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Abstract 

Riboswitches are structured mRNA domains that can bind cellular metabolites and control 

gene expression of downstream genes mainly via transcription attenuation or inhibition of 

translation initiation. Although structures of many ligand-bound riboswitches are available, 

knowledge on their ligand-free conformations is scarce. Subsequently, the ligand-mediated 

folding process of riboswitches is poorly understood. In this dissertation, we used single 

molecule FRET to investigate the conformation and ligand binding properties of two very 

distinct riboswitches. We showed that, contrary to previous studies, the structurally similar 

but functionally different preQ1 riboswitches from B. subtilis (Bsu) and T. tencongensis (Tte) 

have similar conformational ensemble in their ligand-free state with only subtle differences 

in their dynamics. Our smFRET data in combination with computational simulations 

suggested that both the riboswitches adopt ligand-free ‘pre-folded’ conformations and fold 

through distinct pathways that are similar to the conformational selection and induced fit 

mechanisms, respectively. We also demonstrated how remote mutations can affect the ligand 

binding affinities of riboswitches. Later, using smFRET, we probe the effect of various 

ligands on the kinetics of the Bsu riboswitch conformational dynamics with an aim to dissect 

its ligand binding mechanism. Our data suggest that the Bsu riboswitch can fold through both 

induced fit or conformational selection pathways, the relative extent of which is dependent 

on the presence of Mg2+. The T-box riboswitch is one of the complex riboswitches that binds 

tRNA and controls gene expression by sensing the relative levels of charged and uncharged 

tRNA. The structure of a T-box riboswitch stem-I:tRNA complex was recently solved, but it 

lacks the important genetic regulatory domain. By using various designs of the glyQS T-box 

riboswitch, we have studied the global conformation of the full T-box riboswitch and 

estimated distances between different regions. We measured tRNA binding kinetics to 

different T-box variants and showed that the double T-loop motif only contributes modestly 

to decrease the tRNA dissociation rate. Further, we directly demonstrated that the presence of 

glycine increases the tRNA dissociation rate ~6-fold that forms the basis of T-box riboswitch 

mechanism. Based on our kinetic data, we propose an improved kinetic model of the T-box 

riboswitch function.
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CHAPTER 1 

Introduction 

1.1 RNA is essential for life 

1.1.1 The rise of RNA  

The interest in understanding the chemical and physical basis of life led early 

chemists to the study of biological macromolecules, mainly proteins, for a major part of the 

19th century until the early 20th century. Although DNA (known as ‘nuclein’) was discovered 

by Friedrich Miescher in 1868, its chemical composition and its connection to genes was not 

known for a long time until the early 1940s (1). At the same time, a few biochemists 

proposed the importance of RNA (then referred to as pentose nucleic acid) from their 

observation of large amounts of RNA in tissues containing high protein. However, the link 

between the two was unclear at that time. The main breakthrough came with the Watson-

Crick structure of DNA in 1953 that later helped in establishing the link between DNA, RNA 

and protein in the ‘central dogma of biology’. This led to the birth of molecular biology and a 

view of ‘the molecular basis of life’ - that life results from an intricate interaction network of 

chemically diverse macromolecules. Biological macromolecules, mainly protein and DNA, 

were interrogated with great interest to understand their functional roles and decipher their 

physical and chemical structures. However, studies on the function of RNA were rare and 

mainly limited to messenger RNA (mRNA). For a long time, the cellular functions of RNA 

were assumed to be confined to its roles in gene expression, primarily as mRNA, ribosomal 

RNA (rRNA) and transfer RNA (tRNA) (1). However, the discovery of RNAs with  

  

Portions of this chapter will be part of a review Suddala, K. C and Walter, N. G. Riboswitch 
structure and dynamics by single molecule FRET, Methods in Enzymology (to be submitted) 
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enzymatic activity, known as ribozymes, by Thomas Cech and Sidney Altman in 1982 

completely changed this existing view and added support to the RNA World hypothesis 

proposed independently by Carl Woese, Francis Crick andLeslie Orgel in the late 1960s (1). 

This hypothesis states that RNA was the genetic material and carried out essential 

enzymatic/housekeeping functions in early life forms (2). This idea further gained 

importance with the discovery of numerous other small ribozymes, as well as from the 

realization that the ribosome, the essential cellular machinery involved in protein synthesis, is 

also a ribozyme (2). In later years, a plethora of non-coding RNAs (ncRNAs) performing 

diverse functions in organisms ranging from simple archaea and eubacteria to complex multi-

cellular animals were identified, further emphasizing the versatile nature of RNA in carrying 

out complex cellular functions (1,2).  

1.1.2 The many roles of non-coding RNA (ncRNA)  

Genome sequencing projects have revealed that only less than ~2% of the human 

genome codes for ~21,000 protein genes. We now know that the remaining over 98% of the 

human genome is transcribed into many classes of ncRNAs that are mainly involved in the 

regulation of gene expression at multiple levels. The high percentage of genome coding for 

ncRNAs has been suggested to be one of the main reasons for the complexity of higher 

organisms such as mammals as compared to smaller organisms, even though the number of 

protein coding genes are not very different (3). In eukaryotes, various kinds of ncRNAs such 

as miroRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI interacting RNAs 

(piRNAs), small nucleolar RNAs (snoRNAs) and long ncRNAs are involved in gene 

regulation, and their malfunctioning is implicated in many diseases including cancer (4,5). 

Our knowledge of the various functions of ncRNAs in eukaryotes is expanding rapidly and 

newer classes of ncRNAs are being discovered at an increasing rate.     

 Bacteria and archaea are found in diverse environments and are extremely adaptable 

to frequent fluctuations in external physicochemical forces. By modulating their metabolic 

and physiological states, they can survive under environmental and nutritional stress 

conditions (6). This adaptability is achieved by regulation of gene expression in response to 
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both internal and external signals. Although less complex than eukaryotic organisms, bacteria 

also contain a large network of ncRNAs that perform diverse functions (6-9). The recent 

discovery of an RNA based viral defense system in bacteria, termed CRISPR (clustered 

regularly interspaced short palindromic repeats) system, highlights the many important roles 

played by ncRNAs even in the simplest forms of life (10,11). A majority of the ncRNAs in 

bacteria, such as the well-studied small regulatory RNAs (sRNAs), act in trans, where they 

bind to mRNAs and either cause RNase E mediated degradation or inhibit translation 

initiation by sequestering the Shine-Dalgarno (SD) sequence needed by the ribosome, with 

the help of accessory proteins such as Hfq (9). In contrast, bacteria also contain many cis-

acting elements known as riboswitches that can sense intracellular metabolite concentrations 

and regulate expression of downstream genes without the need for protein cofactors (12,13).  

1.1.3 Gene regulation by riboswitches 

 Riboswitches are structured domains, present usually in the 5’-untranslated region 

(5’-UTR) of certain mRNAs that regulate gene expression in response to a physiological 

signal (13-16). This physiological signal is generally a change in the concentration of a 

metabolite; but riboswitches that sense temperature, pH and metal ions have also been 

discovered (13,14). Many different classes of riboswitches have been identified that can bind 

nucleobases and their derivatives(17), amino acids, coenzymes, second messengers and metal 

ions (14,18). Almost all of these riboswitches are present in bacteria, although one class of 

riboswitches that binds to the essential coenzyme thiamine pyrophosphate (TPP) was 

identified in all forms of life, including archaea, fungi and plants (14). Riboswitches control 

gene expression generally by inhibiting transcription elongation or translation initiation, but 

certain TPP riboswitches in plants and fungi function through altering mRNA stability or by 

modulating mRNA splicing (13,14,19). Riboswitches consist of an aptamer domain that is 

involved in ligand sensing, followed by an expression platform (or gene regulatory element) 

that undergoes a structural change in response to ligand binding by the aptamer. Both 

domains share a common sequence referred to as the ‘switching’ sequence that 

communicates the ligand bound state of the aptamer domain to the expression 
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Figure 1.1 General mechanisms of riboswitch function. 

(A) In the absence of ligand, the expression platform forms an anti-terminator (AT) hairpin 
that results in the transcription of downstream genes by RNA polymerase (RNAP). 
Stabilization of alternate conformation of the aptamer by the ligand leads to the formation of 
a terminator hairpin (T) thereby aborting transcription. (B) Folding of the aptamer in the 
presence of ligand sequesters the Shine-Dalgarno (SD) sequence leading to inhibition of 
translation initiation. The sequence shared between the aptamer and the expression platform, 
known as the ‘switching’ sequence is shown in red.   
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platform (16,20). In case of the transcriptionally acting riboswitches, the expression platform 

harbors two mutually exclusive hairpins – a Rho-independent terminator hairpin and an 

upstream anti-terminator hairpin, only one of which is specifically stabilized by ligand 

binding during transcription. Translationally acting riboswitches instead use ligand binding 

to decrease the accessibility of the SD sequence to the 30S ribosomal subunit, thereby 

inhibiting translation initiation (19). Translationally acting riboswitches can function as true 

‘switches’ that make multiple gene regulatory decisions during the lifetime of the mRNA. 

For example, the SAM-III (SMK box) riboswitch was shown to function in this manner where 

it can sense changing intracellular concentration of SAM (S-adenosylmethionine) over a long 

period and turn gene expression repeatedly ON or OFF. In contrast, transcriptionally acting 

riboswitches function more like ‘fuses’ since they make a single decision during 

transcription; once terminated they are eventually degraded (20,21).  

 Presently, more than 20 classes of riboswitches are known that bind chemically 

diverse ligands (16,18,22). In certain cases, multiple classes of riboswitches, with distinct 

secondary and tertiary structures, have been identified that recognize a common ligand. 

Examples include the more than five classes of riboswitches recognizing the coenzyme SAM 

and two classes of preQ1 binding riboswitches (18,22). The aptamer domains of a given 

riboswitch class are highly conserved in structure across different species. Riboswitches 

utilize subtle sequence differences in the aptamer domain to ‘fine-tune’ their ligand binding 

affinity for optimal genetic control in different bacterial species (18,22). Additionally, the 

same class of aptamer domain in a particular bacterial species can have varied responses to a 

single ligand depending on the identity of the genes they regulate. For example, recent 

studies showed that the 11 SAM-I riboswitches of B. subtilis have very distinct ligand 

binding affinities (equilibrium dissociation constants, Kd) and show a wide range of effector 

mediated transcription termination efficiencies (23). In addition, riboswitches can also tune 

their optimal ligand responsiveness by using a mix-and-match approach, where different 

classes of aptamer domains can pair up with a wide variety of expression platforms 

(15,22,24). Furthermore, riboswitches can adopt complex architectures involving tandems of 

similar or different aptamer domains or tandems of entire riboswitches to achieve ‘digital’-
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like genetic control responses (25). Such tandem aptamer domains can exhibit cooperativity 

in ligand binding, as shown for the glycine riboswitch, which can help in achieving very high 

sensitivity to even small changes in ligand concentration (26,27). Interestingly, a riboswitch 

with tandem SAM-II/SAM-V aptamer domains has been identified with features similar to 

those of both transcriptional and translational genetic control, suggesting a sophisticated 

mechanism of action (15,28). Recently, a tandem arrangement of a self-splicing group I 

intron ribozyme with a c-di-GMP riboswitch was discovered in a pathogenic bacterium, 

further emphasizing the complex gene regulatory roles played by riboswitches (29). In 

addition, a riboswitch that recruits Rho-factor for transcription termination has been 

discovered (30). These examples highlight the intricacy of genetic regulatory mechanisms 

achieved by riboswitches. A large number of orphan riboswitches has been identified in 

bacteria whose cognate ligands are not yet known (24). Therefore, the functional repertoire 

of riboswitches will only increase in the future, as the roles of these riboswitches are 

unveiled.  

1.1.4 Ligand recognition by riboswitches 

 Atomic resolution structures of riboswitch aptamer domains revealed many 

interesting aspects of riboswitches (16,22). First, the structures showed that similar to 

ribozymes and other non-coding RNAs, riboswitch aptamer domains can adopt structures of 

varying levels of size and complexity. Second, they also explained how RNA can recognize 

chemically diverse ligands despite having a limited arsenal of building blocks and functional 

groups. Riboswitches achieve tight ligand binding by mainly utilizing stacking interactions, 

hydrogen bonds and electrostatic interactions, sometimes mediated by co-ordinated metal 

ions and water molecules (18,22). For example, the c-di-GMP-II riboswitch has a Kd of only 

~10 pM which is much lower than the Kd values of many proteins binding the same ligand 

(31). Most nucleotides of the ligand binding pocket are highly conserved while the residues 

surrounding it vary in sequence   to fine-tune ligand binding affinity (22,23). A unique 

property of riboswitches is high selectivity to their cognate ligands. Closely related ligands 

differing by even a single function group can have large difference in their binding affinities 
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(18,32). In contrast, the aptamers of the glmS, preQ1-I and THF riboswitches were shown to 

bind multiple closely related ligands relatively well (18). The discovery of cooperative ligand 

binding by some riboswitches showed that the molecular recognition properties of RNA 

extend beyond simple interactions. Cooperativity can be achieved using two interacting 

aptamer domains as seen in the glycine riboswitch or by using a single domain with two 

distant ligand binding sites, as in the THF (tetrahydrofolate) riboswitch (26,27,33). 

Interestingly, a recent study on the THF riboswitch showed that certain non-cognate ligands 

bound the aptamer with higher affinities, but could not elicit efficient gene regulatory 

responses (34). This shows a lack of correlation between the binding affinity and efficiency 

of gene regulation in riboswitches. These studies highlight the many tricks used by RNA to 

achieve sophisticated ligand binding and gene regulatory properties. However, our 

knowledge of the ligand binding mechanisms of riboswitches is still incomplete and 

therefore, studies need to be carried out in this aspect for a thorough understanding of 

riboswitch function. 

1.1.5 Riboswitch structure and dynamics 

 Although riboswitches typically bind small molecules, the architectures of different 

aptamer domains vary vastly in their overall sizes (Figure 1.2) (22,35). While riboswitch 

aptamers adopt diverse configurations of RNA motifs, close inspection reveals that most of 

them are made of multihelical junctions and/or pseudoknot folds (22). For example, the 

crystal structures of purine, TPP, lysine and SAM-I binding aptamers all show multihelical 

junctions while the preQ1, SAM-II and fluoride riboswitches exist as pseudoknots (Figure 

1.2) (22).  Among all riboswitches, the preQ1-I riboswitch has the smallest aptamer domain 

(~33-nt) while the T-box riboswitch that binds tRNA and senses its aminoacylation state is 

~200-nt long (36,37). The large size of T-box riboswitch enables it to recognize the overall 

geometry of tRNA and make sequence specific contacts with different ends of the tRNA. In 

contrast, the lysine riboswitch has one of the largest aptamers (~ 170-nt) among the 

metabolite binding riboswitches, even though it recognizes only a small molecule (38). 

Artificially selected RNA aptamers are also known to bind ligands with high affinity, yet 
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they are smaller in size than the naturally-occurring aptamers (39). However, synthetic 

aptamers display comparably poor ligand specificity (40). Therefore, the larger size of 

riboswitch aptamers may have evolved to provide extensive intramolecular tertiary 

interactions that form complex architectures required for achieving high ligand specificity 

and fine-tuned gene regulatory function (16).  

 For RNA, like all other biological macromolecules, structural dynamics are crucial 

for proper biological function (41). The conformational dynamics of RNA can be local or 

global and spans a wide range of timescales (42). Due to a rugged free energy landscape and 

inherent flexibility, RNA structures adopt multiple conformations that interconvert on a 

range of timescales (43,44). Therefore, RNA molecules exist in an ensemble of functionally 

active conformations and the idea of a single native structure is generally not applicable (43). 

As the name suggests, riboswitch RNAs are dynamic in nature. Structural dynamics play a 

critical role in ligand-mediated folding and gene regulation by riboswitches (45). Although 

the crystal structures of riboswitches show atomic detail of the ligand recognition mode, they 

do not provide information on riboswitch dynamics or the ligand-mediated folding 

pathwaysthat are critical to understanding riboswitch function (46). Furthermore, the current 

scarcity of available ligand-free aptamer structures limits our understanding of the folding 

process that forms the basis of gene regulation by riboswitches (46). 

A number of biophysical studies using nuclear magnetic resonance (NMR) 

spectroscopy, molecular dynamics (MD) simulations, small angle x-ray scattering (SAXS) 

and single molecule experiments have provided details of the conformation, dynamics and 

effect of ligand on the folding of a number of riboswitches (47-62). These studies point to a 

general mechanism where ligand-free riboswitches exist in multiple interconverting 

conformations including ‘folded-like’ states that are stabilized by ligand binding. Divalent 

metal (mainly Mg2+) ions are known to be crucial for RNA folding by stabilizing tertiary 

interactions (63,64). In the case of many riboswitches, Mg2+ was shown to be essential for 

the RNAs to sample ‘folded’-like conformations in the absence of ligand. Although Mg2+ is 

not required for ligand binding, it was shown to generally accelerate ligand dependent 
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folding and slow down the unfolding rate of the aptamer (49,54,62,65). In particular, single 

molecule fluorescence resonance energy transfer (smFRET) has been extensively used to 

study the dynamics and ligand dependent folding of riboswitches. 

1.2 Single molecule fluorescence microscopy 

1.2.1 Single molecule  methods 

 Conventional experiments on biological macromolecules are done in bulk where a 

large number of molecules (typically ~1010–1015) provides an average signal for an 

observable parameter of interest. This parameter may be the catalytic rate constant kcat for 

enzymes, or the dimensions or the diffusion constant of a molecular species. While such 

ensemble methods are valuable in providing information on the general behavior of a given 

target molecule and will continue to be useful, they suffer from an important problem – 

ensemble averaging. Ensemble methods do not provide a distribution of the observable 

parameter but rather only a single average value, thus leading to a loss of valuable 

information (66). For example, when ensemble methods are used to study a biomolecule 

existing in equal populations of two distinct states, they will report an average state that is in 

fact not a real conformation. In addition, the presence of any lowly populated transient 

conformations (sometimes – ambiguously – referred to as ‘excited’ states) can be extremely 

challenging to detect using ensemble methods (66). Therefore, single molecule methods are 

ideally suited for studying biomolecular systems such as RNA that generally exist in multiple 

distinct conformations (67,68). In addition, along with static heterogeneity of the entire 

population, the ability to observe a single molecule for a long period of time will enable 

studies of dynamic heterogeneity. Systems can be studied under equilibrium and non-

equilibrium conditions and the rate constants for conversion between different conformations 

can be obtained (66). Furthermore, single molecule methods are usually done at very low 

concentrations and therefore require little material to work with. This is especially 

advantageous for studying systems that aggregate or form multimers at high concentrations. 

Due to the many advantages, over the past two decades single molecule microscopy has been 
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applied to study the structure, folding and dynamics of biomolecules such as DNA, RNA, 

and proteins, as well as for investigating large macromolecular assemblies (44,66,69-79).  

A wide variety of single molecule methods has been used for studying biomolecules 

in vitro and in vivo (66). In general, single molecule methods can be classified into 

fluorescence and non-fluorescence (often mechanical) methods (80,81). Fluorescence based 

single molecule methods require the labeling of biomolecules with typically organic dyes 

(fluorophores). Fluorophore labeling enables the study of various molecular properties such 

as localization, movement (diffusion), binding to other molecules, intra- or inter-molecular 

distances, dynamics and oligomerization state under different conditions. Methods such as 

fluorescence correlation spectroscopy (FCS) using confocal microscopy and wide-field 

microscopy using prism- or objective-based total internal reflection fluorescence (TIRF) are 

widely used (80,82). Mechanical or force based methods do not require the labeling of 

biomolecules with fluorophores. However, recently, hybrid methods combining both 

fluorescence and force (e.g., “fleezers”) have enabled the investigation of both the 

mechanical and conformational properties of biomolecules in a single experiment (83). 

Among the force-based methods, atomic force microscopy (AFM), as well as optical and 

magnetic tweezers are commonly utilized to study the folding and dynamics of biomolecules 

(82). 

1.2.2 Fluorescence resonance energy transfer (FRET) 

 Fluorescence or Förster resonance energy transfer (FRET) refers to the non-radiative 

energy transfer between a donor and an acceptor fluorophore that are spatially proximal to 

each other (84). To be suitable as a FRET pair, the emission spectrum of the donor needs to 

overlap with the excitation spectrum of the acceptor. Energy transfer via FRET occurs only 

when the fluorophores are present within a certain distance that depends on the identity of the 

FRET pair and is generally <100 Å. Therefore, FRET can be used as a sensitive 

spectroscopic ruler to measure very short intra- or inter-molecular distances in the nm range 

(Figure 1.3A) (84).  The excitation energy of the donor is then transferred to the acceptor  
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Figure 1.2 Crystal structures of various riboswitch classes showing diverse 
architectures. 

The riboswitches and their ligands are shown in grey and colored, respectively. The 
structures shown are not drawn to scale. 
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through a dipole-dipole coupling interaction that is distance dependent. The FRET efficiency, 

E, is given by the equation: 

𝐸 =  
1

1 + (𝑅 𝑅0⁄ )6 

where R is the distance between the donor and the acceptor fluorophores. R0, known as the 

Förster radius, refers to the distance between the fluorophores when the energy transfer 

efficiency is 50% (Figure 1.3A). The value of R0 depends on the properties of the donor and 

acceptor fluorophores and the local environment. Generally, R0 is constant for a given FRET 

pair under similar buffer conditions. The R0 values for commonly used FRET pairs range 

from 40–60 Å. For example, the R0 value for the Cy3 (donor) - Cy5 (acceptor) pair of 

fluorophores is ~54 Å, with a roughly linear dependency of the FRET efficiency from ~30–

75 Å (84). Therefore, distance changes below 30 Å and above 75 Å cannot easily be 

distinguished and will yield FRET values close to 1 and 0, respectively.  

 FRET results in the decrease in the intensity of the donor fluorophore with a 

simultaneous increase in the acceptor fluorophore intensity. Combining FRET with single 

molecule detection results in a powerful technique known as single molecule FRET 

(smFRET), which has been used to study the conformational dynamics of a variety of 

molecules in real-time (84). In smFRET experiments, one generally monitors the donor and 

acceptor fluorophore intensities of individual molecules as the FRET efficiency, calculated 

as: 

𝐸 =  
𝐼𝐴

𝐼𝐴 + 𝐼𝐷 
 

where ID and IA are the background corrected donor and acceptor intensities, respectively. 

Structural dynamics in molecules labeled with a FRET pair manifest as anti-correlated 

changes in the intensities of the donor and acceptor fluorophores (Figure 1.3C). By 

immobilizing molecules to permit long observation times of their FRET changes, 

conformational dynamics and folding of biomolecules can be studied (44). 
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1.2.3 Single molecule FRET using TIR microscopy 

 Single molecule FRET microscopy for studying conformational dynamics is 

generally done using wide-field illumination (Figure 1.3B) (84). In this method, intensities 

from hundreds of molecules can be recorded simultaneously using a CCD camera. The 

molecules are generally immobilized onto the surface of a microfluidic channel for enabling 

longer observation times. The immobilized molecules can be excited either by epi-

illumination or by using an evanescent field. The evanescent field is generated using total 

internal reflection (TIR) of the excitation laser at the quartz-water interface. The intensity of 

the evanescent filed decays exponentially with distance in the z-direction and therefore only 

excites immobilized molecules that are within ~100 nm of the surface (Figure 1.3B). The 

advantage of using TIR microscopy thus is that it eliminates the background 

autofluorescence from solvent and any free labeled molecules in solution, resulting in a high 

signal-to-noise ratio that is critical for single molecule detection. A quartz prism or an 

objective with high numerical aperture can be used to achieve TIR. The prism-based TIRF 

microscopy setup is relatively simple and has been widely used for studying conformational 

dynamics of many non-coding RNAs such as ribozymes, telomere RNA, the ribosome, the 

spliceosome, and many different riboswitches (44,49,50,66,68,70,75,85).  

1.2.4 Fluorophore labeling and purification of riboswitches for smFRET 

 For studying riboswitch structure and dynamics using smFRET, molecules have to be 

labeled with both donor and acceptor fluorophores (69,84). In addition, a biotin moiety needs 

to be present on the molecule for immobilization on the quartz slide surface, typically using 

biotin-streptavidin chemistry. A key aspect of obtaining a doubly labeled RNA is the 

selection of nucleotides for fluorophore labeling. Depending on the structure of the aptamer, 

the fluorophores need to be positioned such that they report large-scale distance changes 

between functionally important regions forming the key tertiary interactions involved in 

‘switching’. For example, in the purine riboswitches, fluorophores were placed near the 

hairpin loops P2 and P3 that form a critical tertiary interaction stabilized by ligand binding 

(54,62). Similarly, for riboswitches adopting a pseudoknot fold the fluorophores should 
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report formation of the thermodynamically less stable helix (generally P2 or P3, closest to the 

3’-end) that is stabilized by the ligand (49,51). In this regard, the availability of a high-

resolution crystal or NMR structure will aid in choosing the nucleotides to label. This is 

particularly useful for labeling riboswitches with complex architectures. For simple 

riboswitches, RNA secondary structure along with nucleotide conservation data may be 

sufficient for the selection of suitable labeling positions. In the absence of a high-resolution 

structure for the RNA, chemical structure probing using methods such as selective 2'-

hydroxyl acylation analyzed by primer extension (SHAPE) or in-line probing can reveal the 

identity of nucleotides that form intramolecular interactions (or inter-molecular interactions 

with the ligand), as well as those exposed to solvent (86). As a rule of thumb, nucleotides that 

are evolutionarily less conserved, solvent exposed and not involved in any intra-molecular 

interactions should be chosen for fluorophores labeling. This strategy will ensure that the 

presence of the bulky fluorophores will not affect the structure, folding or ligand binding of 

the riboswitch. Furthermore, the labeling sites should be within the linear FRET range of the 

fluorophores for maximum sensitivity. The larger the difference between the FRET levels, 

the easier it is to distinguish them. Ideally, the labeling sites should be chosen such that a 

minimum difference of 0.2 is obtained between two FRET values.  

 There are many ways of achieving site-specific labeling of RNA with fluorophores 

for smFRET experiments (87). A common way of internally labeling riboswitches is to 

conjugate N-hydroxysuccinimide (NHS) ester derivatives of fluorophores to free primary 

amine functional groups of modified nucleotides. Commonly, aminoallyl uridine can be 

incorporated into the sequence in place of uridine during chemical synthesis of 

oligoribonucleotide (RNA) and labeled using an NHS ester fluorophore. In the recent years, 

due to an increase in the efficiency of RNA chemical synthesis, ordering custom designed 

singly or doubly fluorophore labeled short RNAs with additional modifications, such as 3’ or 

5’ biotin, has become affordable. However, this is only feasible for aptamers that are <80 nt 

in length. For larger riboswitches, alternatively, one or more short fluorophore labeled RNA 

oligos can be convalently linked to in vitro transcribed larger RNA using enzymatic ligation 

(87) or simply hybridized. For labeling of RNA at the 3’ or 5’ end, free amine group can be 
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introduced during chemical synthesis, which can be labeled using a fluorophore NHS ester. 

Labeling is often non-trivial and requires multiple strategies of purification to remove 

unlabeled and singly labeled RNAs. Excess unreacted dye is removed by, for example, gel 

filtration and ethanol precipitation or reversed-phase HPLC separation. The labeling 

efficiency can be assessed by using their extinction coefficients and measuring the 

absorbances of RNA and the two fluorophores using a UV-Vis spectrophotometer. If the 

labeling efficiency is high enough (>80%), the RNA can be directly used for smFRET 

experiments without further purification. However, purification of doubly labeled RNA using 

denaturing gel electrophoresis or HPLC is recommended when the labeling yield is low. This 

will enable imaging of hundreds of doubly labeled RNA molecules during smFRET 

experiments. 

1.2.5 Preparation of quartz slides for smFRET 

 SmFRET experiments are routinely performed using quartz slides with a microfluidic 

channel (84). For single molecule experiments, the slide surface needs to be thoroughly 

cleaned using a multi-step protocol to remove any organic impurities (70). Presence of 

significant fluorescent impurities will impede observation of true single molecules and 

contribute to false background signals. Impurities may also affect the local environment of 

molecules that may result in heterogeneities in their behavior. The cleaning process first 

involves boiling the used slides to remove the cover slips and then scrubbing the surface with 

a thick paste of detergent (Alconox, Inc), followed by sonication in the detergent solution. 

The slides are then sonicated in various organic and inorganic solvents such as acetone, 

methanol or ethanol, 1 M KOH and a 5:1:1 volume ratio mixture of water:ammonium 

hydroxide:hydrogen peroxide. Each sonication step in the various solvents is done for 30 

min, and after every step, the slides are sonicated in double-distilled water for 10 min. In the 

end, slide surfaces are flamed off using a propane torch to destroy any remaining fluorescent 

organic impurities. Once the slides are clean, the microfluidic channel can be made by 

sandwiching two strips of double-sided sticky tape ~3-5 mm apart between the quartz slide 

and a clean glass coverslip (84). The channel thus made has a low volume of ~30 – 50 µL. A 
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pair of holes drilled into the quartz slide will act as inlet and outlet ports for the flow of 

buffers containing different buffers and samples into the channel. in one standard protocol, 

the microfluidic channel is coated first with biotinylated-BSA (bBSA) that adsorbs onto the 

slide surface. After washing the excess unbound bBSA using a 1x smFRET buffer of choice, 

a streptavidin solution is flowed onto the surface. After incubation for a few min, unbound 

streptavidin is washed off with the 1x buffer. Next, 50-100 pM of doubly labeled RNA is 

flowed onto the slide until an optimal density is obtained (~300–400 molecules per field of 

view). Unbound molecules are washed away and molecules are imaged in 1x buffer 

containing an oxygen scavenging system (OSS) that will increase the life-time of the 

fluorophores permitting long observation times. A widely used OSS consists of 

protocatechuic acid (PCA), protocatechuate-3,4-dioxygenase (PCD) enzyme and Trolox to 

slow down fluorophore photobeaching and blinking, respectively (70).  

1.2.6 Heat-annealing of riboswitch RNA  

 Before immobilization onto the slide, riboswitch RNAs need to be folded into their 

native conformations. RNA is generally stored at low temperatures (-20 °C or -80 °C) in 

autoclaved double-distilled water or in low pH buffers without any divalent cations to 

prevent its degradation over time. However, under such low-temperature, low-ionic strength 

conditions and due to repeated freeze-thawing, RNA molecules can misfold or form non-

specific aggregates. Therefore, heating will unfold the misfolded RNAs and break the 

aggregates, allowing the RNA to fold into its native conformation. There is no standard 

protocol for folding of RNAs and diverse heat-annealing protocols can be found in the 

literature. Commonly, RNA is heated in a buffer with monovalent ions such as Na+ or K+, but 

without Mg2+, to 75 °C for 2 min. The RNA is cooled at either rapidly or slowly to allow 

folding into its secondary structure in the presence of monovalent ions. This is followed by 

the addition of Mg2+ to the required concentration after cooling down to 37 °C or RT. 

Addition of Mg2+ will induce formation of tertiary interactions and complete the RNA 

folding. For smFRET experiments, heat annealing after diluting the RNA to the required low 

concentrations of 50 - 100 pM will prevent the formation of dimers/aggregates. Higher 
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temperatures such as 90 °C should be tried in cases where heating at 75 °C is not effective in 

breaking the aggregates. As a control, a few different temperature and time regimes should 

be tried to optimize the folding protocol and to test if the exact folding protocol has any 

significant effect on the smFRET results. 

1.2.7 Analysis of smFRET data 

 Using wide-field smFRET microscopy, time traces of the donor and acceptor 

fluorophore intensities can be obtained for hundreds of molecules. These smFRET time 

traces provide direct information on the conformational states sampled by individual 

molecules and the times spent in each of these states before transitioning to other FRET 

states. The smFRET traces can be analyzed using a number of methods to yield data on the 

structure and dynamics of the RNA (88). The time traces of a few hundreds of molecules 

typically are first plotted into a population FRET histogram by sampling the first 50 or 100 

frames of each molecule. The FRET histogram monitors the ensemble behavior of all the 

molecules. By fitting the histogram as a sum of Gaussian functions, the number of 

conformations sampled by the riboswitch and their apparent equilibrium distribution can be 

obtained under a given condition. Generally, for riboswitches the FRET histogram is first 

obtained in the absence of both Mg2+ and ligand. Later, Mg2+ or ligand titrations can be 

performed in the same experiment to identify their effect(s), either individually or together, 

on the conformational dynamics of the riboswitch. The occupancy (as seen from the FRET 

histogram) of one of the conformations, corresponding to the ligand-bound folded state is 

expected to increase as a function of ligand concentration, from which a half-saturation value 

(K1/2) value is estimated that relates to a Kd obtained from biochemical methods. The mean 

and width of the individual Gaussian peaks will provide additional information on the 

compactness and dynamic nature of the underlying conformations. Following the changes in 

these fitting parameters at varying ligand and/or Mg2+ concentrations can provide details on 

the folding of the RNA. However, the most important data from smFRET experiments are 

the dwell times of individual molecules in different FRET states before transitioning to other 

states. Statistical methods such as Hidden Markov Modeling (HMM) are used to idealize the 
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smFRET traces in an unbiased manner, detect transitions between FRET states, and obtain 

the exact dwell times of individual molecules in different states (88,89). From the idealized 

traces, transition density plots (TDPs) can be made that show the number of transitions of a 

given type in all the molecules as heat maps (Figure 1.3E) (88).  Dwell times of all 

molecules in each FRET state before transitioning to a different FRET state can be extracted 

from the TDP. The dwell times are then plotted as a cumulative distribution plot and fit with 

exponential functions to extract the rate constants of conformational dynamics between the 

different states (Figure 1.3F) (88). The transition rates of individual molecules will reveal 

the extent of conformational heterogeneity present in riboswitch molecules. However, in 

certain cases where the conformational dynamics are fast and close to the time resolution of 

the camera (typically tens to hundreds of milliseconds), using HMM is not ideal. In such 

cases, cross-correlation analysis can be performed on the smFRET traces to quantify the anti-

correlation between the donor and acceptor intensities. The inverse of the lifetime of the 

cross-correlation function yields the sum of transitions rates between the FRET states 

(90,91). By analyzing how increasing concentrations of ligand affect the rates of 

conformational dynamics between different FRET states, one can potentially reveal the 

mechanism of ligand binding, which is extremely difficult to investigate using ensemble 

methods (92).  

The aim of this thesis was to study the conformation, dynamics and ligand binding of 

two very distinct riboswitches – the preQ1 riboswitch (32,36) as the smallest known 

riboswitch, and the T-box RNA (37) as one of the largest and most complex riboswitches 

(Figure 1.2). To this end, in Chapter 2, using smFRET, computational simulations and NMR, 

we have investigated the conformation and ligand-mediated folding of each one 

transcriptionally and translationally acting preQ1 riboswitch. We showed that in contrast to 

previous studies, both riboswitches have similar ligand-free conformations with only subtle 

differences in their dynamics. We also demonstrated that remote mutations away from the  
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Figure 1.3 Studying riboswitch structure and dynamics using single molecule FRET.  

(A) FRET efficiency vs distance plot (B) Schematic of smFRET setup using TIRF 
microscopy (C) Example smFRET trace showing dynamics between two FRET states (D) 
Population FRET histogram showing the distribution of two conformations (E) A transition 
density plot (TDP) that shows the total number of transitions between the different FRET 
states (two in this example) in all molecules (F) Cumulative dwell time distribution fit to a 
single exponential function to extract kinetic information. 

19 
 



 
 

 

ligand binding pocket can affect riboswitch conformation and ligand binding, especially for 

the transcriptional preQ1 riboswitch. Based on our smFRET data and computational folding 

simulations, we proposed that both the RNAs follow distinct ligand-mediated folding 

pathways that resemble the classical models of ‘induced-fit’ and ‘conformational selection’. 

In Chapter 3, we further investigated the effect of ligand on the structural dynamics of the 

transcriptionally acting Bsu preQ1 riboswitch at faster time resolutions to further delineate its 

folding mechanism. In addition, the effect of different ligands on the conformation and 

dynamics of the Bsu riboswitch were probed. Finally, in chapter 4, we have probed the 

conformation and tRNA binding kinetics of various glyQS T-box riboswitch designs using 

smFRET. We showed that the T-box riboswitch exists in a stable conformation with 

minimum global conformational dynamics. We also showed that tRNA binding does not 

cause major structural changes, suggesting a pre-organized conformation. Our kinetic 

binding data directly demonstrate that the presence of a small amino acid such as glycine on 

the 3’-end of the tRNA significantly increases its dissociation rate by ~6-fold, which explains 

why a charged tRNA does not result in transcription antitermination. Using our kinetic data, 

we present an improved quantitative kinetic model for the T-box riboswitch mechanism of 

action.  

Studying riboswitch structure, dynamics and ligand binding mechanism using 

ensemble methods has been challenging. In this dissertation, we have used smFRET to shed 

light on the conformational behavior of two contrasting riboswitches. In addition, our single 

molecule kinetic assays used to probe T-box-tRNA binding are applicable to the study of 

many other RNA-RNA interactions. The smFRET methods used in this dissertation generally 

can be applied to more deeply probe the molecular structure and conformational properties of 

the diverse classes of riboswitches that range in size between the two RNAs investigated here 

to expand our so far limited knowledge of ligand-mediated riboswitch folding.  
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CHAPTER 2 

 

Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded 

ensembles that follow distinct folding pathways into the same ligand-bound structure 

2.1 Introduction 

Riboswitches are highly structured, non-coding RNA motifs that are found in up to 4% of all 

5’-untranslated regions of bacterial messenger RNAs and respond to cellular metabolites or 

other signals to control gene expression (1-5). Riboswitches are composed of a highly 

conserved aptamer domain, which binds a ligand, and a downstream variable expression 

platform that modulates the genetic on/off switch. Regulation of gene expression is achieved 

through one of multiple possible modes, most commonly transcription attenuation and 

inhibition of translation initiation. While the general principles of genetic regulation by 

riboswitches are understood, the molecular basis of their action remains largely elusive.  

Riboswitches respond to a variety of ligands including nucleobases (6,7), amino acids 

(8,9), cofactors of metabolic enzymes (10,11) and metal ions (12,13), and are found in a 

multitude of bacterial species (5). 7-Aminomethyl-7-deazaguanine, or preQ1, is one such 

ligand (Figure 2.1A). It is derived from guanine and is an intermediate in the queuosine 

biosynthetic pathway in bacteria (14,15). Queuosine is found in bacteria and eukaryotes 

 
This work is reproduced in part from Suddala, K.C. et al. Single transcriptional and 
translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct 
folding pathways into the same ligand-bound structure. Nucleic Acids Res 41, 10462-75 
(2013). Krishna C. Suddala performed labeling and smFRET experiments on the Bsu 
riboswitch. Arlie J. Rinaldi performed labeling and smFRET experiments on the Tte 
riboswitch. Jun Feng performed the Gō-model simulations in Figures 2.13 and 2.14, 
Anthony M. Mustoe performed the TOPRNA simulations in Figure 2.9, Catherine D. 
Eichhorn performed the NMR experiments in Figure 2.12 and Joseph A. Liberman carried 
out the ITC measurements in Figure 2.7.  
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at the wobble position of tRNAs for His, Tyr, Asn, and Asp (16), where it is thought to be 

essential for translational fidelity (17-19) as well as bacterial virulence (20). The family of 

preQ1 riboswitches encompasses some of the smallest ligand-responsive RNAs found in 

nature, making them an ideal target for mechanistic studies. The Bacillus subtilis (Bsu) and 

related preQ1 riboswitch aptamers in particular have been studied extensively (21-30) and are 

known to regulate the queCDEF operon through transcription termination (31). In contrast, 

the preQ1 riboswitch aptamer from Thermoanaerobacter tengcongensis (Tte) controls the 

expression of a putative preQ1 transporter and has been implicated as translationally 

operating wherein ligand binding sequesters the first two nucleotides of the Shine-Dalgarno 

sequence through Watson-Crick base pairing (32,33). 

 In the Bsu riboswitch, the aptamer has to bind the ligand and stably fold into the 

pseudoknot structure to switch off gene expression before the competing anti-terminator 

hairpin is formed in the expression platform, whereas in the Tte riboswitch the expression 

platform partially overlaps with the ligand-binding aptamer domain. In either case, ligand 

binding and folding of the aptamer domain is a key event in the regulation of gene expression 

that is not well understood. Crystal structures of the preQ1 bound Bsu (21) and Tte (33) 

aptamer domains (referred to henceforth simply as “riboswitches”) overlay closely with a 

backbone unit-vector RMSD (URMSD; using an all-C3’ atom trace) of only 1.8 Å, as based 

on the RNA structure alignment program SARA (34) (Figure 2.1B). This value is 

comparable to a URMSD of 1.6 Å between the lowest-energy NMR (25) and crystal (21) 

structures of the Bsu riboswitch. Both riboswitches adopt classic H-type pseudoknot 

structures containing a 5-base pair (bp) stem P1, a 2-nucleotide (nt) loop L1, followed by a 4-

bp stem P2 and loops L2 and L3 (Figure 2.1C). In both riboswitches, the last nucleotide of 

L2 is a cytidine that recognizes preQ1 through Watson-Crick base pairing (Figure 2.1C). 

There are only a few relatively subtle differences between the riboswitches (Figure 2.1C). 

For example, the P2 stem of the Bsu riboswitch bears three Watson-Crick and a single non-

canonical C8-A34 bp, whereas the Tte riboswitch has two Watson-Crick and two non-

canonical bp, G8-A31 and A10-A32. In addition, the L2 loops in the Bsu and Tte 
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riboswitches are 6- and 4-nt in length, respectively, and the 6-adenosine containing L3 loop 

in the Bsu riboswitch is interrupted by a C insertion in the Tte riboswitch (35). 

 Despite their structural similarities in the ligand bound state, discrepancies between 

the conformational behaviors of these two riboswitches have been reported for the ligand free 

form. NMR studies of the Bsu riboswitch (25,36) have suggested a largely unfolded 

conformation in which its 3’ tail (encompassing L3 and the 3’ segment of P2, Figure 2.1C) 

does not form tertiary interactions. Such an extended conformation lacks a pre-organized 

binding site, leaving unresolved the question of how this ‘open’ conformation senses ligand. 

Further, the Bsu riboswitch must bind ligand efficiently during the narrow time window of 

~1-2 s during which RNA polymerase proceeds from the 3’ end of the aptamer domain to the 

3’ end of the intrinsic terminator hairpin and therefore, an unfolded ligand-free conformation 

is ill-suited for such a transcriptionally acting riboswitch. In contrast, X-ray crystallography 

and SAXS studies on the Tte riboswitch (33) suggest that it does form a pre-folded tertiary 

conformation poised for recognition in the absence of ligand. Such pre-folding of the Tte 

riboswitch at room temperature may not be surprising given its origin from a thermophilic 

bacterium that grows optimally at 75 °C where the riboswitch may be less folded. Such 

contrasting behavior of these two structurally similar riboswitches prompted us to investigate 

their conformational distribution and dynamics under similar physiologically relevant buffer 

conditions.  In addition, even though some structural data are available, how the two 

riboswitches compare in their transition from the ligand-free to the ligand-bound form to 

affect gene expression is still unclear. 

 Here, we combine single molecule fluorescence resonance energy transfer (smFRET) 

(37-39) with computational techniques to compare the folding behavior of the Bsu and Tte 

riboswitches. We show that in the absence of ligand, both the Bsu and Tte riboswitches exist 

in a similar ensemble of conformations, contrary to previous studies. Both riboswitches 

exhibit a major population of a ’pre-folded’ state ensemble wherein their 3’ tail adopts 

transient interactions with the P1-L1 stem-loop, reminiscent of the fully folded state, and a 

minor population of a folded-like state. The pre-folded state is poised to bind ligand and, for 

the Tte riboswitch, we find evidence that it can sense preQ1. Subtle differences exist in the  
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Figure 2.1 Structural comparison of the Bsu and Tte preQ1 riboswitches 

(A) Structure of preQ1 (7-aminomethyl-7-deazaguanine). (B) Structural overlay of the Bsu 
(colored, PDB ID 3FU2, chain A) and Tte (grey, PDB ID 3Q50) riboswitch crystal structures. 
The sugar-phosphate backbone is shown as a single ribbon. preQ1 is space-filled and colored 
as in A. Secondary structure elements are color-coded as indicated. (C) Secondary structure 
maps of the Bsu and Tte riboswitches with interactions shown in Leontis-Westhof 
nomenclature (35). Individual secondary structures are color-coded as in B and the locations 
of fluorophores and biotin are indicated. (D) Prism-based TIRFM setup for smFRET.  
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folding behavior of the transcriptional and translational preQ1 riboswitches that can in part be 

attributed to differential local flexibility of the single-stranded, A-rich 3’ tail (36), which 

leads to differences in long-range transient interactions. Together with results from structure-

based Gō- model folding simulations, we show that these differences lead to distinct folding 

pathways for the transcriptional and translational riboswitches that can be classified as biased 

towards late ligand binding to an already preformed RNA pocket (conformational selection) 

and early ligand binding followed by the binding pocket folding around it (induced fit), 

respectively. Our study unveils design principles for pseudoknot folding that are dependent 

on the dynamic properties of the single-stranded 3’ tail, a notion we put to the test by 

rationally reengineering the riboswitches’ pre-folded states and ligand binding affinities 

through point mutations in this tail. Our results highlight the benefits of comparative studies, 

establish a framework for delineating conformational selection and induced fit pathways, and 

contribute to an emerging view that environmental conditions as well as distal sequence 

variations fine-tune the ligand binding properties of riboswitches and RNA in general.  

 

2.2 Materials and Methods 

2.2.1 Preparation of RNAs for smFRET 

All RNA constructs were synthesized by Dharmacon Inc. (Fayette, CO) with 5’ biotin 

modification, 3’ DY547 label and 5-aminoallyl-uridine (5NU) label at position U12 (Tte) and 

U13 (Bsu) for later functionalization with Cy5 (Figure 2.1C). Oligonucleotides were 

deprotected following the manufacturer’s instructions. For labeling each construct, one dye 

pack of the Cy5-NHS ester (GE Healthcare) was dissolved in 30 µL DMSO and used to label 

~3.4 nmol RNA in a total reaction volume of 50 µL containing 0.1 M sodium bicarbonate 

buffer, pH 8.7. The reactions were incubated and tumbled at room temperature in the dark for 

4 h. Reaction volumes were adjusted to 500 μL with deionized water and loaded onto a Nap-

5 gel filtration column (GE Healthcare) for desalting and removal of excess free dye. 

Fractions containing the RNA were collected, ethanol precipitated and pellets were 

resuspended in 50 μL deionized water.  
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2.2.2 Single molecule FRET 

We assembled a microfluidic channel on a quartz slide with an inlet and outlet port and 

coated it with biotinylated-BSA, followed by streptavidin, as previously described (38,40). 

We folded the RNA by heating at 70 oC for 2 min and allowing it to cool to RT for at least 20 

min in near-physiological smFRET buffer (50 mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM 

MgCl2) in the presence or absence of preQ1. 100 µL of 10-50 pM of the heat annealed RNA 

was flowed onto the slide and incubated for 10 min for binding. Excess RNA was removed 

by flowing 100-200 µL smFRET buffer with or without preQ1 through the channel. An 

oxygen scavenging system was included in smFRET buffer (+/- preQ1), consisting of 5 mM 

protocatechuic acid and 50 nM protocatechuate-3,4-dioxygenase to slow photobleaching and 

2 mM Trolox to reduce photoblinking (39). DY547 was directly excited using a 532 nm laser 

and emission from DY547 and Cy5 fluorophores was simultaneously recorded using an 

intensified CCD camera (I-Pentamax, Princeton Instruments) at 100 ms time resolution (39-

44). Experiments at 33 ms data acquisition were performed on a similar prism-based TIRF 

setup with an EMCCD camera (iXon, Andor Technology). smFRET time traces were 

extracted from the raw movie files using IDL (Research Systems) and analyzed using Matlab 

(The Math Works) scripts. Genuine fluorescence traces were selected manually based on the 

following features: single-step photobleaching, a signal-to-noise ratio of >5:1, a total (donor 

+ acceptor) fluorescence intensity of > 300 (arbitrary units), and a total fluorescence duration 

of >10 s. The FRET ratio was calculated as IA/(IA + ID), where IA and ID represent the 

background corrected fluorescence intensities of the acceptor (Cy5) and donor (DY547) 

fluorophores, respectively. FRET distribution histograms were plotted using OriginLab 8.1. 

HMM analysis was performed on smFRET traces using the segmental k-means algorithm in 

the QuB software suite as described (45). We used a two-state model (with mid-FRET and 

high-FRET states) to idealize the data; a third zero-FRET state was included to account for a 

few blinking events. Transition Occupancy Density Plots (TODPs) were then generated from 

the idealized data using Matlab (45). 

 

 

32 
 



 
 

 

2.2.3 Cross-correlation analysis 

Cross-correlation analysis between the donor and acceptor signal intensities of individual 

smFRET traces was performed similar to previous studies (46) using custom written Matlab 

programs.  Cross-correlation functions were fit with single-exponentials to obtain the 

reported transition time constants (that are the inverse of the sum of the forward and 

backward rate constants). 

 

2.2.4 Isothermal Titration Calorimetry 

The calorimetric methods were conducted as described (47) with minor modifications. T. 

tengcongensis preQ1-I riboswitch 33-mer was chemically synthesized (Dharmacon or 

Fidelity Systems Inc) and purified by reverse phase HPLC (48). The preQ1 ligand was 

prepared by chemical synthesis (LeadGen Labs, LLC). Lyophilized RNA samples were 

dissolved in 10 mM HEPES-NaOH, pH 7.0, containing 100 mM NaCl and the solution was 

heated to 65 °C for 5 min. MgCl2 was added slowly to a final concentration of 6 mM, 

followed by slow cooling to 24 °C. The folded RNA sample was dialyzed overnight at 4 °C 

against 4 L of 100 mM NaCl with 6 mM MgCl2 buffered at pH 7.0 by 50 mM HEPES-

NaOH, pH 7.0. Following dialysis, riboswitch samples were diluted with dialysis buffer to: 5 

µM for the samples analyzed at 25 °C, and 3 µM for the samples analyzed at 60 °C. PreQ1 

was dissolved in dialysis buffer to a concentration 7- to 12-fold higher than the RNA. ITC 

measurements were conducted by use of a VP-ITC calorimeter (MicroCal Inc). Titrations 

were conducted by injecting preQ1 from the syringe into the riboswitch using 28 or 29 

injections of 10 μL each – except for the first injection of 3 μL; an interval of 260 or 300 sec 

was used between injections. The resulting thermograms were analyzed with Origin 7.0 

(MicroCal) using a 1:1 binding model. Titrations were performed in duplicate at each 

temperature. Representative titrations and curve fits are shown in Figure 2.7. 

2.2.5 NMR spectroscopy 

All NMR experiments were performed at 298 K on an Avance Bruker 600 MHz spectrometer 

equipped with a triple-resonance cryogenic (5 mm) probe. NMR spectra were analyzed using 
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NMR Draw (49) and Sparky 3. Uniformly labeled 13C/15N samples were prepared by in vitro 

transcription using T7 RNA polymerase as described previously (50). RNA samples were 

repeatedly exchanged into NMR buffer (25 mM NaCl, 15 mM NaiPO4, pH 6.4, 0.1 mM 

EDTA) using an Ultra-4 Amicon (Millipore Corp.). Final RNA concentrations were 1-2 mM. 

MgCl2 titrations of the Bsu aptamer were performed by the incremental addition of MgCl2 to 

a 0.2 mM RNA sample. A 4:1 ratio of preQ1 was added to a ~0.5 mM RNA sample to obtain 

the preQ1-bound sample. Chemical shift differences were determined through 2D 1H-13C and 
1H-15N HSQC experiments. 

2.2.6 TOPRNA Simulations 

TOPological modeling of RNA (TOPRNA) uses three primary pseudo atoms to represent the 

base (B), sugar (S), and phosphate (P) moieties of an RNA nucleotide. Base pairs are treated 

as permanent bonds between paired B atoms and regions of contiguous base pairs are 

parameterized through dihedral potentials to assume standard A-form helical structure. A 

small filler atom was also placed between each set of paired bases to more accurately 

reproduce the steric profile of a base pair. Non-base-paired residues were parameterized to 

maintain RNA-like bond lengths and angles between pseudo-atoms, but were otherwise 

treated as freely rotatable chains. Both base-paired and non-base-paired residue potential 

parameters were derived from fits of CHARMM (51) potential functions to structural-

database derived statistical potentials. Electrostatic interactions were ignored and, with the 

exception of a small attractive force between base-paired B atoms meant to simulate intra-

helix base stacking, all other non-bonded interactions were solely repulsive in nature. The 

steric radii of these repulsive interactions were approximated from the minimum dimension 

of the chemical moiety each pseudo-atom represents. Initial coordinates for both the Bsu and 

Tte riboswitches were obtained by equilibrating the initially linear chains of the same 

sequences as the two RNAs used for smFRET (Figure 2.1C) with constraints that forced the 

formation of an A-form helical P1 stem. The base paired residues of P1 were then ‘bonded’ 

together and additional simulation-dependent dihedral and distance restraints were applied to 

the 3’ tail and/or residues of the P2 stem, followed by further equilibration (see Tables 2.1 
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and 2.2 for restraint details). Temperature replica exchange simulations were then performed 

in CHARMM (51) with the MMTSB replica exchange server (52)  using four temperature 

windows from 300 K to 400 K for 50,000 exchange cycles so as to achieve exhaustive 

sampling at each condition. 1,000 timesteps of Langevian dynamics with 5 ps-1 friction 

coefficient and 0.02 ps integration time step were performed in between each exchange cycle. 

Neither the fluorophores nor linkers were included in these simulations. Estimates of the 

inter-fluorophore distances expected in solution were then obtained by measuring the 

distances sampled over the length of the simulations between the base pseudo-atoms of U13 

and G36 and U12 and G35 for the Bsu and Tte molecules, the sites of fluorophore 

attachment, respectively.   
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Table 2.1 TOPRNA simulation parameters of the Bsu preQ1 riboswitch system 

Simulation Description P1 Stem1 P2 Stem2 Tail Stacking 
Dihedrals3 

Tail-P1 Distance 
Constraints4 

Unstacked 3’ tail (red) Yes No --- --- 

Stacked 3’ tail (green) Yes No A26 to C31 --- 

Stacked 3’ tail with 
lower tail-P1 interactions  

(blue) 

Yes No A26 to C31 U20-A26 (B,S) 

A3-A26 (B) 

G4-A27 (B) 

C19-A27 (B,S) 

G5-A28 (B,S) 

C18-A28 (B) 

Unstacked 3’ tail with 
lower tail-P1 interactions 
(purple)  

Yes No --- U20-A26 (B,S) 

A3-A26 (B) 

G4-A27 (B) 

C19-A27 (B,S) 

G5-A28 (B,S) 

C18-A28 (B) 

Stacked 3’ tail with 
upper tail-P1 interactions 
(cyan) 

Yes No A26 to C31 U6-A29 (B,S) 

U7-A30 (B,S) 

Stacked 3’ tail with all 
tail-P1 interactions 
(orange) 

Yes No A26 to C31 U20-A26 (B,S) 

A3-A26 (B) 

G4-A27 (B) 

C19-A27 (B,S) 

G5-A28 (B,S) 

C18-A28 (B) 
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U6-A29 (B,S) 

U7-A30 (B,S) 

Ligand-Bound (black) Yes Yes A26 to C31 U20-A26 (B,S) 

A3-A26 (B) 

G4-A27 (B) 

C19-A27 (B,S) 

G5-A28 (B,S) 

C18-A28 (B) 

U6-A29 (B,S) 

U7-A30 (B,S) 

 

1Base pairs A1-U22, G2-C22, A3-U20, G4-C19, and G5-C18 are physically bonded together 
2Base pairs G11-C31, A10-U32, U9-A33 are physically bonded together, and base pair C8-
A34 is enforced through B-atom to B-atom distance constraints. 
3Backbone dihedral potentials parameterized to enforce A-form helical conformation were 
added to the residues within the range listed. 
4Teriary contacts were enforced through the use of flat-well NOE distance constraints with 
kmax=kmin=fmax=2.0 kcal/mol. The constraints were centered on the interaction distances 
found in chain A of the 3FU2 crystal structure (21) and the well width was set to 1 Å. Letters 
in parentheses denote whether the constraint used was between two base atoms (B), or 
between a base and a sugar atom (S), or both (B,S).  
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Table 2.2 TOPRNA simulation parameters of the Tte preQ1 riboswitch system 

Simulation Name P1 Stem 
Paired1 

P2 Stem 
Paired2 

Tail Stacking 
Dihedrals3 

Tail-P1 Distance 
Constraints4 

Unstacked 3’ Tail (red) Yes No --- --- 

Stacked 3’ Tail (green) Yes No A24 to C30 --- 

Stacked 3’ tail with lower 
tail-P1 interactions  

(blue) 

Yes No A24 to C30 U2-A23 (B,S) 

A19-A23 (B) 

G4-A26 (B) 

C17-A26 (B,S) 

G5-A27 (B,S) 

C16-A27 (B) 

Unstacked 3’ tail with 
lower tail-P1 interactions 
(purple) 

Yes No --- U2-A23 (B,S) 

A19-A23 (B) 

G4-A26 (B) 

C17-A26 (B,S) 

G5-A27 (B,S) 

C16-A27 (B) 

Stacked 3’ tail with all 
tail-P1 interactions 
(orange) 

Yes No A24 to C30 U2-A23 (B,S) 

A19-A23 (B) 

G4-A26 (B) 

C17-A26 (B,S) 

G5-A27 (B,S) 

C16-A27 (B) 

U6-A28 (B,S) 

Ligand-Bound Yes Yes A24 to C30 U2-A23 (B,S) 
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A19-A23 (B) 

G4-A26 (B) 

C17-A26 (B,S) 

G5-A27 (B,S) 

C16-A27 (B) 

U6-A28 (B,S) 

A10-A32 (B) 

 
1Base pairs C1-G20, U2-A19, G3-C18, G4-C17, and G5-C16 are physically bonded together 
2Base pairs C9-G33 and G11-C30 are physically bonded together, and non-canonical base 
pair A10-A32 is enforced through B-atom to B-atom distance constraints. 
3Backbone dihedral potentials parameterized to enforce A-form helical conformation were 
added to the residues within the range listed. 
4Flat-well NOE distance constraints were used as described in Table 2.2. Constraint centers 
were derived from the 3Q50 crystal structure (33). 
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2.2.7 Gō-Model RNA Simulations 

Gō model RNA simulations were performed essentially as described before (24). The 

function of the Gō model follows the potential form: 

2 2 2
0 0 0

0 0

12 6 12

, ,
3

( ) ( ) ( )

[1 cos( ) 0.5(1 cos(3 ( )))]

2

r
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where the equilibrium distances (r0) and angles (θ0, χ0 and ϕ0) were determined by the native 

RNA structure. The equilibrium force constants (Kr, Kθ, and Kχ) were adopted from the 

CHARMM (51) force field based on atom types. Since multiplicity exists in the CHARMM 

force field for the force constants of dihedrals, we defined Kϕ as the barrier height from the 

minimum to the maximum in the CHARMM dihedral potential. It should be noted that, 

although we are using the native dihedrals in the potential function, the RNA stability is 

largely dictated by the native contacts as follows. All heavy atoms within 4 Å distance were 

considered native contact pairs, excluding pairs that are connected within 3-bonds. The 

native contact potential takes the form of a Lennard-Jones 6-12 potential, where σ is the 

contact distance in the native structure and ε is the well depth defining the strength of the 

native interactions, while all non-native contacts are mutually repulsive with 
12 9 21.3 10 /kcalÅ molεσ −= × . We further partitioned the native contacts into van der Waals 

contacts and hydrogen bonding contacts. A hydrogen bond was identified when the distance 

between the acceptor (A) and donor (H-D) was less than 2.4 Å and the A-H-D angle was 

>120°. For contacts within the RNA, the strength of the interaction ε was 0.1 kcal/mol for 

van der Waals interactions, 2.15 kcal/mol for G-C hydrogen bonds, and 1.58 kcal/mol for all 

other hydrogen bonds. For contacts between ligand and RNA, ε of van der Waals and 

hydrogen bond interactions were 0.15 and 2.89 kcal/mol, respectively. Each of the 51 folding 

simulations of the transcriptional and translational riboswitches were performed using the 
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GROMACS simulation package (53) and each simulation was carried out with a different 

unfolded starting conformation. Stochastic dynamics were performed with a coupling time 

constant of 1.0 ps and a time step of 2 fs. All bonds were constrained in the simulations. 

 

2.3 Results 

2.3.1 smFRET detects two conformational states in both ligand-free riboswitches with 

different transition dynamics 

To exploit smFRET (37-39) for its ability to elucidate even subtle conformational 

differences, we chemically modified the crystallized riboswitch sequences by attaching 

Dy547 as a donor fluorophore at the 3’ terminus and Cy5 as an acceptor fluorophore on a 

uracil residue of  L2 (U13 of Bsu and U12 of Tte, Figure 2.1C and Materials and 

Methods). Both of these uracils were chosen since they are weakly conserved, not involved 

in any intramolecular interactions, and extrude into solvent (21,25,33). In addition, the donor-

acceptor pair is positioned such that pseudoknot formation upon ligand binding is expected to 

result in close proximity (~20-30 Å) and thus high FRET, whereas extended or unfolded 

conformations should result in considerably longer distances and lower FRET (Figure 2.1D). 

Finally, we introduced a 5’ biotin to immobilize the RNA on a quartz slide for observation of 

single molecules by prism-based total internal reflection fluorescence microscopy (TIRFM, 

Figure 2.1D), essentially as described (37,39,54), and used a buffer approximating 

physiological conditions (50 mM Tris-HCl, pH 7.5, 100 mM K+, 1 mM Mg2+) at room 

temperature. 

 In the absence of preQ1 ligand, FRET histograms of a few hundred molecules (as 

indicated in Figures 2.2A,B), which survey conformational sampling of the entire population 

(45), exhibit a major broad peak around a FRET value of 0.72 (mean) ± 0.13 (standard 

deviation, SD) and 0.70 ± 0.13 for the Bsu and Tte riboswitches, respectively (Figures 

2.2A,B). Additionally, both ligand-free riboswitches contain a minor population of a shorter-

distance conformation as indicated by a higher FRET value; the Bsu riboswitch shows ~9% 

with a FRET value of 0.89 ± 0.05, whereas the Tte riboswitch shows ~11% with a FRET 
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value of 0.90 ± 0.05. Notably, the width (SD) of the 0.7 (or mid)-FRET state is larger than 

that of the 0.9 (or high)-FRET state, suggesting that the former, in particular, represents a 

broader dynamic ensemble of structures (or possibly one that our FRET probes more 

sensitively report on) rather than a single defined conformation. Examination of individual 

traces shows that the high-FRET state arises in part from relatively short-lived excursions of 

single molecules up from the mid-FRET state (Figures 2.2C,D and Figures 2.3, 2.5 and 

2.8). Additionally, some molecules appear to stably persist in the high-FRET state with dwell 

times of up to tens of seconds (Figure 2.3, panel IV), similar to observations for other 

riboswitches (55).  

 A distinction exists when comparing the conformational dynamics of the two 

riboswitches in the absence of ligand. Almost half of all Tte riboswitch molecules undergo 

dynamic switching between the mid- and high-FRET states, as clearly distinguished at our 

time resolution (100 ms, Figure 2.3B). In contrast, ~13% of all Bsu riboswitch molecules 

undergo such observable conformational switching (Figure 2.3A). Closer inspection reveals 

anti-correlation between the donor and acceptor intensities when conformational switching 

does occur in either of the two riboswitches, implying true transitions between 

conformational states of distinct fluorophore distance rather than local quenching effects on 

just one of the fluorophores. For the Bsu riboswitch, the timescales of these transitions are 

faster than those of the Tte riboswitch and are close to our time resolution (Figure 2.3A, 100 

ms), suggesting that we may miss a significant number of even faster transitions. We 

therefore performed cross-correlation analysis (46) on these data, which revealed that an 

additional 15% of all Bsu molecules show anti-correlation between the donor and acceptor 

signals without transitions revealed by Hidden Markov Modeling (HMM) (Materials and 

Methods and Figure 2.4A). To further evaluate the underlying dynamics, we measured the 

Bsu riboswitch in the absence of ligand at 33 ms time resolution. As expected, this faster time 

resolution increases the population of molecules with HMM-resolved transitions to 64%, 

with an additional 10% displaying anti-correlation without discernible transitions (Figure 

2.4B). Even at this faster time resolution, however, 26% of all Bsu molecules in the absence 

of preQ1 reveal no detectable anti-correlation (Figure 2.4B), suggesting that at least this 
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fraction of molecules undergoes transitions that are faster still, similar to observations on the 

Fnu preQ1 riboswitch (28) . 

2.3.2 Ligand titrations together with coarse-grained simulations identify the two FRET 

states as pre-folded and folded 

A first-order analysis of the mean FRET values associated with the two histogram peaks 

suggests that the high-FRET state of both riboswitches is consistent with the range of 

distances expected between fluorophores for the native ligand bound states, which is 

significantly below the Förster distance of the Dy547-Cy5 fluorophore pair (~50 Å) (56). The 

distance of ≤30 Å associated with a FRET value of 0.9 agrees well with the crystal structures 

of the ligand-bound Bsu (21) and Tte (32,33) riboswitches, as well as with that of the ligand-

free Tte riboswitch (33). As discussed above, the broad mid-FRET state likely reflects a 

dynamic ensemble of partially unfolded states. However, its relatively high FRET value of 

0.7, corresponding to a donor-acceptor distance of ~45 Å, appears much higher than that 

expected if the conformation of the 3’-tail were truly random.  

To confirm our preliminary assignments of the mid- and high-FRET states, we 

studied the effect of ligand on the conformational sampling of the two riboswitches. As the 

preQ1 concentration increases, so does the high-FRET state population, at the expense of that 

of the mid-FRET state (Figures 2.2A,B). We fitted each FRET histogram with a sum of two 

Gaussian functions (Figures 2.2A,B) and plotted the fraction of the high-FRET state as a 

function of ligand concentration (Figure 2.6A). For both riboswitches, the high-FRET 

population increases with ligand concentration and saturates with half-titration points of K1/2 

= 134 ± 45 nM and 69 ± 22 nM for the Bsu and Tte riboswitches, respectively (Figure 2.6A). 

To rule out the possibility that the varying number of molecules across our ligand titrations 

skews our results, we performed an analysis wherein 100 molecules were randomly chosen 

for each condition, then analyzed as in Figures 2.2 and 2.6. We found no difference in the 

Gaussian distributions and K1/2 values outside the stated errors. We note that the apparent 

preQ1 affinity of the two riboswitches differs somewhat from previously reported values (K1/2 

= 50 nM in 50 mM Tris-HCl, pH 8.3, 20 mM MgCl2, 100 mM KCl (31) and 2 nM in 10 mM  
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Figure 2.2 smFRET characterization of single preQ1 riboswitch molecules 

(A) smFRET histograms of the Bsu riboswitch with increasing ligand concentration as 
indicated; N, number of molecules sampled. Green and blue lines indicate Gaussian fits of 
the mid- and high-FRET states, respectively. Black lines indicate cumulative fits. (B) Same 
as in A, but for the Tte riboswitch. (C) Exemplary FRET time traces of the Bsu riboswitch for 
each condition. Idealized HMM fits are shown as red line. The population of each FRET state 
is shown as a frequency bar graph to the right. (D) Same as in C, but for the Tte riboswitch.  
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Figure 2.3 Raw smFRET traces of the Bsu and Tte preQ1 riboswitches in the absence of 
ligand 

(A) Five representative time traces illustrating donor (green) and acceptor (red) intensities 
with corresponding FRET (black) traces for the Bsu riboswitch. Computed HMM (cyan) fits 
are overlaid on the FRET trace. (B) Same as A, but for the Tte riboswitch. 
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Figure 2.4 Donor-acceptor cross-correlation analysis of exemplary smFRET traces of 
the Bsu riboswitch in the absence of preQ1 
(A) Cross-correlation analysis at 100 ms time resolution, showing smFRET traces with their 
HMM fits (cyan, top panel) and cross-correlation functions, fit with single-exponentials (red, 
bottom panel). Fractions are given for each of three observed behaviors: left, trace with no 
detectable dynamics; middle, trace with fast dynamics as shown by cross-correlation between 
the donor and acceptor signals; right, trace with slow dynamics as identified by the HMM. 
(B) Same as in A but at 33 ms time resolution. The time constants (τ) for the single 
exponential fits are: A, 0.065 s and 0.082 s; B, 0.035 s and 0.39 s.  
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Figure 2.5 Exemplary smFRET traces of the Bsu and Tte riboswitches in the presence 
of preQ1 ligand, showing differences in dynamics 

(A) smFRET traces (black) for the Bsu riboswitch with HMM fits (cyan) overlaid. (B) Same 
as A, but for the Tte riboswitch. The Bsu riboswitch shows fewer transitions at low (50 nM) 
ligand concentration than the Tte riboswitch. Conversely, at intermediate (250 nM) and high 
ligand concentrations (1 µM), the Tte riboswitch shows less dynamics than the Bsu 
riboswitch.           
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Figure 2.6 Effect of ligand on the distribution of the mid- and high-FRET states 

(A) The FRET histograms of Figure 2.2 were quantified and the percent high-FRET state 
was plotted as a function of ligand concentration. The data were fit with a non-cooperative 
binding isotherm and the respective apparent K1/2 values are indicated for both Bsu (closed 
symbols) and Tte (open symbols). (B) The centers of the Gaussian fits for the mid-FRET 
(green) and high-FRET (blue) states from Figure 2.2 were plotted as a function of ligand 
concentration and fit with a non-cooperative binding isotherm, yielding the K1/2 values 
indicated for the Tte riboswitch. 
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sodium cacodylate, pH 7.0, 3 mM MgCl2 (33) for the Bsu and Tte riboswitches, 

respectively). This may be due to differences in technique (in-line probing and surface  

immobilization, respectively) and/or buffer conditions, especially pH and Mg2+ 

concentration, which we later show to have a significant effect on the compactness of the Bsu 

riboswitch. Of note, the ligand binding affinity of the Tte riboswitch measured here by 

smFRET and previous work by surface plasmon resonance (SPR) (33) were obtained at room 

temperature. However, the affinity of the Tte riboswitch at physiological growth temperatures 

of Thermoanaerobacter tengcongensis (50 - 80 °C) may be well lower. We therefore used 

isothermal titration calorimetry (ITC) to investigate the effect of temperature on the ligand 

binding affinity of the Tte riboswitch. The KD measured at 25 °C is 7.3 ± 2.3 nM (with a 

reaction stoichiometry N = 0.98), close to the KD measured using SPR (33). At a temperature 

of 60 °C, the ligand binding affinity decreased ~60-fold with a KD of 430 ± 60 nM (Figure 

2.7 and Table 2.3). The lower N value of 0.75 indicates that not all RNA is competent to 

bind the ligand at 60 °C. (Please note that the KD value could not be measured at the optimum 

Tte growth temperature of 75 °C due to instability of the instrument). Our ITC data show 

that, while the affinity is reduced at high temperature, the Tte riboswitch still binds ligand 

with significant affinity.  

These observations strongly implicate the high-FRET state as the ligand-bound, fully 

folded state. We note that even at preQ1 concentrations as high as 10 µM, however, the 

fraction of this folded state does not shift above ~50% for either of the two riboswitches, in 

part because both  riboswitches remain dynamic and sample the pre-folded state, in part 

perhaps due to the existence of alternative RNA conformations incapable of binding ligand 

(25,37). In both riboswitches, ligand addition also causes changes in the transition kinetics 

between the mid- and high-FRET states (Figures 2.5 and 2.8). Whereas the Tte riboswitch 

becomes less dynamic with slower transitions, the Bsu riboswitch displays increased 

dynamics with clear two-state transitions. These observations further support the notion that 

the ligand-free Bsu riboswitch undergoes very fast transitions that are slowed down by the 

ligand through stabilization of the folded state, thus enabling detection at our 100 ms time 

resolution.       
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Figure 2.7 Representative isothermal titration calorimetry (ITC) data to measure preQ1 
binding to the Tte riboswitch 

(A) ITC thermogram of preQ1 binding to the Tte riboswitch (top) and resulting binding 
isotherm fitted with a single-site binding model (bottom) at 25 °C. (B) Same as in (A), but at 
60 °C.  
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Table 2.3 Average Isothermal titration calorimetry (ITC) binding data for the Tte 

riboswitcha 

 

  

aValues represent the average of two independent titration experiments recorded at each 
temperature (i.e. n = 2) 

 

 

 

 

 

 

 

 

Temp 

(°C) 
KD (nM) N 

ΔH  

(kcal mol-1) 

-TΔS 

(kcal mol-1) 

ΔG 

(kcal mol-1) 

25 7.4 ± 2.3 
0.98 ± 

0.07 
-41.5 ± 11.7 30.3 ± 11.5 -11.2 ± 0.3 

60 425 ± 60 
0.75 ± 

0.01 
-97.9 ± 34.7 88.1 ± 34.6 -9.7 ± 0.1 
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To further evaluate the conformations underlying the mid- and high-FRET states, we 

performed simulations of both riboswitches with a coarse-grained RNA model we term 

TOPRNA. TOPRNA uses three pseudo-atoms per nucleotide of an RNA parameterized as a 

freely rotatable polymer with RNA-consistent bond lengths and angles and with only 

repulsive non-bonded van der Waals interactions (Materials and Methods). Known base-

paired regions are parameterized to assume A-form helical structure, and tertiary structures 

are modeled using dihedral and distance restraints based on the available crystal structures. 

TOPRNA simulations thus allow us to build a comprehensive picture of the 3D 

conformational ensemble of the preQ1 riboswitches subject to given sets of tertiary structure 

constraints and inherent space-filling and chain-connectivity properties. Consistent with our 

initial expectations, we found that ensembles generated without any enforced tertiary 

restraints possess inter-dye distance distributions that are too long to give a mid-FRET value 

of ~ 0.7 (Figure 2.9 and Table 2.4). In contrast, the ensembles with either a partially P1- or 

P2-docked 3’ tail lead to mean donor-acceptor distances in the range of 35-45 Å, highly 

consistent with that observed for the mid-FRET state (Figure 2.9 and Table 2.4). We note 

that these partially folded conformations are still flexible enough to lead to a broad distance 

(and therefore FRET) distribution as observed for the mid-FRET state (Figures 2.2A,B). 

Finally, our simulations of the fully folded, ligand-bound state produced a narrower and 

shorter distance distribution with means around ~25 Å, as expected for the high-FRET state 

(Figure 2.9 and Table 2.4). Altogether, we have strong evidence that the mid-FRET state in 

both riboswitches consists of a pre-folded conformational ensemble in which the 3’-tail 

transiently interacts with the minor groove of P1, P2 is partially formed, or a combination of 

both, whereas the high-FRET state represents a compact, less flexible ligand-bound state (or, 

in the absence of ligand, a folded-like state).  
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Figure 2.8 Transition occupancy density plots (TODPs) of the preQ1 riboswitches at 
varying ligand concentrations.  

TODPs (45) are displayed as heat maps illustrating the fraction of all molecules that exhibit a 
specific transition from an initial FRET state to a final FRET state for the Bsu and Tte 
riboswitches, as indicated. The plots highlight the differences in the transitions between the 
pre-folded (~0.7 FRET) and folded (~0.9 FRET) states as a function of ligand concentration; 
transitions between the pre-folded and folded states are seen as off-diagonal contours. In the 
ligand-free Tte riboswitch, these contours move closer to the diagonal (dashed line) upon 
increasing the ligand concentration, indicative of the pre-folded and folded states becoming 
structurally more similar. By contrast, for the ligand-free Bsu riboswitch, the TODP with no 
ligand displays contours close to the diagonal that move farther away with increasing ligand 
concentration (until ~250 nM ligand).  

53 
 



 
 

 

 

 

Figure 2.9 TOPRNA simulations of the Bsu and Tte riboswitches 

Coarse grained TOPRNA simulations predicting distance distributions between the 
fluorophore labeled residues as a function of specific interactions in the Bsu (A) and Tte (B) 
riboswitches. Color code is as follows: green, stacked 3’ tail; red, unstacked 3’ tail; purple, 
blue, orange and cyan (A, only), partially docked into the P1 and/or P2 stem with varying 
degrees of intersegmental and stacking interactions as indicated; black, fully folded as found 
in the ligand-bound crystal structures (see Tables 2.1, 2.2 and 2.4 for details). 
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Table 2.4  FRET values computed from TOPRNA simulated distance distributions 

 Bsu Tte 

 R0=51 Å R0=57 Å R0=51 Å R0=57 Å 

Simulation dl=0 Å dl=10 Å dl=0 Å dl=10 Å dl=0 Å dl=10 Å dl=0 Å dl=10 Å 

Ligand-Bound (black) 0.96 0.82 0.98 0.89 0.99 0.93 0.99 0.96 

Stacked 3’ tail with all 
tail-P1 interactions 
(orange) 

0.84 0.65 0.90 0.76 0.87 0.70 0.92 0.79 

Stacked 3’ tail with 
lower tail-P1 
interactions 

(blue) 

0.81 0.62 0.88 0.73 0.87 0.70 0.92 0.80 

Stacked 3’ tail with 
upper tail-P1 
interactions (cyan) 

0.82 0.62 0.89 0.74 -- -- -- -- 

Unstacked 3’ tail with 
lower tail-P1 
interactions (purple) 

0.73 0.52 0.82 0.64 0.77 0.57 0.85 0.68 

Stacked 3’ tail (green) 0.38 0.24 0.48 0.33 0.39 0.25 0.48 0.34 

Unstacked 3’ Tail 
(red) 0.38 0.23 0.49 0.32 0.39 0.24 0.50 0.34 

 

The mean FRET value (E) corresponding to each distance distribution was obtained by 
assuming complete averaging over the TOPRNA generated ensembles using the following 
equation (57): 

 

Here, r is the end-to-end distance of a given conformer, R0 is 
the approximate Förster radius indicated, and dl is an 
additional distance added to estimate possible increases in fluorophore-fluorophore distances 
that may be expected from the unsimulated linkers. 

  

E = 1 1+
r + dl

R0
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2.3.3 Differences to previous NMR studies are explained by dimerization and variations 

in Mg2+ concentration and pH  

Despite subtle differences in their dynamics, the Bsu and Tte riboswitches in the absence of 

ligand exhibit surprisingly similar conformational distributions. These observations contrast 

with previous suggestions from NMR spectroscopy that the ligand-free Bsu riboswitch 

largely resides in a partially folded, open conformation (25,36), whereas the crystallized 

ligand-free Tte riboswitch is found in a conformation highly similar to that when ligand is 

bound, which becomes only slightly less compact in solution (33). To resolve this apparent 

discrepancy, we studied the buffer dependence of the Bsu riboswitch using smFRET. We 

observed that by lowering the Mg2+ concentration and pH from those of our near-

physiological smFRET buffer to those of a typical NMR buffer (15 mM NaiPO4, pH 6.4, 25 

mM NaCl, 0.1 mM EDTA), the mid-FRET peak of the pre-folded state decreases 

significantly to a FRET value of 0.62 ± 0.20 with an increased SD (Figure 2.10). These 

observations suggest that the tertiary interactions between the 3’ tail and P1-L1 stem-loop 

become less favorable, consistent with previous NMR studies that could not detect them 

(25,36). Furthermore, when this NMR buffer is supplemented with 2 mM Mg2+, the mid-

FRET ensemble shifts back up to 0.69 ± 0.16, close to the smFRET buffer value (Figure 

2.10). These observations suggest that the addition of Mg2+, and to an extent the increase to a 

near-physiological pH, favors a more compact conformational ensemble with transient 

interactions of the 3’ tail with the P1-L1 stem-loop.  

Although Mg2+ is dispensable for preQ1 binding and recent work found no specific 

binding sites for Mg2+ in the ligand-bound Bsu riboswitch (26), its role in the ligand-free 

state of both the riboswitches remains unclear. One Mg2+ ion was found adjacent to the 

ligand binding pocket of the ligand-free Tte structure (33), indicating Mg2+ may be important 

in stabilizing the ligand-free state. To further pinpoint the effect of Mg2+ on the ligand-free 

Bsu and Tte riboswitches, we performed Mg2+ titrations in our smFRET buffer and monitored 

the resulting conformational populations. In the absence of Mg2+, the smFRET population 

histogram for the Bsu riboswitch exhibits a major broad peak around a FRET value of 0.61 ± 

0.20 and a minor peak around 0.92 ± 0.06 (Figure 2.11A). Similarly, the Tte riboswitch  
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Figure 2.10 Buffer dependence of the ligand-free Bsu riboswitch analyzedby smFRET 

Low ionic strength NMR buffer (15 mM NaiPO4, pH 6.4, 25 mM NaCl, 0.1 mM EDTA; red) 
shifts the mean FRET value of the mid-FRET state down to 0.61. Supplementing NMR 
buffer with 2 mM Mg2+ (green) shifts the value back up to 0.69, close to the mean FRET 
value of the mid-FRET state in near-physiological smFRET buffer (50 mM Tris-HCl, pH 7.5, 
100 mM KCl, 1 mM MgCl2; blue). 
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shows a FRET peak around 0.71 ± 0.17, accompanied by a peak at 0.94 ± 0.06 (Figure 

2.11B). The lower mean FRET value and larger width of the Bsu mid-FRET state is 

consistent with our observations in NMR buffer (Figure 2.10) and shows that the ligand-free 

Tte riboswitch is more compact than the Bsu riboswitch in the absence of Mg2+. Increasing 

the Mg2+ concentration at constant ionic strength results in a higher mean FRET value and 

smaller width of particularly the mid-FRET state for both riboswitches (Figure 2.11), 

suggesting that this ensemble becomes more compact and ordered. In addition, the relative 

fraction of the high-FRET state increases, approaching ~34% and ~36% at 10 mM Mg2+ for 

the Bsu and Tte riboswitches, respectively. These values are similar to the fractions of high-

FRET state at high ligand concentrations. We conclude that high concentrations of Mg2+ 

alone, in the absence of ligand, can induce compact folded-like conformations, consistent 

with recent studies of the SAM-II riboswitch (58,59).  

 To further reconcile our smFRET data with those from the previous NMR study of 

the ligand-free Bsu riboswitch (25,36), we studied the buffer dependence of the Bsu 

riboswitch using solution-state NMR. Our previous NMR studies of the Bsu aptamer 

revealed a kissing-dimer interaction involving the palindromic L2 loop sequence 5’-

U9AGCUA14-3’ (Figure 2.1C) (36), as observed also for other preQ1 riboswitches (23). A 

double C12U/C15U mutant eliminates dimer formation at the high concentrations used for 

NMR (25,36). We observed that, in contrast to the wild-type Bsu aptamer, Mg2+ addition 

now causes significant chemical shift perturbations in the absence of ligand; notably, 

residues around the ligand binding site move to unusual spectral positions that are typically 

associated with tertiary interactions (Figure 2.12), suggesting that the ligand binding pocket 

is in a folded-like conformation. Yet some of these new NMR resonances differ from those in 

the ligand-bound conformation (Figure 2.12), indicating a distinct Mg2+-dependent 

conformation. In addition, resonances corresponding to the 3’ tail interacting with the P1 

helix are not observed, indicating that it does not stably dock with the helix even upon 

addition of Mg2+. These findings agree closely with our smFRET-monitored Mg2+ titration 

(Figures 2.10 and 2.11) and together provide strong evidence that the capacity to form  
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Figure 2.11 Mg2+ titration of the Bsu (A) and Tte (B) riboswitches.  

The Mg2+ concentrations are indicated in the boxes. N, number of molecules sampled per 
condition. Green and blue lines indicate individual Gaussian fits of the mid-FRET and high-
FRET states, respectively. Black lines indicate cumulative fits.  
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Figure 2.12 NMR characterization of the Bsu preQ1 riboswitch – effect of Mg2+ on the 
ligand-free conformation.  

From left to right: 2D 1H-13C HSQC comparison of free and preQ1-bound Bsu aptamer; 
comparison of preQ1-free Bsu aptamer in the absence of MgCl2 (grey), with 8 mM MgCl2 
(red), and with preQ1-bound Bsu aptamer in the absence of MgCl2 (black). Addition of 
MgCl2 gives rise to new peaks that are similar to preQ1-bound chemical shifts in the ligand 
binding pocket, indicating that Mg2+ pre-organizes the ligand-free conformation. Arrows 
point to chemical shifts indicative of tertiary interactions that are different from those of the 
ligand bound conformation. Nucleotides are numbered following previous NMR studies on 
the Bsu riboswitch (25,36).  
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dimers at the high concentration used for NMR as well as buffer differences, mainly Mg2+ 

account for the discrepancies between smFRET and NMR studies of the ligand-free Bsu 

riboswitch. This is also clearly demonstrated in a recent NMR study on the Fnu preQ1 

riboswitch (28).  Therefore, we show that buffer differences, in particular sub-saturating 

concentrations of Mg2+ (Figures 2.10, 2.11 and 2.12) and low pH, can have significant 

effects on the pre-folded state of the Bsu riboswitch and account for discrepancies with 

previous studies (25,36). Finally, we find that saturating Mg2+ concentrations have a 

compacting effect on the riboswitches similar to that of high ligand concentrations (Figure 

2.11), further highlighting the importance of buffer conditions for RNA folding and tertiary 

structure. 

2.3.4 smFRET provides evidence that the pre-folded Tte riboswitch senses preQ1  

When fitting the FRET histograms from the preQ1 titration in Figure 2.2 with Gaussian 

functions, we noticed another difference between the riboswitches. In the case of the Bsu 

riboswitch, the mean FRET values of both the pre-folded and folded states vary very little 

with increasing preQ1 concentration (Figure 2.6B). In contrast, for the Tte riboswitch the 

mean FRET value of particularly the pre-folded state significantly increases upon ligand 

titration, with a K1/2 of 36 ± 26 nM (Figure 2.6B). This observation provides evidence that 

the Tte pre-folded state with a partially formed binding site (without P2 formed yet) “senses” 

rising preQ1 concentrations in that its broad conformational ensemble is increasingly biased 

towards folded-like (more compact) conformations with increasing ligand concentration, thus 

narrowing the gap between the mean FRET values of the pre-folded and folded states. The 

folded state also shifts to higher FRET values, but less so (Figure 2.6B). There are several 

ligand-binding mechanisms that could result in these observations. For one, the pre-folded 

state may rapidly (on the smFRET timescale) sample the native ligand bound state, and the 

ligand shifts this pre-existing equilibrium by increasing the population of bound 

conformation, either via conformational selection or induced fit, thus resulting in the 

observed increased FRET value with increasing ligand concentration. Alternatively, although 

less likely, ligand binding may stabilize increasingly more native-like pre-folded states of the 

RNA corresponding to different levels of tail docking. Although our smFRET data 
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themselves cannot resolve the ligand-binding mechanism, they reveal significant differences 

in the folding behavior of the two riboswitches on the path towards structurally similar 

ligand-bound end states. 

2.3.5 Gō model simulations reveal tendencies of the Bsu and Tte riboswitches towards 

ligand binding by conformational selection and induced fit, respectively 

To better elucidate the differences in Bsu and Tte riboswitch folding, we utilized Gō-model 

simulations to compare the folding pathways of the Bsu and Tte riboswitches (Figure 2.13), 

essentially as described (24). Gō models are biased toward the fully folded state, leading to 

smooth folding free energy landscapes and have been used to specifically study the folding 

pathways of biomolecules including RNA (24,60,61). Starting each simulation from a fully 

unfolded random conformation, the RNA is allowed to fold to its crystallographically defined 

native pseudoknot structure (as defined by an appropriate potential function) to probe its 

most likely folding pathway(s). By performing 51 single molecule simulations for each 

riboswitch and averaging the fraction of native contacts, Q, as a measure of folding progress, 

we explored the prevailing folding pathways (Figures 2.13 and 2.14). We found that both 

riboswitches follow a similar folding pathway initially as formation of the local P1 stem 

precedes that of the distal P2 stem. The order of formation of the remaining contacts, 

however, significantly differs. In the transcriptional Bsu riboswitch, ligand binding, stable 

docking of the 3’-tail, and folding of the P2 stem all occur late and almost concomitantly 

(Figure 2.13A), whereas in the translational Tte riboswitch, ligand binding to the top of P1 

occurs early, trailed by 3’-tail docking just prior to folding of the P2 stem (Figure 2.13B). 

Furthermore, C15 of the Tte riboswitch (Figure 2.1C) forms its Watson-Crick base pair with 

preQ1 very early in the folding pathway, clearly preceding folding of the remaining binding 

pocket around the ligand (Figure 2.14B). By contrast, the corresponding C17 of the Bsu 

riboswitch forms its Watson-Crick base pair with preQ1 concomitantly with folding of the 

other binding pocket residues (Figure 2.14A). These divergent tendencies in ligand-mediated 

folding of the Bsu and Tte riboswitches essentially recapitulate the classical mechanisms of 

conformational selection and induced fit, respectively.  
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Figure 2.13 Gō model simulations of single Bsu (A) and Tte (B) riboswitch molecules 
Fraction of native contacts for each structural component, Qsec (P1, blue; P2, green; A-tract, 
red; ligand, black), averaged over each 51 simulations and plotted as a function of the 
fraction of total contacts observed in the native folded structure, Qtotal. Above, characteristic 
points along the folding pathway are illustrated with each one representative conformation.  
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Figure 2.14 Gō model simulations of ligand binding to the Bsu (A) and Tte (B) 
riboswitches. The fraction of native contacts, Qresid, formed with preQ1 by each nucleotide, 
as indicated, is plotted as a function of the fraction of total ligand contacts, Qtotal. Nucleotides 
are numbered as in Figure 2.1C. 
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2.3.6 A mutation distal from the binding site impacts ligand binding as predicted by the 

pre-folded state model 

Our data collectively show that the 3’ tail transiently interacts with the P1 stem in the 

absence of ligand. However, the observed shift in mean FRET of the Tte mid-FRET state and 

the lack of such a shift in the Bsu riboswitch, coupled with the differences in the Gō-model-

derived folding pathways, suggest that the nature of this pre-folded state differs in subtle but 

potentially important ways. Our previous NMR studies of the isolated 3’ tail of the Bsu 

riboswitch showed that disruption of its contiguous A-tract by an A-to-C mutation resulted in 

weakened stacking interactions (36). We therefore propose that the uniform A-tract in the 3’ 

tail of the Bsu riboswitch renders it more ordered than the Tte riboswitch tail with its C 

insertion, and thus allows for efficient ligand recognition and binding. This proposal presents 

a clear, testable hypothesis — that one can modulate the ligand binding properties of the 

preQ1 riboswitch by promoting either relative order or disorder of the 3’ tail. To test this 

hypothesis we introduced opposite A27C and C25A mutations into the equivalent positionsof 

the Bsu and Tte riboswitches, respectively. Indeed, disruption of the 3’ tail stacking 

interactions through the A27C mutation in the Bsu riboswitch resulted in a marked decrease 

in ligand binding affinity by two orders of magnitude relative to wild-type (K1/2 = 11 µM 

versus 134 nM, Figures 2.15A, 2.16A and 2.6A), despite the distal nature of the mutation 

(Figure 2.1C). In addition, we observed a notable decrease in the mean FRET value of the 

pre-folded state in the absence of ligand (0.74 to 0.65, Figure 2.16B), which only slightly 

varies across a broad ligand concentration (Figure 2.16C). This decrease is most likely dueto 

a (partial) loss of 3’-tail rigidity as demonstrated by NMR (36), which our TOPRNA 

simulations predict will lead to an increase in the inter-fluorophore distance monitored by 

smFRET (purple line in Figure 2.9A). By contrast, enhancement of the 3’ tail stacking 

interactions through the C25A mutation in the Tte riboswitch results in no change in binding 

affinity relative to wild-type (K1/2 = 64 nM versus 69 nM, Figures 2.16A, 2.6A and Figure 

2.15B), accompanied by an increase in the mean FRET value of the pre-folded state (0.75 

compared to 0.70 of the wild-type in the absence of ligand, Figure 2.16B), which only 

slightly varies across preQ1 concentrations (Figure 2.16C). Consistent with our hypothesis,  
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Figure 2.15 smFRET characterization of preQ1 binding to the Bsu (A) and Tte (B) 
riboswitch mutants 

Ligand concentrations are indicated in the boxes. N, number of molecules sampled per 
condition. Green and blue lines indicate individual Gaussian fits of the mid-FRET and high-
FRET states, respectively. Black lines indicate cumulative fits.  
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Figure 2.16 smFRET characterization of riboswitch mutants  
 
(A) The Gaussian distributions from Figure 2.15 were quantified and the fraction high-FRET 
state was plotted as a function of preQ1 concentration for the Bsu (closed symbols) and Tte 
(open symbols) riboswitches. (B) smFRET histograms of the Bsu and Tte riboswitches in 
wild-type (WT, gray bars) and mutant (black line) forms, in the absence of preQ1. (C) The 
centers of the mid-FRET (triangles) and high-FRET (circles) states in Figure 2.15 were 
plotted as a function of ligand concentration for both the Bsu (closed symbols) and Tte (open 
symbols) riboswitches.  
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these results indicate that a distal point mutation in the A-rich 3’ tail of the preQ1 

riboswitches can change the nature of pre-folded ligand-free conformational ensemble in 

subtle but powerful ways, affecting not only the ligand binding affinity, but also the overall 

compactness of the pre-folded state. 

2.4 Discussion 

Despite acting through completely different modes of gene regulation, the Bsu and Tte preQ1 

riboswitches are strikingly similar in their aptamer sequence and structure. By contrast, 

diverse ensemble-averaging techniques such as NMR spectroscopy, X-ray crystallography 

and SAXS initially led to distinct structural models for the ligand-free states of the 

riboswitch, depicting them as either a hairpin with a non-interacting and dynamic 3’ tail (Bsu) 

or as a loose pseudoknot (Tte), and left the question of how ligand binding leads to the 

compact ligand-bound state largely unanswered (25,33). Here, we have used smFRET and 

both coarse-grained and Gō-model simulations to carry out a detailed side-by-side 

comparison of the dynamics and ligand-mediated folding of the two riboswitches at the 

single molecule level. We show that under near-physiological buffer conditions both the 

ligand-free riboswitches similarly adopt two distinct FRET states – a major, already pre-

folded state that, in the case of the Tte riboswitch, directly senses ligand, and a minor folded-

like state that becomes more populated with increasing ligand concentration. Transitions 

between the pre-folded and folded states are observed even in the absence of ligand in the 

Bsu riboswitch particularly at 33 ms time resolution. Our coarse-grained simulations suggest 

that the pre-folded state is an ensemble of conformations with varying degrees of interaction 

between the (partially) stacked A-rich 3’ tail and the P1-L1 stem-loop. Despite their 

similarities, smFRET and Gō-model simulations show that the two riboswitches follow, on 

average, distinct ligand-mediated folding mechanisms, wherein the Bsu riboswitch tends to 

fold more by conformational selection and the Tte riboswitch has a relatively greater 

tendency to fold by induced fit. We also note that both mechanisms appear to be utilized by 

both riboswitches, just to differing extents, and that it is difficult to speculate whether one is 

more advantageous than the other with respect to their overall modes of genetic regulation. 

Our results support the unifying model in Figure 2.17, where the differences between the 
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structurally similar transcriptional and translational preQ1 riboswitches reduce to subtle, yet 

significant, relative shifts in their conformational sampling upon ligand binding. This model 

finds further support as we show that remote mutations in the 3’ A-rich tail, which we 

previously have shown to diminish or enhance stacking of the A’s (36), have significant 

effects on the ligand binding properties of the riboswitches by shifting their conformational 

sampling as predicted by the model. 

 Previous studies of the transcriptional Bsu preQ1 riboswitch (25) and the closely 

related Fnu (Fusobacterium nucleatum) riboswitch (22,23) led to models wherein ligand 

binding and RNA folding largely occur concurrently, essentially due to a failure to observe 

interactions between the 3’ tail and the P1-L1 stem-loop in the absence of ligand by NMR. 

This apparent discrepancy turns out to be due to competing RNA dimerization facilitated by 

kissing-loop interactions (between U9AGCUA14 in L1 loop of the Bsu riboswitch) at the high 

RNA concentrations used for NMR, as recent studies attest (28,36), as well as differences in 

buffer conditions as we show by decreasing the Mg2+ concentration and pH (Figures 2.10, 

2.11 and 2.12). The buffer dependence can be rationalized since 1 mM Mg2+ in smFRET 

experiments is in very large stoichiometric excess over the RNA used (10-50 pM during slide 

binding, which is further lowered as the excess of RNA not bound to the slide is washed 

away).  By comparison, the close-to-millimolar concentration of a 36-nt RNA during 

standard NMR experiments can render even 10 mM Mg2+ sub-stoichiometric relative to the 

backbone phosphates that need to be charge neutralized to stabilize an RNA’s tertiary 

structure. In addition, lowering the pH from 7.5 (our near-physiological smFRET buffer) to 

6.4 (the standard NMR buffer) likely results in a small population of protonated nucleobases, 

which is expected to destabilize hydrogen bonding and stacking. Our results are supported by 

a recent NMR study on the Fnu riboswitch that showed that adding Mg2+ to the buffer and 

avoiding dimerization results in a pre-organized pseudoknot-like conformation in the absence 

of ligand (28). Our observation of a ligand-free ‘pre-folded’ state in the Bsu and Tte 

riboswitch aptamers are also supported by recent computational simulations that showed that 

the 3’-tail interactions with P1-L1 stem-loop are stable in both riboswitches at 300 K even in 

the absence of ligand (27,29,30).  
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Figure 2.17 Parsimonious folding model of the Bsu and Tte preQ1 riboswitches 

A combination of smFRET and computational simulations support a model in which the 
preQ1 ligand binds late and concomitantly with the docking of the 3’ tail and formation of the 
P2 stem in the Bsu riboswitch, signifying conformational selection (represented in green). By 
contrast, early binding of the preQ1 ligand to a partially unfolded conformation induces 
folding into the bound structure of the Tte riboswitch, consistent with an induced fit model 
(represented in blue). Both mechanisms are not mutually exclusive and it is plausible that a 
combination of both induced fit and conformational selection mechanisms are at work in 
both riboswitches (62). The size of the white circle and the gray outlines describe the extent 
of conformational heterogeneity of each state. 
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Our observations are also generally consistent with prior X-ray crystallographic 

studies of the translational Tte riboswitch, which showed only minor differences between the 

ligand-free (pre-folded) and ligand-bound (folded) states. Complementary SAXS 

experiments further showed that the ligand-free state additionally opens up in solution 

compared to the crystal lattice (33). This observation is in accordance with our data that 

indicate a shift in the mid-FRET state to a more compact structure when increasing the ligand 

concentration. Here, we have added a dynamic picture for this riboswitch by showing that 

ligand binding typically occurs early in the RNA folding pathway, albeit with 

transientinteractions of the 3’ tail with the P1-L1 stem-loop already in place, followed by 

closure of the binding pocket around the ligand through induced fit (Figure 2.17). By 

contrast, conformational selection (capture) was proposed for the translational SAM-II 

riboswitch that also folds into an H-type pseudoknot (58). This conclusion was primarily 

derived from the slightly (<2-fold) faster ensemble-averaged relaxation kinetics upon ligand 

addition of 2-aminopurine stacking when incorporated into the P2 stem as compared to the 

P1 stem or 3’ tail. Yet, since ligand binding was only indirectly monitored, it is difficult to 

establish the exact sequence of ligand binding and P2 stem formation as a way to 

unambiguously distinguish between conformational selection and induced fit. In fact, the 

authors correctly speculated that multiple pathways may coexist (58), a notion that we here 

have expanded upon by showing that the structurally related Bsu and Tte riboswitches are, on 

average, opposing representatives on a sliding scale of only relative tendencies to fold via 

ligand-mediated conformational selection and induced fit, respectively (Figure 2.17).  

 Our model in Figure 2.17 is also consistent with the expectation that both 

transcriptional and translational riboswitches can be poised to bind ligand. Both the Bsu and 

Tte riboswitches adopt a prominent, dynamic pre-folded conformation in the absence of 

ligand, with the 3’-tail already pre-positioned, through transient interactions with the P1-L1 

stem-loop, close to its eventual placement in the ligand-bound folded state. This poised state 

is aided by stacking in the A-rich 3’ tail, as evident when we mutate the central A27 to C 

(Bsu), which diminishes the nucleotide’s stacking interactions while keeping its sugar edge 

intact for hydrogen bonding. Consequently, this mutation dramatically lowers the ligand 
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binding affinity (by ~80-fold) (Figure 2.16A). Yet, we find that similar predisposition of the 

3’-tail for ligand binding still allows for either conformational selection (Bsu) or induced fit 

(Tte). The main distinction between these folding mechanisms lies in the relative longevity of 

the complex between ligand and the pre-folded conformation with a disordered binding 

pocket (Figure 2.17), making the two mechanisms notoriously difficult to distinguish (62). 

We observe here that the Tte riboswitch is characterized by comparably slow, and thus more 

easily detectable, conformational exchange between the pre-folded and folded states as well 

as a shift of the pre-folded conformational ensemble towards more compact, higher-FRET 

conformers upon ligand encounter. It is tempting to speculate that these experimental 

distinctions from the Bsu riboswitch may provide a general signature for a riboswitch 

favoring ligand-induced fit. Other signatures are the early ligand binding compared to 

binding pocket folding, as observed in our Gō-model simulations, and the relative fractional 

flux through the pathway, which requires a full assessment of all pathway rates that has not 

yet been experimentally accomplished (62). In general, a combination of both mechanisms is 

often utilized in complex biomolecular binding processes and the major mechanism followed 

depends on many factors including ligand and RNA concentrations (62). Moreover, even 

when a ligand primarily selects a specific conformation with a preformed binding pocket, as 

appears to be the case for the Bsu riboswitch, the binding pocket has to still close to entirely 

envelop the ligand. Caution is therefore warranted when assigning one or the other 

mechanism to a specific riboswitch.  

 A previous SPR study on the ligand binding affinity of the Tte riboswitch showed a 

very tight binding interaction at 25 °C with a KD of 2 nM (33). Our ITC data at 25 °C show a 

comparable affinity (KD = 7.3 nM) when the riboswitch is free in solution, which is similar to 

the phylogenetically unrelated class II preQ1 riboswitch (KD = 17.9 nM) analyzed by ITC 

under the same conditions. The Tte riboswitch loses significant affinity (KD = 425 nM) at 

temperatures as high as 60 °C (Figure 2.7 & Table 2.3) and the affinity will be further 

decreased at the optimum growth temperature of 75 °C . Despite this decrease, it still binds 

preQ1 surprisingly well with an affinity comparable to that of the class-I preQ1 riboswitch 

(KD = 283 nM) from Fusobacterium nucleatum at 25 °C (23). Interestingly, the Tte 
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riboswitch has a shorter L2 loop and lacks two nucleotides that are unresolved in the Bsu 

crystal structure (21), suggesting they are flexible. The pre-folded state ensemble of the Tte 

riboswitch thus may require less sampling and be able to fold more efficiently around a 

transiently bound ligand than the Bsu riboswitch to achieve induced fit. Alternatively, this 

feature may be related to either its function as a translational riboswitch or its origin from a 

thermophilic, although genetically closely related (63) bacterium. Conversely, the 

comparably faster transitions of the Bsu riboswitch between the pre-folded and folded states 

may help it rapidly bind ligand by conformational selection within the short time window (<2 

s) before the transcribing RNA polymerase clears the downstream expression platform. 

Single molecule force experiments on the structurally similar pbuE and add adenine 

riboswitch aptamers showed that they sample similar conformational ensembles but differ 

subtly in their folding pathways and dynamics that relate to their distinct functions as 

transcriptional and translational riboswitches respectively (64). Given that our work also 

shows similarities in the conformational distributions of the Bsu and Tte riboswitches with 

subtle differences in their dynamics and folding, this appears to be a common feature of 

structurally similar but functionally different riboswitches. More such comparative studies 

are needed to understand how riboswitch structure and dynamics are fine-tuned by nature to 

function through different gene regulation mechanisms. Given the great impact that we find 

environmental (buffer) conditions to have, future studies should ideally test such hypotheses 

under the growth conditions of the bacterium from which a given riboswitch is derived.  

 In summary, we have utilized smFRET, NMR and computational simulations to 

characterize the folding behaviors of two structurally similar but functionally distinct 

transcriptional and translational riboswitch aptamers. Our work presents direct evidence for a 

ligand-free, pre-folded conformation on the folding pathway of both riboswitches, poised to 

bind ligand. Furthermore, our data yield evidence that the pre-folded state of the translational 

riboswitch with only a partially formed binding site directly senses and binds ligand. Our 

work thus reveals that even small, structurally similar RNAs can adopt distinguishable 

folding mechanisms, consistent with recent observations for highly homologous proteins 

(65). We also demonstrate the fine-tuned conformational sampling of these riboswitches, as 
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mutation of a single nucleotide distal from the ligand binding pocket has dramatic effects on 

ligand binding and, therefore, gene regulation. This may be exploited in the future 

engineering of riboswitches for gene regulatory functions. 
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Note 

The concentrations of preQ1 reported in this chapter and in the published paper are incorrect. 

The actual concentrations of preQ1 are ~ 6-fold lower than the values mentioned. This does 

not affect the conclusions of this study in any way and in fact, results in better agreement 

between the K1/2 values obtained in our smFRET measurements and the KD values measured 

in the previous study (31). 
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CHAPTER 3 

Probing the ligand binding mechanism of the preQ1-I riboswitch using single 

molecule FRET 

3.1 Introduction  

Riboswitches are metabolite binding motifs in messenger RNAs (mRNA) that control gene 

expression (1-3). They are generally present in the 5’-untranslated regions of mRNAs and 

control expression of proteins associated with a given metabolite, by sensing the intracellular 

concentration changes of the metabolite. Riboswitches consist of an aptamer domain that 

directly binds the ligand and a downstream expression platform that controls gene 

expression. Ligand binding stabilizes one of the multiple conformations of the aptamer, 

leading to structural rearrangement of the expression platform and modulation of gene 

expression (1). Modulation of gene expression generally occurs via Rho-independent 

transcription termination or repression of translation inhibition. Riboswitches affect gene 

expression by coupling ligand binding to RNA conformational changes (4). Crystal structures 

of a number of ligand bound aptamer domains have been determined that showed the 

principles of ligand recognition by RNA (2). In addition, high-resolution structures of a few 

ligand-free aptamer domains showed that, in a crystal, they closely resemble the ligand-

bound structures with only local conformational differences. However, due to the lack of 

ligand-free structures for many riboswitches and a general uncertainty concerning their 

conformational ensemble in solution, the mechanism of ligand-mediated folding is not well 

understood (7).  

Krishna C. Suddala performed the smFRET experiments and data analysis of the Bsu 
riboswitch preQ1 titration in the presence and absence of Mg2+. Jiarui Wang performed the 
smFRET experiments and data analysis of ligand (preQ1, preQ0 and guanine) comparisons on 
the Bsu riboswitch conformational dynamics.  
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Figure 3.1 Sequence and structure of the Bsu preQ1 riboswitch  

(A) Sequence and secondary structure of the Bsu preQ1 riboswitch showing the important 
intra-molecular tertiary interactions and inter-molecular interactions with ligand using 
Leontis-Westhof nomenclature (5). (B) Crystal structure of the Bsu preQ1 riboswitch (grey, 
PDB ID: 3FU2, chain A) (6). The ligand, preQ1 is shown in stick model and the nucleotides 
interacting with the ligand are shown in red. (C) Prism-based TIRFM setup for performing 
smFRET experiments. (D) Chemical structures of preQ1 and the related ligands preQ0 and 
guanine, with differences highlighted in red. 
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Recently, studies of ligand-free conformations using nuclear magnetic resonance 

(NMR) spectroscopy (8-11), small-angle X-ray scattering (SAXS) (12-15), computational 

simulations (16-19) and single molecule techniques (10,17,20-23) have provided valuable 

insight into the structural and dynamic properties of riboswitches. In particular, due to their 

ability to detect transient and lowly populated conformations, single molecule methods are 

being applied extensively to decipher the conformational properties of riboswitches (17). In 

addition, the equilibrium distribution of different states, their lifetimes and interconversion 

between different conformations can be directly observed using single molecule techniques 

(23-28). Riboswitches that act through transcription termination have a small time window 

during which they need to recognize ligand and fold into the right conformation to affect 

gene regulation (29,30). Therefore, studying the kinetics of ligand-dependent conformational 

dynamics of transcriptional riboswitches is important. In addition, probing the effect(s) of 

ligand on the folding rate can reveal the mechanism of ligand binding by riboswitches, a 

phenomenon that is not well understood (30,31).   

The preQ1 (7-aminomethyl-7-deaza-guanine) riboswitch from B. subtilis (henceforth 

referred to as Bsu riboswitch) has the smallest known aptamer domain, containing only 34 

nucleotides (nt), and controls the expression of proteins involved in the biosynthesis of 

queuosine through a transcriptional attenuation mechanism (32). The crystal and NMR 

structures of the aptamer domain bound to preQ1 show that it forms a compact H-type 

pseudoknot fold with a stable 5-nt stem P1, loops L1-L3 and a 4-nt stem P2 that is stabilized 

by the ligand (Figure 3.1A) (6,33). PreQ1 is similar to guanine and, therefore, the ligand is 

recognized through Watson-Crick base pairing by conserved nucleotide C17 in loop L1. In 

addition, the ligand stacks in between two guanines, G5 and G11, that form the top and 

bottom base-pairs of stems P1 and P2, respectively. In the crystal structure, the aminomethyl 

group of preQ1 (Figure 3.1D) forms three hydrogen bonds with G5, G11 and a hydration 

water. In addition, residues from loops L1 and L3 are involved in hydrogen bonding with 

different functional groups of the preQ1. Therefore, the binding pocket is formed jointly by 

L2, L1, the top and bottom of P1 and P2 and the A-rich L3, enclosing ~92 % of the solvent 

accessible surface area of the ligand (Figure 3.1B) (6). The exocyclic aminomethyl group of 
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the ligand is the only solvent accessible region seen in the solution structure. The alternative 

ligand preQ0, a precursor of the biosynthesis of preQ1, has a linear nitrile group (Figure 

3.1D) that cannot donate the same hydrogen bond and sticks out the binding site (33). These 

features probably explain why preQ0 has a 5-fold lower affinity than preQ1 (32).  

Initial studies on the ligand-free Bsu riboswitch suggested that it exists in an extended 

conformation where the 3’-tail (which forms L3 and the 3’ portion of P2 in the ligand bound 

structure) does not form any tertiary interactions with stem-loop P1-L1 (33). However, using 

single molecule fluorescence energy transfer (smFRET), NMR spectroscopy and 

computational simulations we have previously shown that the ligand-free Bsu riboswitch 

exists in a pre-folded conformation where the 3’-tail already forms transient interactions with 

P1 and/or L1 (17). We also have demonstrated the important role of Mg2+ ions in promoting 

compact folded-like conformations, even in the absence of ligand. In the presence of ligand, 

we directly observed that the Bsu riboswitch shows transitions between the ‘pre-folded’ and 

folded states. Furthermore, based on our smFRET data and Gō-model simulations, we 

proposed that preQ1 binds to folded-like conformations of the Bsu riboswitch through a 

pathway resembling a ‘conformational selection’ mechanism (16,17) 

In general, biomolecular recognition (ligand binding) can be characterized into two 

major contrasting mechanisms – induced fit and conformational selection (34-37) (Figure 

3.2A). The induced fit mechanism posits that ligand binding to an ‘open’ conformation 

drives the receptor (riboswitch) into the folded conformation. In contrast, the conformational 

selection mechanism states that the apo (ligand-free) receptor exists in multiple 

conformations that are in equilibrium with one another, including a minor population of 

‘native’ or folded-like conformations. The ligand ‘captures’ specifically these native-like 

conformations, thereby shifting the equilibrium to the final folded state. However, these 

mechanisms are not mutually exclusive and a given ligand-mediated folding event can 

proceed through both mechanisms to different extents depending on many factors, such as  
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Figure 3.2 Molecular mechanisms of ligand binding coupled to folding 

A) Thermodynamic cycles for conformational selection and induced-fit mechanisms. Po, Pc 
and L indicate the receptor's open conformation, closed conformation and a ligand, 
respectively. (B) The expected time traces of the FRET efficiency in smFRET measurements 
for the respective recognition mechanisms. Tclosing indicates the time for a receptor to undergo 
a conformational change from an open to a closed state in the absence or presence of varying 
ligand concentrations. Plus symbols represent the ligand concentration. Arrowheads indicate 
the binding of a ligand. Figure reproduced with permission from Kim et al. (31). 
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the relative concentrations of the receptor, ligand and rate constants of ligand binding 

(35,38). In addition, it is important to note that the mere presence of a ligand-free ‘folded- 

like’ conformation does not necessarily confirm the conformational selection mechanism; it 

only suggests the possibility of conformational selection (35).  

Our understanding of the principles of biomolecular recognition processes has been 

majorly expanded by powerful NMR spectroscopic studies on a number of proteins and 

nucleic acid systems (34,39). Recent studies suggested that to accurately classify a binding 

interaction into one of these two mechanisms, calculations of flux through each pathway 

have to be carried out, a task that is extremely difficult and therefore realized only very 

recently (35,38). However, the major mechanism under a given set of conditions can be 

dissected by studying the influence of ligand on the kinetic signature of conformational 

dynamics (35,40,41). Kinetic assays have been used to study the mechanism of binding, 

mainly in proteins (40). Generally, in ensemble binding assays an increasing observed rate, 

kobs, as a function of ligand concentration suggests an induced-fit like mechanism while a 

decreasing kobs supports a conformational selection pathway (41). More recently, smFRET 

microscopy was applied to study the kinetics of ligand-dependent conformational dynamics 

of the maltose binding protein (MBP) as a model system (31). The study showed that ligand 

binding proceeds mainly through an induced-fit like pathway. In addition, using a 

fluorophore labeled ligand for three-color smFRET, the authors directly observed that ligand 

binds to both ‘open’ and ‘closed’ conformations of MBP and demonstrated that ~80 % of 

binding events occur in the open state, further supporting an induced-fit like mechanism (31). 

This study shows the great potential of smFRET microscopy for studying ligand-dependent 

folding mechanisms of biomolecules that are difficult to characterize using ensemble 

methods (42). 

  Here, we have characterized the kinetics of Bsu riboswitch conformational dynamics 

and investigated the effect of ligand on them, with the aim to decipher the mechanism of 

ligand binding. Using smFRET, we have studied the ligand dependent conformational 

dynamics of the transcriptionally acting Bsu preQ1 riboswitch. In addition, we have also 
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directly monitored the efficacy of non-cognate ligands that are similar to preQ1 in promoting 

folding of the riboswitch. SmFRET using total internal reflection fluorescence microscopy 

(TIRFM) enables the observation of surface immobilized riboswitches for long periods to 

visualize their dynamics in real-time and calculate the individual rate constants 

(24,26,27,43). Our results suggest contrasting ligand-mediated folding behavior of the Bsu 

riboswitch in the presence and absence of Mg2+. In the absence of Mg2+, the folding rate 

(kdock) increases almost linearly with increasing preQ1 concentration, whereas the unfolding 

rate (kundock) decreases only slightly. In contrast, in the presence of Mg2+ kdock increases only 

modestly, while kundock significantly decreases with increasing preQ1 concentration. These 

data suggest that in the presence of Mg2+, the Bsu riboswitch folds through a conformational 

selection mechanism, while an induced-fit like mechanism dominates in the absence of Mg2+. 

Our smFRET kinetic studies comparing the effect of the chemically similar ligands preQ1, 

preQ0 and guanine (Figure 3.1D) on the Bsu riboswitch dynamics show that the relative 

stabilizing effect of the ligands on the riboswitch folded conformation varies greatly with 

Mg2+. Furthermore, we show that the affinities of the ligands preQ0 and guanine do not 

correlate well with their ability to stabilize the folded conformation. 

3.2 Materials and Methods 

3.2.1 Labeling and purification of RNAs for smFRET 

The doubly labeled Bsu riboswitch aptamers were generated as described in our previous 

study (17). RNA with a 5’-biotin, internal 5-aminoallyl-uridine (5 NU) at position U13, and a 

3’- DY547 fluorophore was chemically synthesized by Dharmacon Inc. (Fayette, CO). The 

RNA was first deprotected as per the manufacturer’s protocol and then ~3.4 nmol of it was 

used for labeling with 100 µg Cy5-NHS ester (GE Healthcare) in a 50 µL reaction volume 

containing 30 µL DMSO and 0.1 M sodium bicarbonate buffer, pH 8.7. The reaction was 

incubated with constant tumbling in the dark at RT for 4 h. Excess free dye was removed by 

gel filtration using Nap-5 columns (GE Healthcare) and the fractions were ethanol 

precipitated. The pellet obtained was dried and suspended in autoclaved deionized water for 

later use. 
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3.2.2 Single molecule FRET microscopy 

SmFRET experiments were performed using prism-based TIRFM as described in (17,43). 

Quartz slides with microfluidic channel were coated with biotinylated BSA and streptavidin 

for immobilization of RNA with 5’-biotin. RNA was first folded by heating at 90 ºC for 1 

min in the absence of Mg2+ and Mg2+ added to a final concentration of 1 mM after cooling 

the RNA to 37 ºC. 50-100 pM of the heat-annealed doubly labeled Bsu aptamer was 

immobilized on the slide and excess unbound RNA was washed out with 1x smFRET buffer 

(50 mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM Mg2+). Experiments were carried out in 1x 

smFRET buffer with an oxygen scavenging system containing 5 mM protocatechuic acid 

(PCA) and 50 nM protocatechuate-3,4-dioxygenase (PCD) to slow photobleaching and 2 mM 

Trolox to decrease photoblinking of the dyes (43). Kinetic experiments with ligand titration 

were performed in the presence or absence of Mg2+ on the same slide. For smFRET 

experiments of ligand comparison, molecules were imaged using an intensified CCD camera 

(I-Pentamax, Princeton Instruments) at a time resolution of ~60 ms using the full CCD chip. 

Ligand titration experiments in the absence of Mg2+ were performed at a faster time 

resolution of ~35 ms, obtained by using half (512 x 256 pixels) of the CCD chip. Ligand 

titration experiments in the presence of Mg2+ were performed using an EMCCD camera 

(iXon, Andor Technology) on a similar prism-based TIRF microscopy setup. The raw movies 

were recorded using a custom written Matlab (The Math Works) program and were processed 

using IDL (Research Systems) to extract smFRET time traces. FRET ratio was calculated as 

IA/(IA + ID), where IA and ID represent the background corrected acceptor (Cy5) and donor 

(DY547) intensities, respectively. Individual traces displaying FRET with a minimum total 

(IA + ID) intensity of 300 and single step photobleaching were selected for further analysis. 

The traces were idealized by hidden Markov modeling (HMM) using segmental k-means 

algorithm in QuB program (44). From the idealized smFRET traces with dynamics, dwell 

times in each state were obtained which were fit with exponential functions to extract the rate 

constants of transitions under a given condition.   
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3.3 Results 
 
3.3.1 PreQ1 dependent kinetics of the Bsu riboswitch in the absence of Mg2+ suggests an 

induced-fit mechanism of ligand binding 

We first measured the kinetics of the conformational dynamics of the Bsu riboswitch in the 

absence of Mg2+ and in the presence of preQ1. Mg2+ was omitted from the buffer to decouple 

its stabilizing effect on the folded conformations and to determine the effect of ligand by 

itself on the dynamics. In the absence of Mg2+, individual smFRET traces were largely static  

with stable FRET value of ~0.6. However, in the presence of 50 nM preQ1, the smFRET 

traces displayed multiple transitions between a pre-folded ~0.6 FRET state and a folded ~0.9  

FRET state (Figure 3.3A). The cumulative distributions of dwell times in the pre-folded and 

folded states were plotted and fit with single-exponential functions to obtain kdock and kundock, 

respectively (Figure 3.3B). Under these conditions, the folding rate, kdock of the Bsu  

riboswitch measured at ~ 35 ms time resolution was ~0.3 s-1 (Figure 3.3C). With increasing 

ligand concentration, the value of kdock increased almost linearly, to ~ 3.7 s-1 at 1 µM preQ1. 

Least square fitting with a straight line gave a slope of ~3.5 µM-1 s-1 for the kdock. In contrast,  

the value of kundock remained almost constant, with only a very modest decrease from 1.18 s-1 

at 50 nM preQ1 to 1.01 s-1 at 1 µM preQ1 (Figure 3.3C). The positive dependence of kdock on 

the ligand concentration suggests that preQ1 binds to the ligand-free open conformation and 

‘induces’ folding of the Bsu riboswitch, similar to an induced-fit like mechanism (41). 

3.3.2 PreQ1 dependent kinetics in the presence of Mg2+ suggests folding via a major 

conformational selection mechanism 

Mg2+ is important for RNA folding in general and for riboswitches in particular, where Mg2+ 

has been shown to promote folded-like compact conformations and enhance ligand binding 

(17,21,45). We therefore probed the dynamics of the Bsu riboswitch in the presence of a 

physiologically relevant concentration of Mg2+ (1 mM). Figure 3.4A shows smFRET traces 

at different ligand concentrations. In the absence of ligand, smFRET traces of single 
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Figure 3.3 PreQ1 dependent conformational dynamics in the absence of Mg2+ 

(A) Representative smFRET traces at different preQ1 concentrations. (B) Cumulative dwell 
time distributions with single exponential fits (in red) to obtain kdock and kundock for the 1 µM 
preQ1 condition. (C) Plot showing the kinetics of conformational dynamics (kdock and kundock) 
as a function of preQ1 concentration in the absence of Mg2+.  
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Figure 3.4 PreQ1 dependent conformational dynamics in the presence of Mg2+ 

(A) Representative smFRET traces at different preQ1 concentrations. (B) Cumulative dwell 
time distributions with single exponential fits (in red) to obtain kdock and kundock for the 167 
nM preQ1 condition. (C) Plot showing the kinetics of conformational dynamics (kdock and 
kundock) as a function of preQ1 concentration in the absence of Mg2+.  
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molecules imaged at 33 ms time resolution showed that the riboswitch exists mainly in an 

~0.7 pre-folded state, making frequent transitions with short dwell times into pseudoknot like 

conformations with a FRET value of ~0.91 (Figures 3.4A). Dwell time distributions fit with 

single-exponential functions gave average kfold and kunfold values of 0.94 s-1 and 3.7 s-1, 

respectively (Figures 3.4B). In stark contrast to the no Mg2+ condition described above, the 

value of kdock only increased marginally to ~ 1.12 s-1 at 167 nM preQ1 (Figure 3.4C). On the 

other hand, the unfolding rate, kundock decreased significantly from ~3.7 s-1 in the absence of 

ligand to ~1.1 s-1 at 167 nM preQ1. These smFRET data directly show that in the presence of 

Mg2+ alone, the Bsu riboswitch has fast intrinsic dynamics and samples the ligand-bound like 

conformations at a rate that is not majorly influenced by preQ1 concentration. In addition, the 

data suggest that preQ1 binding stabilizes the folded conformation and decreases its 

unfolding rate. The observation of folded-like conformations in the absence ligand and a 

constant kdock value suggests that, in the presence of Mg2+, the Bsu riboswitch binds preQ1 

through a major conformational selection like mechanism (35,37,41).   

3.3.3 Comparison of the effect of different ligands on the Bsu riboswitch conformational 

dynamics  

The Bsu preQ1 riboswitch was shown to bind the closely related non-cognate ligands preQ0 

and guanine with high affinities (32). Therefore, we investigated the effects of both of these 

ligands in comparison with preQ1 on the conformational dynamics of the Bsu riboswitch at 

60 ms time resolution. The Kd values for preQ1, preQ0 and guanine are 20 nM, 100 nM and 

~320 nM, respectively as measured in previous studies using ensemble in-line probing assays 

that monitor increasing solvent protection of the RNA upon ligand addition (32). Due to the 

different Kd values, we measured the riboswitch dynamics under a constant and saturating 

ligand concentration of 10 µM. Examplary smFRET traces for each ligand are shown in 

Figure 3.5A. We performed three independent measurements for each ligand and the rates 

are shown as mean ± standard deviation. In the absence of Mg2+, preQ1 has the highest kdock 

rate followed by preQ0 and guanine, as expected (Figure 3.6A). The kdock values for preQ1, 

preQ0 and guanine are 0.96 ± 0.6, 0.83 ± 0.18 and 0.5 ± 0.17, respectively. In contrast, we 

observed that the kundock does not follow the same trend. The kundock values for preQ1, preQ0  
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Figure 3.5 Effect of different ligands on the Bsu riboswitch conformational dynamics 

Representative smFRET traces for guanine, preQ0 and preQ1in the (A) absence and (B) 
presence of Mg2+. 
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Figure 3.6 Rates of the Bsu riboswitch conformational dynamics in the presence of 
different ligands 

Rates of ligand dependent conformational dynamics in the (A) absence and (B) presence of 
Mg2+. 
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process is important for a deeper understanding of the molecular mechanism of riboswitches 

(30). SmFRET microscopy is ideally suited for studying riboswitch conformational dynamics 

and guanine are 0.63 ± 0.05, 2.6 ± 0.46 and 1.1 ± 0.47, respectively (Figure 3.6A). These 

data show that, while preQ1 has the smallest kundock among the three ligands, guanine has a 

lower kundock value than preQ0. We calculated the equilibrium undocking constant, Kundock as 

the ratio kundock/kdock for each ligand. The Kundock for preQ1, preQ0 and guanine are ~0.66, ~3.1 

and ~2.2, respectively. A lower Kundock value implies a higher stabilized folded state and 

therefore, as expected, the cognate ligand preQ1 stabilizes the folded state most effectively of 

all three ligands. Interestingly, despite its lower affinity guanine’s Kundock is smaller than that 

of preQ0. This suggests that Kundock does not directly correspond to the ability of the ligand to 

stabilize folded conformations.   

 Next, we tested the effect of the three ligands on the docking and undocking rates of 

the Bsu riboswitch in the presence of 10 µM ligand and 1 mM Mg2+. The rates were obtained 

from three independent measurements for preQ0, guanine and two measurements for preQ1. 

Example smFRET traces for each ligand are shown in Figure 3.5B. Under these conditions, 

the ligands display subtle differences in their effect on kdock and kundock as compared to the no 

Mg2+ condition described above. Interestingly, all three ligands showed the same average 

kdock value of ~1.0 s-1 (Figure 3.6B). In addition, kundock is similar for preQ1, preQ0 and 

guanine with values of 0.52 ± 0.08, 0.66 ± 0.37 and 0.70 ± 0.16, respectively (Figure 3.6B). 

These results show that in the presence of Mg2+, all three ligands have similar efficiencies in 

stabilizing the pseudoknot conformation of the Bsu riboswitch. Comparison of the Kundock 

values with and without Mg2+ shows that Mg2+ decreases the Kundock value significantly by 

~3-fold and ~5-fold for guanine and preQ0, respectively, whereas only a modest decrease was 

seen for preQ1. The Mg2+-promoted stabilization of the folded state by preQ0 and guanine is 

mainly due to a decrease in kundock and a minor increase in kdock.  

3.4 Discussion 

Riboswitches utilize ligand dependent RNA folding to modulate gene expression (4). 

Although structures of a number of riboswitches are available, yielding atomic level insight 

into the interactions between RNA and small molecule ligands, due to the scarcity of ligand- 
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free structures our knowledge of how the ligand-free conformation folds into the ligand-

bound conformation is limited (2,7,46,47). Therefore, studying the ligand dependent folding 

and observing minor functionally important conformations that are generally difficult to 

detect using ensemble averaging methods (17,24). SmFRET has been extensively used for 

studying riboswitch dynamics and RNA folding in general (25,30). In this study, we have 

used smFRET to investigate the effects of ligand on the conformational dynamics of the Bsu 

preQ1 riboswitch.   

 Ligand binding coupled folding processes of biological macromolecules are mainly 

classified into induced-fit and conformational selection mechanisms (34,35,48) (Figure 

3.2A). These mechanisms are not necessarily mutually exclusive as shown by flux 

calculations through each pathway and directly measured using smFRET experiments 

(31,35). Distinguishing the two mechanisms has been difficult using traditional ensemble 

methods and many studies have incorrectly attributed folding via the conformational 

selection mechanism merely by the observation of folded-like conformations in the absence 

of ligand (35,38). One way of differentiating the two mechanisms is to study the effect of 

increasing ligand concentration on the kinetics of (un)folding (kobs) of a biomolecule, 

measured as a sum of folding and unfolding rate constants during ensemble experiments (41). 

By contrast, smFRET microscopy can be used to study the individual rate constants of 

folding and unfolding to directly pinpoint the most-populated ligand binding mechanism, as 

recently demonstrated by dissecting the ligand binding mechanism of the maltose binding 

protein (31). The kinetic signature of induced-fit and conformational selection mechanisms 

manifest directly in smFRET traces as an increasing folding rate constant (or decreasing 

tclosing, as shown in Figure 3.2B) and a constant folding rate constant, respectively.   

 Accordingly, our single molecule kinetic data suggest that in the absence of Mg2+, the 

Bsu riboswitch folds via an induced-fit mechanism (Figure 3.2A) where the rate of folding 

(kdock) increases as a function of ligand concentration. This is due to a decrease in the dwell-

time (tclosing) in the open state as shown in Figure 3.2B. In contrast, the ligand-mediated 

folding pathway in the presence of Mg2+ favors a conformational selection mechanism where 

the folding rate (kdock) only increases slightly, remaining constant with increasing preQ1 
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concentration (Figure 3.4C). These data of folding rate versus ligand concentration agree 

well with the kinetic signatures of induced-fit and conformational selection as shown in 

Figure 3.2B (31). This shift in the folding mechanism can be explained by the effect of Mg2+ 

on promoting pseudoknot-like conformations in the absence of ligand, as shown in our 

previous study and also demonstrated using NMR on a different class-I preQ1 riboswitch 

(11,17). In the absence of Mg2+, the folded-like conformations are either not populated or 

only exist very transiently (with dwell times <<33 ms). Therefore ligand presumably binds to 

the dominant ‘open’ conformation that probably contains stem-loop P1-L1 with or without 

transient L3 interactions with P1. However, in the presence of Mg2+, the riboswitch adopts a 

higher population (~9 %) of loose pseudoknot-like conformations (0.9 FRET state) (17). This 

is seen clearly as short transitions into the 0.9 FRET state in the smFRET traces (at 33 ms 

time resolution) in the presence of Mg2+ alone (Figure 3.4A, No ligand trace). The ligand can 

then bind to these loose pseudoknot-like states and fold the RNA into the native pseudoknot 

after minor local conformational adjustments (6,33). It is worth noting that since the ligand 

binding pocket is mostly solvent inaccessible (and therefore closed) in the final ligand-bound 

structure, preQ1 cannot bind to this exact conformation. An NMR study on the ligand-bound 

Bsu riboswitch has observed fast (µs - ms) dynamics in a few residues in the loop L1 and the 

authors proposed that these residues act as a ‘lid’ on the binding pocket (49). Therefore, the 

ligand binding competent conformation can be likely described as a loose pseudoknot with a 

dynamic loop L1, through which ligand can access the binding pocket. According to a 

recently emerging nomenclature, this mechanism of binding to a state that resembles the final 

structure followed by locally induced conformational adjustments has been referred to as 

‘extended conformational selection’ (34,36). It is interesting that the riboswitch does not fold 

majorly through an induced-fit mechanism in the presence of Mg2+, even though only ~9 % 

population adopts a folded-like conformation while the remaining ~90 % is only partially 

pre-folded. Although the reason for this observation is not clear, we speculate that this is due 

to the more unfolded nature of the conformational ensemble in the absence of Mg2+ as shown 

in our previous study (17). In the absence of Mg2+, the ligand-free (or open) state has a lower 

mean FRET value of 0.62 (as compared to ~0.72 for the + Mg2+ condition) and has a larger 
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width with a relatively higher population of molecules showing lower FRET states (≤0.3 

FRET states). Furthermore, NMR data on the ligand-free Bsu riboswitch showed that the 

addition of Mg2+ causes changes in the structure of loop L1, resulting in the appearance of 

chemical shifts that correspond to tertiary interactions indicative of a pre-formed ligand 

binding pocket. Therefore, the ligand-free conformational ensemble in the presence of Mg2+ 

is more compact with a partial organization of the binding pocket. This is distinct from the 

conformations in the absence of Mg2+ that are of a more unfolded nature, lacking a pre-

formed binding pocket and therefore binding ligand through an induced fit mechanism. 

Many riboswitches exhibit high specificity for their cognate ligands and can 

discriminate closely related metabolites with affinities differing by an order of magnitude or 

more (46,47). However, a few riboswitches such as the preQ1 riboswitch bind multiple 

related ligands with strong affinities (32). The Bsu riboswitch in particular binds preQ1 with a 

Kd of ~ 20 nM; but it can also bind preQ0 and guanine relatively well with Kd values in the 

presence of Mg2+ of ~100 nM and ~320 nM, respectively (32). This suggests that in vivo both 

preQ0 and guanine can act as effectors for the Bsu riboswitch to modulate gene expression 

depending on their concentration. Therefore, we used smFRET to compare the ability of the 

non-cognate ligands preQ0 and guanine to promote folding of the Bsu riboswitch. Our results 

show differential, Mg2+ dependent effects of the three ligands. In the absence of Mg2+, the 

cognate ligand preQ1 has the lowest equilibrium undocking constant Kundock whereas preQ0 

has a higher Kundock than guanine by virtue of its ~2.5-fold higher kundock (Figure 3.6A). In 

contrast, all three ligands show largely similar Kundock values in the presence of Mg2+ (Figure 

3.6A). Our smFRET data show that Mg2+ decreases the Kundock value mainly by slowing 

down kundock and increasing kdock. Similar effects of Mg2+ were also observed in other RNAs, 

such as the purine riboswitches (21,50). Of note, the only subtle differences between the 

ligands as observed in the presence of Mg2+ may in part be due to the high (10 µM, >> Kd) 

ligand concentrations used in the current study. SmFRET experiments performed under 

concentrations closer to the Kd values may thus provide better estimates of the differences 

between the ligands and will be carried out in the future. 

96 
 



 
 

 

 Our observation of a lower Kundock value for guanine (relative to preQ0) is surprising 

since it has been reported to have a weaker affinity (~3-fold) than preQ0 (32). This suggests 

that the equilibrium binding affinity (Kd) values do not necessarily correspond to the ability 

of ligand to stabilize a folded conformation. Similar observations were made in studies of the 

lysine and tetrahydrofolate (THF) riboswitches, which showed that a disconnect exists 

between the affinity of a ligand and its ability to modulate gene expression (51,52). Ligand 

analogs that bound with higher affinities had lower efficiencies of promoting transcription 

termination by the THF riboswitch than THF itself. This may be due to the inability of the 

non-cognate ligands to strongly stabilize the regions of RNA that form key long-range 

tertiary interactions incorporating the ‘switching’ sequence needed to form downstream 

transcription terminator hairpin. Alternatively, it may be due to differences in the ligand 

binding kinetics (kon and koff) between the ligands. The Kd values of ~100 nM and ~320 nM 

for preQ0 and guanine, respectively, were measured in the presence of high Mg2+ 

concentrations and, therefore, it is possible that they display different relative affinities in the 

absence of Mg2+. Interestingly, our observation of increasing kdock with increasing ligand 

affinities (kdock of guanine < preQ0 < preQ1) in the absence of Mg2+ and a constant kdock in the 

presence of Mg2+ mirrors the behavior of kdock versus preQ1 concentration in the absence and 

presence of Mg2+ (Figures 3.3, 3.4 and 3.6). This observation also points to differential 

induced-fit and conformational selection mechanisms in the absence and presence of Mg2+, 

respectively, for the Bsu preQ1 riboswitch.  

 In summary, using smFRET kinetic measurements of conformational dynamics, we 

have demonstrated that the Bsu riboswitch folds through contrasting ligand-mediated 

mechanisms that depend on the presence of Mg2+. In addition, we have shown that the 

binding affinities of ligands do not always translate into their effect on stabilizing folded 

conformations. In light of our smFRET-based ligand comparison and the recently emerging 

results on the disconnect between ligand binding affinity and gene regulatory effects, future 

studies should investigate the link between riboswitch structural dynamics and how they are 

fine-tuned in different organisms to promote efficient ligand-mediated genetic regulation 

(51). Molecular recognition plays an important role in riboswitch function and, therefore, the 
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smFRET approach used in this study can be applied to other riboswitch RNAs to elucidate 

their ligand-mediated folding mechanisms. 
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CHAPTER 4 

Single molecule investigation of the conformation and tRNA binding kinetics of the 

glyQS T-box riboswitch 

4.1 Introduction 

Riboswitches are structured mRNA motifs usually present in 5’-untranslated regions (5’-

UTRs) that can sense the intracellular concentration of metabolites and accordingly regulate 

the expression of proteins involved in their synthesis and transport (1-4). Riboswitches are 

ubiquitous in bacteria where they regulate at least ~4 % of all genes mainly through 

inhibition of transcription elongation or translation initiation (2,5). A large number of 

structurally diverse riboswitches recognizing amino acids, nucleobases, nucleotides, 

coenzymes, metal ions, temperature have been discovered (6,7). The T-box riboswitch 

embodies one of the earliest discovered RNA based gene regulation mechanisms in bacteria 

(8,9). In Gram-positive bacteria, the T-box mechanism is used to control the expression of 

proteins related to transfer RNA (tRNA) charging, amino acid metabolism and transport (10). 

Regulation occurs through a transcription attenuation mechanism. In the absence of tRNA, 

transcription of the 5’-leader results in the formation of terminator hairpin and destabilization 

of the RNA polymerase complex. Binding of an uncharged cognate tRNA to the 5’-leader 

region of the nascent transcript stabilizes an anti-terminator hairpin, preventing formation of 

a terminator hairpin and leads to transcription of the downstream genes (10) (Figure 4.1). T-

box riboswitches have also been identified in Gram-negative bacteria and in some high G+C-

rich Gram-positive bacteria where they are predicted to function at the level of translation 

Initiation (11,12). In this mechanism, binding of uncharged tRNA stabilizes an anti-sequester 

hairpin, similar to the anti-terminator hairpin in the transcriptionally acting T-box systems. 

Krishna C. Suddala performed all the experiments and the data analysis. Dr. Malgorzata 
Michnicka made the T-box and tRNA constructs used for the single molecule experiments. 
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Figure 4.1 Mechanism of the T-box riboswitch 

tRNA binding to the T-box riboswitch under low charging conditions stabilizes the anti-
terminator (AT) hairpin, leading to transcription of the downstream genes (green). Under 
high concentration of charged tRNA, presence of the amino acid (indicated by a small red 
sphere at the 3’-end of tRNA) prevents the formation of tRNA with the AT hairpin, leading 
to transcription termination. 
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This event prevents the sequestering of the Shine-Dalgarno (SD) sequence and instead leads 

to the translation of the mRNA (11,12). Due to its similarities in the mechanism of action to 

small molecule binding riboswitches, the T-box system has been referred to as a riboswitch. 

Therefore, the T-box system can be classified as a unique riboswitch recognizing the 

aminoacylation state of a structurally complex macromolecular ligand, tRNA. Although T-

box riboswitches bind tRNA as the ligand, it is important to note that the genetic switch is 

dependent on the presence or absence of amino acid on its 3’-end. In this respect, the T-box 

system is similar to a small molecule (amino acid) binding riboswitch. 

The T-box riboswitch was first identified as a conserved sequence in the leader region 

of the tyrS mRNA from Bacillus subtilis coding for tyrosyl tRNA synthetase(13). In a 

subsequent breakthrough study, Grundy et al (8) showed that uncharged tRNAtyr alone, in the 

absence of any protein cofactors, can act as a positive effector to enhance transcription of the 

downstream genes. T-box riboswitches were later discovered to regulate the expression of 

genes associated with several other amino acids (9,10). Analyses of bacterial genomes have 

revealed putative T-box riboswitches controlling the expression of aminoacyl tRNA 

synthetase genes (aaRS) for almost every amino acid (12,14), highlighting its importance as a 

conserved gene regulatory element in Gram-positive bacteria. Among these, the tyrS 

(8,15,16) and the glyQS (17-19) T-box riboswitch systems have been well studied using 

various biochemical techniques that identified the conserved sequence and structural motifs 

required for tRNA recognition.  

T-box riboswitches have a conserved organization of secondary structural elements 

comprising a long stem-I, stem-II, stem-IIA/stem-IIB pseudoknot and stem-III, followed by 

the expression platform (regulatory domain) that can form mutually exclusive anti-terminator 

(AT) and terminator hairpins (10,14) (Figure 4.2A). Initial studies established that the 

cognate tRNA recognition by T-box riboswitches is mediated by a codon-anticodon like 

interaction with the tRNA using a highly conserved 3-nt ‘specifier’ sequence within an 

internal loop of stem-I (8). In addition, the 3’-NCCA acceptor end of tRNA was shown to 

interact with a highly conserved and complementary 4-nt UGGN sequence within a bulge of 
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Figure 4.2 Sequences of the different T-box riboswitch designs used in this study  

Sequence and secondary structures of (A) The WT full T-box riboswitch (B) Stem-I only 
construct (C) Mini T-box riboswitch and (D) tRNAGly. The specifier sequence (red), AG 
bulge (cyan), apical loop (blue), the conserved sequence in the AT bulge (green) are shown. 
The G81A mutation in the mutant riboswitch is shown in magenta. The tRNA anticodon 
sequence and the labeling position of Cy5 are shown in green and red, respectively in (D). 
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the anti-terminator hairpin. This variable ‘N’ nucleotide in the complementary AT bulge 

sequence is complementary to the discriminator base of the tRNA and therefore acts as 

another checkpoint for cognate tRNA recognition, in addition to the specifier sequence (20). 

Interestingly, in some cases, the specificity of a T-box riboswitch to its cognate tRNA can be 

switched to a different tRNA by simply mutating its specifier sequence to a differentcodon 

and by changing the variable ‘N’ position in the AT bulge (10). However, in all cases the 

maximal extent of transcriptional anti-termination achieved by the mutant T-box 

riboswitches was always found to be less than the extent achieved by the wild-type 

riboswitches with the cognate tRNA (10). This shows that the interaction between the T-box 

riboswitch and tRNA is more complex and extends beyond the two major known contacts, 

possibly involving tRNA interaction with sequences within the single-stranded linker region. 

This observation was also supported by structure probing studies of the glyQS riboswitch 

(19). In vivo studies on the tyrS T-box system demonstrated that uncharged tRNA acts as the 

effector and also showed that the riboswitch senses the relative concentrationsof both the 

uncharged and charged tRNA (20). The tertiary structure of tRNA was also shown to be very 

important for tRNA mediated anti-termination in vitro (21,22).  

The glyQS riboswitch is one of the best-studied T-box riboswitch systems due to its simple 

structure lacking stem-II and the stem IIA/B pseudoknot elements that are present in larger 

systems (10) (Figure 4.2A). Furthermore, it was shown to function well in in vitro 

transcription anti-termination assays using purified RNA polymerase (RNAP) and in vitro 

transcribed tRNAGly (Figure 4.2D) without the need for other cellular components (23). 

Therefore, the glyQS T-box riboswitch has been extensively used as a model system to study 

tRNA mediated anti-termination (17-19,22-24). In the glyQS riboswitch, stem-I contains 

highly conserved structural motifs such as a GA/K-turn motif, an S-turn/Loop E motif and 

the AG bulge (10) . Also present are a 11-nt apical loop, a 2-4 nt bulge below the AG bulge 

and an internal loop (Specifier loop) that contains the conserved 3-nt “specifier” sequence 

that is complementary to the tRNA anticodon (10). The downstream AT hairpin contains a 7-

nt bulge with a 5’-UGGA sequence complementary to the UCCA-3’ sequence in the tRNA 

acceptor stem (22) (Figure 4.2A). 
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Figure 4.3 Structures of the T-box riboswitch  

Crystal structures of (A) the distal stem-I region of the Gkau glyQS T-box riboswitch (25). 
Stem-I:tRNA complex of glyQ T-box riboswitch (26) in (B) cartoon and (C) surface 
representations. The T-loop 1 and T-loop 2 that form the interdigitated T-loop motif are 
colored as cyan and blue, respectively. Stem-I is shown in orange. The tRNAGly, the specifier 
sequence, anticodon, the G81 nucleotide and the position of Cy5 labeling (U46) are shown in 
grey, light green, dark green, magenta and red, respectively. The extensive non-specific 
helix-helix contact between the tRNA and stem-I is clearly visible in (C). 
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In spite of the wealth of biochemical knowledge available on the sequence and 

structural features of both T-box riboswitch and tRNA required for efficient anti-termination, 

a global structural model of the interaction between the two is not yet available. Biophysical 

studies have used NMR to derive the structures of different motifs in the T-box riboswitch 

such as the specifier loop, proximal region of stem-I, GA/k-turn motif and the AT bulge 

(27)and have offered insight into the local conformation and dynamics of conserved 

nucleotides in these motifs that are important for tRNA binding (27-29). Bioinformatics 

analysis of T-box riboswitch sequences predicted the existence of an interlocking T-loop 

interaction motif in the upper region of stem-I, which is known to dock against the tRNA 

elbow region in ribosomal L1 stalk and RNase P (30).  A crystal structure of the upper 

portion of stem-I and small angle x-ray scattering (SAXS) studies of stem-I:tRNA complexes 

showed that the AG bulge and the conserved apical loop indeed form an interlocking T-loop 

motif that interacts with the tRNA elbow containing the D/T-loops (25) (Figure 4.3A). 

However, a major advance in our understanding of the tRNA interaction with the T-box 

riboswitch only emerged recently with the availability of two high-resolution crystal 

structures of the stem-I:tRNA complex, which have provided insight into the important role 

of stem-I in the molecular recognition of tRNA (26,31). The structures showed that stem-I 

arches into a “C” shaped structure to precisely recognize the geometry of tRNA (Figure 

4.3B). The necessary kink in the stem-I backbone is introduced by a 2-4 nt bulge, situated 

below the AG bulge, that is hypothesized to impart the flexibility required for efficient 

recognition of the tRNA structure. The S-turn motif present in the upper specifier loop region 

further increases this kink in the backbone, which facilitates tRNA contact with the specifier 

sequence. The structure also shows that the GA/k-turn motif present in the proximal region 

of stem-I may be important for orienting the downstream expression platform of the T-box 

riboswitch for interaction with the tRNA 3’-end (26). These structural studies have provided 

valuable insights into the complex architecture of stem-I, involving a series of conserved 

motifs to precisely recognize not only the conserved sequence and structural motifs of tRNA, 

but also its overall dimensions (26,31).  
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Although the crystal structures (26,31) of the stem-I:tRNA complex (Figure 4.3B) 

provided details about the role of stem-I in tRNA binding, the conformations of the full T-

box riboswitch and the T-box:tRNA complex are still unknown. It is also not known if the 

tRNA conformation when bound to the full T-box riboswitch is similar to the one observed 

in the crystal structure, bound to stem-I. Therefore, in the absence of a high-resolution 

structure of the full T-box riboswitch showing the interaction between tRNA 3’-CCA end 

and the AT bulge, critical molecular details of how the presence of even a small amino acid 

such as glycine can block this contact to affect gene regulation are still lacking. More 

importantly, the kinetics of tRNA binding to the T-box riboswitch have not been studied yet. 

Since the T-box riboswitch mainly functions at the level of premature transcription 

termination (10), the kinetics of tRNA binding, rate of transcription by RNAP and the 

presence of pause sites all play an important role in the final outcome of gene regulation. 

Therefore, studying the kinetics of tRNA binding and how aminoacylation affects the 

kinetics is important for an understanding of the molecular mechanism underlying T-box 

riboswitch function. Here, we have used single molecule FRET microscopy (32,33) to study 

the conformation and dynamics of the full glyQS T-box riboswitch either alone or bound to 

tRNAGly. Furthermore, we have monitored the kinetics of tRNA binding to the glyQS T-box 

riboswitch and to the isolated stem-I domain. To probe the importance of the newly 

discovered double T-loop motif (25,30), we have investigated two T-box riboswitch designs 

that we will refer to as the ‘mini’ and ‘mutant’ T-box riboswitches, in which the motif is 

completely deleted and mutated to destabilize it, respectively. Specifically, in the ‘mini’ 

construct, the stem-I is made shorter by deleting the 4-nt (5’-UUAC) bulge, the AG bulge, 

the apical loop and by capping it with an inert UUCG tetraloop (Figure 4.2C). By contrast, 

the ‘mutant’ T-box riboswitch construct contains a single G81A point-mutation (Figure 

4.2A). This mutation is present at the base-pair immediately 3’ to the AG bulge that forms 

the interlocking T-loop motif, and therefore is expected to destabilize it. Using both these 

complementary constructs, we tested the importance of the stability and presence of the  
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Figure 4.4 Fluorophore labeling strategy and single molecule FRET setup for studying 
T-box riboswitch conformation  

(A) Model of the full T-box riboswitch showing the different fluorophore labeling sites for 
distance measurements (B) Prism TIRF microscopy setup used for the smFRET experiments. 
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double T-loop motif in tRNA binding. The ‘full’ T-box riboswitch constructs used in this 

work only include the 3’-end of the AT hairpin and do not include regions that can form the 

thermodynamically more stable long transcription terminator hairpin. This ensures that the 

AT conformation is always present in these riboswitch constructs, as required to study the 

conformation of the functionally relevant full T-box:tRNA complex immediately upon its 

exit from the RNAP. A stem-I only containing variant was also used for our smFRET and 

kinetic studies (Figure 4.2D).  

Using multiple fluorophore labeling positions (Figure 4.4A), we here have estimated 

the distances between different regions of the full (WT and mutant) and mini T-box 

riboswitches and monitored changes under different conditions using smFRET (Figure 

4.4B). We have also measured the kinetics of tRNA binding to the stem-I (WT), mini and 

full T-box riboswitches. Further, we addressed the important question of how tRNA 

aminoacylation affects its binding kinetics using the WT and mutant full T-box riboswitches. 

Our results show that all the three T-box riboswitch variants, either alone or in complex with 

tRNA, adopt a stable conformation devoid of rapid, large-scale structural changes. Further, 

we show that tRNA binding does not induce global structural changes in the full T-box 

riboswitch, suggesting a pre-organized conformation. In addition, we demonstrate that stem-I 

by itself cannot ‘anchor’ the tRNA and show that the downstream sequences containing AT 

hairpin are necessary for stable complex formation, required to effect gene regulation. 

Comparison of tRNA binding kinetics for the different T-box riboswitch constructs suggests 

that presence of the double T-loop motif in stem-I slows down the dissociation rate of tRNA. 

Further, our kinetic data clearly elucidate that the presence of amino acid on the tRNA 

accelerates its dissociation rate from the T-box riboswitch, thus weakening the binding of 

charged tRNA as compared to uncharged tRNA. Based on our smFRET and kinetic data, we 

propose an improved kinetic model for the molecular mechanism of the T-box riboswitch.  
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4.2 Materials and Methods 

4.2.1 Transcription and native purification of glyQS T-box riboswitch 

The glyQS T-box riboswitch RNAs were made by in vitro transcription of PCR generated 

DNA templates using AmpliScribe™ T7 High Yield Transcription Kit (Illumina Inc.).  

Transcription reactions were done using 3 mM 5’-biotin-GMP (Trilink BioTechnologies), 2 

mM GTP and 5 mM each of ATP, CTP and UTP and incubated for 4-6 h (34). At the end of 

the reaction, precipitate in the transcription reaction was removed by centrifugation. The 

transcribed RNA was purified from the excess free nucleotides and salts by filtration (using 

10 K filter), concentrated and reconstituted with 10 mM Tris, pH 7.4, 50 mM KCl, 2 mM 

MgCl2. The concentration of RNA was measured by UV/Vis spectroscopy and its purity was 

analyzed using denaturing PAGE. 

4.2.2 Single molecule FRET 

Single molecule FRET experiments were performed using a prism-based TIRF (total internal 

reflection fluorescence) microscope (35-37) (Figure 4.4B). All measurements were taken at 

10 frames per second using an intensified CCD camera (I-Pentamax, Princeton Instruments) 

(36,37). Quartz slides with a microfluidic channel containing inlet and outlet ports for buffer 

exchange were assembled as in previous work(36). In short, the surface of the microfluidic 

channel was coated with biotinylated BSA followed by streptavidin to immobilize 

biotinylated T-box RNA molecules. We flowed 50-100 pM of fluorophore labeled RNA 

molecules in 1x smFRET buffer (10 mM Tris-HCl, pH 6.1, 50 mM KCl, 10 mM Mg2+) into 

the channel for surface immobilization. Any unbound molecules were washed out with the 

same buffer. Doubly labeled T-box riboswitch molecules or T-box riboswitch:tRNA 

complexes were excited with 532 nm green laser for measuring FRET and later with 640 nm 

red laser to check for the presence of Cy5 (acceptor) in order to distinguish low/zero FRET 

molecules from the ones missing an acceptor fluorophore. An enzymatic oxygen scavenging 

system consisting of 5 mM protocatechuic acid (PCD) and 50 mM protocatechuate-3,4-

dioxygenase (PCA) along with 2 mM Trolox was included in the smFRET buffer to extend 
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the lifetime of fluorophores and to prevent photoblinking of the dyes(38). The raw movies 

were processed using IDL (Research Systems) to extract smFRET time traces and later 

analyzed using custom written Matlab (The Math Works) scripts. Individual smFRET time 

traces displaying single-step photobleaching, a signal-to-noise ratio of >5:1, a total (donor + 

acceptor) fluorescence intensity of >300 (arbitrary units) and a total fluorescence duration of 

>10 s were manually selected. These selection parameters ensure that only single molecules 

and not aggregates or background impurities are analyzed. The ratio IA/(IA + ID), where IA 

and ID represent the background corrected fluorescence intensities of the acceptor (Cy5) and 

donor (Cy3) fluorophores, respectively was used to calculated the FRET value at every time 

point in smFRET traces. The first 50 frames from all the smFRET traces in every condition 

were used to plot population FRET ratio histograms using OriginLab. 8.1 and fit with sum of 

Gaussian functions that gave the number of conformations and their mean FRET values.  

Distances (R) between the fluorophores were then calculated from the equation below using 

the mean FRET (E) value of the major non-zero FRET peak and an R0 value of 54 Å for Cy3 

- Cy5 pair (35) 

𝐸 =  
1

1 + (𝑅 𝑅0⁄ )6
 

 

4.2.3 Single molecule tRNA binding kinetic assays 

Single molecule binding assays were done similarly as above using prism-based TIRF 

microscopy. Experiments were also done either by directly exciting only Cy3 (FRET mode) 

or by exciting both Cy3 and Cy5 with green and red lasers (direct excitation mode). In the 

direct mode, both the green and red lasers were used to excite the T-box and tRNA molecules 

respectively, all the time. Alternatively, in some cases, the green laser was turned off initially 

after a short time and then red laser was turned on immediately and left for the entire length 

of the movies. Due to a higher background, traces with Cy5 S/N ratio of >3:1 where the 

binding events were clearly discernible were manually selected. Multiple movies with 

observation times of at least 400 s were taken at 100 ms time resolution. Traces with Cy3 
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intensity and showing atleast one binding event were only taken for further analysis. The Cy5 

intensity in the traces (in both FRET and direct excitation mode) was fit to a two-state model 

(bound and unbound) using segmental k-means algorithm in the QuB(39,40). From the 

idealized traces, dwell times of tRNA in the bound (tbound) and unbound (tunbound) states were 

obtained. Cumulative bound and unbound dwell time distributions were plotted and fitted to 

exponential functions (single or double) to obtain life-times in the bound (τbound) and 

unbound (τunbound) states, respectively. The tRNA dissociation rate constant (koff) was 

calculated as the inverse of τbound  whereas the association rate constant was calculated by 

dividing the inverse of τunbound by the concentration of free tRNA-Cy5 used.  

4.2.4 Labeling of DNA/LNA oligonucleotides with fluorophores 

The 15-nt LNA/DNA oligo with 5’-amine linker 

(/5AmMC6/+T+GTTCT+GT+TGATC+C+C, RNA Tm ~ 63 °C, where ‘+N’ represents an 

LNA nucleotide) was chemically synthesized from Exiqon and labeled with Cy3/Cy5. One 

dye pack of Cy3/Cy5 monofunctional NHS ester (GE Healthcare) was dissolved in 30 µL 

DMSO and used to label ~5 nmol of the LNA oligo in a 50 µL reaction volume containing 

0.1 M sodium bicarbonate buffer, pH 8.7. The reaction was incubated at RT for 4 hrs with 

tumbling in the dark. Excess unlabeled dye was removed by precipitation with 3 volumes of 

100 % ethanol and 300 mM sodium acetate, pH 5.2. After centrifugation, the pellet was dried 

in a speedvac and suspended in autoclaved milliQ for further use. The 14-nt DNA oligo (5’-

TGTTCGTGGTGCTC-Cy3-3’) complementary to the 3’-end of the T-box was chemically 

synthesized with a 3’-Cy3 from IDT (Integrated DNA Technologies). 

4.2.5 Creation of Cy5 labeled tRNAGly 

The Cy5-labeled tRNAGly RNA was made using a two-piece ligation strategy (41). A 35-nt 

5’-half of the tRNA and the 40-nt 3’-half with an internal Cy5 label on U46 were chemically 

synthesized from Integrated DNA Technologies (IDT). An equimolar mixture of the two 

RNAs was annealed by heating at 95 °C for 1 min followed by cooling on ice. The RNAs 

were then ligated by using 1 U/µL concentration of T4 RNA Ligase 1 (New England 
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Biolabs) in the supplied 1x buffer for 1 hr at 37 °C. RNA concentration was ~ 20 – 70 µM in 

the ligation reaction. The final ligated product corresponding to the full-length tRNA was 

then purified using denaturing urea PAGE. The purified tRNA was folded by heating at 65 

ºC for 3 min followed by slow cooling at RT for 20 min. 

4.2.6 Formation of T-box riboswitch:tRNA complexes for smFRET 

1 µM of the T-box riboswitch RNA was first incubated with 10 µM of DNA or 5 µM of 

LNA oligo for 15 min at room temperature in 1x smFRET buffer contaning 10 mM Mg2+. 

This was then used to make a stock of 0.5 µM T-box:tRNA complex by incubating with 1 

µM of Cy5 labeled tRNA at RT for at least 15 min. Required dilution of this was made in 1x 

smFRET buffer to 50-100 pM for immobilization onto the slide for smFRET experiments.  

4.2.7 Aminoacylation of tRNA and acid urea PAGE  

Aminoacylation of Cy5 labeled tRNAGly was done using E. coli S100 extracts in a 25 µL 

reaction volume following a protocol previously described (42) . In short, ~ 4 µM of tRNA-

Cy5 was charged with 0.5 µL of E. coli S100 extracts in a 25 µL reaction containing 100 mM 

HEPES-KOH, pH 7.6, 200 µM Glycine, 10 mM ATP, 1 mM DTT, 10 mM KCl, 20 mM 

MgCl2 and incubated at 37 °C for 30 min. The reaction was stopped by adding 3 M sodium 

acetate, pH 5.2, to a final concentration of 100 mM in 100 µL volume. Acid urea page (42) 

was used for checking the aminoacylation efficiency of the reaction. We added 2 µL of the 

25 µL charging reaction to 98 µL of the gel loading dye (0.1 M sodium acetate, pH 5.0, 8 M 

urea, 0.05 % bromophenol blue, 0.05 % xylene cyanol FF). 10 µL of this was run on a 10 % 

acid urea (8 M) gel using 10 W power at 4 °C for ~ 20-25 hrs in 30 cm long gel plates. The 

gel was cast using 0.1 M sodium acetate, pH 5.0 and the same buffer was used for gel 

electrophoresis. The buffer was constantly circulated between the top and bottom chambers 

using a peristaltic pump to maintain the pH at 5.0. The gel was scanned with Typhoon 

scanner (GE Healthcare Life Sciences) using 640 nm red laser for imaging the Cy5 labeled 

tRNA. Aminoacylated tRNA band will move slightly slower than uncharged tRNA enabling 

the estimation of charging efficiency. Under our reaction conditions, the aminoacylation 
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efficiency was close to ~ 80-85 % and reached saturation quickly in < 10 min (Figure 

4.12A). For the binding experiments, charged tRNA from the 100 µL stopped reaction stock 

was diluted to 200 uL using 100 mM sodium acetate, pH 5.2 and the protein components 

were removed using phenol-chloroform extraction. Concentration of this phenol-chloroform 

extracted charged tRNA is estimated and diluted to required concentration in final 1x 

smFRET buffer for single molecule binding experiments.  

4.3 Results 

To study the conformation and dynamics of the glyQS T-box riboswitch by smFRET, we 

used each a Cy3 and a Cy5 fluorophore labeled DNA and LNA oligonucleotides 

complementary to the 3’ and 5’ ends, respectively, of the RNA (Figure 4.4A). This 

hybridization labeling strategy for labeling was employed since it allowed for the use of a 

natively purified T-box riboswitch RNA. Furthermore, internal covalent labeling of large 

RNAs is challenging and requires purification methods that denature the RNA, possibly 

leading to a heterogeneously folded population of molecules (43). Therefore the glyQS T-box 

riboswitch RNA for the smFRET experiments was natively purified to avoid any potential 

misfolded conformations as a result of denaturing protocols. Unmodified synthetic tRNAGly 

labeled with Cy5 at position U46 (Figure 4.2D) in the variable loop was used for all 

smFRET studies. Since this position is not conserved and in the crystal structure does not 

form any interactions with stem-I (Figure 4.3B), labeling at this position is not expected to 

affect tRNA binding to the T-box riboswitch. Using this labeling strategy and prism-based 

smFRET microscopy, we estimated the distances between the bound tRNAGly (from position 

U46 in the variable loop) and base of stem-I and the base of AT hairpin as illustrated in 

Figure 4.4B. Additionally, the distance between the bases of stem-I and AT hairpin was 

measured in the presence and absence of tRNA to investigate any tRNA induced 

conformational changes in this region. The tRNA used for all smFRET-based distance 

measurements was uncharged and Cy5-labeled unless otherwise specified. Since the mini T-

box riboswitch lacked a long 5’ single stranded region to which DNA/LNA oligo could be 
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hybridized, a distance estimate could only be obtained between its 3’-end and the bound 

tRNAGly. 

4.3.1 tRNAGly is bound in a similar orientation to both the mini and full T-box 

riboswitches 

First, we measured FRET between the base of AT hairpin and the bound tRNA-Cy5 to 

investigate the position of the tRNA relative to the AT hairpin in the complex (Figure 4.5A). 

This will also reveal the presence of any large-scale motions of the tRNAGly bound to the T-

box riboswitch. In 10 mM Mg2+, the population FRET histograms of the WT full T-

box:tRNA complexes displayed a single FRET state with a mean FRET value of 0.25±0.13 

(Figure 4.5B). A few smFRET traces displayed zero FRET state, but their population was 

negligible (Figure 4.5C). In comparison, the mutant riboswitch showed a bimodal 

distribution with a major (81 %) 0.28 ± 0.13 and a minor (19 %) ~0 FRET state (Figure 

4.5D). The FRET histograms for the mutant and WT full T-box riboswitches are very similar 

to each other with only subtle differences. The two FRET states of ~0.25 and 0 correspond to 

distances between the fluorophores of ~65 Å and >75 Å respectively (using a Förster radius 

of 54 Å between Cy3 and Cy5 (44)). Visual inspection of individual smFRET traces showed 

that transitions between the two states were rare (<5 % molecules, Figures 4.5C,E ) and a 

majority of molecules displayed stable FRET states for extended periods of time. It is 

interesting to note that the tRNA was very stably bound (dwell times >100 s) under these 

conditions and some complexes were visible even after an hour of immobilization on the 

slide surface.    

 Previous in vitro binding experiments using ITC showed that deleting the interlocking 

T-loop motif (Figure 4.3A) from a stem-I only construct resulted in weakened tRNA 

binding, which suggests a possible role for the motif in tRNA ‘docking’ during transcription 

(26). We therefore investigated the mini T-box lacking the interlocking T-loop motif to test 

its tRNA binding ability and to measure distance between the bound tRNA and base of AT 

hairpin (Figure 4.5F). Single molecule FRET traces at 10 mM Mg2+ showed that the mini T-

box riboswitch binds tRNA relatively well. However, higher (50 mM) Mg2+ was required to 
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extend the tRNA bound times to enable longer observation of single complexes using 

smFRET. These observations suggest that while the interlocking T-loop motif enhances the 

affinity for tRNA by decreasing its dissociation rate, it is not required for tRNA binding in 

the presence of the downstream RNA containing stem-III and AT hairpin. At 50 mM Mg2+, 

the FRET histogram showed a major (~78 %) 0.31 ± 0.11 FRET state and a minor (~22 %) 

~0 FRET state (Figure 4.5F). These FRET populations correspond to distances of ~62 Å and 

>75 Å, respectively. The ~ 0 FRET state appears to be a genuine conformation with large 

separation between the fluorophores (>75 Å) and not due to the absence of a FRET acceptor, 

as confirmed by the observation of Cy5 intensity when excited directly with 640 nm red laser 

(Figure 4.7C). SmFRET traces of the mini T-box-tRNA complexes displayed rare transitions 

between the two FRET states at a time resolution of 100 ms, suggesting that the two 

conformations are stable and not readily in exchange with each other, similar to the WT and 

mutant full T-box riboswitch:tRNA complexes (Figure 4.5G). Importantly, the population 

FRET histogram of the mini T-box:tRNA complexes was highly similar to the FRET 

histograms of both the full T-box:tRNA complexes. This observation suggests that the 

relative orientation of the tRNA bound to the mini and full T-box riboswitches is very 

similar. 

4.3.2 Conformation of the linker region is not affected by tRNA binding 

In T-box riboswitches, the single stranded ‘linker’ region connecting the stem-I and 

AT hairpin is variable in size, sometimes lacking stem II and the stem IIA/stem IIB 

pseudoknot, and thus is not highly conserved (10). In the glyQS riboswitch, this region 

contains a single-stranded 14-nt stretch followed by stem-III (Figure 4.2A). The role of this 

linker region and its importance in tRNA binding are not well understood. Previous studies 

have shown that the linker region does not contribute to tRNA binding and RNA structure 

probing data have suggested that it exists largely as a single-stranded region (19). However, 

upon tRNA binding, a majority of the bases in the linker region showed protection against 

chemical footprinting. This prompted the authors to propose that this region undergoes a 

structural change, presumably by interacting with the tRNA directly or by forming new 

118 
 



 
 

 

 

Figure 4.5 Determination of the distance between the bound tRNA and the base of the 
AT hairpin 

(A) Schematic of the full T-box riboswitch showing the positions of fluorophores for FRET. 
Population FRET histograms and example smFRET traces for the (B, C) WT, (D, E) Mutant 
and (F, G) Mini T-box riboswitches.  

119 
 



 
 

 

intra-molecular tertiary interactions (19). Therefore, to investigate the conformation of the 

linker region and to check if tRNA binding induces large-scale structural changes, we labeled 

the full (WT and mutant) T-box riboswitches at the bases of stem-I and the AT hairpin using 

5’-Cy5-LNA and3’-Cy3 DNA oligonucleotides, respectively, for smFRET studies (Figure 

4.6A). This labeling scheme permits the measurement of end-to-end distance changes in the 

linker region using smFRET. 

 In the absence of free unlabeled tRNAGly, the FRET histogram for the doubly labeled 

full WT T-box riboswitch at 10 mM Mg2+ displayed two states with mean values of ~0.52 ± 

0.12 (91 %) and ~ 0.09 ± 0.12 (9 %) (Figure 4.6B). Addition of 2 µM unlabeled (Kd ~ 50 - 

100 nM, as measured from our smFRET experiments and previous studies) tRNAGly only 

slightly increased the mean value of the major FRET state to ~ 0.57 ± 0.12, but did not affect 

the relative distribution (~ 10:1 ratio) between the two states (Figure 4.6C) (26). Similarly, 

in the absence of tRNA, the full mutant T-box riboswitch showed two FRET states with 

mean values of 0.65 ± 0.14 (78 %) and ~ 0 (22 %) (Figure 4.6E). In the presence of 1 µM 

tRNA, the mean value of the major FRET state modestly shifted to 0.71 ± 0.12 (83 %) with a 

5 % increase in its population (Figure 4.6F).  The increase in FRET value by ~0.05 only 

corresponds to distance changes by only a few Ǻ, which is within error. Therefore, these 

results show that tRNA binding does not induce large-scale conformational changes in the 

linker region, at least as detected by our specific FRET labeling scheme. Individual smFRET 

traces of the WT and mutant riboswitches showed very stable FRET values with only few (in 

<5 % of all traces) transitions between the two FRET states, in both the presence and absence 

of tRNA (Figures 4.6D,G). 

The FRET histogram of the mutant T-box riboswitch under low (1 mM) Mg2+ 

condition also showed a major ~ 0.46 ± 0.13 (87 %) and a minor ~ 0 (13 %) FRET state 

(Figure 4.6H). A significant decrease in the mean FRET value of the major state from ~0.65 

to ~ 0.46 indicates that the linker region adopts an extended conformation under lower, more 

physiologically relevant Mg2+. Again, the addition of 1 µM unlabeled tRNAGly had no 

significant effect on the FRET histogram (Figure 4.6I). However, it should be noted that  
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Figure 4.6 smFRET between the bases of stem-I and the AT hairpin 

(A) Schematic of the full T-box riboswitch showing the positions of fluorophores for 
measuring FRET between the bases of stem-I and the AT hairpin. Population FRET 
histogram for (B) WT in 10 mM Mg2+, - tRNA, (C)  WT in 10 mM Mg2+, + tRNA, (E) 
Mutant in 10 mM Mg2+, - tRNA, (F) Mutant in 10 mM Mg2+, + tRNA, (H) Mutant in 10 mM 
Mg2+, - tRNA, (I) Mutant in 10 mM Mg2+, + tRNA. Examplary smFRET traces for (D) the 
WT in 10 mM Mg2+, (G) Mutant in 10 mM Mg2+ and (J) Mutant in 1 mM Mg2+.  
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our smFRET experiments where doubly labeled complexes could not be observed with Mg2+ 

<5 mM (19). These data show that tRNA binding does not induce detectable large-scale 

conformational changes, at least between the bases of stem-I and AT hairpin, suggesting 

apre-organized conformation of the full T-box riboswitch. 

4.3.3 The distance between the base of stem-I and the bound tRNAGly shows a two-state 

distribution that is sensitive to Mg2+ 

We hybridized a 5’-Cy3-labeled LNA oligonucleotide to the single stranded region upstream 

of stem-I to measure FRET between the bound tRNA and the base of stem-I in the full T-box 

riboswitch (Figure 4.7A). In the WT riboswitch, FRET histogram at 10 mM Mg2+ showed a 

major (61 %) 0.38 ± 0.12 and a minor (39 %) ~0 FRET state (Figure 4.7D). The mutant T-

box riboswitch showed a very similar two-state distribution with 0.42 ± 0.11 (59 %) and ~0 

(41 %) FRET states (Figure 4.7B). In both the WT and mutant riboswitches, individual 

smFRET traces showed that these states are very stable with only a few (~4 %) traces 

showing slow transitions between them (Figure 4.7C, E). These FRET transitions may be 

either due to the motion of tRNA in the complex or may be a result of different 

conformations of the stem-I domain. The major ~0.4 FRET state corresponds to a distance 

estimate of ~58 Å between the base of stem-I and position U46 of tRNA. The corresponding 

distance between U46 of tRNA and the base of stem-I as measured from the crystal structure 

(26) is ~ 64 Å. Since the structure was solved in complex with a k-turn binding protein that 

orients the 3’-end of stem-I towards the tRNA, this distance is expected to increase in the 

absence of the protein. In addition, the full T-box RNA constructs used in our studies have a 

9-bp stem below the k-turn/GA motif as compared to a 6-bp stem in the crystal structure, 

resulting in a slightly longer stem-I in our constructs. Therefore, the presence of a longer 

stem-I and the absence of a k-turn stabilizing protein in our smFRET experiments is expected 

to yield a distance estimate in excess of the ~64 Å seen in the crystal structure (26). This 

suggests that in solution, the tRNA is slightly closer to the base of stem-I when bound to the 

full T-box riboswitch. Consequently, we speculated that the ~ 0 FRET state with distance 

>75 Å between the base of stem-I and the tRNA corresponds to molecules in which the   
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Figure 4.7: smFRET between the bound tRNA and the base of stem-I 

(A) Schematic of the full T-box riboswitch showing the positions of fluorophores for FRET 
between tRNA and base of stem-I. Population FRET histograms and example smFRET 
traces for (B, C) Mutant T-box riboswitch in 10 mM Mg2+, (D, E) WT in 10 mM Mg2+, (F, 
G) WT in 50 mM Mg2+ and (H, I) stem-I in 10 mM Mg2+. (J) Structural comparison of the 
crystal structure of stem-I (blue) and the NMR structure of the proximal region of stem-I 
(orange) (33). Distances between the 3’-end of stem-I and the tRNA are shown. 
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k-turn motif is in an extended conformation. The GA/k-turn motif in RNA is a well 

characterized structural motif (45,46). Various k-turn motifs are identified in structurally 

diverse RNAs and are known to have differential requirements for Mg2+ in the absence of 

stabilizing proteins (29,45,47). We therefore hypothesized that the addition of higher Mg2+ 

concentrations in the smFRET experiments should induce more T-box riboswitch molecules 

to adopt kinked conformations in stem-I. Indeed, as expected, when the Mg2+ was increased 

to 50 mM, the population of the major FRET state, now with a slightly higher mean FRET 

value of 0.41 ± 0.12, increased from ~61 % to ~90 % (Figure 4.7F). This observation shows 

that the conformation of stem-I is Mg2+ dependent and also explains the need for a high (at 

least 5 mM) Mg2+ for tRNAGly binding and for high anti- termination efficiency in in vitro 

transcription assays for the glyQS riboswitch (19). This high Mg2+ dependency of the T-box 

riboswitch could be a result of a cumulative requirement of the various bulges and motifs 

present in the stem-I region (26). A comparison of the ‘kinked’ conformation of the stem-I in 

the crystal structure (33) and the ‘extended’ conformation of the NMR structure of the stem-I 

proximal region (PDB ID: 2KZL) is shown in Figure 4.7J. The distances between the 3’-end 

of stem-I and the bound tRNA in these structures support our smFRET data and our 

hypothesis that the ~0.4 and ~0.0 FRET states correspond to the kinked and extended 

conformations of stem-I, respectively.  

Figure 4.8 summarizes the distance estimates obtained for the WT full T-box 

riboswitch at 10 mM Mg2+ from our smFRET measurements. Among the three estimated 

distances, the largest distance of ~62 Å is between the base of AT hairpin and the bound 

tRNA. We are working on using these distance estimates to generate a solution model of the 

full T-box:tRNA complex using SAXS, which would provide valuable insight into the global 

organization of the different domains of full T-box riboswitch. In this direction, the distances 

we measured using smFRET will be important in refining the SAXS model using the 

triangulation method. 
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Figure 4.8 Schematic showing the distance estimates between different regions of the 

full WT T-box riboswitch 
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4.3.4 The anti-terminator hairpin is necessary to stably anchor the tRNA  

Next, we performed smFRET experiments on the stem-I only construct (Figure 4.2B) with 

an aim to deduce conformations of the two FRET states observed for the full T-box 

riboswitches (Figure 4.7B-G). Intriguingly, we could not observe stable stem-I:tRNA 

complexes in our smFRET experiments, even at high (50 mM) Mg2+ concentration. This was 

surprising since previous ITC measurements indicated that stem-I alone can bind tRNA 

equally well or even stronger than the full T-box riboswitch (26). Our failure to observe 

stem-I:tRNA complexes in smFRET experiments (without free tRNA in the microfluidic 

channel) suggested that the tRNA binds only weakly to the stem-I only RNA and dissociates 

into the microfluidic channel containing buffer, where their concentration would be too low 

to allow them to rebind stem-I. This is contrary to previous studies and the recently modified 

model for the T-box riboswitch function in which stem-I was proposed to be important for 

‘anchoring’ the tRNA during transcription (25,26,48). Therefore, we performed the 

experiment with 25 nM free Cy5 labeled tRNA in the microfluidic channel. Transient 

binding events of tRNA to stem-I were detected by the appearance of FRET (Figure 4.7I). 

The multiple short binding events were pooled together to construct a FRET histogram to 

obtain the average distance estimate between tRNA and the base of stem-I. The FRET 

histogram of stem-I:tRNA complexes at 10 mM Mg2+ shows a distribution that can be fit 

with a Gaussian function to give a mean of 0.28 ± 0.13 (Figure 4.7H). This corresponds to a 

distance if ~63 Å, similar to the crystal structureand larger than the distance obtained for the 

major conformation using the full T-box riboswitch (~58 Å) (Figure 4.7D). This shows that 

the tRNA is slightly closer to the base of stem-I when bound to the full T-box riboswitch as 

compared to stem-I only construct. We speculate that this may be due to a sharper kink in the 

stem-I of the full T-box riboswitch or due to a different tRNA conformation when bound to 

the full T-box riboswitch. The fraction of the ~0 FRET state, if at all it is sampled in the 

stem-I:tRNA complex, could not be probed in this experiment, since tRNA binds only 

transiently and therefore the histogram only shows a single conformation (Figure 4.7I). Our 

smFRET data showing only transient binding of tRNA to the stem-I but stable binding to the 
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full T-box riboswitches (WT, mutant and mini) demonstrate that the sequences downstream 

to stem-I including the AT hairpin are required for stable tRNA binding. 

tRNA binding kinetics of the T-box riboswitch 

The T-box riboswitch has to bind uncharged tRNA and stabilize the AT hairpin during active 

transcription elongation by RNAP in real-time to prevent termination (10,17). Therefore, 

studying the kinetics of tRNA binding is important for understanding the temporal details of 

its mechanism (48). To this end, we have used smFRET microscopy (33,35,49) to study the 

tRNA binding kinetics of different T-box riboswitch constructs and to probe the effect of 

aminoacylation and destabilization of the double T-loop motif on the binding kinetics. These 

are different from the distance measurement experiments where only green laser was used to 

excite the donor fluorophore (Cy3) to measure FRET. In these kinetic experiments, red laser 

was also used to directly excite the Cy5 on tRNA to detect its binding events and measure the 

individual dwell times (Figure 4.9). This has the advantage of detecting all tRNA binding 

events, including the ones with ~0 FRET values, which cannot be detected when using only 

green laser. 

4.3.5 Kinetics of stem-I vs full WT T-box riboswitch: The interlocking T-loop motif 

increases the affinity for tRNA by lowering the dissociation rate 

The T-box riboswitch functions during transcription by RNAP and therefore, the kinetics of 

tRNA (ligand) binding play an important role for achieving proper gene regulation (17,50). 

Using smFRET, we measured the kinetics of tRNA binding to different T-box variants  

(Figure 4.9A). SmFRET is powerful in detecting very transient binding events (dwell times 

as short as 100 ms or even lower) in real-time and therefore can be used to probe even weak 

binding interactions at concentrations significantly below the Kd, as opposed to other 

ensemble methods requiring high RNA concentrations (51). Binding events can be detected 

as an increase in the Cy5 intensity over the background. The dwell times in the bound and 

unbound states can be obtained for a large number of molecules to obtain the rates (Figure 

4.9B, also see section 4.2.3). 
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Figure 4.9 Strategy for measuring the tRNA binding kinetics at the single molecule level 

(A) Prism based TIRF microscopy setup for measuring tRNA binding rate constants (kon and 
koff) to different T-box riboswitch constructs. (B) Example single molecule traces showing 
tRNA binding and dissociation events as sharp appearance and loss of Cy5 signal. The dwell 
times in the bound (tbound) and unbound (tunbound) states are also shown from which rate 
constants of dissociation and association can be estimated. 
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Intrigued by our failure to observe stem-I:tRNA complexes on the slide, we first 

probed the tRNA binding kinetics of stem-I using 25 nM free tRNA-Cy5 using both 

FRETand direct excitation with red laser. As mentioned previously, investigation of the 

smFRET traces showed that tRNA bound only transiently to stem-I as expected (Figure  

4.7I, Figure 4.11A) with values of tbound. In contrast, the full WT T-box riboswitch bound 

tRNA very well with long dwell times extending even up to 400 s (Figure 4.11B). The 

cumulative distribution of dwell times in the bound state (tbound) fit well with a single 

exponential function giving a tRNA dissociation rate constant (koff) of ~0.23 s-1 for stem-I 

(Figure 4.10B and Table 4.1). The distribution of dwell times in the unbound state (tunbound) 

also fit fairly well to a single exponential function with a life time of ~51 s, giving an 

association rate constant, kon value of ~0.8 x 106 M-1 s-1 for the stem-I only construct (Figure 

4.10A). 

In comparison, the kinetics of the full WT T-box riboswitch were more 

heterogeneous and fit better with double-exponential functions. The cumulative distribution 

of tunbound had a slower 132.7 s (46 %) and a faster 29.9 s (54 %) component, with a weighted 

average of ~72.5 s, from which we calculated a kon value of ~0.7 x 106 M-1 s-1 (Figure 4.10C, 

Figure 4.11B and Table 4.1). In a similar way, an average koff value of 0.038 s-1 was 

obtained from the cumulative distribution of tbound with a slower 96.5 s (24 %) and a faster 

4.1 s (76 %) lifetime (Figure 4.10D, Figure 4.11B and Table 4.1). This shows that, while 

the average kon values are similar for both RNAs, the koff for stem-I is ~6 fold higher than the 

koff value for the full WT T-box riboswitch. This clearly demonstrates that the sequence 

downstream of stem-I, including the AT hairpin, is required to stably bind the tRNA for 

longer time.  

4.3.6 Kinetics of the full mutant versus WT riboswitches: Destabilization of the double 

T-loop motif increases the tRNA dissociation rate  

The full mutant T-box riboswitch also showed heterogeneous kinetics with double-

exponential distributions of both the tbound and tunbound dwell times, similar to the WT T-box 

riboswitch. It has an average kon value of ~0.8 x 106 M-1 s-1 with a slower 74.4 s (79 %) and a 
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faster 15.8 s (21 %) lifetime (Figure 4.10E, Figure 4.11C and Table 4.1). We calculated an 

average koff value of 0.08 s-1 from the slower 24.2 s (47 %) and faster 1.1 s (53 %) 

components (Figure 4.10F, Figure 4.11C and Table 4.1). The average kon value is similar 

to the value for WT riboswitch whereas the average koff is faster by ~2-fold. However, the 

individual lifetimes for tunbound and tbound are roughly 2- and 4-fold shorter, respectively, than 

those of the WT T-box riboswitch and display different distributions (Figure 4.10, Figure 

4.11C and Table 4.1). These data show that the G81A substitution proximal to the double T-

loop motif (Figures 4.2A, 4.3) in the mutant riboswitch has a modest destabilization effect of 

increasing the dissociation rate by ~2-fold. While the average association rate was not 

significantly affected, the individual values of tunbound were shorter for the mutant T-box 

riboswitch.  

4.3.7 Kinetics of tRNA binding to the mini and mutant T-box riboswitches 

Single molecule binding experiments performed at 20 nM tRNA show that the mini T-box 

riboswitch binds uncharged tRNA relatively well with dwell times in the bound state (tbound) 

ranging from 0.1 s to 75 s (Figure 4.11D). The cumulative distribution of tunbound fit well with 

a single-exponential function with a lifetime of ~42.5 s from which we estimate a kon value 

of ~1.2 x 106 M-1 s-1 (Figure 4.10G and Table 4.1). The cumulative distribution of tbound fit 

well with a double-exponential function with a major (65 %) slow (~18.4 s) component and a 

minor (35 %) fast (~0.95 s) component. From these, an average lifetime of tRNA bound to 

the mini T-box riboswitch was calculated as ~12.3 s giving a koff value of ~0.08 s-1 (Figure 

4.10H and Table 4.1). These kinetics are similar to those of the mutant full T-box riboswitch 

with some subtle differences. The cumulative distributions of tbound showed double 

exponential behavior in both constructs with similar short and long lifetimes, but their 

relative contributions are different. In particular, the value of the slower component is higher 

by ~6 s for the mutant T-box riboswitch. Both constructs also have similar average koff values 

of ~0.08 s-1. This shows that the mini and the full mutant T-box riboswitches bind tRNA 

equally well with only subtle differences in their kinetics (Figures 4.10E-H). 
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Figure 4.10: tRNA binding kinetics of the different T-box riboswitch constructs 

Cumulative dwell time distributions fit to single (red) and double (cyan) exponential 
functions for calculating kon and koff values for stem-I (A, B), WT (C, D), Mutant (E, F) and 
Mini (G, H) T-box riboswitch constructs. The residual plots for single (red) and double 
(cyan) exponential fits are shown in the inset. 
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Table 4.1: Kinetics of tRNA binding to the different T-box riboswitch constructs 

The life times (τ) of the single and double exponential fits to the cumulative distributions of 
the unbound and bound dwell times for the different T-box variants are shown. 

 

 

 

 

τunbound 

(s) 

τbound 

(s) 

 

τunbound 

(s) 

τbound 

(s) 

Stem-I 51 4.3 
22.4 

(26 %) 

60.6 

(74 %) 

0.3 

(21 %) 

4.6 

(79 %) 

WT 72.5 33.7 
29.9 

(54 %) 

132.7 

(46 %) 

4.1 

(76 %) 

96.5 

(24 %) 

Mutant 61.6 16.6 
15.8 

(21 %) 

74.4 

(79 %) 

1.1 

(53 %) 

24.2 

(47 %) 

Mini 42.5 12.4 
2.3 

(19 %) 

45.7 

(81 %) 

0.95 

(35 %) 

18.4 

(65 %) 
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Figure 4.11 Example single molecule binding traces 

Single molecule traces showing multiple tRNA binding events to the (A) Stem-I (B) WT (C) 
Mutant and (D) Mini T-box riboswitch constructs. The HMM (blue) fits for the traces are 
shown overlaid onto the raw Cy5 intensity (red). 
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4.3.8 Aminoacylation of tRNA increases its dissociation rate from the T-box riboswitch 

In the T-box riboswitch, the presence of an amino acid coupled to the tRNA acceptor end 

prevents its interaction with the AT hairpin bulge leading to the termination of transcription 

elongation (20). For the glyQS riboswitch, addition of a charged tRNA mimic with an extra 

base at the 3’-end or by including glycyl-tRNA synthetase in the in vitro transcription assays 

was shown to decrease anti-termination (18,22). In vivo studies also confirmed that charged 

tRNA decreases anti-termination efficiency (10,52). However, the effect of charging on 

tRNA binding to the T-box riboswitch as a critical event during riboswitching has not been 

probed. To this end, we measured the binding kinetics of charged tRNAGly to the mutant full 

T-box riboswitch. Specifically, we have charged tRNAGly using E. coli S100 extract. The 

efficiency of charging was at least ~80 % as quantified from acid urea gel (Figure 4.12A) 

and reached saturation within <10 min of incubation at 37 °C. We used this aminoacylated 

tRNA for binding experiments with the mutant full T-box riboswitch. The acidic pH of 6.1for 

the buffer used for our binding experiments and the fact that Gly-tRNAGly has a longer half-

life as compared to other aa-tRNAs ensures that the tRNA should be fairly stable (53).  

Visual inspection of individual traces for charged tRNAGly displayed binding events 

with very short dwell times (<1–10 s) in the bound state (tbound) (Figure 4.12B). A 

cumulative distribution of tunbound fit well with a double-exponential function with slower and 

faster lifetimes of 31.3 s (64 %) and 7.3 s (36 %) giving a weighted average kon value of ~2 x 

106 M-1 s-1 at ~20 nM charged tRNA. Furthermore, the cumulative distribution of tbound also 

fit well with a double-exponential function with slower and faster lifetimes of 7.4 s (37 %) 

and 0.35 s (73 %), respectively, giving an average koff value of ~ 0.45 s-1 (average lifetime of 

~2.2 s). Accounting for the presence of ~15 % uncharged tRNA (due to <100 % charging 

efficiency), we corrected the rates obtained to give the kon and koff values of ~2.2 x 106 M-1 s-

1 and 0.51 s-1, respectively for the charged tRNAGly. Therefore, the rate of tRNA dissociation 

from the full mutant T-box riboswitch increases by ~6-fold due to the presence of amino acid 

on the tRNA 3’-end. Our kinetic data thus clearly demonstrate that charged tRNA does not 

remain bound to the T-box as long as the uncharged tRNA.  
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Figure 4.12 Effect of aminoacylation on the tRNA binding kinetics 

(A) Acid urea gel showing time course of the tRNA aminoacylation reaction stained with 
SYBR Gold (Life Technologies). (B) Example binding traces for the charged tRNAGly fit to 
two state HMM showing very short dwell times in the bound state. Cumulative dwell time 
distributions of charged tRNA binding to the full mutant T-box riboswitch for obtaining (C) 
kon and (D) koff. Individual life times of the exponential distributions are also shown. 
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4.4 Discussion  

Despite its discovery almost 20 years ago (8,13), details of the T-box riboswitch 

molecular mechanism are still not completely understood. A number of biochemical studies 

have established the roles of various conserved sequence and structural motifs of the T-box 

riboswitch in tRNA mediated transcription anti-termination (8,15,18,20,22,25). However, 

biophysical studies on the structure and kinetic behavior of the riboswitch are still rare. Initial 

studies used NMR to solve the structures of different motifs in the RNA that provided atomic 

details of the architectural features of the T-box riboswitch (27-29). The recently solved 

crystal structure of the glyQS stem-I revealed the presence of an interdigitated T-loop motif 

at its distal end that is known to bind the tRNA elbow (25) (Figure 4.3A). Additional major 

insight into the interaction between the tRNA and T-box arose with the recently solved 

crystal structures of the glyQ stem-I:tRNA complex (26,31) (Figure 4.3B,C). However, 

knowledge about the conformation of the full T- box riboswitch including the downstream 

expression platform is still lacking. Perhaps even more importantly, the kinetics of tRNA 

binding to the T-box riboswitch and the role of different motifs in tRNA recognition has not 

been directly investigated. In this work, we have studied the conformation and tRNA binding 

kinetics of the glyQS T-box riboswitch. Our work used different T-box RNA constructs to 

delineate the function of the newly discovered double T-loop motif (25) and to probe the role 

of the AT hairpin in tRNA binding kinetics. Using smFRET, we have estimated distances 

between the different regions of the RNA constructs and monitored their changes in real-

time. Our distance estimates on the T-box riboswitch will be useful in generating a global 

model for the full T-box riboswitch:tRNA complex using SAXS.  

Our smFRET data show that the histograms for distance measurements between the 

bound tRNA and the base of AT hairpin for the mini and full (WT and mutant) riboswitches 

are similar with only subtle differences (Figure 4.5). This shows that the conformation of the 

tRNA bound to all three constructs is possibly the same. There are two plausible explanations 

for this observation. First, it posits that the interaction between the tRNA elbow and the T-

loop motif as seen in the crystal structure of the stem-I:tRNA complex is absent in the final 
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complex involving the full T-box riboswitch, where the tRNA 3’-CCA end makes contact 

with its complementary sequence in the AT bulge. If this model is correct, then the crystal 

structure of the stem-I:tRNA complex (26,31) could be an intermediate conformation en 

route to the formation of a final complex involving the downstream expression platform 

containing the AT hairpin. We have preliminary evidence from SAXS studies (unpublished, 

data not shown) of the full WT T-box riboswitch:tRNA complexes supporting this model. 

The other plausible explanation, that is supported by our smFRET data is that the tRNA 

retains the same orientation as seen in the crystal structure even when bound to the mini T-

box riboswitch, by virtue of its interaction with the specifier sequence and the extensive non-

specific helix-helix contact between the tRNA anti-codon stem and the stem-I backbone 

(Figure 4.3C).  

Our work also shows that the conformation of the single-stranded linker region 

including stem-III, connecting stem-I and the AT hairpin is sensitive to Mg2+ (Figure 4.6). 

Under low Mg2+ (1 mM), a FRET value of ~0.46 corresponding to ~56 Å shows that this 

~19-nt long (assuming stem-III width as a 2-nt sequence) is in an extended single-stranded 

conformation that undergoes compaction at higher Mg2+ concentrations. This conclusion 

agrees well with previous structure probing studies which showed lack of secondary structure 

in a majority of the linker region residues in the absence of tRNA (19). However, we did not 

observe any major FRET changes upon addition of excess tRNAGly, suggesting that the 

conformation is not affected by tRNA binding. This shows that the full T-box riboswitch is in 

a largely pre-organized conformation prior to tRNA binding. This result is in contrast to a 

previous study that proposed a structural transition in this region upon tRNA binding, based 

on strcture probing of RNA (19). The observation of a pre-folded conformation in the full T-

box riboswitch may not be of functional significance in vivo for transcriptionally acting T-

box riboswitches like the glyQS riboswitch, since tRNA binding may occur before the AT 

hairpin is fully transcribed (17). Nevertheless, since T-box riboswitches that can modulate 

translation initiation have been identified (11,12), it is possible that these RNAs can act as 

thermodynamic ‘switches’ in fully transcribed mRNA that can continually sense tRNA levels 

during its lifetime. In fact, the S-box (or SMK box) system, which is a translationally acting 
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riboswitch, was shown to act as a true switch capable of making multiple translation 

ON/OFF regulatory decisions during the lifetime of its mRNA transcript, in response to 

changes in concentration of its ligand, SAM (54). In this context, studying the conformation 

and tRNA binding kinetics of the full T-box riboswitch assumes significance.  

We have also demonstrated that stem-I in the full T-box riboswitch adopts two 

conformations corresponding to extended and kinked (as seen in the crystal structure (26,31)) 

structures and Mg2+ affects the equilibrium between these two states (Figure 4.7). Our FRET 

measurements suggest that this could be due to the k-turn motif which becomes close to fully 

kinked at high (50 mM) Mg2+. This also might explain why very high Mg2+ is required for 

efficient tRNAGly mediated anti-termination in in vitro assays on the glyQS riboswitch (19). 

The k-turn motif functions to position the downstream AT hairpin close to the tRNA acceptor 

end so that the key interaction with the conserved bulge sequence can be established to result 

in transcriptional anti-termination (26).  

Riboswitches that work at the level of transcription termination are typically 

kinetically controlled (55,56). This means that the rate of ligand binding is a very important 

factor that decides the outcome of gene regulation. In case of the T-box riboswitch, 

subsequent to the formation of stem-I, tRNA binding mediated stabilization of the AT hairpin 

must occur before the RNAP moves past the 3’ end of the terminator hairpin (Figure 4.1). 

Therefore, tRNA binding has to occur within this time window, the duration of which 

depends on the rate of transcription by RNAP and the presence of any pause sites. 

Investigating the kinetics of tRNA binding is thus important for a complete understanding of 

the T-box riboswitch function. Our kinetic studies measured a kon value of ~0.7 x 106 M-1 s-1 

for both the stem-I only and the full WT T-box riboswitches (Figure 4.10A, C). This 

suggests that the regions 3’ to stem-I including the linker region and the AT hairpin have no 

effect on kon and therefore may not participate in the initial tRNA recognition event. In 

contrast, a 6-fold faster koff for stem-I only construct shows that the AT hairpin is required to 

‘anchor’ the cognate tRNA in place to effect transcriptional read-through (Figure 4.10B, D). 

The transient binding of tRNA by stem-I should be an important feature for proper 
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functioning of the T-box riboswitches since it ensures that stochastic binding events of 

charged tRNA to stem-I when their concentrations are low do not last long and affect the 

outcome of the regulatory switch during the critical decision making point. Our kinetic data 

on the mutant and mini T-box riboswitches show that destabilizing or deleting the double T-

loop motif did not change the kon significantly but only accelerated the koff value by ~2-fold 

(Figure 4.10E-H).This suggests that the double T-loop motif functions to stabilize the bound 

tRNA but does not contribute to the tRNA association rate. In certain bacteria, T-box 

riboswitches have been identified that presumably work at the level of translation initiation 

(12). Interestingly, the stem-I domain in these T-box systems is shorter and lacks the 

sequences that can form the double T-loop motif. Therefore, these T-box riboswitches will 

probably have a faster koff as compared to their transcriptional counterparts. A faster koff is a 

general feature of translational riboswitches that work under thermodynamic control (56).  

The value of kon obtained for the T-box riboswitch is in line with the ligand binding 

rates for metabolite binding riboswitches, which have kon in the range of ~104 – 105 M-1 s-1 

(56).The koff value for stem-I is an order of magnitude faster whereas the koff value the full T-

box riboswitch is similar to those of ligand dissociation rates of riboswitches (10-2 – 10-3 s-1)  

(56). The faster koff for stem-I will enable it to achieve equilibrium with the intracellular 

tRNA concentration before the genetic decision point. Our tRNA binding affinities obtained 

from the single molecule binding experiments (Kd ~54 nM and ~290 nM for the full WT 

riboswitch and stem-I, respectively) match relatively well with previous tRNA binding 

measurements done on various glyQS T-box riboswitch truncation variants (19). The full WT 

riboswitch has an ~6-fold lower Kd than the stem-I only construct, which agrees well with a 

~5-6 fold efficient binding of tRNA by the full T-box riboswitch as compared to the stem-I 

only construct, measured in a previous study using filter retention assays (19). It is interesting 

to note that the tRNA binding kinetics to the different T-box variants are biphasic. A possible 

explanation for such biphasic kinetics of binding and dissociation are the presence of two 

conformational sub-states of the T-box riboswitch with different tRNA binding properties. 

While we see some correlation in the FRET populations 
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Figure 4.13 Kinetic model of the T-box riboswitch mechanism 

Kinetic model showing the different stages of tRNA binding during transcription by the 
glyQS T-box riboswitch. Rates estimated from our single molecule kinetic measurements are 
shown. Major RNAP pause sites are indicated as red circles and charged tRNA is shown with 
a small red ellipse on its end. A reference time of t = 0 is when the tRNA binding capable 
portion of stem-I is transcribed.  The broken and continuous arrows represent the 
thermodynamic and kinetic control pathways of the T-box riboswitch action, defined as 
having a commitment time window >> 1/koff  or ~ 1/koff, respectively (56). 
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and the biphasic tRNA binding kinetics for certain T-box variants, in general, we do not 

observe a strong correlation between the two. Further experiments will need to be carried out 

to correlate the conformational distributions of the T-box riboswitch variants to their tRNA 

binding kinetics. In addition, kinetic experiments can be done under different Mg2+ 

concentrations (> 10 mM Mg2+) to probe if the amplitudes of the slow and fast kinetic phases 

change similar to the change in the distribution of the FRET states (Figure 4.7 D-G), which 

would establish the dependence of tRNA binding kinetics on the conformational state of the 

T-box riboswitch. 

Our work also provides direct evidence that aminoacylation of tRNA leads to 

increased dissociation rate from the T-box riboswitch (Figure 4.12). The ~2.5 fold higher kon 

value for charged tRNA compared to uncharged tRNA may be due to inaccurate 

measurement of the tRNA concentrations under dilute conditions. Phenol-chloroform 

extraction was done to remove the proteins components after the charging reaction, which 

diluted the tRNA to ~0.3 – 0.4 µM. At this concentration, measuring the concentration of 

Cy5 using Nanodrop with absorbance < 0.1 is difficult. This needs to be further verified. Due 

to the presence of amino acid on the 3’-end, the charged tRNA probably makes interaction 

mainly with the stem-I domain. Measuring the kinetics of charged tRNA binding to stem-I 

only will further support this. In this respect, the interaction of charged tRNA with the 

mutant T-box riboswitch is probably equivalent to the interaction with uncharged tRNA with 

a mutant stem-I only construct. Interestingly, our observation of ~6-fold faster koff for the 

charged tRNA (as compared to the uncharged tRNA) binding to the full mutant T-box 

riboswitch matches well with the ~6-fold difference in koff values observed for uncharged 

tRNA binding to the stem-I only and full WT T-box riboswitches. This suggests that 

charging the tRNA has a similar effect as deleting/mutating the AT hairpin in terms of 

dissociation rate from the T-box riboswitch. Studying the binding kinetics of tRNA to a 

mutant stem-I only construct may support this result further and will also help in quantifying 

the exact effect of the G81A mutation on tRNA binding.  
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Figure 4.13 shows a kinetic model of the glyQS T-box riboswitch mechanism 

incorporating temporal details obtained from our tRNA binding kinetic studies and also 

fromprevious bulk kinetic studies (17,19). The ‘sensing’ of tRNA by the T-box riboswitch 

can start as soon as the portion of stem-I up to the 3’ end of the specifier loop is transcribed, 

since the downstream k-turn motif is shown to be not required for tRNA binding (25,26). At 

this stage, the stem-I can make multiple binding interactions with both the charged and 

uncharged tRNAGly. The Glycyl-tRNA synthetases have KM values in the low µM range, 

which is also close to the intracellular concentration of tRNAGly. At these concentrations, the 

rate of tRNA binding by stem-I is ~ 1-3 s-1 using our kon value of ~0.8 µM-1 s-1. Three major 

pause sites were detected by previous in vitro kinetic studies on the glyQS riboswitch (17). 

One of them included a long pause site in the loop of stem-III with half-life of few minutes 

under low NTP concentrations. Pausing of RNAP at this point may allow sufficient time for 

stem-I to equilibrate with the relative concentrations of charged and uncharged tRNA. In the 

next phase, the formation of a stable complex occurs when the 5’ portion of the AT hairpin is 

transcribed (19) as sequences that form the 3’ half of the AT hairpin are not required for 

binding. At this stage, the charged tRNA probably cannot compete with the uncharged tRNA, 

as suggested by previous in vitro kinetic assays (17). Another pause site identified near the 3’ 

end of the AT hairpin (the decision making point) allows more time for the uncharged tRNA 

to form a stable complex required to prevent transcription termination. An approximate 

timeline is shown assuming a transcription rate of ~25 nt/s (55,57) by bacterial RNAP and 

accounting for the effect of pause sites (17). This predicts that stem-I has sufficient (~100 s) 

time for stable tRNA binding in case of RNAP pausing. However, it is not certain if these 

pause sites are functional under intracellular conditions where the NTP concentration is much 

higher and in the presence of other cellular factors. Therefore, in the absence of RNAP 

pausing, only a short ~3-4 s (for transcribing ~80 nt up to the 3’-end of AT hairpin) time 

window is available for the T-box riboswitch to bind tRNA before the RNAP reaches the 

decision point. From our kinetic data, this time is roughly similar to the residence time 

(1/koff) of tRNA bound to stem-I of ~4 s (Figure 4.10B). Therefore, this suggests that the T-

box riboswitch functions through the thermodynamic control mode of genetic regulation, 
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which means that the riboswitch achieves equilibrium with the tRNA before the RNAP 

reaches the decision point (50). However, kinetic control is also possible if the rate of 

transcription and the concentration of tRNA is higher in vivo. This is similar to the action of 

some transcriptionally acting metabolite binding riboswitches (55,56). Our work thus 

provides the first quantitative analysis of the kinetic pathway for T-box riboswitch function. 

In addition, using powerful smFRET experiments, we have studied the conformation of 

various T-box riboswitch variants and directly probed their heterogeneous tRNA binding 

kinetics that suggest a complex mode of tRNA recognition by the T-box riboswitch RNA.  
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CHAPTER 5 

 

Conclusions and Future Directions 

Non-coding RNAs (ncRNAs) are emerging as the major players of gene regulation in all 

forms of life (1,2). Even in simple unicellular organisms such as bacteria, a vast number of 

different classes of ncRNAs have been discovered that perform complex cellular functions 

including an RNA-based adaptive immune system and regulation of gene expression at 

multiple levels (2,3). Among them, a class of ncRNAs known as riboswitches regulates gene 

expression by directly sensing concentration changes of intracellular metabolites (4-6). 

Riboswitches are structured motifs in mRNAs that bind diverse classes of ligands and control 

expression of proteins generally involved in the metabolism or transport of the ligand. Ligand 

binding by the aptamer domain of a riboswitch allosterically causes structural changes in the 

downstream sequence (expression platform) that modulate gene expression (6). Regulation 

occurs largely at the level of transcription elongation or translation initiation; however, a 

number of other processes such as mRNA (alternative) splicing, decay, self-cleavage, 

recruitment of protein cofactors such as Rho and trans regulation of distal mRNAs have been 

discovered (7). Since their discovery in 2002, a large number of riboswitches have been 

identified that carry out vital functions mainly in bacteria. One class of riboswitches is also 

identified in eukaryotes and archaea, which suggests that riboswitches might have had major 

cellular roles during the early phase of evolution when life was predominantly RNA based 

(4) and later became scarcer. 

 In the past decade, our knowledge of riboswitch function was greatly enhanced by 

many biochemical and structural studies that showed how small molecule binding causes 

changes in gene expression (5). In addition, the crystal structures of ligand-bound 

riboswitches highlighted the great potential of RNA in recognizing chemically diverse small 
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molecules as well as complex macromolecules (5). However, due to the difficulty in studying 

structures of ligand-free riboswitches, our understanding of the folding process of 

riboswitches and how the ligand alters downstream secondary structures to affect gene 

expression is still far from complete (8). Nonetheless, a number of ensemble studies using 

NMR spectroscopy, small angle x-ray scattering (SAXS), and chemical structure probing 

have characterized the ligand free conformations of a few riboswitches. However, riboswitch 

RNAs are known to populate multiple states including functionally important conformations 

that are only transiently sampled in the absence of ligand (9). Therefore, ensemble 

biophysical methods only provide an average state that may not correspond to a true 

conformation. Furthermore, detecting transient, lowly populated conformations is extremely 

difficult using ensemble methods. In contrast, single molecule techniques are ideally suited 

for investigating biomolecular conformation and dynamics and are increasingly used to 

elucidate the ligand dependent folding processes of different riboswitches (9-11). In this 

dissertation, we have applied single molecule FRET using prism-based TIRF microscopy to 

study the conformation, dynamics and ligand binding properties of two very distinct RNAs – 

the preQ1 and the T-box riboswitches that represent the small and big of the riboswitch 

world.  

5.1 Conformation and folding of the preQ1 riboswitch  

In chapter 2, using smFRET microscopy, computational simulations and NMR spectroscopy, 

we have investigated the structure and dynamics of the class-I preQ1 riboswitch that carries 

the smallest riboswitch aptamer discovered to date (12). The preQ1 riboswitches from B. 

subtilis (Bsu) and T. tengcongensis (Tte) act through ligand mediated transcription 

termination and translation inhibition, respectively, and fold into similar compact H-type 

pseudoknot structures when bound to ligand (13,14). However, ensemble studies on the 

ligand-free riboswitches suggested major differences in their conformations. The Bsu 

riboswitch was proposed to exist as a largely unfolded hairpin with a non-interacting single-

stranded 3’-tail, while the Tte riboswitch was suggested to adopt a loose pseudoknot 

conformation (14,15). These results were surprising, however, owing to extensive similarities 
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between the two riboswitches in sequence and structure, and considering the fact that the Bsu 

riboswitch is expected to be more folded given its function during transcription, which 

requires fast ligand mediated folding (16). Our smFRET data then clearly showed that, in the 

presence of Mg2+, both ligand-free riboswitches exist in a major pre-folded conformational 

ensemble, but also sample a minor pseudoknot-like conformation. We also showed that 

contrary to previous studies, both riboswitches showed only subtle differences in the 

distribution of their FRET states and their conformational dynamics (14,15). Coarse-grained 

TOPRNA simulations of the riboswitches showed that the pre-folded state corresponds to 

conformations where the 3’-tail transiently interacts with the stem-loop P1-L1. Both 

riboswitches showed very different behavior of their ‘pre-folded’ states under increasing 

preQ1 concentration. This result suggested that both RNAs fold through distinct ligand-

mediated folding mechanisms. This observation was supported by our Gō-model folding 

simulations, which showed that the ligand binds to an open conformation of the Tte 

riboswitch whereas the Bsu riboswitch folding is concomitant with ligand binding (17). 

These ligand mediated folding pathways are similar to the induced-fit and conformational 

selection mechanisms of biomolecular recognition (18-20). Furthermore, we demonstrated 

that a single mutation in the A-rich 3’-tail away from the binding site renders the pre-folded 

state less compact and affects the ligand binding affinity, mainly for the Bsu riboswitch. 

Taken together, these results support an emerging consensus that riboswitch aptamers that 

belong to the same class fine-tune their ligand binding affinities through subtle sequence 

changes away from the binding pocket to achieve optimum gene regulation depending on the 

intra- and extracellular conditions of bacteria (5,21).  

Our studies on the Bsu and Tte riboswitches raised a few interesting questions that 

can be addressed in the future. For example, the reason for slower dynamics in the ligand-

free Tte riboswitch (dwell times of ~1–2 s in the folded-like state, as seen in smFRET traces) 

compared to the Bsu riboswitch (dwell times in the folded state close to 33-ms) is not clear. 

One possible explanation could be the higher stability of P2 in the Tte compared to the Bsu 

riboswitch. However, this does not seem to be the case as both riboswitches have a 4-bp stem 

with the Tte riboswitch consisting of two, typically weaker, non-canonical base pairs (13,14). 
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A more plausible reason is that nucleotide A14, that was shown to occupy the binding pocket 

in the Tte riboswitch, acts as a surrogate ligand stabilizing the folded state even in the 

absence of the ligand preQ1 (14). One way to test this hypothesis is to mutate the A14 residue 

to a U and investigate its dynamics using smFRET. It is interesting to note that the Bsu 

riboswitch also has an adenine (A16) in the corresponding position, similar to the Tte 

riboswitch (13,14). However, the longer L1-loop of the Bsu riboswitch, that was previously 

shown to be dynamic, may be responsible for decreased stability of the ligand-free folded-

like conformation of the Bsu riboswitch (22). To this end, deleting the extra bases in the Bsu 

L1-loop that are not conserved and not detected in the crystal structure may stabilize P2 in 

the ligand-free Bsu riboswitch (13). Furthermore, stem P2 in the Bsu riboswitch crystal 

structure has a terminal non-canonical C8-A34 base pair that is missing in the NMR 

structure. A Ca2+ ion is located close to this C8-A34 base pair in the crystal structure (13,15). 

A previous NMR study showed that Ca2+ is required in solution for the formation of this base 

pair (22). The non-canonical C8-A34 base pair does not resemble a C-A+ Wobble (23). 

However, it is possible that its stability is pH dependent and therefore can be probed by 

monitoring conformational dynamics of the Bsu riboswitch using smFRET under a constant 

ligand concentration. In addition, the recently developed constant pH molecular dynamics 

simulations can also be utilized to probe the pH dependent properties of the C8-A34 base 

pair to study its effect on P2 and therefore pseudoknot stability (24,25). In this respect, it is 

tantalizing to speculate that the Bsu preQ1 riboswitch may act as a dual riboswitch 

responding to changes in both intracellular pH and ligand concentration, as opposed to 

riboswitches that sense either pH or metabolite concentration only (7,26). However, it is also 

known that many secondary and tertiary interactions in RNAs are affected by pH changes 

due to the protonation of nucleobases (23,27,28). Therefore, it is possible that metabolite 

binding riboswitch RNAs in general sense cellular pH to a certain extent. Biochemical assays 

probing the efficiency of gene regulation as a function of pH at a constant ligand 

concentration can be used to test this hypothesis. Due to its small size and simple structure 

the preQ1 riboswitch will be a good model system to probe this hypothesis (12,13). 
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5.2 Ligand binding mechanism of the Bsu riboswitch 

Despite the availability of high resolution structures of many riboswitch aptamers, there is a 

general lack of knowledge on their ligand-free conformations (8). Most of the relatively few 

available ligand-free riboswitch aptamer structures were solved using RNAs derived from 

thermophilic bacteria due to the ease of their crystallization at low temperature and, thus, are 

highly similar to their ligand-bound structures (5). Therefore, these ligand-free structures do 

not likely represent the true physiologically relevant conformations and do not provide an 

explanation for the ligand-dependent folding of the riboswitch. Characterizing the ligand-free 

riboswitch conformations using other ensemble methods has been difficult due to the 

existence of multiple states and the fact that these only provide an average conformation (8). 

Due to these reasons, how ligand binding drives riboswitch folding is generally not well 

understood (9). Ligand binding mechanisms are mainly classified into two limiting cases – 

conformational selection (folding first) and induced fit (binding first) mechanisms (18-20). 

These two mechanisms are broadly used to explain ligand binding coupled to folding of 

biomolecules. 

 High-resolution structures show that riboswitch aptamers typically form tight binding 

pockets that completely encapsulate the ligands (5). This begs the question of how ligands 

bind to such solvent inaccessible binding pockets. This problem is analogous to the case of 

enzymes with ‘lids’ over their active sites. In such cases, it was wrongly assumed that 

substrate binding should always proceed through an induced-fit like mechanism (29). 

However, recent studies have shown that both mechanisms are possible in specific cases and 

that the major mechanism can be identified by kinetic measurements or more accurately by 

calculating flux through both pathways (19) (30-32). As opposed to proteins, where 

molecular recognition coupled to folding is being actively investigated, few studies exist that 

investigate the molecular recognition mechanisms of riboswitches. Furthermore, the 

conformational selection mechanism was proposed for a few riboswitches merely from the 

observation of ligand-free folded-like conformations (9,33,34).  
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 In chapter 3, we have investigated the ligand binding mechanism of the Bsu preQ1 

riboswitch by measuring the changes in kinetics of its conformational dynamics as a function 

of ligand concentration. The Bsu riboswitch encloses ~92 % of the solvent accessible surface 

area of its ligand preQ1 (13). Our kinetic data suggest that, in the absence of Mg2+, the 

riboswitch binds ligand majorly through an induced-fit mechanism. Surprisingly, in the 

presence of Mg2+, the kinetics of conformational dynamics show a contrasting signature 

indicative of a dominant conformational selection pathway. This shift in the dominant 

binding mechanism can be explained by the ability of Mg2+ to promote pre-organized 

pseudoknot-like ligand-free conformations, as directly observed in our smFRET traces taken 

at the faster time resolution of 33ms. However, it should be noted that conformational 

selection and induced fit mechanisms are not mutually exclusive and a growing consensus is 

that both mechanisms are generally engaged in parallel during a biomolecular recognition 

event, just to different extents (19,35). In addition, a recent theoretical study suggests that 

conformational selection is characterized by a variety of kinetic signatures (31). The authors 

showed that while decreasing kobs as a function of ligand concentration is a characteristic 

feature of conformational selection, an increasing kobs can manifest for both mechanisms. 

 Given our results from smFRET kinetic measurements in chapter 3 and our Gō-model 

folding simulations in chapter 2, we propose that under in vivo conditions, due to the 

presence of Mg2+ and molecular crowding effects (36), the ligand-free Bsu riboswitch 

probably adopts even more compact conformations, resulting in conformational selection as 

the dominant ligand binding mechanism. This may also help in the fast ligand-binding 

coupled folding required for the kinetically acting Bsu preQ1 riboswitch (37).  

 A direct way of testing the binding mechanism is to label the ligand with a 

fluorophore and observe its binding to the riboswitch labeled with a FRET pair (30). Using 

this method, one can clearly detect if the ligand binds to the pre-folded (0.7 FRET state, as 

shown in our previous study (10)) or folded (~0.9 FRET state) conformation. This requires 

the use of three-color FRET and was recently used to elucidate the ligand binding mechanism 

of the maltose-binding protein, along with smFRET kinetic measurements, similar to our 

work in chapter 3 (10,30). Additionally, the 3’ DY-547-labeled Bsu riboswitch can be used 

152 
 



 
 

 

along with a Cy5-labeled preQ1 ligand to monitor the binding events using smFRET. By 

analyzing the FRET value/s obtained, a distance estimate and, therefore, an approximate 

location can be made for the initial ligand-RNA encounter, which in turn can suggest if the 

ligand binds to an open (with 3’-tail away from P1-L1 stem-loop) or closed RNA 

conformation (10). Alternatively, preQ1 can be labeled with a black hole quencher dye such 

as BHQ-2 that quenches the fluorescence of both DY-547 and Cy5 to different extents (38). 

In this strategy, ligand binding will manifest as a decrease in the fluorescence intensities of 

both DY-547 and Cy5 and, therefore, by observing FRET before the binding event one can 

identify the conformation to which the ligand binds. This method can be thought of as a 

pseudo three-color FRET that does not require the sophisticated microscopy setup needed for 

performing an actual three-color FRET experiment (30). In this direction, labeling of preQ1 

with an n-hydroxysuccinimide (NHS) ester activated fluorophore is possible at its exocyclic 

amino that sticks out of the binding pocket and is solvent exposed (15). However, this 

conjugation may decrease the binding affinity of the fluorophore, although we expect it to 

still bind riboswitch.  In the future, such experiments will help further characterize the 

binding mechanism of the Bsu preQ1 riboswitch (10). In the future, although non-trivial, 

studies on riboswitches should probe the conformational dynamics and ligand-mediated 

folding during their transcription by RNA polymerase. Such an effort has already been made 

in studying the co-transcriptional ligand mediated folding of the adenine riboswitch using 

powerful single molecule force measurements (39). To this end, single molecule techniques 

will become increasingly valuable in understanding riboswitch folding during transcription 

and ligand mediated gene regulation. 

5.3 Conformation and tRNA binding kinetics of the T-box riboswitch 

In chapter 4, we have investigated the conformation and tRNA binding kinetics of the glyQS 

T-box riboswitch from B. subtilis using smFRET. The T-box riboswitch is one of the largest 

and most complex riboswitches that recognizes a macromolecular ligand, tRNA (40). 

Structural and biophysical studies on the T-box riboswitch have been rare until recently. 

Then, two crystal structures of the stem-I:tRNA complex were solved that showed details of 
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tRNA binding by the T-box riboswitch (41,42). However, details on the conformation of the 

full T-box riboswitch, the kinetics of tRNA binding and how aminoacylation destabilizes the 

T-box:tRNA complex were not known. In addition, the role of the newly discovered double 

T-loop motif on top of stem-I during tRNA binding was not clear (43). Using different T-box 

riboswitch designs labeled with fluorophore conjugated DNA oligonucleotides, we estimated 

distances between different regions of the full T-box riboswitch by smFRET. Our smFRET 

data on the mini T-box RNA showed that the double T-loop motif is not obligatory for tRNA 

binding. However, the motif stabilizes the bound tRNA and increases its lifetime in the 

complex by ~2-fold as demonstrated in our single molecule kinetic assays. We also showed 

that the conformation of the single-stranded linker region is Mg2+ dependent and is not 

affected by tRNA binding. This suggests that the full T-box is in a pre-organized 

conformation. In addition, we demonstrated that stem-I exists in two major FRET states, 

probably corresponding to extended and kinked conformations. High Mg2+ concentrations 

shift the distribution to a major (~90 %) kinked conformation. This offers an explanation for 

the high Mg2+ requirement for achieving efficient tRNA mediated transcription 

antitermination in vitro using the glyQS T-box riboswitch (44,45). This observed dependence 

on Mg2+ may be due to the presence of a k-turn motif and other motifs in stem-I that 

introduce a kink to precisely recognize tRNA geometry (13).  Using single molecule kinetic 

assays, we have shown that stem-I by itself cannot stably bind tRNA, underscoring the 

importance of the anti-terminator hairpin for tRNA docking, needed for transcription anti-

termination. Our kinetic assays using the mini and mutant T-box designs in comparison 

established that the double T-loop motif does not play a role in tRNA docking, but instead 

only increases the lifetime of the bound tRNA ~2-fold. It is interesting to note that certain 

putative translationally acting T-box riboswitches lack the sequences forming the double T-

loop motif, again supporting our results that it is not functionally essential (46). Furthermore, 

we directly demonstrated that the presence of even a small amino acid such as glycine on the 

tRNA 3’-end increases its dissociation rate constant by ~6-fold relative to the uncharged 

tRNA. Interestingly, a ~6-fold difference was also observed in the dissociation rate constants 

of uncharged tRNA binding to stem-I alone and the mutant full-length T-box. These 
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observations show that charging of tRNA has the same effect as deleting the anti-terminator 

domain. This also suggests that the intervening single-stranded linker region does not 

contribute to tRNA binding affinity, as also shown in previous biochemical studies on the T-

box riboswitch (45,47). Based on our kinetic data of tRNA binding and previous biochemical 

studies, we have proposed an improved quantitative kinetic model for the molecular 

mechanism of the T-box riboswitch (47,48).  

 Although the kinetics of charged tRNA binding were measured using the mutant full-

length T-box, we expect that the relative difference (~6-fold) in the dissociation rate with 

respect to the uncharged tRNA will remain unchanged for the WT full T-box riboswitch. 

However, this needs to be confirmed and will be performed in the near future. In addition, it 

will be interesting to study the relative contributions of the specifier sequence and the double 

T-loop motif in tRNA binding affinity. This can be achieved by ‘blocking’ the double T-loop 

motif by using a fluorophore (Cy3) labeled DNA oligonucleotide that is complementary to 

the stem-I apical loop. FRET between the Cy3 and the tRNA-Cy5 can be used to monitor the 

tRNA binding kinetics using the stem-I only design to more sensitively dissect the function 

of the double T-loop motif. Furthermore, the loop residues of the anti-terminator hairpin are 

not conserved and therefore not involved in tRNA binding (40). A Cy5-labeled RNA 

oligonucleotide that forms the 3’ half of the anti-terminator hairpin and a Cy3-labeled DNA 

oligonucleotide complementary to the stem-I apical loop can be used to doubly label the full 

T-box riboswitch. This design can be used to monitor the distance between the two regions 

and test if tRNA binding brings them closer or if they are already pre-organized, as suggested 

by our distance estimate between the bases of stem-I and the anti-terminator hairpin. In 

addition, a k-turn binding protein can be used to stabilize the kink in stem-I and test its ability 

to promote kinked RNA conformations under physiologically relevant Mg2+ concentration 

(13). This will also indicate whether k-turn binding proteins are required in vivo for proper 

functioning of T-box riboswitches. Furthermore, the tRNA binding kinetics in the presence 

of the k-turn binding protein can also be investigated.  
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In this dissertation, we have studied the conformation, dynamics and ligand binding 

of the preQ1 and T-box riboswitches using smFRET. In chapter 2, we have probed the 

conformation and ligand-mediated folding of two structurally similar preQ1 riboswitches 

from B. subtilis and T. tencongensis using smFRET and computational simulations. Our 

work suggests similar ligand-free conformational ensembles but contrasting folding 

pathways for the two preQ1 riboswitches. In chapter 3, we further investigated the folding 

pathway of the Bsu riboswitch using kinetic analysis of preQ1 dependent conformational 

dynamics. This also follows up on the results obtained from our Gō-model simulations and 

smFRET data that suggest a conformational selection-like mechanism of ligand binding by 

the Bsu riboswitch. Our single molecule kinetic analysis supports the results in chapter 2 and 

demonstrates a strong dependence of the folding pathway of the Bsu riboswitch on Mg2+ and 

ligand concentration. Furthermore, we have investigated the effect of other non-cognate 

ligands on the conformational dynamics of the Bsu riboswitch. In chapter 4, we applied the 

methods used in chapters 2 and 3 to studying the structure and ligand binding kinetics of the 

T-box riboswitch, which is a complex gene regulatory RNA element that senses the 

aminoacylation state of tRNA. Both the preQ1 and T-box riboswitches are from B. subtilis 

and work at the level of transcription termination. However, the similarities between them 

end there. In terms of size, the preQ1 riboswitch is the smallest natural metabolite binding 

RNA found to date while the T-box riboswitch is one of the largest. The T-box riboswitch 

recognizes a macromolecular ligand, tRNA, in contrast to the small-molecule binding preQ1 

riboswitch. Ligand binding leads to termination of transcription in the preQ1 riboswitch 

whereas stable (uncharged) tRNA binding to the T-box riboswitch results in transcriptional 

anti-termination. In addition, our work using smFRET demonstrates a highly dynamic nature 

of the preQ1 riboswitch while the T-box riboswitch appears to adopt a stable structure that is 

less dynamic with only slow transitions between its different conformations. The smFRET 

methods used in this dissertation can be applied to the study of ligand-free conformations and 

dynamics of different riboswitches and probe the effect of ligand on them. In addition, as we 

have shown for the Bsu riboswitch, the ligand dependent kinetics of conformational 

dynamics can be studied to elucidate the molecular recognition mechanisms of other classes 
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of riboswitches. This, we believe, will contribute to a deeper understanding of the metabolite 

binding bacterial riboswitches, with the ultimate goal to design antibiotics against them.  
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