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ABSTRACT 
 Ischemic stroke is a leading cause of morbidity and mortality in the world, 

and inflammation can have a significant impact on stroke severity.  Sustained 

inflammation after stroke can have detrimental effects; however, certain 

inflammatory cell types and mediators can also produce beneficial effects.  

Mineralocorticoid Receptor (MR) antagonists are used clinically to treat heart 

failure and also have beneficial effects in preclinical models of stroke 

independent of blood pressure lowering.  MR has been shown to regulate 

macrophage activation and polarization, and MR antagonists can induce an anti-

inflammatory, alternative macrophage phenotype.  In this dissertation, we show 

that genetic ablation of MR in myeloid cells is neuroprotective during ischemic 

stroke. We demonstrate that myeloid MR inactivation significantly reduces infarct 

volume and suppresses the pro-inflammatory response to stroke.  This 

delineates a previously unknown mechanism of pharmacological control by MR 

antagonists during stroke.  Neuroprotection by myeloid MR knockout occurs 

within two hours after reperfusion and was detected in a transient ischemia-

reperfusion model, but not during permanent occlusion.  In contrast to previously 

defined sexual dimorphic effects of MR antagonists during stroke, myeloid MR 

knockout ameliorates cerebral ischemia-reperfusion in both males and females.  

These data define a novel role for myeloid MR during stroke, and demonstrate 

the importance of MR-regulated myeloid cell phenotypes during the inflammatory 

response to stroke. 
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CHAPTER 1 
Introduction 

 
Stroke burden and current interventions 
 Stroke is the second leading cause of death worldwide and represents one 

of the major causes of long-term disability. On a global scale represented by a 

large percentage of low and middle-income countries, the incidence of stroke 

continues to rise.1 In the US and other high-income countries, stroke incidence 

and mortality are decreasing,1, 2 but this is associated with an increase in the 

number of years lived with disability.3 The majority of patients that survive a 

stroke suffer from various physical and cognitive neurological deficits, and the 

physical and psychological burden can be devastating for patients and their 

families. Stroke also represents a major financial burden not only on patients, but 

also on healthcare systems. In the US, the cost of stroke in 2010 was estimated 

to be 36.5 billion dollars, and these values are projected to triple within the next 

twenty years.2  

 Reduction in modifiable risk factors like hypertension, atrial fibrillation, 

hypercholesterolemia, smoking, diabetes, and physical inactivity can greatly 

reduce the incidence of stroke, and a wide range of pharmacotherapies are 

available to aid in the reduction of these risk factors. In contrast, very few 

therapeutic interventions are available to treat stroke after it has occurred. 

Thrombolytic therapy with tissue plasminogen activator (tPA) is the only 

efficacious pharmacological agent used clinically to treat ischemic stroke, but its 

use is limited by the time frame in which it must be administered. Endovascular 

thrombectomy using a mechanical clot retrieval device is another approved 

therapeutic intervention and is an alternative for patients that cannot receive
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thrombolytic therapy. However, recent clinical trials indicate that endovascular 

therapy by thrombectomy or endovascular tPA provides no additional benefit 

compared to intravenous thrombolytic therapy, and therefore in most cases 

endovascular therapy is seemingly less favorable due to the invasiveness, cost 

and increased time to recanalization.4-6  

 Although thrombolytic therapy has provided significant benefit in reducing 

ischemic stroke mortality and disability, there are major limitations for its use. 

Time until recanalization is critical, not only because prolonged ischemia 

increases neuronal death, but also because delayed administration of tPA 

increases the risk for hemorrhagic transformation and results in a poor outcome. 

Because of these problems, current guidelines recommend the administration of 

tPA within 4.5 hours of onset of stroke symptoms.7 Therefore, delayed diagnosis 

may preclude many patients from receiving thrombolytic therapy, and the most 

recent data indicate that from 2010-2011, only 7% of patients with ischemic 

stroke received thrombolytic therapy.8 This small percentage is largely due to the 

fact that only 25% of patients arrive to the emergency department within 3 hours 

of onset of stroke symptoms.9 An additional problem is that of the tPA-eligible 

patients who arrive within the recommended time window, only 77% received 

thrombolytic therapy, although this is a significant improvement since 2003 when 

only 43% of eligible patients received thrombolytic therapy.8 Several preclinical 

studies have identified ways to block tPA-induced blood-brain barrier breakdown 

and hemorrhagic transformation, which may extend the therapeutic window;10, 11 

however, no clinical trials have been completed to confirm a clinical benefit.  

 Since a large percentage of patients are ineligible for tPA, there is a critical 

need to develop new therapeutic agents for the treatment of stroke. After 

therapeutic thrombolysis or spontaneous recanalization, reestablishment of blood 

flow can restore oxygen and glucose supply to the brain, but it can also have 

detrimental effects by inducing reperfusion injury. Therefore, the development of 

novel neuroprotective agents may be useful even for patients receiving 

thrombolytic therapy. Stroke is a complex, multifaceted disease with many 
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pathophysiological processes contributing to neurological injury, and a thorough 

understanding of these processes is necessary to identify ideal therapeutic 

targets. Some of the major pathological mechanisms of stroke damage include 

energy deficit, excitotoxicity, ion dysregulation, oxidative stress, apoptosis, peri-

infarct depolarization and inflammation, and many pre-clinical therapeutic agents 

have been developed to target these pathogenic mechanisms of neurological 

damage.  

 This chapter will provide an overview of the mechanisms of inflammatory 

and immune-mediated damage during stroke. It will place particular emphasis on 

the role of immune cell recruitment, activation and regulation, while highlighting 

specific cell types and signaling targets with the potential for pharmacological 

therapy. It will further describe the connection between mineralocorticoid receptor 

activation and immune cell function, which is the basis for the hypothesis and 

focus of this dissertation. 

Inflammatory signaling in the brain 

 Neurons are extremely sensitive to changes in oxygen and glucose. 

During ischemia they rapidly communicate with other cells of the neurovascular 

unit by secreting cytokines, chemokines, nucleotides, and damage-associated 

molecular patterns (DAMPs).12 These signals activate glia and vascular cells to 

induce a series of neuroprotective responses that can provide metabolic support 

and attempt to increase perfusion to ischemic tissue. However, often the 

ischemic insult is too overwhelming for local neuroprotective mechanisms to 

compensate and a massive inflammatory response ensues. Inflammatory 

signaling pathways are stimulated immediately after ischemia occurs, and these 

responses have both beneficial and harmful effects depending on the specific 

cytokines and the specific phases of the ischemic response.  

 Increased inflammatory cytokines are detected in cerebrospinal fluid and 

serum of patients within 24 hours of acute stroke, and serum concentrations of 

inflammatory cytokines have been found to correlate with disease severity and 
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may be predictive of stroke outcome.13-15 The presence of high concentrations of 

proinflammatory cytokines IL-6 and TNF-α are associated with stroke 

worsening,16 whereas patients with higher concentrations of the anti-

inflammatory cytokine IL-10 have improved stroke outcomes.17 Similarly, 

inflammatory cytokines are also highly upregulated in animal models of cerebral 

ischemia and have been shown to have critical roles in stroke pathophysiology. 

 Inflammatory responses are not inherently bad and are initiated as a 

neuroprotective response to ischemia. However, after prolonged ischemia where 

cerebral blood flow is not restored, the milieu of inflammatory cytokines promotes 

a wide array of effects including apoptosis, reactive oxygen species generation, 

leukocyte recruitment and activation, complement activation, coagulation and 

changes in fibrinolysis that result in exacerbation of stroke damage (Figure 1.1).12 

Inflammatory cytokines contribute to rapid deterioration of the blood-brain barrier 

through both direct and indirect mechanisms. They can stimulate the production 

of reactive oxygen species and matrix metalloproteinases in numerous cells, 

which induce break down of the blood-brain barrier and facilitate the infiltration of 

circulating leukocytes.18, 19 

 Because of the numerous cell types involved and the complexity of cellular 

interactions during stroke, fully defining the roles for specific cytokines is difficult. 

Through the use of genetic and molecular techniques, both pathological and 

protective roles for many of the major inflammatory and anti-inflammatory 

cytokines have been defined (Table 1.1). While many proinflammatory cytokines 

like IL-1β, IL-12, and IL-17 seem to have predominantly harmful roles during 

stroke, others like TNF-α appear to have more complex functions and have been 

shown to produce both beneficial and detrimental effects.20, 21 Compared to other 

proinflammatory cytokines, IL-6 appears to be largely protective during stroke. 

Several anti-inflammatory cytokines like IL-10, TGF-β and IL-4 have also been 

found to have protective roles during stroke. Importantly, many preclinical studies 

have shown that targeting inflammatory signaling can affect stroke outcome, and  
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Figure 1.1. Immune cell interactions and mechanisms of damage during 
stroke. Dying neurons secrete DAMPs, which elicit rapid activation of resident 
microglia and macrophages. Resident microglia and recruited immune cells 
secrete inflammatory cytokines and generate reactive oxygen species (ROS), 
which promote leukocyte recruitment, blood-brain barrier (BBB) breakdown, and 
exacerbate neuronal damage. 
 

inhibition of detrimental cytokines or administration of protective cytokines can 

protect against stroke (Table 1.1).  

 As ischemic neurons begin to die, they release various intracellular 

molecules like DAMPs that signal other cells and initiate inflammatory responses. 

These signals contribute to the activation of classical proinflammatory signaling 

responses during stroke through the activation of toll-like receptors (TLRs). Upon 

activation by DAMPs, TLRs can induce the expression of inflammatory cytokines  

and can regulate cellular inflammatory responses. HMGB1 is one of the  
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Table 1.1 Role of cytokines in ischemic stroke models. 
 

 

well-studied DAMPs, and has been shown to promote stroke damage. 

Administration of recombinant HMGB1 protein exacerbates stroke,53-55 where as 

treatment with anti-HMGB1 neutralizing antibodies is protective during 

experimental stroke.53, 56 Similarly, interruption of TLR2 54, 57-60 and TLR4 54, 61, 62 

signaling is also protective in animal models of stroke.  

 While the literature demonstrates that inflammatory cytokines and 

signaling molecules have important roles in stroke, there is still much to be 

known. Many resident cells and recruited immune cells secrete and respond to 

numerous cytokines, and the major cell sources of the cytokines and the 

Detrimental Roles    
Cytokine Treatment   Phenotype Ref 
IL-1 IL-1β infusion Exacerbation 22 
 IL-1β KO No effect 23 
 IL-1α KO No effect 23 
 IL-1α/β KO Neuroprotection 23 
 ICE KO Neuroprotection 24 
    
IL-12 Neutralizing Ab Neuroprotection 25 
    
IL-17 KO Neuroprotection 26 
    
IL-23 KO Neuroprotection 26 
 Neutralizing Ab Neuroprotection 25 
    
TNF-α  TNF-α infusion Neuroprotection 27 
 TNF-α infusion Exacerbation 28 
 TNF-α KO Exacerbation 29 
 TNF-α inhibition Neuroprotective 28, 30-32 
 TNFR KO Exacerbation 33, 34 
    

Protective Roles    
Cytokine Treatment Phenotype Ref 
IL-1RA rhIL-1RA  Neuroprotection 35-37 
 IL-1RA KO Exacerbation 38 
    
IL-10 IL-10 (rIL-10, viral delivery, TG,) Neuroprotection 39-41 
 KO Exacerbation 42 
    
TGF-β  TGF-β infusion / viral delivery Neuroprotection 43, 44 
 TGF-βRIIs-Fc (decoy receptor) Exacerbation 45 
    
IL-4 KO Exacerbation 46 
    
IL-6  IL-6 infusion Neuroprotection 47-49 
 IL-6R Neutralizing Ab Exacerbation 50 
 KO Exacerbation / No Effect 51, 52 
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important target cells of the cytokines have not been fully defined in vivo. The 

complexity is further increased by the temporal changes that occur during injury, 

leading to an incomplete understanding of these cytokines during disease. In 

addition, immune cells are major secretors of inflammatory cytokines during 

stroke, and a large body of work has identified critical roles for specific immune 

cell types during stroke.  

Resident and blood-borne immune cells in the uninjured brain 

 The brain is comprised of numerous cell types and each has important 

roles in maintaining normal brain function. It is estimated that neurons account for 

50% of all of the cells in the human brain, while glia and vascular cells comprise 

the remaining half.63 Astrocytes, oligodendrocytes, and microglia comprise the 

majority of glial cells, and endothelial cells, smooth muscle cells and pericytes 

are associated with the vasculature. In normal physiology, glia have essential 

functions like clearance of neurotransmitters, providing metabolic support, 

myelination, phagocytosis, antigen presentation, and repair. Although the specific 

functional roles of each of these cells are unique, they all serve the common 

purpose of supporting neuron function.  

 Although lymphocytes, macrophages, and dendritic cells are present in the 

healthy brain, they are restricted to specific locations and are generally not found 

in the brain parenchyma because of the highly regulated brain environment.64 

Collectively, neuron and non-neuronal cells are often referred to as the 

neurovascular unit, because they are in close proximity, they exhibit highly 

dynamic interactions, and they work cooperatively to tightly regulate brain 

environment and function. One of the functions of the neurovascular unit is to 

maintain blood-brain barrier integrity, and this serves to protect the brain from 

dangerous substances, but also prevents cells from entering the brain. In fact, 

the central nervous system is one of the most privileged tissues in the body 

because peripheral immune cells have very limited access to the brain 

parenchyma. Compared to other tissues, the brain vasculature has significantly 
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decreased expression of adhesion molecules P-selectin and E-selectin even in 

the presence of inflammatory cytokine stimulation,65 and this significantly inhibits 

TNF-α-induced leukocyte rolling in the brain.  

 Resident microglia serve as the major sentinel immune cells in the brain. 

Microglia are tissue-resident macrophages that carryout functions including 

tissue surveillance, phagocytosis of dying neurons, and antigen presentation. 

The origin and replacement of senescent microglia has been controversial until 

more recently. While it was once thought that tissue-macrophages, including 

microglia, were maintained by monocytes precursors, it is now thought that they 

are replenished almost exclusively by local proliferation. In fact, several studies 

have confirmed that microglia are established prenatally from yolk sac 

progenitors and are maintained throughout adulthood through local 

proliferation.66-69 Bone marrow-derived cells engraft in the CNS and give rise to 

microglia under specific conditions like brain irradiation and bone marrow 

transplantation.70-73 However, brain shielding and parabiosis studies have shown 

that even during injury, local proliferation is responsible for maintenance of 

microglia populations.74-77 During injury, microglia rapidly expand by in situ 

proliferation and undergo microgliosis, and one study found that increased 

microglia proliferation was actually associated with decreased injury.78  

Recruitment of blood-borne leukocytes after stroke 
 In the uninjured brain, access by immune cells is largely restricted. After 

ischemic injury, reactive oxygen species, proteases and inflammatory signaling 

leads to blood-brain barrier breakdown, and inflammatory cytokines further 

upregulate adhesion molecules and promote the transmigration of leukocytes into 

the brain parenchyma. The kinetics of leukocyte trafficking has been 

characterized in animal models of stroke. Not surprisingly, studies have found 

that microglia are the first immune cells to respond and undergo rapid activation 

and proliferation in ischemic tissue.79 Macrophages, neutrophils, and dendritic 

cells also respond quickly and are present in greatest numbers between one to 
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three days after ischemia. Although many studies have shown that the number of 

blood-borne neutrophils and macrophages are greatest after twenty-four hours, 

they are likely present much earlier, albeit in smaller numbers. In a model of brain 

compression injury, inflammatory responses by macrophages and neutrophils 

were shown to occur within thirty minutes using a novel intravital two-photon 

laser scanning microscopy technique.80 During stroke, the number of early 

responding leukocytes may be relatively small compared to later time points, but 

they may still have an important role in regulating inflammation during stroke.  

 Since immune cells are major secretors of inflammatory cytokines and 

contribute to stroke damage, general strategies to inhibit immune cell recruitment 

are promising and have been effectively employed in experimental models of 

stroke. Secreted chemokines promote the recruitment of leukocytes to ischemic 

tissues, and several major chemokines, MCP1, RANTES, and CX3CL1 are 

upregulated during stroke. Genetic deficiency of these chemokines or their 

receptors reduces immune cell recruitment during stroke and is neuroprotective, 

suggesting a detrimental role for leukocyte recruitment during stroke (Table 1.2). 

As mentioned above, inflammatory cytokines also promote leukocyte adhesion, 

activation and transmigration into the parenchyma through upregulation of 

adhesion molecules. Strategies to block leukocyte transmigration through genetic 

deletion or inhibition of P-Selectin, E-Selectin, CD11b, and ICAM-1 have also 

been found to be neuroprotective and reduce leukocyte numbers in the brain 

after stroke (Table 1.2).  

 Immune cells recruited to the ischemic brain can originate from several 

sources (Figure 1.2). Initially neutrophils, monocytes, dendritic cells and 

lymphocytes are recruited directly from the circulation, although after sustained 

inflammation they are also mobilized from the bone marrow. Monocytes are 

largely produced in the bone marrow from hematopoietic precursors in the 

steady-state and are recruited to the circulation during stroke via CCR2. Although 

the bone marrow is known to be the major source of monocytes, more recently 

the spleen has been identified as a reservoir for monocytes,81 and can  
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Table 1.2 Inhibition of immune cells in ischemic stroke models. 

        
        Mp – macrophages, Mo – monocytes, Pc – phagocytic cells 

give rise to monocytes through extramedullary monocytopoiesis during 

disease.112, 113 Spleen-derived cells likely contribute to immune cell-mediated  

stroke damage, and a reduction in spleen size has been documented in both 

humans and animal models.114, 115 Moreover, splenectomy has been shown to be 

protective and reduces immune cell-mediated damage in several models of 

organ damage,116, 117 including brain injury,118 and stroke.119-121  

Inhibition of leukocyte recruitment    
Target Treatment Phenotype Ref 

Mac-1 (CD11b/CD18) Neutralizing Ab Neuroprotection 82-84 
 KO Neuroprotection 85 
    
P-Selectin Neutralizing Ab Neuroprotection 86, 87 
 KO Neuroprotection 88 
    
E-Selectin Neutralizing Ab Neuroprotection 89 
    
ICAM-1 Neutralizing Ab Neuroprotection 82, 90-92 
 KO Neuroprotection 93 
    
MCP1 KO / Knockdown Neuroprotection 94-96 
 TG-overexpression Exacerbation 97 
    
CCR2 KO Neuroprotection / No Effect 98, 99 
    
CX3CL1 KO Neuroprotection 100 
    
CX3CR1 KO Neuroprotection 101 
    
    

Cell Depletion or Enhancement    
Target Treatment Phenotype Ref 

Mp/Mo/Pc Clodronate liposomes Exacerbation 102, 103 
 CD11b-DTR Exacerbation 103 
    
T cells Rag1 -/- Neuroprotection 104, 105 
 Rag2 -/- Neuroprotection 26 
 SCID Neuroprotection 106 
    
Tregs FoxP3DTR No effect 107 
 DEREG Neuroprotection 108 
 Anti-CD25 Ab Exacerbation 109 
 Adoptive transfer Neuroprotection 110 
    
B cells µMT -/- Exacerbation 111 
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Figure 1.2. Origin and recruitment of blood-borne cells to the ischemic 
brain. During stroke, chemokines mobilize immune cells to the circulation from 
various sources including the bone marrow, spleen and other lymphatic tissues.  
 

 While these strategies have provided evidence that non-selective inhibition 

of leukocyte recruitment can block inflammation-mediated stroke damage, more 

recent studies have begun to define the role of specific immune cell types. 

Lymphocytes are present in the ischemic brain and are known to have important 

roles in adaptive immune responses. Most data suggest that T-cells have a 

detrimental role since mice deficient in T-cells are protected in models of stroke 

(Table 1.2). Although lymphocytes can develop autoimmune responses against 

brain antigens, they appear to contribute to stroke damage through other 

mechanisms, perhaps through controlling innate immune cell responses. 

Adaptive immune responses typically require several days to develop, where as 

studies have found that T-cell depletion is protective during earlier time points. 

Regulatory T-cells (Tregs) have been the focus of more recent studies, although 

there is controversy regarding whether this subset of T-cells has a beneficial or 

detrimental role. Several studies in which Tregs were depleted prior to stroke 

have found opposite effects, where as adoptive transfer has been shown to 

decrease stroke damage (Table 1.2). These data indicate that T-cell responses 
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predominantly exacerbate stroke, although specific subsets may be beneficial 

and could be potential therapeutic targets.  

 Ablation of CD11b+ cells using a transgenically expressed diphtheria toxin 

receptor (DTR) has no effect on infarct size during stroke, but increases 

hemorrhagic transformation and impairs neurological function.103 Similarly, 

another study found that intracerebroventricular injection with clodronate 

liposomes, which ablates phagocytic cells, enhanced proinflammatory cytokines 

after stroke, and impaired neurological function.102 Depletion of microglia in the 

developing brain is also detrimental to neuron function and results in increased 

apoptosis.122 These results suggest that while prolonged microglia and 

macrophage activation may exacerbate stroke, depletion of these cells is also 

detrimental and probably interferes with critical phagocytic and reparative 

function. Moreover, perturbing the function of one cell type affects the function of 

many others that work cooperatively in the neurovascular unit. 

 Modulating specific immune cell phenotypes to ameliorate disease is an 

enticing strategy and could be an important therapeutic approach. In contrast to 

depleting or blocking macrophage responses, manipulation of the macrophage 

phenotype may provide a novel way to prevent specific deleterious inflammatory 

effects, while still allowing for other critical phagocytic and reparative responses. 

However, very few studies have focused on modulating myeloid phenotypes 

during stroke.  

Macrophage phenotypes during disease 

 Macrophages exhibit a wide array of functionally diverse phenotypes in 

response to pathogens or tissue injury. Through the integration of environmental 

signals, macrophages respond with unique activation programs, which carryout 

specific functional roles. Initially, macrophages were classified as classically 

activated macrophages (CAMs) and alternatively activated macrophages 

(AAMs), and were defined as M1 and M2, based on induction by Th1 and Th2 

cytokines. Other classification schemes based on in vitro stimuli have also been 
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proposed, but have not gained wide acceptance likely because the in vivo 

phenotypes do not correspond well. These definitions are insufficient since the 

chemical milieu in vivo is much more complex and the macrophage phenotypes 

are context dependent. Others have taken the approach to name macrophages 

based on the expression of a particular marker (e.g. Mox, a type of alternatively 

activated macrophage expressing heme oxygenase). However, the functions of 

the different phenotypes are poorly understood and the markers used to identify 

them often do not have clear functional significance in the phenotype. It is now 

generally accepted that macrophage phenotypes fall within a spectrum of 

functional phenotypes, although they can have similar and overlapping features 

as the CAM and AAM phenotypes induced by Th1 and Th2 cytokines in vitro 

(Figure 1.3).  

 

 
 
Figure 1.3. Spectrum of classically and alternatively activated macrophage 
phenotypes. A.) Classical activation is regulated in vivo in response to an array 
of inflammatory stimuli such as IFN-γ, TLR activation and inflammatory cytokines, 
and results in the expression of proinflammatory mediators like TNF-α, IL-1β, IL-6 
and a respiratory burst generating ROS. B) Phenotypes in the spectrum of 
alternative activation have unique gene expression profiles, and there is 
significant overlap in the previously defined wound healing, HO-1+ and 
deactivation subsets. 
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 CAMs are generally proinflammatory and are induced through stimulation 

with IFN-γ or by activation of pattern recognition receptors. CAMs are present in 

type 1 immune responses and promote inflammation by secreting classic pro-

inflammatory cytokines like TNF-α, IL-1β, IL-6, and IL-12, and by the production 

of reactive oxygen species through upregulation of oxidative mediators like iNOS 

and NADPH oxidase. In contrast, AAMs induced by IL-4/IL-13 have a different 

transcriptional profile with increased expression of Arg1, Ym1, IL-10, mannose 

receptor (CD206) and others.123-125 Heme oxygenase-1 (HO-1) has emerged as 

an additional marker for a macrophage phenotype that falls within the spectrum 

of alternative activation (Figure 1.3). AAMs are involved in parasitic infection and 

are also involved in wound healing response and resolution of inflammation. In 

many cardiovascular diseases, AAMs are present and are thought to have 

protective roles. The presence of AAM phenotypes has been associated with 

cardioprotection, although little is known about the functional significance of AAM 

markers, and the protective mechanisms of these macrophage phenotypes are 

largely unknown.  

 Over half of the nuclear receptor superfamily is expressed in 

macrophages, and many nuclear receptors have important roles in regulating 

macrophage activation and function.126 Many of the nuclear receptors orchestrate 

the macrophage inflammatory response through regulation of inflammatory 

pathways and by regulating the expression of inflammatory mediators. The 

glucocorticoid receptor (GR) is one of the most extensively studied nuclear 

receptors in regards to inflammation and macrophage function, and 

pharmacological modulation of GR can suppress inflammatory pathways and 

alter the macrophage phenotype.127 GR activation by glucocorticoids increases 

the production of anti-inflammatory cytokines, IL-10 and TGF-β and down-

regulates MHC-II resulting in macrophage deactivation, sometimes referred to as 

regulatory macrophages. Other nuclear receptors like PPAR-γ, LXR, and MR 

have also more recently been shown to regulate macrophage polarization.  
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 The role of AAM phenotypes during stroke is unclear, although recent data 

suggest that enhanced alternative activation may be beneficial.128 AAM markers 

are increased and persist for several days after transient ischemic stroke, and 

one study found AAM markers are localized within the ischemic core.129, 130 IL-4 

knockout mice have altered inflammatory responses to a variety of stimuli and 

have diminished Th2 responses and reduced alternative activation. Xiong et al. 

reported that IL-4 knockout mice have exacerbated cerebral infarction and 

impaired neurological function.46 Importantly, IL-4 knockout mice have increased 

macrophage and microglia recruitment and an increase in the Th1/Th2 ratio. This 

supports a hypothesis for a protective role of alternatively activated macrophages 

during stroke. In addition, microglia also adopt classical and alternatively 

activated phenotypes,131-133 although little is known about their role in vivo and 

whether microglia phenotypes can be altered to produce neurological benefit. 

Mineralocorticoid receptor biology and cardiovascular disease 

 The mineralocorticoid receptor (MR) is a nuclear receptor with expression 

in a wide range of tissues, although it is most well known for its classical role in 

the renin-angiotensin-aldosterone-system. In the distal nephron, MR is largely 

responsible for regulating sodium reabsorption, which has important roles in 

controlling extracellular blood volume and blood pressure (Figure 1.4). 

Aldosterone is the physiological ligand for MR in the kidney, but MR actually has 

two high affinity ligands: aldosterone and corticosterone. Under normal 

physiological conditions, cortisol is present at concentrations that are 100- to 

1000-fold greater than aldosterone,134 and with an equal affinity as aldosterone, 

cortisol would normally occupy MR . However, sensitivity to aldosterone can be 

achieved by the presence of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), 

which converts cortisol into a low-affinity form, cortisone. Therefore tissues with 

high 11β-HSD2 expression are sensitive to aldosterone, but not cortisol.  

 Because of their diuretic and antihypertensive effects, the MR antagonists 

spironolactone and eplerenone have been used clinically for the treatment of  
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Figure 1.4. Classical role of the mineralocorticoid receptor in the kidney. 
Activation of the RAAS leads to the secretion of aldosterone from the adrenal 
cortex, which travels to target cells in the kidney and activates MR. 11β-HSD2 
converts cortisol into the low affinity form cortisone, thus allowing aldosterone to 
activate MR and increase sodium reabsorption in the distal nephron.  
 

hypertension, edema, and hyperaldosteronism. More recently, the beneficial 

effects of MR antagonists have been found to extend beyond diuresis and blood 

pressure lowering. In patients with severe heart failure, clinical trials have found 

that MR antagonism significantly decreases mortality independent of blood 

pressure lowering.135, 136 These studies indicate that MR has more direct effects 

in regulating pathological hypertrophy and remodeling. Subsequent studies have 

focused on identifying novel roles for MR in different cell types including 

cardiomyocytes, smooth muscle cells, endothelial cells, and macrophages, and 

many have identified pathological roles in models of hypertensive remodeling and 

myocardial infarction.137-143  

 We have recently identified MR as a regulator of macrophage polarization. 

Activation of macrophages by mineralocorticoids enhances proinflammatory CAM 

phenotypes, whereas MR antagonists and MR knockout suppress the 

inflammatory response and skew macrophages towards an AAM phenotype 

(Figure 1.5). Myeloid-specific deletion of MR significantly reduced cardiac 

hypertrophy and fibrosis in a hypertensive and inflammatory model of cardiac 

remodeling. Myeloid MR knockout also resulted in the suppression of  
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Figure 1.5. Regulation of macrophage phenotype by the mineralocorticoid 
receptor. MR activation in macrophages induces a CAM phenotype and 
enhances LPS-induced CAM polarization. MR knockout or MR antagonism 
suppresses classical activation and induces an AAM phenotype. 
 

inflammatory genes and increased the expression of AAM markers in cardiac 

tissue. These data indicate that modulation of myeloid cell phenotype is an 

important mechanism for the beneficial effects of MR antagonists used clinically 

to treat pathological cardiac remodeling. 

 Several preclinical studies have shown that MR antagonists also provide 

significant benefit during animal models of ischemic stroke.144-146 In stroke-prone 

spontaneously hypertensive rats, spironolactone decreases stroke related 

mortality and also reduces ischemic infarct volume after middle cerebral artery 

(MCA) occlusion.144, 147 Similarly, spironolactone and eplerenone reduce infarct 

volume and decrease superoxide production in both permanent and transient 

MCA occlusion.  

 In this thesis, we examine the role of myeloid MR during stroke. Based on 

the efficacy of MR antagonists in preclinical stroke models, and our previous data 
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showing that MR regulates the macrophage phenotype, we hypothesized that 

MR controls myeloid cell phenotype during stroke pathophysiology. 

 
 
 
 



	
   19 

References 
1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, 

Bennett DA, et al. Global and regional burden of stroke during 1990-2010: 
Findings from the global burden of disease study 2010. Lancet. 
2014;383:245-254 

2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. 
Heart disease and stroke statistics--2014 update: A report from the 
american heart association. Circulation. 2014;129:e28-e292 

3. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. 
Years lived with disability (ylds) for 1160 sequelae of 289 diseases and 
injuries 1990-2010: A systematic analysis for the global burden of disease 
study 2010. Lancet. 2012;380:2163-2196 

4. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et 
al. Endovascular therapy after intravenous t-pa versus t-pa alone for 
stroke. The New England journal of medicine. 2013;368:893-903 

5. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, et al. 
Endovascular treatment for acute ischemic stroke. The New England 
journal of medicine. 2013;368:904-913 

6. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial 
of imaging selection and endovascular treatment for ischemic stroke. The 
New England journal of medicine. 2013;368:914-923 

7. Jauch EC, Saver JL, Adams HP, Jr., Bruno A, Connors JJ, Demaerschalk 
BM, et al. Guidelines for the early management of patients with acute 
ischemic stroke: A guideline for healthcare professionals from the 
american heart association/american stroke association. Stroke; a journal 
of cerebral circulation. 2013;44:870-947 

8. Schwamm LH, Ali SF, Reeves MJ, Smith EE, Saver JL, Messe S, et al. 
Temporal trends in patient characteristics and treatment with intravenous 
thrombolysis among acute ischemic stroke patients at get with the 
guidelines-stroke hospitals. Circulation. Cardiovascular quality and 
outcomes. 2013;6:543-549 

9. Tong D, Reeves MJ, Hernandez AF, Zhao X, Olson DM, Fonarow GC, et 
al. Times from symptom onset to hospital arrival in the get with the 
guidelines--stroke program 2002 to 2009: Temporal trends and 
implications. Stroke; a journal of cerebral circulation. 2012;43:1912-1917 

10. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. 
Activation of pdgf-cc by tissue plasminogen activator impairs blood-brain 
barrier integrity during ischemic stroke. Nature medicine. 2008;14:731-737 

11. Shimohata T, Kanazawa M, Kawamura K, Takahashi T, Nishizawa M. 
Therapeutic strategies to attenuate hemorrhagic transformation after 
tissue plasminogen activator treatment for acute ischemic stroke. 
Neurology and Clinical Neuroscience. 2013;1:201–208 

12. Iadecola C, Anrather J. The immunology of stroke: From mechanisms to 
translation. Nature medicine. 2011;17:796-808 



	
   20 

13. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, Dollman M, 
et al. Proinflammatory cytokines in serum of patients with acute cerebral 
ischemia: Kinetics of secretion and relation to the extent of brain damage 
and outcome of disease. J Neurol Sci. 1994;122:135-139 

14. Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm 
S, et al. Early intrathecal production of interleukin-6 predicts the size of 
brain lesion in stroke. Stroke; a journal of cerebral circulation. 
1995;26:1393-1398 

15. Welsh P, Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ. 
Associations of inflammatory and haemostatic biomarkers with poor 
outcome in acute ischaemic stroke. Cerebrovascular diseases. 
2009;27:247-253 

16. Vila N, Castillo J, Davalos A, Chamorro A. Proinflammatory cytokines and 
early neurological worsening in ischemic stroke. Stroke; a journal of 
cerebral circulation. 2000;31:2325-2329 

17. Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of 
anti-inflammatory cytokines and neurological worsening in acute ischemic 
stroke. Stroke; a journal of cerebral circulation. 2003;34:671-675 

18. Pun PB, Lu J, Moochhala S. Involvement of ros in bbb dysfunction. Free 
radical research. 2009;43:348-364 

19. Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, et al. 
Neurovascular matrix metalloproteinases and the blood-brain barrier. 
Current pharmaceutical design. 2012;18:3645-3648 

20. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nature 
medicine. 2002;8:1363-1368 

21. Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in 
cerebral ischemia: Inflammatory versus neurotrophic aspects. Journal of 
cerebral blood flow and metabolism : official journal of the International 
Society of Cerebral Blood Flow and Metabolism. 2009;29:464-479 

22. Stroemer RP, Rothwell NJ. Exacerbation of ischemic brain damage by 
localized striatal injection of interleukin-1beta in the rat. Journal of cerebral 
blood flow and metabolism : official journal of the International Society of 
Cerebral Blood Flow and Metabolism. 1998;18:833-839 

23. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role 
of il-1alpha and il-1beta in ischemic brain damage. J Neurosci. 
2001;21:5528-5534 

24. Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain 
injury in interleukin-1 beta converting enzyme-deficient mice. Journal of 
cerebral blood flow and metabolism : official journal of the International 
Society of Cerebral Blood Flow and Metabolism. 1998;18:180-185 

25. Konoeda F, Shichita T, Yoshida H, Sugiyama Y, Muto G, Hasegawa E, et 
al. Therapeutic effect of il-12/23 and their signaling pathway blockade on 
brain ischemia model. Biochemical and biophysical research 
communications. 2010;402:500-506 



	
   21 

26. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, 
et al. Pivotal role of cerebral interleukin-17-producing gammadeltat cells in 
the delayed phase of ischemic brain injury. Nature medicine. 2009;15:946-
950 

27. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM. Tnf-alpha 
pretreatment induces protective effects against focal cerebral ischemia in 
mice. Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 
1997;17:483-490 

28. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, et al. 
Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. 
Stroke; a journal of cerebral circulation. 1997;28:1233-1244 

29. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, 
Nielsen HH, et al. Microglia protect neurons against ischemia by synthesis 
of tumor necrosis factor. J Neurosci. 2009;29:1319-1330 

30. Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor 
and amelioration of brain infarction in mice. Journal of cerebral blood flow 
and metabolism : official journal of the International Society of Cerebral 
Blood Flow and Metabolism. 1997;17:229-232 

31. Meistrell ME, 3rd, Botchkina GI, Wang H, Di Santo E, Cockroft KM, Bloom 
O, et al. Tumor necrosis factor is a brain damaging cytokine in cerebral 
ischemia. Shock. 1997;8:341-348 

32. Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, et 
al. Inhibition of tumor necrosis factor-alpha-converting enzyme by a 
selective antagonist protects brain from focal ischemic injury in rats. 
Molecular pharmacology. 2004;65:890-896 

33. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, et 
al. Altered neuronal and microglial responses to excitotoxic and ischemic 
brain injury in mice lacking tnf receptors. Nature medicine. 1996;2:788-794 

34. Gary DS, Bruce-Keller AJ, Kindy MS, Mattson MP. Ischemic and 
excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis 
factor receptor. Journal of cerebral blood flow and metabolism : official 
journal of the International Society of Cerebral Blood Flow and 
Metabolism. 1998;18:1283-1287 

35. Garcia JH, Liu KF, Relton JK. Interleukin-1 receptor antagonist decreases 
the number of necrotic neurons in rats with middle cerebral artery 
occlusion. The American journal of pathology. 1995;147:1477-1486 

36. Loddick SA, Rothwell NJ. Neuroprotective effects of human recombinant 
interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. 
Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 
1996;16:932-940 



	
   22 

37. Relton JK, Rothwell NJ. Interleukin-1 receptor antagonist inhibits 
ischaemic and excitotoxic neuronal damage in the rat. Brain research 
bulletin. 1992;29:243-246 

38. Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous 
interleukin-1 receptor antagonist (il-1ra) are mediated by glia. Glia. 
2006;53:551-556 

39. Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, et al. 
Postischemic gene transfer of interleukin-10 protects against both focal 
and global brain ischemia. Circulation. 2005;111:913-919 

40. de Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P, Langhans W, 
et al. In vivo over-expression of interleukin-10 increases resistance to focal 
brain ischemia in mice. Journal of neurochemistry. 2009;110:12-22 

41. Spera PA, Ellison JA, Feuerstein GZ, Barone FC. Il-10 reduces rat brain 
injury following focal stroke. Neuroscience letters. 1998;251:189-192 

42. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, et al. 
Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic 
damage. The European journal of neuroscience. 2000;12:2265-2272 

43. Prehn JH, Backhauss C, Krieglstein J. Transforming growth factor-beta 1 
prevents glutamate neurotoxicity in rat neocortical cultures and protects 
mouse neocortex from ischemic injury in vivo. Journal of cerebral blood 
flow and metabolism : official journal of the International Society of 
Cerebral Blood Flow and Metabolism. 1993;13:521-525 

44. Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, et al. 
Transforming growth factor-beta 1 increases bad phosphorylation and 
protects neurons against damage. J Neurosci. 2002;22:3898-3909 

45. Ruocco A, Nicole O, Docagne F, Ali C, Chazalviel L, Komesli S, et al. A 
transforming growth factor-beta antagonist unmasks the neuroprotective 
role of this endogenous cytokine in excitotoxic and ischemic brain injury. 
Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 
1999;19:1345-1353 

46. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain 
injury and worsened neurological outcome in interleukin-4 knockout mice 
after transient focal cerebral ischemia. Stroke; a journal of cerebral 
circulation. 2011;42:2026-2032 

47. Ali C, Nicole O, Docagne F, Lesne S, MacKenzie ET, Nouvelot A, et al. 
Ischemia-induced interleukin-6 as a potential endogenous neuroprotective 
cytokine against nmda receptor-mediated excitotoxicity in the brain. 
Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 
2000;20:956-966 

48. Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is 
neuroprotective during permanent focal cerebral ischemia in the rat. 
Journal of cerebral blood flow and metabolism : official journal of the 



	
   23 

International Society of Cerebral Blood Flow and Metabolism. 
1998;18:176-179 

49. Matsuda S, Wen TC, Morita F, Otsuka H, Igase K, Yoshimura H, et al. 
Interleukin-6 prevents ischemia-induced learning disability and neuronal 
and synaptic loss in gerbils. Neuroscience letters. 1996;204:109-112 

50. Yamashita T, Sawamoto K, Suzuki S, Suzuki N, Adachi K, Kawase T, et 
al. Blockade of interleukin-6 signaling aggravates ischemic cerebral 
damage in mice: Possible involvement of stat3 activation in the protection 
of neurons. Journal of neurochemistry. 2005;94:459-468 

51. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, et al. 
Lack of interleukin-6 expression is not protective against focal central 
nervous system ischemia. Stroke; a journal of cerebral circulation. 
2000;31:1715-1720 

52. Herrmann O, Tarabin V, Suzuki S, Attigah N, Coserea I, Schneider A, et 
al. Regulation of body temperature and neuroprotection by endogenous 
interleukin-6 in cerebral ischemia. Journal of cerebral blood flow and 
metabolism : official journal of the International Society of Cerebral Blood 
Flow and Metabolism. 2003;23:406-415 

53. Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, et al. Anti-
high mobility group box 1 monoclonal antibody ameliorates brain infarction 
induced by transient ischemia in rats. FASEB journal : official publication 
of the Federation of American Societies for Experimental Biology. 
2007;21:3904-3916 

54. Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, et al. Hmbg1 
mediates ischemia-reperfusion injury by trif-adaptor independent toll-like 
receptor 4 signaling. Journal of cerebral blood flow and metabolism : 
official journal of the International Society of Cerebral Blood Flow and 
Metabolism. 2011;31:593-605 

55. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, et 
al. High mobility group box 1 protein is released by neural cells upon 
different stresses and worsens ischemic neurodegeneration in vitro and in 
vivo. Journal of neurochemistry. 2007;103:590-603 

56. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, 
et al. The hmgb1 receptor rage mediates ischemic brain damage. J 
Neurosci. 2008;28:12023-12031 

57. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, et al. 
Key role of cd36 in toll-like receptor 2 signaling in cerebral ischemia. 
Stroke; a journal of cerebral circulation. 2010;41:898-904 

58. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, et al. 
Toll-like receptor 2 mediates cns injury in focal cerebral ischemia. Journal 
of neuroimmunology. 2007;190:28-33 

59. Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, 
Trendelenburg G. Blocking tlr2 in vivo protects against accumulation of 
inflammatory cells and neuronal injury in experimental stroke. Journal of 



	
   24 

cerebral blood flow and metabolism : official journal of the International 
Society of Cerebral Blood Flow and Metabolism. 2011;31:757-766 

60. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, et al. 
Tlr2 has a detrimental role in mouse transient focal cerebral ischemia. 
Biochemical and biophysical research communications. 2007;359:574-579 

61. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. 
Pivotal role for neuronal toll-like receptors in ischemic brain injury and 
functional deficits. Proc Natl Acad Sci U S A. 2007;104:13798-13803 

62. Hyakkoku K, Hamanaka J, Tsuruma K, Shimazawa M, Tanaka H, 
Uematsu S, et al. Toll-like receptor 4 (tlr4), but not tlr3 or tlr9, knock-out 
mice have neuroprotective effects against focal cerebral ischemia. 
Neuroscience. 2010;171:258-267 

63. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, 
et al. Equal numbers of neuronal and nonneuronal cells make the human 
brain an isometrically scaled-up primate brain. The Journal of comparative 
neurology. 2009;513:532-541 

64. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of 
immune surveillance in the central nervous system. Nature reviews. 
Immunology. 2012;12:623-635 

65. Carvalho-Tavares J, Hickey MJ, Hutchison J, Michaud J, Sutcliffe IT, 
Kubes P. A role for platelets and endothelial selectins in tumor necrosis 
factor-alpha-induced leukocyte recruitment in the brain microvasculature. 
Circulation research. 2000;87:1141-1148 

66. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et 
al. Embryonic and adult-derived resident cardiac macrophages are 
maintained through distinct mechanisms at steady state and during 
inflammation. Immunity. 2014;40:91-104 

67. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate 
mapping analysis reveals that adult microglia derive from primitive 
macrophages. Science. 2010;330:841-845 

68. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. 
Tissue-resident macrophages self-maintain locally throughout adult life 
with minimal contribution from circulating monocytes. Immunity. 
2013;38:792-804 

69. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate 
mapping reveals origins and dynamics of monocytes and tissue 
macrophages under homeostasis. Immunity. 2013;38:79-91 

70. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia 
and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A. 
1997;94:4080-4085 

71. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, et al. 
Targeting gene-modified hematopoietic cells to the central nervous 
system: Use of green fluorescent protein uncovers microglial engraftment. 
Nature medicine. 2001;7:1356-1361 



	
   25 

72. Kennedy DW, Abkowitz JL. Kinetics of central nervous system microglial 
and macrophage engraftment: Analysis using a transgenic bone marrow 
transplantation model. Blood. 1997;90:986-993 

73. Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, 
Migita M, et al. Migration of enhanced green fluorescent protein 
expressing bone marrow-derived microglia/macrophage into the mouse 
brain following permanent focal ischemia. Neuroscience. 2003;117:531-
539 

74. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating 
monocytes trigger eae progression, but do not contribute to the resident 
microglia pool. Nat Neurosci. 2011;14:1142-1149 

75. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal 
can sustain cns microglia maintenance and function throughout adult life. 
Nat Neurosci. 2007;10:1538-1543 

76. Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, et al. 
Distinct and non-redundant roles of microglia and myeloid subsets in 
mouse models of alzheimer's disease. J Neurosci. 2011;31:11159-11171 

77. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. 
Microglia in the adult brain arise from ly-6chiccr2+ monocytes only under 
defined host conditions. Nat Neurosci. 2007;10:1544-1553 

78. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, 
et al. Proliferating resident microglia after focal cerebral ischaemia in mice. 
Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 
2007;27:1941-1953 

79. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et 
al. Temporal and spatial dynamics of cerebral immune cell accumulation in 
stroke. Stroke; a journal of cerebral circulation. 2009;40:1849-1857 

80. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. 
Transcranial amelioration of inflammation and cell death after brain injury. 
Nature. 2014;505:223-228 

81. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, 
Panizzi P, et al. Identification of splenic reservoir monocytes and their 
deployment to inflammatory sites. Science. 2009;325:612-616 

82. Chopp M, Li Y, Jiang N, Zhang RL, Prostak J. Antibodies against adhesion 
molecules reduce apoptosis after transient middle cerebral artery 
occlusion in rat brain. Journal of cerebral blood flow and metabolism : 
official journal of the International Society of Cerebral Blood Flow and 
Metabolism. 1996;16:578-584 

83. Chen H, Chopp M, Zhang RL, Bodzin G, Chen Q, Rusche JR, et al. Anti-
cd11b monoclonal antibody reduces ischemic cell damage after transient 
focal cerebral ischemia in rat. Annals of neurology. 1994;35:458-463 

84. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic 
administration of an anti-mac-1 antibody reduces ischemic cell damage 



	
   26 

after transient middle cerebral artery occlusion in rats. Stroke; a journal of 
cerebral circulation. 1994;25:869-875; discussion 875-866 

85. Soriano SG, Coxon A, Wang YF, Frosch MP, Lipton SA, Hickey PR, et al. 
Mice deficient in mac-1 (cd11b/cd18) are less susceptible to cerebral 
ischemia/reperfusion injury. Stroke; a journal of cerebral circulation. 
1999;30:134-139 

86. Goussev AV, Zhang Z, Anderson DC, Chopp M. P-selectin antibody 
reduces hemorrhage and infarct volume resulting from mca occlusion in 
the rat. J Neurol Sci. 1998;161:16-22 

87. Suzuki H, Hayashi T, Tojo SJ, Kitagawa H, Kimura K, Mizugaki M, et al. 
Anti-p-selectin antibody attenuates rat brain ischemic injury. Neuroscience 
letters. 1999;265:163-166 

88. Connolly ES, Jr., Winfree CJ, Prestigiacomo CJ, Kim SC, Choudhri TF, 
Hoh BL, et al. Exacerbation of cerebral injury in mice that express the p-
selectin gene: Identification of p-selectin blockade as a new target for the 
treatment of stroke. Circulation research. 1997;81:304-310 

89. Huang J, Choudhri TF, Winfree CJ, McTaggart RA, Kiss S, Mocco J, et al. 
Postischemic cerebrovascular e-selectin expression mediates tissue injury 
in murine stroke. Stroke; a journal of cerebral circulation. 2000;31:3047-
3053 

90. Bowes MP, Rothlein R, Fagan SC, Zivin JA. Monoclonal antibodies 
preventing leukocyte activation reduce experimental neurologic injury and 
enhance efficacy of thrombolytic therapy. Neurology. 1995;45:815-819 

91. Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, et al. 
Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell 
damage after transient but not permanent middle cerebral artery occlusion 
in the wistar rat. Stroke; a journal of cerebral circulation. 1995;26:1438-
1442; discussion 1443 

92. Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jones ML, et al. Anti-icam-1 
antibody reduces ischemic cell damage after transient middle cerebral 
artery occlusion in the rat. Neurology. 1994;44:1747-1751 

93. Connolly ES, Jr., Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, et al. 
Cerebral protection in homozygous null icam-1 mice after middle cerebral 
artery occlusion. Role of neutrophil adhesion in the pathogenesis of 
stroke. J Clin Invest. 1996;97:209-216 

94. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. 
Monocyte chemoattractant protein-1 deficiency is protective in a murine 
stroke model. Journal of cerebral blood flow and metabolism : official 
journal of the International Society of Cerebral Blood Flow and 
Metabolism. 2002;22:308-317 

95. Schilling M, Strecker JK, Schabitz WR, Ringelstein EB, Kiefer R. Effects of 
monocyte chemoattractant protein 1 on blood-borne cell recruitment after 
transient focal cerebral ischemia in mice. Neuroscience. 2009;161:806-
812 



	
   27 

96. Kumai Y, Ooboshi H, Takada J, Kamouchi M, Kitazono T, Egashira K, et 
al. Anti-monocyte chemoattractant protein-1 gene therapy protects against 
focal brain ischemia in hypertensive rats. Journal of cerebral blood flow 
and metabolism : official journal of the International Society of Cerebral 
Blood Flow and Metabolism. 2004;24:1359-1368 

97. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, et al. 
Overexpression of monocyte chemoattractant protein 1 in the brain 
exacerbates ischemic brain injury and is associated with recruitment of 
inflammatory cells. Journal of cerebral blood flow and metabolism : official 
journal of the International Society of Cerebral Blood Flow and 
Metabolism. 2003;23:748-755 

98. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the 
chemokine receptor ccr2 protects against cerebral ischemia/reperfusion 
injury in mice. Stroke; a journal of cerebral circulation. 2007;38:1345-1353 

99. Schilling M, Strecker JK, Ringelstein EB, Schabitz WR, Kiefer R. The role 
of cc chemokine receptor 2 on microglia activation and blood-borne cell 
recruitment after transient focal cerebral ischemia in mice. Brain research. 
2009;1289:79-84 

100. Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, et al. 
Mice deficient in fractalkine are less susceptible to cerebral ischemia-
reperfusion injury. Journal of neuroimmunology. 2002;125:59-65 

101. Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ. Role of cx3cr1 
(fractalkine receptor) in brain damage and inflammation induced by focal 
cerebral ischemia in mouse. Journal of cerebral blood flow and 
metabolism : official journal of the International Society of Cerebral Blood 
Flow and Metabolism. 2008;28:1707-1721 

102. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, 
et al. Microglial cells contribute to endogenous brain defenses after acute 
neonatal focal stroke. J Neurosci. 2011;31:12992-13001 

103. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung 
HP, et al. Macrophages prevent hemorrhagic infarct transformation in 
murine stroke models. Annals of neurology. 2012;71:743-752 

104. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, et 
al. Early detrimental t-cell effects in experimental cerebral ischemia are 
neither related to adaptive immunity nor thrombus formation. Blood. 
2010;115:3835-3842 

105. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of t lymphocytes 
and interferon-gamma in ischemic stroke. Circulation. 2006;113:2105-
2112 

106. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, 
Vandenbark AA, et al. T- and b-cell-deficient mice with experimental 
stroke have reduced lesion size and inflammation. Journal of cerebral 
blood flow and metabolism : official journal of the International Society of 
Cerebral Blood Flow and Metabolism. 2007;27:1798-1805 



	
   28 

107. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. Cd4+foxp3+ 
regulatory t-cells in cerebral ischemic stroke. Metabolic brain disease. 
2011;26:87-90 

108. Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, 
et al. Regulatory t cells are strong promoters of acute ischemic stroke in 
mice by inducing dysfunction of the cerebral microvasculature. Blood. 
2013;121:679-691 

109. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. 
Regulatory t cells are key cerebroprotective immunomodulators in acute 
experimental stroke. Nature medicine. 2009;15:192-199 

110. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory t-
cell therapy protects against cerebral ischemia. Annals of neurology. 
2013;74:458-471 

111. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, et 
al. Regulatory b cells limit cns inflammation and neurologic deficits in 
murine experimental stroke. J Neurosci. 2011;31:8556-8563 

112. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, et al. 
Rapid monocyte kinetics in acute myocardial infarction are sustained by 
extramedullary monocytopoiesis. J Exp Med. 2012;209:123-137 

113. Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, 
Gorbatov R, et al. Extramedullary hematopoiesis generates ly-6c(high) 
monocytes that infiltrate atherosclerotic lesions. Circulation. 
2012;125:364-374 

114. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, et al. Changes 
in spleen size in patients with acute ischemic stroke: A pilot observational 
study. International journal of stroke : official journal of the International 
Stroke Society. 2013;8:60-67 

115. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker 
KR. A transient decrease in spleen size following stroke corresponds to 
splenocyte release into systemic circulation. Journal of neuroimmune 
pharmacology : the official journal of the Society on NeuroImmune 
Pharmacology. 2012;7:1017-1024 

116. Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X. Splenectomy ameliorates 
acute multiple organ damage induced by liver warm ischemia reperfusion 
in rats. Surgery. 2007;141:32-40 

117. Okuaki Y, Miyazaki H, Zeniya M, Ishikawa T, Ohkawa Y, Tsuno S, et al. 
Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in 
the rat. Liver. 1996;16:188-194 

118. Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, et al. Immediate splenectomy 
decreases mortality and improves cognitive function of rats after severe 
traumatic brain injury. The Journal of trauma. 2011;71:141-147 

119. Ajmo CT, Jr., Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing 
A, et al. The spleen contributes to stroke-induced neurodegeneration. 
Journal of neuroscience research. 2008;86:2227-2234 



	
   29 

120. Seifert HA, Leonardo CC, Hall AA, Rowe DD, Collier LA, Benkovic SA, et 
al. The spleen contributes to stroke induced neurodegeneration through 
interferon gamma signaling. Metabolic brain disease. 2012;27:131-141 

121. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-
inflammatory mechanism of intravascular neural stem cell transplantation 
in haemorrhagic stroke. Brain : a journal of neurology. 2008;131:616-629 

122. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer v 
cortical neurons require microglial support for survival during postnatal 
development. Nat Neurosci. 2013;16:543-551 

123. Louis CA, Mody V, Henry WL, Jr., Reichner JS, Albina JE. Regulation of 
arginase isoforms i and ii by il-4 in cultured murine peritoneal 
macrophages. Am J Physiol. 1999;276:R237-242 

124. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, 
Hassanzadeh Gh G. Differential expression of fizz1 and ym1 in 
alternatively versus classically activated macrophages. J Leukoc Biol. 
2002;71:597-602 

125. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances 
murine macrophage mannose receptor activity: A marker of alternative 
immunologic macrophage activation. J Exp Med. 1992;176:287-292 

126. Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, et 
al. A nuclear receptor atlas: Macrophage activation. Molecular 
endocrinology. 2005;19:2466-2477 

127. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--new 
mechanisms for old drugs. The New England journal of medicine. 
2005;353:1711-1723 

128. Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects 
of t cell subsets in neuronal injury induced by cocultured splenocytes in 
vitro and by in vivo stroke in mice. Stroke; a journal of cerebral circulation. 
2012;43:1941-1946 

129. Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression 
and colocalization of microglia/macrophage phenotype markers following 
brain ischemic injury in mice. Journal of neuroinflammation. 2011;8:174 

130. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. 
Microglia/macrophage polarization dynamics reveal novel mechanism of 
injury expansion after focal cerebral ischemia. Stroke; a journal of cerebral 
circulation. 2012;43:3063-3070 

131. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. 
Expression profiles for macrophage alternative activation genes in ad and 
in mouse models of ad. Journal of neuroinflammation. 2006;3:27 

132. Ponomarev ED, Maresz K, Tan Y, Dittel BN. Cns-derived interleukin-4 is 
essential for the regulation of autoimmune inflammation and induces a 
state of alternative activation in microglial cells. J Neurosci. 
2007;27:10714-10721 



	
   30 

133. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and 
disease. Nature reviews. Immunology. 2011;11:775-787 

134. Kratz A, Ferraro M, Sluss PM, Lewandrowski KB. Case records of the 
massachusetts general hospital. Weekly clinicopathological exercises. 
Laboratory reference values. The New England journal of medicine. 
2004;351:1548-1563 

135. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. 
Eplerenone, a selective aldosterone blocker, in patients with left 
ventricular dysfunction after myocardial infarction. The New England 
journal of medicine. 2003;348:1309-1321 

136. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The 
effect of spironolactone on morbidity and mortality in patients with severe 
heart failure. Randomized aldactone evaluation study investigators. The 
New England journal of medicine. 1999;341:709-717 

137. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L, 
Farman N, et al. The endothelial mineralocorticoid receptor regulates 
vasoconstrictor tone and blood pressure. FASEB journal : official 
publication of the Federation of American Societies for Experimental 
Biology. 2010;24:2454-2463 

138. Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. 
Endothelial cell mineralocorticoid receptors regulate 
deoxycorticosterone/salt-mediated cardiac remodeling and vascular 
reactivity but not blood pressure. Hypertension. 2014;63:1033-1040 

139. Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A, 
Berger S, et al. Smooth muscle cell mineralocorticoid receptors are 
mandatory for aldosterone-salt to induce vascular stiffness. Hypertension. 
2014;63:520-526 

140. McCurley A, Pires PW, Bender SB, Aronovitz M, Zhao MJ, Metzger D, et 
al. Direct regulation of blood pressure by smooth muscle cell 
mineralocorticoid receptors. Nature medicine. 2012;18:1429-1433 

141. Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. 
Aldosterone promotes vascular remodeling by direct effects on smooth 
muscle cell mineralocorticoid receptors. Arteriosclerosis, thrombosis, and 
vascular biology. 2014;34:355-364 

142. Fraccarollo D, Berger S, Galuppo P, Kneitz S, Hein L, Schutz G, et al. 
Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse 
remodeling after myocardial infarction. Circulation. 2011;123:400-408 

143. Lother A, Berger S, Gilsbach R, Rosner S, Ecke A, Barreto F, et al. 
Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts 
preserves cardiac function. Hypertension. 2011;57:746-754 

144. Dorrance AM, Osborn HL, Grekin R, Webb RC. Spironolactone reduces 
cerebral infarct size and egf-receptor mrna in stroke-prone rats. Am J 
Physiol Regul Integr Comp Physiol. 2001;281:R944-950 



	
   31 

145. Iwanami J, Mogi M, Okamoto S, Gao XY, Li JM, Min LJ, et al. 
Pretreatment with eplerenone reduces stroke volume in mouse middle 
cerebral artery occlusion model. Eur J Pharmacol. 2007;566:153-159 

146. Oyamada N, Sone M, Miyashita K, Park K, Taura D, Inuzuka M, et al. The 
role of mineralocorticoid receptor expression in brain remodeling after 
cerebral ischemia. Endocrinology. 2008;149:3764-3777 

147. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr. 
Mineralocorticoid blockade reduces vascular injury in stroke-prone 
hypertensive rats. Hypertension. 1998;31:451-458 

 
 



	
  
	
  

32 

CHAPTER 2 
Myeloid-Specific Deletion of the Mineralocorticoid Receptor Reduces 

Infarct Volume and Alters Inflammation During Focal Cerebral Ischemia 
 

Abstract 

Background and Purpose – Mineralocorticoid receptor (MR) antagonists have 

protective effects in rodent models of ischemic stroke, but the cell type-specific 

actions of these drugs are unknown. In the present study, we examined the 

contribution of myeloid cell MR during focal cerebral ischemia using myeloid-

specific MR knockout (MyMRKO) mice. 

Methods – MyMRKO mice were subjected to transient (90 minute) middle 

cerebral artery occlusion (MCA) occlusion followed by 24 hours reperfusion (n = 

5-7/group). Ischemic cerebral infarcts were identified by hematoxylin and eosin 

staining and quantified with image analysis software. Immunohistochemical 

localization of microglia and macrophages was performed using Iba1 staining, 

and the expression of inflammatory markers was measured after 24 hours 

reperfusion by qRT-PCR.  

Results – MyMRKO resulted in a 65% reduction in infarct volume (P = 0.005) 

following MCA occlusion. This was accompanied by a significant reduction in 

activated microglia and macrophages in the ischemic core. Furthermore, 

MyMRKO suppressed classically activated M1 macrophage markers TNF-α, IL-

1β, MCP1, Mip1α and IL-6 while partially preserving the induction of alternatively 

activated, M2, markers Arg1 and Ym1.  
_______________________ 
This chapter represents a published article: Frieler, R.A., Meng, H., Duan, S.Z., 
et al. Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct 
volume and alters inflammation during cerebral ischemia. Stroke. 2011;42:179-
185.
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Conclusions – These data demonstrate that myeloid MR activation exacerbates 

stroke and identify myeloid MR as a critical target for MR antagonists. Further, 

these data indicate that MR activation has an important role in controlling 

immune cell function during the inflammatory response to stroke. 

Introduction 

Mineralocorticoids can cause vascular inflammation and hypertension, 

which lead to vascular damage and remodeling.1 During ischemic stroke, 

mineralocorticoid receptor (MR) activation results in increased vascular damage 

and ischemia.2 Not surprisingly, several studies have shown that MR antagonists, 

at doses that do not alter blood pressure, are protective in rodent models of 

ischemic stroke. Treatment with the MR antagonist spironolactone was shown to 

reduce vascular damage and decrease mortality.3 Similarly, another MR 

antagonist, eplerenone, decreases superoxide production and reduces infarct 

volume in animal models of ischemic stroke.4 This indicates that MR blockade 

might have clinical potential as a therapeutic agent for stroke. However, the 

mechanisms of pharmacologic control and, importantly, the cell type-specific 

actions of MR antagonists have not been identified and characterized.  

In addition to its classical role in the kidney, MR has also been identified in 

other tissues, including the heart, brain, and inflammatory cells such as 

macrophages and microglia.5, 6 In many of these cells, particularly brain and 

hematopoietic cells, the ligand for MR is thought to be glucocorticoids. MR has 

two high affinity physiologic ligands, mineralocorticoids such as aldosterone, and 

glucocorticoids such as corticosterone in rodents.7 Since glucocorticoids circulate 

at levels 100- to 1000-fold higher than mineralocorticoids, MR binding sites are 

thought to be occupied by glucocorticoids in the absence of 11β-hydroxysteroid 

dehydrogenase 2 (11β-HSD2) which inactivates corticosterone to 11β-

dehydrocorticosterone. Neurons and hematopoietic cells lack 11β-HSD2 and 

therefore the majority of MR molecules are predicted to be occupied by 

glucocorticoids.8 
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Inflammation has an important role in the pathogenesis of ischemic stroke. 

A reduction in immune cells, inflammatory cytokines, and adhesion molecules 

reduces stroke injury,9, 10 where as increases in anti-inflammatory cytokines such 

as IL-10 and IL-1RA are protective during models of cerebral ischemia.11, 12 

Several strategies to reduce the damaging inflammatory response following 

ischemic stroke have targeted immune cells and immune cell recruitment. 

Decreasing neutrophil infiltration reduces infarct volumes and neuronal cell death 

in mice following focal cerebral ischemia.10 However, there was no 

neuroprotection found in clinical trials that tested agents that reduced neutrophil 

activity.13 Similarly, adhesion molecules are important for leukocyte trafficking 

and infiltration into ischemic regions, and the use of monoclonal antibodies 

against intercellular adhesion molecule-1 (ICAM-1) has been successful in 

animal models of ischemic stroke.14, 15 Again, this treatment failed to translate to 

the clinical condition, but this was possibly due to the use of murine 

immunoglobulin. Targeting nuclear receptors that alter inflammation may be a 

viable alternative.  

We have recently identified MR as a regulator of macrophage polarization, 

and deletion of MR from macrophages induces an alternatively activated 

macrophage (AAM) phenotype, sometimes called M2, while suppressing the 

classically activated macrophage (CAM), M1, phenotype.16 Decreasing the 

CAM/AAM ratio was associated with abrogation of L-NAME/Angiotensin-II-

induced cardiac and vascular hypertrophy, fibrosis, and inflammation. Myeloid 

MR is also important in DOCA/salt-induced cardiac fibrosis.17 Importantly, our 

previous work showed these effects to be independent of blood pressure 

lowering and, rather, are proposed to be a result of MR control of macrophage 

activation. We therefore hypothesized that the neuroprotective effects of MR 

antagonists during cerebral ischemia are at least partially due to a modulation in 

myeloid cell response, particularly the CAM/AAM polarization of macrophages 

and microglia. To test this, we examined the effects of myeloid MR knockout 

(MyMRKO) in a model of focal cerebral ischemia. 
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Methods 
Mice 

 MyMRKO mice on a C57BL/6 background were bred by crossing 

homozygous floxed MR mice with homozygous floxed MR mice containing LysM-

Cre (MRfl/fl;LysM-Cre x MRfl/fl). MRfl/fl;LysM-Cre (knockouts) and littermate MRfl/fl 

(floxed controls (FC)) were used for all experiments. All animal procedures were 

performed in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Publication no. 80–23) and were approved by the University 

Committee on Use and Care of Animals of the University of Michigan. 

Middle Cerebral Artery (MCA) Occlusion 

 Male MyMRKO mice weighing between 25-32 g were used. MCA 

occlusion was performed using the intraluminal filament method as previously 

described.18 The mice were anesthetized with 1-3% isoflurane and a 6-0 silicon 

rubber-coated nylon monofilament (Docoll Corporation, CA) was inserted into the 

right internal carotid artery. The right MCA was occluded for 90 minutes at which 

point the monofilament was removed and mice were allowed to recover.  

Laser Doppler Flowmetry and Blood Gas 

 Cortical perfusion in the MCA territory was measured using laser Doppler 

flowmetry and was determined before and during occlusion of the MCA. For 

measurement of pH, PO2, and PCO2, a catheter was implanted into the femoral 

artery and arterial blood was collected during pre-ischemic and ischemic periods.  

Measurement of Infarct Volume 

 Following 24 hours of reperfusion, the mice were euthanized and 

transcardially perfused with heparinized saline (1 U/mL). The brains were 

removed and post-fixed in 4% paraformaldehyde for 1 week. The cerebrum was 

then cut into 1 mm thick serial coronal sections. 10 μm paraffin embedded 

sections were stained with hematoxylin and eosin and the cerebral infarct volume 

was quantified using NIH image analysis software (Image J ver 1.43). Infarct 

volume was corrected for brain edema. 
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Immunohistochemistry 
 Microglia and macrophage activation and localization were determined 

after 24 hours of reperfusion with the microglia/macrophage selective antibody 

ionized calcium-binding adapter protein 1 (Iba1) (Abcam) at a 1:300 dilution using 

standard staining protocols on paraffin embedded sections. Iba1+ cells were 

quantified and expressed as number of cells/field (40X objective). Two 40X fields 

were counted per anatomical region and averaged to obtain the number of Iba1+ 

microglia and macrophages. 

Quantitative real-time RT-PCR 
 mRNA expression was measured after 24 hours reperfusion. Total RNA 

was extracted from frozen whole cerebral hemispheres using TRIzol reagent and 

then purified with the RNeasy Mini Kit (Qiagen). Purified RNA (1µg) was reverse 

transcribed to cDNA using an Applied Biosystems kit. QRT-PCR was performed 

using a Bio-Rad iCycler. The relative mRNA expression was quantified using the 

comparative method and mRNA was normalized to β-actin. 

Microglia Isolation and Culture 

 10-12 wk old mice FC and MyMRKO mice were euthanized and 

transcardially perfused with heparinized saline (1U/mL). The cerebrum was 

homogenized in ice cold PBS in a Tenbroeck homogenizer and the homogenate 

was passed through a 50 μm strainer and resuspended in 70% isotonic Percoll. 

A 0/40/70% Percoll gradient was set up and centrifuged at 1200 x g for 45 

minutes at 20°C. The microglia fraction was then collected, resuspended in RPMI 

+ 10% FBS and plated at a density of 2 x 105 cells/mL/well. Cells were washed 

with PBS (+ calcium chloride, + magnesium chloride) after 2 hours to remove 

non-adherent cells and then incubated for 24 hours at 37°C, 5% CO2. 

Statistics 
 Data are presented as mean ± SEM. Comparison of mean values between 

groups was performed using an unpaired, Student’s t test or by a two-way 

ANOVA with a Bonferroni post-test as indicated. P < 0.05 was considered 

statistically significant.  
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Results 
MyMRKO 

There are no obvious phenotypic differences in MyMRKO mice compared to 

floxed controls. Since MR is classically known to regulate blood pressure and this 

can affect stroke, we determined if MyMRKO affected blood pressure. We 

observed no significant change in baseline systolic and diastolic blood pressure 

between freely moving, unanesthetized MyMRKO and floxed control groups as 

measured by arterial pressure transducers monitored by radiotelemetry (Figure 

2.1A and B). There is also no change in heart rate between the groups (Figure 

2.1C). This would indicate that differences in neurologic outcome between the 

floxed controls and MyMRKO are unlikely to be related to blood pressure.  

Figure 2.1. Effect of MyMRKO on blood pressure. Data represent the mean 
systolic pressure (A), diastolic pressure (B), and heart rate (C) of floxed control 
(FC) and MyMRKO mice during day and night cycles determined by implanted 
arterial pressure transducers. n = 4 per group. 
 
MyMRKO reduces infarct volume. 

We examined the effect of MyMRKO on ischemic lesion size during focal 

cerebral ischemia. MyMRKO resulted in a significant reduction in infarct size 24 

hours after 90 minute transient occlusion of the right MCA. The infarct volume 

was determined in H&E stained serial coronal sections using Image J software, 

and a significant decrease in ischemic infarct size was detected in MyMRKO 
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sections (Figure 2.2A) relative to floxed controls (Figure 2.2B). Quantification of 

infarct volumes in serial coronal sections shows a significant reduction in 

MyMRKO (Figure 2.2C). The total infarct size of the ischemic hemisphere in the 

MyMRKO group was 11%, which was significantly less (P=0.005) than floxed 

controls, which had a total infarct volume of 32% (Figure 2.2D). This represented 

a highly significant 65% reduction in ischemic infarct volume in the MyMRKO 

group.  

 

 
Figure 2.2. Quantification of infarct volume following transient cerebral 
ischemia. Infarct volumes were calculated from H&E stained serial coronal 
sections after MCA occlusion and 24 hours reperfusion using Image J software. 
Representative photographs of MyMRKO (A) and floxed controls (FC) (B) 
showing a reduced infarct size in the MyMRKO group. Quantification of infarct 
volume in serial coronal sections of FC and MyMRKO mice (C) and quantification 
of total ischemic infarct size in whole brain hemispheres (D) also showed a 
significant reduction in infarct size in the MyMRKO group. n = 5-7 per group. **P 
< 0.01, *** P < 0.001, Bonferroni post-test.  

 

No differences in pH, PO2, or PCO2 were detected before or during ischemia 

(Table 2.1). Cerebral blood flow in the MCA territory was reduced to less than 

50% baseline during ischemia, but no differences were detected in perfusion 

between floxed control and MyMRKO mice.  
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Table 2.1. Cerebral blood flow and arterial blood gas measurements. 

 
Values represent mean ± S.E. The ischemic cerebral blood flow (CBF) is 
represented as the percentage of the pre-ischemic, baseline CBF. There were no 
significant differences between FC and MyMRKO mice (N = 4 per group). FC = 
Floxed Control, MyMRKO = myeloid MR knockout. 
 

Recruitment of microglia/macrophages following MCA occlusion. 

Following MCA occlusion, there were no differences in the number of microglia in 

the non-ischemic, contralateral hemisphere between floxed control and MyMRKO 

groups (Figure 2.3A). There was a robust increase in Iba1+ cells in the ischemic, 

ipsilateral core when compared to the non-ischemic, contralateral hemisphere in 

floxed controls, indicating an increase in microglia and/or macrophage  

recruitment. However, this response was reduced in MyMRKO mice. 

Quantification of Iba1+ cells/field showed a statistically significant reduction 

(P=0.018) in microglia/macrophages in MyMRKO in the ischemic core (Figure 

2.3B). A regional comparison of Iba1+ cells show that significant differences in 

microglia/macrophages are largely confined to the subcortical basal ganglia 

(Table 2.2), which is within the ischemic core.  

  CBF (%)  pH  PO2, mm Hg  PCO2, mm Hg 

Pre-Ischemia         

FC  100  7.34 ± 0.04  19.3 ± 3.9  158.7 ± 17.4 

MyMRKO  100  7.36 ± 0.06  17.6 ± 2.5  149.0 ± 14.8 

Ischemia         

FC  46.1 ± 0.9  7.28 ± 0.06  20.8 ± 4.1  138.6 ± 17.0 

MyMRKO  46.6 ± 3.8  7.39 ± 0.05  20.9 ± 4.6  140.7 ± 12.3 
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Figure 2.3. Immunohistochemical analysis of microglia and macrophages 
following MCA occlusion. Representative photomicrographs of non-ischemic 
contralateral (Contra) and ischemic ipsilateral (Ipsi) regions from coronal sections 
containing the infarct core. There were no significant changes in Iba1 staining in 
the contralateral hemispheres of floxed controls (FC) (A) or MyMRKOs (B). There 
was a significant increase in Iba1+ microglia and/or macrophages in the 
ipsilateral ischemic hemisphere of floxed controls (C), however, this response 
was diminished in MyMRKO mice (D). Quantification of immunoreactive Iba1+ 
cells shows a statistically significant reduction of activated microglia and/or 
macrophages in the ischemic core of MyMRKO relative to floxed controls (E). n = 
5-7 per group. 
 

MyMRKO alters the inflammatory response to stroke. 

We have previously demonstrated that myeloid MR controls macrophage 

polarization and alters the inflammatory response during cardiac inflammation 

and fibrosis.16 To determine whether MyMRKO alters the inflammatory response 

to ischemic stroke, we measured the expression of classical and alternative 

macrophage markers 24 hours after MCA occlusion using qRT-PCR. There is a 

strong induction in pro-inflammatory cytokines in the ischemic hemisphere of the 

floxed control group. However, MyMRKO demonstrated profound suppression of 

CAM markers TNF-α, IL-1β, MCP1 and Mip1α (Figure 2.4A). These pro-

inflammatory mediators are generally associated with exacerbation of tissue 

damage.  
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Table 2.2. Anatomical localization of Iba1+ cells following MCA occlusion.  

Anatomical Region  
 

Iba1+ cells / field   
FC   MyMRKO   
Mean ± 
S.E.  

 Mean ± 
S.E.  

P-value  

Basal ganglia      

Medial  123 ± 5   44 ± 8  < 0.001  

Lateral  101 ± 11   54 ± 11  0.011  

Cortex      

Primary Motor  19 ± 2   21 ± 1  0.329  

Secondary Motor  20 ± 1   21 ± 1  0.100  
Primary 
somatosensory  29 ± 2   22 ± 3  0.088  

Secondary 
somatosensory  31 ± 8   27 ± 2  0.280  

Olfactory area  32 ± 11   28 ± 2  0.332  

Hypothalamic area  31 ± 15   25 ± 4  0.337  
 
Values represent mean ± S.E. of Iba1+ cells observed in different anatomical 
regions within the cerebrum. Cells were counted in a 40X field. N = 5-7 per 
group. 
 

In contrast, the induction of AAM markers was at least partially preserved 

in MyMRKO. There was a significant increase in AAM markers, Arg1 and Ym1, in 

the ischemic hemisphere of both floxed control and MyMRKO groups (Figure 

2.4B); interestingly, no significant differences in these AAM markers in the 

ischemic hemisphere were observed between the MyMRKO and floxed controls. 

In MyMRKO, there was a minimal suppression of Arg1 and Ym1 (less than 2-

fold) where as all of the CAM markers were suppressed by greater than 2-fold 

and IL-1β and MCP1 had a 5-fold suppression relative to controls. Other AAM 

markers such as the mannose receptor (Mrc1) and Mgl1 showed no significant 

changes whereas the IL-1 receptor antagonist (IL-1RA) was significantly lower in  
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Figure 2.4. MyMRKO shows an altered inflammatory response during MCA 
occlusion. mRNA expression of CAM markers (A) AAM markers (B) and IL-17 
(C) following MCA occlusion. All genes were normalized to β-actin. n = 4 per 
group. 



	
  
	
  

43 

the MyMRKO group (Figure 2.4B). Aldosterone has been shown to induce IL-17- 

mediated neuroinflammation,19 but we did not see any significant change in the 

expression of IL-17 (Figure 2.4C). 

 Since oxidative stress is a critical mediator of reperfusion injury, we 

determined if MyMRKO altered the expression of genes associated with oxidative 

stress. We found no significant stroke-induced or strain-dependent differences in 

several genes (NADPH oxidase 2 (NOX2), manganese superoxide dismutase 

(MnSOD), catalase (Cat), and peroxiredoxin-2 (Prdx2)) (Figure 2.5) that are 

known to contribute to oxidative damage and that are associated with 

inflammation.  

Figure 2.5. Markers of oxidative stress and fibrosis. MyMRKO did not show 
any differences in the mRNA expression of markers of oxidative stress NADPH 
oxidase 2 (NOX2), manganese superoxide dismutase (MnSOD), catalase-1 
(Cat), peroxiredoxin-2 (Prdx2), nor did it show a difference in the expression of 
collagen 1A (Col1A1), collagen 3 (Col3) or Fibronectin (Fn). No difference was 
observed in the expression of matrix metalloproteinase 9 (MMP9). All genes were 
normalized to β-actin. FC = Floxed Control, n = 4 per group. 
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In cardiac inflammation and fibrosis, myeloid MR was shown to 

exacerbate tissue remodeling and increase fibrosis. However, no changes in 

collagen 1A (Col1A1), collagen 3 (Col3), and fibronectin (Fn) expression were 

detected, nor did we see any difference in the expression of matrix 

metalloproteinase 9 (MMP9) (Figure 2.5).  

Discussion 
In the present study, we demonstrated an important role for myeloid MR 

during ischemic stroke using cell type-specific knockout and a model of focal 

cerebral ischemia. We found that deletion of MR from cells of myeloid lineage 

significantly reduced stroke infarct volume following MCA occlusion. Further, a 

reduction in activated microglia/macrophages was observed along with a 

concomitant decrease in pro-inflammatory markers associated with the CAM 

phenotype. In addition, there was a partial preservation of the AAM phenotype. 

These data indicate that MyMRKO confers neuroprotection by modulating the 

immune response to ischemic stroke. Furthermore, we identify myeloid cells, 

which includes macrophages and microglia, as critical targets for MR antagonists 

and MR-regulation of myeloid cells as a potential mechanism for neuroprotection 

exhibited in previous studies. 

To address the effect that myeloid MR has on the inflammatory response 

to stroke, we measured the expression of CAM and AAM markers following MCA 

occlusion. We observed infarct-induced MyMRKO suppression of TNF-α, IL-1β, 

MCP1, IL-6 and Mip1α, which are expressed principally by macrophages and are 

markers of classical macrophage activation. Several of the CAM markers such as 

MCP1, IL-1β, and Mip1α were highly suppressed by 5-, 5- and 3-fold changes, 

respectively. However, the expression of AAM markers, Arg1 and Ym1, was 

partially preserved in MyMRKO mice with both being suppressed by less than 2-

fold. The suppression of AAM markers was less than all of the CAM markers 

tested. This indicates there may be a higher ratio of AAM polarized myeloid cells 

within the brain and suggests that macrophage polarization may have an 
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important role in neurologic outcome. Other AAM markers that were previously 

found to be regulated by MR during cardiac inflammation such as Mrc1, Mgl1 and 

Fizz1 were not upregulated during ischemia. This is likely due to the fact that 

different phenotypes of AAM polarization can exist based on the external stimuli 

that activate macrophages or expression of these genes in other cell types. 

Immunohistochemical staining for Iba1 indicates a significant change in 

the macrophage/microglia response. However, Iba1 does not differentiate 

between macrophages and microglia, and it is difficult to differentiate the two cell 

types based on morphology. Changes in Iba1 staining were mainly confined to 

subcortical regions, although changes in infarct size are largely defined by 

differences in the cortex. This could indicate that MR control of the CAM/AAM 

phenotype, rather than increases in the total number of myeloid cells, are more 

important in determining infarct size in the cortex.  

There is evidence that microglia also adopt different functional phenotypes 

similar to the classical and alternative macrophage polarization.20, 21 However, 

microglia do not express LysM until they become activated, and even upon 

activation there is only partial gene recombination and deletion.22 Microglia 

containing LysM-Cre are able to undergo partial recombination during isolation 

and culturing, but we were unable to detect any suppression of MR expression in 

cultured microglia. This would suggest that resident macrophages or infiltrating 

myeloid cells might have a more dominant role in reducing inflammation and 

lesion size. It also remains to be determined whether MR activation can affect the 

population of circulating monocytes, which are recruited following ischemic 

stroke. Therefore, future studies aimed at identifying the individual contribution of 

monocytes, macrophages, and microglia are warranted.  

Iwanami et al. have shown that the MR antagonist eplerenone reduces 

macrophage associated oxidative stress following MCA occlusion.4 Further, high 

levels of aldosterone, a physiologic MR ligand, increase oxidative stress in 

circulating monocytes, as well as isolated macrophages.23, 24 Our data show that 

myeloid MR does not affect the expression of genes associated with oxidative 
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stress and the production of reactive oxygen species (ROS) 24 hours after 

ischemic stroke. However, many enzymes that generate ROS can be directly 

activated within minutes of ischemia-reperfusion. Furthermore, aldosterone is 

capable of activating NADPH oxidase by non-genomic mechanisms.25 We have 

not directly measured the levels of ROS and it could be possible that MR affects 

ROS production in this manner. 

Although mineralocorticoid excess clearly affects stroke, in a normal 

physiological setting where glucocorticoids are significantly higher than 

aldosterone, as mentioned above, myeloid MR is thought to be mainly occupied 

by glucocorticoids. Glucocorticoids have been implicated as important regulators 

of MR function in other tissues that lack 11β-HSD2, including the brain and heart. 

In a model of myocardial infarction, the glucocorticoid cortisol was shown to 

increase the size of infarction and myocyte cell death.26 This response was 

blocked by the MR antagonist spironolactone indicating potential actions of 

glucocorticoids on MR. Therefore, in our model of ischemic stroke, it is possible 

that glucocorticoids have a significant role in mediating the pro-inflammatory 

effects of myeloid MR. However, it is unclear how either aldosterone or 

glucocorticoids alter inflammation in macrophages and other myeloid cells. 

Future studies need to be aimed at understanding the mechanisms of myeloid 

phenotypic control by MR and whether MR is a direct transcriptional activator of 

pro-inflammatory genes.  

In summary, this study has identified a previously unknown role for 

myeloid MR activation during ischemic stroke. Using MyMRKO mice, we 

demonstrated that MR activation in myeloid cells exacerbates inflammation and 

alters the CAM/AAM inflammatory response to stroke. Moreover, these 

experiments indicate that MR control of immune cell function significantly affects 

stroke lesion size.  
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CHAPTER 3 
The Myeloid Mineralocorticoid Receptor During Experimental Ischemic 

Stroke: Effects of Model and Sex 
 

Abstract 

Background – Mineralocorticoid receptor (MR) antagonists have protective 

effects in the brain during experimental ischemic stroke, and we have previously 

demonstrated a critical role for myeloid MR during stroke pathogenesis. In this 

study, we explore both model and sex-specific actions of myeloid MR during 

ischemic stroke.  

Methods and Results – The MR antagonist eplerenone significantly reduced the 

infarct size in male (Control - 99.5 mm3, Eplerenone – 74.2 mm3, n = 8-12 per 

group), but not female (Control – 84.0 mm3, Eplerenone – 83.7 mm3, n = 6-7 per 

group) mice following transient (90 minute) middle cerebral artery (MCA) 

occlusion. In contrast to MR antagonism, genetic ablation of myeloid MR in 

female mice significantly reduced infarct size (MyMRKO - 19.2 mm3, Control - 

64.4 mm3, n=6 per group) after transient MCA occlusion. This was accompanied 

by significant reductions in inflammatory gene expression and neurological 

deficit. In contrast to ischemia-reperfusion, MyMRKO mice were not protected 

from permanent MCA occlusion. There were no significant differences in infarct 

size and inflammation after photothrombotic and intraluminal filament models of 

permanent occlusion.  

Conclusions – Here we demonstrate that MR antagonism is only protective in 

male mice during transient MCA occlusion, but genetic ablation of myeloid MR 
_______________________ 
This chapter represents a published article: Frieler, R.A., Ray, J.J., Meng, H., et 
al. The Myeloid Mineralocorticoid Receptor During Experimental Ischemic Stroke: 
Effects Of Model And Sex. J Am Heart Assoc. 2012 Oct;1(5):e002584.
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is protective in both male and female mice. They also highlight significant 

mechanistic differences in the role of myeloid cells in different models of stroke 

and confirm that specific myeloid phenotypes play key roles in stroke protection.  

Introduction 

Mineralocorticoid receptor (MR) activation is a contributing factor in the 

pathophysiology of a wide range of diseases. Elevated levels of aldosterone, a 

physiological MR activator, are known to induce hypertension, alter inflammation 

and fibrosis, and exacerbate cardiovascular diseases. Clinical, therapeutic 

interventions for the treatment of hypertension, heart failure, and post-myocardial 

infarction remodeling have successfully employed the use of MR antagonists.1, 2 

However, the benefit of this class of drugs may extend to the treatment of other 

cardiovascular diseases like ischemic stroke. In fact, the MR antagonists 

eplerenone and spironolactone are both markedly effective in reducing infarct 

size and neurological deficit following ischemic stroke in male rats and mice.3-5  

Despite the known protective effects of MR antagonists, the exact 

mechanisms of protection are not well understood. In addition to demonstrating a 

remarkable efficacy of MR antagonists to decrease mortality during heart failure, 

the RALES study also showed that these effects occur without altering blood 

pressure and in the absence of aldosterone excess.2 Furthermore, 

spironolactone and eplerenone protected rodents from stroke injury without 

affecting blood pressure.3, 5 However, new information has recently come to light 

as a result of cell-specific genetic ablation techniques allowing for localization of 

MR activity critical to the pathophysiology of disease.  

 We have previously identified MR as a regulator of macrophage activation 

and demonstrated that MR antagonists or myeloid MR knockout (MyMRKO) 

induces an alternatively activated macrophage (AAM) phenotype.6 Alternately, 

MR activation by aldosterone induces a pro-inflammatory, classically activated 

macrophage (CAM) phenotype. Macrophage phenotypes influences the outcome 

in cardiac remodeling after infarct,7, 8 and deletion of MR from myeloid cells 
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significantly reduced cardiac remodeling in response to NG-nitro-L-arginine methyl 

ester/angiotensin II administration.6 These studies demonstrated that MR 

activation in myeloid cells plays a critical role in the promotion of 

pathophysiological cardiac remodeling.  

The neuroprotective effects of MR antagonists have become the focus of 

many recent studies, and it is now known that MR activation in myeloid cells 

plays an important role during ischemic stroke. MyMRKO mice are significantly 

protected from ischemia-reperfusion injury in the brain, demonstrating the 

importance of myeloid cells as targets for MR antagonists during ischemic 

stroke.9 Previous studies also indicate that female rats lack responsiveness to 

MR antagonists;10 therefore we tested whether genetic myeloid MR ablation was 

protective in females during ischemic stroke. To further evaluate and characterize 

this neuroprotective phenotype, we also tested whether MyMRKO mice were 

protected in models of permanent middle cerebral artery (MCA) occlusion.  

Methods 

Mice  

 All animal procedures were performed in accordance with the Guide for 

the Care and Use of Laboratory Animals (NIH Publication no. 80–23) and were 

approved by the University Committee on Use and Care of Animals of the 

University of Michigan. Adult male and female mice weighing between 25-30 g 

were used. MyMRKO mice (MRflox/flox; LysMCre+/-) and littermate floxed controls 

(FC; MRflox/flox) on a C57BL/6 background were generated as described 

previously.6 Mice were maintained on standard laboratory chow (5001, LabDiet) 

and water ad libitum. Mice were administered eplerenone (Sandoz, Princeton, 

NJ) (160 mg/kg/day) in rodent chow (Harlan Teklad, TD.10030) for one week 

prior to experiments. 

Intraluminal Filament MCA Occlusion  

 MCA occlusion using the intraluminal filament method was performed as 

previously described.11 The mice were anesthetized with 1-3% isoflurane and a 
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6-0 silicon rubber-coated nylon monofilament (Docoll Corporation, CA) was 

inserted into the right internal carotid artery. Regional cerebral blood flow was 

monitored using laser Doppler flowmetry (Transonic BLF21) before and during 

monofilament insertion to verify MCA occlusion. Occlusion was defined as a 

reduction in cerebral blood flow to a level less than 20% of baseline. For 

ischemia-reperfusion studies, the suture was removed after 90 minutes and 

animals were euthanized 24 hours after suture removal. For permanent occlusion 

experiments, the suture remained tied in place until the animals were euthanized.  

Photothrombotic MCA Occlusion  
 For induction of photothrombotic stroke, the temporalis muscle was 

transected and the left MCA was exposed by drilling a 1 mm burr hole through 

the skull. A laser Doppler flow probe (Type N (18 Ga), Transonic Systems) was 

placed distal to the exposed MCA to monitor cerebral blood flow. A 3.5−mW 

green light laser (540 nm, Melles Griot) was directed at the MCA and rose bengal 

(Acros Organics) was injected intravenously (50 mg/kg). The relative tissue 

perfusion units (TPU) of the cerebral cortex was monitored continuously with a 

laser Doppler flowmeter (Transonic BLF21). Stable occlusion was defined as a 

drop in TPU to a level less than 20% of baseline for greater than 10 minutes.  
Measurement of Infarct Volume  

 All infarcts were analyzed using magnetic resonance imaging (MRI). 

Twenty-four and seventy-two hours after transient or permanent MCA occlusion, 

mice were anesthetized with 2% isoflurane/air mixture throughout MRI 

examination. Mice lay prone, head first in a 7.0T Varian Unity Inova MR scanner 

(183-mm horizontal bore, Varian, Palo Alto, CA) with the body temperature 

maintained at 37°C, using forced heated air. A double-tuned volume 

radiofrequency coil was used to scan the head region of the mice. Axial T2-

weighted images were acquired using a fast spin-echo sequence with the 

following parameters: repetition time (TR)/effective echo time (TE), 4000/60 ms; 

echo spacing, 15 ms; number of echoes, 8; field of view (FOV), 20x20 mm; 

matrix, 256x128; slice thickness, 0.5 mm; number of slices, 25; and number of 



 

	
  
	
  

54 

scans, 1 (total scan time ~2.5 min.). The infarct volumes were analyzed using 

NIH ImageJ software (ver 1.43) by a blinded observer, and infarct volumes were 

corrected to account for brain swelling.12, 13 The following equation was used to 

calculate the corrected T2-lesion volumes:  

Corrected T2-lesion volume = TV - ((CV + (IV - LV)) x ((TV/2) / CV)) 

TV = total volume in both hemispheres, CV = contralateral volume, IV = 

ipsilateral volume, LV = lesion volume.  

Evaluation of Neurological Deficit  
 Neurological deficits were determined 24 hours after MCA occlusion. 

Neurological scores were assigned based on the following criteria: 0, no deficit; 

1, forelimb flexion and torso turning to the contralateral side when held by tail; 2, 

circling to contralateral side; 3, unable to bear weight on contralateral side; 4, no 

spontaneous locomotor activity.  

Gene Expression Analysis  

 mRNA expression was measured using quantitative reverse transcription–

polymerase chain reaction (qRT-PCR). Total RNA was extracted from frozen 

whole cerebral hemispheres using TRIzol reagent and then purified with the 

RNeasy Mini Kit (Qiagen). Purified RNA (1μg) was reverse transcribed to cDNA 

using an Applied Biosystems kit. qRT-PCR was performed using a Bio-Rad 

iCycler. The relative mRNA expression was quantified using the comparative 

method, and mRNA was normalized to β-actin. 

Immunohistochemistry  

 Mice were euthanized and transcardially perfused with heparinized saline 

(1 U/mL) and then 4% paraformaldehyde. The brains were removed and post-

fixed in 4% paraformaldehyde for 1 week. The cerebrum was then cut into 2-mm 

thick serial coronal sections. Sections were embedded in paraffin and cut into 10 

μm sections and mounted on a slide. Iba1+ microglia and macrophages were 

detected using goat polyclonal anti-Iba1 antibody (Abcam, ab5076) at a 1:300 

dilution on paraffin embedded sections. Immunoreactivity was visualized with an 

ABC kit (Vector Labs) using a biotinlyated rabbit anti-goat secondary antibody 
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and diaminobenzadine. Iba1+ cells were quantified and expressed as number of 

cells/field (40X objective). Two 40X fields were counted by a blinded observer in 

each anatomical region and averaged to obtain the number of Iba1+ microglia 

and macrophages. 

Statistics  

 Data are presented as mean ± SEM. Statistical comparison of mean 

values between groups was performed using the non-parametric, Mann-Whitney 

test and analyzed using Prism (version 5; GraphPad Software, Inc.), or by a two-

way ANOVA with a Bonferroni post-test as indicated. P < 0.05 was considered 

significantly different. 

Results 

Female MyMRKO mice are protected from transient MCA occlusion 

Previous studies indicate that MR antagonists are protective in male, but 

not female SHRSP rats during ischemic stroke.10 Similarly, we found that female 

mice also lack responsiveness to the MR antagonist eplerenone during transient 

MCA occlusion. Pretreatment with eplerenone significantly reduced the infarct 

size in male (Control - 99.5 mm3, Eplerenone – 74.2 mm3), but not female 

(Control – 84.0 mm3, Eplerenone – 83.7 mm3) mice (Figure 3.1A-B). Male 

MyMRKO mice are highly protected during ischemia reperfusion in the brain.9 To 

determine if a sexual dimorphic effect also exists in genetically ablated MyMRKO 

mice, we subjected female mice to transient MCA occlusion. We performed a 90 

minute transient MCA occlusion followed by 24 hours reperfusion, and the 

infarcts were assessed using T2-weighted MRI. Analysis of MRI scans showed a 

dramatic reduction in infarct size in female MyMRKO mice (Figure 3.2A). This is 

consistent with what we have observed in male mice. Quantification of infarct 

sizes using ImageJ software revealed a significant reduction in infarct size in the  

ischemic hemisphere of MyMRKO compared to floxed controls (FC) (Figure 

3.2B). This signifies a 70% reduction in total infarct size in the ischemic 

hemisphere (MyMRKO - 19.2 ± 8.3 mm3, FC - 64.4 ± 8.2 mm3, P = 0.001) (Figure  
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Figure 3.1. MR antagonism with eplerenone is protective in male, but not 
female mice during transient MCA occlusion. Representative MRI sections 
and infarct volumes from control and eplerenone treated (A) male and (B) female 
mice 24 hours after transient (90 minute) MCA occlusion. n = 6 - 12 per group.  
 

3.2C). The reduction in infarct size in MyMRKO mice was accompanied by a 

concomitant improvement in neurological function indicated by significantly lower 

neurological scores (MyMRKO - 0.5 ± 0.2, FC - 1.8 ± 0.4, P = 0.01) (Figure 

3.2D).  
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Figure 3.2. Infarct size and neurological deficit in female MyMRKO mice 
after transient MCA occlusion. (A) Representative MRI sections from FC and 
MyMRKO mice 24 hours after transient (90 minute) MCA occlusion. Infarct sizes 
in FC and MyMRKO mice represented as (B) fraction in ipsilateral hemisphere 
and (C) total infarct volume. (D) Functional outcome was assessed by scoring 
neurological deficit in mice after 24 hours. n = 6 per group. 
 

Female MyMRKO mice have a suppressed inflammatory response 
Since MR is a regulator of macrophage polarization, we analyzed the 

mRNA expression of genes induced in CAM and AAM phenotypes using qRT-

PCR. Female MyMRKO exposed to transient MCA occlusion exhibited a 

dramatic suppression in inflammatory gene expression compared to similarly 

treated FC female mice. The expression of pro-inflammatory, CAM genes (IL-1β, 

TNF-α, MCP1, and Mip1α) was significantly suppressed in ischemic 

hemispheres of MyMRKO mice when compared with FC (Figure 3.3A). We also 

examined a panel of genes (Arg1, Ym1, IL1RA, and F13a1) expressed by 

alternatively activated macrophages. The expression of Arg1 and Ym1 was 
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suppressed in MyMRKO mice (Figure 3B).  No statistically significant differences 

in IL1RA and F13a1 were detected (Figure 3.3B).  

 
Figure 3.3. Female MyMRKO mice have suppressed inflammatory gene 
expression after transient MCA occlusion. Gene expression of (A) pro-
inflammatory, CAM markers and (B) AAM markers 24 hours after transient (90 
minute) MCA occlusion. All genes were normalized to β-actin. *P < 0.05, **P < 
0.01 by 2-way ANOVA Bonferroni post-test. n = 5-6 per group. 

 

MyMRKO mice are not protected during permanent MCA occlusion 

MR antagonists have been shown to provide neuroprotection during both 

transient and permanent occlusion models of ischemic stroke. To evaluate the 

role of MyMRKO in conditions of permanent occlusion, we subjected MyMRKO 

and FC mice to MCA photothrombosis. Infarct sizes were assessed by MRI 24 

hours after MCA photothrombosis. Surprisingly, no significant differences in 

infarct volumes were observed between MyMRKO and controls in both male and 

female mice (Figure 3.4). Since a reduction in perfusion during permanent 

occlusion reduces infiltration of circulating inflammatory cells, we also assessed 
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the infarcts at 72 hours when more peripheral immune cells are recruited.14 An 

increase in infarct volume was observed at 72 hours due to infarct expansion, but 

there continued to be no differences in infarct size between MyMRKO and FC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.4. Infarct size in MyMRKO mice after photothrombotic MCA 
occlusion. (A) Representative MRI sections from male MyMRKO mice 24 hours 
after MCA photothrombosis. Infarct sizes in (B) male and (C) female FC and 
MyMRKO mice represented as fraction in ipsilateral hemisphere and total infarct 
volume. n = 5-6 per group. 
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We previously observed a significant reduction in the number of Iba1+ cells 

(microglia and macrophages) in the infarct core in MyMRKO mice during 

transient occlusion.9 Therefore, we examined whether there were changes in 

microglia and macrophage numbers during permanent MCA photothrombosis.  

Significant increases in Iba1+ microglia and macrophages were present in the 

ipsilateral hemisphere of both MyMRKO and FC mice; however no differences 

were present between MyMRKO and FC (Figure 3.5). Similarly, no baseline 

differences were observed in the contralateral hemispheres.  

 
Figure 3.5. Immunohistochemical analysis of macrophages and microglia 
24 hours after photothrombotic MCA occlusion. (A) Representative 
photomicrographs of contralateral and ipsilateral hemispheres from FC and 
MyMRKO mice stained with microglia and macrophage immunoreactive Iba1 
antibody. (B) Quantification of Iba1 immunoreactive cells in the infarct core. n = 5 
per group. 
 

 To further evaluate the changes in the inflammatory response, we 

analyzed the CAM and AAM markers. The gene expression of CAM markers (IL-

1β, TNF-α, MCP1, and Mip1α) were all significantly increased in the ipsilateral 

hemisphere of MyMRKO and FC mice compared to the contralateral hemisphere, 

but no changes between groups were observed (Figure 3.6A). Similarly, no 

differences were observed in AAM markers between MyMRKO and FC mice 

(Figure 3.6B).  
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Figure 3.6. Expression of inflammatory markers in MyMRKO mice 24 hours 
after photothrombotic MCA occlusion. Gene expression of (A) pro-
inflammatory, CAM markers and (B) AAM markers 24 hours after MCA 
photothrombosis. All genes were normalized to β-actin. n = 6 per group. 

 

MR antagonists have not been tested in the photothrombosis stroke model 

and it is unknown whether they are protective in this model. Therefore we also 

tested the effect of MyMRKO during permanent MCA occlusion using the 

intraluminal filament model in which the MR antagonists are known to be 

effective at reducing infarct size. Consistent with the results from MCA 

photothrombosis, we found no differences in infarct size and neurological deficit 

between MyMRKO and controls 24 hours after permanent MCA occlusion using 

the intraluminal filament model (Figure 3.7). These data indicate that reperfusion 

is necessary for myeloid cell phenotypes to alter stroke outcome. 
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Figure 3.7. Infarct size in MyMRKO mice after permanent MCA occlusion 
using the intraluminal filament model. (A) Representative MRI sections from 
male FC and MyMRKO mice 24 hours after permanent MCA occlusion. Infarct 
sizes in FC and MyMRKO mice represented as (B) fraction in ipsilateral 
hemisphere and (C) total infarct volume. (D) Functional outcome was assessed 
by scoring neurological deficit in mice after 24 hours. n = 5 per group. 
 

Discussion 
In the current study, we evaluated the role of myeloid MR in female mice 

and in multiple models of ischemic stroke. We found that male, but not female 

mice were protected from cerebral ischemia by pretreatment with the MR 

antagonist eplerenone. In contrast to MR antagonism, genetic ablation of MR in 

myeloid cells is neuroprotective in female mice. Like males, female MyMRKO 

mice were dramatically protected from transient occlusion and had highly 

significant reductions in infarct size, neurological deficit and inflammatory 

response. Furthermore, we also show that the neuroprotective phenotype in 
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MyMRKO mice exists during transient MCA occlusion, but not during permanent 

MCA occlusion. MyMRKO mice displayed no differences in infarct size and 

inflammation in MCA photothrombosis and intraluminal filament models of 

permanent occlusion.  

It has been well established that MR antagonists have protective effects 

and significantly reduce stroke lesion volume in male mice and SHRSP rats. The 

majority of experimental cardiovascular studies using animal models only report 

the use of male animals. The STAIR recommendations for performing preclinical 

stroke studies include using multiple models (permanent and transient occlusion) 

in both male and female subjects to better assess the viability of drugs for clinical 

translation.15 In accordance, we investigated the effects of the MR antagonist 

eplerenone during transient MCA occlusion in both sexes and found that it is 

protective in male, but not female mice. This is consistent with a previous report 

published by Rigsby and colleagues demonstrating that neuroprotection by MR 

antagonists does not extend to female rats.10 They found that non-ovarectomized 

and ovarectomized female rats lacked responsiveness to both spironolactone 

and eplerenone during ischemic stroke. Female SHRSP rats were also shown to 

have elevated levels of MR in the cerebral vasculature when compared to males, 

but it is not known whether this contributes to the sexual dimorphism of MR 

antagonists.  

MR antagonists have also been shown to display sexual dimorphism in 

their ability to reduce blood pressure. In a salt-induced hypertension model, the 

MR antagonist spironolactone was effective in reducing blood pressure in male, 

but not female Wistar rats.16 Similarly, intracerebroventricular injection of the MR 

antagonist RU28318 resulted in a reduced anti-hypertensive response in female 

rats compared to males.17, 18 Despite the differences in the likely mechanism of 

blood pressure lowering in these two models, females lacked responsiveness to 

MR blockade. The sexual dimorphic effects of MR antagonists have been 

suggested to be due to alternative drug metabolism in females, and it has been 

shown that the MR antagonist eplerenone is differentially metabolized in male 
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and female mice. Interestingly though, male rats have been shown to metabolize 

eplerenone more rapidly than females.19 Furthermore, this hypothesis is 

confounded by the observation that MR antagonists have beneficial effects in 

females during models of cardiac remodeling and cerebral aneurysm 

formation.20-22 Taken together, the available data suggest that the sexual 

dimorphic actions may be due to model-specific effects rather than differential 

drug metabolism.  

In contrast to MR antagonism, our studies show that genetic ablation of 

myeloid MR is protective in both male and female mice after transient MCA 

occlusion. Myeloid MR knockout significantly reduced infarct volume and 

suppressed inflammation while improving neurological function. These results 

indicate that there may be differential sexual dimorphism of MR antagonists in 

different cell types. In fact, MR clearly has effects in other cell types within the 

brain and cerebrovasculature, and MR overexpression in neurons has actually 

been shown to have beneficial effects during cerebral ischemia.23 It is possible, 

then, that sex-dependent differences in the expression and regulation of neuronal 

MR or in the intracellular metabolism of MR agonists or antagonists could play a 

role in sexually dimorphic responses to MR antagonists in stroke. The studies by 

Rahmouni and colleagues in which intracerebroventricular injections of MR 

antagonists exhibited reduced efficacy in females may indeed indicate that 

sexual dimorphism of MR antagonists exists in non-myeloid cell types in the 

brain.17 In light of these data, our studies indicate that myeloid-targeted drug 

delivery could be an effective strategy in the treatment of stroke. Modification of 

drugs to reduce passage across the blood-brain barrier could provide a means to 

target circulating cells without affecting other cell types in the brain. 

MR antagonists are protective in both transient and permanent MCA 

occlusion. In contrast, MyMRKO mice were protected during transient MCA 

occlusion, but not during models of permanent MCA occlusion. There were no 

differences in infarct size, macrophage/microglia recruitment, and inflammatory 

gene expression between MyMRKO and controls subjected to photothrombotic 
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stroke. Similarly, no differences in infarct size and neurological deficit were 

observed during permanent occlusion using the intraluminal filament model. Our 

finding that MyMRKO is protective in transient, but not permanent occlusion may 

provide critical insight into the mechanism of protection with myeloid-specific MR 

ablation and the role that myeloid MR plays during the pathophysiology of stroke. 

Several studies targeting inflammatory molecules (neutrophil elastase, 

CD11b/CD18, MMPs, ICAM-1) have also shown protective effects in transient, 

but not permanent occlusion.24-28 Our current experiments support the hypothesis 

that inflammatory cells make significant contributions to reperfusion injury and 

also demonstrate a key role for the macrophage lineage in this process.  

In permanent occlusion models of stroke, cerebral blood flow is not 

restored, and there is reduced and delayed inflammatory cell infiltration from the 

peripheral circulation. The supply of infiltrating cells from the periphery is 

dependent on the extent of collateral vasculature. Thus, much of the early 

inflammatory cell recruitment during permanent occlusion is due to resident 

immune cells within the brain parenchyma. This might suggest that 

neuroprotection in MyMRKO mice during transient occlusion is a result of 

modulating the trafficking of circulating myeloid immune cells rather than altering 

the activation phenotypes of microglia or macrophages within the brain 

parenchyma. However, temporal changes in macrophage activation states 

following ischemic stroke are largely unknown, and alterations in the balance of 

CAM and AAM phenotypes may be a critical factor in altering stroke severity. 

Female MyMRKO mice exhibited a suppression of both CAM and AAM markers 

24 hours after transient ischemia, but it will be important to examine the 

phenotypic changes in activation states at earlier time points. Suppression of 

some AAM markers in females was more significant than in males (described 

previously) and could reflect previously observed sexually dimorphic Th1/Th2 

immune responses.29-32 Since myeloid cells significantly contribute to reperfusion 

injury and oxidative damage, a reduction in inflammatory cell recruitment and/or 

decrease in CAM phenotypes could also reduce reperfusion injury. 
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  In conclusion, we demonstrate that genetic ablation of myeloid MR, but 

not MR antagonism is protective during transient occlusion in female mice. Our 

results further delineate the actions of myeloid MR during ischemic stroke and 

indicate that myeloid MR plays a more significant role in reperfusion injury. Thus, 

MR targeted drug development may be a feasible therapeutic intervention for 

stroke, particularly when combined with reperfusion strategies. 
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CHAPTER 4 
Probing the Mechanisms of Neuroprotection in Myeloid-Specific 

Mineralocorticoid Receptor Deficient Mice During Ischemic Stroke 
 

Abstract 

Background and Purpose — Mineralocorticoid receptor (MR) antagonists are 

neuroprotective in preclinical models of ischemic stroke, and myeloid MR has 

been identified as a critical modulator of stroke pathophysiology. In the present 

study, we probed the mechanisms of neuroprotection in myeloid-specific MR 

deficient mice and define a new role for MR in CD11c+ cells during stroke. 

Methods and Results — Myeloid-specific MR knockout mice were subjected to 

transient (90 minute) middle cerebral artery occlusion followed by reperfusion. A 

time course analyzing infarct development showed that MyMRKO mice had 

significantly reduced infarct size 2 hours after reperfusion. This was associated 

with a reduction in Mip1α and Ym1 gene expression, but not other major 

proinflammatory genes. MyMRKO mice also had decreased expression of 

vascular and thrombosis markers endothelin1 and Pai1, but analysis of cerebral 

tissue perfusion showed no differences between MyMRKO and controls during 0 

to 2 hours reperfusion.  

To assess the role of MR in dendritic cells, we used a CD11c-Cre line to 

delete MR from CD11c+ cells. Deletion of MR from CD11c+ cells significantly 

reduced infarct size and inflammatory gene expression 24 hours after 90 minute 

MCA occlusion. Furthermore, depletion of CD11c+ cells using CD11c-DTR mice 

resulted in increased infarct size after transient MCA occlusion. 

Conclusions —These data demonstrate that neuroprotection by myeloid MR 

deletion occurs very early during infarct development and significantly blocks
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infarct formation within 2 hours of reperfusion. In addition, these data indicate 

that MR may regulate dendritic cell function during stroke, and identify CD11c+ 

cells, possibly dendritic cells, as potential targets for MR antagonists.  

Introduction 
 Mineralocorticoid receptor (MR) activation has a pathological role in a wide 

range of cardiovascular diseases independent of its classical role in blood 

pressure control. MR antagonists have been used clinically to prevent the 

harmful effects of MR activation during cardiac remodeling,1, 2 and have also 

been found to be effective in many preclinical models of disease, including 

stroke.3-6 In stroke models, MR antagonists have been shown to decrease 

mortality, reduce infarct size, and decrease neurological deficit,3-6 although our 

understanding of the specific cell types involved is insufficient. Recent studies 

have delineated several new cell type-specific roles for MR in endothelial cells, 

smooth muscle cells, neurons, and macrophages, which may have important 

roles in stroke pathophysiology.7-10  

 In macrophages, MR has a pro-inflammatory role and is capable of 

regulating macrophage polarization. Activation of MR with aldosterone enhances 

pro-inflammatory responses associated with classically activated macrophage 

(CAM) phenotypes, where as MR antagonism or deletion induces an alternatively 

activated macrophage (AAM) phenotype.11 Importantly, myeloid MR has 

important pathological roles in cardiovascular disease, and myeloid MR knockout 

has been shown to be protective during cardiac remodeling, and more recently 

during ischemic stroke. We previously found that myeloid-specific deletion of MR 

dramatically reduced infarct size and inflammation after transient MCA 

occlusion.12 These effects were also shown to be model specific and 

neuroprotection was only present during ischemia-reperfusion, but not other 

models of permanent occlusion.13  

 The prolonged presence of CAM phenotypes is thought to prevent 

inflammatory resolution and exacerbate cardiovascular disease, where as AAM 
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phenotypes are largely thought to be protective. More recent studies have found 

that AAM/microglia phenotypes are present in the ischemic core, and are more 

abundant during early times when compared with CAM/microglia.14, 15 The 

influence of specific CAM and AAM phenotypes during stroke remains largely 

unknown, although there is some evidence to suggest that alternative activation 

may be beneficial.16 IL-4 is a potent inducer of AAM phenotypes, and IL-4 

deficiency has been shown to exacerbate stroke and increase the Th1/Th2 

ratio.17 Although MyMRKO mice have AAM polarizing effects, it is unclear 

whether these effects are important in the neuroprotective phenotype, and if so, 

the protective mechanisms of this AAM phenotype are unknown. 

 To identify the mechanisms of neuroprotection in MyMRKO mice, we 

performed a time course of infarct development and analyzed temporal changes 

in gene expression. In addition, we also examined other potential mechanisms of 

neuroprotection including regulation of vascular and thrombolytic function, and 

cerebral blood flow. Finally, we defined a role for MR in dendritic cells and other 

CD11c+ cells by generating a CD11c+ MR knockout using the CD11c-Cre line.  

Methods 

Mice  
 All animal procedures were performed in accordance with the Guide for 

the Care and Use of Laboratory Animals (NIH Publication no. 80–23) and were 

approved by the University Committee on Use and Care of Animals of the 

University of Michigan. Adult male and female mice weighing between 25-30 g 

were used. MyMRKO mice (MRflox/flox; LysM-Cre+/-), DCMRKO mice (MRflox/flox; 

CD11c-Cre+/-) and littermate controls (MRflox/flox) were on a C57BL/6 background. 

CD11c-DTR mice on a C57BL/6 background were from Jackson. For CD11c+-cell 

depletion, CD11c-DTR and littermate wild type mice received an intraperitoneal 

injection of diphtheria toxin (4 ng/g, Sigma Aldrich) 24 hours prior to MCA  

occlusion. Mice were maintained on standard laboratory chow (5001, LabDiet) 

and water ad libitum. 
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Bone Marrow Chimeras 
MyMRKO and control mice were myeloablated using an orthovoltage X-ray 

generator, and received a total body irradiation dose of 12 Gy administered in 2 

separate 6 Gy doses given 4 hours apart. Bone marrow derived cells (BMDCs) 

were flushed from femur and tibia bones, passed through a 40 µm cell strainer, 

and resuspended in PBS. After 24 hours, myeloablated mice were injected with 5 

million BMDCs via the retroorbital sinus, and 2 months were allowed for 

engraftment prior to experiments.  

Intraluminal Filament MCA Occlusion  
 MCA occlusion using the intraluminal filament method was performed as 

previously described.18 The mice were anesthetized with 1-3% isoflurane and a 

6-0 silicon rubber-coated nylon monofilament (Docoll Corporation, CA) was 

inserted into the right internal carotid artery. Regional cerebral blood flow was 

monitored using laser Doppler flowmetry (Transonic BLF21) before and during 

monofilament insertion to verify MCA occlusion. Occlusion was defined as a 

reduction in cerebral blood flow to a level less than 20% of baseline. For 

ischemia-reperfusion studies, the suture was removed after 90 minutes and 

animals were euthanized 24 hours after suture removal.  

Cerebral Blood Flow Measurements 

 Cerebral blood flow was assessed by monitoring cerebral tissue perfusion 

using a Doppler flowmeter. A laser Doppler flow probe (Type N (18 Ga), 

Transonic Systems) was placed above the lateral parietal bone distal to the MCA, 

and tissue perfusion was measured before, during and after MCA occlusion.  

Measurement of Infarct Volume  
 Infarcts were detected using triphenyltetrazolium chloride (TTC) for 1 hour 

and 2 hour time points. Mice were euthanized and brains were removed and cut 

into 1 mm sections using a brain matrix. Sections were place in 1% TTC for 20 

minutes at 37°C, and then fixed in 4% formaldehyde. The infarct volumes were 

analyzed using NIH ImageJ software (ver 1.43), and infarct volumes were 

corrected to account for brain swelling.  
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 Magnetic resonance imaging (MRI) was used to detect infarcts at the 24 

hour time points. Twenty-four hours after transient MCA occlusion, mice were 

anesthetized with 2% isoflurane/air mixture throughout MRI examination. Mice 

lay prone, head first in a 7.0T Varian Unity Inova MR scanner (183-mm horizontal 

bore, Varian, Palo Alto, CA) with the body temperature maintained at 37°C, using 

forced heated air. A double-tuned volume radiofrequency coil was used to scan 

the head region of the mice. Axial T2-weighted images were acquired using a 

fast spin-echo sequence with the following parameters: repetition time 

(TR)/effective echo time (TE), 4000/60 ms; echo spacing, 15 ms; number of 

echoes, 8; field of view (FOV), 20x20 mm; matrix, 256x128; slice thickness, 0.5 

mm; number of slices, 25; and number of scans, 1 (total scan time ~2.5 min.). 

The infarct volumes were analyzed using NIH ImageJ software (ver 1.43) by a 

blinded observer, and infarct volumes were corrected to account for brain 

swelling.19, 20 The following equation was used to calculate the corrected T2-

lesion volumes:  

Corrected T2-lesion volume = TV - ((CV + (IV - LV)) x ((TV/2) / CV)) 

TV = total volume in both hemispheres, CV = contralateral volume, IV = 

ipsilateral volume, LV = lesion volume.  

Gene Expression Analysis  

 mRNA expression was measured using quantitative reverse transcription–

polymerase chain reaction (qRT-PCR). Total RNA was extracted from frozen 

whole cerebral hemispheres using TRIzol reagent and then purified with the 

RNeasy Mini Kit (Qiagen). Purified RNA (1μg) was reverse transcribed to cDNA 

using an Applied Biosystems kit. qRT-PCR was performed using a Bio-Rad 

iCycler. The relative mRNA expression was quantified using the comparative 

method, and mRNA was normalized to β-actin. 

Microglia Isolation and Culture.  

 Isolation of cerebral microglia was performed as described previously. 

Briefly, 10-12 wk old mice FC and MyMRKO mice were euthanized and 

transcardially perfused with heparinized saline (1 U/mL). The cerebrum was 



	
   75 

homogenized in ice cold PBS in a Tenbroeck homogenizer. The homogenate 

was then filtered through a 50 μm strainer and then resuspended in 70% isotonic 

Percoll. A 0/40/70% Percoll gradient was set up and centrifuged at 1200 x g for 

45 minutes at 20°C. The microglia containing fraction was then collected, 

resuspended in RPMI + 10% FBS and plated at a density of 2 x 105 

cells/mL/well. Cells were washed with PBS (+ calcium chloride, + magnesium 

chloride) after 2 hours to remove non-adherent cells and then incubated for 24 

hours at 37°C, 5% CO2. 

Statistics  
 A Kolmogorov-Smirnov test and normal quantile plots were used to 

determine if data were normally distributed. For normally distributed data, 

statistical comparison of mean values between groups was performed with the 

Student t test or by a two-way ANOVA with a Bonferroni post-test as indicated, 

and values are presented as mean ± SEM. Data that were not normally 

distributed were analyzed with the nonparametric Mann-Whitney test. All 

statistical analysis of data was performed in GraphPad Prism (version 5; 

GraphPad Software, Inc). P < 0.05 was considered significant.  

Results 

Neuroprotection by MyMRKO occurs during early infarct development 

 To define the critical times at which myeloid MR contributes to stroke 

pathology, we performed a time course analyzing infarct development in both 

MyMRKO and controls. After transient 90 minute MCA occlusion, TTC staining of 

cerebral sections revealed that neither MyMRKO nor controls had significant 

infarction after 1 hour reperfusion (Figure 4.1). By 2 hours reperfusion, control 

mice had dramatically increased infarct volume compared to MyMRKO mice. 

Moreover, the infarct volume in control mice was comparable to the infarct 

volume after 24 hours reperfusion, indicating that infarct development occurs 

very quickly. MRI and TTC measurement of infarct volume have previously been 

shown to be equivalent.19  
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Figure 4.1. Time course of infarct development in MyMRKO mice. Transient 
ischemia was induced by 90 minute MCA occlusion, and infarcts were analyzed 
by TTC staining at 1 and 2 hours reperfusion, and by T2-weighted MRI scans at 
24 hours reperfusion. Indirect infarct volume was quantified from serial sections 
or scans in each group. n = 3-7 / group. *P < 0.05. 
 

 We next performed a time course to determine the role of myeloid MR in 

the temporal regulation of inflammatory gene expression. After 1 hour 

reperfusion, expression of proinflammatory genes TNF-α, IL-1β, and Mip1α were 

increased, but no differences between MyMRKO and controls were present. At 2 

hours reperfusion, TNF-α and IL-1β remained increased in both groups, however, 

Mip1α was significantly decreased compared to controls (Figure 4.2). In addition, 

expression of the alternatively activated macrophage marker Ym1 was also 

significantly increased in controls, but not in MyMRKO mice.  

1 2 24
0

20

40

60

80

Reperfusion (hours)

In
fa

rc
t V

ol
um

e
(m

m
3 )

MyMRKO
FC

FC

MyMRKO

1hr 2hr 24hr

* *



	
   77 

 

 
Figure 4.2. Temporal analysis of gene expression in MyMRKO mice. Gene 
expression of inflammatory markers (IL-1β, TNF-α, and Mip1α) and of the 
alternative macrophage marker Ym1 at 1, 2, and 24 hours after transient 90-
minute MCA occlusion. All genes were normalized to HPRT. n = 3-5 per group. 
*P < 0.05. 
 

 Analysis of vascular and fibrinolysis markers showed that the expression 

of plasminogen activator inhibitor (Pai1) and endothelin (Edn1) were also 

significantly suppressed 24 hours after reperfusion (Figure 4.3).  

MyMRKO does not alter cortical cerebral blood flow in MCA territory after 

transient ischemia  
 Since differences in the expression of vascular and thrombosis markers 

were noted, we determined whether MyMRKO alters cerebral blood flow during 

early times when neuroprotection occurs. After occlusion of the MCA, cerebral 

tissue perfusion in the MCA territory dropped to less than 25% of baseline in both 

MyMRKO and control mice (Figure 4.4). Upon removal of the intraluminal 

filament, tissue perfusion slowly increased and was up to 80% of baseline 

perfusion after 60 minutes of reperfusion. No significant differences in tissue 

perfusion were detected between MyMRKO and controls during ischemia or 

reperfusion.  

 

1 2 24
0

5

10

15

20

 m
R

N
A 

Ex
pr

es
si

on
(F

ol
d 

C
ha

ng
e)

Reperfusion (hours)

MyMRKO
FC TNFα

0

5

10

15

20

 m
R

N
A 

Ex
pr

es
si

on
(F

ol
d 

C
ha

ng
e) MyMRKO

FC IL-1β *

*
0

5

10

15

20

 m
R

N
A 

Ex
pr

es
si

on
(F

ol
d 

C
ha

ng
e) MyMRKO

FC Mip1α

1 2 24
0

5

10

 m
R

N
A 

Ex
pr

es
si

on
(F

ol
d 

C
ha

ng
e)

Reperfusion (hours)

MyMRKO
FC Ym1

*

*
*



	
   78 

            
Figure 4.3. Gene expression of fibrinolytic and vascular genes. Analysis of 
gene expression of fibrinolytic and vascular genes was performed 24 hours after 
transient MCA occlusion. All genes were normalized to β-actin. n = 4 per group. 
*P < 0.05, **P < 0.01.  
 
 

              
Figure 4.4. Effect of MyMRKO on cerebral blood flow during transient MCA 
occlusion. Regional cerebral tissue perfusion was measured in the MCA territory 
before, during and after 90 minute MCA occlusion. n = 5 per group.  
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Contribution of bone marrow-derived and resident myeloid cells in the 
neuroprotective phenotype 

 Previous studies indicate that LysM-driven Cre expression is very low in 

unactivated microglia and does not result in complete recombination even with 

activating stimuli. In isolated microglia from MyMRKO mice, we detected no 

suppression of MR message (Figure 4.5A), even after ischemic stroke (Figure 

4.5B). To determine if LysM-Cre-mediated recombination of the floxed MR allele 

occurs in activated microglia during ischemic conditions, we isolated microglia 

from MyMRKO and control mice that received 90 minute MCA occlusion and 2 

hours reperfusion. PCR to detect the null allele revealed minimal recombination 

in isolated microglia (Figure 4.5C).  

 
 
Figure 4.5. Lack of MR deletion in microglia from MyMRKO mice. Gene 
expression of MR was measured in isolated microglia in the absence of stroke 
(A), and 2 hours after transient 90 minute MCA occlusion (B). PCR was used to 
detect recombination of the floxed MR allele in genomic DNA isolated from 
microglia that received transient MCA occlusion (C).  
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of MyMRKO into control (KO > FC) and control into MyMRKO (FC > KO) (Figure 

4.6). Surprisingly, control mice that received marrow from control donors (FC > 

FC) had similar size infarcts as MyMRKO mice that received marrow from 

MyMRKO mice (KO > KO) indicating that the neuroprotective phenotype was lost 

after irradiation and bone marrow transplant. 

 

                
 
Figure 4.6. Effect of myeloid MR bone marrow chimeras during ischemic 
stroke. Infarct volume of bone marrow chimera mice analyzed 24 hours after 
transient 90 minute MCA occlusion and assessed by T2-MRI.  
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Figure 4.7. DCMRKO mice have reduced infarct size during ischemic 
stroke. (A) Representative MRI sections from control and DCMRKO mice 24 
hours after transient (90 minute) MCA occlusion. (B) Quantification of infarct 
sizes in FC and DCMRKO mice. n = 8-11 / group. *P < 0.05. 

 

 
 
Figure 4.8. DCMRKO mice have suppressed inflammatory gene expression 
during ischemic stroke. Relative gene expression of inflammatory markers (IL-
1β, TNF-α, IL-6, and Mip1α) and anti-inflammatory and alternative markers (IL-
10, Ym1) were measured by qRT-PCR 24 hours after transient 90 minute MCA 
occlusion. *P < 0.05, **P < 0.01. 
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 Analysis of gene expression revealed selective suppression of pro-

inflammatory genes. IL-1β and IL-6 were significantly decreased in DCMRKO 

mice, where as no differences were detected in TNF-α and Mip1α (Figure 4.8).  

The alternatively activated macrophage marker Ym1 was also significantly 

suppressed in DCMRKO mice compared to controls, and a non-significant 

decrease in mean of IL-10 was noted.  

Depletion of CD11c+ cells increases infarct size after ischemic stroke 
 To elucidate the role of dendritic cells and other CD11c+ cells in ischemic 

injury, we employed the CD11c-DTR mouse line. CD11c-DTR and littermate wild 

type mice were treated with diphtheria toxin 24 hours prior to 90 minute MCA 

occlusion. Analysis of infarct by T2-weighted MRI revealed that dendritic cell 

depletion significantly increased infarct size 24 hours after reperfusion (Figure 

4.9).  

                              
  
Figure 4.9. CD11c+ cell depletion increases infarct size during ischemic 
stroke. Quantification of indirect infarct volume in WT and CD11c-DTR mice 24 
hours after transient 90 minute MCA occlusion. n = 4-6 per group. **P < 0.01. 
 

 To evaluate changes in the inflammatory response, we analyzed 

inflammatory gene expression 24 hours after transient MCA occlusion. 

Expression of CD11c was significantly decreased in both contralateral and 

W
T-D

T

DTR-D
T

0

20

40

60

80

100

In
fa

rc
t V

ol
um

e
(m

m
3 )

**



	
   83 

ipsilateral cerebral hemispheres in CD11c-DTR mice (Figure 4.10A). The 

expression of proinflammatory genes TNF-α and IL-1β was significantly 

increased in the ipsilateral hemisphere of WT and CD11c-DTR mice compared to 

the contralateral hemisphere, although no differences were detected in the 

ipsilateral hemisphere between the groups (Figure 4.10B). CD11c+-cell depletion 

selectively upregulated the expression of the alternative activation marker Ym1 in 

both contralateral and ipsilateral hemispheres, but had no effect on Arg1 and 

IL1Ra (Figure 4.10C).  

   

  
 
Figure 4.10. CD11c+ cell depletion does not alter expression of major 
inflammatory genes during ischemic stroke. Expression of CD11c (A), 
proinflammatory markers (B), and markers of alternative activation (C) as 
determined by qRT-PCR 24 hours after transient MCA occlusion. All genes were 
normalized to β-actin. n = 4-6 per group. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Discussion  
 In the present study, we sought to identify the pathological role of myeloid 

MR activation during stroke by probing the mechanisms of neuroprotection in 

MyMRKO mice. To help identify potential pathological mechanisms, we first 

performed a time course to identify the critical time frame when neuroprotection 

occurs. Surprisingly, MyMRKO mice exhibited significant reduction in infarct size 

after only 2 hours reperfusion. This indicates that myeloid cells are capable of 

influencing stroke pathology much earlier than originally thought.  

 In addition, after 2 hours reperfusion the infarct volume in control mice was 

nearly as large, and not significantly different from the infarct volume at 24 hours. 

Although two different methods, TTC and MRI, were used for comparison of 

infarct size in this time course and may account for some minor differences, other 

studies have found that T2-MRI and TTC analysis of infarcts at 24 hours produce 

similar results.19 Since the infarct in this model is largely formed after 2 hours, 

this may suggest that many of the published neuroprotective strategies could be 

affecting stroke pathophysiology very early on, and that analysis of much early 

time points could be helpful in identifying the mechanisms of protection.  

 Inflammation and immune cells can profoundly impact coagulation and 

cerebral blood flow. Since the neuroprotective effects in MyMRKO mice are 

occurring very early on, we addressed whether MyMRKO influenced changes in 

cerebral blood flow immediately after reperfusion. We did not see any differences 

in cerebral blood flow between control and MyMRKO mice, although we cannot 

definitively rule this out as a potential mechanism of neuroprotection. We 

measured cortical perfusion of the core MCA territory, but changes might be 

occurring in subcortical and peripheral regions, and within microvessels that are 

not detectable by laser Doppler flowmetry. Iwanami et al. found that MR 

antagonists significantly increased cerebral blood flow in peripheral, but not core 

regions of the MCA territory within 1 hour after MCA occlusion.4 A more thorough 

analysis of cerebral blood flow with improved sensitivity using MRI or SPECKLE 

would help clarify whether MyMRKO induces changes in blood flow.  
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 We found that Pai1 and Edn1 were significantly decreased in MyMRKO, 

which might indicate that control mice have a more pro-thrombotic state. During 

cerebral ischemia-reperfusion injury, microthrombi can form during reperfusion 

and can occlude cerebral vessels and impair cerebral blood flow. Deficiency in 

clotting factors has been shown to protect against ischemia-reperfusion 21. 

Several reports have also shown that aldosterone induces a prothrombotic state 

and is associated with increased oxidative stress, increased Pai1 expression, 

and enhanced thrombus formation.22-24 Systemic administration of spironolactone 

has been shown to suppress Pai1 levels,25 and although the specific 

mechanisms are not well defined, one study suggests a role for mononuclear 

cells.23 

 To address the issue of whether circulating or resident microglia are 

critical mediators of the neuroprotective phenotype in MyMRKO mice, we 

generated bone marrow chimeras. Unexpectedly, we found that myeloablation 

and bone marrow transplant prevented the neuroprotective phenotype in 

MyMRKO mice. While it is known that irradiation to the brain can cause 

inflammation and can result in microglia activation and repopulation by bone 

marrow-derived precursors, it is not fully understood how myeloablation and 

subsequent repopulation of bone marrow niches affects specific myeloid 

phenotypes. Therefore, further studies will be necessary to understand the 

important mechanisms of myeloablation and bone marrow transplant that abolish 

protection in MyMRKO mice. 

 To expand our knowledge of MR regulated cells in stroke, we identified a 

role of MR in CD11c+ cells using a CD11c-Cre line. We found that MR deletion in 

CD11c cells significantly reduced infarct volume and reduced inflammatory gene 

expression compared to controls. CD11c-Cre is reported to have significant 

recombination in dendritic cells, while having only minimal recombination in other 

myeloid cells. Therefore these data may highlight an important role for MR in 

regulating dendritic cell phenotype during stroke. However, some populations of 

macrophages also express CD11c, and it is possible that the phenotype reflects 
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targeting of CD11c+ subset of macrophages. A more thorough analysis of MR 

function in dendritic cells both in vitro and in vivo is required in order to better 

understand the potential role in stroke.  

 Dendritic cells are present in the injured brain, and are known to influence 

other myeloid cells during disease. To test the role of dendritic cells in stroke, we 

used a CD11c-DTR line to transiently deplete dendritic cells during stroke. Here 

we found that depletion of CD11c+ cells significantly increased infarct size, but 

had no effect on inflammatory gene expression with the exception of Ym1. While 

this may indicate that dendritic cells are necessary for an effective immune 

response, these results may also be confounded by a systemic neutrophilia, 

which occurs after CD11c+ cell depletion.26 Neutrophils are known to be involved 

in stroke pathogenesis, and it is possible that increased infarct size could be due 

to an enhanced neutrophil response.  

 In conclusion, these data provide evidence of a pathological role for 

myeloid MR during early infarct development. Further, these data indicate that 

MR may regulate dendritic cell function during stroke and identify CD11c+ cells as 

potential targets for MR antagonists.  
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CHAPTER 5 
Discussion 

 The work presented in this dissertation describes for the first time a 

pathological role for the myeloid mineralocorticoid receptor (MR) during ischemic 

stroke. It has been previously shown that MR antagonists are protective in 

preclinical models of stroke,1, 2 but the important target cells have not been 

elucidated in the context of ischemic stroke. Since we previously found that MR 

has a proinflammatory role in macrophages and regulates macrophage 

phenotype,3 we hypothesized that MR activation in myeloid cells promotes 

inflammation-induced stroke damage and inhibition of myeloid MR is a 

mechanism for the beneficial effects of MR antagonists during stroke. To test this 

hypothesis, we used myeloid-specific MR deficient mice and subjected them to 

models of ischemic stroke. These data represent the first work to use genetic 

ablation to delineate cell-specific targets for MR antagonists during stoke.  

 In this dissertation, we have demonstrated several important findings: 1) 

myeloid-specific deletion of MR ameliorates stroke damage, 2) neuroprotection 

by myeloid MR deficiency occurs early during infarct development, 3) 

neuroprotection by myeloid MR deficiency is model-dependent and is protective 

in transient, but not permanent MCA occlusion, 4) myeloid MR deficiency is 

protective in both male and female mice, which contrasts the sexual dimorphic 

effects of MR antagonists during stroke where neuroprotection is only detected in 

male mice, and 5) genetic deletion of MR in CD11c+ cells is protective during 

ischemic stroke.  

 In support of our hypothesis, we found that myeloid MR knockout 

(MyMRKO) significantly blocked infarct development, reduced neurological 

deficit, and suppressed inflammation during transient MCA occlusion. This 
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provides evidence that MR has a pathological role in ischemic stroke by 

regulating myeloid cell phenotype. Since macrophages in MyMRKO mice have 

an enhanced AAM phenotype, we initially hypothesized that MyMRKO would 

protect against stroke by regulating macrophage polarization. While the 

protective effect of MyMRKO does provide some support for a beneficial role for 

AAM phenotypes during stroke, the specific myeloid cell types involved have not 

been defined. Some of the AAM markers were partially preserved during stroke, 

although they were not significantly upregulated compared with controls. Without 

a thorough phenotypic analysis of isolated macrophages, it is difficult to 

speculate on the role that regulation of macrophage polarization has in the 

neuroprotective phenotype.  

 A surprising, but significant finding of this work was that infarct formation 

occurs very rapidly within two hours of reperfusion in the transient MCA occlusion 

model. Further, this corresponds to the critical window of neuroprotection seen in 

MyMRKO. This is valuable to our understanding of the pathophysiology since it 

establishes that studies analyzing stroke volume at twenty-four hours are not 

studying the most critical time period in this model. It also identifies the window 

during which myeloid MR affects stroke pathophysiology. These results allow us 

to focus our search for potential neuroprotective mechanisms to a very narrow 

time frame. We were able to identify specific inflammatory genes that were 

selectively down regulated during early infarct development, and a more 

thorough investigation into the specific roles of these genes might help us define 

critical myeloid functions. This time frame also highlights the importance of 

myeloid cells during early infarct formation. Although a larger presence of 

immune cells is apparent after twenty-four hours, this suggests that immune cell 

regulation during early times has the most significant effects on the evolution of 

infarct development. This early effect might also suggest a role for MR in 

microglia, but we were unable to detect MR knockout in microglia, which does not 

support the involvement of microglia.  
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 The finding that MyMRKO is protective in transient, but not permanent 

MCA occlusion might also highlight some insight into the mechanisms of 

neuroprotection. Other studies targeting immune cells have also found similar 

model-dependent effects where neuroprotection is only detected during transient 

ischemia.4, 5 One of the obvious differences between these models is the 

restoration of blood flow. Reperfusion allows blood-borne immune cells rapid 

access to the cerebral vasculature in ischemic regions, whereas permanent 

occlusion of the MCA prevents immune cells from immediately reaching these 

regions. A major difference in the pathological mechanisms of these models is 

the presence of reperfusion injury during transient MCA occlusion. Immune cells 

are known to contribute significantly to reperfusion injury through the release of 

inflammatory cytokines and generation of reactive oxygen species. Further 

studies to determine if MR regulates reactive oxygen species generation in vitro 

and in vivo will provide information about whether this is a potential mechanism.  

 MR antagonists are sexually dimorphic is several disease models,6-8 and 

have been shown to be effective in males but not females during experimental 

stroke.9 The sexual dimorphism of MR antagonists appears to be model 

dependent, since some studies have found MR antagonist are effective in both 

males and females. MR antagonists do not exhibit sexually dimorphic 

antihypertensive effects in humans, although the cardioprotective effects seen in 

the RALES and EPHUSUS studies were not analyzed for sexual dimorphism.10, 11 

In our studies, we found that in contrast to MR antagonists, MyMRKO is 

protective during transient MCA occlusion in both male and female mice. 

Although the mechanisms for these effects are unknown, our results suggest that 

specific targeting of myeloid MR might be a strategy to overcome potential sexual 

dimorphism.  

 Finally, we provide evidence of a pathological role for MR in CD11c+ cells. 

We found that genetic deletion of MR in CD11c+ cells was protective during 

ischemic stroke. CD11c+-MR knockout significantly reduced infarct size and 

suppressed the inflammatory response after transient MCA occlusion. This may 
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indicate an important role for MR in regulating dendritic cell function, although it 

could also reflect important roles by other CD11c+ cell types such as certain 

macrophage subsets. It also remains unclear if there is overlap between the 

myeloid cells altered using the LysM-Cre and the CD11c-Cre used in these 

different experiments. 

Future studies to identify mechanisms of neuroprotection  
 We have delineated a new role for MR in myeloid cells during stroke, but 

there is still much to be known. In MyMRKO mice, we used LysM-Cre, which 

results in recombination in several myeloid cells including monocytes, 

macrophages, neutrophils, myeloid dendritic cells, and other granulocytes. In the 

myeloid lineage, most studies have focused on the role of MR in monocytes and 

macrophages, and even in these cell types, data is limited. We hypothesized that 

neuroprotection in MyMRKO mice is a result of altered monocyte and 

macrophage function because of our understanding of MR in these cell types. 

However, it is possible that MR has an important role in other myeloid cells. The 

information about the role of MR in neutrophils is limited, although one study 

found that aldosterone suppressed NF-κB activation and proinflammatory 

cytokine production in neutrophils.12 While this suggests that MR has a role in 

neutrophil function, it would not support a neuroprotective role for neutrophils in 

MyMRKO mice. The use of a more specific neutrophil Cre line might also provide 

more direct evidence in vivo,13 and is one avenue that we are currently pursuing.  

 One approach to understanding the involvement of other potential myeloid 

cell types is to study the functional responses of MR activation and inhibition in 

vitro. This could provide some general functional information that could be further 

explored in vivo. An alternative approach is to analyze the kinetics of leukocyte 

trafficking during stroke, and identify changes in specific leukocyte populations in 

the brain. The use of FACS analysis could be very helpful in identifying 

differences in cell numbers as well as for sorting specific cell types for phenotypic 

analysis. The presence or absence of specific cells might help identify changes in 
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recruitment and trafficking of cells, and might also eliminate others if they are not 

present at the early times during which we see neuroprotection. Comparing 

temporal changes in leukocytes with changes in gene expression will likely 

further our understanding.  

 The role of MR in the generation of ROS might also be an important 

pathological mechanism. Aldosterone has been shown to induce oxidative stress 

in monocytes and macrophages,14, 15 and MR antagonism decreases free radical 

production in rodent models of stroke.2, 16 Although we did not find differences in 

gene expression of oxidative related genes, MR has been shown to regulate 

NADPH oxidase activity through non-genomic mechanisms.17 The dependence 

of neuroprotection on reperfusion is also supportive of a role in the regulation of 

oxidative stress. Finally, since we detected changes in vascular and fibrinolysis 

genes, the use of more sensitive technologies to study cerebral blood flow could 

uncover changes in microthrombi formation and fibrinolysis that might account for 

early neuroprotective effects. 

Defining the important cell-specific effects of MR during stroke 

 Through the use of conditional knockout technology, we have identified 

important pathological roles for MR in myeloid cells and CD11c+ cells during 

stroke. Compared to MR antagonists, MyMRKO results in a much greater 

decrease in infarct size. This may reflect the multiple mechanisms of 

pharmacological control of MR antagonists in various cell types or the degree of 

inhibition, which may be more complete by genetic deletion. MR is expressed in a 

wide range a cell types, many of which also likely have unique roles in regulating 

cell function during stroke. Of particular importance to stroke, MR has been found 

to regulate neurons, astrocytes, smooth muscle cells and endothelial cells in vitro 

and in some case in vivo.18-24 Results from these studies suggest that MR 

activation in these cell types will have harmful effects during stroke, with the 

exception of neurons. Overexpression of MR in neurons has been found to be 

protective in a model of focal cerebral ischemia.25 Further delineation of the role 
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of MR in other cell types will provide a better understanding of the important MR 

target cells and may aid in the development of novel therapeutic strategies.  

 Although our understanding of MR in specific cell types is limited, the 

therapeutic benefit of MR antagonists in stroke models likely represents the 

summation of beneficial and detrimental effects in numerous cell types. The 

increased effect size in MyMRKO mice suggests that specific targeting of myeloid 

cells might have greater therapeutic potential. The use of synthetic nanoparticle 

carriers has been employed for targeted drug delivery to phagocytic cells.26, 27 If 

macrophages or phagocytic cells are in fact the critical MR-regulated myeloid cell 

type, specific targeting of these cells might be a more attractive therapeutic 

option, and may provide superior efficacy compared to conventional systemic 

delivery of MR antagonists. This would provide a means to specifically target MR 

in phagocytic cells where MR is known to have harmful effects, while sparing 

critical protective function in neurons. In addition, cell-specific drug delivery might 

also be a useful strategy to circumvent the potentially sexually dimorphic effects 

of MR antagonists.  

Therapeutic potential of immune cell phenotypes in disease  

 A large number of neuroprotective agents targeting inflammation and 

immune cells have been developed and have been found to be beneficial in pre-

clinical, animal models of ischemic stroke. To date, none of these have translated 

to clinical use. Many preclinical studies have successfully blocked inflammatory 

signaling and leukocyte adhesion or recruitment during stroke and found 

significant benefit, but clinical trials targeting CD11b, ICAM-1, and IL-1 receptor 

were ineffective.28-30 While there is some evidence for technical immunoreactivity 

issues in the ICAM-1 trial, the lack of efficacy in others reflects the need for a 

better understanding of the important differences in the pathophysiology between 

animals and humans. One complication is that mice and humans have 

significantly different immune systems, which is event by simple comparison of 

the relative ratios of leukocytes in the circulation.31 Despite these differences, 
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inflammation and immune cells are present in both animal and human models of 

stroke, and have important pathological roles.  

 Dynamic interplay between resident and blood-borne immune cell and the 

neurovascular unit can have pathophysiological roles in stroke, but immune cells 

are necessary for normal brain function and reparative function. Therefore, 

simply ablating macrophages and microglia is not beneficial in stroke and other 

models, likely because it eliminates important phagocytic roles of both resident 

and blood-borne cells. In contrast to inhibiting leukocyte recruitment and 

adhesion, the emerging concept of enhancing or modulating immune cell 

phenotypes has come into play. Several studies have found that adoptive 

transfer of protective cell types might be a potential therapeutic strategy. For 

example in several models of cardiovascular disease including hypertensive 

cardiac remodeling, myocardial infarction, and more recently stroke, adoptive 

transfer of Tregs has been shown to provide protective effects.32-35 Tregs secrete 

IL-10 and TGF-β, which can suppress immune cell responses and promote 

resolution of inflammation. However, more recently the adoptive transfer of Tregs 

were found to promote AAM phenotype during myocardial infarction, and it was 

speculated that this may be a mechanism of protection.36  

 Adoptive transfer of alternatively activation macrophages might also be a 

protective strategy. A recent study found that adoptive transfer of IL-4-induced 

AAMs did not reduce neurological deficit during ischemic stroke.37 However, the 

adoptive transfer was performed four days after transient MCA occlusion at which 

point the infarct is largely formed and treatment is unlikely to have an effect on 

infarct development. Adoptive transfer of AAMs during early times of infarct 

formation may have much greater therapeutic potential and is more likely to 

modulate immune cell-induced stroke damage. A phase I clinical trial is currently 

underway to test the therapeutic potential of autologous AAM treatment during 

stroke.  

 Our results suggest that the use of MR antagonists might be a viable 

means to regulate myeloid cell phenotype in stroke. Importantly, MR antagonists 
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are used clinically, and blood pressure-independent, cardioprotective effects 

have been shown during heart failure. While this is favorable in assessing the 

potential for clinical translation during stroke, no trials have been completed 

which demonstrate efficacy. 

Importance of macrophage phenotypes in disease 

 Our understanding of the function of macrophage phenotypes and the 

temporal composition of polarized phenotypes during disease formation and 

progression is still underdeveloped. In most studies, the kinetics of the changing 

environment and population of cells are not evaluated by looking only at a single 

time point. In experimental stroke models, most studies focus on late time points 

at twenty-four hours or later, when the critical process may be remote from the 

time point analyzed. Macrophages with different phenotypes play different roles 

during the evolution of disease and response to injury. Without understanding the 

progression in the pathophysiology, the conclusions about the process will be 

unreliable. While this will require considerable investment, it is critical to 

advancing the field. During stroke, studies analyzing the temporal changes in 

macrophage phenotypes are limited. One study found that AAM markers peak 

three to five days after stroke, whereas some CAM markers progressively 

increase for up to two weeks after stroke.38 However, this study is limited by its 

analysis of CAM/AAM markers from brain homogenates rather than isolated 

macrophages. The work presented in this dissertation indicates that macrophage 

phenotypes might have important functional roles during much early times.  

 Understanding the role of monocyte/macrophage lineage in the dynamic 

disease initiation and progression is also critically dependent on understanding 

the genes that are functioning to alter phenotype. We currently have markers that 

identify cell types with little understanding of the important phenotype. Even 

arginase, which was an early-recognized marker of AAM, can be beneficial,39 or 

detrimental,40 depending on the system. Therefore, specific functions need to be 

identified for the genes in AAMs that contribute to the beneficial (or detrimental) 
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effects in cardiovascular disease. Initially, investigators will have to rely on 

markers to identify the polarization cell types. Then by kinetic correlation with the 

functional changes in the lesions occurring with the presence of the subtypes, 

testable hypotheses about the function can be generated. By comparing the 

expression profile of AAM subtypes with the functional changes in disease, 

specific genes that are critical to the beneficial effects can be identified. 

Ultimately, the ability to pharmacologically manipulate macrophages may be 

understood as an important part of both current therapies (as we define the 

mechanisms of drugs) and the development of new therapeutic strategies.  

Mechanisms of functional control of macrophage phenotype 

 The mechanisms controlling macrophage phenotype, including the 

interaction of cytokines with nuclear receptors and the activation mechanisms of 

nuclear receptors is complex and not well defined. Although there appears to be 

a reciprocal relationship between the CAM and AAM, the wide variety of AAM 

phenotypes shows that there is specific regulation with each manipulation. The 

possible mechanisms include relief of inhibition of expression by removal of 

factors such as the PPARs, suppression of NF-κB, as well as direct stimulation 

by nuclear factors of AAM genes. During stroke, macrophage phenotype is likely 

regulated by a wide array of inflammatory cytokines and other signaling 

molecules. MR represents one of many mechanisms of induction for 

proinflammatory genes, and similarly there are many signaling pathways for 

induction of AAM genes. Unfortunately, due to the lack of suitable antibodies, the 

elucidation of MR target genes has been problematic. Therefore, it is unknown if 

MR directly binds to the promoters of the pro-inflammatory genes or acts through 

a more indirect mechanism. If we can identify specific MR target genes, this 

might help us understand the genes that are important in the macrophage 

phenotype during disease.  

 Another important aspect of MR function that has eluded the field for some 

time has been defining the physiological ligand of MR in tissues that lack  
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11β-HSD2. Corticosterone and aldosterone bind MR at nearly equal affinity, and 

corticosterone is present at 100 to 1000 times greater than aldosterone. Since 

macrophages do not express 11β-HSD2, which converts corticosterone to a low 

affinity form, it is presumed that MR is mostly occupied by glucocorticoids. This 

raises the question of how the MR activity is modulated in the macrophage. The 

answers to these questions regarding the mechanisms of functional control of 

macrophage activation and phenotype by MR will be essential to our 

understanding of its role in disease. Answering these questions about MR 

activation and function should no doubt yield interesting and valuable results, 

which will aid our understanding of the mechanisms of phenotypic control during 

disease.    

Conclusions  

 In this dissertation we have identified an important pathological role for 

myeloid MR during ischemic stroke, which advances our current understanding of 

the pathological mechanisms of MR and the mechanisms of pharmacological 

control by MR antagonists. It further highlights the importance of specific myeloid 

phenotypes during early infarct formation. A better understanding of the 

mechanisms by which myeloid phenotypes contribute to stroke damage could aid 

in the development of novel therapeutic agents to combat the harmful effects of 

inflammation during stroke.   
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