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ABSTRACT

Capacity Management: Intra-Firm and Inter-Firm Perspectives

by

Anyan Qi

Co-Chairs: Hyun-Soo Ahn and Amitabh Sinha

Capacity management is challenging. Many decisions regarding capacity are made

before full information is known, often requiring large and irrevocable expenditures.

Moreover, the consequences of wrong capacity decisions critically affect the firm’s

bottom line. In recent years, the capacity decision has become of particular interest,

reflecting two principal trends. First, advances in information technology that provide

huge amounts of data about operations and demand offer firms potential to utilize

this big data in making capacity decisions. Second, although supply chains today are

highly decentralized with complex topologies, many buying firms and suppliers aim

to maintain tight relationships with initiatives such as supplier development, among

which capacity investment is an important strategic decision.

Corresponding to the two streams, we analyze a firm’s capacity management deci-

sion, how much capacity a firm should have and why, at both intra-firm and inter-firm

levels. At the intra-firm level, we investigate how a firm should learn demand informa-

tion and leverage the information in capacity decisions. In Chapter II, we formulate

a firm’s capacity adjustment plan when the demand distribution is unknown as a s-

tochastic dynamic program, and derive the optimal policy and date-driven heuristics.

xii



At the inter-firm level, using game theory, we examine how a firm should manage

its capacity at a shared supplier given two contractual constraints: exclusive, where

other firms cannot access the leftover, and first-priority, where they can. In Chap-

ter III where firms compete and the capacity cost consists of a fixed and a variable

portion, we find that firms tend to invest more aggressively under the exclusive con-

tract. Therefore, sometimes the firm may benefit from letting a competitor free-ride

on the invested capacity. In Chapter IV where firms may or may not compete and

the capacity cost has a variable portion, we characterize two equilibria: a prisoner’s

dilemma, where both firms choose the exclusive capacity which is not Pareto-optimal,

and a free-rider equilibrium, where one firm chooses the first-priority capacity and al-

lows the other with exclusive capacity to free ride. Both equilibria can be sustained

when the firms serve independent markets, but not when they compete in a Cournot

market.
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CHAPTER I

Introduction

Capacity management, featuring high yet irrevocable expenditure, is a key op-

erational decision that firms need to make. This decision is particularly acute in

the modern business world with a highly uncertain environment and rather complex

supply chain relationship. On one hand, an incorrect capacity decision at a firm’s

own site may lead to severe mismatch between supply and demand. On the other

hand, a capacity decision at the supplier’s site may play a strategic role in a complex

supply chain. Therefore, it is challenging to decide how much capacity a buying firm

should have. In the dissertation, we attempt to analyze a firm’s capacity management

decisions at both intra-firm and inter-firm levels.

In Chapter II, we analyze how a firm should leverage early demand data in its

capacity decision at the intra-firm level. In a complex supply chain environment, the

demand distribution may not be available as typically assumed in the literature and

firms need to infer the true demand based on sales history. For example, Mahindra

and Mahindra, the largest utility vehicle producer in India, launched a new car XUV

500 in September 2011 with an initial capacity of approximately 2,000 units per

month. However, they severely underestimated the demand, and confirmed the order

of over 15,000 vehicles in just two rounds of bookings. Finally, they doubled their

capacity in May 2012, which was already 9 months after the launch of the product.

1



Clearly, the firm faces a trade-off between exploration and exploitation: While it can

delay the decision to adjust capacity to explore the demand, it has to suffer from

the potential lost demand and more expensive outsourcing cost. An interesting and

important question therefore arises: When, and by how much, should a firm adjust

its capacity?

To investigate this question, we formulate a firm’s capacity adjustment plan within

an environment of unknown demand distribution as a stochastic dynamic program-

ming. When the firm has only a single adjustment opportunity, corresponding to

cases with long capacity adjustment leadtime and high adjustment cost, we charac-

terize the firm’s optimal policy: while the target capacity level always increases in

the likelihood of demand being high, the decision to adjust capacity is not necessarily

monotone with respect to the likelihood. As the optimal policy is difficult to com-

pute, we also derive a simple data-driven heuristic which only depends on the demand

observations, and show the heuristic is asymptotically optimal with fast convergence

rate. When the firm has multiple adjustment opportunities, corresponding to cases

with short capacity adjustment leadtime and low adjustment cost, we show the opti-

mal policy as a control band policy characterized by two switching curves, and derive

a rather simple heuristic to compute the capacity decision. Finally, we use numerical

study to analyze the performance of the heuristics.

In Chapter III and IV, we explore how firms should invest in or reserve the sup-

plier’s capacity when the supplier is shared with other firms, which becomes common

in several industries such as electronics, cosmetics, and fashion. For instance, Apple’s

iPhone uses components made by more than a dozen suppliers and is assembled by

a third-party manufacturer, while these suppliers and manufacturer also serve other

products such as Samsung’s Galaxy. In these relationships, how the leftover capacity

can be used critically affects how much capacity firms should reserve or build as, if

unspecified, it may be used to fill its competitor’s orders. In fear of such free-riding,

2



some firms put contractual constriants when reserving capacity. Neutrogena, a John-

son and Johnson company, invested in the capacity of their supplier who also serves

Neutrogena’s competitors such as L’Oreal and Estee Lauder. To avoid its supplier

using the capacity to fill other orders, it claimed exclusive rights by placing counters

on the invested machines. In another case, DowAgrosciences pays to reserve capacity

at their key ingredients suppliers who also supply to its competitor, DuPont Agricul-

ture. However, they only demand the first priority in utilizing the capacity, allowing

other firms to access the leftover. Depending on different market environment, supply

conditions, and capacity cost structures, firms and suppliers may have different pref-

erences over the capacity types. Therefore, it is natural to ask: (Chapter III) When

the capacity is random and the demand is deterministic, how should the compet-

ing buying firms invest in the shared supplier, and how should different stakeholders

choose the capacity type? (Chapter IV) When the capacity is deterministic and the

demand is random, how should buying firms endogenously choose these capacity con-

straints? How would firms’ investment decisions be affected by whether the firms are

competing with each other or not?

In Chapter III, we build game theoretic models, where two competing buying

firms share a common supplier, and explore how firms invest in the supplier’s capacity

given the two contractual restraints: exclusive and first-priority, when the demand

is deterministic, the capacity is random, and the capacity investment cost consists

of a fixed and a variable portion. Our results suggest that firms tend to invest

more aggressively under the exclusive contract, and therefore, sometimes the firm

may benefit from letting a competitor free-ride on the invested capacity because

allowing free-riding can reduce the competition intensity. Essentially, this chapter

provides managerial insights that firms considering investing in suppliers who also

supply their competitors must consider the consequences of their investment via the

lens of a multi-player game, rather than myopically focusing on increases access to

3



capacity.

In Chapter IV, we also build game-theoretic models where firms share a common

supplier and examine how the relationship between the two firms affects the capacity

investment decisions, when the demand is random, the capacity is deterministic, and

the capacity investment cost is linear in the invested capacity size. In some cases,

the firms are not directly competing in the market, for example, when they serve two

geographically separated markets. In other cases, firms may directly compete against

each other such as in a Cournot market. In these two market structures, demands for

both firms are independent and positively-correlated respectively. For a given market

structure, firms first choose the capacity types: to share (first-priority) or not to share

(exclusivity). Then they build capacity at the supplier contingent upon the capacity

types, and finally serve the market. Our analysis shows that even if choosing the first-

priority is Pareto-optimal for both firms, buying firms tend to choose the exclusive

capacity, driven by the incentive of capacity cost and the possibility to drive the other

firm to build excess capacity. This provides a parsimonious explanation about the

widely observed exclusive claim attached to the capacity investment to the supplier, as

well as the managerial insights that doing so may trap the buying firms in a prisoner’s

dilemma. Interestingly, we also observe that a free-rider equilibrium can be sustained,

where one firm chooses the first-priority capacity, builds a larger capacity, and allows

the other firm with the exclusive capacity to free-ride on its invested capacity. This,

in general, is driven by the capacity cost. These free-rider and prisoner’s dilemma

equilibria are observed in the independent market, but not in the Cournot market.

This is because in the Cournot market, where the demands are positively correlated,

firms are less likely to access the other firm’s leftover capacity. Therefore, both firms

simply choose the cheaper capacity and do not need to consider much about the

benefit to pool the demand uncertainty under the first-priority capacity.
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CHAPTER II

Capacity Investment with Demand Learning

2.1 Introduction

In most cases building capacity requires significant time and resource commitment,

thus many firms need to make capacity decisions when there exist significant demand

uncertainties. While early capacity installation enables a firm to seize a time-to-

market opportunity, installing capacity with little market information may result

in a significant mismatch when the capacity level is significantly different from the

realized demand. Even if the firm realizes such a mismatch, changing the capacity

level is often difficult and costly to the firm in both time and money. Increasing

capacity level through adding new machines and/or hiring new workers is expensive

and often irrevocable. Downsizing the capacity level, which typically requires layoffs

and equipment divestment or salvage, can also be costly. In addition to the financial

cost, changing the capacity level often requires a considerable amount of time. New

machines or workers may take several weeks or months to be ready for production.

More importantly, if capacity installation is delayed or insufficient, the firm will miss

out market opportunities and significantly hit its bottom line. As choosing a “perfect”

initial capacity level well before a selling season is a near-impossible task, many firms

adjust its initial capacity level after observing some demand information in the early

stage of a planning horizon. For this strategy to be successful, the firm should be able

5



to evaluate the benefit and cost between two options– waiting it out (gathering more

information) and committing to an action (adjusting the capacity level)– a classic

trade-off between exploration and exploitation.

The set of problems that we consider is well illustrated in the following two exam-

ples. A major ODM (original design manufacturer) that the authors have intimate

knowledge about serves a number of major cosmetics companies. Many of the prod-

ucts that the ODM produces are seasonal and sensitive to fashion trends, thus they

have a short selling season of about three to four months. As there exist significant

uncertainties about demand volume and type (e.g., which one of twenty different red

shades will be popular?), it is impossible to stock the finished products in advance

and therefore the ODM produces in a make-to-order environment. For some prod-

ucts, e.g., make-up compacts and eyeshadow pallets, the firm’s capacity is bounded

by the number of molds and fixtures designed for the specific products. When the

demand of a particular product significantly surges beyond their existing capacity,

the firm needs to either produce them with existing equipment in overtime or expand

its capacity by procuring additional molds or fixtures. In this setting, not satisfying

the order is not an option as the firm may lose a client. As it takes significant time

to get new molds (typically two weeks to one month compared to the three to four

months of a selling season), if the firm would like to increase its capacity level, it

must do so very early in the selling season; otherwise, it will be too late to use the

adjusted capacity in production.

In the automobile industry, Mahindra & Mahindra (M&M), the largest utility

vehicle producer in India, launched the XUV 500 model in September 2011 with an

initial capacity of about 2,000 vehicles per month. However, the company confirmed

orders of over 15,000 vehicles in just two rounds of bookings. In fact, in the second

round, over 25,000 booking applications were received, among which only 7,200 win-

ners were chosen with a lottery. Finally, in June 2012, M&M announced a ramp-up

6



of their capacity to about 4,000 vehicles per month (Thakkar, 2012). As the demand

continues to grow, in January 2013, M&M announced another ramp-up of the capac-

ity to 4,500 vehicles per month (Philip, 2013). In this setting, the product life cycle

is long relative to the leadtime to adjust the capacity. Therefore, M&M has multiple

opportunities to adjust capacity, as illustrated in the two adjustments.

Motivated by these observations, we examine a make-to-order firm’s capacity de-

cision using demand observation: when, and by how much, should a firm adjust its

capacity? To investigate this question, we consider a firm selling a single product for

a finite planning horizon when the firm has only partial information about random

demand. In each period, the firm observes the realized demand and collects more in-

formation. Based on the information, the firm actively updates its knowledge about

the demand, and uses this updated knowledge in the capacity adjustment decision.

We consider two different stylized settings explicitly. In the first setting, the firm has

only a single chance to adjust capacity (a single-adjustment scenario). This scenario

is appropriate in settings where the leadtime for capacity investment (disinvestment)

is long relative to a short planning horizon and/or the cost associated with capacity

adjustment is significant as illustrated in our cosmetics example. In the second set-

ting, the firm has multiple opportunities to change its capacity (a multiple-adjustment

scenario). This scenario is appropriate when the leadtime for capacity adjustment

is short and/or it is easy (or relatively inexpensive) to adjust the capacity level as

illustrated in the M&M example. We specifically choose these settings as we will show

that, the number of opportunities that the firm has to adjust its capacity critically

affects the structure of the optimal policy and asymptotically optimal heuristics.

In both single-adjustment and multiple-adjustment scenarios, we first formulate

the problem as a stochastic dynamic program and characterize the structure of the

optimal policy. Then, for each scenario, we propose a data-driven heuristic policy

that is not only implementable but also asymptotically optimal with an analytic per-
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formance bound. In the single adjustment scenario, we show that the optimal policy

is counter-intuitive. In particular, we show whether to adjust capacity level or not

in a given period is not monotone in the firm’s posterior belief about demand. In

particular, under the optimal policy, the firm may increase the capacity level when

the likelihood of high demand is moderate, but switch to stay put and collect more

demand observations when the likelihood of high demand becomes even higher. Thus,

the firm’s belief about a demand type does not monotonically affect the optimal capac-

ity adjustment decision. In addition to the non-monotonicity, the stochastic control

problem has a very large state-space as the firm’s belief about demand type is our

state variable. Consequently, solving and implementing the optimal policy quickly

becomes computationally intractable even when there are only several possible de-

mand types. To overcome this, we propose a two-step data-driven heuristic, which

only depends on the firm’s observed demand data. We prove that this heuristic is

asymptotically optimal in the case where the true demand follows a stochastic pro-

cess with stationary and independent increment in time, Specifically, we show that

the regret (the percentage profit loss relative to an upper bound when the firm has

complete demand information) converges to 0 rapidly as the problem scale increases.

We then consider the multiple-adjustment scenario and show that the optimal policy

is a control band policy, where in each period the firm will adjust the capacity up to

a threshold if the capacity level is significantly low relative to the inferred demand,

adjust the capacity down to another threshold if the capacity level is significantly

high, and stay put in between. For this setting, we propose a different data-driven

heuristic in which the firm adjusts capacity in exponentially increasing intervals and

show that this policy is indeed asymptotically optimal under the regret criterion.

We illustrate the performance of our heuristics using a numerical study where

some of the key parameters and data are derived from actual production and sales

data of an automobile instead of using a randomized test bed in order to highlight the
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fact that our heuristic only requires real-time demand data and a few parameters that

can be either inferred or collected by the firm. The numerical study demonstrates

the value of using demand learning in capacity decision, and show that our heuristics

is very robust with respect to problem parameters and assumptions.

The rest of the chapter is organized as follows. The related literature is reviewed

in Section 2.2. The optimal policy of the stochastic dynamic program for the single-

adjustment scenario is presented and discussed in Section 4.2. In Section 2.4, we

propose a two-step heuristic and proves its asymptotic optimality. In Section 2.5 we

consider the multiple-adjustment scenario. Similarly to the single-adjustment sce-

nario, we first characterize the optimal policy of a corresponding stochastic dynamic

program. We then propose a data-drive heuristic policy under which the firm adjusts

its capacity in exponentially increasing intervals and show that this policy is asymp-

totically optimal. We present the set-up and results of our numerical study in Section

2.6 and conclude the chapter in Section 2.7.

2.2 Literature Review

There is an extensive body of literature in the general area of capacity manage-

ment. Manne (1967), Freidenfelds (1981) and Luss (1982) provide surveys on the

earlier literature. In the early work, the main focus is to expand capacity to meet

growing demand with no uncertainties. Therefore, the firm is able to make optimal

capacity expansion plans to balance economy-of-scale savings and the cost associated

with a mismatch between demand and supply. For problems with uncertain demand,

Davis et al. (1987) uses the piecewise-deterministic Markov process to model an opti-

mal capacity expansion problem with leadtime. Dixit and Pindyck (1994) provide a

survey about the real options approach to analyze investment without detailed oper-

ational implications. When the dynamic capacity adjustment is costly and partially

irreversible, Eberly and Van Mieghem (1997) present the optimal capacity policy as a
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control limit policy, labeled as the ISD (invest-stay put-divest) policy. Van Mieghem

(2003) provides a comprehensive review about recent developments.

Among more recent literature on capacity management, a number of papers as-

sume the firm has complete information about the parameterized demand distribu-

tion. Among them, Chao et al. (2009) characterize a firm’s optimal capacity policy

when the existing capacity is subject to deterioration and random supply constraints.

Besanko et al. (2010) study an oligopoly in which firms make lumpy capacity in-

vestment and disinvestment, and show that while firms build excess capacity for a

preemption race in the short run, capacity coordination can be achieved in the long

run. Wang et al. (2013) show the optimal capacity policy for two competing tech-

nologies is a control limit policy. On contrary to these works, our work emphasizes

the firm’s active role of learning about demand and using it for capacity decisions.

A number of papers consider demand learning in operation context. Boyacı and

Özer (2010) consider a firm acquiring information via pricing and advance selling,

and characterize the firm’s optimal policy to stop collecting information and building

capacity as a control band policy. Kwon and Lippman (2011) analyze a firm’s opti-

mal strategy to invest in project-specific assets with a real option approach, where

the firm’s profit follows a Brownian motion, and characterize the optimal policy as a

control band policy. Kaminsky and Yuen (2011) show a pharmaceutical firm’s invest-

ment strategy to acquire clinical trial information and build capacity as a threshold

policy. In contrast to these papers, we characterize the firm’s optimal policy to ad-

just capacity (increasing or decreasing) in two different settings – single and multiple

adjustment cases. While the setting is similar, we show that the optimal policy and

methodology that enables us to characterize the optimal policy can be quite different.

In addition to optimal policy, this chapter proposes a simple heuristic that is data-

driven and asymptotically optimal for each of the two settings. For each heuristic,

we provide a theoretical bound and derive the convergence rate. These heuristics
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overcome challenges of determining an optimal policy under incomplete information

Lovejoy (1993).

Our analysis of the optimal policy is closely related to literature on partially

observed Markov decision processes (POMDPs), with a particular emphasis on de-

mand learning with Bayesian updating. That is, decision makers know the family

of distributions, and update their knowledge about key parameters characterizing

the distribution with new observations. Monahan (1982) and Lovejoy (1991) provide

surveys about early works in POMDP. Demand learning in a Bayesian fashion has

been applied in inventory management (e.g., Scarf 1959, Azoury 1985, Eppen and

Iyer 1997, Lariviere and Porteus 1999, Burnetas and Gilbert 2001, Chen and Plam-

beck 2008). Recently, Aviv and Pazgal (2005) analyze a firm’s pricing decision using

the POMDP framework. In this chapter, we analyze a different operational decision,

capacity, which is costly to adjust and the adjustment process is often associated with

a non-trivial leadtime.

Methodologically, our heuristics are closely related with the recent research on

data-driven optimization. Most papers have focused on inventory (Huh et al. 2011,

Besbes and Muharremoglu 2013) and pricing (Burnetas and Smith 2000). Some pa-

pers also use regret to quantify the heuristics. For example, Huh and Rusmevichien-

tong (2009) analyze a firm’s inventory decision with censored demand and no knowl-

edge about demand distribution. They show that using policies derived from online

convex optimization, the regret asymptotically converges to 0. Besbes and Zeevi

(2009) propose a dynamic pricing algorithm when the demand function is not known,

and show that the regret asymptotically converges to 0. To the best of our knowledge,

we are one of the first to apply data-driven optimization in the capacity management

setting. In contrast with inventory and pricing decisions, a firm usually has limited

opportunities to adjust its capacity, and the adjustment process is often costly and

lengthy, which makes the problem somewhat challenging.
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2.3 Capacity Investment with a Single Adjustment Oppor-

tunity

We first consider the case where the firm has a single opportunity to adjust (add

or remove) capacity during a planning horizon. This model is appropriate in an envi-

ronment where the leadtime for changing capacity level is considerably long (relative

to the planning horizon) and/or the cost of adjusting capacity is high. In each peri-

od, the firm decides whether to change its capacity with existing information about

demand or decide to delay the decision and observe the demand for one more period.

We assume that the firm has incomplete information about the demand: while the

firm knows the demand pattern or distribution family about the demand, some key

parameters characterizing the demand are unknown. Thus, the key decisions of the

firm in each period are if the firm should change the capacity or not, and if so, by

how much.

We consider a firm serving a single product for a finite horizon of J periods, with

period 1 and J as the starting and ending periods respectively. We assume that each

period is of length τ units of time, which will be useful to derive the heuristic in Section

2.4. There are I ∈ N potential demand types: θi for i ∈ {1, 2, ..., I} and θi1 < θi2 if

i1 < i2. The demand type parameter, θi, determines the demand distribution. Thus,

for given demand type i, the demand in period j, Dj, is represented by a random

variable Dj|θi = λj(θi) + ξj |θi where λj(θi) is the mean demand of Dj|θi, and ξj|θi is

a random term with mean 0. We assume the random term ξj is independent across

periods. A number of demand processes can be expressed in this way and our results

on the optimal policy apply to a large class of random variables and demand processes

(see remark on demand process in Section 2.3.2).

We assume that demand in each period is stochastically ordered in the demand

type parameter: Dj |θi1 �st Dj|θi2 for i1 ≤ i2. Thus, demand stochastically increases
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in the demand type index, i. We use Fj(·|θi) and fj(·|θi) to denote the cumulative

distribution and the density function (probability mass function in the case of discrete

demand) of Dj |θi. Finally, for ease of exposition, we write λj(θi) as λj,i, and assume

λj,I < ∞ for all j for analytical tractability.

Because the true demand type is unknown, the firm observes sales (demand)

and uses the observations to update its belief about the true demand type. The

firm’s information about the demand evolves as follows. Let the vector π1 be the

firm’s prior distribution of the demand type at the beginning of period 1: π1 =

(π1,1, . . . , π1,I) where π1,i = Pr(Θ = θi). At the beginning of period j (j > 1), the

firm’s information about the demand type is represented by an information vector

πj , (πj,1, πj,2, ..., πj,I). The πj,i is defined as the posterior distribution of the demand

being type i given the past demand history, i.e., πj,i , Pr(Θ = θi|dj−1) where

dj−1 , (d1, d2, ..., dj−1), and dk indicates the realized demand in period k. After the

firm observes dj at the end of period j, the information vector is updated following

Bayes’ rule:

πj+1,i =
πj,ifj(dj|θi)

∑I
k=1 [πj,kfj(dj|θk)]

. (2.1)

Before the realization of Dj , the information vector is a vector of random variables

(denoted by Πj+1), which we prove below satisfies the martingale property. (All

proofs are provided in the Appendix.)

Lemma II.1 (Martingale property of the posterior distribution).

E [Πj2|Πj1] = Πj1, for j1 ≤ j2. (2.2)

This lemma implies that given the current distribution about the demand types,

the conditional posterior distributions in the future periods are the same as the current

one in expectation. This result allows us to derive the firm’s expected profit in future
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periods given the current distribution.

In each period, the firm observes the realized demand, dj , and fulfills the demand

using the firm’s existing capacity in that period. For each unit it satisfies with exist-

ing capacity, the firm accrues a profit of p, which represents the revenue minus the

variable production cost (excluding any capacity cost). If demand exceeds the firm’s

capacity, it is satisfied by a more expensive outside option such as outsourcing, over-

time production, or using other production facilities or resources owned by the firm.

Let c1 be the per-unit outside option cost (we call this outside option or outsourcing

cost). Note that c1 represents the cost premium of producing one unit using the firm’s

outside option. In addition to production costs, the firm also incurs an overhead cost

to maintain the existing capacity, denoted by c0 per unit capacity and unit time. As

this cost represents the firm’s cost to own and maintain the capacity, it is incurred

whether the capacity is used or not in that period. To avoid trivial cases, we assume

p ≥ c1 > c0, i.e., the unit profit is higher than the unit cost associated with the out-

side option, otherwise the firm will not outsource any demand; the unit outsourcing

cost is higher than the cost to maintain one unit of the firm’s own capacity for one

period, otherwise the firm will not have incentive to build any capacity. A similar

cost structure was applied in Chao et al. (2009).

When the firm’s capacity level is µ and the firm’s belief about the demand type is

πj , the firm’s expected operating profit hj(πj , µ) in period j (note that each period

is τ units of time) is:

hj(πj, µ) , EΘ

{

EDj |Θ

[

pDj − c1 (Dj − µτ)+ − c0µτ |Θ
]
∣

∣πj

}

=
I

∑

k=1

πj,kE
[

pDj − c1 (Dj − µτ)+ − c0µτ |Θ = θk
]

, where x+ , max{x, 0}.

(2.3)

We note that in our base model, there is no inventory carryover and demand is not
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censored as the extra demand beyond the firm’s own capacity can be satisfied by an

outside option. We provide a discussion and extension of these features in Section

2.3.2.

We next describe the firm’s capacity decision. At the beginning of the planning

horizon, the firm has an initial capacity level µ0. This is for generality. Of course,

the firm may start with no existing capacity: µ0 = 0, or the firm may use the prior

distribution to choose a capacity level or use the existing (legacy) capacity: µ0 > 0.

In each period, the firm decides whether it should (1) continue to observe the demand

and keep the initial capacity level, or (2) stop observing the demand and change the

capacity. As changing capacity often requires considerable amount of time, we assume

there is a leadtime of l periods.

To be more specific, suppose that the firm has a capacity level of µ in period j. If

the firm already adjusted its capacity in previous periods (and perhaps is waiting to

be installed) or has decided to wait, then no adjustment will be made and the firm

will fulfill the demand with existing capacity µ and an outside option as described

above1. On the other hand, if the firm decides to change the capacity level from µ

to µ′ in period j, the firm’s existing capacity will be changed to µ′ after l periods (in

period j + l). We assume that both increasing and decreasing the capacity level are

costly to the firm. Let ca be the cost of adding one unit of capacity and γa be the

cost of decreasing one unit of capacity. Thus, the cost associated with changing the

capacity level from µ to µ′, denoted by Ĉ(µ, µ′), is

Ĉ(µ, µ′) , ca(µ
′ − µ)+ + γa(µ− µ′)+ (2.4)

Notice that if the firm does not change the capacity, Ĉ(µ, µ) = 0. We assume ca ≥ 0

and ca + γa ≥ 0, indicating that it is costly to reverse the installed capacity2. Note

1Since each period is τ units of time, the maximum demand the firm can satisfy with its own
capacity in this case is µτ .

2A similar assumption was made in Eberly and Van Mieghem (1997).
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that γa < 0 implies that the firm may salvage a portion of its capacity cost, and γa ≥ 0

implies that downsizing the capacity is costly to the firm (e.g., the firm needs to pay

the layoff costs). To avoid trivial cases, we also assume c1(J−l)τ ≥ ca+c0(J−l)τ and

c0(J − l)τ ≥ γa. The first assumption implies that it is less costly to increase a unit

of capacity and maintain it than outsourcing this unit to the more expensive outside

option for the whole time after the adjustment. The second assumption implies that

it is cheaper to shrink one unit of capacity than holding it for the whole time after

the adjustment.

We allow the set of capacity levels (denoted by K) to be discrete or continuous.

When capacity level is primarily determined by the number of key machines or pro-

duction lines, it may be appropriate that the capacity level must be chosen from a

discrete set, i.e., K = {δk, k = 1, 2, ..., |K|, δk increasing in k} where |K| is the cardi-

nality of the set K. Otherwise, capacity levels can be continuous (e.g., the capacity

is measured by the available labor hours), i.e., K = R
+.

To model the firm’s capacity decision, we first introduce the state vector ωj =

(πj , µ̂j−1, vj−1). Here, πj is the firm’s belief about demand type given the demands

up to period j − 1, and µ̂j−1 is defined as the induced capacity position at the end of

period j− 1 (since the capacity leadtime is l periods, µ̂j−1 is the capacity level at the

end of period j + l − 1. In general, for period k, we have µ̂k = µk+l and µk = µ̂k−l).

Lastly, vj−1 is defined as an indicator to denote whether capacity has been changed

on or prior to period j − 1. Formally, if capacity adjustment is made in period j, we

define

vk =











0 if k < j

1 if k ≥ j
(2.5)

We next describe the transition of the state vector. We first observe that the

transition of πj (specified in equation (2.1)) follows Lemma 1. To describe how

capacity position changes, we first introduce uj to represent the firm’s decision to
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adjust capacity in period j:

uj =











0 if the firm decides to stay put and continue to observe the demand

1 if the firm decides to adjust capacity in period j

(2.6)

As the firm has only a single opportunity to adjust the capacity, the feasible action

space to adjust capacity in period j for given vj−1, A(vj−1), is contingent upon whether

the firm has adjusted the capacity or not, i.e.,

A(vj−1) =











{0, 1} if vj−1 = 0;

{0} if vj−1 = 1.
(2.7)

If uj = 1, the firm adjusts the capacity level from the initial level µ0 to maximize

the expected profit from period j+ l till the end of the planning horizon based on the

information vector πj .

µ̂a
j (πj) , argmax

µ∈U
E

[

J
∑

k=j+l

hk(Πk, µ)− Ĉ(µ0, µ)

∣

∣

∣

∣

∣

πj

]

= argmax
µ∈U

{

J
∑

k=j+l

hk(πj , µ)− Ĉ(µ0, µ)

}

. (2.8)

The equality follows Lemma II.1 and the fact that hk(Πk, µ) is linear in Πk. When

the maximizer is not unique, as a tie-breaking rule, the firm chooses the smallest

capacity level, i.e., µ̂a
j (πj) = mini{µ̂i}. Then, the firm’s (induced) capacity position

transits as follows.

µ̂j(ωj, uj) =











µ̂a
j (πj) if uj = 1;

µ̂j−1 if uj = 0.
(2.9)

We observe that using µ̂a
j (πj) defined in equation (2.8) in the dynamic program turns
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the firm’s decision problem into an optimal stopping problem, i.e., when to pull the

trigger and adjust the capacity to the level specified by µ̂a
j (πj). For ease of exposition,

we suppress the dependence of µ̂a
j (πj) on πj when there is no confusion.

Having characterized the state transition, we next define the objective function.

Given the indicator vj−1, and the starting capacity position µ̂j−1, if the firm adjusts

its capacity position to µ̂a
j in period j (i.e., uj = 1), with a capacity leadtime of l

periods, it accrues profit in period j + l with capacity µj+l = µ̂a
j , but pays a capacity

adjustment cost in period j. Otherwise the firm’s capacity level in period j + l will

be µ̂j−1. Formally, we have

Hj(πj , µ̂j−1, vj−1, uj) , E[hj+l(Πj+l, µ̂j(ωj, uj))− Ĉ (µ̂j−1, µ̂j(ωj, uj)) |πj]

= hj+l(πj+l, µ̂j(ωj , uj))− Ĉ (µ̂j−1, µ̂j(ωj, uj))

=











hj+l(πj, µ̂
a
j )− Ĉ

(

µ0, µ̂
a
j

)

if uj = 1

hj+l(πj, µ̂j−1) if uj = 0
(2.10)

The first equality follows Lemma II.1 and the fact that hj+l(Πj+l, µ̂j) is linear in

Πj+l. For ease of exposition, we suppress the dependency of µ̂j(ωj , uj) on ωj and uj

when there is no confusion.

To represent the firm’s capacity decision as a dynamic program, we define a policy

as a sequence of functions mapping the information states to the action space A(vj−1)

for all j ≤ J − l, i.e., {uj(ωj), j = 1, 2, ..., J − l}. We notice that with a leadtime of l,

the firm should not adjust its capacity after period J − l. Let G denote the set of all

the admissible policies, and the firm’s objective is to find a policy g∗ ∈ G to maximize

the expected total profit,

max
g∈G

l
∑

k=1

E [hk(Πk, µ0)|π1] +
J−l
∑

k=1

Eg [Hk(Πk, µ̂k−1, vk−1, uk)|π1] (2.11)

where the expectation is taken over Dj for all j at time zero. Due to the l-period lead-
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time, the expected profit of the first l periods,
∑l

k=1E [hk(Πk, µ0)|π1], is independent

of the firm’s capacity adjustment policy. Therefore, it is sufficient to maximize

max
g∈G

J−l
∑

k=1

Eg [Hk(Πk, µ̂k−1, vk−1, uk)|π1] (2.12)

Define a partial policy gj , {uk(πk, µ̂k−1, vk−1), k = j, ..., J − l} and the set of all

the admissible partial policies by Gj. Then at the beginning of period j, given the

initial states πj , µ̂j−1 and vj−1, the firm’s optimal value-to-go function is

Vj(πj , µ̂j−1, vj−1) = max
gj∈Gj

J−l
∑

k=j

Egj [Hk(Πk, µ̂k−1, vk−1, uk)|πj ] (2.13)

Then, the optimal value-to-go functions satisfy the following recursive optimality

equations for all j ∈ {1, 2, ..., J − l}.

Vj(πj , µ̂j−1, vj−1) = max
uj∈A(vj−1)

{Hj(πj , µ̂j−1, vj−1, uj) + E [Vj+1(Πj+1, µ̂j, vj)|πj ]}

Vk(πk, µ̂k, vk) = 0, for k > J − l (2.14)

To simplify the optimality equations above, we observe the following: for j = 1, 2, ..., J−

l, if the firm has not adjusted the capacity before period j, i.e., vj−1 = 0, we have

µ̂j−1 = µ0. In this case, if the firm decides to adjust its capacity in period j, i.e.,

uj = 1, then for k = j+1, ..., J − l, we have A(vk−1) = {0} and uk = 0, and therefore
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the firm’s value-to-go function is as follows:

La
j (πj , µ̂j−1, vj−1) = La

j (πj , µ0, 0)

, hj+l

(

πj , µ̂
a
j

)

− Ĉ
(

µ0, µ̂
a
j

)

+ E
[

Vj+1

(

Πj+1, µ̂
a
j , 1

)
∣

∣πj

]

= hj+l

(

πj , µ̂
a
j

)

− Ĉ
(

µ0, µ̂
a
j

)

+
J−l
∑

k=j+1

Hk

(

πj , µ̂
a
j , 1, 0

)

=

J
∑

k=j+l

hk

(

πj , µ̂
a
j

)

− Ĉ
(

µ0, µ̂
a
j

)

(2.15)

We note that the firm’s induced capacity position µ̂a
j maximizes the value-to-go func-

tion (see equation (2.8)), and the firm needs to pay a one-time capacity adjustment

cost of Ĉ
(

µ0, µ̂
a
j

)

. After the adjustment, the firm does not have another opportunity

to change the capacity (recall that A(1) = {0}). Therefore, the firm’s expected op-

erating profit in period k is simply Hk(πj, µ̂
a
j , 1, 0), which in turn equals hk(πj, µ̂

a
j )

from equation (2.10).

If the firm has not adjusted the capacity (vj−1 = 0), and decides to delay decision

one more period (uj = 0), then we use the superscript s for “stay put”, and have the

value-to-go function as

Ls
j(πj , µ̂j−1, vj−1) = Ls

j(πj , µ0, 0) , hj+l(πj , µ0) + E [Vj+1(Πj+1, µ0, 0)|πj ] (2.16)

By delaying the adjustment, the firm earns a profit based on the starting capacity

level in this period. However, it maintains the option to change the capacity in the

future, as reflected by the term E [Vj+1(Πj+1, µ0, 0)|πj ].

On the other hand, if the firm already adjusted the capacity before, i.e., vj−1 = 1,
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then for k = j, ..., J − l, we have A(vk−1) = {0} and uk = 0, and we have

Ls
j(πj , µ̂j−1, vj−1) = Ls

j(πj , µ0, 1)

,

J−l
∑

k=j

Hk(πj , µ̂j−1, 1, 0) =
J

∑

k=j+l

hk(πj , µ̂j−1) (2.17)

To sum up, we have the following value-to-go functions contingent upon whether

the capacity has been adjusted or not.

Vj(πj , µ̂j−1, 0) = Vj(πj , µ0, 0) = max
{

La
j (πj , µ0, 0), L

s
j(πj , µ0, 0)

}

(2.18)

Vj(πj , µ̂j−1, 1) = Ls
j(πj , µ0, 1) (2.19)

When the maximum in equation (2.18) is attained by La
j (πj , µ0, 0), it is optimal to

adjust the capacity. Otherwise, the firm should delay the adjustment and continue

to observe the demand. For ease of exposition, we suppress the dependence on µ0

and vj−1, and write Vj(πj, µ0, 0), L
a
j (πj , µ0, 0) and Ls

j(πj , µ0, 0) as Vj(πj), L
a
j (πj)

and Ls
j(πj) respectively. Therefore, to characterize the firm’s optimal policy to stop

observing the demand and adjust the capacity, we only need to compare La
j (πj) and

Ls
j(πj). Note that, in the single adjustment case, the problem of choosing “when to

adjust” and “by how much” is recast as an optimal stopping time problem.

2.3.1 Optimal Policy

We now characterize the firm’s optimal capacity policy, starting with the case

when possible capacity levels are discrete (K = {δk, k = 1, 2, ..., |K|}). We first

define a convex partition of the space of feasible information vectors π: P = {π =

(π1, π2, . . . , πI) :
∑I

i=1 πi = 1, πi ≥ 0}.

Definition II.2. P = {Pk,Pk ⊂ P} is a convex partition of P, if the following

conditions are satisfied:
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(i) ∅ /∈ Pk;

(ii)
⋃

k Pk = P;

(iii) if k 6= r, then Pk

⋂Pr = ∅;

(iv) for any α ∈ (0, 1), if π1 ∈ Pk and π2 ∈ Pk, then απ1 + (1− α)π2 ∈ Pk.

In other words, P is a collection of subsets of information vectors where each

subset is non-empty and convex, and the union of these subsets is P.

We next characterize the firm’s optimal policy to adjust the capacity. We use

π � π′ to denote that the posterior distribution π is smaller than π′ in the first

order stochastic sense, i.e.,
∑i

k=1 πk ≥ ∑i
k=1 π

′
k for all i = 1, 2, ..., I. The following

proposition characterizes the optimal policy.

Proposition II.3 (Optimal capacity policy: Discrete capacity case). Let µ̂∗
j(π) be the

optimal capacity position in period j given information vector π. For j = 1, 2, ..., J−l:

(i) La
j (π) and Ls

j(π) are convex in π. Therefore, Vj(π) is convex in π.

(ii) Let Pjk =
{

π : µ̂a
j (π) = δk

}

. Then, Pj = {Pjk : Pjk 6= ∅, k = 1, ..., |K|} is a con-

vex partition of P.

(iii) In each Pjk ∈ Pj, there exists at most one convex set Sjk ⊆ Pjk such that if

π ∈ Sjk, it is optimal to adjust the capacity position to δk, µ̂
∗
j(π) = µ̂a

j (π) = δk. If

π /∈ ⋃

k Sjk, then it is optimal to wait: µ̂∗
j(π) = µ̂j−1(π).

(iv) Let Sj =
⋃

k Sjk. If π,π
′ ∈ Sj and π � π′, then µ̂∗

j(π) ≤ µ̂∗
j(π

′).

Part (iii) of Proposition II.3 implies that the firm’s decision to adjust capacity

level in the current period is not monotone in its belief about the demand type, π.

That is, it is possible that the firm may increase the capacity when the likelihood

of high demand is low, but wait to observe more demand when the likelihood of

high demand becomes even higher, i.e., µ̂∗
j(π) > µ̂∗

j(π
′) for π ≺ π′. Thus, as π

stochastically increases, the optimal policy can switch multiple times between waiting

and adjusting. Within each Pjk ∈ Pj , it is optimal to adjust capacity only when π
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Figure 2.1: An illustrative example of optimal policy with three demand types and
discrete capacity levels. Region k = 1, 2, ..., 6 corresponds to Pjk. The
grey area (if any) within each region corresponds to Sjk. The initial
capacity level corresponds to the optimal target capacity in region 4. The
information vector is (π1, π2, π3).

falls in a convex subset Sjk. If π ∈ Pjk\Sjk, it is optimal to wait. Recall that the

problem defined in equation (2.18) is indeed an optimal stopping problem. Thus, one

would expect that the optimal policy would be characterized by a monotone threshold

(switching curve) in information vector as π stochastically increases. Proposition II.3

shows that it is not the case. Although this is quite counter-intuitive at first, this

phenomenon indeed reflects the primary trade-off that the firm juggles—exploration

versus exploitation. On one hand, the firm would like to exploit benefits from the

current information by adjusting the capacity now. On the other hand, if a few more

observations of the demand (and, resultantly, updated belief) may shift the firm’s

target capacity level considerably, it might be beneficial to wait. Part (iv) shows that

in regions where it is optimal to change the capacity level, the target capacity level

increases in the information state, π. In other words, given that the firm changes the

capacity in the same period, the optimal capacity level is monotonically increasing in

the information vector.

Figure 2.1(A) illustrates how the optimal policy changes in π. In this case, the
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space of feasible information vectors P is partitioned into 6 convex subsets (Pjk),

and each subset corresponds to a different level of µ̂a = δk (i.e., the induced capacity

level given the firm decides to adjust capacity in that period). The shaded areas

correspond to the regions in which it is optimal to adjust the capacity (Sjk). Notice

that the firm may choose to adjust capacity for the whole region (Sj1 = Pj1), or

choose to wait for the whole region (Sj5 = ∅).

Observe that µ̂a increases in the information vector, i.e., µ̂a(π) ≤ µ̂a(π′) when

π � π′. However, the decision to adjust the capacity is not monotone in π. In this

case, given that the initial capacity corresponds to the optimal target level in region

4, as the information vector increases, the optimal decision on when to change the

capacity is not monotone. For example, consider Figure 2.1(B). This figure shows how

optimal policy changes when the information state changes from (1, 0, 0) to (0, 0.1, 0.9)

in the direction of (−1, 0.1, 0.9): thus, the information vector is stochastically ordered

along the line. The firm first chooses to adjust down (regions 1 − 2), then stay put

(regions 2−3), then adjust down again (region 3), then stay put again (regions 3−6),

and finally adjust up (region 6). While one may think that this discontinuity is driven

by the fact that the feasible capacity level must be chosen from a discrete set, we show

that the same result holds even when the capacity level is a continuous variable, as

shown in the next proposition.

Proposition II.4 (Optimal capacity policy: Continuous capacity case). Let µ̂∗
j(π)

be the optimal capacity position in period j given information vector π. For j =

1, ..., J − l,

(i) La
j (π) and Ls

j(π) are convex in π. Therefore, Vj(πj) is convex in π.

(ii) Let Sj = {π : La
j (π) > Ls

j(π)}. For π and π′ ∈ Sj, if π � π′, then µ̂∗
j (π) ≤

µ̂∗
j(π

′).

Continuous capacity level is the limiting case of discrete capacity level as the

number of potential capacity levels increases and the difference between two adjacent
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Figure 2.2: An illustrative example of optimal policy with three demand types and
continuous capacity levels. The grey areas are the capacity adjustment
regions Sj. The initial capacity level corresponds to the optimal target
capacity in the middle region. The information vector is (π1, π2, π3).

levels is infinitesimally small. Thus as in the discrete type case if the firm decides

to adjust the capacity, then the target capacity position increases in the information

vector. However, the firm’s decision about whether adjust the capacity in this period

does not change monotonically with respect to the increased likelihood, as this when-

to-stop decision is determined by comparing two convex functions, La
j (π) and Ls

j(π),

in the optimal stopping problem. The optimal policy is illustrated in Figure 2.2 with

a three-demand-type example.

In this case, we observe that the value-to-go function is not necessarily a con-

cave function in the initial capacity. Therefore, the optimal policy cannot be simply

characterized by the control limit policy shown in Eberly and Van Mieghem (1997).

In Section 2.5, we will consider the multiple adjustment case and highlight the

difference. The next section will derive a heuristic policy and analyze its performance.

2.3.2 Remarks

We briefly discuss some of the modeling features and assumptions, the rationale

behind them, and the consequences of removing or relaxing them.
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Demand process. The optimal policy characterized in Section 2.3.1 can be

applied to a large class of random variables and demand processes. In our base

model, we have finite demand types and each type is characterized by a demand

type parameter. However, our model can be extended to accommodate more general

features. First, demand type i can be characterized by a vector of parameters θi.

We only require the demand stochastically increases in the demand type index, i.e.,

Dj |θi1 �st Dj |θi2 for i1 ≤ i2. Thus as long as the demand type forms an ordered

set, our results apply. Second, if there are uncountably infinite demand types, i.e.,

the prior and posterior distributions are characterized by a continuous distribution

function, Proposition II.3 and II.4 still hold. That is, assuming the firm decides to

adjust the capacity, the target capacity increases as the likelihood of demand being

high increases. As in the base model, the decision to adjust the capacity is not

monotone in the likelihood. Finally, the optimal policy still holds when the demand

is non-stationary; for example, Dj|θi may represent a non-stationary Poisson process

with the mean demand λj(θi) following a Bass diffusion curve where the market size

is θi and the coefficient of innovation and coefficient of imitation are fixed across all

the demand types. In this case, the random term ξj|θi represents a “shifted Poisson”

distribution, which has mean 0 and variance λj(θi).

Censored demand. As the demand beyond capacity is satisfied by an outside

option (e.g., outsourcing, overtime, or temporarily using the capacity designated for

a different product), demand is fully observed and not censored. However, our model

can be extended to accommodate censored demand. In the case of unobservable lost

sales, the posterior distribution can be updated as follows:

πj+1,i =























πj,ifj(dj |θi)
I
∑

k=1
[πj,kfj(dj |θk)]

if dj < µ

πj,iPr(Dj≥µ|Θ=θi)
I
∑

k=1
[πj,kPr(Dj≥µ|Θ=θk)]

if dj ≥ µ
(2.20)
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Correspondingly, the firm’s expected profit in one period is changed as follows.

hc
j(πj , µ) =

I
∑

k=1

πj,kE [pmin{Dj, µτ} − c0µτ |Θ = θk] (2.21)

Then, following a similar process of defining equation (2.14), we can define the value-

to-go function V c
j (πj , µ̂j−1, vj−1). Following a similar proof as that of Proposition

II.3, we can show that an optimal policy with similar structure holds.

Inventory. In our model, we assume there is no inventory carried over between

two consecutive periods as the demand beyond the capacity is satisfied by an outside

option at a higher cost. This higher cost to satisfy demand beyond capacity partially

captures the effect of inventory in the backlog case. For example, toy manufacturers

in China were constrained by capacity due to low labor retention, and therefore had to

use more expensive expediting methods to ship toys from China to the U.S. (Mattioli

and Burkitt, 2013). On the other hand, inventory is known as a substitute for capacity

in firm operations. Therefore, assuming there is no inventory allows us to isolate the

substitution effect and focus on capacity management.

Discount factor. We implicitly assume the discount factor is 1 in this work.

This follows the fact that the finite life cycle of the product is relatively short, and

therefore we can neglect the time value of wealth. We note that the analytic results,

i.e., Proposition II.3 and II.4, will also hold if the discount factor is less than 1.

Nevertheless assuming the discount factor to be 1 simplifies the notation to evaluate

the performance of the asymptotically optimal heuristic in Section 2.4, and this is

standard in asymptotic analysis, for example, see Besbes and Zeevi (2009).

2.4 Near-Optimal Heuristic and Performance Evaluation

As Section 4.2 shows, the optimal policy is very complicated and difficult to im-

plement even for problems with finite demand types and capacity levels. One of the
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reasons is that the state space—which includes the information vector π—is uncount-

ably infinite, and therefore computing the exact optimal policy is computationally

intractable for large problems. For smaller problems, a fine mesh approximation with

linear interpolation can approximate the value-to-go function and hence the optimal

policy (as we do for one part of our validation case study in Section 6), but in general,

the curse of dimensionality makes it impossible to find the optimal policy.

Therefore, we propose a simple two-step heuristic. The firm observes demand for

a specific amount of time (τn units of time whose value depends on the problem size)

and then adjusts the capacity based on the observed demand. We then show that,

in an asymptotic regime, this heuristic is near-optimal when the underlying demand

process is a stationary process with unknown mean under the regret criterion, which

quantifies the gap between an upper-bound (based on information relaxation and

deterministic approximation) and the value-to-go function derived from the two-step

heuristic.

We scale up both demand and capacity by a coefficient n to define the asymptotic

regime. For this, consider the firm’s problem with a planning horizon [0, T ] within

which the firm reviews its decision periodically. Let τn be the time between two

consecutive decision opportunities so that the corresponding decision problem is a

discrete-time dynamic program with Jn = T/τn periods. Likewise, let ln be the

capacity lead time (described in the number of periods): ln = lt/τn where lt ∈ [0, T ].

Without loss of generality, we assume Jn = T/τn and ln = lt/τn are integers.

We assume that the firm’s demand follows a stationary random process with an

unknown average demand rate. Let {N(t), t ≥ 0} denote a standard random process

with stationary and independent increment, which satisfies N(0) = 0, has mean

E[N(t)] = t, and variance V ar[N(t)] = σ2t for t ≥ 0. When the demand type is i, we

define {N(nλit), t ≥ 0}, i ∈ {1, 2, ..., I} as the demand process and the demand type

parameter θi,n = nλi. That is, given demand type i, the firm’s demand in period j
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Table 2.1: The two-step heuristic
Given the period length of τn,

1. The firm serves the demand in period 1 with initial capacity nµ0. Let nλ̂τn be
the observed demand rate in period 1.

2. The firm adjusts its capacity position to nλ̂τn .
3. The firm serves demand from period 2 to ln + 1 with the initial capacity nµ0,

and from ln + 2 to Jn with capacity nλ̂τn .

is Dj|θi,n = N(nλijτn)− N(nλi(j − 1)τn), and therefore the demand in each period

is a sequence of i.i.d. random variables with mean nλiτn and variance σ2nλiτn. We

assume that the firm’s initial capacity is scaled up as nµ0. All other aspects of the

model (e.g., costs, revenue, etc.) are the same as the original model considered in

Section 4.2.

To show the asymptotic optimality, we impose the following assumptions on τn

and λi.

Assumption II.5. limn→∞ τn = 0; limn→∞ nτn = ∞; λi ∈ [0, M ].

The assumption stipulates that, as the problem scale increases, the length of the

observation period (τn) asymptotically converges to 0 at a relatively slow speed, and

the demand rate for any type i is bounded from above. With this set-up, we now

introduce and analyze the two-step heuristic, denoted by (ts).

The two-step heuristic. In the heuristic, the firm observes demand for one

period comprising τn units of time, and then uses the observed demand rate to adjust

the capacity for the rest of the time horizon, as specified in Table 2.1. We will show

that this simple policy is asymptotically optimal with an appropriately chosen τn

(which is a function of the scale parameter n).

Under the two-step heuristic, the firm always adjusts the capacity to the observed
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demand rate in the first period. Therefore, we define

λ̂i,τn ,
N(nλiτn)

nτn
, (2.22)

Then the firm’s expected value-to-go function under the heuristic is as follows.

V ts
0,n(π1) =

I
∑

i=1

π1,iE



























pDln+1 − c1 (Dln+1 − nµ0τn)
+ − c0nµ0τn

−Ĉ(nµ0, nλ̂i,τn)

+
Jn
∑

j=ln+2

[

pDj − c1

(

Dj − nλ̂i,τnτn

)+

− c0nλ̂i,τnτn

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θi,n



























(2.23)

For ease of exposition, we suppress the dependency of V ts
0,n(π1) on π1 when there

is no confusion.

As the two-step heuristic is a feasible policy for the corresponding optimal stopping

problem, it follows that the value-to-go function under the two-step heuristic, V ts
0,n,

is a lower bound of the value-to-go function under the optimal policy, denoted by

V ∗
0,n. However, because of the complexity of the optimal policy and the curse of

dimensionality, the exact value function under the optimal policy, denoted by V ∗
0,n is

difficult to compute. Hence, we will introduce an upper-bound of V ∗
0,n to evaluate the

performance of the heuristic.

Upper bound. We derive an upper bound of V ∗
0,n based on information structure

relaxation. Consider a hypothetical model, where the information of demand type is

revealed to the firm in the first period. In this case, the firm has full information (fi)

about the demand type, and is able to decide the optimal capacity position contingent

upon the demand type. Consequently, we obtain the firm’s value-to-go function as
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follows:

V fi
0,n(π1) = max

µ1,...,µI

I
∑

i=1

π1,iE











Jn
∑

j=ln+1

[

pDj − c1 (Dj − nµiτn)
+ − c0nµiτn

]

−Ĉ(nµ0, nµi)

∣

∣

∣

∣

∣

∣

∣

θi,n











(2.24)

We observe that the value-to-go function above is concave in the demand. There-

fore, by Jensen’s inequality, we have an upper bound of V fi
0,n from a deterministic (d)

problem as follows:

V d
0,n(π1) = max

µ1,...,µI

I
∑

i=1

π1,i

{

[

pnλi − c1n(λi − µi)
+ − c0nµi

]

(Jn − ln)τn − Ĉ(nµ0, nµi)
}

=

I
∑

i=1

π1,i

{

(p− c0)nλi(Jn − ln)τn − Ĉ(nµ0, nλi)
}

(2.25)

In the deterministic problem described in equation (2.25), the optimal target

capacity for demand type i is µ∗
i = λi. It is not a surprise that the firm’s optimal

action is to adjust the capacity to the mean instead of a newsvendor type fractile,

because the decision problem is deterministic, and there is no uncertainty in the

demand. Finally, it follows that V ∗
0,n ≤ V fi

0,n ≤ V d
0,n.

Performance evaluation. To evaluate the performance of the policy in the

asymptotic regime, we analyze the metric of regret, which measures the gap between

the value-to-go function under the heuristic and the deterministic upper bound. For-

mally, the regret of the two-step heuristic is defined as Rts
n = 1 − V ts

0,n/V
d
0,n. In the

following, we say a heuristic is asymptotically optimal if the regret converges to 0 as

the scale factor n increases to infinity. For two sequences {an} and {bn}, we write

an ≍ bn if an = O(bn) and bn = O(an). Then we characterize the asymptotic regret

as follows.

Proposition II.6 (Asymptotic regret: Two-step heuristic). If τn ≍ n− 1
3 for all n,
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the two-step heuristic is asymptotically optimal and Rts
n = O

(

n− 1
3

)

.

We first observe that the firm sets τn ≍ n− 1
3 corresponding to a problem scale of n.

This reflects the exploration-exploitation tradeoff the firm faces. For a given problem

scale n, the firm has incentive to set a long observation period to explore the demand

so that it can obtain more demand information. However, the longer the observation

period is, the less time is left for the firm to exploit the benefit of its knowledge about

demand by adjusting the capacity. Therefore, the firm has to choose an appropriate

period length to balance this tradeoff. As the problem scale increases, more demand

information is available within a unit of time. Therefore, the firm is able to reduce

the observation period and starts to exploit its knowledge earlier.

2.5 Capacity Investment with Multiple Adjustment Oppor-

tunities

We now move on to the case where the firm can adjust capacity multiple times. At

the beginning of each period, the firm first decides whether it will adjust its capacity

or not, and if so, by how much. Then the demand is realized and satisfied using the

firm’s capacity and (if short) an outside option. At the end of the period, the firm

updates the posterior distribution of demand types. We present the case where the

capacity level set is continuous, i.e., K = R
+, and there are still I demand types,

but the analysis for the discrete capacity level is similar. We use a superscript m to

indicate the multiple adjustment model.

Except for multiple adjustment opportunities, the problem setting is identical

to the one considered in Section 4.2. Let π1 be the prior distribution of demand

type, and πj be the posterior distribution at the beginning of period j, as shown in

equation (2.1). Each period is still of length τ . As in equation (2.3), let hj(πj, µ) be

the expected profit in period j (not including the capacity adjustment cost) when the
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information vector is πj and the current capacity level is µ. As before, l is the leadtime

for capacity adjustment: hence there is a l-period lag between capacity position and

actual capacity: µ̂j = µj+l or µj = µ̂j−l. We assume that the adjustment decision

cannot be canceled or reversed. That is, if the firm later adjusts capacity down, the

firm still incurs the cost for that, and the adjustment also takes effects l periods later.

As it is feasible for the firm to make the adjustment decision in every period, the

firm does not need to keep track of whether the capacity has been adjusted or not.

Therefore, the auxiliary information state vj is no longer needed. Thus, (πj , µ̂j−1) is

the state vector.

Given state (πj , µ̂j−1), define H
m
j (πj , µ̂j−1, µ̂j) to be the expected operating profit

in period j+ l (that is, when the capacity is in effect) minus the capacity adjustment

cost that the firm incurs.

Hm
j (πj , µ̂j−1, µ̂j) , E[hj+l (Πj+l, µ̂j)− Ĉ (µ̂j−1, µ̂j) |πj ]

= hj+l (πj , µ̂j)− Ĉ (µ̂j−1, µ̂j) (2.26)

The equality follows Lemma II.1 and the fact that hj+l (Πj+l, µ̂j) is linear in Πj+l.

We also define a policy g as {µ̂j(πj, µ̂j−1), j = 1, 2, ..., J − l} and Gm as the set of all

the admissible policies. Likewise, let gj , {µ̂k(πk, µ̂k−1), k = j, j+1, ..., J−l} and Gm
j

denote a partial policy and the set of all the admissible partial policies, respectively.

Then, the firm’s problem is to determine a policy g∗ ∈ Gm to maximize the total

expected profit,

max
g∈Gm

l
∑

k=1

E [hk(Πk, µ0)|π1] +

J−l
∑

k=1

Eg [Hm
k (Πk, µ̂k−1, µ̂k)|π1] (2.27)

where the expectation is taken over Dj for all j at time zero. As the profit from the

first l periods is not affected by the firm’s capacity decision, the decision problem is
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to find a policy that maximizes the following function:

V m
1 (πj , µ̂j−1) = max

g∈Gm

J−l
∑

k=1

Eg [Hm
k (Πk, µ̂k−1, µ̂k)|π1] (2.28)

Then, the optimal value-to-go function is recursively defined as follows: for all j ∈

{1, 2, ..., J − l},

V m
j (πj , µ̂j−1) = max

µ̂∈R+
E
[

Hm
j (πj , µ̂j−1, µ̂) + V m

j+1(Πj+1, µ̂)|πj

]

= max
µ̂∈R+

{

hj+l (πj , µ̂)− Ĉ (µ̂j−1, µ̂) + E
[

V m
j+1(Πj+1, µ̂)|πj

]

}

;

V m
k (πk, µ̂k−1) = 0 for k > J − l. (2.29)

We next show that the optimal policy is a control band policy, similar to Eberly

and Van Mieghem (1997).

Proposition II.7 (Optimal policy for multiple adjustment opportunities). Suppose

the firm has information vector π and capacity position µ̂j−1 at the beginning of

period j. Then, the optimal capacity position, denoted by µ̂∗(π), is characterized by

two thresholds µ
j
(π) and µ̄j(π), such that:

(i) If µ̂j−1 < µ
j
(π), it is optimal for the firm to adjust the capacity position up to

µ̂∗(π) = µ
j
(π).

(ii) If µ
j
(π) ≤ µ̂j−1 ≤ µ̄j(π), it is optimal for the firm to stay put, i.e., µ̂∗(π) = µ̂j−1.

(iii) If µ̂j−1 > µ̄j(π), it is optimal for the firm to adjust the capacity position down

to µ̂∗(π) = µ̄j(π).

Intuitively, as it is costly to adjust capacity, even if the firm is entitled with the

flexibility to make adjustment in every period, it may not do so. The firm will adjust

the capacity only if the current capacity position is significantly lower or higher than

the expected level. In contrast to the single adjustment case, where the value-to-go

function is not necessarily concave in the initial capacity, in the multiple adjustment
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case, the value-to-go function is concave in the starting capacity. This concavity en-

ables a simple characterization of the optimal policy by two state-dependent capacity

adjustment thresholds. However, the optimal policy is still computationally complex

with the information vector π. This result expands the control limit policy in Eberly

and Van Mieghem (1997) by explicitly incorporating the demand learning process and

the leadtime to build capacity. The optimal policy allows us to derive a near-optimal

heuristic below, which is computationally simple, yet performs asymptotically opti-

mally. Before that, we first discuss the monotonicity of switching curves with respect

to the information state.

We next show how the two thresholds µ
j
(π) and µ̄j(π) change in the information

state π. When there are two demand types, the information vector π = (π1, π2) can

be written as (1−π2, π2) (i.e., losing one degree of freedom), enabling us to reduce the

information state to π2, the probability of demand being the high type. We show in

the following lemma that both thresholds increase in the probability of high demand

type when the demand distributions satisfy the monotone likelihood ratio property.

For ease of exposition, we write π2 as π.

Lemma II.8 (Monotonicity of switching curves: Two demand type case). If the

likelihood ratio fj(d|θ2)/fj(d|θ1) increases in d, then µ
j
(π) and µ̄j(π) increase as the

probability of the high demand type, π = P (Θ = θ2), increases.

Lemma II.8 implies that as the high demand type becomes more likely, both

invest-up-to and divest-down-to thresholds increase in the two-type case. In other

words, the switching curves and the resultant capacity levels that the firm sets under

the optimal policy are both monotone in π. This is a sharp contrast to the result of

the single adjustment case, in which the optimal policy (and the resultant capacity

level) is not monotone in the information state. This highlights the key difference

of the decision problems that the firm faces in single and multiple adjustments. In

the single adjustment, the firm needs to decide two things: when to adjust and how
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much. As a result, the firm may decide to wait even in the state when π2 is high

while it is optimal to increase capacity when π2 is lower. In the multiple adjustment

case, however, the firm only needs to worry about how much capacity to adjust in

each period. Although there is a stay-put interval, this is cost-driven. If the current

capacity is near the target capacity (i.e., the optimal capacity when the capacity cost

is ignored in that period), the capacity cost is higher than the profit difference. On

the other hand, note that, in the single adjustment case, the non-monotonicity is

primarily opportunity driven (if we change the capacity in this period, we cannot

change the capacity again).

When there are more than two demand types, one might conjecture that the same

result could be directly extended. However, proving the result becomes formidable

for two reasons. First, when there are more than two types, the information state π is

no longer a completely ordered set. Therefore, even when we start with two ordered

information vectors, π � π′, future states may not necessarily preserve the same

ordering in all sample paths even if we assume monotone likelihood ratios. Second,

the value-to-go function corresponding to adjusting the capacity is no longer linear in

the information vector, which makes it difficult to apply similar techniques to prove

the monotonicity in the target capacity level using Lemma II.1.

2.5.1 Near-Optimal Heuristic and Performance Evaluation

We next derive a simple near-optimal heuristic similar to the one in Section 2.4.

The setting is entirely identical other than the fact that the firm is able to adjust its

capacity multiple times during the decision horizon [0, T ] (equivalently period 1 to

Jn in discrete time). We also show that in an asymptotic regime (same as the one

defined in Section 2.4), this multi-step heuristic (ms) is asymptotically optimal, and

provide a performance upper bound for the heuristic under the regret criterion. To

show the asymptotic optimality, we also impose Assumption II.5 on τn and λi.
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Table 2.2: The multi-step heuristic
Given the period length τn and the number of adjustment opportunities Kn,

1. The firm serves the demand in period 1 with the initial capacity nµ0.

2. For κ = 1 : Kn

a. The firm adjusts the capacity position at the start of period 2κ to the
observed average demand during the first 2κ − 1 periods denoted by
nλ̄κ. The capacity level will be updated accordingly ln periods later.

b. The firm serves the demand from period 2κ to 2κ+1 − 1 using the
(updated) capacity.

End

3. The firm serves the demand in the remaining periods using the updated
capacity.

The multi-step heuristic. In this heuristic, the firm adjusts its capacity only

in a subset of the Jn periods, instead of doing it in every period. Specifically, the

κth adjustment of the capacity position occurs at the beginning of period 2κ, and the

actual change of capacity levels occurs at the start of period 2κ+ln, for κ = 1, 2, ..., Kn,

where Kn is the largest integer such that ln+
∑Kn+1

κ=1 2κ−1 ≤ Jn, i.e., Kn , ⌊log2(Jn−

ln+1)⌋−1. That is, the time between the κ−1th and κth adjustments is 2κ−1τn (2κ−1

periods). The intuition for choosing the exponentially increasing periods between two

consecutive adjustment decisions is that as more demand information is collected,

adding new observations is less likely to change the information state in a significant

way. The details of the heuristic are illustrated in Table 2.2.

In this heuristic, the firm always adjusts the capacity position to the observed

demand rate. To evaluate the value-to-go function under this heuristic, we denote

the observed demand rate contingent upon the demand type i by nλ̄i,κ for κ ≥ 1.
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Then, we first define λ̄i,κ recursively below.

λ̄i,1 ,
D1|θi,n
nτn

λ̄i,κ ,
λ̄i,κ−1n(2

κ−1 − 1)τn +
∑2κ−1

j=2κ−1 Dj |θi,n
n(2κ − 1)τn

, κ = 2, 3, ..., Kn (2.30)

For notational simplicity, we also define λ̄i,0 , µ0. Then we have the firm’s expected

value-to-go function under this heuristic as follows.

V ms
0,n (π1) =

I
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i=1
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(2.31)

As this heuristic is a feasible policy for the corresponding optimal capacity adjust-

ment problem, we have that V ms
0,n ≤ V m∗

0,n , where V
m∗
0,n denotes the value-to-go function

under the optimal policy. As the optimal policy is not computationally tractable, we

need to derive an upper bound of the value-to-go function under the optimal policy

in order to evaluate the performance of the heuristic.

Upper bound. We first observe that the V d
0,n (see equation (2.25) in Section

2.4) is still an upper bound of V m∗
0,n . This is because in the deterministic stationary

demand setting, once the firm obtains full information about the demand type, even

if the firm is able to adjust capacity any time, it is still optimal to adjust it only once

at the beginning of the time horizon as the adjustment is costly. That is, we still have

the optimal target capacity µ∗
i = λi, and V d

0,n as follows.

V d
0,n =

I
∑

i=1

π1,i

{

(p− c0)nλi(Jn − ln)τn − can(λi − µ0)
+ − γan(µ0 − λi)

+
}

(2.32)

Performance evaluation. To analyze the performance of the heuristic, we e-
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valuate the asymptotic behavior of the regret of the multi-step heuristic, defined as

Rms
n = 1 − V ms

0,n /V
d
0,n. We derive the following characterization of the asymptotic

regret.

Proposition II.9 (Asymptotic regret: Multi-step heuristic). If τn ≍ n− 1
3 for all

n, the multi-step heuristic is asymptotically optimal and Rms
n = O

(

n− 1
3

)

.

The intuition of the proof is that as the firm observes more demand informa-

tion and adjusts capacity to match the observed average demand rate, we are able

to bound outsourcing costs and capacity adjustment costs by the bound shown in

Proposition 1 in Gallego (1992), which derived a one-sided deviation bound for the

class of distributions with finite mean and variance. As noted above, we choose the

exponentially increasing time between two consecutive decisions because the adjust-

ment is costly, and with more information learned, it is less necessary for the firm to

learn about demand frequently. Finally, the time interval τn is set to minimize the

derived upper bound.

Recall that when the firm has only one chance to adjust its capacity, the upper

bound of the regret is also O
(

n−1/3
)

(see Proposition II.6). Here, although the upper

bound of the regret is still of the same order, the capacity adjustment cost makes a

difference. With multiple adjustment opportunities, the firm is able to correct errors

that it might have made in a one shot decision, and therefore, the regret should be

smaller. However, when capacity adjustment is very costly, with multiple capacity

adjustments specified in the heuristic, the firm needs to pay a higher total capacity

adjustment cost as it chases the mean demand. Therefore, the benefit from the

learning-while-doing may be diluted. In Section 2.6.2, we compare the two heuristics

numerically.
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Figure 2.3: Monthly production of Ford Focus in North America market (a), and the
empirical cdf and gamma distribution with sample mean and variance
(b), from January 2005 to December 2010

2.6 Numerical Study: Ford Focus, the Third Generation

To demonstrate the performance and robustness of our heuristic, we develop a

numerical study where the model premises (such as demand pattern, problem scale,

cost, and profit) are drawn from practice. Specifically, our example utilizes production

and financial data related to the Ford passenger sedan, the Focus. Given the data from

the first two generations of the Focus in the North American market, the numerical

study illustrates how one could use our heuristics in a setting where the managers of

Ford Focus need to decide to adjust the capacity for its third generation. Although we

need to make some simplifying assumptions because of the lack of precise accounting

data, we show that the results and conclusions are quite robust to model parameters

and our assumptions.

2.6.1 Data and Parameter Estimation

In this section, we briefly describe how we collect data and recover the demand

and cost parameters, with details deferred to the appendix.

Demand. Our focus is on how the assembly factory should adjust its capacity

40



based on orders received from the dealership. Therefore, the demand is reflected by

the number of Ford Focus sedans produced at the assembly factory. This system can

be approximately considered as a make-to-order system as Ford receives orders from

dealers before the orders are factored into its production plan, and the inventory is

held at the dealership level.

To analyze the demand pattern, we first collect monthly production data of Ford

Focus in the North America market from January 2005 to December 2010 from the

database of Automotive News Data Center 3. There are two (redesigned) generations

of Focus during this period: the first from January 2005 to September 2007, and the

second from October 2007 to December 2010. Although there is seasonality within

each year, which is affected by factors such as mid-year discount when manufacturers

switch production to the next year model and end-of-year sales to boost sales fig-

ure, we observe the demand pattern is plausibly stationary within each generation:

see Figure 2.3(a). As the demand pattern of the first two generations is similar, we

group the production data from January 2005 to December 2010 and observe that

the monthly demand approximately follows a gamma distribution with a mean of

17.21 thousand units per month and a standard deviation of 5.04; see Figure 2.3(b).4

When we construct the empirical cumulative distribution function, we excluded the

data point in July or August if the production in that month is approximately half

of a regular month to account for the regular summer shutdown, and the production

quantity for December 2010 which is significantly below the average production level

as it is the transition time from the second generation production to the third gener-

ation. We denote the two key parameters of the gamma distribution by a and b, i.e.,

3Automotive News Data Center: http://www.autonews.com/section/datacenter.
4We observe that during the automotive industry crisis (2008-2010), the demand pattern of Focus

did not change. This may be because the Focus is a fuel-efficient model, and therefore the substantial
increase in the prices of automotive fuels did not cause a significant drop in sales, unlike the sport
utility vehicles and pickup trucks, whose demands declined in the same period.
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the probability density function is characterized as

f(x|a, b) = 1

Γ(a)ba
xa−1e−

x
b

where Γ(·) represents the gamma function.

In fact, we test the cleaned production data from January 2005 to December

2010 with a gamma distribution where the estimated parameters are a = 11.67 and

b = 1.47 using a one-sample Kolmogorov-Smirnov test, which yields a p-value of

0.74, supporting our choice for the demand distribution. Therefore, we model the

monthly demand (with the unit of a thousand cars) for Focus using a stationary

gamma distribution.

In our numerical example, we postulate that the decision maker (Ford) has three

possible scenarios (demand types) for the third generation Focus. In the medium

scenario, the demand will remain at the same level as the first two generations:

monthly demand will follow the above gamma distribution. In the other two scenarios,

the demand for the third generation (released in May 2011) are either lower or higher

than the first two generations as the customers may not like the product, or the

economic environment improves. Thus the average monthly demand will be either

dropped by or raised by 5 thousand units (which is about one standard deviation).

That is, the two key parameters are a = 8.28 and b = 1.47 for the low demand

case, and a = 15.06 and b = 1.47 for the high demand case. We assume that the

parameter b, which stands for the ratio between variance and mean, stays stationary,

i.e., a higher demand is associated with a higher variance. We will later show that

our result is quite robust with respect to the misspecification of the average demand

parameters.

It is important to note that our heuristic (which is data driven) does not rely on

knowledge about the prior distribution or the exact demand distribution for each type.
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These information is necessary only to evaluate the performance of the heuristic (i.e.,

computing the regret). Also, it should be noted that our heuristic applies to more

general settings (e.g., there are more than three market scenarios, or the unknowns

are a vector of parameters rather than a single parameter).

Finally, as the second generation Focus was on sale for three years, we assume the

decision horizon T for the third generation is also 3 years, starting from January 2011.

Following the convention of the asymptotic analysis, we also assume when n = 1, the

average medium type demand in the three year horizon is 1 unit and τ1 = 36 months.

Therefore, the problem scale in the base case is n1 = 17.21 × 103 × 36 = 619, 610,

and we assume the firm reviews demand and makes capacity adjustment decisions in

a monthly scale at the current demand level, i.e., τn1 = 1 (recall that τn1 ≍ n
−1/3
1 .)

We will illustrate the impact of market size on the performance of the heuristic in the

numerical study. We also assume there is no leadtime, i.e., l = 0, and we will study

the impact of leadtime later.

Initial capacity. Our target is to analyze Ford’s capacity adjustment decision

for the third generation. Therefore, besides the demand information, we also need

information about the capacity. Since Ford does not publish their exact capacity, we

use the maximum production quantity from January 2010 to December 2010 as the

starting capacity, i.e., 22.97 thousand cars per month.5

Cost/profit parameters. We use aggregated cost parameters at the firm level

to approximate the ones at the product level. Specifically, we recover the gross ca-

pacity of Ford using Ford’s public financial reports and data, and then identify the

unit profit and capacity related costs at the firm level. Although we acknowledge

that these are rough estimates, the performance of our heuristic is quite robust to the

5According to Ford Motor Company (2012), the vehicle assembly capacity is categorized as
installed capacity and manned capacity. Installed capacity refers to “the physical capability of a
plant and equipment to assemble vehicles if fully manned”. Manned capacity refers to “the degree
to which the installed capacity has been staffed”. In this numerical example, we use capacity to
refer to the installed capacity that is specific to Ford Focus.
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Table 2.3: Production and capacity related profit/cost parameters
Estimated cost parameters for Focus Value
Capacity adjustment (upgrading) cost ca $4, 487 month/unit
Capacity adjustment (downgrading) cost γa $448.7 month/unit
Capacity overhead cost c0 $181.1 per unit
Capacity outsourcing cost c1 $362.2 per unit
Unit profit p (excluding capacity related cost) $1, 270 per unit
Average retail price $22, 154 per unit

cost parameters. Note that the cost parameters would be significantly more accurate

if one extracts the cost information from an ERP or internal accounting system. We

summarize the cost parameters derived from Ford’s Annual Report in 2012 (Ford Mo-

tor Company, 2012) in Table 2.3, and relegate the details of estimations to Appendix

A.

2.6.2 Numerical Analysis

In the numerical study, we evaluate the performance of our heuristics using the

regret with respect to its deterministic upper bound. Specifically, for given scale pa-

rameter n, define Rts
n = 1−V ts

0,n/V
d
0,n and Rms

n = 1−V ms
0,n /V

d
0,n to be regrets associated

with the two-step heuristic and multi-step heuristic, respectively. The decision hori-

zon, demand distributions, initial capacity, and profit and cost parameters are the

ones specified in Section 2.6.1. In what follows, we first present the impact of various

parameters and demand assumptions (market size, leadtime, misspecified demand,

and cost and profit parameters) on the performance of our two-step heuristic. We

then compare the performance of the two-step heuristic with the multi-step heuristic.

Finally, we show the performance of the two-step heuristic with respect to the optimal

policy.

To evaluate the value-to-go function under the two-step heuristic, V ts
0,n, for a given

prior vector π1, we apply a simulation approach with 106 experiments. In each round,

a demand distribution (a demand type) is first generated according to the prior, then a
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Figure 2.4: Regret with respect to market size when the prior π1 = (0.2, 0.4, 0.4)

sample path of demand in each period is generated according to the distribution. For

each sample path generated, the firm follows the two-step heuristic, and the resultant

profit is calculated. We use the average of the 106 observations to approximate V ts
0,n.

The deterministic upper bound, V d
0,n, is computed following equation (2.25).

Market size. We first analyze the impact of market size, which is determined by

the scale factor n. From Proposition II.6, when the scale factor of the decision problem

is n, setting the length of the learning period as τn ≍ n−1/3 results in asymptotic

convergence at most on the order of n−1/3. In Figure 2.4, we show that as log(n)

increases linearly, the log of the regret decreases linearly. In the base case (n1 =

619, 610), we assume the firm reviews the demand information monthly, and adjusts

capacity based on the observation in the first month, i.e., τn1 = 1 month. To analyze

the impact of the market size, we let n be 8kn1, k = −2,−1, ..., 2, corresponding to a

τn of 2−k, k = −2,−1, ..., 2 month respectively. That is, as the magnitude of demand

increases, the firm can adjust capacity within a smaller window of demand data. For

instance, when k = −2, τn is 4 months, and when k = 2, τn is 1/4 months (about

1 week). In Figure 2.4, we observe that the log of regret decreases at the slope of

−0.33, corresponding to the n−1/3 convergence rate. This implies that the absolute

difference between the upper bound and the heuristic is sub-linear in n. The cases
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Figure 2.5: Regret and value-to-go function with respect to leadtime when the prior
π1 = (0.2, 0.4, 0.4)

are similar when the priors are different, so for the interest of space the details are

not shown here.

Leadtime. In the base case, we normalize the leadtime as 0. One may think

that this might favor the two-step heuristic, but the result is the opposite. The

performance of the two-step heuristic improves as the leadtime becomes longer. To

show this, we change the leadtime l from 0 to 12 months when the review period

τn1 is 1 month and compute the total revenue of the planning horizon (i.e., the value

function plus the revenue of the first l periods (before any adjustment is made). In

Figure 2.5(a), we observe that the regret decreases as the leadtime increases: the

relative profit loss due to the lack of information decreases in leadtime. Although

this is counter-intuitive at first glance, we observe from Figure 2.5(b) that, with a

longer leadtime, the benefit of full information decreases, thus the performance of the

deterministic upper bound deteriorates substantially, resulting in the decrease in the

regret.

Misspecified demand. The base case has assumed three demand types: low,

medium and high. In the low demand scenario, we assume the average demand

decreases to 12.21 thousand units per month. In the medium demand scenario, we
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Table 2.4: Regret for the misspecified demand and cost parameters (The number of
observations for each case is 147.)

Parameters
Regret

mean stdev min max
low demand mean θl 6.02% 0.31% 5.78% 7.71%
high demand mean θh 5.81% 0.51% 4.32% 6.77%
outsourcing and overhead cost β = (c1 − c0)/c0 6.08% 0.60% 4.99% 7.71%
downsizing and expansion cost γ = γa/ca 6.01% 0.30% 5.45% 6.92%

assume that the demand remains at the same level as the demand for the first and

second generation. In the high demand scenario, we assume the average demand has

increased to 19.71 thousand units. However, these assumptions may not be accurate.

Therefore, we now analyze the case when the firm has incorrect information about the

demand type and resulting distribution. When calculating the deterministic upper

bound, the firm still has complete information about the demand.

Note that our two-step heuristic does not depend on the firm’s knowledge about

the high type demand: The demand information is needed for evaluation and com-

parison only. In the analysis, we vary the average demand of low demand type from

−20% to 40% in the increment of 10%, and similar for the high demand type. For

each set of demand parameters, we also vary the prior as (0.2i, 0.2j, 1 − 0.2i− 0.2j)

where i = 0, 1, ..., 5 and j = 0, 1, ..., 5 − i. We summarize the test statistics in the

first two rows of Table 2.4. We observe that the average regret with respect to the

relaxed upper bound is only about 6% with a range less than 2.45%, which indicates

the performance of the regret is quite robust with respect to the misspecified demand

parameters.

Cost parameters. We also analyze the impact of the cost parameter changes on

the two-step heuristic. In particular, we examine this by varying the relative difference

between the outsourcing cost and capacity overhead cost: β = (c1 − c0)/c0 fixing c0,

and the ratio of the downsizing cost to the expansion cost: γ = γa/ca fixing ca. In

our base case, we have β = (362.2−181.1)/181.1 = 1 and γ = 448.7/4, 487 = 0.1 (see
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Table 2.3). Similarly to the misspecified demand scenario, we also vary the prior as

(0.2i, 0.2j, 1− 0.2i− 0.2j) where i = 0, 1, ..., 5 and j = 0, 1, ..., 5− i. In a quite broad

range of β (from 0.7 to 1.3) and γ (from -0.3 to 0.3), the regret does not change in any

significant manner (see the third and fourth row of Table 2.4). These results show

that the heuristic is quite robust with respect to the cost parameters, as the increase

in the regret is smaller than 2.72% when the cost parameters and the prior vary.

Single vs. multiple adjustments. We now compare the two-step heuristic

with the multi-step heuristic. The capacity adjustment cost is specified in Section

2.6.1. In Figure 2.6, we observe that as the market size increases, the regrets of both

policies decrease. In this case, as the firm needs to pay a much higher adjustment cost

under the multi-step heuristic, which dominates the benefit from extra opportunities

to adjust capacity, we observe that the regret under the multi-step heuristic is higher

than the one under the two-step heuristic. However, when the capacity adjustment

cost is small, as one may expect, the regret under the multi-step heuristic is lower

than the one under the two-step heuristic, which reflects the benefit of learning-while-

doing.

Heuristic vs. optimal policy. To simplify the computation for the optimal
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Figure 2.8: Firm’s capacity decision under the two-step heuristic and optimal policy
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policy, we consider only two demand types in this part: medium and high. As there

are only two demand types, we use πj , the posterior distribution of high demand, to

denote the information vector. Figure 2.7 shows the regret of the two-step heuristic.

Compared to the deterministic upper-bound (which assumes the knowledge of full

information and no randomness), the regret of our data-driven heuristic is no more

than 6.03%. We use the deterministic upper bound to define the regret, because a

large state-space makes it intractable to compute the optimal policy and resultant

value function. In the two demand-type case, however, we can numerically approx-

imate the value function of the optimal policy, V ∗
0,n, with linear interpolation (i.e.,

evaluating the value at a set of fine fixed grid points and then approximating values

for the rest of the states using linear interpolation). As Figure 2.7 shows, the regret

(compared to the optimal policy) is less than 2.24%.

From the timing perspective (Figure 2.8(a)), the firm always adjusts its capacity

in the second month under the two-step heuristic. On the other hand, under the

optimal policy the firm adjusts capacity early (in the first period) when the prior

is close to the extremes (π1 close to 0 or 1), and delays the decision when there is

no dominant demand type in the prior. In addition, Figure 2.8(b) shows that, on

average, the capacity levels under the optimal policy and the two-step heuristic are

fairly close when the firm adjusts the capacity at the beginning of the decision period,

because the newsvendor fractile is 0.5 as determined by the capacity outsourcing cost

and overhead cost and therefore the optimal capacity level is close to the average

demand. When the firm is less certain about the demand type and prefers to delay

the capacity adjustment to the future, consistent with the conventional wisdom, the

firm invests more in capacity compared to the average capacity level built under the

two-step heuristic.

50



2.7 Conclusion

We analyze a firm’s capacity investment decision for a product with a finite life

cycle, and investigate when , and by how much , the firm should adjust its capacity.

When the firm can adjust the capacity once in a planning horizon, we show that in

each period, as the likelihood of demand being high increases, interestingly, the firm

may alternate its decision to pull the trigger (adjust capacity) or delay the adjustment

multiple times. This contrasts most of the results in a stopping problem where the

optimal decision to stop tends to be monotone. On the other hand, if the firm decides

to adjust the capacity, the target capacity level increases in the likelihood. While the

structure of optimal policy is quite interesting from the analytic point of view, it

cannot be easily computed or implemented. Instead, we show that there is a very

simple but provably well-performing data-driven heuristic when demand follows a

stochastic process with stationary and independent increment. In this heuristic, the

firm observes demand during an exploration period, and then adjusts capacity to

match the observed demand rate. By choosing an appropriate exploration period

length, the firm is able to balance the exploration and exploitation tradeoff, and the

regret of the heuristic asymptotically converges to 0.

When the firm has multiple opportunities to adjust capacity, we show the firm’s

optimal policy is a control band policy, characterized by two state-dependent thresh-

olds. Under this policy, in each period, the firm stays put to observe the demand

when the capacity is between the two thresholds, and adjusts its capacity to the

lower threshold only when the capacity is below it, and vice versa. We also charac-

terize a simple but asymptotically optimal heuristic, in which the firm predetermines

a set of time points at which the firm will adjust its capacity to match the observed

demand rate. The time between two consecutive decisions increases exponentially,

reflecting the fact that the adjustment is costly, and it is less necessary for the firm

to adjust capacity frequently with more demand information collected. The multiple
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adjustments enable the firm to correct errors in early decisions. However, when the

capacity adjustment cost is high, the multiple adjustments also yield a higher adjust-

ment cost, which dilutes the benefit of the learning-while-doing. The optimal policy

and heuristics are illustrated using production and sales data of the Ford Focus.
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CHAPTER III

Investing in a Shared Supplier in a Competitive

Market: The Stochastic Capacity Case

3.1 Introduction

In many supply chains, multiple firms source from the same set of suppliers. Such

supply chain structures benefit from achieving economies of scale, and obtaining reli-

able and high-quality supply, but there are also risks such as the firms being exposed

to shortage of supplies or greater vulnerability to supply disruptions. In order to mit-

igate the risks, many firms invest in shared suppliers, even if they compete against

each other.

For example, firms may invest in the supplier to expand the supplier’s capacity,

avoid the supplier’s bankruptcy, or improve the quality of products. Neutrogena

directly invested in its South Korean supplier, Cosmax, which also served many other

cosmetic companies. Intel invested in ASMI by purchasing 4% of its total common

shares to foster material and equipment development (LaPedus, 2009), even though

ASMI is also a supplier to AMD, Intel’s main rival. Of course, firms invest in suppliers

not just for capacity expansion; for instance, GM provided $210 million to AAM in

2009 to help keep it out of bankruptcy (Haywood, 2009), and Walmart sent teams of

experts to help Chinese suppliers improve sustainability efforts while these suppliers
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also supplies to other stores in US (Aston, 2009). These investments can broadly be

considered under the umbrella of “supplier development” (Handfield et al., 2000).

When a firm invests in a supplier which also serves its competitors, there is a

natural competitive threat that arises: the competitors may be able to take advantage

of the original firm’s investment in the supplier, which would intensify the market

competition for the end product and therefore reduce the investing firm’s profits.

To avoid this, the investing firm may impose contractual constraints on the supplier

that dictate exactly how the increased capabilities of the supplier can be used. In

this chapter, we specifically focus on the contractual relationships governing firms’

investments in their supplier’s capacity and their consequences.

It is worth considering Foxconn’s recent investment in Sharp to illustrate the

framing of our model. In early 2012, it was reported that Foxconn (also known as

Hon Hai Precision Industry Co.) invested $1.6 billion in Sharp: very specifically, the

investment included a 46.5% stake in a single LCD factory in Sakai, Japan, and an

agreement to buy 50% of the LCD panels produced in that factory (Dignan, 2012).

In this case, Foxconn claimed exclusive use of the 50% capacity, while Sharp is free to

use the remaining 50% to supply other buying firms, including Sharp’s own products

in the smartphone/tablet/TV market which remains highly competitive.

Another motivation to invest in a shared supplier is to prevent other firms from

receiving preferential treatment when fulfilling a contract. When a significant portion

of the supplier’s capacity could be first tapped by the investing firm, the non-investing

firm’s ability to accrue profits from meeting the demand will be reduced, relatively.

Such concern is manifested when competing buyers share a supplier. This can partly

explain Samsung’s involvement in Sharp shortly after Foxconn’s investment. Samsung

also invested $110 million in Sharp, in order to “prevent its competitor, particularly

Hon Hai and Apple, from gaining too much control over Sharp”, and “secure a steady

supply of LCD panels from diversified sources” (Osawa and Lee, 2013).
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In this chapter, we consider a network of two firms competing in the market and

sharing a common supplier, and examine the question of how the different contractual

forms affect the firms’ investment in the supplier’s capacity, and the consequences of

such investments for the buying firms and the supplier. While it is straightforward to

evaluate if such investment is beneficial when the supply chain consists of one supplier

and one buyer, it is not clear whether such an investment is beneficial to a firm when

a supplier serves multiple firms. Investing in the supplier’s capacity can provide a

buyer increased access to the supplier’s capacity, but such investment is costly and

also may benefit the non-investing firm if it also has more access to the capacity (a

spillover effect).

To prevent unintended spillover, buyers’ investment often comes with conditions

such as exclusive use or prioritized access of the production resources. While restrict-

ing the autonomy of the supplier’s operations, a buying firm’s investment can ensure

it has enough supply to satisfy the demand. Therefore, for both supplier and buyer,

the economics of supplier investment becomes more complex with presence of com-

peting buying firms. In this chapter, we develop a model that captures the investment

decisions and market competition, and study the consequences of the contracts that

accompany the investments in terms of profits to the buyers and the supplier.

Our contributions. We examine two common forms of contracts used in prac-

tice: Exclusive (the investing firm gets exclusive access to a portion of the supplier’s

capacity that cannot be used by the non-investing firm), and First-Priority (the non-

investing firm can access the unused portion of the investing firm’s capacity, if any).

We completely characterize equilibrium outcomes in terms of the number of investing

firms and capacity investment levels. In equilibrium, the number of investing firms

decreases as the fixed capacity investment cost increases, and within a regime where

the number of investing firms remains the same, the capacity level decreases in the

variable capacity cost.

55



Specifically, we identify when and to what extent the spillover effect occurs. The

spillover effect occurs when the capacity type is first-priority, and the fixed capacity

investment cost is intermediate. The extent to which the spillover effect occurs is

critically determined by the variable capacity cost, as it determines how much capac-

ity the investing firm will invest to build and consequently how much capacity the

competing firm will be able to tap into.

We next examine the impact of the spillover effect on the supply chain performance

by comparing the exclusive and first-priority capacity. We observe that up to a certain

extent, the spillover curbs competition between the firms and therefore discourages

them from investing in the supplier. As a result, the equilibrium first-priority capacity

is lower than the equilibrium exclusive capacity, and so is the number of investing

firms. On the other hand, the spillover effect mitigates the risk of both firms being

trapped in a prisoner’s dilemma, resulting in a better outcome for both firms.

Given the observation about the equilibrium capacity levels, we further explore

the buying firms’ and the supplier’s preference about the capacity types. We find

the buying firms’ preference is determined by two effects: the leading effect as the

firm is the only investor and has advantages in accessing capacity, and the spillover

effect where the non-investing firm can tap into the investing firm’s capacity. We

show that the investing firm does not always prefer the exclusive capacity. The

investing firm typically prefers the exclusive capacity. However, when the exclusive

capacity triggers the other firm also to invest, the firm loses its benefit from the

leading effect and therefore may prefer the first-priority capacity. The non-investing

firm, however, always prefers the first-priority capacity in the hope of getting benefit

from the spillover effect. We also find that the supplier’s preference is driven by the

tradeoff between the over-investment in the exclusive capacity, and the flexibility in

utilizing the first-priority capacity. We observe that the supplier finds the exclusive

capacity more attractive when strictly more firms invest with the exclusive capacity
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due to the significant over-investment in capacity. When only one firm invests under

both exclusive and first-priority contracts, the supplier’s preference is determined by

which of the two effects is stronger and depends on the context.

Finally, we compare the supply chain performance relative to a first-best bench-

mark where the downstream firms are combined as a monopoly and are vertically

integrated with the supplier, that is, one firm owns both levels of the supply chain.

We analyze the two sources of inefficiency: competition, and misaligned incentive

with non-zero wholesale price (double marginalization). We identify the inefficiency

caused by competition in the supply chain, and find that the spillover effect can par-

tially mitigate the over-investment in exclusive capacity and therefore improve the

efficiency of the supply chain. We also identify the impact of the wholesale price,

which also decreases the equilibrium capacity level. Therefore, we find that both the

wholesale price and the spillover effect can reduce the over-investment associated with

the exclusive capacity.

3.1.1 Literature review

Our work falls within the literature of supplier development, which refers to the

set of activities undertaken by a buyer to identify, measure, and improve supplier

performance (Krause et al., 1998). These activities have been identified and studied

along the dimensions of the level of efforts committed by the buying firms (Krause,

1997), whether supplier development is a reactive or strategic process (Krause et al.,

1998), and how supplier development influences accumulation and allocation of social

capital (Krause et al., 2007). Handfield et al. (2000) provided a taxonomy of supplier

development, and identified various pitfalls that may occur.

Many papers have studied different ways to improve supply chain efficiency by

firms’ investment in suppliers such as cost reduction (Iyer et al., 2005), quality im-

provement (Zhu et al., 2007), capacity investment (Li and Debo, 2009; Li, 2013),
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reliability improvement (Wang et al., 2010), and financial subsidy (Babich, 2010). In

all these papers, there is a single buyer with one or more suppliers; none of the above

papers consider the case of competing firms investing in a shared supplier.

Two papers studied multiple firms investing in a shared supplier to improve the

reliability. Wadecki et al. (2011) proposed a model in which firms may share an

unreliable supplier, whose probability of disruption can be reduced through firms’

subsidy, and showed that lower subsidies are likely to be offered when firms compete.

Wang et al. (2014) considered the effect of knowledge spillover when one or both firms

invest in a shared supplier, and showed spillover often improves the firms’ profits.

In both papers, random yield is considered and capacity competition is absent. In

contrast, the supplier’s limited capacity, and the amount of capacity that can be

accessed by each firm under different contract structures, are key features of our

model. Thus, we model capacity as a finite random variable and examine how the

firms’ investment decisions are influenced by how much capacity the firm and its

competitor can access.

Our work is also related with the capacity management literature, about which

Van Mieghem (2003) provided a review. Among the papers that address capacity

issues in an outsourcing setting, Plambeck and Taylor (2005) analyzed the impact of

contract manufacturing on firms’ innovation and the supplier’s capacity investment,

and showed that firms might be better off by trading capacity among themselves

rather than outsourcing to a supplier. Ülkü et al. (2005) analyzed firms’ time of entry

in an uncertain market in an outsourcing setting, and showed that firms may subsidize

the supplier’s capacity investment to accelerate the entry process. Ülkü et al. (2007)

analyzed a model in which firms and a supplier differ in forecast accuracy. They

investigate premium-based schemes to induce the best party, firms or the supplier,

to bear the risk of building the capacity, and concluded that the schemes work well.

Li et al. (2011) analyzed three capacity reservation options, in which the firms may
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or may not access the other firm’s reserved capacity and may or may not need to

pay a fee to access. They investigated which option is preferred from the supplier’s

perspective. Compared with these papers, our work differs in two aspects. First,

competition is a central theme in our work. In fact, firms’ demands are independent

in all these papers expect for Li et al. (2011) where the demand for firms might be

correlated. In contrast, the fact that firms compete in the end market is a key feature

of our model. Second, these papers feature deterministic capacity, while in our model

the capacity is stochastic. The stochastic capacity arising from uncertain yields or

technology motivates firms to invest in the supplier.

3.2 Model

We consider a supply chain with a single supplier (denoted by s), and two competing

firms, labeled 1 and 2. The supplier will produce a new product (or critical com-

ponent), and sell it at a wholesale price c to both firms. Thus, in the absence of

capacity investment, both firms are ex ante symmetric. The two firms compete á

la Cournot in the downstream market with the following inverse demand function:

P (q1, q2) = a − b(q1 + q2), where a represents the total market size, and b the price

sensitivity to the total quantity.

To fulfill the buying firms’ orders, the supplier needs to build capacity. Prima facie,

the supplier incurs the investment cost for the capacity. In this stage, buying firms

have opportunities to invest in the supplier’s capacity. In return for the investment,

the firms are endowed with a portion of capacity for use, for which the firms can

impose restrictions that limit how the supplier uses. Details of these restrictions will

determine the amount of the capacity that the firms can use at their discretion, and

resultantly, the output produced for the two firms.

To capture this, we consider a two-stage model. In the first stage, the firms

decide whether to invest in the supplier, and if so, by how much. In the second stage,
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based on the outcome of the investment game, the firms set their order quantities

and compete in the end market. We consider a case where the firm i’s capacity

investment cost includes both a fixed cost, w0, and a variable cost, wki, where w is

the unit variable cost and ki ∈ R
+ measures the size of the capacity investment level

that a supplier will have if there is no yield or efficiency loss. For example, the fixed

capacity investment cost may represent the fixed cost associated with commissioning

and starting up a new facility with the firms’ investment in the supplier, and the

variable cost may represent the cost to purchase tooling or hire new workers, which is

proportional to the size of the invested capacity. This structure of capacity investment

cost is also observed in the literature, for example, in Van Mieghem (2003) and Ye

and Duenyas (2007).

We assume that at the time of investment, firms do not know exactly the yield of

capacity, thus the capacity level after the investment has uncertainty. This reflects the

fact that many factors besides capital investment (e.g., physical capacity, available

technology, process yield, and staffing plan) influence the actual capacity at the time

of production. This is consistent with the stream of literature where the supply is

unreliable, see e.g., Wadecki et al. (2011) and Wang et al. (2014). This setting is

valid in several contexts such as high tech capacity installation, agriculture, vaccine

production, etc. For instance, in AMOLED manufacturing, the production yield is

largely unknown at the time of capacity investment. Even when they are close to

reach the threshold of mass production capability, the acheived yield is still below

70% 1. In agriculture for example, while firms may invest to increase the supplier’s

capacity, the realized capacity is random until the harvest of the produce. There exists

another stream of literature where the capacity is deterministic and the demand is

stochastic. For example, one may refer to Plambeck and Taylor (2005) and Li et al.

(2011).

1http://www.oled-info.com/reports-korea-suggest-both-lgd-and-sdc-increased-oled-tv-
production-yields
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Specifically, the supplier’s total capacity isKs = (k0+k1+k2)ξ, where k0 represents

the supplier’s base capacity, ki (i = 1, 2) is the capacity level invested by firm i, and

ξ is a random variable with support [0, 1] reflecting the yield between the realized

capacity and the theoretical maximum capacity projected at the time of investment.

It follows that the supplier’s total capacity increases in the first order stochastic sense

as the buying firms’ investment increases. The fact that all the three parts of the

supplier’s capacity, k0ξ, k1ξ, and k2ξ are positively correlated, reflects that these

capacities are built for the same product at the supplier’s site, which are subject to

the same risk of random yield or supplier disruption.

In return for the investment, the firms impose contractual restrictions that limit

how the installed capacity should be used. While there are many different forms

of restriction used in practice, one widely-used form is an “exclusive” contract: the

investing firms demand the exclusive use of the firm-invested capacity, and disallow

the supplier from accessing the invested capacity to serve other firms even if the order

quantities leave some of that capacity unused. Another widely used form is that the

investing firms demand to fulfill their orders first (“first priority”), but the supplier is

free to use any leftover. One of the central questions we ask is how these restrictions

impact firms’ investment and quantity decisions.

If neither firm invests in the supplier, then both firms are identical from the

perspective of the supplier. In this case, no such priority will be given to either

firm. If the total quantity ordered by both firms is less than the supplier’s capacity,

allocation is trivial. When the total quantity is greater than the supplier’s capacity,

we follow Cachon and Lariviere (1999) and use the uniform allocation rule (also see

Sprumont (1991)). Under the uniform allocation rule, if one firm orders more than

the other firm, it will receive the minimum of its own order quantity and the capacity

left from serving the other firm. Unlike other allocation rules that can induce order

inflation (see Cachon and Lariviere (1999) for details), the uniform allocation rule is
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known to be truth-inducing, and non-manipulable; it results in both firms ordering

their preferred quantities within the limits of an upper bound that enforces that the

total quantity does not exceed the capacity. We assume that the uniform allocation

rule is common knowledge in our game, so both downstream firms are incentivized

to order their optimal quantities under all cases of investment. Since we assume that

the two buying firms are ex ante identical, if neither firm invests, the supplier is

effectively allocating one-half of the capacity to each firm in equilibrium; if the firms’

order quantities exceed capacity, they will each get one-half following the uniform

allocation rule. Therefore, in the case of neither firm investing, we use ξ to represent

the realization of ξ, and then firm i’s capacity reservation level is k0
2
ξ.

The exclusive contract is now defined as firm 1 reserves a capacity level (k0
2
+k1)ξ

exclusively. If firm 1 does not fully use the allotted capacity, the remaining capacity

will be wasted. Consequently, firm 2 is allocated a capacity of (k0
2
+ k2)ξ, which is

the maximum quantity that firm 2 can order. On the other hand, in the first priority

contract, firm 1 is allowed to order first, but the other firm can place an order up to

the remaining capacity: (k0
2
+ k2)ξ plus leftover capacity from firm 1, if any. When

only one firm or both firms invest, without loss of generality, we assume k1 ≥ k2, i.e.,

the capacity investment size by firm 1 is greater than or equal to the investment size

by firm 2.

The remaining sequence of events is as follows. After the capacity has been real-

ized, firms place their orders (with quantities specified by q1 and q2) subject to the

above capacity constraints and compete in the downstream market. Therefore, firm

i’s second-stage profit is given as qiP (q1, q2)−cqi. Likewise, the supplier’s second-stage

revenue is simply c(q1 + q2).

The total profit of each firm is the expected second-stage profit, minus investment

cost, if any. We assume that the buyer’s investment is entirely used for building

capacity, so the supplier’s overall profit is simply the expected value of c(q1 + q2).
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Note that relaxing this assumption does not change our results. For ease of exposition,

we assume that neither the firms nor the supplier incurs any other costs, although

incurring additional unit production costs at both firms will not change the analytical

findings. We assume that the buyers and supplier are profit-maximizing, risk-neutral

agents and all game parameters are common knowledge.

Remark on sequence of events. In our base model, we frame the sequence of

events as firms first invest to improve the stochastic capacity at the supplier, then

place an order after the capacity is realized. However, an alternative framework

to interpret the sequence of events is that firms first invest in and order from the

supplier. Then, after the capacity uncertainty is resolved, firms may choose not to

use up all the ordered components and only utilize a portion of them to produce the

final products at a production cost of c per unit. The second interpretation reflects

the semiconductor or hightech industry practice where firms place orders before the

capacity yield is realized or the production runs are completed. For ease of exposition,

we follow the first interpretation in the description of our model.

3.3 Exclusive capacity contract

We first analyze the case where the capacity contract is exclusive, i.e., the invested

capacity cannot be accessed by the other firm. To determine an equilibrium, we solve

the game by backward induction. Therefore, we first present the analysis for the

second-stage ordering subgame for given realized capacity ks = (k0 + k1 + k2)ξ and

first-stage investment decisions, then solve the first-stage investment game.

3.3.1 Second-stage quantity game

As we have introduced in Section 4.2, let (k1, k2) denote the capacity investment

sizes of the two firms. Given the realized supplier capacity ks = (k0 + k1 + k2)ξ

and investment decisions in the first stage, firms decide their order quantities (q1, q2)
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subject to realized capacity and restrictions placed in return for investments. Hence,

for given (q1, q2), the market clearing price, P (q1, q2), is given by P (q1, q2) = a−b(q1+

q2). The equilibrium production quantities are determined by solving the following:

πe
1(k1, k2, ξ) = max

q1≤(
k0
2
+k1)ξ

q1P (q1, q2)− cq1; π
e
2(k1, k2, ξ) = max

q2≤(
k0
2
+k2)ξ

q2P (q1, q2)− cq2.

The equilibrium order quantities and resultant profits are presented in Lemma III.1, in

which we assume k1 ≥ k2 without loss of generality. For ease of exposition, through-

out the chapter, we use m0(k1, k2) to represent the unit margin if neither firm is

constrained by the invested capacity (k1, k2) when ordering optimally. Likewise, un-

der a subgame perfect equilibrium m1(k1, k2) represents the unit margin if only one

firm is constrained by the invested capacity (k1, k2). As we assume k1 ≥ k2 and firms

compete in the Cournot market, if only one firm is constrained, that firm can only

be firm 2. Similarly, we use m2(k1, k2) to represent the unit margin if both firms are

constrained.

These are the following:

m0(k1, k2, ξ) =
a− c

3

m1(k1, k2, ξ) =
a− b(k0

2
+ k2)ξ − c

2

m2(k1, k2, ξ) = a− b(k0 + k1 + k2)ξ − c

For simplicity, we suppress the dependency of mi(k1, k2, ξ) on (k1, k2, ξ) when there

is no confusion. All proofs are relegated to the appendix.

Lemma III.1 (Firms’ equilibrium order quantity and ex post profit).

Let the capacity investment sizes be (k1, k2). The resulting subgame yields the follow-

ing:
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realized yield ξ order quantity (q∗1, q
∗
2) ex post profit (πe

1, πe
2)

0 ≤ ξ ≤ a−c

b(
3k0
2

+2k1+k2)

(

(k0
2
+ k1)ξ, (

k0
2
+ k2)ξ

) (

m2(
k0
2
+ k1)ξ,m2(

k0
2
+ k2)ξ

)

a−c

b(
3k0
2

+2k1+k2)
< ξ ≤

a−c

3b(
k0
2
+k2)

(

a−c−b(
k0
2
+k2)ξ

2b
, (k0

2
+ k2)ξ

)(

m1[a−c−b(
k0
2
+k2)ξ]

2b
, m1(

k0
2
+ k2)ξ

)

a−c

3b(
k0
2
+k2)

≤ ξ ≤ 1
(

a−c
3b

, a−c
3b

)

(

m0(a−c)
3b

, m0(a−c)
3b

)

We note that the lemma illustrates the case where a−c

3b(
k0
2
+k2)

≤ 1. For the cases

where a−c

3b(
k0
2
+k2)

> 1, the analysis is exactly the same except that one or two regions

in the table are empty. We discuss these cases in Appendix B.

3.3.2 First-stage investment game

Building on Lemma III.1, we now analyze the firms’ investment decisions in the first

stage. In this stage, the firm needs to make capacity investment decisions: whether

to invest in the supplier, and if so, by how much.

Before proceeding to the equilibrium analysis, we first define firms’ expected profit,

given firms’ capacity investment size (k1, k2). For notational simplicity, we define an

indicator 1C : 1C = 1 if condition C is met and 0 otherwise. Let V e
i (k1, k2) be the firm

i’s expected profit when the capacity investment sizes of the two firms are (k1, k2)

and the two firms will follow a subgame perfect ordering strategy in the second stage.

Using these terms and applying the results from Lemma III.1, we write V e
i (k1, k2) as
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follows.

V e
1 (k1, k2) = E [πe

1(k1, k2, ξ)]− w01{k1>0} − wk1

= E







1{

ξ≤ a−c

b(
3k0
2 +2k1+k2)

}

[

m2

(

k0
2

+ k1

)

ξ

]

+ 1{

ξ> a−c

3b(
k0
2 +k2)

}

[

m0(a− c)

3b

]

+ 1{

a−c

b(
3k0
2 +2k1+k2)

<ξ≤ a−c

3b(
k0
2 +k2)

}

[

m1[a− c− b(k0
2
+ k2)ξ]

2b

]







− w01{k1>0} − wk1

=

a−c

b(
3k0
2 +2k1+k2)
∫

0

m2

(

k0
2

+ k1

)

ξf(ξ)dξ +

1
∫

a−c

3b(
k0
2 +k2)

m0(a− c)

3b
f(ξ)dξ

+

a−c

3b(
k0
2 +k2)
∫

a−c

b(
3k0
2 +2k1+k2)

m1[a− c− b(k0
2
+ k2)ξ]

2b
f(ξ)dξ − w01{k1>0} − wk1 (3.1)

V e
2 (k1, k2) =

a−c

b(
3k0
2 +2k1+k2)
∫

0

m2

(

k0
2

+ k2

)

ξf(ξ)dξ +

1
∫

a−c

3b(
k0
2 +k2)

m0(a− c)

3b
f(ξ)dξ

+

a−c

3b(
k0
2 +k2)
∫

a−c

b(
3k0
2 +2k1+k2)

m1

(

k0
2

+ k2

)

ξf(ξ)dξ − w01{k2>0} − wk2 (3.2)

For both firms, the (expected) profit is the sum of three terms, minus investmen-

t costs. The first term represents the profit when the realized yield is small and

the resultant capacity is binding. In this case both firms order and use up all the

available quantity. The second term represents the firm’s profit when the realized

capacity is sufficiently large and neither firm is bounded by its capacity constraint.

The third term represents the case where firm 2 is capacity-constrained while firm 1

which invested more capacity is not. With the induced profit functions, we find the
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equilibrium by analyzing the corresponding game between the two firms.

Note that there are three possible equilibrium regimes: neither firm invests, one

firm invests, or both firms invest. In each regime, the investing firm(s) will also decide

how much to invest in the supplier’s capacity. If neither firm investing and both firms

investing are both equilibria, we use the equilibrium that the firms remain at the

status quo and do not invest in the supplier. This is because the status quo of the

game is that neither firm invests in the supplier, and it is natural to choose this

equilibrium as a focal equilibrium. We next evaluate the corresponding profits and

identify the conditions under which each specific equilibrium arises. We characterize

how the equilibrium evolves from one to another with respect to the fixed investment

cost, w0, and the variable investment cost, w, as follows.

Proposition III.2 (Firm’s equilibrium capacity investment: Exclusive capacity).

There exist two equilibrium switching curves, we
0(w) and we

0(w), such that we
0(w) ≤

we
0(w), and

i) When the fixed cost w0 is small (w0 ≤ we
0(w)), both firms invest ke in

the supplier. The equilibrium capacity, ke, is such that

ke ,



















k :

a−c

3b(
k0
2 +k)
∫

0

[

a− c− 3b

(

k0
2

+ k

)

ξ

]

ξf(ξ)dξ − w = 0



















, (3.3)

which decreases in w. Furthermore, there exists a function we
0(w) such

that the equilibrium leads to a prisoner’s dilemma in the region for all

w ∈ [we
0(w), w

e
0(w)]. Under the prisoner’s dilemma we have V e

i (k
e, ke) ≤

V e
i (0, 0) for i = 1, 2.

ii) When the fixed cost w0 is intermediate (we
0(w) < w0 ≤ we

0(w)), only

one firm (labeled as firm 1) invests in the supplier, where the equilibrium
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Figure 3.1: Equilibrium investment outcomes with exclusive capacity. “neither”: nei-
ther firm invests. “one”: one firm invests. “both”: both firms invest.

capacity, ke
1, is

ke
1 ,



















k1 :

a−c

b(
3k0
2 +2k1)
∫

0

[

a− c− b

(

3k0
2

+ 2k1

)

ξ

]

ξf(ξ)dξ − w = 0



















,

(3.4)

which is decreasing in w.

iii) When the fixed cost w0 is high (w0 > we
0(w)), neither firm invests in

the supplier.

Furthermore, we
0(w) and we

0(w) decrease in the variable cost w.

The equilibrium can be seen in Figure 3.1. For a given variable capacity cost w,

we observe that the number of investing firms decreases as the fixed capacity cost w0

increases. When the fixed capacity investment cost is fairly low, i.e., w0 ≤ we
0(w),

the entry barrier to invest in the supplier is low, and therefore, both firms invest

in the supplier’s capacity. The level of invested capacity, however, is determined by

the variable cost of the capacity investment w, as shown in equation (3.3). What is

surprising is, when the fixed capacity investment cost is close to the threshold we
0(w),
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as both firms find it dominant to invest in the supplier, both firms can be trapped in

a prisoner’s dilemma, where both firms earn a lower profit than what they would have

earned if neither firm had invested in the supplier’s capacity. While over-investment

in capacity also occurs when w0 ≤ we
0, in this case, the fixed investment cost is

not big enough to eat up the firms’ profit too much, thus preventing the firms from

being trapped in a prisoner’s dilemma. The prisoner’s dilemma equilibrium arises

as a combination of both over-investment in capacity and the non-negligible fixed

investment cost.

When the fixed capacity cost is in the intermediate range, i.e., we
0(w) < w0 ≤

we
0(w), an asymmetric equilibrium where only one firm chooses to invest in the sup-

plier is sustained. In this regime, the investing firm is able to gain enough profit being

the capacity leader in the market while the non-investing firm finds it not necessary

to invest in the supplier because the gain from investing in the supplier is limited and

not enough to cover the associated investment costs.

When the fixed capacity cost is very high, i.e., we
0(w) < w0, neither firm invests

in the supplier’s capacity, and each firm will rely on the supplier’s base capacity. The

transition of equilibrium from two firm investing to one firm investing to neither firm

investing is illustrated in Figure 3.1.

For a given fixed capacity cost w0, we also observe that the number of investing

firms decreases as the variable capacity cost w increases. To understand this, we

also need to understand the impact of increased variable cost w on the buying firm’s

profit. When both firms invest in the supplier, an increase in w has both a direct and

an indirect impact on the buying firms’ profits. The direct impact of a higher variable

cost is that the firms will have less incentive to invest in the supplier’s capacity (ke

decreases in w,) because it is more expensive to do so, and as a result, the direct

effect negatively affects the buying firm’s capacity and profit. The indirect impact

of a higher variable cost is that as the capacity of both firms decreases, it increases
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the market price and therefore the indirect effect positively affects the buying firm’s

profit. Therefore, whether an increase in the variable cost will lead to increase or

decrease in the buying firm’s profit will depend on the relative magnitude of the two

effects, and this is why we may observe the non-monotonicity in the lower border for

the prisoner’s dilemma region, as indicated by the dashed line in Figure 3.1.

When only one firm invests in the supplier, a higher variable cost discourages the

investing firm from investing in the supplier’s capacity (ke
1 decreases in w,) and the

investing firm’s profit decreases. Therefore, if the investing firm’s profit is less than

the profit with zero firm investing at a given variable cost w, then this will still be

the case as the variable cost becomes even higher. Thus we show that the switching

curve we
0(w) decreases in w. For the non-investing firm, however, the decrease in the

invested capacity lowers the quantity available to the market and raises the market

price. In addition, the non-investing firm cannot access the investing firm’s leftover

capacity with the exclusive capacity anyway. Therefore, the non-investing firm’s

profit increases with respect to w. We observe that as w increases, this increase in

the non-investing firm’s profit when only one firm invests in the supplier outweighs

the possibility to increase the firms’ profit when both firms invest in the supplier.

Thus we observe the monotonicity in the equilibrium switching curve we
0(w).

3.4 First-priority capacity contract

Another form of restriction is to claim first-priority rather than exclusivity. Under

this contract, the firm’s invested capacity will be used first for the investing firm, and

any leftover capacity invested but not used by the investing firm can be used to fulfill

other orders.

The sequence of events is the same as the exclusive contract in Section 4.2. In

the first stage, firms decide whether to invest or not, and if so, by how much. In the

second stage, firms engage in the quantity competition. However, the firm with less
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invested capacity (say firm 2) can use any leftover capacity of firm 1, i.e., firm 2 can

now order up to ks − q1 instead of (k0
2
+ k2)ξ. Then, the decision problems that the

two firms face are as follows:

πf
1 (k1, k2, ξ) = max

q1≤(
k0
2
+k1)ξ

q1P (q1, q2)− cq1; π
f
2 (k1, k2, ξ) = max

q2≤ks−q1
q2P (q1, q2)− cq2.

We present the equilibrium order quantity and resultant profit in Lemma III.3.

Lemma III.3 (Firms’ equilibrium order quantity and ex post profit).

Let the capacity investment sizes be (k1, k2), and the resulting subgame yields the

following:

realized yield ξ order quantity (q∗1, q
∗
2) ex post profit

(

πf
1 , πf

2

)

0 ≤ ξ ≤ a−c

b(
3k0
2

+2k1+k2)

(

(k0
2
+ k1)ξ, (

k0
2
+ k2)ξ

) (

m2(
k0
2
+ k1)ξ,m2(

k0
2
+ k2)ξ

)

a−c

b(
3k0
2

+2k1+k2)
< ξ ≤ 2(a−c)

3b(k0+k1+k2)

(

a−c
b

− ks, 2ks − a−c
b

) (

m2(
a−c
b

− ks), m2(2ks − a−c
b
)
)

2(a−c)
3b(k0+k1+k2)

≤ ξ ≤ 1
(

a−c
3b

, a−c
3b

)

(

m0(a−c)
3b

, m0(a−c)
3b

)

We observe that under any realization of ξ, there are only two outcomes: either

both firms are constrained by the capacity, or neither firm is constrained. In other

words, a situation where only one firm is constrained does not arise. This is not

surprising when ξ is very low (so the capacity is really tight) and ξ is very high (so

the capacity is sufficiently large,) but even when the realized capacity is moderate

( a−c

b(
3k0
2

+2k1+k2)
< ξ ≤ 2(a−c)

3b(k0+k1+k2)
), we also observe that all the invested capacity in the

supplier is used up. Intuitively, when the capacity type is first-priority and the realized

capacity is at a moderate level, the firm with less capacity has incentive to order any

leftover from the firm with more capacity because the benefit from satisfying more

demand beyond its own invested capacity dominates the negative impact of the lower

market price in a Cournot market. On the other hand, because firms compete in the
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same market, if the investing firm with more capacity has a unit of leftover capacity

that the other firm does not want to tap into, the investing firm will also find it not

profitable to satisfy the market with this additional unit of capacity. Thus, when the

capacity type is first-priority, either both firms are constrained by the capacity, or

neither firm is.

Following the same machinery in the exclusive capacity case, we can derive the fir-

m’s expected profit based on Lemma III.3 (the details are relegated to the appendix.)

With the expected profits, we show the firm’s equilibrium capacity investment in the

following proposition.

Proposition III.4 (Firms’ equilibrium capacity investment: First-priority capacity).

There exist two equilibrium switching curves, wf
0(w) and wf

0(w), such that wf
0(w) ≤

wf
0(w) and

i) When the fixed cost w0 is low (w0 ≤ wf
0(w)), both firms invest in the

supplier, where the equilibrium capacity, kf , is

kf ,



















k :

a−c

3b(
k0
2 +k)
∫

0

[

a− c− 3b

(

k0
2

+ k

)

ξ

]

ξf(ξ)dξ − w = 0



















, (3.5)

which is decreasing in w. Furthermore, there exists a function wf
0 (w) such

that the equilibrium outcome is a prisoner’s dilemma in the region between

wf
0 (w) and wf

0(w), i.e., V
f
i (k

f , kf) ≤ V f
i (0, 0) for i = 1, 2.

ii) When the fixed cost w0 is intermediate (wf
0(w) < w0 ≤ wf

0(w)), the

spillover effect occurs and only one firm (labeled as firm 1) invests in the
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Figure 3.2: Equilibrium investment outcomes with first-priority capacity. “neither”:
neither firm invests. “one”: one firm invests. “both”: both firms invest.

supplier, where the equilibrium capacity, kf
1 , is such that

kf
1 ,















k1 :

∫

a−c

b(
3k0
2 +2k1)

0

[

a− c− b
(

3k0
2

+ 2k1
)

ξ
]

ξf(ξ)dξ

+
∫

2(a−c)
3b(k0+k1)

a−c

b(
3k0
2 +2k1)

−2 [a− c− b (k0 + k1) ξ] ξf(ξ)dξ − w = 0















,

(3.6)

and kf
1 decreases in w.

iii) When the fixed cost w0 is high (w0 > wf
0(w)), neither firm invests in

the supplier.

Furthermore, wf
0(w) decreases in w.

The general structure of the equilibrium is similar to the one in Proposition III.2:

as the fixed cost w0 increases, the equilibrium shifts from a regime where both firms

invest, to a regime where only one firm invests, and finally to a regime where neither

firm invests for a given variable cost. We also observe that the equilibrium switching

curve wf
0(w) decreases in w. However, comparing to the exclusive capacity case, we

observe that the spillover effect occurs if one firm invests in the supplier with the first-

priority capacity. That is, one firm is able to tap into the leftover capacity invested

by the other firm.
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To understand why the spillover effect does not occur under the other two regions

(both firms investing or neither firm investing), we first observe that firms are able to

access the same capacity level in both cases, as the firms commit to the same level of

capacity investment in equilibrium and the random capacities available to the firms

are perfectly correlated. In addition, both firms compete in the Cournot market.

These facts imply that both firms will either exhaust all the available capacity or

have some capacity leftover. Therefore, the spillover effect is observed only when one

firm invests in the supplier’s first-priority capacity.

Furthermore, the firm’s capacity investment decision is affected by the spillover

effect. This is reflected by the second term in the optimal condition (3.6). In this case,

the realized capacity is moderately high (ξ ∈
[

a−c

b(
3k0
2

+2k1)
, 2(a−c)
3b(k0+k1)

]

), and the benefit

from the investment that allows the firm to access more capacity, is dominated by

the downside which is the decreasing market price as the non-investing firm accesses

the leftover and intensifies the quantity competition. As the benefit from accessing

more capacity is dominated by the decreasing market price, the investing firm will

have less incentive to invest in capacity.

Finally, we notice the equilibrium switching curve wf
0(w) is not necessarily mono-

tone in w due to the spillover effect. The only investing firm’s profit decreases in the

variable cost w and therefore the equilibrium switching curve we
0(w) that defines the

one firm investing regime decreases in w. However, the non-investing firm’s profit

does not necessarily increase with respect to the variable cost (we observe that the

profit of the non-investing firm increases in w in the exclusive capacity case.) While a

higher w leads to a lower invested capacity and raises the price in the Cournot market,

the non-investing firm may access the investing firm’s leftover capacity. Thus when

the investing firm lowers the capacity level, it could decrease the non-investing firm’s

capacity and resultant profit. Therefore, the non-investing firm’s profit may increase

or decrease in the variable capacity cost w, depending on which effect is stronger.
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Thus we observe the equilibrium switching curve we
0(w) is not necessarily monotone

in the variable cost w as shown in Figure 3.2.

3.5 Spillover effect: comparing exclusive and first-priority

capacity

In Sections 3.3 and 3.4, we identified three equilibrium regimes – neither firm invest-

ing, one firm investing, and both firms investing, as well as how the equilibrium and

its capacity level change in the capacity cost. We learned that the main difference

between the two capacity types is that the first-priority capacity may result in the

spillover effect, in which the non-investing firm benefits from access the investing

firm’s leftover capacity. In this section, we are interested in how the spillover effect

affects the equilibrium outcomes, and as a result, the buying firms’ and supplier’s

preference about the capacity type.

3.5.1 Impact on the equilibrium outcomes

At first glance, it seems that the spillover effect with the first-priority capacity will

always intensify the competition because firms have greater flexibility to access the

supplier’s capacity. However, our analysis shows that due to this greater flexibility, the

spillover effect indeed discourages some firms to invest in their supplier. Therefore,

it could decrease both the number of investing firms and the capacity investment

levels. As a result of the firms investing less aggressively, the spillover effect mitigates

the risk of both firms being trapped in a prisoner’s dilemma. Our next proposition

formally summarizes these impacts.

Proposition III.5 (Impact of spillover effect on the equilibrium outcomes).

i) The number of investing firms is higher with exclusive capacity than with first-

priority capacity, i.e., wf
0(w) ≤ we

0(w) and wf
0(w) ≤ we

0(w).
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ii) The total capacity level in the supplier is higher with exclusive capacity than with

first-priority capacity.

iii) The prisoner’s dilemma region is larger with exclusive capacity than with first-

priority capacity, i.e., [wf
0 (w), w

f
0(w)] ⊆ [we

0(w), w
e
0(w)] for all w.

Note that with the first-priority capacity, at first, it looks as if the end market

competition is intensified as buying firms are able to access each other’s leftover. If

the supplier’s total capacity level remains the same under both contracts, more units

of the products will be available in the end market and the market clearing price will

be lower with the first-priority capacity. In other words, competition between the

two firms is intensified with the first-priority capacity. Thus, the investing firm has

incentive to reduce its investment to reduce the competition intensity. On the other

hand, because firms can access the other firm’s leftover capacity and do not need as

much capacity as before, they are also less motivated to invest in capacity. Therefore,

firms invest less in the supplier with the first-priority capacity and the spillover effect

indeed curbs competition between firms as indicated by Proposition III.5 (i) and (ii).

The reduced investment is manifested in two different ways. First, in Proposition

III.5 (i), we find that the number of investing firms is lower with the first-priority

capacity than with the exclusive capacity. Thus, in a region where both firms would

invest with the exclusive capacity, it is possible that only one firm will invest with the

first-priority capacity. Similarly, it is possible that neither firm will invest with the

first-priority capacity in a region where one firm invests with the exclusive capacity.

Second, in Proposition III.5 (ii), we observe that when there is only one firm investing,

the invested capacity level is lower with the first-priority capacity, and when there are

more firms investing with the exclusive capacity, the invested capacity level is also

lower with the first-priority capacity, indicating that the spillover effect also decreases

the total capacity.

We also observe that the prisoner’s dilemma region is smaller with the first-priority

76



capacity in Proposition III.5 (iii). From the buying firms’ perspective, when only one

firm invests, the non-investing firm (firm 2) is able to access the leftover capacity

from the investing firm (firm 1). Therefore, firm 2 is less incentivized to invest

aggressively to gain additional capacity. As a result, it follows that with the first-

priority capacity, the prisoner’s dilemma region is smaller, where both firms invest

and compete intensively and earn a lower profit than what they earn when neither

firm invests in the supplier.

3.5.2 Capacity type preference of buying firms and the supplier

We next analyze the implication of the spillover effect on the firms’ and supplier’s

profit and their preference of the capacity types. In particular, we further investigate

how the buying firms and supplier would prefer the capacity type.

Buying firms’ preference. If both or neither firm invests in the supplier, firms

are indifferent between the two capacity types. The difference in preference arises

when only one firm invests in the supplier with at least one capacity type. The

preference of buying firms is affected by two main effects: the leading effect associated

with being the only investor, and the spillover effect that occurs with the first-priority

capacity. When the investing firm (firm 1) becomes the only investor, the advantage

of accessing more capacity allows the firm to extract more profit from the market than

the non-investing firm. On the other hand, with the spillover effect the non-investing

firm is able to access the leftover of the other firm’s invested capacity. Consequently,

the buying firm’s preference depends on which of the two effects is stronger. We first

summarize the buying firms’ capacity type preference in the following proposition.

Proposition III.6 (Buying firms’ preference about capacity type).

i) When 0 ≤ w0 < wf
0(w), the firms are indifferent between the exclusive and first-

priority capacity, i.e., V e
i (k

e, ke) = V f
i (k

f , kf ), as both firms invest the same amount

with both types of capacity.
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Figure 3.3: The buying firms’ preference about the capacity types

ii) When wf
0(w) ≤ w0 < we

0(w), both firms prefer that one firm investing with first-

priority capacity over both firms investing with exclusive capacity, i.e., V e
i (k

e, ke) ≤

V f
i (k

f
1 , 0).

iii) When we
0(w) ≤ w0 < wf

0(w) and wf
0(w) ≤ w0 < we

0(w), firm 1 prefers the

exclusive capacity to prevent the spillover effect while firm 2 prefers the first-priority

capacity, i.e., V e
1 (k

e
1, 0) ≥ V f

1 (k
f
1 , 0), V

e
1 (k

e
1, 0) ≥ V f

1 (0, 0), V
e
2 (k

e
1, 0) ≤ V f

2 (k
f
1 , 0) and

V e
2 (k

e
1, 0) ≤ V f

2 (0, 0).

iv) When w0 ≥ we
0(w), the firms are indifferent between the exclusive and first-priority

capacity, i.e., V e
i (0, 0) = V f

i (0, 0), as neither firm invests.

The results are presented in Figure 3.3. One may expect that the investing firm

should always prefer the exclusive capacity to mitigate the negative impact of the

spillover effect and disallow the other firm to access its leftover capacity. However,

our analysis indicates that this is not always the case. While the investing firm tends

to prefer the exclusive capacity to prevent the spillover as shown in Proposition III.6

(iii), it prefers the first-priority capacity in the range wf
0(w) ≤ w0 < we

0(w) when the

exclusive capacity will trigger the other firm to invest and the investing firm will lose

the benefit from the leading effect, as shown in Proposition III.6 (ii). On the other

hand, the non-investing firm always prefers the first-priority in the hope of being able

to free-ride on the investing firm’s leftover capacity. We next discuss the supplier’s

preference about the capacity types.

Supplier’s preference. The supplier’s expected profit with the exclusive and
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first-priority capacity, V e
s and V f

s , when firms invest in (k1, k2) are as follows. Recall

that the supplier’s realized capacity is denoted by ks = (k0 + k1 + k2)ξ, and c is the

unit profit from production.

V e
s (k1, k2) =

a−c

b(
3k0
2 +2k1+k2)
∫

0

cksf(ξ)dξ +

a−c

3b(
k0
2 +k2)
∫

a−c

b(
3k0
2 +2k1+k2)

c

[

a− c

2b
+

(

k0
2

+ k2

)

ξ

2

]

f(ξ)dξ

+

1
∫

a−c

3b(
k0
2 +k2)

2c(a− c)

3b
f(ξ)dξ (3.7)

V f
s (k1, k2) =

2(a−c)
3b(k0+k1+k2)

∫

0

cksf(ξ)dξ +

1
∫

2(a−c)
3b(k0+k1+k2)

2c(a− c)

3b
f(ξ)dξ (3.8)

Comparing the supplier’s profits under the two contacts leads to a few interesting

observations. From the supplier’s perspective, the spillover is a two-edged sword.

While the spillover effect improves the capacity utilization of the supplier, it also

reduces the supplier’s total capacity as shown in Proposition III.5. Therefore, it is

not obvious how the supplier’s preference about capacity types changes as the type

changes from exclusive to first-priority.

However, we show that if the fixed investment cost is low, both firms invest in

the supplier and the supplier is indifferent between the two capacity types since both

types induce the same amount of investment in the supplier. If the fixed cost is

high, the supplier is also indifferent between the capacity types since neither firm

is tempted to invest in the supplier anyway. In between, if more firms invest with

exclusive capacity, the supplier benefits from the over-investment of buying firms

more than the flexibility with first-priority capacity. These results are shown in the

next proposition.

Proposition III.7 (Supplier’s preference about capacity type).
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i) When 0 ≤ w0 < wf
0(w) or w0 ≥ we

0(w), the supplier is indifferent between the

exclusive and first-priority capacity, i.e., V e
s (k

e, ke) = V f
s (k

f , kf) and V e
s (0, 0) =

V f
s (0, 0).

ii) When wf
0(w) ≤ w0 < we

0(w) or wf
0(w) ≤ w0 < we

0(w), the supplier prefers the

exclusive capacity, i.e., V e
s (k

e, ke) ≥ V f
s (k

f
1 , 0) and V e

s (k
e
1, 0) ≥ V f

s (0, 0).

Proposition III.7 (i) shows that if both firms invest in the supplier, i.e., 0 ≤ w0 <

wf
0(w), the supplier is indifferent between the two capacity types. To understand this,

we notice that both firms compete in the Cournot market and both firms invest in the

same capacity level. Therefore, both firms will either exhaust all the available capacity

or have some capacity leftover for all realizations, and the first-priority capacity is de

facto exclusive. Similarly, when neither firm invests in the supplier, i.e., w0 ≥ we
0(w),

both firms will be able to access the same capacity level, and therefore the first-priority

capacity is also de facto exclusive. In these two cases, the supplier is indifferent

between the two capacity types.

Proposition III.7 (ii) implies that in regions wf
0(w) ≤ w0 < we

0(w) and wf
0(w) ≤

w0 < we
0(w), the supplier prefers the exclusive capacity to the first-priority capacity.

In these two regions, the exclusive capacity results in strictly more firms investing.

In the region where wf
0(w) ≤ w0 < we

0(w), both firms invest under the exclusive

contract and one firm invests under the first-priority contract. Under the exclusive

contract, both firms invest in the same capacity level in the supplier, and therefore

either both firms will use up the invested capacity or both of them will have some

leftover. That is, the supplier’s capacity is utilized efficiently despite the exclusive

claims. In addition, the total capacity invested by both firms with the exclusive

capacity is higher than the total capacity invested by the one investing firm with the

first-priority capacity. Therefore, the supplier is able to earn a higher profit with

exclusive capacity and prefers the exclusive capacity to the first-priority capacity. In

the region where wf
0(w) ≤ w0 < we

0(w), neither firm invests under the first-priority
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Figure 3.4: The supplier’s preference about the capacity types

contract and one firm invests under the exclusive contract, so the supplier is able to

extract more profit from leveraging the additional capacity invested by the investing

firm and it also prefers the exclusive capacity. These results are also shown in Figure

3.4.

However, we note that the supplier’s preference is not trivial when the fixed cost w0

is between we
0(w) and wf

0(w). In this case, only one firm invests under both contracts,

and the supplier gains more capacity investment with the exclusive capacity but loses

the flexibility in using it. Intuitively, if the realized yield is small, the supplier may

benefit from the over-investment with exclusive capacity. If the yield is moderately

high, the supplier may benefit from the flexibility in utilizing the first-priority capac-

ity. If the yield is high, the supplier is indifferent between the two capacity types

as there is enough capacity to produce with either type. Thus, depending on which

of the two effects dominates, the supplier’s preference may change. Its preference

depends on the parameters such as the distribution of the yield and the variable cost

to invest in the capacity. The supplier’s ex post profit is illustrated in Figure 3.5 (a).

To further explore the supplier’s preference between the two capacity types in this

case, we conduct a numerical study below.

In Figure 3.6, we present a numerical study showing how the difference in the

supplier’s profit between exclusive and first-priority contracts changes in the variable

capacity cost w, and the distribution of the yield ξ when only one firm invests in

the supplier. The first key observation is that the benefit from over-investment in the

exclusive capacity tends to dominate the benefit from the flexibility in the first-priority
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firm invests (a); a numerical example of the ex post profit difference (b).
Parameters in (b): a = 10, b = 1, c = 1, w = 0.1, yield distribution
U [0, 1], and supplier’s base capacity k0 = 7.
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distribution U [low, 1] where the low value increases from 0 to 0.99.

capacity, i.e., V e
s (k

e
1, 0) − V f

s (k
f
1 , 0) ≥ 0. Let us take a closer look at one particular

case of the ex post supplier’s profit difference as shown in Figure 3.5 (b). It is clear

that the region where the profit with exclusive capacity is greater than the profit with

first-priority capacity, is greater than the other region, where the profit with exclusive

capacity is smaller than the profit with first-priority capacity. This further confirms

the conjecture that the over-investment benefit dominates the flexibility benefit. As
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the yield follows a uniform distribution between 0 and 1, we have that the ex ante

expected profit with exclusive capacity is higher. Other cases are similar. While in

this numerical example we illustrate that the benefit from the over-invested exclusive

capacity often dominates the benefit from the flexibility in utilizing the first-priority

capacity under the uniform yield distribution, the exact preference depends on the

problem parameters and yield distribution in a general case.

To summarize the firms and supplier’s preference about the capacity type, we note

that the investing firm typically finds it beneficial to choose the exclusive capacity to

prevent from the spillover, unless choosing the first-priority capacity allows it to access

a larger portion of capacity and therefore it can enjoy the benefit from the leading

effect. On the other hand, the non-investing firm typically prefers the first-priority

capacity so that it can benefit from the spillover effect. The supplier, however, prefers

the exclusive capacity when more buying firms invest under the exclusive capacity,

driven by the benefit from firms’ over-investment in the capacity. When only one

firm invests under both contracts, the supplier’s preference depends on which of the

two effects is stronger, over-investment with the exclusive capacity or the smaller but

flexible investment with the first-priority capacity.

3.6 Efficiency of the supply chain

So far we have derived the equilibrium outcomes with both types of capacity, analyzed

the impact of spillover on the capacity investment decision, and characterized the

firms’ and supplier’s preference about the capacity types. In this section, we focus

on the efficiency of the supply chain. As a benchmark, we first analyze a first-best

solution of the supply chain, where the downstream market is merged into a single

firm in the end market and is integrated vertically with the supplier. We then compare

the performance of the supply chain under both types of capacity with the first best

solution and identify the inefficiency in the supply chain.
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3.6.1 First-best benchmark

In the first-best benchmark, firms are not competing against each other. Instead,

they serve the end market as a monopoly and are integrated vertically with the

supplier. The sequence of events is still the same as in Section 4.2. In the first stage,

the monopoly decides whether to invest to build extra capacity, and if so by how

much. Because it is a vertically integrated monopoly, no decisions on exclusivity or

first-priority need to be made. In the second stage, the monopoly produces based

on the capacity realization and serves the end market with the market clearing price

p = a − bqm, where qm is the total quantity the monopoly supplies to the market.

Other parameters remain the same.

We solve this optimization problem using backward induction, and characterize

the optimal solution in the following proposition.

Proposition III.8 (Optimal capacity investment). There exists an equilibrium switch-

ing curve wm
0 (w) such that

i) When the fixed cost is small (w0 ≤ wm
0 (w)), the monopoly prefers to

invest in additional capacity, where the invested capacity km is such that

km ,











k :

a
2b(k0+k)
∫

0

[a− 2b (k0 + k) ξ] ξf(ξ)dξ − w = 0











, (3.9)

which decreases in w.

ii) When the fixed cost is high (w0 > wm
0 (w)), the monopoly does not

invest in additional capacity.

Furthermore, wm
0 (w) decreases in w.

As before, when the fixed cost of the capacity investment is too high, the monopoly

finds it not profitable to invest in additional capacity. Therefore, the investment may
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occur only if the fixed cost is low enough. As competition is absent in the first-best

benchmark, if the monopoly decides to invest, it will simply choose the capacity level

that maximizes its benefit, as reflected by equation (3.9). Based on the investment

outcome, it is straightforward to derive the monopoly’s expected profit. For the

interest of space, we do not show the detailed formula.

3.6.2 Efficiency loss in the supply chain

Compared to the first-best benchmark, the supply chain with two firms sharing one

supplier has two different features that may cause inefficiency: the competition (over-

investment and spillover) among the buying firms and the non-zero wholesale price.

The competition effect may lead to over-investment in the supplier, because the com-

peting firms invest aggressively in order not to be shut out when serving the market.

On the other hand, however, the spillover effect may partially mitigate the compe-

tition effect and result in a smaller total capacity. The non-zero wholesale price is

another potential source of inefficiency for the supply chain, as when there are two

tiers in the supply chain, a double marginalization effect distorts buying firms’ incen-

tive for capacity investment and order quantity. We next analyze the impact of the

two types of inefficiency separately. We first examine the competition effect and then

the effect of a non-zero wholesale price.

Impact of competition. In order to separate the impact of the two types of

inefficiency, we first consider the supply chain in our base model, where two buying

firms share a common supplier, but with the wholesale price set as c = 0. Doing

so filters out any effect caused by the non-zero wholesale price, and comparing this

case to the first-best benchmark allows us to isolate the impact of competition effect

from the wholesale price. We highlight the impact of competition on the equilibrium

capacity in the following proposition.

Proposition III.9 (Impact of competition on equilibrium capacity). When c = 0,
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i) With exclusive capacity, firms over-invest in the supplier’s capacity. Specifically,

the investing region is larger (we
0(w) ≥ wm

0 (w)), and the capacity investment level is

higher (2ke ≥ km and ke
1 ≥ km).

ii) With first-priority capacity, firms may over-invest or under-invest in the supplier’s

capacity, but the spillover effect partially mitigates the over-investment in capacity.

Thus, the total investment is lower under the first-priority contract than under the

exclusive one.

When firms compete, they invest more aggressively in the supplier. In particular,

when the capacity is exclusive, the region where there is at least one firm investing is

larger than the region where the monopoly firm will invest in its capacity. Under the

exclusive capacity, if both firms choose to invest, the competition effect dominates

because either both firms have leftover or neither of them has. If only one firm

invests in the supplier, the investing firm still over-invests in the supplier’s capacity

because it cannot access all the supplier’s base capacity while it can in the first-best

case. With the first-priority capacity, however, the investing firm has less incentive

to invest in the supplier’s capacity due to the spillover effect. Therefore, the spillover

effect partially mitigates the over-investment with the exclusive capacity and may

even result in under-investment in the supplier, as shown in Proposition III.9 (ii).

We next numerically investigate the impact of the competition on the equilibrium

capacity investment and the supply chain efficiency. We use ki
sc, i = e, f , to indicate

the total capacity in equilibrium, and Ri
0 to indicate the percentage of supply chain

profit decrease relative to the first-best case. In Figure 3.7, we illustrate how the

supply chain efficiency loss changes with the competition. We first observe in Figure

3.7 (a) that as the variable capacity cost w increases, the exclusive capacity is always

higher than the first-best capacity, while the first-priority capacity can be higher than

the first-best capacity (region I and III) or lower than the first-best capacity (region

II). However, the first-priority capacity is always smaller than the exclusive capacity,
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Figure 3.7: An example of efficiency loss of the supply chain due to competition. (a):
km is the first-best supply chain capacity; ke

sc (kf
sc) is the total capacity

when the capacity type is exclusive (first-priority). Region (I): ke
sc = kf

sc >
km; Region (II): ke

sc > km > kf
sc; Region (III): ke

sc > kf
sc ≥ km. (b): Re

0

(Rf
0 ) is the supply chain efficiency loss relative to the first-best case when

the capacity type is exclusive (first-priority). Parameters: a = 10, b = 1,
c = 0, w0 = 1, k0 = 7, and the yield distribution U [0, 1].

and this partial mitigation of the over-investment improves the supply chain efficiency

as shown in Figure 3.7 (b). We observe that the supply chain efficiency loss is smaller

under the first-priority capacity, and the improvement can be as large as 16.21%.

Impact of wholesale price. We next analyze the impact of the wholesale price

by considering the supply chain with two competing firms sharing a supplier and a

wholesale price c. We first show that when the capacity type is exclusive, a higher

wholesale price disincentivizes buying firms to invest in the supplier in the proposition

below.

Proposition III.10 (Impact of wholesale price on equilibrium exclusive capacity).

When the capacity type is exclusive, both the number of investing firms and equilibri-

um capacity decrease as the wholesale price increases, i.e., we(w), we(w), ke and ke
1

decrease in c.

Note that a higher wholesale price is equivalent to a smaller market size. There-

fore, with exclusive capacity, the investing firms will find it not necessary to invest

87



much capacity when the market size is relatively small. This is why we observe both

the number of investing firms and the sub-game perfect equilibrium capacity decreas-

es in the wholesale price. One important implication of the result is that as the

wholesale price increases, the over-investment observed in Proposition III.9 (i) may

get mitigated. Therefore, the efficiency of the whole supply chain may be improved.

With first-priority capacity, however, while a smaller market size has the direct

impact of disincentivizing the investment, it also diminishes the impact of the spillover

effect and therefore may indirectly incentivize the investment. The is shown in equa-

tion (3.6), where the first term decreases in c reflecting the direct effect, and in the

second term the integrand increases in c and the range of the integral decreases in c

reflecting the indirect effect. Therefore, it is not clear analytically how the equilibrium

capacity should change with respect to the wholesale price.

We next use numerical experiments to further explore the impact of the wholesale

price on the equilibrium capacity and supply chain efficiency. In Figure 3.8 (a), we

first observe that the equilibrium capacity decreases with the wholesale price. As a

result, the over-investment in the supply chain can be mitigated and the efficiency

of the supply chain may be improved. In Figure 3.8 (b), we observe that in the

medium range of the wholesale cost, the supply chain efficiency loss is relatively

small as the over-investment is significantly reduced from the level when c = 0.

When 1.00 < c ≤ 1.80, we observe the first-priority capacity yields a lower efficiency

loss compared to the exclusive capacity because only one firm invests under the first-

priority contract and therefore the fixed cost is incurred only once. In contrast,

both firms invest under the exclusive contract and therefore the fixed cost is incurred

twice. When 1.80 < c ≤ 2.80, the exclusive capacity yields a lower efficiency loss

than the first-priority capacity because firms are not incentivzed to invest under the

first-priority contract as the wholesale cost is high, but they are still incentivized

to invest under the exclusive contract. Therefore, the additional exclusive capacity
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Figure 3.8: An example of efficiency loss of the supply chain due to the wholesale
price. km is the first-best supply chain capacity; ke

sc (kf
sc) is the total

capacity when the capacity type is exclusive (first-priority). Re
0 (Rf

0 ) is
the supply chain efficiency loss relative to the first-best case when the
capacity type is exclusive (first-priority) and wholesale price is 0. Re

c

(Rf
c ) is the supply chain efficiency loss relative to the first-best case when

the capacity type is exclusive (first-priority) and wholesale price is c.
Parameters: a = 10, b = 1, k0 = 7, w0 = 1, w = 0.1, and the yield
distribution U [0, 1].

investment, which is close to the first-best capacity as shown in Figure 3.8 (a), helps

to improve the efficiency of the supply chain.

To summarize the discussion about the two types of inefficiency, interestingly,

we find that both the spillover effect and the wholesale price can reduce the over-

investment associated with the exclusive capacity. Therefore, when set appropriately,
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the wholesale price may echo the spillover effect of the first-priority capacity and

improve the efficiency of the whole supply chain. However, in some cases, the combi-

nation of the wholesale price and the spillover effect may reduce the investment too

much, and the exclusive contract performs better for the supply chain as a whole.

3.7 Conclusion

We investigate two capacity contract structures that firms may engage in when

investing in expansion of a shared supplier’s capacity. We characterize the equilibrium

outcomes, identify conditions about when and to what extent the spillover effect

and prisoner’s dilemma occur, and analyze the impact of the spillover effect on the

equilibrium outcomes, and firms’ and supplier’s capacity type preferences. We also

investigated how the supply chain efficiency changes between exclusive and first-

priority contracts.

Managerially, therefore, firms considering investing in suppliers who also supply

their competitors must consider the consequences of their investment via the lens of

a multi-player game, rather than myopically focusing on increased access to capacity.

Placing restrictions on the supplier that are too tight may backfire in the form of

competitors also jumping in with their own investments, which is reflected by the fact

that more firms tend to invest and firms tend to over-invest with exclusive capacity

in our model. We show that the spillover has both positive and negative effects on

the investing firm. On the surface, allowing the spillover increases the end-market

competition as more products are produced by both firms for a given capacity. On the

other hand, allowing the non-investing firm to share the leftover capacity can actually

disincentivizes a need for investment, and, consequently, both firms may avoid being

trapped in a prisoner’s dilemma. Depending on two effects, the leading effect and the

spillover effect for buying firms, different capacity types may be preferable. While the

non-investing firm always prefers the first-priority capacity, the investing firm does
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not always want to shut off the other firm from accessing its invested capacity. By

allowing access to the leftover, both firms could be better off. We also show that

the supplier’s preference is driven by the tradeoff between the over-investment in the

exclusive capacity versus the flexibility in utilizing the smaller first-priority capacity.

The results and insights of our work help us to understand a sequence of events

that happened in the Foxconn-Sharp-Samsung case. Although there are many factors

that affect Foxconn and Samsung’s investment decisions, we highlight one particular

factor in this case: Competing firms invest in a supplier to gain capacity. Despite its

financial troubles, Sharp still maintains superior technology advantage in producing

the LCD screens with the IGZO technology, and the factory in partnership with Hon

Hai is the only one capable of producing the industry’s largest sheets of glass panels

(Osawa and Lee, 2013). Therefore, it is critical for firms to secure supply from Sharp

to maintain competitive advantage in the future. Driven by this motivation, Foxconn

invested to secure 50% capacity of Sharp’s Sakai factory, while Samsung also invested

to prevent competitors to gain too much control over Sharp, and secure a steady

supply of LCD panels. This competition for access to capacity is precisely what this

chapter considers, and this investment relationship is reflected in our model. As our

analysis suggests, firms have to consider both direct and indirect consequences of

their investment when they share a supplier with a competitor. Being too aggressive

and claiming too much capacity may backfire as competitors may jump in with their

own investment to prevent the firm from gaining a priority.
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CHAPTER IV

To Share or Not to Share? Capacity Investments

in a Shared Supplier

4.1 Introduction

Supply chains today are highly decentralized and consist of complex networks

with many buying firms and suppliers. Often, the relationships between buyers and

suppliers are not necessarily one-to-one and exclusive; multiple (competing) firms

may share common suppliers, or a single firm may source the same component from

multiple suppliers. The benefits of building and maintaining such supply chains in-

clude reduced cost (Li, 2013), increased reliability and resiliency (Wang et al., 2010),

improved quality (Federgruen and Yang, 2009), and pooled resources (Plambeck and

Taylor, 2005). In order to build and maintain relationships, firms share information

and production technology with suppliers (Wang et al., 2014), offer mutually benefi-

cial contracts that split the gain from coordination (Cachon and Lariviere, 2005), or

invest production or financial resources in suppliers (Li, 2013). Rather surprisingly,

we often observe that the firms engage in these activities even when their suppliers

serve multiple firms, including the firms’ competitors. Among these activities, we ob-

serve that many firms invest in or reserve the capacity in their shared suppliers. For

example, Apple made sizable investments in its suppliers to expand their capacities
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(Davis and Crothers, 1999; Ferrari, 2011). In 2011, Apple made a multi-billion dollar

investment in LG Display for capacity expansion, although LG supplies its screen to

other phone and tablet manufacturers which compete with Apple (LG also makes

smartphones). According to IHS iSupply, instead of simply purchasing displays from

its suppliers, Apple is providing financial support so that LG can build production

capacity for new-generation LCD panels. A Fortune 100 company that the authors

worked with, CISCO, invests in several suppliers to expand capacity in assembly and

testing. A major cosmetics company, Johnson & Johnson’s Neutrogena, purchased

machines for a South Korean cosmetic supplier who also fulfilled orders for other

cosmetic companies.

In practice, investing in a supplier does not always mean physical installation

of new capacity at the supplier. Instead, the investment may also be an upfront

monetary payment to reserve some of the supplier’s capacity. In practice, these

activities are also called supplier investment. Our model is general enough to account

for both; in the rest of the chapter, the notion of “investing” and “reserving” can be

used interchangeably, unless mentioned otherwise.

When a firm invests in a supplier who also serves another firm, one concern is

that the supplier might use the invested (reserved) capacity to benefit other firms.

This concern of leakage or spill-over is very pronounced when the supplier serves the

investing firm’s competitor. To avoid this, many investing firms impose constraints

about how the capacity should be used, so that the invested or reserved capacity be

used exclusively or primarily for the investing firm. For instance, in the cosmetics

company that the authors worked with, machines invested by a buyer could be used

only to satisfy her order. In another case of such exclusive capacity reservation,

Foxconn invested $1.6 billion to buy a 46.5% stake in a single LCD factory owned

by Sharp in Sakai, Japan, in early 2012, in order to receive a steady supply of LCD

screens which Foxconn uses for Apple and other customers. (Dignan, 2012). Foxconn
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jointly runs operations with Sharp and earns a proportionate part of the revenues

(Team, 2012). Under the joint agreement, Foxconn claims 50% of LCD outputs

exclusively from the factory.

We note that these restrictions on the use of capacity are often enforced through

physical devices like counters or fixtures, or audits by the investing firm or third

parties. In some cases, buying firms send their employees to work at their supplier

sites. As in the examples, buying firms often negotiate precise rules on the availability

and use of contracted capacity.

Claiming exclusivity is not the only way to restrict the use of invested capacity.

For example, from the authors’ interview with the supply chain director of a global

agriculture supply company, the firm invests in ingredient suppliers to reserve capac-

ity, but it places no restrictions on what the supplier does with the fraction of the

capacity that was not used. In this case, the firm only claims first priority in utilizing

the supplier’s capacity. In our literature review, we point out several papers that

have considered one or both of these types of capacity investment and reservation.

When a supplier serves multiple firms, measuring the benefit of investment in the

supplier becomes difficult. While investment allows a firm to reserve (secure) more

capacity to serve uncertain demand, at the same time, the supplier and other buying

firms can take advantage of the firm’s investment and potentially intensify competi-

tion in the end market. In this chapter, we study how this trade-off affects capacity

investment decisions: which capacity type firms (and the supplier) will choose so

that they can strike a balance between the benefit from sharing the capacity and the

adverse effects of investment.

To answer this question, we consider a supply chain (network) consisting of two

buying firms sharing a supplier. Each firm, who faces uncertain demand, decides the

terms of the capacity investment: capacity type—whether the invested capacity will

be dedicated exclusively for the firm, or whether the investing firm will only demand
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first priority on the capacity leaving the supplier to use the unused capacity at its

discretion— and the investment levels (costs of capacity installation/reservation vary

depending on the terms and level of investment). Then, demands are realized and

firms place orders to the supplier.

One of the critical factors that influence the benefit of investment in a shared

supplier is how competitive the downstream market is. For instance, if the other firm

is not directly competing with the investing firm in the end market, the impact of

the supplier using leftover capacity to fulfill the other firm’s order is not of concern

to the investing firm. However, the use of leftover capacity can significantly affect

the downstream competition if the other firm serves the same market as the investing

firm. To study the impact of downstream market structure, we consider two differ-

ent environments: (i) the two firms serve independent markets (firms’ demands are

independent), and (ii) the firms compete over quantity, a la Cournot.

Our contributions We model this situation as a multi-stage game and character-

ize its equilibrium. Our results highlight how firms should strategically choose the

restrictions on the invested capacity as investment costs and/or the demands that

firms face change. We show that three equilibria emerge: both firms investing in ex-

clusive capacity, both firms investing in first-priority capacity, and one firm investing

in exclusive and the other in first-priority capacity. We show that which of the three

equilibria emerges depends on the capacity cost as well as the market environment

that determines the demands of two firms. When demands of two buying firms are

independent, the equilibrium changes from both choosing exclusive capacity to only

one firm choosing exclusive capacity to no firm choosing exclusive capacity as the cost

of reserving exclusive capacity increases. Rather surprisingly, we find that two ex-ante

symmetric firms would end up in an asymmetric equilibrium where one firm allows

the other to free-ride on its capacity. We note, however, that demand correlation

makes the asymmetric investment equilibrium disappear in the Cournot market.

95



We also find that a prisoner’s dilemma in which both firms overinvest only arises

when both firms choose exclusive capacity. On the other hand, a free-rider equilibrium

in which one firm invests in extra capacity and the other firm shares it even without

any compensation occurs only when one firm chooses exclusive and the other firm

chooses first-priority. Surprisingly these two outcomes only occur in the independent

market. In the Cournot market, demand correlation makes these outcomes disappear:

firms are never trapped in a prisoner’s dilemma or a free-rider equilibrium. These

results hold even if firms are asymmetric in terms of their wholesale price.

Although our base model considers the supplier to be a passive participant in this

game, we also consider the model in which the strategic supplier is able to choose

the capacity type that buying firms should invest. Once again we find that the

outcome depends on the market environment, resulting in the different outcomes for

the independent and Cournot market. For instance, when the capacity costs are the

same, the supplier always prefers the exclusive capacity over the first-priority capacity

in the independent market, but the two types are indifferent from the perspective of

the supplier in the Cournot market. When the capacity costs are different, we show

that the capacity type that the supplier prefers are different from the capacity type

that the buyers prefer.

Our results and insights provide a plausible explanation for supplier investment in

practice. It provides a rationale that why demanding to use the capacity exclusively

does not necessarily serve the investing firm’s best interest. When firms compete in a

homogenous market, we show that firms may choose the first-priority capacity instead

of more expensive exclusive capacity without worrying about spillover. On the other

hand, in the independent market where there is no threat of competition, choosing

exclusive capacity may become optimal even when doing so is more expensive than

choosing first-priority capacity. Finally, we discuss the potential of using transfer

payment to coordinate the network.
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4.1.1 Literature review

The two main features of our model are sourcing from a shared supplier, and

capacity investment. We review related literature from both strands of work below.

We point out that ours is one of the first that combine sourcing from a shared supplier

and finite capacity investment. Nevertheless, our contributions are best understood

in light of the findings of the papers on sharing suppliers and capacity investment.

Our work is closely related to the outsourcing literature. Earlier works focus on

analyzing the relationship between one buyer and one supplier. These include Iyer

et al. (2005), Zhu et al. (2007) and Babich (2010). In recent years, the focus has

moved toward more complicated relationships, which include dual sourcing (Li, 2013;

Wang et al., 2010) and a back-up supplier (Yang et al., 2009).

There are several papers that considered (potentially competing) firms outsourc-

ing to a common supplier. Cachon and Harker (2002) show that economy of scale

makes outsourcing attractive even if the supplier does not have any direct cost ad-

vantage. Arya et al. (2008) find that for a retailer, outsourcing to a higher cost but

uncapacitated supplier can be a strategic tool in raising its rival’s costs and hence gain

competitive advantage. Feng and Lu (2012) develop a multiunit bilateral bargaining

framework and show that under both one-to-one and one-to-many channels, low cost

outsourcing may hurt the manufacturers by changing manufacturers and supplier’s

bargaining position. Wadecki et al. (2011) analyze the setting where firms can invest

to improve suppliers’ reliability, and study the impact of downstream competition on

firms’ subsidies to (infinite capacity) suppliers in four supply chain structures differ-

ing in whether the firms share a supplier and whether the firms compete with each

other. Wang et al. (2014) consider the effect of knowledge spillover (in contrast with

capacity spillover) when one (or both) firms invest in a shared supplier, and derive

conditions under which one or both firms invest. All these papers explore different

incentives to outsource, identify possible adverse outcomes as a result of outsourcing,
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and find ways to coordinate misaligned incentives using either a non-cooperative or

cooperative game framework. Most papers that examine multiple firms outsourcing

to a common supplier do not consider capacity constraint. Discussions related to

capacity investment in an outsourcing setting are relatively sparse.

Capacity management (within the firm) has been studied in industrial organiza-

tion and operations management literature for decades; Dixit (1980) is an example

of an early and influential paper in this area. Van Mieghem (2003) provides a review

of earlier works. Among more recent papers in which firms build their own capacity

and compete in an end market, Goyal and Netessine (2007) consider two competing

firms’ choice of flexible or dedicated technology and capacity investment, and show

that flexible and dedicated technology can coexist in equilibrium.

There are a few recent papers that address capacity issues in an outsourcing

setting. Plambeck and Taylor (2005) use a cooperative game framework to analyze

the impact of contract manufacturing on innovation and capacity. They show that if

firms outsource to a supplier, the supplier can increase utilization by pooling, which

decreases firms’ willingness to invest in innovation. If firms share capacity as a joint

venture, this may increase or decrease innovation, but profitability always increases.

Plambeck and Taylor (2007) analyze two firms outsourcing to a manufacturer through

quantity flexible contracts. The firms invest in innovation, which determines the

demand realization, while the supplier invests in capacity. In this setting, they show

that renegotiation leads to better coordinating quantity flexible contracts. Ülkü et al.

(2005) compare the timing of market entry between two supply chain structures: firms

produce in-house, or outsource to a supplier. They show that firms and the supplier

can coordinate the capacity and timing decision in equilibrium. Ülkü et al. (2007)

analyze the case where a supplier and firms differ in demand forecast accuracy, and

either one of them (or both) are responsible for capacity investment and bear the

risk that the demand might be lower than the capacity built. If only firms invest,
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then the invested capacity is exclusively used by the investor. If only the supplier

invests, then the invested capacity can be used to satisfy any firm’s order. They

explore the effectiveness of a premium-based contract which induces both parties

to invest. Li et al. (2011) compare three capacity reservation options: no-transfer,

supplier-transfer, and buyer-transfer, depending on whether the reserved capacity can

be accessed by other firms and whether it is costly to access the other firm’s reserved

capacity. They identify which option is optimal from the supplier’s perspective. Our

work is different from these papers in two major ways (among many other minor

points). None of these papers considers a situation where the buying firm can restrict

how the reserved capacity should be used by the supplier. In addition, firms operate

in independent markets in these papers (except for Li et al. (2011), where the firm’s

demands might be correlated but there are no price-dependency and competition),

while we explore the impact of different levels of competition.

4.2 Model

The key model features are derived to frame our motivating examples, although

some stylization is necessary. We consider a supply chain with a single supplier and

two buying firms: we use i = 1, 2 to index the two downstream firms, and s to denote

the supplier. When referring to firm i (she), we use j (he) to denote the other firm.

Our game of capacity reservation and investment proceeds in three stages. In the first

stage, firms select the type of restrictions, which we refer to as “capacity type”, that

specify how the supplier should use the invested (reserved) capacity. The capacity

type determines how much capacity firms can use at their discretion, and resultantly,

the output produced for the two firms. In the second stage, firms choose investment

levels in the presence of demand uncertainty. In the third and last stage, the demand

uncertainty is realized, firms fulfill their demands through the supplier (constrained

by the capacity that firms can tap into) and accrue the revenues. We note that this
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three-stage model is equivalent to a two-stage game with contingent contract offers,

and we discuss it in detail in Remark 1 at the end of this section.

We consider the two most common types of capacity reservation for the first stage.

Under the exclusive (denoted by e) restriction, the investing firm demands exclusive

use of the reserved capacity and disallows the supplier from using the leftover capacity

for any other orders. The second capacity type is first priority (denoted by f), where

the investing firm claims the first right to use the invested capacity, but the supplier

is free to use any leftover. Let we and wf be the per-unit cost of exclusive and first-

priority capacities respectively. That is, if firm i chooses to invest in Ki units of

capacity under capacity type κi ∈ {e, f}, the cost to firm i is wκi
Ki. A portion of the

capacity reservation cost, γwκi
Ki for some γ ∈ [0, 1], accrues to the supplier as profit

and the remaining portion, (1− γ)wκi
Ki, is spent in installing the capacity. The two

boundary cases represent the scenarios where the entire capacity investment, wκi
Ki,

is used to reserve the supplier’s existing capacity as in the agriculture supply company

case (i.e., γ = 1), and where the entire investment is used to build the capacity as in

the Neutrogena case (γ = 0). The case, 0 < γ < 1, is a mixture of the two.

In many cases, demanding exclusive use of capacity is costlier than demanding

the first priority (we > wf). This is particularly true if the supplier is willing to give

a discount for investing in first-priority capacity because the supplier can potentially

use it to meet other demand. However, there could be situations where we ≤ wf

(e.g., it may be costlier to build capacity that is more flexible; exclusive capacity may

be cheaper because the buying firm provides proprietary technology and equipment).

Thus, we analyze both cases and place no restrictions on the relationship between we

and wf .

As mentioned in the introduction, firms impose these restrictions to avoid direct

or indirect spillover of their investment to other firms, and these restrictions can be

enforced through the installation of physical devices or external auditing procedures.
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The impact of such spillover depends on the nature of market competition as well

as demand interaction between the firms. To study this, we consider two market

environments with varying degree of competition: independent market and Cournot

market. To describe the markets in consistent notation, let θi be a random variable

representing the uncertain willingness to pay for firm i, and firm i’s inverse demand

be pi = θi − biqi − ηibiqj , where qi and qj are firm i and j’s production quantities

respectively, bi is an exogenous parameter, and ηi measures the competition intensity

between the two firms.

1. Independent market: In this environment, demands of two firms are inde-

pendent. Examples include two firms serving geographically separated markets

or producing different products from the same supplier. Therefore, each firm’s

demand is independent of the other firm’s. That is, θ1 and θ2 are independent

random variables, and there is no direct competition between the two firms,

i.e., ηi = 0. For a given realization θi = ai, firm i’s inverse-demand (price) pi is

given by pi = ai − biqi.

2. Cournot market: In this case, the two firms produce homogeneous products

and compete with quantities. That is, θ is a random variable that determines the

inverse-demand for both firms (i.e, θ1 = θ2 = θ), and firms directly compete via

quantity, i.e., ηi = 1. Unlike the independent market, here demand signals are

perfectly correlated (θ1 = θ2). Following the convention of Cournot competition,

we also let b1 = b2 = b. For given production quantities q1 and q2, and realization

θ = a (i.e, a1 = a2 = a), the market clearing price (inverse-demand) is p1 =

p2 = a− b(q1 + q2).

These two scenarios represent two extreme levels of competition and demand

interaction, yet they are constructed to capture the key features of practice. In the

independent market, the demand signal θi’s are independent, and each firm’s demand
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is independent of the other firm’s. For example, both toothpaste and facial cleanser

can be produced in the same tubing factory. In this case, it is reasonable to assume

that demand for toothpaste is independent of demand for facial cleanser.

In contrast, in the Cournot market, the demand signals are positively correlated,

but the two firms compete with quantities. To motivate this, consider the agriculture

supply company and its ingredient supplier. For products such as insecticides, many

of them share similar active ingredients and have similar functionality even if they

are produced by different manufacturers. Therefore, the market for these products

can be considered as (almost) perfect substitutes, which approximates the case of a

Cournot market.

We next describe the general framework of how the equilibrium is determined,

starting from the last stage of the game. Details for each market type follow in

subsequent sections. For ease of notation, we suppress the dependence of pi on (θi, θj)

and (qi, qj) except for the case where the relationship must be shown explicitly. Let

ci represent the wholesale price per unit charged by the supplier for firm i.

In the last (third) stage, each firm observes the demand signal and decides on

quantity. The maximum available capacity depends on the capacity types (e for

exclusive or f for first-priority) and investment levels of both firms. To see this, first

consider firm i’s production decision when the other firm (firm j) reserves capacity

exclusively. Thus, firm i is precluded from tapping into the capacity that firm j has

reserved through capacity investment. If the two firms’ investment levels and realized

demand signals are (K1, K2) and (θ1, θ2) = (a1, a2), respectively, firm i with capacity

reservation type κi ∈ {e, f} chooses the quantity that maximizes the following:

πκie
i (ai, aj, Ki, Kj) = max

qi
(pi − ci) qi, s.t. 0 ≤ qi ≤ Ki (4.1)

On the other hand, consider the case where firm j has reserved Kj units of capacity
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under first-priority reservation. Then, firm i can access firm j’s leftover capacity.

Thus, the optimal quantity of firm i is determined by solving the following decision

problem. Throughout the analysis, we use x+ to denote max{x, 0}.

πκif
i (ai, aj, Ki, Kj) = max

qi
(pi − ci) qi, s.t. 0 ≤ qi ≤ Ki + (Kj − qj)

+ (4.2)

We assume that the total supplier capacity that we consider is K1 + K2. This

corresponds to the case where the supplier has no initial capacity. It also corresponds

to the case where K1 +K2 are the total quantities of the supplier’s existing capacity

reserved by both firms.

We roll back the firms’ optimal order quantities and solve for the firm’s capacity

investment decision in the second stage. For a given pair of reservation types, (κ1, κ2)

where κi ∈ {e, f}, i = 1, 2, each firm sets the investment level Ki before the demand

signals are realized. We denote firm i’s expected profit given reservation types and

investment levels by Π
κiκj

i (Ki, Kj), that is

Π
κiκj

i (Ki, Kj) = E(θi,θj)[π
κiκj

i (θi, θj , Ki, Kj)]− wκi
Ki. (4.3)

A word about notation: we are following a convention where whenever we have argu-

ments in subscripts, superscripts or brackets that define quantities for both firms, we

first list the one for the focal firm, followed by the one for the other firm. So, in the

equation above, we denote Πκ1κ2
1 (K1, K2) to represent firm 1’s expected profit, and

Πκ2κ1
2 (K2, K1) to represent firm 2’s expected profit. Although somewhat unconven-

tional, this allows us to distinguish clearly the impact of quantities (decision variables

or demand parameters) that are specific to the focal firm from quantities that are spe-

cific to the other firm, and significantly simplifies the notation and analysis.

Then, the subgame-perfect capacity levels, (Kκ1κ2
1 , Kκ2κ1

2 ), will satisfy the follow-
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ing equations simultaneously.

K
κiκj

i = argmax
Ki≥0

{

Π
κiκj

i (Ki, K
κjκi

j )
}

, for i, j ∈ {1, 2} and i 6= j (4.4)

In the first stage, both firms choose the reservation type κi ∈ {e, f} simultaneously.

From equation (4.4), this game can be expressed as a 2× 2 reduced form game with

the following payoff matrix in which Π
κiκj

i represents the sub-game perfect expected

profit, Π
κiκj

i (K
κiκj

i , K
κiκj

j ).

(κ1, κ2) exclusive first-priority

exclusive Πee
1 , Πee

2 Πef
1 , Πfe

2

first-priority Πfe
1 , Πef

2 Πff
1 , Πff

2

(4.5)

In what follows, we analyze the equilibrium and examine the resultant outcomes

from both firm’s perspective for the two market environments (independent and

Cournot) in Sections 4.3 and 4.4 respectively. In Section 4.5, we also analyze the

supplier’s profit and compare the outcomes under which a strategic supplier can de-

cide capacity types to the results in Sections 4.3 and 4.4.

Remark 1. We note that our model features a three-stage game with the capacity

type choice and capacity investment decisions separated, i.e., the action space is

{e, f} in the first stage and [0,∞) in the second stage. However, this is equivalent

to a two-stage game with contingent offers, where the action space for the first stage

is {e, f} × [0,∞). That is, in the first stage, both firms strategically offer a capacity

investment plan, where the capacity investment level is contingent upon the other

firm’s capacity type. Then after the demand uncertainty is resolved, firms decide

on quantity and satisfy the demand. This contingent offer is feasible because the

action space of firm’s capacity type choice {e, f} has only two elements. Therefore,

our model captures the case when firms simultaneously decide capacity type and
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capacity level in the first stage, followed by orders in the second stage.

Remark 2. Our model assumes that, for first-priority capacity, the supplier can

access the leftover capacity without transfer payment. This assumption is consistent

with our observations of the agriculture supply company and Li et al. (2011)’s ob-

servation about the computer hard-drive industry. If we explicitly include a transfer

payment, either the supplier or the firm who wants to access the leftover capacity will

pay the transfer payment. Since such payment can incentivize the use of the leftover

capacity, one may conclude that, with transfer payment, firms are induced to choose

the first-priority capacity more often. However, even without such arrangement, our

results show that the firms may find it beneficial to share the capacity. As this chapter

focuses primarily on how operational difference between the two types (i.e., whether

the leftover can be used by other firms or not) results in different investment out-

comes, we exclude the transfer payment from our model. But, we provide the impact

of a positive transfer payment in Section 6.1.

4.3 Independent market

We begin with an analysis of the independent market scenario. Let Fi(·) be the

distribution of firm i’s demand signal. For a given realization, θi = ai, firm i’s

demand is endogenously determined with the inverse demand function, pi = ai− biqi.

We normalize c1 = c2 = c ≥ 0; this is without loss of generality because the case where

c1 6= c2 is equivalent to the case where the unit cost is the same but the distribution of

the firm’s demand signal θi is shifted by the cost difference. As noted above, we solve

this three-stage game via backward induction, starting with the third stage where

firms decide order quantities after observing demand.
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4.3.1 Third-stage quantity game

In the quantity game, the demand signal θi is realized, and firms choose production

quantities to maximize their own profit. As stated in Section 4.2, the maximum

available capacity depends on the capacity reservation type and investment level. If

firm j reserves Kj units of exclusive capacity, from (4.1), firm i who has Ki units of

capacity solves the following:

πκie
i (ai, aj , Ki, Kj) = max

qi
(ai − biqi − c) qi, s.t. 0 ≤ qi ≤ Ki

Likewise, when the other firm reserves first-priority capacity, we have

πκif
i (ai, aj, Ki, Kj) = max

qi
(ai − biqi − c) qi, s.t. 0 ≤ qi ≤ Ki + (Kj − qj)

+

Since the profit function is concave in quantity, we obtain firms’ optimal quantity

or a best response function with respect to the other firm’s order. Then we can

obtain firms’ equilibrium order quantities, stated in the following lemma. All proofs

are relegated to the appendix.

Lemma IV.1 (Firms’ equilibrium order quantities). If firm i has Ki units of type κi

capacity and firm j has Kj units of type κj capacity, then firm i’s equilibrium order

quantity q
κiκj

i for demand realization (ai, aj) is as follows, where KT = K1 +K2.

(κi, κj) Firm i’s order quantity q
κiκj

i

(e, e) or (f, e) min{ (ai−c)+

2bi
, Ki}

(e, f) or (f, f)



















Ki if Ki ≤ (ai−c)+

2bi
and Kj ≤ (aj−c)+

2bj

KT − (aj−c)+

2bj
if

(aj−c)+

2bj
≤ Kj and

(ai−c)+

2bi
+

(aj−c)+

2bj
≥ KT

(ai−c)+

2bi
otherwise

Lemma IV.1 states that when the other firm’s capacity has been reserved exclusive-

ly and cannot be accessed, the optimal quantity is the minimum of the unconstrained
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profit-maximizing quantity and the firm’s initial capacity Ki. If the other firm has

reserved first-priority capacity, although the two firms’ demands are independent, the

optimal production quantity may depend on the other firm’s demand. For instance,

if firm i has high demand (Ki ≤ (ai−c)+

2bi
) and firm j has low demand (Kj >

(aj−c)+

2bj
),

then firm i may use all or a portion of firm j’s leftover capacity to meet her demand.

Consequently, the optimal quantity is the minimum of KT − (aj−c)+

2bj
and (ai−c)+

2bi
.

4.3.2 Second-stage capacity investment game

We now move on to derive firms’ expected profits, and then optimal capacity

investment levels given capacity reservation types. Following the equilibrium order

quantities, we express firms’ profits as follows. If firm j has reserved capacity Kj

exclusively, firm i cannot access any of it. Thus, firm i’s expected profit when firm i

reserves Ki units is:

Πκie
i (Ki,Kj) =

2biKi+c
∫

c

(ai − c)2

4bi
dFi(ai) +

∞
∫

2biKi+c

(ai − c− biKi)KidFi(ai)− wκi
Ki (4.6)

The two integrals above represent the case when the demand is low so that the

unconstrained optimal order quantity is below the firm’s capacity, and the case when

the demand is high so that it is optimal to exhaust the capacity, respectively. If firm

j has the first-priority capacity, firm i is able to access firm j’s leftover. For this case,

we obtain the following expression: there are several terms because we now have to
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account for various combinations of whether or not each firm’s capacity is binding.

Πκif
i (Ki,Kj) =

c
∫

0

∞
∫

2biKT+c

(ai − c− biKT )KTdFidFj

+

∞
∫

2bjKj+c

∞
∫

2biKi+c

(ai − c− biKi)KidFidFj

+

2bjKj+c
∫

c

∞
∫

2biKT+c−
bi(aj−c)

bj

[ai − c− bi(KT − aj−c
2bj

)](KT − aj−c
2bj

)dFidFj

+

∞
∫

2bjKj+c

2biKi+c
∫

c

(ai − c)2

4bi
dFidFj +

2bjKj+c
∫

c

2biKT+c−
bi(aj−c)

bj
∫

c

(ai − c)2

4bi
dFidFj

+

c
∫

0

2biKT+c
∫

c

(ai − c)2

4bi
dFidFj − wκi

Ki (4.7)

For each pair of reservation choices, (κi, κj), we can find the equilibrium investment

level that maximizes the expected profits above. We find the following:

Lemma IV.2 (Firms’ equilibrium capacities).

(i) If we > wf , then Kfe
i ≥ max{Kee

i , Kff
i } ≥ min{Kee

i , Kff
i } ≥ Kef

i .

(ii) If we ≤ wf , then Kee
i ≥ Kfe

i ≥ Kff
i and Kee

i ≥ Kef
i . In addition, if we = wf ,

Kee
i = Kfe

i .

The intuition behind this lemma is as follows. If firm j has reserved capacity

exclusively, firm i is no longer able to tap into the leftover (thus, Kκie
i is firm i’s

final capacity). Because the two markets are independent (thus, there is no market

competition to worry about), it is optimal for the firm to build a larger capacity with

the cheaper option. Hence, if we > wf , we have Kfe
i ≥ Kee

i ; otherwise, Kfe
i ≤ Kee

i .

When firm j reserves capacity with first priority, firm i needs to build less capacity

as it can access the other firm’s leftover. This explains the orderings Kee
i ≥ Kef

i and

Kfe
i ≥ Kff

i . When choosing the optimal capacity level, firm i needs to strike a balance
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between building its own capacity and taking a risk to rely for some of production

on the other firm’s leftover. When the exclusive capacity is more expensive than the

first-priority capacity (we > wf), firm i will build smaller capacity under the exclusive

restriction than what she would build under the first-priority restriction (Kff
i ≥ Kef

i )

for two reasons. First, the unit cost of exclusive capacity is higher. Second, if firm

i shuts off pooling by choosing the exclusive capacity, firm j (who reserved the first-

priority capacity) needs to build a higher capacity. As demand is uncertain, increasing

the capacity level will increase the chance of leftover too. Consequently, the available

capacity for firm i increases and the firm builds less capacity. However, the ordering

of Kff
i ≥ Kef

i may not hold when we ≤ wf . To see why this is the case, first note

that firm i can still access the leftover of the other firm’s capacity in both cases and

Kfe
j ≥ Kff

j . This incentivizes the firm to build smaller capacity under exclusive

capacity reservation. On the other hand, in this case, the cost of reserving a unit of

exclusive capacity is cheaper than that of first-priority capacity. Therefore firm i has

incentive to build more capacity. Depending on which of the two effects is stronger,

the firm may build higher or lower capacity under exclusive capacity reservation.

4.3.3 First-stage capacity type choice game

Utilizing the results of the second and third stages, we derive firms’ expected

profits for a given pair of reservation types, (κi, κj), κi = e, f . From equation (3), if

(K
κiκj

i , K
κjκi

j ) represent the subgame perfect capacity levels for the two firms when

firms i and j choose reservation types, κi and κj, respectively, then the firm i’s

subgame-perfect expected profit, Π
κiκj

i , is

Π
κiκj

i = Π
κiκj

i (K
κiκj

i , K
κjκi

j ) = E(θi, θj)[π
κiκj

i (θi, θj, K
κiκj

i , K
κjκi

j )]− wκi
K

κiκj

i (4.8)

The following theorem characterizes which type of capacity each firm chooses in
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equilibrium, which is the solution of the game characterized by the payoff matrix

(4.5).

Theorem IV.3 (Equilibrium capacity type choices).

(i) Suppose we ≤ wf . Then, it is a dominant strategy to reserve the capacity exclu-

sively.

(ii) Suppose we > wf . Then, for given wf , there exists a threshold w̄e
I(wf) such that,

in equilibrium, one firm reserves the capacity with first priority and the other firm re-

serves the capacity exclusively for we ≤ w̄e
I(wf), and both firms reserve first-priority

capacity for we > w̄e
I(wf).

To see why reserving capacity exclusively is a dominant strategy when we ≤ wf ,

suppose that firm j chooses the exclusive capacity. Then, firm i’s best response is

to choose the exclusive capacity, because it is cheaper and there is nothing to be

gained by offering flexibility to the other firm. When firm j chooses the first-priority

capacity, firm i is still better off with the exclusive capacity because in addition to

being a cheaper option, the fact that the other firm (with first-priority capacity)

is not allowed to tap into firm i’s exclusive capacity forces the other firm to set

a higher capacity level. Combining both cases, it is a dominant strategy for both

firms to reserve capacity exclusively. However, as Corollary IV.4 will show, although

exclusive capacity is dominant, an equilibrium in which both firms choose exclusive

capacity is not always efficient, resulting in a prisoner’s dilemma.

Now consider the case where the cost of first-priority capacity is lower: wf < we.

When we is slightly greater than wf , i.e., wf < we < w̄e
I(wf), one firm chooses

first-priority capacity and the other firm chooses exclusive capacity in equilibrium.

Considering the demands are independent, it is surprising that one firm chooses the

exclusive capacity, which is more expensive. In this case, if firm j chooses first-priority

capacity, firm i should choose exclusive capacity, because, as in discussions following

Lemma IV.2, doing so forces firm j to build a larger capacity that firm i can tap
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0 wf w̄e
I(wf ) Exclusive capacity cost we

ee ef ff

we
I(wf )

Prisoner’s dilemma Free-rider

Figure 4.1: Equilibrium capacity type choices for independent market for given wf

into, resulting in reduction of firm i’s own investment. Likewise, if firm j chooses

exclusive capacity, firm i should choose first-priority capacity only because the first-

priority capacity is cheaper, and she cannot access firm j’s leftover capacity anyway.

Therefore, in equilibrium, one firm is willing to let the other firm free-ride on her

unused capacity. However, when we is sufficiently high, we > w̄e
I(wf), the lower cost

of the first-priority capacity dominates the benefit of choosing the exclusive capacity

and forcing the other firm (with first priority) to build a larger capacity that firm

i can tap into. Since the firm only gives up the unused portion of capacity, there

is no profit loss from letting the other firm tap into the leftover when demands are

independent. This equilibrium has the added benefit of allowing both firms to pool

their demand uncertainties, resulting in higher profits and lower total capacity.

However, not all equilibria result in efficient outcomes. The equilibria may lead

to adverse outcomes as shown in the following corollary.

Corollary IV.4 (Pitfalls in equilibrium capacity type choices). For given wf ≥ 0,

(i) A prisoner’s dilemma equilibrium occurs, where both firms could have increased

their profits by choosing the first-priority capacity, if we
I(wf) ≤ we ≤ wf for some

we
I(wf).

(ii) A free-rider equilibrium occurs, where the one firm invests in the first-priority

capacity while the other firm invests in the exclusive capacity if wf < we ≤ w̄e
I(wf).

When the cost of exclusive capacity is too low or too high relative to wf , that

is we < we
I(wf) or we > w̄e

I(wf), the capacity cost becomes the dominant force in

firm’s decision between exclusive and first-priority capacity. In this case, the outcome

that both firms choose the less expensive option is Pareto-efficient: both choose ex-
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clusive capacity when we < we
I(wf) and first-priority capacity when we > w̄e

I(wf).

When the cost of exclusive capacity falls in between the two thresholds, we
I(wf ) and

w̄e
I(wf), outcomes become inefficient. For instance, if we

I(wf) ≤ we ≤ wf , both firms

choose the exclusive capacity, but both firms can improve their profits if they choose

the (more expensive) first-priority capacity together. This is because, although the

first-priority capacity is more expensive, both firms are able to access the other one’s

leftover capacity, leveraging capacity pooling. Hence, both firms can build smaller

capacity (i.e., Kff
i ≤ Kee

i from the part (ii) of Lemma IV.2), and earn a higher profit

with the first-priority capacity. It should be also noted from Corollary IV.4 that a

prisoner’s dilemma only occurs when both firms invest in exclusive capacity and the

cost of exclusive capacity is slightly lower than that of first-priority capacity. On

the other hand, when the cost of exclusive capacity is high, at least one firm is in-

centivized to reserve the first-priority capacity. If wf < we ≤ w̄e
I(wf), a free-rider

equilibrium arises because one firm chooses the exclusive capacity so that the other

firm is willing to choose the first-priority capacity (part (ii) of Theorem IV.3). Figure

4.1 illustrates Theorem 1 and Corollary IV.4.

Figure 4.2 shows how the firms’ equilibrium profits and capacity levels change as we

increases. As described by Theorem 1, the equilibrium changes from (κ1, κ2) = (e, e)

when we

wf
≤ 1, to (e, f) when 1 < we

wf
≤ 1.05, to (f, f) when we

wf
> 1.05. When we ≤

wf , both firms invest in exclusive capacity in equilibrium. Unless we is significantly

smaller than wf (we/wf < 0.88 in the example in Figure 2), this equilibrium (e, e) is

inefficient: although the exclusive capacity is cheaper than the first-priority capacity,

both firms still benefit more from investing in first-priority and allowing the other

firm to share the leftover. This enables both firms to reduce the total capacity level,

but, at the same time, to access more capacity. On the other hand, when firm 1

invests in (or reserves) exclusive capacity and firm 2 invests in first-priority capacity,

a free-rider outcome occurs that firm 1 can tap into the leftover capacity of firm 2.
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Figure 4.2: Independent market: Firms’ profits (left panel) and capacities (right pan-
el) under equilibrium (solid line) and non-equilibrium capacity type choic-
es. Parameters: Price sensitivity b1 = b2 = 1; Wholesale cost c = 1;
Market size θi follows a uniform distribution of U [1, 100]; Capacity cost
wf = 9.5.

In this situation, firm 1 invests in a smaller and more expensive exclusive capacity,

and earns higher profit even when demands are symmetric. Here notice that this

particular outcome occurs when exclusive capacity is slightly more expensive than

first-priority capacity. This is illustrated in Figure 4.2 when 1 < we

wf
≤ 1.05. Firm 2

invests in a larger first-priority capacity and earns lower profit. However, firm 2 still

prefers this to reserving exclusive capacity because wf < we and the demands are

independent.

The independent market case analyzed here illustrates the interplay of different

forces in determining equilibrium outcomes, particularly, difference in capacity costs

and the trade-off between sharing (unreliable) capacity and building its own capacity

that the firm can use for certain. We now consider the Cournot market, where we

find that these two forces continue to operate, but additionally, the dependence of

the markets may influence the equilibrium outcome.
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4.4 Cournot market

We now consider the Cournot market where both firms receive the perfectly cor-

related demand signal (θ1 = θ2 = θ) and compete in quantity (ηi = 1). Specifically, if

the two firms produce q1 and q2 upon observing the demand signal θ = a (following

distribution F (·)), the market clearing price is p = a − b(q1 + q2). As before, firms

may have different wholesale prices; without loss of generality we assume c1 ≥ c2. If

c1 = c2, firms are symmetric. If c1 > c2, two firms purchase the good at different

prices. As in previous sections, we apply backward induction, starting from optimal

quantities given capacity type, investment level, and realized demand signal. We

present the subgame equilibrium when firm 1 has K1 units of exclusive capacity and

firm 2 has K2 units of first-priority capacity. Other cases can be derived in a similar

manner.

Lemma IV.5 (Firms’ equilibrium order quantities). Suppose that firm 1 invests in

K1 units of exclusive capacity and firm 2 in K2 units of first-priority capacity. The

equilibrium order quantities for given demand signal θ = a are:

Conditions Firms’ order quantity (qef1 , qfe2 )

i) max{bK1 + 2bK2 + c2, 2bK1 + bK2 +

c1} ≤ a

(K1, K2)

ii) max{3bK2+2c2−c1, bK2+c1} ≤ a <

2bK1 + bK2 + c1

(a−c1−bK2

2b
, K2)

iii) 2bK2 + c2 ≤ a < bK2 + c1 (0, K2)

iv) 3b(K1+K2)+c1+c2
2

≤ a < bK1+2bK2+c2 (2(K1 +K2)− a−c2
b

, a−c2
b

−K1 −K2)

v) 2c1 − c2 ≤ a <

min{3b(K1+K2)+c1+c2
2

, 3bK2+2c2− c1}

(a−2c1+c2
3b

, a−2c2+c1
3b

)

vi) a < min{2c1 − c2, 2bK2 + c2} (0, a−c2
2b

)

For given capacity, the equilibrium quantities depend on demand signal θ = a

and their wholesale prices c1 and c2 that firms need to pay. In the first three cases,
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firm 2 uses up all of his reserved capacity when the demand signal is very favorable

(θ = a is large) relative to K2. In this case, firm 1 uses her own capacity to produce

(i) K1, (ii)
a−c1−bK2

2b
, or (iii) 0, depending on the problem parameters. Case (iv) arises

when a is moderately large and K2 is not small compared to K1 (notice that this case

occurs only if K2 > K1+
c1
b
− c2

b
). Therefore, it is not optimal for firm 2 to use up his

entire capacity, but firm 1 has incentive to use some leftover from firm 2. In case (v),

the order quantities are not constrained by their initial capacities, thus both firms

produce Cournot quantities. In case (vi), c1 is too high or/and a is too low, only firm

2 produces a monopolistic quantity.

Once we derive optimal production quantities for each subgame, we determine

firms’ equilibrium capacity investments in the second-stage subgame as stated in the

next lemma.

Lemma IV.6 (Firms’ equilibrium capacities). Suppose that Kκ1κ2
1 and Kκ2,κ1

2 rep-

resent subgame-perfect equilibrium capacity when firm 1 chooses type κ1 and firm 2

chooses type κ2 capacity. Then, for κ1, κ2 ∈ {e, f}, Kκ1κ2
1 and Kκ2κ1

2 must satisfy the

following:

(i) If we = wf = w, then Kκ2κ1
2 is any positive solution of

∞
∫

2bK+c2+(bK+c2−c1)+

(a− c2 − 2bK − (bK + c2 − c1)
+)dF (a)− w = 0

and Kκ1κ2
1 = (Kκ2κ1

2 + c2
b
− c1

b
)+.

(ii) If we > wf , then Kef
1 ≤ (Kfe

2 + c2
b
− c1

b
)+, Kfe

1 ≥ (Kef
2 + c2

b
− c1

b
)+, and Kee

i ≤ Kff
i .

(iii) If we < wf , then Kef
1 ≥ (Kfe

2 + c2
b
− c1

b
)+, Kfe

1 ≤ (Kef
2 + c2

b
− c1

b
)+, and Kee

i ≥ Kff
i .

It is interesting to note that when capacity costs are the same, we = wf , the

equilibrium capacity does not depend on capacity type. The result is quite different

from the results of independent market case (Lemma IV.2): when two firms choose

first-priority capacity, both invest to build smaller capacity than what they would
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when choosing exclusive capacity. To see why this difference occurs, notice that in

Cournot market, demand signals are perfectly correlated. Hence, if it is better for

firm i to produce one more unit by tapping in firm j’s leftover capacity, firm j is also

better off using that unit of capacity to produce one more unit for himself. Therefore,

for any realization of the demand, either there exists leftover that no firms want to

use, or the capacity is exhausted. As a result, the equilibrium capacity does not

depend on the capacity type.

Building on the analysis of the first two stages, we present firms’ capacity type

choice.

Theorem IV.7 (Equilibrium capacity type choices). In equilibrium,

(i) if we > wf , both firms invest in first-priority capacity,

(ii) if we = wf , firms are indifferent between exclusive and first-priority capacities,

(iii) if we < wf , both firms invest in exclusive capacity.

In contrast to the independent market, choosing a cheaper capacity is a dominant

strategy in the Cournot market. As a result, the asymmetric equilibria, (e, f) or

(f, e), vanish. To see why this must be the case, consider the we > wf case first.

Suppose firm j chooses the exclusive capacity; we show that firm i always prefers the

first-priority capacity. At first, this is not immediately obvious. Although reserving

first-priority capacity is cheaper, it may allow the other firm to feast on any leftover

of firm i. However, notice that in the Cournot market, the demand signals that two

firms receive are identical (θ1 = θ2 = θ). The perfect positive correlation of demand

signals mitigates most of the spill-over: when firm j faces a high demand and exhausts

his capacity, firm i also faces a high demand, and therefore, firm i has either no or

very little leftover. The only case that firm i has ample leftover is when θ is low;

but in this case, firm j is not in need of excess capacity either. In addition, the

first-priority capacity is cheaper, and firm i cannot access firm j’s leftover anyway, so

choosing the first-priority enables firm i to build more capacity for herself. Similar
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issues arise for all the other cases. In all cases, the perfect correlation of the demand

signal, and the fact that in the Cournot market both players access the same market,

make capacity pooling an unimportant factor when choosing the capacity type. As a

result, the firms always choose the cheaper option.

In particular, we can show that even when both firms choose the first-priority

capacity in equilibrium, neither firm will actually tap into the other firm’s leftover

for any realization of the demand signal. Consequently, there is no free rider effect

in equilibrium, making the equilibrium outcome de facto exclusive. Combining this

observation with the result of Theorem 5, we have a prisoner’s dilemma does not

occur in the Cournot market. We formally summarize the result in the following

corollary.

Corollary IV.8. Neither the free-rider equilibrium nor the prisoner’s dilemma equi-

librium arises in the Cournot market.

4.5 Supplier’s profit

Our analysis so far has focused on buying firms’ decisions and profits while implic-

itly assuming that the supplier has no input on any decision. While this scenario is

appropriate for a weak supplier, a supplier with strong market power may assume an

active role in deciding the form of capacity investment that buyers invest in. In this

section, we conduct a detailed analysis of the supplier’s profit, preferred outcomes,

and capacity type choices if the supplier can strategically offer the capacity type.

The supplier’s profit has two components: profit from capacity investment or

reservation (a γ fraction of the total investment amount, for exogenous γ ∈ [0, 1]),

and profit from production (this equals ci per unit). We denote these two components

by Πsc and Πsp respectively, and the supplier’s total profit as Πs. For given investment

types (κ1, κ2) and capacity level (Ki, Kj), the supplier’s expected profit can be written
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as follows:

Πκ1κ2
s (Ki, Kj) =Πκ1κ2

sc (Ki, Kj) + Πκ1κ2
sp (Ki, Kj)

=γ

2
∑

i=1

wκi
Ki + E(θi,θj)

[

2
∑

i=1

ciq
κiκj

i (θi, θj , Ki, Kj)

]

(4.9)

where the reservation profit Πκ1κ2
sc (Ki, Kj) = γ

∑2
i=1wκi

Ki, the production profit

Πκ1κ2
sp (Ki, Kj) = E(θi,θj)

[
∑2

i=1 ciq
κiκj

i (θi, θj , Ki, Kj)
]

, and the quantity, q
κiκj

i (θi, θj , Ki, Kj),

is the subgame-perfect production quantity after demand signals are realized.

We first examine the passive supplier’s profit when the supplier accepts buyer’s

capacity type choices. We then compare this with the case where the supplier actively

chooses capacity types.

4.5.1 The profit of a passive supplier

We first analyze the independent market case. As in Section 3, we assume c1 =

c2 = c without loss of generality.

Theorem IV.9 (Supplier’s subgame-perfect expected profit: independent market).

Suppose firm i chooses capacity type κi and firm j chooses type κj. Let K
κiκj

i and

K
κjκi

j be the subgame perfect equilibrium capacity levels. If K
κiκj

i > 0 and K
κjκi

j > 0,

then, the supplier’s expected profit is as follows1:

Πκ1κ2
s = Πκ1κ2

sc +Πκ1κ2
sp = γ

∑2
i=1wκi

K
κiκj

i + c
∑2

i=1

[

∫∞

c
ai−c
2bi

dFi(ai)− wκi

2bi

]

where Πκ1κ2
sc = γ

∑2
i=1wκi

K
κiκj

i and Πκ1κ2
sp = c

∑2
i=1

[

∫∞

c
ai−c
2bi

dFi(ai)− wκi

2bi

]

.

We observe that the supplier’s total profit changes non-monotonically in the unit

capacity cost wκi
. The first part of the supplier’s profit, the reservation profit (Πsc),

changes non-monotonically with respect to wκi
, because an increase in capacity cost

1If K
κiκj

i = K
κjκi

j = 0, it is trivial. If K
κiκj

i = 0 and K
κjκi

j > 0, similar expressions can be
derived.
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results in a decrease in the amount of capacity reserved. Therefore, although the unit

reservation profit (γwκi
) increases as the capacity cost increases, the total reservation

profit may not necessarily increase. However, the supplier’s profit from production

(Πsp) linearly decreases in capacity costs. Interestingly, we find that when the capacity

costs are the same, the supplier’s expected profit from production remains the same

regardless of the capacity types the two firms choose, as highlighted in the following

corollary.

Corollary IV.10. Suppose we = wf . If K
κiκj

i > 0 and K
κjκi

j > 0, Πκ1κ2
sp remains the

same for all (κ1, κ2), where κi ∈ {e, f} for i = 1, 2.

At first, this is counter-intuitive since the optimal investment level depends on

the capacity type. To see why this happens, we first compare the supplier’s profit

from production between the two cases—(κi, κj) = (e, e) and (κi, κj) = (f, e). Since

demands are independent and firm i cannot access firm j’s leftover when firm j

chooses the exclusive capacity, we have Kee
i = Kfe

i from Lemma IV.2(ii). From the

same lemma, we also have Kee
j ≥ Kef

j : firm j builds smaller capacity when firm j can

access firm i’s leftover. Although the total capacity is lower in the (f, e) case, it can

be shown that the supplier’s gain from pooling under the (f, e) case is exactly equal

to the loss from the lowered total capacity in equilibrium. As a result, Πsp remains

the same in both cases although the firms’ profits are different. We then compare the

(e, e) and (f, f) cases. From lemma IV.2(ii), Kee
i ≥ Kff

i . However, again the benefit

from pooling is equal to the loss from the lowered total capacity, the supplier’s profit

from production remains the same.

Utilizing Theorem 1 and Theorem IV.9, we now examine how the supplier’s equi-

librium profit changes as the cost of exclusive capacity we increases. As illustrated

in Figure 4.3(A), the supplier’s profit changes non-monotonically in we. In fact, the

supplier’s profit is the largest under the (e, e) regime (we

wf
≤ 1) and the smallest under

the (f, f) regime (we

wf
≥ 1.05) while the profit is non-decreasing within each of the
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Figure 4.3: Independent market: (A) passive supplier’s total equilibrium profit, (B)
subgame-perfect production profit and capacity investment profit, and
(C) equilibrium capacities. Parameters: Price sensitivity b1 = b2 = 1;
Wholesale cost c = 1; γ = 0.095 fraction of capacity investment accounted
as the supplier’s profit; Market size θi follows a uniform distribution of
U [1, 100]; Capacity cost wf = 9.5.

three regimes (strictly increasing in (e, e) and (e, f) regimes). The figure also shows

that the capacity types that the buying firms choose are not necessarily the ones that

benefit the supplier. For instance, when we > 1.05wf , the supplier could have earned

higher profit if at least one firm chooses the exclusive capacity. However, the high

cost of exclusive capacity forces both firms to choose the first-priority.

Figure 4.3(B) breaks down the supplier’s total profit into its two components:

reservation profit (Πsc), and production profit (Πsp). We first observe that the pro-
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duction profit decreases within the (e, e) and (e, f) region. This is because, as we

increases, the firm(s) choosing the exclusive capacity will invest less, and reduce the

quantity that the supplier can produce. On the other hand, the profit from produc-

tion increases when the regime switches from (e, f) to (f, f) as the supplier gains

significantly from pooling and makes the better use of capacity. Notice that in this

case, the total capacity is indeed smaller under (f, f) than the total capacity under

(e, f) (see Figure 4.3(C)), but the gain from pooling outweighs any loss from smaller

capacity.

On the other hand, the profit from capacity reservation increases in we as long as

the equilibrium capacity types remain the same. Although a higher cost of exclusive

capacity forces firm(s) to choose a lower level of exclusive capacity (see the graph

within each of the three regions in Figure 4.3(C)), the firms need to spend more to

buy capacity, which increases the supplier’s reservation profit. However, the capacity

reservation profit drops sharply in we when the equilibrium shifts from (e, e) to (e, f)

because firm 1 reduces her capacity level and free-rides on firm 2’s leftover capacity:

see Figure 4.3(C). The profit further drops when the equilibrium shifts from (e, f) to

(f, f) as pooling reduces the total capacity level and resultant reservation profit: see

Figure 4.3(C).

We observe similar phenomena in the Cournot markets: as capacity cost increases,

the production profit weakly decreases within each region while the profit from capac-

ity reservation can change non-monotonically. Also, as in the independent market,

the supplier’s profit is not necessarily monotone.

4.5.2 Strategic (active) supplier’s capacity type choices

We now consider the scenario under which the supplier can choose the capacity

type for buying firms in the first stage. Other than this change, everything else

remains the same as in the base model. To highlight the result that arises from
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difference in the capacity type and avoid the convoluted impact of capacity costs, we

first focus on the case we = wf : the capacity costs are the same for both types. It

turns out that the supplier prefers different capacity types depending on the market.

Theorem IV.11 (Strategic supplier’s capacity type choices).

Suppose we = wf = w. If K
κiκj

i > 0 and K
κjκi

j > 0,

(i) (Independent market) The supplier always offers the exclusive capacity to both

firms.

(ii) (Cournot market) The supplier is indifferent between the two capacity types.

In the independent market, the supplier is better off by offering exclusive capacity

because doing so forces both firms to build large capacity (Lemma IV.2), increasing

the supplier’s profit. However, it should be noted that the increase in profit is entirely

from capacity reservation. In fact, as Corollary IV.10 shows, the production profit

remains the same, and is independent of capacity type as long as the capacity costs

are the same. In contrast, the capacity type does not play any role in the Cournot

market. Because the demand signal is perfectly correlated (i.e., θ1 = θ2 = θ), both

firms choose the same capacity level and produce the same quantity regardless of the

capacity types.

Next, when the capacity costs are different, the supplier’s capacity type choice

becomes more complicated as production profit and reservation profit (which changes

non-linearly in capacity cost) interplay. We illustrate the supplier’s capacity choices

in the independent market using a numerical example. We fix all the market envi-

ronments the same and only change the capacity cost we. In this case, the supplier

may offer (e, e), (e, f), or (f, f) to the firms as shown in the left panel of Figure 4.4.

When we is sufficiently small (we

wf
≤ 0.40) and/or the first-priority capacity is expen-

sive, the supplier gains the most from capacity investment if both firms reserves the

first-priority capacity. Therefore, the supplier should offer the first-priority capacity

to both firms. In the middle region (0.40 < we

wf
≤ 1.38), the supplier prefers offer-
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Figure 4.4: Independent demand: Supplier’s total profits (left panel) and profits from
production and capacity investment (right panel). Parameters: Price
sensitivity b1 = b2 = 1; Wholesale cost c = 1; γ = 0.1; Market size θi
follows a uniform distribution of U [1, 100]; Per unit capacity investment
cost wf = 19.5.

ing the exclusive capacity to one firm and the first-priority capacity to another firm,

then offering the exclusive capacity to both firms as we increases. When we becomes

sufficiently large (we

wf
> 1.38), the exclusive capacity is too expensive to build. In

this case, the supplier should offer the first-priority capacity to both firms, because

any other scenarios where at least one firm reserves exclusive capacity will result in

a significant drop in the production quantity.

To further understand this, from the right panel of Figure 4.4, we first observe

that the supplier earns the highest production profit (Π
κiκj
sp ) when both firms are

offered the cheaper capacity type as shown in Theorem IV.9. However, the ranking

of the supplier’s reservation profit (Π
κiκj
sc ) under different capacity types changes with

respect to we as a result of the interaction between the unit capacity cost and resultant

capacity levels that firms choose in equilibrium. Specifically, as we increases, the

unit reservation profit (i.e., γwe) increases but the firm with exclusive capacity will

decrease the invested capacity accordingly. When we is sufficiently small, relative

to wf , the supplier gains the most when both invest in first-priority capacity (Πff
sc ),
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because the unit capacity profit from exclusive capacity is too small and therefore the

reservation profit (Πee
sc and Πef

sc ) is small. Likewise, Πff
sc is also the largest when we

is very large, because the firm(s) will build very small exclusive capacity, making Πee
sc

and Πef
sc small. In the middle region, offering exclusive capacity to at least one firm

(Πee
sc and Πef

sc ) achieves the largest reservation profit for the supplier. Therefore, the

tradeoff between production profit and reservation profit yields the outcomes observed

for the supplier’s capacity choices in the left panel of Figure 4.4.

Finally, we compare the outcomes with a strategic supplier to the outcomes with

a passive supplier. In both cases, we first consider we = wf . In the independent

market, the outcome remains to be (e, e). Note that, in the base model, this is

when both firms fall in the prisoner’s dilemma by over-investing in exclusive capacity.

While this is not a desired outcome for the buying firms, the supplier benefits from

the firms’ overinvestment. In the Cournot market, both firms and the supplier are

indifferent between the two capacity types as the perfectly correlated demand signal

and symmetric nature of competition force both firms to choose the same capacity

level and order the same amount under different capacity choices (the capacity usage

is de facto exclusive).

Now consider when capacity costs are different. In the independent market, when

we ≤ wf , the strategic supplier may offer the first-priority capacity to at least one

firm while both firms prefer to choose the exclusive capacity. On the other hand,

when we > wf , the equilibrium with the passive supplier is that at least one firm

should prefer the first-priority capacity, but the strategic supplier may offer exclusive

capacity to both firms because of high capacity reservation profit. Similar results are

observed in the Cournot market. The supplier’s preference of capacity types depends

on the tradeoff between production profit and reservation profit, thus the outcomes

with the passive supplier is different from the outcomes with the strategic supplier.
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4.6 Conclusion

In this chapter, we analyzed capacity investment decisions of firms sharing a com-

mon supplier. We identify three equilibria and show that, as the cost of reserving

capacity exclusively increases, the equilibrium shifts from both firms choosing the

exclusive capacity, to one firm choosing the exclusive capacity and the other firm

choosing the first-priority capacity, to both firms choosing the first-priority capacity.

While this transition is quite robust to the change in firm’s demand or procurement

cost, the underlying relationship between two firms’ demands can influence which

equilibrium arises. For example, when both firms compete in the Cournot market, an

asymmetric equilibrium does not arise even when the two firms have different costs.

In contrast, such equilibrium can arise even for two symmetric firms when demands

are independent.

We identify two cases where the firms’ investment can be inefficient. When the

cost of exclusive capacity is slightly higher than the cost of first-priority capacity and

demands are independent, a free-rider equilibrium arises in which one firm builds

large first-priority capacity and the other firm with small exclusive capacity utilizes

the leftover capacity. This is surprising since one firm deliberately chooses the more

expensive capacity (exclusive) to induce the other firm to build larger capacity (first-

priority) even when the demand of one firm is independent of the demand of the other

firm. On the other hand, if the cost of exclusive capacity is the same or slightly lower

than the first-priority capacity, firms build large exclusive capacity instead of pooling

capacity, resulting in a prisoner’s dilemma. Surprisingly, this occurs when exclusive

capacity is cheaper than first-priority capacity. Therefore, demanding the exclusive

right to use the capacity does not necessarily serve the investing firm’s best interest.

Once again, the interdependence of demands plays a critical role: While both adverse

outcomes arise when demands are independent, neither arises in the Cournot market.

In this case, demand correlation allows firms to choose first-priority capacity instead
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of the more expensive exclusive capacity without worrying about spillover.

We find that when the supplier can choose the capacity type to buying firms,

the capacity type that the supplier prefers can be different from the capacity type

that firms prefer. Again, how two firms’ demands are related plays a crucial role.

When capacity costs are the same and demands are independent, the supplier offers

exclusive capacity so that he can induce firms to overinvest. In the Cournot market,

surprisingly, the supplier becomes indifferent between two capacity types as the value

of capacity pooling diminishes when two firms receive positively correlated demand

signals. When the capacity costs are different, we illustrate with the independent

market that the strategic supplier may offer exclusive capacity to both firms, while

both firms prefer first-priority capacity, or offer first-priority capacity to both firms

while at least one firm prefers exclusive capacity. Our results indicate that the dif-

ference in capacity costs between the two types critically determines the nature of

the equilibrium. Thus, even if the supplier cannot enforce the capacity type for the

firms, the supplier may still be be able to induce the the desired outcomes by offering

a discount or charging a premium on exclusive (or first-priority) capacity.

4.6.1 Managerial insights and discussion

Our work yields important managerial insights that have potential impact on

practitioners. First, linking back to our motivating examples, our results provide

a parsimonious explanation about firms’ capacity type choices when investing in a

shared supplier. Under Cournot competition as in the agriculture supply company

case, the firm competes in an almost homogeneous market and the first-priority ca-

pacity acts as the exclusive capacity, because depending on the demand realizations,

either all firms are short on capacity or all firms have too much capacity. Therefore,

although the firm chooses the first-priority capacity, it is not likely that the other firm

will access her leftover capacity. In contrast, in the independent market, firms may
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choose the exclusive capacity even when it is more expensive than the first-priority

capacity, if doing so forces the other firm to build a large first-priority capacity that

the firm may tap into. Second, our work highlights the importance of the capacity

cost. If the supplier and firms do not distinguish the two types of capacity, i.e., the

costs for the two capacity types are the same, firms tend to choose the exclusive

contract. However, our results identify the inefficiency that occurs in this very case:

firms overinvest in capacity in the independent market, and could have earned a high-

er profit if they choose the first-priority capacity together. Therefore, if the firms are

able to negotiate for a discount on the first-priority capacity, at least one and possibly

both firms will turn to the first-priority capacity, and profit can be improved.

Our work raises the following question: besides offering discount on the first-

priority capacity, can the firms and the supplier form an agreement to (partially)

remove these inefficiencies, and find an investment strategy which yields a better out-

come for both firms (or even all three parties)? One potential way to achieve such

a “co-ordination” is transfer payment : if firm i invests in the first-priority capacity

which then gets used by firm j, then firm j pays firm i a per-unit rate τ for access-

ing this capacity. This transfer payment is essentially the tradable capacity option

in the capacity reservation setting, where the tradable capacity option implies that

buying firms with capacity reservation have the right to trade the reserved capacity

among themselves. As mentioned in Plambeck and Taylor (2007), Taiwan Semicon-

ductor Manufacturing Corporation, the largest semiconductor contract manufacturer,

pioneered selling tradable capacity options (LaPedus, 1995; Economist , 1996).

Such transfer payments, while on the surface seemingly very attractive, are not a

straightforward solution to the problem. On one hand, the transfer payment certainly

encourages firms to share capacity. It encourages firms to choose the first-priority

capacity, because of the additional profit from the transfer payment when the other

firm uses the leftover capacity. Similarly, it discourages firms from choosing the
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exclusive capacity, because firms need to pay an extra fee to access the other firm’s

leftover, while the firm cannot earn this extra income as the other firm cannot access

her leftover. In fact, we can analytically show that when an exogenous positive

transfer fee τ is charged per unit of the invested capacity used by another firm, the

region of both firms choosing the exclusive capacity, as well as the region of prisoner’s

dilemma, shrinks.

Paradoxically, however, the transfer payment also makes it more difficult for firms

to share capacity. Compared with the base case where there is no transfer payment

(which is consistent with our observation of the agriculture supply company case

and the computer hard drive industry case identified in Li et al. (2011)), allowing

a transfer payment decreases the efficiency of the system because firms now need

to pay to access the other firm’s leftover capacity. So, they may instead choose

to increase their own capacity which they can access without making an additional

transfer payment, resulting in greater potential for installing wasted capacity. In

fact, it can be shown that when the transfer price is sufficiently high, firms will find

it non-profitable to use the other firm’s leftover, and therefore both capacity types

end up becoming exclusive.

An additional level of complication arises from the fact that ideally the transfer

price should be set endogenously, rather than exogenously. With the aforementioned

two conflicting forces operating, and given the complexity of the current model, adding

an additional layer to decide the optimal transfer payment renders our model too

intractable to analyze. In fact, an appropriate approach to decide the optimal transfer

payment might be a three-party negotiation among the two buying firms and the

supplier. Although this is beyond the scope of this chapter, we believe this open

research question to determine the optimal transfer payment has significant potential

to contribute to the stream of literature. We believe the literature on structuring

investments in the supplier, in the presence of market competition, is still developing,
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and offers several research questions of potentially high impact to theory and practice.

In Chapter III, we consider the setting where the demand is deterministic and firms

compete in a Cournot market, while the capacity is random and subject to production

yield. In addition, the capacity cost has two parts: the fixed cost and the variable

cost. In Chapter IV, we consider another setting where the demand is uncertain and

firms may serve two independent markets or compete in a Cournot market, while the

capacity to build is deterministic. In this case, the capacity cost is linear. While these

two settings capture the characteristics of different market structures and provide

clean characterizations of the equilibrium outcomes, we conjecture that the insights

remain intact in more general settings.

For example, one may consider a setting where both the demand and capacity are

stochastic and the capacity investment cost has both the fixed and variable parts. In

this setting, firms still face the following key tradeoffs among others. First, between

the exclusive and first-priority capacity, firms need to balance the benefit from pooling

the demand uncertainty and the cost to build up or reserve each type of capacity.

Second, the combination of the fixed and variable capacity costs determines whether

firms should invest in the supplier, and if so, how much capacity should be invested in.

As a result, the spillover when one firm decides to invest while the other decides not

to under the first-priority capacity is also expected. Finally, the stochastic capacity

is expected to motivate firms to invest more aggressively than when the capacity is

deterministic. However, as the setting is rather complicated with a mixture of the

stochastic demand, stochastic capacity, and fixed and variable capacity costs, one

may need to carefully identify the driving force of each phenomenon identified.
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CHAPTER V

Conclusions

To summarize the dissertation, we investigate capacity management problems in

a supply chain setting. At an intra-firm level, we use stochastic dynamic program-

ming and data-driven optimization to develop tools to facilitate a firm’s capacity

adjustment decisions. At an inter-firm level, we use game-theoretic methods to an-

alyze firms’ interactions with their shared supplier leveraging capacity decisions as

a strategic tool to gain competitiveness. Analytically, the dissertation pushes the

boundary of analytics to support firms’ capacity adjustment decisions. Managerially,

the dissertation further extends insights about potential adverse outcomes in capacity

management in a network setting, and highlights directions to fix these inefficiencies.

More specifically, in Chapter II, we study a firm’s optimal strategy to adjust its

capacity using demand information. We consider two scenarios: the firm has a sin-

gle or multiple opportunities to adjust its capacity, reflecting the impact of different

capacity adjustment leadtime and costs. For both scenarios, we first formulate the

problem as a stochastic dynamic program, and then characterize the firm’s optimal

policy: when to adjust and by how much. We show that the optimal policy can be

counter-intuitive and complex. For example, when the firm can change the capacity

only once, the optimal decision on when and by how much to change the capacity

is not monotone in the likelihood of high demand. This phenomenon is particular-

130



ly surprising as the corresponding problem is an optimal stopping problem, where

monotonicity of the optimal policy is quite common. When the firm can adjust the

capacity multiple times, we characterize the optimal policy as a control band policy.

As it is challenging to compute and implement the optimal policy, we develop a data-

driven heuristic for each scenario. In the single adjustment scenario, we show that

a heuristic which explores demand for an appropriately chosen length of time and

adjusts the capacity based on the observed demand is asymptotically optimal, and

characterize the convergence rate. In the multiple adjustment scenario, we show that

a heuristic under which the firm adjusts its capacity at a predetermined set of periods

with exponentially increasing gap between two consecutive decisions is asymptotical-

ly optimal. We finally apply our heuristics to a numerical study inspired by real

data and business scenario and demonstrate the performance and robustness of the

heuristics.

In Chapter III, we consider what happens when two competing firms invest in a

shared supplier’s capacity. A firm that invests in the supplier may gain additional

capacity, but market competition and spillover of the investment may wipe out any

gain from the investment. To protect firms’ investments, many impose restrictions

on how the supplier’s capacity is used. We model firms’ investment and production

decisions as a two-period game, and analyze the equilibrium outcomes under two

common forms of restrictions: the investing firm has exclusive use of the invested

capacity, or first priority in having the firm’s order fulfilled. We characterize the

equilibrium capacity investment outcomes in terms of the number of investing firms

and capacity investment levels, and identify conditions under which the spillover

effect occurs, where one firm is able to tap into the other firm’s invested capacity. We

find that although on the surface the spillover effect seems to intensify competition,

it indeed demotivates firms from investing in the supplier. Therefore, the spillover

effect results in fewer investing firms and lower total capacity investment, which
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consequently mitigates the risk of both firms being trapped in a prisoner’s dilemma,

where both firms invest but both earn a lower profit than they do when neither

invests. We also characterize the firms’ and supplier’s preference about the capacity

types, and analyze the efficiency loss in the supply chain. While the non-investing

firm always prefers the first-priority capacity hoping to benefit from the spillover

effect, the investing firm does not always want to shut off the non-investing firm’s

access to its leftover capacity, especially when allowing spillover results in strictly

fewer investing firms. The supplier’s preference is driven by the tradeoff between the

over-investment with exclusive capacity and the smaller but flexible investment with

first-priority capacity. We also find that both the spillover effect and the wholesale

price reduce over-investment in the supplier.

In Chapter IV, we study the capacity decisions (types and capacity levels) that

firms choose when multiple firms invest in a shared supplier. We examine two specific

capacity reservation agreements that are widely used in practice: exclusive (capacity

can only be used by the investing firm exclusively) and first-priority (the leftover

capacity can be used to fill other firms’ order). We model this relationship as a

multi-stage game and characterize the capacity type and investment level that firms

choose in equilibrium. We identify three equilibria—both firms investing in exclusive

capacity, both firms investing in first-priority capacity, and one firm investing in

exclusive and the other in first-priority capacity—and explain the conditions under

which each of the three equilibria arises as a function of capacity costs and market

parameters that govern uncertain demands. We also provide conditions under which

two inefficient outcomes occur: a prisoners’ dilemma in which firms over-invest in

exclusive capacity and a free-rider equilibrium under which one firm under-invests in

anticipation of feasting on the other firm’s leftover. We find that the capacity type

that the supplier prefers is determined by the interplay between two opposite forces:

gain from overinvesting and gain from capacity pooling. We show that the capacity
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types that the supplier prefers do not coincide with that firms prefer. There are some

unexpected findings. First, in contrast to conventional intuition, demanding exclusive

use is not necessarily optimal for the firm even when firms have independent demands.

Second, even when demands are independent, it is possible for a firm to invest in more

expensive capacity to gain exclusivity (as opposed to cheaper first-priority capacity)

in order to induce the other firm to build a larger capacity. Third, surprisingly, these

inefficiencies entirely disappear when demands are highly correlated and firms are

competing (e.g., Cournot setting). This means that in some competitive settings,

paying premium to gain exclusive capacity may be a waste of money.

The dissertation suggests several other directions for future research. Along the

stream of intra-firm capacity management in Chapter II, we believe there are a lot

more opportunities in the area combing learning and capacity management. For ex-

ample, how does the firm’s learning opportunity affect the joint decision of capacity

and inventory? How should the firm compute its capacity management strategy effi-

ciently when the product life cycle is not stationary? Along the stream of inter-firm

capacity management in Chapter III and IV, one could consider equilibrium outcomes

if investments are used to reduce the uncertainty in the yield, rather than increase ca-

pacity. At a more general level, with the increasing trend of decentralized, networked,

yet cooperative, supply chains, the inter-dependency of the contractual relationship

for one pair of agents with other agents could lead to unexpected outcomes. For

example, what are the consequences of acquiring a supplier in such an environment?

We believe there are several fruitful opportunities for research in both areas.
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APPENDIX A

Proofs and Technical Details for Chapter II:

Capacity Investment with Demand Learning

In the proofs we focus on the case where the demand distribution is discrete.

When the demand distribution is continuous, similar proofs hold.

Proof of Lemma II.1. We first show that for any j, we have E[Πj+1|Πj] = Πj. From

equation (2.1), we have

E[Πj+1,i|Πj] =
∞
∑

dj=0

Πj,ifj(dj|θi)
∑I

k=1 [Πj,kfj(dj |θk)]
Pr(Dj = dj|Πj)

=

∞
∑

dj=0

Πj,ifj(dj|θi)
∑I

k=1 [Πj,kfj(dj |θk)]

I
∑

k=1

[Πj,kfj(dj |θk)]

= Πj,i

∞
∑

dj=0

fj(dj|θi) = Πj,i (A.1)

That is, E[Πj+1|Πj] = Πj . Then for any j1 < j2, we have

E[Πj2|Πj1] = E[E[Πj2|Πj2−1,Πj1]|Πj1] = E[E[Πj2|Πj2−1]|Πj1]

= E[Πj2−1|Πj1] (A.2)
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Applying the above equations iteratively, we have E[Πj2|Πj1] = Πj1.

Proof of Proposition II.3. For ease of exposition we define

Gj(π, µ) ,

J
∑

i=j+l

hi(π, µ)− Ĉ(µ0, µ) (A.3)

It is observed that for given µ, we have Gj(π, µ) is linear in π. For given π, if K = R
+

and µ ∈ K, we have Gj(π, µ) is concave in µ; if K = {δk, k = 1, 2, ..., |K|}, we define

∆Gj,k(π) as follows:

∆Gj,k(π) ,
Gj(π, δk+1)−Gj(π, δk)

δk+1 − δk
for k = 1, 2, ..., |K| − 1. (A.4)

For given j and π, we have ∆Gj,k(π) is a decreasing sequence in k. In addition,

we have Gj(π, 0) < ∞ and limµ→∞ Gj(π, µ) = −∞. In the following, we use xT to

denote the transpose of x.

(i). We prove the convexity by induction. By equation (2.15) and (2.16), we have

La
J−l+1(πJ−l+1) and Ls

J−l+1(πJ−l+1) are linear and therefore convex in πJ−l+1. As

the maximum of convex functions is convex, we have VJ−l+1(πJ−l+1) is convex.

For j < J − l, assume La
j+1(πj+1), L

s
j+1(πj+1) and Vj+1(πj+1) are convex. By

equation (2.8) and (2.15), we have

La
j (πj) = sup

k
{Gj(πj , δk)} (A.5)

For each k, we haveGj(πj , δk) is linear in πj . As the supremum of convex functions

is convex and a positive linear combination of convex functions is convex, we have

La
j (πj) is convex in πj .

From the induction hypothesis, we have Vj+1(πj+1) is convex, then we can write

Vj+1(πj+1) = supk∈Kj+1
{akπ

T
j+1 + bk}, where Kj+1 represents an index set, ak is a

constant vector of dimensions 1× I, and bk is a constant. Then define a 1× I vector
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e , (1, ..., 1) and a I × I diagonal matrix Pj(dj) , diag(fj(dj|θ1), ..., fj(dj|θI)), and

following equation (2.16), we have

Ls
j(πj) = hj+l(πj, µ0) + E [Vj+1(Πj+1)|πj]

= hj+l(πj, µ0) + E

[

sup
k∈Kj+1

{

akΠ
T
j+1 + bk

}

∣

∣

∣

∣

∣

πj

]

= hj+l(πj, µ0) +
∞
∑

dj=0

[

sup
k∈Kj+1

{

ak

Pj(dj)π
T
j

ePj(dj)πT
j

+ bk

}]

ePj(dj)π
T
j

= hj+l(πj, µ0) +
∞
∑

dj=0

[

sup
k∈Kj+1

{

ãk(dj)π
T
j

}

]

(A.6)

where ãk(dj) , akPj(dj) + bkePj(dj).

Once again, as the supremum of convex functions is convex and a positive linear

combination of convex functions is convex, we have Ls
j(πj) is convex in πj . It follows

that Vj(πj) is convex in πj .

(ii). We show that Pj is a convex partition of P by verifying the four conditions

in Definition II.2.

• Condition (i): By the construction of Pj , we have ∅ /∈ Pj.

• Condition (ii): Let
⋃

k Pjk denote the union of all sets in Pj . For any π ∈
⋃

k Pjk, it is trivial that π ∈ P. Therefore, we have
⋃

k Pjk ⊆ P. For any

π ∈ P, we have ∆Gj,k(π) decreases in k. As we have |Gj(π, 0)| < ∞ and

limµ→∞ Gj(π, µ) = −∞, there exists a δk such that δk = argmaxµ∈K Gj(π, µ).

Therefore, we have π ∈ ⋃

k Pjk. It follows that P ⊆ ⋃

k Pjk. Then we have

proved that
⋃

k Pjk = P.

• Condition (iii): Assume there exist k1 < k2 such that Pjk1 ∈ Pj , Pjk2 ∈ Pj,

and Pjk1

⋂Pjk2 6= ∅. Then for π ∈ Pjk1

⋂Pjk2, we have µ̂a
j (π) = δk1 and

µ̂a
j (π) = δk2 . However, this contradicts the fact that µ̂a

j (π) is uniquely-defined.
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• Condition (iv): Let π1 ∈ Pjk̂ and π2 ∈ Pjk̂. We have µ̂a
j (π1) = δk̂ and

µ̂a
j (π2) = δk̂, and

La
j (πi) = Gj(πi, δk̂), i = 1, 2 (A.7)

We observe that La
j (πi) is linear in πi. From part (i) we have La

j (π) is convex

in π. Therefore, for any α ∈ (0, 1), we have

La
j (απ1 + (1− α)π2) ≤ αLa

j (π1) + (1− α)La
j (π2) = Gj(απ1 + (1− α)π2, δk̂)

(A.8)

By the definition of La
j (απ1 + (1− α)π2), we have

La
j (απ1 + (1− α)π2) = sup

k
{Gj(απ1 + (1− α)π2, δk)}

≥ Gj(απ1 + (1− α)π2, δk̂) (A.9)

By equation (A.8) and (A.9), we have

La
j (απ1 + (1− α)π2) = Gj(απ1 + (1− α)π2, δk̂) (A.10)

which implies that µ̂a
j (απ1 + (1− α)π2) = δk̂.

(iii). Consider Pjk ∈ Pj. For π ∈ Pjk, we have La
j (πj) is linear in πj , and Ls

j(πj)

is convex in πj . Therefore, the difference ∆Lj(πj) , La
j (πj) − Ls

j(πj) is concave

in πj . Therefore, if ∆Lj(πj) ≤ 0 for all π ∈ Pjk, we have Sjk = ∅. Otherwise,

define Sjk , {π : π ∈ Pjk,∆Lj(πj) > 0}. It follows that Sjk is a convex set and for

all π ∈ Sjk, it is optimal for the firm to stop observing the demand and adjust the

capacity.

(iv). By equation (A.5), we have La
j (πj) = supk {Gj(πj , δk)}. As ∆Gj,k(π) (de-
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fined in equation (A.4)) is a decreasing sequence in k for given π and j, to prove

the result, it is sufficient to show that for given k, if πj1 � πj2, then ∆Gj,k(πj1) ≤

∆Gj,k(πj2). We first prove the result for the case where for î1 < î2 and ǫ > 0, we

have πj2 ,̂i1
= πj1 ,̂i1

− ǫ, πj2 ,̂i2
= πj1 ,̂i2

+ ǫ, and πj2 ,̂i
= πj1 ,̂i

for all î 6= î1, î2.

First, by equation (A.3) and (2.3), we have

∆Gj,k(πj2)−∆Gj,k(πj1) =

∑J
i=j+l [hi(πj2 , δk+1)− hi(πj2 , δk)]

δk+1 − δk

−
∑J

i=j+l [hi(πj1, δk+1)− hi(πj1, δk)]

δk+1 − δk

=
ǫ

δk+1 − δk

J
∑

i=j+l

{

E
[

g(Di)|θî2
]

− E
[

g(Di)|θî1
]

}

(A.11)

where

g(Di) , −c1(Di − δk+1τ)
+ + c1(Di − δkτ)

+ − c0(δk+1 − δk)τ.

Because Di|θî1 �st Di|θî2 , and g(Di) increases in Di, we have

∆Gj,k(πj2)−∆Gj,k(πj1) ≥ 0. (A.12)

For an arbitrary pair of πj1 and πj2 such that πj1 � πj2 , we observe that πj2 can be

obtained from πj1 within finite steps using the operations above (subtract ǫj from an

element with a lower index and add ǫj to an element with a higher index).

Proof of Proposition II.4. The proof of part (i) is similar to the proof for Proposition

II.3(i). We only prove part (ii) here.

When the feasible set for the capacity adjustment is continuous, we have

La
j (πj) = max

µ∈R+
{Gj(πj , µ)} . (A.13)
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We first define

Gj1,j2
j (µ) , Gj(πj2, µ)−Gj(πj1, µ). (A.14)

Then to prove the result, it is sufficient to show that for given µ, if πj1 � πj2, we

have
dG

j1,j2
j

dµ
(µ) ≥ 0. Following a similar step as in the proof of Proposition II.3(iv),

it is sufficient to prove for the following case: for î1 < î2 and ǫ > 0, we have πj2 ,̂i1
=

πj1 ,̂i1
− ǫ, πj2 ,̂i2

= πj1 ,̂i2
+ ǫ, and πj2 ,̂i

= πj1 ,̂i
for all î 6= î1, î2.

Following equation (A.3) and (2.3), we have

dGj1,j2
j

dµ
(µ) =

J
∑

i=j+l

[

∂hi

∂µ
(πj2, µ)−

∂hi

∂µ
(πj1 , µ)

]

= ǫc1τ

J
∑

i=j+l

[

Fi(µτ |θî1)− Fi(µτ |θî2)
]

≥ 0 (A.15)

It follows that µ̂a
j (πj1) ≤ µ̂a

j (πj2), which completes the proof.

We state the following proposition from Gallego (1992) before proving Proposition

II.6.

Proposition A.1 (Proposition 1 in Gallego (1992)). Let F denote the class of cu-

mulative distributions with finite mean µ and variance σ2, and R be a finite constant.

max
F∈F

∫

(x−R)+dF (x) =
1

2
(
√
∆2 + σ2 −∆) (A.16)

where ∆ = R− µ.

Essentially, this is a one-sided deviation bound. Following a similar proof, we have

max
F∈F

∫

(R− x)+dF (x) =
1

2
(
√
∆2 + σ2 −∆) (A.17)

where ∆ = µ− R.
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Proof of Proposition II.6. We derive an upper bound of the regret as follows. We

first observe that for any x, y, and z, we have

(x− y)+ ≤ (x− z)+ + (z − y)+. (A.18)

We have λ̂i,τn = N(nλiτn)
nτn

from equation (2.22). To simplify the notations, we similarly

define

λ̂i,jτn ,
Dj|θi,n
nτn

=
N(nλijτn)−N(nλi(j − 1)τn)

nτn
for j = 2, 3, ..., Jn (A.19)

We observe that λ̂i,jτn for j = 1, 2, ..., Jn is a sequence of i.i.d. random variables with

E
(

λ̂i,jτn

)

= λi and Var
(

λ̂i,jτn

)

= σ2λi

nτn
. From equation (2.23), we have

V ts
0,n(π1) =

I
∑

i=1

π1,iE



























pnλ̂i,(ln+1)τnτn − c1n
(

λ̂i,(ln+1)τn − µ0

)+

τn − c0nµ0τn

−Ĉ(nµ0, nλ̂i,τn) +
Jn
∑

j=ln+2

[

pnλ̂i,jτnτn

−c1n
(

λ̂i,jτn − λ̂i,τn

)+

τn − c0nλ̂i,τnτn

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θi,n



























(A.20)

The expected operating profit from the period ln + 1, pnλiτn − c1nE(λ̂i,(ln+1)τn −

µ0)
+τn − c0nµ0τn, is positive, as p ≥ c1 > c0. Therefore, we have

RHS of (A.20) ≥
I

∑

i=1

π1,i











(p− c0)nλi(T − τn − lt)−E
[

Ĉ(nµ0, nλ̂i,τn)
]

−c1nτn
∑Jn

j=ln+2E
(

λ̂i,jτn − λ̂i,τn

)+











(A.21)

By equation (2.25), we have the deterministic upper bound

V d
0,n =

I
∑

i=1

π1,i

{

(p− c0)nλi(T − lt)− Ĉ(nµ0, nλi)
}

.
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Therefore, we have the regret

Rts
n = 1− V ts

0,n/V
d
0,n

≤ 1

V d
0,n

I
∑

i=1

π1,i











(p− c0)nλiτn − Ĉ(nµ0, nλi) + E
[

Ĉ(nµ0, nλ̂i,τn)
]

+c1nτn
∑Jn

j=ln+2E
(

λ̂i,jτn − λ̂i,τn

)+











. (A.22)

Recall that for the initial capacity position µ and target capacity position µ′, we have

Ĉ(µ, µ′) = ca(µ
′ − µ)+ + γa(µ− µ′)+. We notice when γa ≥ 0, we can directly apply

(A.18) and E[−γa(nµ0 − nλi)
+ + γa(nµ0 − nλ̂i,τn)

+] ≤ E[γan(λi − λ̂i,τn)
+]. When

γa < 0, we have E[−γa(nµ0 − nλi)
+ + γa(nµ0 − nλ̂i,τn)

+] ≤ 0 by Jensen’s inequality.

Therefore, applying (A.18), we have

RHS of (A.22) ≤ 1

V d
0,n

I
∑

i=1

π1,i



























(p− c0)nλiτn + canE(λ̂i,τn − λi)
+

+γ+
a nE(λi − λ̂i,τn)

+

+c1nτn
Jn
∑

j=ln+2

[

E
(

λ̂i,jτn − λi

)+

+ E
(

λi − λ̂i,τn

)+
]



























(A.23)

From equation (A.23), it is clear that to derive an upper bound of Rts
n , we need to

find upper bounds for E
(

λ̂i,jτn − λi

)+

and E
(

λi − λ̂i,τn

)+

respectively. Recall that

E
(

λ̂i,jτn

)

= λi and Var
(

λ̂i,jτn

)

= σ2λi

nτn
. In the following, we use Ci to represent a

constant for all i, which is independent of n and τn.

We first find an upper bound for E
(

λ̂i,jτn − λi

)+

. By equation (A.16), we have

E
(

λ̂i,jτn − λi

)+

≤ σ
√
λi

2
√
nτn

for j = 1, 2, ..., Jn. (A.24)

For E
(

λi − λ̂i,τn

)+

, by equation (A.17), we have the following

E
(

λi − λ̂i,τn

)+

≤ σ
√
λi

2
√
nτn

. (A.25)
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From equation (A.24) and (A.25), we have

RHS of (A.23) ≤ C1τn +
C2√
nτn

(A.26)

Then the result follows by setting that τn ≍ n− 1
3 .

Proof of Proposition II.7. The proof follows in two steps: (1) show V m
j (πj , µ̂j−1) is

concave in the capacity position µ̂j−1 for all j ≤ J− l+1; (2) show the optimal policy

follows the control band structure and find the lower and upper thresholds.

We first show the concavity by induction.

For j = J − l + 1, we have V m
J−l+1(πJ−l+1, µ̂J−l) = 0, and therefore is con-

cave in µ̂J−l. For j + 1, assume V m
j+1(πj+1, µ̂j) is concave in µ̂j. It follows that

E
[

V m
j+1(Πj+1, µ̂)|πj

]

is concave in µ̂ as the positive combination of concave func-

tions is concave. Therefore, we have hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)
+ − γa (µ̂j−1 − µ̂)+ +

E
[

V m
j+1(Πj+1, µ̂)|πj

]

is jointly concave in (µ, µ̂). For a jointly-concave function

f(x, y) and a convex set Y , we have g(x) = maxy∈Y f(x, y) is concave in x. Then it

follows that

V m
j (πj , µ̂j−1) =max

µ̂∈R+

{

hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)
+ − γa (µ̂j−1 − µ̂)+

+E
[

V m
j+1(Πj+1, µ̂)|πj

]}

is concave in µ̂j−1.

We next show the optimal policy follows the control band structure. For µ̂j−1 = 0,

we define

µ
j
(πj) , arg max

µ̂∈R+

{

hj+l (πj , µ̂)− caµ̂+ E
[

V m
j+1(Πj+1, µ̂)|πj

]}

(A.27)

For any µ̂j−1 < µ
j
(πj), it is optimal to adjust the capacity up to the level µ

j
(πj).
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For an arbitrary large µ̂j−1, we define

µj(πj) , arg max
µ̂∈R+

{

hj+l (πj , µ̂) + γaµ̂+ E
[

V m
j+1(Πj+1, µ̂)|πj

]}

(A.28)

It is optimal for the firm to disinvest its capacity to µj(πj) for all µ̂j−1 > µj(πj). As

ca ≥ 0 and ca ≥ −γa, it follows that µj(πj) ≥ µ
j
(πj). Following the concavity of the

value-to-go function, it is optimal for the firm to stay put when µ
j
(πj) ≤ µ ≤ µj(πj).

Therefore, we have proved the optimal policy is a control band policy.

Proof of Lemma II.8. When there are only two demand types, we can reduce the

information state to πj = πj,2 as πj,1 = 1 − πj,2, and therefore πj = (1 − πj , πj). We

define the two functions

Ga
j (πj, µ̂j−1, µ̂) = hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)

+ − γa (µ̂j−1 − µ̂)+ + E
[

V m
j+1(Πj+1, µ̂)|πj

]

Gs
j(πj , µ̂) = hj+l (πj , µ̂) + E

[

V m
j+1(Πj+1, µ̂)|πj

]

. (A.29)

We observe that V m
j (πj , µ̂j−1) = maxµ̂G

a
j (πj, µ̂j−1, µ̂). In addition, from Proposition

II.7, we have Ga
j (πj , µ̂j−1, µ̂) is concave in µ̂. Therefore, to show the two thresholds

increase in the information state πj , it is sufficient to show that for j = 1, ..., J− l, we

have
∂Ga

j (πj ,µ̂j−1,µ̂)

∂µ̂
increases in πj for any µ̂ 6= µ̂j−1, and

∂Gs
j (πj ,µ̂)

∂µ̂
, which is a special

case when µ̂ = µ̂j−1, increases in πj . We prove this by induction. We present the

result for Ga
j (·) as the proof for Gs

j(·) is identical.

To establish induction basis, let j = J − l. If µ̂ ≤ µ̂J−l−1, we have

∂Ga
J−l(πJ−l, µ̂J−l−1, µ̂)

∂µ̂
= c1τ [1−FJ (µ̂τ |θ1)]−c0τ+πJ−lc1τ [FJ(µ̂τ |θ1)−FJ (µ̂τ |θ2)]+γa

(A.30)

Therefore, as Dj |θ1 �st Dj|θ2, we have
∂Ga

J−l
(πJ−l,µ̂J−l−1,µ̂)

∂µ̂
increases in πJ−l when

µ̂ < µ̂J−l−1. A similar argument establishes the result for the case µ̂ > µ̂J−l−1.

Suppose that the result hold for all t = j + 1, ..., J − l. Thus, at period j + 1,
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∂Ga
j+1(πj+1,µ̂j ,µ̂)

∂µ̂
increases in πj+1 for all µ̂ 6= µ̂j . From the induction hypothesis, the

two switching curves µ
j+1

(πj+1) and µ̄j+1(πj+1) increase in πj+1 as well. We now show

that
∂Ga

j (πj ,µ̂j−1,µ̂)

∂µ̂
increases in πj for µ̂ 6= µ̂j−1.

For any µ̂ < µ̂j−1, we have

∂Ga
j (πj ,µ̂j−1,µ̂)

∂µ̂
=c1τ [1 − Fj+l(µ̂τ |θ1)]− c0τ + πjc1τ [Fj+l(µ̂τ |θ1)− Fj+l(µ̂τ |θ2)] + γa

+ E

[

∂V m
j+1

∂µ̂
(Πj+1, µ̂)

∣

∣

∣

∣

πj

]

(A.31)

The expression for
∂Ga

j

∂µ̂
(πj, µ̂j−1, µ̂) when µ̂ > µ̂j−1 is similar. In order to show equa-

tion (A.31) increases in πj , we need to show that E
[

∂V m
j+1

∂µ̂
(Πj+1, µ̂)

∣

∣

∣
πj

]

increases in

πj , which is shown in two steps below.

We first observe that

∂V m
j+1

∂µ̂j
(πj+1, µ̂j) =























ca if µ̂j < µ
j+1

(πj+1)

∂Gs
j+1

∂µ̂
(πj+1, µ̂j) if µ

j+1
(πj+1) ≤ µ̂j ≤ µ̄j+1(πj+1)

−γa if µ̂j > µ̄j+1(πj+1)

(A.32)

Notice that
∂V m

j+1

∂µ̂j
(πj+1, µ̂j) is continuously decreasing in µ̂j , and µ

j+1
(πj+1) and µ̄j+1(πj+1)

increase in πj+1. From the induction hypothesis,
∂V m

j+1

∂µ̂j
(πj+1, µ̂j) increases in πj+1.

Next, we show that Πj+1|πj increases in πj in the first order stochastic dominance

sense. Notice that by equation (2.1), given information state πj , for realized demand

dj, we have

πj+1 =
πjfj(dj |θ2)

πjfj(dj|θ2) + (1− πj)fj(dj|θ1)
.

Then following any sample path of the random demand, πj+1 increases in πj . We

notice that the demand density functions bear the monotone likelihood ratio property,

so we have πj+1 increases in dj. Therefore, we have Πj+1|πj increases in πj in the first

order stochastic dominance sense. Thus, E
[

∂V m
j+1

∂µ̂
(Πj+1, µ̂)

∣

∣

∣
πj

]

must increase in πj .

145



It then follows that
∂Ga

j

∂µ̂
(πj , µ̂j−1, µ̂) increases in πj for µ̂ < µ̂j−1. A similar argument

proves the case for µ̂ > µ̂j−1. Therefore, the result holds for period j.

Proof of Proposition II.9. Similar to the proof of Proposition II.6, we first find an

upper bound of the regret by finding a lower bound of V ms
0,n . To simplify the notations,

we define the firm’s expected profits under the multi-step heuristic (given the demand

type λi) in different periods as follows. We still use λ̂i,jτn to denote
Dj |θi,n
nτn

. First, in

period ln + 1, the firm’s capacity is still the initial capacity µ0, and we have

Ws,n(λi) ,E
{

pnλ̂i,(ln+1)τnτn − c1n
(

λ̂i,(ln+1)τn − µ0

)+

τn − c0nµ0τn

}

(A.33)

Second, during period ln + 2 and ln + 2Kn − 1, the firm’s capacity level is updated

according to the heuristic. Observing that E[λ̄i,κ] = λi, we have the firm’s expected

profits as

Wm,n(λi) ,E

Kn−1
∑

κ=1

{

ln+2κ+1−1
∑

j=ln+2κ

[

pnλ̂i,jτnτn − c1n
(

λ̂i,jτn − λ̄i,κ

)+

τn − c0nλ̄i,κτn

]

− Ĉ
(

nλ̄i,κ−1, nλ̄i,κ

)

}

=

Kn−1
∑

κ=1

{

(p− c0)nλi2
κτn − c1nτn

ln+2κ+1−1
∑

j=ln+2κ

E
(

λ̂i,jτn − λ̄i,κ

)+

− E
[

Ĉ
(

nλ̄i,κ−1, nλ̄i,κ

)

]

}

(A.34)

Finally, during period ln + 2Kn and Jn, the firm makes the last adjustment, and the
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capacity maintains at this level for the rest of the time horizon. Then we have

Wl,n(λi) ,E







Jn
∑

j=ln+2Kn

[

pnλ̂i,jτnτn − c1n
(

λ̂i,jτn − λ̄i,Kn

)+

τn − c0nλ̄i,Kn
τn

]

− Ĉ
(

nλ̄i,Kn−1, nλ̄i,Kn

)

}

=(p− c0)nλi

(

T − lt −
(

2Kn − 1
)

τn
)

− c1nτn

Jn
∑

j=ln+2Kn

E
(

λ̂i,jτn − λ̄i,Kn

)+

− E
[

Ĉ
(

nλ̄i,Kn−1, nλ̄i,Kn

)

]

(A.35)

Because Ws,n(λi) ≥ 0 as p ≥ c1 > c0, we have

V ms
0,n =

I
∑

i=1

π1,i

{

Ws,n(λi) +Wm,n(λi) +Wl,n(λi)
}

≥
I

∑

i=1

π1,i

{

Wm,n(λi) +Wl,n(λi)
}

(A.36)

Therefore, by equation (2.32), we have an upper bound of the regret as follows

Rπn

n = 1− V ms
0,n /V

d
0,n

≤ 1

V d
0,n

I
∑

i=1

π1,i

{

(p− c0)nλi(T − lt)− Ĉ(nµ0, nλi)−Wm,n(λi)−Wl,n(λi)
}

=
1

V d
0,n

I
∑

i=1

π1,i







































(p− c0)nλiτn − Ĉ(nµ0, nλi) +
Kn
∑

κ=1

E
[

Ĉ
(

nλ̄i,κ−1, nλ̄i,κ

)

]

+c1nτn

[

Kn−1
∑

κ=1

ln+2κ+1−1
∑

j=ln+2κ
E
(

λ̂i,jτn − λ̄i,κ

)+

+
Jn
∑

j=ln+2Kn

E
(

λ̂i,jτn − λ̄i,Kn

)+
]







































(A.37)

To find an upper bound for the right hand side of equation (A.37), we need to

find an upper bound for E
(

λ̂i,jτn − λ̄i,κ

)+

, E(λ̄i,κ − λ̄i,κ−1)
+, and E(λ̄i,κ−1 − λ̄i,κ)

+

respectively. Note that E[λ̄i,κ] = λi and V ar[λ̄i,κ] =
σ2λi

n(2κ−1)τn
. We use Ci to represent
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a constant which is independent of n and τn for all i. By Proposition A.1 and the

inequality of (A.18), we have

E
(

λ̂i,jτn − λ̄i,κ

)+

≤ E
(

λ̂i,jτn − λi

)+

+ E
(

λi − λ̄i,κ

)+

≤ σ
√
λi

2
√
nτn

+
σ
√
λi

2
√

n(2κ − 1)τn
≤ C3√

nτn
(A.38)

For κ = 1, we have

E
(

λ̄i,1 − λ̄i,0

)+
= E

(

λ̄i,1 − µ0

)+ ≤ E
(

λ̄i,1 − λi

)+
+ (λi − µ0)

+ ≤ σ
√
λi

2
√
nτn

+ (λi − µ0)
+

(A.39)

E
(

λ̄i,0 − λ̄i,1

)+
= E

(

µ0 − λ̄i,1

)+ ≤ (µ0 − λi)
+ + E

(

λi − λ̄i,1

)+ ≤ (µ0 − λi)
+ +

σ
√
λi

2
√
nτn

(A.40)

By equation (2.30), for κ ≥ 2, we have

E
(

λ̄i,κ − λ̄i,κ−1

)+

= E

(

λ̄i,κ−1n(2
κ−1 − 1)τn +N(nλi(2

κ − 1)τn)−N(nλi(2
κ−1 − 1)τn)

n(2κ − 1)τn
− λ̄i,κ−1

)+

= E

(

N(nλi(2
κ − 1)τn)−N(nλi(2

κ−1 − 1)τn)− λ̄i,κ−1n2
κ−1τn

n(2κ − 1)τn

)+

≤ E

(

N(nλi(2
κ − 1)τn)−N(nλi(2

κ−1 − 1)τn)

n2κ−1τn
− λi

)+

+ E
(

λi − λ̄i,κ−1

)+

≤ σ
√
λi

2
√
n2κ−1τn

+
σ
√
λi

2
√

n(2κ−1 − 1)τn
≤ C5√

n2κτn
(A.41)

E
(

λ̄i,κ−1 − λ̄i,κ

)+ ≤ C6√
n2κτn

(A.42)

We next apply the inequality (A.38) to (A.42) to the right hand side of equation

(A.37), and gather the items by the outsourcing costs and capacity adjustment costs
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respectively. Then we obtain an upper bound of the regret as follows

RHS of (A.37) ≤ C7τn + C8
c1√
nτn

+ C9

Kn
∑

κ=1

max(ca, γ
+
a )√

n2κτn

≤ C7τn +
C10√
nτn

(A.43)

The last inequality follows the fact that Kn satisfies that (2Kn+1 − 1)τn ≤ T − lt.

By setting τn ≍ n− 1
3 , we obtain an upper bound of the regret on the order of

n− 1
3 .

Remark: The exponentially increasing time between two consecutive adjustments

is important in establishing the upper bound in the order of n−1/3. To illustrate this,

we alternatively consider another heuristic, where the time between two consecutive

adjustments is fixed as ητn, η ∈ N
+. We denote the regret under this heuristic as

Rfa
n . Following the same logic as in the proof of Proposition II.9, it can be obtained

that the upper bound of the regret satisfies the following

Rfa
n ≤ C7τn + C11

c1√
nτn

+ C12
max(ca, γ

+
a )√

nητn

T

ητn

≤ C7τn + C13
1

√

nτ 3n
(A.44)

In this case, the firm should set τn ≍ n−1/5 and yield an upper bound in the order of

n−1/5. It cannot tighten the upper bound to the order of n−1/3, because the capacity

adjustment is too frequent and the adjustment cost is too high.

Profit and cost parameter estimations in numerical examples.

We use Production to indicate the total production volume of Ford in 2012, which

is approximated by the wholesale volume of 5, 668 thousands units (operating high-

lights, Ford Motor Company 2012). As estimated by IHS Automotive (P.12, Ford Mo-

tor Company 2012), the global automotive industry production capacity for light vehi-

cles is about 108 million units, which exceeds the global production by 26 million units.
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We therefore use the industry capacity utilization Utilization = 108−26
108

= 75.93% to

estimated Ford’s total capacity (including all types of products) in 2012 as

Capacity =
Production

Utilization
=

5, 668× 103

75.93%
= 7, 465× 103units/year

= 622.1× 103units/month

• Capacity adjustment cost ca and γa. The capacity adjustment cost ca is estimat-

ed from the Amortization of special tools(AST) (P.102, Ford Motor Company

2012). As Ford generally amortizes special tools over the expected life of a

product program using a straightline method, we calculate the expected cost to

install one unit of capacity ca as

ca =
AST × T

2

Capacity
=

1, 861× 106 × 3
2

622.1× 103

= 4, 487 dollars ·month/units.

As the capacity adjustment is often irreversible, we use a coefficient γ to measure

the irreversibility and assume γa = γca. In the base analysis, we assume γ = 0.1,

i.e., it is costly for the firm to downsize its capacity.

• Capacity overhead cost c0. The overhead cost is estimated from Maintenance

and rearrangement expense (MR) (P.102, Ford Motor Company 2012). This

cost reflects the firm’s expense to conduct routine maintenance and repair to

keep up its capacity level, and is incurred regardless of the production location.

Therefore, we calculate c0 as

c0 =
MR

Capacity
=

1, 352× 106

7, 465× 103
= 181.1 dollars/units.

• Capacity outsourcing cost c1. The outsourcing cost is incurred when the de-
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mand exceeds the installed capacity and therefore has to be satisfied by another

facility. Therefore, the capacity outsourcing cost includes the cost to maintain

the extra unit of outsourcing capacity and additional machine setup and trans-

portation costs, and we denote the cost c1 = (1 + β)c0 with β > 0. In the base

case, we assume β = 1.

• Unit profit p. The unit profit is the profit the firm earns from selling a car,

excluding the capacity related cost. We denote the gross revenue by Revenue

and the total operating cost by Cost. Then we estimate the unit profit as

p =
Revenue− Cost +MR + AST

Production

=
125, 567− 121, 584 + 1, 352 + 1, 861

5, 668
× 103

= 1, 270 dollars/units.

We observe that from Ford Focus’s official website1, a simple average of the

starting manufacturer suggested retail price (MSRP) for the seven current fo-

cus models yields a value of (16, 200 + 18, 200 + 19, 200 + 23, 200 + 23, 799 +

24, 200 + 39, 200)/7 = $23, 414. We observe that this value is close to the av-

erage retail price estimated from the financial data, Revenue/Production =

125, 567/5, 668× 103 = $22, 154.

In the numerical analysis, we perform robustness checks with respect to these

estimated parameters.

1Ford Focus: http://www.ford.com/cars/focus/

151



APPENDIX B

Proofs and Technical Details for Chapter III:

Investing in a Shared Supplier in a Competitive

Market: The Stochastic Capacity Case

Proof of Lemma III.1. Without loss of generality, we assume k1 ≥ k2. Using concav-

ity of the objective function, we obtain the best response function of firm 1 and firm

2 as:

q∗1(q2) =











a−c−bq2
2b if a−c−bq2

2b < (k02 + k1)ξ,

(k02 + k1)ξ if a−c−bq2
2b ≥ (k02 + k1)ξ.

q∗2(q1) =











a−c−bq1
2b if a−c−bq1

2b < (k02 + k2)ξ,

(k02 + k2)ξ if a−c−bq1
2b ≥ (k02 + k2)ξ.

Solving for the intersection of the best response functions q∗1(q2) and q∗2(q1), we can

obtain the equilibrium order quantities and hence the equilibrium profits shown in

Lemma III.1.

Discussion about when a−c

3b(
k0
2
+k2)

> 1. We observe that when a−c

3b(
k0
2
+k2)

> 1, there are

two cases.
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Case 1. When a−c

b(
3k0
2

+2k1+k2)
≤ 1, we have the equilibrium order quantity and ex

post profit as follows:

realized yield ξ order quantity (q∗1 , q
∗
2) ex post profit (πe

1, πe
2)

0 ≤ ξ ≤ a−c

b(
3k0
2

+2k1+k2)

(

(k0
2
+ k1)ξ, (

k0
2
+ k2)ξ

) (

m2(
k0
2
+ k1)ξ,m2(

k0
2
+ k2)ξ

)

a−c

b(
3k0
2

+2k1+k2)
< ξ ≤ 1

(

a−c−b(
k0
2
+k2)ξ

2b
, (k0

2
+ k2)ξ

)(

m1[a−c−b(
k0
2
+k2)ξ]

2b
, m1(

k0
2
+ k2)ξ

)

Case 2. When a−c

b(
3k0
2

+2k1+k2)
> 1, we have the equilibrium order quantity and ex

post profit as follows:

realized yield ξ order quantity (q∗1, q
∗
2) ex post profit (πe

1, πe
2)

0 ≤ ξ ≤ 1
(

(k0
2
+ k1)ξ, (

k0
2
+ k2)ξ

)(

m2(
k0
2
+ k1)ξ,m2(

k0
2
+ k2)ξ

)

With the ex post profit derived, the firm’s expected profit can be obtained similarly

as in equation (3.1) and (3.2), and the analysis follows. The discussions for the first-

priority case (Lemma III.3) are similar and omitted for space.

Proof of Proposition III.2. We prove the proposition in two steps. We first illustrate

that given the number of investing firms, the equilibrium capacity investment satis-

fies equation (3.3) or (3.4) respectively, and show the monotonicity of the equilibrium

capacity with respect to the variable capacity cost w. Then we show the monotonic-

ity of the number of investing firms with respect to the fixed capacity cost w0 by

constructing the equilibrium switching curves, and finally show the monotonicity of

the equilibrium switching curves.

Both firms investing: If both firms decide to invest in the supplier, we first show that

the equilibrium capacity satisfies k1 = k2, and then the equilibrium capacity is the ke

as shown in condition (3.3).
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We first show that if k1 > k2, then (k1, k2) cannot be the equilibrium capacity.

Following equation (3.1) and (3.2), we have

∂V e
1

∂k1
=

a−c

b(
3k0
2 +2k1+k2)
∫

0

[

a− c− b

(

3k0
2

+ 2k1 + k2

)

ξ

]

ξf(ξ)dξ − w (B.1)

∂V e
2

∂k2
=

a−c

b(
3k0
2 +2k1+k2)
∫

0

[

a− c− b

(

3k0
2

+ k1 + 2k2

)

ξ

]

ξf(ξ)dξ

+

a−c

3b(
k0
2 +k2)
∫

a−c

b(
3k0
2 +2k1+k2)

a− c− b(k0 + 2k2)ξ

2
ξf(ξ)dξ − w (B.2)

Let k1 = k + ǫ and k2 = k where ǫ > 0, then we have

∂V e
1

∂k1

∣

∣

∣

∣

(k+ǫ,k)

− ∂V e
2

∂k2

∣

∣

∣

∣

(k+ǫ,k)

=

a−c

b(
3k0
2 +3k+2ǫ)
∫

0

−bǫξ2f(ξ)dξ

−

a−c

3b(
k0
2 +k)
∫

a−c

b(
3k0
2 +3k+2ǫ)

a− c− b(k0 + 2k)ξ

2
ξf(ξ)dξ ≤ 0 (B.3)

Therefore, at least one of the two firms will have incentive to deviate from the cur-

rent capacity investment level, and we have (k1, k2) where k1 > k2 cannot be an

equilibrium. Similarly, we have (k1, k2) where k1 < k2 cannot be an equilibrium.

We next show that k1 = k2 = ke is indeed an equilibrium by showing that neither

firm has incentive to deviate in this case. We focus on the analysis for firm 1 as the
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analysis for firm 2 is similar. If firm 1 deviates from ke to ke + ǫ, then we have

∂V e
1

∂k1

∣

∣

∣

∣

(ke+ǫ,ke)

− ∂V e
1

∂k1

∣

∣

∣

∣

(ke,ke)

=

a−c

b(
3k0
2 +3ke+2ǫ)
∫

0

−2bǫξ2f(ξ)dξ

−

a−c

b(
3k0
2 +3ke)
∫

a−c

b(
3k0
2 +3ke+2ǫ)

[

a− c− b

(

3k0
2

+ 3ke

)

ξ

]

ξf(ξ)dξ ≤ 0

(B.4)

That is, firm 1 will have incentive to decrease its capacity investment from ke+ ǫ. On

the other hand, if firm 1 deviates from ke to ke − ǫ. Then we have

∂V e
1

∂k1

∣

∣

∣

∣

(ke−ǫ,ke)

− ∂V e
1

∂k1

∣

∣

∣

∣

(ke,ke)

=

a−c

b(
3k0
2 +3ke)
∫

0

2bǫξ2f(ξ)dξ

+

a−c

b(
3k0
2 +3ke−ǫ)
∫

a−c

b(
3k0
2 +3ke)

[

a− c− b

(

3k0
2

+ 3ke − 2ǫ

)

ξ

]

ξf(ξ)dξ

+

a−c

3b(
k0
2 +ke−ǫ)
∫

a−c

b(
3k0
2 +3ke−ǫ)

a− c− b(k0 + 2ke − 2ǫ)ξ

2
ξf(ξ)dξ ≥ 0

(B.5)

Therefore, firm 1 will have incentive to increase its capacity investment from ke − ǫ.

To conclude, we have shown that if both firms invest in the supplier, the equilibrium

capacity investment ke is the same for both firms and is characterized by condition

(3.3).

Then we implicitly differentiate ke with respect to w in equation (3.3), and obtain
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that

∂ke

∂w
= − 1

3b
∫

a−c

3b(
k0
2 +ke)

0 ξ2f(ξ)dξ

≤ 0 (B.6)

Therefore, it follows that ke decreases in w.

One firm investing: If only one firm invests, without loss of generality assuming the

investing firm is firm 1, we have the first order derivative of firm 1’s expected profit

as

∂V e
1

∂k1

∣

∣

∣

∣

(k1,0)

=

a−c

b(
3k0
2 +2k1)
∫

0

[

a− c− b

(

3k0
2

+ 2k1

)

ξ

]

ξf(ξ)dξ − w (B.7)

It follows that the second order derivative

∂2V e
1

∂k2
1

∣

∣

∣

∣

(k1,0)

=

a−c

b(
3k0
2 +2k1)
∫

0

−2bξ2f(ξ)dξ ≤ 0 (B.8)

Therefore, firm 1 will choose ke
1 which satisfies the condition that

∂V e
1

∂k1
= 0.

Similarly, we implicitly differentiate ke
1 with respect to w in equation (3.4), and

obtain that

∂ke
1

∂w
= − 1

2b
∫

a−c

b(
3k0
2 +2ke

1
)

0 ξ2f(ξ)dξ

≤ 0 (B.9)

Therefore, it follows that ke
1 decreases in w.

Monotonicity of number of investing firms: To simplify the notations, we define that

Le
i (k1, k2;w) , E [πe

i (k1, k2, ξ)]−wki. For given w, we write Le
i (k1, k2;w) as L

e
i (k1, k2)

when there is no confusion. Then we have V e
i (k1, k2) = Le

i (k1, k2)−w01{ki>0}. When

only one firm invests, we still label the investing firm as firm 1. We prove the results
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in three steps. First, we show in a technical lemma that ke ≤ ke
1 ≤ 2ke. Then

we show that Le
1(k

e
1, 0) ≥ Le

1(0, 0) and Le
2(k

e, ke) ≥ Le
2(k

e
1, 0). Finally, we prove the

monotonicity in the number of investing firms by deriving the switching curves, and

then show the monotonicity of the equilibrium switching curves.

Lemma B.1 (Monotonicity in the capacity investment). ke ≤ ke
1 ≤ 2ke.

Proof of Lemma B.1. By comparing equation (3.3) and (3.4), we have 3ke = 2ke
1.

Therefore, the results follow.

We next show that Le
1(k

e
1, 0) ≥ Le

1(0, 0) and Le
2(k

e, ke) ≥ Le
2(k

e
1, 0). First, as

Le
1(k

e
1, 0) , maxk≥0L

e
1(k, 0), it follows that L

e
1(k

e
1, 0) ≥ Le

1(0, 0). Second, using equa-

tion (3.3) and (3.4) we have

Le
2(k

e, ke) =

a−c

b(
3k0
2 +3ke)
∫

0

m2(
k0
2

+ ke)ξf(ξ)dξ +

1
∫

a−c

3b(
k0
2 +ke)

m0(a− c)

3b
f(ξ)dξ − wke

=

a−c

b(
3k0
2 +3ke)
∫

0

[

(a− c− b(k0 + ke)ξ)
k0
2

+ b(ke)2ξ

]

ξf(ξ)dξ

+

1
∫

a−c

3b(
k0
2 +ke)

m0(a− c)

3b
f(ξ)dξ

, E[f e
2 (k

e, ke, ξ)] (B.10)

Le
2(k

e
1, 0) =

a−c

b(
3k0
2 +2ke1)
∫

0

m2
k0
2
ξf(ξ)dξ +

2(a−c)
3bk0
∫

a−c

b(
3k0
2 +2ke1)

m1
k0
2
ξf(ξ)dξ +

1
∫

2(a−c)
3bk0

m0(a− c)

3b
f(ξ)dξ

, E[f e
2 (k

e
1, 0, ξ)] (B.11)

For any realization of ξ, the integrand f e
2 (k

e, ke, ξ) ≥ f e
2 (k

e
1, 0, ξ) following Lemma

B.1. Therefore, we have Le
2(k

e, ke) ≥ Le
2(k

e
1, 0).
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Finally, we define we
0(w) , Le

1(k
e
1, 0;w)−Le

1(0, 0;w), w
e
0(w) , min{Le

2(k
e, ke;w)−

Le
2(k

e
1, 0;w), w

e
0(w)}, and we

0(w) , V e
i (k

e, ke) − V e
i (0, 0). It follows that when w0 ≥

we
0(w), neither firm has incentive to deviate from the status quo (neither firm invests

in the supplier); when we
0(w) ≤ w0 < we

0(w), only one firm invests in the supplier;

when w0 < we
0(w), both firms invest in the supplier. When we

0(w) ≤ w0 < we
0(w),

both firms invest in the supplier but both firms earn a lower profit than they do

when neither firms in the supplier. Therefore, both firms are trapped in a prisoner’s

dilemma.

For the monotonicity of the equilibrium switching curves, by envelope theorem,

we have

∂we
0(w)

∂w
= −ke

1 ≤ 0. (B.12)

That is we
0(w) decreases in w. We also define ŵe

0(w) , Le
2(k

e, ke;w) − Le
2(k

e
1, 0;w).

Then we have

∂ŵe
0(w)

∂w
=

a−c

3b(
k0
2 +ke)
∫

0

−b(k0 + 2ke)

2
ξ2f(ξ)dξ

∂ke

∂w
− ke +

a−c

b(
3k0
2 +2ke1)
∫

0

bk0
2

ξ2f(ξ)dξ
∂ke

1

∂w

= −8ke + k0
12

≤ 0 (B.13)

The second equality follows equation (B.6) and (B.9). As we
0(w) , min{ŵe

0(w), w
e
0(w)},

we have we
0(w) decreases in w.

Remark: One may observe that when we
0(w) < Le

2(k
e, ke) − Le

2(k
e
1, 0) and w0 ∈

[we
0(w), L

e
2(k

e, ke)−Le
2(k

e
1, 0)], in theory there exist two equilibria: both firms investing

in the supplier, and neither firm investing in the supplier. However, as the status quo

of this game is that neither firm invests in the supplier at the first place (and both

firms are deciding simultaneously about whether they should invest in the supplier),
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the final equilibrium outcome of this game is still that neither firm invests in the

supplier. This is why we define we
0(w) , min{Le

2(k
e, ke)−Le

2(k
e
1, 0), w

e
0(w)}. That is,

we always have we
0(w) ≤ we

0(w).

The proof in this section is similar to the proofs in Section 3.3. Therefore, we will

sketch the proof and illustrate details of the important steps for the interest of space.

Proof of Lemma III.3. The proof is similar to the proof of Lemma III.1. Without loss

of generality, we assume k1 ≥ k2. By concavity of the objective function, we obtain

the best response functions as:

q∗1(q2) =











a−c−bq2
2b if a−c−bq2

2b < (k02 + k1)ξ,

(k02 + k1)ξ if a−c−bq2
2b ≥ (k02 + k1)ξ.

q∗2(q1) =











a−c−bq1
2b if a−c−bq1

2b < ks − q1,

ks − q1 if a−c−bq1
2b ≥ ks − q1.

Similarly, we solve for the intersection of the best response functions q∗1(q2) and q∗2(q1),

and obtain the equilibrium order quantities and profits in Lemma III.3.

Before we prove Proposition III.4, we first derive the expressions for firms’ profit
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based on Lemma III.3, assuming k1 ≥ k2.

V f
1 (k1, k2) =

a−c

b(
3k0
2 +2k1+k2)
∫

0

m2

(

k0
2

+ k1

)

ξf(ξ)dξ +

1
∫

2(a−c)
3b(k0+k1+k2)

m0(a− c)

3b
f(ξ)dξ

+

2(a−c)
3b(k0+k1+k2)

∫

a−c

b(
3k0
2 +2k1+k2)

m2

(

a− c

b
− ks

)

f(ξ)dξ − w01{k1>0} − wk1 (B.14)

V f
2 (k1, k2) =

a−c

b(
3k0
2 +2k1+k2)
∫

0

m2

(

k0
2

+ k2

)

ξf(ξ)dξ +

1
∫

2(a−c)
3b(k0+k1+k2)

m0(a− c)

3b
f(ξ)dξ

+

2(a−c)
3b(k0+k1+k2)

∫

a−c

b(
3k0
2 +2k1+k2)

m2

(

2ks −
a− c

b

)

f(ξ)dξ − w01{k2>0} − wk2 (B.15)

We also prove the following technical lemma that will be used in the proof of

Proposition III.4.

Lemma B.2. For a finite differentiable function h(x) defined on x ∈ R
+, if h′(0) ≥ 0

and limx→∞ h′(x) = 0, then x∗(w) = argmaxx{h(x)− wx} decreases in w.

Proof of Lemma B.2. If h(x) is monotone, the proof is trivial. We prove the lemma

for the case where g(x;w) , h(x)− wx may have two local maxima, x̂1(w) ≤ x̂2(w).

For the cases where g(x;w) has more than two local maxima, the lemma can be

proved similarly. We denote the local minimum between the two local maxima as

x(w).

To prove the lemma, it is sufficient to show that if g(x̂1(w);w) ≥ g(x̂2(w);w),

then for ŵ > w, we have g(x̂1(ŵ); ŵ) ≥ g(x̂2(ŵ); ŵ). First, as the function g(x;w)

has at most two local maxima, it follows that x̂1(ŵ) and x̂2(ŵ) decrease in w, and
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x(w) increases in w. Second, we have

g(x̂2(ŵ))− g(x̂1(ŵ)) =

x(ŵ)
∫

x̂1(ŵ)

g′(x; ŵ)dx+

x̂2(ŵ)
∫

x(ŵ)

g′(x; ŵ)dx

=

x(ŵ)
∫

x̂1(ŵ)

(h′(x)− ŵ)dx+

x̂2(ŵ)
∫

x(ŵ)

(h′(x)− ŵ)dx

≤
x(w)
∫

x̂1(w)

(h′(x)− w)dx+

x̂2(w)
∫

x(w)

(h′(x)− w)dx

= g(x̂2(w))− g(x̂1(w)) ≤ 0 (B.16)

Therefore, we have proved that g(x̂1(ŵ)) ≥ g(x̂2(ŵ)).

Proof of Proposition III.4. The proof is similar to the proof of Proposition III.2 with

two key steps. We first derive the subgame perfect equilibrium capacity investment

given the number of investing firms. Then we characterize the monotonicity of number

of investing firms.

Both firms investing: If both firms investing in the supplier, we first obtain the first

order derivative of firms’ profit with respect to its capacity investment as follows,

assuming k1 > k2.

∂V f
1

∂k1
=

a−c

b(
3k0
2 +2k1+k2)
∫

0

[

a− c− b

(

3k0
2

+ 2k1 + k2

)

ξ

]

ξf(ξ)dξ

+

2(a−c)
3b(k0+k1+k2)

∫

a−c

b(
3k0
2 +2k1+k2)

−2[a− c− b(k0 + k1 + k2)ξ]ξf(ξ)dξ − w (B.17)
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∂V f
2

∂k2
=

a−c

b(
3k0
2 +2k1+k2)
∫

0

[

a− c− b

(

3k0
2

+ k1 + 2k2

)

ξ

]

ξf(ξ)dξ

+

2(a−c)
3b(k0+k1+k2)

∫

a−c

b(
3k0
2 +2k1+k2)

[3(a− c)− 4b(k0 + k1 + k2)ξ]ξf(ξ)dξ − w (B.18)

Then following similar steps as in proof of Proposition III.2, we have (k1, k2) where

k1 6= k2 cannot be an equilibrium, and k1 = k2 = kf where kf is defined in Proposition

III.4 is indeed an equilibrium. The details are omitted for space. Then we implicitly

differentiate kf with respect to w in equation (3.5), and obtain that

∂kf

∂w
= − 1

3b
∫

a−c

3b(
k0
2 +kf )

0 ξ2f(ξ)dξ

≤ 0 (B.19)

Therefore, it follows that kf decreases in w.

Only one firm investing: If only one firm invests, we assume the investing firm is

firm 1 and obtain the following first order derivative of firm 1’s expected profit with

respect to its capacity investment.

∂V f
1

∂k1

∣

∣

∣

∣

∣

(k1,0)

=

a−c

b(
3k0
2 +2k1)
∫

0

[

a− c− b

(

3k0
2

+ 2k1

)

ξ

]

ξf(ξ)dξ

+

2(a−c)
3b(k0+k1)
∫

a−c

b(
3k0
2 +2k1)

−2[a− c− b(k0 + k1)ξ]ξf(ξ)dξ − w (B.20)

We observe that limk1→∞
∂V f

1

∂k1

∣

∣

∣

(k1,0)
= −w. In addition, V f

1 (k1, 0) is a continuous

and differentiable function in k1. Therefore, there exists a finite k1 = kf
1 where

maxk1≥0 V
f
1 (k1, 0) is attained, and the kf

1 satisfies the condition specified by the first

order condition as shown in equation (3.6). The decrease of kf
1 with respect to w
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follows Lemma B.2.

Monotonicity of number of investing firms: To simplify the notations, we similarly

define Lf
i (k1, k2) , E

[

πf
i (k1, k2, ξ)

]

− wki. Then we have V f
i (k1, k2) = Lf

i (k1, k2) −

w01{ki>0}. When only one firm invests, we still label the investing firm as firm 1. We

prove the results in two steps. First, we show that Lf
1(k

f
1 , 0) ≥ Lf

1(0, 0). Then we

define wf
0(w) , Lf

1(k
f
1 , 0)−Lf

1(0, 0), w
f
0(w) , min{(Lf

2(k
f , kf)−Lf

2 (k
f
1 , 0))

+, wf
0(w)},

and wf
0 (w) , V f

i (k
f , kf) − V f

i (0, 0). It follows that when w0 ≥ wf
0(w), neither firm

has incentive to invest in the supplier; when wf
0(w) ≤ w0 < wf

0(w), only one firm

invests in the supplier; when w0 < wf
0(w), both firms invest in the supplier. When

wf
0 (w) ≤ w0 < wf

0(w), both firms invest in the supplier but both firms earn a lower

profit than they do when neither firms in the supplier. Therefore, both firms are

trapped in a prisoner’s dilemma.

For the monotonicity of the equilibrium switching curve wf
0(w), by envelope the-

orem, we have

∂wf
0(w)

∂w
= −kf

1 ≤ 0. (B.21)

That is wf
0(w) decreases in w.

When only one firm invests, we label the investing firm as firm 1. Before we

proceed to prove propositions in this section, we first prove two technical lemmas.

Lemma B.3 (Over-investment with exclusive capacity). kf
1 ≤ ke

1.

Proof of Lemma B.3. Assume kf
1 > ke

1, then following equation (3.6) and (3.4), we
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have

a−c

b(
3k0
2 +2k

f
1
)

∫

0

[

a− c− b

(

3k0
2

+ 2kf
1

)

ξ

]

ξf(ξ)dξ

+

2(a−c)

3b(k0+k
f
1
)

∫

a−c

b(
3k0
2 +2k

f
1
)

−2
[

a− c− b
(

k0 + kf
1

)

ξ
]

ξf(ξ)dξ − w

≤

a−c

b(
3k0
2 +2k

f
1
)

∫

0

[

a− c− b

(

3k0
2

+ 2kf
1

)

ξ

]

ξf(ξ)dξ − w

<

a−c

b(
3k0
2 +2ke1)
∫

0

[

a− c− b

(

3k0
2

+ 2ke
1

)

ξ

]

ξf(ξ)dξ − w = 0 (B.22)

This contradicts the condition specified in equation (3.6). Therefore, we conclude

that kf
1 ≤ ke

1.

Lemma B.4. V e
1 (k

e
1, 0) ≥ V f

1 (k
f
1 , 0); V

f
2 (k

f
1 , 0) ≥ V e

2 (k
e
1, 0).

Proof of Lemma B.4. We first prove that V e
1 (k

e
1, 0) ≥ V f

1 (k
f
1 , 0) by showing that

V e
1 (k

e
1, 0) ≥ V e

1 (k
f
1 , 0) ≥ V f

1 (k
f
1 , 0). We observe that V e

1 (k
e
1, 0) , maxk≥0 V

e
1 (k, 0),

so we have V e
1 (k

e
1, 0) ≥ V e

1 (k
f
1 , 0). Next, by equation (3.1) and (B.14), we have

V e
1 (k

f
1 , 0)− V f

1 (k
f
1 , 0) =

2(a−c)

3b(k0+k
f
1
)

∫

a−c

b(
3k0
2 +2k

f
1
)

{

[a− c− b(k0
2
)ξ]2

4b
− (a− c− bks)

2

b

}

f(ξ)dξ

+

2(a−c)
3bk0
∫

2(a−c)

3b(k0+k
f
1
)

{

[a− c− b(k0
2
)ξ]2

4b
− (a− c)2

9b

}

f(ξ)dξ (B.23)

We note that
[a−c−b(

k0
2
)ξ]2

4b
− (a−c−bks)

2

b
≥ 0 when a−c

b(
3k0
2

+2kf1 )
≤ ξ ≤ 2(a−c)

3b(k0+kf1 )
, and
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[a−c−b(
k0
2
)ξ]2

4b
− (a−c)2

9b
≥ 0 when 2(a−c)

3b(k0+kf1 )
≤ ξ ≤ 2(a−c)

3bk0
. Therefore, it follows that

V e
1 (k

f
1 , 0) ≥ V f

1 (k
f
1 , 0). Then we have proved that V e

1 (k
e
1, 0) ≥ V f

1 (k
f
1 , 0).

We next prove that V f
2 (k

f
1 , 0) ≥ V e

2 (k
e
1, 0) by showing that V f

2 (k
f
1 , 0) ≥ V e

2 (k
f
1 , 0) ≥

V e
2 (k

e
1, 0). Similarly, by equation (3.2) and (B.15), we have

V f
2 (k

f
1 , 0)− V e

2 (k
f
1 , 0)

=

2(a−c)

3b(k0+k
f
1 )

∫

a−c

b(
3k0
2 +2k

f
1 )

[

(a− c− bks)

(

2ks −
a− c

b

)

− (a− c− bk0
2
ξ)k0

4
ξ

]

f(ξ)dξ

+

2(a−c)
3bk0
∫

2(a−c)

3b(k0+k
f
1
)

[

(a− c)2

9b
− (a− c− bk0

2
ξ)k0

4
ξ

]

f(ξ)dξ (B.24)

We note that (a − c − bks)
(

2ks − a−c
b

)

− (a−c−b
k0
2
ξ)k0

4
ξ ≥ 0 when a−c

b(
3k0
2

+2kf1 )
≤ ξ ≤

2(a−c)

3b(k0+kf1 )
, and (a−c)2

9b
− (a−c−b

k0
2
ξ)k0

4
ξ ≥ 0 when 2(a−c)

3b(k0+kf1 )
≤ ξ ≤ 2(a−c)

3bk0
. Therefore, we

obtain that V f
2 (k

f
1 , 0) ≥ V e

2 (k
f
1 , 0). Then from equation (3.2), we have

∂V e
2

∂k1

∣

∣

∣

∣

(k1,0)

=

a−c

b(
3k0
2 +2k1+k2)
∫

0

−bk0ξ
2

2
f(ξ)dξ ≤ 0 (B.25)

In addition, by Lemma B.3, we have kf
1 ≤ ke

1 and hence V e
2 (k

f
1 , 0) ≥ V e

2 (k
e
1, 0). Then

we have proved V f
2 (k

f
1 , 0) ≥ V e

2 (k
e
1, 0).

Proof of Proposition III.5. i and iii) We prove this part by showing that we
0(w) =

wf
0 (w) and we

0(w) ≥ wf
0(w). First, if k1 = k2, we have V e

i (k1, k2) = V f
i (k1, k2).

In addition, by definition we have we
0(w) = V e

i (k
e, ke) − V e

i (0, 0) and wf
0 (w) =

V f
i (k

f , kf)−V f
i (0, 0). Therefore, we have w

e
0(w) = wf

0 (w). Second, we have w
e
0(w) =

min{Le
2(k

e, ke)−Le
2(k

e
1, 0), w

e
0(w)} ≥ wf

0(w) = min{(Lf
2(k

f , kf )−Lf
2(k

f
1 , 0))

+, wf
0(w)}

because (1) we have [Le
2(k

e, ke) − Le
2(k

e
1, 0)] − [Lf

2(k
f , kf) − Lf

2(k
f
1 , 0)]

+ ≥ 0 because
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Le
2(k

e, ke) ≥ Le
2(k

e
1, 0) (see the proof of Proposition III.2), Le

2(k
e, ke) = Lf

2(k
f , kf),

and Le
2(k

e
1, 0) − Lf

2(k
f
1 , 0) = V e

2 (k
e
1, 0) − V f

2 (k
f
1 , 0) ≤ 0 by Lemma B.4; (2) we have

we
0(w) = Le

1(k
e
1, 0)− Le

1(0, 0) and wf
0(w) = Lf

1(k
f
1 , 0)− Lf

1(0, 0), so we
0(w)− wf

0(w) =

Le
1(k

e
1, 0)−Lf

1(k
f
1 , 0) = V e

1 (k
e
1, 0)+wke

1−V f
1 (k

f
1 , 0)−wkf

1 ≥ 0 by Lemma B.3 and B.4.

ii) We first observe by equation (3.3) and (3.5) that ke = kf . Then by Lemma

B.1, we have ke ≤ ke
1 ≤ 2ke. By Lemma B.3, we have kf

1 ≤ ke
1. Therefore, when

0 ≤ w0 < wf
0(w), both firms invest with either capacity type so the total capacity

investment 2ke = 2kf ; when wf
0(w) ≤ w0 < we

0(w), both firms invest with exclusive

capacity but only one firm invests with first-priority capacity, so the total capacity

investment 2ke ≥ kf
1 ; when we

0(w) ≤ w0 < wf
0(w), only one firm invests with either

capacity type, so the total capacity investment ke
1 ≥ kf

1 ; when wf
0(w) ≤ w0 < we

0(w),

one firm invests with exclusive capacity while neither firm invests with first-priority

capacity, so the total capacity investment ke
1 ≥ 0; when w0 ≥ we

0(w), neither firm

invests with either type of capacity. Therefore, the total capacity investment is higher

with exclusive capacity.

Proof of Proposition III.6. i) When 0 ≤ w0 < wf
0(w), both firms invest in the supplier

with either capacity type, so we have V e
i (k

e, ke) = V f
i (k

f , kf) and firms are indifferent

between exclusive and first-priority capacity.

ii) When wf
0(w) ≤ w0 < we

0(w), only one firm invests with first-priority capacity

and both firms invest with exclusive capacity. We have V f
1 (k

f
1 , 0) ≥ V f

1 (k
f , 0) ≥

V f
1 (k

f , kf) = V e
1 (k

e, ke) and V f
2 (k

f
1 , 0) ≥ V f

2 (k
f , kf) = V e

2 (k
e, ke). Therefore, both

firms prefer the first-priority capacity.

iii) When we
0(w) ≤ w0 < wf

0(w), only one firm invests with either type of capacity.

We have V e
1 (k

e
1, 0) ≥ V f

1 (k
f
1 , 0) and V e

2 (k
e
1, 0) ≤ V f

2 (k
f
1 , 0) by Lemma B.4. When

wf
0(w) ≤ w0 < we

0(w), one firm invests with exclusive capacity while neither firm

invests with first-priority capacity, V e
1 (k

e
1, 0) ≥ V e

1 (0, 0) = V f
1 (0, 0) and V e

2 (k
e
1, 0) ≤

V e
2 (0, 0) = V f

2 (0, 0) by equation (B.25).
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iv) When w0 ≥ we
0(w), neither firm invests with either type capacity. Therefore, the

firms are indifferent between the exclusive and first-priority capacity, i.e., V e
i (0, 0) =

V f
i (0, 0).

Proof of Proposition III.7. i) By equation (3.7) and (3.8), if k1 = k2, we have V
e
s (k1, k2) =

V f
s (k1, k2). Therefore, when 0 ≤ w0 < wf

0(w) or w0 ≥ we
0(w), we have V e

s (k
e, ke) =

V f
s (k

f , kf) and V e
s (0, 0) = V f

s (0, 0) respectively.

ii) When wf
0(w) ≤ w0 < we

0(w), both firms invest with exclusive capacity and only

one firm invests with first-priority capacity, so by equation (3.7) and (3.8), we have

V e
s (k

e, ke) =

a−c

b(
3k0
2 +3ke)
∫

0

c(k0 + 2ke)ξf(ξ)dξ +

1
∫

a−c

b(
3k0
2 +3ke)

2c(a− c)

3b
f(ξ)dξ (B.26)

V f
s (k

f
1 , 0) =

2(a−c)

3b(k0+k
f
1 )

∫

0

c(k0 + kf
1 )ξf(ξ)dξ +

1
∫

2(a−c)

3b(k0+k
f
1 )

2c(a− c)

3b
f(ξ)dξ (B.27)

We note that 2ke = 2kf ≥ ke
1 ≥ kf

1 (see Lemma B.1 and B.3.) Therefore, it follows

that V e
s (k

e, ke) ≥ V f
s (k

f
1 , 0).

Similarly, when wf
0(w) ≤ w0 < we

0(w), one firm invests with exclusive capacity

and neither firm invests with first-priority capacity, so we have V e
s (k

e
1, 0) ≥ V f

s (0, 0).

The details are omitted for space.

Lemma B.5 (First-best order quantity and ex post profit).

Let the capacity investment sizes be k, and we obtain the following:

realized yield ξ order quantity qm ex post profit πm

0 ≤ ξ ≤ a
2b(k0+k)

(k0 + k)ξ (a− b(k0 + k)ξ)(k0 + k)ξ

a
2b(k0+k)

< ξ ≤ 1 a
2b

a2

4b
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Proof of Lemma B.5. The proof is similar to the proof of Lemma III.1 with only one

firm in the market. The details are omitted for space.

Proof of Proposition III.8. Given the capacity investment level of k, the firm’s ex-

pected profit V m(k) is as follows:

V m(k) =

a
2b(k0+k)
∫

0

[a− b(k0 + k)ξ](k0 + k)ξf(ξ)dξ +

1
∫

a
2b(k0+k)

a2

4b
f(ξ)dξ − w01{k>0} − wk

(B.28)

Therefore, if the firm decides to invest, the optimal capacity investment level km

should satisfy the following first order condition:

a
2b(k0+km)
∫

0

[a− 2b(k0 + km)ξ]ξf(ξ)dξ − w = 0 (B.29)

It follows that

∂km

w
= − 1

2b
∫

a
2b(k0+km)

0 ξ2f(ξ)dξ
≤ 0 (B.30)

so we have km decreases in w.

We then define Lm(k;w) , E [πm(k, ξ)] − wk, and wm
0 (w) , Lm(km) − Lm(0).

Then it follows that if w0 ≤ wm
0 (w), the monopoly will invest km; if w0 > wm

0 (w), the

monopoly will not invest. For the monotonicity of wm
0 (w), by envelope theorem, we

have

∂wm
0 (w)

w
= −km ≤ 0 (B.31)

Therefore, we have proved that wm
0 (w) decreases in w.
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Proof of Proposition III.9. i) We know from equation (3.3) and (3.5) that ke = kf .

Then in equation (3.3), if we substitute 2ke with km, the first order condition is as

follows:

2a
3b(k0+km)
∫

0

[

a− 3b (k0 + km)

2
ξ

]

ξf(ξ)dξ − w

≥

a
2b(k0+km)
∫

0

[a− 2b(k0 + km)ξ]ξf(ξ)dξ − w = 0 (B.32)

Therefore, we have 2ke = 2kf ≥ km. That is, the total investment in the competing

case exceeds the total investment in the first-best case.

We next show that ke
1 ≥ km. In equation (3.4), if we substitute ke

1 with km, then

we have

a

b(
3k0
2 +2km)
∫

0

[

a− b

(

3k0
2

+ 2km

)

ξ

]

ξf(ξ)dξ − w ≥

a
2b(k0+km)
∫

0

[a− 2b (k0 + km) ξ] ξf(ξ)dξ − w = 0

(B.33)

Therefore, we have that ke
1 ≥ km.

Finally, by definition we have

wm
0 (w) =

a
2b(k0+km)
∫

0

b(km)2ξ2f(ξ)dξ +

a
2bk0
∫

a
2b(k0+km)

[

a2

4b
− (a− bk0ξ)k0ξ

]

f(ξ)dξ (B.34)

we
0(w) =

a

b(
3k0
2 +2ke1)
∫

0

b(ke
1)

2ξ2f(ξ)dξ +

2a
3bk0
∫

a

b(
3k0
2 +2ke

1
)

[

(a− bk0ξ
2
)2

4b
− (a− bk0ξ)

k0
2
ξ

]

f(ξ)dξ

(B.35)

As the integrand of we
0(w) is greater than the integrand of wm

0 (w) and both integrands

169



are greater than 0, we have we
0(w) ≥ wm

0 (w).

ii) See Proposition III.5 (ii).

Proof of Proposition III.10. We first show that ke and ke
1 decreases in c. Implicitly

differentiate equation (3.3) with respect to c, we obtain

∂ke

∂c
= −

∫

a−c

3b(
k0
2 +k)

0 ξf(ξ)dξ

3b
∫

a−c

3b(
k0
2 +k)

0 ξ2f(ξ)dξ

≤ 0 (B.36)

Recall that 3ke = 2ke
1 (see the proof of Lemma B.1.) Therefore, we also have

∂ke1
∂c

≤ 0.

We next show that we(w) and we(w) decrease in c. Taking a partial derivative

with respect to c and applying envelope theorem and 3ke = 2ke
1, we have

∂we(w)

∂c
=

a−c

b(
3k0
2 +2ke

1
)

∫

0

−ke
1ξf(ξ)dξ +

2(a−c)
3bk0
∫

a−c

b(
3k0
2 +2ke

1
)

−a− c− 3bk0ξ
2

2b
ξf(ξ)dξ ≤ 0 (B.37)

∂we(w)

∂c
=

a−c

b(
3k0
2 +3ke)
∫

0

−
(

k0
12

+
2

3
ke

)

ξf(ξ)dξ +

2(a−c)
3bk0
∫

a−c

b(
3k0
2 +3ke)

(

k0
4
ξ − 2(a− c)

9b

)

f(ξ)dξ ≤ 0

(B.38)

Therefore we have that both we(w) and we(w) decrease in c.
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APPENDIX C

Proofs and Technical Details for Chapter IV: To

Share or Not to Share? Capacity Investments in a

Shared Supplier

In the supporting document, we provide detailed proofs and technical details for

all results in the independent market case. For the Cournot market and the supplier’s

profit sections, we sketch the outline of proofs, provide additional technical details and

detailed proofs for important results, and illustrate most proofs from one firm’s per-

spective, as proofs for the other case are similar and hence omitted for space. To sim-

plify the notations, given capacity types (κi, κj), we define V
κiκj

i , Π
κiκj

i (Ki, Kj), firm

i’s subgame perfect expected profit as Π
κiκj

i (wκi
, wκj

) , Π
κiκj

i (K
κiκj

i , K
κiκj

j , wκi
, wκj

),

and for given capacity costs, we define Π
κiκj

i , Π
κiκj

i (K
κiκj

i , K
κiκj

j ). Finally, we sim-

plify integrals using dFi for dFi(ai) in the independent market, and dF for dF (a) in

the Cournot market.

Proof of Lemma IV.1. We consider two cases, depending on firm j’s capacity type

choice:

Case (κie): If firm j chooses the exclusive capacity (κj = e), firm i solves maxqi (ai−

biqi − c)qi s.t. 0 ≤ qi ≤ Ki. Following the concavity of the profit, we have firm i’s
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optimal order decision q∗i = min
{

(ai−c)+

2bi
, Ki

}

.

Case (κif): If firm j chooses the first-priority capacity (κj = e), firm i solves

maxqi(ai − biqi − c)qi s.t. 0 ≤ qi ≤ Ki + (Kj − qj)
+. Hence, firm i’s best response

function is q∗i = min
{

(ai−c)+

2bi
, Ki + (Kj − qj)

+
}

. Notice firm j’s best response func-

tion is q∗j = min
{

(aj−c)+

2bj
, Kj

}

if κi = e, or q∗j = min
{

(aj−c)+

2bj
, Kj + (Ki − qi)

+
}

if

κi = f . In either case, solving the system of best response functions yields the order

quantities.

Firms’ equilibrium capacity investment We characterize firm i’s equilibrium ca-

pacity by analyzing derivatives of firms’ profits with respect to firms’ capacity level

decisions. In addition, when κj = f , we show the monotonicity of firm i’s profit

with respect to Kj , and the monotonicity of the best response function, which will be

used to prove other results. In what follows, we focus on the non-trivial case where

K
κiκj

i > 0.

Case (κie): We take the first order derivative of V κie
i = Πκie

i (Ki, Kj) with respect to

Ki, and obtain

∂V κie
i

∂Ki

=

∞
∫

2biKi+c

(ai − c− 2biKi)dFi − wκi
(C.1)

Then the second order derivative is as follows.

∂2V κie
i

∂K2
i

=

∞
∫

2biKi+c

−2bidFi ≤ 0

Therefore, observing that V κie
i does not change with respect to Kj, we obtain the

optimal capacity to build as Kκie
i =

{

K :
∂V

κie

i

∂Ki
(K,Kj) = 0

}

.

Case (κif): We take the first order derivative of V κif
i = Πκif

i (Ki, Kj) with respect to
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Ki as follows:

∂V κif
i

∂Ki
=

c
∫

0

∞
∫

2bi(Ki+Kj)+c

[ai − c− 2bi(Ki +Kj)]dFidFj

+

2bjKj+c
∫

c

∞
∫

2bi(Ki+Kj)+c−
bi(aj−c)

bj

[

ai − c+
bi(aj − c)

bj
− 2bi(Ki +Kj)

]

dFidFj

+

∞
∫

2bjKj+c

∞
∫

2biKi+c

(ai − c− 2biKi)dFidFj − wκi
(C.2)

Therefore, the second order derivative is as follows.

∂2V κif
i

∂K2
i

=− 2bi

c
∫

0

∞
∫

2bi(Ki+Kj)+c

dFidFj − 2bi

∞
∫

2bjKj+c

∞
∫

2biKi+c

dFidFj

− 2bi

2bjKj+c
∫

c

∞
∫

2bi(Ki+Kj)+c−
bi(aj−c)

bj

dFidFj ≤ 0

Hence, for a fixed Kj, define K̂i(Kj) =

{

K :
∂V

κif

i

∂Ki
(K,Kj) = 0

}

and the best re-

sponse function isK∗
i (Kj) = max

{

K̂i(Kj), 0
}

. Finally, we have that firms’ equilibri-

um capacity levels (Kκif
i , Kfκi

j ) are

{

(Ki, Kj) :
∂V

κif

i

∂Ki
(Ki, Kj) = 0 and

∂V
fκi
j

∂Kj
(Kj, Ki) = 0

}

.

We next characterize the monotonicity of firm i’s profit with respect to Kj when

κj = f .

Lemma C.1.
∂V

κif

i

∂Kj
≥ 0.
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Proof of Lemma C.1. Taking derivative of V κif
i with respect to Kj yields

∂V κif
i

∂Kj
=

c
∫

0

∞
∫

2bi(Ki+Kj)+c

[ai − c− 2bi(Ki +Kj)]dFidFj

+

2bjKj+c
∫

c

∞
∫

2bi(Ki+Kj)+c−
bi(aj−c)

bj

[

ai − c+
bi(aj − c)

bj
− 2bi(Ki +Kj)

]

dFidFj ≥ 0

Intuitively, if firm j’s capacity is higher, it is more likely that firm i can leverage

a part of it. We finally characterize the monotonicity of the best response function

when κj = f as follows.

Lemma C.2. −1 ≤ dK∗

i (Kj)

dKj
≤ 0 almost everywhere.

Proof of Lemma C.2. Implicitly differentiating
∂V

κif

i

∂Ki
= 0 with respect to Kj, we ob-

tain that

dK̂i(Kj)

dKj

=−
∫ 2bKj+c

c

∫∞

2b(Ki+Kj)+2c−aj
dFidFj +

∫ c

0

∫∞

2b(Ki+Kj)+c
dFidFj

∫∞

2bKj+c

∫∞

2bKi+c
dFidFj +

∫ 2bKj+c

c

∫∞

2b(Ki+Kj)+2c−aj
dFidFj +

∫ c

0

∫∞

2b(Ki+Kj)+c
dFidFj

It follows that −1 ≤ dK̂i(Kj)

dKj
≤ 0. Recall K∗

i (Kj) = max
{

K̂i(Kj), 0
}

, and we have

−1 ≤ dK∗

i (Kj)

dKj
≤ 0 a.e.

Intuitively, the higher firm j’s capacity level is, the lower that firm i needs to build

for herself because of the higher chance to access firm j’s leftover capacity.

Proof of Lemma IV.2. Part (i): When we > wf , we have Kfe
i ≥ Kee

i because
∂V fe

i

∂Ki
=

∂V ee
i

∂Ki
+ (we − wf) ≥ ∂V ee

i

∂Ki
, and

∂V fe
i

∂Kj
=

∂V ee
i

∂Kj
= 0. We also have Kfe

i ≥ Kff
i because
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∂V fe
i

∂Kj
= 0 and

∂V fe
i

∂Ki

− ∂V ff
i

∂Ki

=

∞
∫

2biKi+c

(ai − c− 2biKi)dFi −
∞
∫

2bjKj+c

∞
∫

2biKi+c

(ai − c− 2biKi)dFidFj

−
2bjKj+c
∫

c

∞
∫

2bi(Ki+Kj)+c−
bi(aj−c)

bj

[

ai − c+
bi(aj − c)

bj
− 2bi(Ki +Kj)

]

dFidFj

−
c

∫

0

∞
∫

2bi(Ki+Kj)+c

[ai − c− 2bi(Ki +Kj)]dFidFj

≥
∞
∫

2biKi+c

(ai − c− 2biKi)dFi −
∞
∫

0

∞
∫

2biKi+c

(ai − c− 2biKi)dFidFj = 0

Similarly, we have Kee
i ≥ Kef

i because
∂V ee

i

∂Kj
= 0 and

∂V ee
i

∂Ki
≥ ∂V ef

i

∂Ki
. Finally, we

have Kff
i ≥ Kef

i as follows:
∂V ff

i

∂Ki
=

∂V ef
i

∂Ki
+ (we − wf ) ≥ ∂V ef

i

∂Ki
, so define K̃ff

i ,

argmaxKi
Πff

i (Ki, Kfe
j ), and we have K̃ff

i ≥ Kef
i ; we also have Kff

i ≥ K̃ff
i by

Lemma C.2 and the fact that Kfe
j ≥ Kff

j .

Part (ii): The analysis for we ≤ wf is similar and therefore omitted for space.

Proof of Theorem IV.3. Part (i) we ≤ wf . If κj = e, focusing on the case whereKee
i >

0 and Kfe
i > 0, we have

∂V
κie

i

∂Ki
(Kκie

i , Keκi

j ) =
∫∞

2biK
κie

i +c
ai − c− 2biK

κie
i dFi − wκi

= 0

from equation (C.1), and Kee
i ≥ Kfe

i from Lemma IV.2. Therefore, recall equation

(4.6), and we obtain that

Πκie
i =

2biK
κie

i +c
∫

c

(ai − c)2

4bi
dFi +

∞
∫

2biK
κie

i +c

bi(K
κie
i )2dFi
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It follows that the profit difference is

Πee
i − Πfe

i =

2biKee
i +c

∫

2biK
fe
i +c

[

(ai − c)2

4bi
− bi(K

fe
i )2

]

dFi +

∞
∫

2biKee
i +c

[

bi(K
ee
i )2 − bi(K

fe
i )2

]

dFi

≥ 0

Therefore, we have κi = e given that κj = e.

Otherwise, if κj = f , we have

Πef
i ≥ Πef

i

(

Kff
i , Kfe

j

)

≥ Πff
i

(

Kff
i , Kfe

j

)

≥ Πff
i

The first inequality follows that Kef
i = argmaxKi≥0

{

Πef
i (Ki, K

fe
j )

}

. The second in-

equality follows the fact that Πef
i (Ki, Kj) = Πff

i (Ki, Kj)+(wf−we)Ki ≥ Πff
i (Ki, Kj).

The third inequality follows Lemma C.1. Therefore, we have κi = e given that κj = f .

Combining the two cases, it is dominant that κi = e when we ≤ wf .

Part (ii) we > wf . If κj = e, focusing on the non-trivial case of Kfe
i > 0 and

Kee
i > 0, we have

Πee
i − Πfe

i =

2biK
fe
i +c

∫

2biKee
i +c

[

bi(K
ee
i )2 − (ai − c)2

4bi

]

dFi +

∞
∫

2biK
fe
i +c

[

bi(K
ee
i )2 − bi(K

fe
i )2

]

dFi

≤ 0

Therefore, κi = f given κj = e.

If κj = f , for given wf , we first show that Πef
i (we, wf) decreases in we. Notice

Kfe
j and Kff

j do not change with respect to we, so we apply envelope theorem and
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obtain that

∂Πef
i (we, wf)

∂we
= −Kef

i ≤ 0

Observing that Πff
i (wf , wf) does not change with respect to we, we define

w̄e
I(wf) , max

{

inf
{

w : Πef
i (w,wf) ≤ Πff

i (wf , wf)
}

, wf

}

Combining with the analysis of the previous case, we conclude when wf < we ≤

w̄e
I(wf), we have (κi, κj) = (e, f); when we > w̄e

I(wf), we have (κi, κj) = (f, f).

Proof of Corollary IV.4. Part (i) we ≤ wf . First, when we = wf = w, we have

Πee
i ≤ Πff

i , because

Πee
i = Πee

i

(

Kfe
i , Kff

j

)

≤ Πff
i

(

Kfe
i , Kff

j

)

≤ Πff
i

The first equality follows (1) Kee
i = Kfe

i because
∂V fe

i

∂Ki
=

∂V ee
i

∂Ki
when we = wf ; (2)
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∂V
κie

i

∂Kj
= 0. The next inequality follows that when we = wf , we have

Πff
i (Ki, Kj)− Πee

i (Ki, Kj)

=

c
∫

0







∞
∫

2bi(Ki+Kj)+c

[[ai − c− bi(Ki +Kj)](Ki +Kj)− (ai − c− biKi)Ki]dFi

+

2bi(Ki+Kj)+c
∫

2biKi+c

[

(ai − c)2

4bi
− (ai − c− biKi)Ki

]

dFi






dFj

+

2bjKj+c
∫

c











∞
∫

2bi(Ki+Kj)+c−
bi(aj−c)

bj

[

[ai − c− bi(Ki +Kj −
aj − c

2bj
)](Ki +Kj −

aj − c

2bj
)

− (ai − c− biKi)Ki

]

dFi

+

2bi(Ki+Kj)+c−
bi(aj−c)

bj
∫

2biKi+c

[

(ai − c)2

4bi
− (ai − c− biKi)Ki

]

dFi











dFj ≥ 0

The last inequality follows Kff
i = argmaxKi≥0

{

Πff
i (Ki, K

ff
j )

}

.

Second, using envelope theorem, we have
∂Πee

i (we,we)

∂we
= −Kee

i ≤ 0 and
∂Πff

i (wf ,wf )

∂we
=

0. Therefore, define

we
I(wf) , max

{

inf
{

w : Πee
i (w,w) ≤ Πff

i (wf , wf)
}

, 0
}

So we conclude a prisoner’s dilemma occurs, in which (κi, κj) = (e, e) by Theorem

IV.3 but Πee
i ≤ Πff

i , when we
I(wf) ≤ we ≤ wf .

Part(ii) follows Theorem IV.3 and the definition of a free-rider equilibrium.

While the analysis for the Cournot market follows the same general structure as

178



the independent market, it is significantly more complex because of an explosion in

the number of cases to consider: e.g. in the third stage, depending on market demand,

each firm can order its unconstrained quantity, or quantity constrained only by its own

capacity, or quantity constrained by its capacity and available leftover capacity from

the other firm. To help navigate this, we first define some thresholds on the market

signal a, which we will use for all the proofs in this section. Let λ1
1 , 3bK1+2c1− c2,

λ1
2 , bK1 + 2bK2 + c2, λ

2
1 , 3bK2 + 2c2 − c1, λ

2
2 , 2bK1 + bK2 + c1, λ

2
3 , 2bK2 + c2,

λ2
4 , bK2+c1, λ

1
5 , b(K1+K2)+c1, λ

2
5 , 2b(K1+K2)+c2, λ

1
6 =

3b(K1+K2)+c1+c2
2

, and

KT , K1 +K2. The lemma as stated in the body of the chapter showed equilibrium

order quantities for the case (κ1, κ2) = (e, f); we first provide the corresponding

expressions for other types of capacity investments.

Lemma C.3 (Lemma IV.5 continued). Suppose that firm 1 invests in K1 units of

exclusive capacity and firm 2 in K2 units of exclusive capacity. The equilibrium order

quantities for given demand signal θ = a are:

Conditions (qee1 , qee2 )

max{λ1
2, λ

2
2} ≤ a (K1, K2)

max{λ2
1, λ

2
4} ≤ a < λ2

2 (a−c1−bK2

2b
, K2)

λ2
3 ≤ a < λ2

4 (0, K2)

λ1
1 ≤ a < λ1

2 (K1,
a−c2−bK1

2b
)

2c1 − c2 ≤ a < min{λ2
1, λ

1
1} (a−2c1+c2

3b
, a−2c2+c1

3b
)

a < min{λ2
3, 2c1 − c2} (0, a−c2

2b
)

Suppose that firm 1 invests in K1 units of first-priority capacity and firm 2 in K2

units of exclusive capacity. The equilibrium order quantities for given demand signal

θ = a are:
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Conditions (qfe1 , qef2 )

max{λ1
2, λ

2
2} ≤ a (K1, K2)

max{λ1
6, λ

1
5} ≤ a < λ2

2 (a−c1
b

−KT , 2KT − a−c1
b

)

λ2
5 ≤ a < λ1

5 (0, KT )

λ1
1 ≤ a < λ1

2 (K1,
a−c2−bK1

2b
)

2c1 − c2 ≤ a < min{λ1
6, λ

1
1} (a−2c1+c2

3b
, a−2c2+c1

3b
)

a < min{2c1 − c2, λ
2
5} (0, a−c2

2b
)

Suppose that firm 1 invests in K1 units of first-priority capacity and firm 2 in

K2 units of first-priority capacity. The equilibrium order quantities for given demand

signal θ = a are:

Conditions (qff1 , qff2 )

max{λ1
2, λ

2
2} ≤ a (K1, K2)

max{λ1
6, λ

1
5} ≤ a < λ2

2 (a−c1
b

−KT , 2KT − a−c1
b

)

λ2
5 ≤ a < λ1

5 (0, KT )

λ1
6 ≤ a < λ1

2 (2KT − a−c2
b

, a−c2
b

−KT )

2c1 − c2 ≤ a < λ1
6 (a−2c1+c2

3b
, a−2c2+c1

3b
)

a < min{2c1 − c2, λ
2
5} (0, a−c2

2b
)

The expressions can be derived fairly straightforwardly from the definition of the

game.

Firms’ expected profits The firms’ expected profits are a function of capacity

type choices (κi, κj) and capacity levels (Ki, Kj) from Lemma IV.5. Depending on

the realized demand signal, firms may have different equilibrium order quantities,

and how the equilibrium quantities shift with respect to the realized demand signal

depends on the capacity levels K1 and K2. Therefore, we classify firms’ expected

profits based on the value of the two capacity levels. For the interest of space, we

only show expressions for (κ1, κ2) = (e, e).
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If K1 ≤ K2 +
c2
b
− c1

b
, we have λ1

1 ≤ λ1
2, and

V ee
1 =

λ1
1

∫

2c1−c2

(a− 2c1 + c2)
2

9b
dF +

λ1
2

∫

λ1
1

(a− 2c1 + c2 − bK1)K1

2
dF

+

∞
∫

λ1
2

(a− c1 − bKT )K1dF − weK1

V ee
2 =

2c1−c2
∫

c2

(a− c2)
2

4b
dF +

λ1
1

∫

2c1−c2

(a− 2c2 + c1)
2

9b
dF +

λ1
2

∫

λ1
1

(a− c2 − bK1)
2

4b
dF

+

∞
∫

λ1
2

(a− c2 − bKT )K2dF − weK2

Two other cases are possible. If K1 > K2 +
c2
b
− c1

b
> 0, we have λ2

1 ≤ λ2
2 and

(V ee
1 , V ee

2 ) can be found by changing the integrands and limits above appropriately,

and likewise for the remaining case where K2+
c2
b
− c1

b
≤ 0 (where we have λ2

3 ≤ λ2
4 ≤

λ2
2).

Observe that these profit functions are continuous and differentiable with respect

to (K1, K2). We omit the detailed expressions for the derivatives here for space.

Proof of Lemma IV.6. Part (i) we = wf = w. We first establish that in an equilibri-

um, it cannot be the case that Kκ1κ2
1 6= (Kκ2κ1

2 + c2
b
− c1

b
)+ in Step 1 and then show

a strategy satisfying the conditions in the lemma is indeed an equilibrium in Step 2.

For brevity we only show a complete analysis for the case (κ1, κ2) = (e, e).

Step 1: We first consider the case where K1 < K2 +
c2
b
− c1

b
and K2 +

c2
b
− c1

b
> 0.

Let the support of the demand signal θ be [aL, aH ]. If aH < λ1
1, it is trivial that

both firms have incentive to decrease the capacity, so the (K1, K2) cannot be an

181



equilibrium. If λ1
1 < aH , we have

∂V ee
1

∂K1

− ∂V ee
2

∂K2

=

λ1
2

∫

λ1
1

(a− 2c1 + c2 − 2bK1)

2
dF +

∞
∫

λ1
2

(bK2 + c2 − bK1 − c1)dF > 0

In this case, we have K2 ≥ K1 +
c1
b
− c2

b
> 0, so it cannot be the case where K2 = 0,

∂V ee
1

∂K1
= 0, and

∂V ee
2

∂K2
≤ 0. Therefore at least one firm has incentive to deviate. Following

a similar argument, one can show that when K1 ≥ K2+
c2
b
− c1

b
and K2+

c2
b
− c1

b
> 0, or

K2+
c2
b
− c1

b
≤ 0, the (K1, K2) where K1 6= (K2+

c2
b
− c1

b
)+ cannot be an equilibrium.

Step 2: We prove this by showing that at (K1, K2) where K1 = (K2 +
c2
b
− c1

b
)+,

neither firm has incentive to deviate. We focus on the non-trivial case where K1 > 0,

and present the analysis for firm 1. The analysis for firm 2 is similar. If firm 1 deviates

to K1 − ǫ with ǫ > 0, then

∂V ee
1

∂K1
(K1 − ǫ,K2)−

∂V ee
1

∂K1
(K1, K2)

=

λ1
2−bǫ
∫

λ1
1−3bǫ

a− 2c1 + c2 − 2bK1 + 2bǫ

2
dF

+

λ1
2

∫

λ1
2−bǫ

[a− c1 − b(2K1 − 2ǫ+K2)]dF +

∞
∫

λ1
2

2bǫdF ≥ 0

So firm 1 has incentive to increase capacity. On the other hand, if firm 1 deviates to

K1 + ǫ, we have

∂V ee
1

∂K1
(K1 + ǫ, K2)−

∂V ee
1

∂K1
(K1, K2)

=−
λ2
2+2bǫ
∫

λ2
2

[a− c1 − b(2K1 +K2)]dF +

∞
∫

λ2
2+2bǫ

−2bǫdF ≤ 0

So firm 1 has incentive to decrease capacity.
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Following a similar argument, we show the results hold for (f, f), (e, f) and (f, e)

(omitted for space).

Part (ii) we > wf . We first analyze the case when κ1 = κ2. Referring to part (i),

we have

Kff
2 =











K :

∞
∫

2bK+c2+(bK+c2−c1)+

[

a− c2 − 2bK − (bK + c2 − c1)
+
]

dF − wf = 0











and

Kee
2 =











K :

∞
∫

2bK+c2+(bK+c2−c1)+

[

a− c2 − 2bK − (bK + c2 − c1)
+
]

dF − we = 0











Because
∫∞

2bK+c2+(bK+c2−c1)+
[a− c2 − 2bK − (bK + c2 − c1)

+]dF decreases in K, and

Kκ1κ2
1 = (Kκ2κ1

2 + c2
b
− c1

b
)+, it follows that if we > wf , K

ee
i ≤ Kff

i .

We next prove the case of (κ1, κ2) = (e, f) by contradiction, and the proof for the

other case is similar. Assume K1 > (K2 +
c2
b
− c1

b
)+, when K2 +

c2
b
− c1

b
≥ 0, we have

∂V ef
1

∂K1

− ∂V fe
2

∂K2

=−
λ2
2

∫

λ2
1

a− 2c2 + c1 − 2bK2

2
dF +

∞
∫

λ2
2

(c2 + bK2 − c1 − bK1)dF − we + wf

≤ −we + wf < 0
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When K2 +
c2
b
− c1

b
< 0, we have

∂V ef
1

∂K1
− ∂V fe

2

∂K2
=−

λ2
4

∫

λ2
3

(a− c2 − 2bK2)dF −
λ2
2

∫

λ2
4

a− 2c2 + c1 − 2bK2

2
dF

+

∞
∫

λ2
2

(c2 + bK2 − c1 − bK1)dF − we + wf ≤ −we + wf < 0

Therefore, at least one of the two firms has incentive to deviate, and in equilibrium

Kef
1 ≤ (Kfe

2 + c2
b
− c1

b
)+. Similarly, it can be shown that if we > wf , in equilibrium

Kfe
1 ≥ (Kef

2 + c2
b
− c1

b
)+.

Part (iii) we < wf . The proof is similar to the proof of part (ii), and is omitted

for space.

Proof of Theorem IV.7. Part (i) we > wf . We show the results in three steps: for any

(K̄i, K̄j) such that
∂V ef

i

∂Ki
(K̄i

ef
, K̄j

fe
) = 0 and

∂V fe
j

∂Kj
(K̄j

fe
, K̄i

ef
) = 0, (1)Kff

i ≥ K̄i
ef

and
¯

Kfe
i ≥ Kee

i ; (2) Πff
i ≥ Πef

i (K̄i
ef
, K̄j

fe
); (3) Πfe

i (K̄i
fe
, K̄j

ef
) ≥ Πee

i . Notice that

following the same proof of Lemma IV.6(ii), we can show that K̄1
ef ≤ (K̄2

fe
+ c2

b
− c1

b
)+,

and K̄1
fe ≥ (K̄2

ef
+ c2

b
− c1

b
)+. For the interest of space, we focus on the non-trivial

case where Kκ1κ2
1 > 0, K̄1

κ1κ2 > 0, K2
κ2κ1 + c2

b
− c1

b
> 0 and K̄2

κ2κ1 + c2
b
− c1

b
> 0.

From Lemma IV.6, we have

Kff
2 =







K :

∞
∫

3bK+2c2−c1

(a− 3bK − 2c2 + c1)dF − wf = 0






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By the fact that
∂V fe

2

∂K2
(K̄2

fe
, K̄1

ef
) = 0, we get

∂V fe
2

∂K2
(K̄2

fe
, K̄1

ef
) =

bK̄1
ef

+2bK̄2
fe

+c2
∫

3b(K̄2
fe+K̄1

ef )+c1+c2
2

[

2b(K̄2
fe

+ K̄1
ef
)− 2(a− c2)

]

dF

+

∞
∫

bK̄1
ef

+2bK̄2
fe

+c2

[

a− c− b(K̄1
ef

+ 2K̄2
fe
)
]

dF − wf = 0

Notice if K1 + 2K2 > 3Kff
2 + c2

b
− c1

b
, we have

∂V fe
2

∂K2
=

bK1+2bK2+c2
∫

3b(K1+K2)+c1+c2
2

[2b(K1 +K2)− 2(a− c2)]dF

+

∞
∫

bK1+2bK2+c2

[a− c2 − b(K1 + 2K2)]dF − wf

≤
bK1+2bK2+c2

∫

3b(K1+K2)+c1+c2
2

[2b(K1 +K2)− 2(a− c2)]dF

+

∞
∫

3bKff
2 +2c2−c1

(

a− 3bKff
2 − 2c2 + c1

)

dF − wf

=

bK1+2bK2+c2
∫

3b(K1+K2)+c1+c2
2

[2b(K1 +K2)− 2(a− c2)]dF ≤ 0

Then firm 2 has incentive to decrease the capacity level. Therefore, K̄1
ef

+ 2K̄2
fe ≤

3Kff
2 + c2

b
− c1

b
, and we have K̄1

ef
+2(K̄1

ef − c2
b
+ c1

b
) ≤ 3Kff

2 + c2
b
− c1

b
, so we obtain

3K̄1
ef ≤ 3(Kff

2 + c2
b
− c1

b
) = 3Kff

1 . Therefore, we have shown that Kff
1 ≥ K̄1

ef
.

Following a similar analysis we show that Kff
2 ≥ Kef

2 (omitted for space.)

Similarly, by the fact that
∂V ef

1

∂K1
(K̄1

ef
, K̄2

fe
) = 0 and Lemma IV.6(i), we have

bK̄1
ef

+ 2bK̄2
fe ≥ bKee

1 + 2bKee
2 . Together with the fact that K̄1

ef ≤ K̄2
fe

+ c2
b
− c1

b
,

we have K̄2
fe ≥ Kee

2 . Again, we show that K̄1
fe ≥ Kee

1 following a similar analysis.
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Next we show that Πff
1 ≥ Πef

1 (K̄1
ef
, K̄2

fe
), and the analysis for firm 2 is similar.

Focusing on the non-trivial case where Kff
1 > 0 and K̄1

ef
> 0, after simplifying the

expressions, we have the profit difference

Πff
1 − Πef

1 (K̄1
ef
, K̄2

fe
)

=

bK̄1
ef

+2bK̄2
fe

+c2
∫

3b(K̄1
ef+K̄2

fe)+c1+c2
2

[

(a− 2c1 + c2)
2

9b
− 2b(K̄1

ef
)2 + 2b(K̄2

fe
)2

−(3a− c2 − 2c1)K̄2
fe

+
(a− c1)(a− c2)

b

]

dF

+

bKff
1 +2bKff

2 +c2
∫

bK̄1
ef

+2bK̄2
fe

+c2

[

(a− 2c1 + c2)
2

9b
− b(K̄1

ef
)2
]

dF

+

∞
∫

bKff
1 +2bKff

2 +c2

[

b(Kff
1 )2 − b(K̄1

ef
)2
]

dF ≥ 0

That is, Πff
1 ≥ Πef

1 (K̄1
ef
, K̄2

fe
). Similarly, we show that Πff

2 ≥ Πef
2 (K̄2

ef
, K̄1

fe
)

(omitted for space.)

Finally we show that Πfe
2 (K̄2

fe
, K̄1

ef
) ≥ Πee

2 , and the analysis for firm 1 is similar.
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Again, leveraging that
∂V fe

2

K2
(K̄2

fe
, K̄1

ef
) = 0 and

∂V ee
2

K2
(Kee

2 , Kee
1 ) = 0, we have

Πfe
2 (K̄2

fe
, K̄1

ef
)− Πee

2

=









2c1−c2
∫

c2

(a− c2)
2

4b
dF +

3b(K̄1
ef+K̄2

fe)+c1+c2
2

∫

2c1−c2

(a− 2c2 + c1)
2

9b
dF

+

∞
∫

bK̄1
ef

+2bK̄2
fe

+c2

b(K̄2
fe
)2dF +

bK̄1
ef

+2bK̄2
fe

+c2
∫

3b(K̄1
ef+K̄2

fe)+c1+c2
2

(a− c2 − bK̄1
ef
)2 − (bK̄2

fe
)2

b
dF









−







2c1−c2
∫

c2

(a− c2)
2

4b
dF +

3bKee
1 +2c1−c2
∫

2c1−c2

(a− 2c2 + c1)
2

9b
dF +

∞
∫

3bKee
1 +2c1−c2

b(Kee
2 )2







,





∞
∫

c2

lfe2 (a)dF



−





∞
∫

c2

lee2 (a)dF





Following that K̄2
fe ≥ Kee

2 and Lemma IV.6, we have lfe2 (a) ≥ lee2 (a) for any a ≥ 0.

It follows that Πfe
2 (K̄2

fe
, K̄1

ef
) ≥ Πee

2 . Similarly, we show Πfe
1 (K̄1

fe
, K̄2

ef
) ≥ Πee

1

(omitted for space).

Therefore, when we > wf , it is dominant that κi = f .

Part (ii) ww = wf . The results follow from Lemma IV.6, and the fact that when

Kκ1κ2
1 = (Kκ2κ1

2 + c2
b
− c1

b
)+, firm i will not access firm j’s leftover for any realization

of θ.

Part (iii) we < wf . The proof is similar to part (i), and the details are omitted

for space.

Proof of Corollary IV.8. This directly follows Theorem IV.7, and the fact that if

we ≤ wf , we have Πee
i ≥ Πff

i ; otherwise, Πee
i ≤ Πff

i .

Proof of Theorem IV.9. We first derive the supplier’s production profit Πee
sp. By e-
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quation (C.1), we have that the equilibrium capacity K
κiκj

i satisfies

∞
∫

2biKee
i +c

(ai − c− 2biK
ee
i )dFi − we = 0

Deriving from this equation, we obtain that

∞
∫

2biKee
i +c

Kee
i dFi =

∞
∫

2biKee
i +c

ai − c

2bi
dFi −

wκi

2bi
(C.3)

By Lemma IV.1, equation (4.9) and equation (C.3), we have the supplier’s pro-

duction profit as

Πee
sp =c

2
∑

i=1











2bKee
i +c

∫

c

ai − c

2bi
dFi +

∞
∫

2biKee
i +c

Kee
i dFi











=c
2

∑

i=1











2biK
ee
i +c

∫

c

ai − c

2bi
dFi +

∞
∫

2biKee
i +c

ai − c

2bi
dFi +

wκi

2bi











=c

2
∑

i=1







∞
∫

c

ai − c

2bi
dFi +

wκi

2bi







The expressions for the (e, f), (f, f), and (f, f) case can be obtained similarly.

The expressions for supplier’s profit from capacity investment follow from the

definition.

Proof of Corollary IV.10. The proof directly follows the expression of Π
κiκj
sp as shown

in Theorem IV.9.

Proof of Theorem IV.11. Part (i) (Independent market). Following Theorem IV.9,

we have the profit from production Π
κiκj
sp remains the same for any (κi, κj), when

we = wf = w. However, following Lemma IV.2, we have Kee
i = Kfe

i ≥ Kff
i and

also Kee
i ≥ Kef

i . Therefore, the profit from capacity investment Πκ1κ2
sc = γ(wKκ1κ2

1 +
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wKκ2κ1
2 ) is the highest when (κi, κj) = (e, e). Therefore, the supplier always prefers

to offer the exclusive capacity.

Part (ii) (Cournot market). This directly follows Theorem IV.7, and the observa-

tion that under the equilibrium capacity specified in Lemma IV.6(i), firm i will never

access firm j’s capacity (also see Lemma IV.5).

189



BIBLIOGRAPHY

190



BIBLIOGRAPHY

Arya, A., B. Mittendorf, D. E. M. Sappington. 2008. The make-or-buy decision in
the presence of a rival: Strategic outsourcing to a common supplier. Management
Science 54(10) 1747–1758.

Aston, A. 2009. Wal-Mart: Making its suppliers go green. Bloomberg Businessweek
http://www.businessweek.com/magazine/content/09 21/b4132044814736.htm.
Retrieved October 31, 2011.

Aviv, Y., A. Pazgal. 2005. A partially observed markov decision process for dynamic
pricing. Management Science 51(9) 1400–1416.

Azoury, K. S. 1985. Bayes solution to dynamic inventory models under unknown
demand distribution. Management Science 31(9) 1150–1160.

Babich, V. 2010. Independence of capacity ordering and financial subsidies to risky
suppliers. Manufacturing & Service Operations Management 12(4) 583–607.

Besanko, D., U. Doraszelski, L. X. Lu, M. Satterthwaite. 2010. Lumpy capacity
investment and disinvestment dynamics. Operations Research 58(4-Part-2) 1178–
1193.

Besbes, O., A. Muharremoglu. 2013. On implications of demand censoring in the
newsvendor problem. Management Sci. 59(6) 1407–1424.

Besbes, O., A. Zeevi. 2009. Dynamic pricing without knowing the demand function:
Risk bounds and near-optimal algorithms. Operations Research 57(6) 1407–1420.
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