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ABSTRACT

Combining Disparate Information for Machine Learning

by

Ko-Jen Hsiao

Chair: Alfred O. Hero

This thesis considers information fusion for four different types of machine learning

problems: anomaly detection, information retrieval, collaborative filtering and structure

learning for time series, and focuses on a common theme – the benefit to combining dis-

parate information resulting in improved algorithm performance.

In this dissertation, several new algorithms and applications to real-world datasets are

presented. In Chapter II, a novel approach called Pareto Depth Analysis (PDA) is pro-

posed for combining different dissimilarity metrics for anomaly detection. PDA is applied

to video-based anomaly detection of pedestrian trajectories. Following a similar idea, in

Chapter III we propose to use a similar Pareto Front method for a multiple-query informa-

tion retrieval problem when different queries represent different semantic concepts. Pareto

Front information retrieval is applied to multiple query image retrieval. In Chapter IV, we

extend a recently proposed collaborative retrieval approach to incorporate complementary

social network information, an approach we call Social Collaborative Retrieval (SCR). SCR

is applied to a music recommendation system that combines both user history and friend-

ship network information to improve recall and weighted recall performance. In Chapter V,

we propose a framework that combines time series data at different time scales and offsets

xii



for more accurate estimation of multiple precision matrices. We propose a general fused

graphical lasso approach to jointly estimate these precision matrices. The framework is

applied to modeling financial time series data.
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CHAPTER I

Introduction

1.1 Motivation

In this thesis we investigate the benefits of combining different types of information

in order to improve the performance of machine learning tasks. We also provide design

strategies to build systems that can utilize these different types of information. The idea

of fusing disparate information can arise in many different situations in machine learning.

Examples include: data collected from different modalities of sensors; fusion of totally dif-

ferent types of information such as a user’s past behaviors and social network information;

and how to find images which are simultaneously related to images of different semantic

concepts. These examples all require combining disparate types of information.

1.2 Background and Contributions

We motivate the thesis by considering several relevant types of machine learning prob-

lems. Firstly consider a multi-criteria anomaly detection problem in which different types

of information generate dissimilarities which must be combined to perform accurate de-

tection. Secondly consider a multiple-query image retrieval problem where different query

images are used to capture different semantic concepts that jointly form a query. On the

surface, these seem like inherently distinct problems in machine learning. However they

share a common characteristic: namely they both involve fusing disparate information in

1



order to accomplish a task, i.e., anomaly detection or image retrieval. Specifically, the

goals are to successfully aggregate different dissimilarity measures for anomaly detection

and different query images for better retrieval results.

Consider two other machine learning problems: collaborative retrieval and partial cor-

relation learning. For the collaborative retrieval problem, we combine behavioral and rela-

tional information simultaneously to increase the quality of retrieval results. In the partial

correlation learning problem, we propose a model that fuses precision matrices correspond-

ing to time series data at different time scales and offsets. These four problems all follow

the same theme of this thesis which is to combine disparate information. We briefly intro-

duce each of them and our contributions below.

1.2.1 Combining dissimilarities under different criteria

In Chapter II, we consider the problem of identifying patterns in a data set that exhibit

anomalous behavior, often referred to as anomaly detection. In most anomaly detection

algorithms, the dissimilarity between data samples is calculated by a single criterion, such

as Euclidean distance. However, in many application domains there may not exist a single

dissimilarity measure that captures all possible anomalous patterns. In such a case, mul-

tiple criteria can be defined, including non-metric criteria, and one can test for anomalies

by scalarizing the multiple criteria using a non-negative linear combination of them. If

the importance of the different criteria are not known in advance, as in many unsupervised

anomaly detection applications, the anomaly detection algorithm may need to be executed

multiple times with different choices of weights in the linear combination. In Chapter II, we

propose a method for non-parametric anomaly detection using a novel multi-criteria dis-

similarity measure, the Pareto depth. The proposed Pareto depth analysis (PDA) anomaly

detection algorithm uses the concept of Pareto optimality to detect anomalies under mul-

tiple criteria without having to run an algorithm multiple times with different choices of

weights. The proposed PDA approach scales linearly in the number of criteria and is prov-

ably better than using linear combinations of the criteria.

2



1.2.2 Retrieval for queries with different semantics

Following the same idea of the previous problem, we apply Pareto fronts to rank sam-

ples in a multiple-query information retrieval problem. We are particularly interested in

an image retrieval problem. Most content-based image retrieval systems consider either

one single query, or multiple queries that include the same object or represent the same

semantic information. In Chapter III, we consider the content-based image retrieval prob-

lem for multiple query images corresponding to different image semantics. We propose a

novel multiple-query information retrieval algorithm that combines the Pareto front method

(PFM) with efficient manifold ranking (EMR). We show that our proposed algorithm out-

performs state of the art multiple-query retrieval algorithms on real-world image databases.

We attribute this performance improvement to concavity properties of the Pareto fronts, and

also prove a theoretical result that characterizes the asymptotic concavity of the fronts and

is related to theoretical results in Chapter II.

1.2.3 Combining relational and behavioral information

In Chapter IV we focus on socially-aided recommendation systems. Recommender

systems have recently attracted significant interest and a number of studies have shown

that social information can dramatically improve a system’s predictions of user interests.

Meanwhile, there are now many potential applications that involve aspects of both recom-

mendation and information retrieval, and the task of collaborative retrieval—a combination

of these two traditional problems—has recently been introduced. Successful collaborative

retrieval requires overcoming severe data sparsity, making additional sources of informa-

tion, such as social graphs, particularly valuable.

In Chapter IV, we propose a new model for collaborative retrieval, and show that our al-

gorithm outperforms current state-of-the-art approaches by incorporating information from

social networks. We also provide empirical analyses of the ways in which cultural interests

propagate along a social graph using a real-world music dataset.

3



1.2.4 Fusion of multiscale time and spatial information

The last problem considered in this thesis is precision estimation for time series by

fusing information at different time scales and offsets. Note that the elements of the pre-

cision matrix have an interpretation in terms of partial correlations and therefore different

estimated precision matrices at different times can be viewed as a time-varying partial cor-

relation network. Partial correlation networks are commonly applied to financial markets,

where they can help to reveal graphical structure in historical equity prices. This structure

can be used in a variety of ways to analyze and understand market dynamics. However,

short-term correlation estimates tend to be noisy, while longer-term estimates are slow to

respond to potentially important changes, and often smooth out interesting behavior.

In Chapter V, we aim to combine the desirable properties of these two extremes by

performing joint estimation of precision matrices at multiple time scales and offsets, but

encouraging them to share a sparsity pattern via the general fused graphical lasso. We

develop the optimization machinery needed to fit our model to large data sets, and show

empirically that this technique allows us to estimate partial correlation networks more ro-

bustly and accurately on both synthetic data and real-world time series.

1.3 Outline of the thesis

The thesis is organized as follows. Chapter 2 presents research on multi-criteria anomaly

detection using Pareto depth analysis (PDA), which also motivates us to apply the Pareto

method on another multiple-query problem. Some theoretical results of Pareto fronts are

also presented in this chapter. In Chapter 3, we formulate a multiple-query retrieval prob-

lem in which queries might represent different semantic concepts and tackle this problem

by using Pareto depths to rank items. Chapter 4 addresses another interesting retrieval

problem which is a blend of recommendation, retrieval and social networks. In Chapter 5,

we present an approach to learn multiple precision matrices for time series at different time

scales and offsets.
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CHAPTER II

Multi-criteria Anomaly Detection using

Pareto Depth Analysis

2.1 Introduction

The first machine learning problem considered here is to combine disparate informa-

tion for anomaly detection. Identifying patterns of anomalous behavior in a data set, often

referred to as anomaly detection, is an important problem with diverse applications includ-

ing intrusion detection in computer networks, detection of credit card fraud, and medical

informatics [28, 50]. Many methods for anomaly detection have been developed using

both parametric and non-parametric approaches and typically involve the calculation of

dissimilarities between data samples using a single criterion, such as Euclidean distance.

However, in many application domains, such as those involving categorical data, it may

not be possible or practical to represent data samples in a geometric space in order to com-

pute Euclidean distances. Furthermore, multiple dissimilarity measures corresponding to

different criteria may be required to detect certain types of anomalies. For example, con-

sider the problem of detecting anomalous object trajectories in video sequences of different

lengths. Multiple criteria, such as dissimilarities in object speeds or trajectory shapes, can

be used to detect a greater range of anomalies than any single criterion. In order to perform

anomaly detection using these multiple criteria, one could first combine the dissimilarities

for each criterion using a non-negative linear combination then apply a (single-criterion)
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anomaly detection algorithm. However, in many applications, the importance of the differ-

ent criteria are not known in advance. In an unsupervised anomaly detection setting, it is

difficult to determine how much weight to assign to each criterion, so one may have to run

the anomaly detection algorithm multiple times using multiple choices of weights selected

by a grid search or similar method.

In this chapter we propose a novel non-parametric multi-criteria approach for unsu-

pervised anomaly detection using Pareto depth analysis (PDA). PDA uses the concept of

Pareto optimality, which is the typical method for defining optimality when there may be

multiple conflicting criteria for comparing items. An item is said to be Pareto-optimal if

there does not exist another item that is better or equal in all of the criteria. An item that

is Pareto-optimal is optimal in the usual sense under some combination, not necessarily

linear, of the criteria. Hence PDA is able to detect anomalies under multiple combinations

of the criteria without explicitly forming these combinations.

The PDA approach involves creating dyads corresponding to dissimilarities between

pairs of data samples under all of the criteria. Sets of Pareto-optimal dyads, called Pareto

fronts, are then computed. The first Pareto front (depth one) is the set of non-dominated

dyads. The second Pareto front (depth two) is obtained by removing these non-dominated

dyads, i.e. peeling off the first front, and recomputing the first Pareto front of those remain-

ing. This process continues until no dyads remain. In this way, each dyad is assigned to a

Pareto front at some depth (see Fig. 2.1 for illustration).

The Pareto depth of a dyad is a novel measure of dissimilarity between a pair of data

samples under multiple criteria. In an unsupervised anomaly detection setting, the majority

of the training samples are assumed to be nominal. Thus a nominal test sample would likely

be similar to many training samples under some criteria, so most dyads for the nominal test

sample would appear in shallow Pareto fronts. On the other hand, an anomalous test sample

would likely be dissimilar to many training samples under many criteria, so most dyads

for the anomalous test sample would be located in deep Pareto fronts. Thus computing

the Pareto depths of the dyads corresponding to a test sample can discriminate between
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Figure 2.1: (a) Illustrative example with 40 training samples (blue x’s) and 2 test samples
(red circle and triangle) in R2. (b) Dyads for the training samples (black dots) along with
first 20 Pareto fronts (green lines) under two criteria: |∆x| and |∆y|. The Pareto fronts
induce a partial ordering on the set of dyads. Dyads associated with the test sample marked
by the red circle concentrate around shallow fronts (near the lower left of the figure). (c)
Dyads associated with the test sample marked by the red triangle concentrate around deep
fronts.

nominal and anomalous samples.

Under the assumption that the multi-criteria dyads can be modeled as realizations from

a K-dimensional density, we provide a mathematical analysis of properties of the first

Pareto front relevant to anomaly detection. In particular, in the Scalarization Gap Theorem

we prove upper and lower bounds on the degree to which the Pareto fronts are non-convex.
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For any algorithm using non-negative linear combinations of criteria, non-convexities in the

Pareto fronts contribute to an artificially inflated anomaly score, resulting in an increased

false positive rate. Thus our analysis shows in a precise sense that PDA can outperform

any algorithm that uses a non-negative linear combination of the criteria. Furthermore, this

theoretical prediction is experimentally validated by comparing PDA to several state-of-

the-art anomaly detection algorithms in two experiments involving both synthetic and real

data sets. Finally, we note that the proposed PDA approach scales linearly in the num-

ber of criteria, which is a significant improvement compared to selecting multiple linear

combinations via a grid search, which scales exponentially.

The rest of Chapter II is organized as follows. We discuss related work in Section 2.2.

In Section 2.3 we provide an introduction to Pareto fronts and present a theoretical analysis

of the properties of the first Pareto front. Section 2.4 relates Pareto fronts to the multi-

criteria anomaly detection problem, which leads to the PDA anomaly detection algorithm.

Finally we present three experiments in Section 2.5 to provide experimental support for our

theoretical results and evaluate the performance of PDA for anomaly detection.

2.2 Related work

2.2.1 Multi-criteria methods for machine learning

Several machine learning methods utilizing Pareto optimality have previously been pro-

posed; an overview can be found in [63]. These methods typically formulate supervised

machine learning problems as multi-objective optimization problems over a potentially in-

finite set of candidate items where finding even the first Pareto front is quite difficult, often

requiring multi-objective evolutionary algorithms. These methods differ from our use of

Pareto optimality because we consider Pareto fronts created from a finite set of items, so

we do not need to employ sophisticated algorithms in order to find these fronts. Rather, we

utilize Pareto fronts to form a statistical criterion for unsupervised anomaly detection.

Finding the Pareto front of a finite set of items has also been referred to in the literature
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as the skyline query [15, 103] or the maximal vector problem [70]. Since research on

skyline queries is more related to our multiple-query retrieval problem in Chapter III, we

delay the discussion of skyline queries to next chapter (Section 3.2).

Hero and Fleury [48] introduced a method for gene ranking using multiple Pareto fronts

that is related to our approach. The method ranks genes, in order of interest to a biologist,

by creating Pareto fronts on the data samples, i.e. the genes. In this work, we consider

Pareto fronts of dyads, which correspond to dissimilarities between pairs of data samples

under multiple criteria rather than the samples themselves, and use the distribution of dyads

in Pareto fronts to perform multi-criteria anomaly detection rather than gene ranking.

Another related area is multi-view learning [12, 98], which involves learning from data

represented by multiple sets of features, commonly referred to as “views”. In such a case,

training in one view is assumed to help to improve learning in another view. The problem of

view disagreement, where samples take on different classes in different views, has recently

been investigated [30]. The views are similar to criteria in our problem setting. However,

in our setting, different criteria may be orthogonal and could even give contradictory in-

formation; hence there may be severe view disagreement. Thus training in one view could

actually worsen performance in another view, so the problem we consider differs from

multi-view learning. A similar area is that of multiple kernel learning [45], which is typi-

cally applied to supervised learning problems, unlike the unsupervised anomaly detection

setting we consider.

2.2.2 Anomaly detection

Many methods for anomaly detection have previously been proposed. Hodge and

Austin [50] and Chandola et al. [28] both provide extensive surveys of different anomaly

detection methods and applications. Nearest neighbor-based methods are related to the

proposed PDA approach. Byers and Raftery [21] proposed to use the distance between a

sample and its kth-nearest neighbor as the anomaly score for the sample; similarly, Angiulli

and Pizzuti [2] and Eskin et al. [38] proposed to the use the sum of the distances between
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a sample and its k nearest neighbors. Breunig et al. [18] used an anomaly score based

on the local density of the k nearest neighbors of a sample. Hero [47] and Sricharan and

Hero [100] introduced non-parametric adaptive anomaly detection methods using geomet-

ric entropy minimization, based on random k-point minimal spanning trees and bipartite

k-nearest neighbor (k-NN) graphs, respectively. Zhao and Saligrama [114] proposed an

anomaly detection algorithm k-LPE using local p-value estimation (LPE) based on a k-NN

graph. These k-NN anomaly detection schemes only depend on the data through the pairs

of data points (dyads) that define the edges in the k-NN graphs. All of the aforementioned

anomaly detection methods are designed for a single distance-based criterion, unlike the

PDA anomaly detection algorithm that we propose in this chapter, which accommodates

non-metric dissimilarities corresponding to multiple criteria.

2.3 Pareto depth analysis

Multi-criteria optimization and Pareto optimality have been studied in many application

areas in computer science, economics and the social sciences. An overview can be found

in [37]. The proposed PDA method in this Chapter utilizes the notion of Pareto optimality,

which we now introduce.

Consider the following problem: given n items, denoted by the set S, and K criteria

for evaluating each item, denoted by functions f1, . . . , fK , select x ∈ S that minimizes

[f1(x), . . . , fK(x)]. In most settings, it is not possible to find a single item x which simul-

taneously minimizes fi(x) for all i ∈ {1, . . . , K}. Many approaches to the multi-criteria

optimization problem reduce to combining all of the criteria into a single criterion, a pro-

cess often referred to as scalarization [37]. A common approach is to use a non-negative

linear combination of the fi’s and find the item that minimizes the linear combination. Dif-

ferent choices of weights in the linear combination yield different minimizers. In this case,

one would need to identify a set of optimal solutions corresponding to different weights

using, for example, a grid search.
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A more robust and powerful approach involves identifying the set of Pareto-optimal

items. An item x is said to strictly dominate another item x∗ if x is no greater than x∗ in

each criterion and x is less than x∗ in at least one criterion. This relation can be written as

x � x∗ if fi(x) ≤ fi(x
∗) for each i and fi(x) < fi(x

∗) for some i. The set of Pareto-optimal

items, called the Pareto front, is the set of items in S that are not strictly dominated by

another item in S. It contains all of the minimizers that are found using non-negative linear

combinations, but also includes other items that cannot be found by linear combinations.

Denote the Pareto front by F1, which we call the first Pareto front. The second Pareto front

can be constructed by finding items that are not strictly dominated by any of the remaining

items, which are members of the set S \ F1. More generally, define the ith Pareto front by

Fi = Pareto front of the set S \

(
i−1⋃
j=1

Fj

)
.

For convenience, we say that a Pareto front Fi is deeper than Fj if i > j.

2.3.1 Mathematical properties of Pareto fronts

The distribution of the number of points on the first Pareto front was first studied by

Barndorff-Nielsen and Sobel [7]. The problem has garnered much attention since. Bai

et al. [5] and Hwang and Tsai[56] provide good surveys of recent results. We will be

concerned here with properties of the first Pareto front that are relevant to the PDA anomaly

detection algorithm and have not yet been considered in the literature.

Let Y1, . . . , Yn be independent and identically distributed (i.i.d.) on Rd with density

function f : Rd → R, and let Fn denote the first Pareto front of Y1, . . . , Yn. In the gen-

eral multi-criteria optimization framework, the points Y1, . . . , Yn are the images in Rd of

n feasible solutions to some optimization problem under a vector of objective functions of

length d. In the context of multi-criteria anomaly detection, each point Yi is a dyad corre-

sponding to dissimilarities between two data samples under multiple criteria, and d = K

is the number of criteria. A common approach in multi-objective optimization is linear
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scalarization [37], which constructs a new single criterion as a non-negative linear combi-

nation of the d criteria. It is well-known, and easy to see, that linear scalarization will only

identify Pareto-optimal points on the boundary of the convex hull of

Gn :=
⋃
x∈Fn

(x+ Rd+),

where Rd+ = {x ∈ Rd | ∀i, xi ≥ 0}. Although this is a common motivation for Pareto

optimization methods, there are, to the best of our knowledge, no results in the literature

regarding how many points on the Pareto front are missed by scalarization. We present

such a result in this section, namely the Scalarization Gap Theorem.

We define

Ln =
⋃
α∈Rd

+

argmin
x∈Sn

{
d∑
i=1

αixi

}
, Sn = {Y1, . . . , Yn}.

The subset Ln ⊂ Fn contains all Pareto-optimal points that can be obtained by some

selection of of non-negative weights for linear scalarization. Let Kn denote the cardinality

of Fn, and let Ln denote the cardinality of Ln. When Y1, . . . , Yn are uniformly distributed

on the unit hypercube, Barndorff-Nielsen and Sobel [7] showed that

E(Kn) =
n

(d− 1)!

1∫
0

(1− x)n−1(− log x)d−1 dx,

from which one can easily obtain the asymptotics

E(Kn) =
(log n)d−1

(d− 1)!
+O((log n)d−2).

Many more recent works have studied the variance of Kn and have proven central limit

theorems for Kn. All of these works assume that Y1, . . . , Yn are uniformly distributed on

[0, 1]d. For a summary, see Bai et al. [5] and Hwang and Tsai [56]. Other works have

studied Kn for more general distributions on domains that have smooth “non-horizontal”
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boundaries near the Pareto front [8] and for multivariate normal distributions on Rd [57].

The “non-horizontal” condition excludes hypercubes. To the best of our knowledge there

are no results on the asymptotics of Kn for non-uniformly distributed points on the unit

hypercube. This is of great importance as it is impractical in multi-criteria optimization (or

anomaly detection) to assume that the coordinates of the points are independent. Typically

the coordinates of Yi ∈ Rd are the images of the same feasible solution under several

different criteria, which will not in general be independent.

Here we develop results on the size of the gap between the number of items Ln discov-

erable by scalarization compared to the number of itemsKn discovered on the Pareto front.

The larger the gap, the more suboptimal scalarization is relative to Pareto depth analysis.

Since x ∈ Ln if and only if x is on the boundary of the convex hull of Gn, the size of Ln

is related to the convexity (or lack thereof) of the Pareto front. There are several ways in

which the Pareto front can be non-convex. First, suppose that Y1, . . . , Yn are distributed on

some domain Ω ⊂ Rd with a continuous density function f : Ω→ R that is strictly positive

on Ω. Let T ⊂ ∂Ω be a portion of the boundary of Ω such that

inf
z∈T

min(ν1(z), . . . , νd(z)) > 0,

and

{y ∈ Ω : ∀i yi ≤ xi} = {x}, for all x ∈ T,

where ν : ∂Ω → Rd is the unit inward normal to ∂Ω. The conditions on T guarantee that

a portion of the first Pareto front will concentrate near T as n → ∞. If we suppose that T

is contained in the interior of the convex hull of Ω, then points on the portion of the Pareto

front near T cannot be obtained by linear scalarization, as they are on a non-convex portion

of the front. Such non-convexities are a direct result of the geometry of the domain Ω and

are depicted in Fig. 2.2a. In a preliminary version of this work, we studied the expectation

of the number of points on the Pareto front within a neighborhood of T (Theorem 1 in
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Figure 2.2: (a) Non-convexities in the Pareto front induced by the geometry of the domain
Ω. (b) Non-convexities due to randomness in the points. In each case, the larger points are
Pareto-optimal, and the large black points cannot be obtained by scalarization.

[53]). As a result, we showed that

E(Kn − Ln) ≥ γn
d−1
d +O(n

d−2
d ),

as n→∞, where γ is a positive constant given by

γ =
1

d
(d!)

1
d Γ

(
1

d

)∫
T

f(z)
d−1
d (ν1(z) · · · νd(z))

1
ddz.

It has recently come to our attention that a stronger result was proven previously by Barysh-

nikov and Yukich [8] in an unpublished manuscript.

In practice, it is unlikely that one would have enough information about f or Ω to

compute the constant γ. In this work, we instead study a second type of non-convexity in

the Pareto front. These non-convexities are strictly due to randomness in the positions of

the points and occur even when the domain Ω is convex (see Fig. 2.2b for a depiction of

such non-convexities). In the following, we assume that Y1, . . . , Yn are i.i.d. on the unit

hypercube [0, 1]d with a bounded density function f : [0, 1]d → Rd which is continuous at

the origin and strictly positive on [0, 1]d. Under these assumptions on f , it turns out that the

asymptotics of E(Kn) and E(Ln) are independent of f . Hence our results are applicable to

a wide range of problems without the need to know detailed information about the density
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f .

Our first result is

Theorem II.1. Assume f : [0, 1]d → [σ,M ] is continuous at the origin, and 0 < σ < M <

∞. Then

E(Kn) ∼ cn,d :=
(log n)d−1

(d− 1)!
as n→∞.

We give the proof of Theorem II.1 after some preliminary results. Our second result

concerns E(Ln). We are not able to get the exact asymptotics of E(Ln), so we provide

upper and lower asymptotic bounds.

Theorem II.2. Assume f : [0, 1]d → [σ,M ] is continuous at the origin, and 0 < σ < M <

∞. Then

d!
dd
cn,d + o((log n)d−1) ≤ E(Ln) ≤ 3d−1

4d−2
cn,d + o((log n)d−1)

as n→∞.

The proof of Theorem II.2 is also given after some preliminary results. Theorem II.2

provides a significant generalization of a previous result (Theorem 2 in [53]) that holds

only for uniform distributions in d = 2. Combining Theorems II.1 and II.2, we arrive at

our main result:

Theorem II.3 (Scalarization Gap Theorem). Assume f : [0, 1]d → [σ,M ] is continuous at

the origin, and 0 < σ < M <∞. Then

d−1
4d−2

cn,d + o((log n)d−1)

≤ E(Kn − Ln) ≤
(
1− d!

dd

)
cn,d + o((log n)d−1),

as n→∞.

The Scalarization Gap Theorem shows that the fraction of Pareto-optimal points that

cannot be obtained by linear scalarization is at least d−1
4d−2

. We provide experimental evi-

dence supporting these bounds in Section 2.5.1.
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2.3.2 Proofs

We first present a general result on the expectation of Kn. Let F : [0, 1]d → R denote

the cumulative distribution function of f , defined by

F (x) =

x1∫
0

· · ·
xd∫

0

f(y1, . . . , yd) dy1 · · · dyd.

Proposition II.4. For any n ≥ 1 we have

E(Kn) = n

∫
[0,1]d

f(x) (1− F (x))n−1 dx.

Proof. Let Ei be the event that Yi ∈ Fn and let χEi
be indicator random variables for Ei.

Then

E(Kn) = E

(
n∑
i=1

χEi

)
=

n∑
i=1

P (Ei) = nP (E1).

Conditioning on Y1 we obtain

E(Kn) = n

∫
[0,1]d

f(x)P (E1 |Y1 = x)dx.

Noting that P (E1 |Y1 = x) = (1− F (x))n−1 completes the proof.

The following simple proposition is essential in the proofs of Theorem II.1 and II.2:

Proposition II.5. Let 0 < δ ≤ 1 and a > 0. For a ≤ δ−d we have

n

∫
[0,δ]d

(1− ax1 · · ·xd)n−1 dx =
cn,d
a

+O((log n)d−2), (2.1)

and for a ≤ 1 we have

n

∫
[0,1]d\[0,δ]d

(1− ax1 · · ·xd)n−1 dx = O((log n)d−2). (2.2)
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Proof. We will give a sketch of the proof as similar results are well-known [5]. Assume

δ = 1 and let Qn denote the quantity on the left hand side of (2.1). Making the change of

variables yi = xi for i = 1, . . . , d− 1 and t = x1 · · · xd, we see that

Qn = n

1∫
0

1∫
t

1∫
t

yd−1

· · ·
1∫

t
y2···yd−1

(1− at)n−1

y1 · · · yd−1

dy1 · · · dyd−1dt.

By computing the inner d− 1 integrals we find that

Qn =
n

(d− 1)!

1∫
0

(− log t)d−1(1− at)n−1dt,

from which the asymptotics (2.1) can be easily obtained by another change of variables

u = nat, provided a ≤ 1. For 0 < δ < 1, we make the change of variables y = x/δ to find

that

Qn = δdn

∫
[0,1]d

(1− aδdy1 · · · yd)n−1 dy.

We can now apply the above result provided aδd ≤ 1. The asymptotics in (2.1) show that

n

∫
[0,1]d

(1− ax1 · · ·xd)n−1 dx

= n

∫
[0,δ]d

(1− ax1 · · ·xd)n−1 dx+O((log n)d−2),

when a ≤ 1, which gives the second result (2.2).

We now give the proof of Theorem II.1.
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Proof. Let ε > 0 and choose δ > 0 such that

f(0)− ε ≤ f(x) ≤ f(0) + ε for any x ∈ [0, δ]d,

and f(0) < δ−d. Since σ ≤ f ≤ M , we have that F (x) ≥ σx1 · · ·xd for all x ∈ [0, 1]d.

Since f is a probability density on [0, 1]d, we must have σ ≤ 1. Since σ > 0, we can apply

Proposition II.5 to find that

n

∫
[0,1]d\[0,δ]d

f(x)(1− F (x))n−1 dx

≤Mn

∫
[0,1]d\[0,δ]d

(1− σx1 · · ·xd)n−1 dx

= O((log n)d−2). (2.3)

For x ∈ [0, δ]d, we have

(f(0)− ε)x1 · · ·xd ≤ F (x) ≤ (f(0) + ε)x1 · · ·xd.

Combining this with Proposition II.5, and the fact that f(0)− ε < δ−d we have

n

∫
[0,δ]d

f(x)(1− F (x))n−1 dx

≤ (f(0) + ε)n

∫
[0,δ]d

(1− (f(0)− ε)x1 · · ·xd)n−1 dx

=
f(0) + ε

f(0)− ε
· cn,d +O((log n)d−2). (2.4)

Combining (2.3) and (2.4) with Proposition (II.4) we have

E(Kn) ≤ f(0) + ε

f(0)− ε
· cn,d +O((log n)d−2).
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It follows that

lim sup
n→∞

c−1
n,dE(Kn) ≤ f(0) + ε

f(0)− ε
.

By a similar argument we can obtain

lim inf
n→∞

c−1
n,dE(Kn) ≥ f(0)− ε

f(0) + ε
.

Since ε > 0 was arbitrary, we see that

lim
n→∞

c−1
n,dE(Kn) = 1.

The proof of Theorem II.2 is split into the following two lemmas. It is well-known, and

easy to see, that x ∈ Ln if and only if x ∈ Fn and x is on the boundary of the convex hull

of Gn [37]. This fact will be used in the proof of Lemma II.6.

Lemma II.6. Assume f : [0, 1]d → R is continuous at the origin and there exists σ,M > 0

such that σ ≤ f ≤M . Then

E(Ln) ≤ 3d− 1

4d− 2
· cn,d + o((log n)d−1) as n→∞.

Proof. Let ε > 0 and choose 0 < δ < 1
2

so that

f(0)− ε ≤ f(x) ≤ f(0) + ε for any x ∈ [0, 2δ]d, (2.5)

and 3f(0) ≤ δ−d. As in the proof of Proposition II.4 we have E(Ln) = nP (Y1 ∈ Ln), so

conditioning on Y1 we have

E(Ln) = n

∫
[0,1]d

f(x)P (Y1 ∈ Ln |Y1 = x) dx.
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As in the proof of Theorem II.1, we have

n

∫
[0,1]d\[0,δ]d

f(x)P (Y1 ∈ Ln |Y1 = x) dx

≤ n

∫
[0,1]d\[0,δ]d

f(x)(1− F (x))n−1 dx

= O((log n)d−2),

and hence

E(Ln) = n

∫
[0,δ]d

f(x)P (Y1 ∈ Ln |Y1 = x) dx

+O((log n)d−2). (2.6)

Fix x ∈ [0, δ]d and define A = {y ∈ [0, 1]d : ∀i, yi ≤ xi} and

Bi =

{
y ∈ [0, 1]d : ∀j 6= i, yj < xj

and xi < yi < 2xi −
xi
xj
yj

}
,

for i = 1, . . . , d, and note that Bi ⊂ [0, 2δ]d for all i. See Fig. 2.3 for an illustration of these

sets for d = 3.

We claim that if at least two of B1, . . . , Bd contain samples from Y2, . . . , Yn, and Y1 =

x, then Y1 6∈ Ln. To see this, assume without loss of generality thatB1 andB2 are nonempty

and let y ∈ B1 and z ∈ B2. Set

ỹ =

(
y1, 2x2 −

x2

x1

y1, x3, . . . , xd

)

z̃ =

(
2x1 −

x1

x2

z2, z2, x3, . . . , xd

)
.

By the definitions of B1 and B2 we see that yi ≤ ỹi and zi ≤ z̃i for all i, hence ỹ, z̃ ∈ Gn.
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Figure 2.3: Depiction of the sets B1, B2 and B3 from the proof of Lemma II.6 in the case
that d = 3.

Let α ∈ (0, 1) such that

αy1 + (1− α)

(
2x1 −

x1

x2

z2

)
= x1.

A short calculation shows that x = αỹ + (1− α)z̃ which implies that x is in the interior of

the convex hull of Gn, proving the claim.

LetE denote the event that at most one ofB1, . . . , Bd contains a sample from Y2, . . . , Yn,

and let F denote the event that A contains no samples from Y2, . . . , Yn. Then by the obser-

vation above we have

P (Y1 ∈ Ln |Y1 = x) ≤ P (E ∩ F |Y1 = x) = P (E ∩ F ). (2.7)

For i = 1, . . . , d, let Ei denote the event that Bi contains no samples from Y2, . . . , Yn. It is
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not hard to see that

E =
d⋃
i=1

(⋂
j 6=i

Ej \
⋂
j

Ej

)⋃(⋂
j

Ej

)
.

Furthermore, the events in the unions above are mutually exclusive (disjoint) and ∩jEj ⊂

∩j 6=iEj for i = 1, . . . , d. It follows that

P (E ∩ F )

=
d∑
i=1

(P (∩j 6=iEj ∩ F )− P (∩jEj ∩ F )) + P (∩jEj ∩ F )

=
d∑
i=1

P (∩j 6=iEj ∩ F )− (d− 1)P (∩jEj ∩ F )

=
d∑
i=1

1− F (x)−
∫

∪j 6=iBj

f(y) dy


n−1

− (d− 1)

1− F (x)−
∫
∪jBj

f(y) dy


n−1

. (2.8)

A simple computation shows that |Bj| = 1
d
x1 · · ·xd for j = 1, . . . , d. Since A,Bi ⊂

[0, 2δ]d, we have by (2.5) that

(f(0)− ε)x1 · · ·xd ≤ F (x) ≤ (f(0) + ε)x1 · · ·xd,

and
1

d
(f(0)− ε)x1 · · ·xd ≤

∫
Bj

f(y) dy ≤ 1

d
(f(0) + ε)x1 · · ·xd.
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Inserting these into (2.8) and combining with (2.7) we have

P (Y1 ∈ Ln |Y1 = x)

≤ d

(
1− 2d− 1

d
(f(0)− ε)x1 · · ·xd

)n−1

− (d− 1) (1− 2(f(0) + ε)x1 · · ·xd)n−1 .

We can now insert this into (2.6) and apply Proposition II.5 (since 3f(0) ≤ δ−d) to obtain

E(Ln) ≤
(

d2

2d− 1

f(0) + ε

f(0)− ε
− d− 1

2

f(0)− ε
f(0) + ε

)
cn,d

+O((log n)d−2).

Since ε > 0 was arbitrary, we find that

lim sup
n→∞

c−1
n,dE(Ln) ≤

(
d2

2d− 1
− d− 1

2

)
=

3d− 1

4d− 2
.

Lemma II.7. Assume f : [0, 1]d → R is continuous and there exists σ,M > 0 such that

σ ≤ f ≤M . Then

E(Ln) ≥ d!

dd
· cn,d + o((log n)d−1) as n→∞.

Proof. Let ε > 0 and choose 0 < δ < 1/d so that

f(0)− ε ≤ f(x) ≤ f(0) + ε for x ∈ [0, dδ]d, (2.9)

and
dd

d!
(f(0) + ε) ≤ δ−d. (2.10)
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As in the proof of Lemma II.6 we have

E(Ln) = n

∫
[0,δ]d

f(x)P (Y1 ∈ Ln |Y1 = x) dx

+O((log n)d−2). (2.11)

Fix x ∈ (0, δ)d, set ν =
(

1
x1
, . . . , 1

xd

)
and

A =
{
y ∈ [0, 1]d | y · ν ≤ x · ν

}
.

Note thatA is a simplex with an orthogonal corner at the origin and side lengths d·x1, . . . , d·

xd. A simple computation shows that |A| = dd

d!
x1 · · · xd. By (2.9) we have

∫
A

f(y) dy ≤ (f(0) + ε)|A| = dd

d!
(f(0) + ε)x1 · · · xd.

It is easy to see that if A is empty and Y1 = x then Y1 ∈ Ln, hence

P (Y1 ∈ Ln |Y1 = x) ≥

1−
∫
A

f(y) dy

n−1

≥
(

1− dd

d!
(f(0) + ε)x1 · · ·xd

)n−1

.

Inserting this into (2.11) and noting (2.10), we can apply Proposition II.5 to obtain

E(Ln) ≥ d!

dd
f(0)− ε
f(0) + ε

cn,d +O((log n)d−2),

and hence

lim sup
n→∞

c−1
n,dE(Ln) ≥ d!

dd
.
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2.4 Multi-criteria anomaly detection

We now formally define the multi-criteria anomaly detection problem. Assume that

a training set XN = {X1, . . . , XN} of unlabeled data samples is available. Given a test

sample X , the objective of anomaly detection is to declare X to be an anomaly if X is sig-

nificantly different from samples in XN . Suppose that K > 1 different evaluation criteria

are given. Each criterion is associated with a measure for computing dissimilarities. Denote

the dissimilarity betweenXi andXj computed using the dissimilarity measure correspond-

ing to the lth criterion by dl(i, j). Note that dl(i, j) need not be geometric; in particular

it is not necessary that dl(i, j) be a distance function over the sample space or that dl(i, j)

satisfy the triangle inequality.

We define a dyad between a pair of samples i ∈ {1, . . . , N} and j ∈ {1, . . . , N} \ i

by a vector Dij = [d1(i, j), . . . , dK(i, j)]T ∈ RK+ . There are in total
(
N
2

)
different dyads

for the training set. For convenience, denote the set of all dyads by D. By the definition

of strict dominance in Section 2.3, a dyad Dij strictly dominates another dyad Di∗j∗ if

dl(i, j) ≤ dl(i
∗, j∗) for all l ∈ {1, . . . , K} and dl(i, j) < dl(i

∗, j∗) for some l. The first

Pareto front F1 corresponds to the set of dyads from D that are not strictly dominated by

any other dyads from D. The second Pareto front F2 corresponds to the set of dyads from

D\F1 that are not strictly dominated by any other dyads fromD\F1, and so on, as defined

in Section 2.3. Recall that we refer to Fi as a deeper front than Fj if i > j.

2.4.1 Pareto fronts on dyads

For each sample Xn, there are N − 1 dyads corresponding to its connections with the

other N − 1 samples. Define the set of N − 1 dyads associated with Xn by Dn. If most

dyads in Dn are located at shallow Pareto fronts, then the dissimilarities between Xn and

the other N − 1 samples are small under some combination of the criteria. Thus, Xn is

likely to be a nominal sample. This is the basic idea of the proposed multi-criteria anomaly

detection method using PDA.
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We construct Pareto fronts F1, . . . ,FM of the dyads from the training set, where the

total number of fronts M is the required number of fronts such that each dyad is a member

of a front. When a test sample X is obtained, we create new dyads corresponding to

connections between X and training samples, as illustrated in Fig. 2.1. Similar to many

other anomaly detection methods, we connect each test sample to its k nearest neighbors.

k could be different for each criterion, so we denote kl as the choice of k for criterion l. We

create s =
∑K

l=1 kl new dyads, which we denote by the setDnew = {Dnew
1 , Dnew

2 , . . . , Dnew
s },

corresponding to the connections between X and the union of the kl nearest neighbors in

each criterion l. In other words, we create a dyad between X and Xi if Xi is among the

kl nearest neighbors1 of X in any criterion l. We say that Dnew
i is below a front Fj if

Dnew
i � D for some D ∈ Fj , i.e. Dnew

i strictly dominates at least a single dyad in Fj .

Define the Pareto depth of Dnew
i by

ei = min{j |Dnew
i is below Fj}.

Therefore if ei is large, then Dnew
i will be near deep fronts, and the distance between X and

the corresponding training sample will be large under all combinations of the K criteria.

If ei is small, then Dnew
i will be near shallow fronts, so the distance between X and the

corresponding training sample will be small under some combination of the K criteria.

2.4.2 Anomaly detection using Pareto depths

In k-NN based anomaly detection algorithms such as those mentioned in Section 2.2,

the anomaly score is a function of the k nearest neighbors to a test sample. With multi-

ple criteria, one could define an anomaly score by scalarization. From the probabilistic

properties of Pareto fronts discussed in Section 2.3.1, we know that Pareto optimization

methods identify more Pareto-optimal points than linear scalarization methods and signifi-

1If a training sample is one of the kl nearest neighbors in multiple criteria, then multiple copies of the
dyad corresponding to the connection between the test sample and the training sample are created.
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cantly more Pareto-optimal points than a single weight for scalarization2.

This motivates us to develop a multi-criteria anomaly score using Pareto fronts. We

start with the observation from Fig. 2.1 that dyads corresponding to a nominal test sam-

ple are typically located near shallower fronts than dyads corresponding to an anomalous

test sample. Each test sample is associated with s =
∑K

l=1 kl new dyads, where the ith

dyad Dnew
i has depth ei. The Pareto depth ei is a multi-criteria dissimilarity measure that

indicates the dissimilarity between the test sample and training sample i under multiple

combinations of the criteria. For each test sample X , we define the anomaly score v(X) to

be the mean of the ei’s, which corresponds to the average depth of the s dyads associated

with X , or equivalently, the average of the multi-criteria dissimilarities between the test

sample and its s nearest neighbors. Thus the anomaly score can be easily computed and

compared to a decision threshold ρ using the test

v(X) =
1

s

s∑
i=1

ei
H1

≷
H0

ρ.

Recall that the Scalarization Gap Theorem provides bounds on the fraction of dyads on

the first Pareto front that cannot be obtained by linear scalarization. Specifically, at least

K−1
4K−2

dyads will be missed by linear scalarization on average. These dyads will be asso-

ciated with deeper fronts by linear scalarization, which will artificially inflate the anomaly

score for the test sample, resulting in an increased false positive rate for any algorithm that

utilizes non-negative linear combinations of criteria. This effect then cascades to dyads in

deeper Pareto fronts, which also get assigned inflated anomaly scores. We provide some

evidence of this effect on a real data experiment in Section 2.5.3. Notice that when there

are only few training samples and few associated Pareto points for constructing fronts, the

anomaly scores defined above might be unstable. One possible way to overcome this prob-

lem is to use the median of the ei’s instead of the mean as the anomaly score. Finally, the

2Theorems II.1 and II.2 require i.i.d. samples, but dyads are not independent. However, there are O(N2)
dyads, and each dyad is only dependent on O(N) other dyads. This suggests that the theorems should also
hold for the non-i.i.d. dyads as well, and it is supported by experimental results presented in Section 2.5.1.
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Training phase:
1: for l = 1→ K do
2: Calculate pairwise dissimilarities dl(i, j) between all training samples Xi and Xj

3: end for
4: Create dyads Dij = [d1(i, j), . . . , dK(i, j)] for all training samples
5: Construct Pareto fronts on set of all dyads until each dyad is in a front

Testing phase:
1: nb← [ ] {empty list}
2: for l = 1→ K do
3: Calculate dissimilarities between test sample X and all training samples in criterion

l
4: nbl ← kl nearest neighbors of X
5: nb← [nb, nbl] {append neighbors to list}
6: end for
7: Create s =

∑K
l=1 kl new dyads Dnew

i between X and training samples in nb
8: for i = 1→ s do
9: Calculate depth ei of Dnew

i

10: end for
11: Declare X an anomaly if v(X) = (1/s)

∑s
i=1 ei > σ

Figure 2.4: Pseudocode for PDA anomaly detection algorithm.

lower bound increases monotonically in K, which implies that the PDA approach gains

additional advantages over linear combinations as the number of criteria increases.

2.4.3 PDA anomaly detection algorithm

Pseudocode for the PDA anomaly detector is shown in Fig. 2.4. The training phase

involves creating
(
N
2

)
dyads corresponding to all pairs of training samples. Computing

all pairwise dissimilarities in each criterion requires O(mKN2) floating-point operations

(flops), where m denotes the number of dimensions involved in computing a dissimilarity.

The Pareto fronts are constructed by non-dominated sorting. We use the non-dominated

sort of Deb et al. Deb et al. [36] that constructs all of the Pareto fronts using O(KN4)

comparisons in the worst case, which is linear in the number of criteria K. For large N ,

the algorithm of Jensen Jensen [59] may be a faster alternative, using O(N2 logK−1N2)

comparisons in the worst case. Note that the number of training samples might affect the

PDA algorithm. If the number of training dyads is small, the variance of constructed Pareto
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fronts might be high. For sensitivity analysis of fronts using finite dyads, we refer readers

to the work [22, 23] by Jeff Calder, one of the main collaborators of this work.

The testing phase involves creating dyads between the test sample and the kl nearest

training samples in criterion l, which requires O(mKN) flops. For each dyad Dnew
i , we

need to calculate the depth ei. This involves comparing the test dyad with training dyads

on multiple fronts until we find a training dyad that is dominated by the test dyad. ei is

the front that this training dyad is a part of. Using a binary search to select the front and

another binary search to select the training dyads within the front to compare to, we need

to make O(K log2N) comparisons (in the worst case) to compute ei. The anomaly score

is computed by taking the mean of the s ei’s corresponding to the test sample; the score is

then compared against a threshold ρ to determine whether the sample is anomalous.

To handle multiple criteria, other anomaly detection methods, such as the ones men-

tioned in Section 2.2, need to be re-executed multiple times using different (non-negative)

linear combinations of the K criteria. If a grid search is used for selection of the weights

in the linear combination, then the required computation time would be exponential in K.

Such an approach presents a computational problem unless K is very small. On the other

hand, PDA scales linearly with K in both the training and test phases so it does not en-

counter this problem.

2.4.4 Selection of parameters

The parameters to be selected in PDA are k1, . . . , kK , which denote the number of near-

est neighbors in each criterion. The selection of such parameters in unsupervised learning

problems is very difficult in general. For each criterion l, we construct a kl-NN graph using

the corresponding dissimilarity measure. We construct symmetric kl-NN graphs, i.e. we

connect samples i and j if i is one of the kl nearest neighbors of j or j is one of the kl near-

est neighbors of i. We choose kl = logN as a starting point and, if necessary, increase kl

until the kl-NN graph is connected. This method of choosing kl is motivated by asymptotic

results for connectivity in k-NN graphs and has been used as a heuristic in other unsuper-
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vised learning problems, such as spectral clustering [107]. We find that this heuristic works

well in practice, including on a real data set of pedestrian trajectories, which we present in

Section 2.5.3.

2.5 Experiments

We first present an experiment involving the scalarization gap for dyads (rather than

i.i.d. samples). Then we compare the PDA method with four nearest neighbor-based single-

criterion anomaly detection algorithms mentioned in Section 2.2 on a simulated data set

and a real data set. The four algorithms we present for comparison utilize the following

anomaly scores:

• kNN: distance to the kth nearest neighbor [21].

• kNN sum: sum of the distances to the k nearest neighbors [2, 38].

• LOF: local density of the k nearest neighbors [18].

• k-LPE: localized p-value estimate using the k nearest neighbors [114].

For these methods, we use linear combinations of the criteria with different weights (linear

scalarization) to compare performance with the proposed multi-criteria PDA method.

2.5.1 Scalarization gap for dyads

Independence of Y1, . . . , Yn is built into the assumptions of Theorems II.1 and II.2, and

thus, the Scalarization Gap Theorem, but it is clear that dyads (as constructed in Section

2.4) are not independent. Each dyad Dij represents a connection between two independent

samplesXi andXj . For a given dyadDij , there are 2(N−2) corresponding dyads involving

Xi or Xj , and these are clearly not independent from Dij . However, all other dyads are

independent from Dij . So while there are O(N2) dyads, each dyad is independent from

all other dyads except for a set of size O(N). Since the Scalarization Gap Theorem is an
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Figure 2.5: (a) 990 dyads constructed with the criteria |∆x|, |∆y| from 45 samples uni-
formly distributed in [0, 1]2. (b) Sample means for Kn − Ln versus number of dyads. Note
the expected logarithmic growth. The dotted lines indicate the best fit curves described in
this section.

asymptotic result, the above observation suggests it should hold for the dyads even though

they are not i.i.d. In this subsection we present some experimental results which suggest

that the Scalarization Gap Theorem does indeed hold for dyads.

We first draw samples uniformly in [0, 1]2 and construct dyads corresponding to the

two criteria |∆x| and |∆y|, which denote the absolute differences between the x and y

coordinates, respectively. The domain of the resulting dyads is again the box [0, 1]2, as

shown in Fig. 2.5a. In this case, the Scalarization Gap Theorem suggests that E(Kn −Ln)

should grow logarithmically. Fig. 2.5b shows the sample means of Kn−Ln versus number

of dyads and a best fit logarithmic curve of the form y = α log n, where n =
(
N
2

)
denotes

the number of dyads. We vary the number of dyads between 106 to 109 in increments of

106 and compute the size of Kn−Ln after each increment. We compute the sample means

over 1, 000 realizations. A linear regression on y/ log n versus log n gives α = 0.3142,

which falls in the range specified by the Scalarization Gap Theorem.

We next explore the dependence of Kn − Ln on the dimension d. Here, we generate

100, 128 dyads (corresponding to N = 448 points in [0, 1]d) in the same way as before, for

dimensions d = 2, . . . , 7. The criteria in this case correspond to the absolute differences in
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Figure 2.6: (a) Sample means forKn−Ln versus dimension and (b) (Kn−Ln)/cn,d versus
dimension for n = 100, 128 dyads. The upper and lower bounds onE(Kn−Ln) established
in the Scalarization Gap Theorem are given by the dotted lines in (a). Observing (b), we see
that the fraction of points that cannot be obtained through linear scalarization is increasing,
possibly to 1, as the dimension increases. We are only able to run the experiment up to
dimension d = 7 due to the computational complexity of computing a convex hull, which
is O

(
nd/2

)
.

each dimension. Fig. 2.6a shows the sample means for Kn − Ln versus the dimension d

along with the asymptotic upper and lower bounds for E(Kn − Ln) derived in the Scalar-

ization Gap Theorem (shown as dotted lines). We see from the figure that the upper bound

is reasonably tight. Recall from Theorem II.1 that

E(Kn) ∼ cn,d =
(log n)d−1

(d− 1)!
as n→∞.

In Fig. 2.6b we plot E(Kn − Ln)/cn,d versus dimension to show the fraction of Pareto-

optimal points that cannot be obtained by scalarization. Based on the figure, one might

conjecture that this fraction converges to 1 as d → ∞. If this is true, it would essentially

imply that linear scalarization is useless for identifying dyads on the first Pareto front when

there are a large number of criteria. As before, we compute the sample means over 1, 000

realizations of the experiment.
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2.5.2 Simulated experiment with categorical attributes

In this experiment, we perform multi-criteria anomaly detection on simulated data with

multiple groups of categorical attributes. These groups could represent different types of

attributes. Each data sample consists of K groups of 20 categorical attributes. Let Aij

denote the jth attribute in group i, and let nij denote the number of possible values for

this attribute. We randomly select between 6 and 10 possible values for each attribute with

equal probability independent of all other attributes. Each attribute is a random variable

described by a categorical distribution, where the parameters q1, . . . , qnij
of the categorical

distribution are sampled from a Dirichlet distribution with parameters α1, . . . , αnij
. For a

nominal data sample, we set α1 = 5 and α2, . . . , αnij
= 1 for each attribute j in each group

i.

To simulate an anomalous data sample, we randomly select a group iwith probability pi

for which the parameters of the Dirichlet distribution are changed to α1 = · · · = αnij
= 1

for each attribute j in group i. Note that different anomalous samples may differ in the

group that is selected. The pi’s are chosen such that pi/pj = i/j with
∑K

i=1 pi = 0.5, so

that the probability that a test sample is anomalous is 0.5. The non-uniform distribution on

the pi’s results in some criteria being more useful than others for identifying anomalies. The

K criteria for anomaly detection are taken to be the dissimilarities between data samples for

each of the K groups of attributes. For each group, we calculate the dissimilarity over the

attributes using a dissimilarity measure for anomaly detection on categorical data proposed

in Eskin et al. [38]3.

We draw 400 training samples from the nominal distribution and 400 test samples from

a mixture of the nominal and anomalous distributions. We use k = 6 nearest neighbors in

all cases. For the single-criterion algorithms, which we use as baselines for comparison,

we use linear scalarization with multiple choices of weights. Since a grid search scales

exponentially with the number of criteria K and is computationally intractable even for

3We obtain similar results with several other dissimilarity measures for categorical data, including the
Goodall2 and IOF measures described in the survey paper by Boriah et al. Boriah et al. [14].
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Figure 2.7: AUC of PDA compared to AUCs of single-criterion methods for the simu-
lated experiment. The single-criterion methods use 600 randomly sampled weights for
linear scalarization, with weights ordered from worst choice of weights (left) to best choice
(right) in terms of maximizing AUC. The proposed PDA algorithm is a multi-criteria algo-
rithm that does not require selecting weights. PDA outperforms all of the single-criterion
methods, even for the best choice of weights, which is not known in advance.

moderate values of K, we instead uniformly sample weights from the (K−1)-dimensional

simplex. In other words, we sample weights from a uniform distribution over all convex

combinations of K criteria. Since PDA scales linearly in K, we uniformly sample 100K

weights to present a fair comparison.

The different methods are evaluated using the receiver operating characteristic (ROC)

curve and the area under the ROC curve (AUC). We first fix the number of criteria K to

be 6. The mean AUCs over 100 simulation runs are shown in Fig. 2.7. Multiple choices

of weights are used for linear scalarization for the single-criterion algorithms; the results

are ordered from worst to best weight in terms of maximizing AUC. Table 2.1 presents a

comparison of the AUC for PDA with the median and best AUCs over all choices of weights

for scalarization. Both the mean and standard error of the AUCs over the 100 simulation

runs are shown. Notice that PDA outperforms even the best weighted combination for

each of the four single-criterion algorithms and significantly outperforms the combination

resulting in the median AUC.
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Table 2.1: Comparison of AUCs for both anomaly detection experiments. Best performer
is shown in bold. PDA does not use weights so it has a single AUC. The median and best
AUCs over all choices of weights are shown for the other methods.

Method
Simulated experiment Pedestrian

Median Best Median Best
PDA 0.885 ± 0.002 0.933
k-NN 0.749 ± 0.002 0.872 ± 0.002 0.891 0.905

k-NN sum 0.747 ± 0.002 0.870 ± 0.002 0.881 0.912
LOF 0.749 ± 0.002 0.859 ± 0.002 0.779 0.929

k-LPE 0.744 ± 0.002 0.867 ± 0.002 0.881 0.912

Next we investigate the performance gap between PDA and scalarization as the number

of criteria K varies from 2 to 10. The four single-criterion algorithms perform roughly

equally, so we show scalarization results only for LOF. The ratio of the AUC for PDA

to the AUCs of the best and median weights for scalarization are shown in Fig. 2.8. PDA

offers a significant improvement compared to the median over the weights for scalarization.

For small values of K, PDA performs roughly equally with scalarization under the best

choice of weights. As K increases, however, PDA clearly outperforms scalarization, and

the gap grows with K. We believe this is partially due to the inadequacy of scalarization

for identifying Pareto fronts as described in the Scalarization Gap Theorem and partially

due to the difficulty in selecting optimal weights for the criteria. A grid search may be able

to reveal better weights for scalarization, but it is also computationally intractable. Thus

we conclude that PDA is clearly the superior approach for large K.

2.5.3 Pedestrian trajectories

We now present an experiment on a real data set that contains thousands of pedestrians’

trajectories in an open area monitored by a video camera [82]. We represent a trajectory

with p time samples by

T =

x1 x2 . . . xp

y1 y2 . . . yp

 ,
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Figure 2.8: The ratio of the AUC for PDA compared to the best and median AUCs of
scalarization using LOF as the number of criteria K is varied in the simulation experiment.
100K choices of weights uniformly sampled from the (K − 1)-dimensional simplex are
chosen for scalarization. PDA perfoms significantly better than the median over all weights
for all K. For K > 4, PDA outperforms the best weights for scalarization, and the margin
increases as K increases.

where [xt, yt] denote a pedestrian’s position at time step t. The pedestrian trajectories are

of different lengths so we cannot simply treat the trajectories as vectors in Rp and calculate

Euclidean distances between them. Instead, we propose to calculate dissimilarities between

trajectories using two separate criteria for which trajectories may be dissimilar.

The first criterion is to compute the dissimilarity in walking speed. We compute the

instantaneous speed at all time steps along each trajectory by finite differencing, i.e. the

speed of trajectory T at time step t is given by
√

(xt − xt−1)2 + (yt − yt−1)2. A his-

togram of speeds for each trajectory is obtained in this manner. We take the dissimilar-

ity between two trajectories S and T to be the Kullback-Leibler (K-L) divergence between

the normalized speed histograms for those trajectories. K-L divergence is a commonly

used measure of the difference between two probability distributions. The K-L divergence

is asymmetric; to convert it to a dissimilarity we use the symmetrized K-L divergence

DKL(S||T ) + DKL(T ||S) as originally defined by Kullback and Leibler [69]. We note

that, while the symmetrized K-L divergence is a dissimilarity, it does not, in general, sat-
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(a) (b)

Figure 2.9: (a) Some anomalous pedestrian trajectories detected by PDA. (b) Trajectories
with relatively low anomaly scores. The two criteria used are walking speed and trajectory
shape. Anomalous trajectories could have anomalous speeds or shapes (or both), so some
anomalous trajectories may not look anomalous by shape alone.

isfy the triangle inequality and is not a metric.

The second criterion is to compute the dissimilarity in shape. To calculate the shape

dissimilarity between two trajectories, we apply a technique known as dynamic time warp-

ing (DTW) [94], which first non-linearly warps the trajectories in time to match them in an

optimal manner. We then take the dissimilarity to be the summed Euclidean distance be-

tween the warped trajectories. This dissimilarity also does not satisfy the triangle inequality

in general and is thus not a metric.

The training set for this experiment consists of 500 randomly sampled trajectories from

the data set, a small fraction of which may be anomalous. The test set consists of 200

trajectories (150 nominal and 50 anomalous). The trajectories in the test set are labeled

as nominal or anomalous by a human watching each individual trajectory. These labels

are used as ground truth to evaluate anomaly detection performance. Fig. 2.9 shows some

anomalous trajectories and nominal trajectories detected using PDA.

Fig. 2.10 shows the performance of PDA as compared to the other algorithms using 100

uniformly spaced weights for convex combinations. Again, we use k = 6 neighbors in all

cases. Notice that PDA has higher AUC than the other methods under all choices of weights
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Figure 2.10: AUC of PDA compared to AUCs of single-criterion methods for the pedestrian
trajectories experiment. The single-criterion methods use linear scalarization with 100
uniformly spaced weights; weights are ordered from worst (left) to best (right) in terms
of maximizing AUC. PDA outperforms all of the single-criterion methods, even for the
best choice of weights.

for the two criteria. The AUC for PDA is shown in Table 2.1 along with AUCs for the

median and best choices of weights for the single-criterion methods. For the best choice of

weights, LOF is the single-criterion method with the highest AUC, but it also has the lowest

AUC for poor choices of weights. For a more detailed comparison, the ROC curve for PDA

and the attainable region for LOF (the region between the ROC curves corresponding to

weights resulting in the best and worst AUCs) is shown in Fig. 2.11. Note that the ROC

curve for LOF can vary significantly based on the choice of weights. In the unsupervised

setting, it is unlikely that one would be able to achieve the ROC curve corresponding to

the weight with the highest AUC, so the expected performance gap between PDA and

scalarization should be larger, as seen from the median AUCs in Table 2.1.

Many of the Pareto fronts on the dyads are non-convex, partially explaining the superior

performance of the proposed PDA algorithm. The non-convexities in the Pareto fronts lead

to inflated anomaly scores for linear scalarization. A comparison of a Pareto fronts with

two convex fronts (obtained by scalarization) is shown in Fig. 2.12. The two convex fronts
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Figure 2.11: ROC curves for PDA and attainable region for LOF over 100 choices of
weights for the pedestrian trajectories experiment. The attainable region denotes the possi-
ble ROC curves for LOF corresponding to different choices of weights for linear scalariza-
tion. The ROCs for linear scalarization vary greatly as a function of the weights yet even
the best weights do not outperform the ROC of the proposed PDA method.

denote the shallowest and deepest convex fronts containing dyads on the illustrated Pareto

front. The test samples associated with dyads near the middle of the Pareto fronts would

suffer the aforementioned score inflation, as they would be found in deeper convex fronts

than those at the tails. More examples showing how non-convexity property of Pareto fronts

would affect the results are shown in the next chapter.

Finally we note that the proposed PDA algorithm does not appear to be very sensitive

to the choices of the number of neighbors, as shown in Fig. 2.13. In fact, the heuristic

proposed for choosing the kl’s in Section 2.4.4 performs quite well in this experiment.

Specifically, the AUC obtained when using the parameters chosen by the proposed heuristic

is very close to the maximum AUC over all choices of the number of neighbors [k1, k2].

2.6 Conclusion

In this chapter we proposed a method for anomaly detection using a novel multi-criteria

dissimilarity measure, the Pareto depth. The proposed method utilizes the notion of Pareto
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Figure 2.12: Comparison of a Pareto front (solid red line) on dyads (gray dots) with convex
fronts (blue dashed lines) obtained by linear scalarization. The dyads towards the middle of
the Pareto front are found in deeper convex fronts than those towards the edges. The result
would be inflated anomaly scores for the samples associated with the dyads in the middle
of the Pareto fronts when using linear scalarization.

optimality to detect anomalies under multiple criteria by examining the Pareto depths of

dyads corresponding to the test sample. Dyads corresponding to an anomalous sample

tended to be located at deeper fronts compared to dyads corresponding to a nominal sample.

Instead of choosing a specific weighting or performing a grid search on the weights for dis-

similarity measures corresponding to different criteria, the proposed method can efficiently

detect anomalies in a manner that scales linearly in the number of criteria. The proposed

Pareto depth analysis (PDA) approach is provably better than using linear combinations

of criteria. Numerical studies validated our theoretical predictions of PDA’s performance

advantages compared to using linear combinations on simulated and real data.
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CHAPTER III

Pareto-depth for Multiple-query Image Retrieval

3.1 Introduction

In this chapter we continue to use the idea of multiple Pareto fronts introduced in Chap-

ter II on a fundamentally different problem – multiple-query image retrieval. In this prob-

lem different information come from different queries. In the past two decades content-

based image retrieval (CBIR) has become an important problem in machine learning and

information retrieval [42, 44, 106]. Several image retrieval systems for multiple queries

have been proposed in the literature [3, 10, 62]. In most systems, each query image corre-

sponds to the same image semantic concept, but may possibly have a different background,

be shot from an alternative angle, or contain a different object in the same class. The idea

is that by utilizing multiple queries of the same object, the performance of single-query re-

trieval can be improved. We will call this type of multiple-query retrieval single-semantic-

multiple-query retrieval. Many of the techniques for single-semantic-multiple-query re-

trieval involve combining the low-level features from the query images to generate a single

averaged query [3].

In this chapter we consider the more challenging problem of finding images that are

relevant to multiple queries that represent different image semantics. In this case, the goal

is to find images containing relevant features from each and every query. Since the queries

correspond to different semantics, desirable images will contain features from several dis-
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tinct images, and will not necessarily be closely related to any individual query. This makes

the problem fundamentally different from single query retrieval, and from single-semantic-

multiple-query retrieval. In this case, the query images will not have similar low level

features, and forming an averaged query is not as useful.

Since relevant images do not necessarily have features closely aligned with any par-

ticular query, many of the standard retrieval techniques are not useful in this context. For

example, bag-of-words type approaches, which may seem natural for this problem, require

the target image to be closely related to several of the queries. Another common technique

is to input each query one at a time and average the resulting similarities. This tends to

produce images closely related to one of the queries, but rarely related to all at once. Many

other multiple-query retrieval algorithms are designed specifically for the single-semantic-

multiple-query problem [3], and again tend to find images related to only one, or a few, of

the queries.

Multiple-query retrieval is related to the metasearch problem in computer science. In

metasearch, the problem is to combine search results for the same query across multiple

search engines. This is similar to the single-semantic-multiple-query problem in the sense

that every search engine is issuing the same query (or semantic). Thus, metasearch al-

gorithms are not suitable in the context of multiple-query retrieval with several distinct

semantics.

In this chapter, we propose a novel algorithm for multiple-query image retrieval that

combines the Pareto front method (PFM) with efficient manifold ranking (EMR). The first

step in our PFM algorithm is to issue each query individually and rank all samples in

the database based on their dissimilarities to the query. Several methods for computing

representations of images, like SIFT and HoG, have been proposed in the computer vision

literature, and any of these can be used to compute the image dissimilarities. Since it is

very computationally intensive to compute the dissimilarities for every sample-query pair in

large databases, we use a fast ranking algorithm called Efficient Manifold Ranking (EMR)

[112] to compute the ranking without the need to consider all sample-query pairs. EMR can
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efficiently discover the underlying geometry of the given database and significantly reduces

the computational time of traditional manifold ranking. Since EMR has been successfully

applied to single query image retrieval, it is the natural ranking algorithm to consider for

the multiple-query problem. The next step in our PFM algorithm is to use the ranking

produced by EMR to create Pareto points, which correspond to dissimilarities between

a sample and every query. Sets of Pareto-optimal points, called Pareto fronts, are then

computed. Recall that we have introduced Pareto fronts in previous chapter. In Chapter II,

a Pareto point corresponds to different dissimilarities between two samples. In other words

one Pareto point corresponds to a pair of samples. However, in this chapter one Pareto point

corresponds to one sample. Once we create Pareto points, we apply the same procedure,

non-dominated sorting, to construct multiple Pareto fronts as in Chapter II.

Query 1

Query 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Query 1 1 2 3 4 5

12

Query 1

Query 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

12

109876
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Query 21514131211

Figure 3.1: Images located on the first Pareto front when a pair of query images are is-
sued. Images from the middle part of the front (images 10, 11 and 12) contain semantic
information from both query images. The images are from Stanford 15 scene dataset.

A key observation in this work is that the middle of the Pareto front is of fundamental
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importance for the multiple-query retrieval problem. As an illustrative example, we show in

Figure 3.1 the images from the first Pareto front for a pair of query images corresponding to

a forest and a mountain. The images are listed according to their position within the front,

from one tail to the other. The images located at the tails of the front are very close to one

of the query images, and may not necessarily have any features in common with the other

query. However, as seen in Figure 3.1, images in the middle of the front (e.g., images 10,

11 and 12) contain relevant features from both queries, and hence are very desirable for the

multiple-query retrieval problem. It is exactly these types of images that our algorithm is

designed to retrieve.

The Pareto front method is well-known to have many advantages when the Pareto fronts

are non-convex [37]. We have presented some theoretical results about Pareto fronts in

Chapter II. In this chapter, we present a new theorem that characterizes the asymptotic

convexity (and lack thereof) of Pareto fronts as the size of the database becomes large. This

result is based on establishing a connection between Pareto fronts and chains in partially

ordered finite set theory. The connection is as follows: a data point is on the Pareto front

of depth n if and only if it admits a maximal chain of length n. This connection allows us

to utilize results from the literature on the longest chain problem, which has a long history

in probability and combinatorics. Our main result (Theorem III.3) shows that the Pareto

fronts are asymptotically convex when the dataset can be modeled as i.i.d. random variables

drawn from a continuous separable log-concave density function f : [0, 1]d → (0,∞).

This theorem suggests that our proposed algorithm will be particularly useful when the

underlying density is not log-concave. We give some numerical evidence (see Figure 3.2b)

indicating that the underlying density is typically not even quasi-concave. This helps to

explain the performance improvement obtained by our proposed Pareto front method.

We also note that our PFM algorithm could be applied to automatic image annotation of

large databases. Here, the problem is to automatically assign keywords, classes or caption-

ing to images in an unannotated or sparsely annotated database. Since images in the middle

of first few Pareto fronts are relevant to all queries, one could issue different query combi-
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nations with known class labels or other metadata, and automatically annotate the images

in the middle of the first few Pareto fronts with the metadata from the queries. This pro-

cedure could, for example, transform a single-class labeled image database into one with

multi-class labels. Some major works and introductions to automatic image annotation can

be found in [27, 60, 92].

The rest of this chapter is organized as follows. We discuss related work in Section

3.2. In Section 3.3, we introduce the Pareto front method and present a theoretical analysis

of the convexity properties of Pareto fronts. In Section 3.4 we show how to apply the

Pareto front method (PFM) to the multiple-query retrieval problem and briefly introduce

Efficient Manifold Ranking. Finally, in Section 3.5 we present experimental results and

demonstrate a graphical user interface (GUI) that allows the user to explore the Pareto

fronts and visualize the partially ordered relationships between the queries and the images

in the database.

3.2 Related work

3.2.1 Content-based image retrieval

Content-based image retrieval (CBIR) has become an important problem over the past

two decades. Overviews can be found in [34, 77]. A popular image retrieval system is

query-by-example (QBE) [49, 120], which retrieves images relevant to one or more queries

provided by the user. In order to measure image similarity, many sophisticated color and

texture feature extraction algorithms have been proposed; an overview can be found in

[34, 77]. SIFT [78] and HoG [32] are two of most well-known and widely used feature

extraction techniques in computer vision research. Several CBIR techniques using multi-

ple queries have been proposed [3, 62]. Some methods combine the queries together to

generate a query center, which is then modified with the help of relevance feedback. Other

algorithms issue each query individually to introduce diversity and gather retrieved items

scattered in visual feature space [62].
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The problem of ranking large databases with respect to a similarity measure has drawn

great attention in the machine learning and information retrieval fields. Many approaches

to ranking have been proposed, including learning to rank [20, 76], content-based rank-

ing models (BM25, Vector Space Model), and link structure ranking model [19]. Manifold

ranking [116, 117] is an effective ranking method that takes into account the underlying ge-

ometrical structure of the database. Xu et al. [112] introduced an algorithm called Efficient

Manifold Ranking (EMR) which uses an anchor graph to do efficient manifold ranking that

can be applied to large-scale datasets. In this work, we use EMR to assign a rank to each

sample with respect to each query before applying our Pareto front method.

3.2.2 Pareto method

As mentioned in Chapter II, there is wide use of Pareto-optimality in the machine learn-

ing community [63]. Many of these methods must solve complex multi-objective optimiza-

tion problems, where finding even the first Pareto front is challenging. Like that in Chapter

II, our use of Pareto-optimality differs as we generate multiple Pareto fronts from a finite

set of items, and as such we do not require sophisticated methods to compute the fronts.

In Section 2.2, we have mentioned that the first Pareto front, which consists of the

set of non-dominated points, is often called the Skyline in computer science. We give

a brief introduction to Skyline here. Several sophisticated and efficient algorithms have

been developed for computing the Skyline [15, 68, 88, 103]. Various Skyline techniques

have been proposed for different applications in large-scale datasets, such as multi-criteria

decision making, user-preference queries, and data mining and visualization [1, 52, 61].

Efficient and fast Skyline algorithms [68] or fast non-dominated sorting [59] can be used

to find each Pareto front in our PFM algorithm for large-scale datasets.

Sharifzadeh and Shahabi[97] introduced Spatial Skyline Queries (SSQ) which is similar

to the multiple-query retrieval problem. However, since EMR is not a metric (it doesn’t

satisfy the triangle inequality), the relation between the first Pareto front and the convex

hull of the queries, which is exploited by Sharifzadeh and Shahabi[97], does not hold in
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our setting. Our method also differs from SSQ and other Skyline research because we use

multiple fronts to rank items instead of using only Skyline queries. We also address the

problem of combining EMR with the Pareto front method for multiple queries associated

with different concepts, resulting in non-convex Pareto fronts. To the best of our knowledge,

this problem has not been widely researched.

In Chapter II, we propose a multi-criteria anomaly detection algorithm utilizing Pareto

depth analysis. This approach uses multiple Pareto fronts to define a new dissimilarity

between samples based on their Pareto depth. In Chapter II’s case, each Pareto point cor-

responds to a similarity vector between pairs of database entries under multiple similarity

criteria. In this chapter, a Pareto point corresponds to a vector of dissimilarities between a

single entry in the database and multiple queries.

A related field is metasearch [4, 86], in which one query is issued in different systems

or search engines, and different ranking results or scores for each item in the database

are obtained. These different scores are then combined to generate one final ranked list.

Many different methods, such as Borda fuse and CombMNZ, have been proposed and are

widely used in the metasearch community. The same methods have also been used to

combine results for different representations of a query[10, 71]. However these algorithms

are designed for the case that the queries represent the same semantics. In the multiple-

query retrieval setting this case is not very interesting as it can easily be handled by other

methods, including linear scalarization.

In contrast we study the problem where each query corresponds to a different image

concept. In this case metasearch methods are not particularly useful, and are significantly

outperformed by the Pareto front method. For example Borda fusion gives higher rank-

ings to the tails of the fronts, and thus is similar to linear scalarization. CombMNZ gives a

higher ranking to documents that are relevant to multiple-query aspects, but it utilizes a sum

of all document scores, and as such is intimately related to linear scalarization with equal

weights, which is equivalent to the Average of Multiple Queries (MQ-Avg) retrieval algo-

rithm [3]. We show in Section 3.5 that our Pareto front method significantly outperforms
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Figure 3.2: (a) Depiction of nonconvexities in the first Pareto front. The large points are
Pareto-optimal, having the highest Pareto ranking by criteria f1 and f2, but only the hollow
points can be obtained by linear scalarization. Here f1 and f2 are the dissimilarity values
for query 1 and query 2, respectively. (b) Depiction of nonconvexities in the Pareto fronts
in the real-world Mediamill dataset used in the experimental results in Section 3.5. The
points on the non-convex portions of the fronts will be retrieved later by any scalarization
algorithm, even though they correpsond to equally good images for the retrieval problem.

MQ-Avg, and all other multiple-query retrieval algorithms.

3.3 Pareto Front method

Although the meaning of Pareto points is fundamentally different from that in previous

chapter, we can still use the same notion of a Pareto front as in Chapter II. Recall that the

collection of Pareto-optimal feasible solutions is called the first Pareto front. It contains all

solutions that can be found via linear scalarization, as well as other items that are missed

by linear scalarization. The ith Pareto front is again denoted by Fi.

In this section we give another simple example in Figure 3.2a to show the advantage

of using Pareto front methods for ranking. Here the number of criteria is T = 2 and

the Pareto points [f1(x), f2(x)], for x ∈ S, are shown in Figure 3.2a. In this figure the

large points are Pareto-optimal, but only the hollow points can be obtained as top ranked

items using linear scalarization. It is well-known, and easy to see in Figure 3.2a, that

linear scalarization can only obtain Pareto points on the boundary of the convex hull of

the Pareto front. The same observation holds for deeper Pareto fronts and has been shown
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in prevision section (Figure 2.12). Figure 3.2b shows Pareto fronts for the multiple-query

retrieval problem using real data from the Mediamill dataset, introduced in Section 3.5.

Notice the severe non-convexity in the shapes of the real Pareto fronts in Figure 3.2b. This

is a key observation, and is directly related to the fact that each query corresponds to a

different image semantic, and so there are few images that are very closely related to both

queries. If two queries are strongly related to each other, associated point cloud will have

a more convex shape. If queries are competing with each other and there are no images

containing both semantic concepts in the database, a more severe non-convexity in the

shapes of fronts will be observed.

3.3.1 Information retrieval using Pareto fronts

In this section we introduce the Pareto front method for the multiple-query information

retrieval problem. Assume that a dataset XN = {X1, . . . , XN} of data samples is available.

Given a query q, the objective of retrieval is to return samples that are related to the query.

When multiple queries are present, our approach issues each query individually and then

combines their results into one partially ordered list of Pareto-equivalent retrieved items at

successive Pareto depths. For T > 1, denote the T -tuple of queries by {q1, q2, ..., qT} and

the dissimilarity between qi and the jth item in the database,Xj , by di(j). For convenience,

define di ∈ RN+ as the dissimilarity vector between qi and all samples in the database. Given

T queries, we define a Pareto point by Pj = [d1(j), . . . , dT (j)] ∈ RT+, j ∈ {1, . . . , N}.

Each Pareto point Pj corresponds to a sample Xj from the dataset XN . For convenience,

denote the set of all Pareto points by P . By definition, a Pareto point Pi strictly dominates

another point Pj if dl(i) ≤ dl(j) for all l ∈ {1, . . . , T} and dl(i) < dl(j) for some l. One

can easily see that if Pi dominates Pj , then Xi is closer to every query than Xj . Therefore,

the system should return Xi before Xj . The key idea of our approach is to return samples

corresponding to which Pareto front they lie on, i.e., we return the points from F1 first,

and then F2, and so on until a sufficient number of images have been retrieved. Since our

goal is to find images related to each and every query, we start returning samples from the
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middle of the first Pareto front and work our way to the tails. The details of our algorithm

are presented in Section 3.4.

3.3.2 Properties of Pareto fronts

In previous works we prove two theorems characterizing how many Pareto-optimal

points are missed, on average and asymptotically, due to nonconvexities in the geometry

of the Pareto point cloud, called large-scale non-convexities, and nonconvexities due to

randomness of the Pareto points, called small-scale nonconvexities. In particular, we show

that even when the Pareto point cloud appears convex, at least 1/6 of the Pareto-optimal

points are missed by linear scalarization in dimension T = 2.

We present here some new results on the asymptotic convexity of Pareto fronts. Let

X1, . . . , Xn be i.i.d. random variables on [0, 1]d with probability density function f :

[0, 1]d → R and set Xn = {X1, . . . , Xn}. Then (Xn,5) is a partially ordered set, where 5

is the usual partial order on Rd defined by

x 5 y ⇐⇒ xi ≤ yi for all i ∈ {1, . . . , d}.

Let F1,F2, . . . denote the Pareto fronts associated with Xn, and let hn : [0, 1]d → R denote

the Pareto depth function defined by

hn(x) = max{i ∈ N : Fi 5 x}, (3.1)

where for simplicity we set F0 = {(−1, . . . ,−1)}, and we write Fi 5 x if there exists

y ∈ Fi such that y 5 x. The function hn is a (random) piecewise constant function that

“counts” the Pareto fronts associated with X1, . . . , Xn.

Recall that a chain of length ` in Xn is a sequence x1, . . . , x` ∈ Xn such that x1 5 x2 5

· · · 5 x`. Define un : [0, 1]d → R by

un(x) = max{` ∈ N : ∃ x1 5 · · · 5 x` 5 x in Xn}. (3.2)
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The function un(x) is the length of the longest chain in Xn with maximal element x` 5 x.

We have the following alternative characterization of hn:

Proposition III.1. hn(x) = un(x) with probability one for all x ∈ [0, 1]d.

Proof. Suppose that X1, . . . , Xn are distinct. Then each Pareto front consists of mutually

incomparable points. Let x ∈ [0, 1]d, r = un(x) and k = hn(x). By the definition of

un(x), there exists a chain x1 5 · · · 5 xr in Xn such that xr 5 x. Noting that each

xi must belong to a different Pareto front, we see there are at least r fronts Fi such that

Fi 5 x. Note also that for j ≤ i, Fi 5 x =⇒ Fj 5 x. It follows that Fi 5 x for

i = 1, . . . , r and un(x) = r ≤ hn(x). For the opposite inequality, by definition of hn(x)

there exists xk ∈ Fk such that xk 5 x. By the definition of Fk, there exists xk−1 ∈ Fk−1

such that xk−1 5 xk. By repeating this argument, we can find x1, . . . , xk with xi ∈ Fi

and x1 5 · · · 5 xk, hence we have exhibited a chain of length k in Xn and it follows that

hn(x) = k ≤ un(x). The proof is completed by noting that X1, . . . , Xn are distinct with

probability one.

It is well-known [37] that Pareto methods outperform more traditional linear scalariza-

tion methods when the Pareto fronts are non-convex. In previous chapter, we show that the

Pareto fronts always have microscopic non-convexities due to randomness, even when the

Pareto fronts appear convex on a macroscopic scale. Microscopic non-convexities only ac-

count for minor performance differences between Pareto methods and linear scalarization.

Macroscopic non-convexities induced by the geometry of the Pareto fronts on a macro-

scopic scale account for the major performance advantage of Pareto methods.

It is thus very important to characterize when the Pareto fronts are macroscopically

convex. We therefore make the following definition:

Definition III.2. Given a density f : [0, 1]d → [0,∞), we say that f yields macroscopically

convex Pareto fronts if forX1, . . . , Xn drawn i.i.d. from f we have that the almost sure limit

U(x) := limn→∞ n
− 1

dhn(x) exists for all x and U : [0, 1]d → R is quasiconcave.
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Recall that U is said to be quasiconcave if the super level sets

{x ∈ [0, 1]d : U(x) ≥ a}

are convex for all a ∈ R. Since the Pareto fronts are encoded into the level sets of hn, the

asymptotic shape of the Pareto fronts is dictated by the level sets of the function U from

Definition III.2. Hence the fronts are asymptotically convex on a macroscopic scale exactly

when U is quasiconcave, hence the definition.

We now give our main result, which is a partial characterization of densities f that yield

macroscopically convex Pareto fronts.

Theorem III.3. Let f : [0, 1]d → (0,∞) be a continuous, log-concave, and separable

density, i.e., f(x) = f1(x1) · · · fd(xd). Then f yields macroscopically convex Pareto fronts.

Proof. We denote by F : [0, 1]d → R the cumulative distribution function (CDF) associated

with the density f , which is defined by

F (x) =

x1∫
0

· · ·
xd∫

0

f(y1, . . . , yd) dy1 · · · dyd. (3.3)

Let X1, . . . , Xn be i.i.d. with density f , and let hn denote the associated Pareto depth

function, and un the associated longest chain function. By [23, Theorem 1] we have that

for every x ∈ [0, 1]d

n−
1
dun(x) −→ U(x) almost surely as n→∞, (3.4)

where U(x) = cdF (x)
1
d , and cd is a positive constant. In fact, the convergence is actually

uniform on [0, 1]d with probability one, but this is not necessary for the proof. For a general

non-separable density, the continuum limit (3.4) still holds, but the limit U(x) is not given

by cdF (x)
1
d (it is instead the viscosity solution of a Hamilton-Jacobi equation), and the

proof is quite involved (see [23]). Fortunately, for the case of a separable density the proof
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is straightforward, and so we include it here for completeness.

Define Φ : [0, 1]d → [0, 1]d by

Φ(x) =

 x1∫
0

f1(t) dt, . . . ,

xd∫
0

fd(t) dt

 .

Since f is continuous and strictly positive, Φ : [0, 1]d → [0, 1]d is a C1-diffeomorphism.

Setting Yi = Φ(Xi), we easily see that Y1, . . . , Yd are independent and uniformly dis-

tributed on [0, 1]d. It is also easy to see that Φ preserves the partial order 5, i.e.,

x 5 z ⇐⇒ Φ(x) 5 Φ(z).

Let x ∈ [0, 1]d, set y = Φ(x), and define Yn = Φ(Xn). By our above observations we have

un(x) = max{` ∈ N : ∃ y1 5 · · · 5 y` 5 y in Yn}.

Let i1 < · · · < iN denote the indices of the random variables among Y1, . . . , Yn that are less

than or equal to y and set Zk = Yik for k = 1, . . . , N . Note that N is binomially distributed

with parameter p := F (x) and that un(x) is the length of the longest chain among N

uniformly distributed points in the hypercube {z ∈ [0, 1]d : z 5 y}. By [13, Remark 1] we

have N−
1
dun(x) → cd almost surely as n → ∞ where cd < e are dimensional constants.

Since n−1N → p almost surely as n→∞, we have

n−
1
dun(x) =

(
n−

1
dN

1
d

)
N−

1
dun(x)→ cdp

1
d

almost surely as n→∞. The proof of (3.4) is completed by recalling Proposition III.1.

In the context of Definition III.2, we have U(x) = cdF (x)
1
d . Hence U is quasiconcave

if and only if the cumulative distribution function F is quasiconcave. A sufficient condition

for quasiconcavity of F is log-concavity of f [89], which completes the proof.

Theorem III.3 indicates that Pareto methods are largely redundant when f is a log-
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concave separable density. As demonstrated in the Mediamill [99] dataset (see Figure

3.2b), the distribution of points in Pareto space is not quasiconcave, and hence not log-

concave, for the multiple-query retrieval problem. This helps explain the success of our

Pareto methods.

It would be very interesting to extend Theorem III.3 to arbitrary non-separable density

functions f . When f is non-separable there is no simple integral expression like (3.3) for

U , and instead U is characterized as the viscosity solution of a Hamilton-Jacobi partial

differential equation [23, Theorem 1]. This makes the non-separable case substantially

more difficult, since U is no longer an integral functional of f . See [24] for a brief overview

of previous work on a continuum limit for non-dominated sorting [22, 23] by Jeff Calder,

the main collaborator of this work.

3.4 Multiple-query image retrieval

For most CBIR systems, images are preprocessed to extract low dimensional features

instead of using pixel values directly for indexing and retrieval. Many feature extraction

methods have been proposed in image processing and computer vision. In this work we

use the famous SIFT and HoG feature extraction techniques and apply spatial pyramid

matching to obtain bag-of-words type features for image representation. To avoid compar-

ing every sample-query pair, we use an efficient manifold ranking algorithm proposed by

[112].

3.4.1 Efficient manifold ranking (EMR)

The traditional manifold ranking problem [117] is as follows. LetX = {X1, . . . , Xn} ⊂

Rm be a finite set of points, and let d : X × X → R be a metric on X , such as Euclidean

distance. Define a vector y = [y1, . . . , yn], in which yi = 1 if Xi is a query and yi = 0

otherwise. Let r : X → R denote the ranking function which assigns a ranking score ri

to each point Xi. The query is assigned a rank of 1 and all other samples will be assigned
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smaller ranks based on their distance to the query along the manifold underlying the data.

To construct a graph onX , first sort the pairwise distances between all samples in ascending

order, and then add edges between points according to this order until a connected graph

G is constructed. The edge weight between Xi and Xj on this graph is denoted by wij . If

there is an edge between Xi and Xj , define the weight by wij = exp[−d2(Xi, Xj)/2σ
2],

and if not, set wij = 0, and set W = (wij)ij ∈ Rn×n. In the manifold ranking method, the

cost function associated with ranking vector r is defined by

O(r) =
n∑

i,j=1

wij|
1√
Dii

ri −
1√
Djj

rj|2 + µ
n∑
i=1

|ri − yi|2

where D is a diagonal matrix with Dii =
∑n

j=1wij and µ > 0 is the regularization param-

eter. The first term in the cost function is a smoothness term that forces nearby points have

similar ranking scores. The second term is a regularization term, which forces the query to

have a rank close to 1, and all other samples to have ranks as close to 0 as possible. The

ranking function r is the minimizer of O(r) over all possible ranking functions.

This optimization problem can be solved in either of two ways: a direct approach and

an iterative approach. The direct approach computes the exact solution via the closed form

expression

r∗ = (In − αS)−1y (3.5)

where α = 1
1+µ

, In is an n × n identity matrix and S = D−1/2WD−1/2. The iterative

method is better suited to large scale datasets. The ranking function r is computed by

repeating the iteration schemer(t + 1) = αSr(t) + (1 − α)y, until convergence. The

direct approach requires an n × n matrix inversion and the iterative approach requires

n × n memory and may converge to a local minimum. In addition, the complexity of

constructing the graph G is O(n2 log n). Sometimes a kNN graph is used for G, in which

case the complexity is O(kn2). Neither case is suitable for large-scale problems.

In [112], an efficient manifold ranking algorithm is proposed. The authors introduce

an anchor graph U to model the data and use the Nadaraya-Watson kernel to construct a
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weight matrix Z ∈ Rd×n which measures the potential relationships between data points

in X and anchors in U . For convenience, denote by zi the i-th column of Z. The affinity

matrix W is then designed to be ZTZ. The final ranking function r can then be directly

computed by

r∗ = (In −HT (HHT − 1

α
Id)
−1H)y, (3.6)

where H = ZD−
1
2 and D is a diagonal matrix with Dii =

∑n
j=1 z

T
i zj . This method

requires inverting only a d × d matrix, in contrast to inverting the n × n matrix used in

standard manifold ranking. When d � n, as occurs in large databases, the computational

cost of manifold ranking is significantly reduced. The complexity of computing the ranking

function with the EMR algorithm isO(dn+d3). In addition, EMR does not require storage

of an n× n matrix.

Notice construction of the anchor graph and computation of the matrix inversion [112]

can be implemented offline. For out-of-sample retrieval, Xu et al. [112] provides an effi-

cient way to update the graph structure and do out-of-sample retrieval quickly.

3.4.2 Multiple-query case

In [112], prior knowledge about the relevance or confidence of each query can be in-

corporated into the EMR algorithm through the choice of the initial vector y. For example,

in the multiple-query information retrieval problem, we may have queried, say, X1, X2 and

X3. We could set y1 = y2 = y3 = 1 and yi = 0 for i ≥ 4 in the EMR algorithm. This

instructs the EMR algorithm to assign high ranks to X1, X2, and X3 in the final ranking r∗.

It is easy to see from (3.5) or (3.6) that r∗ is equal to the scalarization r∗1 + r∗2 + r∗3 where

r∗i , i = 1, 2, 3, is the ranking function obtained when issuing each query individually. The

main contribution of this work is to show that our Pareto front method can outperform this

standard linear scalarization method. Our proposed algorithm is given below.

Given a set of queries {q1, q2, ..., qT}, we apply EMR to compute the ranking functions

r∗1 . . . r
∗
T ∈ RN corresponding to each query. We then define the dissimilarity vector di ∈

RN+ between qi and all samples by di = 1 − r∗i where 1 = [1, . . . , 1] ∈ RN . We then
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construct the Pareto fronts associated to d1, . . . , dT as described in Section 3.3.1. To return

relevant samples to the user, we return samples according to their Pareto front number, i.e.,

we return points on F1 first, then F2, and so on, until sufficiently many images have been

retrieved. Within the same front, we return points in a particular order, e.g., for T = 2,

from the middle first. In the context of this work, the middle part of each front will contain

samples related to all queries. Relevance feedback schemes can also be used with our

algorithm to enhance retrieval performance. For example one could use images labeled as

relevant by the user as new queries to generate new Pareto fronts.

3.5 Experimental study

We now present an experimental study comparing our Pareto front method against sev-

eral state of the art multiple-query retrieval algorithms. Since our proposed algorithm was

developed for the case where each query corresponds to a different semantic, we use multi-

label datasets in our experiments. By multi-label, we mean that many images in the dataset

belong to more than one class. This allows us to measure in a precise way our algorithm’s

ability to find images that are similar to all queries.

3.5.1 Multiple-query performance metrics

We evaluate the performance of our algorithm using normalized Discounted Cumula-

tive Gain (nDCG) [58], which is standard in the retrieval community. The nDCG is defined

in terms of a relevance score, which measures the relevance of a returned image to the

query. In single query retrieval, a popular relevance score is the binary score, which is 1 if

the retrieved image is related to the query and 0 otherwise. In the context of multiple-query

retrieval, where a retrieved image may be related to each query in distinct ways, the binary

score is an oversimplification of the notion of relevance. Therefore, we define a new rele-

vance score for performance assessment of multiple-query multiclass retrieval algorithms.

We call this relevance score multiple-query unique relevance (mq-uniq-rel).
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Roughly speaking, multiple-query unique relevance measures the fraction of query

class labels that are covered by the retrieved object when the retrieved object is uniquely

related to each query. When the retrieved object is not uniquely related to each query, the

relevance score is set to zero. The importance of having unique relations to each query

cannot be understated. For instance, in the two-query problem, if a retrieved image is re-

lated to one of the queries only through a feature common to both queries, then the image

is effectively relevant to only one of the those queries in the sense it would likely be ranked

highly by a single-query retrieval algorithm issuing only one of the queries. A more inter-

esting and challenging problem, which is the focus of this work, is to find images that have

different features in common with each query.

More formally, let us denote by C the total number of classes in the dataset, and let

` ∈ {0, 1}C be the binary label vector of a retrieved object X . Similarly, let yi be the label

vector of query qi. Given two label vectors `1 and `2, we denote by the logical disjunction

`1 ∨ `2 (respectively, the logical conjunction `1 ∧ `2) the label vector whose jth entry is

given by max(`1
j , `

2
j) (respectively, min(`1

j , `
2
j)). We denote by |`| the number of non-zero

entries in the label vector `. Given a set of queries {q1, . . . , qT}, we define the multiple-

query unique relevance (mq-uniq-rel) of retrieved sample X having label ` to the query set

by

mq-uniq-rel(X) =


|` ∧ β|
|β|

, if ∀i, |` ∧ (yi − ηi)| 6= 0,

0, otherwise,

(3.7)

where β = y1 ∨ y2 ∨ · · · ∨ yT is the disjunction of the label vectors corresponding to

q1, . . . , qT and ηi =
∨
j 6=i y

j ∧yi. Multiple-query unique relevance measures the fraction of

query classes that the retrieved object belongs to whenever the retrieved image has a unique

relation to each query, and is set to zero otherwise.

For simplicity of notation, we denote by mq-uniq-reli the multiple-query unique rele-

vance of the ith retrieved image. The Discounted Cumulative Gain (DCG) is then given
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Figure 3.3: Comparison of PFM against state of the art multiple-query retrieval algorithms
for LAMDA and Mediamill dataset with respect to the nDCG defined in (3.8). The pro-
posed method significantly outperforms others on both datasets.

by

DCG = mq-uniq-rel1 +
k∑
i=2

mq-uniq-rel1i
log2(i)

, (3.8)

The normalized DCG, or nDCG, is computed by normalizing the DCG by the best possible

score which is 1 +
∑k

i=1
1

log2(i)
.

Note that, analogous to binary relevance score, we have mq-uniq-reli = 1 if and only

if the label vector corresponding to the ith retrieved object contains all labels from both

queries and each query has at least one unique class. The difference is that multiple-query

relevance is not a binary score, and instead assigns a range of values between zero and

one, depending on how many of the query labels are covered by the retrieved object. Thus,

mq-uniq-reli can be viewed as a generalization of the binary relevance score to the multiple-

query setting in which the goal is to find objects uniquely related to all queries.

3.5.2 Evaluation on multi-label datasets

We evaluate our algorithm on the Mediamill video dataset [99], which has been widely

used for benchmarking multi-class classifiers, and the LAMDA dataset, which is widely
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used in the retrieval community [118]. The Mediamill dataset consists of 29800 videos,

and Snoek et al. [99] provide a manually annotated lexicon containing 101 semantic con-

cepts and a large number of pre-computed low-level multimedia features. Each visual

feature vector, Xi, is a 120-dimensional vector that corresponds to a specified key frame in

the dataset. The feature extraction is based on the method of [105] and characterizes both

global and local color-texture information of a single key frame, that is, an image. Each

key frame is associated with a label vector ` ∈ {0, 1}C , and each entry of ` corresponds to

one of 101 semantic concepts. If Xi contains content related to the jth semantic concept,

then the jth entry of `i is set to 1, and if not, it is set to 0.

The LAMDA database contains 2000 images, and each image has been labeled with

one or more of the following five class labels: desert, mountains, sea, sunset, and trees. In

total, 1543 images belong to exactly one class, 442 images belong to exactly two classes,

and 15 images belong to three classes. Of the 442 two-class images, 106 images have

the labels ‘mountain’ and ‘sky’, 172 images have the labels ‘sunset’ and ‘sea’, and the

remaining label-pairs each have less than 40 image members, with some as few as 5. Zhou

and Zhang [118] preprocessed the database and extracted from each image a 135 element

feature vector, which we use to compute image similarities.

To evaluate the performance of our algorithm, we randomly generated 10000 query-

pairs for Mediamill and 1000 for LAMDA, and ran our multiple-query retrieval algorithm

on each pair. We computed the nDCG for different retrieval algorithms for each query-

pair, and then computed the average nDCG over all query-pairs at different K. Since

Efficient Manifold Ranking (EMR) uses a random initial condition for constructing the

anchor graph, we furthermore run the entire experiment 20 times for Mediamill and 100

times for LAMDA, and computed the mean nDCG over all experiments. This ensures that

we avoid any bias from a particular EMR model.

We show the mean nDCG for our algorithm and many state of the art multiple-query

retrieval algorithms for Mediamill and LAMDA in Figures 3.3a and 3.3b, respectively. We

compare against MQ-Avg, MQ-Max, Joint-Avg, and Joint-SVM [3]. Joint-Avg combines
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Figure 3.4: Average unique relevance scores at different regions along top five Pareto
fronts. This plot validates our assumption that the middle part of first Pareto fronts contain
more important samples that are uniquely related to both queries. Samples at deeper fronts
and near the tails are less interesting.

histogram features of different queries to generate a new feature vector to use as an out-

of-example query. A Joint-SVM classifier is used to rank each sample in response to each

query. We note that Joint-SVM does not use EMR, while MQ-Avg and MQ-Max both do.

Figures 3.3a and 3.3b show that our retrieval algorithm significantly outperforms all other

algorithms.

We should note that when randomly generating query-pairs for LAMDA, we consider

only the label-pairs (‘mountain’,‘sky’) and (‘sunset’,‘sea’), since these are the only label-

pairs for which there are a significant number of corresponding two-class images. If there

no multi-class images corresponding to a query-pair, then multiple-query retrieval is un-

necessary; one can simply issue each query separately and take a union of the retrieved

images.

To visualize advantages of the Pareto front method, we show in Figure 3.4 the multiple-

query unique relevance scores for points within each of the first five Pareto fronts, plotted

from one tail of the front, to the middle, to the other tail. The relevance scores within

each front are interpolated to a fixed grid, and averaged over all query pairs to give the
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Figure 3.5: GUI screenshot. The two images on the upper left are two query images con-
taining mountain and water, respectively. The largest image corresponds to the 7th Pareto
point on the second Pareto front and the other four images correspond to adjacent points
on the same front . Users can select the front and the specific relevance point using the two
slider bars at the bottom.

curves in Figure 3.4. We used the Mediamill dataset to generate Figure 3.4; the results

on LAMDA are similar. This result validates our assumption that the first front includes

more important samples than deeper fronts, and that the middle of the Pareto fronts is

fundamentally important for multiple-query retrieval.

We also note that the middle portions of fronts 2–5 contain samples with higher scores

than those located at the tail of the first front. This phenomenon suggests a modified version

of PFM which starts returning points around the middle of second front after returning only,

say, d points from the first front. The same would hold for the second front and so on. We

have carried out some experiments with such an algorithm, and have found that it can lead

to even larger performance improvements, as suggested by Figure 3.4, for certain choices

of d. However, it may be difficult to determine the best choice of d in advance since the

label information is not available. Recall that label information is available only for testing
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and generating Figure 3.4 for validation. Therefore, we decided for simplicity to leave this

simple modification of the algorithm to future work.

3.5.3 GUI for Pareto front retrieval

A GUI for a two-query image retrieval was implemented to illustrate the Pareto front

method for image retrieval. Users can easily select samples from different fronts and vi-

sually explore the neighboring samples along the front. Samples corresponding to Pareto

points at one tail of the front are similar to only one query, while samples corresponding to

Pareto points at the middle part of front are similar to both queries. When the Pareto point

cloud is non-convex, users can use our GUI to easily identify the Pareto points that cannot

be obtained by any linear scalarization method. The screen shot of our GUI is shown in

Figure 3.5. In this example, the two query images correspond to a mountain and an ocean

respectively. One of the retrieved images corresponds to a point in the middle part of the

second front that includes both a mountain and an ocean. The Matlab code of GUI can be

downloaded from http://tbayes.eecs.umich.edu/coolmark/pareto.

3.6 Conclusions

We have presented a novel algorithm for content-based multiple-query image retrieval

where the queries all correspond to different image semantics, and the goal is to find images

related to all queries. This algorithm can retrieve samples which are not easily retrieved

by other multiple-query retrieval algorithms and any linear scalarization method. We have

presented theoretical results on asymptotic non-convexity of Pareto fronts that proves that

the Pareto approach is better than using linear combinations of ranking results. Experi-

mental studies on real-world datasets illustrate the advantages of the proposed Pareto front

method. Note that one possible and interesting future work is to build a retrieval system

that involves human-in-the-loop for defining semantic similarities between images with

consistency. Properties of Pareto fronts constructed by these similarities are of interest.
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CHAPTER IV

Social Collaborative Retrieval

4.1 Introduction

In previous two chapters we utilize Pareto fronts for two different types of machine

learning problems that require combining different dissimilarity measures and different

queries respectively. For those two problems one can apply trivial linear scalarization

approaches to combine disparate information. In this chapter we focus on the case that

disparate information can not be combined using any trivial approach. We are particularly

interested in collaborative retrieval [109] which can be viewed as a blend of retrieval and

collaborative filtering problems. We try to combine social networks and users’ behavior

information to improve the performance. These two types of information are totally dif-

ferent and can not be combined trivially. We first give a brief introduction of collaborative

filtering in the following.

Collaborative filtering (CF) and related recommendation techniques, which aim to au-

tomatically predict the interests of users and make personal recommendations of music,

movies, products, or other items, have been both intensively studied by researchers and

successfully deployed in industry during the past decade [17, 73, 95, 101]. Recently, We-

ston et al. [109] proposed extending CF to a setting termed collaborative retrieval (CR), in

which recommendations are made with respect to a particular query context; for instance, a

user might be looking for music in a particular genre or movies similar to a recent favorite.
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In these situations, otherwise accurate recommendations will become irrelevant. Similarly,

a shopping website might want to deliver a list of recommended items to a user based on

their browsing history. In this case the recently viewed pages act as a sort of query, and

we would like recommendations that are specific both to the query and to the user. Weston

et al. [109] proposed the first algorithm to solve CR problems, called latent collaborative

retrieval (LCR).

However, several important issues remain. While it is well-known that CF models

often contend with data sparsity problems since a large number of user-item pairs must

be judged for compatibility based on a relatively small dataset, CR models suffer even

more severely from sparsity, since the range of possible queries multiplies the number of

judgments to be made. Viewed as a matrix completion problem, traditional CF requires

filling out a user × item matrix, where each entry indicates the relevance of a specific item

to a specific user. In the same light, CR can be seen as a tensor completion problem, where

the goal is to fill out a (much larger) query × user × item tensor. Techniques like singular

value decomposition and non-negative matrix factorization (NMF) [96], applied widely in

CF, have recently begun to be extended to tensor models of this type [64, 102, 111, 115];

however, these methods typically do not accommodate the ranking losses used for CR, and

sparsity remains a major concern. In this work, we propose to deal with data sparsity in CR

by incorporating an additional (but often readily available) source of information: social

networks.

In recent years social networking sites have become extremely popular, producing sig-

nificant insights into the ways in which people connect themselves and interact. Informa-

tion derived from these networks can be used to help address the sparsity problem faced

by recommender systems, for instance by propagating information from a user’s social

connections to fill in gaps in the recommendation matrix. A variety of CF models aug-

mented with social information have recently been proposed [26, 65, 67, 79, 81, 90]; these

include state-of-the-art methods like Collaborative Topic Regression with social matrix fac-

torization [90], which is based on LDA [11], and Probabilistic Matrix Factorization (PMF)
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[79, 93]. There has also been interest in so-called trust-aware recommendation methods

[9, 80, 83, 84, 87], which are similar in spirit but inherently limited compared with using

real social networks [81]. However, social information has not yet been employed for col-

laborative retrieval, which arguably stands to benefit even more due to data sparsity. In this

chapter we set out to fill this gap.

We propose an approach we call social collaborative retrieval (SCR), building on the

latent collaborative retrieval (LCR) model of Weston et al. [109] by integrating social net-

working data. As in LCR, our algorithm sets out to optimize the top-ranked items retrieved

for a given user and query, but we incorporate a regularization penalty that encourages a

low dimensional embedding of each user to be similar to those of the user’s nearest social

neighbors. On a collaborative retrieval task using real-world artist ratings from the Last.fm

music dataset, our proposed algorithm significantly outperforms LCR, as well as baseline

CF methods based on non-negative matrix factorization and singular value decomposition,

particularly when a smaller training set leads to increased data sparsity.

The rest of this chapter is organized as follows. In Section 4.2 we provide a brief

overview of latent collaborative retrieval (LCR) [109], and then describe our proposed

SCR algorithm in detail. Section 4.3 contains an empirical analysis of the Last.fm social

networking dataset, and finally we present experimental results evaluating the performance

of SCR in Section 4.4.

4.2 Collaborative retrieval

The goal of collaborative retrieval is to produce a ranked list of items that are of interest

to a particular user given a particular query. While a natural approach to this problem

might be to simply filter a set of unconstrained CF recommendations for the specified user

using the query—or, conversely, to filter a set of generic search results for the query using

the user’s profile—these pipeline approaches fail to account for interactions between the

query and the user. For instance, two users might have very different interpretations of the
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query “jazz”, despite having broadly similar preferences among artists. The idea of CR is

to obtain more informative results through a unified approach.

We therefore formalize the problem by defining a single score function f(q, u, a) to

represent the relevance of a given item a with respect to both a query q and a user u. If we

enumerate all users, queries, and items, we can think of this score function as specifying

the values of a rating tensor R ∈ R|Q|×|U|×|A|, where Q is the set of all queries, U is the

set of users, and A is the set of items. However, in practice we usually only care about

the top k items retrieved (for some small constant k) for a given user and query, and our

evaluation metrics will share this property as well. (We discuss specific error measures in

Section 4.2.3.) Thus, learning a score function that can correctly rank items for a given

user-query pair is more important than learning one which can correctly approximate the

full set of entries in R. The objectives that we use to learn the parameters of the score

function will therefore involve a measure of error on such top-k ranked lists.

We next briefly review the existing latent collaborative retrieval model for this problem,

and then introduce our model using social information. Finally, we discuss the optimization

needed to learn the parameters of the model.

4.2.1 Latent collaborative retrieval

Latent collaborative retrieval (LCR) [109] was the first algorithm proposed to solve col-

laborative retrieval problems. The central idea is to embed users, queries, and items in a

common n-dimensional space in which they can be compared using linear operations. (n is

a hyperparameter that is typically tuned on a validation set.) Formally, LCR is parameter-

ized by matrices S ∈ Rn×|Q|, V ∈ Rn×|U|, and T ∈ Rn×|A|, which give the low-dimensional

representations of queries, users, and items, respectively. Additionally, for each user u a

matrix Uu ∈ Rn×n encodes the user-specific relationship between queries and items. The

scoring function f is then defined as

f(q, u, a) = S>q UuTa + V >u Ta , (4.1)
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where Sq is the column of S corresponding to query q, Ta is the column of T corresponding

to item a, and Vu is the column of V corresponding to user u. Intuitively, the first term

in Equation (4.1) measures the similarity between the query and the item under a linear

transformation that is dependent on the user. The second term is independent of the query

and can be viewed as a bias term which models user preferences for different items. Since

for a given instance of a CR task the query and user are held fixed, there is no need for

the scoring function to include a term like S>q · Vu, which would measure the compatibility

of a user and a query. However, interactions between the user and the query that pertain

to actual item recommendations can be expressed in the first term. If there are significant

non-user-specific aspects of the compatibility between queries and items (i.e., a S>q · Ta

term), these can simply be absorbed into the first term and need not appear separately.

The parameters of the LCR scoring function are learned by optimizing a chosen error

metric over a training set; we discuss some such metrics and other details in Section 4.2.3.

To aid in generalization, and to avoid the potentially prohibitive enumeration of queries,

Equation (4.1) can be generalized using features. In this case ΦQ(q), ΦU(u) and ΦA(a) are

vector-valued feature maps for queries, users, and items, respectively, and S, T , and V are

linear maps from feature vectors to the embedded n-dimensional space. The feature-based

scoring function is given by

f(q, u, a) = ΦQ(q)>S>UuTΦA(a) + ΦU(u)>V >TΦA(a) . (4.2)

If the feature maps are simple characteristic vectors, with a unique feature for each query,

user, and item, then we recover the simpler form of Equation (4.1). Features of this type

can also be used for content-based recommendation models (see [109]). For our purposes,

we simply note that this feature-based formulation can be easily extended to SCR, but for

simplicity we focus on models of the type shown in Equation (4.1).
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4.2.2 Social collaborative retrieval

In the real world, people often turn to their friends for recommendations of musics,

movies, or products. Here, we apply this intuition to improve the performance of CR

techniques on tasks where social information is available. Our approach, which we refer

to as social collaborative retrieval (SCR), learns a scoring function using a combination of

behavioral and relational error measures.

Behavioral measures encourage the model to respect implicit similarities between users,

items, and queries that are revealed by the training data. For instance, the preferences of one

user may be useful for recommending items to another user if the two users have expressed

similar preferences in the past. This is the traditional mode of operation for collaborative

filtering, as well as for CR.

Relational measures, on the other hand, take account of explicitly labeled connections

that (hopefully) reveal underlying similarities. In this work, we employ a relational measure

that encourages the scoring function to be smooth with respect to a social graph; that is, we

assume that users who are social neighbors should, on average, have more similar prefer-

ences than those who are not. (We validate this assumption empirically in Section 4.3.) The

hope is that this relational measure term provides complementary guidance to the system

when little is known about the behavior of a user.

For simplicity, and to make the fairest comparisons later, we use the same parame-

terization of the scoring function as LCR (Equation (4.1)); we have n-dimensional repre-

sentations of queries, users, and items in matrices S, V , and T , respectively, as well as

user-specific transformations Uu ∈ Rn×n. We additionally assume that a social graph G is

available, where G(i, j) = 1 whenever users i and j are linked, and G(i, j) = 0 otherwise.

We will sometimes refer to users who are linked as “friends”, though of course the social

graph may encode relations with varying semantics. To bias the preferences of friends
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toward each other, we introduce a social error measure

errsocial(V,G) =
∑

i,j,G(i,j)=1

‖σ(V T
i Vj)− 1‖2 , (4.3)

where σ(·) is the sigmoid function

σ(x) =
1

1 + e−cx
(4.4)

and c is a hyperparameter. This measure can be seen as a regularization penalty that is

minimized when friends have identical, high-norm representations in V . Notice that we

do not penalize similarity among non-friends, since users may have similar tastes even

though they are not friends. Importantly, although we encourage friends to have similar

representations Vu, we do not introduce such regularization for Uu matrices, as this would

tend to force friends to always receive the same results. Intuitively, we expect that friends

are likely to have similar taste in items, but we allow each their own particular querying

“style”.

Combining the relational measure in Equation (4.3) with a behavioral measure errbehavior

that depends on the scoring function f and the training set X yields the SCR learning ob-

jective to be minimized:

errbehavior(f,X) + wserrsocial(V,G) , (4.5)

where ws is a regularization hyperparameter. In the following subsection we will discuss

choices for errbehavior, as well as optimization techniques used to find the parameters in

practice.

Similarity-based error measures related to Equation (4.3) have been proposed by oth-

ers, typically based not on a social graph but instead on measured similarities between

users. For example, the measured Pearson correlation of item ratings can be used as a sim-

ilarity measure Sim(i, j) between users i and j, and this can be incorporated as in [81]:
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∑|U|
i=1

∥∥∥Vi − ∑
j,G(i,j)=1 Sim(i,j)×Vj∑

j,G(i,j)=1 Sim(i,j)

∥∥∥2

. Through the chapter we denote by ‖ · ‖ the L2-norm

of a vector. However, accurately estimating similarities from data is often unreliable due to

sparsity, especially in the CR setting. Moreover, such measures make it difficult to easily

recommend items to newer users; without a long history of ratings, we cannot know which

established users they are similar to. On the other hand, SCR requires an external source

of information in the form of a social graph. Social networks are increasingly ubiquitous,

and, since they are by nature centralized, can often be reliable even when extensive training

data for a specific CR task is not yet available.

SCR can be viewed as a blend of social networking, collaborative filtering, and infor-

mation retrieval. As a side benefit, in addition to providing improved recommendations

for users under particular query contexts, SCR can potentially be used in the inverse to

recommend new social links between users with similar preferences. In this way SCR can

strengthen the social network and improve its own predictions in the future.

4.2.3 Learning

The goal of SCR learning is to (efficiently) find parameters S, V , T , and Uu that mini-

mize the objective in Equation (4.5). In this section we describe the formal learning setup,

the specific behavioral measures used in our experiments, and the algorithm used to opti-

mize the model parameters.

We assume we are given a training set X containing N training examples:

X = {(qi, ui, ai, wi)}i=1,2,...,N , (4.6)

where qi ∈ Q is a query, ui ∈ U is a user, ai ∈ A is an item, and wi ∈ R>0 is a measure of

relevance for the item ai given the user ui and the query qi. Importantly, we assume that the

weights wi always have a positive connotation; that is, triples (q, u, a) that do not appear

in the training set implicitly have a weight of zero, and are therefore dispreferred to triples

that do appear. For instance, in our experiments, wi will be derived from the number of
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times a user listens to a particular musical artist.

The behavioral part of the objective, which measures the compatibility of the scoring

function f (defined by the model parameters) with the training set X , can take a variety of

forms depending on the setting. As noted earlier, we will focus on top-k ranking losses that

optimize the most important aspects of the model, rather than, say, filling out all entries of

the tensor R.

Following Weston et al. [109] we define the vector f̄(q, u), which contains predictions

for all items in the database given query q and user u. The ath entry of f̄(q, u), denoted

f̄a(q, u), is equal to f(q, u, a).

With this notation, we can define the Weighted Approximate-Rank Pairwise (WARP)

Loss, introduced in [108]:

errWARP(f,X) =
N∑
i=1

L
(
rankai

(
f̄(qi, ui)

))
. (4.7)

Here rankai
(
f̄(qi, ui)

)
is the margin-based rank of item ai,

rankai
(
f̄(qi, ui)

)
=
∑
b 6=ai

I[1 + f̄b(qi, ui) ≥ f̄ai(qi, ui)] , (4.8)

where I[·] is the indicator function, and L is a loss function:

L(k) =
k∑
i=1

αi (4.9)

α1 ≥ α2 ≥ α3 ≥ · · · ≥ 0 , (4.10)

with the values of αr determining the additional penalty for each successive reduction in

rank. We choose αr = 1/r, which gives a smooth weighting over positions while assigning

large weights to top positions and rapidly decaying weights to lower positions.

Intuitively, the WARP loss prefers that the item ai is always ranked highest. For each

training example i = 1, . . . , N , the positive item ai is compared pairwise with all other

74



(negative) items in the database. If the score of another item is less than a margin of one

from the score of ai, this pair incurs a cost. The WARP loss determines this cost based on

the corresponding items’ ranking positions and the choice of α parameters.

We use the WARP loss in our experiments for comparison with prior work. However,

in our setting it ignores the relevance scores wi that are part of the training set; this can be

inefficient, since the optimization cannot focus on the most important training examples.

We thus propose a modified behavioral measure that we refer to as the weighted WARP

loss:

errweighted(f,X) =
N∑
i=1

wiL
(
rankai

(
f̄(qi, ui)

))
, (4.11)

where rank and L are defined as before. In our results, we refer to models learned under

this loss as SCR-weighted, while models trained under the standard WARP loss are referred

to simply as SCR. We will derive the optimization procedure for the weighted WARP loss,

since the standard WARP loss is a special case.

To minimize Equation (4.5), we employ stochastic gradient descent (SGD), choosing

at each iteration a single training instance i uniformly at random from the training set. We

then seek to optimize the objective for this single example; that is, we minimize

wiL
(
rankai

(
f̄(qi, ui)

))
+ ws

∑
v,G(ui,v)=1

‖1− σ(V >ui Vv)‖
2 . (4.12)

Because it is expensive to compute the exact rank of an item ai when the total number

of items is very large, the optimization procedure includes a sampling process at each step,

as introduced in [108]. For the training sample i chosen at the current iteration, negative

items b are sampled uniformly at random from A until a pairwise violation is found—that

is, until 1 + f(qi, ui, b) > f(qi, ui, ai). If K steps are required to find such a b, then the

rank of ai can be approximated as

rankai(f̄(qi, ui)) ≈
⌊
|A| − 1

K

⌋
, (4.13)
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where b·c is the floor function.

In each iteration of stochastic gradient descent, at most |A| − 1 sampling steps are

required, since the right hand side of Equation (4.13) is constant (zero) for K ≥ |A| − 1.

Therefore at most 1 + min
(

|A|−1

rankai (f̄(qi,ui))
, |A| − 1

)
scores f(qi, ui, b) must be computed.

The worst case is when ai has rank one; however, in our experiments most items do not

have small ranks, particularly during the early stages of training when the model still has

large errors. As a result, rank approximation dramatically speeds up SGD in practice. Note

that SGD can also be parallelized to take advantage of multiple processors [31, 119].

Following Weston et al. [108], the single-instance objective becomes

wiL

(⌊
|A| − 1

K

⌋)
· |1− f(qi, ui, ai) + f(qi, ui, b)|

+ ws
∑

v,G(ui,v)=1

‖1− σ(V >ui Vv)‖
2 . (4.14)

Rewriting Equation (4.14), we have

Ci(1 + (S>qiUui + V >ui )(Tb − Tai))

+ ws
∑

v,G(ui,v)=1

‖1− σ(V >ui Vv)‖
2 , (4.15)

where Ci = wi · L(b |A|−1
K
c). To speed up each gradient step, we only update the variables

associated with the current violation pair; that is, we only update Sqi , Vui , Tai , Tb, and Uui .

(In particular, we do not update the representations of ui’s friends Vv for G(ui, v) = 1.)

Now we can simply take the gradient of (4.15) to perform an update.

The update for user ui’s low-dimensional embedding is

Vui ← Vui − η

(
Ci(Tb − Tai)

+ws
∑

v,G(ui,v)=1

(−2cσ(V T
ui
Vv)
(
1− σ(V T

ui
Vv))

2
)
· Vj

 , (4.16)
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or equivalently

Vui ← Vui − ηCi(Tb − Tai) + w′s
∑

v,G(ui,v)=1

bv · Vv , (4.17)

where bv = 2cσ(V T
ui
Vv)(1− σ(V T

ui
Vv))

2 > 0, w′s = ηws, and η is a learning rate parameter.

(Recall that c is a hyperparameter for the sigmoid function.) Thus at each gradient step,

the user’s low-dimensional embedding is updated toward the weighted mean of his or her

friends’ embeddings.

Similarly, we have the following updates for the remaining parameters:

Sqi ← Sqi − η

(
Ci(Uui(Tb − Tai))

)
(4.18)

Tai ← Tai − η

(
Ci(−UT

ui
Sqi − Vui)

)
(4.19)

Tb ← Tb − η

(
Ci(U

T
ui
Sqi + Vui)

)
(4.20)

Uui ← Uui − η

(
Ci
(
Sqi(Tb − Tai)T

))
. (4.21)

Finally, we constrain the parameters using

‖Si‖ ≤ LS , i ∈ {1, . . . , |Q|} (4.22)

‖Ti‖ ≤ LT , i ∈ {1, . . . , |A|} (4.23)

‖Vi‖ ≤ LV , i ∈ {1, . . . , |U|} (4.24)

and project the parameters back on to the constraints at each step. These constraints can

be viewed as additional regularizers that bound the lengths of vectors in Q, A, and U with

hyperparameters LS , LT , and LV .

Once the SCR stochastic gradient training procedure converges, we take the learned

parameters and apply them to predict scores for unseen test triples using Equation (4.1).
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4.3 Social data analysis
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Figure 4.1: (a) For user pairs having listened artist overlap ratios within the same interval,
the proportion of friend relations among these pairs is shown. (b) Average artist overlap
ratios among friends (red) and non-friends (blue) for users having different numbers of
friends (degree).

Before showing results that compare our proposed approach to existing state-of-the-

art methods, we first experimentally validate the fundamental assumption that friends, on

average, have more in common than non-friends.

4.3.1 Last.fm dataset

In our experiments we use a real-word music dataset obtained from the Last.fm music

website in May of 2011, hetrec2011-lastfm-2k [25]. In this dataset each user is described

by his or her listen counts for all musical artists in the database (items, in CR parlance), as

well as any artist tags (queries) that might have been provided by each user.

While the data contain more than ten thousand unique tags across all users, the vast

majority of tags are used by only one user. Typically these tags appear to be personal

“notes” rather than widely used genre distinctions. To remove this noisy information, we

throw out tags that are less frequent, keeping only the top 30 most common tags. These tags

were all used by at least 165 unique users, and generally correspond to genres of music; for
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example, the top 5 most popular tags are “rock”, “pop”, “alternative”, “electronic” and

“indie”. The Last.fm dataset contains listening histories for 1892 users and 17632 music

artists. A social graph is also included; on average each user has 13.44 friends.

4.3.2 Shared musical interests

Do friends share more preferences than non-friends? This is a key question for our

approach. If the answer is no, it may not be useful to include social networks as a predictor

variable in recommendation systems. To estimate the similarity between two users’ tastes

for music, we compute the listened artists overlap ratio, defined as

Sim(i, j) =
|Ai ∩ Aj|
|Ai ∪ Aj|

∈ [0, 1] ∀ i, j , (4.25)

where Ai is the set of artists listened to by user i.

We compute these overlap ratios for all
(|U|

2

)
user pairs. We then divide the range [0, 1]

of possible ratios evenly into 100 intervals, and calculate the fraction of the user pairs

falling in each interval that are friends in the social graph. Intuitively, we hope that users

with greater similarity are more likely to be friends. The result is shown in Figure 4.1

(a). The percentage of realized friend relations increases sharply as the artist overlap ratio

increases.

To reinforce this analysis, we also compute the average similarity between each user i

and his or her friends, as well as the average similarity between user i and all other non-

friend users, denoting the two numbers as βifriend and βinon−friend. Figure 4.1 (b) shows the

values of βifriend and βinon−friend averaged over users grouped by the number of friends they

have in the social graph. We can see that, regardless of how well-connected a user is, on

average he or she has more in common with friends than with non-friends; moreover, the

size of this effect increases for users with more friends. Overall, these analyses support our

assumptions regarding the use of social networks for recommendation and retrieval tasks

on this dataset.
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Figure 4.2: (a) Recall@30 of SCR-weighted using different embedding dimensions. (b)
Weighted Recall@30 of SCR-weighted using different embedding dimensions.

4.4 Experiments

We next compare the SCR approach with other state-of-the-art algorithms. Recall that,

for the Last.fm dataset described in the previous section, a query×user× item tensor entry

corresponds to a genre × user × artist triple, where genres are obtained from the set of

filtered user tags. We preprocess the data set in two ways to obtain listening counts for each

such triple/tensor entry. First, if a user u has listened to an artist a and assigned multiple

genres, for example rock and indie, then u’s listening counts for a are evenly distributed to

triples (rock, u, a) and (indie, u, a). If the user has not assigned any genre to an artist, the

genres of a are those assigned to a by other users, and the listening count of a is distributed

to each triple according to how frequently the genre appears. If no user has ever assigned

any genre to a, the genres of a are defined as the genres used by u for any artist, and the

listening count is again prorated to the triples.

Second, since we are interested in ranking artists given a particular user and query, we

normalize listening counts of triples having the same u and q so that their weights sum to 1.

In the end we have 389,405 data points of the form (q, u, a, w), where w is the normalized

listen count of artist a by user u in genre q.

Since our main goal is to show how social information can help compensate for data
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Figure 4.3: (a) Recall at different values of k. (b) Weighted recall at different values of k.

sparsity in a collaborative retrieval task, we identify a series of subsets of the Last.fm data

that correspond to increasingly less compact social networks. We use a standard implemen-

tation of hierarchical clustering on the complete social adjacency matrix to select subsets

of users that exhibit significant internal social structure; the number of users in these sets

varies from 200 to 1000 (see Table 4.2). For each user set, the corresponding set of items

contains all artists listened to by one or more of the selected users. In this way, the number

of artists grows organically with the number of users. As in Section 4.3, we use the 30 most

frequent genre tags as our query set.

The resulting datasets are referred to as Compact-lastfm-N, where N denotes the num-

ber of users in the dataset. Their statistics are shown in Table 4.2. By construction, users in

the smaller datasets have higher average numbers of within-set friends. This means that the

smaller sets are more tightly connected, which may make them more amenable to social

regularization. Conversely, the larger datasets are sparser and may be more representative

of large-scale social networks. Note that the density of social links falls with the number

of users even if the average number of within-set friends stays constant, thus the largest

datasets are in fact quite a bit more sparse (relatively speaking) than the smallest ones. We

will show how the performance of SCR changes as these qualities are varied.
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Figure 4.4: (a) Recall for training data of different reduced sizes. (b) Weighted Recall for
training data of different reduced sizes.

4.4.1 Evaluation

We compare SCR with state-of-the-art algorithms used for collaborative retrieval as

well as traditional collaborative filtering. Popular matrix factorization methods such as

SVD and NMF are often used for collaborative filtering; these methods optimize the devi-

ation of the rating matrix from entries supplied in the training set. However, standard SVD

and NMF techniques are not directly applicable to tensors. Instead, we perform NMF on

the |Q| different user × artist matrices to compute the rank of a among all artists given q

and u. We also compare to latent collaborative retrieval (LCR).

The dimension of the embeddings for all methods is chosen to be 30; as shown in Fig-

ure 4.2, this choice yields approximately optimal performance for SCR-weighted; however,

the results are not qualitatively different for other choices of embedding dimension. The

hyperparameters ws, η, and c, along with constraint parameters LS , LT and LV , are chosen

separately for each method (as applicable) using a validation set (see below). Since matrix

factorization approaches are not specially designed for tensors and typically show worse

performance than LCR [109], we only present results for NMF, which performed the best.

We use the NMF implementation from http://www.csie.ntu.edu.tw/˜cjlin/
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Figure 4.5: (a) Recall@30 for datasets of different sizes. (b) Weighted Recall@30 for
datasets of different sizes.

nmf/. For each experiment, 60% of the samples are used for training (or less; see below),

20% are used for validation, and 20% are used for testing.

To evaluate the performance of each algorithm, for a given test sample (q, u, a, w) we

first compute f(q, u, i) for i = 1, . . . , |A| and sort the artists in descending order of score.

We then measure recall@k, which is 1 if artist a appears in the top k, and 0 otherwise, and

report the mean recall@k over the whole test dataset. As a secondary measure we report

weighted recall@k, which is the relevance score w if artist a appears in the top k, and 0

otherwise. Mean weighted recall@k thus not only measures how many triples are ranked

in the top k, but the quality of these test triples.

4.4.2 Results

We begin with results for the smallest datasat, Compact-lastfm-200, which is small

enough to be practical for all methods. The resulting recall@k and weighted recall@k

for different k are shown in Figure 4.3. SCR (weighted or unweighted) outperforms the

baselines on this top k ranking problem; note that SCR-weighted outperforms SCR under

the weighted recall criterion, which makes sense since it incorporates relevance scores in

the loss function.
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Figure 4.6: Runtime required for each training iteration of LCR and two versions of SCR
on the Compact-lastfm-200 dataset.

Since we expect social information to be particularly useful when data are sparse, we

also show results of recall@k and weighted recall@k for different amounts of training data

(100%, 80%, 60% and 40% of the total training data) in Figure 4.4. Notice that the perfor-

mance gap between SCR-weighted and LCR becomes larger as the number of available

training examples is reduced, suggesting that our proposed algorithm can be especially

useful for predicting the interests of new users or infrequent users when social network

information is available.

Moving to the larger datasets, computation time increasingly becomes an issue for the

matrix factorization approaches, so we focus on only two algorithms: SCR-weighted and

LCR. Figure 4.5 shows recall results for all of the compact datasets. Note that the perfor-

mance gap between SCR and LCR narrows slightly but remains significant even as the size

of system becomes larger and the density of social links decreases. It may be counterintu-

itive that performance decreases (at least for unweighted recall) as the size of the dataset

grows; however, since the number of artists grows with the number of users, the prediction

problem is becoming more difficult at the same time. These results suggest that, while a

dense social network may improve the relative performnce of SCR, it retains significant

84



−60 −40 −20 0 20
0.18

0.19

0.2

0.21

0.22

0.23

R
e
c
a
ll@

3
0

p (in %)

(a)

−60 −40 −20 0 20
0.026

0.027

0.028

0.029

0.03

0.031

0.032

0.033

0.034

p (in %)

W
e
ig

h
te

d
 R

e
c
a
ll@

3
0

(b)

Figure 4.7: (a) Recall@30 for different levels of random friend addition/deletion noise with
95% confidence intervals. (b) Weighted Recall@30 for different levels of random friend
addition/deletion noise with 95% confidence intervals.

advantages even in larger, sparser settings.

Finally, we show in Figure 4.6 the runtimes for each stochastic gradient training it-

eration of SCR and LCR on the Compact-lastfm-200 dataset; SCR is dramatically faster,

despite using essentially similar optimization techniques. This is because the runtime is

dominated by the sampling procedure used to estimate the rank function. LCR promotes

the observed items to high positions quickly, thus making subsequent iterations quite slow.

SCR, on the other hand, has additional regularization that appears to prevent this situa-

tion. Combined with the performance improvements discussed above, this is a significant

practical advantage.

4.4.3 Sensitivity

Since real-world social networks are subject to various sources of noise, we test the

robustness of SCR on a series of datasets in which edges in the social graph have been

randomly added or removed. Specifically, in these experiments we begin with the Compact-

lastfm-500 dataset, and then, for a user with F friends, randomly add Fp friend relations

for a noise parameter p. If p is negative, then we instead remove Fp edges from the original
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Table 4.1: Last.fm dataset statistics

Dataset users items (artists) queries (tags) samples
lastfm-2k 1892 17632 11946 186479

Compact-lastfm-200 200 2392 30 29850
Compact-lastfm-300 300 3299 30 44318
Compact-lastfm-400 400 4091 30 58098
Compact-lastfm-500 500 4928 30 72125
Compact-lastfm-600 600 5765 30 85522
Compact-lastfm-700 700 6454 30 98367
Compact-lastfm-800 800 7071 30 111062
Compact-lastfm-900 900 7782 30 124005

Compact-lastfm-1000 1000 8431 30 137518

Table 4.2: Last.fm dataset statistics (continue)

Dataset data sparsity (%) average # of friends
lastfm-2k 99.9999 13.44

Compact-lastfm-200 99.7920 28.54
Compact-lastfm-300 99.8507 29.79
Compact-lastfm-400 99.8817 29.10
Compact-lastfm-500 99.9024 27.81
Compact-lastfm-600 99.9176 26.32
Compact-lastfm-700 99.9274 24.90
Compact-lastfm-800 99.9346 23.57
Compact-lastfm-900 99.9410 22.23
Compact-lastfm-1000 99.9456 21.01

graph. Figure 4.7 shows the results of SCR learning using these noisy datasets for various

values of p, averaged over 25 random trials. Table 4.3 shows the average number of friends

added or removed per user for a given p.

The results reveal an interesting, asymmetric behavior. When friends are added at ran-

dom (p > 0), performance begins to drop quickly, presumably due to the fact that non-

friends can have significantly different preferences, as shown in Section 4.3. Luckily, the

creation of spurious non-friend edges in the social graph seems relatively unlikely in the

real world, where links must typically be confirmed by both parties.

On the other hand, removing edges (p < 0) seems to have a relatively small impact
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Table 4.3: Average number of friends added/removed per user.

p Friends removed p Friends added
-0.03 1.59 0 0
-0.06 3.27 0.03 1.62
-0.09 4.84 0.06 3.35
-0.12 6.27 0.09 5.04
-0.18 9.10 0.12 6.68
-0.24 11.71 0.18 10.00
-0.30 14.25 0.30 16.67
-0.36 16.33
-0.42 18.38
-0.48 20.18
-0.60 23.25

on performance unless a significant proportion of the links are removed. This may be

because friends are often linked by multiple short paths though other mutual friends, thus

the removal of a single link only slightly diminishes connectivity. Moreover, groups of

users linked in cliques tend to influence each other strongly, and such cliques cannot be

broken up by removing only a few edges. This type of noise, though presumably common,

has only a limited impact when using social networks for collaborative retrieval.

To visualize these patterns, we select a random subset of 200 users and plot the original

social graph as well as the social graphs obtained for different values of p in Figure 4.8.

When p = −0.3, the basic structure of the network is still visible, and almost every user is

still connected to all of his or her original friends through short paths in the reduced graph.

However, when p = −0.6, the structure has begun to break down, and many former friends

are now totally disconnected. In this case the performance of SCR degrades approximately

to the level of LCR. When p is positive, we see a different kind of degredation, where many

new edges connect together subgroups that were originally only sparsely connected.

4.5 Conclusions and future work

We proposed SCR, a new model blending social networking, information retrieval, and

collaborative filtering. SCR uses a social graph to improve performance on collaborative
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(a) (b)

(c) (d)

Figure 4.8: Visualizations of 200-user social graphs with different levels of random friend
addition/deletion noise. (a) Original social graph (p = 0). (b) Reduced social graph (p =
−0.30). (c) Reduced social graph (p = −0.60). (d) Augmented social graph (p = 0.09),
with added edges shown in blue. The arrangement of the vertices was generated using the
ForceAtlas2 algorithm.

retrieval problems, which we believe are increasingly important in practice, outperforming

state-of-the-art CR and CF approaches. We also showed that users tend to share interests

with friends. Going forward we hope to develop a two-pass version of the SCR algorithm

that helps predict interest commonalities between friends, and can be used to prune out

edges on the social graph that may work against achieving good performance.
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CHAPTER V

Graphical Lasso Fusion across

Multiple Time-sclaes

5.1 Introduction

The last information fusion problem we consider in this dissertation is inverse covari-

ance (precision) estimation for multivariate time series. We aim to combine information at

different time scales and offsets to improve the estimation. Like the problem in Chapter IV,

different information in this chapter can not be combined using trivial linear scalarization

approach as in Chapter II and III. A general framework for joint estimation of multiple

precision matrices is proposed in this chapter. We first briefly give an introduction of cor-

relation and partial correlation networks and then introduce our proposed fused method for

combining information at different time scales and offsets.

Correlation networks that expose graphical structure in multivariate time series—for

example, in historical stock prices—have been widely applied to analyze the dynamics of

financial markets. Partial correlation networks have become especially popular in recent

years, since they can more easily answer questions about which equities act as the primary

drivers for the rest of the market. In these networks, the edge weight between two equities

represents the partial correlation of their prices; an edge is omitted if they are conditionally

uncorrelated given all of the other data. A partial correlation matrix can be viewed as a

normalized version of inverse covariance matrix; thus for Gaussian graphical models, the
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network defined in this way is minimal.

Through this type of analysis we can identify equities that are the most influential, in

the sense that a small subset can often explain large parts of the market [66]. Moreover, by

estimating correlation networks from a moving window of recent data we can try to predict

future market dynamics. For example, previous studies have observed that the dominant

influences on specific equities are usually persistent across time [66]. Observations of

this kind can even provide deeper understanding of market collapses and other anomalous

phenomena.

In this chapter we propose a general fused graphical lasso objective for estimating the

network structure of data containing multiple time series, under the assumption that the

variables follow a multivariate Gaussian distribution. The key to our approach is that we

jointly learn networks at multiple distinct time scales and at different offsets; since these

networks all involve the same set of variables, we can regularize them towards each other

under the assumption that they tend to exhibit similar structure. This will tend to be true, for

example, if the dynamics of the relevant real-world processes change smoothly over time.

Our approach estimates precision matrices that balance likelihood and per-network sparsity

with a penalty that encourages precision matrices at different time scales and offsets to

share a common sparsity pattern.

As we demonstrate empirically, estimates over short time scales are responsive to rapidly

changing dynamics, but are often noisy due to a relatively small number of available sam-

ples. On the other hand, longer time scales allow the integration of many more data points,

reducing variance, but smooth out potentially important short-term behaviors. By com-

bining these approaches using the general fused graphical lasso, we aim to obtain the best

properties from each. We show that this technique allows us to estimate partial correlation

networks more robustly and accurately on both synthetic data and real-world time series.
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5.2 Related Work

Although partial correlation networks for financial analysis have become widespread

[43, 66], only recently has estimation of partial correlation or inverse covariance matrices

has been studied in the context of practical applications [29, 35, 55, 91]. Several general

estimation methods have been proposed for empirically estimating inverse covariance ma-

trices (also called precision matrices) for Gaussian graphical models in such a way that the

resulting estimate is sparse [6, 40, 40, 54, 72, 74]. Graphical lasso, which generates a sparse

precision matrix by maximizing log likelihood with an L-1 or lasso penalty [40, 104], is

one of the most popular approaches.

When several datasets are available whose precision matrices are expected to be simi-

lar, the estimation of these matrices can be porformed jointly, as in [33, 46, 113]. In [33],

the authors propose to add fused lasso penalties [104] and group lasso penalties [41, 85]

between all pairs of precision matrices. In [113], the precision matrices are ordered and the

authors propose to add fused lasso penalties for adjacent precision matrices. All these ap-

proaches, which are related to our work, try to make multiple precision matrices estimates

share a common sparsity pattern.

In [33], the authors applied an alternating directions method of multipliers (ADMM)

method [16] to solve the joint graphical lasso with fused lasso penalties. In this work we ap-

ply a similar procedure to solve our optimization problem. Since we use fused lasso penal-

ties, ADMM requires a subroutine for solving fused lasso signal approximator (FLSA)

problems. Several methods have been proposed to solve FLSA problems [39, 51, 75]. We

extend a path algorithm by [51] to solve a more general type of FLSA problem.

5.3 Structure Fusion across Different Time-scales

The goal of fusing information is to improve joint estimates of precision matrices at

different time scales and offsets. Suppose the time series are not stationary, that is, the

relationships between different variables vary over time. One could divide the whole time
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series into different years and divide the time series within the same year intro four differ-

ent quarters. If one would like to estimate the precision matrices at each quarter of a year, a

simple approach is to estimate the precision matrix using each quarter’s data. However, the

number of observations might not be enough for a good estimate when the number of vari-

ables is large. Alternately, one could use the whole year’s data to overcome this problem,

but that will smooth out local information at different quarters. Although we assume that

true precision varies along time, the key assumption of this work is that different precision

matrices at different times or different time scales share similar structure.

We first briefly introduce some notation used throughout the chapter. We let K de-

note the total number of different precision matrices we want to estimate and let Σ−1
k and

Σk denote the true precision and covariance, respectively. These K different precision or

covariance matrices represent relationships of time series at different times and at differ-

ent time scales. The estimate of Σ−1
k is denoted as Θ(k), k = 1, · · · , K. An example of

hierarchical structure of these precision estimates is shown in Figure 5.1. In this exam-

ple, Θ1,1 is the precision estimate of multiple time series through the whole year and Θ2,i,

i = 1, · · · , 4, are precision estimates for different quarters. Finally, Θ3,i, i = 1, · · · , 12,

correspond to twelve different months. Our approach is to formulate a convex optimiza-

tion problem which seeks better estimates for different times and different time scales by

introducing convex penalties that encourage them to share similar sparsity patterns. For

convenience, we denote by G(Θ, E) the graph which comprises a set {Θ} of precision

matrices together with a set E of edges that relate them. G(Θ, E) is undirected in this

work. Since a precision matrix is sometimes viewed as a representation of a graph de-

scribing the relationships between variables, G(Θ, E) can be viewed as a graph of graphs.

For convenience, we will index all different precision matrices using k = 1, · · · , K and

entries of matrices using i = 1, · · · , p, j = 1, · · · , p where p is the number of time series.

In this example, {Θ1,1,Θ2,1, · · · ,Θ2,4,Θ3,1, · · · ,Θ3,12} are indexed by {Θ(1), · · · ,Θ(17)},

respectively. Notice that in this example, the graph structure is a tree. Different struc-

tures are possible for different applications. We have tested different structures such as a
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line structure connecting precision matrices across time offsets and a line structures con-

necting matrices across time scales. The proposed tree structure outperformed simple line

structures.

Θ1,1	  

Θ2,1	   Θ2,2	   Θ2,3	   Θ2,4	  

Θ3,1	   Θ3,2	   Θ3,3	   Θ3,4	   Θ3,5	   Θ3,6	   Θ3,7	   Θ3,8	   Θ3,9	   Θ3,10	   Θ3,11	   Θ3,12	  

Figure 5.1: An example of graph structure for multiple precisions at different times and
different time scales. At each node of the graph a precision matrix Θi,j governs the joint
distribution of the measurements at that node. When there exists an edge between two
nodes, the precision matrices at these nodes are constrained to be similar.

5.3.1 Graphical Lasso and Joint Graphical Lasso

Before introducing our general framework for fusing precision matrices, a brief intro-

duction to Graphical Lasso and Joint Graphical Lasso (JGL) is presented in this section.

Assume we have K datasets, Y (1), · · · , Y (K), with K ≥ 2. Y (k) is a nk × p matrix

consisting of nk observations with measurements on p features that are common across

different datasets. Assume these
∑K

k=1 nk observations are all independent and the obser-

vations within each dataset are identically distributed following a Gaussian distribution :

y
(k)
i ∼ N(µk,Σ

−1
k ), i = 1, · · · , nk. Denote by S(k) the empirical covariance matrix for

Y (k). In a Gaussian graphical model, a natural way to estimate these inverse covariance

matrices or precision matrices {Σ−1
k }, is by a maximum likelihood approach. The joint
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log-likelihood for all data can then be represented in the following form (up to a constant):

`({Θ}) =
1

2

K∑
k=1

nk
(
log detΘ(k) − trace(S(k)Θ(k))

)
. (5.1)

Without any additional penalized term, the maximum likelihood estimates which max-

imize the above objective function are (S(1))−1, · · · , (S(K))−1. These maximum likelihood

estimates of precision matrices are usually not satisfactory and the inverse of a covariance

matrix sometimes does not exist or may have very large variance. In the recent past, sev-

eral methods have been proposed to estimate Σ−1 in such a way that the resulting estimate

is sparse in the high-dimensional case (p � n). Instead of maximizing Eq.(5.1), many

of them solve the following optimization problem (Eq.5.2) which maximizes a penalized

log-likelihood for each dataset or class.

maximizeΘnk
(
log det Θ(k) − trace(S(k)Θ(k))

)
− λ‖Θ‖1. (5.2)

The solution of this maximization problem is often referred to as the graphical lasso(GL)

[40].

[33] propose to use the joint graphical lasso (JGL) for inverse covariance estimation

across multiple classes. The authors use the graphical lasso approach for estimation of

multiple precision matrices with the assumption that these precision matrices share a simi-

lar sparsity pattern. Each precision matrix corresponds to the structure of a graphical model

for a class. The overall penalized log-likelihood optimization problem is then written as

the following:

maximizeΘ

K∑
k=1

nk(log det Θ(k) − trace(S(k)Θ(k)))− P ({Θ}), (5.3)

where P ({Θ}) is a convex penalty function . In [33], the authors propose to use a penalty

function P which encourages the estimates of precision matrices Θ̂1, . . . , Θ̂K to be sparse

and share certain characteristics. For example, they propose fused graphical lasso (FGL)
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and group graphical lasso (FGL) which are solutions to the problem (5.3) with penalties

shown in (5.4) and (5.5) respectively.

PFGL({Θ}) = λ1

K∑
k=1

∑
i 6=j

|Θ(k)
ij |+ λ2

∑
k<k′

∑
i,j

|Θ(k)
ij −Θ

(k′)
ij |. (5.4)

PGGL({Θ}) = λ1

K∑
k=1

∑
i 6=j

|Θ(k)
ij |+ λ2

∑
i 6=j

√√√√ K∑
k=1

(Θ
(k)
ij )2. (5.5)

Both penalties encourage similarity across the K estimated precision matrices.

5.3.2 General Fused Graphical Lasso (GFGL) for multiple time series at different

time scales and offsets

To combine information from different time scales, we propose to use Gaussian graph-

ical models to model multiple time series at different time scales. For example, given a

time series xt, t = 1, . . . , T , one could define the m-block average process yt′ on indices

t′ = 1, 2, . . . , b T
m
c by

yt′ =
1

m

m∑
i=1

x(t′−1)m+i.

The y values are the averages of non-overlapping groups of m consecutive x values. In this

example, one could obtain weekly and monthly time series by choosing m to be 7 and 30.

For convenience, we denote x` as a time series x at time scale `. Multiple time series at

different time scales can be denoted as X` and we follow the notations used in the previous

subsection.

Motivated by joint graphical lasso, we propose to use the following objective function:

maximizeΘ

L∑
`=1

w`(log det Θ(`) − trace(S(`)Θ(`)))− P ({Θ}), (5.6)
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where w` is the weight for time scale ` and P ({Θ}) is the modified penalty function:

P ({Θ}) = λ1

L∑
`=1

∑
i 6=j

|Θ(`)
ij |+ λ2

L−1∑
`=1

∑
i,j

|Θ(`)
ij −Θ

(`+1)
ij |. (5.7)

In other words, each graphical model for a specific time scale is only constrained with

those models for neighboring time scales. Recall G is defined as the graph of precision

matrices. In this example, G is a simple line structure of precision matrices across time

scales.

Instead of modeling Gaussian graphical models only at different time scales, another

interesting and useful approach is to construct graphical models across time. Recall that

one could apply a moving window approach to estimate the relationship of variables for

successive short time periods, for example, one precision estimate for each month. Since

there are not enough samples within each window, the partial correlation network or pre-

cision matrix estimate will be noisy and have high variance. Although we assume that

the time series are not stationary, we expect that naturally they share some common char-

acteristics. We expect that they are similar but not identical and the differences between

these graphical models may be of interest for discovering the dynamics of networks. In this

situation, we could apply the same penalties described in Eq.(5.7) but now different Θ(`)

correspond to different graphical models at different times.

Different setups of the graph G for multiple graphical models are also possible. The

main idea is to combine information at different time scales or at different time offsets to

make the estimation of either partial correlation networks or inverse covariance matrices

more accurate and robust. Our approach can be viewed as a fusion approach and other

methods such as graphical lasso without fused penalties at non-fusion approaches. Recall

that a more interesting and hierarchical tree structure has been mentioned at the beginning

of this section and shown in Figure 5.1. In this example, neighboring precision estimates

across times share sparsity via precision estimates at upper scales. In the context of this

work, JGL used a complete graph in which there are edges between all pairs of precision
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estimates.

In addition to using a general graph instead of a complete graph in JGL, we also in-

troduce edge weights on G such that one can apply different fusion strengths for different

pairs of precision matrices. Take the structure in Figure 5.1, for example; if one would like

to use the estimates Θ1,1,Θ2,4 or Θ3,12 for predictive purposes in the next year, different

edge weights can be applied such that eΘ1,1,Θ2,i
< eΘ1,1,Θ2,j

, i < j to make the estimates

more accurate.

The overall generalized penalty function can be written as follows:

P ({Θ}) = λ1

K∑
k=1

∑
i 6=j

|Θ(k)
ij |+ λ2

∑
p<q,(p,q)∈E

epq
∑
i,j

|Θ(p)
ij −Θ

(q)
ij |, (5.8)

where E is the edge set of graph G. From now on, we refer to the solution of the opti-

mization problem (5.6) with generalized penalty function (5.8) as general fused graphical

Lasso (GFGL).

5.3.3 ADMM Algorithm for GFGL

To solve the problem in (5.6), we use an alternating directions method of multipliers

(ADMM) algorithm as in JGL[33]. For more details about ADMM, its convergence rate

and recent applications, we refer the reader to [16].

The problem can be rewritten as

minimize
Θ,Z

−
K∑
k=1

wk(log det Θ(k) − trace(S(k)Θ(k))) + P ({Z}) (5.9)

subject to Θ(k) > 0,∀k = 1, · · · , K

Θ(k) = Z(k),∀k = 1, · · · , K
(5.10)

where Θ(k) � 0 means Θ(k) is positive-definite and {Z} = {Z(1), · · · , Z(K)}. The scaled
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augmented Lagrangian [16] for this problem is then given by

Lρ({Θ}, {Z}, {U}) = −
K∑
k=1

wk(log det Θ(k) − trace(S(k)Θ(k)))

+ P ({Z}) +
ρ

2

K∑
k=1

‖Θ(k) − Z(k) + U (k)‖, (5.11)

where {U} = {U (k), · · · , U (K)} are dual variables and ρ is a scalar greater than 0. An

ADMM algorithm solves this problem by iterating the following three simple steps at i-th

iteration:

(i){Θ(i)} ← arg min{Θ}{Lρ({Θ}, {Z(i−1)}, {U(i−1)})}.

(ii){Z(i)} ← arg min{Z}{Lρ({Θ(i)}, {Z}, {U(i−1)})}.

(iii){U(i)} ← {U(i−1)}+ {Θ(i)} − {Z(i)}.

Step (iii) is trivial while step (i) and (ii) can be solved as follows. Let VDVT be

the eigendecomposition of S(k) − ρZ(k)
(i−1)/wk + ρU

(k)
(i−1)/wk. The solution of step (i) can

be computed by VD̃VT , where D̃ is the diagonal matrix with the j-th element D̃jj =

wk

2ρ

(
−Djj +

√
D2
jj + 4ρ/wk

)
[33, 110]. For step(ii), the minimization will depend on the

convex penalty function P . When P is the fused graphical lasso shown in Equation (5.4),

the problem can be viewed as a special case of a Fused Lasso Signal Approximator (FLSA)

problem [104]. In [33], the authors solve this minimization problem using an efficient path

algorithm for FLSA proposed in [51]. However when P is a generalized fused graphical

lasso penalty (5.8), that is, the weights of different pair of Θ(k)s are different and defined

by G(Θ, E), the path algorithm [51] has to be extended to a more general setting. More

details on solving the optimization problem in step (ii) are shown in Section 5.4.
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5.4 General Fused Lasso Signal Approximator (FLSA) with different

edge weights

The minimization problem in step (ii) of ADMM in the previous section can be written

as follows:

minimize
{Z}

ρ

2

K∑
k=1

‖Z(k) − A(k)‖2
F + λ1

K∑
k=1

∑
i 6=j

|Z(k)
ij |+ λ2

∑
p<q,(p,q)∈E

epq
∑
i,j

|Z(p)
ij − Z

(q)
ij |,

(5.12)

where A(k) = Θ
(k)
(t) + U

(k)
(t−1) at the t-th iteration. Notice that (5.12) is separable with

respect to each entry of matrix. One can solve the following problem for each (i, j).

minimize
Z1
ij ,··· ,ZK

ij

ρ

2

K∑
k=1

‖Z(k)
ij −A

(k)
ij ‖2

F +λ11i 6=j

K∑
k=1

|Z(k)
ij |+λ2

∑
p<q,(p,q)∈E

epq|Z(p)
ij −Z

(q)
ij |. (5.13)

When epq = 1, for all p, q, the above problem can be viewed as a FLSA problem. With

some variable changes and letting λ1 ← λ1/ρ, λ2 ← λ2/ρ, and epq = 1,∀p, q, we can

rewrite the objective function of this general FLSA problem as follows.

L(β) =
1

2

n∑
i=1

(yi − βi)2 + λ1

n∑
i=1

|βi|+ λ2

∑
i<j,(i,j)∈E

|βi − βj|, (5.14)

where βi is an estimate and yi is the given measurement. Suppose λ2 > 0, λ1 = 0

and the solution is obtained. When λ1 > 0, the solution can be derived through soft

thresholding by λ1 [39]. Therefore we can first let λ1 = 0 and general FLSA requires

solving the following convex optimization problem:

L(β) =
1

2

n∑
i=1

(yi − βi)2 + λ2

∑
i<j,(i,j)∈E

|βi − βj|. (5.15)

One of the contributions of this work is to extend an efficient path algorithm [51] to the

general FLSA problem with different edge weights, that is, to minimize the following more
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general convex objective function.

L(β) =
1

2

n∑
i=1

wi(yi − βi)2 + λ2

∑
i<j,(i,j)∈E

eij|βi − βj|. (5.16)

Due to space limitations, we leave the details of this extended and efficient path algo-

rithm which minimizes (5.16) to the appendix section. We also refer the reader to [51] for

details of the original algorithm that solves the original FLSA problems in (5.15).

Θ1,1	  

Θ2,1	   Θ2,2	   Θ2,3	   Θ2,4	  

Figure 5.2: The graph structure for multiple precision matrices at different time scales and
offsets for simulations and experiments.

5.5 Experiments

We compare our fusion approach with other non-fusion approaches on both synthetic

and real-world datasets. The goal of this work is to show that fusing information at different

times and scales can be helpful. When the fusion parameter λ2 and sparsity parameter λ1 in

Eq.(5.8) are both zero, the maximum likelihood estimates are simply the inverse of sample

covariance. While λ2 = 0 and λ1 > 0, the penalized maximum likelihood estimates

are often known as graphical lasso as mentioned in previous sections. In this section we

would like to show that when the GFGL approach starts fusing information, that is, when
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λ2 becomes non-zero, the precision estimates become more accurate. In addition, GFGL

has another advantage. While introducing a sparsity penalty in graphical lasso can force

some entries in precision matrices to be zero and help identify paris of variables that are

unconnected in the graphical model, fusing different precision matrices can help identify

edge difference across time scales and different times.
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Figure 5.3: (a) shows KL divergence between graphical lasso estimate and true precision
matrix with different λ1. The minimum KL divergence is achieved when λ1 = 0.45. Using
the same λ1, (b) shows that our GFGL can achieve lower KL divergence with the same λ1

and λ2 = 0.55.

5.5.1 Synthetic Simulations

For synthetic simulations we first generate multiple synthetic precision matrices that are

related to each other under a two-level hierarchical structure which is shown in Figure 5.2.

In these experiments, we first generate a synthetic 5 × 5 sparse precision matrix Θ1,1 with

density 0.3. To generate a lower level synthetic precision matrix from Θ1,1, we let the non-

zero entries change to zero with probability 0.25 and let zero entries change to non-zero

values with probability 0.1. Using this procedure, we generate Θ2,i, i = 1, 2, 3, 4 from Θ1,1.

Given these bottom level synthetic precision matrices Θ2,i, i = 1, · · · , 4, we generate 5 time

series of length 20 under Gaussian distributions with zero mean and precision matrices

{Θ2,i}, and add white noise. For example, the first 5 days of data are generated with
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Table 5.1: Kullback-Liebler (KL) divergence between estimated and ground truth distribu-
tions for the simulation example explained in the text. Our fusion approach (GFGL) always
yields lower KL divergence relative to the ground truth precision matrices.

GL GFGL
1 14.09 11.29
2 13.24 11.04
3 11.56 11.27
4 14.45 14.06
5 15.11 12.75
6 13.83 12.77
7 13.04 11.43
8 12.89 11.84
9 14.37 12.09

10 12.64 11.98

Θ2,1, the data from the 6-th to the 10-th day are with Θ2,2 and so on. Given these 20-

day time series, we estimate the precision matrix for each 5-day period using graphical

lasso and our GFGL approach with the same structure in Figure 5.2. The goal of this

simulation is to see if fusing precision estimates from different time scales can improve the

estimate for each 5-day period compared with a non-fusion approach. Since we have the

ground truth of all precision matrices, we can compute the sum of KL divergences between

Θ2,i, i = 1, · · · , 4 and corresponding precision estimates to evaluate the performance of

different approaches. For graphical lasso (GL), we do a dense grid search for λ1 and report

the lowest KL divergences for 10 different experimental runs. For GFGL, to find optimal

parameters, one straightforward approach is to do a grid search over λ1 and λ2. However,

doing a grid search is very time-consuming, so instead we apply a greedy approach, that is,

to search λ2 with the best λ1 for graphical lasso and then report these suboptimal results.

In this simulation, we intend to show that our fusion approach can give a more accurate

estimate and report these oracle results for both fusion and non-fusion approaches. In

real-world applications, parameter selection can be done through cross validation or by

an approximation of the Akaike Information Criterion (AIC). In the next section, we use
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cross-validation to select parameters for experiments on a real-world dataset.

The results of this simulation are shown in Table 5.1. Our fusion approach GFGL ob-

viously outperforms the non-fusion approach GL, increasing the accuracy. One example

of performance under different parameters is given in Figure 5.3. In Figure 5.3(a), graph-

ical lasso achieves the lowest KL divergence 14.09 when λ1 = 0.45. Using this λ1 and

sweeping through λ2, our fusion approach achieves the lowest KL divergence 11.29 when

λ2 = 0.55 shown in Figure 5.3(b). Note that a grid search over λ1 and λ2 would give a

lower KL divergence, that is, a better estimate of precision matrices.
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Figure 5.4: (a) shows log likelihood on test data with different λ1 given precision estimates
by graphical lasso. The maximum log-likelihood is achieved when λ1 = 1.2×10−5. Using
the same λ1, (b) shows that our GFGL can achieve better performance with the same λ1

and λ2 = 4× 10−5.

5.5.2 S&P 500 Dataset

In this section we present the performance of fusion and non-fusion approaches on a

real-world dataset. We collect stock prices of companies which belong to the S&P500

component list at the end of 2013 and existed over the past 25 years from 1989 to 2013.

All data are downloaded from Yahoo Finance. We first compute daily returns of all stocks

and distribute all stocks to 10 different sectors based on public market information. In

the end we obtained a total of 220 stocks and each sector has 16 – 33 stocks except the
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sector Telecommunications Services (TS) which has less than 5 companies. Due to space

limitations we only present 10 years’ results on all sectors except the TS sector from 2004

to 2013. In this experiment we use daily returns of all stocks as multiple time series as

in previous work. Assuming these time series follow a multivariate Gaussian distribution,

we want to estimate precision matrices at different years and also precision matrices at

different quarters in each year. These sparse precision estimates can further be used in many

applications such as portfolio construction, stock relationship visualization, and market

analysis.

The hierarchical structure we use for this experiment is the same as that in Figure 5.2.

The top level corresponds to the whole year precision matrix while the four bottom level

precision matrices correspond to four different quarters. Because no one has ground truth of

precision matrices for real-world stock data, instead of evaluating the KL divergence as in

simulations, we compare log-likehoods of test data given different precision estimates. The

experimental setup is as follows. For each year, we use each quarter’s third month’s data

as test data. In other words we suppose data on March, June, September and December are

missing. Different methods unitize data from the remaining months to estimate precision

matrices corresponding to the whole year and four quarters. For all methods, we use the

sample mean computed from the first two months’ data of each quarter as the mean estimate

for each quarter and denote mi as the sample mean in quarter i. For convenience, denote

by Θ̃year
GL and Θ̃i

GL the precision estimate for the whole year and the quarter i respectively

of the graphical lasso method. The same notation is used for our fusion method (GFGL)

and for a simple inverse approach (INV) which uses the inverse of sample covariance as

the precision estimate.

For convenience we index missing data by Xi and define Q(i) as the function which

returns the quarter in whichXi is. For example, ifXi is a data from March, Q(i) = 1 and if

Xi is a data from September, Q(i) = 3. Denote `(Xi;m, Θ̃) as the Gaussian log-likelihood

of Xi given mean m and precision matrix Θ̃. We then compute the log likelihood of all

missing data given different precision estimates obtained by different methods with param-
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eters chosen by cross validation. The details of parameter selection are shown later. In all

our experiments, a simple inverse approach which uses the inverse of sample covariance

as the precision estimate does not outperform graphical lasso and our fusion approach. To

compare our fusion approach with the non-fusion approach, we compute the difference

between the log likelihoods of both approaches as follows:

dyeari = `(Xi;m
Q(i), Θ̃year

GFGL)− `(Xi;m
Q(i), Θ̃year

GL ),∀i, (5.17)

dQi = `(Xi;m
Q(i), Θ̃

Q(i)
GFGL)− `(Xi;m

Q(i), Θ̃
Q(i)
GL ), ∀i. (5.18)

While dyeari measures the performance difference between two methods using yearly

estimates, dQi measures the performance difference using quarterly estimates. The means

and 95% confidence intervals of dyeari and dQi are reported. Results of all different sectors

over the past 10 years are shown in Table 5.2 and Table 5.3. We observe a similar perfor-

mance advantage of our method for all past 25 years. Due to space limitation we only show

results over the past 10 years.

For parameter selection, we use cross validation to select both λ1 and λ2. For each year,

we first run graphical lasso with different λ1 on 90% of training data and choose the one

that gives the highest log-likelihood for the remaining data. With this selected λ1 we select

λ2 in the same manner. Notice that a dense grid search on both λ1 and λ2 would give an

even higher log-likelihood on the cross validation data. We have also found that for some

years and for some sectors our fusion approach tends to choose λ2 to be 0. In this case, our

method is equivalent to the graphical lasso approach using the same λ1. This situation also

suggests that the market at different quarters are so different that fusing information would

not be good in this case and therefore our fusion method chooses λ2 to be 0.

From the above two tables we have shown that our fusion approach can improve esti-

mates of precision matrices. One really interesting thing is that fusion approach can achieve

a log-likelihood that the non-fusion approach can never achieve. We take the sector Con-

sumer Discretionary in 2013 as an example. In Figure 5.4(a), we show log-likelihood using
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graphical lasso’s yearly estimate and quarterly estimates with different λ1. By using graph-

ical lasso, that is, a non-fusion approach, one can achieve the highest log likehood 7417

using yearly estimate when λ1 = 1.25 × 10−5. Using the same λ1, we increase λ2 from

zero to start fusion and are able to obtain higher log-likelihoods that can never be obtained

by non-fusion approach.

5.6 Conclusion and Future Work

In this chapter we propose a framework that estimates multiple precision matrices at

different time scales and offsets. Our method introduces a more general types of fused

graphical lasso penalty to a maximum likelihood estimation problem. Our experimental

studies show that combining information at different time scales and offsets by our fusion

approach can result a more accurate estimation on both synthetic data and real-world time

series. There are some interesting future works for this problem. One example is how

to apply the proposed method for portfolio construction and market analysis. We believe

that proposed fused method can possibly be applied to construct portfolios that outperform

those constructed from non-fusion approaches. Another interesting future work is to use

different structures and test performances under different structures.
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Table 5.2: Differences of log-likehoods between our GFGL approach and graphical
lasso(GL) using yearly estimates for different financial sectors during 2004∼2013. Ab-
breviations at the first row stand for Consumer Discretionary, Consumer Staples, Energy,
Financials, Health Care, Industrials, Information Technology, Materials, Utilities. Notice
that at some years for some sector, the differences are zeros. This means that the fusion
approach chooses λ2 to be zero for those cases and is equivalent to GL. The results show
that using the proposed fusion approach yields precision estimates with higher likelihood
for missing months.

CD CS EN FI HC IN IT MA UT

4
0.283
± 0.091

0.039
± 0.173

-0.013
± 0.043

0.287
± 0.07

-0.797
± 1.917

-0.072
± 0.256

0.203
± 0.068

-0.028
± 0.125

0.172
± 0.071

5
0.033
± 0.052

0.114
± 0.144

0.082
± 0.052

0
± 0

0.173
± 0.145

-0.016
± 0.323

0.245
± 0.08

0
± 0

-0.01
± 0.083

6
0.08
± 0.105

0.059
± 0.147

0
± 0

-0.032
± 0.307

0.041
± 0.25

0.41
± 0.125

0.168
± 0.126

0.207
± 0.068

0
± 0

7
0.047
± 0.284

0
± 0

0
± 0

0.146
± 0.256

0.243
± 0.094

0.114
± 0.192

0.185
± 0.119

0.064
± 0.112

0.343
± 0.064

8
0
± 0

0.214
± 0.153

0.23
± 0.16

0.222
± 0.151

0.218
± 0.256

0.001
± 0.404

0.109
± 0.108

-0.017
± 0.435

0.055
± 0.624

9
-0.119
± 0.182

0.132
± 0.102

-0.055
± 0.098

0.069
± 0.281

0.362
± 0.509

0.13
± 0.235

0
± 0

0.126
± 0.16

0
± 0

10
-0.007
± 0.098

0.023
± 0.079

-0.075
± 0.185

0.159
± 0.126

-0.211
± 0.743

0.215
± 0.193

-0.141
± 0.324

0.111
± 0.07

0.031
± 0.103

11
-0.001
± 0.129

0.335
± 0.083

0.127
± 0.056

0.101
± 0.259

0.246
± 0.073

0.092
± 0.193

0.034
± 0.112

0.184
± 0.16

-0.043
± 0.176

12
0.34
± 0.098

0.137
± 0.112

0.039
± 0.038

0.041
± 0.212

0.152
± 0.095

-0.137
± 0.278

0.053
±

0.115

0.153
± 0.137

0.032
± 0.112

13
0.116
± 0.046

0
± 0

0.084
± 0.058

0.112
± 0.088

-0.021
± 0.221

0.193
± 0.302

0.092
± 0.152

0.222
± 0.1

0.135
± 0.056
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Table 5.3: Differences of log-likehoods between our GFGL approach and graphical
lasso(GL) using quarterly estimates for different financial sectors during 2004 2013. No-
tice that the performance gaps between our approach and GL are much larger.

CD CS EN FI HC IN IT MA UT

4
4.088
± 2.203

3.335
± 1.586

0.484
± 0.4

1.157
± 0.508

8.307
±

10.722

8.245
± 2.555

1.723
± 0.574

2.832
± 1.431

1.745
± 0.559

5
0.765
± 0.859

6.997
± 2.208

-0.071
± 0.193

0
± 0

4.479
± 1.573

2.262
± 1.081

6.824
± 2.546

0
± 0

0.889
± 0.34

6
1.972
± 0.801

5.255
± 2.069

0
± 0

2.167
± 1.45

1.756
± 1.693

8.757
± 1.994

3.181
± 1.296

1.822
± 0.732

0
± 0

7
1.429
± 1.036

0
± 0

0
± 0

1.231
± 0.798

8.223
± 2.638

4.646
± 1.315

6.113
± 1.591

1.145
± 0.461

0.527
± 0.324

8
0
± 0

1.708
± 0.91

1.818
± 1.015

2.525
± 1.681

3.375
± 2.868

3.581
± 1.163

0.441
± 0.467

0.614
± 0.717

3.114
± 2.309

9
-0.014
± 0.781

4.292
± 2.204

1.775
± 0.929

-0.28
± 0.691

6.726
± 9.045

3.922
± 1.537

0
± 0

2.291
± 1.116

0
± 0

10
1.763
± 0.967

-0.76
± 0.455

0.968
± 0.722

2.284
± 0.687

4.106
± 4.297

8.456
± 1.636

3.907
± 2.664

0.893
± 0.448

1.929
± 1.541

11
1.169
± 0.782

2.06
± 1.061

2.812
± 0.972

9.218
± 2.843

1.963
± 1.23

2.831
± 0.949

1.572
± 1.331

3.897
± 1.991

2.362
± 1.682

12
2.033
± 1.068

1.291
± 0.646

0.482
± 0.321

6.485
± 1.511

0.742
± 0.426

8.016
± 3.014

1.392
± 0.691

3.817
± 1.11

1.226
± 0.731

13
1.116
± 1.609

0
± 0

1.161
± 0.575

4.294
± 1.483

4.167
± 1.466

8.229
± 3.833

3.373
± 2.387

1.06
± 0.432

0.642
± 0.66
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CHAPTER VI

Conclusion and Future Work

This thesis investigated information fusion in several different machine learning set-

tings. We proposed novel and efficient algorithms to tackle down these problems and pre-

sented experimental results on synthetic and real-world datasets.

In Chapter II we proposed a new multi-criteria anomaly detection method. To better

detect anomalies possibly under different criteria, multiple dissimilarity measures need to

be considered at the same time. While linear scalarization methods require choosing a

specific weights for these different dissimilarity measures and scales exponentially in the

number of criteria, the proposed method, which uses Pareto depth analysis to compute

anomaly scores of test samples, can detect anomalies and scales linearly. We also present

theoretical results showing that Pareto approach is asymptotically better than using linear

scalarization for multiple criteria. Experimental results on both synthetic and real-world

datasets show that combining information under disparate criteria improve performances

of anomaly detection and our proposed method outperforms other state-of-arts approaches.

In Chapter III we continued using Pareto depth and present a novel algorithm for

multiple-query image retrieval. Since different query images might contain different se-

mantic concepts, linear scalarization methods and other multiple-query retrieval approaches

can not easily retrieve some samples that are related to all queries at the same time. Some

theoretical results on asymptotic non-convexity of Pareto fronts are also shown in this chap-

ter and shows that the proposed Pareto approach can outperform methods using linear com-
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binations of ranking results. We also present experimental studies on real-world datasets to

illustrated the advantages of the proposed algorithm. In this problem disparate information

come from different query images. By issuing query images of different semantic concepts,

users can retrieve images of more interests.

In Chapter IV we considered a collaborative retrieval problem which can be viewed as

a blend of recommendation and retrieval task. By combing behavior information which

is users’ listening history and relation information which is social connectivity of users,

we successfully shows that combing different types of information can improve the perfor-

mance of collaborative retrieval task on a real-world music dataset. Since

We follow the theme of this thesis and research problems which attempt to estimate

multiple precision matrices for multiple time series by combining information at different

time scales and offsets. In Chapter V an information fusion approach, general fused graph-

ical lasso (GFGL), is proposed to fuse multiple precision matrices. This approach obtains

penalized graphical lasso estimates with a more general version of FGL penalty. In our ex-

perimental studies on both synthetic and real-world stock datasets, we show that proposed

fusion approach can estimate multiple precision matrices across times more accurately.

To sum up, this thesis presents efficient algorithms that combine disparate information

for different types of machine learning problems involving anomaly detection, information

retrieval, collaborative retrieval, and multi-resolution time series analysis. We successfully

show that combining disparate information can improve performances and proposed meth-

ods can outperform other approaches with and without other methods to combine disparate

information.

There are many interesting directions for future work. Some potential directions are

outlined below.

(1) Pareto depth analysis can be possibly applied to a classification problem such as

multiple kernel learning problems. In Chapter II we use multiple Pareto fronts to define

anomaly scores of samples for anomaly detection problem. It is possible to apply same

idea for multiple kernel learning (MKL). Instead of learning weights for different kernels
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in (MKL), one could use Pareto depths as new dissimilarities. However normalization of

Pareto depths need to be researched for construction of a valid kernel.

(2) In Chapter III we use Pareto front method for ranking samples in the database given

multiple queries. As we mentioned in the introduction section of Chapter III, this approach

can be further applied to automatic image annotation of a large database. One could issue

different query combinations with know class labels or other metadata, and automatically

annotate the images in the middle of the first few Pareto fronts with the metadata from the

queries. This problem becomes more relevant in the current era when millions of unlabeled

images become available every few days.

(3) In Chapter III we successfully apply our model to combine social information with

users’ listening history to improve the performance of collaborative retrieval on a music

dataset. An interesting future work might be to apply similar approach to different types of

datasets. Do friends share more shopping preferences? Do friends like to read articles on

similar topics? Different social information analysis methods might be needed for different

types of datasets with social network information.

(4) In Chapter IV we show that our approach that fuses precision estimates at differ-

ent time scales and offsets can have a more accurate estimation on synthetic data and give

higher likelihoods of test data on real-world dataset. One interesting question is whether

these more accurate estimates can give better performance for real-world portfolio con-

struction. Since the performance of financial portfolio construction depends severely on

how accurate the mean estimate of daily returns, one would need to also consider this

phenomenon before comparing the performance of portfolio constructions using different

precision estimates.
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APPENDIX A

Graphical Lasso Fusion across

Multiple Time-sclaes : Supplementary Materials

A.1 General FLSA with different edge weights

The general fused lasso signal approximator (FLSA) [51, 104] is to minimize the fol-

lowing objective function with respect to β.

L(β) =
1

2

n∑
i=1

(yi − βi)2 + λ2

∑
i<j,(i,j)∈E

|βi − βj| (A.1)

where βi is an estimate and yi is given measurement. Notice that we ignore the sparsity

regularization λ1

∑
i |βi| here since the solution of the whole problem with this L-1 penalty

can be obtained from the solution of above optimization problem by soft-thresholding.

Since in this work we introduce a more general version of fused graphical lasso prob-

lem, we need to solve a more general version of general FLSA problem in one of sub steps

at each iteration of ADMM algorithm. This more general version of FLAS problem is to

minimize the following objective function with respect to β:

L(β) =
1

2

n∑
i=1

wi(yi − βi)2 + λ2

∑
i<j,(i,j)∈E

eij|βi − βj| (A.2)
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Basically we add different weights w′is for data fitting terms and different edge weights

eij for different pairs of β′is. In this supplementary material we present the details of ex-

tending the path algorithm in [51] to solve this more general version of general FLSA.

A.1.1 Definition of group and gradient of βFi

Following the same notations used in [51], denote nF (λ2) as the number of sets of

fused variables for penalty parameter λ2 and Fi as the sets of fused variables. Suppose we

have the minimizer of the loss function (A.2) for the penalty parameter λ2 and denote it by

βFi
(λ2). Under this definition, if k, l ∈ Fi, βk(λ2) = βl(λ2) and if k ∈ Fi, l ∈ Fj, i 6= j

and kl ∈ E, then βk(λ2) 6= βl(λ2). For convenience, let βk = βFi
,∀k ∈ Fi and denote

the condition that kl ∈ E, k ∈ Fi, l ∈ Fj as kl ∈ Ei,j . The loss function in (A.2) can now

expressed as follows:

LF,λ2(β) =
1

2

nF (λ2)∑
i=1

(
∑
j∈Fi

wj(yj − βFi
)2) + λ2

∑
i<j

(
∑

kl∈E,k∈Fi,l∈Fj

ekl)|βFi
− βFj

| (A.3)

Since we assume that β is the minimizer, the gradient of LF,λ2(β) with respect to βFi
is

zero and can be expressed as the following:

∂LF,λ2(β)

∂βFi

=
∑
j∈Fi

wj · βFi
−
∑
j∈Fi

yjwj + λ2

∑
j 6=i

(
∑
kl∈Eij

ekl)sign(βFi
− βFj

) = 0 (A.4)

For small changes of λ2, as long as the sign of βFi
−βFj

does not change for all possible

i, j, it can be easily seen that βFi
is piece-wise linear with respect to λ2 and the gradient of

βFi
w.r.t. λ2 can then be written as the following :

∂βFi

∂λ2

= −

∑
j 6=i

(
(
∑

kl∈Eij
ekl)sign(βFi

− βFj
)
)

∑
j∈Fi

wj
(A.5)

The key idea of this path algorithm is to update βk according its set’s gradient with
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respect to λ2 until some sets need to be split or some sets need to be fused to one set. To

determine the time of fusing sets, one could easily check the hitting time for different pairs

of sets and determine the minimum as the earliest time. The hitting time can defined as in

[51] as follows:

hij(λ2) =


(βFi
− βFj

)/
(
∂βFj

∂λ2
− ∂βFi

∂λ2

)
+ λ2,

if ∃ kl ∈ Eij.

∞, o.w.

(A.6)

h(λ2) = min
hij>λ2

hij(λ2) (A.7)

For the time of splitting some fused sets, it is more complicate and shown in the next

subsection.

A.1.2 Subgradient of L(y, β) with respect to βk

To determine the time of splitting some fused sets, [51] solves a max flow problem to

determine when the optimal condition would be broken. We modify the max flow prob-

lem’s capacity for our case. Since Lλ2(β) is not differentiable everywhere, we follow the

same procedure in [51] and use subgradients. For the subgradients, a necessary and suffi-

cient condition for βk to be optimal is that

∂Lλ2(β)

∂βk
= wk(βk − yk) + λ2

∑
k<l,kl∈E

tkl = 0,∀k = 1, . . . , n, (A.8)

where

tkl =

 eklsign(βk − βl) , βk 6= βl.

∈ [−ekl, ekl] , βk = βl.
(A.9)
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Notice that no matter βk = βl or not, tkl = −tkl. For k ∈ Fi, the subgradient can be written

as follows
∂Lλ2(β)

∂βk
= wk(βk − yk) + λ2

∑
j 6=i

∑
l∈Fj

tkl + λ2

∑
l∈Fi

tkl = 0 (A.10)

For convenience, define τkl = λ2tkl and also define Pk as

Pk = −wk(βk − yk)− λ2

∑
j 6=i

∑
l∈Fj

tkl,∀k = 1 . . . n. (A.11)

Basically we will have the following condition for all βk:

∑
l∈Fi

τkl = Pk (A.12)

Therefore for each fused set Fi, one could solve a max flow problem to determine values

of τkl, k, l ∈ Fi.

A.1.3 The max-flow problem

Recall the conditions in (A.9) and τkl = λ2tkl. We need to ensure that τkl(λ2) ∈

[−λ2ekl, λ2ekl], we have the restrictions

∂τkl
∂λ2

∈


(−∞,∞) , τkl ∈ (−λ2ekl, λ2ekl)

(−∞, 1] , τkl = λ2ekl

[1,∞) , τkl = −λ2ekl

(A.13)

Therefore, the capacity for the link kl ∈ E, k, l ∈ Fi can be set as

(ckl, clk) =


(∞,∞) , τkl ∈ (−λ2ekl, λ2ekl)

(1,∞) , τkl = λ2ekl

(∞, 1) , τkl = −λ2ekl

(A.14)
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A.1.4 The splitting time v

The splitting time is defined by the solutions of the maximum flow problem. We could

determine how large λ′2 can be such that for all τkl(λ′2) ∈ [−λ′2, λ′2]. Recall that the flow

solution fkl is actually the derivative of τkl w.r.t. λ2. Therefor we require the following

conditions to be hold.

For fkl > 0 and |fkl| > ekl,

τkl(λ2) + fkl(λ
′
2 − λ2) ≤ eklλ

′
2 (A.15)

or equivalently

λ′2 ≤ λ2 +
eklλ2 − τkl(λ2)

fkl − ekl
. (A.16)

For fkl < 0 and |fkl| > ekl,

τkl(λ2) + fkl(λ
′
2 − λ2) ≥ −eklλ′2 (A.17)

or equivalently

λ′2 ≤ λ2 +
eklλ2 + τkl(λ2)

−fkl − ekl
. (A.18)

Therefore, the general form of violation time can be defined as

vkl(λ2) =

 λ2 + eklλ2−sign(fkl)τkl(λ2)
|fkl|−ekl

,if |fkl| > ekl,

∞ , otherwise.
(A.19)

The splitting time is then defined by

v(λ2) = min
k,l

vkl(λ2). (A.20)

Therefore we can at least increase λ2 by4 without changing the sign of βFi
−βFj

, ∀i, j

and the sets Fi, ∀i where4 is defined as follows:
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4 = min (h(λ2), v(λ2))− λ2. (A.21)

We refer readers to [51] for details of the original path algorithm. In this appendix we

only present key changes of equations used in the algorithm. The theorems shown in [51]

can also be easily extended to generalized versions for this extended path algorithm.
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