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ABSTRACT

Verification and Enforcement of Opacity Security Properties
in Discrete Event Systems

by

Yi-Chin Wu

Chair: Stéphane Lafortune

The need for stringent cybersecurity is becoming significant as computers and net-

works are integrated into every aspect of our lives. A recent trend in cybersecu-

rity research is to formalize security notions and develop theoretical foundations for

designing secure systems. In this dissertation, we address a security notion called

opacity based on the control theory for Discrete Event Systems (DES). Opacity is an

information-flow property that captures whether a given secret of the system can be

inferred by intruders who passively observe the behavior of the system. Finite-state

automata are used to capture the dynamics of computer systems that need to be ren-

dered opaque with respect to a given secret. Under the observation of the intruder,

the secret of the system is opaque if “whenever the secret has occurred, there exists

another non-secret behavior that is observationally equivalent.”

This research focuses on the analysis and the enforcement of four notions of opac-

ity. First, we develop algorithms for verifying opacity notions under the attack model

of a single intruder and that of multiple colluding intruders. We then consider the

enforcement of opacity when the secret is not opaque. Specifically, we propose a novel

xiii



enforcement mechanism based on event insertion to address opacity enforcement for

a class of systems whose dynamics cannot be modified. An insertion function, placed

at the output of the system, inserts fictitious observable events to the system’s out-

put without interacting with the system. We develop a finite structure called the

All-Insertion Structure (AIS) that enumerates all valid insertion functions. The AIS

establishes a necessary and sufficient condition for the existence of a valid insertion

function, and provides a structure to synthesize one insertion function. Furthermore,

we introduce the maximum total cost and the maximum mean cost to quantify inser-

tion functions. A condition for determining which cost objective to use is established.

For each cost, we develop an algorithmic procedure for synthesizing an optimal inser-

tion function from the AIS. Finally, our analysis and enforcement procedure is applied

to ensuring location privacy in location-based services.

xiv



CHAPTER I

Introduction

Cybersecurity is an increasingly important issue as computers and networks are

integrated into every aspect of our lives. Many efforts have been made to develop

secure and reliable systems. However, existing methods often rely on the experience of

software engineers and cannot be easily adapted to different application domains. We

need a science of cybersecurity, which provides theoretical foundations for designing

secure systems in application domains, and which can be used to predict attacks that

exploit previously unknown vulnerabilities [36, 50].

One major goal in the development of a science of cybersecurity is to construct

secure systems that are verifiable. In this dissertation, we address the problem of

designing verifiable secure systems based on the control theory for Discrete Event

Systems (DES). Specifically, central to this research is a security property called

opacity, which is a general information-flow property that characterizes whether a

given secret information can be inferred by an outside observer or not. Finite-State

Automata (FSA) are used to describe the behavior of computer systems that need to

be rendered opaque with respect to a given secret. The secret of the system is opaque

if the intruder, which partially observes the system’s behavior, is never sure whether

the secret of the system has occurred or not. By leveraging techniques from DES,

we formalize opacity notions, analyze opacity, design opacity enforcement strategies,
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and perform optimal enforcement.

1.1 Overview of Opacity Notions

The notion of opacity was first introduced in the computer science community

to analyze whether the key used in the cryptographic protocol can be inferred by

an outside observer [35]. It then became an active research topic in DES, as this

class of dynamic systems provides suitable formal models and analytical techniques

for investigating opacity. Specifically, in [8], opacity was investigated in systems

modeled as Petri nets, where the secret is defined as predicates over Petri net markings

(i.e., states). Following this work, the authors in [9] investigated opacity in labelled

transition systems, where the secret was defined as predicates over runs. Similar work

is the notion of secrecy defined in labelled transition systems [1]. Later, the works

in [42, 43, 45] considered opacity notions using finite-state automata models and

investigated different notions of state-based opacity. Recently, the study of opacity

has also been extended to recursive tile systems [14] and pushdown systems [30].

In this dissertation, we focus on the notions of opacity in DES modeled as FSA.

The ingredients of the FSA formulation of an opacity problem are: (1) the system has

a secret ; (2) the system is modeled as a partially observable and/or nondeterministic

automaton; (3) the intruder is a passive observer that has full knowledge of the system

structure. The secret of the system is opaque if “whenever the secret has occurred,

there exists another non-secret behavior that is observationally equivalent.” That is,

the intruder is never sure if the secret has occurred. The system is guaranteed the

“plausible deniability” of the secret.

The secret of the system can be defined using any representation in the given

automaton model, such as states and languages. With different representations of the

secret, various notions of opacity have been introduced in the literature, including but

not limited to: (i) Initial-State Opacity where the secret is a set of initial states; (ii)

2



Current-State Opacity where the secret is a set of current states; (iii) Language-Based

Opacity where the secret is a subset of the set of system runs. (iv) Initial-and-Final-

State Opacity where the secret is a set of initial and finite states pairs. We will focus

on these four notions of opacity in this dissertation.

Methods for verifying if the given secret is opaque or not have been investigated in

[11, 33, 43, 59]. The work in [20] also develops techniques for detecting and predicting

the flow of secret information based on the diagnosis technique in [48]. In this disser-

tation, we review existing verification methods and propose new verification method

for opacity notions. When a secret is not opaque, the ensuing question is how to

enforce the secret to be opaque. In this regard, many enforcement mechanisms have

been proposed. In [19, 46, 56, 4, 5], the authors consider the design of an opacity-

enforcing supervisory controller, which disables the behavior of the system when the

secret is going to be revealed, based on the supervisory control theory of DES. The

authors of [11] enforce opacity using dynamic observers, which dynamically modify

the observability of every event by activating and deactivating sensors. Another en-

forcement approach that allows the full system behavior is the run-time enforcement

mechanism in [23]. In that work, the authors employ delays at run-time when the

system outputs executions in order to enforce K-step opacity. Also, the control prob-

lem of the so-called concurrent secrecy is solved in [3]. In contrast to these methods,

we develop in this dissertation a novel opacity enforcement mechanism based on in-

sertion functions. Such an insertion function remedies opacity by inserting additional

observable events to the output of the system. This insertion mechanism is suitable

for the four opacity notions considered in this dissertation.

Once an opacity enforcement mechanism is chosen, the next interesting question

that arises is whether there is an opacity enforcer that is optimal in some specific

sense. For the approach of opacity-enforcing supervisory controllers, optimality refers

to restricting the system’s behavior in a minimal manner [19, 46]. For the use of

3



dynamic observers, the authors in [11] assign a cost value to the activation of the

sensor of each event, and leverage game theoretical results to synthesize an optimal

dynamic observer that consumes the least worst-case average cost. Inspired by the

approach in [11], in this dissertation, we consider the synthesis of an optimal insertion

function. Specifically, we assign a cost value to each inserted event and synthesize

an optimal insertion function with respect to the total cost and the average cost (per

system output), both in the worst case.

1.2 Organization and Main Contributions

The main contributions and the organization of this dissertation are summarized

as follows.

Chapter II: Opacity Problems in Automata Formulations

This chapter reviews some basics in Discrete Event Systems and formally formulates

four notions of opacity that we consider in this dissertation: Current-State Opacity

(CSO), Initial-State Opacity (ISO), Language-Based Opacity (LBO), and a new no-

tion called Initial-and-Final-State Opacity (IFO) that we introduce.

Chapter III: Verification of Opacity Notions in Centralized and Coordi-

nated Architectures ([59])

In this chapter, we review existing methods for verifying CSO and LBO, leverage

an existing algorithm for verifying ISO to verify IFO, and develop a more efficient

algorithm that reduces the complexity for verifying ISO from O(2|X|
2
) to O(2|X|). We

establish polynomial reductions between all pairs of opacity notions. These reductions

between notions allow us to verify one opacity notion by transforming it to another

opacity notion, which provide a basis for developing opacity enforcement mechanisms

that work for all four notions.
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We also investigate opacity notions in the scenario of multiple colluding intruders.

Specifically, we consider CSO, ISO, and IFO under a coordinated attack model where

a coordinator aggregates all intruders’ state estimates. For each notion, a character-

ization of the corresponding notion of joint opacity and an algorithmic procedure for

its verification are provided.

Chapter IV: Opacity Enforcement Using Event Insertion ([58, 60])

This chapter considers the problem of enforcing opacity when the secret is not opaque.

In view of the limitations of existing opacity enforcement methods, we propose a novel

enforcement mechanism based on event insertion. Specifically, the approach based on

supervisory control enforces opacity by disabling the system’s behavior; thus, it does

not apply to systems that must execute their full behaviors. The use of a dynamic

observer allows the full system behavior; but it changes the observable behavior of

the system, which may reveals clues about the defense model to the intruder. Also,

using delays to enforce opacity only applies to secrets for which time duration is of

concern.

An insertion function in our enforcement mechanism is a monitoring interface

placed at the output of the system, as shown in Figure 1.1. It monitors the sys-

tem’s output behavior and inserts fictitious observable events to the output without

interacting with the system. The intruder is assumed to have no knowledge of the

Output behavior Modified behaviorInsertion 
function

additional observable events

System

Intruder

System G

Observation Map P1 Observation Map P2

Estimator 1 Estimator 2

Coordinator

Coordinated Estimate

Attacker 1 Attacker 2

Estimate(s1) Estimate(s2)

s1

s1 s2

t t

Figure 1.1: The insertion mechanism

insertion function at the outset. We want to ensure that the intruder never suspects

the existence of an insertion function. Hence, fictitious events need to be inserted
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in a “convincing” manner – where the modified output is always consistent with an

existing behavior that does not reveal the secret. We formulate the mathematical

conditions for the interface requirement and the requirement for convincing inser-

tions. We refer to insertion functions that satisfy both requirements as i-enforcing.

Our goal is to synthesize one i-enforcing insertion function. We start with solving the

problem of whether or not there exists an i-enforcing insertion function by construct-

ing the “All Insertion Structure” (AIS). The AIS, as it is called, is a finite structure

that enumerates all i-enforcing insertion functions. Specifically, the AIS is a game

structure that enumerates all insertion function’s “winning strategies” that react to

the output from the system. We use the AIS to provide a necessary and sufficient

condition for the existence of an i-enforcing insertion function, and develop an algo-

rithmic procedure that synthesizes an i-enforcing insertion function from the AIS.

Chapter V: Synthesis of Optimal Insertion Functions for Opacity Enforce-

ment ([61])

This chapter considers the problem of synthesizing an optimal insertion function that

minimizes the overhead cost introduced by insertion. We use the AIS as the structure

to solve this optimal synthesis problem, as it enumerates all valid insertion functions.

We assign to each inserted event a non-negative integer cost value. It turns out that

an insertion function may need to insert an infinite number of events and thus incur

an infinite total cost. With this consideration, we solve two optimization problems,

one with respect to the maximum total cost and the other with respect to the maxi-

mum mean cost. The former captures the total insertion cost and the latter considers

the average insertion cost (per system output), both in the worst-case scenario.

We first compute on the AIS the optimal maximum total cost for insertion func-

tions. If this value is finite, we synthesize an optimal total-cost insertion function.

Otherwise, we construct an optimal mean-cost insertion function. The synthesis of
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an optimal insertion function is formulated as finding an optimal insertion strategy

on the AIS. We leverage the game theoretical results developed for minmax games

or mean payoff games, depending on which objective cost function is used. In either

case, an algorithmic procedure that encodes the optimal insertion strategy as a finite-

state I/O automaton is provided.

Chapter VI: Case Study: Ensuring Privacy in Location-Based Services

Using Opacity Techniques ([62])

This chapter considers the application of Location-Based Services (LBS) and use

opacity techniques to solve the issue of location privacy. Nondeterministic automata

are used to model the user’s moving patterns. We use opacity techniques to prove

that the existing method of location anonymizers, which blurs the user’s accurate

location to a region of locations, is insufficient to provide location privacy when the

user continuously makes queries. To enforce location privacy, we propose to add to

the anonymizer an insertion function that inserts fictitious queries. The design of

such an insertion function is adapted from that for opacity, to fit the application of

LBS. We also follow the optimization procedure in Chapter V to design an optimal

insertion function that minimizes the overhead insertion cost. Overall, the insertion

functions are added-on interfaces that insert fictitious queries and drop their replies

without affecting the quality of the LBS servers’ replies to real queries.

Chapter VII: Conclusion and Future Work

We summarize the main contributions of this dissertation and discuss the potential

directions for future work.
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1.3 Related Notions

1.3.1 Other Notions of Opacity

In [8] and [9], the authors have considered three notions of opacity: initial opacity,

final opacity, and total opacity (or always opacity in [9]) in the modeling formalisms

of Petri nets and labelled transition systems, respectively. The first two opacity

notions are relevant to initial-state opacity and current-state opacity considered in

this dissertation. Total opacity (or always opacity), on the other hand, requires all

states in the execution to be hidden from the observer. It is relevant to current-state

opacity when the set of secret states lie on a prefix-closed language.

Let us consider the modeling formalism of finite-state automata. The notion of

K-step opacity has been introduced in [45]. It is a stronger version of current-state

opacity that requires the secret to hold for K-delayed estimates of the state. The

notions of strong opacity and weak opacity have been introduced in [33] and studied

in [4, 5]. Both notions are defined in the language formulation. Strong opacity requires

that all strings in a language be confused with some strings in another language, which

is the same as our language-based opacity. Weak opacity, however, only requires that

some strings in the language be confused with some strings in another language. On

the other hand, the authors in [3] have considered the notion of concurrent opacity.

This notion, similar to our notions of joint opacity, considers multiple intruders. But

it differs from joint opacity in that each intruder in concurrent opacity has a distinct

secret and observation map and that intruders do not collaborate.

1.3.2 Related Notions

Many security notions have also been defined in DES. In [26], the authors have

considered the notion of intransitive noninterference. This notion is a confidentiality

property in multilevel systems where information flow from the high level to the low
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level is only allowed through the downgrading level. The notion of secrecy has been

considered in [1, 33]. It is a special notion of language-based opacity when the non-

secret language is the complement of the secret language, with respect to the language

of the given system.

Beyond the category of security properties, there are also notions that are relevant

to opacity. We discuss the notions of observability, detectability, and diagnosability.

Each of them is a special negation of weak opacity that requires strings of different

features to be clearly distinguished. That is, observability, detectability, or diag-

nosability fails to hold if there exist two strings of different features that are not

distinguishable. Note that these notions are not the negation of the opacity notions

studied in this dissertation (i.e., they are not the negation of strong opacity) as opac-

ity requires all secret behavior to be indistinguishable from a non-secret behavior.

Specifically, observability requires two strings with different control actions, with re-

spect to the specification, to be distinguishable [34]. Detectability, on the other hand,

captures whether we can determine the current state of the system; it requires strings

leading to different states to be distinguishable [54]. Lastly, the system is diagnosable

if no string with fault events is indistinguishable from a string without fault events

for an unbounded length [48]. We refer the reader to [33] for a detailed comparative

discussion of these notions and opacity.
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CHAPTER II

Opacity Problems in Automata Formulations

2.1 Automata Models and Relevant Operations

2.1.1 Automata Models

We consider opacity problems in DES systems modeled as (potentially nondeter-

ministic) automata. An automaton G = (X,E, f,X0, Xm) has a finite set of states, a

set of events E, a partial state transition function f : X×E∪{ε} → 2X , a set of initial

states X0, and a set of marked states Xm. In opacity problems, the initial state need

not be known a priori by the intruder and thus we include a set of initial states X0

in the definition of G. When there are no marked states, we write G = (X,E, f,X0).

Set E∗ contains all finite strings composed of elements of E. Function f is extended to

domain X×E∗ in a recursive manner: f(x, t) = f(x, t′e) = f(f(x, t′), e) where t′ ∈ E∗

and e ∈ E. Define L(G,Xi) := {t ∈ E∗ : (∃x ∈ Xi)[f(x, t) is defined}. The language

generated by G is the system behavior that is defined by L(G,X0). For simplicity, we

write L(G, x) whenXi = {x} and write only L(G) ifX0 is clearly defined. The marked

language of G is defined by Lm(G,X0) := {t ∈ E∗ : (∃i ∈ X0)[f(i, t) ∩Xm 6= ∅]}.
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2.1.2 Projection Map P

The system is partially observable in general. Hence, the event set is partitioned

into an observable set Eo and an unobservable set Euo. Given an event e ∈ E, its

observation is the output of the natural projection P : E → Eo such that P (e) = e

if e ∈ Eo and P (e) = ε if e ∈ Euo ∪ {ε} where ε is the empty string. With this

definition at hand, projection P is extended from E → Eo to P : E∗ → E∗o in a

recursive manner: P (te) = P (t)P (e) where t ∈ E∗ and e ∈ E.

2.1.3 Observer Automaton

Consider G = (X,E, f, x0) where E = Eo ∪Euo. The observer automaton of G is

the automaton Obs(G) := (Xobs, Eo, fobs, x0,obs) that is built as follows.

1. Define x0,obs := UR(x0). Set Xobs = {x0,obs}.

2. For each B ∈ Xobs and e ∈ Eo, define fobs(B, e) := UR({x ∈ X : (∃xe ∈ B)[x ∈

f(xe, e)]}). If f(xe, e) is defined for some xe ∈ B, add state fobs(B, e) to Xobs.

3. Repeat Step 2 until the entire accessible part of Obs(G) has been constructed

where UR(x) is the unobservable reach of a state x that is defined to be the set of all

states that can be reached from x via unobservable transitions.

2.1.4 Parallel Composition

Parallel composition captures the interaction of system components that syn-

chronize on common events but act individually on private events. Consider G1 =

(X1, E1, f1, x01) and G2 = (X2, E2, f2, x02). The parallel composition of G1 and G2 is

11



the automaton G1||G2 := Acc(X1 ×X2, E1 ∪ E2, f, (x01, x02)) where

f((x1, x2), e) :=
{(x′1, x′2) : x′1 ∈ fi(xi, e), i = 1, 2}, if e ∈ E1 ∩ E2 and fi(xi, e) is defined

{(x′1, x2) : x′1 ∈ f1(x1, e)}, if e ∈ E1 \ E2 and f1(x1, e) is defined

{(x1, x′2) : x′2 ∈ f1(x2, e)}, if e ∈ E2 \ E1 and f2(x2, e) is defined

and Acc denotes the accessible part of the automaton, i.e., the set of states reachable

from a initial state via some string t ∈ (E1 ∪ E2)
∗.

Finally, we refer to [10] for a tutorial of Discrete Event Systems.

2.2 Existing Notions of Opacity

We consider opacity properties in DES modeled as finite-state automata. The

basic opacity problems assume the attack model with only one single intruder. The

settings are: (1) G has a secret ; (2) G is partially observable and/or nondeterministic;

(3) the intruder is an observer of G that have full knowledge of the structure of G.

Hence, the intruder, having the knowledge of G and the partial observation of G,

can infer the real system behavior by constructing estimates. Opacity holds if no

intruder’s estimate reveals the occurrence of the secret. In other words, the system

is opaque if for any secret behavior, there exists another non-secret behavior that

is observationally equivalent to the intruder. Therefore, the intruder is never sure

whether the secret has occurred or not.

Four notions of opacity studied in the literature will be focused in this dissertation:

(i) Initial-State Opacity where the secret is a set of initial states; (ii) Current-State

Opacity where the secret is a set of current states; (iii) Language-Based Opacity where

the secret is a subset of the set of system runs. (iv) Initial-and-Final-State Opacity

where the secret is a set of initial and finite states pairs. The first three have been
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studied in [42, 43, 11, 33] and will be defined in this section. IFO was introduced in

our recent work [59] and will be defined in the next section.

2.2.1 Initial-State Opacity

The notion of initial-state opacity (or ISO) was first defined for Petri nets in [8],

and then introduced to finite-state automata in [43]. Initial-state opacity property is

a state property that relates to the membership of the system’s initial state within

a set of secret states. The system is initial-state opaque if the intruder is never sure

whether the system’s initial state is a secret state or not.

Definition II.1 (Initial-State Opacity). Given system G = (X,E, f,X0), projection

P , set of secret initial states XS ⊆ X0, and set of non-secret initial states XNS ⊆ X0,

G is initial-state opaque if ∀i ∈ XS and ∀t ∈ L(G, i), ∃j ∈ XNS, ∃t′ ∈ L(G, j), such

that P (t) = P (t′).

The system is initial-state opaque if for every string t that originates from secret

state i, there exists another string t′ from non-secret state j such that t and t′ are

observationally equivalent. Therefore, the intruder can never determine whether the

system started from a secret state i or from a non-secret state j.

The following is the same example as in [43] that is used to demonstrate ISO. This

example is used in this thesis in order to compare our algorithm with that in [43].

Example II.2. ([43]) Consider G in Figure 2.1 with Eo = {a, b}, XS = {2}, XNS =

X \ XS, and X0 = X. G is initial-state opaque because for every string t starting

from state 2, there is another string (uo)t starting from state 0 that looks the same.

However, ISO does not hold if XS = {0}. Whenever the intruder sees string aa, it is

sure that the system originated from state 0; no other initial state generates strings

that look the same as aa.
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Figure 2.1: The system G discussed in Example II.2

2.2.2 Current-State Opacity

Current-state opacity was first introduced as “final opacity” in [8] in the context

of Petri nets. The definition was then adopted in the framework of labelled transition

systems in [9], and further developed in finite-state automata models [42, 11, 59]. A

system is current-state opaque if the intruder can never infer, from its observations,

whether the current state of the system is a secret state or not.

Definition II.3 (Current-State Opacity). Given system G = (X,E, f,X0), projec-

tion P , set of secret states XS ⊆ X, and set of non-secret states XNS ⊆ X, the

system is current-state opaque if ∀i ∈ X0 and ∀t ∈ L(G, i) such that f(i, t) ⊆ XS,

∃j ∈ X0, ∃t′ ∈ L(G, j) such that: (i) f(j, t′) ∩ (X \XS) 6= ∅ and (ii) P (t) = P (t′).

Current-state opacity (or CSO) states that for every string t that leads to secret

states only, there exists another string t′ going to a non-secret state whose projection

is the same. As a result, the intruder can never assert with certainty that the system’s

current state is in XS. Note that the automaton model we use, where there can be

multiple initial states, allows the two observationally equivalent strings to start from

different initial states.

Example II.4. Consider G in Figure 2.2 with XS = {3} and XNS = X \ XS. Let

Eo = {b}. G is current-state opaque because the intruder is always confused between

ab and cb when observing b; that is, the intruder cannot tell if the system is in state

3 or 4. However, if Eo = {a, b}, then G is not opaque because the intruder is sure

that the system is in state 3 when observing ab.
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Figure 2.3: The system G discussed in Example II.6

2.2.3 Language-Based Opacity

Language-Based opacity (or simply LBO) was first defined using finite-state au-

tomata models in [18] and then further discussed in [19, 46, 11, 33, 59]. A system is

language-based opaque if the intruder can never infer, from its observations, whether

the current execution of the system is in the secret language or not.

Definition II.5 (Language-Based Opacity). Given system G = (X,E, f,X0), pro-

jection P , secret language LS ⊆ L(G,X0), and non-secret language LNS ⊆ L(G,X0),

G is language-based opaque if for every string t ∈ LS, there exists another string

t′ ∈ LNS such that P (t) = P (t′), or equivalently if LS ⊆ P−1[P (LNS)].

The system is language-based opaque if for every string t ∈ LS, there exists at least

one other string t′ ∈ LNS with the same projection. Therefore, given the observation

s = P (t), intruders cannot conclude whether secret string t or non-secret string t′

has occurred. Note that LS and LNS need not be prefix-closed in general. Also, they

need not be regular; however, we assume that they are regular throughout this thesis.

Example II.6. Consider G in Figure 2.3 with Eo = {a, b, c} . It is language-based

opaque when LS = {abd} and LNS = {abc∗d, adb} because whenever the intruder sees

P (LS) = {ab}, it is not sure whether string abd or string adb has occurred. However,
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this system is not language-based opaque if LS = {abcd} and LNS = {adb}; no string

in LNS has the same projection as the secret string abcd.

2.3 New Notion of Opacity: Initial-and-Final-State Opacity

Initial-and-final-state opacity, first introduced in [59], is an opacity notion that

models anonymous communications in security networks, where the identities of the

sender and/or the receiver need to be hidden from the intruder [13, 40, 51]. Let

us model a communication network as an automaton, and use the initial and the

final states to represent the identities of the sender and the receiver. The network is

anonymous if the memberships of the initial and the final states are hidden as a pair.

Definition II.7 (Initial-and-Final-State Opacity). Given system G = (X,E, f,X0),

projection P , set of secret state pairs Xsp ⊆ X0×X, and set of non-secret state pairs

Xnsp ⊆ X0×X, G is initial-and-final-state opaque if ∀(x0, xf ) ∈ Xsp and ∀t ∈ L(G, x0)

such that xf ∈ f(x0, t), there is a pair (x′0, x
′
f ) ∈ Xnsp and a string t′ ∈ L(G,X0) such

that x′f ∈ f(x′0, t
′) and P (t) = P (t′).

Initial-and-final-state opacity (or simply IFO) requires that the occurrence of a

string starting from x0 and ending at xf , where (x0, xf ) is a secret pair, should not

reveal to the intruder the fact that x0 is the initial state and xf is the final state. A

system is said to be intial-and-final-state opaque if for any string t that starts from

x0 and ends at xf , with (x0, xf ) ∈ Xsp, there exists another string t′ starting from

x′0 and ending at x′f , where (x′0, x
′
f ) ∈ Xnsp, that has the same projection. Therefore,

the intruder can never determine whether the initial-and-final state pair is a secret

pair or a non-secret pair.

Example II.8. Consider again G in Figure 2.1. G is initial-and-final state opaque

when Xsp = {(3, 1)} and Xnsp = {(1, 0), (1, 1), (1, 2), (1, 3)}. Now if we take Xsp =

{(0, 0)}, then G is no longer initial-and-final-state opaque. In this case, (0, 0) is the
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only state pair that corresponds to string aa; no other state pair gives strings that

look the same as aa.

Remark II.9. ISO and CSO are both special cases of IFO. To obtain an ISO problem

from an IFO problem, we set Xsp = XS ×X and Xnsp = XNS ×X. Also, to obtain

an CSO problem, we set Xsp = X0 ×XS and Xnsp = X0 ×XNS.

Remark II.10. In the definitions of LBO, ISO, CSO, and IFO, no assumption is

made regarding the sets of secret and non-secret languages, states, or state pairs,

respectively. However, to facilitate our work, we can assume they are disjoint without

loss of generality. Take ISO for example. Assume the intersecting set XI := XS∩XNS

is not empty. Then, every state in XI is a secret state as well as a non-secret state.

That is, a string from a secret state in XI also comes from a non-secret state. Hence,

no state in XI results in the violation of opacity. ISO is unchanged if XI is removed

from the secret set XS. Therefore, we can re-define the secret state set as X ′S =

XS \ XI , which is disjoint with XNS, without affecting ISO. Similar results hold for

LBO, CSO and IFO.
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CHAPTER III

Verification of Opacity in Centralized and

Coordinated Architectures

3.1 Introduction

With the four notions of opacity defined, our first task is to develop algorithmic

procedures that verify these opacity notions.

In this chapter, we start with investigating the relationships among the four no-

tions of opacity. While these notions are formulated differently, we will show that each

opacity notion can be reduced to other three opacity notions in polynomial complex-

ity. This set of polynomial reduction algorithms establishes a verification algorithm

for any given opacity notion by transforming it to another opacity notion.

Next, we discuss the most efficient verification algorithm for each opacity notion.

Although we can always verify an given opacity by transforming it to another opacity

notion, this method may not be the most efficient manner to proceed. We review

existing methods for verifying opacity notions and propose a more efficient one for

verifying ISO, which reduces the space complexity for verifying ISO from O(2|X|
2
) to

O(2|X|).

Finally, we extend the three state-based opacity notions (i.e., CSO, ISO, IFO) to a

coordinated architecture where multiple intruders collude via a coordinator who inte-
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grates the state estimates from all intruders. We define three corresponding notions of

joint opacity in the context of this coordinated architecture, and develop algorithmic

procedures to verify the three joint opacity notions. To the best of our knowledge,

this is the first study of opacity in architectures where intruders coordinate.

The remaining sections of this chapter are organized as follows. Section 3.2

presents the polynomial reduction procedures between the four notions of opacity.

Section 3.3 considers the verification of the four opacity properties. Section 3.4 in-

troduces and verifies opacity properties under the coordinated architecture. Section

3.5 discusses the adaptation of our results to the case of “fast” intruders, which react

faster than the system can execute unobservable events. Finally, Section 3.6 concludes

this chapter. Some of the results in this chapter also appear in [59].

3.2 Polynomial Reductions Between Four Notions of Opacity

While different notions of opacity have been defined in existing work, their rela-

tionships have never been completely characterized. To the best of our knowledge,

the only works that consider such relationships are the alternative language-based

definition for initial-state opacity in [46], the transformation from trace-based opac-

ity (LBO in our terminology) to state-based opacity (CSO in our terminology) in

[11], and the transformation in [33] from language-based opacity to strong-secrecy

and weak-secrecy (defined therein). In this section, we provide a complete charac-

terization of the relationships between the four notions of opacity defined in Chapter

II. Algorithms that transform among the four notions are presented in the following

subsections, according to the diagram in Figure 3.2. We provide complete proofs for

the transformations between IFO and LBO in the corresponding subsections, and

briefly discuss in Section 3.2.5 the proofs for the other transformations. For the sake

of simplicity, we will use the acronym IFO to denote both “initial-and-final-state

opacity” and “initial-and-final-state opaque”; similarly for LBO, CSO, and ISO. It
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will be clear from the context if the noun or the adjective is referred to.
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Figure 3.1: Transformations between notions of opacity (labeled by section numbers)

3.2.1 Transformation Between IFO and LBO

3.2.1.1 IFO to LBO

Given an IFO problem with G = (X,E, f,X0) and sets of secret and non-secret

state pairs Xsp and Xnsp, we transform it to an LBO problem by the following steps:

1. Construct Gs
i = Trim[(X,E, f, {xs0,i}, {xsf,i})] where (xs0,i, x

s
f,i) is the i-th pair

in Xsp, and Gns
j = Trim[(X,E, f, {xns0,j}, {xnsf,j})] where (xns0,j, x

ns
f,j) is the j-th

pair in Xnsp.

2. ObtainGs by treating the set of allGs
i as a single automaton, with corresponding

sets of initial and marked states. Proceed similarly to obtain Gns from all Gns
j .

3. Obtain GLBO by treating Gs and Gns as a single automaton. Define the secret

language LS := Lm(Gs) =
⋃
i Lm(Gs

i ) and the non-secret language LNS :=

Lm(Gns) =
⋃
j Lm(Gns

j ).

We now show that (G,Xsp, Xnsp) is IFO if and only if (GLBO, LS, LNS) is LBO.

By construction, every Gs
i marks the language that corresponds to the i-th secret

pair (xs0,i, x
s
f,i) ∈ Xsp. Since every secret pair has a corresponding Gs

i , language LS

captures the complete set of secret pairs Xsp. Similarly, LNS captures the set of non-

secret pairs Xnsp. To verify if (G,Xsp, Xnsp) is IFO, we check if every string with a
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secret pair (x0, xf ) ∈ Xsp has the same projection as a string associated with a non-

secret pair (x′0, x
′
f ) ∈ Xnsp, that is, if every string t ∈ LS has the same projection as

a string t′ ∈ LNS in GLBO. This procedure is equivalent to verify if (GLBO, LS, LNS)

is LBO.

We discuss the computational complexity of this transformation. Given any input

instance (G,Xsp, Xnsp), building Gs takes complexity O(|X|2|X0|) because each Gs
i

is simply the trim of G with the i-th state pair in Xsp as the initial and marked

state, and there are at most |X||X0| number of such Gs
i . Similarly, building Gns

also takes complexity O(|X|2|X0|). Therefore, this transformation can be obtained

in polynomial time, in the cardinality of the state space of G.

3.2.1.2 LBO to IFO

Given an LBO problem with G, LS, and LNS, we construct the equivalent IFO

problem by the following steps:

1. Build automaton Gs = (Xs, E, fs, X
s
0 , X

s
f ) with Lm(Gs, Xs

0) = LS and automa-

ton Gns = (Xns, E, fns, X
ns
0 , X

ns
f ) with Lm(Gns, Xns

0 ) = LNS.

2. Construct GIFO by treating the two automata Gs and Gns as a single one.

Define the set of secret pairs Xsp := Xs
0 × Xs

f and the set of non-secret pairs

Xnsp := Xns
0 ×Xns

f .

We show that (G,LS, LNS) is LBO if and only if (GIFO, Xsp, Xnsp) is IFO. By

construction, Gs, which has initial states Xs
0 and marked states Xs

f , generates marked

language LS. Thus, a string is in LS if and only if it has an initial-final state pair

in Xsp = Xs
0 × Xs

f . Similarly, a string is in LNS if and only if it has an initial-final

state pair in Xnsp = Xns
0 ×Xns

f . To verify if (G,LS, LNS) is LBO, we verify if every

string in LS is always confused with a string in LNS; that is, if every state pair in

Xsp is always confused with a state pair in Xnsp. This is the same as checking if
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(G,Xsp, Xnsp) is IFO.

This transformation also requires polynomial complexity. In step 1, the complexity

depends on how the languages LS and LNS are defined. Recall that LS and LNS are

assumed to be regular. They could be specified using automata, in which case Gs

and Gns are directly obtained. More generally, LS could be expressed as sublanguages

of L(G) in terms of state and/or event ordering, in which case Gs can be obtained

in polynomial time by splitting the state space of G as necessary using standard

automata procedures. Step 2 takes only constant time. Therefore, the transformation

can be done in polynomial time, in the cardinality of the state space of G.

Example III.1. Consider an LBO problem with the system in Figure 2.3. Let

LS = {abd}, LNS = abc∗d + adb, and Eo = {a, b, c}. To transform the LBO problem

into an IFO problem, we first build Gs (top in Figure 3.2) and Gns (bottom in Figure

3.2). Then, we construct GIFO by taking the two automata as a single one, as shown

in Figure 3.2. Finally, we define the set of secret and non-secret pairs as Xsp = {(0, 3)}

and Xnsp = {(4, 7), (4, 9)}, respectively.
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Figure 3.2: GIFO used in Example III.1

3.2.2 Transformation Between ISO and LBO

3.2.2.1 ISO to LBO

Given an ISO problem with G, XS, and XNS, we construct the equivalent LBO

problem by the following steps:
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1. Build automata Gs = Trim[G(X,E, f,XS)] and Gns = Trim[G(X,E, f,XNS)].

2. Obtain GLBO by treating Gs and Gns as a single automaton. Define the secret

and the non-secret languages as LS := L(GLBO, XS) and LNS := L(GLBO, XNS).

Example III.2. Consider an ISO problem with the system in Figure 2.1. Let XS =

{0} and XNS = X \ XS = {1, 2, 3}. We follow the above transformation and obtain

secret and non-secret languages LS = L(G, {0}) and LNS = L(G, {1, 2, 3}). Because

no string in LNS looks the same as string aa ∈ LS, we conclude that LBO is violated.

3.2.2.2 LBO to ISO

To transform from LBO to ISO, we must check if LS and LNS in the LBO problem

are prefix-closed. This is because the languages of an ISO problem are prefix-closed

by definition. If LS and LNS are not prefix-closed, then this transformation is not

meaningful. Given an LBO problem with G, LS, and LNS, we now transform it to

an ISO problem:

1. Check if LS and LNS are both prefix-closed. If yes, then proceed to Step 2.

Otherwise, no transformation exists.

2. Build automaton Gs = (Xs, E, fs, X
s
0) and automaton Gns = (Xns, E, fns, X

ns
0 )

such that L(Gs, Xs
0) = LS and L(Gns, Xns

0 ) = LNS.

3. Construct GISO by treating Gs and Gns as a single automaton. Take the secret

and non-secret initial states sets to be XS = Xs
0 and XNS = Xns

0 , respectively.

Example III.3. Consider again the system in Figure 2.3 with Eo = {a, b, c}. Let

the secret and non-secret languages to be prefix-closed: LS = {abd} and LNS =

[abc∗d+ adb]. This LBO problem can be transformed to an ISO problem with the

system in Figure 3.2 (with no marked states) with secret state set XS = {0} and
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non-secret state set XNS = {4}. In this example, ISO holds because for every string

starting from state {0}, there is another string from {4} with the same projection.

3.2.3 Transformation Between CSO and LBO

3.2.3.1 CSO to LBO

Given a CSO problem with G,XS, XNS, the equivalent LBO problem is built in

two steps. First, we build automaton Gs = Trim[G(X,E, f,X0, XS] and automaton

Gns = Trim[G(X,E, f,X0, XNS)]. Then, we obtain GLBO by treating Gs and Gns

as a single automaton, and define the secret and the non-secret languages as LS =

Lm(GLBO, XS) and LNS = Lm(GLBO, XNS).

Example III.4. Consider a CSO problem with the system in Figure 2.2. Let XS =

{3}, XNS = X \ XS, and Eo = {b}. We follow the above transformation and obtain

secret and non-secret languages LS = {ab} and LNS = {ε, a, c, cb}. In this case, LBO

holds because secret string ab is observationally equivalent to non-secret string cb.

3.2.3.2 LBO to CSO

Given an LBO problem with G,LS, LNS, we transform it to a CSO problem in

two steps. First, we build automaton Gs = (Xs, E, fs, X
s
0 , X

s
f ) and automaton Gns =

(Xns, E, fns, X
ns
0 , X

ns
f ) such that Lm(Gs, Xs

0) = LS and Lm(Gns, Xns
0 ) = LNS. Then,

we construct GCSO by treating Gs and Gns as a single automaton, where the initial

state set is X0 = Xs
0 ∪Xns

0 and the secret and non-secret state sets are XS = Xs
f and

XNS = Xns
f .

Example III.5. Consider an LBO problem with the system in Figure 2.3, LS =

{abd}, LNS = {abc∗d, adb}, and Eo = {a, b, c}. We transform it to a CSO problem

with the system in Figure 3.2, initial state set X0 = {0, 4}, secret state set XS = {3},

and non-secret state set XNS = {7, 9}. CSO holds because string adb, which ends at
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state {9}, has the same projection as string abd, which is the only string that ends

at secret state {3}.

3.2.4 Transformation Between ISO/CSO and IFO

As explained in Remark II.9, ISO and CSO are special cases of IFO, so the trans-

formations from ISO to IFO and from CSO to IFO are already covered by that

remark. On the other hand, the transformation from IFO to ISO can be obtained by

first transforming IFO to LBO and then transforming LBO to ISO; similarly for the

case IFO to CSO.

3.2.5 Discussion: Complexity

The transformations between ISO/CSO and LBO can be proven using similar

methods for those between IFO and LBO. For the transformation from ISO to LBO,

we construct Gs and Gns whose initial states are XS and XNS, respectively. By

suitably defining LS and LNS as sublanguages of Gs and Gns, languages LS and LNS

completely capture XS and XNS. Therefore, checking if a string starts from XS or

XNS is equivalent to checking if the string is in LS or LNS. That is, verifying ISO in

the original automaton G is equivalent to verifying LBO in GLBO. A similar argument

holds for the transformation from CSO to LBO. The only difference is that XS and

XNS are the marked states of Gs and Gns.

For the transformation from LBO to ISO, we construct Gs and Gns that generate

LS and LNS by suitably defining the initial states as XS and XNS. Therefore, checking

if a string is in LS or LNS is equivalent to checking if the string starts from XS or

XNS. That is, verifying LBO in the original automaton G is equivalent to verifying

ISO in GISO. Similarly, by letting XS and XNS to be the marked states of Gs and

Gns, we can prove the transformation from LBO to CSO.

All the transformations are of polynomial-time computational complexity. We
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have seen that transformations between IFO and LBO require polynomial time.

Transformations between ISO/CSO and LBO also require polynomial time because

they are adapted from those between IFO and LBO. The transformations from IFO

to ISO/CSO can also be done in polynomial time by transforming from IFO to LBO

in polynomial time and then from LBO to ISO/CSO in polynomial time.

In conclusion, we have shown a polynomial-time transformation between any pair

of the four opacity notions. The only exception is that there is no transformation from

LBO to ISO when the secret or non-secret languages are not prefix-closed. Therefore,

we can say that opacity notions OP1 and OP2 are “equivalent” in the sense that OP1

holds in system G if and only if OP2 holds in the the transformed system G′.

3.3 Verification of the Four Notions of Opacity

Based on the results of the preceding section, we can always verify one opacity

notion by transforming it to another notion. However, this may not be the most

efficient manner to proceed. In this section, we review existing verification methods

for verifying ISO, CSO, and LBO, present a new algorithm for the verification of

ISO that has reduced computational complexity as compared with existing ones, and

present an algorithm for the verification of the new property of IFO.

Notice that there is no polynomial-time algorithm, in the cardinality of the state

space of G, for verifying any of the above opacity notions. In [11], the authors have

proven that verification of state-based opacity (CSO in our terminology) and that

of trace-based opacity (LBO in our terminology) are PSPACE-complete problems;

also, the authors in [41] has also proven that verifying ISO is PSPACE-complete.

As a result, because of the polynomial-time transformations between IFO and other

opacity notions in Section 3.2.5, verification of IFO must also be PSPACE-complete.
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3.3.1 Verification of Initial-State Opacity

Verifying ISO can be done by capturing and examining all intruder’s initial state

estimates. Given that the intruder observes a string s, the intruder’s initial state

estimate corresponding to s is the set of initial states where a string t with observation

P (t) = s could have started. The formal definition for initial state estimates is given

below:

Definition III.6. (Initial-state estimate) Given system G = (X,E, f,X0) and P , the

initial state estimate after observing string s is defined as X̂0(s) := {i ∈ X0 : (∃t ∈

E∗)(P (t) = s)[f(i, t) is defined]}

To capture all intruder’s initial state estimates, the authors of [43] have con-

structed an Initial State Estimator (ISE) that captures initial state estimates based

on trellis diagrams. Motivated by this ISE, we propose to construct a different ISE

that captures initial state estimates by using the reversed automaton of the system.

The reverse automaton will be formally defined later. To differentiate the two ISE, we

call the former Trellis-Based Initial State Estimator and the latter GR-Based Initial

State Estimator. We start with a brief review of the trellis-based ISE.

3.3.1.1 Trellis-Based Initial State Estimator

The authors of [43] used state mappings to construct the trellis-based ISE. A state

mapping m ∈ 2X
2

is a subset of X2 consisting of state pairs, which can be induced by

an observed string. Specifically, given s ∈ P [L(G,X0)], the induced state mapping

M(s) enumerates all possible pairs of starting and ending states corresponding to s.

The composition operator for two state mappings ◦ : 2X
2 × 2X

2 → 2X
2

is defined as:

m1,m2 ∈ 2X
2

,m1 ◦m2 := {(i1, i3) | ∃i2 ∈ X, (i1, i2) ∈ m1, (i2, i3) ∈ m2}
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This composition operator takes the starting states of m1 and the ending states of

m2 to form a new state mapping only for those sets of tuples that share the same

intermediate element. Given G, the trellis-based ISE of G is a deterministic finite-

state automaton where the state reached by string s ∈ P [L(G,X0)] is state mapping

M(s). Note that the intruder is assumed to have no prior knowledge about the

system’s initial state. Hence, the ISE starts with a state mapping where the set

of starting states is the entire state space X; more specifically, the initial state of

the estimator is {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 : (∃t ∈ E∗uo)[j ∈ f(i, t)]}. The

transition function is defined such that state mapping m transitions to state mapping

m′ through event eo if m′ = m ◦M(eo). The ISE relies on state mappings to relay

information about the initial and the current state estimates. It has been proven in

[43] that the set of starting states of M(s), i.e., the state mapping reached by s, is the

intruder’s initial state estimate X̂0(s). One can verify ISO by examining all states in

the trellis-based ISE and determining if any estimate contains only the secret states

but not the non-secret states.

Remark III.7. In the above paragraph, we slightly modify the definition of the initial

state of the trellis-based ISE from [43]. This modification allows us to verify IFO

using the trellis-based ISE in Section 3.3.4.1 and to verify joint opacity notions in

Section 3.4. Specifically, the modified initial state includes the unobservable reach

to account for the unobservable transitions after the system begins and before the

first observable transition. This is a practical concern as the intruder does not know

when the system starts. The modification does not affect the initial state estimates

since the unobservable reach affects only the ending states but not the starting states.

Furthermore, it affects only the initial state but not the other states of the ISE. As a

result, this modified trellis-based ISE gives the same initial state estimates as those

in [43].

Example III.8. Consider the system in Figure 2.1. The a- and b-induced state map-
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pings are M(a) = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 1), (2, 3)} and M(b) = {(1, 0), (1, 1),

(1, 2), (1, 3), (3, 1), (3, 3)}. To construct the trellis-based ISE, we start with the initial

state mapping m0 as defined above. Then, we generate new state mappings by com-

posing m0 with M(a), and M(b). The complete construction is shown in Figure 3.3.
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Figure 3.3: Trellis-based ISE of the system in Figure 2.1

3.3.1.2 GR-Based Initial State Estimator

In the trellis-based ISE, the current state estimates need to be remembered in

order to relay information while they are not involved in the verification of ISO.

Because the trellis-based ISE keeps track of both the initial and the current state

estimates, its construction has complexity O(2|X|
2
). However, there are at most 2|X|

possible initial state estimates. In this regard, we propose to construct a different

initial state estimator based on the reversed automaton. This ISE, called the GR-

based ISE, contains only O(2|X|) states. In the following, we will first define the

reversed automaton, and then present the algorithm for verifying ISO using the GR-

based ISE.

The reversed automaton of G, denoted by GR, is constructed by reversing all

transitions in G. Given a string t, the reverse operator Rev : E∗ → E∗ outputs a new

string tR with events in the reversed order. Formally, the reversed automaton of G is

defined as follows.
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Definition III.9 (Reversed automaton GR). Given G = (X,E, f,X0, Xm), the re-

versed automaton GR is the nondeterministic automaton that is obtained by re-

versing all the transitions in G. Specifically, GR := (X,E, fR, XR,0, XR,m) where

fR(x′, e) = {x ∈ X : x′ ∈ f(x, e)}, and XR,0 and XR,m are to be specified according

to the context.

Similarly, fR is extended to domain X × E∗ in a recursive manner: fR(x′, se) =

{x ∈ X : (∃x′′ ∈ X)[x ∈ fR(x′′, e), x′′ ∈ fR(x′, s)]}; or equivalently, fR(x′, se) = {x ∈

X : x′ ∈ f(x, esR)}.

With the reversed automaton defined, we now verify ISO. The verification will

be discussed in two cases: (i) X0 = X when the intruder has no prior knowledge of

the initial states, and (ii)X0 ⊂ X when the intruder has some prior knowledge of the

initial states.

Case 1: Verification of ISO when X0 = X

To construct the GR-based ISE, we first build the reversed automaton GR of the

system G. Then, we build the observer Obs(GR, X), with the set of initial states

being the entire state space X. We will prove below that the state of Obs(GR, X)

reached by string sR is the initial state estimate after s, where sR is the reversed string

of s. Hence, the intruder, with no prior knowledge of the system’s initial states, has

an initial state estimate being X when it has not observed anything. This is why we

take the initial state as X.

We first present three lemmas that characterize useful properties of reversed

strings and automata. A string with subscript R is the corresponding reversed string;

that is, tR is the reversed string of t. Operation Rev(·) is used to take the reverse of

a string or the reverse of all the strings in a set of strings.

Lemma III.10. P (tR) = P (t′R) iff P (t) = P (t′).
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Proof. This is proved in a straightforward manner by induction on the length of

P (t).

Lemma III.11. x0 ∈ fR(x, tR) iff x ∈ f(x0, t).

Proof. This is proved using the extended definition of fR; that is, fR(x, tR) = {x0 ∈

X : x ∈ f(x0, t)}.

Lemma III.12. tR ∈ L(GR, X) iff t ∈ L(G,X). Thus, L[Obs(GR, X)] = Rev
(
P [L(G,X)]

)
.

Proof.

t ∈ L(G,X)⇔ ∃x, x′ ∈ X, such that x′ ∈ f(x, t)

⇔ ∃x, x′ ∈ X, such that x ∈ fR(x′, tR) by Lemma III.11

⇔ tR ∈ L(GR, X)

Furthermore, because tR = Rev(t), we have L(GR, X) = Rev[L(G,X)]. By applying

projection operation at both sides, we obtain P [L(GR, X)] = P
(
Rev[L(G,X)]

)
; that

is, L[Obs(GR, X)] = Rev
(
P [L(G,X)]

)
.

We now present in Theorem III.13 how initial state estimates can be obtained

from Obs(GR, X).

Theorem III.13. Given G = (X,E, f,X), P , XS ⊆ X, and XNS ⊆ X, the initial

state estimate after observing s ∈ P [L(G,X)] is X̂0(s) = fobs,R(X, sR), where fobs,R

is the transition function of Obs(GR, X).

Proof. For any string s ∈ P [L(G,X)], let us pick a state x0 ∈ X̂0(s) := {i ∈ X :

(∃t ∈ E∗)(P (t) = s)[f(i, t) is defined]}. Then we have that ∃t ∈ L(G,X) where

P (t) = s such that f(x0, t) is defined. Using Lemma III.12, we have that ∃t ∈

L(G,X)⇔ ∃tR ∈ L(GR, X). Using Lemma III.11, we have that x ∈ f(x0, t)⇔ x0 ∈

fR(x, tR). Using Lemma III.10, we have that P (t) = s ⇔ P (tR) = sR. Therefore,
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x0 ∈ X̂0(s) if and only if ∃tR ∈ L(GR, X), ∃x ∈ X where P (tR) = sR and x0 ∈

fR(x, tR). Equivalently, x0 ∈ {i ∈ X : (∃x ∈ X)(∃tR ∈ L(GR, X))[P (tR) = sR] ∧ [i ∈

fR(x, tR)]} =: fobs,R(X, sR).

Theorem III.13 shows that the intruder’s initial state estimate after observing

string s is captured by the state of Obs(GR, X) reached by sR. Hence, Obs(GR, X)

can be used as an ISE. In fact, we call this ISE the GR-based ISE as it is built from

the reversed automaton. One can verify ISO by examining all states in the GR-based

ISE. The system is not ISO if there exists an observation sequence that leads to an

initial state estimate containing secret states but not non-secret states, as formalized

by the following result. We use Xobs,R to denote the state space of Obs(GR, X).

Theorem III.14. G = (X,E, f,X) is ISO if and only if ∀y ∈ Xobs,R, y ∩XS 6= ∅ ⇒

y ∩XNS 6= ∅.

Proof. By definition, G is ISO if and only if the system’s initial state estimate never

contains secret states but not non-secret states. Whenever there is a secret state

in the estimate, there must also be a non-secret state to confuse the intruder, for all

observable strings s ∈ P [L(G,X)]. To prove the result it is sufficient to prove that the

collection of all possible initial state estimates of the intruder equals to the collection of

all reachable states of Obs(GR, X). We first observe that each initial state estimate is

captured by a state in Obs(GR, X). This is given in the result of Theorem III.13 where

X̂0(s) = fobs,R(X, sR) for all s ∈ P [L(G,X)]. For the reverse direction, we observe

that each reachable state of Obs(GR, X) corresponds to a valid initial state estimate.

This is because Obs(GR, X) is deterministic and L[Obs(GR, X)] = Rev
(
P [L(G,X)]

)
by Lemma III.12. Therefore, ISO can be verified by examining all reachable states of

Obs(GR, X).

Example III.15. Let us revisit the system in Figure 2.1 and use the GR-based ISE

to verify ISO. To build the GR-based ISE, we first build GR by reversing all the
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transitions in G, as shown in Figure 3.4(a). Then, we build Obs(GR, X) in Figure

3.4(b). Recall that the initial state is X because the intruder has no prior knowledge

of the system’s initial state. The state reached by string tR is the intruder’s initial

state estimate after observing t. In this example, after observing event b, the intruder

constructs initial state estimate {1, 3}, which is the state of the ISE reached by

Rev(b) = b. If the intruder further observes a, its initial state estimate is updated

to {1}, which is the state of the ISE reached by Rev(ba) = ab. To verify the ISO

property, we examine all the states of the GR-based ISE in Figure 3.4(b). If the secret

state is {1}, the system is not ISO because the state of the ISE reached by ab contains

only state 1.
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Figure 3.4: Construction of the GR-based ISE of the system in Figure 2.1

Case 2: Verification of ISO when X0 ⊂ X

In Case 1, we verified ISO when X0 = X. Now, we consider the case when X0 ⊂ X,

which was mentioned but not studied in [43].

Recall that when X = X0, the language of the GR-based ISE is L[Obs(GR, X)] =

Rev(P [L(G,X)]) = Rev(P [L(G,X0)]); thus, the set of initial state estimates is the

set of reachable states of Obs(GR, X). However, when X0 ⊂ X, we could have

Rev(P [L(G,X0)]) ⊂ Rev(P [L(G,X)]) = L[Obs(GR, X)]. In this case, there ex-

ists a string tR in L[Obs(GR, X)] but not in Rev(P [L(G,X0)]). Thus, tR does

not correspond to a valid initial state estimate; namely, state y = fobs,R(X, tR) ∈
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Xobs,R does not give a valid initial state estimate. In this case, we need to iden-

tify and examine only valid initial state estimates instead of examining all reach-

able states of Obs(GR, X). Marking of states is used for this purpose. First, we

construct a modified automaton G′ by marking all states in X0 to recognize all

valid initial states. Then, we reverse the transitions in G′ and build the reversed

automaton G′R = (X,E, fR, X,X0). Finally, the G′R-based ISE is Obs(G′R, X) =

(Xobs,R, Eo, fobs,R, X,Xobs,R,m). Note that the marked language of the G′R-based ISE

is the reversed projection language, i.e., Lm[Obs(G′R, X)] = Rev
(
P [L(G,X0)]

)
. Ev-

ery marked state corresponds to a reversed string that starts from a valid initial state.

To obtain the valid initial state estimate from a given marked state of Obs(G′R, X),

we take the intersection of the marked state and X0. (Note that an observer state is

marked if it contains at least one marked state.) In Theorem III.16, we show how we

obtain the desired initial state estimate from the G′R-based ISE.

Theorem III.16. Consider G = (X,E, f,X0) with X0 ⊂ X, projection P , set of

secret states XS ⊂ X, and set of non-secret states XNS ⊂ X. For every s ∈

P [L(G,X0)], there exists ym = fobs,R(X, sR) ∈ Xobs,R,m such that the initial state

estimate X̂0(s) is ym ∩X0.

Before proving Theorem III.16, we first characterize the properties of Obs(G′R, X)

in the following lemmas.

Lemma III.17. f(x0, t) is defined if and only if x0 ∈ fobs,R(X, sR) ∩ X0, where

P (tR) = sR.

Proof. Consider that f(x0, t) is defined. We know that there exists x ∈ X, such that

x ∈ f(x0, t). That is, ∃x ∈ X, x ∈ f(x0, t) and x0 ∈ X0 because x0 ∈ X0 is always

true. According to Lemma III.11, the above condition is equivalent to ∃x ∈ X, x0 ∈

fR(x, tR) ∧ x0 ∈ X0, which says ∃x ∈ X, x0 ∈ fR(x, tR) ∩ X0. Finally, ∃x ∈ X, x0 ∈

fR(x, tR) ∩ X0 means that, when we consider the observer, x0 ∈ fobs,R(X, sR) ∩ X0

34



where P (tR) = sR. As a result, starting from the left-hand side, we have proven that

f(x0, t) is defined if and only if x0 ∈ fobs,R(X, sR) ∩X0, where P (tR) = sR.

Lemma III.18. t ∈ L(G,X0) if and only if tR ∈ Lm(G′R, X).

Proof.

t ∈ L(G,X0)⇔ ∃x0 ∈ X0,∃x ∈ X, such that x ∈ f(x0, t)

⇔ ∃x0 ∈ X0,∃x ∈ X, such that x0 ∈ fR(x, tR) by Lemma III.11.

⇔ tR ∈ Lm(G′R, X) because X0 is the set of marked states of G′R

We can now prove Theorem III.16.

Proof. Consider a string s ∈ P [L(G,X0)]. Let us pick a state x0 ∈ X̂0(s) := {i ∈

X0 : (∃t ∈ E∗)(P (t) = s)[f(i, t) is defined]}. There is t ∈ L(G,X0) where P (t) = s

such that f(x0, t) is defined. Using Lemma III.18, we have that t ∈ L(G,X0) ⇔

tR ∈ Lm(G′R, X). Using Lemma III.10, we have that P (t) = s ⇔ P (tR) = sR.

Using Lemma III.17, we know that f(x0, t) is defined ⇔ x0 ∈ fobs,R(X, sR) ∩ X0.

Consequently, x0 ∈ X̂0(s) if and only if ∃x ∈ X, ∃tR ∈ Lm(G′R, X) where P (tR) =

sR ∈ Lm[Obs(G′R, X)], such that x0 ∈ fobs,R(X, sR)∩X0. That is, x0 ∈ fobs,R(X, sR)∩

X0 where sR ∈ Lm[Obs(G′R, X)], which proves Theorem III.16.

Theorem III.16 gives the initial state estimate of an intruder that has prior knowl-

edge of X0 ⊂ X. The intruder’s estimate after observing string s is the intersection of

X0 and the marked state of Obs(GR, X) reached by sR. To verify ISO when X0 ⊂ X,

we need to examine all marked states of Obs(GR, X).

Theorem III.19. G = (X,E, f,X0) is ISO if and only if ∀ym ∈ Xobs,R,m, (ym ∩

X0) ∩XS 6= ∅ ⇒ (ym ∩X0) ∩XNS 6= ∅.
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Proof. To prove Theorem III.19, it is sufficient to prove that the collection of all initial

state estimates is equal to the collection of Z := {z = ym ∩ X0 : ym ∈ Xobs,R,m}.

By Theorem III.16, we know that every initial state estimate is captured by the

intersection of X0 and a marked state of the G′R-based ISE. That is, every initial

state estimate is inside set Z. As for the other direction, because Lm[Obs(G′R, X)] =

Rev(P [L(G,X0)]), we always obtain a valid initial state estimate by intersecting a

marked state of the G′R-based ISE with X0. That is, every element in Z is an initial

state estimate. This completes the proof.

Corollary III.20. The computational complexity of verifying ISO using the GR-based

ISE in Theorem III.14 and Theorem III.19 is O(2|X|).

Corollary III.20 states the advantage of using the GR-based ISE to verify ISO. The

trellis-based ISE in [43] has complexity O(2|X|
2
) because of the use of state mappings

as building blocks for the ISE.

Example III.21. Consider again the system in Figure 2.1 with XS = {0}, and

XNS = {2}. Suppose X0 = {0, 2} and that the intruder has prior knowledge of X0.

To verify if the system is ISO, we construct the modified automaton G′ by marking

all initial states, as shown in Figure 3.5(a), and then construct the G′R-based ISE,

as shown in Figure 3.5(b). Notice that only states 0 and 2 are valid initial states of

the system. Hence, not all states but only marked states reached in G′R-based ISE

correspond to valid initial state estimates. For example, state {1, 3} is not a valid

initial state estimate; no string starting from 0 or 2 has its reversed observable string

that reaches state {1, 3} in the G′R-based ISE. To verify ISO, we consider all marked

states of G′R-ISE and intersect them with X0. The system is not ISO because marked

state {0} is a valid initial state estimate that contains only secret initial state.

We conclude this section with two remarks that apply to both Case 1 and Case 2.
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Figure 3.5: Verifying ISO when X0 ⊂ X

Remark III.22. Consider Case 1; a similar argument holds for Case 2. A state of the

GR-based ISE reached by string sR is the initial state estimate after observing s. In

fact, the state represents only the state estimate after observing s; it does not possess

any physical meaning if viewed as an intermediate state or as the starting state of

another string. For example, the GR-based ISE starts from X, the state reached by ε,

because the intruder’s initial state estimate after observing nothing is X̂0(ε) = X. If

event a is observed, then the intruder’s estimate moves to X̂0(a) = fobs,R(X, a), which

is the state reached by a = Rev(a). Although X̂0(a) is reached from X̂0(ε), X̂0(ε)

is not the final state estimate after observing a. Constructed in a reversed manner,

states of GR-based ISE along the same path share the same suffix but not prefix in

general; thus, those state estimates are not the intermediate or final state estimate of

one another in general. While the GR-based ISE does not show the evolution of the

intruder’s initial state estimates, it is sufficient for verifying ISO because it provides

the set of all initial state estimates.

Remark III.23. The construction of the GR-based ISE does not assume a specific set

of secret states. The set XS is not considered until we verify ISO and examine all

(marked) states of the GR-based ISE. As a result, if XS changes, one does not need

to reconstruct the ISE, but only need to test the inclusion relationship with the new

XS to verify ISO.
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3.3.2 Verification of Current-State Opacity

The most intuitive way to verify CSO is to build the observer automaton. Given

G, the observer Obs(G,X0) models how the intruder gains knowledge of the system

through observations. More specifically, the state of Obs(G,X0) reached by s ∈

P [L(G,X0)] is the intruder’s state estimate after observing s. Therefore, we can use

Obs(G,X0) to capture all possible state estimates of the intruder. To verify CSO,

we examine all reachable states in Obs(G,X0). The system is CSO if no state in

Obs(G,X0) contains secret states but not non-secret states. Also, when constructing

the observer to verify CSO, one does not assume a specific set of secret states. Thus,

no reconstruction of the observer is required if the set of secret states changes.

3.3.3 Verification of Language-Based Opacity

Given LS, LNS ⊆ L(G,X0), the system is LBO if LS ⊆ P−1[P (LNS)]. To check

the aforestated language inclusion, the author of [33] proposed Algorithm 1 therein

that utilizes marked languages of automata. We use the notation of [33] to briefly

review that algorithm for the sake of comparison with a transformation-based ap-

proach. In order to fit our model, Algorithm 1 of [33] needs to be slightly modified

by using the natural projection instead of the more general state-based projection.

In brief, the algorithm first constructs two automata, G1 and G2, that mark LS and

LNS, respectively. Then, it constructs their observers, G5 and G8, respectively. Next,

it builds G9 := G5 ×G8, which marks the joint projected marked language. Finally,

it compares Lm(G9) and Lm(G5). The system is LBO if Lm(G9) = Lm(G5). That is,

the system is LBO if P (LS)∩P (LNS) = P (LS), or equivalently, P (LS) ⊆ P (LNS). As

an alternative, we can use state-based verification by transforming the LBO problem

to a CSO one. The state-based verification is based on the transformation from LBO

to CSO presented in Section 3.2.3.2. The equivalent CSO problem is then verified as

described above in Section 3.3.2. While the above two algorithms are constructed dif-
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ferently, they have the same computational complexity. In Algorithm 1, if we assume

that G1 and G2 have state spaces in the order of X, then building G9 has worst-case

complexity of O(22|X|). As for state-based verification, transforming from LBO to

CSO doubles the state space to 2X and building the observer also has worst-case

complexity of O(22|X|).

3.3.4 Verification of Initial-and-Final-State Opacity

The notion of IFO considers the memberships of both the initial and the final

states of the system. To verify IFO, one needs to construct the initial-and-final state

pair estimates that correspond to the intruder’s knowledge. We propose use the

trellis-based ISE to verify IFO when the set of secret pairs Xsp and the set of non-

secret pairs Xnsp are any arbitrary subsets of X2. When Xsp and Xnsp are given in

the form of Cartesian products, we propose use the GR-based ISE or the observer to

verify IFO.

3.3.4.1 Verification of IFO: General Case

Let us first consider the case where Xsp and Xnsp are any arbitrary subsets of X2.

In this case, enumeration of all possible starting and ending state pairs is needed to

verify IFO. The trellis-based ISE in [43] gives such an enumeration by using state

mappings, as described earlier. We propose use it in a straightforward manner to

verify IFO. For all reachable states of the trellis-based ISE, if secret pairs always

come along with non-secret pairs, then the system is IFO; otherwise, it is not IFO.

Example III.24. Let us go back to the system in Figure 2.1 and take the sets of secret

and non-secret state pairs to be Xsp = {(0, 0)} and Xnsp = {(0, 1), (0, 2), (0, 3)}. To

model the intruder, we use the trellis-based ISE in Figure 3.3, which generates a set of

state pairs for each observed string. In this example, the intruder will construct initial-

and-final state estimate m1 = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 1), (2, 3)} if it observes a.
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Then, if the intruder observes another a (i.e, it has observed aa), it would update its

estimate to m2 = {(0, 0), (0, 1), (0, 2), (0, 3)}. To verify IFO, we examine all reachable

states of this ISE. Because whenever there is the secret state pair (0, 0), we always

have a non-secret state pair, the system is IFO.

3.3.4.2 Verification of IFO: Xsp and Xnsp in Cartesian Product Form

Verification of IFO can be simplified when both Xsp and Xnsp are expressed as

Cartesian products. In this special case, it is not necessary to remember the exact

initial and final state pair. It is sufficient to remember whether the initial and the

final states are secret or not. Consequently, the GR-based ISE or the standard ob-

server can be used to verify IFO. We write Xsp = Xs
0 ×Xs

f and Xnsp = Xns
0 ×Xns

f ,

and use Xs
0 , X

ns
0 , X

s
f , X

ns
f as alternative parameters for the problem.

Verifying IFO Using the GR-Based ISE

Given system G, the procedure to follow is:

1. Label states in Xs
f with S and states in Xns

f with N by right-concatenating the

label with the state name. (Right concatenation indicates that the labels are

used for final states)

2. Build the GR-based ISE. When constructing the observer, pass the label such

that the successor carries the label of the predecessor.

3. The system is IFO if for every state containing i0S where i0 ∈ Xs
0 , it also

contains j0N where j0 ∈ Xns
0 .

Indeed, IFO problem in this special case can be thought of as an ISO problem with

marked states, which considers the ISO property with respect to a marked language.

In this case, the languages of the ISO problem are not prefix-closed in general. We

did not discuss this case previously in order to keep the formulation of ISO problems
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simple. If a system is marked-state initial-state opaque, then for every string starting

from XS and ending at a marked state in Xm, there is another string starting from

XNS and ending Xm with the same projection. That is, every state pair in XS ×Xm

is confused with some state pair in XNS ×Xm, which is an IFO problem in Cartesian

product form.

Verifying IFO Using the Observer Automaton

Similarly, we can verify the IFO problem in Cartesian product form using observers.

First, label secret and non-secret initial states by left-concatenating S or N . (Left

concatenation indicates that the labels are used for the initial-states). Then, build the

observer and pass the label as before. The system is IFO if for every state containing

Sif where if ∈ Xs
f , it also contains Njf where jf ∈ Xns

f .

Remark III.25. When we use the trellis-based ISE to verify IFO, Xsp and Xnsp are

not considered in the construction of the trellis. One can verify an IFO problem that

has different Xsp and/or Xnsp without reconstructing the trellis-based ISE. However,

our methods for verifying IFO when Xsp and Xnsp are in Cartesian product form

are less flexible. Specifically, to use the GR-based ISE, the final state sets Xs
f and

Xns
f need to be fixed; to use the observer automaton, the initial state sets Xs

0 and

Xns
0 need to be fixed. While the latter two methods have only one degree of freedom

in varying state sets, their complexity is lower compared to that of the trellis-based

ISE. Using the GR-based ISE or the observer has complexity O(22|X|), while using

the trellis-based ISE has complexity O(2|X|
2
).

3.3.5 Discussion: No Polynomial Algorithm for Verifying Opacity

In this section, we compare the verification of diagnosability and that of opac-

ity. The notion of diagnosability is often informally considered as the negation of

opacity, which requires faulty strings to be distinguishable from non-faulty strings in
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a bounded length. However, diagnosability can be verified in polynomial time [64]

while verification of opacity is PSPACE-complete [11, 41]. One interesting question

is why opacity cannot be verified in polynomial time.

A short answer to this question is that the quantifiers in the two notions are

different. With no loss of generality, let us consider language-based opacity for the

purpose of discussion. Opacity requires that for all secret strings, there exists a non-

secret string that is observationally equivalent. On the other hand, non-diagnosability

(i.e., the negation of diagnosability) is that there exists a faulty string, there exists a

non-faulty string, both of arbitrarily long length and are observationally equivalent.

Consequently, to verify non-diagnosability, on can synchronize all faulty strings and

all non-faulty strings. If the synchronization contains strings of arbitrary long length,

then we know there is a pair of arbitrarily-long faulty and non-faulty strings that are

indistinguishable; hence, the system is non-diagnosable. However, to verify opacity,

we first synchronize all secret and non-secret strings. After the synchronization, the

“for all” requires us to also check if the resulting synchronization contains all the

secret strings. This check is to check language equivalence of two nondeterminis-

tic automata (because of partial observation), which is why there is no polynomial

algorithm for verifying opacity.

Note that, in [33], the author has proven that non-diagnosability is equivalent

to weak opacity, which is a weaker notion of opacity that requires only some secret

strings to have a corresponding observationally equivalent non-secret string. Verifying

this notion of weak opacity can be done in polynomial time [65].
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3.4 Joint Opacity Notions in the Coordinated Architecture

3.4.1 The Coordinated Architecture

In this section, we extend the study of the three state-based opacity properties

(i.e., ISO, CSO, and IFO) to a coordinated architecture where intruders work as

a team to infer the secret. In the spirit of [16], we study a simplified coordinated

architecture where two local intruders communicate with one coordinator, as shown

in Figure 3.6. Each local intruder knows the system model. They observe the system

through their individual projection map, generate local state estimates, and then

report their estimates to the coordinator. The coordinator has no knowledge of

the system. It forms the so-called coordinated estimate by taking the intersection

of the local estimates it receives. The communication from the local intruders to

the coordinator is assumed to have no delay. The collaboration is restricted by the

following rules: (i) local intruders do not communicate with each other about their

individual estimates; (ii) local intruders have no knowledge of the projection map

of one another; and (iii) the only collaboration between the two local intruders is

through the coordinator, whose only available memory is to store the most recent

coordinated estimate. The system is said to be jointly opaque if no coordinated

estimate ever reveals the secret information. Because of the restricted collaboration,

the coordinated estimate is no finer than the estimate of a single “system intruder”

that would observe all events that are observable to some intruder. Such coordinated

structures capture situations where a system intruder does not exist and where the

coordination among local intruders is restricted.

In the next three sections, we define and verify the joint notions of ISO, CSO, and

IFO that correspond to this specific coordinated architecture. As before, the system

is modeled as a finite-state automaton G = (X,E, f,X0). But this time there are two

sets of observable events, Eo,1 and Eo,2, one for each intruder, with respective sets
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of unobservable events Euo,1 and Euo,2 and associated natural projections P1 and P2.

We denote by Eo the union Eo,1 ∪Eo,2, and let Euo be the set of unobservable events

corresponding to Eo and P be the natural projection.

System G

Observation Map P2Observation Map P1

Coordinator

 Estimator 2Estimator 1

Local Intruder 1 tt

s1 s2

Estimate1(s1) Estimate2(s2)

Coordinated Estimate

Local Intruder 2

Figure 3.6: The coordinated architecture.

3.4.2 Joint-Initial-State Opacity (J-ISO)

We start by defining the notion of joint initial-state opacity in the coordinated

architecture in Figure 3.6.

Definition III.26 (Joint-Initial-State Opacity (J-ISO)). Given G, projection maps

P1 and P2, set of secret states XS ⊆ X0, and set of non-secret states XNS ⊆ X0,

G is jointly initial-state opaque under the coordinated architecture if ∀i ∈ XS and

∀t ∈ L(G, i), ∃j ∈ XNS, ∃t1 ∈ L(G, j), ∃t2 ∈ L(G, j) such that P1(t) = P1(t1) = s1,

and P2(t) = P2(t2) = s2.

System G is jointly initial-state opaque (J-ISO) if for every string t from a secret

state i in XS, there are strings t1 and t2 from a common non-secret state j such that

t1 and t2 are observationally equivalent to t for intruders 1 and 2, respectively. The

common non-secret initial state j ensures that the coordinated estimate, formed by
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the intersection of the two local estimates, contains a non-secret state whenever the

real initial state is a secret state. Note that if a given system is jointly initial-state

opaque, it must be initial-state opaque for each local intruder. However, the reverse

is not true in general.

We use the GR-based ISE to model local intruders, where intruder k is represented

by Obsk(GR, X), k = 1, 2. In addition, for analysis purposes, we consider Obs(GR, X)

which models the system intruder whose observable event set is Eo; it is not a real

intruder and its role will be explained later.

To verify J-ISO, we introduce a test automaton to capture the coordinated esti-

mate. The test automaton is defined as GISO
test := (Q,Eo, f

ISO
test , q0). The state space

is Q ⊆ Xobs,R,1 × Xobs,R,2 × Xobs,R × Xobs,R,1∩2, where Xobs,R,1, Xobs,R,2, and Xobs,R

are the state spaces of the GR-based ISE for intruder 1, intruder 2 and the system

intruder, and where Xobs,R,1∩2 := {y ∈ 2X : (∃xk ∈ Xobs,R,k, k = 1, 2)[y = x1 ∩ x2]}.

A state in Q is denoted as q = (q1; q2; qs; qc) and the initial state of GISO
test is q0 =

(q10; q20; qs0; q10 ∩ q20) = (X;X;X;X). The transition function f ISOtest is defined as

follows:

f ISOtest ((q1; q2; qs; qc), e) =

(fobs,1,R(q1, e); q2; fobs,R(qs, e); fobs,1,R(q1, e) ∩ q2), if e ∈ Eo,1 \ Eo,2

(q1; fobs,2,R(q2, e); fobs,R(qs, e); q1 ∩ fobs,2,R(q2, e)), if e ∈ Eo,2 \ Eo,1

(fobs,1,R(q1, e); fobs,2,R(q2, e); fobs,R(qs, e); fobs,1,R(q1, e) ∩ fobs,2,R(q2, e))

, if e ∈ Eo,1 ∩ Eo,2

where e ∈ Eo, fobs,k,R is the transition function of Obsk(GR, X), and fobs,R is the

transition function of Obs(GR, X). Note that the fourth state qc = q1 ∩ q2 does not

affect the behavior of GISO
test , and the dynamics of GISO

test depend only on (q1; q2, qs) and

are equivalent to that of Obs1(GR, X) ‖ Obs2(GR, X) ‖ Obs(GR, X). The additional
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parallel composition with Obs(GR, X) is to restrict the behavior of the test automaton

within the system’s observable behavior:

L(GISO
test ) : = P−1o,1

(
L[Obs1(GR, X)]

)
∩ P−1o,2

(
L[Obs2(GR, X)]

)
∩ L[Obs(GR, X)]

= L[Obs(GR, X)]

where the inverse projection maps P−1o,k : E∗o,k → 2E
∗
o , for k = 1, 2, are with respect to

Eo but not E.

We use the following example to show how the system intruder, Obs(GR, X),

restricts the observable behavior of GISO
test .

Example III.27. Consider the system in Figure 3.7(a) with Eo,1 = {a, c} and Eo,2 =

{b, c}. To verify J-ISO, we first build two GR-based ISE to model intruders 1 and 2,

as shown in Figures 3.7(b) and 3.7(c), respectively. Then, we want to synchronize the

two local intruders and obtain the coordinated estimates. To synchronize the two local

intruders, the first method that comes in mind is to parallel compose Obs1(GR, X)

and Obs2(GR, X) and generate coordinated estimates that are the intersection of the

two local estimates. Such an automaton is shown in Figure 3.8(a); however, it does

not give the correct system behavior. This automaton generates strings outside of

the system’s observable behavior P [L(GR, X)]. For example, it generates string ab

while the system does not generate its reversed string ba. To restrict the behavior

of the test automaton within the system’s observable behavior, we do an additional

parallel composition with the system intruder Obs(GR, X) that is shown in Figure

3.7(d), and obtain the coordinated estimates in the fourth component by taking the

intersection of the two local estimates. The resulting test automaton GISO
test is shown

in Figure 3.8(b). One can see that it no longer includes string ab. In fact, the test

automaton generates L[Obs(GR, X)].

Let us denoted by X̂0,coor(s) the coordinated initial state estimate for string t ∈
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Figure 3.7: The DES and its local and system GR-based ISEs used in Example III.27.
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Figure 3.8: The GISO
test in Example III.27
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L(G,X) with P (t) = s. Lemma III.28 shows that X̂0,coor(s) for every s ∈ P [L(G,X)]

is captured by GISO
test . We will show later how to use GISO

test to verify the J-ISO property

Lemma III.28. Given G, projection maps P1 and P2, the coordinated initial-state es-

timate for s ∈ P [L(G,X)] is captured by the state reached by sR in GISO
test . Specifically,

X̂0,coor(s) = qc where qc is the fourth element in q = (q1; q2; qs; qc) = f ISOtest (q0, sR)

Proof. Pick any string s ∈ P [L(G,X)] with P1(s) = s1, and P2(s) = s2. By The-

orem III.13, the initial state estimates of the local intruder 1 and 2 are X̂0,1(s1)=

fobs,1,R(X, s1R) and X̂0,2(s2)= fobs,2,R(X, s2R). Thus, the coordinated initial state es-

timate is X̂0,coor(s) = X̂0,1(s1) ∩ X̂0,2(s2) = fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R). On

the other hand, by construction, the state reached by sR in GISO
test is f ISOtest (q0, sR) =

(q1; q2; qs; qc), which is (fobs,1,R(X, s1R);

fobs,2,R(X, s2R); fobs,R(X, sR); fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R)), where the fourth el-

ement qc is fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R) = X̂0,coor(s). Therefore, the coordi-

nated estimate X̂0,coor(s) for s ∈ P [L(G,X)] is the fourth element of state q =

f ISOtest (q0, sR).

We now use GISO
test to verify J-ISO.

Theorem III.29. G is jointly initial-state opaque if and only if ∀q = (q1; q2; qs; qc)

reachable in GISO
test , qc ∩XS 6= ∅ ⇒ qc ∩XNS 6= ∅.

Proof. G is J-ISO if and only if ∀s ∈ P [L(G,X)], X̂0,coor(s) always contains a non-

secret state if it contains a secret state. To prove this Theorem, it is sufficient to prove

that {X̂0,coor(s) : s ∈ P [L(G,X)]} = {qc : (∃q = (q1; q2; qs; qc))[q is reachable in GISO
test ]}.

By Lemma III.28, we know that for every X̂0,coor(s) in the left-hand side, there

is state q reached via sR in the right-hand side. Since GISO
test is deterministic and

L(GISO
test ) = L[Obs(GR, X)] = Rev

(
P [L(G,X)]

)
, every reachable state of GISO

test in the

right-hand side also corresponds to a valid X̂0,coor(·) in the left-hand side. Therefore,
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the above equality holds and J-ISO can be verified by examining the fourth element

of all reachable states in GISO
test .

Example III.30. Let us go back to Example III.27 and take the secret and non-secret

state sets to be XS = {0} and XNS = X \ XS. The system is initial-state opaque

to each local intruder because no state in Obs1(GR, X) or Obs2(GR, X) contains only

the secret state 0. However, the system is not jointly initial-state opaque. As seen

in Figure 3.8(b), by collaborating under the coordinated architecture, the team of

intruders generate a coordinated estimate {0} when P (t) = s = bc (sR = cb) has

occurred.

We can extend the above verification procedure for J-ISO to the joint versions of

CSO and IFO, by employing the respective estimator in the construction of the test

automaton. These results are presented in the next two sections.

3.4.3 Joint-Current-State Opacity (J-CSO)

Definition III.31 (Joint-Current-State Opacity (J-CSO)). GivenG, projection maps

P1, P2, set of secret states XS ⊆ X, and set of non-secret states XNS ⊆ X. G is jointly

current-state opaque under the coordinated architecture if ∀i ∈ X0 and ∀t ∈ L(G, i)

such that ∃x ∈ XS, x ∈ f(i, t), we have ∃j1, j2 ∈ X0, ∃t1 ∈ L(G, j1), ∃t2 ∈ L(G, j2)

such that (i) ∃x′ ∈ XNS, x
′ ∈ f(j1, t1), x

′ ∈ f(j2, t2) and (ii) P1(t) = P1(t1) = s1,

P2(t) = P2(t2) = s2.

System G is jointly-current-state opaque if for every string t that reaches a secret

state x, there are other two strings t1 and t2 reaching a common non-secret state x′

such that intruder 1 confuses t with t1 and intruder 2 confuses t with t2. Strings t1

and t2 need not start from the same initial state, but they have to reach a common

non-secret state to ensure that the non-secret state exists in the coordinated esti-

mate. Similarly to the case of J-ISO, to verify J-CSO, we build a test automaton
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GCSO
test := (Q,Eo, f

CSO
test , q0) where the standard observers are used to model intruders.

Specifically, Obsk(G) models the behavior of local intruder k, k = 1, 2, and Obs(G)

models the system intruder who observes Eo. The system intruder is to confine the be-

havior of the test automaton. The state space is Q ⊆ Xobs,1×Xobs,2×Xobs×Xobs,1∩2

where Xobs,1, Xobs,2, and Xobs are state spaces of the corresponding observers and

Xobs,1∩2 = {y ∈ 2X : (∃xk ∈ Xobs,k, k = 1, 2)[y = x1 ∩x2]}. A state in Q is denoted by

q = (q1; q2; qs; qc), and the initial state is q0 = (X;X;X;X). The transition function

fCSOtest is defined as follows:

fCSOtest ((q1; q2; qs; qc), e) =
(fobs,1(q1, e); q2; fobs(qs, e); fobs,1(q1, e) ∩ q2), if e ∈ Eo,1 \ Eo,2

(q1; fobs,2(q2, e); fobs(qs, e); q1 ∩ fobs,2(q2, e)), if e ∈ Eo,2 \ Eo,1

(fobs,1(q1, e); fobs,2(q2, e); fobs(qs, e); fobs,1(q1, e) ∩ fobs,2(q2, e)), if e ∈ Eo,1 ∩ Eo,2

where fobs,k is the transition function of Obsk(G), and fobs is that of Obs(G).

Theorem III.32. G is jointly current-state opaque if and only if ∀q = (q1; q2; qs; qc)

reachable in GCSO
test , qc ∩XS 6= ∅ ⇒ qc ∩XNS 6= ∅.

The proof of Theorem III.32 is similar to that of Theorem III.32 because of the

similarity between GCSO
test and GISO

test . For this reason, we omit the proof.

3.4.4 Joint-Initial-and-Final-State Opacity (J-IFO)

Definition III.33 (Joint-Initial-and-Final-State Opacity (J-IFO)). Given G, projec-

tion maps P1 and P2, set of secret pairs Xsp ⊆ X0 × X, and set of non-secret pairs

Xnsp ⊆ X0 × X, G is jointly initial-and-final-state opaque under the coordinated

architecture if ∀(x0, xf ) ∈ Xsp and ∀t ∈ L(G, x0) such that xf ∈ f(x0, t), we have

∃(x′0, x′f ) ∈ Xnsp,∃t1, t2 ∈ L(G, x′0) such that (i) ∃x′f ∈ XNS, x
′
f ∈ f(x′0, t1), x

′
f ∈

f(x′0, t2), and (ii) P1(t) = P1(t1) = s1, P2(t) = P2(t2) = s2.
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G is jointly-initial-and-final-state opaque if for every string t that corresponds to

a secret state pair, there are other two strings t1 and t2 corresponding to a common

non-secret state pair (x′0, x
′
f ) ∈ Xnsp such that intruder 1 confuses t1 with t and

intruder 2 confuses t2 with t. The common non-secret state pair (x′0, x
′
f ) ∈ Xnsp

ensures that a non-secret state pair exists in the coordinated estimate.

To verify J-IFO, we use a test automaton GIFO
test := (Q,Eo, f

IFO
test , q0) where trellis-

based ISE are used to model local intruders and the system intruder. The state

space is Q ⊆ M1 ×M2 ×M ×M1∩2, where M1,M2 and M are the state spaces of

corresponding trellis-based ISE, and M1∩2 := {y ∈ 2X
2

: (∃mk ∈ Mk, k = 1, 2)[y =

m1 ∩m2]}. A state in Q is denoted as q := (q1; q2; qs; qc). The initial state of GIFO
test

is q0 = (q10; q20; qs0; q10 ∩ q20) where qk0 = {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 : (∃t ∈

E∗uo,k)[j ∈ f(i, t)]} and qs0 = {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 : (∃t ∈ E∗uo)[j ∈ f(i, t)]}.

The transition function f IFOtest is defined as follows:

f IFOtest ((q1; q2; qs; qc), e) =
(ftre,1(q1, e); q2; ftre(qc, e); ftre,1(q1, e) ∩ q2), if e ∈ Eo,1 \ Eo,2

(q1; ftre,2(q2, e); ftre(qc, e); q1 ∩ ftre,2(q2, e)), if e ∈ Eo,2 \ Eo,1

(ftre,1(q1, e); ftre,2(q2, e); ftre(qc, e); ftre,1(q1, e) ∩ ftre,2(q2, e)), if e ∈ Eo,1 ∩ Eo,2

where ftre,k is the transition function of trellis ISE k, and ftre is the transition function

of the system trellis-based ISE.

Example III.34. Consider J-IFO using system G in Figure 3.9(a) with Xsp =

{(0, 2)}, Xnsp = X2 \ Xsp, Eo,1 = {a, c}, and Eo,2 = {b, c}. We construct trellis-

based ISE to model intruders 1 and 2 and the system intruder, as shown in Figure

3.9(b), 3.9(c), 3.9(d), respectively. One can see that the system is IFO to both local

intruders. To verify J-IFO, we build tester GIFO
test , as shown in Figure 3.10, by parallel

composing the three trellises and adding the intersection of the two local estimates
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as the fourth element. The system is J-IFO because no states of GIFO
test contains the

secret state pair (0, 2) alone.

3.5 Discussion: Fast Intruders

So far, we have considered unobservable reach when we build the intruders’ esti-

mates. This means that our intruders, upon observing the latest observable event eo,

do not know whether other unobservable events have occurred after eo. Hence, when

constructing estimates, they take into account all the unobservable tails after eo.

On the other hand, the authors in [11] have considered “fast intruders”, which are

intruders that react faster than the execution of system. Specifically, their intruders,

upon observing an observable event, can update estimates before the occurrence of
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Figure 3.10: The tester GIFO
test of the system in Example III.34

the next unobservable event. Hence, their intruders’ estimates do not consider strings

with unobservable tails. We now discuss how the assumption of “fast intruders” affects

our results.

We first consider opacity notions in the centralized case. When verifying ISO using

the GR-based ISE, we consider unobservable reach when constructing Obs(GR, X).

Because all strings in Obs(GR, X) are reversed, this unobservable reach is in fact the

unobservable beginnings but not unobservable tails in the forward order. That is, the

GR-based ISE indeed model fast intruders. Note that an intruder always considers

unobservable beginnings no matter whether it is a fast intruder or not. In fact, the

GR-based ISE also applies to all intruders, fast or not. This is because the unobserv-

able reach changes only the final state estimates but not the initial state estimates. It

simply extends already-considered strings with unobservable tails. Therefore, verifica-

tion of ISO using the GR-based ISE is not affected by the assumption of fast intruders.

When using observers to verify CSO, we can choose to build the observer without

the unobservable reach to model fast intruders. The fast intruder generates a more
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accurate estimate right after the system makes an observable transition. However, as

the system may invisibly move, the estimate of the fast intruder is only temporar-

ily correct. Similarly, we could use the trellis-based ISE where the state mappings

include strings with no unobservable tails and the initial state is {(i, i) : i ∈ X)} to

model fast intruders in the IFO problem. The final state estimate of the trellis-ISE

is also only temporarily correct. System designers may choose whether or not to use

the unobservable reach based on the architecture of the application.

The assumption of fast intruders affects the current (final) state estimates but not

the initial state estimates. Thus, for opacity notions in the coordinated architecture,

this assumption will only affect our results for J-CSO and J-IFO. In both cases, each

fast local intruder’s estimate is only temporarily correct and each of them updates

its estimate upon its individual set of observable events. Therefore, the coordinator

may obtain an empty intersection when one intruder, say intruder 1, just updates its

estimate upon an event in Eo,1 \Eo,2 and the estimate of intruder 2 is incorrect. If we

want to take advantage of fast intruders and avoid the problem of empty intersections,

we could design a communication protocol similar to that in [16] where intruder k,

k = 1, 2, sends two estimates, X̂f
k (s) and X̂k(s), where X̂f

k (s) is the fast estimate

without the unobservable reach and X̂k(s) is the estimate with the unobservable

reach corresponding to Euo,k. If the coordinator receives an estimate from only one

intruder, say intruder 1, it forms the coordinated estimate X̂f
1 (s)∩X̂2(s); if it receives

estimates from both intruders, the coordinated estimate is X̂f
1 (s) ∩ X̂f

2 (s).

3.6 Conclusion

We have presented several new results regarding the notion of opacity in DES in

the context of centralized and coordinated architectures. Four types of opacity notions

have been investigated: language-based opacity, initial-state opacity, current-state

opacity, and initial-and-final-state opacity; the latter one was introduced in Chapter
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II to capture situations where the secret simultaneously involves the initial and final

states of the system. We have also developed a set of transformation algorithms

between the four notions of opacity and showed that every pair of opacity notions

are equivalent through a polynomial reduction. These results unify the treatment

of opacity in DES. To verify different notions of opacity, we have reviewed existing

methods and proposed new algorithms. Finally, we have formulated three new notions

of joint opacity in the context of a coordinated architecture where a set of intruders

work as a team to infer the secret. Verification algorithms have been proposed for

each notion of joint opacity, leveraging the centralized tests.
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CHAPTER IV

Opacity Enforcement Using Event Insertion

4.1 Introduction

In the previous chapter, we have discussed the algorithms for verifying the four

notions of opacity. When a given opacity notion fails to hold, the ensuing question is:

How can we enforce the secret to be opaque? In this chapter, we consider the problem

of enforcing opacity and develop a new opacity enforcement mechanism using insertion

functions at run-time. As shown in Figure 4.1, an insertion function is a monitoring

interface placed at the output of the system. It receives run-time output from the

system, inserts an additional observable string if necessary in order to prevent the

system from revealing the secret, and outputs the modified behavior.

Output behavior Modified behaviorInsertion 
function

additional observable events

System

Intruder

System G

Observation Map P1 Observation Map P2

Estimator 1 Estimator 2

Coordinator

Coordinated Estimate

Attacker 1 Attacker 2

Estimate(s1) Estimate(s2)

s1

s1 s2

t t

Figure 4.1: The insertion mechanism

We consider insertion functions that cannot interfere with the outputting of events

from the system; i.e., they must allow every system’s output behavior. Also, we re-
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quire every modified output from the insertion function to be observationally equiva-

lent to some original non-secret behavior. This is to ensure that the intruder cannot

learn the existence of the insertion function from observing the modified output.

Specifically, the intruder is assumed to have no knowledge of the insertion function

at the outset. But with the knowledge of the system’s structure, it may learn the ex-

istence of the insertion function from observing the modified output if, for instance,

the insertion function inserts random events. Hence, the insertion function should

only output behavior that could occur in the original system. We characterize the

above two requirements as the i-enforceability property. Given an opacity notion, it

is i-enforceable if there exists an i-enforcing insertion function.

The main focus of this chapter is to synthesize an i-enforcing insertion function

when the given secret of the system is not opaque. We begin with verifying if the given

opacity notion is i-enforceable; i.e., if there exists an i-enforcing insertion function.

This is done by constructing a structure called the “All Insertion Structure” (AIS)

that enumerates in a finite structure all i-enforcing insertion functions. If opacity is

i-enforceable, we then use the AIS to synthesize an i-enforcing insertion function. All

these algorithms are general enough so that they apply to four opacity properties:

current-state opacity, initial-state opacity, language-based opacity, and initial-and-

final-state opacity.

This chapter is organized as follows. Section 4.2 presents the relevant defini-

tions. Section 4.3 formally defines insertion functions and the i-enforcing property.

In Section 4.4, we present our algorithm for verifying if a given insertion function

is i-enforcing. In Section 4.5, we show the construction of the All Insertion Struc-

ture (AIS) and verify i-enforceability of a given opacity notion using the AIS. Section

4.6 presents the synthesis of an i-enforcing insertion function. The complexity of

the AIS is analyzed in Section 4.7. Sections 4.8 proposes a more efficient algorithm

for constructing the AIS. Section 4.9 discusses opacity enforcement by insertion in
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the context of opaque communications. Section 4.10 discusses how intruder’s knowl-

edge of the insertion function affects our results. Finally, Section 4.11 concludes this

chapter. Most of the results in this chapter also appear in [60].

4.1.1 Related Work

Many prior studies have considered the enforcement of opacity notions. The works

in [19, 46, 56] have designed the minimally-restrictive opacity-enforcing supervisory

controller based on the supervisory control theory of DES. With this approach, the

system’s behavior is restricted such that a behavior is disabled by feedback control

if it is going to reveal the secret. Our approach differs from this approach in that

insertion functions are not allowed to interfere with the system and must allow the

system to execute its full behavior.

Another approach to enforce opacity notions is to use a dynamic observer, which

dynamically modifies the observability of every system event [11]. Similar to an i-

enforcing insertion function, a dynamic observer does not interfere with the system

output and allows the full system behavior. However, a dynamic observer may create

“new” observed strings that would not be seen in the original system (under a static

observable projection), as it dynamically erases information that was to be output.

The authors in [23] have also proposed a run-time opacity enforcement mechanism

that allows the full system behavior. This work employs delays when outputting

executions in order to enforce K-step opacity. However, this method applies only to

secrets for which time duration is of concern.

Other works in the computer science literature have also used insertion functions

to enforce security properties; see e.g., [32, 49]. However, the class of security policies

considered does not include opacity. To the best of our knowledge, our work is the

first to address opacity enforcement using insertion functions.
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Figure 4.2: Two representations of the insertion label

4.2 Preliminaries

4.2.1 Relevant Definitions and Operations

Inserted Event Set Ei

In our enforcement mechanism, the insertion function can insert any event in Eo.

Such an inserted event looks identical to a system observable event. However, for

the purpose of discussion, we want to clearly distinguish between inserted events and

observable events. Thus, we define a set of inserted events Ei, where an insertion

label is attached to each event, resulting in Ei = {ei : e ∈ Eo}. The insertion label

is presented by either the subscript i of event labels, as in Figure 4.2(a), or by the

dashed feature of transition arrows; as in Figure 4.2(b). We will choose to present

the label by one of these methods, depending on the context.

Projection Pund and Mask Mi

Projection Pund and mask Mi are defined to analyze strings consisting of events in

Ei ∪ Eo. Pund is a natural projection that treats dashed transitions as unobservable.

The subscript und is short for “undashed”. Given an event, Pund outputs the empty

string if the event is inserted and outputs the original event if the event is observable:

Pund(ei) = ε, ei ∈ Ei and Pund(e) = e, e ∈ Eo. On the other hand, Mi is a mask

that treats inserted events and observable events as indistinguishable. Given an

event, Mi removes the subscript i if it exists and outputs the same event otherwise:
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Mi(ei) = e, ei ∈ Ei and Mi(e) = e, e ∈ Eo.

Projection Pio

Projection Poi is a natural projection that maps from E ∪ Ei to Eo ∪ Ei. Formally,

given e ∈ E ∪ Ei, Poi(e) = e if e ∈ Eo ∪ Ei and Poi(e) = ε if e ∈ Euo ∪ {ε}. The

subscript oi means “observable and inserted events”.

Dashed Parallel Composition

The dashed parallel composition is a special synchronization operator denoted as ||d.

This composition synchronizes two types of automata: one with only solid transitions

(e.g., the automaton in Figure 4.6(a)), and one with both solid and dashed transitions

(e.g., the automaton in Figure 4.6(b)). In dashed parallel composition, the transitions

of the two automata are synchronized on common event labels, like in the standard

parallel composition. However, given a common event, it is represented by a dashed

transition if the corresponding transition in the second automaton is a dashed one,

and by a solid transition otherwise. For private events, the solid/dashed feature of the

transitions is preserved. The resulting dashed parallel composition of the automata

in Figures 4.6(a) and 4.6(b) is shown in Figure 4.6(c).

Input Parallel Composition

The input parallel composition, denoted as ||i/p, is an operation between a stan-

dard automaton G = (X1, E1, f1, X0,1) and a deterministic Mealy automaton M =

(X2, Ei,2, Eo,2, f2, q2, x0,2). The input parallel composition of G and M is a nonde-

terministic Mealy automaton A = G||i/pM = (X1 × X2, E1, Eo,2, f, q,X0,1 × {x0,2})
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where the state transition function f and the output function q are defined as:

f((x1, x2), e) =



{(x′1, f2(x2, e)) : x′1 ∈ f1(x1, e)}

if f1(x1, e) and f2(x2, e) are defined

{(x′1, x2) : x′1 ∈ f1(x1, e)}

if f1(x1, e) is defined butf2(x2, e) is undefined

q((x1, x2), e) =


q2(x2, e), if f1(x1, e) and f2(x2, e) are defined

e, if f1(x1, e) is defined but f2(x2, e) is undefined

That is, (x1, x2)
e/t−→ (x′1, x

′
2) where q2(x2, e) = t if f1(x1, e) and f2(x2, e) are both

defined; (x1, x2)
e/e−−→ (x′1, x2) if only f1(x1, e) is defined.

The definition of f shows that only events in E1 can trigger transitions in G||i/pM .

In fact, the two automata are synchronized in a master/slave manner where the

Mealy automaton passively reacts to the events of the standard automaton. Such

synchronization is suitable for our insertion mechanism because the insertion func-

tion’s response is driven by the system’s output behavior. Also, because the insertion

function reacts only to observable behavior, we can always let E2 = Eo ⊆ E1 = E in

our examples without loss of generality.

4.2.2 Safe Language, Safe Strings, and Safe Estimates

In this chapter, we consider opacity enforcement for systems that are running

online. Once the secret is revealed, opacity is violated and cannot be recovered. Given

G, the safe language is the “largest” sublanguage of P [L(G)] that never reveals the

occurrence of the secret. A safe string is a string in the safe language. A safe estimate
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is a state of the “forward” state estimator that corresponds to a safe string.1

Recall from Chapter III that we can verify each of the four notions considered

in this thesis by mapping it to LBO and checking if P [L(G)] ⊆ P (LNS). The safe

language, denoted by Lsafe, is the supremal prefix-closed sublanguage of P (LNS) and

is characterized in Equation 4.1 using the result from [31].

Lsafe = P [L(G)] \ (P [L(G)] \ P (LNS))E∗o (4.1)

Opacity holds if the system only outputs strings in Lsafe; i.e., P [L(G)] ⊆ Lsafe.

Notice that Lsafe is regular if P (LNS) is regular. We call string s ∈ P [L(G)] safe if

s ∈ Lsafe and unsafe otherwise.

We can also verify opacity by building the corresponding forward state estima-

tor and checking if any estimate contains only the secret information (specifically,

current states, initial states, or initial-and-final-state pairs). A forward state estima-

tor is an automaton where a state reached by string s ∈ P [L(G)] is the intruder’s

[current-state; initial-state; initial-and-final-state] estimate when the intruder ob-

serves s. Specifically, CSO and LBO can be verified by the standard observer automa-

ton defined in Section 2.5.2 of [10]; ISO and IFO can be verified by the trellis-based

Initial-State Estimator (ISE) introduced in [43]. For simplicity, we will call a forward

state estimator an estimator and denote it by E hereafter.

We can determine if a given observed string is safe or unsafe by examining the

estimate it reaches in E . Specifically, string s is safe if no prefix of s reaches an estimate

that contains only the secret information in E , and is unsafe otherwise (recall that

Lsafe is prefix-closed). We call an estimate safe if it is reached by a safe string, and

unsafe otherwise. It is clear that an estimate containing only the secret information

is unsafe. However, an estimate containing non-secret information is still unsafe if

1This “forward” state estimator is in contrast to the GR-based initial state estimator we proposed
in [59], which is the observer of the reversed automaton of G.
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the corresponding observed string has an unsafe prefix.

Consider an opacity notion. We now build from E an automaton that generates

Lsafe. This automaton, called the desired estimator and denote by Ed, is built by

deleting all estimates in E that contain only the secret information and taking the

accessible part. This is in fact the implementation using automata of the language

expression of Lsafe in Equation (4.1). Hence, we have the following result:

Proposition IV.1. The desired estimator Ed generates Lsafe; i.e., L(Ed) = Lsafe.

Our results in the remainder of this chapter are developed based on Lsafe and E .

4.3 Enforcement of Opacity Using Insertion Functions

An insertion function is a special monitoring interface that not only monitors

the system but also inserts additional events to the system output when necessary.

As shown in Figure 4.1, the insertion function takes an observed event from the

system, possibly inserts extra observable events, and outputs the resulting string. In

terms of the intruder, the extra inserted events are indistinguishable from genuine

observable events. That is, the intruder does not recognize the virtual insertion label.

Therefore, the intruder, observing at the output of the insertion function, cannot

tell if the observed string includes inserted events or not. Given a modified string

s ∈ (Eo ∪ Ei)∗ from the insertion function, the intruder observes s under mask Mi.

We can also reconstruct the genuine string by applying projection Pund to s. Notice

that the intruder is assumed to have no knowledge of the insertion function at the

outset. Our goal is to design an insertion function such that it protects the secret

behavior and the intruder can never learn the existence of the insertion function based

on its knowledge of the system structure and the observation of the modified output.

Such a property will be characterized as “i-enforceability” in Section 4.3.2. We will

also discuss in Section 4.10 how intruder’s knowledge of the insertion function affects
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our results.

4.3.1 Insertion Functions and Insertion Automata

The insertion enforcement mechanism depends on the design of insertion functions.

We define an insertion function as a (potentially partial) function fI : E∗o × Eo →

E∗iEo which outputs a string with insertions, based on the system’s past and current

observed behavior. More precisely, given that the system has executed string t where

P (t) = s and the current observed event is eo ∈ Eo, the insertion function is defined

such that fI(s, eo) = sIeo if string sI ∈ E∗i is inserted before eo. Hereafter, we will

use (s, eo) to denote the system’s observed behavior that defines the output of fI . In

the following, we assume that no sI is of unbounded length.

The function fI defines the instantaneous insertion for every (s, eo). To determine

the complete modified string from the insertion function, we define an equivalent

string-based insertion function f strI from fI : f
str
I (ε) = ε and f strI (sn) = fI(ε, e1)fI(e1, e2)

· · · fI(e1e2 . . . en−1, en) where sn = e1e2 . . . en ∈ E∗o . Given G, the modified language

output from the insertion function is f strI (P [L(G)]) = {s̃ ∈ (E∗iEo)
∗ : s̃ = f strI (s)∧s ∈

P [L(G)]} and is denoted hereafter by Lout.

We encode a given insertion function fI as a (possibly infinite state) Mealy au-

tomaton and call it insertion automaton, denoted by IA = (Xia, Eo, E
∗
iEo, fia, qia, x0,ia).

Specifically, the state set is Xia, the input set is Eo, the output set is the set of strings

in E∗iEo, the transition function fia defines the dynamics of IA, the output function

qia is defined such that qia(x, eo) = sIeo where fia(x0,ia, s) = x, if fI(s, eo) = sIeo, and

x0,ia is the initial state. In Figure 4.3, we show an insertion automaton that inserts

ai before the first output event if that event is b.

In general, an insertion automaton can have an infinite set of states. We call an

insertion function “finite” if it can be encoded as a finite-state insertion automaton.

64



B

A
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a/a b/aib

 e= a,b/e  e= a,b/e

Figure 4.3: An example of insertion automata

4.3.2 I-Enforcing Insertion Functions

For an insertion function to enforce opacity in our insertion mechanism, it needs

to satisfy a property called i-enforcing. I-enforceability characterizes an insertion

function’s ability to output strings that always look like a non-secret behavior under

Mi, without ever interacting with the system. Specifically, i-enforceability holds if

both safety and admissibility hold. An insertion function is i-enforcing if it is safe

and admissible.

Safety property defines the output from the insertion function, i.e., Lout. It re-

quires every behavior after insertion to be within the safe language. If the system is

monitored with a safe insertion function, no output reveals the secret.

Definition IV.2 (Safety). Given G, secret language LS and non-secret language

LNS, an insertion function is safe if the modified language under mask Mi is within

the safe language; that is, Mi (Lout) ⊆ Lsafe.

Admissibility property defines the input to the insertion function. It is an interface

feature that requires the insertion function to take every system’s observable behavior

as a valid input. For every behavior in P [L(G)], an admissible insertion function must

respond to the behavior with an insertion.

Definition IV.3 (Admissibility). Given G, an insertion function is admissible if it

inserts (possibly ε) on every observable behavior from G. That is, fI(s, eo) is defined

for all seo ∈ P [L(G)].

We now combine the two properties and define i-enforceability:
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Definition IV.4 (I-Enforceability). GivenG, an insertion function is called i-enforcing

if it is both safe and admissible. Moreover, the considered opacity notion is called

i-enforceable if there exists an i-enforcing insertion function.

Safety guarantees that every modified behavior from fI looks like a non-secret

string from the original system. If an unsafe string is output by the system but

rendered safe by fI , the intruder will believe that a non-secret string has occurred.

On the other hand, admissibility guarantees that fI does not interact with the system

(e.g., by disabling events). Hence, having both properties, our i-enforcing insertion

function can always map the system output to a non-secret behavior no matter what

the system outputs. Thus, the secret will never be revealed and opacity is enforced

by the insertion function.

4.4 Verifying I-enforceability of An Insertion Function

Given an insertion function, it is desirable to know if it is i-enforcing. In this

section, we propose an algorithm that verifies the i-enforcing property of the given

insertion function. The algorithm is based on the construction of an equivalent au-

tomaton called G̃ that captures the behavior of the modified system. If the behavior

of this equivalent automaton is within Lsafe, then the insertion function is i-enforcing.

We will prove in Section 4.6 that if an i-enforcing insertion function exists, then

a finite i-enforcing one exists. Thus, with no loss of generality, it is assumed in this

section that the insertion function is specified in terms of a finite state insertion

automaton. Given G and fI , we check if fI is i-enforcing by following Algorithm 1.

To facilitate presentation, we denote the input language of IA by Li(IA).

In Algorithm 1, step 1 checks the admissibility property of fI . If the input language

of IA contains P [L(G)], then fI responds to all possible system outputs and is ad-

missible. Otherwise, fI is not admissible and the algorithm returns “not i-enforcing”.
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Algorithm 1: Verify i-enforceability of fI
input : G, fI encoded as IA, and deterministic H s.t. L(H) = Lsafe
output: I-ENFORCING or NOT I-ENFORCING

1 if P [L(G)] ⊆ Li(IA) then
Go to Step 2

else
Return NOT I-ENFORCING

2 Build Mealy automaton Mi = G||i/pIA
3 Remove input labels in Mi and extract automaton Gi

4 Extend Gi to G̃ by recursively introducing new states:

for x, y ∈ XGi
(the state space of Gi) s.t. x

t=et′−−−→ y where e ∈ Ei, t′ ∈ E∗iEo do

introduce xins to XGi
and redefine x

e−→ xins
t′−→ y

5 if Mi

(
Poi[L(G̃)]

)
⊆ Lsafe then

Return I-ENFORCING
else

Return NOT I-ENFORCING

When fI is admissible, we build G̃ in step 2-4 and check in step 5 if fI is also safe.

G̃ is an equivalent automaton that represents the modified system. The projected

language of G̃ is the modified output behavior from fI . If Mi

(
Poi[L(G̃)]

)
⊆ Lsafe,

whereMi removes the virtual insertion label that is only for analysis and not seen by

the intruder, then the intruder will never observe secret behaviors and thereby fI will

be safe. If fI is admissible and safe, the algorithm returns “i-enforcing”. Otherwise,

the algorithm returns “not i-enforcing”. Notice that an i-enforcing fI maps every

unsafe string to a safe string. When there is an unsafe string, G̃ always becomes

nondeterministic under the effect of Mi ◦ Poi (more precisely, under the automaton

implementation of the language map Mi ◦ Poi).

Example IV.5. Consider systemG in Figure 4.4(a) where Eo = {a, b} andXS = {4}.

We build the estimator E in Figure 4.4(b) to verify current-state opacity (CSO). The

system is not CSO because estimate {4} contains only the secret state. To enforce

opacity, we propose to use the fI encoded in Figure 4.3 and verify if it is i-enforcing

by following Algorithm 1. The input language of fI is (a + b)∗, which contains
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P [L(G)]. Thus, fI is admissible. Then, we construct the equivalent automaton G̃ to

check if fI is also safe. The intermediate Mealy automaton Mi is shown in Figure

4.4(c). In Mi, the output label of the transition from (2, A) to (4, C) is a string aib

instead of an event, meaning that fI inserts ai when the system moves from state

2 to state 4. Then by removing input labels in Mi and introducing dummy state

Ins, we build the equivalent automaton G̃ in Figure 4.4(d). It can be proven that

Mi

(
Poi[L(G̃)]

)
⊆ Lsafe = aba∗. The insertion function is thus i-enforcing.
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Figure 4.4: Automata used in Example IV.5

All manipulations in Algorithm 1 are polynomial in the number of states of the

involved automata. G̃ has at most |X||Xia| + k|Eo||X||Xia| states, where k is the

largest number of inserted events per insertion action. The first term comes from the
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input parallel composition of G and IA. The second term exists because fI inserts

at most k events for every observable event at all states in Gi, and each of them

requires an additional dummy state for unfolding Gi to G̃. Also, while G̃ is in general

nondeterministic under the effect of map Mi ◦ Poi, checking language inclusion of

Mi

(
Poi[L(G̃)]

)
⊆ Lsafe can be performed in polynomial time without determinizng

G̃ because H is assumed to be deterministic.

4.5 Verifying I-enforceability of An Opacity Notion

Using the results in Section 4.4, we can verify if a given insertion function is

i-enforcing with respect to the considered opacity notion. This problem inspires

two further questions: (Q1) How to verify if a given opacity notion is i-enforceable,

i.e., if there exists an i-enforcing insertion function? (Q2) How to synthesize an

i-enforcing insertion function if one exists? We will answer both questions using a

special automaton called the All Insertion Structure (AIS) constructed in this section.

(Q1) will be answered in Section 4.5.2, and (Q2) will be answered in Section 4.6.

4.5.1 The Construction of the All-Insertion Structure (AIS)

The All Insertion Structure (AIS) is an automaton that enumerates, in a compact

transition structure, all deterministic i-enforcing insertion functions for a given secret

of the system. The whole construction comprises four stages: (1) the i-verifier; (2)

the meta-observer; (3) the unfolded i-verifier; and (4) the AIS. There is a language

equality check after stage (1). The remaining three stages are needed only when the

language equality holds. In each of the four subsequent subsections, the structure of

the corresponding stage will be defined and the algorithms will be provided.

Stage 1: The i-verifier V

The purpose of the i-verifier V is to identify all insertions that map any given string
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Figure 4.5: The construction flow of the AIS

to a safe string. For this purpose, we build the desired estimator Ed, which generates

the safe language Lsafe, and the feasible estimator Ef , which includes all possible

insertions, and synchronize them with the dashed parallel composition. The result-

ing automaton represents an insertion function that is nondeterministic, safe, and

maximally-inserting.

The desired estimator Ed and the feasible estimator Ef are obtained from the

system estimator E . To build Ed from E , we delete in E all estimates that reveal

the secret and take the accessible part. According to Proposition IV.1, Ed generates

Lsafe. To build Ef , we add self-loops for every inserted event ei ∈ Ei (represented by

dashed lines) at all states in E . This estimator represents a nondeterministic insertion

function that inserts the set of all possible insertions E∗i upon every (s, eo). Then,

by dashed parallel composing the two estimators, the resulting automaton, called the

i-verifier V , includes all possible insertions that map original strings to safe strings.

Notice that a path in V is a sequence of alternating inserted strings and observable

events. Such an alternating path, called an insertion path, shows how an insertion

function inserts events as it receives observable events online from the system. Thus,

having all insertion paths, the i-verifier is a representation of a nondeterministic

insertion function. This nondeterministic insertion function, denoted by f̃I , is safe

and maximally-inserting because it inserts all strings that render a given original

string safe.

Formally, the i-verifier is an automaton denoted by V = (Mv, Eo∪Ei, δv,mv,0). A

state mv ∈Mv is a pair of estimates (md,mf ), where md is a safe estimate from Ed and
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mf is the genuine (potentially) unsafe estimate from Ef . In our opacity enforcement

mechanism, md is the estimate of the intruder who eavesdrops with Mi and mf is

the estimate of the system designer who can distinguish inserted events with Pund.

Although the genuine observed behavior of G leads to a possibly unsafe estimate mf ,

the intruder is tricked into generating a safe estimate md from its observation.

Example IV.6. Consider again G in Figure 4.4(a) where state 4 is the secret state.

We want to enforce CSO using an insertion function and thus build the AIS to deter-

mine if CSO is i-enforceable. This example is our running example to illustrate the

four stages of the construction of the AIS. Here we construct the i-verifier V .

We first build Ed in Figure 4.6(a) by removing m3 from E and taking the accessible

part. Then, we build Ef by adding self-loops for ai and bi at every state in E , as

shown in Figure 4.6(b); the inserted events ai and bi are represented by dashed lines.

Afterwards, by dashed parallel composing Ed and Ef , we obtain V shown in Figure

4.6(c). We use this example to see the features of the nondeterministic insertion

function f̃I . First, the safety property of f̃I can be shown by the transitions from

(m0,m0) to (m1,m0) and then to (m2,m3), which correspond to inserting ai before

the first b. With this insertion, the intruder is tricked into thinking that G outputs ab

and thus generates safe estimate m2, while the original observed string b corresponds

to the unsafe estimate m3. Second, the nondeterminism of f̃I can be seen by the

set aibia
∗
i inserted before the first a. Then, because all and only inserted strings in

(aibiai)
∗ modify a to be safe strings, the insertion function is maximally-inserting.

All strings output by f̃I are safe. However, f̃I may not respond to the full system

output behavior P [L(G)]; i.e., it may not be admissible. If f̃I is not admissible, then

there is no deterministic insertion function that is safe and admissible. Therefore,

opacity is not i-enforceable and the AIS does not exist. In other words, the admis-

sibility of f̃I is a necessary condition for i-enforceability. This result is proven in
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Figure 4.6: The system, the estimators, and the i-verifier used in Example IV.6.

Theorem IV.7.2

Theorem IV.7. The considered opacity notion is not i-enforceable if

Pund[L(V )] 6= P [L(G)] (4.2)

Proof. First, V is a representation of f̃I that contains all possible safe insertions.

Thus, all i-enforcing deterministic insertion functions must be included in V . Second,

in V , dashed transitions are insertions. By applying projection Pund, we obtain the

system behaviors that f̃I responds to, i.e., Pund[L(V )]. If Pund[L(V )] 6= P [L(G)],

we know that f̃I does not respond to all observable behaviors of G. Thus, it is not

admissible and not i-enforcing. If f̃I is not i-enforcing, no deterministic i-enforcing

insertion function exists. The considered opacity notion is not i-enforceable.

2This theorem was inadvertently omitted in [58].
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If Pund[L(V )] 6= P [L(G)], we know from Theorem IV.7 that opacity is not i-

enforceable and we can stop the construction of the AIS. However, if Pund[L(V )] =

P [L(G)], we do not know whether opacity is i-enforceable or not. The existence of

the nondeterministic i-enforcing insertion function f̃I does not imply the existence of

a deterministic i-enforcing insertion function. Below we provide an example where

no deterministic insertion function exists even if Equation (4.2) holds.

Example IV.8. Consider CSO of a system with Eo = {a, b, c}. We show directly

the estimator in Figure 4.7(a), whose states are the estimates of system states; for

simplicity, these states are numbered from 0 to 9. Assume that states 2 and 3 are

unsafe and that the other states are safe. We want to enforce opacity using insertion

functions and thus build the AIS to verify if CSO is i-enforceable. The i-verfier

V is built in 4.7(b). One can verify that Pund[L(V )] = P [L(G)] holds and thus the

nondeterministic insertion function f̃I is i-enforcing. In Figure 4.7(b), we trace strings

whose first solid transitions are labeled with “a” and see that f̃I insert two events

{b, c} before a, i.e., f̃I(ε, a) = {b, c}. Inserting set {b, c} makes ab look like non-secret

bab (for state 2) and ac look like non-secret cac (for state 3). However, if we want to

build a deterministic insertion function, the insertion function must choose to insert

either fI(ε, a) = b or fI(ε, a) = c. If we choose fI(ε, a) = b, which corresponds to

the path (0, 0) (4, 0)→ (5, 1) in V , then the insertion function cannot respond to

system string ac and thus it is not admissible. Similarly for the other case. Therefore,

no deterministic i-enforcing insertion function exists. Opacity is not i-enforceable.

Stage 2: The meta-observer mObs(V )

Recall that V represents nondeterministic insertion function f̃I . In V , insertions to the

same system output may lie on different insertion paths. Therefore, grouping together

all insertions responding to a given system output is needed before we enumerate all

deterministic insertion functions. In this stage, we first focus on all insertions that
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Figure 4.7: The system and the i-verifier in Example IV.8.

respond to past observed string s without considering the system’s current output,

i.e., ∪eo∈Eo f̃I(s, eo). For this purpose, we build the so-called meta-observer of the i-

verifier, mObs(V ). Let Obs(V ) = (Mv,obs, Eo, δv,obs,mv,obs,0) be the standard observer

automaton of V with respect to projection Pund. Given an i-verifier V , the meta-

observer mObs(V ) = (Mv,mo, Eo ∪ Ei, δv,obs, δv,mo,mv,mo,0) is a special observer of

V , with respect to Pund, where the unobservable transitions (Ei) are preserved. A

meta-observer state is defined to be a pair consisting of a state in V and a state

in Obs(V ), mv,mo = (mv,mv,obs) ∈ Mv,mo = Mv × Mv,obs. In mObs(V ), there are

two transition functions: δv,mo and δv,obs. Transition function δv,mo : Mv,mo × (Eo ∪

Ei) → Mv,mo captures the effect of insertion responses. Transition function δv,obs :

Mv,obs × Eo → Mv,obs, on the other hand, is inherited from Obs(V ) to capture the

system’s observed behavior. With both functions, we can keep the information of

every insertion response while grouping them together. In Figure 4.8, we show the

meta-observer for Example IV.6. Note that only δv,mo, which is represented by the

dashed and the solid transitions, is shown. The function δv,obs is not explicitly shown

as it can be inferred from δv,mo. The formal construction of mObs(V ) is presented in
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Algorithm 2.

Algorithm 2: Construct the meta-observer of V

input : V = (Mv, Eo ∪ Ei, δv,mv,0) and Obs(V ) = (Mv,obs, Eo, δv,obs,mv,obs,0)
w.r.t Pund

output: mObs(V ) = (Mv,mo, Eo ∪ Ei, δv,obs, δv,mo,mv,mo,0)

1 mv,mo,0 = (mv,0,mv,obs,0). Set Mv,mo = {mv,mo,0}
2 for β = (b, bobs) ∈Mv,mo whose dashed descendants have not been expanded do

for e ∈ Ei do
if δv(b, e) is defined then

δv,mo(β, e) = (δv(b, e), bobs)
Add δv,mo(β, e) to Mv,mo

3 for β = (b, bobs) ∈Mv,mo whose dashed descendants have been expanded but
whose solid descendants have not been expanded do

for e ∈ Eo do
if δv(b, e) is defined then

δv,mo(β, e) = (δv(b, e), δv,obs(bobs, e))
Add δv,mo(β, e) to Mv,mo

4 Go back to step 2 and repeat until all nodes in Mv,mo have been completely
expanded

5 Add δv,obs from Obs(V ) to mObs(V )

Example IV.9. Given V in Figure 4.6(c), we follow Algorithm 2 and build the

meta-observer mObs(V ) in Figure 4.8. In step 1, the initial state is ((m0,m0), A),

where (m0,m0) is the initial-state of V and A = {(m0,m0), (m1,m0), (m2,m0)} is

the initial state of Obs(V ). In step 2, ((m0,m0), A) expands to ((m1,m0), A) and

then ((m1,m0), A) expands to ((m2,m0), A). This dashed-descendant expansion gen-

erates all Mv,mo states whose Mv,obs part is also A; these Mv,mo states belong to the

topmost group in the figure. In step 3, ((m0,m0), A) expands to ((m1,m1), B) with

event a, ((m1,m0), A) expands to ((m2,m3), C) with b, and ((m2,m0), A) expands to

((m2,m1), B) with a. This time, the solid-descendant expansion generates all Mv,mo

states reached with Eo from the existing states. Each newly generated Mv,mo state

has a Mv,obs part that is different from A. We iterate between step 2 and step 3 until

all Mv,mo state have been completely expanded. Finally, we complete constructing
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mObs(V ) by adding transition function δv,obs from Obs(V ).
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Figure 4.8: The meta-observer of the i-verifier, mObs(V ). The solid ellipses around
states show the states of Obs(V ).

Stage 3: The unfolded i-verifier Vu

In Stage 2, the meta-observer groups together all insertion strings for every given

s; i.e., ∪eo∈Eo f̃I(s, eo). In this stage, we want to list all insertion strings in f̃I(s, eo)

for any given (s, eo) and then enumerate all deterministic insertion functions. We

“unfold” all deterministic insertion functions from mObs(V ), and build the so-called

unfolded i-verifier Vu.

The unfolded i-verifier Vu is a game structure played between the “system player”

G and the “insertion-function player” I. The initial state of Vu is played by G. The

two players alternate turns in the game. All outgoing transitions of a given state are

actions of the player who moves at the state. Hence, all deterministic safe insertion

functions are enumerated with sequences of alternating actions. More specifically,

actions of G are output events from the system and actions of I are safe insertion

strings. A sequence of actions is an insertion path that tell us the following: Given

that player G has output s and is outputting eo, player I can insert sI before eo.

Formally, Vu is a bipartite graph that is defined as an automaton Vu = (Y ∪

Z,Eo ∪Mv,mo, fyz ∪ fzy, y0). An example of Vu is shown in Figure 4.9. We interpret

Vu as a two-player game structure. The first player is G that moves at Y (square-
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Figure 4.9: The unfolded i-verifier Vu built from mObs(V ) in Figure 4.8. The shaded

states are pruned when constructing the AIS.

shaped) states; the second player is player I that moves at Z (ellipse-shaped) states.

Y and Z states are information states of players G and player I, respectively. That

is, each state contains enough information for the corresponding player to enumerate

its actions. More specifically, a state y ∈ Y is a meta-observer state, Y = Mv,mo ⊆

Mv ×Mv,obs and each action at y is an output event e ∈ Eo from the system. On

the other hand, a state z ∈ Z consists of its predecessor Y state and the action

of observable event e that player G has just made, Z ⊆ Y × Eo = Mv,mo × Eo.

Each action at z = (m, e) ∈ Z is a state m′ ∈ Mv,mo in mObs(V ) that compactly

represents a set of insertion strings given by function Ins(m,m′) = {sI ∈ E∗i :

δv,mo(m, sI) = m′} where m,m′ ∈ Mv,mo. Take the Vu in Figure 4.9 for example.

At z = (((m0,m0), A), a), action ((m2,m0), A) represents a set of insertion strings

given by Ins (((m0,m0), A), ((m2,m0), A)) = {sI ∈ E∗i : δv,mo(((m0,m0), A), sI) =

((m2,m0), A)} = aibia
∗
i . The transition function from Y to Z is denoted by fyz :

Y ×Eo → Z, and the transition function from Z to Y is denoted fzy : Z×Mv,mo → Y .

As the system is the first player, the initial state of Vu is defined as y0 = mv,mo,0. The

formal construction of Vu is presented in Algorithm 3.
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Algorithm 3: Construct Vu
input : mObs(V ) = (Mv,mo, Eo ∪ Ei, δv,obs, δv,mo,mv,mo,0)
output: Vu = (Y ∪ Z,Eo ∪Mv,mo, fyz ∪ fzy, y0)

1 y0 = mv,mo,0. Set Y = {y0}
2 for y = (mv,mv,obs) ∈ Y that have not been examined do

for e ∈ Eo do
if δv,obs(mv,obs, e) is defined then

fyz(y, e) = (y, e)
Add fyz(y, e) to Z

3 for z = (mv,mo, e) ∈ Z that have not been examined do
for m ∈Mv,mo do

if ∃sI ∈ E∗i such that m = δv,mo(mv,mo, sI) and δv,mo(m, e) is defined
then

fzy(z,m) = δv,mo(m, e)
Add fzy(z,m) to Y

4 Go back to step 2 and repeat until all accessible part has been built

Stage 4: The All Insertion Structure (AIS)

The i-verifier enumerates all deterministic insertion functions in f̃I . These insertion

functions, however, may not be all admissible. In Stage 4, we prune away inadmissible

insertion paths in Vu and build the All Insertion Structure (AIS). An insertion path

is not admissible if it cannot respond to every system output.

Recall that, in Vu, player G plays at Y states and player I plays at Z states. If

there is a state z ∈ Z that has no outgoing action (i.e., z is a deadlocked state), then

the insertion-function player cannot respond to the system player when it reaches z.

That is, z belongs to an inadmissible insertion path and thus should be pruned away.

When we prune away z, we must also prune away its incoming actions. However,

its incoming actions should not be pruned because they are actions of player G.

Thus, we have to prune some earlier insertion actions in order to prevent the AIS

from generating this deadlocked state z. But such earlier pruning may create other

deadlocked Z states. Hence, this process requires an iterative pruning algorithm until
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no deadlocked states exist. We use the following example to illustrate how we prune

Vu to obtain the AIS.

Example IV.10. Consider again the Vu in Figure 4.9. State (((m2,m1), B), b) is

a deadlocked Z state. All insertion paths leading to (((m2,m1), B), b) are inadmis-

sible because no insertion is available when the system outputs event b. To prune

such inadmissible insertion paths, we prune (((m2,m1), B), b) and its incoming ac-

tion b. However, we cannot remove b because it is the action of the system at state

((m2,m1), B) and insertion functions have no control of system actions. Therefore,

to completely prune away the deadlocked state ((m2,m1), B), an insertion function

should decide not to respond with ((m2,m0), A) earlier at (((m0,m0), A), a). The

resulting AIS is the structure in Figure 4.9 without the shaded states.

In the above pruning process, we want to prune away inadmissible insertion paths

and only prune away such paths when necessary. Formally, we formulate this pro-

cess as an instance of the “Basic Supervisory Control Problem - Nonblocking Case”

(BSCP-NB), in the terminology of [10]. For this purpose, marked states and con-

trollable/uncontrollable events need to be defined in Vu. We mark all Y states in

Vu and leave all Z states unmarked. This is because an insertion function completes

insertions at Y states, but is choosing an insertion response at Z states. We model

all outgoing actions of Y states (Eo) as uncontrollable and those of Z states (Mv,mo)

as controllable because an insertion function has no control of the system output but

is able to choose an insertion response. The specification for the supervisory control

problem is the trimmed automaton of Vu, defined by V trim
u . Finally, the AIS is the

minimally restrictive nonblocking supervisor of Vu (see [39, 10]) for this BSCP for-

mulation. By construction, the AIS is a sub-automaton of Vu. This is because the

specification automaton in this instance of BSCP-NB is V trim
u . The formal construc-

tion is presented in Algorithm 4.

Note that it is possible that Algorithm 4 returns the empty automaton when
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Algorithm 4: Construct the AIS

input : Vu = (Y ∪ Z,Eo ∪Mv,mo, fyz ∪ fzy, y0)
output: AIS= (Y ∪ Z,Eo ∪Mv,mo, fAIS,yz ∪ fAIS,zy, y0)

1 Mark all the Y states in Vu
2 Let Eo be uncontrollable and Mv,mo be controllable
3 Trim Vu and let V trim

u be the specification automaton
4 Obtain [Lm(V trim

u )]↑C w.r.t L(Vu) by following the standard ↑ C algorithm in
[10]

5 Return the resulting automaton representation of [Lm(V trim
u )]↑C , which is a

sub-automaton of V trim
u

[Lm(V trim
u )]↑C = ∅. Because the pruning procedure prunes away all inadmissible

insertion paths, the resulting AIS enumerates all i-enforcing insertion functions. That

is, if we use the AIS to track the system output and choose a random insertion at

every Z state, we can synthesize any i-enforcing insertion function.3 We will prove

this in Theorem IV.13 using the following two lemmas. In these proofs, we always

have Pund[L(V )] = P [L(G)] because this is a necessary condition for the existence of

the AIS.

Lemma IV.11. An insertion function can be synthesized from the AIS if it is i-

enforcing.

Proof. Given an i-enforcing insertion function fI , it is included in V because f̃I is the

maximally-inserting nondeterministic i-enforcing insertion function. When building

mObs(V ), we simply group transitions of V and thus no transitions are lost or added.

That is, no insertion paths are lost or added. When we build Vu, the only dashed

strings that will be excluded are those not responding to an output. Also, when

building the AIS, we only remove states that are inevitably leading to a state where

no insertions are available. None of the above automata remove an admissible path

from its previous automaton. Therefore, all insertion paths of fI , included in V at the

beginning, must still exist in the AIS. Thus, fI can be synthesized from the AIS.

3We need not choose the same insertion if we reach the same z from different paths. Thus, the
synthesized insertion function can have an infinite string-based domain while it is synthesized from
a finite structure.
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Lemma IV.12. If an insertion function is synthesized from the AIS, it must be

i-enforcing.

Proof. Given an insertion function fI synthesized from the AIS, we want to prove that

it is i-enforcing by contradiction. Let us assume that this insertion function is not i-

enforcing. That is, fI is not safe or not admissible. But because fI is synthesized from

the AIS, it must be safe because the AIS is constructed from V and V only includes

safe insertions. Therefore, fI can only be inadmissible. If fI is not admissible, it

must have an insertion path that leads to a deadlocked Z state where no insertions

are available. But by construction, the AIS cannot have such a path. This is a

contradiction. Therefore, fI should be i-enforcing.

Theorem IV.13. The AIS enumerates all and only i-enforcing insertion functions.

Proof. Follows from Lemmas IV.11 and IV.12.

4.5.2 Verification of I-enforceability Property

Let us now go back to question (Q1) posed at the beginning of this section: How

to verify if a given opacity notion is i-enforceable? As the AIS enumerates all and

only i-enforcing insertion functions, it can be used to determine the i-enforceability

property of a given opacity notion. In fact, we can verify i-enforceability by checking

if the AIS is the empty automaton or not.

Theorem IV.14. Opacity is i-enforceable if and only if the AIS is not the empty

automaton.

Proof. (Only if) If opacity is i-enforceable, then we can find an i-enforcing insertion

function. From Lemma IV.11, we know that this insertion function can be synthesized

from the AIS. Therefore, the AIS cannot be the empty automaton. (If) If the AIS is

not the empty automaton, we can synthesize an i-enforcing insertion function from the

AIS based on Lemma IV.11. Therefore, the opacity notion must be i-enforceable.
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Now, let us go back to the system in Figure 4.7(a) and see how we obtain the

empty AIS when opacity is not i-enforceable.

Example IV.15. In Example IV.8, we concluded that opacity is not i-enforceable

by reasoning on the insertions in V . In this example, we will show that the AIS

is the empty automaton. Shown in Figure 4.10 is the unfolded i-verifier Vu of the

system. We trim in Vu the deadlocked states and get the specification automaton

V trim
u , which is shown in Figure 4.10 without the shaded states. To build the AIS,

we obtain [Lm(V trim
u )]↑C w.r.t L(Vu). States ((5, 1), B), ((8, 1), B), ((1, 1), B) will be

deleted in the ↑ C algorithm because each of them leads to an illegal state with an

uncontrollable event. The deletion of these three states makes the insertion state

(((0, 0), A), a) deadlocked. Thus, in the next iteration of the ↑ C algorithm, state

(((0, 0), A), a) needs to be pruned. However, pruning (((0, 0), A), a) violates the con-

trollability condition again. As a result, we need to prune away the initial state and

thus obtain the empty automaton.

4.6 Synthesis of I-enforcing Insertion Functions

We now go back to question (Q2) posed in Section 4.5 and use the AIS to synthesize

an i-enforcing insertion function. Such an insertion function, encoded as an insertion

automaton (IA), is synthesized by selecting transitions and states in the AIS. The

synthesis algorithm is formally shown in Algorithm 5.

In step 2.b of Algorithm 5, the question of which m′ and sI to choose arises.

We can establish a selection criterion by designing an appropriate cost function, and

formulate an optimal control problem. Because the AIS considers all i-enforcing

insertion functions, it provides a structure over which such an optimal control problem

can be formulated and solved. This is the objective of the next chapter. In this

chapter, we only synthesize one i-enforcing insertion function.
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Figure 4.10: Vu of Example IV.8. The shaded states are pruned in V trim
u .

One can run Algorithm 5 as long as the AIS is not the empty automaton. By

following Algorithm 5, we will always obtain a finite-state insertion automaton (i.e.,

a finite i-enforcing insertion function). As a result, it is sufficient and without loss of

generality to consider only finite insertion functions in the synthesis.

Corollary IV.16. There exists a finite i-enforcing insertion function if the considered

opacity notion is i-enforceable.

Proof. If opacity is i-enforceable, then the AIS is not the empty automaton, according

to Theorem IV.14. Hence, a finite i-enforcing insertion function can be synthesized

by following Algorithm 5.

Example IV.17. Given the AIS in Figure 4.9, we construct an insertion automaton
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Algorithm 5: Synthesize an insertion automaton

input : AIS = (Y ∪ Z,Eo ∪Mv,mo, fAIS,yz ∪ fAIS,zy, y0)
output: IA = (Xia, Eo, E

∗
iEo, fia, qia, xia,0)

1 Let xia,0 = y0. Set Xia = {xia,0}
2 for xia ∈ Xia that have not been examined do

2.a if xia ∈ Y then
for e ∈ Eo do

if fAIS,yz(xia, e) is defined then
fia(xia, e) = fAIS,yz(xia, e) i
Add fia(xia, e) to Xia

2.b else if xia = (m, e) ∈ Z then
Select one m′ ∈Mv,mo for which fAIS,zy(xia,m

′) is defined
Select one string sI ∈ Ins(m,m′)
fia(xia, sI) = fAIS,zy(xia,m

′)
Add fia(xia, sI) to Xia

3 for xy1, xz, xy2 ∈ Xia where xy1, xy2 ∈ Y, xz ∈ Z and fia(xy1, e) = xz,
fia(xz, sI) = xy2 do

Remove xz from Xia

Redefine fia and define q such that fia(xy1, e) = xy2 and qia(xy1, e) = sIe

by following Algorithm 5. In the AIS, every Z state has only one outgoing action.

Thus, in step 2.b we only need to choose one string for every Mv,mo action. We

choose to greedily insert the least number of events for every Mv,mo action. For action

((m1,m0), A), we choose ai. For the other actions, we choose ε. In step 3, we remove

all Z states and combine actions. Therefore, ((m0,m0), A)
b−→ (((m0,m0), A), b)

ai−→

((m2,m3), C) becomes ((m0,m0), A)
b/aib−−−→ ((m2,m3), C). The resulting IA is shown

in Figure 4.11.
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Figure 4.11: An insertion automaton built from the AIS

84



4.7 Complexity of the Construction of the AIS

In this section, we discuss the computational complexity of the AIS. Recall that

the AIS is constructed in four stages. To understand the complexity of each stage, we

calculate the worst-case space complexity of each structure in terms of its previous

structure. With no loss of generality, we consider current-state opacity. Given a sys-

tem G with |X| states, verifying CSO requires building the current-state estimator

(i.e., the observer automaton of G), which has at most |Xobs| = 2|X| states. To build

the AIS, in stage 1, we build the i-verifier V . The state space of the i-verifier is

|Xv| = |Xobs|2 because V is the dashed parallel composition of two special current-

state estimators. In stage 2, the number of states in the meta-observer mObs(V )

is at most |Xmobs| = |Xv|2|Xv | since Mv,mo = Mv × Mv,obs. Then, in stage 3, we

“unfold” mObs(V ) to obtain the unfolded i-verifier Vu. The unfolded i-verifier has

|Xvu| = |Xmobs|+ |Eo||Xmobs| states in the worst case, where the first and the second

terms account for information states of the system and the insertion function, respec-

tively. Lastly, the AIS has at most |Xvu | states because the AIS is the recognizer for

Lm(V trim
u )↑C . Overall, the space complexity of all the structures built in obtaining

the AIS is O(2|Xobs|2).

In the above discussion, each worst-case explosion is the theoretical upper bound.

In practice, the average complexity may be much smaller. To gain better insight,

we conducted an empirical study of the construction of the AIS. A program that

generates random automata was implemented. A random automaton is constructed

upon the input of the number of states |X|, the number of observable events |Eo|,

and the number of secret states |XS|. The program first generates an |X|-state

connected directed graph by iteratively adding a transition from an existing state

to the newly-created state. Then, it generates more transitions so that the number

of outgoing transitions for each state is uniformly distributed between 0 and |Eo|.

We chose µ = 0.2 to be the ratio of unobservable transitions in our experiments.
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Among all transitions, µK transitions are randomly selected to be unobservable,

where K is the total number of transitions. Next, given a state with k observable

outgoing transitions, the program randomly selects k observable events to label these

transitions. The resulting automaton is guaranteed to be deterministic. Finally, |XS|

secret states are randomly selected.

Three experiments were conducted. The first experiment studies how i-enforceability

is affected by the number of secret states. We randomly generated 100 10-state au-

tomata with |Eo| = 3 for |XS| = 1, 2, 5, 10. Table 4.1 shows the number of au-

tomata for four outcomes: (i) opaque; (ii) i-enforceable; (iii) not i-enforceable with

Pund[L(V )] 6= P [L(G)]; and (iv) not i-enforceable with the empty AIS. As expected,

the number of opaque automata decreases as |XS| increases. When |XS| = 10, i.e.,

all states are secret, all system behaviors are secret and thus the system cannot be

i-enforceable. Also, when all states are secret, Ed and thus V are the empty automa-

ton. Thus, opacity cannot be i-enforceable with Pund[L(V )] 6= P [L(G)]. Then, let us

consider only the automata that are not opaque. The ratio of i-enforceable automata

decreases as |XS| increases. We interpret this result as follows: the more likely the

system reveals the secret, the more difficult it is to enforce the secret to be opaque.

Table 4.1: Experimental results of i-enforceability w.r.t |XS|. Number of automata
for four outcomes are recorded: (i) opaque; (ii) i-enforceable; (iii) not i-
enforceable with Pund[L(V )] 6= P [L(G)]; and (iv) not i-enforceable with
the empty AIS
|XS| (i) (ii) (iii) (iv)

1 58 34 8 0
2 23 59 18 0
5 0 54 46 0
10 0 0 100 0

The second experiment studies how i-enforceability is affected by the number of

events. Again, 100 10-state random automata were generated. We fixed the number

of secret states |XS| = 1 and varied the number of observable events |Eo| = 1, 3, 5, 10.

86



Table 4.2 shows the number of automata for the four aforementioned outcomes. The

number of opaque automata increases as |Eo| increases. As |Eo| grows, the total

number of events also grows. More events means that more different behaviors can

be generated. With a wider range of system behaviors, it is more likely for a secret

behavior to look like some non-secret behavior and thus more automata are opaque.

Considering the fraction of i-enforceable automata among all non-opaque automata,

we see that this fraction increases as |Eo| increases. As there are more events that

can be inserted, it is more likely for an insertion function to make a secret behavior

look like a non-secret behavior.

Table 4.2: Experimental results of i-enforceability w.r.t |Eo|
|Eo| (i) (ii) (iii) (iv)

1 0 0 100 0
3 23 59 18 0
5 54 40 6 0
10 73 25 2 0

None of the above experiments resulted in an automaton that is not i-enforceable

because the AIS is empty. This shows that if an automaton is not i-enforceable, it is

likely that we can make an early conclusion by testing Pund[L(V )] 6= P [L(G)] after

stage 1. Therefore, the complexity of checking i-enforceability may be much smaller,

depending on the structure of the automaton.

The third experiment studies the complexity in each stage of the construction

of the AIS. We obtained 20 random automata with |X| = 10, 20, 30 by running

the random automaton generation program and discarding opaque automata. In

order to remove the complexity’s dependencies between |XS| and |Eo|, we fixed the

ratio of secret states such that |XS|/|X| = 0.1 and scaled the number observable

events such that |Eo| = 3
(

log |X|
10

+ 1
)

. The scaling function for |Eo| is motivated by

the consideration that the state space grows exponentially and the event size grows

linearly with the number of systems in composition. Tables 4.3 shows the average
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number of states in Obs(G), V , mObs(V ), Vu, and the AIS.

Table 4.3: Experimental results of the complexity of the AIS
|X| |Xobs| |Xv| |Xmobs| |Xvu| |XAIS|
10 25.3 723.1 729.7 1271.1 1262.3
20 115.8 14615.5 14820.2 22542.4 22443.6
30 357.4 142632.3 151165.3 212401.6 203473.4

Recall that the theoretical complexity of |XAIS| is O(2|Xobs|2). Table 4.3 shows

that the average complexity in our experiments is far lower. This difference mainly

comes from overestimating the complexity of meta-observers. The average state space

cardinality of meta-observers in our experiments is only slightly greater than |Xv|,

while it is O(|Xv|2|Xv |) in theory. If we approximate |Xmobs| to be |Xv|, then the

complexity of |XAIS| becomes O(|Xobs|2), which is closer to our results in Table 4.3.

4.8 A More Compact AIS

So far, we have constructed an AIS, in a four-stage algorithm, that requires ex-

ponential complexity in the number of states of the state estimator used to verify

opacity. In this section, we present a more compact AIS that embeds all i-enforcing

insertion functions using fewer states. The proposed new AIS is constructed in a

three-stage algorithm. Its state space is reduced to polynomial (in the number of

states of the state estimator), thereby significant computational gains are achieved.

More specifically, the three-stage construction procedure, as compared to the four-

stage construction procedure in Section 4.5.1, omits the language check in Theorem

IV.7 and the construction of the meta-observer mObs(V ); it also modifies the algo-

rithm for constructing Vu. It comprises: (1) the i-verifier V ; (2) the unfolded i-verifier

Vu; and (3) the AIS. To distinguish the two construction algorithms, we will call the

four-stage algorithm as the exponential algorithm and the three-stage algorithm as the

polynomial algorithm, for the former requires exponential complexity and the latter
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requires polynomial complexity. Also, we denote the unfolded i-verifier and the AIS

in the exponential algorithm by V e
u and AISeu, and those in the polynomial algorithm

by V p
u and AISpu. The construction of the i-verifier V remains the same. We now

formally present the polynomial algorithm

Stage 1: The i-verifier V

The construction of the i-verifier in the polynomial algorithm is the same as that

instructed in the exponential algorithm. To make this section self-contained, we

briefly recall the construction of the i-verifier. Consider the forward estimator that

verifies opacity E = (XE , Eo, fE , xE,0). We build the desired estimator Ed by deleting

in E all estimates that reveal the secret and taking the accessible part. Also, we build

the feasible estimator Ef by adding self-loops for every inserted event ei ∈ Ei at all

states in E . Then, we construct the i-verifier by dashed parallel composing the two

special state estimators; i.e., V := Ed||dEf = (Mv, Eo ∪ Ei, δv,mv,0). In Figure 4.12,

we show again Ed, Ef , and V in the running example in Section 4.5 (Example IV.6).

We will reuse this example to present the polynomial algorithm.

Stage 2: The unfolded i-verifier V p
u

Having V that identifies all safe insertions, we now build the “unfolded i-verifier”

V p
u directly from V . Note that we omit the language check in Theorem IV.7 and

the construction of the meta-observer mObs(V ) in the exponential algorithm. In

the polynomial algorithm, we rely on E and V to enumerate all deterministic safe

insertion functions.

Just like V e
u constructed in Section 4.5, the unfolded i-verifier V p

u is a game struc-

ture played between the “system player” G and the “insertion-function player” I.

Formally, V p
u constructed in the polynomial algorithm is a bipartite graph that is

defined as an automaton V p
u = (Y ∪ Z,Eo ∪Mv, fyz ∪ fzy, y0). Shown in Figure 4.13
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Figure 4.13: The unfolded i-verifier V p
u . The shaded states are pruned when con-

structing the AISp.

is V p
u built from the E and V in Figure 4.12. The first player is G that moves at Y

(square-shaped) states; the second player is player I that moves at Z (ellipse-shaped)

states. Y and Z states are information states of players G and I, respectively. That

is, each state contains enough information for the corresponding player to enumer-

ate its actions. The differences between V p
u and V e

u are the information contained

in each Y and Z state. Here, in the polynomial algorithm, each y ∈ Y state is a

state m = (md,mf ) ∈ Mv in V and each action at y is an output event e ∈ Eo from

the system. Because mf is the real state estimate of the system, we can examine

all event transitions from mf in E to enumerate actions for player G. On the other

hand, each Z state, denoted by z = (y, e), consists of its predecessor state y and the

action of observable event e that player G has just made. Because a Y state is also

an Mv state in V , we also write z = (m, e). Each action at z = (m, e) is a state

m′ ∈ Mv in V that compactly represents a set of inserted strings given by function

Ins(m,m′) = {sI ∈ E∗i : δv(m, sI) = m′} where m,m′ ∈ Mv. To enumerate all safe

insertion strings, we can search on V using m and e. The transition function from

Y to Z is denoted by fyz : Y × Eo → Z, and the transition function from Z to Y
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is denoted fzy : Z ×Mv → Y . As the system is the first player, the initial state of

V p
u is defined as y0 = mv,0. The formal procedure for constructing V p

u is presented in

Algorithm 6.

Algorithm 6: Construct V p
u

input : V = (Mv, Eo ∪ Ei, δv,mv,0) and E = (XE , Eo, fE , xE,0)
output: V p

u = (Y ∪ Z,Eo ∪Mv, fyz ∪ fzy, y0)
1 y0 = mv,0. Set Y = {y0}
2 for y = mv = (md,mf ) ∈ Y that have not been examined do

for e ∈ Eo do
if fE(mf , e) is defined then

fyz(y, e) := (y, e)
Add fyz(y, e) to Z

3 for z = (y, e) = (m, e) ∈ Z that have not been examined do
for m′ ∈Mv do

if ∃sI ∈ E∗i such that m′ = δv(m, sI) and δv(m
′, e) is defined then

fzy(z,m
′) := δv(m

′, e)
Add fzy(z,m

′) to Y

4 Go back to step 2 and repeat until all accessible part has been built

Step 2 can be done in O(|Mv||Eo|) time. In step 3, we can compute and store the

dashed connectivity for every m,m′ ∈ Mv in O(|Mv|3) time using Floyd-Warshall

algorithm, and then determine all insertion actions in O(|Mv|2|Eo|) iterations. When

|Eo| < |Mv|, this part can be done in O(|Mv|3) time. In all, V p
u has at most (|Eo| +

1)|Mv| states.

Stage 3: The All Insertion Structure (AISp)

Once we obtain V p
u , we can prune the inadmissible insertions and obtain the AISp

in the same way instructed in the exponential algorithm. The formal algorithm

is presented in Algorithm 7. This is the same as Algorithm 4 in the exponential

algorithm except that Algorithm 4 takes the new unfolded i-verifier V p
u as input.

Also, Algorithm 7 can return the empty automaton when [Lm(V e,trim
u )]↑C = ∅.

Let us go back to V p
u in Figure 4.13. The resulting AISp is the structure in Figure
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Algorithm 7: Construct the AISp

input : V p
u = (Y ∪ Z,Eo ∪Mv, fyz ∪ fzy, y0)

output: AISp = (Y ∪ Z,Eo ∪Mv, fAIS,yz ∪ fAIS,zy, y0)
1 Mark all the Y states in V p

u

2 Let Eo be uncontrollable and Mv be controllable
3 Trim V p

u and let V e,trim
u be the specification automaton

4 Obtain [Lm(V e,trim
u )]↑C w.r.t L(V p

u ) by following the ↑ C algorithm in [10]
5 Return the resulting automaton representation of [Lm(V e,trim

u )]↑C , which is a
sub-automaton of V e,trim

u

4.13 without the shaded states. In this particular example, the structure of the AISp

is the same as the AISe in Figure 4.9. However, the information states are different.

We will show later in Section 4.8.1 an example where the structures of the AISp and

the AISe are different.

Note that the AISp has the same properties as the AISe. That is, the AISp enu-

merates all i-enforcing insertion functions, and the AISp is not the empty automaton

if and only if opacity is i-enforceable.

Remark IV.18. In the polynomial algorithm, we omit the language equality check

after V in the exponential algorithm. That is, when Pund[L(V )] 6= P [L(G)], we will

not stop but keep constructing the AISp. However, in this case, the V p
u will always

have blocking states as the insertion function cannot react to all the system output

behavior. Consequently, ↑ C algorithm will return the empty automaton; i.e., the

AISp is the empty automaton.

4.8.1 Correctness of the Construction

The polynomial algorithm differs from the exponential algorithm in how we obtain

the unfolded i-verifier Vu. In this section, we will prove that constructing V p
u using

Algorithm 6 is correct. Specifically, we will prove in Lemma IV.19 and Lemma IV.20

that each Y and Z state in V p
u is a correct information state, respectively. That

is, each state contains enough information to enumerate all possible actions for its
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corresponding player.

Given that s has been output from the system and has been modified to s̃ by the

insertion function, the following Y state in V p
u is y = mv = δv(mv,0, s̃). We now show

that, using y, we can enumerate all possible next output events from G.

Lemma IV.19. Consider that player G has output s ∈ P [L(G)] and player I has

inserted s to s̃. The next turn of the game will be played by player G. State mv =

δv(mv,0, s̃) provides enough information to enumerate all possible next output events

from player G.

Proof. To determine all possible next output events from the system, it suffices to

know the current state estimate of the system. Recall that V := Ed||dEf . By con-

struction, transitions in Ef are only triggered by Eo and every ei ∈ Ei results in only

a self-loop transition in Ef . Hence, in mv = (md,mf ) = δv(mv,0, s̃), we know that

mf = fE(xE,0, s) is current state estimate of the system, where s = Pund(s̃).

Next, we show that, using z ∈ Z, which consists of its predecessor Y state and

the event label of its incoming transition, we can enumerate all safe insertion choices

for player I.

Lemma IV.20. Consider that player G has output seo ∈ P [L(G)] and player I has

inserted s to s̃. The next turn of the game will be played by player I. The pair (mv, eo),

where mv = δv(mv,0, s̃), provides enough information to enumerate all possible safe

insertion choices for eo.

Proof. Consider seo ∈ P [L(G)] and f strI (s) = s̃, the set of all safe insertion choices

is I = {sI ∈ E∗i : Mi(s̃sIeo) ∈ Lsafe}. By construction, L(V ) = {t ∈ (Eo ∪ Ei)∗ :

Mi(t) ∈ Lsafe ∧ Pund(t) ∈ P [L(G)]}. Hence, I = {sI ∈ E∗i : s̃sIeo ∈ L(V )} = {sI ∈

E∗i : mv = δv(mv,0, s̃) ∧ (∃m′v ∈ Mv s.t. m′v = δv(mv, sI)) ∧ δv(m′v, eo) is defined}.

One can compute I by using (mv, eo), where mv = δv(mv,0, s̃). Therefore, knowing

(mv, eo) is enough to enumerate all possible safe insertion choices.
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As we have done in the exponential algorithm, we partition I into a finite number

of sets using function Ins() and enumerate the partition instead of enumerating all

strings in I. Specifically, I = {Ins(mv,m
′
v) : mv = δv(mv,0, s̃) ∧ (∃sI ∈ E∗i s.t. m′v =

δv(mv, sI) is defined) ∧ δv(m′v, eo) is defined}. To construct a finite game structure

that enumerates all safe insertion choices, we use m′v to represent the set of insertions

Ins(mv,m
′
v) for mv.

Theorem IV.21. The AISp enumerates all and only i-enforcing insertion functions.

Opacity is i-enforceable if and only if the AISp is not the empty automaton.

Proof. The proof follows from Lemma IV.19, Lemma IV.20, Theorem IV.13 and The-

orem IV.14.

4.8.2 Complexity of the Construction Procedure

We use current-state opacity to analyze the computational complexity for the

AISp. Given system G with |X| states, the current-state estimator has at most |XE | =

2|X| states. To build the i-verifier V , we dashed parallel compose two special current-

state estimators. Hence, V has at most |Mv| = |XE |2 states. The unfolded i-verifier

V p
u , which uses Mv states to enumerate actions, has worst-case state space complexity

|Xvpu| = |Mv| + |Eo||Mv|. Specifically, the first and the second terms account for the

information states of the system and the insertion function, respectively. The time

complexity for V p
u is, on the other hand, is O(|Mv|3) = O(|XE |6) because Algorithm

6 requires computing the connectivity between states of V . Finally, the AISp has at

most |Xvpu| states because the AISp is the recognizer for Lm(V e,trim
u )↑C . Hence, in all,

the space complexity of the AISp in the polynomial algorithm is O ((|Eo|+ 1)|XE |2),

reduced from exponential as compared to the AISe.

We now show an example where the AISp is smaller than the AISp.

Example IV.22. Consider CSO of a system with Eo = {a, b, c}. We show directly

the estimator E in Figure 4.14(a), whose states are the estimates of system states;
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Figure 4.14: Relevant automata used in Example IV.22

for simplicity, these states are numbered from 1 to 5. Assume that state 2 is unsafe

and that the other states are safe. In this example, we will build the AISe and AISp,

and show how the AISe contains redundant information. We start with constructing

the AISe. Shown in Figure 4.14(b) is V built from E . We also build mObs(V ) in

Figure 4.14(c). Then, we unfold the structure of mObs(V ), resulting in V e
u that is

shown in Figure 4.15(a). As can be seen in the Figure, no state is blocked. Hence,

AISe equals V e
u . On the other hand, to construct the AISp, we unfold directly the

structure of V . The resulting V p
u is shown in Figure 4.15(b), which is also the AISp.

One can see that states ((5, 3), B) and ((5, 3), F ) in the AISe are combined into state

(5, 3) in the AISp. Although ((5, 3), B) and ((5, 3), F ) have different observer states,

their insertion choices are the same. This is because being in either observer state

B or observer state F does not change the dashed connectivity from state (5, 3). In

this example, the AISe has 20 states in total while AISp has only 17 states. The

polynomial algorithm can reduce the state space complexity of the AIS.
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Figure 4.15: The AISe and the AISp in Example IV.22
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Both the AISe and the AISp enumerate all i-enforcing insertion functions. Because

the AISp has a smaller state space, hereafter, we will use AISp as our choice of the

AIS. For simplicity, we will drop the superscript e in the AISe and simply call it the

AIS.

4.9 Discussion: Opaque Communication

While the primary purpose of this chapter is to enforce opacity, it is useful to dis-

cuss the insertion enforcement mechanism in the context of opaque communications,

as shown in Figure 4.16. Consider system G to be a sender that transmits messages

s ∈ P [L(G)] through a public communications channel. Some messages are secret

(corresponding to unsafe strings that reveal the secret); they are only for an intended

receiver. Other messages are non-secret (corresponding to safe strings) and can be

sent to any receiver. The communications channel is public. An intruder can easily

eavesdrop on the transmitted message. To protect the secret messages, the system

decides to “pack” each secret message s ∈ P [L(G)] \ Lsafe in a non-secret-looking

message s′, where Mi(s
′) ∈ Lsafe. The “packing” is done by inserting additional

internet packets that are represented by events in Ei. The resulting transmitted

message is an innocuous message that contains hidden secret information. This idea

is consistent with the technique of Internet Steganography in computer science [27],

where secret messages are transmitted through a public channel with some hiding

techniques. A typical technique embeds secret information in unused bits of packet

headers, such as the IP headers Type of Service (TOS) field proposed in [27]. The

usage of such bits are assumed to be communicated between the sender and receiver

prior to the use of the stegosystem and thus is not known by others. Similarly, in

opaque communications, we can label our inserted packet with an unused bit in the

packet header. As discussed, the insertion label is shared only by G and the intended

receiver. Thus, the intended receiver can reconstruct the secret message by applying
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projection Pund to the message. However, because the intruder cannot see the inser-

tion label, it reads the message with maskMi and believes all message are regular if

the insertion function is i-enforcing. Consequently, our technique for opacity enforce-

ment can be applied in the above-mentioned opaque communications model provided

a mechanism for exchanging the insertion label is available.

Output behavior Modified behaviorInsertion 
function

additional observable events

System

Intruder

System G

Observation Map P1 Observation Map P2

Estimator 1 Estimator 2

Coordinator

Coordinated Estimate

Attacker 1 Attacker 2

Estimate(s1) Estimate(s2)

s1

s1 s2

t t

s’Insertion 
function

System

Intruder
Mi(s’)ϵ  Lsafe

Proj. 
P   s     Public Channel

Receiver
Pund(s’) = s

Figure 4.16: The opaque communication

4.10 Discussion: Intruder’s Knowledge of fI

So far, we have assumed that the intruder knows the structure of G but does not

know how fI is defined. By using an i-enforcing fI , we assure that the intruder, not

knowing fI at the outset, would never figure out the existence of an insertion function.

However, an interesting question that arises is what happens if the intruder knows

fI . In this section, two attack models are considered: (AM1) the intruder knows only

G; and (AM2) the intruder knows G and fI . We discuss how such knowledge of fI

affects the construction of an insertion function.

In both models (AM1) and (AM2), the intruder does not observe the insertion

label, i.e., it observes through Mi ◦ Poi. In (AM2), by knowing fI , the intruder can

construct the modified system G̃ and the modified secret and non-secret behaviors,

i.e., L̃S := P−1oi (f strI [P (LS)]) ∩ L(G̃) and ˜LNS := P−1oi (f strI [P (LNS)]) ∩ L(G̃). Hence,

checking if fI enforces opacity within (AM2) is equivalent to verifying if G̃ is opaque

with respect to L̃S, ˜LNS, and Mi ◦ Poi. That is, fI enforces G to be opaque if and
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only if

Mi

(
Poi[L(G̃)]

)
⊆Mi[Poi( ˜LNS)] (4.3)

Since the intruder knows fI , there is no need to keep the modified output within

Lsafe. The insertion function can create any L̃S and ˜LNS as long as Equation (4.3)

holds.

One may think opacity enforcement within (AM1) is a superclass of that within

(AM2). However, opacity enforcement for these two attack models may lead to in-

comparable solutions. A solution for one attack model may not be a solution for

the other attack model. The reasons are the following: under (AM1), we need

Mi(Poi[L(G̃)]) ⊆ Lsafe but we do not need Equation (4.3); on the other hand, under

(AM2), Equation (4.3) is required but Mi(Poi[L(G̃)]) ⊆ Lsafe is not. For example,

Figure 4.17(a) shows a current-state estimator where states 7 and 8 are unsafe and

others are safe. Under (AM1), we have an i-enforcing insertion function defined as

fI(ε, a) = dia, fI(ε, b) = aib and fI(s, eo) = eo otherwise. However, such an fI will

reveal the secret under (AM2) because abc ∈ P (LS) is mapped to diabc and observing

Mi[Poi(aib)] = ab implies the occurrence of string b, which reveals the secret. On the

other hand, we show in Figure 4.17(b) another current-state estimator where only

state 3 is unsafe. Under (AM2), we can insert ai before b to make aib and ab obser-

vationally equivalent under Mi ◦ Poi. However, Mi(Poi[L(G̃)]) 6⊆ Lsafe. This results

in a tricky situation under (AM1) where if ab has indeed occurred, the intruder will

be in estimator state 3 and the secret will be revealed.

4.11 Conclusion

We have considered the problem of enforcing opacity using insertion functions at

the interface between the system and the intruder. In this novel opacity-enforcement

paradigm, the insertion function dynamically changes the system’s observed behavior
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Figure 4.17: Current-state estimators used to show that (AM1) and (AM2) are not
comparable

by inserting additional observable events. Such insertion functions must satisfy a

property called “i-enforceability,” which captures insertion functions’ ability to force

every system output behavior to be observationally equivalent to some non-secret

behavior. To verify if a given insertion function is i-enforcing, we have constructed

an automaton that captures the modified output behavior and used it to check if

the modified behavior never reveals the secret. To verify if an opacity notion is i-

enforceable, we have constructed the All Insertion Structure (AIS) that enumerates

in a compact state structure all i-enforcing insertion functions. We have shown that

opacity is i-enforceable if and only if the AIS is not the empty structure. Further-

more, using the AIS, we have presented an algorithm that synthesizes one i-enforcing

insertion function. Lastly, the complexity of building the AIS was studied.
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CHAPTER V

Synthesis of Optimal Insertion Functions for

Opacity Enforcement

5.1 Introduction

In the previous chapter, we have studied the enforcement of opacity notions using

insertion functions. Given a system that is not opaque, the so-called All Insertion

Structure (AIS) is a bipartite graph that enumerates all valid insertion functions.

Specifically, the AIS is a 2-player game structure that enumerates all system’s output

events at “system” states and all insertion choices at “insertion” states. We have

provided an algorithm that synthesizes one random i-enforcing insertion function from

the AIS. An interesting question that has not been addressed is how to synthesize an

insertion function that is optimal in some specific sense.

In this chapter, we introduce the maximum total cost and the maximum mean

cost to quantify insertion functions. The first cost captures the total insertion cost

and the second cost considers the average insertion cost (per system output), both

in the worst-case scenario. Specifically, we solve two optimization problems. We

develop a test that determines if there is an insertion function that has a finite total

cost. If such an insertion function exists, we then minimize the maximum total cost

and synthesize an optimal total-cost insertion function. Otherwise, we minimize the
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maximum mean cost and synthesize an optimal mean-cost insertion function.

The synthesis of an optimal insertion function is solved by first finding an optimal

strategy for the insertion function player on the AIS, and then using the optimal

strategy to construct an insertion automaton. A strategy of the insertion function

player is a mapping from every historical interaction of the system and the insertion

function to an insertion action. It uniquely represents a given insertion function. An

insertion automaton, on the other hand, is a compact encoding of an insertion function

that can be easily composed with the system automaton. To find an optimal strategy,

we leverage results from minimax games for the maximum total cost objective, and

from mean payoff games, developed in [66], for the maximum mean cost objective.

After the optimal strategy is found, we construct an insertion automaton, which is an

I/O automaton that encodes the optimal insertion function. Our approach is inspired

by [12] and [11], where an optimal dynamic observer is synthesized for fault diagnosis

and opacity enforcement, respectively. But here we use insertion functions instead of

dynamic observers.

The remaining sections of this chapter are organized as follows. Section 5.2 de-

fines the maximum total cost and the maximum mean cost for insertion functions

represented as insertion strategies on the AIS, and shows how to compute them. In

Section 5.3, we consider the maximum total cost and present an algorithm for syn-

thesizing an optimal total-cost insertion function. In Section 5.4, we consider the

maximum mean cost and present an algorithm for synthesizing an optimal mean-cost

insertion function. Finally, Section 5.5 concludes the chapter. Most of the results in

this chapter also appear in [60].

5.2 Cost of An Insertion Function

To perform optimization on the AIS, we first define costs for all the insertion

functions that are embedded in the transition structure of the AIS. Because our opti-
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mization procedures rely on finding optimal insertion strategies and since an insertion

strategy uniquely defines an insertion function, we will define costs for insertion func-

tions using insertion strategies.

Specifically, given a game, a player’s strategy is a mapping from every game history

where the player should move to an action. An insertion strategy, which is a strategy

of player I, maps every path on the AIS that ends at a Z state to an outgoing edge

of that Z state.

Definition V.1 (Insertion Strategy). An insertion strategy on the AIS is a mapping

π : (Eo2
E∗i )∗Eo → 2E

∗
i that assigns an insertion action Li ∈ 2E

∗
i to every history where

player I should play.

We can represent an insertion strategy as a (possibly infinite-state) bipartite graph

H = (YH ∪ZH , Eo ∪ 2E
∗
i , fH , yH,0) where each YH state enumerates all system output

events and each ZH state selects one insertion action. In some cases, the bipartite

graph representation H can be obtained by selecting outgoing actions for states of

the AIS; such an insertion strategy is called AIS-state-based, or simply state-based

hereafter. In general, we can obtain H by splitting the state space of the AIS as

necessary using standard automata procedures. Only finite-state Hs are considered

for our problem domains in this chapter. In the remainder of this section, we assume

all Hs are finite. In Section 5.3, we will prove that there exists an optimal state-based

strategy when an optimal one exists for the the considered cost objective.

5.2.1 The Weight Function w on the AIS

To define costs for insertion strategies, one needs to define a cost structure on

the AIS. We begin with assigning a cost value to every inserted event. Cost function

c : Ei → {0, 1, 2, . . . Cmax} maps each inserted event to a finite natural number. The

domain of c is extended to E∗i in a recursive additive manner by defining c(ε) = 0

and c(se) = c(s) + c(e) where s ∈ E∗i , e ∈ Ei. With function c, Definition V.2 that
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follows defines a weight function w on the transitions of the AIS. The weight value of

a transition is the minimum insertion cost.

Definition V.2 (Weight Function w on the AIS). Given the AIS = (Y ∪ Z,Eo ∪

2E
∗
i , fAIS,yz ∪ fAIS,zy, y0) and cost function c, we define weight function w : (Y ×Eo×

Z) ∪ (Z × 2E
∗
i × Y ) → {0, 1, 2, . . . Wmax} that maps each transition to its minimum

insertion cost. Specifically, w(y
eo−→ z) = 0 and w(z

Li−→ y) = min{c(sI) : sI ∈ Li}

where y ∈ Y, z ∈ Z, eo ∈ Eo and Li ∈ 2E
∗
i is the set of inserted strings that labels the

given transition.

Note that transition y
eo−→ z has weight zero as eo is a system output event that

contains no inserted event. For transition z
Li−→ y, we select from set Li one string

that achieves the minimum cost and assign that cost to the transition. This minimum

is always well defined since there is at least one insertion that is bounded in length.

Example V.3. Consider the AIS in Figure 5.1(a). We calculate the weight function

w with respect to cost function c(ai) = c(bi) = 1, c(ci) = 2. Every y
eo−→ z has a

zero weight value. For z
Li−→ y, we find the minimum cost among all strings in Li.

Specifically, for transition ((2, 2), a)
(aibi)

∗

−−−−→ (4, 4), we find the minimum insertion cost

c(ε) = 0 and assign the transition weight to zero. Other transitions that are labeled

with (aibi)
∗ or (aici)

∗ are also assigned zero weight. For transitions labeled with bi or

ci, we assign them weight 1 or 2, respectively. Finally, the AIS can be represented as

the weighted graph in Figure 5.1(b), after the state names are relabeled by numbers

and transition are labeled only by the edge weight.

5.2.2 The Maximum Total Cost of An Insertion Strategy

We now extend the domain of weight function w to paths on the AIS and calculate

the total cost of a path on the AIS.

Definition V.4 (Paths). A path of k rounds that is generated by the AIS is a
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Figure 5.1: The AIS and its weighted graph with c(ai) = c(bi) = 1, c(ci) = 2

106



sequence of transitions ending at a Y state: p = y0
e1−→ z0

L1−→ y1
e2−→ z1

L2−→

· · · yk−1
ek−→ zk−1

Lk−→ yk, where ei+1 ∈ Eo, Li+1 ∈ 2E
∗
i , zi = fAIS,yz(yi, ei+1), and

yi+1 = fAIS,zy(zi, Li+1) for 0 ≤ i ≤ k − 1. The set of paths generated by the AIS is

Paths(AIS) := ∪k≥0Pathk(AIS), where Pathk(AIS) is the set of all k-round paths.

Next, we define the total costs of paths.

Definition V.5 (Total Cost of A Path). Consider path p = y0
e1−→ z0

L1−→ y1
e2−→ z1

L2−→

· · · yk−1
ek−→ zk−1

Lk−→ yk ∈ Pathk(AIS). The total cost of p is w(p) =
∑k

i=1[w(ei) +

w(Li)] =
∑k

i=1w(Li).

The last equality holds because w(ei) = 0, ∀ei ∈ Eo.

An insertion strategy has an infinite domain of paths in general; each path leads

to a total cost. We consider the worst-case scenario by looking at the largest total

cost. This cost is the maximum total cost of the insertion function that the insertion

strategy encodes.

Definition V.6 (Maximum Total Cost of An Insertion Function). Given insertion

function fI , its maximum total cost is ct(fI) := ct(H) := lim supk→∞{max{w(p) : p ∈

Sk}}, where Sk := {p : p ∈ ∪ki=0Pathi(AIS)|H)} and H is the insertion strategy that

uniquely defines fI .

The notation Pathk(AIS)|H refers to the restriction of H to k-round paths. We

consider the limit superior because the system generates arbitrarily long strings in

general and the total cost may not converge.

5.2.3 Calculation of the Maximum Total Cost

Algorithm 8 that follows computes the maximum total cost for an insertion func-

tion. Given insertion function fI , we first construct insertion strategy H by selecting

actions on the AIS according to fI and splitting the state space of the AIS when
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needed. We then compute ct(fI) directly on the structure of H. In the algorithm we

denote by nH := |YH ∪ ZH | the cardinality of the state space of H.

Algorithm 8: The maximum total cost of fI
input : Insertion function fI and cost function c
output: ct(fI)

1 Encode fI as insertion strategy H = (YH ∪ ZH , Eo ∪ 2E
∗
i , fH , yH,0)

2 Find all strongly connected components C = {C1, C2, . . . , Ck} on H
3 for Ci ∈ C do

if ∃u→ u′ ∈ Ci s.t. w(u→ u′) 6= 0 then
Return ∞

4 for u ∈ YH ∪ ZH do
Calculate V|nH |−1(u) where
∀u, Vk(u) := max

u→u′
{w(u→ u′) + Vk−1(u

′)} and V0(u) = 0

5 Return V|nH |−1(yH,0)

The maximum total cost ct(fI) is the maximum cost-to-go from the initial state of

H. First, we determine if H contains any strongly-connected component (SCC) that

has a non-zero edge weight. If there exists a non-zero-cost SCC (i.e., an SCC whose

sum of all edge weights is non-zero), then there exists a path that loops in that SCC

and incurs an infinite cost-to-go. In this case, we can immediately return ct(fI) =∞.

If, otherwise, there is no non-zero-cost SCC, then the maximum cost-to-go from the

initial state equals the maximum simple-path cost-to-go from the initial state. Hence,

we iteratively compute the (|nH | − 1)-step cost-to-go from the initial state.

Denote by |fH | the number of transitions in H. In Algorithm 8, step 2 can be

computed by using Tarjan’s strongly connected components algorithm [57], which

runs in O(|nH |+ |fH |). Step 4 can be computed in O(|nH ||fH |). Thus, ct(fI) can be

computed in O(|nH ||fH |).

Example V.7. Consider insertion function fI encoded by the insertion automaton

in Figure 5.2. We construct insertion strategy H that defines fI by selecting in

Figure 5.1(a) all states but the shaded states and selecting ε for transitions labeled

by (biai)
∗, (aibi)

∗, (aici)
∗, or (ciai)

∗. Suppose the cost function is defined as c(ai) =
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Figure 5.2: Insertion automaton IA

1, c(bi) = 0, c(ci) = 2. We calculate ct(fI) by following Algorithm 8. First, we find all

the SCC (i.e., {(2, 2), ((2, 2), a), (4, 4), ((4, 4), b)}, {(3, 3), ((3, 3), a), (5, 5), ((5, 5), c)},

{(4, 1), ((4, 1), a)}) on H. Because the edge weights of all the SCCs are zero, we

then iteratively compute V|nH |−1(0) = V13(0) = 2. Thus, ct(fI) = 2. Now, let us

change c(bi) = 1. The edge weights of the AIS are shown in Figure 5.1(b). The SCC

{(4, 1), ((4, 1), a)} (or {7, 11} in Figure 5.1(b)) with the new cost function becomes a

non-zero-cost self-loop. Hence, Algorithm 8 returns infinity.

5.2.4 The Maximum Mean Cost of An Insertion Strategy

Consider insertion function fI for systemG. The maximum total cost ct(fI) always

exists when G generates only strings of finite length. However, if G has a cycle, fI

may insert one or more events when G loops in that cycle, thereby resulting in an

infinite ct(fI). In this case, we compute the maximum mean cost of fI , denoted by

c̄(fI), which considers the average insertion cost per system output event.

Definition V.8 (Maximum Mean Cost of An Insertion Function). Given insertion

function fI , the maximum mean cost is c̄(fI) := c̄(H) := lim supk→∞{max{ 1
k
w(p) :

p ∈ Sk}}, where Sk := {p : p ∈ ∪ki=0Pathi(AIS)|H)} and H is the insertion strategy

that uniquely defines fI .

The limit superior is taken as the maximum mean cost may not converge in the limit.

If all paths on H are of finite length, then c̄(H) = 0.
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5.2.5 Calculation of the Mean Cost

We calculate c̄(fI) on its insertion strategy H by treating H as a weighted graph

using the given weight function. As seen in Definition V.8, the maximum mean cost

is defined in terms of rounds. Since a round corresponds to two steps on H, the

maximum mean cost of fI is double of the “maximum mean weight” of H in the

terminology of weighted graphs. We can calculate c̄(fI) using the version of Karp’s

Theorem presented in [2] for maximum mean weight.1

Theorem V.9. (Karp’s Theorem [2]) Consider a weighted directed graph (X, f) with

|X| = n, where X is the set of vertices and f is the set of edges. The maximum mean

weight for a given initial vertex x0 is,

λ∗ = max
x∈X

min
0≤k≤n−1

Fn(x)− Fk(x)

n− k
(5.1)

where Fk(x) is the maximum weight of an edge progression of length k from x0 to x.

With the maximum mean weight of H defined, we now compute c̄(fI) in Algorithm

9. The computation finishes in O(|nH |+ |fH |).

Algorithm 9: The maximum mean cost of fI
input : Insertion function fI and cost function c
output: c̄(fI)

1 Encode fI as insertion strategy H = (YH ∪ ZH , Eo ∪ 2E
∗
i , fH , yH,0)

2 Compute the maximum mean weight λ∗ of weighted graph (YH ∪ZH , fH) using
Equation (5.1)

3 Return 2λ∗

Example V.10. Consider again the insertion function fI in Figure 5.2. We construct

insertion strategy H for fI by removing the shaded states in Figure 5.1(a). Let the

cost function be c(ai) = c(bi) = 1, c(ci) = 2. We have shown in Example V.7 that,

1The original version of Karp’s Theorem in [28] is for minimum mean weight.
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with such a cost function, ct(fI) goes to infinity. Here, we calculate the maximum

mean cost using Algorithm 9. Consider the weighted graph (YH ∪ ZH , fH) of H, as

shown in Figure 5.1(b) without the shaded states. The maximum mean weight is

λ∗ = F14(7)−F12(7)
14−12 = 7−6

2
= 1

2
. Thus, ct(fI) = 2λ∗ = 1. Insertion function fI costs one

per system output in the worst case.

5.3 Synthesis of An Optimal Finite-Cost Insertion Function

We have introduced the maximum total cost and the maximum mean cost for

insertion functions. Given G that is not opaque, we want to find an optimal insertion

function with respect to each cost. The two optimization problems are formulated as

follows. In the problem statements, we use H ∈ AIS to denote that insertion strategy

H is obtained from the AIS after potential state splitting.

Problem V.11. Consider G that is not opaque and cost function c for inserted

events. Find:

(a) the optimal maximum total cost c∗t = min{ct(H) : H ∈ AIS}

(b) an optimal total-cost insertion function that achieves c∗t

Problem V.12. Consider G that is not opaque and cost function c for inserted

events. Find:

(a) the optimal maximum mean cost c̄∗ = min{c̄(H) : H ∈ AIS}

(b) an optimal mean-cost insertion function that achieves c̄∗

Notice that if c∗t is finite, there is no need to solve Problem V.12 as c̄∗ is known to

be zero and an optimal total-cost insertion function is an optimal mean-cost insertion

function. Hence, our goal is to synthesize an optimal total-cost insertion function if

c∗t is finite, and an optimal mean-cost insertion function otherwise. Problem V.11 is

solved in Sections 5.3.1 to 5.3.3 while Problem V.12 is solved in Section 5.4.

111



5.3.1 Minimax Game Formulation for An Optimal Total-Cost Insertion

Function

Recall that the AIS is a game structure that enumerates, in alternate turns, the ac-

tions of the system player and those of the insertion function player. To solve Problem

V.11, we consider a minimax game on the AIS and find an optimal insertion strategy.

In the minimax game, the system player tries to maximize lim infk→∞
∑k

i=1w(u
e−→ u′)

and the insertion function player tries to minimize lim supk→∞
∑k

i=1w(u
e−→ u′), where

u, u′ ∈ Y ∪Z and e ∈ Eo∪2E
∗
i . Because the optimal maximum total cost c∗t is defined in

terms of the worst-case scenario, it is indeed the resulting lim supk→∞
∑k

i=1w(u
e−→ u′)

in the minimax game. Moreover, the optimal insertion strategy is the resulting strat-

egy that minimizes lim supk→∞
∑k

i=1w(u
e−→ u′). As we will show later, there is an

optimal state-based insertion strategy, meaning that the strategy can be represented

as a subgraph of the AIS. We will use the subgraph to construct an optimal insertion

function in Section 5.3.3.

5.3.2 Finding the Optimal Total Cost

The system we consider generates arbitrarily long strings in general, and thus

the game described by the AIS is infinite horizon. In this section, we solve Problem

V.11 by solving a finite-horizon minimax game played on the AIS, where player P1

maximizes the total cost at Y states and player P2 minimizes the total cost at Z

states, for a finite number of steps. Specifically, we use the optimal total cost for

the finite-horizon minimax game to determine c∗t , and then use c∗t to find an optimal

insertion strategy.

Consider the AIS = (Y ∪ Z,Eo ∪ 2E
∗
i , fAIS,yz ∪ fAIS,zy, y0). Denote by Vk(u) the

optimal total cost and by ak(u) an optimal action in the k-step game assuming the

game starts at state u, where u ∈ Y ∪ Z. We calculate the cost and the action using

112



the following recursive equations.

Vk(u) =


max
(u→u′)

{w(u
e−→ u′) + Vk−1(u

′)}, if u ∈ Y

min
(u→u′)

{w(u
e−→ u′) + Vk−1(u

′)}, if u ∈ Z
(5.2)

where V0(u) = 0 for u ∈ Y ∪ Z.

ak(u) =


arg max
(u→u′)

{w(u
e−→ u′) + Vk−1(u

′)}, if u ∈ Y

arg min
(u→u′)

{w(u
e−→ u′) + Vk−1(u

′)}, if u ∈ Z
(5.3)

Note that the strategy found using Equation (5.3) is not state-based in general,

as the optimal action depends also on k.

It turns out that finite-horizon minimax games can be used to analyze the infinite-

horizon minimax game. Denote by V (y0) the optimal total cost and by π∗ an optimal

strategy for P1 and P2 in the infinite-horizon minimax game.2 Let n be the number

of states in the AIS. We will prove in Theorem V.15 that V (y0) and a state-based π∗

can be found in the n2Wmax-step game. In the following, we let V π
k (y0) be the total

cost in the k-step game when the game starts at y0 and strategy π is used, and let π∗k

be an optimal strategy in the k-step game.

Lemma V.13. Let l = n2Wmax. If Vl(y0) < nWmax, then there exists a state-based

optimal strategy πl for the l-step game such that V πl
l′ (y0) = V πl

l (y0),∀l′ ≥ l.

Proof. Consider outcome path pl on the AIS, resulting from the players playing π∗l .

Label actions on pl by a1a2 . . . al. We will first construct a state-based strategy πl

that is as good as π∗l . Then, we show that if πl is used for l′-step game (∀l′ ≥ l), the

optimal total cost would be the same as that for the l-step game.

2Only one player will move at a given history of the game. Thus, we can treat the strategies of
the two players as a single strategy.
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Figure 5.3: An outcome path used to illustrate the proofs of Lemmas V.13 and V.14

Partition pl into a1 . . . (aq1 . . . ar1) . . . (aq2 . . . ar2) . . . (aqNc
. . . arNc

) . . . al, where

(aqi . . . ari) is the i-th cycle Ci on pl, as shown in Figure 5.3. Because a cycle is formed

within at most n steps, Nc ≥ l/n = n2Wmax/n = nWmax. First, we argue that each

of these cycles has a zero cycle cost. Suppose there exists a non-zero cost cycle Cnz

(say C1). If xq1 is played by P1, then P1 has a better strategy for which the outcome

path reaches Cnz and loops there until step l. In this case, the number of times in Cnz

must be greater than Nc and the path would incur a total cost greater than nWmax.

This contradicts the hypothesis in the statement of the lemma that Vl(y0) < nWmax

and that pl is the optimal outcome path. On the other hand, if xq1 is played by P2,

then P2 has a better strategy for which the outcome path skips Cnz and loops in a

zero-cost cycle for the extra steps. This also contradicts the hypothesis that pl is the

optimal outcome path. Hence, all the cycles have zero-cost. Then, we argue that

actions arNc+1, . . . , al are also zero-cost using a similar reasoning. Suppose any of

them has a non-zero cost. Then, P1 has a better strategy for which the outcome path

skips C1 to CNc and loops in a cycle containing arNc+1, . . . , al. Also, P2 has a better

strategy that loops in zero-cost cycle CNc until step l. Either case contradicts the

hypothesis that pl is the optimal outcome path. Hence, arNc+1, . . . , al are zero-cost.

Now, let us construct a new path p′l from pl as follows. First, find on pl the smallest

i such that all actions after ari have a zero cost. Then, remove cycles C1, . . . Ci−1 and

all actions after ari . The resulting p′l is a1 . . . aq1−1ar1+1 . . . aq2−1ar2+1 . . . (aqi . . . ari),

which ends in cycle Ci. Define state-based strategy πl by assigning to each state the

only outgoing action according to p′l. Use πl as the strategy for the l-step game. The
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resulting outcome path would begin with p′l as a subpath and then loop in Ci until step

l. Because this path differs in pl only in the replacement of some zero-cost actions,

the corresponding total cost is the same as that for pl. That is, V πl
l (y0) = Vl(y0).

Therefore, πl is an optimal strategy for the l-step game.

Finally, because Ci is a zero-cost cycle, using πl for any l′-step game (l′ ≥ l) would

not increase the total cost as the outcome path will cycle in Ci. Hence, V πl
l′ (y0) =

V πl
l (y0),∀l′ ≥ l.

Lemma V.14. Let l = n2Wmax. If Vl(y0) ≥ nWmax, then Vk+n(y0) > Vk(y0),∀k ≥ 0.

Proof. Consider the same setups used in Lemma V.13. We partition pl again into

a1 . . . (aq1 . . . ar1) . . . (aq2 . . . ar2) . . . (aqNc
. . . arNc

) . . . al. This time, it is hypothesized

that Vl(y0) ≥ nWmax. We will argue that all the cycle costs are non-zero.

If all the cycles are zero cost, then Vl(y0) < nWmax because at most n − 1 steps

do not belong to a cycle. But this violates the hypothesis of the lemma. Suppose

there is a zero-cost cycle Cz (say C2). Then, if xq2 is played by P1, then P1 can do

better by skipping Cz and using the extra steps on a non-zero cost cycle. On the

other hand, if xq2 is played by P2, then P2 can do better by staying in Cz until step l.

Both cases contradict our assumption that pl is an optimal outcome path. Therefore,

all the cycle costs on pl must be non-zero.

Consider the k-step game for a given k ≥ 0 and let pk be an optimal outcome path

for the k-step game. If k < l, all the cycle costs on pk must be non-zero. Otherwise,

for P1, using the first k steps of pl results in a better strategy; for P2, using pk for the

first k step of the l-step game results in a path better than pl. If k > l, all the cycles

on pk must be non-zero cost as well. Otherwise, if there exists a zero-cost cycle, then

P1 could perform at least as well by skipping that cycle and using the extra steps on

a non-zero cost cycle; P2 would prefer to stay in that zero-cost cycle. Also, if all the

cycles are zero-cost, then Vk(y0) < nWmax, which would lead to the wrong conclusion

that Vk(y0) < Vl(y0). Therefore, if Vl(y0) ≥ nWmax, then all the cycles on pk are
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non-zero cost, ∀k ≥ 0.

Now, let us compare Vk+n(y0) and Vk(y0). We partition pk and pk+n into segments

of cycles, as we have done for pl. Because a cycle is formed within n steps, pk+n

must have at least one more cycle than pk. Since all the cycles are non-zero cost,

Vk+n(y0) > Vk(y0).

Theorem V.15. Let l = n2Wmax. If Vl(y0) < nWmax, then V (y0) = Vl(y0) and is

achieved by a state-based optimal strategy πl for the l-step game. Otherwise, V (y0)

goes to infinity.

Proof. When Vl(y0) < nWmax, we have constructed in Lemma V.13 a state-based

optimal strategy πl for the l-step game. Use πl for the infinite game. We have

liml′→∞ V
πl
l′ (y0) = Vl(y0) ≤ liml′→∞ V

π∗

l′ (y0). The first equality is according to Lemma

V.13; the second inequality is because π∗ is an optimal strategy for the infinite game.

Now, use π∗ for the l-step game. Because πl is the optimal strategy for the l-step

game, we have V π∗

l (y0) ≤ Vl(y0) < nWmax. Partition the optimal outcome path p∞

for the infinite game into a1 . . . (aq1 . . . ar1) . . . (aq2 . . . ar2) . . ., where (aqi . . . ari) is the

i-the cycle Ci on p∞. Because p∞ is an optimal outcome path, the cycle costs must

be either all zero or all non-zero. Otherwise, it would not be optimal, by the same

argument as in the proofs of Lemmas V.13 and V.14. Since V π∗

l (y0) < nWmax,

all cycles in the first l steps must be zero-cost according to Lemma V.13. Thus,

all cycle costs on p∞ are zero and there are at most n − 1 non-zero cost edges on

p∞. Now, let us construct p′∞ from p∞ by skipping cycles until the last non-zero-

cost edge and then looping in a zero-cost cycle for the extra steps. The total cost

of p′∞ is the sum of the first n − 1 steps, which equals that of p∞. That is, p′∞

corresponds to another optimal strategy π′∗ for the infinite game. Consequently, we

have V (y0) = liml′→∞ V
π′∗

l′ (y0) = V π′∗
n−1(y0) = V π′∗

l (y0) ≤ V πl
l (y0) = liml′→∞ V

πl
l′ (y0).

Finally, combine the above two inequalities. We obtain V (y0) := liml′→∞ V
π′∗

l′ (y0) =

liml′→∞ V
πl
l′ (y0) = V πl

l (y0) = Vl(y0); state-based strategy πl is optimal for the infinite
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game and V (y0) = Vl(y0).

On the other hand, when Vl(y0) ≥ nWmax, we have Vk+n(y0) > Vk(y0),∀k ≥ 0 by

Lemma V.14. Take k to infinity; the optimal total cost for the infinite game V (y0)

goes to infinity.

We have proven in Theorem V.15 that c∗t = V (y0) can be calculated in a finite-

horizon minimax game. Hence, we now combine all the above results and compute

c∗t in Algorithm 10. Notice that if the AIS is acyclic, then V (y0) will converge within

n steps and V (y0) < nWmax; that is, c∗t <∞.

Algorithm 10: The optimal total cost c∗t
input : AIS = (Y ∪ Z,Eo ∪ 2E

∗
i , fAIS,yz ∪ fAIS,zy, y0) and weight function w

output: c∗t

1 Compute Vl(y0) for l = n2Wmax using Equation (5.2)
2 if Vl(y0) < nWmax then

Return Vl(y0)
else

Return ∞

Example V.16. Let us consider the AIS in Figure 5.1(a) with cost function c(ai) =

1, c(bi) = 0, c(ci) = 2. We compute c∗t by following Algorithm 10. In step 1,

Vl ((0, 0)) = 2, where l = n2Wmax = 162 · 2 = 512. Because Vl ((0, 0)) < nWmax = 32,

we have c∗t = Vl ((0, 0)) = 2. Now, if we change c(bi) = 1, then Vl ((0, 0)) = 257 >

nWmax = 32. Therefore, c∗t goes to infinity in this case.

Corollary V.17. There exists optimal state-based total-cost insertion functions if

and only if Vl(y0) < nWmax.

Proof. The proof follows directly from Theorem V.15.

5.3.3 Synthesis of the Optimal Total-Cost Insertion Function

Algorithm 10 calculates c∗t . If c∗t < ∞, then there exists an optimal total-cost

insertion function and we will synthesize one using Algorithm 11. Otherwise, we go
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to Section 5.4 and solve Problem V.12.

When Vl(y0) < nWmax, by Corollary V.17, there is an optimal state-based strategy.

In Algorithm 11 that follows, we build optimal state-based strategy H that selects all

the actions at Y states and optimal actions at Z states from the AIS, resulting in a

subgraph of the AIS. Note that Algorithm 11 computes an optimal insertion strategy

in a breadth-first manner, thereby ignoring Z states that are never reached.

Algorithm 11: Find an optimal total-cost insertion strategy

input : AIS= (Y ∪ Z,Eo ∪ 2E
∗
i , fAIS,yz ∪ fAIS,zy, y0) and weight function w

output: Optimal strategy H = (YH ∪ ZH , Eo ∪ 2E
∗
i , fH , yH,0)

1 for u ∈ Y ∪ Z do
Compute al(u) for l = n2Wmax using Equation (5.3)

2 Let yH,0 = y0. Set YH = {yH,0}
3 for u ∈ YH that has not been examined do

for e ∈ Eo do
fH(u, e) := fAIS,yz(u, e) if fAIS,yz(u, e) is defined

4 for u ∈ ZH that has not been examined do
fH(u, e) := fAIS,yz(u, e) where e = al(u) is an optimal action for u

5 Go back to step 2 until all selected states have been examined

Once we obtain optimal state-based insertion strategy H from Algorithm 11, we

build an insertion function from H. Without loss of generality, the insertion function

is encoded as an insertion automaton, using Algorithm 12.

Algorithm 12: Construct an insertion automaton from an insertion strategy

input : H = (YH ∪ ZH , Eo ∪ 2E
∗
i , fH , yH,0), and weight function w

output: IA= (Xia, Eo, E
∗
iEo, fia, qia, xia,0)

1 Let xia,0 = yH,0, Xia = {xia,0}
2 for x ∈ Xia that has not been examined do

for x
eo−→ z

Li−→ y where x, y ∈ YH , z ∈ ZH do
Add y to Xia

Find sI ∈ Li that corresponds to w(z
Li−→ y)

Define fia(x, eo) = y and qia(x, eo) = sIeo

3 Go back to step 2 until all states in Xia have been examined
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Example V.18. Consider again the AIS in Figure 5.1(a) with cost function c(ai) =

1, c(bi) = 0, c(ci) = 2. We have computed c∗t = 2 in Example V.16 and concluded

that an optimal total-cost insertion function exists. In this example, we want to

synthesize an optimal total-cost insertion function. First, we apply Algorithm 11 to

obtain an optimal strategy H. Specifically, we select all outgoing actions for square-

shaped states, action ((0, 0), a)
ci−→ (4, 1) for state ((0, 0), a), and the only actions for

the other ellipse-shaped states. Such a selection results in an optimal strategy H that

is the AIS in Figure 5.1(a) without the shaded states. Then, we apply Algorithm 12

by taking H as input to construct an insertion automaton. For each y
eo−→ z

Li−→ y′

where y, y′ ∈ Y |H , z ∈ Z|H , we first find the inserted string sI from Figure 5.1(a) as

follows: select ε for transitions labelled with (aibi)
∗ or (biai)

∗; select the only string

for the other transitions. Then, using the chosen sI , we redefine the transition to be

y
eo/sIeo−−−−→ y′. The resulting optimal insertion automaton is shown in Figure 5.4, with

state names relabeled according to Figure 5.1(b).

Theorem V.19. Applying Algorithms 10, 11 and 12 solves Problem V.11(b).

Proof. Algorithm 10 follows from Theorem V.15. In Algorithm 11, an insertion action

is chosen for every system output event. Hence, the resulting insertion strategy is

i-enforcing. The strategy is optimal as all insertion actions are optimized. Since

the insertion automaton in Algorithm 12 is constructed from the optimal strategy, it

encodes an insertion function that achieves c∗t .

In all, given the AIS= (Y ∪Z,Eo∪2E
∗
i , fAIS,yz∪fAIS,zy, y0), computing an optimal

total-cost insertion function can be done in O(n2|fAIS|Wmax), where n is the number

of states in the AIS and |fAIS| is the number of transitions in fAIS = fAIS,yz ∪fAIS,zy.
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Figure 5.4: The optimal IA in Examples V.18 and V.24, where the state names are
relabeled according to Figure 5.1(b).

5.4 Synthesis of An Optimal Mean-Cost Insertion Strategy

5.4.1 Mean Payoff Game Formulation of the Synthesis Problem

To solve Problem V.12, we solve a mean payoff game on the AIS. Similarly to

Section 5.3, we let the AIS be our game structure. Here, the insertion function

player tries to minimize lim supk→∞
1
k

∑k
i=1w(u

e−→ u′) and the system player tries to

maximize lim infk→∞
1
k

∑k
i=1w(u

e−→ u′) where u, u′ ∈ Y ∪ Z and e ∈ Eo ∪ 2E
∗
i . The

optimal maximum mean cost c̄∗ is double of the resulting lim supk→∞
1
k

∑k
i=1w(u

e−→

u′) because c̄∗ is the worst-case average cost per round. Also, the optimal insertion

strategy is the resulting strategy that minimizes lim supk→∞
1
k

∑k
i=1w(u

e−→ u′). In

a mean payoff game, both players have state-based optimal strategies [22]. Hence,

the resulting optimal strategy will be a subgraph H of the AIS that selects all the

actions of the system at Y states but only one optimal action at Z states. In the

following, we first find the optimal mean cost c∗ in Section 5.4.2, and then synthesize

the optimal insertion function that achieves c∗ in Section 5.4.3.

5.4.2 Finding the Optimal Mean Cost

We begin with solving Problem V.12(a) and finding c∗. This problem is a special

instance of the problem of calculating the value of the mean payoff game on weighted
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automata that is defined in [22]. Hence, we can compute c∗ by adapting the results in

[22]. Specifically, here, the AIS is our weighted automaton. Computing c∗ on the AIS

differs from computing the game value on a general weighted graph in the following

aspects: (1) the game value is the average cost per step in the game, whereas c∗ is

the average cost per round (i.e., per system output event); (2) all edge weights in the

AIS are non-negative while edge weights in [66] can be negative; and (3) every edge

from a Y state of the AIS has a zero weight while edge weights in [66] are non-zero in

general. Let us denote by V̄ (u) the game value assuming that the game starts from

state u. To find c∗ on the AIS, we first address differences (2) and (3) by establishing

in Theorem V.20 a tighter bound for V̄ (u), where u is a state of the AIS. This bound

allows us to determine the correct value for V̄ (u). Then, we address difference (1) by

doubling the value of V̄ (y0) to obtain c∗ in Algorithm 13.

Theorem V.20. For every state u of the AIS, we have

Vk(u)

k
− n− 1

2k
Wmax ≤ V̄ (u) ≤ Vk(u)

k
+
n− 1

2k
Wmax

Proof. The proof follows the reasoning in the proofs of Theorems 2.2 and 2.3 in

[66] but it is adapted for the special cost structure of the AIS. Consider a k-step

game and the outcome path that is resulted from players playing π∗k. The resulting

k-step cost-to-go from state u on the outcome path is Vk(u). We have Vk(u) ≤

kV̄ (u) + dn−1
2
eWmax. The first term on the right-hand side is because at most k steps

are in a cycle, and if P2 plays according to its optimal strategy, then the average cost

of that cycle is at most V̄ (u). The second terms on the right-hand side is because

there can be at most dn−1
2
e non-zero steps before the cycle and each of them is at

most Wmax. Similarly, consider that P1 plays according to its optimal strategy. We

have Vk(u) ≥ (k− (n− 1))V̄ (u) + 0, as there are at least k− (n− 1) steps in the cycle

and there can be zero steps before the cycle. Because V̄ (u) ≤ 1
2
Wmax, this inequality
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implies Vk(u) ≥ kV̄ (u) − n−1
2
Wmax. By rearranging the above two inequalities, we

have Vk(u)
k
− n−1

2k
Wmax ≤ V̄ (u) ≤ Vk(u)

k
+ n−1

2k
Wmax.

With Theorem V.20, we can obtain a tighter bound for V̄ (u) by considering a

larger k. Because each edge is assumed to have an integer cost value and that a

cycle is formed within at most n steps, V̄ (u) is a rational number with a denominator

at most n. Hence, the minimum distance between two possible values of V̄ (u) is

1
n(n−1) . Now, let us choose k = n3Wmax. The value of V̄ (u) is then bounded in

Vk(u)
k
− 1

2n(n−1) <
Vk(u)
k
− n−1

2n3 ≤ V̄ (u) ≤ Vk(u)
k

+ n−1
2n3 <

Vk(u)
k

+ 1
2n(n−1) where only one valid

value exists. Therefore, we can determine V̄ (u) by searching within [Vh(y0)
h
− 1

2n(n−1) ,

Vh(y0)
h

+ 1
2n(n−1) ] for h = n3Wmax.

Finally, we find the optimal mean cost by doubling the value of V̄ (y0). The whole

process is captured in Algorithm 13.

Algorithm 13: Find the optimal mean cost for state u

input : AIS= (Y ∪ Z,Eo ∪ 2E
∗
i , fAIS,yz ∪ fAIS,zy, y0) and the weight function w

and state u ∈ Y ∪ Z
output: c∗(u)

1 Compute Vh(u) for h = n3Wmax using Equation (5.2)
2 Compute the h-step mean cost Vh(u)/h
3 Find the only rational number r with a denominator at most n that lies in the

interval [Vh(u)/h− α,, Vh(u)/h+ α] with α = 1
2n(n−1)

4 Return 2r

In Algorithm 13, c∗(u) is the optimal mean cost assuming that the game begins

at state u. When u = y0, the returned c∗(y0) is the optimal mean cost c∗. Note that

we can compute Vh(y0) by continuing the computation of Vl(y0) in Algorithm 10, as

h = n3Wmax is greater than l = n2Wmax. In the next section, we will use c∗(u) to

compute the optimal insertion function.

Example V.21. Consider again the weighted graph in Figure 5.1(b). We have shown

in Example V.16 that no optimal total-cost insertion function exists when the cost
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structure is c(ai) = 1, c(bi) = 1, c(ci) = 2. Here, we will synthesize an optimal

mean-cost insertion function. In this example, we first calculate the optimal mean

cost by following Algorithm 13. Then, we will finish the synthesis in Examples V.22

and V.24. In step 1, Vh(0) = 4097 where h = n3Wmax = 163 · 2 = 8192. Dividing

Vh(0) by h, we obtain the h-step mean cost Vh(0)/h = 0.50012. Finally, searching

within the interval [4097
8192
− 1

480
, 4097
8192

+ 1
480

] = [0.498, 0.502], we find that 1
2

is the only

valid value. The optimal mean cost is c∗ = 2 · 1
2

= 1.

5.4.3 Synthesis of the Optimal Infinite-Cost Insertion Function

With Algorithm 13 that solves c∗(u), ∀u ∈ Y ∪Z, at hand, we now find an optimal

action for a given Z state using Algorithm 14. This algorithm, adapted from [66],

eliminates insertion actions using a binary search technique. Notice that Algorithm

14 is applied only to insertion states, i.e., Z states. For every state z ∈ Z, denote by

d(z) the number of outgoing actions at z. By construction, we have d(z) ≥ 1 because

there are no deadlocked states in AIS. Therefore, the algorithm always outputs a valid

action when it terminates.

Algorithm 14: Find the optimal action for state z ∈ Z
input : AIS= (Y ∪ Z,Eo ∪ 2E

∗
i , fAIS,yz ∪ fAIS,zy, y0), weight function w, and a

state z ∈ Z
output: Optimal action Li ∈ 2E

∗
i

1 Compute c∗(z) by applying Algorithm 13
2 while d(z) > 1 do

Remove dd(z)/2e outgoing actions at z but leave at least one action
Recompute the optimal cost, say c∗(z)′, for the reduced AIS
if c∗(z)′ == c∗(z) then

The optimal action is one of the remaining actions at z
else

The optimal strategy is one of the removed actions at z

3 if d(z) == 1 then
Return the only one action
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Example V.22. We calculate the optimal action for state 3 in Figure 5.1(b) by

following Algorithm 14. In step 1, we compute c∗(3) = 1, as written in blue next to

state 3. In step 2, we choose to remove edge 3 → 6 and recompute the optimal cost

using the AIS without the removed edge. The resulting new optimal cost is 1, which

is the same as the original optimal cost. Therefore, we know that the optimal action

is the only remaining edge 3→ 7.

Once we find an optimal insertion action for every Z state using Algorithm 14, we

construct optimal insertion strategy H in Algorithm 15 that contains all the actions

at Y states and only the actions selected in the optimal strategy at Z states. The

resulting H is a subgraph of the AIS and it will be used to build the optimal insertion

automaton using Algorithm 12.

Algorithm 15: Find an optimal mean-cost insertion strategy

input : AIS= (Y ∪ Z,Eo ∪ 2E
∗
i , fAIS,yz ∪ fAIS,zy, y0) and weight function w

output: Optimal strategy H = (YH ∪ ZH , Eo ∪ 2E
∗
i , fH , yH,0)

1 Let yH,0 = y0. Set YH = {yH,0}
2 for u ∈ YH that has not been examined do

for e ∈ Eo do
fH(u, e) := fAIS,yz(u, e) if fAIS,yz(u, e) is defined

3 for u ∈ ZH that has not been examined do
fH(u, e) := fAIS,yz(u, e) where e is the optimal action for u computed using
Algorithm 14

4 Go back to step 2 until all selected states have been examined

Theorem V.23. Applying Algorithms 13, 14, 15 and 12 solves Problem V.12.

Proof. Algorithms 13 and 14 follow the results in [66]. In Algorithm 15, all system

actions are chosen and all insertion actions are optimized. Thus, the strategy is i-

enforcing and optimal. Finally, the IA we obtain in Algorithm 12 is optimal because

it is constructed from the strategy in Algorithm 15.

In all, given the AIS= (Y ∪Z,Eo∪2E
∗
i , fAIS,yz∪fAIS,zy, y0), computing the optimal

mean-cost insertion function can be done in O(n4|fAIS| log( |fAIS |
n

)Wmax), where n is
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the number of states in the AIS and |fAIS| is the number of transitions in fAIS =

fAIS,yz ∪ fAIS,zy.

Example V.24. We have computed in Example V.22 the optimal action for state

3. In this example, we complete the optimal strategy using Algorithm 15 and build

the optimal insertion automaton using Algorithm 12. In Algorithm 15, all insertion

states other than state 3 in the weighted graph have degree 1. Thus, only edge 3→ 6

for state 3 needs to be removed. The resulting optimal state-based strategy H is the

automaton without the shaded states in Figure 5.1(b). After H is obtained, we then

follow Algorithm 12 to build the optimal IA from H, as it was done in Example V.18.

The resulting optimal insertion automaton is shown in Figure 5.4.

Remark V.25. When finding the optimal action in Algorithm 14, there may be other

actions that are as good as the selected one. As a consequence, there may be more

than one solution to Problem V.12(b). Our algorithmic procedure returns one of

them.

5.5 Conclusion

We have considered the problem of synthesizing an optimal insertion function

for enforcing opacity. To quantify insertion functions, two quantitative objectives

have been considered: the maximum total cost and the maximum mean cost. For

each cost, we have developed an algorithm that computes the cost value of a given

insertion function. We have also presented algorithms that synthesize an optimal

insertion function, for each cost. Specifically, we first minimize the maximum total

cost and determine if an optimal total-cost insertion function exists. If such an

optimal one exists, we synthesize an optimal total-cost insertion function. Otherwise,

we synthesize an optimal mean-cost insertion function. The synthesis algorithms

presented in this chapter were developed by adapting and customizing results in game

125



theory for minimax games and mean payoff games on weighted automata. Finally,

we have encoded the resulting optimal insertion function as an I/O automaton.
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CHAPTER VI

Case Study: Ensuring Privacy in Location-Based

Services Using Opacity Techniques

The development of network and mobile devices has stimulated the rapid growth

of networked services based on users’ locations. Such services, called Location-Based

Services (LBS), provide personalized and timely information to users by exploiting

their real-time location information. Examples of LBS applications include search-

ing for nearby restaurants, recommending in-store coupons for nearby shops, and

providing turn-by-turn navigation instructions.

While LBS provides much convenience to users, they have also raised security

and privacy concerns. The attacker, which is commonly assumed to reside on the

LBS server, uses queries received from the users to infer sensitive information about

the query senders [52]. Many prior studies have proposed to address LBS privacy

by sending “cloaking queries” that contain coarser location information; see e.g.,

[25, 37, 21]. However, this method has been shown to be insufficient when users

continuously make queries. The attacker, by tracking the user’s continuous moving

trajectory, can figure out the real user or the user’s real location in the given cloaking

query if other candidates have inconsistent trajectories [7]. Some works such as [63, 38]

have addressed privacy in such dynamic settings. However, their approaches do not

use formal methodology. Finally, we refer to [52] for a comprehensive overview of the
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recent schemes for protecting LBS users privacy.

In this chapter, we consider the problem of concealing the current location of the

LBS user when the user continuously makes queries. We show that this problem can

be formally addressed using opacity techniques in discrete event systems. Specifically,

a nondeterministic finite-state automaton is used to capture the mobility patterns of

the user. The attacker (i.e., the server) is assumed to know a priori the user’s mobility

patterns but only observes the location information in the received queries at real-

time. We label the transitions of the automaton by the location information in the

queries. To characterize location privacy, we adapt the notion of current-state opacity

and introduce a related new notion called current-state anonymity that captures the

observer’s inability to know for sure the current state of the automaton. With the

technique for verifying opacity, we show that sending cloaking queries to the server can

still reveal the exact location of the user. To enforce location privacy, we synthesize an

insertion function, using the synthesis algorithm developed in Chapter IV, that inserts

fake queries into the cloaking query sequences. Such a insertion function inserts fake

queries in a way that the resulting query sequences, as received by the server, are

always consistent with the mobility model of the users and provably ensure privacy

of the user’s current location. Finally, to minimize the overhead from fake queries,

we apply the optimization algorithm in Chapter V to design an optimal insertion

function that introduces minimum average number of fake queries.

Using fake queries for location obfuscation has been proposed in the LBS privacy

literature; see e.g., [29, 38]. The work in [29] generates random fake queries without

considering the user’s mobility patterns, and thus has raised the question of how con-

vincing fake queries are. The algorithm in [38] relies on mobility patterns. However, it

considers the privacy of the user instead of the privacy of the user’s current location.

The remaining sections of this chapter are organized as follows. Section 6.1 in-

troduces the common LBS architecture and the privacy concerns. Section 6.2 for-
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malizes the notion of Current-State Anonymity in DES. In Section 6.3, we construct

an automaton model from a set of mobility patterns on the Central Campus of the

University of Michigan; this example is then used as a running example in the re-

maining two sections. We show in Section 6.4 how to verify location privacy using

techniques for opacity verification. Then, in Section 6.5, we present the construction

of an optimal insertion function for enforcement of location privacy. Finally, Section

6.6 concludes this chapter. Most of the results in this chapter also appear in [62]. We

acknowledge Karthik Abinav Sankararaman for constructing the mobility model in

this chapter and optimization the codes.

6.1 Location-Based Services

We consider the common LBS architecture described in [52]. The LBS architec-

ture, as illustrated in Figure 6.1, consists of four major components: mobile devices,

positioning systems, communication networks, and the LBS server. The user makes

queries from his/her mobile devices. The location information in the queries is ob-

tained via positioning systems such as the Global Positioning System (GPS). To

protect privacy, the user identification in the queries is replaced with an untraceable

pseudonym. The queries and their responses are transmitted between the user and

the LBS server via communication networks.
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6.1.1 Privacy Concerns and the Attack Model

We assume the attack model that is commonly used in the LBS community. The

LBS server is a malicious observer and other components are benign. It may have such

malicious intent for commercial purposes, or because they have been compromised.

Specifically, we consider one attack scenario discussed in [53] where the server, i.e., the

attacker in this chapter, knows the statistical information of users’ moving patterns

but is not aware of users’ real-time location. The attacker relies on the location

information it receives to perform attacks.

Two privacy notions for LBS have been defined, depending on what type of infor-

mation is of concern: location privacy and query privacy. Location privacy is to pre-

vent inferring the real locations where queries are made from the queries themselves.

See, e.g., [29, 21, 15, 53]. Query privacy is to seclude the private attributes, such as

the user’s real identity, embedded in the queries. See, e.g., [25, 7, 37, 15, 63, 38]. In

this work, we assume that the attacker aims to associate a user query with its real

location and focus on location privacy only.

6.1.2 The Anonymizer Framework

To protect both query and location privacy, the pioneering work of [25] proposed

to use location anonymizers. This technique has become the most popular technique

for protecting privacy in LBS; see, e.g., [37, 21, 24]. A location anonymizer, as shown

in Figure 6.2, generalizes the accurate location in a given user’s original query to a

cloaking region where k − 1 other potential or active users reside. Implemented on

a trusted third party, the anonymizer receives queries from users and forwards the

cloaking queries to the LBS server.

This typical cloaking technique protects privacy for one-time queries only, but

may fail in a dynamic environment where users continuously make queries [7]. In

Section 6.4, we will show this result by using opacity techniques from DES. Then, we
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will show in Section 6.5 how to enforce location privacy using the opacity enforcement

technique developed in Chapters IV and V.
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Figure 6.2: The traditional anonymizer framework

6.2 Current-State Anonymity in Discrete Event Systems

To fit the application of location privacy in LBS, we adapt the notion of current-

state opacity (CSO) and propose a new notion called Current-State Anonymity (CSA).

Specifically, CSO conceals the occurrence of the current state being at a given secret

state, and CSA hides the occurrence of the current state being at any state. Let us

first recall the definition of current-state opacity.

Definition VI.1 (Current-State Opacity). Given system G = (X,E, f,X0), projec-

tion P , and the set of secret states XS ⊆ X, current-state opacity holds if ∀i ∈ X0

and ∀t ∈ L(G, i) such that f(i, t) ⊆ XS, ∃j ∈ X0, ∃t′ ∈ L(G, j) such that: (i)

f(j, t′) ∩ (X \XS) 6= ∅ and (ii) P (t) = P (t′).

We now adapt the notion of CSO and formally define current-state anonymity.

Definition VI.2 (Current-State Anonymity). Given system G = (X,E, f,X0) and

projection P , the system is current-state anonymous if ∀i ∈ X0 and ∀t ∈ L(G, i) such

that f(i, t) = {x} ⊆ X, ∃j ∈ X0, ∃t′ ∈ L(G, j), ∃x′ 6= x such that: (i) x′ ∈ f(j, t′)

and (ii) P (t) = P (t′).

Current-state anonymity is relevant to the widely-used notion of k-anonymity [55]

when k = 2. It can be thought as CSO with multiple pairs of secret and non-
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secret states. Specifically, a given system is CSA if it is CSO with respect to XS =

{i}, XNS = X \ {i},∀i ∈ X. The similarity between the two notions allows us to

use the current-state estimator of G, which is also the observer automaton of G as

defined in [10], to verify CSA. Hereafter, we denote the current-state estimator of G

by EG. The following proposition then follows immediately.

Proposition VI.3. A given automaton G is current-state anonymous if and only if

no state in EG is a singleton.

6.3 Automata Models for LBS

We consider the LBS framework where an anonymizer is used. The attacker has

statistical information about users’ mobility patterns, but can only perform attacks

using the cloaking information sent to the server.

To map LBS privacy to opacity problems in DES, one key element is to build a

finite-state automaton model that is consistent with the knowledge of the attacker

(i.e., the server). We discretize the physical map and capture users’ mobility patterns

in a finite-state automaton. Specifically, we show our modeling methodology using

a set of walking paths on the Central Campus of the University of Michigan. The

constructed automaton will be our running example that illustrates the use of opac-

ity techniques for location privacy. Shown in Figure 6.3(a) is the map of the Central

Campus. We select eight locations as states, marked in red in the figure. Mobility pat-

terns, as shown in blue lines, define transitions between states. Regions A,B,C,D are

cloaking regions precomputed by the anonymizer.1 We omit the unobservable details

and label transitions by the cloaking information received by the server. Specifically,

transitions are labeled by the cloaking regions of their source nodes, meaning that

the user makes queries when s/he is about to move to the next location. The users

1[53] has shown that computing cloaking regions in real-time does not improve privacy.
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can start their walking paths from any location and thus X0 = X. The constructed

model is the nondeterministic finite-state automaton shown in Figure 6.3(b).

(a) The University of Michigan Central Campus map
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Figure 6.3: The campus map and the constructed automaton model

6.4 Verification of Location Privacy

To verify if the given moving patterns have location privacy, we need to know the

server’s location estimates and check if any estimate contains only one single location.

Our methodology for constructing G from the moving patterns allows us to formulate

location privacy as current-state anonymity. Location privacy holds if and only if the

constructed G is current-state anonymous. As stated in Proposition VI.3, current-

state anonymity can be verified using the current-state estimator EG. The moving

patterns have location privacy if and only if no estimate state is a singleton.

Let us go back to the Central Campus example in Figure 6.3(a). We construct

the current-state estimator EG in Figure 6.4 to verify current-state anonymity. Before

verifying, we first look at all estimate states in EG that are reached by single events

from the initial state of EG, such as state {4, 6, 7} reached by event d. It can be
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found that no such state reveals the true location of the user. Because each cloaking

region covers two distinct point locations and no such two locations lead to only one

single location, location privacy for one-time queries can be guaranteed. However,

to perform full verification, we need to examine the complete structure of EG. This

corresponds to the server’s knowledge in a dynamic environment where users contin-

uously make queries. The estimate state {6} shows that the user will reveal his/her

true location at state 6 (i.e., Cancer Center) after querying sequences such as cdd.

Hence, current-sate anonymity does not hold. This revelation is because the server

knows that consecutive queries d’s can only be made between states 6 and 7 and that

the user came from region C from the first received query. This also shows that the

anonymizer’s cloaking technique does not necessarily provide location privacy.
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Figure 6.4: The current-state estimator EG of G

6.5 Enforcement of Location Privacy

6.5.1 I-Enforcing Insertion Functions

To resolve the location revelation identified in Section 6.4, we propose to add to

the anonymizer an insertion function that inserts fake queries to the user’s original

query sequence. An insertion function, as formally defined in Chapter IV for opacity
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enforcement, is placed between the system and the outside attacker that modifies the

system’s output behavior by inserting fictitious events. In the framework of LBS, we

place the insertion function at the output of the anonymizer, as shown in Figure 6.5.

It inserts fake queries to the cloaking queries and drops their replies without affecting

the quality of the server’s replies to real queries.
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Figure 6.5: The proposed location insertion mechanism

Recall from Chapter IV that to enforce opacity, insertion functions need to satisfy

a property called i-enforceability. An insertion function fI is i-enforcing if it is (i)

safe: every output behavior from fI is in the safe language Lsafe, and (ii) admissible:

fI does not block or change any output from the system. Here, we slightly adapt the

i-enforceability property and redefine the i-enforceability property for enforcing CSA.

Specifically, we redefine Lsafe to be all observable strings that do not reveal the current

state of the system. That is, it contains all strings in L(EG) that do not visit singleton

states (i.e., state {6} for EG in Figure 6.4). Because the synthesis of an i-enforcing

insertion function is based on Lsafe, once Lsafe for enforcing CSA is defined, we can

follow the procedure in Chapter IV to synthesize an insertion function that enforces

current-state anonymity. Consequently, the insertion function fI synthesized from

the AIS will be i-enforcing with respect to CSA. That is, (i) every output behavior

from fI does not lead to a singleton state in EG and (ii) fI does not block or change

any query from the anonymizer.

To synthesize an insertion function that enforces CSA, we construct the AIS of G

by following the procedure in [58], adapted for our Lsafe. We begin with constructing
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the i-verifier V that recognize all the safe insertions. For the Central Campus example,

we build the desired estimator Ed in Figure 6.6(a), which removes state {6} from EG,

and the feasible estimator Ef , which includes all possible insertions, and synchronize

them. After following the complete procedure in Chapter IV, we build the AIS
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Figure 6.6: The desired estimator and the feasible estimator for G in Figure 6.3(b)

enumerates all i-enforcing insertion functions using a game structure that describes

the interaction of the system (i.e., the user’s continuous queries from the anonymizer)

and the insertion function. The entire AIS for the Central Campus example has 84

states. We show in Figure 6.7 the AIS drawn using DESUMA [17]. For illustration
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Figure 6.7: The AIS of the Central Campus example, drawn using DESUMA

purpose, let us look at a partial structure of the abstracted AIS that is shown in

Figure 6.8. As can be seen in the figure, the AIS is a bipartite graph with “square”

states and “round” states. The shapes of these states tell us whether the anonymizer

or the insertion function is acting in the game. At square states, the anonymizer

enumerates all possible user queries according to the moving patterns. For example,

initially at state 0, the anonymizer can output queries a, b, c, d. At round states, the

insertion function enumerates all i-enforcing insertion choices, determined from the

construction procedure of the AIS, that respond to the queries from the anonymizer.

For example, after the anonymizer outputs d, at state 4, the insertion function can

insert ε, bi, ci, bicici. By listing all actions of the two players in this manner, the AIS

enumerates all i-enforcing insertion functions. To synthesize one i-enforcing insertion
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function, one needs to select all edges from the square states (in order to consider all

user’s queries) and one insertion edge for each round state that is reached. In the

next section, we will discuss how to select insertion edges and synthesize one optimal

insertion function from the AIS.
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Figure 6.8: Partial representation of the abstracted AIS (7 out of 84 states)

6.5.2 Optimal Insertion Functions

One can synthesize an i-enforcing insertion function by “randomly” selecting inser-

tion edges at the round states in the AIS. But as inserting fictitious queries introduces

extra delay and consumes energy, a more interesting problem is to minimize the over-

head cost introduced by insertion, i.e., to synthesize an optimal insertion function.

In the Central Campus example, we assign the same unit cost to each inserted

query, for the sake of simplicity. We then employ the optimization algorithms devel-

oped in Chapter V to synthesize an optimal insertion function from the AIS. Specifi-

cally, we compute Vl(0) = 28220 using Equation (5.2), where l = n2Wmax = 842 · 4 =

28224. Because Vl(0) ≥ nWmax = 336, we conclude from Theorem V.17 that there

is no optimal total-cost insertion function. Hence, we solve for an optimal mean-cost

insertion function by applying Algorithms 13, 14, 15 and 12 in Chapter V. The op-

timal maximum mean cost is found to be 2 and the resulting insertion automaton

is shown in Figure 6.9. The insertion function encoded in Figure 6.9 will provably

guarantee that visiting location 6 is never revealed.
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Let us look at how this insertion automaton modifies the problematic query se-

quence cdd. The insertion automaton modifies cdd to cdcicid by inserting cici, which

induces the intruder to generate estimate {4, 7}. It is worth noticing that, for this

particular query sequence, the intruder’s new inference does not even include the true

actual location 6. However, this is not generally true.

We first observe that no i-enforcing insertion function has a finite worst-case total

cost for the case of G of Figure 4.4(a). That is, to enforce location privacy in this

example, an insertion function needs to continuously add fictitious queries as the user

makes queries (note that there are many cyclic paths that return to singleton state

{6} in Figure 6.4.)

Hence, we consider the quantitative objective for optimization purposes to be the

long-run average insertion cost (i.e., per user query), in the worst case. (See [60] for

further technical details about this cost structure.) The minimum value that we find

in our example is 2, meaning that at most two fake queries per user query need to be

inserted. Using this value, we then synthesize from the AIS an insertion function fI

that achieves this optimal value. The result for our example is shown in Figure 6.9,

where fI is encoded as an I/O automaton where the input labels are queries from

the anonymizer and the output labels are the modified queries with insertion. Events

with subscript i denote fake queries from the insertion function.

Let us now look at query sequence cdd, which is found in Section 6.4 to reveal

the true location of the user. We can see from Figure 6.9 that the optimal insertion

function will modify cdd to cdcicid. The server does not distinguish fictitious and

genuine queries; i.e., c and ci are indistinguishable by the LBS. Thus, when the server

receives cdcicid, it interprets the sequence as cdccd and infers that the user is at {4, 7},

while the true location is 6. Hence, location privacy is enforced.

Remark VI.4. While we have synthesized an insertion function in the anonymizer

framework, the insertion mechanism does not require an anonymizer. To develop
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Figure 6.9: The I/O automaton representation of the optimal insertion function

the insertion mechanism without an anonymizer, one needs to modify the automa-

ton model by labeling transitions using the original queries instead of the cloaking

queries. An i-enforcing insertion function can then be constructed by following the

same procedure. Note that each query is made when the user is about to move and

is labeled by the region of the source location.

6.6 Conclusion

We have considered location privacy in Location-Based Services in the context of

opacity problems in DES and presented a formal approach to solve location privacy

problems. To characterize location privacy, we have adapted the notion of current-

state opacity and defined current-state anonymity. We have developed a modeling

methodology that capture users’ mobility patterns using an automaton model. By

using the current-state estimator to verify current-state anonymity, we have illus-

trated that the traditional anonymizer framework is in general insufficient to protect

location privacy in a dynamic environment. To enforce location privacy, we have

proposed to use the mechanism of insertion functions developed in Chapter IV, that

140



inserts fictitious queries in the cloaking query sequences. We have also shown how

to synthesize an optimal insertion function to minimize the overhead costs caused by

insertion.
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CHAPTER VII

Conclusion and Future Work

7.1 Summary of Main Contributions

In this dissertation, we have studied opacity notions in Discrete Event Systems

modeled as partially-observable and/or nondeterministic finite-state automata. In

opacity problems, the system has a secret. The intruder is a passive observer of the

system that wants to know whether or not the secret of the system has occurred. The

system is opaque if “whenever the secret has occurred, there exists another non-secret

behavior that is observationally equivalent.”

We have focused on the verification and the enforcement of various notions opac-

ity: current-state opacity, initial-state opacity, language-based opacity, and initial-

and-final-state opacity. For each state-based notion of opacity, we have developed

verification algorithms when there is one single intruder and when there are multi-

ple intruders collaborating through a coordinator. When the given opacity notion

fails to hold, we have proposed a novel enforcement mechanism based on the use of

i-enforcing insertion functions. An insertion function, placed at the output of the

system, inserts fictitious observable events to the system’s output. The property of

i-enforceability guarantees that the given insertion function enforces opacity without

modifying the internal behavior of the system. We have developed a formal procedure

that synthesizes an i-enforcing insertion function. Specifically, we have built a finite
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structure called the AIS that enumerates all i-enforcing insertion functions. The AIS

provides a necessary and sufficient condition for the existence of an i-enforcing inser-

tion function. When an i-enforcing insertion function exists for the given notion of

opacity, we have developed an algorithmic procedure that synthesizes one insertion

function.

Inserted events introduce overhead delays and consume bandwidth. Hence, we

have assigned costs to inserted events and investigated the synthesis of an optimal

insertion function with respect to the given cost criterion. We have solved two opti-

mization problems, one with respect to the maximum total cost and the other with

respect to the maximum mean cost, by exploiting the structure of the AIS. Specifically,

we first minimize the maximum total cost and determine if an optimal total-cost inser-

tion function exists. If such an optimal one exists, we synthesize an optimal total-cost

insertion function. Otherwise, we synthesize an optimal mean-cost insertion function.

Synthesis algorithms for either case have been developed by adapting results in game

theory for minimax games and mean payoff games on weighted automata. The result-

ing insertion function is encoded as an I/O automaton. Finally, we have adapted and

applied the above analysis and enforcement procedure to the problem of enforcing

location privacy in location-based services.

7.2 Future Work

The research in this dissertation opens several research directions for future work.

First, the synthesis of i-enforcing insertion functions in Chapter IV assumes that

the intruder does not know the insertion functions at the outset. The i-enforceability

property assures that the intruder would never figure out the existence of an insertion

function. However, an interesting question that arises is what happens if the intruder

knows the insertion function. We have discussed in Section 4.10 how the intruder’s

knowledge of insertion functions can affect the construction of an insertion function.
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It would be interesting to adapt the synthesis procedure for i-enforcing insertion

functions and design insertion functions that enforce opacity regardless of whether

the intruder knows the insertion function.

Another possible extension is to study opacity notions in probabilistic settings.

In the logical opacity problems, we do not use a probabilistic model for the system

dynamics; opacity holds when plausible deniability of the secret is guaranteed. How-

ever, in this context, the intruder’s confidence of whether the secret has occurred

or not is not characterized. It would be of interest to extend the investigation of

opacity to the notion of “stochastic opacity”, which captures the scenario where the

intruder has prior knowledge of the system’s transition probabilities and infers that

the occurring behavior is the most probable one based on its observation. Stochastic

opacity would hold if given any observable behavior from the system, there is a non-

secret behavior that is more probable. This notion is similar, but different from the

opacity notions in probabilistic settings defined in [6, 47]. Algorithms for verifying

probabilistic opacity notions need to developed. When probabilistic opacity fails to

hold, we could consider the enforcement of probabilistic opacity by using a stochastic

insertion function, which inserts events according to some specifications but random-

izes the insertion when there are multiple choices. The use of stochastic insertion

functions would allow to enforce a larger class of stochastic opacity problems.

It would be also interesting to study opacity notions in modular settings. In such

settings, the system G is the composition of N subsystems; i.e., G = G1||G2|| . . . ||GN .

Each subsystem Gi has its own secret. While each Gi may be individually opaque,

composing them can result in G that reveals the local secret because some nonsecret

strings are disabled in the composition. The authors of [44] have developed algorithms

for verifying opacity in a modular manner. However, modular control algorithms that

enforce opacity in system G have not been explored. We could develop local insertion

strategies such that opacity of the whole system G is enforced. Such work would
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provide principles that facilitate the modular development of secure systems and

ensure that adding secure subsystems into a secure system results in a secure system.

Last, more case studies are worth investigating. It would be of interest to apply

the technique developed in this thesis to preserve privacy properties in other network

security applications.
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