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ABSTRACT

Capacity Management: Intra-Firm and Inter-Firm Perspectives
by
Anyan Qi

Co-Chairs: Hyun-Soo Ahn and Amitabh Sinha

Capacity management is challenging. Many decisions regarding capacity are made
before full information is known, often requiring large and irrevocable expenditures.
Moreover, the consequences of wrong capacity decisions critically affect the firm’s
bottom line. In recent years, the capacity decision has become of particular interest,
reflecting two principal trends. First, advances in information technology that provide
huge amounts of data about operations and demand offer firms potential to utilize
this big data in making capacity decisions. Second, although supply chains today are
highly decentralized with complex topologies, many buying firms and suppliers aim
to maintain tight relationships with initiatives such as supplier development, among
which capacity investment is an important strategic decision.

Corresponding to the two streams, we analyze a firm’s capacity management deci-
sion, how much capacity a firm should have and why, at both intra-firm and inter-firm
levels. At the intra-firm level, we investigate how a firm should learn demand informa-
tion and leverage the information in capacity decisions. In Chapter II, we formulate
a firm’s capacity adjustment plan when the demand distribution is unknown as a s-

tochastic dynamic program, and derive the optimal policy and date-driven heuristics.
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At the inter-firm level, using game theory, we examine how a firm should manage
its capacity at a shared supplier given two contractual constraints: exclusive, where
other firms cannot access the leftover, and first-priority, where they can. In Chap-
ter III where firms compete and the capacity cost consists of a fixed and a variable
portion, we find that firms tend to invest more aggressively under the exclusive con-
tract. Therefore, sometimes the firm may benefit from letting a competitor free-ride
on the invested capacity. In Chapter IV where firms may or may not compete and
the capacity cost has a variable portion, we characterize two equilibria: a prisoner’s
dilemma, where both firms choose the exclusive capacity which is not Pareto-optimal,
and a free-rider equilibrium, where one firm chooses the first-priority capacity and al-
lows the other with exclusive capacity to free ride. Both equilibria can be sustained
when the firms serve independent markets, but not when they compete in a Cournot

market.
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CHAPTER 1

Introduction

Capacity management, featuring high yet irrevocable expenditure, is a key op-
erational decision that firms need to make. This decision is particularly acute in
the modern business world with a highly uncertain environment and rather complex
supply chain relationship. On one hand, an incorrect capacity decision at a firm’s
own site may lead to severe mismatch between supply and demand. On the other
hand, a capacity decision at the supplier’s site may play a strategic role in a complex
supply chain. Therefore, it is challenging to decide how much capacity a buying firm
should have. In the dissertation, we attempt to analyze a firm’s capacity management
decisions at both intra-firm and inter-firm levels.

In Chapter II, we analyze how a firm should leverage early demand data in its
capacity decision at the intra-firm level. In a complex supply chain environment, the
demand distribution may not be available as typically assumed in the literature and
firms need to infer the true demand based on sales history. For example, Mahindra
and Mahindra, the largest utility vehicle producer in India, launched a new car XUV
500 in September 2011 with an initial capacity of approximately 2,000 units per
month. However, they severely underestimated the demand, and confirmed the order
of over 15,000 vehicles in just two rounds of bookings. Finally, they doubled their

capacity in May 2012, which was already 9 months after the launch of the product.



Clearly, the firm faces a trade-off between exploration and exploitation: While it can
delay the decision to adjust capacity to explore the demand, it has to suffer from
the potential lost demand and more expensive outsourcing cost. An interesting and
important question therefore arises: When, and by how much, should a firm adjust
its capacity?

To investigate this question, we formulate a firm’s capacity adjustment plan within
an environment of unknown demand distribution as a stochastic dynamic program-
ming. When the firm has only a single adjustment opportunity, corresponding to
cases with long capacity adjustment leadtime and high adjustment cost, we charac-
terize the firm’s optimal policy: while the target capacity level always increases in
the likelihood of demand being high, the decision to adjust capacity is not necessarily
monotone with respect to the likelihood. As the optimal policy is difficult to com-
pute, we also derive a simple data-driven heuristic which only depends on the demand
observations, and show the heuristic is asymptotically optimal with fast convergence
rate. When the firm has multiple adjustment opportunities, corresponding to cases
with short capacity adjustment leadtime and low adjustment cost, we show the opti-
mal policy as a control band policy characterized by two switching curves, and derive
a rather simple heuristic to compute the capacity decision. Finally, we use numerical
study to analyze the performance of the heuristics.

In Chapter III and IV, we explore how firms should invest in or reserve the sup-
plier’s capacity when the supplier is shared with other firms, which becomes common
in several industries such as electronics, cosmetics, and fashion. For instance, Apple’s
iPhone uses components made by more than a dozen suppliers and is assembled by
a third-party manufacturer, while these suppliers and manufacturer also serve other
products such as Samsung’s Galaxy. In these relationships, how the leftover capacity
can be used critically affects how much capacity firms should reserve or build as, if

unspecified, it may be used to fill its competitor’s orders. In fear of such free-riding,



some firms put contractual constriants when reserving capacity. Neutrogena, a John-
son and Johnson company, invested in the capacity of their supplier who also serves
Neutrogena’s competitors such as L’Oreal and Estee Lauder. To avoid its supplier
using the capacity to fill other orders, it claimed exclusive rights by placing counters
on the invested machines. In another case, DowAgrosciences pays to reserve capacity
at their key ingredients suppliers who also supply to its competitor, DuPont Agricul-
ture. However, they only demand the first priority in utilizing the capacity, allowing
other firms to access the leftover. Depending on different market environment, supply
conditions, and capacity cost structures, firms and suppliers may have different pref-
erences over the capacity types. Therefore, it is natural to ask: (Chapter I1I) When
the capacity is random and the demand is deterministic, how should the compet-
ing buying firms invest in the shared supplier, and how should different stakeholders
choose the capacity type? (Chapter IV) When the capacity is deterministic and the
demand is random, how should buying firms endogenously choose these capacity con-
straints? How would firms’ investment decisions be affected by whether the firms are
competing with each other or not?

In Chapter III, we build game theoretic models, where two competing buying
firms share a common supplier, and explore how firms invest in the supplier’s capacity
given the two contractual restraints: exclusive and first-priority, when the demand
is deterministic, the capacity is random, and the capacity investment cost consists
of a fixed and a variable portion. Our results suggest that firms tend to invest
more aggressively under the exclusive contract, and therefore, sometimes the firm
may benefit from letting a competitor free-ride on the invested capacity because
allowing free-riding can reduce the competition intensity. Essentially, this chapter
provides managerial insights that firms considering investing in suppliers who also
supply their competitors must consider the consequences of their investment via the

lens of a multi-player game, rather than myopically focusing on increases access to



capacity.

In Chapter IV, we also build game-theoretic models where firms share a common
supplier and examine how the relationship between the two firms affects the capacity
investment decisions, when the demand is random, the capacity is deterministic, and
the capacity investment cost is linear in the invested capacity size. In some cases,
the firms are not directly competing in the market, for example, when they serve two
geographically separated markets. In other cases, firms may directly compete against
each other such as in a Cournot market. In these two market structures, demands for
both firms are independent and positively-correlated respectively. For a given market
structure, firms first choose the capacity types: to share (first-priority) or not to share
(exclusivity). Then they build capacity at the supplier contingent upon the capacity
types, and finally serve the market. Our analysis shows that even if choosing the first-
priority is Pareto-optimal for both firms, buying firms tend to choose the exclusive
capacity, driven by the incentive of capacity cost and the possibility to drive the other
firm to build excess capacity. This provides a parsimonious explanation about the
widely observed exclusive claim attached to the capacity investment to the supplier, as
well as the managerial insights that doing so may trap the buying firms in a prisoner’s
dilemma. Interestingly, we also observe that a free-rider equilibrium can be sustained,
where one firm chooses the first-priority capacity, builds a larger capacity, and allows
the other firm with the exclusive capacity to free-ride on its invested capacity. This,
in general, is driven by the capacity cost. These free-rider and prisoner’s dilemma
equilibria are observed in the independent market, but not in the Cournot market.
This is because in the Cournot market, where the demands are positively correlated,
firms are less likely to access the other firm’s leftover capacity. Therefore, both firms
simply choose the cheaper capacity and do not need to consider much about the

benefit to pool the demand uncertainty under the first-priority capacity.



CHAPTER 11

Capacity Investment with Demand Learning

2.1 Introduction

In most cases building capacity requires significant time and resource commitment,
thus many firms need to make capacity decisions when there exist significant demand
uncertainties. While early capacity installation enables a firm to seize a time-to-
market opportunity, installing capacity with little market information may result
in a significant mismatch when the capacity level is significantly different from the
realized demand. Even if the firm realizes such a mismatch, changing the capacity
level is often difficult and costly to the firm in both time and money. Increasing
capacity level through adding new machines and/or hiring new workers is expensive
and often irrevocable. Downsizing the capacity level, which typically requires layoffs
and equipment divestment or salvage, can also be costly. In addition to the financial
cost, changing the capacity level often requires a considerable amount of time. New
machines or workers may take several weeks or months to be ready for production.
More importantly, if capacity installation is delayed or insufficient, the firm will miss
out market opportunities and significantly hit its bottom line. As choosing a “perfect”
initial capacity level well before a selling season is a near-impossible task, many firms
adjust its initial capacity level after observing some demand information in the early

stage of a planning horizon. For this strategy to be successful, the firm should be able



to evaluate the benefit and cost between two options— waiting it out (gathering more
information) and committing to an action (adjusting the capacity level)— a classic
trade-off between exploration and exploitation.

The set of problems that we consider is well illustrated in the following two exam-
ples. A major ODM (original design manufacturer) that the authors have intimate
knowledge about serves a number of major cosmetics companies. Many of the prod-
ucts that the ODM produces are seasonal and sensitive to fashion trends, thus they
have a short selling season of about three to four months. As there exist significant
uncertainties about demand volume and type (e.g., which one of twenty different red
shades will be popular?), it is impossible to stock the finished products in advance
and therefore the ODM produces in a make-to-order environment. For some prod-
ucts, e.g., make-up compacts and eyeshadow pallets, the firm’s capacity is bounded
by the number of molds and fixtures designed for the specific products. When the
demand of a particular product significantly surges beyond their existing capacity,
the firm needs to either produce them with existing equipment in overtime or expand
its capacity by procuring additional molds or fixtures. In this setting, not satisfying
the order is not an option as the firm may lose a client. As it takes significant time
to get new molds (typically two weeks to one month compared to the three to four
months of a selling season), if the firm would like to increase its capacity level, it
must do so very early in the selling season; otherwise, it will be too late to use the
adjusted capacity in production.

In the automobile industry, Mahindra & Mahindra (M&M), the largest utility
vehicle producer in India, launched the XUV 500 model in September 2011 with an
initial capacity of about 2,000 vehicles per month. However, the company confirmed
orders of over 15,000 vehicles in just two rounds of bookings. In fact, in the second
round, over 25,000 booking applications were received, among which only 7,200 win-

ners were chosen with a lottery. Finally, in June 2012, M&M announced a ramp-up



of their capacity to about 4,000 vehicles per month (Thakkar, 2012). As the demand
continues to grow, in January 2013, M&M announced another ramp-up of the capac-
ity to 4,500 vehicles per month (Philip, 2013). In this setting, the product life cycle
is long relative to the leadtime to adjust the capacity. Therefore, M&M has multiple
opportunities to adjust capacity, as illustrated in the two adjustments.

Motivated by these observations, we examine a make-to-order firm’s capacity de-
cision using demand observation: when, and by how much, should a firm adjust its
capacity? To investigate this question, we consider a firm selling a single product for
a finite planning horizon when the firm has only partial information about random
demand. In each period, the firm observes the realized demand and collects more in-
formation. Based on the information, the firm actively updates its knowledge about
the demand, and uses this updated knowledge in the capacity adjustment decision.
We consider two different stylized settings explicitly. In the first setting, the firm has
only a single chance to adjust capacity (a single-adjustment scenario). This scenario
is appropriate in settings where the leadtime for capacity investment (disinvestment)
is long relative to a short planning horizon and/or the cost associated with capacity
adjustment is significant as illustrated in our cosmetics example. In the second set-
ting, the firm has multiple opportunities to change its capacity (a multiple-adjustment
scenario). This scenario is appropriate when the leadtime for capacity adjustment
is short and/or it is easy (or relatively inexpensive) to adjust the capacity level as
illustrated in the M&M example. We specifically choose these settings as we will show
that, the number of opportunities that the firm has to adjust its capacity critically
affects the structure of the optimal policy and asymptotically optimal heuristics.

In both single-adjustment and multiple-adjustment scenarios, we first formulate
the problem as a stochastic dynamic program and characterize the structure of the
optimal policy. Then, for each scenario, we propose a data-driven heuristic policy

that is not only implementable but also asymptotically optimal with an analytic per-



formance bound. In the single adjustment scenario, we show that the optimal policy
is counter-intuitive. In particular, we show whether to adjust capacity level or not
in a given period is not monotone in the firm’s posterior belief about demand. In
particular, under the optimal policy, the firm may increase the capacity level when
the likelihood of high demand is moderate, but switch to stay put and collect more
demand observations when the likelihood of high demand becomes even higher. Thus,
the firm’s belief about a demand type does not monotonically affect the optimal capac-
ity adjustment decision. In addition to the non-monotonicity, the stochastic control
problem has a very large state-space as the firm’s belief about demand type is our
state variable. Consequently, solving and implementing the optimal policy quickly
becomes computationally intractable even when there are only several possible de-
mand types. To overcome this, we propose a two-step data-driven heuristic, which
only depends on the firm’s observed demand data. We prove that this heuristic is
asymptotically optimal in the case where the true demand follows a stochastic pro-
cess with stationary and independent increment in time, Specifically, we show that
the regret (the percentage profit loss relative to an upper bound when the firm has
complete demand information) converges to 0 rapidly as the problem scale increases.
We then consider the multiple-adjustment scenario and show that the optimal policy
is a control band policy, where in each period the firm will adjust the capacity up to
a threshold if the capacity level is significantly low relative to the inferred demand,
adjust the capacity down to another threshold if the capacity level is significantly
high, and stay put in between. For this setting, we propose a different data-driven
heuristic in which the firm adjusts capacity in exponentially increasing intervals and
show that this policy is indeed asymptotically optimal under the regret criterion.
We illustrate the performance of our heuristics using a numerical study where
some of the key parameters and data are derived from actual production and sales

data of an automobile instead of using a randomized test bed in order to highlight the



fact that our heuristic only requires real-time demand data and a few parameters that
can be either inferred or collected by the firm. The numerical study demonstrates
the value of using demand learning in capacity decision, and show that our heuristics
is very robust with respect to problem parameters and assumptions.

The rest of the chapter is organized as follows. The related literature is reviewed
in Section 2.2. The optimal policy of the stochastic dynamic program for the single-
adjustment scenario is presented and discussed in Section 4.2. In Section 2.4, we
propose a two-step heuristic and proves its asymptotic optimality. In Section 2.5 we
consider the multiple-adjustment scenario. Similarly to the single-adjustment sce-
nario, we first characterize the optimal policy of a corresponding stochastic dynamic
program. We then propose a data-drive heuristic policy under which the firm adjusts
its capacity in exponentially increasing intervals and show that this policy is asymp-
totically optimal. We present the set-up and results of our numerical study in Section

2.6 and conclude the chapter in Section 2.7.

2.2 Literature Review

There is an extensive body of literature in the general area of capacity manage-
ment. Manne (1967), Freidenfelds (1981) and Luss (1982) provide surveys on the
earlier literature. In the early work, the main focus is to expand capacity to meet
growing demand with no uncertainties. Therefore, the firm is able to make optimal
capacity expansion plans to balance economy-of-scale savings and the cost associated
with a mismatch between demand and supply. For problems with uncertain demand,
Davis et al. (1987) uses the piecewise-deterministic Markov process to model an opti-
mal capacity expansion problem with leadtime. Dixit and Pindyck (1994) provide a
survey about the real options approach to analyze investment without detailed oper-
ational implications. When the dynamic capacity adjustment is costly and partially

irreversible, Eberly and Van Mieghem (1997) present the optimal capacity policy as a



control limit policy, labeled as the ISD (invest-stay put-divest) policy. Van Mieghem
(2003) provides a comprehensive review about recent developments.

Among more recent literature on capacity management, a number of papers as-
sume the firm has complete information about the parameterized demand distribu-
tion. Among them, Chao et al. (2009) characterize a firm’s optimal capacity policy
when the existing capacity is subject to deterioration and random supply constraints.
Besanko et al. (2010) study an oligopoly in which firms make lumpy capacity in-
vestment and disinvestment, and show that while firms build excess capacity for a
preemption race in the short run, capacity coordination can be achieved in the long
run. Wang et al. (2013) show the optimal capacity policy for two competing tech-
nologies is a control limit policy. On contrary to these works, our work emphasizes
the firm’s active role of learning about demand and using it for capacity decisions.

A number of papers consider demand learning in operation context. Boyaci and
Ozer (2010) consider a firm acquiring information via pricing and advance selling,
and characterize the firm’s optimal policy to stop collecting information and building
capacity as a control band policy. Kwon and Lippman (2011) analyze a firm’s opti-
mal strategy to invest in project-specific assets with a real option approach, where
the firm’s profit follows a Brownian motion, and characterize the optimal policy as a
control band policy. Kaminsky and Yuen (2011) show a pharmaceutical firm’s invest-
ment strategy to acquire clinical trial information and build capacity as a threshold
policy. In contrast to these papers, we characterize the firm’s optimal policy to ad-
just capacity (increasing or decreasing) in two different settings — single and multiple
adjustment cases. While the setting is similar, we show that the optimal policy and
methodology that enables us to characterize the optimal policy can be quite different.
In addition to optimal policy, this chapter proposes a simple heuristic that is data-
driven and asymptotically optimal for each of the two settings. For each heuristic,

we provide a theoretical bound and derive the convergence rate. These heuristics
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overcome challenges of determining an optimal policy under incomplete information
Lovejoy (1993).

Our analysis of the optimal policy is closely related to literature on partially
observed Markov decision processes (POMDPs), with a particular emphasis on de-
mand learning with Bayesian updating. That is, decision makers know the family
of distributions, and update their knowledge about key parameters characterizing
the distribution with new observations. Monahan (1982) and Lovejoy (1991) provide
surveys about early works in POMDP. Demand learning in a Bayesian fashion has
been applied in inventory management (e.g., Scarf 1959, Azoury 1985, Eppen and
Iyer 1997, Lariviere and Porteus 1999, Burnetas and Gilbert 2001, Chen and Plam-
beck 2008). Recently, Aviv and Pazgal (2005) analyze a firm’s pricing decision using
the POMDP framework. In this chapter, we analyze a different operational decision,
capacity, which is costly to adjust and the adjustment process is often associated with
a non-trivial leadtime.

Methodologically, our heuristics are closely related with the recent research on
data-driven optimization. Most papers have focused on inventory (Huh et al. 2011,
Besbes and Muharremoglu 2013) and pricing (Burnetas and Smith 2000). Some pa-
pers also use regret to quantify the heuristics. For example, Huh and Rusmevichien-
tong (2009) analyze a firm’s inventory decision with censored demand and no knowl-
edge about demand distribution. They show that using policies derived from online
convex optimization, the regret asymptotically converges to 0. Besbes and Zeevi
(2009) propose a dynamic pricing algorithm when the demand function is not known,
and show that the regret asymptotically converges to 0. To the best of our knowledge,
we are one of the first to apply data-driven optimization in the capacity management
setting. In contrast with inventory and pricing decisions, a firm usually has limited
opportunities to adjust its capacity, and the adjustment process is often costly and

lengthy, which makes the problem somewhat challenging.
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2.3 Capacity Investment with a Single Adjustment Oppor-

tunity

We first consider the case where the firm has a single opportunity to adjust (add
or remove) capacity during a planning horizon. This model is appropriate in an envi-
ronment where the leadtime for changing capacity level is considerably long (relative
to the planning horizon) and/or the cost of adjusting capacity is high. In each peri-
od, the firm decides whether to change its capacity with existing information about
demand or decide to delay the decision and observe the demand for one more period.
We assume that the firm has incomplete information about the demand: while the
firm knows the demand pattern or distribution family about the demand, some key
parameters characterizing the demand are unknown. Thus, the key decisions of the
firm in each period are if the firm should change the capacity or not, and if so, by
how much.

We consider a firm serving a single product for a finite horizon of J periods, with
period 1 and J as the starting and ending periods respectively. We assume that each
period is of length 7 units of time, which will be useful to derive the heuristic in Section
2.4. There are I € N potential demand types: 6; for i € {1,2,....1} and 0;, < 6,, if
11 < io. The demand type parameter, 6;, determines the demand distribution. Thus,
for given demand type 4, the demand in period j, Dj, is represented by a random
variable D;|0; = \;(6;) + &;]0; where \;(6;) is the mean demand of D,|6;, and &;|6; is
a random term with mean 0. We assume the random term ¢; is independent across
periods. A number of demand processes can be expressed in this way and our results
on the optimal policy apply to a large class of random variables and demand processes
(see remark on demand process in Section 2.3.2).

We assume that demand in each period is stochastically ordered in the demand

type parameter: D;|0;, <y D;|0;, for i; < iy. Thus, demand stochastically increases
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in the demand type index, i. We use F}(:|6;) and f;(-|¢;) to denote the cumulative
distribution and the density function (probability mass function in the case of discrete
demand) of D;|6;. Finally, for ease of exposition, we write \;(6;) as \;;, and assume
Ajr < oo for all j for analytical tractability.

Because the true demand type is unknown, the firm observes sales (demand)
and uses the observations to update its belief about the true demand type. The
firm’s information about the demand evolves as follows. Let the vector 7y be the
firm’s prior distribution of the demand type at the beginning of period 1: 7 =
(m11,s...,m1) where m; = Pr(© = 6;). At the beginning of period j (j > 1), the
firm’s information about the demand type is represented by an information vector
7w; = (71,2, - Tj1). The m;; is defined as the posterior distribution of the demand
being type i given the past demand history, i.e., m;; = Pr(© = 6;|d;_1) where
dj_1 = (di,dy, ...,d;_1), and dj, indicates the realized demand in period k. After the
firm observes d; at the end of period j, the information vector is updated following
Bayes’ rule:

m;,i.5(d;10:)

T4l = . 2.1
S i (d16)] 2

Before the realization of D;, the information vector is a vector of random variables
(denoted by II;yq), which we prove below satisfies the martingale property. (All

proofs are provided in the Appendix.)

Lemma II.1 (Martingale property of the posterior distribution).

E [Hj2|Hj1] = Hju fOT’ jl < .j2- (22)

This lemma implies that given the current distribution about the demand types,
the conditional posterior distributions in the future periods are the same as the current

one in expectation. This result allows us to derive the firm’s expected profit in future
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periods given the current distribution.

In each period, the firm observes the realized demand, d;, and fulfills the demand
using the firm’s existing capacity in that period. For each unit it satisfies with exist-
ing capacity, the firm accrues a profit of p, which represents the revenue minus the
variable production cost (excluding any capacity cost). If demand exceeds the firm’s
capacity, it is satisfied by a more expensive outside option such as outsourcing, over-
time production, or using other production facilities or resources owned by the firm.
Let ¢; be the per-unit outside option cost (we call this outside option or outsourcing
cost). Note that ¢; represents the cost premium of producing one unit using the firm’s
outside option. In addition to production costs, the firm also incurs an overhead cost
to maintain the existing capacity, denoted by ¢y per unit capacity and unit time. As
this cost represents the firm’s cost to own and maintain the capacity, it is incurred
whether the capacity is used or not in that period. To avoid trivial cases, we assume
p > ¢ > ¢, i.e., the unit profit is higher than the unit cost associated with the out-
side option, otherwise the firm will not outsource any demand; the unit outsourcing
cost is higher than the cost to maintain one unit of the firm’s own capacity for one
period, otherwise the firm will not have incentive to build any capacity. A similar
cost structure was applied in Chao et al. (2009).

When the firm’s capacity level is © and the firm’s belief about the demand type is
7, the firm’s expected operating profit h;(7;, 1) in period j (note that each period

is 7 units of time) is:

hj(mj, 1) £ Ee { Epje [pD; — 1 (Dj — p7)" = cout|©] | 75}
I
= ZWME [pD; — 1 (Dj — pr)" — cour|© = 0;] , where 2 £ max{z,0}.
k=1

(2.3)

We note that in our base model, there is no inventory carryover and demand is not
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censored as the extra demand beyond the firm’s own capacity can be satisfied by an
outside option. We provide a discussion and extension of these features in Section
2.3.2.

We next describe the firm’s capacity decision. At the beginning of the planning
horizon, the firm has an initial capacity level py. This is for generality. Of course,
the firm may start with no existing capacity: po = 0, or the firm may use the prior
distribution to choose a capacity level or use the existing (legacy) capacity: po > 0.
In each period, the firm decides whether it should (1) continue to observe the demand
and keep the initial capacity level, or (2) stop observing the demand and change the
capacity. As changing capacity often requires considerable amount of time, we assume
there is a leadtime of [ periods.

To be more specific, suppose that the firm has a capacity level of 1 in period j. If
the firm already adjusted its capacity in previous periods (and perhaps is waiting to
be installed) or has decided to wait, then no adjustment will be made and the firm
will fulfill the demand with existing capacity p and an outside option as described
above!. On the other hand, if the firm decides to change the capacity level from g
to u/ in period j, the firm’s existing capacity will be changed to u’ after [ periods (in
period j + [). We assume that both increasing and decreasing the capacity level are
costly to the firm. Let ¢, be the cost of adding one unit of capacity and =, be the
cost of decreasing one unit of capacity. Thus, the cost associated with changing the

capacity level from p to 4/, denoted by C(u, 1t'), is

Clu ') & calpd — )" +valp — ) (2.4)

~

Notice that if the firm does not change the capacity, C'(u, u) = 0. We assume ¢, > 0

and ¢, + 7, > 0, indicating that it is costly to reverse the installed capacity?. Note

'Since each period is 7 units of time, the maximum demand the firm can satisfy with its own
capacity in this case is pr.
2A similar assumption was made in Eberly and Van Mieghem (1997).
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that v, < 0 implies that the firm may salvage a portion of its capacity cost, and v, > 0
implies that downsizing the capacity is costly to the firm (e.g., the firm needs to pay
the layoff costs). To avoid trivial cases, we also assume ¢;(J —1)T > ¢, +co(J—1)7 and
co(J — )T > 7y,. The first assumption implies that it is less costly to increase a unit
of capacity and maintain it than outsourcing this unit to the more expensive outside
option for the whole time after the adjustment. The second assumption implies that
it is cheaper to shrink one unit of capacity than holding it for the whole time after
the adjustment.

We allow the set of capacity levels (denoted by K) to be discrete or continuous.
When capacity level is primarily determined by the number of key machines or pro-
duction lines, it may be appropriate that the capacity level must be chosen from a
discrete set, i.e., K = {0,k = 1,2, ..., |K|, J; increasing in k} where |K] is the cardi-
nality of the set IC. Otherwise, capacity levels can be continuous (e.g., the capacity
is measured by the available labor hours), i.e., K = R™.

To model the firm’s capacity decision, we first introduce the state vector w; =
(75, ftj—1,vj_1). Here, 7; is the firm’s belief about demand type given the demands
up to period j —1, and fi;_; is defined as the induced capacity position at the end of
period j — 1 (since the capacity leadtime is [ periods, ji;_; is the capacity level at the
end of period j + [ — 1. In general, for period k, we have jix, = pg; and g = fig—;)-
Lastly, vj_; is defined as an indicator to denote whether capacity has been changed
on or prior to period j — 1. Formally, if capacity adjustment is made in period j, we

define

0 ifk<y
Vi — (25)
1 ifk>

We next describe the transition of the state vector. We first observe that the
transition of 7r; (specified in equation (2.1)) follows Lemma 1. To describe how

capacity position changes, we first introduce u; to represent the firm’s decision to
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adjust capacity in period j:

0 if the firm decides to stay put and continue to observe the demand
U; =

1 if the firm decides to adjust capacity in period j
(2.6)

As the firm has only a single opportunity to adjust the capacity, the feasible action
space to adjust capacity in period j for given v;_y, A(v;_1), is contingent upon whether
the firm has adjusted the capacity or not, i.e.,
{0, 1} if Vj—1 = O,
Alvyo) = (2.7)
{0} if Vj—1 = 1.
If u; = 1, the firm adjusts the capacity level from the initial level p, to maximize
the expected profit from period j 4+ till the end of the planning horizon based on the

information vector ;.

J
i3 (m;) 2 arg max £ > (M, 1) = Cpo, 1) Wj]
k=j+1
J A
= argmax {RZH hi(mj, 1) — Cpo, u)} : (2.8)
=J

The equality follows Lemma II.1 and the fact that hy(IIg, i) is linear in ITx. When
the maximizer is not unique, as a tie-breaking rule, the firm chooses the smallest
capacity level, i.e., i§(m;) = ming{/;}. Then, the firm’s (induced) capacity position
transits as follows.

fig(m) i uy =1;

fij(wj, uj) = (2.9)

/lj—l if U; = 0.

We observe that using /if(m;) defined in equation (2.8) in the dynamic program turns
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the firm’s decision problem into an optimal stopping problem, i.e., when to pull the
trigger and adjust the capacity to the level specified by fi§(7r;). For ease of exposition,
we suppress the dependence of jif(m;) on m; when there is no confusion.

Having characterized the state transition, we next define the objective function.
Given the indicator v;_, and the starting capacity position fi;_1, if the firm adjusts
its capacity position to jif in period j (i.e., u; = 1), with a capacity leadtime of [
periods, it accrues profit in period j + [ with capacity p;; = fif, but pays a capacity
adjustment cost in period j. Otherwise the firm’s capacity level in period 7 + [ will

be fi;—1. Formally, we have

H;(m5, i1, 051, u5) 2 Elhy (Mg, (@i, ) = C (-1, (w5, 1)) | 755]
= (i, (Wi, 1)) = C (f-1, (w5, ;)
_ ) haa(mg, i) — C (o, i5)  ifu; =1 (2.10)
hji (5, f1j-1) if uj =0
The first equality follows Lemma II.1 and the fact that h;(IL; 4y, f1;) is linear in
IT; ;. For ease of exposition, we suppress the dependency of [i;(wj, u;) on w; and u;
when there is no confusion.
To represent the firm’s capacity decision as a dynamic program, we define a policy
as a sequence of functions mapping the information states to the action space A(v;_1)
forall j < J—1, ie., {uj(w;),j =1,2,...,J —1}. We notice that with a leadtime of [,
the firm should not adjust its capacity after period J —[. Let G denote the set of all
the admissible policies, and the firm’s objective is to find a policy ¢* € G to maximize

the expected total profit,

l J—l
max B [ (T, po)| 7] + > B9 [Hi(Thy, s, w1, )| 1] (2.11)
k=1 k=1

where the expectation is taken over D; for all j at time zero. Due to the {-period lead-
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time, the expected profit of the first [ periods, 22:1 E [hi(Tg, po)| 71], is independent

of the firm’s capacity adjustment policy. Therefore, it is sufficient to maximize

J—=l

max E9 [ Hy, (X, fig—1, Vk—1, ug)| 1] (2.12)
1

Define a partial policy g; £ {ug(mg, lp—1,v6-1), k = j, ..., J — [} and the set of all
the admissible partial policies by G;. Then at the beginning of period j, given the
initial states 7, fi;_; and v;_;, the firm’s optimal value-to-go function is

J—1
Vi(mj, fij—1,vj-1) = max » B9 [Hy(Ig, fig—1, vg—1, ug)| 705] (2.13)

9i€95 1 =
Then, the optimal value-to-go functions satisfy the following recursive optimality
equations for all j € {1,2,...,J —[}.
Vi, fij-1,vj-1) = Jnax | {Hj(m5, ftj—1,vi-1,u5) + E [Vigt (W, fiy, 05) | 5]}
’LLJ' Uj,

Vk(wk,,&k,vk) = O, for k> J—1 (214)

To simplify the optimality equations above, we observe the following: for j = 1,2, ..., J—
[, if the firm has not adjusted the capacity before period j, i.e., v;_1 = 0, we have
ftji—1 = fto. In this case, if the firm decides to adjust its capacity in period 7, i.e.,

uj =1, then for k = j+1, ..., J — [, we have A(v,_;) = {0} and uj, = 0, and therefore
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the firm’s value-to-go function is as follows:

a

L? (75, fbj—1,vj-1) = L (75, Ho, 0)

2 hjor (75, 19) = C (po, 18) + B [Vier (TLiga, i, 1) | 5]

J—1
= h’j-‘rl (Trjv/:l’;l) - é (:u(]a :&?) + Z Hk (Trjv/]’;v 17 O)
k=j+1
J A
= > hu(mj. i) = C (o, i) (2.15)
k=j+1

We note that the firm’s induced capacity position /if maximizes the value-to-go func-
tion (see equation (2.8)), and the firm needs to pay a one-time capacity adjustment
cost of C (uo, [L?) After the adjustment, the firm does not have another opportunity
to change the capacity (recall that A(1) = {0}). Therefore, the firm’s expected op-
erating profit in period k is simply Hy (7}, iif,1,0), which in turn equals hy(7;, i)
from equation (2.10).

If the firm has not adjusted the capacity (v;_; = 0), and decides to delay decision
one more period (u; = 0), then we use the superscript s for “stay put”, and have the

value-to-go function as
L3(mj, fij—1,vj-1) = L3(75, 110, 0) = hj(mj, p10) + E [Vipa (Tjga, o, 0)] 5] (2.16)

By delaying the adjustment, the firm earns a profit based on the starting capacity
level in this period. However, it maintains the option to change the capacity in the
future, as reflected by the term E [V;i;(ILjy1, po, 0)| 7 ].

On the other hand, if the firm already adjusted the capacity before, i.e., v;_; =1,
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then for k = j,...,J — [, we have A(vy_1) = {0} and u;, = 0, and we have

L;(Tr]a ,[Lj—la 'Uj—l) = L;(Tr]a Ho, 1)
-l

<

J
2N Hy(mwj, fiy-1,1,0) = Y il i) (2.17)

ol

To sum up, we have the following value-to-go functions contingent upon whether

the capacity has been adjusted or not.

‘/](7‘-]7 :&j—lv 0) = ‘/J<7T.77 Hos O) = max {L;l(ﬂ-.ﬂ Ho, 0)7 L;(wjv 1o, 0)} (218)

V}(ﬂ'j’:&j—lal) = L;(Tr]a,UOa]-) (219)

When the maximum in equation (2.18) is attained by L§(m;, pi0,0), it is optimal to
adjust the capacity. Otherwise, the firm should delay the adjustment and continue
to observe the demand. For ease of exposition, we suppress the dependence on g
and v;_1, and write Vj(m;, 110,0), Lj(7;, p0,0) and L3(7j, j10,0) as Vj(mw;), L§(m;)
and L;(T&'j) respectively. Therefore, to characterize the firm’s optimal policy to stop
observing the demand and adjust the capacity, we only need to compare Lj(7r;) and
L3 (7;). Note that, in the single adjustment case, the problem of choosing “when to

adjust” and “by how much” is recast as an optimal stopping time problem.

2.3.1 Optimal Policy

We now characterize the firm’s optimal capacity policy, starting with the case
when possible capacity levels are discrete (K = {0y, k = 1,2,...,|K|}). We first

define a convex partition of the space of feasible information vectors w: P = {mw =

(7T1,7T2,...,7T[)ZZZ-I:17T,' :1,71',' 20}

Definition I1.2. P = {P,, P, C P} is a convex partition of P, if the following

conditions are satisfied:
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(i) O & P
(i) U, Pr =P;
(iii) if k # r, then P, (P, = 0;
(iv) for any a € (0, 1), if w1 € Py, and w3 € Py, then amy + (1 — a)mwy € Py

In other words, IP is a collection of subsets of information vectors where each
subset is non-empty and convex, and the union of these subsets is P.

We next characterize the firm’s optimal policy to adjust the capacity. We use
7 =< 7’ to denote that the posterior distribution 7 is smaller than #’ in the first

order stochastic sense, i.e., 22:1 T > 22:1 m, for all i = 1,2,....I. The following

proposition characterizes the optimal policy.

Proposition I1.3 (Optimal capacity policy: Discrete capacity case). Let ji; () be the
optimal capacity position in period j given information vector 7. Forj=1,2,....J—I:
(i) L§(m) and L3(m) are convex in 7. Therefore, V() is convex in .

(it) Let Py, = {7 : i4(m) = 6 }. Then, P; = {Pj: Pju # 0.k = 1,.... K[} is a con-
vex partition of P.

(i1i) In each Pj, € P;, there exists at most one conver set Sy, C Py, such that if
™ € Sji, it is optimal to adjust the capacity position to 0y, fij(w) = i (mw) = 0. If
7 ¢ U, Sjr, then it is optimal to wait: fi}(mw) = fi;_1(7).

(iv) Let S = U, Sj- If m, " € Sj and m 2 7', then jij(m) < i3 (7).

Part (iii) of Proposition I1.3 implies that the firm’s decision to adjust capacity
level in the current period is not monotone in its belief about the demand type, 7.
That is, it is possible that the firm may increase the capacity when the likelihood
of high demand is low, but wait to observe more demand when the likelihood of
high demand becomes even higher, i.e., ij(w) > gi(n’) for # < «’. Thus, as 7
stochastically increases, the optimal policy can switch multiple times between waiting

and adjusting. Within each Pj, € IP;, it is optimal to adjust capacity only when =
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Figure 2.1: An illustrative example of optimal policy with three demand types and
discrete capacity levels. Region k = 1,2,...,6 corresponds to Pj;. The
grey area (if any) within each region corresponds to S;;. The initial
capacity level corresponds to the optimal target capacity in region 4. The
information vector is (7, g, 73).

falls in a convex subset Sji. If @ € P, \S;k, it is optimal to wait. Recall that the

problem defined in equation (2.18) is indeed an optimal stopping problem. Thus, one

would expect that the optimal policy would be characterized by a monotone threshold

(switching curve) in information vector as 7 stochastically increases. Proposition 11.3

shows that it is not the case. Although this is quite counter-intuitive at first, this

phenomenon indeed reflects the primary trade-off that the firm juggles—exploration
versus exploitation. On one hand, the firm would like to exploit benefits from the
current information by adjusting the capacity now. On the other hand, if a few more
observations of the demand (and, resultantly, updated belief) may shift the firm’s
target capacity level considerably, it might be beneficial to wait. Part (iv) shows that
in regions where it is optimal to change the capacity level, the target capacity level
increases in the information state, 7. In other words, given that the firm changes the
capacity in the same period, the optimal capacity level is monotonically increasing in

the information vector.

Figure 2.1(A) illustrates how the optimal policy changes in 7r. In this case, the
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space of feasible information vectors P is partitioned into 6 convex subsets (Pj),
and each subset corresponds to a different level of 1% = 0, (i.e., the induced capacity
level given the firm decides to adjust capacity in that period). The shaded areas
correspond to the regions in which it is optimal to adjust the capacity (S;;). Notice
that the firm may choose to adjust capacity for the whole region (S;1 = Pj1), or
choose to wait for the whole region (S;5 = 0).

Observe that i increases in the information vector, i.e., o%(w) < a*(w’) when
7 =< «w’. However, the decision to adjust the capacity is not monotone in 7r. In this
case, given that the initial capacity corresponds to the optimal target level in region
4, as the information vector increases, the optimal decision on when to change the
capacity is not monotone. For example, consider Figure 2.1(B). This figure shows how
optimal policy changes when the information state changes from (1, 0,0) to (0,0.1,0.9)
in the direction of (—1,0.1,0.9): thus, the information vector is stochastically ordered
along the line. The firm first chooses to adjust down (regions 1 — 2), then stay put
(regions 2 —3), then adjust down again (region 3), then stay put again (regions 3 —6),
and finally adjust up (region 6). While one may think that this discontinuity is driven
by the fact that the feasible capacity level must be chosen from a discrete set, we show
that the same result holds even when the capacity level is a continuous variable, as

shown in the next proposition.

Proposition I1.4 (Optimal capacity policy: Continuous capacity case). Let ji}(m)
be the optimal capacity position in period j given information vector w. For j =
1,...,J—1,
(i) L}(m) and L3(m) are convex in . Therefore, Vj(;) is convex in .
(i) Let Sj = {m : L{(mw) > Li(m)}. For m and w' € S, if # 2w, then jij(m) <
().

Continuous capacity level is the limiting case of discrete capacity level as the

number of potential capacity levels increases and the difference between two adjacent
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Figure 2.2: An illustrative example of optimal policy with three demand types and
continuous capacity levels. The grey areas are the capacity adjustment
regions S;. The initial capacity level corresponds to the optimal target
capacity in the middle region. The information vector is (7, w2, 73).

levels is infinitesimally small. Thus as in the discrete type case if the firm decides

to adjust the capacity, then the target capacity position increases in the information
vector. However, the firm’s decision about whether adjust the capacity in this period
does not change monotonically with respect to the increased likelihood, as this when-
to-stop decision is determined by comparing two convex functions, Lj(w) and L3(m),
in the optimal stopping problem. The optimal policy is illustrated in Figure 2.2 with

a three-demand-type example.

In this case, we observe that the value-to-go function is not necessarily a con-
cave function in the initial capacity. Therefore, the optimal policy cannot be simply
characterized by the control limit policy shown in Eberly and Van Mieghem (1997).

In Section 2.5, we will consider the multiple adjustment case and highlight the

difference. The next section will derive a heuristic policy and analyze its performance.

2.3.2 Remarks

We briefly discuss some of the modeling features and assumptions, the rationale

behind them, and the consequences of removing or relaxing them.
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Demand process. The optimal policy characterized in Section 2.3.1 can be
applied to a large class of random variables and demand processes. In our base
model, we have finite demand types and each type is characterized by a demand
type parameter. However, our model can be extended to accommodate more general
features. First, demand type ¢ can be characterized by a vector of parameters ;.
We only require the demand stochastically increases in the demand type index, i.e.,
D;|0;, =5 D;|0;, for iy < iy. Thus as long as the demand type forms an ordered
set, our results apply. Second, if there are uncountably infinite demand types, i.e.,
the prior and posterior distributions are characterized by a continuous distribution
function, Proposition I1.3 and I1.4 still hold. That is, assuming the firm decides to
adjust the capacity, the target capacity increases as the likelihood of demand being
high increases. As in the base model, the decision to adjust the capacity is not
monotone in the likelihood. Finally, the optimal policy still holds when the demand
is non-stationary; for example, D,|6; may represent a non-stationary Poisson process
with the mean demand \;(6;) following a Bass diffusion curve where the market size
is 0; and the coefficient of innovation and coefficient of imitation are fixed across all
the demand types. In this case, the random term ;|6; represents a “shifted Poisson”
distribution, which has mean 0 and variance \;(6;).

Censored demand. As the demand beyond capacity is satisfied by an outside
option (e.g., outsourcing, overtime, or temporarily using the capacity designated for
a different product), demand is fully observed and not censored. However, our model
can be extended to accommodate censored demand. In the case of unobservable lost
sales, the posterior distribution can be updated as follows:

m5,if5(d;0:)

I
>\ fi(ds|0)
Tjtli = kzl[ 33100 (2.20)
75, Pr(D;>p|©=0;) if dj Z i

T
3 [k Pr(D;>pl0=64)]
k=1

ifdj<,u
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Correspondingly, the firm’s expected profit in one period is changed as follows.

I
hS(mj, 1) = Zﬂ'j,kE [pmin{D;, ur} — copt|O = 6] (2.21)
k=1

Then, following a similar process of defining equation (2.14), we can define the value-
to-go function Vi (m;, fij_1,v;-1). Following a similar proof as that of Proposition
I1.3, we can show that an optimal policy with similar structure holds.

Inventory. In our model, we assume there is no inventory carried over between
two consecutive periods as the demand beyond the capacity is satisfied by an outside
option at a higher cost. This higher cost to satisfy demand beyond capacity partially
captures the effect of inventory in the backlog case. For example, toy manufacturers
in China were constrained by capacity due to low labor retention, and therefore had to
use more expensive expediting methods to ship toys from China to the U.S. (Mattioli
and Burkitt, 2013). On the other hand, inventory is known as a substitute for capacity
in firm operations. Therefore, assuming there is no inventory allows us to isolate the
substitution effect and focus on capacity management.

Discount factor. We implicitly assume the discount factor is 1 in this work.
This follows the fact that the finite life cycle of the product is relatively short, and
therefore we can neglect the time value of wealth. We note that the analytic results,
i.e., Proposition I1.3 and I1.4, will also hold if the discount factor is less than 1.
Nevertheless assuming the discount factor to be 1 simplifies the notation to evaluate
the performance of the asymptotically optimal heuristic in Section 2.4, and this is

standard in asymptotic analysis, for example, see Besbes and Zeevi (2009).

2.4 Near-Optimal Heuristic and Performance Evaluation

As Section 4.2 shows, the optimal policy is very complicated and difficult to im-

plement even for problems with finite demand types and capacity levels. One of the
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reasons is that the state space—which includes the information vector t—is uncount-
ably infinite, and therefore computing the exact optimal policy is computationally
intractable for large problems. For smaller problems, a fine mesh approximation with
linear interpolation can approximate the value-to-go function and hence the optimal
policy (as we do for one part of our validation case study in Section 6), but in general,
the curse of dimensionality makes it impossible to find the optimal policy.

Therefore, we propose a simple two-step heuristic. The firm observes demand for
a specific amount of time (7, units of time whose value depends on the problem size)
and then adjusts the capacity based on the observed demand. We then show that,
in an asymptotic regime, this heuristic is near-optimal when the underlying demand
process is a stationary process with unknown mean under the regret criterion, which
quantifies the gap between an upper-bound (based on information relaxation and
deterministic approximation) and the value-to-go function derived from the two-step
heuristic.

We scale up both demand and capacity by a coefficient n to define the asymptotic
regime. For this, consider the firm’s problem with a planning horizon [0, 7] within
which the firm reviews its decision periodically. Let 7, be the time between two
consecutive decision opportunities so that the corresponding decision problem is a
discrete-time dynamic program with J, = T/7, periods. Likewise, let [,, be the
capacity lead time (described in the number of periods): 1, = l;/7, where [, € [0, T].
Without loss of generality, we assume J,, = T/, and [,, = [;/7, are integers.

We assume that the firm’s demand follows a stationary random process with an
unknown average demand rate. Let {N(¢),¢ > 0} denote a standard random process
with stationary and independent increment, which satisfies N(0) = 0, has mean
E[N(t)] = t, and variance Var[N(t)] = ot for t > 0. When the demand type is i, we
define {N(nA;t),t > 0}, i € {1,2,...,1} as the demand process and the demand type

parameter ¢;,, = n),. That is, given demand type %, the firm’s demand in period j

28



Table 2.1: The two-step heuristic

Given the period length of 7,,,

1. The firm serves the demand in period 1 with initial capacity nug. Let nj\Tn be
the observed demand rate in period 1.

2. The firm adjusts its capacity position to nijn.

3. The firm serves demand from period 2 to [, + 1 with the initial capacity npuy,
and from [, + 2 to J, with capacity nS\Tn.

is D;|6;, = N(n\ij1,) — N(n\;(j — 1)7,,), and therefore the demand in each period
is a sequence of i.i.d. random variables with mean n\;7,, and variance o?n\;7,. We
assume that the firm’s initial capacity is scaled up as nug. All other aspects of the
model (e.g., costs, revenue, etc.) are the same as the original model considered in
Section 4.2.

To show the asymptotic optimality, we impose the following assumptions on 7,

and \;.
Assumption IL.5. lim, ., 7, = 0; lim,, o, n7, = 00; \; € [0, M].

The assumption stipulates that, as the problem scale increases, the length of the
observation period (7,,) asymptotically converges to 0 at a relatively slow speed, and
the demand rate for any type ¢ is bounded from above. With this set-up, we now
introduce and analyze the two-step heuristic, denoted by (ts).

The two-step heuristic. In the heuristic, the firm observes demand for one
period comprising 7,, units of time, and then uses the observed demand rate to adjust
the capacity for the rest of the time horizon, as specified in Table 2.1. We will show
that this simple policy is asymptotically optimal with an appropriately chosen 7,
(which is a function of the scale parameter n).

Under the two-step heuristic, the firm always adjusts the capacity to the observed
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demand rate in the first period. Therefore, we define

j\i’m A M’ (2.22)

Nty

Then the firm’s expected value-to-go function under the heuristic is as follows.

( \

pDi, 11— c1 (Dy, 41 — n,tLoTn)+ — CoNUoTn
I
‘/3,2(771) = Zﬂ'l,iE —C(npo, nAi ) O;n
i=1 In R + R

+ Z |:ij —C (D] — n)\wnTn) — Con)\i77-n7'n:|

\ J=ln+2 J

(2.23)

For ease of exposition, we suppress the dependency of Vot;(ﬂ'l) on 7r; when there
is no confusion.

As the two-step heuristic is a feasible policy for the corresponding optimal stopping
problem, it follows that the value-to-go function under the two-step heuristic, Votj“
is a lower bound of the value-to-go function under the optimal policy, denoted by
Vo However, because of the complexity of the optimal policy and the curse of
dimensionality, the exact value function under the optimal policy, denoted by V{7, is
difficult to compute. Hence, we will introduce an upper-bound of V{,, to evaluate the
performance of the heuristic.

Upper bound. We derive an upper bound of V{7, based on information structure
relaxation. Consider a hypothetical model, where the information of demand type is
revealed to the firm in the first period. In this case, the firm has full information (fi)

about the demand type, and is able to decide the optimal capacity position contingent

upon the demand type. Consequently, we obtain the firm’s value-to-go function as
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follows:

JIn

. ! Z [ij —C (Dj - n,uiTn)+ - C(]n,uiTn}
Vof;(wl) = max ZWHE j=lnt1 Oin
’ Hy-ees T P C’(nlu i )
- 05 7

(2.24)

We observe that the value-to-go function above is concave in the demand. There-
fore, by Jensen’s inequality, we have an upper bound of Vof fl from a deterministic (d)
problem as follows:

1

‘/()[?n(ﬂ'l) = nax Z T, { [pn&' - Cﬂl(}\z’ - /M)Jr - Con,ui} (Jn - ln)Tn - C(”Moa n,uz>}

1y BT

= Z Wl,i{(p — co)ni(Jp — 1)1 — C’(nuo, n)\l)} (2.25)

In the deterministic problem described in equation (2.25), the optimal target
capacity for demand type 7 is pf = \;. It is not a surprise that the firm’s optimal
action is to adjust the capacity to the mean instead of a newsvendor type fractile,
because the decision problem is deterministic, and there is no uncertainty in the
demand. Finally, it follows that V', < be; < Vgh..

Performance evaluation. To evaluate the performance of the policy in the
asymptotic regime, we analyze the metric of regret, which measures the gap between
the value-to-go function under the heuristic and the deterministic upper bound. For-
mally, the regret of the two-step heuristic is defined as R = 1 — V{5 /V(l,. In the
following, we say a heuristic is asymptotically optimal if the regret converges to 0 as
the scale factor n increases to infinity. For two sequences {a,} and {b,}, we write
a, < by, if a, = O(b,) and b, = O(a,). Then we characterize the asymptotic regret

as follows.

Proposition I1.6 (Asymptotic regret: Two-step heuristic). If 7, =< n~s forall n,
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the two-step heuristic is asymptotically optimal and RY = O (n_§>

We first observe that the firm sets 7, = n~3 corresponding to a problem scale of n.
This reflects the exploration-exploitation tradeoff the firm faces. For a given problem
scale n, the firm has incentive to set a long observation period to explore the demand
so that it can obtain more demand information. However, the longer the observation
period is, the less time is left for the firm to exploit the benefit of its knowledge about
demand by adjusting the capacity. Therefore, the firm has to choose an appropriate
period length to balance this tradeoff. As the problem scale increases, more demand
information is available within a unit of time. Therefore, the firm is able to reduce

the observation period and starts to exploit its knowledge earlier.

2.5 Capacity Investment with Multiple Adjustment Oppor-

tunities

We now move on to the case where the firm can adjust capacity multiple times. At
the beginning of each period, the firm first decides whether it will adjust its capacity
or not, and if so, by how much. Then the demand is realized and satisfied using the
firm’s capacity and (if short) an outside option. At the end of the period, the firm
updates the posterior distribution of demand types. We present the case where the
capacity level set is continuous, i.e., X = R™, and there are still / demand types,
but the analysis for the discrete capacity level is similar. We use a superscript m to
indicate the multiple adjustment model.

Except for multiple adjustment opportunities, the problem setting is identical
to the one considered in Section 4.2. Let 7; be the prior distribution of demand
type, and 7; be the posterior distribution at the beginning of period j, as shown in
equation (2.1). Each period is still of length 7. As in equation (2.3), let h;(7;, ) be

the expected profit in period j (not including the capacity adjustment cost) when the
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information vector is 7r; and the current capacity level is 1. As before, [ is the leadtime
for capacity adjustment: hence there is a [-period lag between capacity position and
actual capacity: fi; = ptj4; or p; = fi;—;. We assume that the adjustment decision
cannot be canceled or reversed. That is, if the firm later adjusts capacity down, the
firm still incurs the cost for that, and the adjustment also takes effects [ periods later.
As it is feasible for the firm to make the adjustment decision in every period, the
firm does not need to keep track of whether the capacity has been adjusted or not.
Therefore, the auxiliary information state v; is no longer needed. Thus, (7r;, f1;,—1) is
the state vector.

Given state (m;, f1;-1), define H" (75, fi;_1, ji;) to be the expected operating profit
in period j + 1 (that is, when the capacity is in effect) minus the capacity adjustment

cost that the firm incurs.

H" (705, ftj1, 1) 2 Elhj (W, fi5) — C (fij—1, f1;) | 5]

=y (75, 1) = C (i1, 1) (2.26)

The equality follows Lemma II.1 and the fact that b,y (I1;4q, 1;) is linear in IT,4y.
We also define a policy g as {j;(7j, ftj-1),j =1,2,...,J — 1} and G as the set of all
the admissible policies. Likewise, let g; £ {jix(mg, fix_1), k = j,j+1,..., J—1} and gr
denote a partial policy and the set of all the admissible partial policies, respectively.
Then, the firm’s problem is to determine a policy g* € G™ to maximize the total

expected profit,

l J—1
max > | B {hi(ILe, po)|ma] + > B [HP (TN, fuey, fir) 1] (2.27)
K1 P

where the expectation is taken over D; for all j at time zero. As the profit from the

first [ periods is not affected by the firm’s capacity decision, the decision problem is
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to find a policy that maximizes the following function:

-l
Vi (g, 1) = max > B [HP (TN, fuey, fur) 1] (2.28)
k=

Then, the optimal value-to-go function is recursively defined as follows: for all j €
{1,2,...J =1},
V;'m(ﬂ-ja Iaj—l) = E%%%E E [Hjm(ﬁja ,[Lj—la la) + V;'T—l(Hj-f-h :&“)|7T.7]

= mane { By (5, 0) = C Gy, ) + B [Vi (Wi )]}

Vit (g, fig—1) = 0 for k > J — . (2.29)

We next show that the optimal policy is a control band policy, similar to Eberly
and Van Mieghem (1997).

Proposition I1.7 (Optimal policy for multiple adjustment opportunities). Suppose
the firm has information vector w and capacity position fi;_1 at the beginning of
period j. Then, the optimal capacity position, denoted by [*(7), is characterized by
two thresholds Hj(ﬂ') and fu;(7), such that:

(1) If j1;1 < Hj(ﬂ'), it is optimal for the firm to adjust the capacity position up to
() = ().

(1) ]fﬂj(ﬂ') < fij_1 < (), it is optimal for the firm to stay put, i.e., fi*(7) = ji;_1.
(111) If f1;—1 > fi;(7), it is optimal for the firm to adjust the capacity position down

to () = fis ().

Intuitively, as it is costly to adjust capacity, even if the firm is entitled with the
flexibility to make adjustment in every period, it may not do so. The firm will adjust
the capacity only if the current capacity position is significantly lower or higher than
the expected level. In contrast to the single adjustment case, where the value-to-go

function is not necessarily concave in the initial capacity, in the multiple adjustment
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case, the value-to-go function is concave in the starting capacity. This concavity en-
ables a simple characterization of the optimal policy by two state-dependent capacity
adjustment thresholds. However, the optimal policy is still computationally complex
with the information vector 7r. This result expands the control limit policy in Eberly
and Van Mieghem (1997) by explicitly incorporating the demand learning process and
the leadtime to build capacity. The optimal policy allows us to derive a near-optimal
heuristic below, which is computationally simple, yet performs asymptotically opti-
mally. Before that, we first discuss the monotonicity of switching curves with respect
to the information state.

We next show how the two thresholds 1 (7r) and fi;(7) change in the information
state 7. When there are two demand types, the information vector 7 = (7, ) can
be written as (1 —my, my) (i.e., losing one degree of freedom), enabling us to reduce the
information state to my, the probability of demand being the high type. We show in
the following lemma that both thresholds increase in the probability of high demand
type when the demand distributions satisfy the monotone likelihood ratio property.

For ease of exposition, we write my as 7.

Lemma II.8 (Monotonicity of switching curves: Two demand type case). If the
likelihood ratio f;(d|602)/ f;(d|61) increases in d, then Hj(ﬂ') and fi;(m) increase as the

probability of the high demand type, m = P(© = 6,), increases.

Lemma II.8 implies that as the high demand type becomes more likely, both
invest-up-to and divest-down-to thresholds increase in the two-type case. In other
words, the switching curves and the resultant capacity levels that the firm sets under
the optimal policy are both monotone in 7. This is a sharp contrast to the result of
the single adjustment case, in which the optimal policy (and the resultant capacity
level) is not monotone in the information state. This highlights the key difference
of the decision problems that the firm faces in single and multiple adjustments. In

the single adjustment, the firm needs to decide two things: when to adjust and how
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much. As a result, the firm may decide to wait even in the state when o is high
while it is optimal to increase capacity when 7y is lower. In the multiple adjustment
case, however, the firm only needs to worry about how much capacity to adjust in
each period. Although there is a stay-put interval, this is cost-driven. If the current
capacity is near the target capacity (i.e., the optimal capacity when the capacity cost
is ignored in that period), the capacity cost is higher than the profit difference. On
the other hand, note that, in the single adjustment case, the non-monotonicity is
primarily opportunity driven (if we change the capacity in this period, we cannot
change the capacity again).

When there are more than two demand types, one might conjecture that the same
result could be directly extended. However, proving the result becomes formidable
for two reasons. First, when there are more than two types, the information state 7 is
no longer a completely ordered set. Therefore, even when we start with two ordered
information vectors, w =< 7/, future states may not necessarily preserve the same
ordering in all sample paths even if we assume monotone likelihood ratios. Second,
the value-to-go function corresponding to adjusting the capacity is no longer linear in
the information vector, which makes it difficult to apply similar techniques to prove

the monotonicity in the target capacity level using Lemma II.1.

2.5.1 Near-Optimal Heuristic and Performance Evaluation

We next derive a simple near-optimal heuristic similar to the one in Section 2.4.
The setting is entirely identical other than the fact that the firm is able to adjust its
capacity multiple times during the decision horizon [0,7] (equivalently period 1 to
J,, in discrete time). We also show that in an asymptotic regime (same as the one
defined in Section 2.4), this multi-step heuristic (ms) is asymptotically optimal, and
provide a performance upper bound for the heuristic under the regret criterion. To

show the asymptotic optimality, we also impose Assumption I1.5 on 7,, and ;.
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Table 2.2: The multi-step heuristic
Given the period length 7,, and the number of adjustment opportunities K,

1. The firm serves the demand in period 1 with the initial capacity nug.
2. Fork=1: K,

a. The firm adjusts the capacity position at the start of period 2" to the
observed average demand during the first 2% — 1 periods denoted by
nM.. The capacity level will be updated accordingly [, periods later.

b. The firm serves the demand from period 2¢ to 25! — 1 using the
(updated) capacity.
End

3. The firm serves the demand in the remaining periods using the updated
capacity.

The multi-step heuristic. In this heuristic, the firm adjusts its capacity only
in a subset of the .J, periods, instead of doing it in every period. Specifically, the
k" adjustment of the capacity position occurs at the beginning of period 2, and the
actual change of capacity levels occurs at the start of period 2%+, for k = 1,2, ..., K,,,
where K, is the largest integer such that ln+ZHK§f1 21 <, i, K, 2 |logy(J, —
l,+1)] —1. That is, the time between the x — 1" and ' adjustments is 2¢~'7,, (27!
periods). The intuition for choosing the exponentially increasing periods between two
consecutive adjustment decisions is that as more demand information is collected,
adding new observations is less likely to change the information state in a significant
way. The details of the heuristic are illustrated in Table 2.2.

In this heuristic, the firm always adjusts the capacity position to the observed

demand rate. To evaluate the value-to-go function under this heuristic, we denote

the observed demand rate contingent upon the demand type i by n)\;, for k > 1.
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Then, we first define S\M recursively below.

D1|9i,n
Nty

_ )\m n(28t — 1)1, + w1 D;|0i
N 2 2 ( (2) 1>Z] == Dl k=23, K, (2.30)

@>/I
—
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For notational simplicity, we also define \; o = p9. Then we have the firm’s expected

value-to-go function under this heuristic as follows.

( Kp—11p42Ft1—1

Z Z [ij - (Dj — njmen)Jr — conxmfn]

=lp+2%

T ) = Z 7T17Z'E + Z [pD —C (D n)\l KnTn)+ — Conj‘i,KnTn] Hi,n

j:ln+2Kn

S C (nhr )
s (2.31)
As this heuristic is a feasible policy for the corresponding optimal capacity adjust-
ment problem, we have that V7 < V{7, where Vi denotes the value-to-go function
under the optimal policy. As the optimal policy is not computationally tractable, we
need to derive an upper bound of the value-to-go function under the optimal policy
in order to evaluate the performance of the heuristic.

Upper bound. We first observe that the Vj, (see equation (2.25) in Section
2.4) is still an upper bound of Vi7", This is because in the deterministic stationary
demand setting, once the firm obtains full information about the demand type, even
if the firm is able to adjust capacity any time, it is still optimal to adjust it only once

at the beginning of the time horizon as the adjustment is costly. That is, we still have

the optimal target capacity p; = \;, and ‘/Effn as follows.

Zm Z{ —co)n\i(Jn — 1) T — can(Ni — po) ™ — Yan(po — )\i)+} (2.32)

Performance evaluation. To analyze the performance of the heuristic, we e-
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valuate the asymptotic behavior of the regret of the multi-step heuristic, defined as
Ry =1 — Vg )Vl . We derive the following characterization of the asymptotic

regret.

Proposition I1.9 (Asymptotic regret: Multi-step heuristic). If 7, < n-s for all

n, the multi-step heuristic is asymptotically optimal and R} = O (n_%)

The intuition of the proof is that as the firm observes more demand informa-
tion and adjusts capacity to match the observed average demand rate, we are able
to bound outsourcing costs and capacity adjustment costs by the bound shown in
Proposition 1 in Gallego (1992), which derived a one-sided deviation bound for the
class of distributions with finite mean and variance. As noted above, we choose the
exponentially increasing time between two consecutive decisions because the adjust-
ment is costly, and with more information learned, it is less necessary for the firm to
learn about demand frequently. Finally, the time interval 7,, is set to minimize the
derived upper bound.

Recall that when the firm has only one chance to adjust its capacity, the upper
bound of the regret is also O (n_l/ 3) (see Proposition 11.6). Here, although the upper
bound of the regret is still of the same order, the capacity adjustment cost makes a
difference. With multiple adjustment opportunities, the firm is able to correct errors
that it might have made in a one shot decision, and therefore, the regret should be
smaller. However, when capacity adjustment is very costly, with multiple capacity
adjustments specified in the heuristic, the firm needs to pay a higher total capacity
adjustment cost as it chases the mean demand. Therefore, the benefit from the
learning-while-doing may be diluted. In Section 2.6.2, we compare the two heuristics

numerically.
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(a) monthly production history (103 units) (b) empirical cdf of monthly production
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Figure 2.3: Monthly production of Ford Focus in North America market (a), and the
empirical cdf and gamma distribution with sample mean and variance
(b), from January 2005 to December 2010

2.6 Numerical Study: Ford Focus, the Third Generation

To demonstrate the performance and robustness of our heuristic, we develop a
numerical study where the model premises (such as demand pattern, problem scale,
cost, and profit) are drawn from practice. Specifically, our example utilizes production
and financial data related to the Ford passenger sedan, the Focus. Given the data from
the first two generations of the Focus in the North American market, the numerical
study illustrates how one could use our heuristics in a setting where the managers of
Ford Focus need to decide to adjust the capacity for its third generation. Although we
need to make some simplifying assumptions because of the lack of precise accounting
data, we show that the results and conclusions are quite robust to model parameters

and our assumptions.

2.6.1 Data and Parameter Estimation

In this section, we briefly describe how we collect data and recover the demand
and cost parameters, with details deferred to the appendix.

Demand. Our focus is on how the assembly factory should adjust its capacity
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based on orders received from the dealership. Therefore, the demand is reflected by
the number of Ford Focus sedans produced at the assembly factory. This system can
be approximately considered as a make-to-order system as Ford receives orders from
dealers before the orders are factored into its production plan, and the inventory is
held at the dealership level.

To analyze the demand pattern, we first collect monthly production data of Ford
Focus in the North America market from January 2005 to December 2010 from the
database of Automotive News Data Center®. There are two (redesigned) generations
of Focus during this period: the first from January 2005 to September 2007, and the
second from October 2007 to December 2010. Although there is seasonality within
each year, which is affected by factors such as mid-year discount when manufacturers
switch production to the next year model and end-of-year sales to boost sales fig-
ure, we observe the demand pattern is plausibly stationary within each generation:
see Figure 2.3(a). As the demand pattern of the first two generations is similar, we
group the production data from January 2005 to December 2010 and observe that
the monthly demand approximately follows a gamma distribution with a mean of
17.21 thousand units per month and a standard deviation of 5.04; see Figure 2.3(b).*
When we construct the empirical cumulative distribution function, we excluded the
data point in July or August if the production in that month is approximately half
of a regular month to account for the regular summer shutdown, and the production
quantity for December 2010 which is significantly below the average production level
as it is the transition time from the second generation production to the third gener-

ation. We denote the two key parameters of the gamma distribution by a and b, i.e.,

3 Automotive News Data Center: http://www.autonews.com/section/datacenter.

4We observe that during the automotive industry crisis (2008-2010), the demand pattern of Focus
did not change. This may be because the Focus is a fuel-efficient model, and therefore the substantial
increase in the prices of automotive fuels did not cause a significant drop in sales, unlike the sport
utility vehicles and pickup trucks, whose demands declined in the same period.
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the probability density function is characterized as

f(zla, b) =

where I'(+) represents the gamma function.

In fact, we test the cleaned production data from January 2005 to December
2010 with a gamma distribution where the estimated parameters are a = 11.67 and
b = 1.47 using a one-sample Kolmogorov-Smirnov test, which yields a p-value of
0.74, supporting our choice for the demand distribution. Therefore, we model the
monthly demand (with the unit of a thousand cars) for Focus using a stationary
gamma distribution.

In our numerical example, we postulate that the decision maker (Ford) has three
possible scenarios (demand types) for the third generation Focus. In the medium
scenario, the demand will remain at the same level as the first two generations:
monthly demand will follow the above gamma distribution. In the other two scenarios,
the demand for the third generation (released in May 2011) are either lower or higher
than the first two generations as the customers may not like the product, or the
economic environment improves. Thus the average monthly demand will be either
dropped by or raised by 5 thousand units (which is about one standard deviation).
That is, the two key parameters are a = 8.28 and b = 1.47 for the low demand
case, and a = 15.06 and b = 1.47 for the high demand case. We assume that the
parameter b, which stands for the ratio between variance and mean, stays stationary,
i.e., a higher demand is associated with a higher variance. We will later show that
our result is quite robust with respect to the misspecification of the average demand
parameters.

It is important to note that our heuristic (which is data driven) does not rely on

knowledge about the prior distribution or the exact demand distribution for each type.
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These information is necessary only to evaluate the performance of the heuristic (i.e.,
computing the regret). Also, it should be noted that our heuristic applies to more
general settings (e.g., there are more than three market scenarios, or the unknowns
are a vector of parameters rather than a single parameter).

Finally, as the second generation Focus was on sale for three years, we assume the
decision horizon T for the third generation is also 3 years, starting from January 2011.
Following the convention of the asymptotic analysis, we also assume when n = 1, the
average medium type demand in the three year horizon is 1 unit and 7, = 36 months.
Therefore, the problem scale in the base case is n; = 17.21 x 103 x 36 = 619, 610,
and we assume the firm reviews demand and makes capacity adjustment decisions in
a monthly scale at the current demand level, i.e., 7,,, = 1 (recall that 7,, < nl_l/ %)
We will illustrate the impact of market size on the performance of the heuristic in the
numerical study. We also assume there is no leadtime, i.e., I = 0, and we will study
the impact of leadtime later.

Initial capacity. Our target is to analyze Ford’s capacity adjustment decision
for the third generation. Therefore, besides the demand information, we also need
information about the capacity. Since Ford does not publish their exact capacity, we
use the maximum production quantity from January 2010 to December 2010 as the
starting capacity, i.e., 22.97 thousand cars per month.’

Cost/profit parameters. We use aggregated cost parameters at the firm level
to approximate the ones at the product level. Specifically, we recover the gross ca-
pacity of Ford using Ford’s public financial reports and data, and then identify the
unit profit and capacity related costs at the firm level. Although we acknowledge

that these are rough estimates, the performance of our heuristic is quite robust to the

®According to Ford Motor Company (2012), the vehicle assembly capacity is categorized as
installed capacity and manned capacity. Installed capacity refers to “the physical capability of a
plant and equipment to assemble vehicles if fully manned”. Manned capacity refers to “the degree
to which the installed capacity has been staffed”. In this numerical example, we use capacity to
refer to the installed capacity that is specific to Ford Focus.
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Table 2.3: Production and capacity related profit/cost parameters

Estimated cost parameters for Focus Value

Capacity adjustment (upgrading) cost ¢, $4, 487 month /unit
Capacity adjustment (downgrading) cost 7, $448.7 month [unit
Capacity overhead cost ¢ $181.1 per unit
Capacity outsourcing cost ¢; $362.2 per unit
Unit profit p (excluding capacity related cost) $1,270 per unit
Average retail price $22, 154 per unit

cost parameters. Note that the cost parameters would be significantly more accurate
if one extracts the cost information from an ERP or internal accounting system. We
summarize the cost parameters derived from Ford’s Annual Report in 2012 (Ford Mo-

tor Company, 2012) in Table 2.3, and relegate the details of estimations to Appendix
A.

2.6.2 Numerical Analysis

In the numerical study, we evaluate the performance of our heuristics using the
regret with respect to its deterministic upper bound. Specifically, for given scale pa-
rameter n, define R = 1 Vs /Vi! and R = 1=V [V to be regrets associated
with the two-step heuristic and multi-step heuristic, respectively. The decision hori-
zon, demand distributions, initial capacity, and profit and cost parameters are the
ones specified in Section 2.6.1. In what follows, we first present the impact of various
parameters and demand assumptions (market size, leadtime, misspecified demand,
and cost and profit parameters) on the performance of our two-step heuristic. We
then compare the performance of the two-step heuristic with the multi-step heuristic.
Finally, we show the performance of the two-step heuristic with respect to the optimal
policy.

To evaluate the value-to-go function under the two-step heuristic, V()t;, for a given
prior vector 7ry, we apply a simulation approach with 10° experiments. In each round,

a demand distribution (a demand type) is first generated according to the prior, then a
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Figure 2.4: Regret with respect to market size when the prior 7y = (0.2,0.4,0.4)

sample path of demand in each period is generated according to the distribution. For
each sample path generated, the firm follows the two-step heuristic, and the resultant
profit is calculated. We use the average of the 10° observations to approximate V({Z.
The deterministic upper bound, V(ffn, is computed following equation (2.25).
Market size. We first analyze the impact of market size, which is determined by
the scale factor n. From Proposition I1.6, when the scale factor of the decision problem

1/3

is n, setting the length of the learning period as 7, < n~"/° results in asymptotic

/3 In Figure 2.4, we show that as log(n)

convergence at most on the order of n~
increases linearly, the log of the regret decreases linearly. In the base case (n; =
619,610), we assume the firm reviews the demand information monthly, and adjusts
capacity based on the observation in the first month, i.e., 7,,, = 1 month. To analyze
the impact of the market size, we let n be 8ny, k = —2, —1, ..., 2, corresponding to a
7, of 27% k = =2, —1, ..., 2 month respectively. That is, as the magnitude of demand
increases, the firm can adjust capacity within a smaller window of demand data. For
instance, when k = —2, 7, is 4 months, and when k£ = 2, 7,, is 1/4 months (about
1 week). In Figure 2.4, we observe that the log of regret decreases at the slope of

1/3

—0.33, corresponding to the n™"/® convergence rate. This implies that the absolute

difference between the upper bound and the heuristic is sub-linear in n. The cases
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