2, 4} of Z6.

Figure 6.6: Polarization of Channel 2 with parameters γ = 0.4, ε = 0, λ = 0.2. The middle
line represents the subgroup {0, 3} of Z6.
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1

3

2

1

λ

λ

Figure 6.7: Channel 3
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U

ZS

Wc

Figure 6.8: Source Coding: Test channel for
the inner code (the channel cod-
ing component).

U

ZS

Ws

pX|U X

Figure 6.9: Source Coding: Test channel for
the outer code (the source coding
component).

X

Z = U +XU

Ws

Figure 6.10: Channel Coding: Channel for
the inner code.

X

Z = U +XU

Wc

W Y

Figure 6.11: Channel Coding: Channel for
the outer code.

231



CHAPTER VII

Polar Codes for Multi-terminal Communications

In this section, we show that polar coding schemes achieve the known achiev-

able rate regions for several multi-terminal communications problems including lossy

distributed source coding, multiple access channels, broadcast channels and multiple

description.

7.1 Introduction

Among the existing works on the application of polar codes for multi-terminal

cases we note [11, 12] for distributed source coding, [5, 67] for the multiple access

channels and [32] for broadcast channels.

In Section 6.1.1.1, we showed that nested polar codes can be used to achieve

the Shannon capacity of arbitrary discrete memoryless channels and the Shannon

rate-distortion function for discrete memoryless sources [64]. In this chapter, we

show that nested polar codes can achieve the best known achievable rate regions for

several multi-terminal communication systems. We present several examples in this

chapter, including the distributed source coding problem, multiple access channels,

computation over MAC, broadcast channels, multiple description coding, to illustrate

how these codes can be employed to have an optimal performance for multi-terminal
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cases. The results of this chapter are general regarding the size of alphabets using

the approach of [62].

7.2 Distributed Source Coding: The Berger-Tung Problem

In the distributed source coding problem, two separate sources X and Y com-

municates with a centralized decoder. Let X ,Y and U ,V be the source and the

reconstruction alphabets of the two terminals and assume X and Y have the joint

distribution pXY . Let d1 : X × U → R+ and d2 : Y × V → R+ be the dis-

tortion measures for terminals X and Y respectively. We denote this source by

(X ,Y ,U ,V , pXY , d1, d2). Let U and V be auxiliary random variables taking val-

ues from U and V respectively such that U ↔ X ↔ Y ↔ V , E{d1(X,U)} ≤ D1

and E{d2(Y, V )} ≤ D2 for some distortion levels D1, D2 ∈ R+. It is known by the

Berger-Tung coding scheme that the tuple (R1, R2, D1, D2) is achievable if




R1 ≥ I(X;U)− I(U ;V )

R2 ≥ I(Y ;V )− I(U ;V )

R1 +R2 ≥ I(X;U) + I(Y ;V )− I(U ;V )

In this section, we prove the following theorem:

Theorem VII.1. For a source (X ,Y ,U ,V , pXY , d1, d2), assume U and V are

finite. Then the Berger-Tung rate region is achievable using nested polar codes.

It suffices to show that the following rates are achievable:

R1 = I(X;U)− I(U ;V ), R2 = I(Y ;V )

Let G be an Abelian group of the size larger than or equal to the size of both

U and V . Note that for the source Y , we can use a nested polar codes as in-

troduced in [64] to achieve the rate I(Y ;V ). Furthermore, we have access to the

outcome vN1 of V N
1 at the decoder with high probability. It remains to show that
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the rate R1 = I(X;U) − I(U ;V ) is achievable when the sequence vN1 ∈ GN with

d2(yN1 , v
N
1 ) ≤ D2 is available at the decoder.

Given the test channel pX|U , define the artificial channels (G,G2,Wc) and (G,X ×

G,Ws) such that for s, z ∈ G and x ∈X ,

Wc(v, z|s) = pV U(v, z − s), Ws(x, z|s) = pXU(x, z − s)

These channels have been depicted in Figures 7.1 and 7.2. Let S be a random variable

U

ZS

Wc

pV |U V

Figure 7.1: Distributed Source Coding: Test
channel for the inner code (the
channel coding component).

U

ZS

Ws

pX|U X

Figure 7.2: Distributed Source Coding: Test
channel for the outer code (the
source coding component).

uniformly distributed over G which is independent from X and U . It is straightfor-

ward to show that in this case, Z is also uniformly distributed over G. Similarly to

the point-to-point result [64], we can show that the symmetric capacities of the chan-

nels Wc and Ws are given by Ī(Wc) = log q −H(U |V ) and Ī(Ws) = log q −H(U |X).

We employ a nested polar code in which the inner code is a good channel code for

the channel Wc and the outer code is a good source code for Ws. The rate of this

code is equal to R = Ī(Ws)− Ī(Wc) = I(X;U)− I(U ;V ). The rest of this section is

devoted to some general definitions and lemmas which are used in the proofs.

Lemma VII.2. The channel Wc is degraded with respect to the channel Ws in the

sense of [63, Definition III.1].

Proof. In the Definition [63, Definition III.1], let the channel (X × G,G2,W ) be

such that for v, z, z′ ∈ G and x ∈X , W (v, z|x, z′) = pV |X(v|x)1{z=z′}.

Let N = 2n for some positive integer n and let G be the corresponding N × N

generator matrix for polar codes. For i = 1, · · · , N , and for zN1 , a
N
1 ∈ GN , vN1 ∈ V N
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and xN1 ∈X N , let

W
(i)
c,N(zn1 , v

N
1 , a

i−1
1 |ai) =

∑

aNi+1∈GN−i

1

qN−1
WN
c (zN1 , v

N
1 |aN1 G)

W
(i)
s,N(xN1 , z

n
1 , a

i−1
1 |ai) =

∑

aNi+1∈GN−i

1

qN−1
WN
s (xN1 , z

N
1 |aN1 G)

Let the random vectors XN
1 , Y

N
1 , UN

1 , V
N

1 be distributed according to PN
XY UV and

let ZN
1 be a random variable uniformly distributed over GN which is independent of

XN
1 , Y

N
1 , UN

1 , V
N

1 . Let SN1 = ZN
1 − UN

1 and AN1 = SN1 G
−1 (Here, G−1 is the inverse

of the mapping G : GN → GN). In other words, the joint distribution of the random

vectors is given by

pAN1 SN1 UN1 V N1 XN
1 Z

N
1

(aN1 , s
N
1 , u

N
1 , v

N
1 , x

N
1 , z

N
1 )

=
1

qN
pNXUV (xN1 , u

N
1 , v

N
1 )1{sN1 =aN1 G,u

n
1 =zN1 −aN1 G}

8

Sketch of the proof The following theorems state the standard channel coding and

source coding polarization phenomenons for the general case.

Theorem VII.3. For any ε > 0 and 0 < β < 1
2
, there exist a large N = 2n and a par-

tition {AH |H ≤ G} of [1, N ] such that for H ≤ G and i ∈ AH ,
∣∣∣Ī(W

(i)
c,N)− log |G||H|

∣∣∣ < ε

and ZH(W
(i)
c,N) < 2−N

β
. Moreover, as ε → 0 (and N → ∞), |AH |

N
→ pH for some

probabilities pH , H ≤ G adding up to one with
∑

H≤G pH log |G||H| = Ī(Wc).

Theorem VII.4. For any ε > 0 and 0 < β < 1
2
, there exist a large N = 2n and a par-

tition {BH |H ≤ G} of [1, N ] such that for H ≤ G and i ∈ AH ,
∣∣∣Ī(W

(i)
s,N)− log |G||H|

∣∣∣ < ε

and ZH(W
(i)
s,N) < 2−N

β
. Moreover, as ε → 0 (and N → ∞), |BH |

N
→ qH for some

probabilities qH , H ≤ G adding up to one with
∑

H≤G qH log |G||H| = Ī(Ws).
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For H ≤ G, define

AH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
c,N) < 2−N

β

,

@K ≤ H : ZK(W
(i)
c,N) < 2−N

β
}

BH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
s,N) < 1− 2−N

β

,

@K ≤ H : ZK(W
(i)
c,N) < 1− 2−N

β
}

For H ≤ G and K ≤ G, define AH,K = AH ∩ BK . Note that for large N ,

2−N
β
< 1 − 2−N

β
. This implies for i ∈ AH , we have ZH(W

(i)
s,N) < 1 − 2−N

β
and

hence i ∈ ∪K≤HBK . Therefore, for K � H, we have AH,K = ∅. This means

{AH,K |K ≤ H ≤ G} forms a partition of [1, N ]. Note that as N increases, |AH |
N
→ pH

and |BH |
N
→ qH .

The encoding and decoding rules are as follows: Let zN1 ∈ GN be an outcome of the

random variable ZN
1 known to both the encoder and the decoder. Given K ≤ H ≤ G,

let TH be a transversal of H in G and let TK≤H be a transversal of K in H. Any

element g of G can be represented by g = [g]K + [g]TK≤H + [g]TH for unique [g]K ∈ K,

[g]TK≤H ∈ TK≤H and [g]TH ∈ TH . Also note that TK≤H + TH is a transversal TK of K

in G so that g can be uniquely represented by g = [g]K + [g]TK for some [g]TK ∈ TK
and [g]TK can be uniquely represented by [g]TK = [g]TK≤H + [g]TH .

Given a source sequence xN1 ∈X N , the encoding rule is as follows: For i ∈ [1, N ],

if i ∈ AH,K for some K ≤ H ≤ G, [ai]K is uniformly distributed over K and is

known to both the encoder and the decoder (and is independent from other random

variables). The component [ai]TK is chosen randomly so that for g ∈ G,

P (ai = g) =
pAi|XN

1 Z
N
1 A

i−1
1

(g|xN1 , zN1 , ai−1
1 )

pAi|XN
1 Z

N
1 A

i−1
1

([ai]K + TK |xN1 , zN1 , ai−1
1 )

Note that aN1 can be decomposed as aN1 = [vN1 ]K + [aN1 ]TK≤H + [aN1 ]TH in which [aN1 ]K

is known to the decoder. The encoder sends [aN1 ]TK≤H to the decoder and the decoder
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uses the channel code to recover [aN1 ]TH . The decoding rule is as follows: Given zN1 ,

vN1 , [aN1 ]K and [aN1 ]TK≤H , and for i ∈ AH,K , let

âi = argmax
g∈[ai]K+[ai]TK≤H+TH

W
(i)
c,N(zN1 , v

N
1 , â

i−1
1 |g)

Finally, the decoder outputs zN1 − âN1 G. Note that the rate of this code is equal to

R =
∑

K≤H≤G

|AH,K |
N

log
|H|
|K|

=
∑

K≤H≤G

|AH,K |
N

log
|G|
|K| −

∑

K≤H≤G

|AH,K |
N

log
|G|
|H|

→ Ī(Ws)− Ī(Wc) = I(X;U)− I(U ;V )

7.3 Distributed Source Coding: Decoding the Sum of Vari-

ables

For a distributed source (X × Y , pX,Y ) let the random variable U and V take

values from a group G. Assume that U and V satisfy the Markov chain U ↔ X ↔

Y ↔ V and assume E{d(X, Y, g(U +V )) ≤ D} for some function g. For W = U +V ,

we show that the following rates are achievable:

R1 = H(W )−H(U |X), R2 = H(W )−H(V |Y )

The source X employs a nested polar codes whose inner code is a good channel code

for the channel (G,G,Wc,X) and whose outer code is a good source code for the test

channel (G,X ×G,Ws,X) where for s, t, q, z ∈ G and x ∈X ,

Wc,X(q|s+t)=pW (q−s−t),Ws,X(x, z|s)=pXU(x, z−s)

Similarly, the source Y employs a nested polar code whose inner code is a good

channel code for the channel (G,G,Wc,Y ) and whose outer code is a good source

code for the test channel (G,Y ×G,Ws,Y ) where for s, t, q, r ∈ G and y ∈ Y ,

Wc,Y (q|s+t)=pW (q−s−t),Ws,Y (y, r|t)=pY V (y, r−t)
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These channels are depicted in Figures 7.3, 7.4, 7.5 and 7.6.

W = U + V

QS + T

Wc,X

Figure 7.3: Korner-Marton Problem, Termi-
nal X: Test channel for the inner
code.

U

ZS

Ws,X

pX|U X

Figure 7.4: Korner-Marton Problem, Termi-
nal X: Test channel for the outer
code.

W = U + V

QS + T

Wc,Y

Figure 7.5: Korner-Marton Problem, Termi-
nal Y: Test channel for the inner
code.

V

RT

Ws,Y

pY |V Y

Figure 7.6: Korner-Marton Problem, Termi-
nal Y: Test channel for the outer
code.

We need to show that Wc,X is degraded with respect to Ws,X (and Wc,Y is degraded

with respect to Ws,Y ). To show this, in the definition of degradedness [63, Definition

III.1], we let the channel (G,X ×G,W ) be such that that for q, z ∈ G and x ∈X ,

W (q|x, z) = pV |X(q − z|x).

7.4 Multiple Access Channels

Let the finite sets X and Y be the input alphabets of a two-user MAC and let Z

be the output alphabet. In order to show that nested polar codes achieve the capacity

of a MAC, it suffices to show that the rates R1 = I(X;Z|Y ) = H(X) − H(X|Y Z)

and R2 = I(Y ;Z) are achievable. It is known from the point-to-point result [64]

that the Y terminal can communicate with the decoder with rate I(Y ;Z) so that

yN1 is available at the decoder with high probability. It remains to show that the

rate R1 is achievable for the X terminal when yN1 is available at the decoder. Let G

be an Abelian group with |G| = |X |. Define the artificial channels (G,G,Ws) and
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(G,Y ×Z ×G,Wc) such that for u, z ∈ G and y ∈ Y ,

Ws(s|u) = pX(s− u),Wc(y, z, s|u) = pXY Z(s− u, y, z)

These channels have been depicted in Figures(7.7) and (7.8).

X

SU

Ws

Figure 7.7: Multiple-Access Channels:
Channel for inner code.

X

SU

Wc

pY Z|X Y,Z

Figure 7.8: Multiple-Access Channels:
Channel for outer code.

Similarly to previous cases, one can show that the symmetric capacities of the

channels are equal to Ī(Ws) = log q − H(X) and Ī(Wc) = log q − H(X|Y Z). We

employ a nested polar code in which the inner code is a good source code for the test

channel Ws and the outer code is a good channel code for Wc. The rate of this code is

equal to R = Ī(Wc)− Ī(Wx) = I(X;Z|Y ). Here, we only give a sketch of the proof.

First note that the channel Ws is degraded with respect to Wc so that the the source

code is contained in the channel code.

For sN1 ∈ GN , yN1 ∈ Y N and zN1 ∈ Z N , let

W
(i)
s,N(sN1 , a

i−1
1 |ai) =

∑

aNi+1∈GN−i

1

qN−1
WN
s (sN1 |aN1 G)

W
(i)
c,N(yN1 ,z

n
1 ,s

N
1 ,a

i−1
1 |ai)=

∑

aNi+1∈GN−i

1

qN−1
WN
c (yN1 ,z

N
1 ,s

N
1 |aN1 G)

Let the random vectors XN
1 , Y

N
1 , UN

1 , V
N

1 be distributed according to PN
XY UV and

let SN1 be a random variable uniformly distributed over GN which is independent

of XN
1 , Y

N
1 , UN

1 , V
N

1 . Let UN
1 = SN1 − XN

1 and AN1 = UN
1 G

−1. The encoding and

decoding rules are similar to those of the point-to-point channel coding result; i.e., at

the encoder, the distribution pAi|SN1 A
i−1
1

is used for soft encoding and at the decoder,

W
(i)
c,N(yN1 , z

n
1 , s

N
1 , a

i−1
1 |ai) is used in the successive cancelation decoder to decode aN1 .

The final decoder output is equal to zN1 − aN1 G. Note that since yN1 is known to the

decoder with high probability, it can be used as the channel output for Wc.
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7.5 Computation over MAC

In this section, we consider a simple computation problem over a MAC with input

alphabets X , Y and output alphabet Z . The two input terminals of a MAC, X

and Y are trying to communicate with a centralized decoder which is interested in

the sum of the inputs S = X + Y where + is summation over a group G. We show

that the rate R = min(H(X), H(Y ))−H(S|Z) is achievable using polar codes. The

terminal X employs a nested polar code whose inner code is a good source code for

the test channel (G,G,Ws,X) and whose outer code is a good channel code for the

channel (G,Z ×G,Wc,X) where for u, v, r, z ∈ G and z ∈ Z ,

Ws,X(r|u)=pX(r−u),Wc,X(z, q|u+v)=pSZ(q−u−v, z)

Similarly, the terminal Y employs a nested polar code whose inner code is a good

source code for the test channel (G,G,Ws,Y ) and whose outer code is a good channel

code for the channel (G,Z ×G,Wc,Y ) where for u, v, t, z ∈ G and z ∈ Z ,

Ws,Y (t|v)=pY (t−v),Wc,Y (z, q|u+v)=pSZ(q−u−v, z)

Note that the two terminals use the same channel code. These channels are depicted

in Figures 7.9, 7.10, 7.12 and 7.11.

X

RU

Ws,X

Figure 7.9: Computation Over MAC, Termi-
anl X: Channel for inner code.

S

QU + V

Wc,X

pZ|S Z

Figure 7.10: Computation Over MAC, Ter-
mianl X: Channel for outer
code.

Similarly to previous cases, one can show that the symmetric capacities of the

channels are equal to Ī(Ws) = log q − H(X) and Ī(Wc) = log q − H(X|Y Z). We

employ a nested polar code in which the inner code is a good source code for both

test channels Ws,X and Ws,Y and the outer code is a good channel code for Wc,X =
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Y

TV

Ws,Y

Figure 7.11: Computation Over MAC, Ter-
mianl Y: Channel for inner
code.

S

QU + V

Wc,X

pZ|S Z

Figure 7.12: Computation Over MAC, Ter-
mianl Y: Channel for outer
code.

Wc,Y . The rate of this code is equal to R = Ī(Wc,X) − max(Ī(Ws,X), Ī(Ws,Y )) =

min(H(X), H(Y ))−H(S|Z). It is worth noting that it can be shown that the inter-

section of the two source codes is contained in the common channel code.

7.6 The Broadcast Channel

In this section, we show that polar codes achieve the capacity of a broadcast chan-

nel (X ,Y ×Z ,W,w) when X = G for some arbitrary Abelian group G.

Let X be a random variable over X such that E{w(X)} ≤ D and let Y, Z be the

corresponding channel outputs. Let U, V be random variable over G satisfying the

Markov chain UV ↔ X ↔ Y Z such that there exists a function g : G2 → X with

g(U, V ) = X. It suffices to show that the following rates are achievable

R1 =I(U ;Y )−I(U ;V )=H(U |Y )−H(U |V ), R2 =I(V ;Z)

Note that the Z terminal can use a point-to-point channel code to achieve the desired

rate. It remains to show that the rate R2 is achievable when vN1 is available at the

encoder.

Define the artificial channels (G,G2,Ws) and (G,Y × G,Wc) such that for

s, v, z ∈ G and y ∈ Y ,

Ws(v, z|s) = pUV (z − s, v),Wc(y, z|s) = pUY (z − s, y)
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U

QS

Ws

pV |U V

Figure 7.13: Broadcast Channels: Test chan-
nel for inner code

U

QS

Wc

pY |U Y

Figure 7.14: Broadcast Channels: Test chan-
nel for outer code

These channels have been depicted in Figures(7.13) and (7.14).

Similarly to previous cases, one can show that the symmetric capacities of the

channels are equal to Ī(Ws) = log q−H(U |V ) and Ī(Wc) = log q−H(U |Y ). Note that

to guarantee that Ws is degraded with respect to Wc, we need an additional condition

on the auxiliary random variables. It is sufficient to assume that the Markov chain

U ↔ X ↔ V holds.

We employ a nested polar code in which the inner code is a good source code for

the test channel Ws and the outer code is a good channel code for Wc. The rate of

this code is equal to R = Ī(Wc)− Ī(Wx) = I(U ;Y )− I(U ;V ).

7.7 Multiple Description Coding

Consider a multiple description problem in which a source X is to be reconstructed

at three terminals U , V andW . There are two encoders and three decoders. Terminals

U and V have access to the output of their corresponding encoders and terminal W

has access to the output of both encoders. The goal is to find all achievable tuples

(R1, R2, D1, D2, D3) where R1 and R2 are the rates of encoders U and V respectively

and D1, D2 and D3 are the distortion levels corresponding to decoders U , V and

W respectively. D1, D2 and D3 are measured as the average of distortion measures

d1(·, ·), d1(·, ·) and d1(·, ·) respectively. Let U , V and W be random variables such

that E{d1(X,U)} ≤ D1, E{d2(X, V )} ≤ D2 and E{d3(X,W )} ≤ D3. We show that
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the tuple (R1, R2, D1, D2, D3) is achievable if

R1 ≥ I(X;U)

R2 ≥ I(X;V )

R1 +R2 ≥ I(X;UVW ) + I(U ;V )

It suffices to show that the rates R1 = I(X;UVW )−I(X;V )+I(U ;V ), R2 = I(X;V )

are achievable. The point-to-point source coding result implies that with R2 =

I(X;V ) we can have vN1 at the output of the second decoder with high probability. To

achieve the rate R1 when vN1 is available, first we note that R1 = H(U)−H(U |V X)+

H(W |UV ) − H(W |UV X). We use a code with rate R11 = H(U) − H(U |V X) for

sending U and another code R12 = H(W |UV ) − H(W |UV X) for sending W . The

corresponding channels are depicted in Figures 7.15, 7.16, 7.17 and 7.18.

U

ZS

Wc,U

Figure 7.15: Multiple Description Coding,
Terminal X: Channel for inner
code.

U

ZS

Ws,U

pXV |U X

Figure 7.16: Multiple Description Coding,
Terminal X: Channel for outer
code.

W

RT

Wc,W

pUV |W U, V

Figure 7.17: Multiple Description Coding,
Terminal Y: Channel for inner
code.

W

RT

Ws,W

pXUV |W X,U, V

Figure 7.18: Multiple Description Coding,
Terminal Y: Channel for outer
code.

7.8 Other Problems and Discussion

In this paper, we studied the main multi-terminal communication problems in

their simplest forms (e.g., no time sharing etc.). The approach of this paper can
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be extended to the more general formulations and to other similar problems. The

approach presented in this paper can also be extended to multiple user (more than

two) cases in a straightforward fashion. We briefly discuss the 3-user MAC as an

example. Consider a 3-user MAC with inputs W , X and Y and output Z. We have

seen in Section 7.4 that with rates RX = I(X;Y Z) and RY = I(Y ;Z), we can have

access to xN1 and yN1 at the decoder with high probability. The channels Ws,W and

Wc,W depicted in Figures 7.19 and 7.20 can be used to design a nested polar code of

rate RW = I(W ;Z|XY ) for terminal W .

W

SU

Ws

Figure 7.19: Three User MAC: Channel for
inner code.

W

SU

Wc

pXYZ|W Z

Figure 7.20: Three User MAC: Channel for
outer code.
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