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Abstract

 

Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), 

remains a significant burden on global health. Central to both host immune responses and 

antibiotic treatment are structures known as granulomas. In this dissertation we used 

computational and experimental approaches at a single granuloma level to understand 

how immune responses to Mtb contribute to both bacterial control and persistence. In 

addition, we predicted the dynamics of antibiotics in granulomas and designed improved 

treatment strategies.  

We built a hybrid multi-scale model of Mtb infection that integrates the cytokines 

tumor necrosis factor-α (TNF) and interleukin-10 (IL-10). We predicted that a balance of 

TNF and IL-10 is essential to infection control with minimal host-induced tissue damage. 

We extended our description of TNF and IL-10 to include simplified models of 

intracellular signaling driving macrophage polarization, which suggests that the temporal 

dynamics of macrophage polarization in granulomas are predictive of granuloma 

outcome. Next, we focused on determining the role of IL-10 in controlling antimicrobial 

activity. We predicted a transient role for IL-10 in controlling a trade-off between early 

host immunity antimicrobial responses and tissue damage. This trade-off determines 

sterilization of granulomas. Lastly, using an experimental model of granuloma formation, 

we measured significant gradients of TNF in granulomas. 



 xxiii 

We developed a pharmacokinetic and pharmacodynamic model of oral dosing of 

rifampin and isoniazid used to treat Mtb and incorporated it into our computational 

model. We predicted that oral antibiotic strategies fail due to sub-optimal exposure in 

granulomas, which leads to bacterial regrowth between doses. We extended our platform 

to include a description of inhaled formulations dosed to the lungs with reduced 

frequencies. We predicted that dosing every two-weeks with an inhaled formulation of 

isoniazid is feasible with increased sterilization capabilities and reduced toxicity, while 

an inhaled formulation of rifampin has equivalent sterilization capabilities, but early 

associated toxicity and infeasible carrier loadings. 

The keys to understanding immune responses and successful antibiotic treatment 

of TB lie in the dynamics at the site of infection. Our results help identify the roles of 

cytokines during Mtb infection, provide new possibilities for immune related therapies, 

and guide design of better antibiotic strategies. 
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Chapter 1 

Introduction 

 
1.1 Motivation 

Tuberculosis (TB) remains a global concern, causing an estimated 1.3 million 

deaths and an estimated 8.6 million new cases diagnosed in 2013 (1). Upon infection with 

Mycobacterium tuberculosis (Mtb), approximately 10-15% of individuals develop active 

TB disease, where the immune response is unable to control infection and without 

treatment death commonly occurs (1–4). A larger portion of individuals (~85-90%) 

develop latent TB, where the immune response is able to control infection but unable to 

successfully clear the pathogen. These individuals show no outward signs of infection 

and are non-infectious. Estimates indicate that near one-third of the world’s population is 

latently infected (2–7). Reactivation of TB, i.e. transitioning from the latent state to active 

disease, occurs at a rate of ~ 10% per year per individual and can be attributed in part to 

aging, treatment with anti-inflammatory drugs, or due to HIV co-infection (5, 8, 9). 

Upon infection with Mtb multiple dynamic structures known as granulomas form 

in the host’s lungs and other tissues (e.g. lymph nodes) (4, 7, 10–12). Granulomas form in 

both latently and actively infected individuals. Granulomas are the site of both bacterial 

persistence and host immune response, functioning to physically contain and 

immunologically restrain pathogen outgrowth (12). Therefore, control of bacteria in 

granulomas is likely critical to preventing infection progression. Granulomas that are 
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unable to sterilize a large fraction of the bacterial population can seed new granulomas 

and may lead to pathologies like TB pneumonia (7, 13–16). Successful control of bacteria 

in granulomas relies on many coordinated host immune responses including secretion of 

cytokines (effector molecules that direct the immune response), cellular trafficking, and 

cellular activation (4, 7, 17–22).  

Individuals with active Mtb infection require antibiotic treatment, necessitating a 

minimum six-month regimen of daily dosing using four orally dosed drugs (1, 2). 

Latently infected individuals are also treated with antibiotics, to reduce their chance of 

reactivation, but regimens are shorter (three to six months) and only require a single 

antibiotic (1). In contrast, most other bacterial infections are successfully treated within a 

few weeks using mono-therapies (2). This complex and lengthy treatment regime leads to 

issues of compliance and chronic toxicity and causes many patients to interrupt treatment 

before complete bacterial sterilization. In addition, multi-drug resistant TB (MDR-TB) is 

becoming more prevalent and requires even longer treatment durations (18-24 months) 

with antibiotics that are more toxic and less effective at killing bacteria (1, 2, 7, 23, 24). 

Although TB has been studied for several decades, we still lack a fundamental 

understanding of the immune response to Mtb and a basic knowledge of antibiotic 

distribution and efficacy at the site of infection. Direct measurement of antibiotics at the 

site of infection in human and animal models of TB are only recently being reported (2, 

25, 26). Therefore many basic questions still surround Mtb infection: What 

immunological responses cause some individuals to develop active TB and a larger 

portion to develop latent TB?  What are the underlying immunological mechanisms that 

lead to effective pathogen control? Why are current antibiotic regimens ineffective? Can 
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more effective antibiotic therapies be developed that alleviate compliance and toxicity 

issues? In this dissertation, we utilize computational and experimental approaches to 

address key aspects of these questions. 

 

1.2 Fundamentals of Mycobacterium tuberculosis Infection and Granuloma 

Formation 

Infection occurs upon inhalation of Mtb. Alveolar macrophages phagocytose the 

bacteria and migrate across the epithelium and into the lung parenchyma. Intracellular 

Mtb are able to avoid phago-lysosomal fusion, allowing intracellular replication and 

eventual cellular lysis (3, 4, 7, 15, 18, 21, 27–29). These extracellular bacteria infect 

nearby macrophages, leading to secretion of signaling molecules (chemokines and 

cytokines). Secretion of signaling molecules recruits more monocytes from the blood to 

the infection site forming the beginnings of a granuloma (7). A large fraction of the initial 

cells recruited to the site of infection are neutrophils which phagocytose Mtb, yet their 

role in controlling infection during the initial stages of the immune response remains to 

be determined (7, 21, 30–32). After ~12-21 days, dendritic cells carrying Mtb antigens 

traffic to nearby draining lymph nodes (Fig. 1.1), and prime the adaptive immune 

response (21, 27). Once primed, the cells making up the adaptive immune response, 

mainly T cells and B cells, traffic to granulomas via chemotactic signals. Once the cells 

of the adaptive immune response arrive at the infection site T cells help contribute to 

antimicrobial processes through mechanisms such as cellular-mediated killing and 

induction of macrophage activation (Fig. 1.1) (7, 33). 
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Figure 1.1 Regulation of the immune response to Mtb infection by IL-10 
Following phagocytosis, bacteria begin replicating inside macrophages. Infected macrophages produce 
chemokines and cytokines and recruit more macrophages to the site of infection. Dendritic cells (DC) 
traffic to the nearest draining lymph node to prime the adaptive immune response which consists of many 
subsets of T cells. These cells traffic back to the site of infection and promote antimicrobial responses, 
secreting cytokines such as interferon-γ (IFN-γ). Many cells produce IL-10 in granulomas, including 
infected macrophages, neutrophils, and T cells. IL-10 functions to limit macrophage antimicrobial 
responses and regulate the production of chemokines and cytokines. Adapted with permission from (7). 
 

The formation and organization of a granuloma, shown in Fig. 1.2, is the 

pathological hallmark of Mtb infection. Granulomas function as both the bacterial niche 

for pathogen growth and an immune microenvironment for antimicrobial function (7, 21). 

Granulomas have a distinct spatial and cellular organization including a core of bacteria, 

infected macrophages, and neutrophils surrounded by an inner shell of resting and 

activated macrophages, followed by a mixed outer region of T cells, B cells, and 

macrophages (Fig. 1.2). Recent evidence has revealed that each individual bacterium 

deposited in the alveolar space leads to the formation of a distinct granuloma (16, 34). 
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macrophage activation and downstream antimicrobial pathways in response to IFN-γ.

T cell responses in humans and in experi-
mental models of TB when compared with
other lung infections (reviewed in 204, 205)
(Figure 4). Using adoptive transfer of M.
tuberculosis antigen–specific TCR-transgenic
CD4+ T cells, investigators showed that 7–11
days after aerosol infection with M. tuberculosis,
initial activation of antigen-specific CD4+ T
cells occurs in the local lung-draining mediasti-
nal lymph node, where their numbers rapidly
increase before they traffic to the lung (206–

208). Activation of antigen-specific CD4+ T
cells depends on presentation of M. tuberculosis
antigens in the lymph node, despite the pres-
ence of 100-fold more bacilli in the lungs, and
this delay leads to consequent dissemination
to the spleen (208). In addition to the reported
delay in the T cell response to antigens in the
draining lymph node (133, 205–208), even
fully differentiated IFN-γ-producing Th1 cells
that are transferred prior to M. tuberculosis
infection (so that large numbers are present in
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Granulomas form during both active and latent infection (6). In a non-human primate 

model of TB there are limited differences between granulomas in active and latent 

classified monkeys. Both classifications display similar measurements of colony forming 

units (CFU) per granuloma and antimicrobial responses (16). The only significant 

difference between clinical classifications is the number of total granulomas per host 

(16). Humans and non-human primates display a broad spectrum of granuloma 

pathologies including caseous, necrotizing, cellular, calcified, and fibrotic granulomas (3, 

21). It is still not well understood if granulomas are host-protective structures or if they 

promote bacterial persistence and pathology (7, 21). Most likely granulomas in different 

stages of infection and pathology cover a broad spectrum of host-protective or pathogenic 

characterization (4, 7). An important goal in understanding TB is determining the 

characteristics and mechanisms of the immune response in granulomas that function to 

properly control infection in comparison with granulomas that fail to exert long-term 

control over the bacteria (4, 7, 21). 

 

Figure 1.2 Granulomas from the non-human primate model of infection display different pathologies 
(A) Caseous granuloma with a necrotic center surrounded by macrophages and a peripheral region of 
lymphocytes (B) Healing granuloma characterized by a central regions undergoing fibrous transformation. 
Adapted with permission from (35). 

weight over 2 mo before necropsy (Fig. S4). In contrast, the
weights in all treated groups were unchanged over the 2-mo
treatment period. These data support that there was improve-
ment in microbiologic and clinical parameters after a short course
of treatment.

IFN-γ Responses in the Airways During Treatment Do Not Predict
Efficacy of Therapy. We previously established that IFN-γ re-
sponses from T cells obtained by BAL were significantly higher
in monkeys with active TB compared with latent TB both early in
infection and at necropsy (19). Thus, we tracked IFN-γ responses
in BAL cells during treatment to determine whether changes
in this parameter could predict efficacy of treatment. Given the
monkey-to-monkey variability, we assessed whether there were
differences in IFN-γ production before and after treatment (be-
fore anti-TNF therapy) within both latent and active TB treat-
ment groups, but we observed no significant differences (Fig. S5).
Thus, simply following mycobacteria-specific IFN-γ production is
unlikely to be a useful surrogate for successful drug treatment,
even when the airways are sampled.

Drug Treatment Induced Changes in Granuloma Structure. We pre-
viously characterized the histopathologic spectrum of granulo-
mas types seen in active and latently infected monkeys (18, 19).
Like humans, monkeys with active TB have caseous granulomas
and nonnecrotizing granulomas (solid cellular granulomas
composed of epithelioid macrophages with sparse lymphocytes),
occasionally mineralized granulomas, as well as TB pneumonia
(25). The granulomas from the untreated active monkeys in this
study were primarily caseous (Fig. 3A), with nonnecrotizing or
suppurative (neutrophilic) granulomas or TB pneumonia also
present. In contrast, monkeys after 2 mo of treatment had
a much smaller proportion of caseous granulomas, with more
internally fibrotic (“healing”) granulomas (Fig. 3B), interstitial
fibrosis without much remaining granuloma structure (Fig. 3C),
and fibrocalcific (mineralized with peripheral fibrosis) (Fig. 3D)
granulomas. In some cases, a continuum could be observed in

granulomas undergoing central fibrosis and subsequently evolv-
ing into completely fibrotic or fibrocalcific granulomas. The fi-
brotic process was often accompanied by lymphocytic aggregates,
which may migrate around and/or into healing lesions in re-
sponse to released mycobacterial antigens.
All histological sections (specifically dissected granulomas as

well as several random samples from each lung lobe) from each
animal with active disease (untreated and treated) were quantified
with respect to granuloma type and pathology. The proportion of
granuloma types in the lung is represented in a pie chart for each
animal, as well as the total number of granulomas observed in
all lung sections (Fig. 4). The active controls were dominated by
caseous, suppurative, or nonnecrotizing granulomas; effective
drug therapy resulted in reduction in these types of lesions, with a
substantial increase in “healing” lesions, particularly those show-
ing interstitial fibrosis and fibrocalcification (Fig. 4).
We assessed which types of lesions were associated with bac-

terial growth in controls and after drug treatment. Matched
lesions where both bacterial numbers (cfu/g) and histology were
available revealed that bacterial growth was significantly higher
in caseous granulomas or areas of TB pneumonia compared with
fibrocalcific granulomas or interstitial fibrosis (Fig. 5). “Healing”
granulomas were those that appeared caseous with apparent
evolution of internal fibrosis (i.e., an intermediate between ca-
seous and totally fibrotic granulomas). “Healing” granulomas
had an intermediate bacterial burden (significantly lower than
caseous granulomas), which suggests a transitional state during
treatment (Fig. 5). In INH/RIF- and INH/RIF/MTZ-treated
animals, most remaining bacilli were found in caseous granulo-
mas and occasionally in “healing” granulomas (Fig. 5).

Discussion
M. tuberculosis exists in different microenvironments among
various granuloma types and perhaps even within the same
granuloma, depending upon the physical location of individual
bacilli. This suggests that rapid clearance of M. tuberculosis in
patients may require combinations of drugs optimized for each

Fig. 3. Tuberculous granulomas in the lung evolve through the course of drug treatment. (A) Representative caseous granuloma from an untreated active
control monkey, with an eosinophilic necrotic center surrounded by epithelioid macrophages and peripherally located lymphocytes. (B) “Healing” granuloma
characterized by a central area containing residual epithelioid macrophages with prominent features of evolving fibroplasia (“fibrous transformation”).
(C) Poorly circumscribed areas of interstitial fibrosis with and without prominent areas of cellularity in lungs of a monkey after drug treatment. (D) Rep-
resentative fibrocalcific granuloma with a central area of mineralization surrounded by prominent peripheral fibrosis. H&E stain. (Magnification: A, C, and
D, 5×; B, 10×.)

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1121497109 Lin et al.
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1.2.1 Important Cells and Molecules During Infection 

Formation of a granuloma relies on coordinated immune processes including 

cellular recruitment, cellular activation, antimicrobial function, and production of 

molecular mediators known as cytokines and chemokines (4, 5, 20, 36–40). Chemokines 

such as CCL2 and CCL5, secreted by infected and activated macrophages, are critical to 

recruiting T cells to the site of infection (19, 29, 39, 41–45). In human, non-human 

primate, and murine models of TB, the CD4+ T cell response is necessary for effective 

control of bacteria in granulomas (46, 47). The primary effector function of antigen-

specific CD4+ T cells is the production of interferon-γ (IFN-γ), which is a necessary 

signal for activation of macrophages (7, 21, 22, 41, 47). Another CD4+ T cell effector 

function that may be necessary is the ability to induce apoptosis of infected macrophages 

through the Fas/Fas-ligand pathway (48, 49).  CD8+ T cells contribute to control of 

infection through cytotoxic functions such as perforin/granzyme based killing 

mechanisms (50). Additionally, both CD4+ and CD8+ T cells derived from granulomas 

have the capability to produce cytokines (47, 51). However, there is evidence that only a 

small fraction of T cells in granulomas actually produce cytokines during infection 

(personal communication – Joanne Flynn).  

Cytokines are key molecular mediators of the immune response and influence the 

behavior and fate of many immune cells and processes during Mtb infection. The pro-

inflammatory cytokine tumor necrosis factor-α (TNF) is a critical component for 

infection control, while interleukin-10 (IL-10) functions as an anti-inflammatory cytokine 

and has been correlated with worsened infection outcome in both a clinical and 

experimental setting (30, 31, 52–55). A balance of these pro- and anti-inflammatory 
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mediators is thought to be central to granuloma function and infection control, but the 

complexity of the immune response and limitations of experimental models has 

constrained our understanding (7, 21, 52, 56–60). 

 

1.2.2 Tumor Necrosis Factor-α (TNF) 

TNF is produced by NFκB activated macrophages, Mtb infected macrophages, 

and both CD4+ and CD8+ T cells in response to infection (Fig. 1.1) (38, 61). During 

infection, TNF controls many bactericidal and immune responses. Classical macrophage 

activation occurs through TNF induction of the NFκB pathway, in conjunction with IFN-

γ and the STAT1 pathway (20, 62–66). TNF influences recruitment of cells to the site of 

infection and induces the production of chemokines from macrophages (e.g. CCL2, 

CCL5) (67). TNF signaling can also result in cellular apoptosis through caspase-mediated 

pathways (66, 68). TNF abrogation during Mtb infection, through either genetic 

knockouts or antibody-based depletion, demonstrates its critical nature to formation, 

function, and maintenance of granulomas (9, 36–38, 69–72). In murine models 

granulomas form improperly and are largely unstructured, while latently infected non-

human primates treated with anti-TNF molecules have increased bacterial burdens (9, 

36–38, 69–72). Additionally, TNF antagonists, such as those used to treat rheumatoid 

arthritis increase the incidence of TB reactivation in humans (73, 74). As the immune 

response to Mtb is highly complex and contains many TNF-related mechanisms, the 

function of TNF in a granuloma is still being elucidated. 
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1.2.3 Interleukin-10 (IL-10) 

IL-10 is produced by a spectrum of immune cells during Mtb infection, including 

many macrophage and T-cell subsets (Fig. 1.1) (7, 52). IL-10 functions by inhibiting 

cytokine/chemokine production, preventing cellular apoptosis/necrosis, and reducing 

macrophage activation (75–78). The classical source of IL-10 during Mtb infection is the 

macrophage (21). Activated macrophage derived IL-10 is thought to control excess 

cellular activation and limit host-induced tissue damage (57, 75, 79, 80). Infection of 

macrophages with Mtb induces significant IL-10 production due to interaction of toll-like 

receptors and pattern-recognition receptors with Mtb-derived molecules (7, 13, 55, 81–

84). Different strains of Mtb have been shown to induce greater production of IL-10 upon 

infection and may be linked to pathogen virulence (7). Recent evidence has pointed to 

neutrophils as a significant source of IL-10 (Fig. 1.1), but their contribution to overall IL-

10 production in granulomas and effects on infection outcome are still poorly 

characterized (30, 85, 86). Additionally, many T cell subsets, including CD4+, CD8+, 

and regulatory T cells can also produce large quantities of IL-10 (Fig. 1.1) which may 

contribute to overall control of the host immune response (87–92).   

The role of IL-10 during Mtb infection is still not well understood, in part due to 

the spectrum of cellular sources. It is thought that IL-10 contributes to pathogen 

persistence by diminishing the strength of the antimicrobial immune response to Mtb in 

order to prevent excess lung damage and pathology (7, 52, 57, 93). Studies of IL-10 

genetic knockouts in murine models of TB have been difficult to interpret. Early studies 

demonstrated no difference in bacterial load, while more recent reports have shown 

increased inflammatory responses and reduced bacterial burdens in both lungs and spleen 
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(7, 94, 95). Additionally, some reports indicated reduction in bacterial load was 

associated with increased inflammation and tissue pathology (93).  

A central feature of many granulomas is an acellular caseous necrotic core, which 

may provide a route to airway erosion and fibrosis (4, 43). Both anti-microbial and 

pathogenic mechanisms contribute to caseous necrosis, and IL-10 may be critical in 

regulating acceptable levels of caseous necrosis and subsequent host damage. During Mtb 

infection IL-10 limits macrophage apoptosis/necrosis but how inhibition of these 

mechanisms prevents tissue damage is still unclear (43, 59, 78, 96–105). The spectrum of 

cellular sources, numerous functions, and granuloma complexity has limited our ability 

understand the role of IL-10 during Mtb infection (Fig. 1.1). Furthermore, measuring the 

spatiotemporal dynamics of IL-10 during granuloma formation and function in a relevant 

animal model is very difficult. Additional challenges arise when attempting to 

experimentally dissect how the dynamics of two cytokines with opposing functions, TNF 

and IL-10, could control bacterial levels in a granuloma (7, 21, 52). 

 

1.2.4 The Spectrum of Macrophage Polarization 

In recent years, the complexity of macrophage differentiation and activation in 

response to different stimuli has been a subject of active study. Macrophages have been 

classified into to two characteristic populations, known as polarization states (Fig. 1.3) 

(21, 64, 106). M1 (or classically activated) macrophages display a pro-inflammatory 

phenotype, expressing high levels of pro-inflammatory cytokines (e.g. TNF), high 

production of reactive nitrogen and oxygen species, and strong antimicrobial capabilities 

(64, 106, 107). M2 (or alternatively activated) macrophages display an anti-inflammatory 
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phenotype, expressing high levels of anti-inflammatory cytokines (e.g. IL-10), promoting 

wound healing and tissue remodeling, and reduced bactericidal action (79, 108, 109). 

 

Figure 1.3 Diagram demonstrating the spectrum of macrophage polarization and related effector 
functions 
As macrophages are polarized towards a pro-inflammatory (M1) state they demonstrate increased 
production of TNF and chemokines, reduced production of IL-10, and increased bactericidal function. As 
macrophages are polarized towards an anti-inflammatory (M) state they demonstrate increased production 
of IL-10, reduced production of TNF and chemokines, and reduced bactericidal function. 

 

Many cell types participate in the immune response to Mtb, but the macrophage is 

the primary cell type and functions to control inflammation, contribute to antimicrobial 

processes, and harbor the pathogen (21, 110). Although macrophages are a significant 

fraction of the cells in granulomas, the spectrum of macrophage activation states in the 

context of Mtb infection is still not well understood. Animal models of TB suggest that 

different macrophage polarization states can control granuloma pathology through 

induction of pro- and anti-inflammatory responses (111). M1 macrophages are thought to 

be associated with the primary antimicrobial response during the early stages of infection, 

while M2 macrophages are thought to control late stage inflammation to prevent excess 
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pathology (21). In a non-human primate model of infection, multiple granuloma types 

displayed a characteristic spatial separation between M1 and M2 macrophage, with M1-

like macrophages closer to the center of the structure and M2-like macrophages mainly in 

the peripheral regions (111). 

TNF and IFN-γ stimulation and signaling through NFκB and STAT1 pathways 

respectively, leads to M1 macrophage polarization (106, 112). Conversely, stimulation of 

macrophages with IL-10, along with other cytokines, leads to STAT3 signaling which 

causes M2 polarization (106, 109). In the context of granuloma formation and function in 

response to Mtb, the temporal dynamics of macrophage polarization due to cytokine 

stimulation and their contribution to infection are not understood. How macrophages 

polarize over the course of infection, spatially organize, and control outcome presents a 

significant challenge that cannot currently be determined using experimental methods.  

 

1.3 Antibiotic Treatment of TB 

Treatment of antibiotic susceptible TB requires a minimum of 6 months of 

combination therapy with rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and 

ethambutol (ETH) (1, 2). The number of different antibiotics and prolonged treatment 

length leads to poor patient compliance and increased frequency of withdrawal from 

treatment (2, 25, 35, 113). This can cause treatment failure, infection relapse, and 

emergence of antibiotic resistant bacterial populations (2, 24). Therefore, availability of 

shorter and more effective treatment regimens could have a large impact on the global 

disease burden of TB.  
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Figure 1.4 The path of antibiotics from the blood to the site of action during Mtb infection 
From systemic circulation antibiotics enter the lung tissue and must penetrate the densely packed 
granuloma. Antibiotics accumulate in immune cells and are metabolized. Antibiotics must permeate far 
enough into the granuloma to reach distinct populations of bacteria (extracellular or intracellular) residing 
near the center of the lesion. Furthermore, the antibiotics must cross the bacterial cell wall to reach their 
intended molecular target. Adapted with permission from (2). 

 

Optimization of the current treatment duration and the use of polypharmacy were 

established using empirical processes based on 40 years of patient trials (113). 

Consequently, there has been limited rational design and optimization of dosing 

strategies, along with a striking lack of knowledge as to how antibiotics distribute from 

systemic circulation to the site of infection (Fig. 1.4) (2, 113). We are only beginning to 

understand how each antibiotic differentially distributes from the plasma into granulomas 

(2, 25, 26). Two of the first line drugs, RIF and INH exhibit significantly lower antibiotic 

concentrations in granulomas than in plasma, while moxifloxacin accumulates in both 

lung tissue and granulomas relative to plasma (2, 25). Further complications arise when 
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attempting to understand the effects of these unique antibiotic distributions in granulomas 

(Fig. 1.4). The heterogeneity in spatial organization of bacterial populations, replication 

state of bacteria, and vascular supply all contribute to the efficacy of antibiotics at the site 

of infection (2). It is likely that a combination of these factors contributes to the lengthy 

antibiotic course required for treatment. Direct measurement of antibiotic gradients and 

their underlying dynamics at the site of infection in animal models of TB is very difficult. 

MALDI-mass-spec-imaging is emerging as the most promising technique, yet it is 

invasive and is limited to non-temporal studies (2, 26). 

Despite the primary importance of antibiotic concentrations at the site of 

infection, many animal pharmacodynamics studies still rely on comparing plasma 

concentrations of antibiotics to minimum-inhibitory concentrations (MIC) determined in 

broth culture (113). This has lead to poor predictive indices of antibiotic efficacy, such as 

exposure after a single dose. We are beginning to learn that common ‘rules-of-thumb’, 

such as assuming drug equilibration between plasma and all granulomas, cannot be used 

to assess the efficacy of antibiotics for the treatment of TB (2, 113). In addition, 

comparison of antibiotic regimens using different doses or dose frequencies in a clinical 

setting is rare. Only a limited number of trials can be completed due to patient 

availability, along with many ethical concerns associated with standard of care (114). 

New antibiotic regimens that take into account a basic understanding of differential 

distribution into tissues and granulomas in order to optimally penetrate granulomas could 

help reduce failed treatments and increase the sterilizing capabilities of existing 

antibiotics. Measurements of differential distributions in experimental systems are 

difficult to carry out and have limited temporal resolution due the sheer sample size that 
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would be required. In addition, an experimental technique to track both the temporal 

dynamics of antibiotics and bacterial load simultaneously at the single granuloma level 

does not exist. Therefore, we need novel tools that can accurately replicate the dynamics 

of antibiotic treatment in granulomas over long timescales in order to better understand 

how temporal dynamics of antibiotics contributes to treatment outcome. 

 

1.4 Inhaled Delivery of Antibiotics 

Orally dosed antibiotics must navigate a significant number of transport hurdles in 

order to reach Mtb in granulomas (Fig. 1.4). Delivery of antibiotics via an inhaled route 

may overcome many limitations of oral dosing for treatment of TB by providing: direct 

dosing to the disease site, reduced systemic toxicity and clearance, and improved patient 

compliance with reduced dosing frequency (115–118). Aerosolized drugs have been 

successfully used for many years to treat diseases such as cystic fibrosis, asthma, and 

many other respiratory infections (116). However, development of inhaled formulations 

of antibiotics for the treatment of TB is still a relatively new field (116).  

A fabricated carrier loaded with one or more antibiotics is dosed into the lungs 

(Fig. 1.5) through an aerosol delivery system (e.g. nebulizer) (116, 118).  Based on 

physical characteristics, carriers settle in different regions of the lungs (119, 120). Once 

deposited, carriers are taken up by alveolar macrophages and lung endothelial cells, and 

release the loaded antibiotic based on tunable physio-chemical properties (Fig. 1.5) (115, 

117). An inhaled dose should elevate antibiotic concentrations in the lungs and will avoid 

first-pass metabolism (121). This could expose Mtb in granulomas to significantly higher 

antibiotic concentrations compared to oral dosing.  
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Figure 1.5 Comparison of inhaled and oral administration routes 
Inhaled formulations deposit in the alveolus after dosing and are taken up by healthy and infected 
macrophages. Inhaled formulations release antibiotics into the lung and thus antibiotics diffuse from the 
lung tissue and drain into blood vessels. As oral administration relies on antibiotics reaching systemic 
circulation the antibiotics diffuse from the blood vessels into the lung tissue. Adapted with permission from 
(116). 
 

In an in vitro setting, antibiotic carriers are rapidly phagocytosed by infected 

macrophages, elevating intracellular concentrations and improving sterilization 

capabilities (122–127). However, in vitro studies poorly reflect the structural organization 

and heterogeneity of granulomas (3). In a guinea pig model of TB, inhaled PLGA carriers 

co-loaded with RIF and INH had similar sterilizing capabilities as 45 daily oral doses of 

antibiotics (117, 128). A single dose of an inhaled formulation of INH to healthy non-

human primates demonstrated a 2-fold higher AUC/MIC index measured from plasma, 

compared to oral doses (129). An inhaled formulation of capreomycin was well-tolerated 
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in the lungs of healthy humans, but measured plasma concentrations were above MICs 

only for the highest dose (300 mg) and for less than 4 hours (130). To rationally design 

inhaled formulations it is necessary to understand the contributions of pharmacokinetics, 

pharmacodynamics, and behavior at the site of infection. Measuring and understanding 

these dynamics in clinically relevant models (e.g. non-human primates) is difficult and 

costly. Thus, new approaches are needed to quickly assess the efficacy and dynamics of 

inhaled formulations for the treatment of TB in order to considerably reduce development 

time of new treatments. 

 

1.5 Models of TB 

1.5.1 Experimental Models of TB 

Early stage human clinical samples of granulomas are rarely available. 

Bronchoalveolar lavage (BAL) fluid can be collected from patients, but it only represents 

a sample of the epithelial lining fluid and not what is occurring granulomas (32, 51). 

Similarly, blood can be drawn from patients in an attempt to measure biomarkers of 

infection, such as T cell phenotypes (131–133). There is limited evidence that the blood 

accurately reflects the infection environment and to date no good biomarkers correlating 

with Mtb infection control have been discovered (133). 

Therefore, we have relied on animal models to contribute much to our 

understanding of the immunology and pathology of TB (3, 116, 134). Murine models are 

the most commonly used animal models for the study of TB, as they are cost-effective 

and have a wide variety of available reagents. Murine models are the most useful for 

studying the immunological response to chronic Mtb infection (3). However, the 
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granulomas that form in response to infection are very different than those in humans. 

The well-circumscribed cuff of lymphocytes surrounding an inner core of macrophages 

found in humans does not exist in murine models. Instead, murine granulomas are 

unorganized structures containing a mix of macrophages and lymphocytes (3, 7). Human 

granulomas develop much different pathology during the later stages of infection, such as 

necrosis, fibrosis, and calcification, which murine granulomas do not form (3, 135). In 

addition, the murine model has no latent state of infection, observed in the majority of 

human infections. Mtb replicate freely during the first ~4 weeks of infection in the 

murine model, and upon the onset of adaptive immunity the bacterial load remains stable 

for many months (17, 68, 136). This chronic state of elevated bacterial load leads to 

disease progression and eventual morbidity (3). In comparison, the bacterial load in 

humans is reduced to very low levels after the onset of the adaptive immune response 

(136). There are also murine models that use Mtb-derived antigen instead of live bacteria 

to quickly and cheaply study the immune response during TB (72, 137, 138). These 

models use bacterial antigens conjugated to inert beads which induce a granuloma-like 

structure to form in the lungs after ~2 weeks in sensitized mice. These Mtb antigen-

display models elicit a highly Th-1 polarized response with dendritic cells and 

macrophages coalescing near the beads (137–139). 

Other animal models are used to study infection such as guinea pigs and 

zebrafish. Mycobacterium marinum is a genetic relative of Mtb that infects fish and other 

ecotherms (140, 141). In response to M. marinum, zerbrafish develop organized 

granulomas that are necroctic and progressive. The main advantage of zebrafish models 

of infection is that the host is transparent in its early life allowing the early immune 
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response to be studied temporally (140). Guinea pig models of TB are progressive, 

similar to the murine model, yet are able to better recapitulate the granuloma organization 

observed in humans (3, 142, 143). Guinea pigs are highly susceptible to Mtb infection 

and thus they represent a good model of an unsuccessful host immune response (3). This 

makes guinea pig models a good model for testing vaccines, as a successful vaccine must 

protect against Mtb in the most unsuccessful of host responses (3, 144). 

Non-human primates (NHPs) have re-emerged as the best pathological 

representation of human TB. Given a low infectious dose of Mtb, NHPs develop both 

‘active’ and ‘latent’ classifications of disease similar to what is observed in humans (14, 

16, 18, 135). Furthermore, the spectrum and heterogeneity of granuloma pathologies 

(caseous, fibrotic, necrotic, etc.) seen in humans is well-represented within the same 

animal (18, 135). Similar to infection in humans, bacteria replicate freely until the onset 

of the adaptive immune response wherein the bacterial load drops significantly to very 

low levels (16). In lesions from NHPs with either active or latent infection, the killing 

capacity of the immune response is similar at the individual granuloma scale, with a 

significant number of sterile granulomas (a granuloma with no detectable bacteria) 

existing in both outcomes (16). This heterogeneity between granulomas makes it difficult 

to identify predictors of disease outcome, but is critical to recapitulating the immune 

response observed in humans. Yet, there are significant drawbacks to the NHP model:  

reagents are not as readily available, animal rights concerns, the animals require BSL-3 

facilities, and there are significant upfront and maintenance costs. 

No animal model is able to fully represent the diversity and heterogeneity of 

human granulomas and human disease. In addition, the pharmacokinetics and metabolism 
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of antibiotics vary significantly between different species (145, 146). The choice of 

which model system to use relies heavily on what facet of Mtb infection is to be studied 

along with two practical factors, cost and availability of reagents. 

 

1.5.2 Computational Models of Mtb Infection and Treatment 

Biological processes act over multiple spatial (molecular, cellular, tissue) and 

temporal scales (seconds, minutes, hours) with constant cross talk between scales (147, 

148). For instance, it is difficult to understand how changes to cytokine concentrations, 

like IL-10, can manifest itself across spatiotemporal scales and control infection outcome 

in an experimental model. Computational models can help to understand and translate the 

wealth of experimentally generated data by creating a multi-scale realization of systems 

level behavior of the immune response to Mtb infection (9, 36, 37, 57, 58, 71, 80, 149–

153). Furthermore, computational models of TB can be used for in silico experiments, 

such as predicting new mechanisms or discovering new drug targets, which may not 

feasible in current experimental models of TB. 

Differential equation models are deterministic models that describe species of 

interest as a continuous variable that is a function of space, time, or both. Once parameter 

values are fit to experimental data or estimated from literature, differential equation 

models can be quickly solved and used to easily explore the dynamics of infection over 

long time scales (58, 80). These types of models have been used to understand the roles 

of cytokines (such as TNF, IL-10, and IFN-γ) in granulomas, the role of T cell priming 

and trafficking to granulomas, and macrophage polarization during Mtb infection (58, 72, 
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80, 152). However, it is difficult to replicate the spatial heterogeneity of granulomas, the 

stochastic nature of infection, and differential outcomes using a deterministic model.  

In addition to modeling Mtb infection, differential equations have been used to 

model the pharmacokinetics (PK) of antibiotics for the treatment of TB (25, 154–156). 

Pharmacokinetics refers to the prediction of the time varying concentrations of a 

substance in a living system (146). Typically, a compartment represents each organ or 

lumped-versions of organs and flow of antibiotics in and out of each compartment is 

assumed to be first order. By simple antibiotic mass balance a differential equation model 

of each compartment is constructed (146). Data from the plasma of patients or animals is 

used to fit model parameters. The calibrated PK model is then used to predict antibiotic 

efficacy or to examine overall drug distribution. These types of models have been used 

for studies such as: understanding the PKs of RIF and how it may contribute to 

development of resistance; understanding the distribution of RIF and INH from the 

plasma to the lungs and finally to granulomas (25, 154). However, classical PK models to 

study the efficacy of antibiotics during Mtb infection use very simple descriptions of the 

granuloma or bacteria. These models assume a well-mixed granuloma compartment with 

no heterogeneity in bacterial replication states or spatial distributions (25, 154, 155, 157–

160). Further work is needed to accurately link PK models of antibiotic distribution with 

heterogeneous models of granulomas to enable prediction of the effects of drug 

dynamics, bacterial populations, and bacterial distributions on treatment efficacy. 

Agent-based models (ABMs), sometimes referred to as individual-based models, 

are stochastic models that utilize discrete entities known as agents (161–163). Each agent 

is autonomous and behaves based on the set of rules, interactions, and states given to it. 
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Since each agent acts as an individual entity, spatial and temporal heterogeneity arises 

naturally in the model (161, 162). In addition, an environment containing soluble 

molecules is modeled using differential equation models of diffusion and reaction (37, 

151, 164, 165). Agents interact with the environment, which can influence decisions and 

behavior. An advantage of ABMs is their ability to generate complex system-level 

emergent behavior from the simple rule-based descriptions of each individual (149, 161, 

163).  ABMs have been used to describe the immune response to Mtb, leading to 

emergent formation of a granuloma after infecting a single macrophage (37, 151). An 

advantage of ABMs is that both infection dynamics and the immune response (various 

immune cells and cytokines, e.g. macrophages, T cells, TNF, and IL-10) can be easily 

tracked in space and time, unlike experimental systems. ABMs of Mtb infection predicted 

the influence of the timing of the adaptive immune response and importance of TNF in 

controlling infection outcome (37, 151).   

Interactions of cells and their environment are fundamental mechanisms on which 

biological systems are built, with constant exchange of information between the two 

(147, 148). Recently, ABMs have been linked to differential equation models that 

describe the single-cell level receptor-ligand trafficking and intracellular signaling events 

of cytokines (9, 36, 57, 71). Inclusion of these dynamics creates multi-scale ABMs that 

better describe the influence of extracellular mediators and processes on biological 

behavior across spatiotemporal scales. This allows agents in an ABM to interact with the 

environment in more detail by binding soluble ligands to cell-associated receptors, and 

initiating various signaling pathways (36, 57, 71). ABMs of Mtb infection were linked to 

single-cell level models of TNF receptor-ligand trafficking dynamics and used to predict 
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the importance of TNF receptor internalization on controlling bacterial levels and 

inflammation (36). An additional model of NFκB signaling was added to the model of 

TNF receptor-ligand trafficking dynamics and used to predict the effects of mRNA 

stability on bacterial levels and inflammation (71). However, the effects of IL-10 and its 

receptor-ligand trafficking dynamics on TNF availability, macrophage polarization, and 

infection outcome still need to be elucidated since they can have significant impacts on 

the antimicrobial response. 

 

1.6 Dissertation Overview 

The goal of this dissertation is two-fold. First, we use computational and 

experimental models of Mtb infection to understand how the pro-inflammatory cytokine 

TNF and the anti-inflammatory cytokine IL-10 functionally co-exist in granulomas. We 

determine that a balance of TNF and IL-10 can control the trade-off between 

inflammation and tissue damage. We investigate the role of a balance of TNF and IL-10 

on shaping macrophage polarization in granulomas. We also examine how IL-10 can 

influence bacterial sterilization at the single granuloma level. 

Second, we use computational techniques to understand antibiotic treatment of 

Mtb infection at the single granuloma level. We investigate the value of inhaled 

formulations of antibiotics, in comparison with current orally dosed regimens, to improve 

antibiotic distribution and treatment efficacy. 

These two broad goals are covered in four sections: 
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1.6.1 Aim 1: Development of a Computationally Efficient Hybrid Multi-Scale Agent-

Based Model of TB Infection 

Previously developed hybrid multi-scale agent-based models of Mtb infection 

have provided valuable insights and predictions of important mechanisms and possible 

therapeutic targets (9, 36, 37, 71, 151, 152). Yet, as more processes are modeled, 

computational tractability of models significantly decreases. In order to include new 

processes of interest (e.g. IL-10 and antibiotics) while maintaining computational 

tractability, we explore ways to improve computational speed. We implement three 

different numerical algorithms for solving soluble molecule diffusion and two numerical 

algorithms for solving individual agent receptor-ligand and intracellular signaling 

processes. Additionally, we demonstrate the concept of tuneable resolution and its ability 

to significantly reduce model complexity (150). We show when implementation of 

particular numerical algorithms can significantly reduce computational times. The 

development of efficient hybrid multi-scale agent-based models is discussed in Chapter 2. 

 

1.6.2 Aim 2: Identifying the Roles of TNF and IL-10 During Granuloma Formation 

Using Multi-Scale Computational Modeling 

Several studies have suggested that a balance of TNF and IL-10 could be a crucial 

mediator between controlling bacterial growth while simultaneously preventing host 

induced tissue damage (6, 52, 54, 60, 87). However, there are many unanswered 

questions surrounding TNF and IL-10 in the context of Mtb infection: What molecular 

scale processes control the concentrations of TNF and IL-10? Does a balance of TNF and 

IL-10 promote granulomas to contain bacteria? How do TNF and IL-10 control 
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macrophage polarization during granuloma formation? What role does IL-10 play in 

determining granuloma sterilization or bacterial persistence? We address the complex and 

multi-scale effects of TNF and IL-10 during Mtb infection by developing a model that 

integrates both TNF and IL-10 single-cell level receptor-ligand dynamics. We 

subsequently extend the model by describing the intracellular signaling pathways 

associated with TNF and IL-10 (NFκB and STAT3). Using these models we predict the 

impact of a balance of TNF and IL-10 related-processes on infection control, granuloma 

outcome, inflammation, and macrophage polarization (57). Model development and 

analyses are discussed in Chapter 3, 4, and 5. 

 

1.6.3 Aim 3: Understanding and Improving the Efficacy of Antibiotics in Granulomas 

During TB Infection 

We expand our multi-scale agent-based model by incorporating pharmacokinetic 

(PK) and pharmacodynamic (PD) models of RIF and INH. This model allows us to 

elucidate the spatial and temporal dynamics of antibiotic treatment at the site of Mtb 

infection that cannot be explored in experimental systems. We develop a model of 

inhaled formulations of antibiotics using carrier encapsulation properties to control 

antibiotic availability in granulomas. Using these models we demonstrate the failure of 

oral dosing to sterilize bacteria due to sub-optimal exposure and bacterial re-growth. 

Additionally, we predict novel inhaled formulations of RIF and INH that can reduce 

dosing frequency and improve sterilizing capabilities. Model development and analyses 

are discussed in Chapter 6 and Appendix C. 
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1.6.4 Aim 4: Measuring TNF Concentration Gradients in TB Granulomas 

Previous computational studies have identified that concentration gradients of 

TNF controls differential regulation of cellular activation and apoptosis processes in 

granulomas (9, 72). However, little experimental work has been dedicated to measuring 

gradients of cytokines in granulomas even though they could be an essential feature of 

the immune response to infection. Using a simple experimental system of murine 

granuloma formation we measure spatial gradients of TNF in ex vivo lung samples. We 

create a methodology for reconstructing soluble gradients based on data collected using 

flow cytometry and fluorescence microscopy and an idealized representation of TNF 

receptor-ligand trafficking. The development of the experimental method and proof-of-

concept results are demonstrated in Chapter 7. 
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Chapter 2 

Efficient Numerical Implementation of Hybrid Multi-Scale Agent-Based Models to 

Describe Biological Systems

 

The work in Chapter 2 was submitted as: Cilfone, N.A., Kirschner, D.E., Linderman, J.J. 

Efficient numerical implementation of hybrid multi-scale agent-based models to describe 

biological systems. (2014). 

 

2.1 Introduction 

Computational models are used in systems biology for understanding, predicting, 

and translating a wealth of experimentally generated data into a realization of systems 

behavior. Multi-scale computational models in particular have provided valuable insights 

and predictions for application to areas as diverse as infectious disease, inflammation, 

cancer, stem-cell differentiation, angiogenesis, and disease treatment (1–11). A defining 

feature of multi-scale computational models is a description of biological mechanisms 

that operate over different spatiotemporal scales (5, 12–15). When building multi-scale 

models four different areas must be considered (Figure 2.1): (1) constructing models – 

how to create a mathematical formulation that is able to recapitulate the dynamics of a 

biological system at an individual scale, (2) linking models – how to join individual scale 

models to allow for exchange of information, (3) solving models – determining the most 

efficient way to solve the underlying mathematics, and (4) analyzing models – how to 
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make and understand model predictions. In this Chapter, we focus on methods to link 

individual scale models and efficiently solve the resulting multi-scale model (Figure 2.1). 

 

Figure 2.1 Considerations for building multi-scale models 
(1) Constructing models: how to create mathematical formulations that accurately represent individual 
scale dynamics of a biological system, (2) Linking models: how to connect mathematical formulations of 
individual scale models to create multi-scale models, (3) Solving models: implementing efficient methods 
to solve multi-scale models, and (4) Analyzing models: Understanding and translating model predictions. 
Model analysis commonly leads back to model construction in order to include new biological mechanisms 
of interest. In this work, we focus on how to link individual scale models and efficiently solve the resultant 
multi-scale model. 
 

We typically link descriptions of biological phenomena operating at an individual 

scale together to form a multi-scale model (5). One approach to linking individual scale 

models, referred to as hierarchical linking, is to solve the lowest scale (i.e. the smallest 

length or time scale) model to completion and subsequently feed the output, for example 

in the form of an initial condition or parameter value, to the model at the next higher 

scale (5, 16, 17). However, this type of linking methodology is inappropriate when 

information across scales needs to be continually exchanged and in both directions. For 

instance, vascular endothelial growth factor (VEGF) can induce an endothelial cell to 

divide which may elongate a blood vessel in a new direction. The new endothelial cells 

will produce more VEGF, leading to cellular movement and continued growth of the 

blood vessel in the new direction (6, 18). Without exchange of information in both 

directions (molecular to cellular and cellular to molecular), sprouting of new blood 

Constructing
Models

Solving
Models

Analyzing
Models

Linking
Models

Individual
Scale Model

Individual
Scale Model

Focus



 42 

vessels would likely not occur. The nature of biological systems, with constant exchange 

of information across scales, necessitates multi-scale models that mimic this dynamic 

exchange of information (5, 16, 17). The resulting multi-scale model is more complex 

than the individual-scale parts, making it more computationally difficult to solve. 

Therefore, efficient methodologies to link and solve multi-scale models are necessary. 

Models that combine aspects of both continuous and discrete model constructs are 

commonly referred to as hybrid models. We focus our discussion on hybrid multi-scale 

agent-based models where an agent-based model (discrete), is informed by differential 

equation models (continuum) operating at a different scale (Figure 2.2).  

 

Figure 2.2 Mathematical representations of biological processes acting across different 
spatiotemporal scales 
How individual scale models are combined with exchange of information across scales. (1) An agent-based 
model (ABM) represents tissue and cellular scales (e.g. cell activation states). (2) Ordinary differential 
equation models represent molecular scale behaviors associated with cells (e.g. receptor-ligand trafficking 
and intracellular signaling). (3) Partial differential equation models represent molecular scale behaviors of 
the environment (e.g. soluble molecule diffusion). Together these integrated individual scale models form 
the basis of a hybrid multi-scale agent-based model. 
 

Agent-based models (ABMs, sometimes called individual based models – IBMs) 

are stochastic, discrete models that utilize individual entities known as agents, here 

representing individual biological cells (Figure 2.2). Each agent is autonomous and 

behaves based on decisions from the set of rules, interactions, and states given to it, 
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leading to heterogeneity between agents. ABMs can generate complex system-level 

emergent behavior from simple rule-based descriptions of each individual (4, 5, 14, 19). 

Agents receive inputs from the environment, influencing their decision making, and can 

also have the ability to alter their environment. Hybrid ABMs arise when continuum 

models are used to describe part of the overall system, such as the environment and parts 

of the agent decision-making processes (8, 14, 15, 20). A hybrid ABM is also termed 

multi-scale when a portion of the model, such as the continuum models, is describing 

behaviors at a different spatiotemporal scale than the ABM (Figure 2.2).  

 

Figure 2.3 Example of how information is exchanged across scales in a hybrid multi-scale agent-
based model 
Soluble molecules in the environment (with diffusion and degradation described using partial differential 
equations) interact with agents through agent-associated reactions (ordinary differential equations). Based 
on relative levels of agent-associated species (species A, green and species B, blue) agents make different 
decisions: (1) if both species A and B are above specified thresholds the agent will die, (2) if only species A 
(green) is above the specified threshold the agent will proliferate, (3) if only species B (blue) is above the 
specified threshold the agent will change state, (4) if both species A and B are below specified thresholds 
the agent will be quiescent. Agent decision logic using thresholds is only one example of how agent-
associated reactions can be linked to various dynamics. Other examples include Poisson processes of agent-
associated quantities and rate of change of agent-associated species (9, 14, 33). Figure style adapted from 
(14). 
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We focus on the use of continuum models to describe the dynamics of the 

environment and agent-associated reactions influencing agent decision-making processes 

that occur at a smaller spatial and faster time scale than the ABM (Figure 2.2, Figure 2.3). 

These hybrid multi-scale ABMs use a temporally separated approach in which the 

continuum models are solved using conventional numerical methods on a faster time 

scale than the ABM; syncing between scales is required to reconcile information 

exchange (21, 22). While many platforms exist for developing ABMs (e.g. NetLogo, 

Repast, Swarm, SPARK, CHASTE, MASON, and FLAME (11, 22–27)), we have found 

the flexibility of an in-house platform necessary to link and solve hybrid multi-scale 

ABMs. We review methods for linking individual scale ABMs to differential equation 

models and efficient implementations of numerical solvers that allows constant exchange 

of information across models. We then briefly illustrate the applicability of hybrid multi-

scale agent based models in describing various biological systems and demonstrate 

relative computational speeds using the hybrid multi-scale model of Mycobacterium 

tuberculosis infection presented in detail in Chapters 3, 4, 5, 6, and Appendix C. 

 

2.2 Examples of Hybrid Multi-Scale ABMs 

Hybrid multi-scale ABMs (Figure 2.2) are being used to describe many biological 

systems (1–11). To orient the reader, we briefly describe three such systems: 

 

2.2.1 Epithelial Restitution 

The wound healing response of damaged epithelial cells involves restitution 

(resealing the epithelial layer), proliferation, and differentiation (28). The cytokines 
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transforming-growth-factor-β (TGF-β) and epidermal growth factor (EGF) are necessary 

for beginning restitution processes, diffusing through the extracellular matrix (Figure 

2.2C), binding to TGF-β and EGF receptors on endothelial cells, and signaling through 

SMAD and ERK pathways (Figure 2.2B) (28). In the ABM, endothelial cells are 

represented as individual agents (Figure 2.2A) whose behavior, such as migration and 

adherence, depends on SMAD and ERK signaling (Figure 2.3). At the tissue scale, the 

reconnection of damaged epithelium (restitution) with healthy endothelial is critical to 

wound healing and constitutes much of the early wound healing response to damaged 

tissue. This hybrid multi-scale ABMs qualitatively matches temporal experimental data 

and predicts the importance of environmental interactions on the dynamics of epithelial 

restitution. 

 

2.2.2 Growth Patterns of Brain Tumors 

The expression of EGF receptors in brain tumors is associated with rapid growth 

and invasion. Yet, in growing tumors, cells only display a single phenotype of either 

migration or proliferation. Transforming-growth-factor-α (TGF-α) diffuses within the 

extracellular environment (Figure 2.2C) and binds and dimerizes with EGF receptors, 

initiating downstream signaling through PLCγ (Figure 2.2B). These downstream 

signaling processes mediate the phenotype of a tumor cell (Figure 2.3). In the ABM, 

tumor cells are represented as individual agents (Figure 2.2A) with both proliferative and 

migratory potentials determined by levels of PLCγ and bound EGFR (Figure 2.3). The 

proliferative and migratory nature of tumor cells leads to tumor growth and expansion 

(29–31). These hybrid multi-scale ABMs of tumor growth have shown that increased 
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EGF receptor density correlates with tumor expansion based on early phenotypic 

switching driven by TGF-α autocrine signaling (29–31). 

 

2.2.3 Immune Response to Mycobacterium tuberculosis   

During M. tuberculosis infection the immune system relies on a variety of cells 

and molecules to coordinate an effective immune response (9, 11, 32–35). Two soluble 

molecules of interest are the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) 

and the anti-inflammatory cytokine interleukin-10 (IL-10). These cytokines diffuse 

through the lung tissue (Figure 2.2C), bind to cell-associated receptors (TNFR1, TNFR2, 

and IL-10R), and signal through pathways such as NFκB and STAT3 (Figure 2.2B). 

Macrophages and T cells are key immune cells, modeled as agents (Figure 2.2A), with 

many states (e.g. resting, activated, deactivated) and functions (e.g. bactericidal ability) 

driven by levels of NFκB and STAT3 (Figure 2.3). Control of infection relies on the 

formation of an organized structure of immune cells, known as a granuloma, and its 

function over the long timescale of infection. Hybrid multi-scale ABMs of M. 

tuberculosis infection are able to reproduce the emergent phenomenon of granuloma 

formation and have demonstrated a critical balance between TNF-α and IL-10 in 

controlling granuloma function (see Chapters 3, 4, and 5) (9, 11, 33). In addition, 

treatment of infection with antibiotics is critical to pathogen removal during M. 

tuberculosis infection (see Chapters 6 and Appendix C). The effects of two first-line 

antibiotics, rifampicin (RIF) and isoniazid (INH) on bacterial burden have been simulated 

in a hybrid multi-scale ABM (Pienaar et al. submitted). Antibiotics diffuse through the 

lung environment (Figure 2.2C), are taken up by immune cells (Figure 2.2A), and are 



 47 

able to kill bacteria. This hybrid multi-scale ABM (from Chapters 3, 4, 5, 6, and 

Appendix C) will be used to demonstrate relative computational speeds in later sections. 

 

2.3 Basics Concepts For Hybrid Multi-Scale ABMs 

2.3.1 Mathematical Framework and Linking 

We describe the elements of a 2-dimensional hybrid multi-scale ABM (Figure 

2.2), but the framework presented is easily adapted to any dimensionality required. An 

ABM describes relevant biological cells as individual agents. Each agent (A) has an 

associated state (V) and position (x, y) that can change with time. Examples of agent 

states include activated, proliferating, infected, and cancerous. Changes in state are based 

on a set of stochastic agent rules and interactions, but are also influenced by quantities 

included in differential equation models of the environment. The construction of an ABM 

is beyond the scope of this Chapter but is well-described in the literature (18, 19, 23, 25, 

28, 36–40). 

Agents have a set of agent-associated reactions that are occurring in each 

individual agent: 

𝐹𝑜𝑟  𝐸𝑎𝑐ℎ  𝐴 𝑥,𝑦,𝑉 :  
𝑑𝑌!
𝑑𝑡 = 𝑓 𝐿,𝑌!,𝑌!,… ,𝑌! + 𝛽!                 𝑟 = 1,2,… ,𝑅                              (𝐸𝑞𝑛. 2.1) 

Eqn. 2.1 represents the agent-associated reactions (R total reactions), where Yr is an 

agent-associated species, t is time, L is a soluble molecule, and 𝛽! are parameters 

independent of t and Yr. Multiple soluble molecules can be included, although in our 

examples we will only include one for simplicity. The agent-associated reactions describe 

reactions occurring in agents, such as a cell-cycle proteins controlling proliferation or 

actin remodeling controlling cellular movement (41, 42). More common is a description 
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of receptor-ligand binding and trafficking and ensuing intracellular signaling processes as 

in the three examples given above (33, 43–46). These reactions are typically based on 

mass-action kinetics (47). A simple example of receptor-ligand binding, trafficking, and 

intracellular signaling reactions for a single agent are given in Table 2.1. 

Table 2.1 Example of Agent-Associated Reactions: Receptor-Ligand Binding, 
Trafficking, and Intracellular Signaling 
Description Equation 

Soluble Molecule – 𝐿  (M) 𝑑 𝐿
𝑑𝑡

= 𝜌 𝑁!" 𝑘!"#$! − 𝑘! 𝐿 𝑌! + 𝑘! 𝑌!  

Free Molecule – 𝑌!  (#/cell) 𝑑 𝑌!
𝑑𝑡

= −𝑘! 𝐿 𝑌! + 𝑘! 𝑌! + 𝑘!"# 𝑌!  

Bound Receptor – 𝑌!  (#/cell) 𝑑 𝑌!
𝑑𝑡

= 𝑘! 𝐿 𝑌! − 𝑘! 𝑌! − 𝑘!"# 𝑌!  

Internalized Receptor – 𝑌!  (#/cell) 𝑑 𝑌!   
𝑑𝑡

= 𝑘!"# 𝑌! − 𝑘!"# 𝑌!  

Signaling Molecule – [𝑌!] (#/cell) 𝑑 𝑌!
𝑑𝑡

= 𝑘!"# 𝑌! − 𝑘!"# 𝑌!  

Response Factor – [𝑌!] (#/cell) 𝑑 𝑌!
𝑑𝑡

= 𝑘!"#$ 𝑌! − 𝑘! 𝑌!  
kf – association rate constant (1/M*s), kr – dissociation rate constant (1/s), kint – internalization rate 
constant (1/s), krec – recycling rate constant (1/s), ksynth – synthesis rate constant (#/cell*s), ksig – signaling 
rate constant (1/s), kdec – signal decay rate constant (1/s), kresp – signal response rate constant (1/s), kd – 
response decay rate constant (1/s), ρ (cells/L), NAV – Avogadro’s constant (#/mol) 
 

Soluble molecules (L) diffuse and degrade in the environment and agent-

associated reactions are dependent upon the local concentration of these soluble 

molecules (Eqn. 2.1). The linked mathematical representation is a diffusion-reaction 

equation: 

𝜕𝐿 𝑥, 𝑦, 𝑡
𝜕𝑡

= 𝐷∇!𝐿 𝑥, 𝑦, 𝑡 − 𝑘!"#𝐿 𝑥, 𝑦, 𝑡 + 𝑓 𝐿,𝑌!,𝑌!,… ,𝑌! + 𝛽!
! !,!,!

                          (𝐸𝑞𝑛. 2.2) 

where t is time, D is the isotropic diffusion coefficient, kdeg is the extracellular 

degradation rate constant, and 𝑓 𝐿,𝑌!,𝑌!,… ,𝑌! + 𝛽! is from the set of agent-associated 

reactions (47, 48). This mathematical formulation allows each agent to interact with 

soluble molecules in the environment through agent-associated species unique to each 

agent A(x,y,V). This allows for the dynamic exchange of information between differential 
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equation models and the ABM, as Eqn. 2.1 and Eqn. 2.2 are dependent upon both agents 

and soluble molecules. Agents are moving, interacting, and changing state in the ABM 

with a simultaneous and direct interface with extracellular soluble molecules that are 

diffusing in the environment. Changes to soluble molecules concentrations in the 

environment factor into the agent decision-making processes, while changes in agent-

associated reactions influence agent states (Figure 2.3). 

 

2.3.2 Operator Splitting 

The numerical solution of Eqn. 2.2 as written is difficult and would require 

significant computational power due to equation assembly and the different timescales 

present in the equation. We can use temporal operator splitting to decouple Eqn. 2.2 into 

a simpler and more tractable system (8, 49–53). Here, we split Eqn. 2.2 into three 

equations: (1) soluble molecule diffusion (operator Θ1), (2) agent-associated reactions 

(operator Θ2), and (3) soluble molecule degradation (operator Θ3). Therefore, Eqn. 2.2 

becomes: 

𝜕𝐿 𝑥,𝑦, 𝑡
𝜕𝑡 = 𝐷∇!𝐿 𝑥,𝑦, 𝑡 = Θ!                                                                                                                                                                      (𝐸𝑞𝑛. 2.3) 

𝐹𝑜𝑟  𝐸𝑎𝑐ℎ  𝐴 𝑥,𝑦,𝑉 :  
𝑑𝑌!
𝑑𝑡 = 𝑓 𝐿,𝑌!,𝑌!,… ,𝑌! + 𝛽! = Θ!              𝑟 = 1,2,… ,𝑅          (𝐸𝑞𝑛. 2.4) 

𝜕𝐿 𝑥,𝑦, 𝑡
𝜕𝑡 = −𝑘!"#𝐿 𝑥,𝑦, 𝑡 = Θ!                                                                                                                                                              (𝐸𝑞𝑛. 2.5) 

This reduces the problem to solving a partial differential equation (PDE) (Eqn. 

2.3), a set of non-linear ordinary differential equations (ODEs) for each agent (Eqn. 2.4), 

and a simple linear first order ODE (Eqn. 2.5). Eqn. 2.5 has an analytical solution: 

𝐿 𝑥,𝑦, 𝑡 = 𝐿 𝑥,𝑦, 𝑡! 𝑒!!!"#!                                                                                                                                                                                  (𝐸𝑞𝑛. 2.6) 
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The remaining equations, Eqn. 2.3 and Eqn. 2.4 (such as those shown in Table 2.1), can 

now be solved using existing numerical methods and discrete time steps. The overall 

numerical approximation to Eqn. 2.2 is then obtained by mathematically combining the 

solution to each individual equation (Eqn. 2.3, 2.4, and 2.5) using a splitting 

methodology. The splitting method determines the accuracy of the overall solution and 

also determines relative time steps used for the individual equations. 

 

Figure 2.4 Operator splitting algorithms 
The top panel represents Lie Splitting where each operator (Θ1, Θ2, and Θ3) is advanced in time one after 
the other. The bottom panel represents Strang splitting where one operator (Θ2) is advanced halfway in 
time, followed by the other operators being advanced all the way in time (Θ1 and Θ3), then the first operator 
(Θ2) is advanced another half-step in time. 
 

Lie splitting (also known as first-order splitting) is the most commonly used 

method in multi-scale ABMs. As shown in Figure 2.4, the solution to each individual 

equation is estimated in sequence using the same time step (Δt), with the solution of each 

operator as the input to the next operator (8, 9, 51):  

Θ! ∆𝑡 → Θ! ∆𝑡 → Θ! ∆𝑡 ≈ Θ ∆𝑡                                                                                                                                                     (𝐸𝑞𝑛. 2.7) 

Lie splitting has first order accuracy with solution error due to splitting of Eqn. 2.2 being 

proportional to the discrete time step O(Δt) (8, 9, 51).  
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A simple improvement over Lie splitting is Strang splitting (Eqns. 2.8-2.9), 

shown in Figure 2.4, which is second order accurate O(Δt2) (52):  

Θ!
∆!
!

→ Θ! ∆𝑡 → Θ! ∆𝑡 → Θ!
∆!
!

≈ Θ ∆𝑡                                                                                                   (𝐸𝑞𝑛. 2.8) 

Θ!
∆!
!

→ Θ! ∆𝑡 → Θ!
∆!
!

≈ Θ ∆𝑡                                                                                                                                                   (𝐸𝑞𝑛. 2.9) 

The most computationally intensive operator is solved using the full time step (Δt), while 

the less computationally intensive operator is solved using a half time step (Δt/2). With 

three operators, two are grouped together (in this case Θ1 and Θ3) and the splitting 

method is used on the combined operator (Θ1 and Θ3). The splitting between the Θ1 and 

Θ3 operators remains Lie splitting. We group the diffusion operator (Θ1) and the 

degradation operator (Θ3) together in all further sections and refer to the combined 

operator as Θ4. We advocate the use of Strang splitting as the increased accuracy 

provides increased flexibility in choosing appropriate time steps. We base all further 

analysis on implementation of Strang splitting. 

While operator splitting makes Eqn. 2.2 easier to solve, if too large of a time step 

(Δt) is chosen, one is essentially considering the system to be mathematically decoupled. 

This can lead to non-phenomenological behavior of the system. Additional operator 

splitting techniques have been developed and include higher order methods such as 

Yoshida splitting (4th and 6th order), Kahan splitting, and Zassenhaus products (54–57). 

Although the accuracy of the splitting method increases with these methods, additional 

function evaluations (some requiring steps backwards in time) make them more 

complicated approaches. 

 



 52 

2.3.3 Model Layers and Discretization 

Hybrid multi-scale ABMs are implemented using multiple super-imposed layers 

of information (8). We follow this methodology and describe two layers: an environment 

layer and an agent layer. The environment layer holds information for each soluble 

molecule (L) and is discretized into grid points of uniform spacing, Δx and Δy (Figure 

2.5). The discretized grid is described using lattice parameters; i increases in the x-

dimension and j increases in the y-dimension. Thus the local soluble molecule 

concentration is given by Li,j. The agent layer, also a discretized grid, holds positional 

information of the agents, providing a framework for agent movement, behavior, and 

interaction. Agents in the agent layer interact with the environment layer at their 

corresponding positions. We prefer to maintain the same discretization size for both agent 

and environment layer, due to the simplicity in mapping between the two layers. 

Different discretization sizes of the environment and agent layers (Δx, Δy) have been used 

in the context of a hybrid multi-scale ABM but require interpolation between agent and 

environment layers (8). 

 

Figure 2.5 Model layers and discretization 
Implementation of multiple layers holding different types of information discretized into grid of spacing Δx 
and Δy represented by i,j coordinates. (A) The environment layer represents the extracellular space of the 
hybrid agent-based model and holds soluble molecule concentrations. (B) The agent layer holds positional 
information of agents. Agents in the agent layer interact with the environment layer at their corresponding 
positions. 
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2.3.4 Tuneable Resolution 

As more agent-associated reactions and species are included in Eqn. 2.4 (see 

Table 2.1), the computational cost of solving the equations grows. Each additional 

reaction or species must be solved for every agent in the system; in published models the 

number of agents ranges from a few hundred to as many as 100,000. Tuneable resolution 

is an approach that advocates reducing the complexity of a system by ‘coarse-graining’ a 

detailed model (or aspects of that model) to save computational resources while 

preserving key mechanisms and behaviors (see Chapter 6 and Appendix C) (46). For 

instance, an initial and fairly simple or ‘coarse-grained’ model is developed and the 

computational cost associated with solving the model is acceptable. Spurred by more 

biological data or additional questions, a more detailed or ‘fine-grained’ model 

containing many more agent-associated reactions is formulated, but it requires significant 

computational resources to solve. For subsequent biological questions, however, all of the 

detail of this ‘fine-grained’ model may not be needed. The goal is to use the ‘fine-

grained’ model to build a better ‘coarse-grained’ model that estimates key mechanisms 

and behaviors from the ‘fine-grained’ model while simultaneously alleviating 

computational burdens (and facilitating model sharing and analysis). For example, it may 

be reasonable to assume pseudo steady-state for some agent-associated reactions or to use 

an apparent rate constant (kapp) to approximate a set of reactions; sensitivity analysis and 

consideration of time scales may aid in these decisions (Pienaar et al. submitted) (46, 58, 

59). 
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2.4 Numerical Methods for PDE Sub-Models 

We review three numerical methods for solving the two-dimensional form of Eqn. 

2.3 in Cartesian coordinates. 

𝜕𝐿 𝑥,𝑦, 𝑡
𝜕𝑡 = 𝐷

𝜕!𝐿 𝑥,𝑦, 𝑡
𝜕𝑥! +

𝜕!𝐿 𝑥,𝑦, 𝑡
𝜕𝑦!                                                                                                                   (𝐸𝑞𝑛. 2.10) 

 

2.4.1 Forward-Time Central-Space Method 

The simplest and most frequently used numerical method for solving the diffusion 

equation is the forward-time central-space (FTCS) approximation (8, 9, 60). FTCS is an 

explicit method that uses a first order forward approximation of the time derivative and a 

second order central difference approximation of the spatial derivatives (Eqn. 2.11) (60, 

61). 

𝐿!,!!!∆! − 𝐿!,!!

∆𝑡
= 𝐷

𝐿!!!,!! − 𝐿!,!! + 𝐿!!!,!! − 𝐿!,!!

∆𝑥!
+
𝐿!,!!!! − 𝐿!,!! + 𝐿!,!!!! − 𝐿!,!!

∆𝑦!
                            (𝐸𝑞𝑛. 2.11) 

Thus, at each lattice coordinate (i,j) the concentration at the next time step (t+Δt) can be 

directly calculated from concentrations at the current time step (t). This requires the 

discretized grid concentrations (Li,j) in the environment layer to be stored for both the 

current time point (t) and the next time point (t+Δt). Insulating boundary conditions are 

applied by ensuring the flux across the boundary is zero by setting the appropriate 

concentration difference to zero (e.g. for the i = 0 boundary Li-1,j – Li,j would be set to 

zero). Dirichlet boundary conditions are applied by setting the appropriate concentration 

(e.g. for the i = 0 boundary Li-1,j could be set to zero).  
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The FTCS method is O(Δt) accurate in time and O(Δx2, Δy2) in space, while the 

computational cost is O(n2) per time step. The FTCS method is numerically stable only if 

the following criterion is met: 

𝐷∆𝑡
1
∆𝑥! +

1
∆𝑦! ≤

1
2                                                                                                                                                                                                     (𝐸𝑞𝑛. 2.12) 

 

2.4.2 Alternating-Direction Explicit Method 

The alternating-direction explicit (ADE) numerical method is an extension of the FTCS 

method built upon the Peaceman-Rachford alternating direction concept (60, 62). Let 

both ui,j and vi,j be finite difference approximations of the soluble molecule concentration, 

L(x,y,t), in Eqn. 2.13 and Eqn. 2.14 defined below: 

𝑢!,!!!∆! − 𝑢!,!!

∆𝑡
= 𝐷

𝑢!!!,!! − 𝑢!,!! + 𝑢!!!,!!!∆! − 𝑢!,!!!∆!

∆𝑥!
+
𝑢!,!!!! − 𝑢!,!! + 𝑢!,!!!!!∆! − 𝑢!,!!!∆!

∆𝑦!
        (𝐸𝑞𝑛. 2.13) 

𝑣!,!!!∆! − 𝑣!,!!

∆𝑡
= 𝐷

𝑣!!!,!!!∆! − 𝑣!,!!!∆! + +𝑣!!!,!! − 𝑣!,!!

∆𝑥!
+
𝑣!,!!!!!∆! − 𝑣!,!!!∆! + 𝑣!,!!!! − 𝑣!,!!

∆𝑦!
  (𝐸𝑞𝑛. 2.14) 

In the case of u, iteration proceeds in both the forward i and j directions. Thus, the 

values in Eqn. 2.13 of 𝑢!!!,!!!∆!  and 𝑢!,!!!!!∆!  are known from previous calculations when 

iterating forward through the grid. In the case of v, iteration proceeds in the reverse i and 

j directions (i.e. iterating backwards through the grid). Thus, the values in Eqn. 2.14 at 

𝑣!!!,!!!∆!  and 𝑣!,!!!!!∆!  are known from previous calculations when iterating backwards through 

the grid. Boundary conditions are set in the same manner as the FTCS method. The 

soluble molecule concentration at the next time point, 𝐿!,!!!∆!, is given by: 

𝐿!,!!!∆! =   
𝑣!,!!!∆! + 𝑢!,!!!∆!

2                                                                                                                                                                                                     (𝐸𝑞𝑛. 2.15) 
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The ADE method requires values to be stored for ui,j, vi,j, and Li,j for both the current time 

point (t) and the next time point (t+Δt) in the environment layer. 

The ADE method is O(Δt2) accurate in time and O(Δx2, Δy2) in space, i.e. it is 

more accurate than the FTCS method, but the computational cost remains O(n2) per time 

step. Furthermore, the ADE method is an explicit method that is unconditionally 

numerically stable (typically seen with implicit methods), which does not place a 

restriction on Δt (60). Thus, Δt can be chosen based solely on the accuracy of the solution 

needed. A maximum Δt of approximately 4-6 times the Δt predicted by the conditional 

stability criterion of the FTCS method (Eqn. 2.12) can be used for the ADE method while 

maintaining acceptable accuracy (11, 60). 

 

2.4.3 Spectral Methods – Discrete Sine and Cosine Transforms 

Spectral methods solve PDEs by assuming the solution is a sum of basis functions 

and choosing basis coefficients in order to best satisfy the solution (63–65). Spectral 

methods reduce PDEs to ODEs, greatly diminishing the difficulty of computation. In 

practice, solution of the diffusion equation with spectral methods is fairly straightforward 

(66). First, Eqn. 2.10 is discretized in the same manner as the FTCS method except that 

the time derivative is left in continuous form: 

𝜕𝐿
𝜕𝑡 = 𝐷

𝐿!!!,!! − 𝐿!,!! + 𝐿!!!,!! − 𝐿!,!!

∆𝑥! +
𝐿!,!!!! − 𝐿!,!! + 𝐿!,!!!! − 𝐿!,!!

∆𝑦!                                 (𝐸𝑞𝑛. 2.16) 

The two-dimensional discrete sine transform (DST) and discrete cosine transform 

(DCT) are defined as: 

𝐿!,!! = 𝐴!,!

!!!

!!!

!!!

!!!

sin
𝜋

𝑀 + 1 𝑘 + 1 𝑖 + 1 sin
𝜋

𝑁 + 1 𝑙 + 1 𝑗 + 1     (𝐸𝑞𝑛. 2.17) 
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𝐿!,!! = 𝐴!,!

!!!

!!!

!!!

!!!

cos
𝜋

𝑀 − 1 𝑘 𝑖 cos
𝜋

𝑁 − 1 𝑙 𝑗                                                                 (𝐸𝑞𝑛. 2.18) 

Where k and l are the spectrally transformed i and j discretization, M and N are the 

lengths of k and l, and 𝐴!,! are the spectral coefficients. The DST is an even-valued 

function at k = -1, k = M, l = -1, and l = N which naturally applies a Dirichlet boundary 

condition (constant zero concentration). The DCT is an odd-valued function at k = -1, k = 

M, l = -1, and l = N which naturally applies a Neumann boundary condition (insulating).  

We apply the appropriate transform (depending on the appropriate boundary 

condition for the physical situation) to each term in Eqn. 2.16 (64). After simplifying the 

resulting equation with common trigonometric identities, the equation is now an ODE: 

𝜕𝐴!,!
𝜕𝑡 = −𝑃!,!𝐴!,!                                                                                                                                                                                                                           (𝐸𝑞𝑛. 2.19) 

 with solution: 

𝐴!,!
!!∆!

  =   𝐴!,!
!
𝑒!!!,!∆!                                                                                                                                                                                                            (𝐸𝑞𝑛. 2.20) 

In the case of the DST: 

𝑃!,! =
2𝐷
∆𝑥∆𝑦 2− cos

𝜋 𝑖 + 1
𝑀 + 1 + cos

𝜋 𝑗 + 1
𝑁 + 1                                                                           (𝐸𝑞𝑛. 2.21) 

and in the case of the DCT: 

𝑃!,! =
2𝐷
∆𝑥∆𝑦 2− cos

𝜋 𝑖
𝑀 − 1 + cos

𝜋 𝑗
𝑁 − 1                                                                                             (𝐸𝑞𝑛. 2.22)

 

Pi,j is invariant and can be calculated from the discretization of the simulation space and 

the diffusion coefficient of the soluble molecule. If the spectral coefficients 𝐴!,! at the 

current time point (t) can be determined then the spectral coefficients at the next time 

point (t+Δt) are given by Eqn. 2.20. Therefore, the solution has advanced forward in time 
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in the spectral space. If the spectral coefficients at the next time point (t+Δt) can be 

converted back into soluble molecule concentrations (Li,j) then the diffusion equation has 

been advanced in time.  

 Techniques for calculating discrete spectral coefficients from values on a 

discretized grid (known as the forward transform) and the inverse (known as the inverse 

transform) have been well studied over the past half-century (67). Currently, the best 

available algorithm is the Fast Fourier Transform (FFT) which can compute transforms in 

O(n log n) time (64, 68). The FFTw (www.fftw.org) library provides a simple C++ 

interface for computing spectral coefficients and their inverses. Thus, an implementation 

for solving the diffusion equation using spectral methods is as follows: 

1. Use Eqn. 2.21 or Eqn. 2.22 to calculate a propagator matrix (Mi,j) defined as:  

𝑀!,! = 𝑒!!!,!∆!                                                                                                                                                                                                          (𝐸𝑞𝑛. 2.23) 

This only needs to be done once, as these coefficients are invariant. 

2. Compute the spectral coefficients using the forward DCT or DST from the FFTw 

library for the current soluble molecule concentration field. 

𝐴!,!
!
  =   𝐷𝐶𝑇 𝐿!,!   𝑜𝑟  𝐷𝑆𝑇 𝐿!,!                                                                                                                                         (𝐸𝑞𝑛. 2.24) 

3. Multiply the spectral coefficients by the propagator matrix (Mi,j). 

𝐴!,!
!!∆!

  =   𝐴!,!
!
𝑀!,!                                                                                                                                                                                               (𝐸𝑞𝑛. 2.25) 

4. Compute the soluble molecule concentration at the next time point (t+Δt) from 

the spectral coefficients by using the iDCT or tDST from the FFTw library. 

𝐿!,!!!∆!   =   𝑖𝐷𝐶𝑇 𝐴!,!
!!∆!

  𝑜𝑟  𝑖𝐷𝑆𝑇 𝐴!,!
!!∆!

                                                                                                      (𝐸𝑞𝑛. 2.26) 

5. Repeat 2-4 for the next soluble molecule diffusion time step. 
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 Spectral methods require the soluble molecule concentrations to be stored at (t) 

and (t+Δt) in the environment layer. The accuracy of spectral methods is difficult to 

relate to O notation. It has been demonstrated that the method is ‘spectrally accurate’, 

where errors tend to decay exponentially leading to much greater accuracy than purely 

finite difference methods (63–65). Similarly, stability requirements are typically 

determined by examining the solution with different combinations of time step and 

discretization size (64, 65). Using FFTw algorithms the computational cost is O(n log n) 

per time step with an associated cost of O(n3) per time step for a simple i,j matrix 

multiplication of the propagator matrix and spectral coefficients. The matrix 

multiplication cost could be reduced using optimized routines such as the Strassen 

Algorithm, but in the scope of an entire hybrid multi-scale ABM the reduction in 

computational cost would be minimal (69).  

 One drawback of spectral methods is that the algorithm has difficulty handling 

discontinuities or shock-like behaviors in input matrices. Spectral methods produce 

artifacts (or aliasing) at jump discontinuities, known as the ‘Gibb’s Phenomenon’, since 

the algorithm attempts to map continuous periodic functions to finite square functions 

(63, 64, 70). Agents modify concentrations in the environment in hybrid multi-scale 

ABMs, for example by secretion or uptake of soluble molecules, and therefore the input 

concentration field into the spectral method can be fairly discontinuous. A technique 

known as smoothing (or anti-aliasing) is applied to alleviate these issues (71). The most 

common smoothing method is the ‘2/3’ rule, yet its computational cost can be large (71). 

We have implemented a simpler smoothing method in hybrid multi-scale ABMs by using 

the FTCS method presented above. We take between 2 and 5 FTCS algorithm steps 
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before solving the diffusion equation using spectral methods. Thus, an implementation of 

a ‘smoothed’ spectral method is as follows: 

1. Use Eqn. 2.11 to solve soluble molecule diffusion using the FTCS method. Use a 

time step that satisfies Eqn. 2.12. Repeat 2-6 times. 

2. Solve soluble molecule diffusion using the spectral method presented above, 

typically using time steps 25-50 times larger than the smoother time step. 

 

2.4.4 Other Available Numerical Methods 

Implicit and semi-implicit algorithms have also been used in hybrid multi-scale 

ABMs due to their stability characteristics (2, 13, 51, 72–74). While increased stability 

allows for large time steps, the need to assemble and determine a Jacobian matrix and the 

use of linear algebra solvers for systems of equations can be a complex task. Many 

libraries are available (e.g. LAPACK, LINPACK, PETSc, and GSL), yet adapting 

existing code to libraries can cause difficulties. The ease of implementation of explicit 

schemes with the FFTw library has led us away from implicit methods. Other recent 

advancements in solving PDEs are the multigrid and discrete wavelet transform methods. 

The multigrid method has been demonstrated in the context of hybrid multi-scale ABMs 

(27, 73, 75). Implementation of the algorithm without libraries could be challenging, as 

available libraries (PETSc, Dune, Trilinos, FETK) may be difficult to interface with 

existing code. The discrete wavelet transform (DWT) captures information in both the 

frequency and time domain, unlike the DCT and DST which capture only frequency 

information (76). Thus, the DWT can handle local discontinuities better than spectral 

methods while still using similar methods to compute wavelet coefficients at an O (n log 
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n) or even O(n) computational cost. DWTs are still relatively new and have yet to be 

applied in the context of a hybrid multi-scale ABM. Additionally, only limited libraries 

exist which presents a barrier to efficient usage. We are currently evaluating the possible 

benefits of both the multigrid and DWT algorithms in the context of solving soluble 

molecule diffusion in hybrid multi-scale ABMs. 

 

2.5 Numerical Methods for ODE Sub-Models 

Eqn. 2.4 is a description of any agent-associated reactions and must be solved for 

each agent in the simulation. For ease of explanation we present the numerical methods 

in the context of a single agent in vector notation (Eqn. 2.27).  

𝑑𝑌
𝑑𝑡 = 𝑓 𝐿,𝑌 + 𝛽                                                                                                                                                                                                                      (𝐸𝑞𝑛. 2.27) 

 

2.5.1 Forward Euler 

The simplest and easiest algorithm to implement is the forward Euler (FE) 

method. Using a forward finite difference estimation of the first order derivative in Eqn. 

2.27 and rearranging leads to: 

𝑌 𝑡 + ∆𝑡 = 𝑌 𝑡 +
𝑑𝑌 𝑡
𝑑𝑡 ∆𝑡                                                                                                                                                                  (𝐸𝑞𝑛. 2.28) 

FE requires only the concentrations of each species at the current time point (t) to be 

known and an estimate of the derivative at the current time point (Eqn. 2.28). FE is O(Δt) 

accurate in time and its computational cost is O(n) per time step. The FE method is 

conditionally stable and is numerically unstable for stiff equations and large time steps. 

The criteria for numerical stability of the solution of a set of linear ODEs is given by:  
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1+ 𝜆∆𝑡 < 1                                                                                                                                                                                                                                      (𝐸𝑞𝑛. 2.29) 

where λ is the set of eigenvalues for the system (77). For non-linear systems of ODEs (as 

in Table 2.1) the equations can be linearized and the behavior of the linearized system 

analyzed for stability, giving an approximate local stability criteria for the non-linear 

system (78). In practice this can be difficult for large systems of ODEs, and hence the 

stability limit for a particular set of ODEs is typically determined by trial-and-error (79). 

Numerical stability requirements of the FE method in no way guarantee accuracy of the 

solution. 

 

2.5.2 4th Order Runge-Kutta 

Runge-Kutta methods use higher-order terms from the Taylor-series expansion of 

the first derivative. The higher order terms are evaluated at distinct points and 

subsequently combined to give a better approximation to the first derivative (61, 77). 

Most common is the 4th order Runge-Kutta (RK4) formulation given by: 

𝑌 𝑡 + ∆𝑡 = 𝑌 𝑡 + !
!
𝑐! + 2𝑐! + 2𝑐! + 𝑐!                                                                                                                         (𝐸𝑞𝑛. 2.30) 

where 

𝑐! =
𝑑𝑌 𝑡
𝑑𝑡 ∆𝑡                                                                                                                                                                                                                          (𝐸𝑞𝑛. 2.31) 

𝑐! =
𝑑 𝑌 𝑡 + !

!𝑐!
𝑑𝑡 ∆𝑡                                                                                                                                                                                            (𝐸𝑞𝑛. 2.32) 

𝑐! =
𝑑 𝑌 𝑡 + !

!𝑐!
𝑑𝑡 ∆𝑡                                                                                                                                                                                            (𝐸𝑞𝑛. 2.33) 

𝑐! =
𝑑 𝑌 𝑡 + 𝑐!

𝑑𝑡 ∆𝑡                                                                                                                                                                                                (𝐸𝑞𝑛. 2.34) 



 63 

RK4 requires only the concentrations of each species at the current time point (t) 

to be known along with four estimates of the derivative (Eqn. 2.30). The RK4 method is 

O(Δt4) accurate in time, a significant improvement on the FE method. Its computational 

cost remains O(n) per time step. RK4 is also a conditionally stable method. The criteria 

for numerical stability of linear ODEs is shown below, where λ is the set of eigenvalues 

for the system (78): 

1+ 𝜆∆𝑡 + !
!
𝜆∆𝑡 ! + !

!
𝜆∆𝑡 ! + !

!"
𝜆∆𝑡 ! < 1                                                                                                        (𝐸𝑞𝑛. 2.35) 

As mentioned above, biological systems are in general non-linear; therefore in practice 

the stability limit is again determined by trial-and-error.  

 

2.5.3 Other Available Numerical Methods 

A simple extension of the RK4 method is an adaptive step size Runge-Kutta 

method, known as RK4-5 (13, 61, 80, 81). This method determines the necessary time 

step for a given accuracy on-the-fly based on estimates of local error by calculating both 

the 4th order and 5th order Runge-Kutta solutions. The additional computational cost in 

calculating both 4th and 5th order solutions, estimating error, and determining the correct 

time step could be outweighed by significantly larger time steps. Implicit algorithms for 

solving ODEs can also be used (2, 51, 53, 73, 74, 82, 83). Similar to PDE algorithms, 

implicit algorithms require determining a Jacobian matrix and implementation of linear 

algebra solvers. Considering the large number of agents per simulation (anywhere from 

100s to 100,000s), assembly and solution using can be an overwhelming task. Recently, 

some have suggested the use of in situ adaptive tabulation (ISAT) to minimize the 

number of numerical method calls (22, 84–88). ISAT functions by tabulating existing 
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solutions and determining appropriate regions of solution space where use of existing 

solutions or simple interpolation can accurately represent the solution without ever 

calling the numerical method (84, 85). ISAT has not been demonstrated in the context of 

hybrid multi-scale ABMs but the theoretical reduction in computational cost is enticing. 

Lastly, many external programs and frameworks exist for solving systems of ODEs that 

could be linked to a hybrid multi-scale ABM such as MATLAB, COPASI, and CVODE 

(5, 22, 40, 89, 90). In our experience linking external programs to existing code can be 

difficult and may confer a large computational cost associated with module 

communication. 

 

Figure 2.6 Syncing time steps across hybrid multi-scale agent-based models 
Example of two different combinations of time steps for soluble molecule diffusion and agent-associated 
reactions. (A) A large time step for soluble molecule diffusion requires few sync points with the agent-
associated reactions. (B) A small time step for soluble molecule diffusion requires a significant number of 
sync points with the agent-associated reactions. 
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2.6 Syncing Numerical Methods in Hybrid Multi-Scale ABMs 

 It is critical to maintain sync points where differing time steps used to solve the 

PDEs, ODEs, and ABM are reconciled, thus linking the mathematics, exchanging 

information across scales, and allowing the model to correctly proceed forward in time. A 

challenge of hybrid multi-scale ABMs is to determine the largest time step for each 

numerical method that maintains easily identifiable sync points. For instance, a numerical 

method that solves soluble molecule diffusion with a large time step requires fewer sync 

points with the agent-associated reactions (Figure 2.6A) than a numerical method that 

solves soluble molecule diffusion with a smaller time steps (Figure 2.6B). A simple 

procedure for determining time steps that maintain sync points is given below. We 

assume Strang splitting and a previously determined time step for the agent-based model, 

Δtagent: 

1. Estimate the maximum time step to solve the soluble molecule diffusion and 

degradation (Θ4) for the chosen numerical method. A good starting point for all 

numerical methods is Eqn. 2.12. Reduce the estimated time step to a number 

divisible by Δtagent for syncing and set this value as Δtpde. 

2. Estimate the maximum time step, Δtode, to solve the ODE model of agent-

associated reactions (Θ2) for the chosen numerical method. This can be 

accomplished by linearizing the equations and using Eqn. 2.29 or Eqn. 2.35 or by 

using trial-and-error in a ‘test-bed’ environment such as a standalone 

implementation of the numerical method in C++ or MATLAB (The Mathworks 

Inc. – Natick, MA). Frequently, the maximal time step for numerical accuracy and 

stability will be significantly smaller than Δtpde/2. Choose Δtode such that stability 
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and accuracy requirements are satisfied. Additionally reduce Δtode to a number 

that is evenly divisible by Δtpde/2 for syncing. 

3. Using the estimated time steps (Δtagent, Δtpde, and Δtode) solve the hybrid ABM. 

4. Reduce all time steps by a factor of 2 and re-solve the system. 

5. Compare the model solutions. If the solutions are inconsistent the time steps are 

too large. Reduce all time steps (Δtpde and Δtode) and re-verify that each is able to 

‘sync’. Repeat steps 3-5 until the model solutions are within the desired tolerance. 

A full hybrid multi-scale ABM algorithm is shown in Figure 2.7 and includes: (1) the 

agent time step, Δtagent (agents move, change state, etc.), (2) the ODE time step, Δtode 

(agent-associated reactions), and (3) the PDE time step, Δtpde (diffusion and degradation). 

 

Figure 2.7 Diagram of a solution algorithm for a hybrid multi-scale agent-based 
(1) Update agents (movement, states, proliferation, etc). (2) Solve a single time step (Δtode) for agent-
associated reactions (Θ2). Increment a counter N. If the total time step (N×Δtode) is equal to (Δtpde/2) then 
move on to soluble molecule diffusion and degradation. If not, take another single time step for agent-
associated reactions (Θ2) and check again. (3) Solve a single time step (Δtpde) for soluble molecule diffusion 

(1) Agents
(State Changes, 
Movement, etc.)

(Θ2) ODEs
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and degradation. Increment a counter M. (4) Solve a single time step (Δtode) for agent-associated reactions 
(Θ2). Increment a counter N. If the total time step (N×Δtode) is equal to (Δtpde/2) move on to the final check. 
If not, take another single time step for agent-associated reactions (Θ2) and check again. (5) If the total time 
step (M×Δtpde) is equal to (Δtagent) then a full time step has been completed. Continue by updating agents as 
indicated in (1). If not, continue solving with step (2). 
 

2.7 Comparison of Computational Speeds using an Example Hybrid Multi-Scale 

ABM 

Choosing numerical methods that maintain computational tractability of a hybrid 

multi-scale ABM is essential. Considerations affecting the choice of numerical methods 

include: number of agents, number of agent-associated reactions, and model 

dimensionality (i.e. 2D or 3D). In addition, uncertainty and sensitivity analysis is 

commonly used to understand how variations in parameter values affect model results, 

which necessitates large numbers of model simulations (~103) (91). In practice, hybrid 

multi-scale ABMs that require over a day to run severely limits the usefulness of 

modeling efforts. 

As an example of the application of numerical methods described above, we ran 

several comparison simulations with our hybrid multi-scale ABM of M. tuberculosis 

infection discussed in Chapters 3, 4, 5, 6, and Appendix C (9, 11, 33) (Pienaar et al. 

submitted). In these models the discretization size (Δx, Δy) of the environment and agent 

layers is 20 µm. In Scenario 1, we simulate 100 days of the immune response following 

an initial infection with M. tuberculosis. Diffusion and degradation of three soluble 

molecules (two cytokines and one chemokine) are tracked, and thirteen agent-associated 

differential equations describe receptor-ligand binding, trafficking and signaling of TNF 

and IL-10 (see Chapter 3 for full details) (11). Soluble molecule diffusivities are ~10-8 

cm2/sec for cytokines and chemokines. In Scenario 2, we simulate 50 days of the immune 
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response following an initial infection with M. tuberculosis plus an additional 50 days of 

antibiotic treatment (see Appendix C for full details) (Pienaar et al. submitted). Diffusion 

and degradation of five soluble molecules (two cytokines, one chemokine, and two 

antibiotics) are tracked, and thirteen agent-associated differential equations describe 

receptor-ligand binding, trafficking and signaling of TNF and IL-10. In addition, the 

model in Scenario 2 tracks the anti-microbial response of antibiotics against bacteria. 

Soluble molecule diffusivities for molecules such as antibiotics are between 10-6 and 10-7 

cm2/sec. As antibiotics diffuse much faster through tissue than cytokines and 

chemokines, there are additional restrictions on time steps used in numerical methods that 

must be considered. In both Scenario 1 and 2, we also employed a tuneable resolution 

approach (assuming pseudo steady state for multiple reactions and using apparent rate 

constants) to reduce the thirteen agent-associated differential equations to two agent-

associated differential equations (Pienaar et al. submitted). 

We show relative computational speeds for both a 100x100 (4 mm2) and 200x200 

(16 mm2) simulation grid. For the larger grid, the number of calculations is increased due 

to ~2-fold more agents and 4-fold more simulation space. For Scenarios 1 and 2, we ran 

combinations of each numerical method described above. In addition, we demonstrate 

reductions in computational burdens based on a tuneable resolution approach. Table 2.2 

and Table 2.3 depict fold-changes in computational speed normalized to the slowest 

value for the specific grid size (higher values indicate shorter computation times). Model 

runs were carried out on the Flux computing cluster available from Advanced Research 

Computing at the University of Michigan, Ann Arbor. 
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Table 2.2 Relative computational speeds for Scenario 1 

 
100 × 100 Simulation Grid 

~5,000 Agents  
200 × 200 Simulation Grid 

~10,000 Agents 
 ODE Numerical Method  ODE Numerical Method 
PDE 
Numerical Method 

FE 
(Δt = 0.6s) 

RK4 
(Δt = 6s) 

TR 
(Δt = 6s) 

 

FE 
(Δt = 0.6s) 

RK4 
(Δt = 6s) 

TR 
(Δt = 6s) 

FTCS (Δt = 6s) 1.0 2.3 4.6  1.0 2.6 5.4 

ADE (Δt = 30s) 1.8 4.3 12.8  1.2 3.9 7.7 

SM (Δt = 120s) 1.8 5.5 22.7  1.2 5.2 23.6 
FTCS – Forward Time Central Space, ADE – Alternating Direction Explicit, SM – Spectral Method, FE – Forward Euler, RK4 – Runge-
Kutta 4th Order, TR – Tuneable Resolution 
N=3 for all simulations. 100×100 – Relative Speed of 1.0 corresponds to 7589 s of simulation time, 200×200 – Relative Speed of 1.0 
corresponds to 46907 s of simulation time 

 

Table 2.3 Relative computational speeds for Scenario 2  

 
100 × 100 Simulation Grid 

~5,000 Agents  
200 × 200 Simulation Grid 

~10,000 Agents 
 ODE Numerical Method  ODE Numerical Method 
PDE 
Numerical Method FE RK4 TR 

 
FE RK4 TR 

FTCS (0.6/0.6)    1.4 (0.6/0.6)    1.0 (0.6/0.6)    1.5 
 

(0.6/0.6)    1.4 (0.6/0.6)    1.0 (0.6/0.6)    1.2 
ADE (3.0/0.6)    2.8 (3.0/3.0)    3.2 (3.0/3.0)    3.6 

 
(3.0/0.6)    3.1 (3.0/3.0)    4.0 (3.0/3.0)    4.9 

SM (60/0.6)    6.8 (60/6.0)  15.8 (60/6.0)  43.8 
 

(60/0.6)    8.3 (60/6.0)  26.3 (60/6.0)  63.5 
(xx/xx) à (Soluble Molecule Diffusion Time Step / Agent-Associated Reactions Time Step) 
FTCS – Forward Time Central Space, ADE – Alternating Direction Explicit, SM – Spectral Method, FE – Forward Euler, RK4 – Runge-
Kutta 4th Order, TR – Tuneable Resolution 
N=3 for all simulations. 100×100 – Relative Speed of 1.0 corresponds to 26968 s of simulation time, 200×200 – Relative Speed of 1.0 
corresponds to 259150 s of simulation time 

 

Our results in Table 2.2 and Table 2.3 demonstrate that implementation of 

appropriate numerical methods and time steps can dramatically improve overall 

computational speed in hybrid multi-scale ABMs. Moving to more sophisticated 

numerical methods for solution both ODEs and PDEs increases computational speed by 

up to 5-fold. The benefits of a tuneable resolution approach are easily observed, with a 

further 2-fold to 5-fold increase in the computational speed beyond increases due to 

choice of numerical method (Table 2.2 and Table 2.3). Although Scenario 1 does benefit 

from spectral methods, the diffusion time step cannot be increased (beyond 120 seconds) 

as the mathematics begin to decouple at larger time step (see Operator Splitting section). 

The diffusion time steps in Scenario 2 are restricted to smaller values as the antibiotics 
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diffuse much faster than cytokines and chemokines in the environment. With these 

restrictions on diffusion time steps, decoupling is less of a concern in Scenario 2 and 

spectral methods are more advantageous than in Scenario 1. In both scenarios a 

combination of tuneable resolution and spectral methods increases computational speeds 

more than 20-fold. 

There are caveats to implementation of faster and more efficient numerical 

algorithms in the context of hybrid multi-scale ABM. Increasing the efficiency of solving 

one operator (Eqn. 2.3-2.5) is eventually limited by the efficiency of solving a different 

operator. For instance, implementing a spectral-based algorithm for solving the diffusion 

operator is of limited benefit if the agent-associated reactions (ODEs) are solved using a 

Forward Euler-based methodology (Table 2.2). Thus, improvements in one operator must 

also be thought of in the context of another operator, leading to a constant cycle of re-

evaluation and implementation of numerical solvers.  

Another critical aspect of solving hybrid multi-scale ABMs is the importance of 

correctly choosing algorithms with compatible time steps. The benefit of implementing a 

different numerical algorithm can be hindered if the algorithm cannot take sufficiently 

large time steps due to limitations of another numerical algorithm. For instance, in 

Scenario 2 a Runge-Kutta 4th order based algorithm to solve the agent-associated 

reactions could theoretically use time steps upwards of 5-10 seconds. However, due to 

faster tissue diffusivity values of antibiotics (~10-fold higher than cytokines and 

chemokines) a Forward-Time Central Space based algorithm, along with operator 

splitting, limits use of a larger time step (Table 2.3).  
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Lastly, it is important to understand the computational costs associated with 

expanding the size of a model. On average, transitioning from a 100x100 to a 200x200 

simulation grid reduces the computational speed ~7-fold. We have also expanded the 

example hybrid multi-scale ABM to 3-dimensions (100x100 to 100x100x100), which 

reduced the reduced the computational speed ~42-fold. Without a priori knowledge of 

these factors that contribute to computational costs, hybrid multi-scale ABMs may 

become too bulky or inefficient to provide novel insights into complex biological 

systems.  

 

2.8 Discussion 

Multi-scale models aim to replicate fundamental behaviors of biological systems, with 

constant exchange of information across scales, in order to better understand and predict 

system behavior as a whole. Coupling individual scale models, such as an agent-based 

model and differential equation models, to allow for the exchange of information is 

typically accomplished by linking the mathematical formulations at each scale. Thus, 

tools to link individual scale models and efficient methods of solving the subsequent 

models are important to advance the use of hybrid multi-scale ABMs in generating new 

biological knowledge from the wealth of available data. 

In this Chapter, we describe the general framework for linking ABMs and 

differential equation models and solving the resulting hybrid multi-scale model, including 

layers, discretization, and operator splitting. The framework is extendable to different 

levels of model detail and adaptable to the focus and needs of the problem (e.g. inclusion 

of antibiotic treatment in an infection model, or moving from two to three dimensions). 
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We review three numerical algorithms for solving soluble molecule diffusion and two 

numerical algorithms for solving individual agent-associated reactions. Additionally, we 

demonstrate the merits of a tuneable resolution approach to reduce the complexity of a 

system and limit computational cost (46). We anticipate that future versions of current 

ABM platforms and languages, such as NetLogo or SPARK, will build on hybrid model 

concepts and include a framework to allow for exchange of information across individual 

scale models. This would allow a less knowledgeable user to easily develop a hybrid 

multi-scale ABM and prevent the need for many users to ‘re-invent the wheel’ in order to 

link individual scale models.  

We demonstrate how an appropriate choice of numerical algorithms and time 

steps can improve the computational tractability and efficiency of a hybrid multi-scale 

ABM. The most important factors in choosing these algorithms are: (1) familiarity with 

the underlying mathematics, (2) an understanding of relative process rates, and (3) 

computational time and power available. If unfamiliar with numerical methods, it is 

easier to implement an algorithm built around simple mathematical concepts, such as 

FTCS for solving soluble molecule diffusion, than to start with a more mathematically 

sophisticated algorithm. As the user becomes comfortable with a simple implementation, 

more complex algorithms tend to build on simpler concepts in an incremental fashion. 

Second, it is necessary to have a basic understanding of relative rates (e.g. rates of 

diffusion compared to rates of agent-associated reactions) in order to determine whether 

solution of a hybrid multi-scale ABM will benefit from a particular numerical algorithm. 

For instance, a small molecule drug diffuses through tissue much faster than a soluble 

protein molecule (such as a cytokine) so implementing a method that solves the agent-



 73 

associated reactions with a time step larger than the time step required for solving 

diffusion of the drug through tissue has limited benefits as the diffusive rate restricts the 

overall time step (Table 2.3). Lastly, it is important to know the computational power 

available and computational time needed for each model, as new numerical methods can 

have diminishing returns. For instance, running sensitivity analysis requires a large 

number of model simulations. Therefore, implementing a new numerical method in a 

model will have more benefits in this instance compared to individual model runs. 

Multi-scale models are becoming a more prevalent tool to understand systems-

level biological phenomena. As multi-scale efforts continue to expand in scope, it is 

important to have a rational understanding of the underlying mathematical framework 

and numerical methods available to solve them. We demonstrate a framework and 

suggest tools that allow for efficient implementation of hybrid multi-scale ABMs to help 

guide the choice and development of both new model creation and existing platforms. 
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Chapter 3 
 

Multi-Scale Modeling Predicts a Balance of Tumor Necrosis Factor-α and 

Interleukin-10 Controls the Granuloma Environment During Mycobacterium 

tuberculosis Infection.

 

The work in Chapter 3 has been published as: Cilfone, N. A., Perry, C. R., Kirschner, D. 

E., Linderman, J. J. Multi-Scale Modeling Predicts a Balance of Tumor Necrosis Factor-α 

and Interleukin-10 Controls the Granuloma Environment during Mycobacterium 

tuberculosis Infection. PLoS One 8, e68680 (2013). 

 

3.1 Introduction 

Tuberculosis (TB) is an infectious disease caused by the pathogen Mycobacterium 

tuberculosis (Mtb).  Approximately one-third of the world’s population is infected with 

Mtb, with 2-3 million deaths and an estimated 10 million new clinical cases each year (1, 

2). Upon infection with Mtb, 5-10% of individuals develop active pulmonary TB, while 

about 90% develop a state of chronic infection, known as latent pulmonary TB, showing 

no clinical signs of disease (3–5).  

Granulomas are structures which form in the lungs as a result of the immune 

response to inhaled Mtb. Granulomas serve as the central site of host-pathogen 

interaction during Mtb infection, with a host typically developing several granulomas 

based on the number of inhaled bacteria (4, 6). During latent pulmonary TB, granulomas 
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are able to control Mtb but not completely eradicate the bacteria, while during active 

pulmonary TB Mtb growth is unrestrained in a portion of granulomas. The host factors 

that control the outcome of infection, in particular the formation and function of a 

granuloma, are not well understood and thus are difficult to use as therapeutic targets. 

Granulomas have a distinct cellular and spatial organization that creates a unique 

immune microenvironment in attempt to control infection. Bacteria and infected 

macrophages are found in the center of the structure and are surrounded by a region of 

mainly resting and activated macrophages (immune cells that phagocytose foreign 

material) followed by an outer cuff comprised predominantly of T cells (white blood cells 

that participate in cell-mediated immunity) (7–12). Formation of a granuloma relies on 

coordinated immunological processes that include recruitment of immune cells to sites of 

infection, activation of macrophages, and production of particular molecular mediators 

known as cytokines (4, 13–19). Cytokines direct immune responses by influencing the 

fate and behavior of many immune cells. A pro-inflammatory cytokine, tumor necrosis 

factor-α (TNF-α), and an anti-inflammatory cytokine, interleukin-10 (IL-10), are 

hypothesized to be central to granuloma formation and function, but understanding the 

importance of each cytokine is complicated by the myriad of cellular and signaling 

processes acting across multiple spatial (tissue, cellular, molecular) and temporal 

(seconds to years) scales (Figure 3.1) (20–25).  

IL-10 is a pleiotropic anti-inflammatory cytokine that is produced by immune 

cells (including both adaptive and innate immune cells) and regulates a variety of 

immune processes in response to pathogens (20, 22, 23, 25–32). During infection with 

Mtb, IL-10 is primarily produced by infected and non-infected macrophages, with smaller 
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quantities arising from regulatory T cells (20, 23, 25, 33). Production of IL-10 from other 

T cell sources, including subsets of CD4+ and CD8+ T cells, is still fairly 

uncharacterized (20, 34). IL-10 plays at least three major roles during Mtb infection 

(Figure 3.1): (1.) IL-10 inhibits the production of TNF-α through modulation of STAT3 

transcription factors during TNF-α mRNA transcription (35–44), (2.) IL-10 inhibits the 

production of chemokines by immune cells, resulting in indirect regulation of cellular 

recruitment to the site of infection (45–48), and (3.) IL-10 works in concert with other 

regulatory mechanisms, such as CTLA-4 and transforming growth factor-β, in order to 

suppress cellular function, e.g. down regulation of activated macrophages (22, 23, 28, 

49–51). 
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Figure 3.1 Schematic diagram of TNF-α and IL-10 mechanisms included in GranSim 
Regulatory T cells, activated macrophages, infected macrophages, and chronically infected macrophages 
are able to produce IL-10. IL-10 inhibits the production of TNF-α in all cell types. IL-10 indirectly prevents 
the recruitment of immune cells to the site of infection by inhibiting chemokine production. IL-10 limits the 
secondary regulatory mechanism (cell-cell contact, TGF-β, and other regulatory mechanisms) down 
regulation of activated macrophages by regulatory T cells. Activated macrophages, infected macrophages, 
chronically infected macrophages, resting macrophages (STAT1 or NFκB activated), cytotoxic T cells, and 
pro-inflammatory T cells are able to produce TNF-α. TNF-α directly induces recruitment of immune cells 
to the site of infection (lung). TNF-α induces production of IL-10 in activated macrophages, which 
represents the pro/anti inflammatory plasticity of activated macrophages. TNF-α, along with interferon-γ 
derived from pro-inflammatory T cells, induces activation of resting macrophages or it can induce the 
caspase-mediated apoptosis pathway found in all cell types. 
 

Patients with pulmonary TB show elevated levels of IL-10 in lungs, serum, 

sputum, and bronchoalveolar lavage (BAL) fluid, suggesting a role for IL-10 in 

preventing control of Mtb infection. Genetic studies in humans suggest a correlation 

between IL-10 gene polymorphisms and an increase in Mtb susceptibility (20). In IL-10-/- 

mice there are reports of enhanced, normal, or poorer control of Mtb infection (52–62). 

Differing genetic backgrounds of the IL-10-/- mice and differences between mouse 

models and human infection make these data difficult to interpret. Computational models 

of Mtb infection predict a role for IL-10 in achieving latency with limited tissue damage 

and in helping balance the major macrophage phenotypes present in granulomas (63, 64). 

Finally, in studies of other granulomatous diseases, such as Leishmania major, IL-10-/- 

mice display severe host damage while IL-10 overexpressing cells show increased 

recovery from toxic-shock like conditions (26).  

TNF-α is a pro-inflammatory cytokine produced by infected and non-infected 

macrophages, CD4+ T cells, and CD8+ T cells in response to Mtb infection (17, 65). 

TNF-α mediates multiple immune and bactericidal responses during Mtb infection 

(Figure 3.1): (1.) TNF-α, in conjunction with interferon-γ from CD4+ T cells, activates 

resting macrophages through the NFκB signaling axis (15, 66–70), (2.) TNF-α promotes 



 85 

cellular recruitment, both directly and indirectly, by inducing expression of chemokines 

in macrophages and directly influencing the recruitment of cells from vascular sources 

(71), (3.) TNF-α controls caspase-mediated apoptosis of cells (70, 72), (4.) TNF-α can 

alter the activated macrophage phenotype, thus causing activated macrophages to 

produce IL-10 (73–75). Studies in both animal and computational models have shown 

that TNF-α and its controlling processes are critical to the formation and function of 

granulomas. Removal of TNF-α during Mtb infection leads to a range of outcomes, such 

as unstructured granulomas, and large increases in total bacterial burden (13, 14, 17, 76–

80). Furthermore, patients receiving TNF-α antagonists to treat inflammatory diseases 

such as rheumatoid arthritis show increased incidence of TB reactivation (81, 82).  

Taken together, these studies highlight the role of TNF-α as an important initiator 

of inflammatory and bactericidal processes and IL-10 as an inhibitor of activation and a 

potential contributor to chronic infection. Several studies have suggested that a balance of 

TNF-α and IL-10 may be necessary for controlling infection while at the same time 

preventing severe host tissue damage during Mtb infection (5, 20–22, 25). Yet, the 

complexity of the immune response to Mtb (Figure 3.1) makes it difficult to address this 

hypothesis using traditional experimental systems. 

In this Chapter we address the complex and multi-scale effects of TNF-α and IL-

10 during Mtb infection using a systems biology approach. Building on our previous 

work (13), we develop a multi-scale computational model of Mtb infection that integrates 

both TNF-α and IL-10 experimental data, including single-cell level receptor-ligand 

dynamics. We then ask:  What molecular scale processes control the concentrations of 

TNF-α and IL-10?  Do TNF-α and IL-10 processes also affect infection outcomes? Does 
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a balance of TNF-α and IL-10 concentrations exist in those granulomas that are able to 

contain bacteria?  Our computational model allows us to explore the dynamics of pro- 

and anti-inflammatory cytokines across multiple spatial (molecular, cellular, and tissue 

level) and temporal scales and determine their effects on control of Mtb infection. 

 

3.2 Materials and Methods 

3.2.1 Multi-Scale Hybrid Agent-Based Model Overview 

We constructed a multi-scale computational model of lung granuloma formation 

and function during Mtb infection (Figure A.1 in Appendix A). We describe immune 

processes over three biological scales: tissue, cellular, and molecular. Tissue and cellular 

scale events are described with a next-generation two-dimensional agent-based model 

(ABM) that uses a set of rules and interactions to describe the stochastic behavior of 

discrete immune cells in the lung (GranSim) (13, 14). The molecular scale model is 

composed of three sub-models, each described by systems of differential equations, and 

is linked to the tissue and cellular scale (83, 84): (1) Single-cell level TNF-α and IL-10 

secretion and receptor-ligand dynamics are described by ordinary differential equations 

(ODEs), (2) diffusion of TNF-α, IL-10, and chemokines are described by partial 

differential equations (PDEs), and (3) degradation of TNF-α, IL-10, and chemokines are 

described by ODEs. Chemokine (consisting of CCL2, CCL5, and CXCL9/10/11) 

receptor-ligand dynamics, which are not the focus of the current Chapter, are excluded 

from the model. Figure 3.2 shows the tissue, cellular, and molecular scale models and 

how they are interconnected to form our multi-scale hybrid agent-based model of the 

immune response to Mtb infection. 
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Figure 3.2 Schematic representation of the hybrid multi-scale ABM of the immune response to Mtb 
A. An overview of GranSim with a sub-section of model rules shown that represents known immune cell 
behaviors and interactions (Adapted from (13)). A full list of rules is available in Appendix A B. Schematic 
representation of single cell-level TNF-α and IL-10 binding and trafficking reactions. Model equations are 
shown in Table A.1 in Appendix A and Table A.2 in Appendix A. 
 

3.2.2 Tissue and Cellular Scale Model (GranSim) 

3.2.2.1 Immune Cells and Bacilli 

We include both macrophages (Mϕs) and T cells as distinct agents in our model. 

These agents have multiple states including: regulatory T cell (Tr), cytotoxic T cell (Tc), 

pro-inflammatory T cell (Tγ), resting macrophage (resting Mϕ), infected macrophage 

(infected Mϕ), chronically infected macrophage (chronic Mϕ), and activated macrophage 

(activated Mϕ) (Figure 3.2A) (14). Other cell types, e.g. neutrophils, B cells and foamy 
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macrophages, may play a role during Mtb infection but are not included in the model due 

to insufficient evidence as to their function during infection (4). The model can be easily 

adapted to include these cell types once more data become available. Mtb reside in Mϕs 

but can also exist in the extracellular space of the lung and in areas of hypoxia/caseation 

(4). We track three bacterial populations as continuous variables in each Mϕ agent or in 

the extracellular space: intracellular bacteria (Bint), extracellular bacteria (Bext), and 

bacteria in hypoxic/caseated areas (Bcas).  

 

3.2.2.2 ABM Rules and Interactions 

Figure 3.2A shows a representative selection of rules and interactions used to 

describe the tissue and cellular scale dynamics in the model. The simulation environment 

consists of 20x20µm micro-compartments in which agents and bacteria can reside. A full 

description of rules and interactions is available in Appendix A. Briefly, rules and 

interactions describe chemotaxis, intracellular and extracellular growth of Mtb, 

phagocytosis of bacteria by Mϕs, T cell killing, interferon-γ induced STAT1 activation of 

resting Mϕs by Tγ, deactivation of immune cells by Tr, secretion of chemokines, and 

development of caseated areas. We updated many agent rules and interactions from our 

prior generation ABM to reflect additional experimental data including: infected Mϕs that 

transition to activated Mϕs kill Bint at the same rate that activated Mϕs kill Bext (85, 86), 

resting Mϕs that are partially activated (NFκB or STAT1 positive) kill extracellular 

bacteria at an increased rate (4, 85, 86), partially activated resting Mϕs express STAT1 or 

NFκB activation for a limited timeframe to better describe the need for re-stimulation 

(69), T cell killing through Fas/FasL or cytotoxic mechanisms occurs in the Moore 
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neighborhood, hypoxic bacterial growth of Bext is scaled based on the number of caseated 

compartments in the Moore neighborhood (87), and Bcas die with a specified death rate 

and probability (87). 

 

3.2.2.3 Cell Recruitment 

Recruitment of immune cells to the site of infection has been suggested to be 

highly correlated with control of Mtb (88, 89). We updated our previous cell recruitment 

algorithm by adding chemokine- and cytokine-dependent recruitment rates of immune 

cells to the infection site (Figure A.2 in Appendix A). This is consistent with observed 

dose-dependent migration rates of immune cells in response to chemokines (88, 90). We 

recruit resting Mϕs and T cells (Tγ, Tc, and Tr) from vascular sources randomly 

distributed across the simulation environment. The recruitment rate at each vascular 

source is dependent upon the concentrations of CCL2, CCL5, CXCL9, and TNF-α in the 

specified micro-compartment. Recruitment rates for each molecule are modeled using a 

concentration threshold and Michaelis-Menton kinetics. The overall recruitment rate for 

each agent is the summation of the contribution by CCL2, CCL5, CXCL9, and TNF-α 

and is scaled by a maximum probability of recruitment, which turns the continuous 

recruitment rate into a stochastic event. The probability functions for recruitment of 

resting Mϕs, Tγ, Tc, and Tr are given in Appendix A and values of recruitment parameters 

are given in Table A.3 in Appendix A. 
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3.2.3 Molecular Scale Model 

3.2.3.1 IL-10 and IL-10 Receptor-Ligand Dynamics 

We developed a model of IL-10 receptor-ligand dynamics based on experimental 

data (Figure 3.2B). We assume that IL-10 is synthesized by infected Mϕs, chronic Mϕs, 

activated Mϕs, and Tr and released directly into the extracellular environment (25, 26, 34, 

50, 91–95). IL-10 exists in the extracellular space as a non-covalently bonded dimer 

where it can bind to cell-surface IL-10R1 and IL-10R2 (96, 97). Signaling occurs through 

association of bound IL-10R1 with the IL-10R2 subunit. IL-10R1 is the high affinity 

receptor compared to IL-10R2, which mainly exists as a signaling subunit to bound IL-

10R1 (26). For simplicity, we include only a general IL-10R that represents both IL-10R1 

and IL-10R2 (98, 99). IL-10R is synthesized by cells and is removed from the membrane 

by turnover (100). Bound IL-10R can be internalized followed by degradation or 

recycling to the surface (101).  These processes are modeled by mass-action kinetics as 

shown in Table A.1 in Appendix A and Table A.2 in Appendix A; definitions and values 

of rate constants are defined in Table A.4 in Appendix A. 

 

3.2.3.2 TNF-α and TNF-α Receptor-Ligand Dynamics 

TNF-α and TNF-α receptor-ligand dynamics events are illustrated in Figure 3.2B. 

The equations describing these events were modified from earlier work in order to 

accommodate IL-10 receptor-ligand dynamics as discussed above (13, 79, 80). TNF-α 

mRNA is transcribed and subsequently translated into its membrane bound form, mTNF, 

by NFκB-activated resting Mϕs, infected Mϕs, chronic Mϕs, activated Mϕs, Tγ, and Tc. 

mTNF is cleaved from the membrane into its soluble form (sTNF), by the 
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metalloproteinase TACE. sTNF can reversibly bind to the two receptors, TNFR1 and 

TNFR2. TNFR1 and TNFR2 are synthesized by the cell and are removed from the 

membrane by turnover. Bound TNFR1 and TNFR2 can be internalized and then degraded 

or recycled to the surface in their unbound state. sTNF bound to TNFR2 may be shed to 

the extracellular space where it can dissociate. These processes are modeled by mass-

action kinetics as shown in Table A.1 in Appendix A and Table A.2 in Appendix A; 

definitions and values of rate constants are defined in Table A.4 in Appendix A. 

 

3.2.3.3 Linking TNF-α and IL-10 Receptor-Ligand Dynamics 

TNF-α and IL-10 receptor-ligand dynamics are linked in two ways (Figure 3.2B): 

bound IL-10R inhibits TNF-α mRNA transcription and bound TNFR1 can induce 

synthesis of IL-10 in activated Mϕs (35, 73). Inhibition of TNF-α mRNA transcription 

shows rapid switch-like behavior, and we modeled this process with a three-parameter 

logistic function (35): 

kmRNA−Mod = kmRNA β +
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We captured the ability of bound TNFR1 to induce synthesis of IL-10 in activated Mϕs 

with Michaelis-Menton type kinetics, which roughly approximates the mechanisms 

influencing the plasticity of activated Mϕs to produce IL-10 at lower (classically 

activated Mϕs) or higher (alternatively activated Mϕs) rates (modeled in detail in Chapter 

4) (73–75, 102, 103). 
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Parameter values and definitions are found in Table A.4 in Appendix A. Other molecular 

scale mechanisms of IL-10 inhibition of TNF-α processes, such as inhibition of TACE 

activity, can be included in future models as more data become available (37, 104, 105). 

 

3.2.3.4 Diffusion of Soluble Molecules 

Diffusion of soluble TNF-α, IL-10, and chemokines is described by the two-

dimensional diffusion equation:  
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(Eqn. 3.4) 

We track soluble CCL2, CCL5, CXCL9, TNF-α, IL-10, and shed bound TNFR2 as 

continuous species that can diffuse in the lung environment. We use the alternating-

direction explicit (ADE) method for discretizing the environment and solving the 

diffusion equation (see Chapter 2) (106). This method is unconditionally stable, allowing 

us to use a solver time step five times larger than in previous work, simultaneously 

increasing computational performance and solution accuracy (Appendix A). 

 

3.2.3.5 Degradation of Soluble Molecules 

Degradation of soluble CCL2, CCL5, CXCL9, TNF-α, IL-10, and shed bound 

TNFR2 is described by:  

∂C
∂t

= −kdegC
                                                                                                        

(Eqn. 3.5) 

In order to increase the accuracy of the degradation calculation and to prevent 

unnecessary computational burden, we calculate degradation using the analytical solution 

to Eq. 5 (see Chapter 2) (Appendix A). 
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3.2.4 Linking the Molecular Scale Model to the Tissue and Cellular Scale Model 

Molecular scale dynamics involving TNF-α are linked to the tissue and cellular 

scale model (GranSim) (Figure 3.2) through cell recruitment (discussed above), NFκB 

activation of Mϕ, and caspase induced cell apoptosis. We describe TNF-α induced NFκB 

activation of each Mϕ and TNF-α induced apoptosis of cells as Poisson processes with a 

probability of occurrence determined by a rate constant, threshold value, and a saturation 

value (see Appendix A for equations and Table A.5 in Appendix A for parameter 

definitions and values). TNF-α induced NFκB activation of Mϕ is dependent on the 

concentration of bound TNFR1 per cell, while TNF-α induced apoptosis is dependent on 

the concentration of internalized bound TNFR1 per cell (13, 79). Molecular scale 

dynamics involving IL-10 are linked to GranSim through chemokine down regulation 

and compensation of alternative suppressive functions. IL-10 inhibits the production of 

chemokines by Mϕs; we use a simple threshold relationship in which the synthesis of 

chemokines is reduced by half once the number of bound IL-10R is above the specified 

threshold (45–48). The probability of alternative suppressive functions of Tr occurring is 

linearly dependent on the ratio described by: 

[TNF ⋅TNFR1]
[TNF ⋅TNFR1]+[IL10 ⋅ IL10R]                                                                                 

(Eqn. 3.6) 

This simulates the dependence of other regulatory mechanisms on IL-10 that are not the 

focus of this Chapter (22, 23, 28, 49–51). 
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3.2.5 Parameter Estimation and Model Validation 

We estimate model parameter values using experimental data where available and 

previous modeling studies (13, 14, 63). When data are unavailable we use uncertainty and 

sensitivity analyses to explore the parameter space to match observed qualitative 

behavior (see below) (107). Cell-specific TNF-α receptor-ligand dynamics model 

parameters are estimated from literature as previously described (13, 79, 80). We updated 

parameter estimates for rate constants, concentration thresholds, and saturation 

concentrations of TNF-α induced Poisson processes (69). Parameters for the updated cell 

recruitment algorithm were estimated using uncertainty and sensitivity analyses and 

validated by comparing total T cells numbers against non-human primate estimates (108). 

IL-10 receptor-ligand dynamics model parameters are estimated based on 

experimental data. The synthesis rate constant of IL-10 by infected Mϕs is estimated 

using in vitro kinetic IL-10 ELISA data from both human monocyte-derived Mϕs and a 

THP-1 cell line infected with Mtb strain H37Rv (92, 95). The synthesis rate constant of 

IL-10 by activated Mϕ is estimated using in vitro kinetic IL-10 ELISA data from M-CSF 

activated human monocyte-derived Mϕs and single-time point IL-10 ELISA data from 

interferon-γ activated murine Mϕ (91, 103). The half-saturation of IL-10 induction by 

bound TNFR1 in activated Mϕs is estimated using uncertainty and sensitivity analysis 

such that on average synthesis rates of IL-10 fall into above estimated ranges. Synthesis 

of IL-10 by Tr is estimated using in vitro kinetic IL-10 ELISA data from both human and 

mouse purified T cells (34, 93, 94). The three parameters describing inhibition of TNF-α 

mRNA synthesis by bound IL-10R (Eq. 1), are estimated from in vitro human monocyte-

derived Mϕs stimulated with Mycobacterium avium (cultured with and without an anti-
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IL-10 antibody) or stimulated with lipopolysaccharide (36, 37). Data on the peak, timing, 

and shape of soluble TNF-α concentration data were used to estimate parameters 

describing TNF mRNA synthesis (See Figure A.4 in Appendix A). A complete list of IL-

10 and TNF-α receptor-ligand dynamics parameters along with all other model 

parameters are found in Table A.3 in Appendix A, Table A.4 in Appendix A, and Table 

A.5 in Appendix A.  

Using methods described above we determine a baseline set of parameters, 

referred to as the baseline containment parameter set, which results in robust control of 

Mtb infection with structures similar to granulomas observed in humans and non-human 

primates. We validate and test our baseline containment parameter set using multiple 

experimentally verified scenarios to ensure it can describe the immune response to Mtb 

infection. For example, we perform virtual deletion simulations that mimic experimental 

studies of gene knockouts by setting the relevant model parameters (probabilities and rate 

constants) to zero from the beginning of a simulation. Virtual deletion experiments are 

carried out for interferon-γ, TNF-α, and T cells for model validation, while IL-10 deletion 

experiments are predictions of the model. We compare our predicted simulations with 

corresponding data from human, mouse, and non-human primate studies. 

 

3.2.6 Model Outputs and Analysis Metrics 

We consider multiple model outputs relevant to granuloma formation and 

function during Mtb infection. At the cellular scale, we measure numbers of immune 

cells, frequency of T cell killing, caseated areas, and rates of cellular recruitment. At the 

molecular scale, we track average concentrations of TNF-α and IL-10 in the granuloma 



 96 

along with number of TNF-α induced processes. Specifically, we measure the number of 

resting Mϕs that undergo TNF-α induced apoptosis as a metric of healthy tissue damage, 

the number of activated Mϕ as a metric of bactericidal activation levels, and total 

bacterial load (the sum of Bint and Bext) as a metric of infection status. Simulation results 

are organized by infection outcome, which includes bacterial containment (stable total 

bacterial load of ~103), clearance (total bacterial load of zero), and unresolved clearance 

(total bacterial load of zero with non-steady state numbers of activated Mϕs), and data is 

shown for only the dominant outcome. This allows us to use common statistical 

techniques to analyze the results. Further explanation and non-dominant outcome data is 

provided in Appendix A. 

We hypothesize that a beneficial outcome for the host corresponds to a low total 

bacterial load, low tissue damage (induced by apoptosis), and sufficient immune 

activation. Thus, we combine the three metrics – total bacterial load, healthy tissue 

damage, and Mϕ activation levels – together into a single metric we define as the host-

pathogen index (H.P.I.).  

H.P.I =
BTot +

1
MϕActivated

+MϕResting
Apoptosis

3*H.P.I.Max
                                                                    (Eqn. 3.7) 

H.P.I. is an evenly weighted average of the total bacterial load, the number of apoptotic 

resting Mϕs, and the inverse of the number of activated Mϕs, normalized between zero 

and one. The inverse of the number of activated Mϕs is used so that low values for all 

metrics correspond to beneficial behavior. 

To simplify the presentation of the influence of molecular scale TNF-α and IL-10 

related parameters we divide them into three groups for each molecule: (1) parameters 
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that are part of the synthesis pathway are organized into the synthesis group, (2) 

parameters that control the spatial aspects are organized into the spatial group, and (3) 

parameters that control binding and signaling are organized into the signaling group. 

Table A.4 in Appendix A and Table A.5 in Appendix A describe each parameter and 

group. 

 

3.2.7 Uncertainty and Sensitivity Analysis  

Uncertainty and sensitivity analyses are used to identify model parameters that 

have a significant effect on model output. Latin hypercube sampling (LHS) is a 

straightforward and computationally effective method for simultaneously varying 

multiple parameters and sampling the parameter space (107). Partial rank correlation 

coefficients (PRCCs) are used to quantify the effects of varying each parameter on non-

linear model outputs, indicating model sensitivity to specific parameters. A PRCC value 

of -1 is a perfect negative correlation while a PRCC value of +1 represents a perfect 

positive correlation. PRCC values are differentiated with a student t-test to assess 

significance. In this Chapter, we use the LHS algorithm to generate 250 unique parameter 

sets, which are simulated in replication 4 times and the average of the outputs are used to 

calculate PRCC values. This number of simulations indicates a PRCC value of above 

0.24 or below -0.24 is considered to be highly significant with a p value < 0.001 (107).  

We separate the molecular scale TNF-α and IL-10 model parameters from GranSim 

model parameters when carrying out LHS in order to better understand how each scale 

affects the others (intra vs. inter-scale effects). 
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3.2.8 Model Implementation 

A two-dimensional 100x100 lattice of micro-compartments represents a 2x2mm 

section of lung tissue. Initial conditions include pre-seeded resting Mϕ in the lung 

environment and placing an infected Mϕ at the center of the grid (6). We use zero 

concentration boundary conditions for diffusion of soluble molecules on all four of the 

grid edges. Granulomas are typically separated from one another and tissue 

concentrations of chemokines and cytokines are typically negligible in normal lung tissue 

(6). We use torodial boundary conditions for agent movement on the lattice. The rules 

and interactions of the ABM are solved on a 10 min time step (28,800 agent time steps 

for 200 days of simulation). Diffusion and degradation of soluble molecules are updated 

on a 30 second time step. TNF-α and IL10 receptor-ligand dynamics ODEs are solved for 

each agent using a Runge-Kutta 4th order numerical solver with a time-step of 6 seconds. 

Our model was constructed using the C++ programming language in conjunction 

with Boost libraries (distributed under the Boost Software License – available at 

www.boost.org). The Qt framework (open-source, distributed under GPL – available at 

qt.digia.com) was used to build the graphical user interface (GUI), which allows us to 

visualize, track, and plot different facets of our simulated granulomas in real-time. The 

model can be used with or without GUI visualization and is cross-platform (Mac, Linux, 

Windows). Simulations were performed on the Nyx/Flux computing cluster available at 

the Center for Advanced Computing at the University of Michigan and post-processing 

for visualization was carried out on non-cluster resources, which included multi-core 

desktops and laptops. 
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Figure 3.3 Model validation of simulated granulomas at 200 days post-infection 
A. Simulation using baseline containment parameter set. B. Simulation using TNF-α knockout parameter 
set (baseline containment parameter set but with kRNA_Mac = 0 and kRNA_Tcell = 0). C. Interferon-γ knockout 
parameter set (baseline containment parameter set PSTAT1 = 0). Cell types are as follows: resting 
macrophages (resting Mϕ), infected macrophages (infected Mϕ), chronically infected macrophage (chronic 
Mϕ), activated macrophage (activated Mϕ), pro-inflammatory T cell (Tγ), cytotoxic T cell (Tc), regulatory 
T cell (Tr), and extracellular bacteria (Bext). Agent and bacteria colors are shown in the included legend. 
These same colors are used for subsequent images. Model parameters are given in Table A.3 in Appendix 
A, Table A.4 in Appendix A, and Table A.5 in Appendix A. For full length time-lapse simulations please 
see http://malthus.med.micro.umich.edu/lab/movies/TNF-IL10. 
 

3.3 Results 

3.3.1 Simulated Granulomas Display Infection Outcomes Comparable to Experimental 

Models 

We first test whether our multi-scale computational model can recapitulate known 

features of the immune response to Mtb infection. Using estimation methods described 

above, we identify a baseline containment parameter set (Table A.4 in Appendix A and 

Table A.5 in Appendix A) that leads to robust control of Mtb infection over 200 days 

post-infection, including a stable total bacterial load of ~103 and organized granulomas 

comparable to histological observations in humans and non-human primates (7–10). 
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Simulated granulomas (Figure 3.3A) contain a core of infected Mϕs, chronic Mϕs, Bext 

and areas of caseation that are surrounded primarily by resting Mϕs and activated Mϕs, 

and a peripheral region consisting mainly of Tc, Tγ, and Tr. About 15% of simulations 

using the baseline containment parameter set lead to granulomas that are able to clear all 

bacteria. This occurs when infected Mϕs and chronic Mϕs are killed through TNF-α 

induced apoptosis or T cell mediated killing at the initial stages of simulated infection. 

Data suggest that some individuals do not become infected when exposed to Mtb, 

consistent with our simulations that result in clearance before a granuloma begins to form 

(16). By varying model parameters in the baseline containment parameter set our model 

is also able to predict different granuloma outcomes, as observed in non-human primate 

models, including primarily clearance or uncontrolled growth of bacteria (16).  

We further validate our model by performing virtual deletion experiments (see 

Materials and Methods) for TNF-α (kRNA_Mac = 0 and kRNA_Tcell = 0) and interferon-γ 

(PSTAT1 = 0). These lead to an increased total bacterial load including increased Bext in the 

interior of larger and more irregular shaped granulomas (Fig. 3B-C). TNF-α and 

interferon-γ are important initiators of inflammatory and bactericidal processes during 

Mtb infection (4). Virtual deletions of TNF-α or interferon-γ are unable to control disease 

progression due to a lack of Mϕ activation and bactericidal activity, consistent with 

experimental data (16, 17). These results also agree with our previous computational 

studies using models that did not include molecular level dynamics for IL-10 (13, 14). 
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3.3.2 IL-10 is Necessary to Control Inflammatory Processes and Tissue Damage 

During Mtb Infection 

To explore the role of IL-10 during Mtb infection, we probe both the formation 

and function of granulomas when IL-10 is absent. We perform a virtual deletion 

experiment by setting IL-10 synthesis parameters to zero in the baseline containment 

parameter set (ksynthMacAct = 0, ksynthMacInf = 0, and ksynthTcell = 0), thus generating the IL-10 

knockout parameter set. Figure 3.4 shows the average total bacterial load, number of 

activated Mϕs, apoptosis of resting Mϕs, and average tissue TNF-α concentration for 

simulations using either the baseline containment parameter set or the IL-10 knockout 

parameter set. 

IL-10 knockout (IL-10-/-) granulomas have similar total bacterial loads compared 

to baseline containment granulomas, but with elevated numbers of activated Mϕs, 

increased apoptosis of resting Mϕs, increased cellular infiltration rates (not shown), and 

increased average tissue TNF-α concentrations (Figure 3.4C-F). IL-10-/- granulomas 

contain large clusters of activated Mϕs in the periphery of the structure indicating that 

they fail to maintain proper levels of immune cell activation (Figure 3.4A-B). IL-10-/- 

granulomas show an increased probability of clearing Mtb, with ~40% of simulations 

clearing bacteria compared to ~15% of simulations with the baseline containment 

parameter set. However, the increase in clearance outcomes is also associated with large 

clusters of activated Mϕs and increased apoptosis of resting Mϕs that persists beyond 

clearance of bacteria (see Table A.10 in Appendix A). The excessive influx of 

inflammatory cells, in both IL-10-/- containment and clearance outcomes, is directly due 

to the lack of IL-10, which controls multiple inflammatory processes through multiple 
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mechanisms (Figure 3.1). Thus, our model suggests that IL-10 is necessary during Mtb 

infection to modulate activation levels and restrict apoptosis of resting Mϕs (a 

measurement of tissue damage), which is consistent with earlier modeling studies (63, 

64). These results also suggest that variable outcomes reported from experimental IL-10-/- 

studies may be due to the large amount of variability in infection outcome, small sample 

sizes, and differences between animal models (52–62).  

 

Figure 3.4 Time course simulation results for baseline and IL-10 knockout scenarios 
Simulation using baseline containment parameter set at 200 days post-infection. B. Simulation using the 
IL-10 knockout parameter set at 200 days post-infection. Agents and bacteria colors are as in Figure 3.3. C-
F. Simulation results at 50, 100, 150 and 200 days post-infection using the baseline containment parameter 
set (black bars) and the IL-10 knockout parameter set (white bars). The few simulations that lead to 
clearance of Mtb in a granuloma are not shown here (see Table A.10 in Appendix A). C. Total bacterial 
load. D. Number of activated Mϕ. E. Number of apoptotic resting Mϕ. F. Average tissue concentration of 
TNF-α (pM). For full length time-lapse simulations please see 
http://malthus.med.micro.umich.edu/lab/movies/TNF-IL10. 
 

3.3.3 Granuloma Outcomes Are Sensitive to Multiple TNF-α and IL-10 Processes that 

Control Average Concentrations in a Granuloma 

We now predict which biological processes are controlling concentrations of 

TNF-α and IL-10 in a granuloma during Mtb infection. We analyze the impact of TNF-α 
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and IL-10 molecular scale processes on granuloma outcomes using sensitivity analyses 

and group important parameters together based on the relevant processes they describe. 

Table 3.1 lists model parameters that are significantly correlated with key features of the 

granuloma: total bacterial load, average tissue concentration of TNF-α, average tissue 

concentration of IL-10, and granuloma size (see also Table A.11 in Appendix A and S12 

in Appendix A). These important TNF-α and IL-10 parameters fall into three groups (as 

defined in Materials and Methods): (1) the synthesis group, (2) the spatial group, and (3) 

the signaling group. Processes described by the parameters in these three groups shape 

the concentrations of TNF-α and IL-10 in a granuloma environment and thus in turn 

control granuloma outcome (Figure 3.5). We now focus our analyses on the effects of 

manipulating parameters in each of the three groups on granuloma formation and 

function. 

Table 3.1 Molecular Scale TNF-α and IL-10 Parameters Significantly Correlated With Selected 
Model Outputs At 200 Days Post-Infection 
   Selected Model Outputs† 

Parameter 
Group Parameter Parameter Description Bacterial 

Load* 

Avg. 
Tissue 
TNF-α 

Avg. 
Tissue 
IL-10 

Gran 
Size 

TNF-α Synthesis kSynthMac Minimum TNF-α mRNA synthesis rate of macrophages -- +   
 kRNA_Mac Basal TNF-α mRNA synthesis rate of macrophages --- +++   
TNF-α Signaling Kd1 Equilibrium dissociation constant of sTNF/TNFR1 +++    
 kon1 sTNF/TNFR1 association rate constant ---    
 kint1 TNFR1 internalization rate constant +++ --- --- --- 
 kt2 TNFR2 turn-over rate constant -    
 TNFR1Mac TNFR1 density on the surface of macrophages --- ---  - 
 τapop Internalized sTNF/TNFR1 threshold for TNF-induced apoptosis ++    
 τNFkB Cell surface sTNF/TNFR1 threshold for TNF-induced NFκB activation  -- -- - 
 kNFkB Rate constant for TNF-induced NFκB activation in macrophages ---    
TNF-α Spatial DTNF Diffusion coefficient of sTNF  +++ ++ +++ 
 kdeg sTNF degradation rate constant ++ --- -  
IL-10 Synthesis kSynthMacAct Full synthesis rate of IL-10 by activated macrophages +++ ---  - 
IL-10 Signaling Kd Equilibrium dissociation constant of IL-10/IL-10R --    
 kon IL-10/IL-10R association rate constant +++ --- ---  
 kint IL-10R internalization rate constant --- +++ +  
 IL10RMac IL-10R density on the surface of macrophages +++ --- ---  
IL-10 Spatial kdeg Soluble IL-10 degradation rate constant - ++ --  
Significant PRCC values are as follows: -/+ 0.001 < p < 0.01  --/++ 0.0001 < p < 0.001  ---/+++ p < 0.0001 
* Bacterial load incorporates PRCC values for IntMtb, ExtMtb, and TotMtb 
† Detailed sensitivity analysis is presented in Table A.11 in Appendix A and A.12 in Appendix A 
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Figure 3.5 Three main processes influence the concentrations of TNF-α and IL-10 and control 
infection outcome 
Model parameters that are relevant to TNF-α or IL-10 synthesis (synthesis influence), that control the 
spatial distribution of TNF-α or IL-10 (spatial influence), and that control the binding and signaling of 
TNF-α or IL-10 (signaling influence). These three parameter groups control the concentrations of TNF-α 
and IL-10 in the granuloma environment and thus in turn directly control infection outcome. Parameter 
groups are described in Table A.4 in Appendix A and Table A.5 in Appendix A. 
 

3.3.4 Synthesis Rates of TNF-α and IL-10 Have Opposing Effects on Bacterial Control 

and Tissue Damage 

We first analyze the effects of parameters in the synthesis group on a granuloma 

environment. Sensitivity analysis (Table 3.1) indicates that the basal rate of TNF-α 

mRNA synthesis by Mϕs correlates negatively with total bacterial load and positively 

with average tissue TNF-α concentration, while the IL-10 synthesis rate for activated 

Mϕs correlates positively with total bacterial load and negatively with average tissue 

TNF-α concentration. Thus, TNF-α and IL-10 synthesis group parameters have a 
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significant impact on their concentrations in a granuloma environment.

 

Figure 3.6 Simulation results showing the effects of varying each influence in a granuloma 
environment 
Simulation results from 30 replications showing the effects of varying each of the three influences: the 
synthesis influence, signaling influence, and spatial influence (Figure 3.5; Table A.4 and Table A.5 in 
Appendix A). Results using the baseline containment parameter set, labeled ‘base’, are included for 
comparison (parameter values in Table A.4 in Appendix A and Table A.5 in Appendix A). A. Effects of 
mRNA synthesis rate of TNF-α by Mϕ (‘Low’ kRNA_Mac = 0.5 #/cell*s, ‘High’ kRNA_Mac = 3.0 #/cell*s) and 
synthesis rate of IL-10 by activated Mϕ (‘Low’ ksynthMacAct = 0.1 #/cell*s, ‘High’ ksynthMacAct = 1.0 #/cell*s). 
B. Effect of TNFR1 receptor density on Mϕ (‘Low’ TNFR1mac = 500, ‘High’ TNFR1mac = 5000) and IL-10R 
receptor density on Mϕ (‘Low’ IL10Rmac = 500, ‘High’ IL10Rmac = 5000). C. Effect of bound TNFR1 
internalization rate constant (‘Low’ kint1 = 10-4 s-1, ‘High’ kint1 = 10-3 s-1) and bound IL-10R internalization 
rate constant (‘Low’ kint = 10-4 s-1, ‘High’ kint = 10-3 s-1). D. Effect of spatial range of TNF-α (‘Low’ DTNF = 
1 x 10-8 cm2/s kdeg = 2.3 x 10-2 s-1, ‘High’ DTNF = 9 x 10-8 cm2/s kdeg = 5 x 10-5 s-1) and spatial range of IL-10 
(‘Low’ DIL10 = 1 x 10-8 cm2/s kdeg = 1.6 x 10-2 s-1, ‘High’ DIL10 = 8 x 10-8 cm2/s kdeg = 1.8 x 10-6 s-1). Low 
indicates a lower value than baseline while high indicates a higher value than baseline. 
 

We manipulate the synthesis rates of TNF-α mRNA by Mϕs and the synthesis of 

IL-10 by activated Mϕs to both high and low values. Figure 3.6A shows the results of 

these manipulations on average total bacterial load, number of activated Mϕs, and 

apoptosis of resting Mϕs (see also Table A.9 in Appendix A). Low rates of TNF-α 
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mRNA synthesis and high rates of IL-10 synthesis show increased bacterial loads with 

lower levels of activated Mϕs and less apoptosis of resting Mϕs. Conversely, high rates of 

TNF-α mRNA synthesis and low rates of IL-10 synthesis display clearance or reduced 

bacterial loads with increased levels of activated Mϕs, but at the cost of increased 

apoptosis of resting Mϕs. Thus, the rates of synthesis of TNF-α mRNA and IL-10 have 

opposing effects on controlling bacterial load and on preventing tissue damage in the 

host. Using moderate synthesis rates for TNF-α and IL-10 (as reflected in our baseline 

containment parameter set) results in bacterial containment with limited host-mediated 

tissue damage in a granuloma. 

 

3.3.5 Signaling Parameters Establish the Best Response to TNF-α and IL-10 

Concentrations that Regulates Apoptosis and Activation of Macrophages 

Next we explore the effects of parameters in the signaling group on granuloma 

formation and function to understand how signaling parameters control the response to 

concentrations of TNF-α and IL-10 in a granuloma environment (Figure 3.5). Sensitivity 

analysis (Table 3.1) reveals that the internalization rate constants of bound TNFR1 and 

bound IL10R1 and the average densities of TNFR1 and IL-10R1 on Mϕ are significantly 

correlated with total bacterial load and average tissue concentrations of TNF-α and IL-10 

(see also Table A.6 in Appendix A and Table A.8 in Appendix A). Hence, we analyze the 

effects of changing two signaling parameters, for both TNF-α and IL-10, on average total 

bacterial load, number of activated Mϕs, and apoptosis of resting Mϕs. 

Figure 3.6B shows simulation results for manipulations of TNFR1 density and IL-

10R density on the surface of Mϕs (see also Table A.6 in Appendix A). Low TNFR1 
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densities lead to increased bacterial loads, lower levels of activated Mϕs and less 

apoptosis of resting Mϕs by preventing Mϕs from responding to the concentration of 

TNF-α in a granuloma environment. The benefit in reducing TNF-α induced apoptosis is 

outweighed by the decrease in TNF-α induced NFκB activation. High TNFR1 densities 

lead to bacterial clearance with limited activated Mϕs and low apoptosis of resting Mϕs. 

Increased TNFR1 density promotes the ability of infected Mϕs to respond to the 

concentration of TNF-α, which leads to early activation and apoptosis of infected cells 

and encourages bacterial clearance. We observe lower total bacterial numbers with higher 

levels of activated Mϕs and increased apoptosis of resting Mϕs at low IL-10R densities, 

resulting from the decreased response of immune cells to IL-10 concentrations. The 

reduced response decreases the likelihood of initiating the IL-10 inhibition cascade and 

limits TNF-α production and its induced processes. High IL-10R densities promote 

inhibitory signaling, leading to an increased bacterial load with less activated Mϕs and 

limited apoptosis of resting Mϕs. 

Next, we manipulate the internalization rate constants of bound TNFR1 and 

bound IL-10R (Figure 3.6C, see also Table A.8 in Appendix A). Low internalization rates 

of bound TNFR1 cause bacterial clearance with no apoptosis of resting Mϕs, but with 

uncontrolled numbers of activated Mϕs since low internalization rates favor NFκB 

induction over apoptosis as the response to TNF-α concentrations (67, 78). High 

internalization rates of bound TNFR1 have limited effects on total bacterial load and 

apoptosis of resting Mϕs with only a slight decrease in number of activated Mϕs. 

Lowering the internalization rate of bound IL10R leads to an increased bacterial load, 

decreased apoptosis of resting Mϕs, and no change in activated Mϕs, while increasing the 
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internalization rate only increases apoptosis of resting Mϕs with no changes in total 

bacterial load or activated Mϕs. These results suggest that the internalization rate of 

bound IL-10R is preventing apoptosis of resting Mϕs at the cost of bacteria load. Taken 

together, these results suggest that the parameters in the signaling group are establishing 

the most beneficial response to the concentrations of TNF-α and IL-10, which is critical 

to the control of the immune response occurring in a granuloma. 

 

3.3.6 TNF-α and IL-10 Spatial Parameters Focus Bactericidal Processes in Infected 

Regions of Granulomas and Limit Healthy Tissue Damage in Non-Infected Regions 

Lastly, we explore the effects of parameters in the spatial group on granuloma 

formation and function (Figure 3.5). Sensitivity analysis (Table 3.1) demonstrates that 

diffusivity of TNF-α and degradation rates of TNF-α and IL-10 correlate with average 

tissue concentrations of TNF-α and IL-10 and total bacteria load (see also Table A.11 in 

Appendix A and S12 in Appendix A). These results highlight that the spatial distributions 

of TNF-α and IL-10 are important for granuloma function. To probe the role of the 

spatial distribution of cytokines, we simultaneously manipulate the diffusivity (D) and 

degradation rate (kdeg) of TNF-α or IL-10 in order to extend or contract the spatial range 

(L) of each molecule, as estimated by (109) (see also Figure A.3 in Appendix A): 

L = D
kdeg

                                                                                                        (Eqn. 3.8) 

Figure 3.6D shows the effects of altering the spatial range of TNF-α and IL-10 on 

average total bacterial load, number of activated Mϕs, and apoptosis of resting Mϕs (see 

also Table A.7 in Appendix A). 
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Reduced TNF-α spatial ranges lead to an increased total bacterial load with a 

decrease in activated Mϕs and limited apoptosis of resting Mϕs. Increased TNF-α spatial 

ranges cause no change in total bacterial load, small changes in activated Mϕs and 

significant increases in apoptosis of resting Mϕs. These results suggest that if the spatial 

range of TNF-α is large, the response of resting Mϕs in the periphery of granulomas 

shifts from NFκB activation to apoptosis. Similarly, if the spatial range of TNF-α is 

insufficient, apoptosis of infected Mϕ in the core of the granuloma is limited. Reduced 

IL-10 spatial ranges result in a decreased total bacterial load with a slight increase in 

activated Mϕs and a significant increase in apoptosis of resting Mϕs. Increased IL-10 

spatial ranges result in an increased total bacterial load with a decrease in activated Mϕs 

and a decrease in apoptosis of resting Mϕs. In contrast to the situation for TNF-α, these 

results suggest that a large spatial range of IL-10 inhibits apoptosis of resting Mϕs in 

peripheral granuloma regions, but at the cost of limited Mϕ activation. Yet, too small of 

an IL-10 spatial range cannot control TNF-α induced processes in the entire granuloma 

environment. Overall, our simulations demonstrate that spatial distributions of 

concentrations of TNF-α and IL-10 during Mtb infection are essential to maintaining 

effective levels of inflammation within regions containing bacteria, but limiting 

inflammatory processes in the outer regions of the granuloma that contain few, if any, 

bacteria. 
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Figure 3.7 Altering the ratio of [TNF-α]/[IL-10] in a granuloma environment 
Simulation results at 200 days post-infection showing the effects of altering the ratio of average tissue 
concentrations of TNF-α to IL-10 in the granuloma environment ([TNF-α]/[IL-10]). A total of 296 
simulations (4 replications) were performed yielding various values of [TNF-α]/[IL-10]. Comparison of the 
ratio of concentrations of TNF-α to IL-10 with: A. B. C. Total bacterial load, number of activated Mϕ, and 
number of apoptotic resting Mϕ as a function of [TNF-α]/[IL-10]. D. Host-Pathogen Index (H.P.I), a metric 
that combines the three previous measures as a function of [TNF-α]/[IL-10]. The green star is the average 
simulation result for the baseline containment parameter set. E-G. Representative granuloma snapshots at 
200 days post-infection for each of the regions (1, 2, and 3) defined in Figure 3.7D. For full length time-
lapse simulations please see http://malthus.med.micro.umich.edu/lab/movies/TNF-IL10. 
 



 111 

3.3.7 A Balance of TNF-α and IL-10 Concentrations Promotes an Environment That 

Contains Bacterial Growth with Minimal Tissue Damage 

We have shown that three parameter groups are critical to controlling the average 

tissue concentrations of TNF-α and IL-10 and the subsequent responses necessary for 

granuloma function. Is there a balance of TNF-α and IL-10 concentrations that promotes 

strong immune cell activation, control of Mtb infection, and minimal host-induced tissue 

damage? To answer this question, we modulate concentrations of TNF-α and IL-10 

available in a granuloma by simultaneously varying the synthesis of TNF-α mRNA by 

Mϕs and the synthesis of IL-10 by activated Mϕs. Each combination of parameters yields 

ratios of average tissue concentrations ([TNF-α]/[IL-10]), which we plot against 

representative model outputs of total bacterial load, number of activated Mϕs, and 

apoptosis of resting Mϕs at 200 days post-infection (Figure 3.7A-C).  

When [TNF-α]/[IL-10] is less than ~0.2 the immune response to Mtb in a 

granuloma is dulled, with low levels of activated Mϕs and increased total bacterial loads, 

but with low apoptosis of resting Mϕs. These granulomas are unable to contain the 

growth of Mtb and generally show larger lesion sizes and higher levels of Bext (Figure 

3.7E). Conversely, when [TNF-α]/[IL-10] is greater than ~1.0, the immune response to 

Mtb infection in a granuloma is hyper-inflammatory, with high levels of apoptosis of 

resting Mϕs, high levels of activated Mϕs, and a low total bacterial load. This response 

causes significant tissue damage, while at the same time reducing bacterial loads and 

promoting clearance of bacteria. Granulomas that do achieve clearance of Mtb continue 

to activate Mϕs, recruit T cells, and cause healthy cell death well beyond the removal of 

the pathogen, due to the lack of anti-inflammatory mediators (Figure 3.7G). When [TNF-
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α]/[IL-10] is between ~0.2 and ~1.0 simulations indicate that the granuloma response is 

balanced, with intermediate values of total bacterial load, low apoptosis of resting Mϕs 

and sufficient numbers of activated Mϕs (Figure 3.7F). 

We calculate the H.P.I (defined in Materials and Methods) to provide a measure 

of overall granuloma function at different values of [TNF-α]/[IL-10] (Figure 3.7D). We 

devised this metric to incorporate the three measures just examined above - total bacterial 

load, apoptosis of resting Mϕs (tissue damage), and activated Mϕs (immune cell 

activation levels). Three general behaviors occur, and are indicated by regions 1, 2, and 3 

in Figure 3.7D. Region 1, where the granuloma environment is dominated by IL-10, 

includes granulomas that display uncontrolled growth of Mtb, little to no Mϕ activation 

and no apoptosis of resting Mϕs (Figure 3.7E). In this region, the H.P.I is between ~0.30 

– 1.0. Region 2, where the granuloma environment is slightly IL-10 biased, includes 

granulomas that contain growth of Mtb with suitable levels of Mϕ activation, low levels 

of apoptosis of resting Mϕs, and a calculated H.P.I between ~0.1 – 0.30 (Figure 3.7F). 

Region 3, with the TNF-α concentration dominating the granuloma environment, 

includes granulomas that contain or clear Mtb with uncontrolled Mϕ activation, high 

levels of apoptosis of resting Mϕs, and a calculated H.P.I. falling between ~0.3 – 0.6 

(Figure 3.7G). We see similar results for the balance of TNF-α and IL-10 in a granuloma 

at all time points beyond ~75 days post-infection (data not shown). Our results 

demonstrate that a balance of concentrations of TNF-α and IL-10 promotes pathogen 

control while simultaneously preventing severe host tissue damage in a stable granuloma. 
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3.4 Discussion 

Granulomas are dynamic microenvironments consisting of an array of immune 

cells and cytokines. The time scale of persistent infection (typically years) coupled with 

the complexity of this environment, all contained within host lung tissue, limits 

experimental approaches to decipher many features of granulomas. To understand the 

opposing roles and impacts of TNF-α and IL-10 in granuloma formation and function 

across multiple spatial and temporal scales we use a systems biology approach. We 

extend our previous multi-scale hybrid agent-based model of Mtb infection by integrating 

TNF-α and IL-10 single-cell level receptor-ligand dynamics. We use our model to predict 

the impact of these dynamics on the longer-term and larger-scale cellular and tissue 

immune responses to Mtb.  

We show that IL-10 is necessary to control activation levels and to prevent tissue 

damage in a granuloma. Simulations also predict that three groups of TNF-α and IL-10 

parameters, representing processes relevant to cytokine synthesis, signaling, and spatial 

distribution, control concentrations of TNF-α and IL-10 in a granuloma environment and 

eventually determine infection outcome, at the tissue scale, over the long-term (Figure 

3.5). We demonstrate that each parameter group is balancing a trade-off between host-

induced tissue damage and bactericidal processes through various TNF-α and IL-10 

mechanisms.  

Spatial localization of TNF-α and IL-10 is important in focusing bactericidal and 

inflammatory activities in a granuloma (Figure 3.6D and Figure A.3 in Appendix A). In 

the core of the granuloma (where infected cells reside) bactericidal and inflammatory 

processes are necessary, while in the peripheral regions of the granuloma (where non-
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infected cells reside) cell death must be prevented through regulatory mechanisms. A 

balance of resting and infected Mϕ activation with restricted apoptosis of uninfected Mϕs 

is needed to contain bacterial growth with limited tissue damage. Both experimental and 

computational evidence point to the ability of immune cells to respond to different 

concentrations (across orders of magnitude) of TNF-α, via either NFκB activation or 

caspase-induced apoptosis, and IL-10, via anti-inflammatory or developmental 

transcription factors (13, 69, 80, 110). Together with earlier studies on granuloma 

formation, this suggests the spatial organization of immune cells within a granuloma, 

where infected Mϕs and Mtb reside in the center of the structure, is ideal for optimal 

control of bacteria (9, 80, 111). 

We demonstrate for the first time that a balance of TNF-α and IL-10 

concentrations is essential to mediate between Mtb infection control and prevention of 

host-induced tissue damage (Figure 3.7). Our results predict that granulomas with biased 

anti-inflammatory environments, having higher average concentrations of IL-10 than 

TNF-α, promote containment of bacteria and prevention of host tissue damage instead of 

bacterial clearance with high levels of healthy tissue damage. Shaler et al. (53) found that 

granuloma cells adopted a selectively suppressive phenotype when compared to airway 

lumen cells and proposed that granulomas may be immunosuppressive in nature. In 

contrast with the classical idea that granulomas function to wall off bacteria from its 

surroundings, granulomas may instead function as a niche that allows the survival of 

bacteria (11, 53). What is still not understood is whether the nature of the granuloma 

environment arises due to the host-response or due to an immune-evasive mechanism of 

Mtb in order to support bacterial persistence, since hyper-virulent strains of Mtb can 
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induce increased IL-10 production from macrophages (112). A biased anti-inflammatory 

granuloma environment may have evolved over many generations from continued 

evolution of the host immune response and Mtb (20, 22). During long-term containment, 

bacterial growth is restricted but are able persist in the host almost indefinitely, while the 

host shows no adverse signs of infection with limited host tissue damage. Thus, an anti-

inflammatory biased granuloma that promotes containment may be the best outcome for 

both the host and the bacteria once infection has persisted past the initial stages of the 

immune response. The balance of TNF-α and IL-10 concentrations in a granuloma 

presents a possible new avenue for treatment strategies. Granulomas that are ‘out of 

balance’ may need addition of antibodies or exogenous cytokines in order to shift from 

poorer outcomes and towards containment outcomes. 

The simulations analyzed here focused on relatively mature granulomas. 

Strategies to treat early developing and less mature granulomas may differ, although the 

likelihood of detection and of infection at such an early stage (within weeks of infection) 

in a clinical setting is small. Anti-IL-10 and anti-IL-10R antibodies used in-vivo in the 

context of Mtb infection can result in increased bacterial control (22, 54). Conversely, 

transgenic mice that overexpress IL-10 are more susceptible to Mtb infection and have an 

increased chance of reactivation (55). However, since containment of bacteria appears to 

be an optimal outcome for both the host and the pathogen, it is still unclear how to treat 

these granulomas. We also note that there are other cytokines and immune cells, for 

example TGF-β and neutrophils, that may influence the immune response to Mtb (4). 

Future studies could incorporate the dynamics of additional cytokines and immune cell 
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types into an ABM to determine the effects of this complex milieu of cytokines 

interacting during Mtb infection.  

Our modeling approach in this Chapter represents a critical step towards fully 

understanding the roles of TNF-α and IL-10 and their effects on long-term Mtb infection 

outcome. In addition, the hybrid agent-based model platform we developed will allow us 

to rapidly explore new treatment strategies (such as immunomodulation) to affect the 

immune response to Mtb, narrowing the large design space for future experiments. 
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Chapter 4 
 

Macrophage Polarization Drives Granuloma Outcome During Mycobacterium 

tuberculosis Infection

 
The work in Chapter 4 has been submitted as part of: Marino, S., Cilfone, N.A., Mattila, 

J.T., Linderman, J.J., Flynn, J.L., Kirschner, D.E. Macrophage polarization drives 

granuloma outcome during Mycobacterium tuberculosis infection. (2014). 

 

4.1 Introduction 

Macrophages are the initial site of Mycobacterium tuberculosis infection 

following inhalation of the bacterium and continue to harbor the pathogen in the 

intracellular space during the chronic state of Mtb infection (1). In response to 

inflammatory molecules (both cytokines and chemokines), a significant number of 

monocytes migrate from the bloodstream to the site of infection (1). Therefore, the 

majority of immune cells found in granulomas, the organized cluster of cells that forms in 

response to Mtb infection, are macrophages. In granulomas, macrophages function to 

control inflammation, contribute to antimicrobial processes, and harbor the pathogen (1–

3). 

Recent work has demonstrated that macrophage differentiation and activation in 

response to different stimuli represents a spectrum of activation, similar to T cells, rather 

than a single state of activation (4–8). At the extremes of the spectrum, macrophages are 
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classified into two different populations, known as polarization states (Figure 4.1). M1 

(or classically activated) macrophages display a pro-inflammatory phenotype, expressing 

high levels of pro-inflammatory cytokines (e.g. TNF), high production of reactive 

nitrogen and oxygen species, and strong antimicrobial capabilities (Figure 4.1) (6, 9, 10). 

M2 (or alternatively activated) macrophages display an anti-inflammatory phenotype, 

expressing high levels of anti-inflammatory cytokines (e.g. IL-10), promoting wound 

healing and tissue remodeling, and demonstrating reduced bactericidal action (Figure 4.1) 

(8, 11, 12). In granulomas, macrophages are exposed to multiple different polarizing 

stimuli leading to a spectrum of polarization between the M1 and M2 extremes. More 

M1-like macrophages are thought to be associated with early antimicrobial responses, 

while more M2-like macrophages are thought to control late stage inflammation to 

prevent excess tissue damage and promote granuloma healing (1). 

Stimulation of macrophages with TNF and IFN-γ leads to induction of NFκB and 

STAT1 signaling pathways, causing macrophages to polarize towards an M1 phenotype 

(Figure 4.1) (6, 7). Conversely, stimulation of macrophages with IL-10, along with other 

cytokines, induces STAT3 signaling, which polarizes macrophages towards an M2 

phenotype (Figure 4.1) (6, 8). Using the model constructed in Chapter 3 as a framework, 

we extend the descriptions of TNF-α, IL-10, and IFN-γ action in this Chapter to include 

simple models of downstream signaling pathways (NFκB, STAT3, and STAT1 

respectively) that influence macrophage polarization (Figure 4.1B). We define a 

macrophage polarization ratio to translate how combinations of cytokine signals 

influence the plasticity of macrophages in a granuloma, which in turn modulates 

macrophage functions including anti-microbial activity and cytokine production (Figure 
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4.1A). Next, we define a granuloma polarization ratio by averaging individual 

macrophage polarization ratios in a granuloma, thus defining a metric of polarization at a 

tissue scale. Using these metrics we predict how cytokines influence the spectrum of 

macrophage polarization in granulomas over the course of infection, spatially organize, 

and eventually determine infection outcome. 

 

Figure 4.1 Schematic representation of macrophage polarization and gene expression dynamics 
captured in the ABM 
(A) Macrophage signaling pathways used to capture M1 (pro-inflammatory) and M2 (anti-inflammatory) 
cues. Each signal is quantified and used to calculate a ratio that is then used to modulate several immune 
functions of the macrophage (chemokine and cytokine [TNF, IL10] synthesis, bacterial killing). The 
modulation of macrophage function is implemented as a linear interpolation of the log of the macrophage 
polarization ratio (the value of the ratio is normalized and multiplied by the parameter value regulating the 
correspondent immune function). (B-D) Models of signaling pathways used for STAT1, STAT3, and 
NFκB. For each pathway there is a nuclear species (subscript N) and a response species (subscript R). The 
details are given in the Materials and Methods section. (E) Different gene transcription dynamic regimes 
(fast-green, intermediate-blue and slow-red) can be recapitulated in the signaling pathway models by 
varying signal degradation time (or length, δ) and response/signal strength (β) of the response. 
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4.2 Materials and Methods 

4.2.1 Multi-Scale Agent-Based Model 

In Chapter 3 we described a model of granuloma formation and function during 

Mtb infection where immunological processes were captured over three different 

biological scales: molecular, cellular, and tissue scales (13). Briefly, an agent-based 

model represents the cellular scale by modeling macrophages and T cells as distinct 

agents within the simulation environment (14, 15). Sub-models inside each individual 

agent capture molecular scale events by describing receptor-ligand dynamics of IL-10 

and TNF using ordinary differential equations models (ODEs) (13, 16). Diffusion and 

degradation of IL-10 and TNF in lung tissue and the granuloma are calculated using 

partial differential equation models (PDEs) (details can be found in Chapters 2 and 3) 

(13, 16–19). In this Chapter, TNF, IFN-γ and IL-10 drive macrophage polarization and 

modulate macrophage immune functions, such as cytokine synthesis and bactericidal 

activity. 

The two-dimensional model environment represents a 4 mm2 section of lung 

tissue, discretized into 100x100 micro-compartments of size 20 µm2. The lattice is 

initialized with macrophages and vascular sources for recruitment of cells to the site of 

infection. Recruitment of cells into the simulation environment is based on the 

recruitment algorithms described in Chapter 3 (13–16). We initiate infection by placing a 

macrophage in the middle of the simulation lattice and infecting it with a single 

intracellular Mtb (20, 21). We simulate 200 days post-infection, with agent rules and 

interactions solved on a 10 min time step, while STAT1, STAT3, and NFκB dynamics 

are updated every 6 seconds. Full model details including agent rules, soluble molecule 
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diffusion and degradation, and TNF and IL-10 receptor-ligand dynamics can be found in 

Chapter 3 (13–16). 

Bacterial growth rates of Mtb are heterogeneous, and thus simulated bacterial 

growth rates are assigned from a distribution of extra- and intra-cellular doubling times 

measured in experimental systems (21). Extracellular Mtb growth rates are sampled from 

a uniform distribution (defined by minimum and maximum values inferred from data, see 

Table 4.1) at the beginning of the simulation and assigned to each of the 100x100 micro-

compartments. Intracellular growth rates are chosen from a uniform distribution upon 

infection of a resting macrophage with Mtb. Ranges for intracellular and extracellular 

bacterial growth rates are shown in Table 4.1, together with other parameters used in the 

model. 

Table 4.1 Macrophage Polarization Related Model Parameters 
Parameter Parameter Description Value(s) Reference(s) 
τNFκB (#/cell) Cell surface sTNF/TNFR1 threshold for TNF-induced NFκB activation 40-60 (13, 16) 
kNFκB ((#/cell)-1s-1) Rate constant for TNF-induced NFκB activation in macrophages 5×10-6-1×10-5 (13, 16) 
τSTAT3-IL10 (#/cell) Cell surface sIL10/IL10R threshold for IL10-induced STAT3 10-20 Estimated 
kNFκBSTAT3IL10 ((#/cell)-1s-1) Rate constant for IL10-induced STAT3 activation in macrophages 7.5×10-4-1.6×10-3 Estimated 
SynthIL10-MI  (#/cell.s) Full synthesis rate of soluble IL10 by Mi 0.06-0.22 (22, 23) 
SynthIL10-MA (#/cell.s) Full synthesis rate of soluble IL10 by Ma 0.04-0.65 (22, 23) 
aIntMtb (days) Doubling time for intracellular Mtb 1-2 (21) 
aExtMtb (days) Doubling time for extracellular Mtb 2-5 (21) 
probKillExtMtbM0 Probability of M0 killing extracellular bacteria 0.05-0.25 Estimated 
probKillExtMtb Probability of non-M0 killing extracellular bacteria 0.75-1 Estimated 
probKillIntMtb Probability of non-M0 killing intracellular bacteria 1×10-3-1.0 Estimated 
bSTAT1 (min-1) Rate of signal activation strength of STAT1 1-25 (24, 25) 
bSTAT3 (min-1) Rate of signal activation strength of STAT3 1-25 (26–29) 
bNFκB (min-1) Rate of signal activation strength of NFκB  1-25 (18, 30) 
dSTAT1 (min-1) Rate of signal activation “inhibition” of STAT1 1×10-4-1×10-1 (24, 25) 
dSTAT3 (min-1) Rate of signal activation “inhibition” of STAT3 1×10-4-1×10-1 (26–29) 
dNFκB (min-1) Rate of signal activation “inhibition” of NFκB 1×10-4-1×10-1 (18, 30) 
tAgeTransition Normalized macrophage polarization ratio threshold for transitioning to a shorter lifespan  0.7-0.9 Estimated 
timeRecEnabled (days) Days when effector T cells recruitment is enabled 20-30 Estimated 
probStat1Tg Probability of macrophage STAT1 activation induced by IFNg-producing T cells 1×10-3-1×10-1 Estimated 

 

4.2.2 Models of STAT1, STAT3, and NFκB Dynamics 

To study the influence of cytokines on macrophage activation and polarization, 

we modified our existing multi-scale model to account for the intracellular signaling 

pathways mediated by STAT1, STAT3, and NFκB. We describe STAT1, STAT3 and 
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NFκB signal pathways when macrophages are stimulated with IFNγ, IL-10, and TNF, 

respectively. We utilize simplified versions of recently published models for STAT1, 

STAT3, and NFκB pathways (18, 24–26, 30). 

We use two representative intracellular species for each signaling pathway: a 

phosphorylated nuclear species (denoted with N) and a response species (denoted with R) 

(Figure 4.1B-D). The phosphorylated nuclear species (STAT1N, STAT3N, and NFκBN) 

represent the phosphorylated forms of STAT1, STAT3 and NFκB that exist in the 

nucleus following ligand stimulation. These nuclear phosphorylated species lead to 

downstream signaling (including transcription factors and mRNA) where they are 

referred to as the response species (STAT1R, STAT3R, and NFκBR) (18, 24–26, 30). In 

this context, inhibition of signal activation for the response species represents the 

combined deactivation of these signal transducers in the nucleus, events mediated by de-

phosphorylation (STAT1 and STAT3) and coupling with inhibitory subunits (NFκB), and 

degradation of signaling molecules by proteolytic processes (18, 24–26, 30). The 

phosphorylated nuclear species have a maximum level (defined by STAT1MaxLevel, 

STAT3MaxLevel, NFκBMaxLevel) to capture saturation of ligand-induced stimulation. The 

included cytokines and signaling pathways are not the only mediators of macrophage 

polarization. We note that molecules such as IFNα/β (STAT1), IL-6 (STAT3), and TLR4, 

T cell-, B cell-, or IL-1 receptor can also contribute to the spectrum of macrophage 

activation. However, more work is needed to identify their influences on macrophage 

polarization in the granuloma (8, 11).  

Although the intracellular pathways are simplified representations of signaling, 

the models are able to recapitulate three expression regimes observed in many signaling 
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pathways – fast expression, intermediate expression, and stable expression (31, 32). This 

is possible by altering two model parameters for each pathway (see Figure 4.1E), the 

signal activation interval (δ) and the signal strength (β). The signal activation interval for 

each pathway represents the length of time the signal is turned on. This interval is 

controlled by a degradation rate of the response species in the simplified signaling model 

(see Figures 4.1B-D). 

These simplified signaling pathways are linked to the existing multi-scale model, 

described in Chapter 3, trough the molecular species IL-10, TNF and INF-γ. The 

molecular scale models of IL-10 and TNF, described in Chapter 3, are linked to the 

models of STAT3 and NFκB respectively via binding of the soluble molecule to its 

corresponding cell-associated receptor (see Figure 4.1) (13, 16). STAT1 is linked to IFN-

γ simulation of macrophages. T cells secrete IFN-γ and its impact is restricted locally at 

the immunological synapse, thus it is not necessary to explicitly model IFN-γ dynamics at 

the receptor scale (as we do for IL-10 and TNF) (33). Thus, in the model T cells produce 

IFN-γ as a proxy for activating STAT1N in neighboring macrophages with a given 

probability (PSTAT1). 

We use Poisson processes to describe the probability (PSTAT3 and PNFκB) of ligand-

induced activation of STAT3N and NFκBN based on rate parameters (kSTAT3 or kNFκB), 

threshold values (τSTAT3 or τNFκB), and respective concentrations of IL-10 bound to IL- 

10R and TNF bound to TNFR1 (13, 16, 18): 

PSTAT 3 = 1− e−kSTAT 3 IL10⋅IL10R#$ %&−τ STAT 3Δt( )

0

(
)
*

+*

,
-
*

.*

IL10 ⋅ IL10R#$ %&≥ τ STAT 3

IL10 ⋅ IL10R#$ %&< τ STAT 3

                           

(Eqn. 4.1)
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PNFκB = 1− e−kNFκB TNF⋅TNFR1#$ %&−τ NFκBΔt( )

0

(
)
*

+*

,
-
*

.*

TNF ⋅TNFR1#$ %&≥ τ NFκB

TNF ⋅TNFR1#$ %&< τ NFκB
                            (Eqn. 4.2) 

4.2.3 Macrophage Polarization States 

In Chapter 3 we modeled macrophage states as resting, activated, infected and 

chronically infected (13, 14, 16). In order to explore macrophage polarization, we 

introduce new macrophage states: M0, M1, M2, and M1M2. M0 macrophages represent the 

initial resident alveolar macrophages and any un-polarized/non-activated macrophages. 

M0 macrophages have no capabilities to secrete cytokines or chemokines, and perform 

limited bactericidal functions (similar to the resting macrophage state in Chapter 3). The 

states M1, M2, and M1M2 can all be considered subtypes of the activated macrophage 

state in Chapter 3. Macrophages characterized as M1 have been polarized via stimulation 

of STAT1, NFκB, or both. Macrophages characterized as M2 have been polarized via 

stimulation of STAT3. M1M2 macrophages capture the spectrum of macrophage 

polarization between the M1 and M2 extremes, wherein these macrophages have been 

stimulated with a combination of STAT1, NFκB, and STAT3 (6, 8). 

 

4.2.4 Macrophage (RMP) and Granuloma (RGP) Polarization Ratios 

To determine the polarization of a macrophage towards a pro-inflammatory (i.e. 

(M1) or anti- inflammatory (i.e., M2) phenotype, we define a macrophage polarization 

ratio (RMP) (see Figure 4.1A-B). RMP is a dynamic ratio comparing the amount of pro-

inflammatory signals (STAT1R and NFκBR) received to the amount of anti-inflammatory 

signals received (STAT3R) on an individual macrophage basis: 
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RMP =
STAT1R + NFκBR

2*STAT3R
                                                                                (Eqn.4.3)

 

We normalize the log of RMP between the minimum and maximum values of 

STAT1R, STAT3R, and NFκBR dictated by the intracellular signaling model parameters. 

Thus, macrophages that have a high value of RMP are polarized towards the M1 

phenotype, while macrophages with a low value of RMP are polarized towards the M2 

phenotype. We use a threshold of 1 for RMP as a theoretical value to label a macrophage 

as either M1 (RMP>1) or M2 (RMP<1). 

In order to use RMP (a cell scale measure) at a tissue scale (i.e., granuloma level), 

we collect macrophage polarization ratios for all macrophages within a single granuloma 

and average them. We call this composite average the granuloma polarization ratio (RGP), 

and use it as a metric at the granuloma scale. To make the average consistent across 

different granuloma simulations, we only account for macrophages within a typical lesion 

size (~1.5 mm diameter) and exclude from the average all the M0 (un-polarized/un-

activated) macrophages. 

 

4.2.5 Linking Immune Function with Macrophage Polarization using RMP 

We use the macrophage polarization ratio, RMP, to link multiple immune functions 

(secretion of chemokines, secretion of two cytokines, and bactericidal ability) directly to 

macrophage polarization values (Figure 4.1A). At the extremes of polarization, M1 

macrophages secrete high levels of TNF and chemokines (CCL2, CCL5, and 

CXCL9/10/11), and very low levels of IL-10, while M2 macrophages secrete high levels 

of IL-10 and low levels of both TNF and chemokines (1, 6). Considering that a broad 

spectrum of macrophage polarization exists in vivo, we capture this by modeling 
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secretion of TNF, IL-10, and chemokines as linear functions of the log of RMP (see Figure 

4.1A, bottom). M1 macrophages express high levels of iNOS and low levels of arginase 

(Arg), while M2 macrophages express high levels of Arg and low levels of iNOS (1, 34). 

Both of these species compete for arginine as a substrate, which in the case of iNOS is 

used to produce antimicrobial RNI species and in the case of arginase, to convert arginase 

to urea and L-ornithine, an upstream precursor of collagen (35, 36). Macrophages can 

simultaneously express iNOS and Arg enzymes, suggesting that macrophage bactericidal 

characteristics are a consequence of enzyme abundance in that cell, not simply enzyme 

presence or absence (34, 35). Thus, we model macrophage bactericidal capabilities, 

condensing the iNOS and Arg pathways into a single response, as linear function of the 

log of RMP (see Figure 4.1A). 

 

4.2.6 Model Validation and Uncertainty and Sensitivity Analysis 

Model parameter values are derived from Chapter 3, while parameters related to 

macrophage polarization and intracellular signaling pathways are given in Table 4.1 (13, 

14, 16). We used semi-quantitative studies from the literature on STAT1 (24, 25), STAT3 

(26–29) and NFκB (18, 30) to specify ranges for parameters related to the macrophage 

polarization ratio introduced in this Chapter (see Table 4.1 for details). Additionally, we 

rely on uncertainty and sensitivity analyses techniques as discussed in Chapter 3. These 

techniques can be used to efficiently explore the parameter space to inform baseline 

behaviors of the system (uncertainty analysis - UA), as well as to quantify how parameter 

uncertainty impacts model outcomes. This allows for efficient identification of critical 
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model parameters that drive model behavior (101). Details of the parameters varied in our 

sensitivity analysis are shown in Table 4.1.  

Uncertainty analysis is also used to generate a spectrum of granulomas related to 

bacterial numbers (colony forming units, CFU) per granuloma over time (9, 102). The in 

silico granulomas are obtained without any bias in signal activation interval (δ) and signal 

strengths (β) towards any of the three pathways (STAT1, STAT3, and NFκB) (Figure 

4.1E). The same parameter ranges were used to describe all three of the intracellular 

signaling pathways: signal activation interval parameters δ (e.g., [0.0001,0.1] min-1, see 

Table 4.1), signal strength parameters β (e.g., [1, 25] min-1, see Table 4.1). These ranges 

allow us to recapitulate the three typical expression regimes shown in Figure 4.1E (i.e., 

fast, intermediate, and sustained expression), as observed in many signaling pathway 

systems (84, 90). We used a standard t-test to compare the impact of the three different 

pathways (i.e., STAT1, STAT3 and NFκB) on granuloma development and maintenance. 

 

4.2.7 Simulated Granuloma Classification 

Recent NHP data demonstrated that the median bacterial levels at 4 weeks post-

infection in individual granulomas was ~104 CFU, with a large variability (between 102 

to 106 CFU per lesion) (21, 37). Beyond 4 weeks post-infection the bacterial loads 

decline to levels below ~104 CFU in both active and latent classifications of NHPs (21, 

37). As our in silico model tracks infection a single granuloma level, we use total 

bacterial load  (CFU) to classify infection outcome at the single granuloma level. 

Simulated granulomas classified as containment have bacterial loads below ~104 CFU at 
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200 days post-infection, while simulated granulomas that have bacterial loads above ~104 

CFU at 200 days post-infection are classified as disseminating. 

 

4.3 Results 

The model described in this chapter has been submitted as part of the manuscript: 

Marino, S., Cilfone, N.A., Mattila, J.T., Linderman, J.J., Flynn, J.L., Kirschner, D.E. 

Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis 

infection. (2014). Outlined below are two of the important predictions and conclusions 

derived from the model described and constructed in this Chapter. 

 

4.3.1 Granuloma Polarization Ratio Dynamics are Predictive of Granuloma Outcome 

To understand how the spectrum of macrophage polarization influences 

granuloma outcome, we explored granuloma polarization ratios (RGP) in granulomas 

classified as containment or dissemination (described in Materials and Methods). Figure 

4.2 shows the mean RGP of granulomas classified as containment or dissemination. There 

are no significant differences in RGP in classified granulomas until day 60 post-infection. 

In granulomas classified as containment, RGP increases towards more M1-polarized 

macrophages at days 70-80 post-infection. After 170 days post-infection, the granulomas 

classified as containment have a reduced RGP demonstrate polarization back towards a 

more M2-like phenotype. Therefore, early macrophage polarization (~2 months post-

infection) towards a more M1-like phenotype is necessary to control bacterial loads in 

granulomas. In addition, the granulomas that are able to contain bacterial loads have 
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more M2-like polarized macrophages at late stages of infection (~8 months post-

infection) indicating reduced inflammation and possibly a resolving/healing granuloma. 

 

Figure 4.2 Granuloma Polarization Ratio dynamics over time for both contained and disseminated 
granulomas 
The x-axis represents days post infection. The y-axis represents average Granuloma Polarization Ratio 
(RGP) time courses for granulomas classified as containment or dissemination. Error bars are not shown for 
ease of illustration. The time points between day 70 and 130, as well as after day 170 show strong 
statistically significant differences between the two trajectories (* p<1e-2, ** p<1e-3, *** p<1e-4). 
Contained granulomas, N=377. Disseminated granulomas, N=1119. 
 

4.3.2 NFκB Signal Activation Dynamics Characterize Granuloma Outcome 

To understand why early polarization towards an M1-like phenotype is critical for 

control of bacterial loads in granulomas, we explored differences in intracellular 

signaling dynamics of STAT1, STAT3, and NFκB. We compared signal activation 

intervals (δSTAT1, δSTAT3, δNFκB) and signal activation strengths (βSTAT1, βSTAT3, βNFκB) 

between granuloma classifications (containment vs. dissemination). Shorter activation 

intervals indicate reduced periods of signal activation (e.g. reduced time the signal is 

turned on), which are regulated by proteolytic degradation or inhibition of the response 

species in the simplified signaling models (see Figure 4.1B-D). Higher signal activation 

strengths indicate increased number of activated molecules per stimulation event. 
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The model predicts that simulated granulomas with reduced NFκB activation 

intervals control granulomas more efficiently than granulomas with longer activation 

intervals (Figure 4.3Α, p-value ~1e-8). In addition, simulated granulomas classified as 

containment have significantly shorter NFκB signal activation intervals than both STAT1 

(δNFκB >> δSTAT1, p~7e-6) and STAT3 signal activation intervals (δNFκB >> δSTAT3, 

p~0.0115). Conversely, simulated granulomas classified as disseminating have 

significantly shorter STAT1 (δNFκB << δSTAT1, p~0.0018) and STAT3 (δSTAT3>δNFκΒ, 

p~0.05) activation intervals. Taken together, these model predictions indicate the 

importance of NFκB signaling in controlling macrophage polarization and eventually 

infection outcome at the individual granuloma level. Disrupting tightly regulated signal 

activation intervals can interfere with intracellular dynamics and inhibit protective 

responses (31, 32, 38, 39). 

 

Figure 4.3 Gene transcription dynamics comparisons between and within granuloma outcomes 
(A) Comparison of NFκB signal activation intervals between containment and dissemination classified 
granulomas. NFκB signal activation interval is shorter (less stable) in containment compared to 
dissemination (p<1e-8). (B) Comparison between signal activation intervals for the three different 
pathways in the containment scenario. NFκB signal activation interval is shorter (less stable) than STAT1 
(p<8e-6) and STAT3 (p<0.012). (C) Comparison between signal activation intervals for the three different 
pathways in dissemination scenario. NFκB signal activation interval is longer (more stable) than STAT1 
(p<2e-3) and STAT3 (p<0.05). The signal activation interval (δ) parameters are shown since they are 
significant parameters from sensitivity analysis. 
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4.4 Discussion 

In this Chapter we extended our model of Mtb infection from Chapter 3 to further 

characterize the role of macrophage polarization in controlling infection outcome at the 

individual granuloma scale. We use simplified models of STAT1, STAT3, and NFκB 

intracellular signaling pathways, induced by IFNγ, IL-10, and TNF stimulation 

respectively, to drive macrophage functionality towards M1-like or M2-like phenotypes. 

Our model predicts the importance of early polarization towards M1-like phenotypes and 

shorter NFκB activation intervals are critical to control of infection at the individual 

granuloma scale. 

Previous modeling studies have established the concept of switching time as the 

time needed to change from an M1-dominated macrophage phenotype to an M2-

dominated phenotype in the granuloma environment (17, 40). Increased switching times 

(beyond ~50 days post-infection), wherein the polarization towards an M1-biased 

macrophage population was delayed, prevented early antimicrobial responses and 

allowed bacteria to gain an initial advantage. Additionally, if the switching time was 

delayed beyond a critical timeframe, dissemination of bacteria in the lung was more 

likely (17, 40). In this Chapter we investigated how the dynamic balance between pro- 

and anti-inflammatory cytokines translates into macrophage polarization and how 

polarization evolves over time in order to effectively control bacteria at the individual 

granuloma scale. Our model predicts that early (2-3 months post infection) polarization 

of macrophages towards an M1-like phenotype results in increased antimicrobial activity 

and leads to granulomas that are able to effectively control bacteria. Additionally, at late 

stages of infection (~5-6 months post-infection), granulomas that effectively contain 
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bacteria polarize more towards an M2-like phenotype consistent with infection resolution 

and healing. Granulomas unable to effectively control bacteria display mainly un-

polarized macrophages, indicating that early M1 polarization is a significant mechanism 

that contributes to effective control of bacteria at the individual granuloma scale. 

Differences in NFκB gene transcription dynamics between containment and 

dissemination granuloma outcomes suggest possible key regulatory mechanisms in 

driving protective immune responses (Figure 4.3). Granulomas that efficiently contain 

bacteria have shorter NFκB signal activation intervals compared to granulomas that are 

unable to control bacterial replication. Recent experimental work demonstrated that 

inhibition of NFκB activation (i.e., shorter signal activation intervals) decreases survival 

of Mtb in human macrophages (39). However, granulomas are significantly more 

complex structures in comparison with in vitro conditions with a much broader spectrum 

of macrophage polarization. Taken together with our model predictions, pharmacological 

targeting of the NFκB pathway may be an effective therapeutic strategy to transiently 

promote M1 polarization in granulomas and improve infection outcome at the individual 

granuloma scale (18). 

In this Chapter we extended our model of TNF and IL-10 from the previous 

Chapter in order to better understand macrophage polarization at a single granuloma 

scale. This model demonstrates the extensibility of our in silico models of Mtb infection 

and how these models can lead to a better fundamental understanding of the immune 

responses leading to effective control of bacteria. 
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Chapter 5 

Interleukin-10 Controls Lesion Sterilization By Balancing Early Host-Immunity-

Mediated Antimicrobial Responses With Tissue Damage During Mycobacterium 

tuberculosis Infection 

 

The work in Chapter 5 has been submitted as: Cilfone, N. A., Ford, C.B., Marino, S., 

Mattila, J.T., Gideon, H.P., Flynn, J.L., Kirschner, D.E., Linderman, J.J. Interleukin-10 

Balances Early Host-Immunity-Mediated Antimicrobial Responses and Tissue Damage 

to Control Lesion Sterilization During Mycobacterium tuberculosis Infection. (2014). 

 

5.1 Introduction 

Tuberculosis (TB), a deadly infectious disease caused by the bacterium 

Mycobacterium tuberculosis (Mtb), results in 1-2 million deaths per year (1). Control of 

the TB epidemic is limited by a complicated drug regimen, development of antibiotic 

resistance, and the lack of an effective vaccine against infection and disease. 

Understanding the complex host response to Mtb is essential for developing new and 

improved strategies to fight infection. Granulomas, organized collections of immune cells 

and bacteria that form in lungs and other organs, are an essential feature of the immune 

response to Mtb and serve as the central site of host-pathogen interaction. Cytokines are 

critical to coordinating an effective yet controlled immune response to Mtb within a 

granuloma. Human and animal models have demonstrated that the pro-inflammatory 
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cytokines tumor necrosis factor-α (TNF) and interferon-γ (IFN-γ) are essential to the 

host-response against Mtb; however, other cytokines also participate in the response (1–

3). Our focus in this Chapter is on the regulatory cytokine interleukin-10 (IL-10), whose 

role remains unclear in Mtb infection. 

IL-10, a regulatory cytokine, functions by inhibiting cytokine/chemokine 

production, preventing cellular apoptosis/necrosis, and altering macrophage activation 

phenotype (2, 4–6). IL-10 is produced by a spectrum of immune cells during infection, 

including macrophages, T-cell subsets, and neutrophils (7). Macrophages are a large 

source of IL-10 during Mtb infection, and activated-macrophage derived IL-10 may 

function to limit host-induced tissue damage (2, 8–10). Mtb-infected macrophages 

produce IL-10 when toll-like receptors and other pattern recognition receptors interact 

with Mtb-derived lipids and other molecules (1, 11–16). HN-878 and CH strains of Mtb 

induce greater production of IL-10 from macrophages than the lab strain H37Rv, which 

may be linked to increased pathogen virulence (1). However the question remains: Do 

Mtb strains that induce higher levels of IL-10 production disrupt the host antimicrobial 

response to prevent bacterial clearance. T cells, including CD4+, CD8+, and regulatory T 

cells can also produce ample quantities of IL-10 and may contribute to control of host 

damage (17–22). CD4+ T cell clones from human BAL fluid with active TB primarily 

produced interferon-γ and IL-10 upon re-stimulation (23, 24). Recently, neutrophils have 

been identified as a possible source of IL-10, although the level of production is 

uncharacterized; they do not produce IL-10 when stimulated with Mtb antigens, but 

function in those conditions to stimulate IL-10 production from macrophages (25–27). 
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Due to the spectrum of cellular sources it has been difficult to determine the primary 

source of IL-10 in a granuloma and its main functional role in experimental systems. 

IL-10 may dampen the strength of the immune response to Mtb, minimizing lung 

damage and pathology (1, 7, 8, 28). A central feature of many TB granulomas is an 

acellular caseous necrotic core (3, 29). Caseous necrosis provides the opportunity for 

airway erosion and can lead to calcification and fibrosis of lesions, both highly damaging 

to host lung tissue (29). Both host-immunity and pathogenic mechanisms, including Mtb-

induced macrophage bursting, TNFR1-induced apoptosis/necrosis, Fas ligand-induced 

cell death, perforin/granulysin from cytotoxic T cells, and reactive nitrogen/oxygen 

species (RNS and ROS) produced within macrophages, contribute to caseous necrosis 

(29–35). IL-10 has been proven to limit macrophage apoptosis/necrosis in the context of 

Mtb infection, but how that translates to prevention of tissue damage is still unclear (6, 

29, 30, 33, 35–43). In addition, what effect does limiting tissue damage have on the 

success of the antimicrobial response? This question has been difficult to answer in an 

experimental setting due to limitations of detection methods and differences among 

animal models. 

Most in vivo investigations into the role of IL-10 during Mtb infection have been 

performed in murine models. However, studies using Il10-/- mice have shown 

contradicting results. Initial reports demonstrated no difference in bacterial load, while 

more recent studies have shown increased inflammatory responses and reduced bacterial 

burdens in both lungs and spleen (1, 44, 45). Additionally, some reports indicated 

reduction in bacterial load was associated with increased pathology and inflammatory 

cytokines (28). Transgenic mice that overexpress IL-10 have significantly higher 
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bacterial loads that normal mice (46, 47). Abrogation of IL-10 signaling in the CBA/J 

murine model using anti-IL-10R antibodies reduced bacterial burdens in the lungs and 

enhanced host inflammatory-responses (1, 44). Although these results lend insight into 

the role of IL-10 during the immune response to Mtb, murine models of TB lack many 

characteristics of human lesions, including the ability to recapitulate a true latent state of 

infection, the characteristic granuloma organization, and the spectrum of cell types 

producing IL-10 (48–50). The murine model of Mtb infection is progressive with 

bacterial burdens inconsistent with human and non-human primate infections (51). 

Therefore, conclusions drawn about the influence of IL-10 on bacterial load in the murine 

model may not be reflective of TB in humans. In addition, studies of the effects of IL-10 

on bacterial loads at a single granuloma scale have not been performed in the murine 

model of TB. Thus, the question of how IL-10 influences bacterial loads at a single 

granuloma level in a model of TB with accurate Mtb dynamics remains unanswered. 

Recent studies in a non-human primate (NHP) model of Mtb have indicated large 

variability among lesions within a single host (51). Genomes (chromosomal equivalents, 

or CEQ, i.e. total chromosomal DNA in lesions) from non-viable Mtb degrade very 

slowly in lesions (estimated at maximum of ~4% per day), and thus measuring CEQ 

using PCR on a housekeeping gene provides an estimate of total bacterial burden (both 

viable and dead bacteria) in a lesion. The ratio of colony-forming units (CFU, i.e. viable 

bacteria) to CEQ reflects antimicrobial activity at the individual lesion scale (51). In 

lesions from macaques with either active or latent infection, the killing capacity of the 

immune response is similar at the individual granuloma scale, with a significant number 

of sterile lesions (a lesion with no detectable bacteria) existing in both outcomes. This 
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heterogeneity at the lesional scale makes it difficult to identify predictors of disease 

outcome, but is critical to recapitulating the immune response in humans. What remains 

unanswered is how cytokines could control the sterility of lesions. Specifically, does IL-

10 control antimicrobial activity thus determining the frequency of sterile lesions? 

Although the NHP model of TB is the most representative experimental model of human 

TB, studies investigating the role of IL-10 during Mtb infection have not yet been 

reported in this model. 

We use an in silico approach to investigate the role of IL-10 in controlling 

antimicrobial activity, lesional sterility, and tissue damage during Mtb infection. We 

utilize our hybrid agent-based model (GranSim) from Chapter 3, which includes IL-10 

receptor-ligand dynamics, to understand how IL-10 dynamics control infection outcome 

at the individual granuloma scale (8). We first extend and validate GranSim based on 

new data on CFU trajectories from the NHP model of TB (51). We then use GranSim to 

probe the role of IL-10 at the lesional scale by performing complete IL-10 knockouts, 

cell-specific IL-10 knockouts, and perturbations of lesional IL-10 levels. Simulations 

predict that IL-10 restricts antimicrobial activity during the early adaptive immunity 

phase, preventing sterilization of lesions and inhibiting host-induced tissue damage. We 

predict that activated macrophage-derived IL-10 is the most important source of IL-10 in 

our model, balancing lesion sterility and host-induced tissue damage. Lastly, we describe 

how increased secretion of IL-10 from infected macrophages can be an effective 

immune-evasion strategy by shifting control of bacterial dynamics, through antimicrobial 

responses, within a granuloma from host to pathogen. These findings provide new 
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avenues for testing in animal systems and suggest important mechanisms that could be 

targets for adjunctive therapy in humans with TB. 

 

5.2 Methods 

5.2.1 Overview 

We developed a new version of GranSim in Chapter 3, a hybrid agent-based 

model (ABM) of Mtb infection, that incorporates IL-10 and TNF dynamics across 

multiple temporal and spatial scales (8, 52, 53). We are now able to calibrate this model 

with new data derived from an NHP model of TB infection on CFU per lesion (51, 54–

56). We subsequently validate the model by comparing model predictions of bacterial 

doubling time against measured values in the NHP model and perform virtual deletions 

(TNF and IFN-γ) of previously identified essential mediators (51, 57, 58). As this model 

now incorporates detailed descriptions of both IL-10/IL-10R and TNF/TNFR-associated 

molecular interactions and a representation of Mtb dynamics similar to humans, it is 

poised to predict the effects of IL-10 at a single granuloma scale. We perform virtual 

experiments that are currently difficult or infeasible in animal models of TB, including 

cessation of IL-10 production from specific cell types and tracking the temporal 

dynamics of sterile lesions. Furthermore, we explore the effects of increased production 

of IL-10 derived from infected macrophages. Details for these virtual experiments are 

given below. 
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5.2.2 Hybrid Multi-Scale Agent Based Model of Mtb Infection 

Our multi-scale ABM of Mtb infection from Chapter 3, GranSim, describes 

immune processes over three different scales: tissue, cellular, and molecular (8, 52, 53). 

Briefly, at the tissue and cellular scale, GranSim includes macrophages and T-cells 

(agents), each with multiple states: resting macrophages, infected macrophages, 

chronically infected macrophages, activated macrophages, pro-inflammatory T-cells, 

cytotoxic T-cells, and regulatory T-cells. Included in the model are three bacterial sub-

populations: intracellular Mtb, extracellular Mtb, and non-replicating Mtb. The agents and 

bacterial population interactions are described by a well-defined set of rules and 

interactions between immune cells and Mtb in the lung and can be found in (8, 52, 53). At 

the molecular scale we capture receptor-ligand binding and trafficking, as well as the 

secretion, diffusion, and degradation of the cytokines IL-10 and TNF (see Chapter 3 for 

details). We assume IL-10 and TNF binding and internalization directly modulate cellular 

processes such as down regulation of TNF production (8). Cellular sources of IL-10 

include infected macrophages, activated macrophages, and regulatory T-cells. As 

neutrophils appear to increase IL-10 production rates from infected macrophages, we do 

not explicitly model neutrophil IL-10 production (25–27). We link molecular scale events 

to cellular and tissue scale events by allowing dynamics within each scale to influence 

behavior on other scales (e.g. TNF-induced apoptosis/necrosis) (8). The ABM is two 

dimensional (2D) and represents a 4 mm2 cross-section of lung tissue. Infecting a single 

macrophage with Mtb leads to the development of ~1 mm diameter lesions, which falls 

into the range of individual granuloma sizes observed in the NHP model (1-5mm) of TB 

(54, 56). The ABM can reproduce larger lesion sizes by simulating a larger cross-section 
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of lung tissue (e.g. 16 mm2) (unpublished data). A key feature of our ABM is the 

flexibility to include data as they become available; therefore we update some GranSim 

rules from Chapter 3 to better reflect current biological knowledge of the immune 

response to Mtb (Table B.1 in Appendix B). 

 

5.2.3 Non-Human Primate Infection, Classification, CFU, and CEQ 

In previously published work (51, 54–56), 32 healthy cynomolgus macaques 

(Macaca fascicularis) were infected with ~25 CFU of the Erdman strain of 

Mycobacterium tuberculosis via bronchoscopic instillation. Lesions were excised at 

various time points (between 26 and 296 days post-infection) where bacterial burden and 

chromosomal equivalents were measured (Table B.2 in Appendix B). Bacterial burden 

was measured by enumeration of colonies (CFU) after 3 weeks of culture on 7H10 agar. 

Sterile lesions were defined as lesions with no detectable colonies after 6 weeks of 

culture (see (51) for justification). Chromosomal equivalents (CEQ) were measured by 

real-time quantitative PCR of isolated Mtb genomic DNA from lesions. Full descriptions 

of NHP infection and data collection methods, as well as the data used in this Chapter, 

can be found in (51, 54–56). 

 

5.2.4 Calculation of CFU and CEQ 

The sum of intracellular Mtb, extracellular Mtb, and non-replicating Mtb is the 

total bacterial burden, and is comparable to CFU in the NHP model of Mtb infection. 

Thus, we refer to all total bacterial burden measurements generated by GranSim as CFU. 

Since CFU data collected in the NHP model of TB are from whole lesions, we scale our 
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2D model-generated CFU results to 3D to allow for direct comparison. For the scaling, 

we calculate the minimum radius of a granuloma sphere that encompasses the entire CFU 

population and determine an appropriate 2D to 3D scaling factor. Scaled CFU data is 

only shown when comparing to NHP data. We measure CEQ in GranSim by tracking 

each bacterium division. For simplicity, we assume no degradation of CEQ in the lesion 

(51). The ratio CFU/CEQ reflects the degree of killing, with smaller values reflecting a 

more efficient bactericidal response. 

 

5.2.5 Calculated Measures of Inflammation and Tissue Damage 

We report TNF concentration (pg/mL) as a general biomarker of inflammation in 

a granuloma. We calculate average TNF concentrations by summing soluble TNF in all 

compartments contained within the lesion and converting to a concentration using the 

volume of a 2D grid compartment (assuming a uniform depth of the 2D simulation 

environment of one compartment; similar to a planar sheet). GranSim measures caseous 

necrosis as a proxy for tissue damage by monitoring levels of infected macrophage 

bursting, Fas/FasL killing by T cells, perforin/granulysin killing by cytotoxic T cells, 

activated macrophage death (high levels of ROS/RNS), and TNF-induced 

apoptosis/necrosis within each grid compartment. GranSim considers TNF-induced 

apoptosis/necrosis to be a general process of induced cell-death and does not differentiate 

between apoptosis, necrosis, necroptosis, or apoptotic necrosis, thus TNF-induced cell 

death contributes to caseous necrosis (29, 30). Although this is not a perfect measure of 

tissue damage, caseous necrosis results as a consequence of infection and inflammation 

can be detrimental to host tissues. A grid compartment is classified as caseous necrotic 
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when the number of aforementioned events passes a threshold defined by a model 

parameter (Table B.3 in Appendix B), the idea being that after a certain number of these 

events occur, the tissue in that compartment is likely to become caseous necrotic. We also 

use two previously established measures to examine tissue damage: the ratio of infected 

macrophage apoptosis/necrosis to healthy macrophage apoptosis/necrosis, Rapoptosis, and a 

modified version of the Host-Pathogen Index (H.P.I) from Chapter 3, which is a 

combined metric of CFU and healthy macrophage apoptosis/necrosis scaled between zero 

and one (8, 53). These latter measures are examined fully in the Appendix B. 

 

5.2.6 Calculation of Instantaneous Mtb Doubling Time 

We calculate an instantaneous doubling time of Mtb by assuming that during the 

first 20 days of infection the bacteria is able to replicate freely following an exponential 

growth curve (51). Thus, the instantaneous doubling time (td) is calculated by: 

𝑡! =
𝑙𝑛 2

𝑙𝑛 𝐶𝐸𝑄 𝑡
𝑡                                                                                                                                                                                                                        (𝐸𝑞𝑛. 5.1) 

Here, t is the time point of interest post-infection and CEQ(t) is the CEQ at the time point 

of interest post-infection. Comparisons of doubling times beyond the onset of the 

adaptive immunity (~25-35 days post-infection) cannot be drawn since the CFU and CEQ 

curves do not follow classical exponential growth due to host bactericidal processes (51).  

 

5.2.7 Classification of Lesions 

We classify simulated lesions at 200 days post-infection into 2 outcomes at the 

granuloma scale: sterile lesions, and non-sterile lesions (59). Non-sterile lesions are 

defined as lesions that have a non-zero CFU at 200 days post-infection. Non-sterile 
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lesions can be split into two types: controlled growth or uncontrolled growth. Controlled 

growth is defined as robust control of Mtb within a lesion with CFU levels comparable to 

lesions in the NHP model of TB (51, 54, 60, 61). Uncontrolled growth is defined by an 

immune response incapable of limiting the growth of Mtb in a lesion. In the NHP model 

of TB, this corresponds to lesions that either split into multiple lesions or disseminate. 

The pathogen is able to replicate freely and the CFU is well above levels in the controlled 

growth outcome. Sterile lesions are defined as the complete removal of live Mtb in the 

lesion (zero CFU) at any time post inoculum. The classification of a lesion at day 200 is 

used for any previous time points where data is separated by outcome (e.g., a lesion that 

becomes sterile at day 150 is always counted in the sterile category). 

 

5.2.8 Virtual Deletion of IL-10 (Complete Il10-/-) 

Included in the model are multiple cellular sources of IL-10: infected 

macrophages, chronically infected macrophages, activated macrophages, and regulatory 

T-cells. We perform virtual IL-10 deletion simulations that mimic an experimental Il10-/- 

phenotype by setting IL-10 synthesis by all cell-types to zero at the beginning of a 

simulation and simulating 200 days of infection. We report: CFU/lesion at 200 days post-

infection, CFU/CEQ at 25, 50, 100, and 200 days post-infection, TNF concentrations at 

25, 35, 45, 55, 100, and 200 days post-infection, and caseous necrosis per lesion at 25, 

35, 45, 55, 100, and 200 days post-infection. An advantage of our in silico approach is 

that we can analyze sterile granulomas from WT simulations compared to sterile 

granulomas from IL-10 deletion simulations. We report the fraction of infected 

macrophages that undergo apoptosis, fraction of resting macrophages that become NFκB 
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activated, the number of macrophages that have been exposed to Mtb, and CFU/lesion at 

day 45 post-infection. We then create an IL-10 deletion parameter set that has reduced 

rates of NFκB activation and TNF-induced apoptosis (termed IL-10 K/O Low Apop/Act) 

in order to understand the underlying processes leading to lesion sterilization. 

 

5.2.9 Virtual Transgenic IL-10 

We perform virtual IL-10 transgenic experiments by increasing or decreasing the 

IL-10 production rate of each cellular source of IL-10. Rates from 1/5 to 5 times the 

normal production rate are tested, with production from all cell types changed by the 

same factor. We then simulate 200 days of infection post inoculum. We report 

CFU/lesion and CFU/CEQ at 200 days post-infection, while TNF concentrations at 

reported at 35 days post-infection and caseous necrosis per lesion are reported at 50 days 

post-infection. In addition, we report the fraction of bacterial populations (intracellular, 

extracellular, non-replicating) in non-sterile granulomas at 200 days post-infection. We 

use these time points of interest due to insights from the virtual deletion of IL-10. 

 

5.2.10 Virtual Deletion of Cell-Specific IL-10 Sources 

We perform virtual IL-10 deletions of specific cellular sources by setting IL-10 

production from those cells to zero at the beginning of a simulation. Three cell-specific 

IL-10 deletions are examined: infected macrophage Il10-/- (combined deletion of infected 

macrophages and chronically infected macrophages), activated macrophage Il10-/-, and 

regulatory T-cell Il10-/-. We then simulate 200 days of infection post inoculum. We 

report: CFU/lesion at 200 days post-infection, CFU/CEQ at 25, 50, 100, and 200 days 
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post-infection, TNF concentrations at 50 and 100 days post-infection, and caseous 

necrosis per lesion at 50 and 100 days post-infection. 

 

5.2.11 Virtual Variability in Mtb Strain Induced IL-10 

Multiple clonal lineages of Mtb have evolved over the long course of its existence 

(13). Each of these lineages has significant inter-strain variability in levels of induction of 

IL-10 in macrophages (11–15). In our model, when a macrophage becomes infected with 

Mtb it begins synthesizing IL-10 at a specific rate. We modulate the synthesis rate of IL-

10 from infected macrophages (10-fold reduction to 1000-fold increase from its baseline 

level), while keeping the rates of IL-10 synthesis from activated macrophages and 

regulatory T cells identical (at baseline rates). In addition, this also explores the indirect 

effects of neutrophils as they have been shown to increase infected macrophage 

production of IL-10 (25–27). We then simulate 200 days of infection post inoculum. 

Changes in infected macrophage IL-10 synthesis rate are reflected in the fractional 

synthesis rate (fMi), which is defined as: 

𝑓!" =
𝑟!"

𝑟!" + 𝑟!" + 𝑟!"
                                                                                                                                                                                                            (𝐸𝑞𝑛. 5.2) 

Here, rMi is the infected macrophage IL-10 synthesis rate, rMa is the activated macrophage 

IL-10 synthesis rate, and rTr is the regulatory T cell IL-10 synthesis rate. We report: 

percentage of IL-10 derived from infected macrophages, CFU/lesion, CFU/CEQ, number 

of activated macrophages, and number of infected macrophages at 200 days post-

infection. 
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5.2.12 Uncertainty and Sensitivity Analysis 

 Uncertainty and sensitivity analysis is used to identify IL-10 model parameters 

that have significant effects on model outputs. We use Latin hypercube sampling (LHS) 

to simultaneously vary multiple model parameters and sample the parameter space (62). 

Partial rank correlation coefficients (PRCCs) quantify the effects of varying each 

parameter on non-linear outputs, where a PRCC of -1 represents a perfect negative 

correlation and a PRCC of +1 represents a perfect positive correlation. PRCCs are 

differentiated based on a students t-test to indicate significance. In this Chapter we 

generate 250 unique parameter sets, each of which are replicated four times, yielding 

1000 simulations. Average values of model outputs (e.g. CFU, CFU/CEQ) are used to 

calculate PRCC and p-values. 

 

5.2.13 Computational Platform 

 Our ABM is constructed using the C++ programming language, Boost libraries 

(distributed under the Boost Software License – www.boost.org), and the Qt framework 

for visualization (distributed under GPL – www.qt.digia.com). The ABM is cross-

platform (Macintosh, Windows, Unix) and can be run with or without our visualization 

software. Simulations were performed on the Flux computing cluster, provided by 

Advanced Research Computing at the University of Michigan, and OS X based multi-

core personal computers (Intel Quad Core i7 Apple Macbook Pro). Data manipulation 

was carried out in MATLAB R2012a (Natick, MA). Plots and statistical tests were 

created using GraphPad Prism 6 (La Jolla, CA). 
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5.3 Results 

5.3.1 Model Calibration and Validation with Non-Human Primate (NHP) Data 

We first calibrate our model with new CFU per lesion data from the NHP model 

of TB. We utilize a previously published data set derived from 32 NHPs in which CFU 

per lesion data has been collected between 28 and 296 days post-infection (51, 54–56, 

61). Each NHP has 3-37 lesions with non-sterile lesions containing ~10 to ~106 CFU per 

lesion. We re-calibrated our previously published version of GranSim, by varying 

multiple model parameters (Table B.3 in Appendix B) in order to best fit the temporal 

median CFU per lesion data (8). Sterile lesions were excluded from both the NHP 

derived data set and the model-generated data set during model calibration of median 

CFU to minimize effects on median CFU of non-sterile lesions. We identify a baseline 

parameter set (hereafter noted as the wild type, WT, parameter set) that replicates the 

peak median NHP CFU per lesion data at day 28 and leads to robust control of median 

CFU per lesion beyond 100 days post-infection (Figure 5.1A). The percentage of model-

generated sterile lesions at 200 days post-infection (~15-30%, N=100) is consistent with 

the number of sterile lesions observed in NHPs (~33%, N=476). Simulated lesions are 

able to recapitulate histological observations from NHP lesions, wherein infected 

macrophages and caseation that are located primarily in the core of the lesion are 

surrounded by an outer cuff of healthy macrophages and a peripheral cuff predominantly 

comprised of lymphocytes (54, 63, 64). In our model the cellular spatial configuration of 

the lesion arises from emergent behavior as a consequence of the model rules. 
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Figure 5.1 Model calibration and validation of simulated lesions 
A. Comparison of scaled CFU per lesion between best-fit WT simulated lesions (N = 25) (median – solid 
black line, min/max – dashed black lines) and NHP data collected between 28 and 296 days post-infection 
(51) (N = 32) (median – grey filled circles, min/max – grey error bars). B. Comparison of scaled CFU per 
lesion for simulated lesions of TNF-α (median – light grey line, min/max – dashed light grey lines) and 
IFN-γ (median – dark grey line, min/max – dashed dark grey lines) deletions compared to WT simulated 
lesions (median – solid black line, min/max – dashed black lines) (N = 20). C. Snapshot of a WT lesion at 
200 days post-infection. D. Snapshot of a TNF-α deletion lesion at 200 days post-infection. E. Snapshot of 
an IFN-γ lesion at 200 days post-infection. Total scaled CFU for each lesion is indicated in the upper 
corner. Snapshot legend colors as follows: resting macrophages (green), infected macrophages (orange), 
chronically infected macrophage (red), activated macrophage (dark blue), pro-inflammatory T cell (pink), 
cytotoxic T cell (purple), regulatory T cell (aqua), extracellular bacteria (brown), and caseation (cross-
hatch). These same colors are used for all subsequent images. 
 

We validate our WT parameter set against two data sets: (1) instantaneous 

bacterial doubling times calculated from CEQ in the NHP model of TB and (2) deletion 

of TNF and IFN-γ. Comparison of instantaneous Mtb doubling times between simulated 

(Eqn. 5.1) and NHP lesions show good agreement, with the median simulated doubling 

times falling within the min-max range of NHP doubling times for both 10 and 20 days 
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post-infection (Table 1). We then simulate virtual deletions of TNF and IFN-γ at the 

initialization of infection. Observations in the NHP and murine models of TB have 

indicated that removal of TNF causes lesions to function poorly, leading to elevated 

bacterial loads and dissemination (57, 65). Similarly, removal of IFN-γ causes extensive 

tissue damage with an immune response that is unable to restrict bacterial growth (58). 

TNF and IFN-γ virtual deletions show an approximately 1000-fold increased in median 

CFU per lesion (Figure 5.1B) with large, disseminating lesions in the TNF deletion 

(Figure 5.1D) and extensive tissue damage in the IFN-γ deletion (Figure 5.1E). These 

simulations mark the first time a computational model of Mtb infection has been 

calibrated and validated with temporal CFU data and apparent Mtb doubling times from 

the non-human primate model. Given this ability of our computational model to 

recapitulate bacterial dynamics from an experimental model that has comparable bacterial 

dynamics and clinical classifications as human Mtb infection (51, 54, 63), we are now in 

a unique position to predict the role of IL-10 in modulating antimicrobial activity and 

granuloma sterility. 

Table 5.1 Median instantaneous Mtb doubling times in individual lesions 
Time (days post infection) NHP Doubling Time1 (1/days) Model Doubling Time2 (1/days) 

10 1.83 (1.59 – 2.18) 1.73 (1.62 – 2.09) 
20 1.87 (1.76 – 2.20) 2.09 (1.99 – 2.29) 

Parentheses represent the minimum and maximum calculated doubling time for both NHP (N = 32) and ABM data (N = 100) sets 
1 Instantaneous doubling times estimated using median CEQ per lesion as defined in (51) 
2 Instantaneous doubling times estimated using CEQ per lesion and an exponential growth model defined from t(0) to t(t) 
 

5.3.2 Reduced Bacterial Loads in IL-10 Knockouts is Due to Increased Sterilization of 

Lesions 

In order to understand the role of IL-10 during Mtb infection at the lesional scale, 

we simulated a virtual IL-10 deletion (referred to as IL-10 K/O) at the initialization of 

infection by setting all IL-10 synthesis rates to zero. Measured simulation outputs 
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included CFU per lesion, CFU/CEQ, fraction of lesions that become sterile, average TNF 

concentration per lesion, and caseous necrosis per lesion. We analyze model outputs for 

differing virtual lesion outcomes (sterile vs. non-sterile) in both WT and IL-10 K/O 

lesions to better understand factors driving infection outcome. Mean CFU per lesion at 

day 200 was unchanged in IL-10 K/O non-sterile lesions compared to WT non-sterile 

lesions (Figure 5.2A). Strikingly, we observed a significant change in the number of 

lesions achieving sterility, with an ~2-fold increase in the number of sterile lesions in the 

IL-10K/O case (Figure 5.2A). When sterile lesions are included in the analysis of mean 

CFU per lesion at day 200 we observe a reduction in bacterial burden of ~1.75-fold 

(Figure 5.2A). Therefore, our model predicts that reduced bacterial loads in IL-10 K/O 

scenarios are mainly due to an increased number of lesions that are able to sterilize and 

not an overall reduction in bacterial load across all lesions. 
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Figure 5.2 Virtual IL-10 deletions demonstrate increased sterilization of lesions and control of the 
early immune response 
A. CFU for WT and IL-10 deletion (IL-10 K/O) lesions at 200 days post-infection. Individual circles and 
squares represent individual lesions. Lines indicate mean values.  Percent of lesions becoming sterile by 
200 days (out of 100 simulations) is indicated. B. CFU/CEQ for outcome-specific WT and IL-10 K/O 
lesions. Outcomes are grouped as non-sterile or sterile. Individual circles represent individual lesions. Lines 
indicate mean values. C-D. Average lesion TNF-α concentration and caseation for WT (black bars) and IL-
10 K/O (grey bars) lesions. Non-sterile lesions are displayed as solid bars and sterile lesions are displayed 
as striped bars. Bars are representative of mean values with error bars showing SEM. For all panels, 
comparisons are made between the same granuloma classifications (e.g. non-sterile vs. non-sterile): * p ≤ 
0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100. 
 

5.3.3 IL-10 Controls the Early Immune Response to Mtb at a Lesional Scale 

Peak CFU (~103-104) and CEQ (~104) were comparable between WT and IL-10 

K/O lesions, occurring 4 weeks post-infection (Figure B.1A-D in Appendix B). Mean 

CFU/CEQ is ~2-fold lower for IL-10 K/O lesions at days 50, 100, and 200 post infection, 

indicating increased antimicrobial activity (Figure B.1E in Appendix B). However, when 

sterile and non-sterile IL-10 K/O lesions are analyzed separately, it becomes apparent 

that the increased antimicrobial activity is transient. Sterile lesions and non-sterile lesions 

have lower CFU/CEQ at day 50, compared to WT lesions (~4-fold vs. ~1.75-fold) with 

no changes to CFU/CEQ levels after day 50  (Figure 5.2B). Increases in antimicrobial 

activity are coupled to an increased early inflammatory response and increased tissue 

damage, with elevated levels of TNF at days 35 and 45 (Figure 5.2C) and an ~1.2-1.5-

fold increase in caseous necrosis at day 45 and 55 (Figure 5.2D). These results indicate 

that increases in antimicrobial activity due to IL-10 deletion occur mainly during the 

early immune response, helping promote sterilization at the cost of early tissue damage. 

As infection progresses, the levels of caseous necrosis stabilize as healing and tissue 

remodeling can occur. This occurs since the total CFU in the lesion has declined to 

significantly lower values than in the early stages of infection and less antimicrobial 

activity is necessary (Figure 5.1B). Taken together, our model predicts that IL-10 
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transiently limits early antimicrobial activity, in order to simultaneously limit host-

inflammation-induced tissue damage at the individual lesion scale (Figure B.3A in 

Appendix B). Transient limitation of antimicrobial activity by IL-10 prevents lesions 

from sterilizing with increased tissue damage. 

 

5.3.4 Increased Sterilization of Lesions in IL-10 Deletions is a Result of Small 

Differences in Antimicrobial Activity of the Early Immune Response 

An advantage of our computational model as compared to experimental systems 

is that we can track the entire time course of individual lesions. Unlike experimental 

systems, where determining what antimicrobial processes lead to sterilization of a lesion 

is very difficult, our model retains the entire history of the immune response in sterilized 

lesions. Therefore, we sought to understand what immune mechanisms contribute to the 

increased percentage of sterile lesions in the virtual IL-10 deletions. We compared 

antimicrobial mechanisms between WT and IL-10 K/O sterile lesions at 45 days post-

infection, when the antimicrobial response is the strongest. We noticed small, yet 

significant, differences in the fraction of infected macrophages that undergo apoptosis 

(6% increase in IL-10 K/O sterile lesions) and the fraction of NFκB+ macrophages (15% 

increase in IL-10 K/O sterile lesions) (Figure 5.3A). These small increases in 

antimicrobial activity limit healthy macrophage exposure to Mtb (Figure 5.3A), which 

prevents the bacteria from residing in the intracellular niche where it is more difficult to 

kill. The mean bacterial load is significantly lower in IL-10 K/O lesions, 27 CFU vs. 48 

CFU, and therefore small changes in antimicrobial activity lead to increased sterilization 

in IL-10 knockouts (Figure 5.3A). In order to verify that changes in antimicrobial activity 
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were causing the increased frequency of sterile lesions, we created an IL-10 deletion 

parameter set that has reduced rates of NFκB activation (decreased by 6%) and TNF-

induced apoptosis (decreased by 15%), termed IL-10 K/O Low Apop/Act. Using this 

parameter set, the percentage of sterile lesions returns to WT levels (Figure 5.3B). 

Therefore, our model predicts that increased frequency of lesion sterilization is due to 

small changes in antimicrobial activity that prevents the bacteria from persisting in 

macrophages and infecting new macrophages. 

 

Figure 5.3 Comparison of simulated sterile lesions between WT and IL-10 deletions 
A. Apoptotic fraction of infected macrophages, fraction of NFκB activated resting macrophages, number of 
macrophages exposed to Mtb, and CFU per lesion at 45 days post-infection for WT (black bars) and IL-10 
K/O (grey bars) granulomas. B. CFU for WT, IL-10 K/O, and IL-10 K/O Low Apop/Act (decreased rates 
of apoptosis and NFκB activation) lesions at 200 days post-infection. Individual dots represent individual 
lesions. Lines indicate the mean values.  Percentage of lesions becoming sterile by 200 days is indicated. 
Bars are representative of mean values with error bars showing SEM. For all panels: * p ≤ 0.05, ** p ≤ 
0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100 for WT and IL-10 K/O simulations. N = 20 for IL-10 K/O 
Low Apop/Act simulations. 
 

5.3.5 Modulating Total IL-10 Concentrations Demonstrates Control of Antimicrobial 

Activity and Host-Immunity Derived Tissue Damage 

Our predictions above suggest that modulating concentrations of IL-10 might be a 

successful way to increase sterilization of lesions. To test this, we modulated the total 

concentration of IL-10 within a lesion. An advantage of our modeling approach is the 
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ability to finely control levels of IL-10 in lesions, which proves difficult in experimental 

systems. We preform virtual transgenic experiments by increasing or decreasing the 

synthesis rate of IL-10 simultaneously in all cell populations (5-fold reduction to 5-fold 

increase in small increments). A 5-fold increase in total IL-10 production rate increases 

the mean CFU per lesion at day 200 from ~300 to ~10,000 (shifting lesion classification 

from controlled growth to uncontrolled growth), while a 5-fold decrease in IL-10 

production rate decreases the mean CFU per lesion to ~50 (Figure 5.4A). As IL-10 

production increases, no sterile lesions are observed; decreasing total IL-10 production 

leads to an eventual ~9-fold increase in the number of sterile lesions (chi-squared trend 

test, p<0.0001) (Figure 5.4A). In addition, CFU/CEQ at day 200 is directly correlated 

with IL-10 levels (Figure 5.4B), while levels of TNF at day 35 (Figure 5.4C) and caseous 

necrosis at day 50 (Figure 5.4D) are inversely correlated with IL-10 levels. However, our 

model predicts that changing levels of IL-10 production cause the bacterial populations to 

change in lesions that do not sterilize (Figure 5.4E). At 200 days post-infection, non-

sterile lesions with reduced IL-10 production have larger bacterial fractions of non-

replicating Mtb (Figure 5.4E). Although reduced IL-10 promotes lesion sterilization, 

those that do not sterilize have increased caseous necrosis causing an increase in non-

replicating bacterial populations (Figure 5.4). The shift to non-replicating states makes 

the lesions more difficult to sterilize. Taken together, our model predicts that small 

reductions in IL-10 production rates lead to increased frequency of sterile lesions with 

only minor increases in inflammation and tissue damage. Overall, these results suggest 

that modulating IL-10 concentrations in granulomas in a precise manner could be an 

effective therapeutic strategy to promote lesions to sterilize.  
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Figure 5.4 Simulations changing total levels of IL-10 production demonstrate control of bacterial set-
point, outcome, and tissue damage 
A. CFU comparisons for differing levels of total IL-10 production (5-fold reduction to 5-fold increase) at 
200 days post-infection. The percentage indicates the number of sterile lesions at 200 days post-infection 
(chi-squared trend test, p<0.0001). B. CFU/CEQ comparisons for differing levels of total IL-10 production 
(5-fold reduction to 5-fold increase) at 200 days post-infection. C. Average lesion TNF-α concentration for 
differing levels of total IL-10 production (5-fold reduction to 5-fold increase) at 35 days post-infection. D. 
Average amounts of caseation for differing levels of total IL-10 production (5-fold reduction to 5-fold 
increase) at 50 days post-infection. E. Fractions of bacterial populations in non-sterile lesions for differing 
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levels of total IL-10 production (5-fold reduction to 5-fold increase) at 200 days post-infection. Individual 
dots represent individual lesions. Lines indicate the mean values. For all panels: Pearson correlation 
coefficients (r) and p-values (p) were calculated to determine the significance of observed trends. 
 

5.3.6 Activated Macrophage Derived IL-10 is Necessary for Mediating Antimicrobial 

Activity and Tissue Damage 

To determine which cellular source of IL-10 included in the model is most 

responsible for controlling antimicrobial activity and tissue damage, we performed 

individual virtual deletions for each cellular source of IL-10 (activated macrophages, 

infected macrophages, and regulatory T cells). Deletion of activated macrophage derived 

IL-10 causes the most significant change to bacterial loads, decreasing the mean CFU per 

lesion to ~50 CFU and increasing the number of sterile lesions ~8-fold (Figure 5.5A). 

This is accompanied by a ~9-fold reduction in mean CFU/CEQ at day 50 indicating 

control over early antimicrobial activity (Figure 5.5B). TNF is significantly elevated only 

at day 50 in both non-sterile and sterile lesions (Figure 5.5C). In non-sterile lesions, 

caseous necrosis is increased ~1.4-fold at day 50, while sterile lesions show a ~1.6-fold 

increase in caseous necrosis at day 50 (Figure 5.5D). Deletion of infected macrophage 

derived IL-10 leads to only a small decrease in CFU per lesion and a small increase in 

number of sterile lesions (Figure 5.5A). Similarly, the mean CFU/CEQ is only reduced 

by ~1.2-fold at day 100 (Figure 5.5B). TNF and caseous necrosis levels are not 

significantly different in both non-sterile and sterile lesions (Figure 5.5D). Finally, 

deletion of regulatory T-cell derived IL-10 does not significantly change the mean CFU 

per lesion, average TNF levels, and caseous necrosis levels, but marginally increases the 

mean CFU/CEQ at day 50 (Figure 5.5). These results suggest that activated macrophage 

production of IL-10 is primarily responsible for effectively controlling the antimicrobial 
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activity of the immune response to infection while limiting the amount of host-induced 

tissue damage (Figure B.3C, Figure B.4C-D in Appendix B).  

 

Figure 5.5 Virtual deletion of specific cellular sources of IL-10 
A. CFU for WT, IL-10 K/O, activated macrophage IL-10 deletion (Ma IL-10 K/O), infected macrophage 
IL-10 deletion (Mi IL-10 K/O), regulatory T cell IL-10 deletion (Tr IL-10 K/O) lesions at 200 days post-
infection. Both sterile and non-sterile lesions are included. The percentage indicates the number of sterile 
lesions at 200 days post-infection. B. CFU/CEQ for WT, IL-10 K/O, Ma IL-10 K/O, Mi IL-10 K/O, Tr IL-
10 K/O lesions at 200 days post-infection. Both sterile and non-sterile lesions are included. C. Average 
TNF-α concentration for WT, Ma IL-10 K/O (Ma), Mi IL-10 K/O (Mi), Tr IL-10 K/O (Tr) lesions. Non-
sterile lesions are displayed as solid bars and sterile lesions are displayed as striped bars. D. Caseous 
necrosis for WT, Ma IL-10 K/O (Ma), Mi IL-10 K/O (Mi), Tr IL-10 K/O (Tr) lesions. Non-sterile lesions 
are displayed as solid bars and sterile lesions are displayed as striped bars. Individual dots represent 
individual lesions. Lines indicate the mean values. Bars are representative of mean values with error bars 
showing SEM. For all panels: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100. 
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Figure 5.6 Infected macrophage derived IL-10 can undermine host-control of antimicrobial activity 
A. Simulated percentage of IL-10 in the lesion at 200 days post-infection that is derived from infected 
macrophage IL-10 production is highly linearly correlated with infected macrophage IL-10 fractional 
synthesis (fMi) (Pearson’s r = 0.9265, p < 0.0001). B. Simulated response in CFU at 200 days post-infection 
for varying levels of infected macrophage IL-10 fractional synthesis (fMi). C. Simulated response in 
CFU/CEQ at 200 days post-infection for varying levels of infected macrophage IL-10 fractional synthesis 
(fMi). D. Simulated response in macrophage populations at 200 days post-infection (activated macrophages 
– black circles, infected macrophages – grey squares) for varying levels of infected macrophage IL-10 
fractional synthesis (fMi). For all panels: Region 1 (defined from fractional synthesis rates (fMi) of ~0.002 to 
~0.05) represents the region where IL-10 is under the control of the host-response. Region 2 (defined from 
factional synthesis rates (fMi) of ~0.05 to ~0.2) represents the region of transitioning control of the IL-10 
response. Region 3 (defined from factional synthesis rates (fMi) of ~0.2 to ~1.0) represents the region where 
IL-10 is under the control of the pathogen. Individual open dots represent individual lesions. Solid dots 
indicate the mean values with error bars showing SEM. N = 20.  
 

5.3.7 Increased Infected Macrophage Derived IL-10 Can Shift Control of the Early 
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Although infected macrophages appear to have minor control of antimicrobial 
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and infected macrophages are positively correlated with CFU per lesion and CFU/CEQ at 

day 50 and 200 (Table B.4, Table B.5 in Appendix B). In addition, reports indicate that 

some strains of Mtb can induce greater production of IL-10 from macrophages, which 

may have evolved as an efficient strategy to limit bacterial sterilization (1). Furthermore, 

neutrophils may play a key role in dictating increased levels of IL-10 production from 

infected macrophages (25–27). Therefore, we tested how increased production of IL-10 

from infected macrophages might undermine host control of antimicrobial activity and 

promote pathogen persistence. 

As the fractional synthesis rate of infected macrophages (Eqn. 5.2) is increased, 

there is a linear increase in the percentage of IL-10 in the lesion that is derived from 

infected macrophages (Pearson’s r = 0.9265, p < 0.0001) (Figure 5.6A). In contrast, CFU 

per lesion, CFU/CEQ, and macrophage populations respond to increased IL-10 synthesis 

by infected macrophages in a highly non-linear fashion. At low fractional synthesis rates 

(Region 1), predictions of CFU, CFU/CEQ, and macrophage populations show no 

significant deviation from WT values (Figure 5.6B-D). As the fractional synthesis rate 

increases (Region 2), antimicrobial activity begins to decrease (Figure 5.6C), leading to a 

small increase in CFU per lesion (Figure 5.6B). Yet, activated macrophages remain the 

dominant macrophage population (Figure 5.6D). When the fractional synthesis rate 

increases still further (Region 3), antimicrobial activity is reduced ~10-fold at day 50 and 

0 to 10-fold at day 200 (Figure 5.6C). Reduction of antimicrobial activity causes the 

mean CFU per lesion at day 200 to increase ~100-fold (from lesions classified as 

controlled growth to uncontrolled growth) and the dominant macrophage population to 

switch from activated macrophages to infected macrophages (Figure 5.6B,D). The large 
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increase in CFU per lesion at high IL-10 levels may reflect a transition towards an 

outcome similar to TB pneumonia, where there is limited antimicrobial activity leading to 

uncontrolled bacterial replication causing excessive inflammation and accompanying 

gross pathology (51). Taken together, we predict multiple regimes of IL-10 control over 

antimicrobial activity in Figure 5.6 labeled as Regions 1-3. Region 1: the host-controlled 

response wherein activated macrophages are the dominant population producing IL-10, 

leading to control of CFU per lesion, an efficient antimicrobial response, and limited 

tissue damage. Region 2: the transitional response where activated macrophages are the 

dominant population yet production of IL-10 from infected macrophages begins to 

decrease antimicrobial activity causing a rise in CFU per lesion. Region 3: the pathogen-

controlled response wherein infected macrophages are the dominant IL-10 producing 

population and antimicrobial activity is drastically reduced. This arises as infected 

macrophage derived IL-10 causes self-propagation of the infected macrophage 

population further shifting control of antimicrobial activity from host to pathogen. 

Together, these findings suggest that increased infected macrophage production rates of 

IL-10 can be an effective bacterial immune-evasion strategy that shifts control of 

antimicrobial activity from the host-immune response to the pathogen-derived response, 

therefore promoting pathogen persistence and survival. 

 

5.4 Discussion 

The development of new therapeutics for TB will be aided by a clearer 

understanding of the complex host-pathogen interactions and immune responses at the 

granuloma scale. In this Chapter, we use a computational model (GranSim) to probe the 
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role of IL-10 during the immune response to Mtb at an individual granuloma scale. 

Particular strengths of our computational approach include: calibration and validation 

against bacterial dynamics in the non-human primate model of TB, the ability to 

temporally track individual lesions regardless of sterilization, modulating levels of IL-10 

in granulomas with fine control, and deleting IL-10 production from specific populations. 

In comparison, many of these strengths are difficult or impossible to measure and track in 

experimental systems. 

 

Figure 5.7 IL-10 controls sterility, bacterial set-point, and immunopathology on a per lesion basis 
A. IL-10 control of bacterial dynamics in a lesion over time. B. IL-10 control of host damage in a lesion 
over time. The killing efficacy of the host-immune response is controlled by IL-10. In non-sterile lesions, 
control of killing efficacy by IL-10 leads to a bacterial set-point that balances bacterial replication with 
bactericidal processes, with minor host damage. Reducing IL-10 leads to increased killing efficacy, which 
promotes the lesion to sterilize at the cost of increased host damage. Lesions that sterilize may begin to 
resolve at later stages of infection (thus the downward slope of host damage), yet this could lead to fibrosis 
or scarring. 
 

The computational model of Mtb infection was calibrated and validated with 

bacterial dynamics from the non-human primate model providing a model that has 

comparable bacterial dynamics to human Mtb infection. Peak bacterial loads occur at 

approximately day 28 post-infection followed by a sudden drop due to the onset of host 

adaptive immunity (Figure 5.7A). Using our model, we predict that IL-10 controls the 

antimicrobial activity of the early immune response. The strength of the antimicrobial 
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response, controlled by IL-10, mediates a trade-off between lesion sterilization and early 

host-induced tissue damage (Figure 5.7). We show, for the first time, that upon 

abrogation of IL-10, small transient increases in antimicrobial activity increase the 

likelihood of lesion sterilization. We predict that these small changes change lesion 

outcome since bacterial loads are reduced to very low levels during the early immune 

response. These predicted effects would most likely not be present in the murine model 

of Mtb infection as the bacterial dynamics are significantly different (progressive 

infection) than those in this model, non-human primates, and humans (64). 

In humans, IL-10 levels are elevated in the lungs, bronchoalveolar lavage fluid, 

sputum, and serum of active TB patients (1, 66, 67). Additionally, polymorphisms in IL-

10 associated genes have been linked to increased susceptibility to TB (1). In mice, 

overexpression of IL-10 in macrophages or in entire animals is associated with higher 

bacterial loads in granulomas (46, 47). Recently, investigations in NHP models of TB 

suggest similar antimicrobial activity in lesions of both the active and latent disease state. 

The only significant difference between lesions in differing disease states was a 

substantially increased fraction of sterile lesions per animal in the latent state (51). Taken 

in conjunction with our predictions, this suggests that IL-10 might be a key regulator 

between the clinical outcomes of latent versus active disease by controlling lesional 

sterility through antimicrobial activity at the cost of increased tissue damage. Thus, novel 

IL-10 focused treatment strategies (e.g. anti-IL10R antibodies) may be effective if 

properly timed during the adaptive immune response to promote lesional sterility. 

Furthermore, modulating IL-10 levels in the context of other important immune 

molecules (e.g. TNF or IFN-γ) could prove to be beneficial in controlling lesion outcome, 
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but have yet to be explored (68–70). Unfortunately, these strategies may lack clinical 

relevance because the short window where IL-10 treatments could be effective is at odds 

with the long-time-to-diagnosis in clinics. Further work with both experimental and 

computational models of Mtb infection models will be necessary to fully understand 

correlates of clinical outcomes with IL-10. 

Although IL-10 helps control bacterial load after the onset of the host-immune 

response, an inherent carrying capacity may exist in forming granulomas (51). Indeed the 

maximal observed CFU in a NHP model of infection is ~105 per lesion, comparing well 

with our calculations that suggest lesions without host-immunity have a maximal CFU of  

~104-106 per lesion (when scaled to 3D). If the antimicrobial activity is not sufficient to 

sterilize a lesion, the level of IL-10 controls a bacterial set-point of the lesion, which is 

the balance between bacterial replication and antimicrobial response, with the benefit of 

reduced tissue damage (Figure 5.7). The idea of a set-point stems from studies on HIV-1 

infection; post peak viremia, after host immunity is initiated, the virus is suppressed to a 

specific level (i.e. the set-point) that determines long-term progression to disease (71, 72). 

Thus, we predict that IL-10 transiently influences antimicrobial activity, controls 

granuloma outcome (sterile vs. non-sterile lesions), determines bacterial set-point, and 

limits the extent of host-induced tissue damage at the lesional scale. 

It has long been thought that IL-10 may play a central role in preventing an over-

exuberant immune response during Mtb infection that leads to tissue damage (1, 7, 10, 

28, 73, 74). Data from murine models are surprisingly limited, with only a single report 

of IL-10 K/O mice demonstrating increased pulmonary inflammation causing animals to 

succumb to infection earlier than WT mice (28). Using our in silico model we predict that 
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IL-10 controls host-immunity induced damage, especially during the initial burst of 

antimicrobial processes after the onset of adaptive immunity (30-60 days post-infection). 

Furthermore, we predict that increases in lesional sterility, due to increased antimicrobial 

effects, are at the expense of increased host damage (Figure 5.7). This is in agreement 

with Chapter 3, which predicted that the ratio of TNF and IL-10 is a critical mediator of 

infection control with limited host-induced damage (8). Although we approximated tissue 

damage by measuring levels of caseous necrosis, it is important to note that tissue 

damage in vivo is a much more complicated process attributed to a myriad of host 

processes. We are currently evaluating better measurements of tissue damage (e.g. 

differentiating between apoptosis and necrosis, as well as fibrosis) and immunopathology 

(e.g. neutrophils) that could be added to our model. Because Mtb infection can lead to 

chronic cell death and high levels of caseous necrosis, we anticipate that better 

measurements of tissue damage could point to an even clearer role for IL-10 and help 

define the mechanisms preventing host-immunity induced tissue damage. Our predictions 

agree well with the balance of damage and host response seen in many forms of disease 

pathogenesis (39). 

It is important to note that IL-10 is not the only regulatory and anti-inflammatory 

cytokine present during infection. It has been suggested in murine models that a lack of 

data indicating a role for IL-10 in preventing tissue damage may be due the role of other 

regulatory mechanisms (such as PD-1 bearing T cells or TGF-β) (7, 28, 75, 76). Our 

model indicates that in the absence of IL-10, increased tissue damage at later stages post-

infection (150-300 days) can be partially controlled by other regulatory mechanisms 

included in the model, such as cell-cell contact mediated down-regulation by T cells and 
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tissue remodeling (data not shown). Additionally, many human and macaque lesions 

develop fibrosis, which is a scarring-like response to caseous necrosis and tissue damage 

most likely driven by TGF-β (3). We are currently working on integrating fibrotic 

pathways into our model to understand the basis of fibrosis during TB. This should lead 

to a deeper understanding of how IL-10-based control of early tissue damage may be 

important in preventing later development of fibrosis and scarring in lesions.  

IL-10 production may not only be a host-derived protective mechanism, but a 

pathogen-evolved bactericidal evasion mechanism. In many chronic infection scenarios 

(both viral and bacterial) pathogenic IL-10 induction can be used to dull the efficacy of 

the immune response (1, 7, 77). Specifically, in TB infection the Mtb clinical strains 

HN878 and CH have been shown to induce increased levels of IL-10 production from 

infected macrophages that could help establish a state of chronic infection (1, 11–16). 

Additionally, increased IL-10 levels in human patients are correlated with poor outcomes 

of TB infection (66, 67, 78, 79). Using our computational model we predicted that high 

levels of IL-10 derived from infected macrophages promotes pathogen persistence by 

limiting antimicrobial activity of the early immune response to Mtb. Reduction of 

antimicrobial activity increases the chances that a healthy macrophage will engulf Mtb 

(promoting pathogen persistence), while allowing the pathogen to survive in its 

intracellular niche by preventing cellular apoptosis/necrosis (77). These mechanisms 

prevent lesions from sterilizing and increase the bacterial set-point at the late stages of 

infection (Figure 5.7A). Furthermore, we show that a switch in lesional control occurs at 

high levels of IL-10 derived from infected macrophages (Figure 5.6) where the ability of 

activated macrophages to use IL-10 as a regulatory mechanism for host protection 
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(prevention of host-induced tissue damage) is lost and the pathogen is able to repurpose 

IL-10 as a mechanism of persistence (‘immune-evasion’). 

The major contributor of IL-10 found in our studies is activated macrophages, 

although regulatory T cells produced IL-10 at twice the rate of activated macrophages. 

We predict that the limited number of regulatory T cells that are recruited to the lesion 

and their localization in the periphery restricts effectiveness of their IL-10 production. 

Further studies into the role of IL-10 producing T cells during Mtb infection are needed. 

In addition, neutrophils and their production of IL-10 were not included in this model. 

However, it has recently been shown that neutrophils only produce IL-10 in response to 

infection with Mtb and not in response to stimulation with Mtb antigens (25). Therefore, 

neutrophils would be a similar population to infected macrophages in our model, 

providing phagocytosis capabilities, an intracellular niche for Mtb growth, and production 

of IL-10 upon infection (26, 27, 80–82). As we predicted the contribution of increased 

IL-10 production from infected macrophages in disrupting antimicrobial activity during 

the early immune response, parallels could be theorized for neutrophil IL-10 production. 

We are currently working on gathering experimental data regarding neutrophils in the 

non-human primate model of infection and integrating neutrophils into our computational 

model (see Chapter 8). These efforts should lead to a clearer understanding of the role of 

neutrophil derived IL-10.  

Our computational platform has allowed us to understand the role of IL-10 in 

controlling the trade-off between antimicrobial activity of the early immune response to 

Mtb, lesional sterility, and host-immunity derived tissue damage. Our unique multi-scale 

computational platform used in parallel with experimental models provides an integrated 
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systems biology approach to better understand the complex immune response to Mtb, 

which will allow us to rapidly hypothesize and test novel therapeutic interventions. 
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Chapter 6 

A Systems Pharmacology Approach Towards Design and Understanding of Inhaled 

Formulations of Rifampicin and Isoniazid For the Treatment of TB

 

The work in Chapter 6 was submitted as: Cilfone, N.A., Pienaar, E., Thurber, G.M., 

Kirschner, D.E., Linderman, J.J. A systems pharmacology approach towards design and 

understanding of inhaled formulations of rifampicin and isoniazid for the treatment of 

TB. (2014). 

 

6.1 Introduction 

Tuberculosis (TB), caused by inhalation of the bacterium Mycobacterium 

tuberculosis (Mtb), remains a widespread concern even with the availability of curative 

antibiotics (1–3). Current antibiotic regimens require a minimum of 6 months of 

treatment; daily oral doses with a combination of rifampicin (RIF), isoniazid (INH), 

pyrazinamide (PZA), and ethambutol (EMB) for 2 months, followed by 4-months of RIF 

and INH (4). The length and combinatorial nature of ‘first-line’ drug regimens may result 

in patient compliance issues as well as chronic toxicity (1, 2, 5). There is a desperate need 

for new treatment strategies that can shorten the lengthy treatment period and also reduce 

dose frequency (1, 5, 6). 

A central feature of the immune response to Mtb is the formation of a granuloma, 

an organized structure of macrophages and lymphocytes that forms around infected 
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macrophages and extracellular Mtb in lungs (1, 3, 7). Multiple granulomas form in a 

host’s lungs and evolve independently (8, 9). As granulomas are the pathologic structures 

that harbor Mtb, distribution of antibiotics in granulomas is critical for sterilizing 

bacteria. The heterogeneity of Mtb populations in granulomas, with bacteria residing in 

both intra- and extracellular compartments, and varying growth states all impacts the 

effectiveness of antibiotics (e.g. those that rely on disruption of replication). (1, 10). In 

addition, current oral antibiotic regimens can lead to poor antibiotic penetration into 

granulomas causing sub-optimal exposure and permitting bacterial re-growth between 

doses, necessitating long treatment durations (see Appendix C) (1, 10) (Pienaar et al. 

submitted). 

Delivery of antibiotics by an inhaled route could overcome limitations of oral 

dosing for treatment of TB (2, 11–13).  The underlying hypothesis for inhaled 

formulations is that a fabricated carrier loaded with antibiotics is dosed into the lungs via 

an aerosol delivery system (e.g. nebulizer) (12, 13).  Based on physical characteristics, 

carriers settle in different regions of the lungs and are taken up by alveolar macrophages 

and lung endothelial cells (2, 11). Once deposited in lung tissue, carriers release the pre-

loaded antibiotic based on tunable physio-chemical properties of the carrier such as size 

and diffusivity of antibiotics through the carrier. The most extensively used carriers are 

poly-lactic acid (PLA) and poly-lactic-co-glycolic acid (PLGA) formulations that are 

tuned for slow and sustained release of antibiotics (2, 11). As granulomas are found in the 

host’s lungs, an inhaled dose should elevate antibiotic concentrations in the lung and 

avoid first-pass effects thus increasing sterilizing capabilities. Additionally, targeting 

carriers to macrophages might further augment the sterilizing capabilities of antibiotics 
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by directly elevating concentrations within the bacterial niche (11, 12, 14–17). With 

increased sterilizing capabilities the dose frequency could be reduced, alleviating 

compliance and toxicity concerns associated with daily oral treatment. However, due to 

many issues such as granuloma dynamics, the design space of carrier release properties, 

pharmacodynamics, and the system pharmacokinetics, we still lack a basic understanding 

of what controls the efficacy of inhaled formulations. 

Encapsulated formulations are rapidly phagocytosed by infected macrophages in 

vitro, elevating intracellular concentrations and improving sterilization capabilities (14–

16, 18–20). However, these studies do not reflect the dense macrophage-laden 

characteristics of granulomas. Improved efficacy of inhaled doses compared to oral doses 

has been demonstrated in murine, rat, and guinea pig models of Mtb infection (11–13, 

21). For example, RIF and INH were co-loaded into a PLGA carrier and were given to 

Mtb-infected guinea pigs. Three doses of this inhaled formulation had similar sterilizing 

capability as 45 oral doses of antibiotics, with antibiotics detectable in the plasma up to 

10 days after a single inhaled dose (2, 22). Although these studies have shed light on the 

efficacy of inhaled formulations, murine, rat, and guinea pig models have differing 

antibiotic pharmacokinetics than humans and lack many characteristics of human TB, 

such as latent infection and the typical granuloma organization (12, 23). The most 

relevant in vivo studies are single doses of inhaled formulations into the lungs of healthy 

non-human primates (INH and rifabutin – a rifampicin derivative) and humans 

(capreomycin – a second line antibiotic) (24, 25). An inhaled formulation of INH had a 2-

fold higher AUC/MIC index measured from plasma, compared to oral doses (24). The 

highest dose of an inhaled formulation of capreomycin leads to plasma concentrations 
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above MIC, but for less than 4 hours (25). Although promising, most clinically relevant 

in vivo studies are only able to measure temporal plasma concentrations after inhaled 

dosing. For inhaled formulations, it is assumed that extended periods of elevated 

antibiotic concentrations in plasma directly translates to increased exposure in 

granulomas (1, 18, 24–27). However, oral dosing studies demonstrate that antibiotic 

exposure in the granuloma is significantly different than antibiotic exposure in the plasma 

(1, 10) (Appendix C, Pienaar et al. submitted).  

To better understand the potential for inhaled antibiotic formulations to improve 

sterilization of bacteria in granulomas, we need an approach that simultaneously accounts 

for granuloma dynamics, inhaled carrier behavior and release kinetics, pharmacokinetics, 

and pharmacodynamics of antibiotics. We use a systems pharmacology approach and 

extend our computational model of granuloma function and antibiotic treatment, from 

Appendix C, to include inhaled dosing and antibiotic release from a generalized carrier 

system. We follow concentrations of RIF and INH in granulomas over 200 days of 

treatment for both inhaled and oral dosing. We use our computational model to 

understand the effects of carrier physio-chemical properties and release kinetics (e.g. size, 

diffusivity, etc.), dosing frequency, and pharmacokinetics on treatment efficacy. We use 

understanding gained from these studies to rationally design inhaled formulations of RIF 

and INH that require reduced dose frequencies and have equivalent or better sterilizing 

capabilities compared to daily oral dosing. These findings illuminate fundamental 

mechanisms driving efficacy of inhaled formulations and inform design of superior 

carriers for animal and clinical testing. 
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Figure 6.1 Overall model structure that captures relevant dynamics across multiple compartments 
(a) The pharmacokinetic (PK) model includes two transit compartments (ABS-1 and ABS-2), a plasma 
compartment (PLASMA), a peripheral compartment (PERIPH.), a non-infected lung compartment (LUNG), 
and an intracellular macrophage compartment (MΦ) that is at pseudo-steady state. Oral doses enter into the 
first transit compartment. Inhaled doses are partitioned between the non-infected lung (1-fD) and lesion (fD) 
models based on representative sizes. The dose (1-fD) into the non-infected lung compartment is further 
partitioned between extracellular non-infected lung and intracellular macrophage compartments. We 
assume no trafficking of macrophages in or out of the non-infected lungs. (b) Our granuloma model, a 
hybrid multi-scale agent-based model, includes spatial and temporal dynamics of antibiotics and captures 
diffusion, extracellular degradation, cellular uptake and intracellular degradation. Antibiotics exit the 
plasma compartment and enter the granuloma model at vascular sources designated in the simulation grid 
based on vascular permeability coefficients and concentration gradients between the plasma compartment 
and the granuloma mode. The inhaled formulation is modeled by agent representations of each carrier. (c) 
Model of the behavior and release of antibiotics by inhaled carriers. Carriers move by random walk, are 
phagocytosed by macrophages based on size, zeta potential, and density of targeting ligand (Figure D.1b-d 
in Appendix D), degrade in both the extra- and intracellular space, and release antibiotics in both the intra- 
and extracellular space. (d) The pharmacodynamics model uses Emax functions (using C50 values and Hill-
constants, H) to describe the antibacterial activity of antibiotics against multiple bacterial subpopulations 
(intracellular, extracellular, and non-replicating) based on the local antibiotic concentration (C(x,y,t)). Art 
adapted from Servier Medical Art (http://servier.com/Powerpoint-image-bank) provided under the Creative 
Commons Unported License 3.0. 
 

6.2 Methods 

6.2.1 Pharmacokinetic (PK) Model 

The four-components of our computational model are shown in Figure 6.1. We 

modify the PK model from Appendix C to allow for dosing via both inhaled and oral 
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routes. The PK model (Eqn. 6.3-6.8) includes two transit compartments (CA1 and CA2), a 

plasma compartment (CPL), a peripheral compartment (CPE), a non-infected lung 

compartment (CL), an intracellular macrophage sub-compartment (CM) at pseudo-steady 

state, and a granuloma compartment (described below) (Figure 6.1a). 
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𝑑𝑡 = −𝐾! ⋅ 𝐶!!                                                                                                                                                                                                                            (𝐸𝑞𝑛. 6.1) 

𝑑𝐶!!
𝑑𝑡 = 𝐾! ⋅ 𝐶!! − 𝐾! ⋅ 𝐶!! − 𝐶𝐿! ⋅ 𝐶!!                                                                                                                                              (𝐸𝑞𝑛. 6.2) 

𝑑𝐶!"
𝑑𝑡 = 𝐾! ⋅ 𝐶!! − 𝑄!

𝐶!"
𝑉!"

−
𝐶!"
𝑉!"

− 𝑄! 𝑃𝐶! ⋅
𝐶!"
𝑉!"

−
𝐶!
𝑉!

                                                                        (𝐸𝑞𝑛. 6.3) 

𝑑𝐶!"
𝑑𝑡 = 𝑄!

𝐶!"
𝑉!"

−
𝐶!"
𝑉!"

− 𝐶𝐿!" ⋅
𝐶!"
𝑉!"

                                                                                                                                                  (𝐸𝑞𝑛. 6.4) 

𝑑𝐶!
𝑑𝑡 = 𝑄! 𝑃𝐶! ⋅

𝐶!"
𝑉!"

−
𝐶!
𝑉!

+ 𝑀!" 𝑡
𝑉!
𝐿!!!"# !

                                                                                            (𝐸𝑞𝑛. 6.5) 

𝑑𝐶!
𝑑𝑡 = 𝑀!" 𝑡 𝑁! ⋅ 𝐿!

!!"# !

− 𝐶𝐿! ⋅ 𝐶!                                                                                                                       (𝐸𝑞𝑛. 6.6) 

KA is absorption rate (h-1); CLA, CLPE, CLM are clearance rate constants (L/kg*h) 

from second transit, peripheral, and macrophage compartments; QP and QL are between 

compartment transfer rate constants (h-1) for plasma to peripheral or non-infected lung 

compartments; VPL, VPE, and VL are apparent distribution volumes (L/kg) of plasma, 

peripheral, and non-infected lung compartments; PCL is permeability coefficient for non-

infected lung compartment; MDL(t) and MDM(t) are time-varying antibiotic mass release 

rates (mg/h) from inhaled carriers (described in Inhaled Carrier Model below); NExt and 

NInt are time-varying number of inhaled carriers in non-infected lung and macrophage 

compartments; LL is total lung volume (L), and NM is number of macrophages in non-
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infected lung. The pseudo-steady state between non-infected lung and intracellular 

macrophage compartments is given by: 

𝐶! =
𝐴!

𝐿! + 𝐸! ⋅ 𝑁! ⋅ 𝐿!
                                                                                                                                                                                                      (𝐸𝑞𝑛. 6.7) 

𝐶! = 𝐸! ⋅ 𝐶!                                                                                                                                                                                                                                              (𝐸𝑞𝑛. 6.8) 

AT is total mass (mg) of antibiotics (sum of intra- and extracellular); EM is equilibrium 

partition coefficient, and LM is volume (mL) of a macrophage. Antibiotics exit the PK 

plasma compartment and enter the granuloma compartment at vascular sources 

designated in the simulation grid (Figure 6.1b) based on the concentration gradients 

between the plasma compartment and the granuloma compartment (CExt) (28) (Pienaar et 

al. submitted). 

𝑑𝐶!"# 𝑥,𝑦, 𝑡
𝑑𝑡 = 𝑝 ⋅ 𝐴! 𝑃𝐶! ⋅ 𝐶!" − 𝐶!"# 𝑥,𝑦, 𝑡                                                                                                   (𝐸𝑞𝑛. 6.9) 

AS is the surface area of a vascular source (cm2), p is the vascular permeability (cm/s), 

and PCL is the partition coefficient. PK model parameters are given in Table D.1 in 

Appendix D. 

 

6.2.2 Granuloma Model of Mtb Infection 

Our 2-dimensional hybrid multi-scale agent-based model of granuloma formation 

and function during Mtb infection describes processes across three scales (see Appendix 

C): tissue, cellular, and molecular (Figure 6.1b) (29–31) (Pienaar et al. submitted). 

Briefly, the granuloma model represents a 16 mm2 section of lung tissue and describes 

macrophages, T-cells, and three Mtb sub-populations: intracellular, extracellular, and 

non-replicating. The formation of a granuloma is an emergent behavior in response to 
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infection. The model tracks agent states and interactions, as well as chemokine and 

cytokine diffusion, degradation. Receptor-ligand trafficking and signaling events are 

estimated using a tuneable resolution approach, demonstrated in Chapter 2 and Appendix 

C (29, 31, 32) (Pienaar et al. submitted). The model captures the spatial and temporal 

dynamics of RIF and INH through extracellular diffusion and degradation, cellular uptake 

and intracellular degradation as described in Appendix C (Pienaar et al. submitted). 

Cellular accumulation of soluble antibiotics is assumed at pseudo-steady state given by: 

𝐶!"# 𝑥,𝑦, 𝑡 =
𝐴! 𝑥,𝑦, 𝑡

𝐿!"#$ + 𝐸! ⋅ 𝐿!
                                                                                                                                                                    (𝐸𝑞𝑛. 6.10) 

𝐶!"# 𝑥,𝑦, 𝑡 = 𝐸! ⋅ 𝐶!"# 𝑥,𝑦, 𝑡                                                                                                                                                                     (𝐸𝑞𝑛. 6.11) 

CExt and CInt are extra- and intracellular concentrations (mg/mL), and LGrid is volume 

(mL) of a grid compartment. Parameter values for apparent RIF and INH diffusivity 

(cm2/s), intra- and extracellular degradation rate (s-1), and equilibrium partition 

coefficient were fit to experimental measurements of antibiotic distribution in Appendix 

C. Granuloma model parameters are given in Table D.2 in Appendix D. 

 

6.2.3 Inhaled Carrier Model: Granuloma Compartment 

An inhaled dose arrives in the granuloma model, as fraction fD of the total dose 

(Figure 6.1a). The granuloma model represents a small section of lung tissue where 

infection occurs, and individual carriers (~103 deposited carriers) are modeled as agents 

(Figure 6.1c). We assume the representative section of lung tissue is well distributed with 

alveolar space, and thus an inhaled dose is randomly deposited into the simulation 

environment. Deposition does not occur in micro-compartments characterized as part of 

the granuloma, as alveolar space is not observed inside granulomas (Figure D.1a in 
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Appendix D) (9, 33). We do not model a specific carrier, but instead describe a general 

carrier formulation similar to polymer-encapsulated antibiotics (14–16, 18–20). Carrier 

behavior is illustrated in Figure 6.1c and includes carrier movement, macrophage 

phagocytosis of carriers (Figure D.1b-d in Appendix D), dispersal from macrophages, 

and extra- and intracellular degradation (17, 34–38). 

Release of antibiotics from carriers occurs in both the intra- and extracellular 

environment (Figure 6.1c) (14–16, 18–20). We model release kinetics by describing 

diffusion of antibiotics through a spherical carrier and degradation of the carrier system 

itself, with time varying boundary conditions (39–41).  

𝜕𝐶!
𝜕𝑡 =

𝐷 𝑡
𝑟!

𝜕
𝜕𝑟 𝑟

! 𝜕𝐶!
𝜕𝑟                                                                                                   𝐶! 𝑅 = 𝐶! 𝑥,𝑦, 𝑡                           (𝐸𝑞𝑛. 6.12) 

CD is the antibiotic concentration in the carrier (mg/µm3), D is the time-varying 

diffusivity of antibiotics in the carrier (µm2/s), r is the radial coordinate (µm), R is the 

carrier radius (µm), and CB is the boundary concentration (mg/µm3) – an intra- or 

extracellular concentration.  

We assume first-order degradation kinetics, which directly affects the diffusivity 

of antibiotics in the carrier (40): 

𝐷 𝑡 = 𝑃!"#$%&''𝑒 !!!"#!                                                                                                                                                                                         (𝐸𝑞𝑛. 6.13) 

PdrugDiff is the initial diffusivity of antibiotics in the carrier (µm2/s) and Pdeg is the carrier 

degradation rate (s-1) – specific to whether the carrier is intra- or extracellular. Based on 

relative rates of diffusion and degradation specified the carrier release kinetics can be 

either diffusion-controlled or degradation-controlled (Figure 6.1c) (39–41). All carrier 

parameters are given in Table D.1 in Appendix D. 
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6.2.4 Inhaled Carrier Model: Non-Infected Lung Compartment 

An inhaled dose arrives in the non-infected lung and intracellular macrophage 

compartments, as fraction (1-fD) of the total dose (Figure 6.1a). The number of carriers 

deposited is large (~109) and a homogenous representation of carriers is used (Figure 

6.1a). We partition the (1-fD) dose into both compartments, based on the probability of 

macrophage uptake. We solve the carrier release equations (Eqns. 6.12, 6.13) for a 

representative carrier in each compartment with appropriate boundary conditions, CL and 

CM, and scale the mass of antibiotic release by the total dose in each compartment. The 

carrier degradation rates are set as the extracellular degradation rate for the non-infected 

lung compartment and the intracellular degradation rate for the intracellular macrophage 

compartment. 

 

6.2.5 Pharmacodynamics (PD) Model 

We utilize the PD model (Figure 6.1d) designed and calibrated in Appendix C 

(Pienaar et al. submitted). Briefly, Emax functions (using C50 values and Hill-constants, H) 

describe the antibacterial activity of RIF and INH against multiple bacterial 

subpopulations (intracellular, extracellular, and non-replicating) based on the local 

antibiotic concentration (intra- or extracellular), which varies in both space and time in 

the granuloma model. Estimates of C50 and H were based on in vitro dose-response 

curves, while estimates of Emax were determined from comparisons to non-human primate 

data of CFU and sterilized granulomas after 2 months of daily doing with RIF or INH 

(42) (Pienaar et al. submitted). PD model parameters are given in Table D.1 in Appendix 

D. 
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6.2.6 Model Analysis 

Our work investigates antibiotic efficacy at the single granuloma scale. We 

simulate 100 days post-infection and subsequently treat with antibiotics for an additional 

200 days via the inhaled or oral route at two dosing frequencies: daily or every two-

weeks. We define successful treatment as the complete sterilization of all bacteria in a 

granuloma by 200 days post-treatment initiation. We track average concentrations of 

antibiotics over time in granulomas and in PK compartments. We calculate cumulative 

granuloma and peripheral antibiotic exposure (AUC) for 14-day timeframes. Peripheral 

AUC is a metric of toxicity as the peripheral compartment represents organs such as the 

liver and kidneys (10). We evaluate hazard ratios (HR) to determine the cumulative risk 

between inhaled and oral treatments. Uncertainty and sensitivity analysis is used to 

identify inhaled antibiotic model parameters that have significant effects on model 

outputs related to treatment efficacy (43). Additional model details can be found in the 

Supplemental Text in Appendix D. 

 

Figure 6.2 Model calibration and validation for oral and inhaled doses 
(a) Comparison of the modified PK model and previous PK model (from Appendix C) to maximum plasma 
concentration (Cmax), time to maximum plasma concentration (Tmax), and 24-hour AUC (AUC24) for oral 
doses of RIF and INH in the NHP model of TB available from the Flynn Lab (Pienaar et al. submitted) (6). 
Ranges are used for multiple model PK parameters to give inter-individual variability. Bars are 
representative of mean values with error bars showing SD. Model: N = 50, NHP: N = 7.  (b) Validation of 
the model against observed plasma concentrations of INH after single inhalation to healthy NHPs estimated 
from (17, 24). Dots represent mean values with error bars showing SD. Line represents mean values with 
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dotted lines showing SD. Ranges are used for multiple model PK parameters to give inter-individual 
variability. Model: N = 10, NHP: N = 4. 
 

6.3 Results 

6.3.1 Model Calibration with Non-Human Primate Experimental Data 

Our granuloma model of Mtb infection, without antibiotic treatment, was 

previously calibrated and validated against temporal measurements of colony forming 

units (CFU) per granuloma from a non-human primate (NHP) model of TB infection (see 

Chapter 5 and Appendix C) (8) (Pienaar et al. submitted). We calibrate our new antibiotic 

model with two dose formulations from NHP models of TB (Figure 6.2): (1) four oral 

doses of RIF (20 mg/kg) or INH (15 mg/kg) were given and temporal plasma 

concentrations were measured after the fourth dose (6), (2) a single inhaled dose of INH 

loaded PLA micro-particles was given and temporal plasma concentrations of INH were 

measured (17, 24). Based on measured micro-particle size, aerodynamic diameter, and 

fractional lung deposition (~10-30%) we estimate the total deposited inhaled dose (input 

to our model) to be 1.2x109 particles (24, 44). We fix the deposited dose at this 

physiologically relevant value here and in all further simulations as determining and 

optimizing the deposition of inhaled particles in lungs is not the focus of this work (and 

poses its own challenges). Carrier-related parameters for the single inhaled dose were 

estimated based on data and Eqns. 6.12-6.13: D = 1.85x10-6 (µm2/s), δc = 1.65x10-5 (s-1), 

and INH loading estimated as 1.45x10-8 (mg/particle) (17). Using the oral doses and 

calculated carrier-related parameters, we vary multiple PK parameters in order to best fit 

plasma compartment kinetics of single oral doses of RIF and INH (matching well with 

our previous model from Appendix C) and a single inhaled dose of INH loaded carriers 
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(Figure 6.2) (6, 17, 24). We establish a baseline range of PK related parameters that 

accounts for host-to-host variability (Table D.1 in Appendix D). 

Table 6.1 Sensitivity analysis of inhaled RIF model parameters at different dose frequencies on 
treatment related model outputs 
 

   Carrier Release Parameters  Mϕ Targeting Parameters  PK 
Parameters 
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Peripheral AUC +++  +  +     -       +++ --- 

Time to Sterilization ---                  
Carrier Dose Used: 1.2×109 carriers. Pload – load mass of drug (mg/carrier), Psize – size of carrier (µm), PdrugDiff – diffusivity of drug in carrier (µm2/s), PintDeg – carrier 
intracellular degradation rate (1/s), PextDeg – carrier extracellular degradation rate (1/s), Pzeta – carrier zeta-potential (mV), Pdiff – diffusivity of carrier in lung tissue (cm2/s), 
Muptake – macrophage maximum carrier uptake probability (), PTL – carrier density of targeting ligand (#/carrier), MTR – macrophage density of targeting receptor (#/cell), KD-

TLR – ligand-receptor dissociation constant (M), kTLR – ligand-receptor carrier uptake rate (#/cell*s), kabs – absorption rate constant (1/hr), CLabs – clearance rate from 2nd 
absorption compartment (L/hr*kg), Vp – peripheral volume distribution (L/kg), CLp – clearance rate from peripheral compartment (L/hr*kg). -/+ p < 0.05, --/++ p < 0.001, ---
/+++ p < 0.0001 from sensitivity analysis. 

 

6.3.2 A Combination of Pharmacokinetic and Carrier-Release Properties Control the 

Efficacy of Inhaled Formulations 

We use sensitivity analysis to understand which dynamics most affect treatment 

efficacy (CFU, granuloma AUC, peripheral AUC, and time to sterilization) for inhaled 

formulations of RIF and INH (Supplemental Text in Appendix D). We analyzed daily 

and two-weeks dosing frequencies to compare changes in treatment dynamics at reduced 

frequencies. Tables 6.1 and 6.2 demonstrate that: (1) increased antibiotic loading 

promotes bacterial sterilization, (2) carrier release kinetics control treatment efficacy and 

differ with dosing frequency, and (3) system pharmacokinetics influence the availability 

of antibiotics at the site of infection.  

For both RIF and INH, more frequent inhaled dosing (e.g. daily) allows carriers to 

be designed with faster carrier-release profiles (higher diffusivity in the carrier and 

degradation rates) as another dose is given after a short interval (Tables 6.1 and 6.2). 
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Faster carrier release profiles are negatively correlated with CFU and time to sterilization, 

while positively correlated with granuloma and peripheral AUC. With less frequent 

dosing (every two-weeks) INH requires a carrier designed with slower carrier-release and 

degradation profiles in order to maintain high levels of granuloma exposure with 

decreased CFU (Table 6.2), while RIF requires a carrier designed with faster carrier-

release profiles to increase granuloma exposure but with limited effects on CFU (Table 

6.2). The system pharmacokinetics have large influences on the antibiotic exposure at the 

site of infection for both dosing frequencies, with clearance of RIF and INH from the 

peripheral compartment correlated with many facets of treatment dynamics (Tables 6.1 

and 6.2). 

Table 6.2 Sensitivity analysis of inhaled INH model parameters at different dose frequencies on 
treatment related model outputs 
 

   Carrier Release Parameters  Mϕ Targeting Parameters  PK Parameters 
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Carrier Dose Used: 1.2×109 carriers. Pload – load mass of drug (mg/carrier), Psize – size of carrier (µm), PdrugDiff – diffusivity of drug in carrier (µm2/s), PintDeg – carrier 
intracellular degradation rate (1/s), PextDeg – carrier extracellular degradation rate (1/s), Pzeta – carrier zeta-potential (mV), Pdiff – diffusivity of carrier in lung tissue (cm2/s), 
Muptake – macrophage maximum carrier uptake probability (), PTL – carrier density of targeting ligand (#/carrier), MTR – macrophage density of targeting receptor (#/cell), KD-

TLR – ligand-receptor dissociation constant (M), kTLR – ligand-receptor carrier uptake rate (#/cell*s), kabs – absorption rate constant (1/hr), CLabs – clearance rate from 2nd 
absorption compartment (L/hr*kg), Vp – peripheral volume distribution (L/kg), CLp – clearance rate from peripheral compartment (L/hr*kg). -/+ p < 0.05, --/++ p < 0.001, ---
/+++ p < 0.0001 from sensitivity analysis. 

 

6.3.3 Targeting Inhaled Formulations to Macrophages Has Limited Effects on 

Treatment Efficacy Due to the Dynamics of Granulomas  

Targeting inhaled carriers to macrophages (the bacterial niche) could enhance the 

efficacy of inhaled treatments, as phagocytosis of carriers in vitro leads to increased 

intracellular concentrations of antibiotics (14–16, 18–20). Yet, there is no direct evidence 

that targeting an inhaled carrier to macrophages in granulomas provides any treatment 
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advantage. Using sensitivity analysis we explored the effects of macrophage targeting on 

treatment efficacy (CFU, granuloma AUC, peripheral AUC, and time to sterilization) for 

inhaled formulations of RIF and INH. We varied parameters that control the rate of 

macrophage uptake including carrier charge, movement rate, and a generalized form of 

ligand targeting (Tables 6.1 and 6.2). 

Our analysis predicts that parameters influencing targeting of inhaled carriers to 

macrophages have limited effects on treatment efficacy for both RIF and INH. At both 

dosing frequencies of inhaled formulations of RIF, increased macrophage targeting leads 

to decreased antibiotic exposure in the granuloma and actually hinders antibiotic 

treatment (Table 6.1). For daily dosing of an inhaled formulation of INH, increased 

carrier charge (from negative to neutral – causing decreased uptake) is negatively 

correlated with CFU (Table 6.2). Macrophage targeting is limited by the granuloma 

structure as it prevents inhaled carriers from trafficking to and being phacoytosed by 

infected macrophages in the core of granulomas, which restricts any proposed advantage 

of elevated intracellular antibiotic concentrations. This limits macrophage uptake to outer 

regions of the granuloma where populations are largely healthy macrophages (see Movies 

at http://malthus.micro.med.umich.edu/lab/movies/InhaledAbx/). Therefore, our model 

predicts that there are no significant treatment benefits in designing inhaled carriers that 

specifically target macrophages due to the spatial organization of granulomas. 
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6.3.4 An Inhaled Formulation of RIF Can Reduce the Necessary Dose Frequency but 

Requires High Antibiotic Loading Which Can Lead to Increased Toxicity 

We identified 14 different inhaled formulations of RIF dosed every two-weeks 

from sensitivity analysis that had equivalent CFU and reduced peripheral AUC at 7 days 

post-treatment initiation compared to daily dosed oral formulations (see Appendix D). 

Using these candidates along with an understanding of which dynamics most affect 

treatment efficacy we designed an ideal in silico inhaled formulation of RIF to be dosed 

every two-weeks. We design the carrier with a RIF loading of 1.18x10-6 mg/particle, an 

extracellular degradation rate 3-fold lower than the intracellular rate, and a high RIF 

carrier diffusivity, which promotes rapid-release of antibiotics from the carrier (Figure 

6.3a). This equates to the entire total two-week dose given in the oral formulation. We 

observed no significant difference between the inhaled formulation, given every two 

weeks, and the oral formulation, given daily, when comparing the hazard ratio (Figure 

6.3b). The inhaled formulation may prevent treatment failures by increasing early 

sterilizing capabilities of RIF compared to daily oral dosing (Figure D.2a in Appendix 

D).  

Comparing average granuloma concentrations of RIF between the two 

formulations, we observe a significant difference in temporal dynamics: the inhaled 

formulation only eclipses the C50 of extracellular Mtb immediately after dosing and never 

surpasses the C50 for intracellular or non-replicating Mtb (Figure 6.3c) (see Movies at 

http://malthus.micro.med.umich.edu/lab/movies/InhaledAbx/). The average granuloma 

concentration of RIF steadily decreases, indicating that high antibiotic loading and fast 

carrier-release kinetics cannot maintain effective concentrations of RIF over the two-
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week dosing window (Figure 6.3c). In part, this is due to the pharmacokinetics of RIF as 

it distributes rapidly from the site of dosing (lung) to other tissues, as demonstrated by the 

limited changes in the normalized ratio of granuloma AUC to peripheral AUC (16%) and 

granuloma AUC to plasma AUC (17%) (Figure 6.3d). The early granuloma and 

peripheral AUC are elevated after dosing compared to oral dosing, indicating that early 

granuloma exposure is associated with elevated toxicity (Figure D.2b-d in Appendix D). 

Daily oral dosing has similar problems surpassing the C50 values for intracellular and 

non-replicating Mtb, but the higher dosing frequency leads to average granuloma 

concentrations that exceed the C50 of extracellular Mtb after each dose (Figure 6.3c). 

Taken together, these results suggest that the dosing frequency of RIF could be reduced 

by appropriately designing an inhaled formulation, but that there is increased risk of early 

toxicity, a danger in reducing RIF to a bacteriostatic agent due to low granuloma 

concentrations, and limited feasibility based on the high carrier loading that would be 

required. 
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Figure 6.3 Comparison of an inhaled RIF formulation given every two-weeks with an oral RIF 
formulation given daily 
(a) Comparison of the total two-week dose between formulations and the properties of the inhaled 
formulation. (b) Percent of granulomas not sterilized at indicated times after the initiation of treatment. 
Granulomas still present at 300 days post-infection are considered failed treatments. (c) Average RIF 
concentration in the granuloma for the first 14-day dosing window. Solid lines indicate average values 
while dotted lines represent SD. Dotted black lines indicate C50Int, C50Non, C50Ext for RIF. (d) Granuloma 
AUC/Peripheral AUC and Granuloma AUC/Plasma AUC for the first 14-day dosing window. Values are 
normalized to the median value of the oral dosing. Box and whiskers represents the 5 to 95 percentage 
range with data points outside the interval shown as black dots. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** 
p ≤ 0.0001. Inhaled (N = 83), Oral (N = 87). (http://malthus.micro.med.umich.edu/lab/movies/InhaledAbx/) 
 

6.3.5 An Inhaled Formulation of INH Can Reduce the Necessary Dose Frequency, 

Increase Therapeutic Efficacy, and Lessen Toxicity 

We also identified 8 different inhaled formulations of INH dosed every two-

weeks from sensitivity analysis that had equivalent or reduced CFU and reduced 

peripheral AUC at 7 days post-treatment initiation compared to daily dosed oral 

formulations (see Appendix D). Using these candidates along with an understanding of 

which dynamics most affect treatment efficacy we designed an ideal in silico inhaled 
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formulation of INH to be dosed every two-weeks. Based on the parameter values of the 

candidate formulations, we design the carrier with an INH loading of 7.2x10-8 

mg/particle, a similar intra- and extracellular degradation rate, and a low INH carrier 

diffusivity, which promotes slow-release of antibiotics from the carrier (Figure 6.4a). 

This equates to a 12-fold lower total two-week dose compared to the oral formulation. 

We observe a significant difference in sterilizing capabilities between the inhaled 

formulation, given every two-weeks, and the oral formulation, given daily (Figure 6.4b). 

The hazard ratio is 1.6 (95% CI: 1.2 to 2.3) demonstrating decreased time to sterilization 

(all sterilized by 100 days post-treatment) and less failed treatments with an inhaled 

formulation (Figure 6.4b).  
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Figure 6.4 Comparison of an inhaled INH formulation given every two-weeks with an oral INH 
formulation given daily 
(a) Comparison of the total two-week dose between formulations and the properties of the inhaled 
formulation. (b) Percent of granulomas not sterilized at indicated times after the initiation of treatment. 
Granulomas still present at 300 days post-infection are considered failed treatments. (c) Average INH 
concentration in the granuloma for the first 14-day dosing window. Solid lines indicate average values 
while dotted lines represent SD. Dotted black lines indicate C50Int, C50Non, C50Ext for INH. (d) Granuloma 
AUC/Peripheral AUC and Granuloma AUC/Plasma AUC for the first 14-day dosing window. Values are 
normalized to the median value of the oral dosing. Box and whiskers represents the 5 to 95 percentage 
range with data points outside the interval shown as black dots. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** 
p ≤ 0.0001. Inhaled (N = 81), Oral (N = 87). (http://malthus.micro.med.umich.edu/lab/movies/InhaledAbx/) 

 

The average INH granuloma concentrations during treatment with the inhaled 

formulation are sustained above C50 values for intra- and extracellular Mtb populations 

for the entire dosing window, compared to the daily dosed oral formulation (Figure 6.4c) 

(see Movies at http://malthus.micro.med.umich.edu/lab/movies/InhaledAbx/). Sustained 

granuloma concentrations of INH during treatment prevent bacterial re-growth between 

doses associated with daily oral INH dosing (Figure D.3a in Appendix D). The ability of 

an inhaled formulation to maintain effective granuloma concentrations of INH is due to 

the combination of slow carrier-release kinetics, dosing to the site of infection, and 

gradual distribution of INH from the lung to other tissues. The normalized ratio of 

granuloma AUC to peripheral AUC is increased 42% and granuloma AUC to plasma 

AUC is increased 37% (Figure 6.3d), indicating that the inhaled formulation is able to 

provide additional granuloma exposure with only a fraction of the associated toxicity 

(Figure D.3b-d in Appendix D). This increase in relative exposure in the granuloma of an 

inhaled formulation occurs at a significantly reduced total two-week dose (Figure 6.4a). 

Together, these results demonstrate that a suitably designed inhaled formulation of INH 

can reduce dose frequency, increase the sterilizing capability, and reduce toxicity of INH 

by maintaining suitable concentrations in the granuloma for the entire dosing window. 
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6.4 Discussion 

Rational development of inhaled antibiotic formulations for treatment of TB 

necessitates a systems pharmacology approach that simultaneously captures 

pharmacokinetics, granuloma dynamics, carrier-release dynamics and behavior, and 

pharmacodynamics to understand what controls treatment efficacy. We developed a 

computational model that tracks these dynamics and used it to understand and rationally 

design inhaled formulations with reduced dosing frequencies. We predict that an inhaled 

formulation of INH, dosed every two-weeks, is feasible and would have better sterilizing 

capabilities with reduced toxicity compared to daily oral dose formulations. Inhaled 

formulations of RIF, dosed every two-weeks, have equivalent sterilizing capabilities as 

daily oral dose formulations, but early toxicity and impractical carrier loadings likely 

render it a non-viable alternative.  

Compliance is a long-standing concern for TB treatment. Current oral regimens 

are lengthy and complex which contributes to a significant number of failed treatments 

(1). Direct-observed treatment short-course (DOTS) now accompanies most regimens in 

an attempt to prevent failures, and yet in many non-developed countries DOTS is not 

feasible (45). Even in countries with effective DOTS programs the successful treatment 

rate of antibiotic-susceptible TB is only 34-76% (46). Thus, new treatment strategies that 

can reduce dose frequency and alleviate the ‘pill-burden’ would revolutionize treatment 

compliance. Our model predicts that properly designed inhaled formulations of INH 

could be promising avenues to accomplish these goals. Yet, the applicability of inhaled 

formulations must be taken in context with other antibiotics, as orally dosed mono-
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therapies are not used for treatment of active TB due to the development of antibiotic 

resistance. 

Previous work on the design of inhaled antibiotics for TB treatment has largely 

focused on single aspects of treatment dynamics. For instance, considerable work has 

been dedicated to targeting inhaled carriers to macrophages under the assumption that 

increasing intracellular antibiotic concentrations would increase sterilization in the 

bacterial niche (11, 12, 14–17). Using our systems pharmacology-based model, we 

predict that targeting carriers to macrophages has limited and or negative effects on 

overall treatment efficacy. This is principally due to discrepancies between in vitro 

settings, where the majority of macrophages are infected and an abundance of carriers are 

available for phagocytosis, and in vivo infection scenarios, where infected macrophages 

reside in the center of a densely packed granuloma. Specifically for RIF, macrophage 

targeting increases carrier uptake by uninfected macrophages in the outer regions of the 

granuloma, reducing RIF exposure in the interior of the granuloma since it is more 

rapidly consumed than INH (1, 10).  



 210 

 

Figure 6.5 Schematic showing the relative aspects of inhaled formulations for RIF and INH 
(a) Pharmacokinetics of RIF and INH demonstrating relative rates of lung permeability, inter-compartment 
transport, and clearance. RIF: high lung permeability and fast clearance and metabolism. INH: low lung 
permeability and slow clearance and metabolism. (b) Inhaled carrier release kinetics need to be designed by 
considering granuloma dynamics, antibiotic pharmacodynamics, and non-lung pharmacokinetics. The 
increased permeability and distribution of RIF to other organs must be compensated for by faster inhaled 
carrier release kinetics. Although faster carrier release kinetics can elevate concentrations of RIF in 
granulomas, the high concentrations necessary (based on the pharmacodynamics of RIF) prevent increased 
efficacy. The decreased permeability and slower distribution of INH to other organs allows inhaled carrier 
release kinetics to be more gradual. Based on pharmacodynamics of INH, carrier release kinetics must 
maintain relatively low concentrations of INH within granulomas to increase efficacy. 

 

It is important to understand the effects of carrier-release kinetics at the site of 

infection and how they can be influenced by pharmacokinetic distribution. Our model 

suggests that pharmacokinetics outside of lungs play a significant role in determining 

efficacy of inhaled carriers as transport rates of antibiotics out of lungs must be 

compensated for by carrier-release kinetics (Fig. 5). We predict that an inhaled 
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formulation dosed every two-weeks must be designed differently for RIF and INH. Since 

RIF distributes to all parts of the body, the carrier loading must be more than 10-fold 

higher than INH and needs to be released significantly faster in order to maintain 

effective concentrations in granulomas (47). Indeed, the necessary antibiotic loading for 

RIF may exceed 90% by weight, a current limitation of many carrier systems (12, 13). 

Combined with early increased toxicity, a RIF-loaded inhaled formulation may not be a 

useful therapeutic. In contrast, the antibiotic loading of INH is highly feasible (~30-50% 

weight percent) and the slow release kinetics would be straightforward to control by 

modulating physio-chemical properties of the carrier such as polymer molecular weight 

or monomer ratio (20). Further studies into better design of inhaled formulations, 

combinatorial treatment, and the cost and distribution issues associated with a new TB 

treatment regimens are needed (12, 13, 48). 

The incidence of both multi-drug resistant and extensively-drug resistant TB cases 

is rising (49). Although inhaled formulations could reduce dosing frequency, exposing 

Mtb to extended periods of low antibiotic concentrations might cause rapid onset of drug-

resistance (1, 50). Our model predicts that antibiotic exposure in granulomas is lower 

than plasma exposure for inhaled formulations, similar to orally dosed antibiotics (1, 10). 

Thus, previous in vivo studies of inhaled formulations that assumed elevated plasma 

concentrations of antibiotics translated to increased antibiotic concentrations in 

granuloma could have been exposing bacteria to sub-optimal concentrations promoting 

the onset of drug-resistance (1, 11–13, 50). It is possible that inhaled formulations of RIF 

may contribute to resistance due to diminishing concentrations in the lesion during the 

reduced dosing window (Figure 6.3c). Conversely, an inhaled formulation of INH might 
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reduce resistance due to reduced cycling between effective and non-effective antibiotic 

concentrations associated with daily oral dosing, but this remains to be tested. 

Additionally, faster times to sterilization could reduce the probability of Mtb gaining 

resistance mutations (Figure 6.4c). Further work is needed to pair an accurate model of 

antibiotic-resistance with our systems pharmacology approach. 

Current treatment strategies for TB rely on antibiotics developed half a century 

ago, well before the advent of PK/PD models (1). We develop a computational approach 

to help rationally design inhaled formulations to increase efficacy and reduce non-

compliance and toxicity issues of existing antibiotics. Our platform captures antibiotic 

dynamics (PK, PD, granuloma, carrier) across multiple transport compartments, and 

demonstrates that these dynamics must be considered together when developing inhaled 

formulations. Although we demonstrate this platform using RIF and INH, it can be 

readily adapted to prototype possible inhaled formulations of ‘second-line’ antibiotics 

used to treat drug-resistant TB. These antibiotics, such as fluroquinolones and 

aminoglycosides, are given for 18-24 months and for some, toxicity concerns necessitate 

intravenous dosing (1). The ability to quickly assess which antibiotics would be the most 

promising candidates for an inhaled formulation would considerably reduce development 

time of new treatments. Our unique computational platform, used in parallel with 

experimental models, provides an integrated approach to improve treatment of TB. 
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Chapter 7 

Measuring Soluble TNF Concentration Gradients in Granuloma

 
7.1 Introduction 

Gradients of soluble molecules are predicted to control many aspects of biological 

processes, including embryonic development, tumor growth, and immune responses (1–

9). Gradients can form due to distinct spatial patterns of soluble molecule secreting cells, 

diffusion of soluble molecules through the extracellular space in tissues, and differential 

cellular trafficking of soluble molecules. Because a cellular response may depend upon 

the concentration of a soluble molecule, the positional information contained in gradients 

may control the diversity of cellular responses to the same soluble molecule (2, 3). 

Upon inhalation of Mycobacterium tuberculosis (Mtb), bacteria are phagocytosed 

by alveolar macrophages. Subsequent recruitment of additional macrophages, dendritic 

cells, T cells, and B cells to the site of infection leads to a self-organizing structure called 

a granuloma, which creates a physical and immunological barrier around infection (10–

12). Granulomas have a distinct cellular organization with macrophages and dendritic 

cells in the core surrounded by an outer region of lymphocytes, forming a roughly 

spherical immune microenvironment for bacterial control (10–12). 

An artificial model of granuloma formation can be induced in pre-sensitized mice 

following pulmonary embolism of injected beads conjugated to Mycobacterium purified 

protein derivative (PPD) (13–16). Although this model does not use live bacteria, the 
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spatial organization of dendritic cells, macrophages, and T cells recruited to the bead is 

similar to those observed in live infection models (13, 14). In addition, the cytokine and 

chemokine responses in this model are primarily Th-1 based, similar to those associated 

with granuloma formation and function in other models of infection (15, 17). Unlike live-

infection models, which take weeks to develop granulomas in response to bacterial 

challenge, granulomas develop within 2 days in the PPD bead model of infection (14). 

Due to the significantly shorter time frame to granuloma formation, lung granulomas 

from the PPD bead model can be rapidly isolated and studied. 

Recent computational models of Mtb infection predict that gradients of the pro-

inflammatory cytokine tumor necrosis factor-α (TNF) form in granulomas (6, 7, 18). In 

addition, we predicted spatial gradients of both TNF and IL-10 in Chapters 3, 4, and 5. 

These spatial gradients of TNF lead to differential activation of related signaling 

pathways that are critical to control of infection (6, 7, 18). Higher TNF concentrations 

near the core of granulomas would preferentially induce apoptosis of infected 

macrophages while lower TNF concentrations in outer regions of granulomas are still 

high enough to activate NFκB signaling, promoting macrophage activation and survival 

of activated T cells (6, 7, 18). Although the presence of TNF gradients in granulomas 

appears critical to immunological control of Mtb infection, we know of no attempts to 

measure these gradients in the context of granulomas. 

Previous efforts to measure concentrations of TNF in ex vivo tissues have relied 

on more common probes such as anti-TNF antibodies or in-situ hybridization of TNF 

DNA/RNA (19–21). However, due to long perfusion and fixation times and the ability of 

soluble molecules to diffuse in the extracellular tissue space and perfusion media, 
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gradients and spatial information of soluble molecules are easily lost or interrupted. 

Furthermore, the specificity of anti-TNF antibodies is typically against both bound and 

unbound forms of TNF. Thus, it was necessary to develop a new method in order to 

measure soluble TNF gradients in granulomas.  

 In this Chapter, we develop a method for detecting soluble TNF gradients in ex 

vivo granuloma tissue. The novelty of our method is the combination of a simple 

receptor-ligand model, known cellular organization, and easily gathered flow cytometry 

data from homogenized populations in order to reconstruct soluble gradients. We 

construct a molecular probe based on biotinylation of recombinant TNF that specifically 

targets unbound TNF receptors (22–26). Using immunofluorescence techniques we 

identify the spatial organization of cells in granulomas. Using the combination of flow 

cytometry data, granuloma organization, and fluorescent microscopy of unbound TNF 

receptors we are able to reconstruct relative soluble TNF gradients. 

 

7.2 Materials and Methods 

7.2.1 Methodology for Reconstructing Soluble TNF Gradients 

In an in vivo granuloma at the single cell-level, we assume soluble TNF binds to 

the TNF receptor based on the following kinetics: 

𝑇𝑁𝐹 + 𝑇𝑁𝐹𝑅!"##
!! 𝑇𝑁𝐹 ∙ 𝑇𝑁𝐹𝑅                                                                                                                                             (𝐸𝑞𝑛. 7.1) 

where KD is the equilibrium dissociation constant. The receptor TNFR here includes both 

TNFR1 and TNFR2. The TNFR mass balance is given by: 

𝑇𝑁𝐹𝑅!"## + 𝑇𝑁𝐹 ∙ 𝑇𝑁𝐹𝑅 = 𝑇𝑁𝐹𝑅!"#$%                                                                                                                       (𝐸𝑞𝑛. 7.2) 
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We assume the association and dissociation reactions were in equilibrium in the 

granuloma before lung excision, and thus upon substitution and rearrangement: 

𝑇𝑁𝐹
𝐾!

+ 1 =
𝑇𝑁𝐹𝑅!"#$%   
𝑇𝑁𝐹𝑅!"##

                                                                                                                                                                                        (𝐸𝑞𝑛. 7.3) 

The left hand side of the equation is dimensionless as both the concentration of soluble 

TNF and equilibrium dissociation constant have the units M. As a result, the 

dimensionless soluble concentration of TNF (ψ) is directly proportional to the state of the 

TNFR system: 

𝜓 =
𝑇𝑁𝐹𝑅!"#$%   
𝑇𝑁𝐹𝑅!"##

                                                                                                                                                                                                                          (𝐸𝑞𝑛. 7.4) 

Therefore, a dual probe system that measures total TNFR and free TNFR 

concentrations provides enough data to estimate dimensionless soluble TNF 

concentrations. Furthermore, measurements must contain relative spatial information in 

order to reconstruct a gradient, as total TNFR numbers vary between cell-types. Total 

TNFR concentrations from the PPD bead model granulomas were previously measured 

via flow-cytometry for dendritic cells, macrophages, and T cells (7). Therefore, we must 

measure two additional quantities from the PPD granuloma model using fluorescent 

microscopy techniques: (1) the spatial organization of cell-types in the PPD granuloma 

and (2) free TNFR concentrations as a function of radial distance. The first measurement 

will allow us to add spatial information to the existing flow cytometry data by identifying 

the locations of specific cell-types in granulomas. This is accomplished using traditional 

immunofluorescence protocols for identifying cell-types in the PPD granuloma model 

(13). The second measurement provides a direct measurement of free TNFR as a function 

of position, to be used in Eqn. 7.4. We accomplish this by cross-linking any existing TNF 
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bound to TNFR present in the granuloma through brief chemical fixation (Figure 7.1). 

Therefore, the only available TNFR binding sites for a molecular probe should be free 

TNFR in the granuloma tissue (Figure 7.1). We construct a molecular probe that 

measures these free TNF receptors by biotinylating recombinant TNF and visualizing it 

with fluorescence (Figure 7.1). 

 

Figure 7.1. Schematic representation of the protocol to identify free TNFR 
Any existing TNF bound to TNFR is cross-linked in a fixation step, which prevents dissociation. Therefore, 
the only available sites for biotinylated TNF to bind are free TNFR sites. Biotiylated TNF is added in 
excess in order to saturate all free TNFR sites and is subsequently detected using fluorescent labels 
described in Section 7.2.5. 

 

7.2.2 Preparation of Tissue Sections From a Mouse Granuloma Model 

C57BL/6 mice (N = 6, Jackson Laboratory) were pre-sensitized with 20 µg of 

Mycobacterium bovis purified protein derivative (PPD) incorporated with 0.25 mL of 

complete Freund’s adjuvant (CFA) by subcutaneous injection. Fourteen days later 

Sepharose 4B beads covalently coupled to Mycobacterium purified protein derivative 

(PPD), as previously described (15, 17), were intravenous injected into the tail vein. The 

mice were sacrificed four days after bead embolism, coinciding with maximum 

granuloma size. Lungs were perfused with cold RPMI-1640 (BioWhittiker) and then 

excised from the mice. Lung tissue was embedded in Tissue-Tek OCT compound in a 
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cryomold and flash frozen in liquid nitrogen. 4-8 µm thick cryosections were cut on a 

cryotome and two subsequent cryosections were adjacently mounted on a single silanized 

slide and dried with a cold drier. Slides were stored at -70°C for future use.  

 

7.2.3 Biotinylation of TNF 

5 µg of recombinant mouse TNF (BioLegend) was biotinylated using Ez-Link 

Sulfo-NHS-Biotin (Pierce) at a 1:66 ratio. 1.913 µL of 10 mM Sulfo-NHS-Biotin 

solution was mixed with 500 µL of 10 µg/mL recombinant mouse TNF diluted in 0.1 M 

sodium citrate at pH 5.8 for 3 hours at 4°C with mixing every 60 minutes (23). The 

solution was dialyzed against PBS using Pierce Slide-A-Lyzer dialysis cassetes at 4°C 

overnight to exchange buffers. Excess unconjugated biotin was removed using Pierce 

Zebra-Desalt Columns with a 10K MW cutoff. Verification of successful biotinylation 

was carried out using a FRET based reporter assay (AnaSpec) and a Bradford assay to 

assess protein concentration. 

 

7.2.4 Biotinylated TNF Staining Protocol 

Cryosections were removed from storage at -70°C and quickly fixed in 4% 

formaldehyde (Sigma-Aldrich) at -20°C for 5 min. Sections were surrounded with an 

ImmEdge pen (DAKO) to prevent reagent leakage. Slides are washed in 1X PBS (Sigma-

Aldrich) for 10 min then rinsed with 1X PBS + 0.05% Tween20 (PBST) (Sigma-

Aldrich). All further steps were carried out in a humidified chamber. Peroxidase was 

blocked with 3% peroxide diluted in PBS for 15 minutes. Slides were then washed 3 

times in PBS for 2 minutes and rinsed with PBST for 1 minute. Exogenous and 



 224 

endogenous streptavidin and biotin was blocked with a Streptavidin/Biotin Blocking Kit 

(Invitrogen) for 15 minutes each with rinsing steps in between. Sections were then 

blocked with 1X PBS + 7% BSA + 1% FCS + 2% NGS + 0.02% Azide (incubation 

buffer) for 30 min to reduce background staining.  

Biotinylated TNF, as prepared above, was diluted to 5 µg/mL in incubation buffer 

and incubated with tissues for 60 minutes at room temperature. Negative controls were 

further incubated with 10 µg/mL of recombinant TNF in PBS for an additional 60 

minutes at room temperature as a competitive inhibitor. Slides were washed 3 times in 

PBS for 2 minutes and rinsed with PBST for 1 minute. Tyramide signal amplification 

was carried out using a TSA kit (Perkin-Elmer), which involved 30 minutes of 

streptavidin-HRP (1:100 dilution) incubation followed by 10 minutes of incubation with 

biotinyl-tyramide (1:50 dilution) at room temperature. Slides were washed 3 times in 

PBS for 2 minutes and rinsed with PBST for 1 minute. Tissues were incubated with 

streptavidin-Alexa 568 (1:500 dilution, Invitrogen) for 30 minutes at room temperature. 

Slides were washed 3 times in PBS for 2 minutes and rinsed with PBST for 1 minute. 

Cover glass (Fisher Scientific) was mounted using ProLong® Gold anti-fade reagent with 

DAPI (Invitrogen). Slides were shielded from light and allowed to cure overnight. 

Tissues were imaged with a Leica Inverted SP5 Confocal microscope at a magnification 

of 40X (Microscopy and Imaging Laboratory, University of Michigan). 

 

7.2.5 Immunofluorescence Staining Protocol 

Cryosections were removed from storage at -70°C and fixed in acetone (Sigma-

Aldrich) at -20°C for 5 min and subsequently air-dried for 30 min. Sections were 
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surrounded with an ImmEdge pen (DAKO) to prevent reagent leakage. Slides are washed 

in 1X PBS (Sigma-Aldrich) for 10 min then rinsed with 1X PBS + 0.05% Tween20 

(PBST) (Sigma-Aldrich). All further steps were carried out in a humidified chamber. 

Exogenous and endogenous streptavidin and biotin was blocked with a 

Streptavidin/Biotin Blocking Kit (Invitrogen) for 15 minutes each with rinsing steps in 

between. Sections were then blocked with 1X PBS + 7% BSA + 1% FCS + 2% NGS + 

0.02% Azide (incubation buffer) for 30 min to reduce background staining. 

Primary antibodies were CD11c (1:20 dilution, hamster anti-mouse, BD 

Pharmingen), F4/80 (1:80 dilution, rat anti-mouse, Serotec), CD3 (1:20 dilution, rabbit 

anti-mouse, Novus Biologicals). Sections were stained with a cocktail of primary 

antibodies for 60 minutes at room temperature. Slides were washed 3 times in PBS for 2 

minutes and rinsed with PBST for 1 minute. Secondary antibodies were biotin goat anti-

hamster IgG (1:20 dilution, SantaCruz Biotech), anti-rat Alexa 488 (1:200 dilution, 

Invitrogen), biotin goat anti-rabbit IgG (1:20 dilution, SantaCruz Biotech). Secondary 

antibodies were diluted in incubation buffer and incubated with the tissue for 60 minutes 

at room temperature. Slides were washed 3 times in PBS for 2 minutes and rinsed with 

PBST for 1 min.  Tertiary antibodies were streptavidin-Alexa 647 (1:200 dilution, 

Invitrogen) and streptavidin-Alexa 568 (1:66 dilution, Invitrogen). Tertiary fluorophores 

were diluted in incubation buffer and incubated with the tissue for 60 minutes at room 

temperature. Multiple rounds of staining were done as the biotin-streptavidin bond was 

utilized multiple times to detect the probe of interest. Slides were washed 3 times in PBS 

for 2 minutes and rinsed with PBST for 1 minute. Cover glass (Fisher Scientific) was 

mounted using ProLong® Gold anti-fade reagent with DAPI (Invitrogen). Slides are 
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shielded from light and allowed to cure overnight. Tissues were imaged with a Leica 

Inverted SP5 Confocal microscope at a magnification of 40X. 

 

7.2.6 Image Analysis 

 Images of biotinylated TNF stained tissues were analyzed using a CellProfiler 

(Version 2.1 – www.cellprofiler.org) pipeline. Cell nuclei and positions were determined 

using thresholds of DAPI staining. Cell regions were identified using nuclei positions and 

growing regions outward until reaching a neighboring cell or meeting a cutoff threshold. 

Absolute fluorescence intensities of biotinylated TNF were measured in each determined 

cell region. Radial distances from the PPD coated bead were calculated based on nuclei 

positions and binned into 25 pixel distances. All data was exported and further analyzed 

in MATLAB (The Mathworks Inc. – Natick, MA) and GraphPad Prism (GraphPad 

Software Inc. – La Jolla, CA). 

 

Figure 7.2. Characterization of biotinylated TNF 
FRET based assay of diluted biotin standards at 80, 40, 20, 10, 5, and 0 pMoles. Standard curve was fit to a 
quadratic function as per the manufacturers instructions (r2 = 0.9562). M.F.I. of biotinyalted TNF was 
measured in triplicate.  
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7.3 Results 

7.3.1 Characterization of Biotinylated TNF 

5 µg of unlabeled recombinant mouse TNF yielded 2.75 µg of biotinylated TNF, 

a 55% yield. Using the FRET based assay the degree of biotinylation was estimated to be 

5 biotin molecules per recombinant TNF protein (Figure 7.2). Optimal concentration of 

biotinylated TNF for staining was determined using serial dilutions (0.5-10 µg/mL) of 

cryosections as described in Materials and Methods. 

 

Figure 7.3. Distribution of Free TNFR in PPD Bead Granulomas 
(A)–(B) Representative PPD bead granulomas stained for free TNFR (yellow) using biotinylated TNF and 
nuclei (blue) using DAPI. Dashed white circle indicates approximate PPD bead location. White box shows 
area of quantification. Entire image was used in A. (C)-(D) Intensity of biotinylated TNF as a function of 
radial distance from the center of the PPD bead, binned into 25 pixel lengths. C corresponds to the image in 
A and D corresponds to the image in B. Bars indicate SD. Significance of trends was calculated using 
Pearson correlation coefficients (r) with a two-tailed t-test (p) with a 95% confidence interval. 
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7.3.2 Measuring Free TNFR in PPD Granulomas Using Biotinylated TNF 

Lung cryosections containing PPD bead granulomas were briefly fixed in 

formaldehyde to cross-link existing TNF bound to TNFR (Figure 7.1), and then stained 

with biotinylated TNF. This methodology provides a direct measurement of free TNFR 

as a function of position. PPD bead granulomas identified in cryosections were 

characterized by high signal intensity in peripheral regions with lower intensity in the 

inner regions (Figure 7.3A, 7.3B). Quantitating the signal intensity in the granuloma as a 

function of radial position demonstrates a 2.5 to 9-fold increase in mean signal intensity 

in the outer regions of the granuloma compared to the inner regions (Figure 7.3C, 7.3D). 

These results indicate that there is high availability of free TNFR in peripheral regions 

and low availability of free TNFR in the inner regions and near the PPD bead.  

 

7.3.3 Determining Cellular Organization of PPD Granulomas 

PPD bead granulomas were stained for CD11c, F4/80, and CD3 to identify 

dendritic cells, macrophages, and T cells respectively (Figure 7.4A). We observed 

dendritic cells mainly in the inner area of the granuloma surrounding the PPD bead. 

Macrophages were principally located in a cuff surrounding dendritic cells, with a few 

near the PPD bead. T cells were predominantly found in the peripheral of the granuloma, 

although some were interspersed with macrophages nearer to the center of the granuloma. 

The relative proportion of cells and their spatial organization are in agreement with 

previous studies of PPD bead granulomas (7, 13). We created an approximate cellular 

organization mask by identifying regions that primarily contain a specific cell-type based 

on four samples regions drawn in ordinal directions from the center of the bead (Figure 



 229 

7.4B). We used the sample regions to estimate a radial length from the center of the bead 

containing individual cell-types – dendritic cells (RDC), macrophages (RM), and T cells 

(RT) – as shown in Figure 7.4B. 

 

Figure 7.4. Immunofluorescence staining to identify cell types and their spatial organization in PPD 
bead granulomas 
(A) Representative image demonstrating CD11c+ (blue) dendritic cells closest to the PPD bead, an inner 
cuff of F4/80+ (green) macrophages, and an outer cuff of CD3+ (red) T cells. Dotted white circle indicates 
approximate PPD bead location. (B) Pseudo-colored representation of the approximate cellular 
organization identifying regions that primarily contain a specific cell-type. Flow cytometry data of total 
TNFR per cell, from (7), is also indicated in the specified regions for the specific cell-type. 
 

7.3.4 Estimating Soluble TNF Gradients in PPD Granulomas 

With the data collected above, we now have enough information to use Eqn. 7.4 

to reconstruct the dimensionless soluble TNF gradient in a granuloma. We use the 

estimated radial length calculated above to approximate regions of cellular organization 

in the granulomas shown in Figure 7.3A and 7.3B. We use flow cytometry measurements 

of total TNFR for the specific cell-type associated with the region (7). At each radial 

position, from the 25 pixel bins, we use Eqn. 7.4 to calculate the dimensionless soluble 

TNF concentration, ψ. We use total TNFR data based on the specific cell-type 
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determined at the specific radial position (indicated on the x-axis of Figure 7.4.) and the 

mean intensity data of free TNFR as a function of radius. Dimensionless soluble TNF 

concentration, ψ, estimated for the granulomas pictured in Figure 7.3A and 7.3B is given 

in Figure 7.5. 

With perfectly separated cellular organization of dendritic cells, macrophages, 

and T cells, where distinct cell-types only reside in the estimated region of organization, 

there is a significant dimensionless soluble TNF gradient. Dendritic cells and 

macrophages are exposed to 1 to 2 orders of magnitude higher dimensionless soluble 

TNF concentrations as compared to T cells (Figure 7.5 – red curve). Because the cell-

types in a PPD granuloma are not perfectly separated, we also calculate the soluble TNF 

gradient using three other cellular organizations: (1) ‘25% mixed’ – 75% of the cells are 

of the indicated cell-type and 25% are split between the other two cell-types, (2) ‘50% 

mixed’ – 50% of the cells are of the indicated cell-type and 50% are split between the 

other two cell-types, and (3) ‘100% mixed’ – cell-types are evenly dispersed in all 

regions. As the cell-types in the granuloma become less spatially organized, the 

calculated dimensionless soluble TNF gradients are less steep, with anywhere from a 4 to 

10-fold difference in the inner region compared to the peripheral regions (Figure 7.5). 

These results demonstrate that significant gradients of soluble TNF still exist in PPD 

granulomas even with a high level of cellular disorganization. 
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Figure 7.5 Reconstructing soluble TNF gradients in two PPD granulomas 
Estimation of the dimensionless soluble TNF gradient calculated using Eqn. 7.4. Approximate regions of 
cellular organization are shown on the x-axis (dendritic cells, macrophages, and T cells). Border of the PPD 
bead is shown with the gray dotted line. 100% Separation – Perfectly separated organization, 25% Mixed – 
25% of other cell-types, 50% - 50% of other cell-types, 100% Mixed – Evenly dispersed cell-types. (A) 
Estimation using radial intensity data from Figure 7.2C. 100% Separation – p < 0.0001 and r = -0.8243. 
25% Mixed – p < 0.0001 and r = -0.8151. 50% Mixed – p < 0.0001 and r = -0.7974. 100% Mixed – p < 
0.0001 and r = -0.7739. (B) Estimation using radial intensity data from Figure 7.2D. 100% Separation – p < 
0.0001 and r = -0.8722. 25% Mixed – p < 0.0001 and r = -0.8409. 50% Mixed – p = 0.0002 and r = -
0.7616. 100% Mixed – p = 0.0052 and r = -0.6139. Bars indicate SEM. Significance of trends was 
calculated using Pearson correlation coefficients (r) with a two-tailed t-test (p) with a 95% confidence 
interval. 
 

7.4 Discussion 

We developed a method for reconstructing soluble TNF gradients in granulomas 

in the PPD bead model of Mtb infection. We constructed a molecular probe that targets 

free TNFR and developed a novel protocol for reconstructing gradients from data on 

cellular organization, total TNF receptor expression by cell type, and radial intensity 

measurements of biotinylated TNF.  We show for the first time that gradients of TNF 

exist in Mtb-induced granulomas and are of significant magnitude. Furthermore, we 

demonstrate that cellular organization plays a role in determining the magnitude and 

steepness of TNF gradients, yet gradients of soluble TNF are found at all levels of 

cellular organization. Taken in conjunction with the predictions from computational 

models (such as those in Chapter 3, 4, and 5), the experimentally reconstructed gradients 
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support the concept of differential induction of TNF-mediated signaling pathways 

according to spatial position in the granuloma during Mtb infection (7).  

A computational model of the dynamics of TNF in the PPD bead model of Mtb 

infection predicted soluble TNF gradients of approximately 1 order of magnitude across 

granulomas with idealized cellular organization (7). Our experimental results agree well 

with these predictions, with reconstructed TNF gradients anywhere from 1 to 2 orders of 

magnitude in the case of perfect cellular separation. Although we estimated 

dimensionless soluble TNF gradients from our measurements on PPD granulomas, the 

relative magnitude of the gradient should be similar if we were able to quantitate 

fluorescent signals (in the linear-response regions) and estimate actual soluble 

concentrations. Methods for quantitation of fluorescent signals exist, however they are 

difficult to carry out and may lack the sensitivity required to differentiate between weak 

signals (27, 28). In addition, our results may underestimate the magnitude of the soluble 

TNF gradient as we neglect many of the receptor-ligand trafficking dynamics known to 

be occurring in cells such as receptor internalization and recycling (6, 7). Using the 

computational model of TNF dynamics in the PPD bead model from (7), we have shown 

that assuming equilibrium between TNF and TNFR and neglecting other trafficking 

dynamics could underestimate the gradient by 2-35%. Trafficking processes such as 

receptor internalization and degradation would increase the steepness of gradients, as 

these mechanisms remove soluble TNF from the environment. 

The PPD bead model of Mtb infection does not use live bacteria (13, 15, 17). The 

cytokine responses to PPD bead challenge are primarily Th1, indicating a strong pro-

inflammatory response with high levels of TNF and interferon-γ production (15). 
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Whether the gradients of soluble TNF in a live model of Mtb infection will be as 

significant must be elucidated, but the method developed here can easily be adapted to a 

more realistic infection setting. Furthermore, it is important to note that not every PPD 

bead granuloma isolated from mouse lungs displayed significant and easily measureable 

soluble gradients of TNF. The granuloma sizes and the planes of the cryosections play a 

large part in determining the radial dependence of signal intensity (data not shown). 

Therefore, the sample size and effort necessary to identify ideal sections and granuloma 

sizes is large and could be a significant barrier to overcome in a more realistic infection 

setting. 

Gradients of soluble molecules are a basic principle driving many basic biological 

phenomenon including development, organogenesis, tumor growth, antibiotic resistance, 

and chemotaxis (1, 5, 7, 8, 29). However, gradients of cytokines, specifically TNF, 

during the immune response to Mtb have only been predicted as important processes that 

lead to efficient control of infection. Herein, we demonstrate the existence of soluble 

TNF gradients during Mtb infection and validate a methodology for characterizing 

soluble molecule gradients in tissues. This new method, used in conjunction with a live 

Mtb infection scenario, will allow us to measure gradients of many soluble molecules 

(e.g. interleukin-10 or chemotactic factors) critical to the immune response. For instance, 

we also predict significant gradients of IL-10 in granulomas (see Chapter 3, 4, and 5) and 

using the methodology presented here should be able to easily reconstruct gradients of 

IL-10 during infection. This will lead to a better understanding of how gradients of 

soluble molecules influence differential cell behavior vital to control of Mtb infection.  
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Chapter 8 
 

Conclusions and Future Directions 

 
8.1 Summary 

Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), 

has endured for centuries as a burden on global health. TB is the second leading cause of 

death due to infectious disease, behind the human immunodeficiency virus (HIV) (1). 

Without treatment it is estimated that nearly 70% of individuals die within 10 years of 

infection (1). Treatment with antibiotics is 87% effective; however, drug-resistant cases 

of Mtb infection are on the rise (1). In 1993 the World Health Organization (WHO) 

declared TB a public health emergency. Although great strides have been made since that 

declaration, with an estimated 22 million lives saved due to new prevention, control, and 

treatment strategies, many basic questions surrounding TB still remain (1). 

Central to both the host immune response to Mtb infection and subsequently 

antibiotic treatment is a structure known as a granuloma. Granulomas are densely packed 

aggregates of cells that form in response to persistent stimuli from Mtb infection of 

macrophages (2–4). The basic idea has always been that such a concentrated immune 

response should be sufficient to control and eradicate the pathogen in these structures. 

However, granulomas form in both active and latently classified individuals indicating 

that not all granulomas can sufficiently control Mtb infection (5, 6). Why do some 

granulomas effectively control bacteria, while some are unable to prevent bacterial 
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growth? The keys to understanding this dichotomy lie in the processes that lead to 

granuloma formation and function and understanding how each contributes to bacterial 

control, bacterial persistence, or both. 

As granulomas are the structures that harbor Mtb during infection, it is important 

to understand how they contribute to the efficacy of antibiotic treatment. Current 

antibiotic regimens to treat Mtb infection must overcome significant transport barriers to 

reach their intended target mechanism (7). Antibiotics must be absorbed into systemic 

circulation, transported to the lungs, diffuse through dense granulomas, and permeate Mtb 

cell walls (7). Understanding the mechanisms and dynamics that drive antibiotic 

distribution in granulomas is critical to designing better antibiotics or increasing efficacy 

of current antibiotics.  

In this dissertation we used both experimental and computational techniques to 

better understand the roles of the cytokines tumor necrosis factor-α (TNF) and 

interleukin-10 (IL-10) in controlling Mycobacterium tuberculosis (Mtb) infection at a 

single granuloma level. In addition, we developed computational models of first-line 

antibiotics used to treat Mtb in order to understand why current therapies fail and to 

predict novel formulations that can improve efficacy and increase patient compliance. 

The major conclusions of this dissertation are given below, organized by specific aim. 

 

8.1.1 Aim 1: Development of a Computationally Efficient Hybrid Multi-Scale Agent-

Based Model of TB Infection 

In Chapter 2, we explored ways to improve the computational tractability of the 

hybrid multi-scale ABM in order to include new biological processes of interest. We 
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implemented forward-time-central-space, alternating-direction explicit, and spectral 

based numerical methods to solve soluble molecule diffusion. In addition we used 

forward Euler and 4th order Runge-Kutta to solve agent-associated reactions. We 

demonstrated how different combinations of numerical algorithms and correct choice of 

time steps lead to 5 to 25-fold increases in computational speed. Furthermore, we 

demonstrated the concept of tuneable resolution and showed that it leads to further 

enhancements in computational speeds near 1.5 to 63.5-fold. These improvements in 

computational tractability were key to all model development in subsequent chapters. 

Additionally, efficient solution of hybrid multi-scale ABMs is key to model portability, 

modularity, and their use in understanding biological phenomena at a systems level. 

 

8.1.2 Aim 2: Identifying the Roles of TNF and IL-10 During Granuloma Formation 

Using Multi-Scale Computational Modeling 

In Chapter 3, we addressed the multi-scale effects of TNF and IL-10 during Mtb 

infection using a systems biology approach. Building on our previous work, we 

developed a hybrid multi-scale ABM of Mtb infection that integrated both TNF and IL-

10 experimental data, including single-cell level receptor-ligand dynamics. We 

demonstrated that three groups of TNF and IL-10 related processes relevant to cytokine 

synthesis, signaling, and spatial distribution, control concentrations of TNF and IL-10 in 

a granuloma environment. These three groups of processes were critical in determining 

infection outcome, at the granuloma scale, over the long-term. We then devised an 

overall measure of granuloma function based on three metrics – total bacterial load, 

macrophage activation levels, and apoptosis of resting macrophages – and used this 
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metric to demonstrate that a balance of TNF and IL-10 concentrations is essential to Mtb 

infection control with minimal host-induced tissue damage. These results suggest that a 

balance of TNF and IL-10 defines a granuloma environment. Furthermore, the balance of 

cytokines in a granuloma is beneficial for both host and pathogen, but perturbing the 

balance could be used as a novel therapeutic strategy to modulate infection outcomes. 

In Chapter 4, we better characterized the mechanisms that drive macrophage 

polarization and functionality in granulomas. We extended our description of TNF and 

IL-10 receptor ligand dynamics by including simplified models of NFκB and STAT3 

downstream signaling, respectively. In addition, we included a simplified downstream 

signaling pathway for STAT1 induced by interferon-γ stimulation. We defined a 

macrophage polarization ratio based on relative levels of STAT1, STAT3, and NFκB in 

macrophages, which modulated macrophage functions including anti-microbial activity 

and cytokine production. Additionally, we extended this macrophage ratio to the scale of 

a single granuloma and defined a granuloma polarization ratio. Using this model, our 

results suggest that temporal dynamics of granuloma polarization ratios are predictive of 

granuloma outcome. We found that the kinetics of NFκB gene transcription is a key 

determinant of granuloma outcome. Granulomas with low bacterial loads and limited 

inflammation are characterized by short intervals of NFκB activation, while those with 

elevated bacterial loads have extended intervals of NFκB activation. Our results suggest 

that the dynamics of NFκB signaling might be a target therapeutic candidate to help 

control of infection. 

In Chapter 5, we focused on determining the role of IL-10 in controlling bacterial 

control versus sterilization at the single granuloma level. We predicted a transient role for 
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IL-10 in controlling a trade-off between the antimicrobial activity of the immune 

response to Mtb and host-immunity driven tissue damage, which at high levels can be as 

detrimental as bacterial burden to host lungs. We predicted that small changes in early 

antimicrobial activity promote lesion sterility due to low bacterial loads. We predicted 

that decreased levels of IL-10 promote granuloma sterilization at the cost of increased 

early host-induced damage. In addition, we showed that IL-10 derived from activated 

macrophages is the main macrophage cell-type balancing bactericidal responses versus 

host-induced damage. Finally, we predicted that increasing levels of infected macrophage 

derived IL-10 promotes bacterial persistence by shifting control of antimicrobial 

responses from activated macrophages to infected macrophages. This allows Mtb to 

replicate and spread to healthy macrophages at a greater rate. Our findings suggest that 

IL-10 at the individual granuloma scale is a critical regulator of lesion outcome. 

 

8.1.3 Aim 3: Understanding and Improving the Efficacy of Antibiotics in Granulomas 

during TB Infection 

In Appendix C, we constructed a pharmacokinetic (PK) and pharmacodynamics 

(PD) model of two first-line antibiotics, rifampin (RIF) and isoniazid (INH), used to treat 

Mtb infection and incorporated it into our hybrid multi-scale ABM. The distribution and 

action of RIF and INH in individual granulomas was calibrated to PK and PD 

measurements in rabbit and non-human primate models of infection. We used this model 

to simulate different oral treatment regimens and make predictions about the efficacy of 

treatment at the individual granuloma scale. 
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In Chapter 6, we extended our PK and hybrid multi-scale ABM platform to 

include a description of inhaled antibiotic formulations dosed to the lungs. This model 

captured the simultaneous effects of pharmacokinetics, granuloma dynamics, carrier-

release dynamics and behavior, and pharmacodynamics on treatment efficacy. We used 

sensitivity analysis to determine which dynamics most affect treatment efficacy at 

reduced dosing frequencies. We predicted that carrier antibiotic loading, carrier release 

kinetics, and system pharmacokinetics all influence the efficacy of treatment. In addition, 

we predicted that targeting inhaled carriers directly to macrophages provides no increase 

in treatment efficacy due to the densely packed nature of granulomas. We designed ideal 

in silico inhaled formulations of RIF and INH to be dosed every two-weeks. We 

predicted that inhaled formulations of INH dosed every two-weeks are feasible and have 

increased sterilization capabilities with reduced toxicity. Furthermore, we predicted that 

inhaled formulations of RIF dosed every two-weeks have equivalent sterilization 

capabilities but with early associated toxicity and infeasible carrier loadings. Our model 

suggests that the pharmacokinetics outside of the lung play a significant role in the 

efficacy of inhaled carriers as transport rates of antibiotics out of the lungs must be 

compensated for by carrier-release kinetics. This platform will allow for rapid assessment 

of ideal candidates for inhaled formulations, thus reducing the development time of new 

therapeutics. 

 

8.1.4 Aim 4: Measuring TNF Concentration Gradients in TB Granulomas 

Simulations of TNF and IL-10 receptor-ligand and trafficking dynamics predicted 

significant concentration gradients of soluble TNF in granulomas. In Chapter 7 we used a 
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simple murine model, where granulomas form in response to injected beads conjugated to 

Mycobacterium purified protein derivative (PPD), to develop a fluorescent microscopy 

technique to reconstruct soluble TNF gradient from ex vivo lung tissue samples. We used 

biotinylated TNF to specifically target unbound TNF receptors and measured the spatial 

distribution in granulomas using fluorescent microscopy. We used traditional 

immunofluorescence techniques to identify the spatial organization of cells in 

granulomas. Using these data together with an equilibrium model of TNF receptor-ligand 

dynamics, in combination with flow cytometry data on receptor number, we estimated 

dimensionless soluble gradients of TNF in granulomas. We showed for the first time that 

gradients of TNF exist in granulomas and are of significant magnitude. Furthermore, we 

demonstrated that cellular organization plays a role in determining the magnitude and 

steepness of TNF gradients. These results suggest that gradients of cytokines are critical 

to differential induction of signaling pathways according to spatial position, which can 

have significant effects on bacterial control in granulomas. 

 

8.2 Future Directions 

8.2.1 Implementation of Advanced Numerical Algorithms and Techniques for More 

Efficient Hybrid Multi-Scale Agent-Based Models 

In Chapter 2, we focused considerable attention on implementing better numerical 

algorithms for more computationally tractable hybrid multi-scale agent-based model 

(ABM) of Mtb infection. Even with advances in modern computing, the biological details 

and complexity included in computational models is still inherently limited by 

computational requirements. More effort needs to be devoted to improving the tractability 



 244 

of the ABM as constant development and implementation of new biological processes 

and mechanisms requires more computational power. Furthermore, expansion of the 

ABM to larger grid sizes or increased dimensionality (3D) incurs substantial 

computational cost. I suggest incorporating multiple new numerical algorithms and 

techniques to further reduce computational burdens: (1) in situ adaptive tabulation, (2) 

multigrid methods, and (3) an event scheduler update scheme. 

In Chapters 3, 4, and 5, we used ordinary differential equations (ODEs) to 

describe single-cell receptor ligand dynamics of TNF and IL-10 (8). The set of ODEs was 

solved for every agent in the ABM at every time step, which required significant 

computational effort. In computational models of combustion in turbulent flames a 

similar situation arises where a large number of ODEs are evaluated millions of times 

over the course of simulation (9, 10). In situ adaptive tabulation (ISAT) is a technique 

that reduces the computational demands by searching a set of stored solutions, tabulated 

during simulation, and approximating a solution to the specified conditions without ever 

requiring a call to a numerical method (9–11). As search and retrieval of existing 

solutions is fast (such as O(log n)) compared to repeated calls of the numerical method 

(O(n)), the increases in efficiency are usually large. However, there is an initial cost to 

ISAT as the database of solutions must be built during the early phases of simulation 

(12). In one implementation from literature, using ISAT in the context of 16 modeled 

species and 41 reactions the computational speed increased nearly 1,000-fold (10). 

Implementing ISAT in the context of the ABM will require efficient storage of 

previously calculated solutions and implementations of fast search methods such as 

binary trees. 
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Implementation of newer and more efficient numerical methods for solving PDEs 

than those described in Chapter 2 could further reduce the computational burden of the 

hybrid multi-scale model. Multigrid (MG) methods are a set of algorithms based on 

cycles of successive relaxation, prolongation, and injection of a system of equations on 

hierarchical discretizations of coarse and fine grids (13, 14). An ABM of the generalized 

immune system (MSIM) recently implemented a MG based algorithm for solving soluble 

molecule diffusion, which lead to an order of magnitude speed-up (15). In addition, an 

adaptive MG method was used to simulate solid tumor growth leading to a 14-fold 

increase in computational speed in comparison to traditional MG algorithms (13). 

Implementing MG methods in the context of the ABM will require the use of PETSc or 

Trilinos libraries or constructing in-house versions using C++. 

The ABM used in this dissertation still relies on sequential updates of agent 

behavior, states, and interactions. This is computationally inefficient, as updates to a large 

population of agents are trivial with no changes to behavior, states, or interactions. In 

addition, this poorly reflects biology, which does not act in such a sequential manner. 

Event-scheduling approaches allow for asynchronous updates to agents with arbitrary 

time steps and avoid computational inefficiencies associated with trivial updates (16, 17). 

In an ABM of the B cell life-cycle an event-scheduling approach was 40-fold faster than 

a sequential approach (17). Taken together, implementing new numerical algorithms and 

techniques such as these will allow new biological mechanisms and dynamics to be 

added to the ABM along with model expansion to higher dimensions. This will allow the 

ABM to be used in a greater variety of contexts to better understand the immune response 

to Mtb infection. 
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8.2.2 Understanding the Influence of Cytokine Networks on the Control of Mtb During 

Infection 

The immune response to Mtb infection is highly complex and remains poorly 

understood. We still lack a basic understanding of how the plethora of cytokines found at 

the site of infection dictate effective versus poor control of infection (18–20). In Chapters 

3, 4, and 5 we elucidated the effects of a balance of TNF and IL-10 in controlling 

infection outcome and macrophage polarization (8). However, many more cytokines are 

present at the site of infection, such as IL-17 and type-I interferons, with overlapping 

functions and abilities to influence infection control (18, 21, 22). For instance, mice 

treated with exogenous interferon-α and interferon-β show increased bacterial loads in the 

lungs (22). Computational models must maintain tractability and therefore it is difficult to 

implement descriptions of every single new cytokine that is present in granulomas. Thus, 

it is necessary to determine the most important cytokines at the site of infection and 

include these in the ABM of infection. I propose both experimental and computational 

work to measure and understand the relative strengths of cytokines in the network present 

at the site of infection. 

Recently, multiplex assays were used to measure 50 different cytokines present in 

peritoneal aspirates from patients who were either healthy or diagnosed with 

endometriosis (23). Using statistical techniques, a network of important cytokines and 

cells was established in patients with endometriosis (23). Applying this technique to 

bronchoalveolar lavage (BAL) fluid from healthy, actively TB, and latently TB 

individuals could lead to a better understanding of the complex cytokine network at the 

site of infection and identify critical cytokines to add to the ABM of Mtb infection. The 



 247 

network of cytokines measured experimentally is only a snapshot in time, preventing an 

understanding of what lead to that specific state or where that state leads to with respect 

to infection. The ABM can then be used to understand the temporal dynamics of the 

influence of the identified cytokines and sources on controlling infection outcome. 

Additionally, the cytokine network would incorporate dynamic influences of cytokines 

on cells and overlapping cytokine functions leading to a better understanding of the 

interactions of cytokines during infection. In the past, cytokine networks and interactions 

have been successfully integrated into a petri-net model of Leishmania donovani 

infection and a general model of the immune system (24, 25). This type of study will lead 

to a better fundamental understanding of the host immune response to Mtb infection and 

help drive efficient addition of cytokine networks to the ABM of infection. 

 

8.2.3 Determining the Fate of Apoptotic Cells During Mtb Infection 

The method of macrophage cell death is critical during infection with Mtb (18, 

26). Since Mtb is an intracellular pathogen, programmed cell-death, known as apoptosis, 

is often used as an antimicrobial tool against infection. However, apoptosis occurs in a 

variety of different forms including true apoptosis, necrosis, and necroptosis (27, 28). The 

cellular contents and intracellular bacteria of infected cells that die through an apoptotic 

pathway are packaged into apoptotic bodies that are efficiently taken up by phagocytes 

(28). Furthermore, intracellular bacteria contained in apoptotic bodies are efficiently 

killed after ingestion by phagocytes (29–31). Conversely, infected cells that die via 

necrosis are not packaged into vesicles and their intracellular contents and bacteria are 

exposed to the environment causing significant inflammation and tissue damage (27, 28). 
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In addition, phagocytes cannot efficiently ingest necrotic cells nor sterilize the 

intracellular bacteria contained in a necrotic cell. 

Infected macrophage apoptosis through TNF-induced caspase signaling pathways 

has been identified as critical to controlling Mtb infection (30, 32, 33). Yet there are also 

significant levels of TNF-induced necrosis observed during infection that could be 

limiting bacterial sterilization and promoting bacterial infection of healthy macrophages 

(34, 35). Recently, receptor-interacting protein 3 (RIP3) its associated kinase, receptor-

interacting protein 3 kinase (RIP3K), were determined as an underlying mechanism 

controlling TNF induction of apoptosis or necrosis (36–38). Uncovering the differences 

between TNF induction of apoptosis or necrosis in the context of Mtb infection is critical 

to understanding bacterial pathogenesis versus bacterial control. I propose including a 

simple molecular scale model of RIP3/RIP3K into the hybrid ABM of Mtb infectionin 

the existing ABM of Mtb infection and linking it to cell-death through apoptotic or 

necrotic pathways (36, 38, 39). Analysis of the dynamics leading to cell-death via 

apoptosis versus necrosis will lead to a better understanding of programmed cell-death 

mechanisms contributing to bacterial pathogenesis. Additionally, it can help motivate 

discovery of therapeutics targeted to preventing necrotic cell death. 

 

8.2.4 Determining the Role of IL-10 Production by Neutrophils During Mtb Infection 

In Chapters 3, 4, and 5 we described the cellular sources and receptor-ligand 

trafficking dynamics of IL-10. New evidence indicates that neutrophils are a significant 

source of IL-10, and yet why neutrophils produce IL-10 is still not well understood (40, 

41). Neutrophils are professional phagocytes that ingest Mtb and undergo cell-death in 
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order to be phagocytosed by macrophages (41). BAL fluid from patients with active 

pulmonary TB shows that neutrophils are the most predominant cell during infection and 

allow bacteria to replicate rapidly in the intracellular niche (42). In addition, histological 

staining of non-human-primate granulomas shows a large region of neutrophils in the 

center of granulomas, with murine models of TB demonstrating similar observations (43, 

44).  Neutrophils produce neutrophil extracellular traps (NETs), which trap bacteria, have 

antimicrobial properties, and cause significant tissue damage (45). 

I propose the inclusion of neutrophils as a new cell-type in the ABM of Mtb 

infection, as neutrophils are a significant cell population that drives inflammation and 

bacterial uptake. Neutrophils would be implemented in the model similar to macrophages 

with resting, activated, and infected states and the ability to secrete cytokines such as IL-

10. However, neutrophils would have a significantly shorter lifespan than macrophages. 

Understanding this cell-type is crucial to understand the effects of various levels of IL-10 

production on infection outcome. Furthermore, as neutrophil apoptosis and NETs lead to 

tissue damage and formation of caseum the model can help in understanding whether the 

production of IL-10 from neutrophils helps alleviate substantial tissue damage. An ABM 

of the immune response to Mtb infection in mice included neutrophils and demonstrated 

their role in keeping bacterial in the center of granulomas (46). However, this model is 

based on Mtb infection in mice, which significantly differs from infection in humans, and 

did not include the ability of Mtb to be phagocytosed by neutrophils. Additionally, 

cytokines were not included in the model, therefore the effects of neutrophil IL-10 

production on infection outcome was not considered (46). 
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8.2.5 Understanding Antibiotic Factors that Contribute to the Development of Mtb 

Antibiotic Resistance 

TB requires a rigorous regimen of multiple antibiotics lasting anywhere from 6 to 

24 months. In Appendix C we showed why current oral treatment regimens using two 

first-line antibiotics, rifampin (RIF) and isoniazid (INH), are ineffective. We predicted 

that these antibiotics have poor antibiotic penetration into granulomas, leading to sub-

optimal exposure. In Chapter 6, we predicted that novel inhaled formulations of RIF and 

isoniazid INH could improve efficacy. Yet, during clinical treatment mono-therapies 

cannot be prescribed due to the rapid onset of antibiotic resistance (7, 47, 48). In addition, 

non-adherence to the complicated oral drug regimen leads to a significant number of 

individual developing multi-drug resistant TB (MDR-TB). There is growing evidence 

that concentration gradients of antibiotics substantially contributes to the development of 

resistance (49–51). I suggest incorporating development of antibiotic resistance in the 

ABM model including both random mutations and antibiotic-driven mutations. 

The genetic basis of antibiotic resistance to TB drugs is well known. For instance 

RIF resistance develops mainly due to mutations in rpoB, while INH resistance can 

involve multiple genes such as katC, inhA, and oxyR (48). The risks of mutation for RIF 

and INH have been established as 3.32×10-9 and 2.56×10-8 mutations per bacterium 

division (48). Mutation rates can be implemented using simple models such as the Luria-

Delbrück model during bacterial division or more detailed models such as stochastic 

models (52). Successful mutations would limit the ability of antibiotics to effectively kill 

the resistant Mtb population. Analysis of how gradients of antibiotics contribute to the 

onset of resistance at the granuloma level will be critical to improving existing treatments 
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and developing new antibiotics that avoid the onset of resistance. Furthermore, dosing 

strategies can be optimized in order to better prevent the onset of resistance using current 

first line antibiotics. Lastly, it will be important to understand how resistance may 

spontaneously develop before antibiotic treatment and how to determine the best course 

of action thereafter (53). 

 

8.2.6 Understanding and Improving the Efficacy of Second- and Third-Line 

Antibiotics Used to Treat TB 

If a patient develops multi-drug resistant TB, most commonly due to RIF and/or 

INH resistance, treatment is extended another 18-24 months with antibiotics that are 

considerably more toxic and less effective (7). Typically these regimens involve four to 

six different antibiotics and require at least one flouroquinolone and one intravenously 

dosed agent such as capreomycin (7, 47). As these drug are used when others fail it is 

important to optimize their efficacy and dose in order to prevent further development of 

resistance (54). In conjunction with addition of antibiotic resistance to the ABM as stated 

above, I propose addition of pharmacokinetic-pharmacodynamics (PK-PD) models of 

second- and third-line antibiotics used in the treatment of TB.  

The existing PK-PD platform established in the ABM can easily be adapted to 

incorporate the parameters to describe the dynamics of antibiotics such as moxifloxacin 

and capreomycin, which have been established in literature (55–57). The ABM with 

mechanisms describing antibiotic resistance and second line antibiotics can be used to 

help understand how measurable quantities (such as colony forming units from sputum 

smears) could indicate the onset of resistance (48). Furthermore, the ABM could be used 
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to develop better strategies to intervene earlier with more effective second- and third-line 

dosing regimens. In addition, our platform describing inhaled formulations provides the 

ability to quickly assess which inhaled formulations of second- and third-line antibiotics 

would be the most promising candidates, thus considerably reducing development time of 

new treatments.  
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Appendix A 
 

Supplementary Information for Chapter 3

 

A.1 Agent-Based Model Rules and Interactions 

The overall structure of the agent-based model (ABM) for the immune response 

to Mtb infection in the lung is presented below (Figure A.1). Figure 3.2 in the Chapter 3 

indicates how individual models exist separately and how they are linked. In this 

Appendix, we describe the cellular and tissue scale model termed GranSim.  

 

A.1.1 Overall Structure of GranSim 

GranSim was developed based on four considerations: an environment, agents 

(immune cells), ABM rules that govern the agents and their interactions, and the time-

step (Δt) used to update events. The environment represents a two-dimensional section of 

lung parenchyma as a 100 × 100 square lattice that simulates an area of 2 mm × 2 mm. 

Each grid micro-compartment is thus scaled to the approximate size of a single human 

macrophage, 20 µm in diameter. Discrete agents (macrophages and T cells) are recruited 

from specific micro-compartments on the lattice that represent vascular sources. Cells 

move on the lattice and interact with each other and the environment based on the ABM 

rules that are defined based on known biological activities. Due to the size difference 

between macrophages and T cells, up to two T cells are permitted to enter the same 

micro-compartment (with probability TmoveT). A T cell may also move into the same 
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micro-compartment as a macrophage (with probability TmoveM). This model of cell 

spacing is a compromise between a realistic spatial representation and computational 

tractability and is consistent with observations on macrophage and T cell dynamics 

during development of mycobacterial granulomas that show granuloma-associated T cells 

squeeze through cell junctions created by a dense macrophage network (1). 

Extracellular Mtb and soluble molecules, including chemokines (CCL2, CCL5 

and CXCL9/10/11), soluble TNF-α (sTNF), shed TNFR2, and soluble IL-10, are 

simulated as continuous entities that can reside anywhere on the lattice. Extracellular Mtb 

grow in each micro-compartment. Soluble molecules diffuse and degrade among micro-

compartments. Caseation represents inflammation of and damage to the lung parenchyma 

from macrophage cell death. In the ABM, caseation is defined to occur when a specific 

number (Ncaseum) of infected or activated macrophages die in a micro-compartment. When 

a micro-compartment becomes caseated, any T cell present in the micro-compartment is 

killed and no further cells are permitted to enter the micro-compartment. 

There are two major types of discrete agents in the model, macrophages and T 

cells. Macrophages are either resting (Mr, uninfected), infected (Mi; have taken up Mtb), 

chronically infected (Mci; are unable to clear their intracellular Mtb due to a high bacterial 

load), or activated (Ma; can effectively kill bacteria). Three distinct T cell classes based 

on their functions are modeled. The Tγ class represents CD4 and CD8 pro-inflammatory 

T cells; Tc class represents cytotoxic T cells (CTLs); and Tr class represents regulatory T 

cells including FOXP3+ and FOXP3- cells. 

Cell-cell interactions are governed by ABM rules that are updated within every 

ABM time-step of dtA = 10 min and will be discussed in the next section. Diffusion and 
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degradation of soluble molecules on the lattice and secretion of chemokines from 

individual cells occurs is solved within each ABM time-step at a time step of dtD = 30 

seconds. TNF-α/TNFR and IL-10/IL-10R dynamics at the single-cell level are updated 

within the diffusion time-step with a shorter time-step of dtM = 6 seconds. Molecular 

scale events are described in detail in Appendix A.2. Thus, each single-cell event is 

updated 5 times within each diffusion time-step while the diffusion, degradation, and 

secretion events are updated 20 times with each ABM time-step. The overall algorithm of 

the simulation takes the form outlined in Figure A.1 and will be presented in detail in the 

following sections.  
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Figure A.1 Overall outline of the hybrid multi-scale ABM granuloma simulations 
The boxes in gold are part of the tissue and cellular scale GRSim while the boxes in grey are part of the 
molecular scale model. dtA is the ABM time-step. dtD is the diffusion time step. dtM is the single cell 
receptor ligand dynamics time-step. 
 
A.1.2 Grid Initialization 

A 100 × 100 two-dimensional grid is created. Periodic boundary conditions for 

cell movement and Dirichlet boundary conditions (zero outside grid perimeter) for 

molecular diffusion are used. 50 vascular source locations (Nsource) are distributed on the 

grid. 49 of the vascular sources are randomly distributed in 7 × 7 approximately equally 

sized partitions on the grid. One other micro-compartment is randomly selected from the 

whole grid as the last vascular source. Initial resting macrophages that represent resident 

alveolar macrophages are randomly placed on the grid (Minit). One infected macrophage 

with one intracellular Mtb is placed at the center of the grid. This is consistent with 

estimations of the minimum infection dose of Mtb that range from a single bacterium 

upward (2).  

 

A.1.3 Cellular and Tissue Scale ABM Rules - Overview (GranSim) 

Cells move, become recruited to the site of infection, and respond to local 

conditions depending on their type and state according to rules that represent known 

biological activities in vivo. ABM rules that govern cell behaviors and interactions are as 

follows. Since chemokine single cell-level dynamics are not included in our model we 

discuss chemokine-related secretion and cellular recruitment in addition to cellular scale 

immunological details of the ABM in this section. 

 

A.1.3.1 Agent Movement 
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A.1.3.1.1 Macrophages 

 Macrophages may stay in place or move in 8 possible directions on the grid based 

on CCL2 and CCL5 chemokine concentrations in their Moore neighborhood, the nine 

micro-compartments around the cell location including the micro-compartment occupied 

by the cell. Speed of movement only depends on the state of macrophages with the 

highest speed for Mr and the smallest speed (zero) for Mci. The differences among 

macrophage speeds are shown in the model by time intervals in which each macrophage 

attempts to move (tmoveMr, tmoveMi, tmoveMa). There are minimum concentration thresholds 

and maximum saturating concentration thresholds (τchem and schem) for the effect of each 

chemokine on cell movement. Chemokine concentrations below τchem or above schem do 

not have any extra effect on direction of movement. For simplicity we assume similar 

threshold values for all chemokines and cell types. Movement is random if chemokine 

concentrations in the Moore neighborhood are below τchem or above schem. Otherwise, 

CCL2 and CCL5 concentrations in the Moore neighborhood determine a linear 

probability distribution for movement. We assume a bias for macrophage movement to 

the micro-compartment with the highest chemokine concentration. Hence, the highest 

chemokine concentration in the Moore neighborhood is multiplied by a factor 1.5 before 

calculation of movement probabilities. Movement is blocked by a caseous micro-

compartment or macrophage presence and if blocked, no extra attempt for moving is 

made. 

 

A.1.3.1.2 T cells 
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T cell movements are updated in time intervals of length tMoveT that is determined 

by the speed of T cell migration in vivo. Movement of Tγ cells depends on CCL2, CCL5 

and CXCL9/10/11 concentrations in the Moore neighborhood. Tc cells move based on 

CCL5 and CXCL9/10/11 concentrations and Tr cells move based on CCL5 

concentrations. The details of T cell chemotactic movements are similar to macrophages 

as described above. T cell movement is blocked by caseation. However, T cell movement 

to a micro-compartment that contains one macrophage or one T cell is possible with 

reduced probabilities, TmoveM and TmoveT, respectively.  

 

A.1.3.2 Cellular Recruitment 

We updated our previous cellular recruitment algorithm by adding chemokine- 

and cytokine-dependent recruitment rates of immune cells to the infection site. We recruit 

macrophages (Mr) and T cells (Tγ, Tc, and Tr) from vascular sources randomly distributed 

across the lung environment. The recruitment rate at each vascular source is dependent 

upon the concentrations of CCL2, CCL5, CXCL9, and TNF-α in the specified micro-

compartment (3, 4). Recruitment at a vascular source that contains one macrophage or 

one T cell is subject to the same rules as movement with recruitment probabilities 

reduced by TmoveM and TmoveT, respectively. The recruitment algorithm is shown in Figure 

A.2 and described in detail below. 

 



 264 

 

Figure A.2 Overall outline of the cellular recruitment algorithm 
The boxes in orange are defined in the appropriate agent section below. The stars represent a saved 
calculation from previous steps in the algorithm. 
 

A.1.3.2.1 Macrophages 

Mr are recruited every time-step from vascular sources based on available TNF-α 

and CCL2, and CCL5 concentrations at the specific vascular source, provided that the 

vascular source is not caseated nor blocked by a macrophage or two T cells. The 

probability of recruitment of Mr is given by: 
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Along with the recruitment function the following threshold conditions must be met: 

CCL2[ ] > τ recMacCC || CCL5[ ] > τ recMacCC || TNF[ ] > τ recMacTNF  

 

A.1.3.2.2 T cells 
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Recruitment of T cells begins after a threshold of number of Mtb (NMtbTcell) is 

reached that represents the time required for activation of the adaptive immune response 

following Mtb infection. Tγ are recruited every time-step from vascular sources based on 

available TNF-α, CCL2, CCL5, and CXCL9/10/11 (written as only CXCL9 from here 

forth) concentrations at the specific vascular source, provided that the vascular source is 

not caseated nor blocked by a macrophage or two T cells. The probability of recruitment 

of Tγ is given by: 

PTγ = TrecTgamMax
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Along with the recruitment function the following threshold conditions must be met: 

CCL2[ ] > τ recMacCC || CCL5[ ] > τ recMacCC || CXCL9[ ] > τ recMacCC || TNF[ ] > τ recMacTNF  

Tc are recruited every time-step from vascular sources based on available TNF-α, 

CCL5, and CXCL9 concentrations at the specific vascular source, provided that the 

vascular source is not caseated nor blocked by a macrophage or two T cells. The 

probability of recruitment of Tc is given by: 

PTc = TrecTcytMax
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Along with the recruitment function the following threshold conditions must be met: 

 

CCL2[ ] > τ recMacCC || CXCL9[ ] > τ recMacCC || TNF[ ] > τ recMacTNF  

Tr are recruited every time-step from vascular sources based on available TNF-α 

and CCL5 concentrations at the specific vascular source, provided that the vascular 
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source is not caseated nor blocked by a macrophage or two T cells. The probability of 

recruitment of Tr is given by: 

PTr = TrecTregMax
VMax
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Along with the recruitment function the following threshold conditions must be met: 

CCL5[ ] > τ recMacCC || TNF[ ] > τ recMacTNF  

 

A.1.3.3 Cell-Cell Interactions and State Transitions 

All cell-cell interactions and state transitions described below are updated every 

ABM time-step for all cells. 

 

A.1.3.3.1 Cell Death Due to Age 

All macrophages that are initially distributed or recruited on the grid are assigned 

a lifespan selected from a uniform distribution between zero and maxageMac. T cells are 

also assigned a lifespan randomly distributed between zero and maxageTcell. Ma has a 

shortened lifespan of maxageActive. At death, Mr and T cells are removed from the grid. At 

death, Mi and Mci are removed from the grid and any intracellular Mtb (Bint) is dispersed 

uniformly in the Moore neighborhood as extracellular bacteria (Bext). Ma death 

contributes to caseation of the micro-compartment. 

 

A.1.3.3.2 Rules for Resting Macrophages (Mr) 

There is a chance of STAT-1 activation in a time-step as a result of interaction 

between a Mr and IFN-γ producing Tγ cells with a probability (nTγ * PSTAT1); where, nTγ 

is the number of Tγ cells surrounding the Mr in the Moore neighborhood including the 
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micro-compartment occupied by the Mr. Mr can become NF-κB activated through TNF-α 

induced processes, which is discussed in Appendix A.2. NF-κB activation can also occur 

if the Bext in the Moore neighborhood exceeds BactM. STAT-1 and NF-κB activation last 

for the time interval tSTAT1 and tNFκB after which STAT-1 or NF-κB activation, 

respectively, is lost. Mr that are either STAT1 or NF-κB can be down-regulated by a Tr in 

which the Mr loses either STAT1 or NF-κB activation respectively. Mr is able to uptake 

or to kill Bext that reside in the same micro-compartment. If the number of Bext ≤ Nrk, Mr 

kills them. Otherwise, it either kills Nrk of the Bext with probability Pk or becomes 

infected (Mi) after uptake of Nrk of the Bext as its initial Bint. Mr that are either STAT1 or 

NF-κB activated kill Bext with a probability 2* Pk due to increased anti-microbial 

capacity. If both STAT1 and NF-κB are activated in a Mr and it is not already down-

regulated by a Tr, it becomes activated (Ma). Following Tr down-regulation, Mr does 

nothing but moves for a fixed period of time tregMac. If the remaining lifespan of such an 

activated macrophage is greater than maxageActive, it will be shortened to maxageActive. 

 

A.1.3.3.3 Rules for Infected Macrophages (Mi) 

Bint replicates in Mi every ABM time-step according to the following equation: 

€ 

Bint (t + Δt) = (1+αBi)Bint (t)                                                                                                     

Mi is able to uptake but not kill Bext from its micro-compartment with a probability 

(PuptakeMi) that is computed as a function of Bint as follows: 

€ 

PuptakeMi = (Nc − Bint ) /100                                                                                                   

Mi takes up Nrk of extracellular bacteria if Bext > Nrk. Otherwise, it takes up all 

extracellular bacteria that are available in the micro-compartment. If the number of Bint 
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exceeds a threshold Nc, the Mi becomes chronically infected (Mci). There is a chance of 

STAT-1 activation in a time-step as a result of interaction between a Mi and IFN-γ 

producing Tγ cells with a probability (nTγ * PSTAT1); where, nTγ is the number of Tγ cells 

surrounding the Mr in the Moore neighborhood including the micro-compartment 

occupied by the Mr. Mi can become NF-κB activated through TNF-α induced processes, 

which is discussed in Appendix A.2. NF-κB activation can also occur if the Bext in the 

Moore neighborhood exceeds BactM. STAT-1 and NF-κB activation last for the time 

interval tSTAT1 and tNFκB after which STAT-1 or NF-κB activation, respectively, is lost. Mi 

that are either STAT1 or NF-κB can be down-regulated by a Tr in which the Mi loses 

either STAT1 or NF-κB activation respectively. Following Tr down-regulation, Mi does 

nothing but moves for a fixed period of time tregMac, but continues to secrete chemokines. 

If both STAT1 and NF-κB are activated in a Mi and it is not already down-regulated by a 

Tr, it becomes activated (Ma). If the remaining lifespan of such an activated macrophage 

is greater than maxageActive, it will be shortened to maxageActive. 

 

A.1.3.3.4 Rules for Chronically Infected Macrophages (Mci) 

Bint replicates in Mci every time-step in the same way as Mi. If the Bint exceeds a 

threshold (Nburst), the Mci bursts and its Bint are evenly distributed to the Moore 

neighborhood surrounding the Mci. Mci bursting contributes to caseation of the micro-

compartment. Mci are always NF-κB activated and cannot become STAT1 activated. Mci 

cannot be down-regulated by a Tr. 

 

A.1.3.3.5 Rules for Activated Macrophages (Ma) 
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Ma is capable of effectively killing Bext. Each time-step, Ma kills Nak of the Bext in 

its micro-compartment. Ma that transitions from Mi kill Bint at the same rate that it kills 

Bext each time-step. Ma can be down-regulated by a Tr in which the Ma loses both STAT1 

and NF-κB activation. Following Tr down-regulation, Ma does nothing but moves for a 

fixed period of time tregMac and subsequently transitions back to Mr after its down-

regulated state. 

 

A.1.3.3.6 Rules for Cytotoxic T cells (Tc) 

If Tc is not already down-regulated by a Tr and there is a Mi or Mci present in its 

Moore neighborhood there is a chance of perforin/granulysin-mediated killing of Mi or 

Mci with probability PcytKill. If there are more than one Mi or Mci in the Moore 

neighborhood one is chosen at random and the chance of perforin/granulysin-mediated 

killing of Mi or Mci is given by the probability PcytKill. Mi killing by a Tc kills all Bint and 

contributes to caseation of the micro-compartment. In the case of Mci killing, the Bint are 

killed with probability PcytKillClean. Otherwise, half of the Bint will be uniformly distributed 

in the Moore neighborhood. Mci killing by Tc also contributes to caseation of the micro-

compartment. When down-regulated, Tc cells lose their cytotoxic capabilities for a fixed 

period of time tregTcyt. 

 

A.1.3.3.7 Rules for Pro-inflammatory T cells (Tγ) 

If Tγ is not already down-regulated by a Tr and there is a Mi or Mci present in its 

Moore neighborhood there is a chance of Fas/FasL-induced apoptosis of Mi or Mci with 

probability Papop/Fas. If there are more than one Mi or Mci in the Moore neighborhood one 
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is chosen at random and the chance of Fas/FasL-induced apoptosis of Mi or Mci is given 

by the probability Papop/Fas. As a result of apoptosis, half of the Bint in Mi or Mci will be 

killed and the other half will be equally distributed in the Moore neighborhood as Bext. 

When down-regulated, Tγ cells lose their apoptotic capabilities for a fixed period of time 

tregTgam. 

 

A.1.3.3.8 Rules for Regulatory T cells (Tr) 

Tr suppresses or down-regulates the action of T cells and macrophages through 

non interleukin-10 mechanisms (CTLA-4, TGF-β, etc.), which are still poorly understood 

(5–7). Thus, the probability of alternative suppressive functions of Tr occurring is linearly 

dependent upon the following ratio (Eq. 3), which coarsely simulates the mechanisms of 

other regulatory mechanisms that are not the focus of this work.  

BoundRatio = [TNF ⋅TNFR1]
[TNF ⋅TNFR1]+[IL10 ⋅ IL10R]                                                              

 

Tr here down-regulates all cells (macrophages, Tc and Tγ) in its Moore neighborhood. 

Down-regulated states last for tregMac, tregTgam and tregTcyt for macrophages, Tc and Tγ cells, 

respectively. Tr down-regulation for each cell type is explained in sections that describe 

ABM rules for that specific cell type. 

 

A.1.3.4 Extracellular Mtb Growth 

Growth of extracellular Mtb (Bext) in all micro-compartments is calculated based 

on the following equation: 

€ 

Bext (t + Δt) = Bext (t) +αBeBext (t) 1−
Bext (t)
1.1Kbe

% 

& 
' 

( 

) 
* 
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A.1.3.5 Chemokine Secretion 

Mi, Mci, Ma, NF-κB activated Mr, and NF-κB activated Mi are able to secrete 

chemokines, provided that they are not down-regulated by Tr. The rates of chemokine 

secretion for different cell types are as follows. Mci, Ma and NF-κB activated Mi are able 

to secrete chemokines with full secretion rates (rCCL2, rCCL5, and rCXCL9) as listed in Table 

A.3. NF-κB activated Mr and Mi cells that are not NF-κB activated secrete chemokines 

with half-full secretion rates (0.5 × rCCL2, 0.5 × rCCL5, and 0.5 × rCXCL9). Caseated micro-

compartments also secrete attractants that attract immune cells. For simplicity, we use 

quarter-full rates of chemokine secretion to simulate the effect of such attractants (0.25 × 

rCCL2, 0.25 × rCCL5, and 0.25 × rCXCL9). Chemokine secretions to the micro-compartments 

on the grid are updated in time intervals of dtD. Secretion of TNF and IL-10 is discussed 

in Appendix A.2. 

 

A.2 Molecular Scale Models 

The overall structure of the computational model of the immune response to Mtb 

infection in the lung is presented in Appendix A.1. Figure 3.2 in Chapter 3 indicates how 

these models exist separately and how they are linked. The overall algorithm of the 

simulation takes the form outlined in Figure A.1 in Appendix A.1 and the molecular scale 

will be presented in detail in this section. The solution of molecular scale models of 

diffusion, degradation, and TNF-α and IL-10 single-cell level receptor-ligand dynamics 

will be discussed section. 

 

A.2.1 Diffusion of Soluble Molecules 
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The two-dimensional partial differential equation (PDE) for diffusion of CCL2, 

CCL5, CXCL9, TNF-α, IL-10, and shed bound TNFR2 is given by the following 

equation. 

∂C
∂t

= D ∂2C
∂x2

+
∂2C
∂y2

"

#
$

%

&
'                                                                                                                 

C is the concentration of diffusing molecule that changes with time (t) in the x and y 

directions and D is the diffusion coefficient for the molecule in the tissue environment. 

This equation can be implemented numerically on the grid by using the alternate-

direction explicit finite difference discrete-time discrete-space approximation scheme (8). 

Let ui, j and vi, j be finite difference solutions of the transient diffusion PDE. Define i as 

the lattice parameter for the x-direction, j as the lattice parameter for y-direction, n as the 

current time point, Δx as the x-direction grid size, and Δy as the y-direction grid size. In 

the case of u the iteration proceeds forward in the i, j direction thus any values of u at 

time (n+1) will be known. For the case of v the iteration proceeds in the decreasing i, j 

direction (the iteration starts at the end of the grid and works backwards) therefore all 

values of v at time (n+1) will be known.  

ui, j
n+1 −ui, j

n

δt
=
ui+1, j
n −ui, j

n −ui, j
n+1 +ui−1, j

n+1

δx2
+
ui, j+1
n −ui, j

n −ui, j
n+1 +ui, j−1

n+1

δy2
                                                     

                                                      

Thus, the concentration at a specific time point is given by the arithmetic average of u 

and v. 

Ci, j
n+1 =

ui, j
n+1 + vi, j

n+1

2
                                                                                                                      

vi, j
n+1 − vi, j

n

δt
=
vi+1, j
n+1 − vi, j

n+1 − vi, j
n + vi−1, j

n

δx2
+
vi, j+1
n+1 − vi, j

n+1 − vi, j
n + vi, j−1

n

δy2
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This method is unconditionally stable, allowing us to choose a dtD = 30 seconds for 

reasonable numerical accuracy and computational efficiency.  

 

A.2.2 Degradation of Soluble Molecules 

Degradation of soluble CCL2, CCL5, CXCL9, TNF-α, IL-10, and shed bound 

TNFR2 is described by: 

∂C
∂t

= −kdegC                                                                                                                             

where kdeg is the degradation rate constant for the specific molecule in the tissue 

environment. In order to increase the accuracy of the solution degradation and prevent 

unnecessary computational burden, we calculate degradation using the analytical solution 

below.  

                                                                                                                           

This is calculated with the same solver time step as the diffusion equation, dtD. 

 

A.2.3 Single-Cell Level Receptor-Ligand Dynamics 

We use ordinary differential equations (ODEs) to describe the TNF/TNFR and 

IL-10/IL-10R receptor-ligand dynamics occurring at the single-cell level. TNF/TNFR and 

IL-10/IL-10R ODEs are solved for each individual cell on the grid using the time-step 

dtM and the 4th order Runge-Kutta numerical method. Soluble molecules in the model 

(sTNF, sTNF/TNFR2shed, and IL-10) are expressed as volumetric concentration units (e.g. 

M), whereas cell-associated species are expressed as numbers of molecules per cell. 

Thus, when a membrane-bound molecule releases to the extracellular space (i.e. the 

C
C0

= e−kdeg*dtD
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micro-compartment occupied by the cell), or when a soluble molecule binds to the cell 

membrane, a scaling factor (ρ/Nav) is required as indicated in Table A.2, where ρ is the 

cell density in the micro-compartment and can be computed as dx3 assuming that each 

micro-compartment is a cube of side dx. 

 

A.2.3.1 Single-Cell Level IL-10/IL-10R Equations 

The binding interactions and reactions controlling IL-10/IL-10R dynamics at the 

single-cell level regardless of the cell type are schematically illustrated in Chapter 3 

(Figure 3.2). IL-10 is synthesized by IL-10 producing cells (Mi, Mci, Ma, and Tr), if not 

down-regulated by Tr cells, and is released directly into the extracellular environment (6, 

9–16). IL-10 exists in the extracellular space as a non-covalently bonded dimer where it 

can bind to cell-surface IL-10R1 and IL-10R2 (17, 18). Signaling occurs through 

association of bound IL-10R1 with the IL-10R2 subunit (10). IL-10R1 is the high affinity 

receptor compared to IL-10R2, which mainly exists as a signaling subunit to bound IL-

10R1. For simplicity, we include only a general IL-10R that represents both IL-10R1 and 

IL-10R2 (19, 20). IL-10R is synthesized by the cell and is removed from the membrane 

by turnover (21). Bound IL-10R can be internalized where it can be degraded or recycled 

to the surface (22). The processes of degradation and recycling are not explicitly modeled 

since tracking internalized bound IL10R adds unnecessary complexity to the ODEs. We 

lump these processes into IL10R turnover and synthesis for simplicity. We modeled these 

molecular processes based on mass action kinetics as shown in Table A.1; model 

equations are listed in Table A.2; definitions and values of the rate constants are given in 

Table A.4. 
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The rates of IL-10 synthesis and IL-10R synthesis (kSynth and Vr) are cell 

type/state-specific as indicated in Table A.4, but other rate constant values are common 

between all cells. In the multi-scale model described in Chapter 3, the rates of IL-10 

synthesis for different cell types are as follows. Mi are able to synthesize IL-10 at the full 

rate ksynthMacInf, while Mci make IL-10 at 1.5* ksynthMacInf shown in Table A.4. Ma 

synthesize IL-10 at a basal rate of ksynthMacAct but the rate is dependent upon the bound 

TNFR1 concentration as shown in Table A.2. Tr cells express IL-10 at the full rate 

ksynthTcell, while Tγ and Tc do not synthesize IL-10 in our model. 

 

A.2.3.2 Single-Cell Level TNF/TNFR Ordinary Equations 

The binding interactions and reactions controlling TNF/TNFR dynamics at the 

single-cell level regardless of the cell type are adapted from (23) and are schematically 

illustrated in (Figure 3.2). TNF-α mRNA is transcribed by TNF-producing cells (Mi, Mci, 

Ma, NF-κB activated Mr, Tγ and Tc), if not down-regulated by Tr cells, and subsequently 

translated into its membrane bound form, mTNF. mTNF is then processed and released 

as a soluble form (sTNF) into extracellular spaces. This processing occurs via a cell-

associated metalloproteinase called TACE. Two types of TNF receptors (TNFR1 and 

TNFR2) are synthesized and expressed on the cell surface as free receptors. Soluble TNF 

(sTNF) reversibly binds to TNFRs on the cell membrane. sTNF-bound cell surface 

TNFR1 internalizes and sTNF-bound cell surface TNFR2 may undergo internalization or 

shedding into extracellular spaces [8]. Internalized receptors may degrade or recycle to 

the cell membrane where they can re-bind to sTNF [9]. Ligand-free TNFRs also turn over 

(internalize) [9,10]. Intact sTNF may dissociate from the shed sTNF/TNFR2 complex in 
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the extracellular space [11]. We modeled these molecular processes based on mass action 

kinetics as shown in Table A.1; model equations are listed in Table A.2; definitions and 

values of the rate constants are given in Table A.4. 

The rates of TNF-α mRNA synthesis and release from the cell membrane and 

TNFR synthesis (kmRNA, kSynth, kTACE, Vr1 and Vr2) are cell type/state-specific as indicated 

in Table A.4, but other rate constant values are common between all cells. In the multi-

scale model described in Chapter 3, the rates of TNF-α mRNA synthesis for different cell 

types are as follows. Mci, Ma and NF-κB activated Mi are able to synthesize mTNF with a 

full rate (kmRNA = kmRNA_Mac and ksynth = ksynthMac) as shown in Table A.4. NF-κB activated 

Mr and non-NF-κB activated Mi express TNF-α mRNA with a half-full rate (kmRNA = 

0.5*kmRNA_Mac and ksynth = 0.5*ksynthMac). Tγ cells express TNF-α mRNA at a rate of 

kmRNA_Tcell and ksynth = ksynthTcell, while Tc cells express TNF-α mRNA at a rate of kmRNA = 

0.1*kmRNA_Tcell and ksynth = 0.1*ksynthTcell. Tr cells do not express TNF. TACE activity is 

also assumed to be cell type-dependent as shown in Table A.4. 

 

A.3.2.3 Linking TNF/TNFR and IL-10/IL-10R Equations 

TNF-α and IL-10 receptor-ligand dynamics are linked in two ways as shown in 

Figure 3.2 in Chapter 3. Bound IL-10R inhibits TNF-α mRNA transcription while bound 

TNFR1 can induce synthesis of IL-10 in Ma. Inhibition of TNF-α mRNA transcription 

shows rapid switch-like behavior, thus we modeled these processes with a three-

parameter logistic function (24).  

kmRNA−Mod = kmRNA β +
1−β

1+ e
[ IL10⋅IL10R]−γ I

δI

#

$

%
%

&

'

(
(
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We captured the ability of bound TNFR1 to induce synthesis of IL-10 in Ma with 

Michaelis-Menton type kinetics, which roughly approximates the mechanisms 

influencing the plasticity of Ma to produce IL-10 at lower (classical Ma) or higher 

(alternative Ma) rates (25–29). 

ksynthMacAct−Mod = ksynthMacAct
[sTNF ⋅TNFR1]

[sTNF ⋅TNFR1]+ hsynthMacAct

#

$
%%

&

'
((                                 

 

A.3.3 Linking the Molecular Scale to GranSim 

The molecular scale sub-models of TNF-α are linked to GRSim through NFκB 

activation of macrophages, caspase induced cell apoptosis, and cellular recruitment. We 

describe TNF-α induced NFκB activation of each macrophage and TNF-α induced 

apoptosis of cells as Poisson processes with a probability of occurrence determined by a 

rate constant, threshold value, and a saturation value (see Table A.4 for parameter 

definitions and values) (23). TNF-α induced NFκB activation of macrophages is 

dependent on the concentration of bound TNFR1 per cell (Eq. 8), while TNF-α induced 

apoptosis is dependent on the concentration of internalized bound TNFR1 per cell (Eq. 

9).  

PNFkB =
1− e−kNFkB ([sTNF−TNFR1]−τNFkB )Δt [sTNF −TNFR1]≥ τ NFkB

0 [sTNF −TNFR1]< τ NFkB

$
%
&

'&

(
)
&

*&
     

Papop =
1− e−kapop ([sTNF−TNFR1i ]−τ apop )Δt [sTNF −TNFR1i ]≥ τ apop

0 [sTNF −TNFR1i ]< τ apop

$
%
&

'&

(
)
&

*&
     

NF-κB activation is checked once for all Mr and Mi within each ABM time-step 

(dtA). TNF-induced apoptosis is checked once for all cells on the grid within each ABM 
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time-step (dtA). The molecular scale IL-10 sub-models are linked to GRSim through 

chemokine down regulation and compensation of alternative suppressive functions. IL-10 

inhibits the production of chemokines by macrophages; we use a simple threshold 

relationship, wherein the synthesis of chemokines is reduced in half once the number of 

bound IL-10R is above a specified value (30–33). The probability of alternative 

suppressive functions of Tr occurring is linearly dependent on the ratio of bound TNFR1 

to bound IL-10R, which coarsely simulates the mechanisms of other regulatory 

mechanisms that are not the focus of this work (5–7, 34–36). 

 
Table A.1 Molecular Scale Single-Cell TNF/TNFR and IL10/IL10R Equations – Model Reactions 
and Rates (vi) 

 

TNF-↵ Model Reactions

1. mTNF
mRNA

synthesis v1 = k
mRNA�Mod

2. mTNF
mRNA

! mTNF v2 = k
trans

[mTNF
mRNA

]

3. mTNF ! sTNF v3 = k
TACE

[mTNF ]

4. sTNF + TNFR1 � sTNF · TNFR1 v4 = k
on1[sTNF ][TNFR1]� k

off1[sTNF · TNFR1]

5. sTNF + TNFR2 � sTNF · TNFR2 v5 = k
on2[sTNF ][TNFR2]� k

off2[sTNF · TNFR2]

6. sTNF · TNFR1 ! sTNF · TNFR1

i

v6 = k
int1[sTNF · TNFR1]

7. sTNF · TNFR2 ! sTNF · TNFR2

i

v7 = k
int2[sTNF · TNFR2]

8. sTNF · TNFR2 ! sTNF · TNFR2

shed

v8 = k
shed

[sTNF · TNFR2]

9. TNFR1 synthesis v9 = V
r1

10. TNFR2 synthesis v10 = V
r2

11. TNFR1 ! TNFR1

i

v11 = k
t1[TNFR1]

12. TNFR2 ! TNFR2

i

v12 = k
t2[TNFR2]

13. sTNF · TNFR1

i

! degradation v13 = k
deg1[sTNF · TNFR1

i

]

14. sTNF · TNFR2

i

! degradation v14 = k
deg1[sTNF · TNFR2

i

]

15. sTNF · TNFR1

i

! TNFR1 v15 = k
rec1[sTNF · TNFR1

i

]

16. sTNF · TNFR2

i

! TNFR2 v16 = k
rec2[sTNF · TNFR2

i

]

17. sTNF · TNFR2

shed

! sTNF + TNFR2

shed

v17 = k
off2[sTNF · TNFR2

shed

]

IL-10 Model Reactions

18. IL10 synthesis v18 = k
synth

19. IL10 + IL10R � IL10 · IL10R v19 = k
on

[IL10][IL10R]� k
off

[IL10 · IL10R]

20. IL10 · IL10R ! IL10 · IL10R
i

v20 = k
int

[IL10 · IL10R]

21. IL10R ! turnover v21 = k
t

[IL10R]

22. IL10R synthesis v22 = V
r

Dependent Rate Constants

Inhbition of TNF-↵ mRNA Synthesis k
mRNA�Mod

= k
RNA

0

BB@� +

1� �

1 + e

[IL10 · IL10R]� �

�

1

CCA

Induction of IL-10 Synthesis k
synth

= k
synth

✓
[sTNF · TNFR1]

[sTNF · TNFR1] + h
synthMacAct

◆

1
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Table A.2 Molecular Scale Single-Cell TNF/TNFR and IL10/IL10R Equations 

 
 
 
Table A.3 Tissue and cellular scale parameters 

Parameter Parameter Description Value* 
Grid/Simulation Related Parameters 

tdiffusion Time step for solving diffusion PDEs 30 
tmolecular Time step for solving molecular scale ODEs 6 
Nsource Number of vascular sources 50 
Ncaseum Number of qualified cell deaths required for caseation 15 
Kbe Capacity of a micro-compartment for extracellular Mtb 200 

Chemokine Related Parameters 
Dchem (cm2/s) Diffusion coefficient of chemokines 10-8-10-7 (5.2×10-8) 
kdegChem(s-1) Chemokine degradation rate constant 5x10-4-5x10-3 (1.58×10-3) 
τchem (molecules) Minimum chemokine concentration threshold 1-10 (2) 
schem (molecules) Saturating chemokine concentration threshold 103-104 (2000) 
I50IL10 (ng/mL) IC50 for IL10 inhibition of chemokine production 10-30 (20) 

Macrophage Related Parameters 
Minit Initial number of resident macrophages 105 
maxageMac (day) Maximum lifespan of macrophages 100 
maxageActive (day) Maximum lifespan of an active macrophage 10 
tregMac (hours) Macrophage inactivity time after down-regulation by Treg 24 
tmoveMr (min) Time interval for Mr movement 20 
tmoveMa (hour) Time interval for Ma movement 7.8 
tmoveMi (hour) Time interval for Mi movement 24 
rCCL2 (molecules/s) Full secretion rate of CCL2 by macrophages 4.14 
rCCL5 (molecules/s) Full secretion rate of CCL5 by macrophages 4.14 
rCXCL9 (molecules/s) Full secretion rate of CXCL9/10/11 by macrophages 8.28 
Nrk Number of extracellular Mtb engulfed by Mr or Mi 1 
Pk Probability of Mr killing bacteria 0.2-0.3 (0.269) 
BactM Number of extracellular Mtb activating NF-κB in a mac 150-300 (239) 
Nc Number of intracellular Mtb for Mi→Mci transition 10 
Nburst Number of intracellular Mtb that leads to Mci bursting 20-30 (20) 

TNF-↵ Di↵erential Equations

d[mTNFmRNA]

dt
= v1 � v2

d[mTNF ]

dt
= v2 � v3

d[sTNF ]

dt
=

✓
⇢

Nav

◆
(v3 � v4 � v5) + v17

d[TNFR1]

dt
= v9 � v4 � v11 + v15

d[TNFR2]

dt
= v10 � v5 � v12 + v16

d[sTNF · TNFR1]

dt
= v4 � v6

d[sTNF · TNFR2]

dt
= v5 � v7 � v8

d[sTNF · TNFR1i]

dt
= v6 � v13 � v15

d[sTNF · TNFR2i]

dt
= v7 � v14 � v16

d[sTNF · TNFR2shed]

dt
=

✓
⇢

Nav

◆
v8 � v17

IL-10 Di↵erential Equations

d[IL10]

dt
=

✓
⇢

Nav

◆
(v18 � v19)

d[IL10 · IL10R]

dt
= v19 � v20

d[IL10R]

dt
= v22 � v21 � v19

1
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PSTAT1 Probability of STAT-1 activation in Mr or Mi 0.001-0.15 (0.0917) 
Nak Number of extracellular Mtb killed by Ma each time-step 2-4 (3) 
τrecMacCC Chemokine threshold for Mr recruitment  0.065-0.65 (0.151) 
τrecMacTNF TNF threshold for Mr recruitment  0.006-0.06 (0.014) 
hMacCC Half-saturation of chemokines for Mr recruitment  1-10 (5) 
hMacTNF Half-saturation of TNF for Mr recruitment 0.09-0.9 (0.5) 
MrecMax Maximum recruitment probability for Mr recruitment 0.07-0.11 (0.09) 
tSTAT1 (hours) Time interval for STAT1 activation of Mr or Mi 25-58 (41) 
tNFκB (min) Time interval for NFκB activation of Mr or Mi 10-500 (100) 

T Cell Related Parameters 
NMtbTcell (# of Mtb) Number of Mtb required to begin T cell recruitment 50 
maxageTcell (days) Maximum lifespan of T cells 3 
TmoveM Probability of T cell moving to a mac-containing location 0.005-0.05 (0.027) 
TmoveT Probability of T cell moving to a T cell-containing location 0.01-0.12 (0.08) 
tregTgam (hours) Tγ inactivity time after down-regulation by Treg 6 
PFas/FasL Probability of Fas/FasL apoptosis by Tγ 0.005-0.05 (0.0095) 
τrecTgamCC Chemokine threshold for Tγ recruitment  0.065-0.65 (0.151) 
τrecTgamTNF TNF threshold for Tγ recruitment  0.006-0.06 (0.014) 
hTgamCC Half-saturation of chemokines for Tγ recruitment  0.5-5 (1.5) 
hTgamTNF Half-saturation of TNF for Tγ recruitment 0.05-0.5 (0.3) 
TrecTgamMax Maximum recruitment probability for Tγ recruitment 0.03-0.11 (0.0713) 
tregTcyt (hours) Tc inactivity time after down-regulation by Treg 6 
PcytKill Probability of Tc killing Mi or Mci 0.005-0.05 (0.0098) 
PcytKillClean Probability of Tc killing all intracellular Mtb by killing Mci 0.75 
τrecTcytCC Chemokine threshold for Tc recruitment  0.08-0.85 (0.3775) 
τrecTcytTNF TNF threshold for Tc recruitment  0.006-0.06 (0.014) 
hTcytCC Half-saturation of chemokines for Tc recruitment  0.5-5 (1.5) 
hTcytTNF Half-saturation of TNF for Tc recruitment 0.05-0.5 (0.3) 
TrecTcytMax Maximum recruitment probability for Tc recruitment 0.01-0.09 (0.0505) 
dslopeTreg Slope of deactivation probability function for Treg 0.75-1.0 (0.8905) 
dminTreg Minimum of deactivation probability function for Treg 0.0001-0.001 (0.0009) 
τrecTregCC Chemokine threshold for Treg recruitment  0.02-0.12 (0.0755) 
τrecTregTNF TNF threshold for Treg recruitment  0.006-0.06 (0.014) 
hTregCC Half-saturation of chemokines for Treg recruitment  0.5-5 (1.5) 
hTregTNF Half-saturation of TNF for Treg recruitment 0.05-0.5 (0.3) 
TrecTregMax Maximum recruitment probability for Treg recruitment 0.008-0.06 (0.0221) 

Bacteria Related Parameters 
αBi (per 10 min) Intracellular Mtb growth rate 5×10-4-5×10-3 (1.4×10-3) 
αBe (per 10 min) Extracellular Mtb growth rate 10-4-10-3 (7×10-4) 
µBeCas Maximum death rate of extracellular Mtb in caseation 0.75-2 (1.5) 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate the baseline containment parameter set (23, 37). 
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Table A.4 Molecular scale TNF/TNFR and IL10/IL10R parameters 
Parameter Parameter 

group 
Parameter description Value* Reference 

 TNF/TNFR Parameters 

ksynthMac (#/cell.s) Synthesis Minimum synthesis rate of mTNF for 
macrophages 10-1-1 (0.21) (38, 39) 

ksynthTcell (#/cell.s) Synthesis Minimum synthesis rate of mTNF for T 
cells 10-2-10-1 (0.021) (38, 39) 

ktrans (s-1) Synthesis TNF mRNA translation rate constant 10-5-10-4 (8.0x10-

5)  

kRNA_Mac (#/cell.s) Synthesis Full TNF mRNA synthesis rate constant 
for macrophages 1-5 (1.5) (12, 24, 39) 

kRNA_Tcell (#/cell.s) Synthesis Full TNF mRNA synthesis rate constant 
for T cells 0.1-0.5 (0.15) (12, 24, 39) 

βMac Synthesis 
Logistic function lower asymptote for 
macrophages that describes IL10-IL10R 
inhibition of TNF mRNA synthesis 

ksynthMac / kRNA_Mac  

βTcell Synthesis 
Logistic function lower asymptote for T 
cells that describes IL10-IL10R inhibition 
of TNF mRNA synthesis 

ksynthTcell / kRNA_Tcell  

TNFR1mac (#/cell) Signaling TNFR1 density on the surface of 
macrophages 

500-5000 (1100-
1900) † (38, 40–42) 

TNFR1Tcell (#/cell) Signaling TNFR1 density on the surface of T cells 500-5000 (400-
1200) † (38, 40–42) 

TNFR2mac (#/cell) Signaling TNFR2 density on the surface of 
macrophages 

500-5000 (400-
800) †

 
(38, 40–42) 

TNFR2Tcell (#/cell) Signaling TNFR2 density on the surface of T cells 500-5000 (600-
800) † (38, 40–42) 

DTNF (cm2/s) ‡ Spatial Diffusion coefficient of sTNF 10-8-10-7 (5.2×10-

8) (43, 44) 

DsTNF/TNFR2 (cm2/s) 
‡ Spatial Diffusion coefficient of shed TNF/TNFR2 

complex 
10-8-10-7 (3.2×10-

8) (43, 44) 

kTACE_Mac (s-1) Synthesis Rate constant for TNF release by TACE 
activity on a macrophage 

10-4-10-3 (4.4×10-

4) (38, 45–47) 

kTACE_Tcell (s-1) Synthesis Rate constant for TNF release by TACE 
activity on a T cell 

10-8-10-6 (4.4×10-

5) (38, 45–47) 

kdeg (s-1) Spatial sTNF degradation rate constant 5x10-4-5x10-3 
(1.58×10-4) (48) 

Kd1 (M) Signaling Equilibrium dissociation constant of 
sTNF/TNFR1 

10-12-10-10 
(1.9×10-11) (40, 49) 

Kd2 (M) Signaling Equilibrium dissociation constant of 
sTNF/TNFR2 

10-10-10-9 (4.2×10-

10) (40, 49, 50) 

kon1 (M-1s-1) Signaling sTNF/TNFR1 association rate constant 107-108 (2.8×107) (49) 
kon2 (M-1s-1) Signaling sTNF/TNFR2 association rate constant 107-108 (3.5×107) (49) 
koff1 (s-1) Signaling sTNF/TNFR1 dissociation rate constant kon1×Kd1  
koff2 (s-1) Signaling sTNF/TNFR2 dissociation rate constant kon2×Kd2  

kint1 (s-1) Signaling TNFR1 internalization rate constant 1.5×10-4-1.5×10-3 
(7.7×10-4) (49, 51) 

kint2 (s-1) Signaling TNFR2 internalization rate constant 3.9×10-4-5×10-4 
(4.6×10-4) (50) 

kshed (s-1) Spatial TNFR2 shedding rate constant 3.9×10-4-1.5×10-3 
(5×10-4) (46, 51) 

krec1 (s-1) Signaling TNFR1 recycling rate constant 8.8×10-5-5.5×10-4 
(1.8×10-5) (52, 53) 

krec2 (s-1) Signaling TNFR2 recycling rate constant 8.8×10-5-5.5×10-4 
(1.8×10-5) (52, 53) 

kt1 (s-1) Signaling TNFR1 turn-over rate constant 3×10-4-5×10-4 
(3.8×10-4) (52, 53) 

kt2 (s-1) Signaling TNFR2 turn-over rate constant 3×10-4-5×10-4 
(3.8×10-4) (52, 53) 

kdeg1 (s-1) Signaling TNFR1 degradation rate constant 10-5-10-4 (5×10-5) (40, 52–54) 
kdeg2 (s-1) Signaling TNFR2 degradation rate constant 10-5-10-4 (5×10-5) (40, 52–54) 
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Vr1_mac (#/cell.s)  Signaling Cell surface TNFR1 synthesis rate 
constant for macrophages kt1×TNFR1mac  

Vr1_Tcell (#/cell.s)  Signaling Cell surface TNFR1 synthesis rate 
constant for T cells kt1×TNFR1Tcell  

Vr2_mac (#/cell.s)  Signaling Cell surface TNFR2 synthesis rate 
constant for macrophages kt2×TNF21mac  

Vr2_Tcell (#/cell.s)  Signaling Cell surface TNFR2 synthesis rate 
constant for T cells kt2×TNF21Tcell  

δI (# of IL10-
IL10R/cell) Signaling 

Inverse growth rate of logistic function 
that describes IL10-IL10R inhibition of 
TNF mRNA synthesis 

5-10 (7) (24, 55, 56) 

γI Signaling 
Time of max growth of logistic function 
that describes IL10-IL10R inhibition of 
TNF mRNA synthesis 

15-30 (20) (24, 55, 56) 

 IL10/IL10R Parameters 

DIL10 (cm2/s) ‡ Spatial Diffusion coefficient of soluble IL10 10-8-10-7 (5.2×10-

8) (43, 44) 

Kd (M) Signaling Equilibrium dissociation constant of 
IL10/IL10R 

10-11-10-9 
(4.56x10-10) 

(17, 18, 57, 
58) 

kon (M-1s-1) Signaling IL10/IL10R association rate constant 105-106 (5.7x105) (17, 18, 57, 
58) 

koff (s-1) Signaling IL10/IL10R dissociation rate constant kon×Kd  

kt (s-1) Signaling IL10R turn-over rate constant 5x10-5-5x10-4 
(1.6x10.4) (21, 51, 52) 

kint (s-1) Signaling IL10R internalization rate constant 10-4-10-3 (5×10-4) (22) 

kdeg (s-1) Spatial Soluble IL10 degradation rate constant 10-4-10-3 (4.8×10-

4) (19, 20) 

Vr_mac Signaling Cell surface IL10R synthesis rate constant 
for macrophages kt×IL10Rmac  

Vr_Tcell Signaling Cell surface IL10R synthesis rate constant 
for Tcells kt×IL10RTcell  

IL10Rmac (#/cell) Signaling IL10R density on the surface of 
macrophages 

500-5000 (1150-
1850) † 

(17, 18, 
58–60) 

IL10RTcell (#/cell) Signaling IL10R density on the surface of T cells 100-1000 (250-
550) † 

(17, 18, 
58–60) 

ksynthMacInf (#/cell.s) Synthesis Full synthesis rate of soluble IL10 by 
infected macrophages 

0.01-0.1 (0.061) (12, 16) 

ksynthMacAct 
(#/cell.s) Synthesis Full synthesis rate of soluble IL10 by 

activated macrophages 
0.1-1.0 (0.41) (11, 27) 

ksynthTcell (#/cell.s) Synthesis Full synthesis rate of soluble IL10 by T 
cells 0.25-1.5 (0.74) (13–15) 

hsynthMacAct (# of 
sTNF-
TNFR1/cell) 

Synthesis 
Half-saturation of IL10 synthesis by 
activated macrophages induced by bound 
TNF to TNFR1 

50-500 (190) (11, 27) 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate the baseline containment parameter set. 
† Baseline containment parameter set values for TNFR and IL10R densities on each recruited individual cell were 
randomly chosen from the ranges shown in parentheses. 
‡ Diffusion coefficients of soluble species in granuloma were estimated from values for diffusible factors of similar 
molecular weight in tumors [17,18]. 
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Table A.5 Molecular scale TNF-α induced cell response parameters 
Parameter Parameter 

group 
Parameter description Value* Reference 

kNFκB ((#/cell)-

1s-1) Signaling Rate constant for TNF-induced NFκB 
activation in macrophages 

8x10-9-3x10-8 
(1.41×10-8) (61) 

kapopt ((#/cell)-

1s-1) Signaling Rate constant for TNF-induced apoptosis in all 
cell types 

10-10-10-9 
(3.45×10-10)  

τNFκB (#/cell) Signaling Cell surface sTNF/TNFR1 threshold for TNF-
induced NFκB activation 35-100 (65) (61) 

τapopt (#/cell) Signaling Internalized sTNF/TNFR1 threshold for TNF-
induced apoptosis 

1200-2300 
(1728)  

sapopt (#/cell) Signaling Saturation concentration of internalized 
sTNF/TNFR1 for TNF-induced apoptosis 

3500-4500 
(4022)  

sNFκB  Signaling Saturation fraction of sTNF/TNFR1 for TNF-
induced NFκB activation 0.35-0.50 (0.43) (61) 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate the baseline containment parameter set. 
 

A.4 Supplemental Data and Figures 

In this section, we present data for non-dominant outcomes briefly described in 

Chapter 3. Our computational model is stochastic and therefore simulations are averaged 

over multiple replications in order to get a representation of model outputs. Although 

each simulation run is distinct there are several model outcomes that can occur: 

uncontrolled bacterial growth, bacterial containment, resolved bacterial clearance, and 

unresolved bacterial clearance. Resolved granulomas have no bacterial load and have 

returned to steady state values of Mϕ while unresolved granulomas have no bacterial load 

but contain Mϕ levels well above steady state values. These unresolved granulomas tend 

to have large amounts of tissue damage due to the persistence of activated Mϕ beyond 

clearance of bacterial load. In order to carry out common statistical techniques (such as 

mean and standard deviation) simulations must be grouped into outcomes to prevent 

single modal statistics from being calculated on a multi-modal distribution. Therefore, 

shown below are the non-dominant outcomes for simulation runs presented in the text 

and figures of Chapter 3.  
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Table A.6 Signal Parameter Group – Receptor Expression – Non-Dominant Behavior Data 
  Number of 

Simulations 
Total Bacterial 

Load 

Number of Activated 
Macrophages 

Number of Apoptotic Resting 
Macrophages 

Low 

Macrophage TNFR Density 1 out of 30 0 ± N/A 0 ± N/A 0 ± N/A 
Macrophage IL-10R Density (Resolved 

Granulomas)* 
5 out of 30 

0 ± 0 0 ± 0 146 ± 178 
Macrophage IL-10R Density (Unresolved 

Granulomas)† 
5 out of 30 

0 ± 0 25 ± 34 1557 ± 1157 
Baseline Baseline Parameters 2 out of 30 0 ± 0 0 ± 0 7 ± 1 

High 
Macrophage TNFR Density 6 out of 30 1141 ± 397 100 ± 44 301 ± 66 
Macrophage IL-10R Density 0 out of 30 - - - 

* Resolved Granulomas – Levels of resting and activated Mϕ have returned to steady state values 
† Unresolved Granulomas - Levels of resting and activated Mϕ have not returned to steady state values 

 
Table A.7 Spatial Parameter Group – Non-Dominant Behavior Data 
  Number of 

Simulations 
Total Bacterial 

Load 

Number of Activated 
Macrophages 

Number of Apoptotic Resting 
Macrophages 

Low 

TNF-α Spatial Influence 1 out of 30 0 ± N/A 0 ± N/A 0 ± N/A 
IL-10 Spatial Influence (Resolved 

Granulomas) * 
6 out of 30 

0 ± 0 0 ± 0 746 ± 225 
IL-10 Spatial Influence (Unresolved 

Granulomas) † 
8 out of 30 

0 ± 0 479 ± 247 3325 ± 1267 
Baseline Baseline Parameters 2 out of 30 0 ± 0 0 ± 0 7 ± 1 

High 
TNF-α Spatial Influence 0 out of 30 - - - 
IL-10 Spatial Influence 1 out of 30 0 ± N/A 0 ± N/A 0 ± N/A 

* Resolved Granulomas – Levels of resting and activated Mϕ have returned to steady state values 
† Unresolved Granulomas - Levels of resting and activated Mϕ have not returned to steady state values 

 
Table A.8 Signal Parameter Group – Internalization Rate – Non-Dominant Behavior Data 
  Number of 

Simulations 
Total Bacterial 

Load 

Number of Activated 
Macrophages 

Number of Apoptotic Resting 
Macrophages 

Low 

TNF-α Internalization 
Rate 

7 out of 30 165 ± 174 2906 ± 145 0 ± 0 

IL-10 Internalization 
Rate 

3 out of 30 
0 ± 0 0 ± 0 3 ± 2 

Baseline Baseline Parameters 2 out of 30 0 ± 0 0 ± 0 7 ± 1 

High 

TNF-α Internalization 
Rate 

3 out of 30 
0 ± 0 0 ± 0 13 ± 7 

IL-10 Internalization 
Rate 

9 out of 30 0 ± 0 0 ± 0 106 ± 116  

 
Table A.9 Synthesis Parameter Group – Non-Dominant Behavior Data 
  Number of 

Simulations 
Total Bacterial 

Load 

Number of Activated 
Macrophages 

Number of Apoptotic Resting 
Macrophages 

Low 

TNF-α Synthesis 0 out of 30 - - - 
IL-10 Synthesis (Resolved) * 4 out of 30 0 ± 0 0 ± 0 121 ± 200 

IL-10 Synthesis 
(Unresolved) † 

7 out of 30 
0 ± 0 146± 213 1719 ± 1083 

Baseline Baseline Parameters 2 out of 30 0 ± 0 0 ± 0 7 ± 1 

High 
TNF-α Synthesis 13 out of 30 362 ± 302 1040 ± 135 4630 ± 576 
IL-10 Synthesis 1 out of 30 0 ± N/A 0 ± N/A 0 ± N/A 

* Resolved Granulomas – Levels of resting and activated Mϕ have returned to steady state values 
† Unresolved Granulomas - Levels of resting and activated Mϕ have not returned to steady state values 

 
Table A.10 IL-10 Knockout Parameter Set – Non-Dominant Behavior Data 
  Number of Simulations Total Bacterial Load Number of Activated Macrophages Number of Apoptotic Resting Macrophages 

Day 200 
Resolved 7 out of 50 0 ± 0 0 ± 0 382 ± 189 

Unresolved 17 out of 50 3 ± 7 146 ± 177 1931 ± 724 
* Resolved Granulomas – Levels of resting and activated Mϕ have returned to steady state values 
† Unresolved Granulomas - Levels of resting and activated Mϕ have not returned to steady state values 
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Table A.11 Uncertainty and Sensitivity Analysis Results For the Effects of TNF and IL-10 Molecular Scale Parameters on Model Outputs at 
200 Days Post-Infection 
 TNF-Related Parameters IL10 Related Parameters 
 DTNF τapop kSynthMac kRNA_Mac Kd1 kon1 kint1 krec1 kT2 kdeg kdeg1 TNFR1Mac τNFkB kNFkB Kd kon kint kdeg IL10RMac DIL10 kSynthMacAct 
TNF-Induced Outputs                      
Apoptosis – Mac  ---  +++ --- +++ + ---  --- -- +++   + --- +++  --- ++ --- 
Apoptosis – Mr  --  +++ ---   ---  ---      -- +++  ---  --- 
Apoptosis – Mi  --  +++ --- + +++ ---  -- - ++    - +     
Apoptosis – Mci  ---  +++   +++ --- - -  +          
Apoptosis – Ma  ---  +++ --- ++  ---  --- -- +++   + --- +++  --- +++ --- 
Apoptosis – T cells  --  +++ --   ---  - - ---    - +++  ---  -- 
NFkB – Mr +++  + +++ --  ---   ---   --- +++  --- +++ ++ ---  --- 
NFkB – Mi                   ++  ++ 
Cellular-Level Outputs                      
IntMtb  +++ - --- +++ --- +++  - +  ---  --- --- +++ --- - +++  +++ 
ExtMtb  ++ -- --- +++ --- +++  - ++  ---  --- -- +++ ---  +++  +++ 
TotMtb  ++ -- --- +++ --- +++  - ++  ---  --- -- +++ ---  +++  +++ 
Mr +      ---     - --    +    - 
Mi  +++ - --- +++ --- +++  -- +  ---  --- -- +++ ---  +++  +++ 
Mci  +++ - --- +++ --- +++  - +  ---  --- --- +++ --- - +++  +++ 
Ma +++      ---   --   --- +  --- ++  ---  -- 
Tgam +++      ---   -   --         
Tcyt +++      ---   -   --        - 
Treg +++      ---   ---   -    +  -  - 
Tissue-Level Outputs                      
Caseation      - +++            +++   
Granuloma Size +++      ---     - -        - 
[TNF] +++  + +++   ---   ---  --- --   --- +++ ++ ---  --- 
[IL10] ++      ---   -   --   --- + --- ---   
[Chemokines] +++      ---   -   ---   -   ---   
Significant PRCC values are as follows: -/+ 0.001 < p < 0.01  --/++ 0.0001 < p < 0.001  ---/+++ p < 0.0001 
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Table A.12 Uncertainty and Sensitivity Analysis Results For the Effects of Cellular Scale Parameters on Model Outputs at 200 Days Post-
Infection 

 Chemokine Parameters T Cell Parameters Recruitment Parameters Bacterial Parameters 
 DChem kdegChem PSTAT1 PFas/FasL PCytKill TMoveM MrecMex hMacTNF hMacCC TrecTgamMax τrecTgamTNF TrecTcytMax TrecTregMax τrecTregTNF αBi αBe 

TNF-Induced Outputs                 
Apoptosis – Mac +++ --- ++ --- - -- + --- ---    --    
Apoptosis – Mr +++ --- ++ ---  -- + --- ---    ---    
Apoptosis – Mi +++ ---  --- -- -- ++ --- ---        
Apoptosis – Mci +++ ---  --- --- --- + --- ---   --   ++  
Apoptosis – Ma +++ --- +++ ---  -  - -- +   --- + +  
Apoptosis – T cells +++ ---  --- ---   --- ---    ---  +++  
NFkB – Mr +++ --- ++ ---  -- + --- ---    --- +   
NFkB – Mi +++ ---  --- -- -- ++ --- ---    -  +  
Cellular-Level Outputs                 
IntMtb +++ ---  --- -- -- + -- ---  + --  + +  
ExtMtb +++ --- -- --- --- --- ++ -- --- -- + --- ++  +++ ++ 
TotMtb +++ --- -- --- --- --- ++ -- --- -- + --- ++  +++ + 
Mr +++ ---      - -      ---  
Mi +++ ---  --- - - + --- --   --   +++  
Mci +++ ---  --- - --  -- ---  + --  +   
Ma +++ --- +++ ---  -  - --    --- +   
Tgam +++ ---  ---  -    +++     +++  
Tcyt +++ ---  --- --- -  -    +++   +++  
Treg +++ ---  --- - -  -  -  -- +++  +++  
Tissue-Level Outputs                 
Caseation  ---      --       +++ + 
Granuloma Size +++ ---  --- --- --- +++ --- ---  + ---   +++  
[TNF] +++ --- + --- - -- + -- ---   -  + +  
[IL10] +++ --- + ---  -  - -      +++  
[Chemokines] +++ --- + ---  --  - -      +  
Significant PRCC values are as follows: -/+ 0.001 < p < 0.01  --/++ 0.0001 < p < 0.001  ---/+++ p < 0.0001 
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Figure A.3 Schematic diagram showing how the spatial ranges of TNF-α and IL-10 are manipulated 
A. As the diffusivity is increased and the degradation rate is decreased the spatial range of the molecule is 
increased (blue curve vs. the orange curve). B. Representation of the spatial range of TNF-α (red curve) and 
IL-10 (green curve) using the baseline parameters (Table S2 in Appendix S3). C. Increasing the diffusivity 
and decreasing the degradation rate constants of IL-10 increases the spatial range of IL-10 (green curve). D. 
Increasing the diffusivity and decreasing the degradation rate constants of TNF-α increases the spatial 
range of TNF-α (red curve). 
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Figure A.4 Solution of the coupled IL-10 and TNF-α ODEs 
IL-10 and TNF-α ODE solutions for 1x106 cells/mL at various initial exogenous IL-10 conditions. 
 
A.5 Visualization and Cross-Platform Capabilities 

We have revised the user interface for performing our modeling studies so that we 

can easily visualize and track different aspects of the granuloma, including the structure 

and molecular concentration gradients, as it forms and is maintained. In order to satisfy 

the cross-platform requirement, we make use of the Qt framework. Qt is a C++ 

framework for developing cross-platform applications with a graphical user-interface 

(open-source, distributed under GPL – available at qt.digia.com). 
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Appendix B 

Supplementary Information for Chapter 5 

B.1 Supplemental Tables 
 
Table B.1 Changes in ABM Rules From Chapter 3 
Previous Rule New Rule Reason/References 
Non-replicating Mtb trapped 
in caseated compartments 
can only be killed by 
hypoxia at a specified death 
rate. 

Additionally, non-replicating Mtb 
trapped in caseated compartments in the 
Moore neighborhood of an activated 
macrophage can be killed at a reduced 
rate of activated macrophage killing 
(1/10th). 

Realistically in-vivo movement of cells is not 
constrained to binary (yes/no) decisions (e.g. cell 
squeezing). Thus, we allow activated macrophages to 
access compartments in their Moore neighborhood to 
alleviate artifacts of movement restrictions. 

   
Maximal rates of T cell 
recruitment are allowed as 
soon as T cell recruitment is 
begins. 

A time delay now exists such that T cell 
recruitment rates increase linearly to the 
maximum rates over the specified time 
interval. 

(2) 

   
Once a compartment 
becomes caseated due to 
passing a threshold of death 
events it stays caseated for 
the entire simulation. 

Activated macrophages have an 
associated probability of initiating a 
healing event. If the compartment is 
marked for healing there is an associated 
time with the healing process. Once the 
time interval is passed the compartment 
changes from caseated to non-caseated. 

(3–5) 

   
Regulatory T cells modulate 
their deactivation capacity 
based on the relative bound 
IL-10 and bound TNF 
molecules on the cells 
surface. 

Now, regulatory T cells have a baseline 
deactivation capacity. When IL-10 
production is deleted from regulatory T 
cells the deactivation capacity is up 
regulated by a specified factor. 

(6, 7) 

   
Lie-type operator splitting 
(first order accurate) was 
employed to separate the 
coupled reaction/diffusion 
PDEs into three different 
problems.  

Strang-type splitting (second-order 
accurate) is now employed to separate 
the coupled reaction/diffusion PDEs into 
three different problems.  

Increases the accuracy of the splitting technique 
allowing for larger solution time steps for each of the 
three different problems. 

   
Each pro-inflammatory T 
cell was given a probability 
of activating macrophage 
STAT1 though IFN-γ at each 
time step. 

Pro-inflammatory T cells are now 
classified by the ability to secrete IFN-γ 
and activate STAT1 based on a specified 
probability when it is born.  

Although the previous rule gives correct percentages of 
T cells secreting IFN-γ at any specific time point the 
population of IFN-γ secreting T cells changes with every 
time step when the probability is re-evaluated. Thus, the 
new rule identifies IFN-γ secreting and non-secreting T 
cells upon birth and the classification persists over the 
entire life span of the T cell. 

   
All pro-inflammatory and 
cytotoxic T cells are capable 
of producing TNF-α 

Pro-inflammatory and cytotoxic T cells 
are now classified by the ability to 
secrete TNF-α based on a specified 
probability when it is born.  

(Unpublished data – Personal Communication J. Flynn, 
University of Pittsburgh) 
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Table B.2 NHP Data Used to Calibrate GranSim 
NHP 

ID 
Days Post-Infection of 

Necropsy 
Number of Non-Sterile 

Lesions 
Number of Sterile 

Lesions 
8709 26 9 0 
7010 27 35 1 
8109 27 5 0 
6810 28 18 0 
7709 28 16 0 
7809 28 11 0 
8809 28 16 1 
7210 29 22 0 
7110 30 8 0 
2412 83 13 1 

17111 84 16 2 
2512 85 21 2 
3609 89 7 3 
9611 93 12 0 

19608 136 7 6 
8509 139 6 3 
6409 140 4 0 

21208 173 10 2 
8609 173 16 10 
9711 175 10 5 
9209 187 5 11 
7009 194 4 11 
9511 198 3 3 
5610 209 2 4 

23210 211 26 3 
21310 230 22 15 
5008 247 4 0 

10808 267 2 1 
22210 267 9 19 
21410 267 13 9 
21508 271 3 6 
4808 296 1 2 

All NHPs were infected with the Erdman strain of Mycobacterium tuberculosis except 7010 and 7210 which were infected with barcoded Erdman strains from (9). From (8–11). 
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Table B.3 Additional ABM Parameters and Changes in Values of ABM Parameters From Chapter 3 
Parameter Parameter Description Previous 

Value 
New 
Value 

αBi (per 10 min) Intracellular Mtb growth rate 1.4×10-3 3×10-3 
αBe (per 10 min) Extracellular Mtb growth rate 7×10-4 1.25×10-3 
Ncaseum Number of cell deaths required for caseation 15 10 
theal (days) Healing time of caseated compartment --- 16 
τchem (molecules) Minimum chemokine concentration threshold 2 1 
schem (molecules) Saturating chemokine concentration threshold 2000 400 
rCCL2 (molecules/s) Full secretion rate of CCL2 by macrophages 4.14 6 
rCCL5 (molecules/s) Full secretion rate of CCL5 by macrophages 4.14 6 
rCXCL9 
(molecules/s) Full secretion rate of CXCL9/10/11 by macrophages 8.28 12 

BactM Number of extracellular Mtb activating NF-κB in a mac 239 200 
Nburst Number of intracellular Mtb that leads to Mci bursting 20 15 
Nak (per 10 min) Number of extracellular Mtb killed by Ma 3 5 
tmoveMa (hour) Time interval for Ma movement 7.8 2.3 
MrecMax Maximum recruitment probability for Mr recruitment 0.09 0.20 
τrecMacTNF TNF threshold for Mr recruitment  0.014 0.05 
hMacTNF Half-saturation of TNF for Mr recruitment 0.5 0.55 
Pheal Probability of healing a caseated compartment by Ma --- 0.014 
PFas/FasL Probability of Fas/FasL apoptosis by Tγ 0.0095 0.02 
PcytKill Probability of Tc killing Mi or Mci 0.0098 0.01 
TmoveM Probability of T cell moving to a mac-containing location 0.027 0.07 
PIFN-Tgam Probability of a Tg secreting IFN-γ --- 0.35 
PIFN-Range Range of probability of a Tg secreting IFN-γ --- 0.10 

PIFN-Moore 
Probability of a Tg activating STAT1 through IFN-γ in its Moore 
neighborhood --- 0.25 

PTNF-Tcyt Probability of a Tc secreting TNF --- 0.07 
PTNF-Tgam Probability of a Tg secreting TNF --- 0.07 
PDeact-Treg Probability of Tr deactivation of agents --- 0.015 

FDeact-Treg 
Factor that describes increase in probability of Tr deactivation in the 
absence of IL-10 --- 2.72 

trecEnabled (days) Time T cell recruitment is enabled --- 28 
trecDealy (days) Time delay in maximal T cell recruitment --- 5 
TrecTgamMax Maximum recruitment probability for Tγ recruitment 0.0713 0.096 
τrecTgamTNF TNF threshold for Tγ recruitment  0.014 0.1 
hTgamTNF Half-saturation of TNF for Tγ recruitment 0.3 0.4 
TrecTcytMax Maximum recruitment probability for Tc recruitment 0.0505 0.08 
τrecTcytTNF TNF threshold for Tc recruitment  0.014 0.1 
hTcytTNF Half-saturation of TNF for Tc recruitment 0.3 0.4 
TrecTregMax Maximum recruitment probability for Treg recruitment 0.0221 0.024 
τrecTcytTNF TNF threshold for Tc recruitment  0.014 0.1 
hTcytTNF Half-saturation of TNF for Tc recruitment 0.3 0.4 
kNFκB ((#/cell)-1s-1) Rate constant for TNF-induced NFκB activation in macrophages 1.41×10-8 1.62×10-8 
kapopt ((#/cell)-1s-1) Rate constant for TNF-induced apoptosis in all cell types 3.45×10-10 2.22×10-9 
τNFκB (#/cell) Cell surface sTNF/TNFR1 threshold for TNF-induced NFκB activation 65 81 
τapopt (#/cell) Internalized sTNF/TNFR1 threshold for TNF-induced apoptosis 1728 2028 

sapopt (#/cell) Saturation concentration of internalized sTNF/TNFR1 for TNF-induced 
apoptosis 4022 4691 

sNFκB Saturation fraction of sTNF/TNFR1 for TNF-induced NFκB activation 0.43 0.541 
ksynthMacInf (#/cell.s) Full synthesis rate of soluble IL10 by infected macrophages 0.061 0.02 
ksynthMacAct (#/cell.s) Full synthesis rate of soluble IL10 by activated macrophages 0.41 0.30 
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Table B.4 Uncertainty and Sensitivity Analysis Partial Rank Correlation Coefficients of IL-10 Parameters – Selected Model Outputs at 200 Days Post-
Infection 

Model Outputs DIL10 kdeg KD kon kt kint IL10RMac IL10RTcell δI γI FDeact-Treg ksynthMacInf ksynthMacAct hsynthMacAct ksynthTcell 

TNF-Induced Processes                
Apoptosis/Necrosis – Mr + +++  ---  +++ --- -  +++ + --- --- + - 
Apoptosis/Necrosis  – Mi  + + -  + --  +  --- --- +  + 
Apoptosis/Necrosis  – Mci    -   -  +  -- --- +  + 
Apoptosis/Necrosis  – Ma + +++  ---  +++ --- -  +++ ++ --- --- + - 
Apoptosis/Necrosis  – T cells + +++  ---  +++ ---   +++  --- --- + - 
Activation – Mr + +++  ---  +++ --- -  +++ ++ --- - + - 
Activation – Mi   +      + - - --- +  + 
T-Cell Outputs                
CTL Killing  ---  +++  --- +++   ---  +++ +++  ++ 
Fas/FasL Killing  ---  +++  --- +++   ---  +++ +++  ++ 
Bacterial Outputs                
Intracellular Mtb - --  ++  --- +++   ---  +++ +++ - ++ 
Extracellular Mtb  ---  +++  --- +++   --- - +++ +++  + 
CFU per Lesion  ---  +++  --- +++   --- - +++ +++  ++ 
CFU/CEQ  ---  +++  --- +++   ---  +++ +++  + 
Cellular-Level Outputs                
Mr  +++  -  +++ -    +++ ---    
Mi - --  ++  --- +++   ---  +++ +++ - ++ 
Mci - ---  ++  --- +++   ---  +++ +++ - ++ 
Ma  +       - - +++  +   
Tg      - +  -- --- +++ + +  + 
Tc      - +  -- --- +++ ++ +  + 
Tr         -- --- +++ + +   
Tissue-Level Outputs                
Caseous Necrosis  - - +  --- +++  -- --- +++ +++ +  + 
Lesion Size      - +  - --- +++ +++ ++   
[TNF-α]  +       - - +++     
[IL-10]  ---    -   - --- +++ +++ +++  +++ 
[Chemokines]      -   - --- +++ + +++   
Significant PRCC values are as follows: -/+ 0.005 < p < 0.05  --/++ 0.0005 < p < 0.005  ---/+++ p < 0.0005 
PRCC and significance values calculated from N – 250 simulations with 4 replications each 
Mi = Infected Macrophages, Mci = Chronically Infected Macrophages, Ma = Activated Macrophages, Mr = Resting Macrophages, Tg = Pro-inflammatory T cells, Tc = Cytotoxic T cells, Tr = Regulatory T cells 
CTL = Cytotoxic, CFU = Colony Forming Units, CEQ = Chromosome Equivalents 
Parameters are defined above or in Chapter 3 
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Table B.5 Uncertainty and Sensitivity Analysis Partial Rank Correlation Coefficients of IL-10 Parameters – Selected Model Outputs at 50 Days Post-
Infection 

Model Outputs DIL10 kdeg KD kon kt kint IL10RMac IL10RTcell δI γI FDeact-Treg ksynthMacInf ksynthMacAct hsynthMacAct ksynthTcell 

TNF-Induced Processes                
Apoptosis/Necrosis – Mr + +++  ---  +++ ---   +++  --- ---  - 
Apoptosis/Necrosis  – Mi + +  --  +++ ---   +++ - ---  +  
Apoptosis/Necrosis  – Mci  +  --  +++ --  +  - ---    
Apoptosis/Necrosis  – Ma + +++  ---  +++ ---   +++ + --- --- + - 
Apoptosis/Necrosis  – T cells + +++  ---  +++ ---   +++  --- ---  - 
Activation – Mr + +++  ---  +++ ---   +++ + --- ---  - 
Activation – Mi  + + -  +++ --   + - ---    
T-Cell Outputs                
CTL Killing  ---  +++  --- +++   ---  +++ +  ++ 
Fas/FasL Killing  ---  +++  --- +++   ---  +++ +  + 
Bacterial Outputs                
Intracellular Mtb  ---  +++  --- +++   ---  +++ ++  + 
Extracellular Mtb - ---  ++  --- +++   ---  +++ ++  + 
CFU per Lesion - ---  +++  --- +++   ---  +++ ++  + 
CFU/CEQ  ---  +++  --- +++   --- - +++ ++ - ++ 
Cellular-Level Outputs                
Mr         +   -  +  
Mi - ---  ++  --- +++   ---  +++ ++  + 
Mci  ---  +++  --- +++   ---  +++ +  + 
Ma  +++  --  +++ ---   +++ +++ --- - +  
Tg         ---  +++ +++ -   
Tc         -  +++ +++ -   
Tr           +++ +++ -   
Tissue-Level Outputs                
Caseous Necrosis + +++  ---  +++ ---   +++  --- - + - 
Lesion Size      -- ++   --- +++ +++    
[TNF-α] + +++  ---  +++ ---   +++ ++ --- --- + - 
[IL-10]  ---  -      -  +++ +++  +++ 
[Chemokines]   -      -  +++    + 
Significant PRCC values are as follows: -/+ 0.005 < p < 0.05  --/++ 0.0005 < p < 0.005  ---/+++ p < 0.0005 
PRCC and significance values calculated from N – 250 simulations with 4 replications each 
Mi = Infected Macrophages, Mci = Chronically Infected Macrophages, Ma = Activated Macrophages, Mr = Resting Macrophages, Tg = Pro-inflammatory T cells, Tc = Cytotoxic T cells, Tr = Regulatory T cells 
CTL = Cytotoxic, CFU = Colony Forming Units, CEQ = Chromosome Equivalents 
Parameters are defined above or in Chapter 3 
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B.2 Supplemental Figures  
 

 
 
Figure B.1 Virtual IL-10 deletions demonstrate control of the early immune response 
A. Simulated temporal CFU data for WT lesions. Dots represent individual lesions at the specified time 
point. B. Simulated temporal CFU data for IL-10 K/O lesions. Dots represent individual lesions at the 
specified time point. C. Simulated temporal CEQ data for WT lesions. Individual dots represent individual 
lesions at the specified time point. D. Simulated temporal CEQ data for IL-10 K/O lesions. Dots represent 
individual lesions at the specified time point. E. CFU/CEQ for WT and IL-10 K/O lesions, including both 
sterile and non-sterile lesions. Circles represent individual lesions. Bars indicate median values. For all 
panels: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100. 
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Figure B.2 Virtual IL-10 deletions show limited changes in cellular populations in a lesion 
A. Total macrophages. B. Activated macrophages. C. Pro-Inflammatory T cell. D. Cytotoxic T cells. E. 
Regulatory T cells. Both sterile and non-sterile lesions are included. Non-sterile lesions are displayed as 
solid bars and sterile lesions are displayed as striped bars. Bars are representative of mean values with error 
bars showing SD. For all panels: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100. 
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Figure B.3 Ratio of infected macrophage to resting macrophage apoptosis/necrosis for virtual IL-10 
experiments 
RApoptosis is defined as the ratio of infected macrophage apoptosis/necrosis to resting macrophage 
apoptosis/necrosis (12, 13).  Thus, it is a metric of ‘good’ apoptosis to ‘bad’ apoptosis. A. RApoptosis for WT 
(black bars) and IL-10 K/O (grey bars) lesions. Non-sterile lesions are displayed as solid bars and sterile 
lesions are displayed as striped bars. Bars are representative of mean values with error bars showing SD. B. 
RApoptosis for different levels of total IL-10 production (5-fold reduction to 5-fold increase) at 50 days post-
infection. Dots represent individual lesions. Lines indicate the median values. C. RApoptosis for WT, IL-10 
K/O, Ma IL-10 K/O, Mi IL-10 K/O, Tr IL-10 K/O lesions at 200 days post-infection. Both sterile and non-
sterile lesions are included. Non-sterile lesions are displayed as solid bars and sterile lesions are displayed 
as striped bars. Bars are representative of mean values with error bars showing SD. For all panels: * p ≤ 
0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, N = 100. 
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Figure B.4 Modified Host-Pathogen Index for IL-10 virtual transgenic and IL-10 cell specific 
knockout experiments 
The modified Host-Pathogen Index is defined as the scaled measure (between 0 and 1) of lesion function 
based on the CFU and healthy macrophage apoptosis/necrosis levels (1). Lower values indicate better 
lesion function. A, B. Host-Pathogen Index for different levels of total IL-10 production (5-fold reduction 
to 5-fold increase) at 50 and 200 days post-infection, respectively. Dots represent individual lesions. Lines 
indicate the median values. C, D. Host-Pathogen Index for WT, IL-10 K/O, Ma IL-10 K/O, Mi IL-10 K/O, 
Tr IL-10 K/O lesions at 50 and 200 days post-infection, respectively. Solid lines indicate the median values 
for non-sterile lesions. Dotted lines indicate the median values for sterile lesions. Open circles are non-
sterile lesions. Closed circles are sterile lesions. For all panels: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** 
p ≤ 0.0001, N = 100. Significance values above the data points are for non-sterile lesions while significance 
values below the data points are for sterile lesions. 
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Appendix C 
 

High Pre-Treatment Bacterial Burden and Sub-Optimal Antibiotic Concentrations 

Within Granulomas Result in Treatment Failure in TB 

 

The work in Appendix C represents a portion of the submitted manuscript: Pienaar, E., 

Cilfone, N.A., Lin, P.L., Dartois, V., Mattila, J.T., Butler, R., Flynn, J.L., Kirschner, 

D.E., Linderman, J.J. High pre-treatment bacterial burden and sub-optimal antibiotic 

concentrations within granulomas result in treatment failure in TB. (2014). 

C.1 Introduction  

Despite the availability of anti-TB antibiotics, active TB disease, caused by 

infection with Mycobacterium tuberculosis (Mtb), remains a major global health concern 

(1) with 8.6 million new cases reported in 2012 (2). Worldwide, TB has an 87% 

treatment success rate in new cases, leaving more than 1 million patients without cure (2). 

Known obstacles to treatment success (including patient non-compliance, relapse and 

drug-resistance) are thought be, in part, a result of the unusually long treatment regimens 

(3, 4). Our goal is to develop a computational approach to improve design of TB drug 

regimens and development of more efficient anti-TB antibiotics.  

Standard therapy for active TB includes an initial combination of 3-4 first-line 

antibiotics for 2 months followed by another 4-7 months of 2 antibiotics. There are 

several reasons that such long treatment periods are required, for example the presence of 
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phenotypically drug-tolerant ‘persister’ bacteria (5–7) and high bacterial loads (8). The 

complex nature of the site of infection, namely granulomas, further complicates 

treatment. Granulomas are highly organized immunological structures that develop in 

response to Mtb infection. Multiple granulomas (of various sizes and bacterial burdens) 

are often present in a single patient, and these granulomas evolve independently of each 

other over time (9, 10). Granulomas can be caseous (acellular necrotic centers surrounded 

by macrophages and lymphocyte-rich cuffs), solid cellular (no necrotic cores with 

densely packed macrophages and T cells (11–13) or fibrotic (healing and long-term 

granulomas) (14). Granulomas are heterogeneous structures, with different 

microenvironments (e.g. hypoxic caseous necrotic regions) (15) and bacterial 

subpopulations (e.g. replicating and non-replicating) (16) developing within. This 

structural and spatial heterogeneity in granulomas may present a significant obstacle for 

antibiotics to reach bacteria. 

There is a need for shorter regimens with less frequent doses and better treatment 

outcomes (17–19). True side-by-side comparisons of daily versus intermittent regimens 

are rare because of limitations in the number of regimens that can feasibly be evaluated in 

appropriate animal models or clinical trials, in addition to ethical constraints on clinical 

trials. Computational methods are ideal for such side-by-side comparisons and for testing 

large numbers of regimens. However, the extent to which regimen changes can improve 

treatment outcome is limited by the inherent pharmacokinetic and pharmacodynamic 

properties of current antibiotics.  

The first-line antibiotics for TB are isoniazid (INH), rifampin (RIF), pyrazinamide 

(PZA) and ethambutol (EMB), of which INH and RIF are the focus of this Appendix. 
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INH is a pro-drug that, upon conversion to its active form, targets mycolic acid 

production (a component of bacterial cell wall) through inhibition of InhA (a 2-trans-

enoyl-acyl carrier protein reductase). RIF targets bacterial RNA polymerase, inhibiting 

transcription. INH has been shown to have good early bactericidal activity but poor 

sterilizing activity, believed to be due to its high activity against replicating Mtb, but low 

activity against non-replicating Mtb (19). RIF has been shown to have good sterilizing 

activity (20). RIF is effective against hypoxia- or acid-induced non-replicating bacteria 

(21), but phenotypic tolerance develops in multiple stress-induced non-replicating 

bacteria (22) or stationary phase Mtb (23).  

Antibiotic dynamics and bacterial killing within granulomas remain largely un-

described and are challenging to evaluate in vivo (24). Investigation into lung antibiotic 

concentrations first conducted in the 1950s and 1980s (25–27) has recently been revisited 

using modern techniques that allow visualization of drug distribution within a granuloma 

(28, 29). Rabbit models of TB show considerable variation in antibiotic concentrations 

between plasma, tissue and granulomas for four standard TB antibiotics (28). For 

example, there is preferential accumulation of moxifloxacin (a second-line anti-TB 

antibiotic) in the cellular cuff relative to the central caseum of necrotic granulomas (29). 

Other antibiotics such as the nitroimidazoles and clofazimine have been imaged in 

caseous lesions and exhibit similar heterogeneous intra-lesional distribution with poor 

penetration into necrotic foci (3). Among the anti-TB drugs that have so far been 

investigated by MALDI (Matrix-Assisted Laser Desorption/Ionization) imaging, only 

pyrazinamide penetrates caseum effectively (V. D., unpublished observations). A clinical 

trial is currently under way to evaluate permeability of several anti-TB antibiotics in 
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resected lung tissue and granulomas of TB patients (ClinicialTrials.gov NCT00816426). 

Results point to complex and variable antibiotic distribution within granulomas. 

Understanding the limiting features of current antibiotics in the context of granulomas 

can guide the development of new anti-TB antibiotics or modifications of current 

antibiotics (3).  

The technology required to follow antibiotic concentrations and bacterial numbers 

in a single granuloma over time does not exist. In this Appendix, we use a systems 

pharmacology approach, integrating experimental data and computational modeling, to 

address the following questions: What are antibiotic dynamics (distribution and activity) 

inside a lung granuloma? How does spatial distribution of antibiotics influence treatment 

outcome? What are host mechanisms contributing to treatment outcome? Can we use 

currently available antibiotics in optimized regimens to shorten duration of treatment? 

What modifications could improve efficacy of current anti-TB antibiotic? 

 

C.2 Materials and Methods 

Our computational model includes: granuloma formation and function, antibiotic 

pharmacokinetics, and antibiotic pharmacodynamics (PD). We consider both plasma PK 

and lung tissue PK (i.e. antibiotic penetration into tissue).  

 



 310 

 

Figure C.1 Pharmacokinetic, granuloma, and pharmacodynamics models of antibiotics 
(A) Tissue pharmacokinetics (PK) are added to the existing granuloma model (GranSim) by accounting for 
antibiotic permeability through vascular walls, diffusion in tissue, uptake by host cells, and degradation by 
host cells and bacteria. (B) Plasma PK is modeled using two transit compartments, a plasma compartment 
and a peripheral compartment. The peripheral compartment represents other tissues and organs. Antibiotic 
doses are added to the first transit compartment. Antibiotic dynamics in the plasma compartment are 
characterized using the metrics indicated in the bottom panel. (C) Pharmacodynamics are implemented 
using Emax models, defined by maximum activity (Emax), concentration where 50% of maximum activity is 
achieved (C50), and Hill constant (H) describing steepness of the curve. We define PD parameters 
separately for bacterial subpopulations, since different subpopulations have been shown to have different 
susceptibilities to INH and RIF (30–32). We define Emax and C50 for each antibiotic and bacterial 
subpopulation combination. ka: absorption rate constant; Q: inter-compartmental clearance rate constant; 
CL: clearance rate constant from plasma; Cp: plasma antibiotic concentration; Cmax: maximum 
concentration; AUC: area under the curve; tmax: time after dosing when maximal concentration is reached; 
MIC: minimum inhibitory concentration.  
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C.2.1 Agent-Based Model of Granuloma Formation and Function 

We begin with our existing hybrid multi-scale agent-based model (GranSim) of 

Mtb infection and granuloma formation (see Chapter 3, 4, and 5) (33–36). Briefly, the 

model encapsulates molecular, cellular and tissue scale characteristics of a granuloma 

(Figure C.1A). At the tissue scale, the model tracks cellular movement on a 2D grid of 

micro-compartments based on the chemokine environment, with granuloma formation as 

an emergent behavior of the system. At the cellular scale, the model tracks individual 

macrophages and T cells, their states (resting, activated, infected or chronically infected 

for macrophages; and cytotoxic T cells, regulatory T cells or IFN-γ producing T cells) 

and interactions. At the molecular level, the model tracks secretion, diffusion, binding 

and degradation of cytokines and chemokines. A randomly-distributed number of micro-

compartments on each grid are designated as vascular source micro-compartments 

(VSMs). Recruited macrophages and T-cells as well as antibiotics enter the grid 

exclusively through VSMs.  

Bacteria are represented by three subpopulations: intracellular (BI), replicating 

extracellular (BE) and non-replicating extracellular (BN) (Figure C.1A). BI can grow, be 

killed within activated macrophages, or be killed when infected host cells they reside in 

undergo apoptosis or cytotoxic killing. When BI reaches a threshold, the infected 

macrophage irreversibly changes to the ‘chronically infected’ state that has impaired 

antibacterial function. When BI levels reach the carrying capacity of a macrophage, the 

macrophage bursts and distributes the bacteria in the surrounding grid micro-

compartments. BE can grow or be killed by macrophages in the same micro-compartment 

or by activated macrophages within its Moore neighborhood. Extracellular growth is 
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logistic, reaching a defined carrying capacity per micro-compartment. Extracellular 

bacteria that reside in caseous micro-compartments are labeled ‘non-replicating’. 

However, low levels of metabolic activity remain in these bacteria (37), and therefore we 

assign a slow growth rate to this sub-population in the model (100-fold lower than BE). 

In this Appendix, we use a larger grid than in Chapters 3, 4, and 5 to better 

capture physiological granuloma sizes and vascular density. We reduced the complexity 

in our description of TNF and IL-10 roles (see Chapters 3, 4, and 5) using our tunable 

resolution approach (see also Chapter 2) (38). In addition, to reduce computational times 

needed, we implemented spectral methods for solving the partial differential equations 

describing diffusion (see also Chapter 2) (39, 40).  

 

C.2.2 Plasma PK Model Structure 

Plasma PK models for TB antibiotics are available and range in complexity (28, 

41–44). We use an established plasma PK model for INH and RIF with two distribution 

compartments, plasma and peripheral, and two transit compartments shown in Figure 

C.1B and described by the equations (28):  

𝑑𝐶!!
𝑑𝑡 = −𝑘!𝐶!!                                                                                                                                                                                                                                    (𝐸𝑞𝑛.𝐶. 1) 

𝑑𝐶!!
𝑑𝑡 = 𝑘! 𝐶!! − 𝐶!!                                                                                                                                                                                                             (𝐸𝑞𝑛.𝐶. 2) 

𝑑𝐶!"
𝑑𝑡 = 𝑄 𝐶!

𝑉! −
𝐶!"

𝑉!"                                                                                                                                                                               (𝐸𝑞𝑛.𝐶. 3) 

𝑑𝐶!
𝑑𝑡 = 𝑘!𝐶!! − 𝑄

𝐶!
𝑉! −

𝐶!"
𝑉!" − 𝐶𝐿 𝐶! 𝑉!                                                                                                      (𝐸𝑞𝑛.𝐶. 4) 
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𝐶!! and 𝐶!! are concentrations of antibiotic in first and second transit compartments, and 

𝐶!" and 𝐶! are concentrations in peripheral and plasma compartments (mg/kg). 𝑉!" and 

𝑉! are volumes of distribution for peripheral and plasma compartments (L/kg). 𝑘! is the 

absorption rate constant (h-1), Q is the inter-compartmental clearance rate constant 

between the plasma and peripheral compartments (L/h•kg) and CL is the clearance rate 

constant from the plasma compartment (L/h•kg). 

To simulate oral dosing, we add new antibiotic doses as a single bolus to any 

existing concentration in the first transit compartment at designated dosing times, and we 

assume the plasma concentration is the same for all VSMs on the grid. 

 

C.2.3 Plasma PK Model Calibration 

We calibrate plasma PK indices (AUC, Cmax and tmax; Figure C.1B) to those 

measured for INH and RIF in NHPs (45) by sampling the parameter space for ka, Q, VP, 

VPe and CL using Latin Hypercube Sampling (46). We simulate 4 daily doses of INH (15 

mg/kg) and RIF (20 mg/kg) and measure PK indices for the fourth dose as in (45). Out of 

700 parameter combinations we identified 14 combinations that give AUC, Cmax and tmax 

within one standard deviation of the experimental mean. We then set ranges for each 

parameter to encompass all values from the set of 14 (Table C.1). Experimental and 

model outcomes for PK indices are shown in Figure C.2A. We use ranges instead of 

single values to introduce host-to-host variation in plasma PK. Our parameter ranges 

agree with known PK differences between INH and RIF. A combination of higher 

clearance rates, higher peripheral volumes of distribution and higher absorption rates for 
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INH lead to INH concentrations that peak earlier than RIF and that do not accumulate 

significantly with repeated dosing, unlike RIF (28, 45, 47–49). 

 

Figure C.2 Model calibration of antibiotic related parameters 
Calibration. Our model is calibrated to PK and PD data from rabbits and NHPs for both INH and RIF. (A) 
Three plasma PK outputs from the model (black bars) match values measured in NHPs (white bars). Bars 
show means, and error bars show SD (For model fit: N=100; for NHP: N=7). See Table C.1 for parameter 
ranges used to give variation in model outcomes. (B) Tissue PK parameters are fit (black bars) to give 
tissue: plasma AUC ratios similar to those measured in rabbit granulomas (white bars). For normal lung, 
the model fit results from uninfected simulations (N=5). For granuloma values, the model fit measurements 
are from inside the circumference of granulomas (N=5). Bars show means and error bars show SD. (C) PD 
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parameters are fit (filled circles) to match measurements from NHPs (open circles). Lines and error bars 
show mean +/- SEM.  
 

Table C.1 Antibiotic related parameters 
Plasma Related PK Parameters (1) 

Parameter Name Units INH RIF Reference 

Absorption rate constant (ka) h-1 1 - 5 0.2 – 0.8 Fit to (45), Guided by (28, 48, 50)  

Intercompartmental clearance rate constant (Q) L/h•kg 0.025 – 0.2 0.1 – 0.7 Fit to (45), Guided by (28, 48, 50)  

Plasma volume of distribution (VP) L/kg 0.1 - 2 0.5 – 1.5 Fit to (45), Guided by (28, 48, 50)  

Peripheral volume of distribution (VPe) L/kg 20 - 40 0.1 - 1 Fit to (45), Guided by (28, 48, 50)  

Plasma clearance rate constant (CL) L/h•kg 0.6 – 1.8 0.25 – 0.5 Fit to (45), Guided by (28, 48, 50)  

Lung Tissue Related PK Parameters 

Parameter Name Units INH RIF Reference 

Degradation rate constant, extracellular (kdeg,e) s-1 5.5x10-9 7.5x10-8 Fit to (28) 

Degradation rate constant, intracellular (kdeg,i) s-1 6.4x10-3 6.7x10-3 Fit to (28) 

Effective diffusivity (D) cm2/s 1.1x10-7 7x10-7 Fit to (28), Guided by (51) 

Cellular accumulation ratio (2) (a) - 0.35 18 Fit to (28), Guided by (52–55)  

Vascular permeability (3) (p) cm/s 8.4x10-6 1x10-5 Fit to (28), Guided by (56) 

Permeability coefficient (4) (PC) - 0.25 3.3 (28) 

PD Related Parameters 

Parameter Name Units INH RIF Reference 

C50 for intracellular Mtb (C50,BI) mg/L 0.02 10 (30–32, 57) 

C50 for extracellular replicating Mtb (C50,BE) mg/L 0.04 1.23 (30–32, 57) 

C50 extracellular non-replicating Mtb (C50,BN) mg/L 0.5 5 (30–32, 57) 

Hill constant for intracellular Mtb (HBI) (5) - 1 0.48 (30–32, 57) 

Hill constant for extracellular replicating Mtb (HBE) (5) - 1 0.7 (30–32, 57) 

Hill constant for extracellular non-replicating Mtb (HBN) - 1 0.7 (30–32, 57) 

Max activity intracellular (Emax,BI) time step-1 0.046 0.069 Fit to (9), Guided by (30, 31) 

Max activity extracellular (Emax,BE) time step-1 0.155 0.296 Fit to (9), Guided by (30, 31) 
(1): Plasma PK parameters are given a range of values to account for inter-individual variation 
(2): Steady state concentration inside macrophages/concentration outside macrophages 
(3): Hill constants describe the steepness of the Emax model killing curve (Figure C.1C) 
 

C.2.4 Tissue PK Model Structure 

Our model captures spatial distribution of antibiotics in lung tissue by accounting 

for permeation through the vascular wall, diffusion and degradation within the tissue and 

penetration into host cells (Figure C.1A) as previously used for modeling anti-TNF 

therapy (58). Antibiotics can enter or leave through the vascular wall (i.e., at VSMs) 

depending on the concentration difference between the plasma and lung tissue: 
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𝐶!"# 𝑡 + ∆𝑡 = 𝐶!"# 𝑡 + 𝑝𝐴!"# 𝑃𝐶 ∙ 𝐶! 𝑡 − 𝐶!"# 𝑡 ∆𝑡                                                            (𝐸𝑞𝑛.𝐶. 5) 

where 𝐶!"# is antibiotic concentration on the grid at the given VSM (mg/L), p is 

permeability (cm/s), 𝐴!"# is outside area of the grid micro-compartment (cm2), PC is 

permeability coefficient (measure of antibiotic sequestration in the tissue) and ∆𝑡 is time 

step (s). We assume that adjacent grids to the one under investigation would be similarly 

vascularized and therefore use insulating boundary conditions for antibiotic diffusion. 

Because of the small size of the tissue we model (4mm x 4mm), we assume that any 

contribution from granuloma back to plasma will not significantly affect plasma 

antibiotic concentrations. The influence of bulk lung tissue on plasma concentrations is 

captured by the peripheral distribution (at rate constant Q) in the plasma PK model 

(Figure C.1B).  

We assume cellular accumulation of antibiotics is at pseudo-steady state and 

intracellular (Ci) and extracellular concentrations (Ce) are updated at each time step based 

on the total amount of antibiotic in the grid micro-compartment where each macrophage 

is located. Ci and Ce are thus related by: 

𝐶! =
𝐴!

𝑉!"#$% + 𝑎𝑉!"#
                                                                                                                                                                                                              (𝐸𝑞𝑛.𝐶. 6) 

𝐶! = 𝑎𝐶!                                                                                                                                                                                                                                                             (𝐸𝑞𝑛.𝐶. 7) 

where AT is the total amount of antibiotic available (intracellular plus extracellular), Vmicro 

is the volume of one micro-compartment, Vmac is the volume of a macrophage and a is the 

cellular accumulation ratio (or intracellular partition coefficient). Note: Ce = CVSM at 

VSMs. 

Antibiotics degrade in intracellular and extracellular environments according to 
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𝑑𝐶!
𝑑𝑡 = −𝑘!"#,!𝐶!                                                                                                                                                                                                                            (𝐸𝑞𝑛.𝐶. 8) 

where kdeg,x is the degradation rate constant, and Cx is the intracellular or extracellular 

antibiotic concentration (58). 

 

C.2.5 Tissue PK Model Calibration 

We calibrate normal lung tissue and granuloma AUC to that observed in rabbits 

(28) by sampling GranSim parameter space for kdeg,i, kdeg,e, D, a, and p using Latin 

Hypercube Sampling (46). In order to ensure that plasma PK differences are not 

influencing our calibration of lung tissue PK, in these calibration simulations only we use 

plasma PK parameters and antibiotic doses (30 mg/kg for INH and 24 mg/kg for RIF) 

taken from the rabbit model (28). Granulomas were allowed to form for 100 days before 

antibiotic dosing was started. PK indices were measured after 12 days of treatment (as in 

(28)). Out of 1000 parameter combinations, parameter values were selected that 

minimized differences between experimental measurements and model predictions of 

AUC ratios relative to plasma (Figure C.2B and Table C.1). 

Information on antibiotic concentrations in lung tissue and in granulomas is 

scarce and currently only available for rabbits (28). We assume that antibiotic penetration 

into lung tissue in rabbit and NHP lungs are similar. The model is flexible to test 

variations from these values. Furthermore, the rabbit study only measured INH and 

ignored the active metabolites (because they are transient and reactive and cannot be 

captured by HPLC/MS analysis). Similarly in the model we only consider pro-drug INH 

and not its metabolites, though INH metabolism by the bacterium is something the model 

can be expanded to include in future versions. 
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Limited data on INH and RIF distribution in the caseum or cavity wall of rabbit 

granulomas indicate that INH accumulates well in caseum while RIF has higher 

concentration in the cavity wall (V. Dartois, unpublished observations). While it is 

difficult to delineate the outline of ‘caseum’ or ‘cavity wall’ areas in the simulated 

granulomas, parameter values from the model calibration are in line with these 

observations, i.e. low cellular accumulation ratio for INH and high cellular accumulation 

ratio for RIF. 

 

C.2.6 PD Model Structure 

PD parameters have been determined for several TB antibiotics in broth culture, 

in macrophage culture, and in mice (30, 31, 59). The concentration dependent 

antibacterial activity is quantified using an Emax model (Figure C.1C). Killing rate 

constants (kkill,x) are calculated for each bacterial subpopulation (intracellular, replicating 

extracellular or non-replicating extracellular) based on local antibiotic concentrations 

(intra- or extracellular) as in (60): 

𝑘!"##,! = 𝐸!"#! 𝐶!!

𝐶!! + 𝐶!",!!                                                                                                                                                                                               (𝐸𝑞𝑛.𝐶. 9) 

where x denotes intracellular or extracellular concentrations or bacterial subpopulations, 

C is local antibiotic concentration, Emax is maximum activity, C50 is concentration where 

50% of maximum activity is achieved, and H is the Hill constant describing steepness of 

the curve. Changes in the bacterial subpopulation (Bx) due to growth and killing are 

expressed as in (61): 

𝑑𝐵!
𝑑𝑡 = 𝑔! − 𝑘!"##,! 𝐵!                                                                                                                                                                                                  (𝐸𝑞𝑛.𝐶. 10) 
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where gx is the growth rate constant for bacterial subpopulation x. 

 

C.2.7 PD Model Calibration 

Five hundred simulated granulomas are obtained by varying host parameters that 

give a distribution of total Mtb per granuloma similar to that observed in NHP 

granulomas at a median of 180 days post infection (d.p.i.) (Figure C.2C) (9). Treatment is 

initiated in the simulated granulomas at 100 d.p.i. C50 and H are estimated from in vitro 

dose response curves for INH and RIF (23, 30, 31, 57) with the caveat that these 

parameters may not extrapolate to in vivo conditions, and that they can vary between 

strains. Emax values are selected that reproduce INH and RIF efficacy in NHPs after 2 

months of daily dosing in terms of mean CFU and percentage of granulomas cleared (9). 

Parameters are given in Table C.1 and the model fitting results are shown in Figure C.2C. 

 

C.2.8 Tunable Resolution 

Chapters 3, 4, and 5 focused on understanding the roles of cytokine dynamics 

(TNF and IL-10) at a molecular scale and how receptor-ligand trafficking events 

(modeled as a system of non-linear differential equations) influenced infection outcomes 

(35, 36). Although many TNF and IL-10 events were identified as critical to control of 

infection, our focus in Appendix C and Chapter 6 was to understand issues that arise 

during antibiotic treatment at the single granuloma level. Thus, we apply the concept of 

tunable resolution to our model in order to retain our understanding of the roles of TNF 

and IL-10 during infection, yet reducing model complexity and computational burden in 

order to focus on a detailed description of antibiotic treatment (38). Our methods are 
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motivated by the sensitivity analysis results that we performed in Chapter 3 (36) to 

identify key model features. Briefly, the system of non-linear ordinary differential 

equations in Chapter 3 (36) is replaced with the following equations describing the 

change in soluble TNF and soluble IL-10 concentrations in a compartment containing an 

agent: 

𝑑 𝑠𝑇𝑁𝐹
𝑑𝑡

= 𝑘!"#$! − 𝑘!"#$
𝑠𝑇𝑁𝐹

𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹
−

𝑠𝑇𝑁𝐹
𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹

                          (𝐸𝑞𝑛.𝐶. 11) 

𝑑 𝑠𝐼𝐿10
𝑑𝑡 = 𝑘!"#!"! − 𝑘!"#!"

𝑠𝐼𝐿10
𝐾!" ∗ !!"! + 𝑠𝐼𝐿10

                                                                                          (𝐸𝑞𝑛.𝐶. 12) 

Where 𝑘!"#$!  and 𝑘!"#!"!  are the apparent secretion rates of TNF and IL-10, 𝑘!"#$ and 

𝑘!"#!" are the apparent rate constants for consumption (which incorporate estimates for 

total receptors and any scaling factors for both TNF and IL-10), and 𝐾!"!, 𝐾!"!, and 𝐾!" 

are affinities for TNFR1, TNFR2, and IL-10R respectively. Each quotient represents the 

bound fraction of surface receptors assuming a pseudo-steady state. 

Additionally, we re-write any probability functions that relied on molecular scale 

details in terms of soluble TNF and IL-10 concentrations: 

𝑃!"#$ =

0
𝑠𝑇𝑁𝐹

𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹
< 𝜏!"#$!

1 − 𝑒
!!!"#$! !"#$

!!"!∗
!!"
! ! !"#$

!!!"#$! !! 𝑠𝑇𝑁𝐹
𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹

≥ 𝜏!"#$!

                                                  (𝐸𝑞𝑛.𝐶.13) 

𝑃!"#" =

0
𝑠𝑇𝑁𝐹

𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹
𝑓!"# < 𝜏!"#"!

1 − 𝑒
!!!"#"! !"#$

!!"!∗
!!"
! ! !"#$

!!"#!!!"#$! !! 𝑠𝑇𝑁𝐹
𝐾!"! ∗ !!"! + 𝑠𝑇𝑁𝐹

𝑓!"# ≥ 𝜏!"#"!

                  (𝐸𝑞𝑛.𝐶.14) 

𝑘!"#$! , 𝑘!"#"! , 𝜏!"#$!  and 𝜏!"#"!  are modified rate constants and thresholds for TNF-

induced NF-κB activation and apoptosis, respectively, while 𝑓!"# is a partition factor for 

estimating internalized bound receptors from the pseudo-steady state estimate of surface 
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bound receptors. These resulting rate constants and parameters can be estimated from 

their corresponding parameters when the increased molecular scale detail is turned on.  

Lastly, inhibition of TNF synthesis by IL-10 is reduced to a simple dose 

dependent function based on the soluble IL-10 concentration in the compartment. 

𝑘!"#$! =
1

1+ 𝑒
!"# !"#!" !!

!

                                                                                                                                                                                        (𝐸𝑞𝑛.𝐶. 15) 

Where 𝑘!"#$!  is the apparent secretion rate of TNF, α is the threshold parameter, and β is 

the shape parameter. These parameters are calculated directly from results of the system 

of non-linear differential equations. Tuneable resolution parameter values are given in 

Table C.2. 

 
Table C.2 Tunable resolution parameters 

Parameter Value Unit 

Apparent TNF consumption rate  0.00077 s-1 

Apparent IL-10 consumption rate 0.0004 s-1 

Partition factor for estimating internalized bound receptors 11.3 - 

Threshold for IL-10 inhibition of TNF secretion -1.93 - 

Shape parameter for IL-10 inhibition of TNF secretion 0.181 - 

Apparent TNF secretion rate by macrophages 1.5 Molecules/s 

Apparent IL-10 secretion rate by activated macrophages 0.3 Molecules/s 

Apparent IL-10 secretion rate by infected macrophages 0.02 Molecules/s 

Apparent TNF secretion rate by IFNg producing T-cells 0.15 Molecules/s 

Apparent TNF secretion rate by cytotoxic T-cells 0.015 Molecules/s 

Apparent IL-10 secretion rate by regulatory T-cells 0.739 Molecules/s 

Affinity of TNF for TFNR1 1.9x10-11 M 

Affinity of IL-10 for IL-10R 4.56x10-10 M 

 
 
C.2.9 Spectral Methods for Solving Diffusion Equations 

Spectral methods for solving PDEs are a class of collocation methods that analyze the 

discretized system in a global instead of a local manner (39, 40, 62–64). The solution to 
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the entire system is assumed by a basis function and time-varying coefficients are 

determined such that the solution to the system is satisfied. Importantly, spectral methods 

reduce PDEs into ODEs, thus drastically reducing the computational burden of the 

numerical approximation (39). For an in depth explanation please refer to Chapter 2 (39). 

We adapt the basic method for our needs here to allow insulating boundary conditions 

and apply simple smoothing pre-processing steps to limit errors associated with 

discontinuous concentration fields (see Chapter 2) (65). 

 

C.2.10 Treatment Regimens 

We use the calibrated model to vary dose scheduling according to INH and RIF 

containing regimens recommended by the Centers for Disease Control and Prevention 

(66). Selected regimens are outlined in Figure C.3. INH dose size is increased as dose 

frequency decreases, but RIF dose size is kept constant even when dose frequency 

changes. We use doses that emulate human exposure levels in NHPs (45). RIF doses are 

20 mg/kg. INH doses are 15 mg/kg for daily dosing and 45 mg/kg for twice weekly or 

thrice weekly dosing. For regimen comparison granulomas that cleared infection prior to 

100 d.p.i are excluded from the analysis, leaving 412 (500 – 88) granulomas in the final 

set.  
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Figure C.3 Simulated treatment regimens 
Different treatment regimens are used for model calibration and prediction. The rabbit regimen (28) is used 
to calibrate tissue PK parameters. The NHP regimen (9, 45) is used to calibrate plasma PK and PD 
parameters. Regimens 1a, 1b, 2a and 3a are recommended by the CDC/WHO (66) and are implemented 
with the full calibrated model (Figure C.1) to predict treatment outcomes.  
 

Clinical trials use relapse or recurrence (improvement during treatment followed 

by relapse once treatment ends), treatment failure (no improvement during treatment), 

cure (no relapse once treatment ends) or antibiotic resistance as measures of treatment 

efficacy (18). However, these outcomes are observed at a patient level, while our focus in 

this Appendix is at a single granuloma level. We define treatment success as elimination 

of all bacteria from a granuloma (cleared granulomas), and treatment failure as cases 

where any bacteria remain after treatment (non-cleared granulomas). We evaluate 

treatment outcome based on (i) CFU after treatment (in non-cleared granulomas), (ii) 

time to clearance (in cleared granulomas) and (iii) the percentage of granulomas not 

cleared of infection (%GNC) by the end of the treatment period. For comparing 

regimens, we define a treatment outcome index (TOI) that is an average of the 



 324 

normalized values of the three treatment outcomes outlined above. Each outcome is 

normalized to its minimum and maximum over all regimens being compared. The TOI 

ranges between 0 and 1, with lower values representing “better” outcomes.  

 

C.3 Results 

We constructed a model of INH and RIF distribution and action in granulomas and 

calibrated it to rabbit and NHP PK and PD data (Figure C.2). To our knowledge this is 

the first PKPD model of antibiotic penetration into granulomas with temporal-spatial 

resolution. This calibrated model is used to simulate different regimens and make 

predictions about treatment progression and outcomes. The work in Appendix C has been 

submitted as part of: Pienaar, E., Cilfone, N.A., Lin, P.L., Dartois, V., Mattila, J.T., 

Butler, R., Flynn, J.L., Kirschner, D.E., Linderman, J.J. High pre-treatment bacterial 

burden and sub-optimal antibiotic concentrations within granulomas result in treatment 

failure in TB. (2014). Outlined below are the important predictions and conclusions from 

this paper, derived from the model described and constructed in this Appendix. 

 

C.3.1 Mean INH Concentrations in Granulomas Only Exceed C50 for Short Periods 

and Mean RIF Concentrations Do Not Exceed C50,BI or C50,BN 

Of interest is how antibiotic concentrations, as measured against C50, vary with 

different treatment regimens. We simulate dosing regimens similar to those 

recommended by the CDC for treatment of active TB (66) (Figure C.3, regimens 1a, 1b, 

2a and 3a). Average antibiotic concentrations per granuloma over seven days for dosing 

frequencies of seven doses per week (dpw) (regimen 1a, 1b and 2a) or three dpw 
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(regimen 3a) are shown in Figure C.4. The short half-life of INH in granulomas, due 

primarily to the high plasma clearance rate constant CL, leads to average concentrations 

below C50,BI and C50,BE for > 80% of the dosing period for 7 dpw and 3 dpw. Peak INH 

concentrations barely reach C50,BN with the 7 dpw regimen, but do exceed C50,BN for short 

periods with the 3 dpw regimen, because of the larger dose given at this lower frequency. 

The longer half-life of RIF in granulomas, due primarily to a lower plasma clearance rate 

constant CL, and high permeability coefficient PC, lead to concentrations below C50,BE 

for only 37% of the 7 dpw dosing period. However, since the dose size for RIF is not 

increased when the dosing frequency is decreased (as per protocol), reducing frequency 

to 3 dpw leads to concentrations of RIF below C50,BE for 73% of the dosing period. RIF 

concentrations never exceed C50,BN or C50,BI inside the granuloma. These suboptimal 

antibiotic exposures could contribute to treatment failure, in agreement with observations 

for RIF in patients (67). 

 

C.3.2 Bacterial Regrowth Occurs Between Doses and Is Greater for INH Than RIF 

We also are able to track and predict bacterial subpopulation dynamics inside 

granulomas for the dosing regimens described above. INH treatment leads to a sharp 

decrease in CFU immediately after dosing (Figure C.4A), followed by bacterial regrowth 

once antibiotic concentrations drop below C50,BE and C50,BI. Outcomes are qualitatively 

similar for different dosing frequencies; however, longer periods between doses allow 

more bacterial regrowth for 3 dpw than 7 dpw (Figure C.4B). This occurs despite the 

larger doses given 3 dpw (45 mg/kg; total 135 mg/kg per week) compared to 7 dpw (15 

mg/kg; total 105 mg/kg per week). RIF treatment leads to a more consistent decrease in 
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total CFU (especially for 7 dpw; Figure C.4C) than INH treatment due to the slower 

plasma clearance rate constant for RIF as well as the larger Hill constant for INH (Table 

C.1). Small increases in bacterial numbers are visible at the end of the dosing periods for 

RIF with the 3 dpw regimen (Figure C.4D).  

 

Figure C.4 Average bacterial and antibiotic dynamics in granulomas 
INH (A and B) and RIF (C and D) concentrations inside granulomas are plotted on left y-axes; bacterial 
subpopulations are plotted on right y-axes. Colored solid lines are mean and colored dashed lines are +/- 
SEM (N=412). Black lines are C50 values for intracellular (C50,BI), extracellular (C50,BE) and non-
replicating (C50, BN) bacterial populations. 
 

During the first 7 days of RIF and INH treatment, the proportion of bacteria that 

are intracellular increases (Figure C.4). This is due to low INH concentrations inside cells 

and high value of C50,BI for RIF. Furthermore, continued phagocytosis of extracellular 

bacteria during treatment adds to the protected intracellular population. If we continue the 

simulation to 280 days, the dominant population starts to change after ~10 days, shifting 
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from intracellular to non-replicating extracellular (data not shown). The trend is slow, and 

after 30 days of daily INH or RIF treatment the majority of bacteria are non-replicating 

extracellular bacteria, i.e. bacteria trapped in hypoxic caseum. Results are similar for INH 

and RIF and for all dosing regimens. Our results confirm that outcomes of INH and RIF 

treatment regimens are sensitive to reduced dosing frequencies. The changes in relative 

bacterial sub-populations over time present a moving target for drug regimens and could 

lead to changes in treatment efficacy. 

 

C.3.3 Antibiotic Concentration Gradients Form Inside Granulomas 

 Current technology is beginning to allow observation of the spatial distribution of 

antibiotics in a granuloma (3). With our computational model, we not only can visualize 

and track details of the spatial distribution of antibiotics in granulomas, but we can do 

this over time and calculate the cumulative antibiotic exposure (here calculated as AUC - 

see Materials and Methods) for all parts of a granuloma. Two sample granulomas that 

were treated with daily INH or RIF are shown in Figure C.5. Time-lapse movies of drug 

distributions and treatment progression within these granulomas, as well as high-

resolution images that better show cellular level details (such as T-cells and caseation) 

are available at http://malthus.micro.med.umich.edu/lab/movies/Abx/. Figure C.5A 

shows a sample solid cellular granuloma of diameter 1.7mm at day 100, when simulated 

treatment with antibiotics is initiated. Exposure of both INH and RIF during the first 

week of treatment is significantly lower inside the granuloma than in the surrounding 

tissue, are well below the 7 day AUC EC80 (AUC that achieves 80% of maximum killing) 

and noticeable gradients form inside the granuloma. RIF has a larger area of suboptimal 
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exposure than INH. Despite low exposure to both INH and RIF inside the granuloma, 

CFU is reduced and the granuloma shrinks from 1.7 mm to 1.4 mm diameter by day 160 

for both antibiotics. For all simulated granulomas, predicted changes in granuloma size 

during treatment match NHP data (9) (data not shown). RIF treatment clears bacteria by 

day 280 while INH treatment does not. 

Figure C.5B shows a sample caseous granuloma of diameter 2mm. INH and RIF 

exposure look qualitatively similar to Figure C.5A; however, the area of suboptimal INH 

exposure is larger in the granuloma in Figure C.5B. This is a result of the combined 

effects of larger granuloma size, lower absorption rate constant and higher inter-

compartmental and plasma clearance rate constants than the granuloma shown in Figure 

C.5A. In this case, INH and RIF are less efficient at reducing CFU after 60 days of 

treatment, and both antibiotics fail to clear bacterial load by day 280. During INH 

treatment the granuloma size remains at 2mm until the end of treatment, and during RIF 

treatment the granuloma shrinks to 1.7mm by day 160 but no further. Because INH fails 

to shrink the granuloma, exposure remains nearly constant over the treatment period 

while there is a slight improvement in antibiotic exposure for RIF treatment over time.  

We can also evaluate the influence of dosing frequency on spatial distributions of 

antibiotics. For INH, the 3 dpw regimen leads to a smaller area of suboptimal exposure 

compared to 7 dpw due to the increase in dose (from 15 mg/kg to 45 mg/kg). However, 

the 2 dpw regimen shows lower penetration into both granulomas. For RIF, intermittent 

dosing leads to significantly larger areas of suboptimal exposure in granulomas. Taken 

together, our predictions show that suboptimal INH and RIF exposure exists inside 

granulomas, especially in areas where bacteria reside, and this contributes to a slow rate 
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of bacterial clearance. If early treatment can succeed in shrinking granuloma size, 

antibiotic exposure improves over time and helps clear the bacterial load. 

 

Figure C.5 Snapshots of two representative simulated granulomas 
Panels 1,2,4 and 6 show cells in the granuloma: resting macrophages (green), infected macrophages 
(orange); chronically infected macrophages (red), caseation (white), activated macrophages (blue). A few T 
cells comprise the lymphocyte cuff around the outside of the macrophages (purple, pink and light blue). 
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Day 160 - INH
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There are a few extracellular Mtb (brown). Each granuloma is shown before treatment at 100 d.p.i. (panels 
A1 and B1) and at 160 d.p.i. when untreated (panels A2 and B2). Panels A4 and B4 show the granulomas 
after 60 days of daily INH treatment (15 mg/kg) and panels A6 and B6 show the granulomas after 60 days 
of daily RIF treatment (20 mg/kg). Panels 3 and 5 show cumulative INH and RIF exposure respectively 
(AUC in mg•h/L) as a function of position within the granuloma during the first week of treatment. Color 
bars are scaled from 0 mg•h/L to the AUC EC80 for each antibiotic (21 mg•h/L for INH and 1400 mg•h/L 
for RIF). Time-lapse movies of drug distribution and treatment progression, and high-resolution images 
that better show cellular level details (such as T-cells and caseation) are available at 
http://malthus.micro.med.umich.edu/lab/movies/Abx/. 
 

C.3.4 Intermittent Dosing Increases Time to Clearance and Percentages of 

Granulomas Not Cleared for Single Antibiotics 

We generated 500 simulated granulomas with treatment regimens as in Figure C.3 

(regimens 1a, 1b, 2a and 3a) by initiating treatment at 100 d.p.i for a period of 180 days. 

We evaluated the outcome of treatment by computing the average time to clearance for 

those granulomas that do not contain bacteria by day 280 and the percentage of 

granulomas not cleared by day 280 (Figure C.6). Average time to clearance shows little 

variation between INH regimens and indicates that the majority of granulomas that 

cleared with intermittent INH regimens (1b and 2a) were cleared during the initial phase 

of daily dosing. RIF-3a takes significantly longer to clear infections than RIF-1a. All 

intermittent regimens had significantly higher %GNC than the corresponding daily 

regimen (p < 0.05; z-test). RIF is less efficient than INH in terms of %GNC in all the 

intermittent regimens (1b, 2a and 3a), which is expected based on RIF distribution in 

granulomas for intermittent dosing. 
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Figure C.6 Treatment outcomes for simulated regimens 
Each circle represents one granuloma; only granulomas that cleared between day 100 and 280 (during 
treatment) are shown. Bars and errors bars show mean +/- SEM of time to clearance for untreated 
granulomas (black), INH-treated granulomas (red) and RIF-treated granulomas (blue). Numbers on the 
right show percentage of granulomas not cleared by day 280 for each regimen. (A) Treatment outcomes for 
single antibiotic therapy show that intermittent regimens clear fewer granulomas than daily regimens. Stars 
indicate significantly different times to clearance; **: p<0.005; ****: p<0.00005 (one way ANOVA with 
Sidak correction for multiple comparisons). 
 

C.4 Discussion 

Granulomas, the central feature of Mtb infection in human hosts, are 

heterogeneous both in bacterial populations and microenvironments (68). Thus it is 

crucial that we understand the distribution and activity of currently available antibiotics 

within these pathological structures. In this Appendix, we present the first systems 

pharmacology approach to modeling TB treatment that combines a model of granuloma 

formation and function and PK and PD dynamics. We characterize the spatial and 

temporal activity of antibiotics, identify key mechanisms behind antibiotic activity in the 

dynamic granuloma environment and propose new strategies for improving treatment. 

10
0

15
0

20
0

25
0

30
0

RIF-3a

RIF-2a

RIF-1b

RIF-1a

INH-3a

INH-2a

INH-1b

INH-1a

Untreated

Day of infection clearance (n = 412)

A
nt

ib
io

tic
 a

nd
 D

os
in

g 
R

eg
im

en

96%

14%

23%

33%

%GNC

21%

7%

24%

41%

42%

10
0

15
0

20
0

25
0

30
0

Combo-3a

Combo-2a

Combo-1b

Combo-1a

Day of infection clearance (n = 412)

A
nt

ib
io

tic
 a

nd
 D

os
in

g 
R

eg
im

en

%GNC

2%

5%

11%

6%**
**

**

**
**

A B



 332 

Characterization of antibiotic distribution and activity in granulomas confirms 

that suboptimal exposure inside granulomas leads to bacterial regrowth between doses 

and may contribute to long-term treatment requirements for TB. There have been other 

proposed reasons for the required long-term antibiotic usage in TB, such as protected 

bacterial subpopulations in a non-replicating state (8) and/or are hiding intracellularly 

(69). These populations are believed to be protected from INH and RIF activity, 

respectively. However, our analysis shows that protected subpopulations change over 

time and that similar subpopulations are protected in both INH- and RIF-treated 

granulomas. Target bacterial populations change significantly (albeit slowly) during 

treatment, perhaps requiring a switch in treatment strategies after a few weeks of 

treatment.  

There is clinical evidence for improved patient compliance and effective 

treatment of active TB with intermittent regimens (70). However, direct comparisons 

between daily and intermittent regimens are scarce, and existing reports do not agree on 

the clinical differences between daily and intermittent regimens (71–74). While 

extrapolation from model results to host level does not directly follow, our findings 

suggest that daily and intermittent regimens do not have equal clearance percentages on a 

granuloma level. Given the number of granulomas, an average of 5 in NHPs with latent 

TB and 13 in NHPs with active TB (10), and high variability between granulomas, it is 

conceivable that a single patient will have some granulomas with bacterial loads below 

detection limits after treatment, therefore appearing cured but remaining at risk of 

relapse.  
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Finally, we propose possible improvements to TB treatment by exploring 

alternative dosing regimens and modifications to current antibiotics. A systematic 

comparison of dose-frequency combinations for INH and RIF indicates that increases in 

dosing frequency are the most efficient way to improve treatment outcomes, since 

increasing dose leads to larger increases of cumulative doses. While up to double the 

current doses of RIF are known to be well-tolerated (75), increases in INH doses are only 

well-tolerated in patients with fast INH plasma clearance rates (76, 77). It is increasingly 

appreciated that TB drug levels may have an important impact on treatment outcomes 

and emergence of drug resistance (24, 78). This is particularly true for the rifamycins as 

demonstrated in multiple clinical studies of ‘high-dose’ RIF or rifapentine (75, 79, 80). 

Alternative strategies to reduce dosing frequency include controlled release drug delivery 

using micro-particles, explored in Chapter 6 (81, 82). 

Clinical trials of antibiotics for TB remain fraught with limitations, specifically 

the lack of robust outcome measures for demonstrating improvement over current 

regimens, the difficulty in predicting relapse, the inability to test drugs singly or in unique 

combinations, cost, and the length of clinical trials. Animal models play an important role 

in the identification of new and effective regimens, but these studies are also costly, 

lengthy and require models with human-like pathology, primarily non-human primates. 

In this Appendix, we provided a complementary approach to predicting efficacy of new 

drugs and regimens, using a systems biology and pharmacology approach, which will 

allow a more rapid assessment of drug efficacy at the site of bacterial growth and 

persistence, the granuloma. 
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Appendix D 

Supplementary Information for Chapter 6 

D.1 Supplemental Text 

D.1.1 Methods 

D.1.1.1 Inhaled Carrier Model: Granuloma Compartment 

Once in the ABM simulation environment carriers move by random walk (Figure 

6.1c in Chapter 6) with a time step calculated from an estimated diffusivity of carriers in 

tissue and mucus and scaled based on carrier size (Stokes-Einstein) (1). Carriers are 

phagocytosed by macrophages at a probability that is a function of carrier zeta potential 

(parabolic function), size (Weibull distribution), and surface ligand density (Poisson 

distribution) and can reside in the intracellular environment for long times (days to 

weeks) (Figure D.1b-d) (2–5). If a macrophage dies intracellular carriers are dispersed to 

the extracellular environment in the Moore neighborhood. Carriers degrade in both the 

extra- and intracellular space, which can occur at differing rates (6). Release of 

antibiotics from carriers occurs in both the intra- and extracellular space as demonstrated 

by in vitro studies of release kinetics (7–12). We use a description of carrier release 

kinetics that models both diffusion of antibiotics through the carrier and degradation of 

the carrier system itself, with time varying boundary conditions (13–15). We assume the 

carriers are spherical, such that the system is symmetric in the polar and azimuth angles. 

If the rate of diffusion is faster than the rate of degradation (D/R2 >> δ) then the carrier 

release kinetics are diffusion-controlled. If the rate of degradation is faster than the rate of 
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diffusion (D/R2 << δ) then the carrier release kinetics are degradation-controlled (Figure 

6.1 in Chapter 6) (13–15). We solve the release equations for each carrier using a 

forward-time-central-space (FTCS) finite difference scheme. 

 

D.1.1.2 Uncertainty and Sensitivity Analysis 

We use Latin hypercube sampling (LHS) to simultaneously vary multiple model 

parameters and sample the parameter space (16). Partial rank correlation coefficients 

(PRCCs) quantify the effects of varying each parameter on non-linear outputs, where a 

PRCC of -1 represents a perfect negative correlation and a PRCC of +1 represents a 

perfect positive correlation. PRCCs are differentiated based on a students t-test to 

indicate significance (p < 0.05, p < 0.001, p < 0.0001). We generate 200 unique 

parameter sets for a specific dosing frequency (daily, two-weeks) of inhaled formulations 

of RIF and INH, each of which are replicated four times, yielding 1000 simulations per 

dosing frequency. Average values of model outputs (e.g. CFU, AUC, etc.) 14 days post-

treatment are used to calculate PRCC and p-values. In addition, we identify parameter 

combinations describing inhaled formulations that lead to equivalent sterilization 

capabilities with reduced toxicity compared to daily oral doses. Using these parameter 

sets and knowledge of parameter PRCCs we design ideal inhaled formulations to test 

against oral dosing regimens. 

 

D.1.1.3 Computational Platform 

Our hybrid multi-scale agent-based model (ABM) of infection and treatment is 

constructed using the C++ programming language, Boost libraries (distributed under the 
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Boost Software License), FFTw libraries (distributed under GPL), and the Qt framework 

for visualization (distributed under GPL). The ABM is cross-platform and can be run 

with or without visualization software. Data manipulation was carried out in MATLAB 

R2012a (Natick, MA). Plots and statistical tests were created using GraphPad Prism 6 

(La Jolla, CA). 

 

D.1.1.4 Model Analysis 

Our work investigates antibiotic efficacy at the single granuloma scale. We first 

simulate 100 days post-infection, whereby a single macrophage is initially infected and a 

granuloma emerges by ~4 weeks post-infection. Any granuloma that sterilizes before the 

onset of treatment at 100 days post-infection is removed from analysis. We subsequently 

treat with antibiotics for an additional 200 days via the inhaled or oral route at two dosing 

frequencies: daily or every two-weeks. We define successful treatment as the complete 

sterilization of all bacteria in a granuloma by 200 days post-treatment initiation. We track 

average concentrations of antibiotics over time in granulomas, along with concentrations 

in PK compartments. We calculate cumulative granuloma and peripheral antibiotic 

exposure (AUC) for 14-day timeframes. Peripheral AUC is a metric of toxicity as the 

peripheral compartment represents organs such as the liver and kidneys (17). We evaluate 

hazard ratios (HR) to determine the cumulative risk between inhaled and oral treatments. 

Uncertainty and sensitivity analysis is used to identify inhaled antibiotic model 

parameters that have significant effects on model outputs related to treatment efficacy 

(16).  
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D.1.2 Results 

D.1.2.1 Extended Sensitivity Analysis 

For daily dosing of an inhaled formulation of RIF, the antibiotic loading and 

antibiotic diffusivity in the carrier are strongly negatively correlated with CFU in 

granulomas and time to granuloma sterilization while strongly positively correlated with 

granuloma and peripheral AUC (Table 6.1 in Chapter 6), indicating an important role in 

treatment efficacy. The intra- and extracellular carrier degradation rates (carrier release 

kinetics) are significantly correlated with both granuloma and peripheral AUC, but with 

limited effects on CFU and time to sterilization. Clearance of RIF from the peripheral 

compartment is significantly correlated with reduced granuloma and peripheral AUC, 

while weakly correlated with increased CFU and time to sterilization (Table 6.1 in 

Chapter 6). Conversely, dosing every two-weeks with an inhaled formulation of RIF the 

intra- and extracellular carrier degradation rates (carrier release kinetics) are significantly 

positively correlated with CFU, while antibiotic loading is still strongly negatively 

correlated with CFU in granulomas and time to granuloma sterilization. The antibiotic 

diffusivity of RIF in the carrier increases granuloma AUC yet has limited effects on CFU 

and time to sterilization.  

For daily dosing of an inhaled formulation of INH the antibiotic loading and 

antibiotic diffusivity (carrier release kinetics) in the carrier are strongly negatively 

correlated with CFU in granulomas and time to granuloma sterilization, while strongly 

positively correlated with granuloma and peripheral AUC (Table 6.2 in Chapter 6) 

indicating an important role in treatment efficacy. The intracellular carrier degradation 

rate (carrier release kinetics) is strongly correlated with granuloma and peripheral AUC, 
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CFU, and time to sterilization, while the extracellular carrier degradation rate (carrier 

release kinetics) is correlated only with granuloma and peripheral AUC. Clearance of 

INH from the peripheral compartment is strongly correlated with reduced granuloma and 

peripheral AUC and increased CFU and time to sterilization (Table 6.2 in Chapter 6). 

Dosing every two-weeks with an inhaled formulation of INH demonstrates that antibiotic 

diffusivity of INH in the carrier and intracellular carrier degradation rate (carrier release 

kinetics) are positively correlated with CFU, while antibiotic loading is again 

significantly negatively correlated with reduced CFU in granulomas and time to 

granuloma sterilization. 

 
D.2 Supplemental Tables 
 
Table D.1 PK, Granuloma, PD, and Inhaled Carrier Model Parameters 
 

Pharmacokinetic Parameters (1) 

Parameter Description INH RIF Reference 

Ka Absorption Rate Constant (h-1) [0.75 – 1.35] [0.1 – 0.5] Fit to (18, 19) 

CLA Clearance Rate Constant – 2nd Abs Comp. (L/h*kg) [9.5 – 16] [0.01 – 0.075] Fit to (18, 19) 

CLPE Clearance Rate Constant – Peripheral Comp. (L/h*kg) [0.025 – 0.1] [0.1 – 1.0] Fit to (18, 19) 

CLM Clearance Rate Constant – Macrophage Comp. (L/h*kg) 0.005 0.0053 Fit to (18, 19) 

QP Transfer Rate Constant – Plasma to Peripheral (h-1) 0.25 0.25 Fit to (18, 19) 

QL Transfer Rate Constant – Plasma to Non-Infected Lung (h-1) 0.25 0.25 Fit to (18, 19) 

VPL Apparent Volume Distribution – Plasma (L/kg) 0.06 0.06 Fit to (18, 19) 

VPE Apparent Volume Distribution – Periphery (L/kg) [0.01 – 0.1] [0.5 – 5] Fit to (18, 19) 

VL Apparent Volume Distribution – Non-Infected Lung (L/kg) 0.00875 0.00875 Fit to (18, 19) 

PCL Partition Coefficient – Non-Infected Lung/Granuloma 0.25 3.3 Fit to (18, 19) 

LL Total Lung Volume (L) 0.04375 0.04375 (20–24) 

LP Total Plasma Volume (L) 0.42 0.42 (20–24) 

NM Number of Macrophages in Non-Infected Lung 2.26×108 2.26×108 Estimated 

Granuloma and Non-Infected Lung Related Parameters 

Parameter Description INH RIF  

δext Extracellular Degradation Rate Constant (s-1) 5.52×10-9 7.5×10-8 Chapter 6 

δint Intracellular Degradation Rate Constant (s-1) 6.4×10-3 6.7×10-3 Chapter 6 

D Apparent Diffusivity in Lung Tissue (cm2/s) 1.11×10-7 6.96×10-7 Chapter 6 

EM Equilibrium Partition Coefficient 0.35 17.8 Chapter 6 

p Vascular Permeability (cm/s) 8.42×10-6 8.42×10-6 Chapter 6 
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LM Macrophage Volume (L) 4.85×10-12 4.85×10-12 Chapter 6 

LGrid Micro-Compartment Volume (L) 8×10-12 8×10-12 Chapter 6 

Pharmacodynamic Parameters 

Parameter Description INH RIF  

C50,BI Intracellular Mtb – C50 (mg/L) 0.02 10 Chapter 6 

C50,BE Extracellular Replicating Mtb – C50 (mg/L) 0.04 1.23 Chapter 6 

C50,BN Extracellular Non-Replicating Mtb – C50 (mg/L) 0.5 5 Chapter 6 

HBI Intracellular Mtb – Hill Constant 1 0.48 Chapter 6 

HBE Extracellular Replicating Mtb – Hill Constant 1 0.7 Chapter 6 

HBN Extracellular Non-Replicating Mtb – Hill Constant 1 0.7 Chapter 6 

Emax,BI Intracellular Mtb – Max Activity (timestep-1) 0.046 0.069 Chapter 6 

Emax,BE Extracellular Mtb – Max Activity (timestep-1) 0.155 0.296 Chapter 6 

Inhaled Carrier Parameters (2) 

Parameter Description INH RIF  

TDose Total Carrier Dose to Lungs (# of carriers) 1.2×109 1.2×109 Fit to (19) 

fD Dose Fraction to Granuloma Compartment 1.18×10-6 1.18×10-6 Estimated 

Pload Inhaled Carrier Drug Loading (mg/carrier) [1×10-8 – 5×10-7] [1×10-9 – 5×10-8] (6, 12, 25–33) 

Psize Diameter of Carrier (µm) [2.0 – 8.0] [2.0 – 8.0] (2–5) 

PsizeDev Range of Diameter of Carrier (µm) 1.0 1.0 (2–5) 

PdrugDiff Diffusivity of Drug in Carrier (µm2/s) [1×10-8 – 5×10-6] [1×10-8 – 5×10-6] (6, 12, 25–33) 

PintDeg Carrier Intracellular Degradation Rate (s-1) [5×10-6 – 5×10-5] [5×10-6 – 5×10-5] (6, 12, 25–33) 

PextDeg Carrier Extracellular Degradation Rate (s-1) [5×10-6 – 5×10-5] [5×10-6 – 5×10-5] (6, 12, 25–33) 

Pzeta Carrier Zeta Potential (mV) [-40.0 – 0] [-40.0 – 0] (2–5) 

Pdiff Carrier Apparent Diffusivity in Lung Tissue (cm2/s) [2×10-10 – 1.95×10-9] [2×10-10 – 1.95×10-9] (1) 

Muptake Macrophage Maximum Carrier Uptake Probability  [0.01 – 0.95] [0.01 – 0.95] Estimated 

PTL Density of Targeting Ligand on Carrier (#/carrier) [1×101 – 1×104] [1×101 – 1×104] (34–37) 

MTR Density of Targeting Receptor on Macrophages (#/cell) [1×101 – 1×104] [1×101 – 1×104] (34–37) 

KD-TLR Ligand-Receptor Equilibrium Rate Constant (M) [1×10-9 – 1×10-7] [1×10-9 – 1×10-7] (34–37) 

kTLR Poisson – Ligand-Receptor Carrier Uptake Rate (#/cell*s) [5×10-4 – 5×10-3] [5×10-4 – 5×10-3] Estimated 

WShape Weibull – Carrier Size Uptake Rate – Shape Parameter 1.9 1.9 (2–5) 

WScale Weibull – Carrier Size Uptake Rate – Scale Parameter 3.5 3.5 (2–5) 

WMax Weibull – Carrier Size Uptake Rate – Max Parameter 0.2372 0.2372 (2–5) 

CScale Parabolic – Carrier Zeta-Potential Uptake Rate – Scale Parameter 400 400 (2–5) 
(1) Ranges given to account for inter-individual variability. These ranges are also used in sensitivity analysis. 
(2) Ranges given are used in sensitivity analysis 
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Table D.2 Agent-Based Model Parameters 

Parameter Description Value(s) 

Bacterial carrying capacity of each grid compartment (#) 114.5 

Intracellular bacterial growth rate (timestep-1) 1.0045 

Extracellular bacterial growth rate (timestep-1) 1.0025 

Rate of death of bacteria trapped in caseated compartments (timestep-1) 0.85 

Number of host cell deaths causing caseation (#) 9 

Time to heal caseation (timesteps) 1467 

TNF threshold for causing apoptosis (# of molecules) 1147 

Rate of TNF induced apoptosis (s-1) 1.7x10-6 

Minimum chemokine concentration allowing chemotaxis (# of molecules) 0.47 

Maximum chemokine concentration allowing chemotaxis (# of molecules) 476 

Initial macrophage density (fraction of grid) 0.04 

Time steps before a resting macrophage can move (timesteps) 3 

Time steps before an activated macrophage can move (timesteps) 19 

Time steps before an infected macrophage can move (timesteps) 170 

TNF threshold for activating NFkB (# of molecules) 73 

Rate of TNF induced NFkB activation (s-1) 1.06x10-5 

Number of bacteria resting macrophage can phagocytose (#) 1 

Probability of resting macrophage killing bacteria 0.12 

Adjustment for killing probability of resting macrophages with NFkB activated 0.2 

Number of extracellular bacteria that can activate NFkB (#) 253 

Threshold for intracellular bacteria causing chronically infected macrophages (#) 12 

Threshold for intracellular bacteria causing macrophage to burst (#) 23 

Number of bacteria activated macrophage can phagocytose (#) 5 

Probability of an activated macrophage healing a caseated compartment in its Moore neighborhood 0.0055 

Probability of a T-cell moving to the same compartment as a macrophage 0.046 

IFNg-producing T-cell probability of inducing Fas/FasL mediated apoptosis 0.035 

IFNg-producing T-cell probability of producing TNF 0.045 

IFNg-producing T-cell probability of producing IFN 0.35 

Cytotoxic T-cell probability of killing a macrophage 0.009 

Cytotoxic T-cell probability of killing a macrophage and all of its intracellular bacteria 0.71 

Cytotoxic T-cell probability of producing TNF 0.047 

Regulatory T-cell probability of deactivating activated macrophage 0.008 

Time before maximum recruitment rates are reached (timesteps) 982 

Macrophage maximal recruitment probability 0.32 

Macrophage chemokine recruitment threshold (# of molecules) 0.86 

Macrophage TNF recruitment threshold (# of molecules) 0.011 

Macrophage half sat for TNF recruitment (# of molecules) 1.63 

Macrophage half sat for chemokine recruitment (# of molecules) 2.16 

IFNg-producing T-cell maximal recruitment probability 0.15 

IFNg-producing T-cell chemokine recruitment threshold (# of molecules) 0.072 
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IFNg-producing T-cell TNF recruitment threshold (# of molecules) 1.27 

IFNg-producing T-cell half sat for TNF recruitment (# of molecules) 1.34 

IFNg-producing T-cell half sat for chemokine recruitment (# of molecules) 1.87 

Cytotoxic T-cell maximal recruitment probability 0.12 

Cytotoxic T-cell chemokine recruitment threshold (# of molecules) 4.48 

Cytotoxic T-cell TNF recruitment threshold (# of molecules) 1.27 

Cytotoxic T-cell half sat for TNF recruitment (# of molecules) 1.19 

Cytotoxic T-cell half sat for chemokine recruitment (# of molecules) 8.62 

Regulatory T-cell maximal recruitment probability 0.029 

Regulatory T-cell chemokine recruitment threshold (# of molecules) 2.05 

Regulatory T-cell TNF recruitment threshold (# of molecules) 1.63 

Regulatory T-cell half sat for TNF recruitment (# of molecules) 2.23 

Regulatory T-cell half sat for chemokine recruitment (# of molecules) 1.5 

Tuneable Resolution Related Parameters 

Parameter Description Value(s) 

Apparent TNF consumption rate (s-1) 0.00077 

Apparent IL-10 consumption rate (s-1) 0.0004 

Partition factor for estimating internalized bound receptors 11.3 

Threshold for IL-10 inhibition of TNF secretion -1.93 

Shape parameter for IL-10 inhibition of TNF secretion 0.181 

Apparent TNF secretion rate by macrophages (# of molecules/s) 1.5 

Apparent IL-10 secretion rate by activated macrophages (# of molecules/s) 0.3 

Apparent IL-10 secretion rate by infected macrophages (# of molecules/s) 0.02 

Apparent TNF secretion rate by IFNg producing T-cells (# of molecules/s) 0.15 

Apparent TNF secretion rate by cytotoxic T-cells (# of molecules/s) 0.015 

Apparent IL-10 secretion rate by regulatory T-cells (# of molecules/s) 0.739 

Affinity of TNF for TFNR1 (M) 1.9x10-11 

Affinity of IL-10 for IL-10R (M) 4.56x10-10 

From (38, 39) and from Chapters 3, 5, and Appendix C 
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D.3 Supplemental Figures 
 
 

 
 
Figure D.1 Inhaled carrier deposition and macrophage uptake functions 
(a) Snapshot of the ABM showing an example inhaled dose depositing on the simulation grid. Carriers are 
denoted as yellow squares and an estimate of the granuloma border is shown in red. (b) Unscaled 
probability function describing the dependence of macrophage uptake on carrier zeta potential (2–4). (c) 
Unscaled probability function describing the dependence of macrophage uptake on carrier diameter (2–4). 
(d) Unscaled probability function describing the dependence of macrophage uptake on carrier targeting-
ligand density (2–4). 
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Figure D.2 Comparison of an inhaled RIF formulation given every two-weeks with an oral RIF 
formulation given daily 
(a) Total CFU per granuloma for the first 14-day dosing window. (b) Average RIF concentration in the 
plasma compartment for the first 14-day dosing window. (c) Average RIF peripheral AUC for the first 14-
day dosing window. (d) Average RIF granuloma AUC for the first 14-day dosing window. Red = Oral, 
Blue = Inhaled. Solid lines indicate average values while dotted lines represent SD. Inhaled (N = 83), Oral 
(N = 87). 
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Figure D.3 Comparison of an inhaled INH formulation given every two-weeks with an oral INH 
formulation given daily 
(a) Total CFU per granuloma for the first 14-day dosing window. (b) Average INH concentration in the 
plasma compartment for the first 14-day dosing window. (c) Average INH peripheral AUC for the first 14-
day dosing window. (d) Average INH granuloma AUC for the first 14-day dosing window. Red = Oral, 
Blue = Inhaled. Solid lines indicate average values while dotted lines represent SD. Inhaled (N = 81), Oral 
(N = 87). 
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