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ABSTRACT 

 

Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the 

extracellular brain deposits associated with Alzheimer’s disease. While Aβ40 is the 

prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid 

deposits over the course of disease development. The low in vivo concentration (pM-nM) 

and metastable nature of Aβ oligomers have made identification of their size, 

composition, cellular binding sites and mechanism of action challenging and elusive. 

Furthermore, recent studies have suggested that synergistic effects between Aβ40 and 

Aβ42 alter both the formation and stability of various peptide oligomers and as well as 

their cytotoxicity. These studies often utilized Aβ oligomers that were prepared in 

solution and at μM peptide concentrations. Here we utilized various single-molecule 

microscopies to follow peptide binding and association on the model membrane as well 

as the primary cultured neurons under physiological Aβ concentrations. At these 

concentrations monomers constitute the dominant Aβ species in solution. These 

monomers tightly associate with the model membrane and are highly mobile, whereas 

trimers and higher-order oligomers are largely immobilized. The Aβ dimer appears to 

exist in a metastable state that can be either mobile or immobile. Additionally, oligomer 

growth on the model membrane occurs more rapidly for Aβ40 than for Aβ42 while 

oligomer growth is largely inhibited for a 1:1 Aβ40:Aβ42 mixture. Interestingly, when 

the neuronal cells were exposed to a 1:1 mixture of nM Aβ40:Aβ42, significantly larger 

membrane-bound oligomers developed compared to those formed from either peptide 

alone. Fluorescence resonance energy transfer experiments at the single molecule level 

reveal that these larger oligomers contained both Aβ40 and Aβ42, but that the growth of 

these oligomers was predominantly by addition of Aβ42. Both pure peptides form very 

few oligomers larger than dimers, but either cell membrane bound Aβ40/42 complex, or 
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Aβ40, bind Aβ42 to form increasingly larger oligomers. These findings provide a 

hypothesis for the structural differences between Aβ42, Aβ40 and different oligomers, 

which may explain how Aβ42-dominant oligomers, suspected of being more cytotoxic, 

develop on the neuronal membrane under physiological conditions. 
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CHAPTER 1 

INTRODUCTION 

 

 

1-1 Alzheimer’s Disease at a Glance 

Alzheimer’s disease (AD) was first documented by the German psychiatrist Alois 

Alzheimer in 1901 and represents the most common form of dementia (which accounts 

for 50–80% of dementia cases), which affects memory loss and other intellectual abilities, 

particularly in people age 65 or older. However, this disease does not represent a normal 

aging process. Approximately 5% of Alzheimer’s patients exhibit early-onset memory 

loss in the age range of 40s to 50s. However, effective treatments to prevent, halt, or 

reverse AD currently remain unavailable. Moreover, certain treatments produce even 

more severe side effects (1). By 2025, the number of Alzheimer’s patients age 65 and 

older in the United States is predicted to reach 7.1 million, which is a 40% increase from 

the 5 million people age 65 and older who are currently affected.  

Due to extensive research over the past three decades, two abnormal structures, 

i.e., plaques and tangles, have been identified as key factors that lead to neuronal cell 

death specifically around the hippocampus region. The plaques consist of large deposits 

of the fibrillar form of a protein fragment, amyloid-beta (Aβ), which accumulate in the 

spaces between nerve cells, whereas the tangles, which are twisted fibrillar aggregates of 

another protein, tau, accumulate within cells. Studies have demonstrated that Aβ may 

trigger tau hyperphosphorylation, which eventually results in the development of fibrillar 

tangles (2) and highlights the importance of Aβ.  
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This thesis focuses on unraveling the molecular mechanisms of Aβ associations 

using biophysical techniques. Chapter 1 begins by introducing Aβ production, structure, 

aggregation (termed ‘oligomerization’ for small aggregates), and possible cell-killing 

mechanisms as well as the importance of different Aβ isoforms.  

 

1-2 Amyloid-β Production 

Aβ peptides consist of between 36 to 43 residues and are generated through 

proteolytic processing of the amyloid precursor protein (APP). This proteolytic 

processing occurs through sequential enzymatic cleavage. First, a β-secretase, β-site 

amyloid precursor protein–cleaving enzyme 1 (BACE-1), removes the APP N-terminal 

segment. Secondly, γ-secretase, which is a protein complex that contains presenilin-1 at 

its catalytic core, produces Aβ peptides of different lengths (Figure 1-1) (3).  

Several studies suggest that Aβ modulates neuronal and synaptic activities, in 

which Aβ accumulation in the brain causes an intriguing combination of aberrant network 

activity and synaptic depression (4). Inhibitory interneuron impairment and aberrant 

glutamate receptor stimulation, which can result in excitotoxicity, play important 

upstream roles in this pathogenic cascade (4–6). Aberrant neuronal activity may trigger a 

vicious positive feedback cycle by augmenting Aβ production, leading to aberrant 

neuronal activity (7). The immediate-early gene Arc, which directly binds presenilin-1 

(PS1) to regulate γ-secretase trafficking, is required for neuronal activity-dependent Aβ 

production (8). Sections 1-6 will discuss the importance and overproduction of longer Aβ 

sequences, which specifically increases the Aβ42/Aβ40 ratio due to mutations in the APP 

gene and/or the gene encoding the γ-secretase complex component PS1. 
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Figure 1-1. Aβ production pathway. Cleavage by α-secretase within the Aβ sequence 

initiates nonamyloidogenic processing. A large amyloid precursor protein (sAPPα) 

ectodomain is released, and an 83-residue carboxy-terminal fragment (C83) remains. C83 

is subsequently digested by γ-secretase, which liberates extracellular p3 and the amyloid 

intracellular domain (AICD). Amyloidogenic processing is initiated by the β-secretase 

beta-site amyloid precursor protein–cleaving enzyme 1 (BACE-1), which releases a 

shorter sAPPα (sAPPβ). The retained C99 is cleaved by γ-secretase substrate, which 

generates Aβ and AICD. γ-secretase cleavage occurs within the cell membrane through a 

unique process termed “regulated intramembranous proteolysis.” sAPPα and sAPPβ are 

APP fragments that are secreted after α-secretase and β-secretase cleavage, respectively. 

AICD is a short tail (approximately 50 residues) that is released into the cytoplasm after 

progressive cleavages by γ-secretase. AICD is targeted to the nucleus, which signals 

transcription activation. The lipid rafts are tightly packed membrane microenvironments 

enriched in sphingomyelin, cholesterol, and glycophosphatidylinositol (GPI)–anchored 

proteins. Soluble Aβ is prone to aggregation. Adapted from (9). 

 

1-3 Structural Differences between Amyloid-β Isoforms 

Proteolytic processing of APP produces more Aβ40 monomers (Aβ containing 40 

residues, as shown in Figure 1-2) than the aggregation-prone and deleterious Aβ42 
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species (Aβ containing 42 residues). Numerous studies have demonstrated that when 

Aβ42 is incubated in solution at µM concentrations, it exhibits a considerably higher 

fibril formation rate than Aβ40 (10–13) and forms larger, more cytotoxic oligomers (14–

16). Although these two peptides differ only in two additional hydrophobic residues, i.e., 

Ile-41 and Ala-42, at the Aβ42 C-terminus, Aβ42 is more prevalent in the insoluble 

aggregates detected in diseased brains and causes more extensive damage to neuronal cell 

cultures than Aβ40 (17–22). These observations demonstrate that the presence of these 

two C-terminal residues significantly affects the physiological and biophysical behavior 

of the two peptides. 

Monomeric forms of Aβ40 and Aβ42 have been classified as intrinsically 

disordered peptides (IDPs), which means that instead of existing as a single folded 

structure, they populate a diverse set of conformational states (23–25). On the other hand, 

the fibrillar form of Aβ40 and Aβ42 adopt highly structured array of β-strands running 

orthogonal to the fibril axis. They further assemble into intermolecular β-sheets that can 

extend to microns in length (26–31). Although Aβ40 and Aβ42 adopt similar fibrillar 

structures, the fibrillization speed for Aβ42 is much faster than Aβ40 under the same 

incubation condition. Differences in the monomeric conformational ensembles govern the 

speed of aggregation of both Aβ40 and Aβ42 (32, 33).  Experimental and theoretical 

results have shown that the two additional C-terminal hydrophobic residues of Aβ42 

sharply increase the hydrophobic clustering between residues 39–40 and 31–36 as 

compared to Aβ40. Especially when Ile-41 is included, the number of structures with 

hydrophobic contacts with 31–36 increases to a decisive hydrophobic clustering, which is 

directly responsible for the differences in the populations of secondary structure of the 

two amyloid peptides (34, 35). Moreover, Lazo et al. showed that the Aβ42 C-terminus is 

resistant to proteolytic digestion (36). Taken together, these observations may explain 

why the nucleation step for fibrillization may be more difficult for Aβ40 compared to 

Aβ42. 

To date, monomeric and fibrillar forms of Aβ40 and Aβ42 have been structurally 

characterized in solution. However, structures of membrane-bound small oligomers, 

which are more directly related to the toxicity discussed in Section 1-5, have not been 
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characterized because they are heterogeneous, metastable, and continuously interconvert. 

This thesis will describe how single-molecule microscopy explores the structures of 

membrane-bound oligomers even when heterogeneity exists.  

 

Figure 1-2. Sequence of Aβ40 and Aβ42. Aβ40 starts from N-terminus to 40th amino 

acid (Valine) and Aβ42 has additional Isoleucine and Alanine.  

 

1-4 Membranes Accelerate Aβ Aggregation 

Aβ interacts with the cell membrane soon after its production by cleavage of the 

transmembrane amyloid precursor protein. Numerous studies have indicated that binding 

to phospholipid membranes can accelerate Aβ oligomerization by increasing the local Aβ 

concentration, stabilizing the Aβ structure, and decreasing the potential barrier for 

additional oligomerization (37, 38). Because Aβ is a cationic peptide, the initial 

membrane binding event is largely driven by electrostatic interactions between the basic 

side chains and the anionic lipid head groups (37, 39). Additional hydrophobic 

interactions occur between the embedded Aβ C-terminal region and the lipid tail groups, 

and the subsequent accumulation of the pepetide at the membrane surface increases the 

local protein concentration and facilitates aggregation (39). The ability of membranes to 

induce regions of locally concentrated proteins is termed “molecular crowding” (40). In 

addition to increasing the local protein concentration, other factors have been proposed to 

play a role in membrane-mediated fibrillogenesis. Adsorption of the unfolded 

amphipathic peptide on the membrane surface may reduce the peptide conformational 

entropy and generate structural ordering, thereby inducing secondary structure formation 

(41). A decrease in the local solvent dielectric constant through the membrane surface 

microenvironment may facilitate peptide–peptide hydrogen bond formation in the β-sheet 

aggregate (42). A reduction in the dimensionality from three dimensions in solution to 

approximately two dimensions at the membrane interface also introduces spatial 
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restrictions that favor the fibril formation pathway (40). Therefore, depending on the 

membrane composition and chemical properties, membranes can provide a template to 

accelerate the aggregation of misfolded amyloidogenic peptides (43). For these reasons 

and because most cell toxicity mechanisms involve the membrane, this thesis focuses on 

membrane-bound Aβ and the comparison with Aβ in solution.  

 

1-5 Amyloid Hypothesis and Aβ Toxicity 

An imbalance between Aβ production, aggregation, and clearance results in the 

accumulation of Aβ peptides. Aβ accumulation may represent the initiating factor in 

Alzheimer’s disease, which is referred to as the “amyloid hypothesis” and is based on 

studies of genetic forms of Alzheimer’s disease, including Down’s syndrome (44), and 

evidence that Aβ is toxic to cells (45, 46). 

Initial reports that the extent of amyloid plaques correlated with AD severity led 

to the amyloid hypothesis, which proposes AD may be caused by deposition of Aβ in 

plaques and fibrils in brain tissue; however, recent extensive studies have revealed that 

neuronal damage is associated with small, oligomeric Aβ species, which has led to the 

peptide oligomer hypothesis (47–53). Notably, little or no correlation was observed 

between the total Aβ peptide deposited in brain plaques and the level of 

neurodegeneration in patients (54, 55). This discrepancy has been more recently 

confirmed using modern amyloid imaging techniques (56, 57). Plaques and fibrils are 

biologically inert but serve as a reservoir that decomposes into soluble aggregates that 

exhibit different levels of toxicity depending on their conformation (58, 59). Stable 

versions of Aβ dimers or dimer aggregates reduce long-term potentiation in cultured 

neurons (59, 60), and a comparison of crosslinked Aβ dimers, trimers, and tetramers 

revealed that neurotoxicity increases nonlinearly with oligomer size (61). A 56-kDa Aβ 

species is neurotoxic in Tg2576 mice (62); lipid-induced oligomers from mature fibrils 

(58), ADDLs (63–65), and annular assemblies (66) exert neurotoxic effects as well as 

affect synapse function and memory formation in mice. Notably, the reported “soluble 

oligomers” are stable with defined structures. However, the physiological amyloid 
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aggregation begins with monomeric Aβ production, which further aggregates into an 

oligomer. This process occurs under a thermodynamic equilibrium, and the species 

continuously interconvert. Therefore, alternatively, toxicity may be due to a series of 

conformers or sizes (58, 61, 67).  

Two primary mechanisms have been proposed to explain this cytotoxicity, and 

both lead to the disruption of Ca2+ homeostasis. The first mechanism is amyloid-mediated 

membrane permeabilization, in which the toxicity of amyloid-forming proteins is directly 

correlated with their shared ability to disrupt membrane barrier function. An initial 

discovery by Arispe and coworkers demonstrated that Aβ exhibits ion-channel activity in 

planar lipid bilayers, wherein Aβ toxicity is based on an ion-channel mechanism that 

causes membrane depolarization, Ca2+ leakage, and a disruption of ionic homeostasis 

(68–74). Channel activity was also later reported for other amyloidogenic proteins, 

including IAPP (which is involved in Type 2 diabetes) (73), α-synuclein (which is 

involved in Parkinson’s disease) (75–77), polyglutamine (78), and prion-derived peptides 

(79). Thus, the toxicity caused by these proteins may be related to channel or pore 

formation in membranes, which produces ion leakage that is similar to pore-forming 

toxins (69, 80, 81). This conclusion is consistent with observations that a disruption of 

Ca2+ homeostasis is characteristic of several neurodegenerative diseases, including 

Alzheimer’s and Parkinson’s disease (82). Direct visualization of annular (i.e., ring-like) 

oligomeric protofibril structures of several amyloidogenic proteins using electron and 

atomic force microscopy has provided additional evidence for the increasingly accepted 

amyloid-pore hypothesis (Figure 1-3) (66, 68, 80, 83). Although the disruptive effect of 

amyloidogenic proteins on membranes has been clearly demonstrated, the exact 

mechanism of pore formation and permeation by Aβ peptides at the membrane is not 

fully understood. Several chemical similarities between Aβ and antimicrobial peptides, 

such as an amphipathic structure, support other membrane-disrupting models. For 

example, several studies suggest that prefibrillar aggregates do not fully penetrate the 

membrane but rather associate with the membrane surface, where they induce membrane 

thinning and leakage (Figure 1-3) (84–86). Furthermore, the pore may not be a static 

structure but rather an intermediate state followed by other processes, such as detergent-

like membrane dissolution (87–89). These transient pore structures are characteristic of 
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the mechanisms of several antimicrobial peptides and may relate to amyloidogenic 

protein activity (90, 91).  

The second mechanism of Aβ induced toxicity may associate with specific 

cellular receptors or protein complexes (e.g., NMDA receptors (92, 93), α7 nicotinic 

acetylcholine receptors (94), the receptor tyrosine kinase EphB2 (95), and the receptor for 

advanced glycation end products (96)), may associate with phosphatidylserine in the 

membrane (97), or may bind and insert directly into the lipid bilayer (37, 70, 98). 

Potential downstream mechanisms include alterations in the distribution or activity of 

neurotransmitter receptors and related signaling molecules (4, 99–102), disruption of 

intracellular calcium homeostasis (103), and impairment of axonal transport and 

mitochondrial functions (9, 104–107). 

It is important to mention that studies that use physiological concentrations of Aβ 

peptides are experimentally challenging because they require that cell–bound Aβ species 

be monitored over long periods of time at nanomolar to picomolar levels, which is 

beyond conventional detection limit; the cell-disrupting peptides (which are likely a 

minority) must be individually identified, and the peptide size, composition, and cellular 

interactions must be characterized. Chapter 2 provides quantitative single-molecule 

microscopy methods to characterize these oligomeric states.  
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Figure 1-3. Schematic diagram depicting three possible mechanisms of Aβ-induced 

membrane damage: carpeting, pore formation and the detergent effect. Adapted 

with permission from Butterfield and Lashuel (108). 

 

1-6 Aβ42:Aβ40 Ratio, Interaction, and Toxicity 

Aβ40 peptides are produced in the brain at 10-fold greater level than the 

aggregation-prone and deleterious Aβ42 species. However, the latter has garnered more 

interest due to the observation that familial AD patients exhibit strongly stimulated Aβ42 

production. Studies have demonstrated that mutations in the APP gene and/or the gene 

encoding the γ-secretase complex component presenilin, increase Aβ42 production 

relative to Aβ40 (20, 109, 110). Bentahir et al. reported that clinical presenilin mutations 

do not necessarily increase Aβ production (111), but they primarily affect the spectrum of 

Aβ peptides generated by γ-secretase, i.e., they increase the proportion of Aβ42 produced. 

Because patients with presenilin mutations present an early and aggressive form of the 

disease, it is logical to propose that the absolute quantity of Aβ peptides produced in the 

brain may be less important than the quality of Aβ peptides (which is reflected in an 

altered Aβ42 to Aβ40 ratio) that generates the elusive toxic Aβ species (112). A higher 
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Aβ42:Aβ40 ratio appears to coincide with more aggressive forms of the disease in 

comparison to sporadic AD cases (113) and affects synaptic activity, neuronal cell 

viability, and memory formation in animals (109, 110, 114–116). A lower Aβ42:Aβ40 

ratio protects neurons from the deleterious effects of Aβ42 (116, 117). The implications 

of this hypothesis for current drug development efforts is important because decreasing 

the absolute levels of Aβ in patients would be less crucial than restoring the correct Aβ 

peptide ratio.  

The molecular mechanisms underlying the synergistic interaction between Aβ42 

and Aβ40 are currently poorly understood and under investigation. As previously 

discussed, Aβ42 is highly fibrillogenic and more prone than Aβ40 to form neurotoxic 

assemblies (10, 14, 118, 119). Nuclear magnetic resonance (NMR) spectroscopy (28), 

electron microscopy (EM) (120), and X-ray fiber diffraction methods (30, 121, 122) have 

been used to discern different architectures for in vitro-generated amyloid fibrils from 

pure Aβ40 and Aβ42 peptides. However, minor alterations in the Aβ42:Aβ40 ratio 

dramatically influence neurotoxic oligomer formation (10, 11, 123). A limited number of 

studies have proposed that Aβ42 and Aβ40 affect the aggregation rate of the other; for 

example, Aβ40 inhibits Aβ42 aggregation (116, 117, 123–129).  

To date, most structural and biophysical studies have been performed using Aβ40 

or Aβ42 in isolation or at concentrations that are at least 100-fold higher than 

physiological Aβ concentrations. Little is known regarding the possible cooperative 

interactions between Aβ42 and Aβ40 under in vivo conditions, and their biological 

outcome. Furthermore, although the Aβ42:Aβ40 ratio affects oligomerization, studies 

have not addressed how oligomers that contain a mixture of Aβ40 and Aβ42 develop on 

the cell membrane and potentially cause cytotoxicity. Chapters 3 and 4 will review the 

current research limitations and discuss single-molecule methods to overcome these 

hurdles and to directly quantify the Aβ42 and Aβ40 stoichiometry at the cell membrane.  
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1-7 Thesis Summary 

The above reviewed potential pathways that lead to neuronal cell death are based 

on intense Alzheimer’s research over the last decade. However, the elucidation of the 

physiological molecular mechanism underlying Aβ-membrane interactions requires 

overcoming current research limitations. For example, due to detection limitations, the 

higher Aβ concentrations (µM versus nM) that are often used in most studies may yield 

different aggregation kinetics in comparison to other physiological mechanisms. The 

term “toxic oligomer” remains ambiguous and even controversial; the interpretation and 

direct comparison of results from different studies is impossible because a consensus on 

an experimental description for the toxic Aβ oligomer is lacking. Even if a consistent 

protocol to produce oligomers were established, it is not known if these preformed 

oligomers accurately represent the oligomers formed in patient brains. It also is not 

known if the size and stoichiometry of Aβ42:Aβ40 in solution identical to those of the 

species that bind to the membrane. Therefore, the ability to directly monitor and quantify 

the individual Aβ oligomer at the membrane is essential. These concerns highlight the 

importance of single-molecule microscopy. 

Chapter 2 describes single-molecule microscopy and related methodologies that 

are designed to overcome the current aforementioned limitations in Alzheimer’s research. 

For example, total internal reflection fluorescence (TIRF) microscopy, fluorescence 

lifetime confocal microscopy, the quantification of oligomer size (i.e., the number of 

monomeric peptides), a particle tracking algorithm, and the preparation of platforms that 

mimic physiological protein-membrane interactions. Chapter 3 introduces a model 

membrane system to study the aggregation kinetics of Aβ40, Aβ42, and a mixture of 

Aβ42/Aβ40 in solution and at the membrane. A comparison between the membrane-

bound oligomeric species formed by Aβ40 and Aβ42 yields information on the effect of 

the two additional Aβ42 residues on peptide-peptide and peptide-membrane interactions. 

Furthermore, the dimer contains two distinct populations, mobile and immobile, which 

suggests the dimer may serve as an important building block. Additionally, membrane-

bound Aβ species predominantly consist of dimers and higher-order oligomers, whereas 

only monomers are present in solution. This result provides structural insights into the 
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different oligomeric species. After determining the possible fundamental mechanisms for 

oligomer formation at the model membrane, Chapter 4 extends the single-molecule 

studies to include conditions that more closely resemble the physiological environment 

by utilizing rat primary hippocampal neuronal cells. Fluorescence resonance energy 

transfer (FRET) between Aβ40 and Aβ42 was measured to distinguish stoichiometric 

interactions. The results indicate that higher-order oligomers contain both Aβ40 and 

Aβ42, but the oligomers predominantly formed upon the addition of Aβ42. Both pure 

peptides form few oligomers that are larger than dimers, but either the membrane-bound 

Aβ42/Aβ40 complex or Aβ42 binds Aβ40 to form increasingly larger oligomers. These 

findings may explain how Aβ42-dominant oligomers, which may be more cytotoxic, 

develop at the neuronal membrane under physiological conditions. Finally, Chapter 5 

concludes on results from experiments that range from a model membrane to neuronal 

cells and provides a hypothesis for the structural differences between Aβ42, Aβ40 and 

different oligomers. Implications from our studies may also explain the toxicity from 

different oligomers and Aβ42:Aβ40 ratios observed in several studies. Potential future 

directions are also discussed. Finally, the methodologies developed herein are not limited 

to Alzheimer’s research and are applicable to several other protein-membrane studies. 
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CHAPTER 2 

METHODS 

 

 

2-1 Rationale for the Selection of Single-Molecule Microscopy 

Chapter 1 introduced Alzheimer’s research and certain obstacles in these studies, 

wherein single-molecule microscopy was mentioned as a potential solution for several 

unanswered questions. As the name suggests, single-molecule microscopy is a technique 

that allows the identification of individual proteins, DNA, and RNA, among other 

molecules, depending on the species that is labeled with the fluorescent dye. To study 

Aβ-membrane interactions, Aβ is labeled with a fluorescent dye that emits fluorescence 

upon laser excitation at a specific wavelength. The laser light and fluorescence emission 

are separated by a series of filters, and the fluorescence can be detected through highly 

sensitive detectors, such as a charge-coupled device (CCD) or an avalanche photodiode 

(APD), depending on the microscopy technique used. The key factor for the resolution of 

single molecules that are smaller than the diffraction limit is an enhanced signal-to-noise 

ratio in comparison to conventional fluorescence microscopy; this ratio is determined by 

factors that include a strong photoresistant dye, a low density for the labeled species (i.e., 

a concentration of nanomolar or lower for good spatial resolution), a highly sensitive 

photon detector, an objective with high numerical aperture (NA), and a coherent laser 

source (130). Total internal reflection microscopy and confocal microscopy are two 

common techniques used in single-molecule studies and are briefly reviewed in the 

following sections.  
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 Conventional fluorescence microscopy measures an ensemble fluorescence signal, 

which is the average signal from a labeled species (e.g., the average fluorescence 

intensity of labeled Aβ in solution). In contrast, single-molecule microscopy identifies 

and classifies individual Aβ species that exhibit different fluorescence intensities; 

therefore, sample heterogeneity can be characterized without overlooking important 

species. This aspect is important for Aβ studies because Aβ exists as a mixture of 

metastable species, and its physiological concentration is approximately pM-nM (47, 48). 

To study Aβ-membrane interactions, a platform and an appropriate single-molecule 

method must be designed. A synthetic model membrane combined with total internal 

reflection microscopy is described first followed by an advanced system using primary 

hippocampal neuronal cells combined with fluorescence lifetime confocal microscopy.  

 

2-2 Model Membrane System 

Given the inherent complexity of biological membranes, many scientists rely on 

structurally and compositionally simplified model membrane systems. These systems 

provide the flexibility to systematically manipulate the chemical composition and fluidity 

of the membrane and monitor the resulting alterations in protein binding and 

permeabilization activity (131, 132). Model membranes differ from biological 

membranes in that they lack components such as integral membrane proteins and 

polysaccharides that may interfere with experimental results and their interpretation. 

Therefore, model membranes are the preferred systems to determine the specific effects 

of proteins on lipid membrane components in a systematic, controlled manner. The major 

disadvantage of model membranes is that the complex array of biochemical processes 

that influence protein activity cannot be fully represented using model membrane systems 

alone. Rather, model membrane systems provide a platform to investigate select protein–

membrane interactions and key mechanistic events that underlie biological activity. 

These systems facilitate the interpretation of experimental observations and the 

development of mechanistic models, and new hypotheses can be subsequently evaluated 

under more complex biological conditions.  
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2-2-1 Preparation of a Supported Lipid Bilayer 

The cell membrane is composed of approximately 20% anionic lipids in the 

cytoplasmic leaflet of the plasma membrane (133). To mimic this anionic feature, a lipid 

composition of 20% 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

(POPG), which is a liquid phase anionic lipid molecule at room temperature, and 80% 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is a neutral lipid, was 

used. The lipid bilayer is formed through the rupture of small unilamellar vesicles 

(SUVs), as shown in Figure 2-1 (134, 135). Freshly prepared and labeled Aβ was 

subsequently introduced into the sample at a final concentration of 4 nM and was 

incubated for either 24 or 120 hours. The Aβ solution was gently washed off prior to 

imaging. 

POPC and POPG (Avanti Polar Lipids, Alabaster, AL) were stored at -20°C. 1.6 

mg POPC and 0.4 mg POPG were co-dissolved in chloroform, and then dried under 

gaseous nitrogen in a fume hood. A further removal of residual chloroform was achieved 

by vacuum drying of the sample overnight. Before the preparation of SUVs, the dried 

lipids were hydrated in buffer (10mM sodium phosphate and 100mM sodium chloride, 

pH 7.4) with the concentration of 2 mg/mL for 2 hours at room temperature, during 

which the sample was vortexed a few times to completely re-suspend the lipids. Lipid 

solution was stored at -80°C for later use. SUVs were formed by sonication of the lipid 

suspension in an ice water bath for 2-5 minutes until the suspension became clear. Finally 

the supported lipid membranes were spontaneously assembled by incubating 400 μL 

freshly prepared SUVs (final concentration was 1 mg/mL) on a pre-cleaned coverglass 

overnight. After the formation of the supported lipid membrane, the unbound SUVs were 

gently washed off with buffer. 
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Figure 2-1. Formation of lipid bilayer on a cover glass. Picture is adapted from (136). 

 

2-2-2 Glass Cleaning 

A clean and hydrophobic glass surface is essential for successfully forming fluid 

lipid bilayer. 25mm coverglasses (Fisher Scientific, Pittsburgh, PA) were washed in 10% 

Liqui-Nox (Alconox, White Plains, NY), laboratory graded detergent, using an ultrasonic 

water bath for 30 minutes. Detergent was then washed off by rinsing the coverglass with 

deionized water. And the ultrasonic cleaning cycle is repeated in the order of 1M 

potassium hydroxide, ethanol, and acetone. The coverglass was rinsed in water and dried 

it in the oven at 80°C for 15 minutes (53). Finally, the coverglass was kilned at 500°C for 

two hours. The kilning oxidizes the glass leaving a hydrophilic surface.  

 

2-3 Total Internal Reflection Fluorescence (TIRF) Microscopy 

In contrast to epifluorescence microscopy, TIRF presents the advantage that the 

induced evanescent wave (an illumination depth of less than 100 nm) eliminates the 

background fluorescence from outside of the focal plane. Because we are interested in 

membrane-bound Aβ, which lies within 10 nm above the cover glass (Figure 2-2), the 

utilization of TIRF dramatically improves the signal-to-noise ratio and, consequently, the 

spatial resolution of the features or events of interest. Moreover, TIRF can be used to 

collect wide-field and real-time images; thus, multiple photobleaching events and particle 

diffusion motions can be collected.  
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For total internal reflection, the laser beam is shifted toward the side of the 

objective, which increases the incident angle (Figure 2-2). Total internal reflection is 

generated when the incident laser beam enters just beyond the critical angle from a higher 

refractive index material (e.g., cover glass, n1 ~ 1.51) to a lower refractive index sample 

(e.g., buffer or model membrane, n2 ~ 1.3-1.4). A static electromagnetic wave (i.e., an 

evanescent wave) is generated on the sample side, and the energy exponentially decreases 

as follows: 

𝐼(𝑧) = 𝐼(0) ∙ 𝑒−𝑧/𝑑. Eq, 2-1 

The penetration depth constant (d) is dependent upon the wavelength of the incident 

illumination (λ), the angle of incidence (θ), and the refractive indices of the media at the 

interface, according to the following equation (137): 

𝑑 = 𝜆
2𝜋

(𝑛12 ∙ 𝑠𝑖𝑛2𝜃 − 𝑛22)−1/2, Eq. 2-2 

where d is typically less than 300 nm; therefore, highly specific fluorescence excitation 

can be induced in a very thin optical section. Although TIRF is limited to imaging at the 

interface of two different media with suitable refractive indices, numerous applications 

are ideally suited for this technique. The biomedical field represents one of the most 

active research areas, in which numerous compelling questions involve processes at the 

cell surface or plasma membrane, which are appropriate interfaces for TIRF 

investigations. 
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Figure 2-2. Comparison between epifluorescence and TIRF microscopies.  

 

2-3-1 TIRF Data Acquisition 

Single molecule TIRF microscopy was performed on an Olympus (Center Valley, 

PA) IX-71 inverted microscope. A single-mode diode laser (643 nm, Power Technology, 

Inc., Alexander, AR) was focused onto the back focal plane of a 60x, 1.45 NA Olympus 

PlanAPO TIRF objective. Through-the-objective TIRF was performed by translation of a 

mirror just upstream of the objective lens. A multi-band pass SEMRock (Rochester, NY) 

dichroic mirror was used to separate excitation from emission signal; a 620/60 excitation 

band pass filter (Chroma Technology Corporation, Bellows Falls, VT) and 700/75 

emission filter (Chroma Technology Corporation) were included in the setup. Images 

were acquired on a back-illuminated Ixon EMCCD camera, model DV887ACS-BV 

(Andor, Belfast, UK). 

 

2-3-2 Fluorescence Recovery after Photobleaching (FRAP) 

To confirm whether the lipid bilayer was successfully formed, a FRAP 

experiment was performed to measure the mobility of the lipid molecules (138, 139). To 
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monitor the lipid molecules, 0.5% nitro-2-1,3-benzoxadiazol-4-yl-POPC (NBD-POPC; 

Avanti Polar Lipids) was mixed with 79.5% POPC and 20% POPG to enable 

fluorescence photobleaching and monitor the recovery. An argon laser was used for 

conventional epifluorescence or TIRF microscopy to photobleach a circular membrane 

area approximately 50 µm in diameter with high-intensity laser illumination for a short 

duration (5 seconds). Because the laser intensity is higher than the saturation level of the 

dye molecules, the uneven illumination continues to yield a relatively flat photobleaching 

profile, which satisfies the assumption used in the following analysis to extract the 

diffusion coefficient. The fluorescence recovery in the photobleached region was 

subsequently recorded using a much lower illumination intensity (<1/2500 of the 

photobleaching intensity). Because all of the free lipid molecules in solution were 

removed through extensive washing, the fluorescence recovery was purely due to the 

lateral diffusion of the lipid molecules in the membrane; this mobility measurement of 

the lipid molecules was also used to confirm the integrity of the lipid membrane. To 

extract diffusion coefficients from FRAP analysis, the fluorescence recovery curves were 

fit to the following equation (139) using Mathematica: 

𝑓(𝑥) = 𝑒−
2𝜏𝐷
𝑡 ∙ [ 𝐼0(2𝜏𝐷

𝑡
) + 𝐼1(2𝜏𝐷

𝑡
)]. Eq. 2-3 

In this equation, 𝑓(𝑥) is the integrated fluorescence intensity over the photobleached 

region; I0 and I1 are the modified Bessel functions of the first kind, as follows: 

(𝐼𝑛(𝑧) =  1
2

 𝜋𝑖 ∮ 𝑒
𝑧
2(𝑡+1𝑡) ∙ 𝑡−𝑛−1 𝑑𝑡). Eq. 2-4 

where 𝜏𝐷=𝑤
2

4𝐷
 is the characteristic diffusion time, w is the radius of the photobleached 

region, and D is the diffusion coefficient. As shown in Figure 2-3, after 150 hours of 

incubation of unlabeled Aβ40 with 0.5% NBD-POPC labeled lipids, lipid molecules 

continued to uniformly diffuse with the diffusion coefficient D = 1.49 ± 0.23 µm2/sec, 

which indicates that the lipid bilayer was successfully formed without disruption by Aβ. 
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Figure 2-3. Lipid bilayer remains uniform and diffusible after incubating with Aβ 

for 150 hours. Lipid bilayer with 0.5% labeled POPC-NBD was incubated with for 2nM 

unlabeled Aβ40 150 hours. Fluorescence recovery after photobleaching (FRAP) shows 

the lipids are still mobile even immobilized oligomers have been formed as shown in 

Figure xx. This may suggest the Aβ immobilization and aggregation is not caused by 

lipid disruption. Scale bar is 10 µm. 

 

2-3-3 Single Particle Tracking and Lateral Diffusion Analysis 

Sample contains both immobile and mobile particles on the lipid bilayer; 

therefore to first monitor the mobile species, we removed most of the immobile particles 

by subtracting each frame with averaged consecutive ten frames. Each image file 

contains 150 frames with the accusation time of 0.3 second. Fluorescently labeled  Aβ 

oligomers in each frame of a recording were localized using custom software written in 

Matlab (The MathWorks, Natick, MA) as described previously (140). Briefly, 

diffraction-limited spots were fit to a two-dimensional Gaussian shape through least 

squares fitting using ‘fminfunc()’, a built-in Matlab function. Identified spots are culled 

to remove outliers in width, brightness, aspect ratio, and localization precision. Particle 

tracking were performed using a global minimization algorithm as described in Jaqaman 

et al. (141). Trajectories included had at least 10 displacements. The mean square 

displacement (MSD) was calculated using the following formula: 

MSD(ndt) = 1
N−n

� [�x(i+n) −  xi�
2 +  �y(i+n) −  yi�

2 ]
N−n

𝑖=1
, Eq. 2-5 

where xi and yi are the coordinates of an object on frame i, N is the total number of 

frames of the trajectory, n is the number of interval, dt is the time between two successive 
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frame, and ndt is the time interval over which the displacement is averaged. The initial 

diffusion coefficient (D) was determined by fitting the first 2-5 points of the MSD plot 

versus time with MSD(t) = 4D2−5t (101, 142). 

 

2-3-4 Oligomer-Size Calibration using Photobleaching or Fluorescence Intensity 

The combination of TIRF microscopy with single-molecule photobleaching 

allows the simultaneous monitoring of the fluorescence intensity from multiple single 

aggregates over a broad area in real time. Each monomeric molecule of interest is labeled 

with a fluorescent dye (in our case, each Aβ peptide is labeled with one dye molecule) 

(143); therefore, using a strong laser intensity to photodamage the dye molecules causes a 

stepwise decrease in the fluorescence intensity. The number of monomeric molecules that 

form an aggregate can be determined by counting the photobleaching steps from a 

particular aggregate (143, 144).  

The two major difficulties in counting the photobleaching trajectory are due to the 

following reasons: 1) the aggregate fluorescence signal contains more than seven 

monomers, which may saturate the CCD camera and produce unresolved initial bleaching 

steps and 2) the labeled protein fluctuating in the sample may produce a noisy 

fluorescence trajectory. In our case, a portion of each immobilized oligomer (i.e., the N-

terminus, which is labeled with the dye) may continue to freely fluctuate in the 

membrane, which produces a fluorescence time trace that is too noisy to be resolved.   

Rather than directly counting the oligomer size from the photobleaching 

trajectories, the first frame of the integrated fluorescence intensity was divided by the 

average monomer intensity to yield the total number of monomeric peptides in a 

particular oligomer. To obtain the average monomer intensity, we selected at least 30 

photobleaching trajectories with two well-resolved bleaching steps (dimer) and equal step 

sizes. After background subtraction, the initial intensities were divided by two to yield 

the estimated monomer intensity (Figure 2-4). A single bleaching step is excluded 

because it may result from two or three dye molecules that bleach faster than the data 

acquisition time. Therefore, the single bleaching step may not truly represent the 
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monomer intensity. When the average monomer intensity was determined, the oligomer 

fluorescence intensity was divided by this value and rounded to the nearest integer to 

yield the corresponding size. The fluorescence intensity of the selected oligomers was 

corrected based on their position relative to the center of illumination.  

These steps were processed using an in-house LabVIEW program. First, the 

oligomers were identified by dividing the intensity of each pixel by the average intensity 

from 80 surrounding pixels (9 × 9 pixels; this box can be adjusted based on the oligomer 

density). Potential oligomers were selected if their divided intensity was greater than the 

threshold (1 equals the background) and smaller than the assigned oligomer size (i.e., the 

pixel number of each oligomer). The background composed of the 80 surrounding pixels 

was later subtracted. The oligomer intensities were corrected by multiplying an intensity 

ratio factor based on the oligomer location relative to the center of illumination; this ratio 

factor was calculated by using a control image of only the lipid bilayer and measuring the 

ratio of the intensity at the oligomer position to the intensity at the center of the image. 

This final value represents the oligomer intensity, and its time trace was plotted to search 

for a clear dimer trajectory (Figure 2-4).   

 

Figure 2-4. Two photobleaching steps indicate that the oligomer is a dimer. The 

average monomer intensity is approximately 550 counts.  
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2-4 Confocal Microscopy 

If the target molecule is more than 300 nm above the glass surface (i.e., a protein 

located on top of a cell membrane), TIRF microscopy is inadequate. Confocal 

microscopy allows for deeper sample measurement and removes the out-of-focus 

background signal using point illumination and a spatial pinhole to eliminate the out-of-

focus light in specimens that are thicker than the focal plane. Additionally, confocal 

microscopy enables the reconstruction of three-dimensional structures from the obtained 

images.  

In a conventional fluorescence microscope, the entire specimen is evenly flooded 

with light from a light source (Figure 2-2, left). All areas in the specimen that lie in the 

optical path are simultaneously excited, and the resultant fluorescence is detected by the 

microscope photodetector or camera, which includes a large portion of unfocused 

background. In contrast, a confocal microscope uses point illumination and a “detector 

pinhole aperture” in an optically conjugate plane in front of the detector to eliminate out-

of-focus signals; the name “confocal” stems from this configuration (Figure 2-5). 

Because only the light produced by fluorescence near the focal plane can be detected, the 

optical resolution of this image, particularly in the sample depth direction, is superior to 

the resolution generated using wide-field microscopes. However, because much of the 

light from the sample fluorescence is obstructed at the pinhole, the enhanced resolution 

yields lower signal intensity; therefore, long exposures are often required. Because only 

one point in the sample is illuminated at a time, 2D or 3D imaging requires scanning over 

a regular raster (i.e., a rectangular pattern of parallel scanning lines) in the specimen. The 

achievable thickness of the focal plane is primarily defined by the wavelength of the light 

used divided by the numerical aperture of the objective lens but also by the optical 

properties of the specimen. These microscopes are particularly suitable for 3D imaging 

and sample surface profiling due to thin optical sectioning. 
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Figure 2-5. Basic setup for confocal microscopy. An aperture (pinhole) is used to block 

out-of-focus flare in thick sample, leaving only the focal spot got through. Image is 

adapted from http://www.microscopyu.com 

 

2-4-1 Fluorescence Lifetime Imaging Microscopy (FLIM) 

In vivo fluorescence emission detection at the single-molecule level represents a 

challenge for confocal microscopy because cellular autofluorescence competes with 

exogenous dye emission (145, 146). Thus, two different fluorophores or different signal 

sources with overlapping emission spectra cannot be distinguished. Therefore, additional 

information is necessary to separate multiple signals that exhibit similar fluorescence 

emission spectra.   

Information is collected by the detector, which measures the number of photons 

(i.e., the intensity). Through manipulation, the detector can also measure how rapidly 

fluorescence emission is detected upon laser excitation. This additional information 

represents the “fluorescence lifetime,” which depends on the chemical structure and local 

environment. For example, ATTO-565 and Cy3 exhibit similar emission maxima at 
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approximately 560 nm; however, ATTO-565 exhibits a lifetime of 3.4 ns, which is much 

longer than that of Cy3 (0.3 ns). Therefore, by measuring their fluorescence lifetimes, 

ATTO-565 and Cy3 can be simultaneously detected without ambiguity. FLIM has also 

been used to discriminate between autofluorescence and sample fluorescence (147–149). 

FLIM uses an avalanche photodiode (APD) detector with confocal microscopy 

and time-correlated single photon counting (TCSPC). In TCSPC, one measures the time 

between sample excitation using a pulsed laser and the arrival of the emitted photon at 

the detector. TCSPC requires a defined “start”, which is provided by electronics that steer 

the laser pulse or photodiode, and a defined “stop” signal, which is generated through 

detection using single-photon sensitive detectors (e.g., APD). This time delay is 

repeatedly measured to statistically analyze the fluorophore emission. The delay times are 

sorted into a histogram that plots the occurrence of emission as a function of time 

following the excitation pulse (Figure 2-6, measured). To acquire a fluorescence lifetime 

image, the photons must be attributed to different pixels by storing the absolute arrival 

times of the photons in addition to their relative arrival time with respect to the laser 

pulse. As shown in Figure 2-6, the lifetime value per pixel is determined by fitting the 

measured data with the convolution of the instrument response function and a single 

exponential decay (assuming the fluorescence only includes a single lifetime). 
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Figure 2-6. Fluorescence lifetime imaging microscopy and lifetime fitting. Upper left 

is the fluorescence signal from Aβ40-HL555. Upper right shows the lifetime value (nano 

seconds) in each pixel. The lifetime value is fitted by a single exponential decay as shown 

in the bottom.  

 

2-4-2 FLIM Data Analysis 

While excitation in the red (HL647 or Cy5 dye) results in almost no 

autofluorescence, an auto-fluorescent signal is generated in the cell when it is excited 

with a 532 nm laser, which is a common wavelength for the FRET donor. This makes 

Aβ40-HL555’s emission indistinguishable from the autofluorescence based on the gross 

emission spectrum (Figure 2-7 upper left). However, incorporating single molecule 

fluorescence lifetime imaging microscopy (smFLIM) gives us another dimension to 

differentiate signals with similar fluorescence intensity. We performed smFLIM 
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measurement on two samples, neurons with 2nM unlabeled Aβ40 and neurons with 2nM 

Aβ40-HL555 (Figure 2-7). The fluorescent spots of these two samples were selected and 

each spot’s lifetime was fitted to a single exponential decay. For the sample with Aβ40-

HL555 we only selected those spots that were away from the cell body that possesses 

strong autofluorescence. The distribution of the lifetime from the selected spots is plotted 

in Figure 2-7 right. The lifetime distribution of the control sample peaks around 0.58 ns, 

whereas the lifetime of membrane bound Aβ40-HL555 peaks around 0.48 ns with 6 fold 

larger density of emitters than the autofluorescence at this lifetime. Based on this distinct 

difference, fluorescent spots with lifetime greater than 0.53 ns were considered 

autofluorescence and excluded from our measurement. While this approach may mark a 

small number of autofluorescent spots as Aβ40, comparison of the results between two 

different time points minimizes this bias since the autofluorescence remains similar over 

time. 
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Figure 2-7. Sample with Aβ40-HL555 shows shorter fluorescence lifetime spots than 

the control sample. The data presented for each sample is the average of two 

experiments and each experiment contained at least 250 particles.  Error bars represent 

the standard deviation of the mean. 
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2-4-3 Lifetime Acquisition Parameters 

Fluorescence lifetime imaging microscopy (FLIM) was performed at the 

University of Michigan's Single Molecule Analysis in Real-Time (SMART) Center and 

was measured by time-correlated single-photon counting (TCSPC) by ALBA microscope 

system (ISS, Champaign, IL). The microscope was Olympus IX-81, equipped with a 

37°C temperature controlling stage, a 1.2NA 60X water-immersion objective (Olympus) 

and imaged by two APDs. The excitation source was Fianium SC 400-6-PP with acousto-

optic tunable filters (AOTF). Laser excitation was selected at 532nm and 635nm with 

power 41.5 μW and 34.6 μW before the objective respectively. The emission filter for 

Aβ40-HL555 and Aβ42-HL647 were 582/75 and 697/75 nm band pass filter (Semrock) 

respectively. The dichroic mirror was 405/470/532/632 quadband dichroic mirror (Alluxa, 

Santa Rosa, CA). The lifetime is fitted by VistaVision software (ISS, Champaign, IL) 

with one exponential decay curve.  

 

2-5 Förster Resonance Energy Transfer (FRET) 

FRET measures the distance between two molecules that lie within several 

nanometers of each other, which is a sufficient distance for molecular interactions, 

whereas two-color colocalization can only resolve a distance on the scale of hundreds of 

nanometers (which is more than 20 times less sensitive than FRET).   

The mechanism of fluorescence resonance energy transfer involves a donor 

fluorophore in an excited electronic state, which may transfer its excitation energy to a 

nearby acceptor fluorophore in a nonradiative fashion through long-range dipole-dipole 

interactions. Upon detection of acceptor emission following donor excitation, the energy 

transfer efficiency and donor-acceptor distance can be calculated. The theory underlying 

energy transfer is based on the concept of treating an excited fluorophore as an oscillating 

dipole that can undergo energy exchange with a second dipole of a similar resonance 

frequency. In this regard, resonance energy transfer is analogous to the behavior of 

coupled oscillators, such as a pair of tuning forks vibrating at an identical frequency. In 

contrast, radiative energy transfer requires the emission and reabsorption of a photon and 
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depends on the physical dimensions and optical properties of the specimen, the container 

geometry, and the wavefront pathways. Unlike radiative mechanisms, resonance energy 

transfer can yield a significant amount of structural information on the donor-acceptor 

pair. 

 

2-5-1 FRET Efficiency Analysis 

The size of individual Aβ oligomers is quantified based on their relative 

fluorescence intensity to the monomer intensity. For the homogeneous Aβ40 and Aβ42 as 

well as for Aβ42 in the heterogeneous species this is straightforward because their 

emission intensities are not significantly modified by quenching. In contrast, when Aβ40 

bound to Aβ42, energy transfer occurs and Aβ40 emission is partially quenched. The 

original intensity of a donor is calculated by 

Eq. 2-6 

where 𝐼Aβ40  is the measured Aβ40 emission intensity excited at 532 nm. IAβ40
0  is the 

calculated original donor emission before quenching. And E is the FRET efficiency 

Eq. 2-7 

𝛾 =
𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟′𝑠 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 × 𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙′𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝐷𝑜𝑛𝑜𝑟′𝑠 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 × 𝐷𝑜𝑛𝑜𝑟′𝑠 𝐶ℎ𝑎𝑛𝑛𝑒𝑙′𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

 

where 𝐼Aβ42 is the measured Aβ42 emission intensity excited at 532 nm. And γ is the 

quantum yield of Aβ42 divided by the quantum yield of Aβ40, which has been corrected 

for its lifetime, and then multiply the detection sensitivity of the acceptor divided by the 

detection sensitivity of the donor (150).  

The degree of bleed through from the donor emission into acceptor channel is 

calculated by a linear fit to Aβ40 emission appeared in acceptor channel versus different 
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Aβ40 concentrations in solution containing only the Aβ40. The measured FRET signal is 

therefore corrected for the bleed through from its donor (Aβ40). The direct excitation of 

the acceptor at 532 nm was found to be insignificant. 

 

Figure 2-8. FRET is only detected when Aβ40 is mixed with Aβ42. Scale bars are 10 

µm. Primary hippocampal neurons incubated with 2nM Aβ40 were excited by 532 nm 

laser and show Aβ40 (donor) emission (A) but do not show any emission in Aβ42 

(acceptor) channel (B), and Aβ40 can not be directly excited by 635 nm (C). Neurons 

incubated with 2nM Aβ42 only were also excited by 532 nm laser but do not show any 

signal in Aβ40 (donor) and Aβ42 (acceptor) emission channels (D and E). The sample 

with just Aβ42 can only be excited by 635 nm laser and shows emission in Aβ42 

(acceptor) emission (F). Neurons incubated with 2nM Aβ40 and 2nM Aβ42 were excited 

by 532 nm laser and show both donor emission (G) and FRET signal (H). Excitation of 

635 nm laser confirmed Aβ42 emission co-localizes with acceptor signals (I). The dashed 
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circle shown in (D) indicates the autofluorescence generated by 532 nm laser, and the 

donor emission is later distinguished from autofluorescence by their fluorescence lifetime. 

 

2-5-2 Donor Acceptor distance Analysis from FRET 

The distance between a donor and acceptor is the most powerful information that 

can be extracted from single-molecule FRET. The FRET efficiency (ET) of dipole-dipole 

interactions can be described as follows: 

𝐸𝑇 =  𝑅06

𝑟6 + 𝑅06
, Eq. 2-8 

where r is the distance between the donor and acceptor. R0 is the Förster critical distance; 

when r = R0, the transfer efficiency is 50%.  

R0 = 2.11 × 10-2 • [κ2 • J(λ) • η-4 • QD]1/6, Eq. 2-9 

where κ2 is a factor that describes the relative orientation in space between the transition 

dipoles of the donor and acceptor, J(λ) is the overlap integral in the donor emission and 

acceptor absorbance spectral region (the wavelength is expressed in nanometers), η 

represents the refractive index of the medium, and QD is the quantum yield of the donor. 

Ideally, the FRET efficiency can be used to calculate the distance between the donor and 

acceptor and provide structural information on the complex; because the dyes may be 

randomly oriented in solution, κ2 is typically assumed to be 2/3. Therefore, R0 for a Cy3-

Cy5 FRET pair is 47 Å (which is corrected for the QD on the neurites). Based on Eq. 2-7, 

the calculated Aβ40-Aβ42 dimer distance distribution is shown in Figure 2-9. 
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Figure 2-9. Distance of a hetero-dimer (N-terminus to N-terminus) on neurite and 

the glass surface.  

We note that in using the FRET efficiency we estimate the distance between two 

N-terminus of a dimer is ~60 Å. This is larger than would be expected for a globular 

association of the peptides forming the oligomer (25 Å) (151). There are at least three 

possibilities that might account for this.  The first is that the assembly is not globular but 

stretched out, perhaps because it is on a surface, though this seems unlikely. The second 

is that the calculation for the FRET distance assumes that the dipole orientation between 

the donor and the acceptor is fully randomized (i.e., k2 = 2/3). If assembly on the lipid 

bilayer results in steric hindrance, then k2 could be much smaller resulting in lower 

transfer efficiency and an increased inferred separation between donor and acceptor. A 

third possibility is that these oligomers are not structures of pure Aβ peptides, but rather 

structures that assemble on the membrane surface either by association with some 

structural scaffold (e.g., a membrane bound protein complex or something associated 

with the cytoskeletal structure) or by including lipids in the structure leading to a larger 

assembly. Resolving these models by optical imaging clearly lies outside the bound of 

even the highest super resolution methods. 

 

2-5-3 Confocal Mode Integrated Intensity-based Oligomer Size Determination 
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We have used confocal mode fluorescence intensity to measure oligomer size on 

both black lipid membranes and cell membranes (152–154). To measure oligomer size on 

living cells, a protocol has been developed to correlate particles’ confocal mode 

fluorescence intensity values with the number of Aβ monomers they contain (153). When 

the laser power is below saturation, the total fluorophore emission varies linearly with Aβ 

concentrations in solution. Therefore, the slope of total intensity from a given volume 

versus the number of molecules present in the volume yields intensity per molecule. The 

fluorescence intensity of an oligomer can be divided by this value to yield the number of 

Aβ monomers present in the oligomer. The cell-bound oligomers were defined as those 

fluorescence spots whose maxima fell on or within 500 nm of a neurite and were boxed 

with a 12 pixel x 12 pixel (~1.5 µm x 1.5 µm) region of interest (Figure 2-10 solid 

square). Following subtraction of adjacent background fluorescence counts (Figure 2-10 

dashed square), the integrated fluorescence intensity of each region of interest was 

divided by fluorescence intensity per molecule to determine oligomer size. However, the 

fluorescence intensity is partially quenched upon binding to the neuronal membrane. For 

dynamic quenching, the ratio of intensity of the quenched fluorophore (Iq) to that of the 

unquenched fluorophore (I0) is equal to the ratio of the fluorophore lifetimes (τq and τ0, 

respectively) under each condition (155): 

00 τ
τ qq

I
I

=
, Eq. 2-10 

The averaged fluorescence lifetimes for Aβ40 and Aβ42 in 10 mM sodium phosphate 

buffer (τ0) were 0.75 and 1.56 ns. And the averaged lifetimes of membrane bound Aβ40 

and Aβ42 were 0.48 and 1.24 ns.  

34 
 



 
Figure 2-10. Aβ oligomer size is determined by its fluorescence intensity. 

 

2-6 Peptide Preparation 

N-terminally HiLyteFluor 555 labeled Aβ40, and N-terminally HiLyteFluor 647 

labeled Aβ40 and Aβ42 (Aβ40-HL555, Aβ40-HL647 and Aβ42-HL647, respectively) 

were obtained from Anaspec (Freemont, CA). Aβ peptides were dissolved in 1% NH4OH 

at 0.1 mg/mL and vortexed for 30 s. The peptide solutions were aliquoted into individual 

microtubes, lyophilized and the solids stored at -20°C. To prepare fresh Aβ samples, 

single aliquots were dissolved in 10 mM sodium phosphate buffer, pH 7.4, to a 

concentration of 1-2 µM (as determined spectrophotometrically using ε555=150,000 and 

ε647=250,000). Freshly prepared Aβ were further diluted down to final concentrations 

within 15 minutes.  

Numerous control experiments have been done in our laboratory and others 

suggest that various forms of N-terminally labeled Aβ behave similarly to unlabeled Aβ 

in terms of fibrilization (156), ability to permeabilize synthetic membranes (143, 152) as 

well as rat basophilic leukemia cell-derived membrane blebs (153), toxicity to cultured 

cells (157) and microglial activities inside the mouse cortex (158). 

 

2-7 Primary Rat Hippocampal Cell Culture 

Dissociated neuron cultures were made from newborn pups (P0−P2). Rats were 

euthanized by decapitation immediately prior to brain dissection and tissue collection. 
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This procedure was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocol was approved by the University Committee on Use and Care of Animals 

(UCUCA) at the University of Michigan. Primary rat hippocampal neuron cultures were 

prepared as described (159). Cells were plated at 30,000/well on 14 mm poly-D-lysine 

coated glass coverslips adhered to 35 mm culture dishes (MatTek, Ashland, MA). 

Imaging experiments were performed between DIV 12 and DIV 18. For single molecule 

oligomer size measurement experiments, cells were incubated for 10 minutes or 48 hours 

at 37°C in HBS (HEPES-Buffered Saline: 119 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 

mM MgCl2, 30 mM Glucose, 10 mM HEPES, pH 7.4) containing 2 nM Aβ40-HL555 or 

Aβ42-HL647 or 4 nM mixed Aβ40-HL555 and Aβ42-HL647 at 1:1 ratio. Before imaging, 

cells were washed three times in HBS and then imaged within two hours. 
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CHAPTER 3 

STUDIES OF Aβ40 AND Aβ42 INTERACTIONS ON A PLANAR LIPID 

BILAYER 

 

3-1 Motivation for Model Membrane Studies 

Model membranes differ substantially from biological membranes and clearly 

lack important additional components such as different leaflet compositions, connections 

to the cytoskeleton, integral membrane proteins and polysaccharides, that may all 

significantly alter the behavior of Aβ and its corresponding toxicity. Hence, model 

membranes serve the purpose of understanding the interaction with the phospholipid 

bilayer, where we recognize even in this that the cellular phospholipid bilayer can be 

more diverse than what we use here.  Model membranes, however, make it possible to 

study the specific effects of proteins on lipid membrane components in a systematic, 

controlled manner. Although the complex array of biochemical processes that influence 

protein activity cannot be fully represented using model membrane systems alone, these 

membrane systems provide a platform to investigate select protein–membrane 

interactions and key mechanistic events that underlie biological activity. 

Single-molecule microscopy is well suited for studies at physiological peptide 

concentrations and allows direct monitoring of oligomer formation at the cellular 

membrane from monomeric Aβ. Recently, our group (152–154, 160, 161) and others 

(162, 163) have employed single-molecule microscopy in total internal reflection 

fluorescence (TIRF) and confocal modes to study Aβ oligomer assembly and size 

distribution at physiological peptide concentrations at the surface of model membranes 

and at the surfaces of PC12, SH-SY5Y neuroblastoma and cultured neuronal cells. Even 

at these low concentrations, Aβ tightly associates with the membrane (Kd < 470 pM) 
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(160), and the membrane facilitates the formation of surface-bound oligomers that exhibit 

a clearly larger size distribution in comparison to oligomers formed in solution. Using 

single-molecule microscopy in combination with electrophysiological measurements, we 

also found that the Aβ40 oligomer size correlates with conductance changes in a model 

membrane (152).  

In this study, total internal reflection microscopy was used to image individual 

fluorescently labeled synthesized Aβ peptides at physiological concentrations interacting 

with a supported lipid bilayer combined and to monitor the oligomerization process on 

the membrane. The membrane’s 2D surface, with a wide illumination area, provides an 

excellent platform for single-particle tracking, thereby enabling us to monitor the 

movement of individual membrane-bound mobile species and characterize their size (i.e., 

the number of peptides) based on their fluorescence intensity (i.e., the accumulated 

intensity). Utilizing fluorescence photobleaching from a fraction of membrane-bound 

immobile species, the monomer intensity can be readily acquired and further used to 

calibrate the size of the entire membrane-bound Aβ population. The comparison of the 

dynamics and size between the mobile and immobile species as well as among Aβ40, 

Aβ42, and the Aβ40:Aβ42 mixture provides information that further explains several 

experimental observations over recent decades in more detail. 
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3-2 Aβ40, Aβ42, and the Aβ40:Aβ42 mixture primarily exist as monomers in 

solution at nanomolar concentrations and do not exhibit additional oligomerization 

over 120 hours 

 

Figure 3-1. Oligomer size distributions for 4 nM Aβ40, Aβ42, and a 1:1 mixture of 

Aβ40:Aβ42 in solution. The oligomer sizes were determined by counting the 

photobleaching steps and were corrected for the threshold effect due to fluorophore 

dipole orientation. The percentage was obtained by normalization to the total number of 

oligomers. The percentages in each condition were calculated from at least three 

experiments, and each experiment contained at least 200 oligomers. The error bars 

represent the standard deviation of the mean. 

 

To compare the size (i.e., the number of monomeric peptides in an oligomer) of 

the membrane-bound Aβ to Aβ in solution, we first extracted a 10-µL aliquot from 

peptide solutions that were incubated with a lipid bilayer for 24 and 120 hours and spin-

coated each aliquot on a precleaned glass slide at 2000 rpm until the cover glass was dry 

(~30–40 seconds at room temperature). We did not observe a loss of solution from the 

slide during this process, assuring that 100% of the Aβ was captured. Because the spin-

coated oligomers were dry and exhibited clear photobleaching trajectories, their sizes 
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were determined by counting the number of photobleaching steps. Due to the different 

dipole orientations assumed by the fluorophore in this experiment, the emission intensity 

of some of the oligomers was below the threshold used in our data processing (to reject 

background fluorescence), leading to undercounting. We corrected this bias for all of our 

spin-coated sample, as previously described (143). We also assumed that the spin-coating 

process was sufficiently rapid that the oligomer size distribution was not altered during 

solvent evaporation. 

Both Aβ40 and Aβ42 samples were found to possess similar size distributions of 

91.8% and 90.0% monomer, respectively, after a 24-hour incubation (Figure 3-1). These 

results are consistent with previous studies that indicated the monomer is the dominant 

species in solution at nanomolar concentrations (153, 154, 164). However, the solution 

that contained 1:1 Aβ40:Aβ42 exhibited slightly fewer monomers (74.7%) and more 

dimers, suggesting that Aβ40 and Aβ42 interact to form slightly larger oligomers in 

solution then either peptide alone (Figure 3-1). This observation is also consistent with 

previous reports (154).  

Although the Aβ40:Aβ42 mixture contains a slightly larger dimer fraction, the 

monomer remains the dominant species, and the oligomer size distribution does not 

change over a 120-hour incubation in all cases (i.e., Aβ40, Aβ42, or the Aβ40:Aβ42 

mixture), showing that Aβ does not oligomerize in solution at nanomolar concentrations.  

 

3-3 Membrane-bound Aβ monomers and some dimers are mobile and tightly 

associate with the membrane 

We have previously shown that Aβ preferentially interacts with anionic lipid head 

groups (37) and that the density of bound monomeric peptide is dependent on the fraction 

of the negatively charged group (POPG) in the membrane. Thus, for the 4:1 POPC:POPG 

ratio used here, we found that the density of bound Aβ was approximately 3 peptides/µm2 

(calculated by subtracting the peptide density of immobilized species from the total 

density of membrane bound peptides shown in Figure 3-7), whereas for a 7:3 

DiphPC:DiphPG ratio, the density was approximately 5 peptides/µm2 (152), and a 1:1 
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POPC:POPG ratio yielded a density of approximately 8 peptides/µm2 (160). Although 

the membrane saturation level for the monomeric peptide increased somewhat with the 

negatively charged lipid density, it is striking that, in all three cases, the binding became 

saturated at a very low peptide-to-lipid ratio (see Chapter 5). 

After 24-hour incubation of Aβ solutions with the lipid bilayer, mobile and 

immobile oligomers were observed on the membrane (Figure 3-2A). The mobile species 

maintained a similar density (3 peptides/µm2) even after a 120-hour incubation with plain 

buffer (i.e., no Aβ in solution), suggesting that the mobile species are tightly associated 

with the membrane, which is consistent with previous measurements (Kd < 470 pM) 

(160). 

 

Figure 3-2. Identifying mobile particles. (A) Raw image of membrane-bound oligomers, 

including both mobile and immobile species. The mobile species are indicated by yellow 

arrows. To clearly elaborate the mobile and immobile species, only less crowded images 

are shown here. They do not represent the actual peptide density. (B) The mobile species 

that remained after image processing and their trajectories indicated by yellow lines. 

Scale bar is 5 µm. 

 

To monitor the mobile species, we excluded most of the immobile particles by 

subtracting each frame from the average image obtained from the subsequent ten 

consecutive frames (Figure 3-2A: raw image; Figure 3-2B: processed image). Mobile 

particles were tracked by the single-particle tracking method described in Chapter 2-2-3. 
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An example of the tracked trajectories is shown in Figure 3-3. The mean square 

displacement (MSD) versus Tau plot for each mobile species is shown in Figure 3-4A. 

The tracked mobile species were predominantly monomers and dimers, which were 

categorized based on their fluorescence intensity. Because the mobile species move faster 

than our camera acquisition speed, fast-diffusing particles often appear dimmer based on 

peak intensity and wider than slowly-diffusing or immobile particles. Therefore, the 

accumulated intensity for each oligomer was calculated by fitting a particle to a 2D 

Gaussian function and integrating the intensity under the area rather than measuring the 

peak fluorescence intensity. As a result, the accumulated intensities and the 

corresponding sizes are independent of the diffusion coefficients. 

 

 

Figure 3-3. The trajectories of mobile species identified by the particle tracking 

algorithm as mentioned in Chapter 2-3-3.  

 

The diffusion coefficient of tracked particles is determined by fitting the first 2-5 

points of the MSD-Tau plot (101, 142): 

MSD(τ) = 4D2−5τ  Eq. 3-1 
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where D is the diffusion constant. And τ is the time interval as described in the Methods. 

As shown in figure 3-5A, the D values are not significantly different for most of the 

species (within 1-1.5 µm2/second) except Aβ40 dimer (0.8 µm2/second). The differences 

can also be observed in the MSD curves (Figure 3-4); almost all the mobile species show 

a similar trend, whereas most of the Aβ40 dimers possess smaller MSD values at larger 

values of Tau. Please note that an even larger variation occurs for longer Tau. This is due 

to the lack of data points for longer diffusing time intervals. The diffusion behavior can 

be approximated by fitting the first 20 points of the averaged MSD-Tau plot with the 

following equation (165, 166): 

MSD(τ) = 4Dτα  Eq. 3-2 

where α represents the level of confinement; if α = 1, the particle motion is a simple two-

dimensional Brownian motion; if α > 1, the particle motion is driven by an external force; if α < 

1, the particle motion is anomalous. It has been shown that shorter track length may result in a 

lower alpha value (165). Here, all the tracked particles for each species have similar distribution 

of the track length. Therefore, the fitting yields the lowest α value for Aβ40 dimer compared to 

others (Figure 3-5B), suggesting the motions of mobile Aβ40 dimers are more anomalous 

than the other species (see Chapter 5 and Figure 3-6 for more detailed analysis).   

.   
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Figure 3-4. MSD curve analysis. MSD-Tau plot for each species. Each MSD curve was 

averaged from six samples. Each sample contained at least 40 tracked particles. Error 

bars represent the standard error of the mean. 
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Figure 3-5. Diffusion coefficient and particle motion. (A) The diffusion coefficients of 

mobile species fitted from their MSD plot as described in the text. (B) The level of 

confinement (α) of each mobile species fitted by eq. 2. α=1 represents a simple two-

dimensional Brownian motion, which is indicated by the dashed line. Error bars represent 

the standard error (*P<0.05).   
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Figure 3-6-1. Aβ40’s MSD-Tau curves fitted by both equations 3-1 (green) and 3-2 (red) 

described in the text. Error bars represent the standard deviation of the mean. The shaded 

area represents the variation of the data.  
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Figure 3-6-2. Aβ42’s MSD-Tau curves fitted by both equations 3-1 (green) and 3-2 (red) 

described in the text. Error bars represent the standard deviation of the mean. The shaded 

area represents the variation of the data.  
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Figure 3-6-3. Mixed species’ MSD-Tau curves. The diffusion coefficient D2-5 is 

determined by fitting the first 2-5 points of equation 1 (green). The level of anomalous 

diffusion is assessed by fitting the first 20 points with equation 2 (red) described in the 

text. Note that the MSD values at larger Tau of Aβ40 dimer appear lower than the 

anomalous fit; this may indicate the motion of mobile Aβ40 dimer is more restricted. 

However, the detailed model describing such behavior is beyond the scope of this study. 

Each MSD curve was averaged from at least 40 tracked particles. Each shaded area 

represents the standard deviation (please note, this represents the spreads of the data, not 

the error of the data) of MSD curves between tracked particles. 

 

 

The median oligomer diffusion coefficient at the primary neuron membrane is 

0.042 μm2/second (154). This value is very close to the diffusion coefficient for 

48 
 



extrasynaptic Aβ42 oligomers determined by Renner et al. (0.0341 μm2/second) (101). 

The diffusion coefficient for a living cell is, thus, 10- to 100-fold lower than that for the 

peptides that diffuse in the model membrane, which may be due to the abundance of 

other membrane-bound proteins, cytoskeletal structures, and lipid-raft domains that 

hinder the mobility of Aβ. 

 

3-4 Membranes immobilize some dimers and all higher-order oligomers  

Figure 3-2A indicates that the membrane-bound Aβ consists of mobile and 

immobile species. To select the immobile species and exclude the mobile particles, the 

first ten frames were averaged, and each pixel was divided by its local background (the 

surrounding 9 by 9 pixels) to exclude pixels with photon counts below a set threshold. 

Because mobile particles appear dimmer and cover a larger area than the immobile 

particles, only the immobile particles were identified after this image processing. The size 

of the membrane-bound immobile oligomers was then determined from their 

fluorescence intensity (see Chapter 2-3-4). It is believed that when Aβ is immobilized in 

the lipid bilayer, its N-terminus is not inserted and, hence, remains more flexible than the 

C-terminus, which likely inserts into the lipid bilayer (151, 167). Because the fluorescent 

label resides at the N-terminus and is relatively free to fluctuate with the fluid lipid 

bilayer, most of the photobleaching trajectories are too noisy to resolve the number of 

steps. Therefore, only clear photobleaching trajectories that contained two and three 

bleaching steps (dimer and trimer) were collected and further averaged to obtain the 

corresponding monomer intensity. The oligomer fluorescence intensity was then divided 

by the monomer intensity to yield the oligomer size (i.e., the number of monomers).  

Within one minute of incubation of 4 nM Aβ40 with the supported lipid bilayer, 

larger membrane-bound oligomers were observed in comparison to the oligomer size 

determined for Aβ in solution (Figure 3-6). Specifically, approximately 29.5% and 30.3% 

of the total membrane-bound species are monomer and dimer, respectively, and the 

remainder consists of higher-order oligomers, whereas the Aβ in solution remains 

predominantly (90%) monomeric with less than 10% dimer, even after a 24-hour 
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incubation (Figures 3-1 and 3-6). This result suggests that the lipid bilayer may 

preferentially incorporate and immobilize dimers and higher-order oligomers rather than 

the monomer in a short period of time. Oligomers could be incorporated through two 

pathways: aggregation from monomers facilitated by the membrane or direct insertion of 

the dimers and higher-order oligomers from the solution (160).  

 

 

Figure 3-7. A comparison of the size distribution between Aβ in solution and 

membrane-bound immobile Aβ indicates that the membrane selectively 

incorporates dimers and higher-order oligomers rather than the monomer. The data 

for Aβ in solution is adopted from Figure 1. The membrane-bound Aβ40 was 

immediately monitored after a 1-minute injection of Aβ40 onto the model membrane 

(inset; image of membrane-bound oligomer right after the Aβ40 injection. The scale bar 

represents 10 µm). The percentages of the membrane-bound species were calculated from 

three experiments, and each experiment contained at least 300 oligomers. The error bars 

represent the standard deviation of the mean. 
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3-5 Free Aβ40 is more readily incorporated into existing immobile oligomers than 

free Aβ42, whereas oligomers of the Aβ40:Aβ42 mixture remain unaltered 

Building on the observation that the membrane contains immobilized dimers and 

higher-order oligomers, we monitored the formation of these species over longer periods 

of time. We incubated 4 nM fluorescently labeled Aβ40, Aβ42, or the 1:1 Aβ40:Aβ42 

mixture with the supported lipid bilayer for 24 hours, and the size and oligomer density 

(i.e., number of fluorescent spots per 100 µm2) of membrane-bound immobile Aβ was 

subsequently determined (Figures 3-8A and 3-8D).  

To examine whether the membrane-bound immobile Aβ can self-assemble into 

higher-order oligomers or whether the addition of Aβ peptide from solution is required to 

support oligomer growth, the initial 24-hour incubation was followed by an additional 

96-hour incubation in the absence and presence of the Aβ peptide in solution. In the first 

case, the membrane was washed with peptide-free buffer to remove Aβ in solution 

(Figure 3-7B), whereas in the second case, Aβ in solution was present throughout the 

120-hour incubation period (Figure 3-7C). Notably, the number and size of oligomers 

present on the membrane at 24 hours remained unaffected after washing to remove Aβ in 

solution for both Aβ40 and Aβ42, which suggests that the extensive washing does not 

greatly affect the system (Figure 3-7). 
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Figure 3-8. Extensive wash of the lipid bilayer does not affect the population of 

immobile oligomers. The size distributions of Aβ40 oligomers on the model membrane 

remain similar before and after the solution Aβ is washed off, indicating the extensive 

wash has minor effect to the membrane and immobile oligomers. 

 

After the initial 24 hours incubation, membrane-bound Aβ40, Aβ42, and the 

Aβ40:Aβ42 mixture all exhibited similar size distributions consisting of few monomers 

(~10%), more dimers (~20%), with the remaining 70% of immobile species consisting of 

trimers and higher-order oligomers (Figure 3-8A), whereas the solution contained 

approximately 90% monomers. This observation further supports the notion that the 

membrane facilitates higher-order oligomer formation regardless of whether Aβ40, Aβ42, 

or their mixture is used. However, the oligomer density indicates that the membrane 

contains a similar number of Aβ40 and Aβ42 oligomers when the peptides are 

individually incubated (~9 oligomers/100 µm2; Figure 3-8D, 24 h), but the membrane 

incorporates fewer oligomers when Aβ40 and Aβ42 are mixed (~4 oligomers/100 µm2; 

Figure 3-8D, 24 h). Given that the amount of total peptides present in the sample was 

identical for the three cases (4 nM), the mixture of Aβ40 (2 nM) and Aβ42 (2 nM) may 

have a lower oligomer formation capacity at the model membrane. Interestingly, Chapter 

4 and our previous results demonstrate that the mixed peptides sample formed larger 

oligomers on cellular membranes (154, 161). This apparent contradiction is likely due to 

the fact that the cell membrane is more complex, contains proteins, and cell-clearance 

and internalization processes must be considered. A potential explanation to resolve this 

discrepancy is presented under Chapter 5.  

To assess whether membrane-bound Aβ can self-assemble into larger oligomers 

in the absence of Aβ in solution, we replaced solution Aβ with buffer alone after a 24-

hour incubation and continued incubation for a total of 120 hours (this case is labeled as 

‘120 h (x)’ in figure 3-8). We found that samples of either Aβ40 or Aβ42 alone contained 

larger immobile oligomers, whereas the oligomer size distribution of the Aβ40:Aβ42 

mixture exhibited a similar distribution as at 24 hours (Figure 3-8B). Additionally, the 

oligomer density for each sample decreased in comparison to that at 24 hours (Figure 3-
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8D, 120 h (x)), whereas the number of total membrane-bound Aβ40 and Aβ42 peptides 

(including both the mobile and the immobile species) remained similar, except for their 

mixture which exhibited lower peptide association with the membrane. A plausible 

explanation is that in the absence of Aβ in solution, both Aβ40 and Aβ42 self-assemble 

into larger oligomers, thereby reducing the number of immobile oligomers but 

maintaining the total peptide density (Figures 3-8E and 3-8D, 120 h (x)). However, in the 

Aβ40:Aβ42 mixture, both small and larger oligomers have equal ability to dissociate into 

the solution; therefore, both the oligomer and the peptide density are reduced, but the size 

distribution is maintained (Figures 3-8D and 3-8E, 120 h (x)).  

In contrast, when incubated for a total of 120 hours in the presence of Aβ in 

solution (this case is labeled as ‘120 h (o)’ in figure 3-8), the oligomer size distribution 

was significantly different for samples of the individual peptides but not for the 

Aβ40:Aβ42 mixture (Figure 3-8C). The size of the membrane-bound immobile Aβ40 

species dramatically increased (73.4% for 7+ species at 120 hours vs. 26.7% for 7+ 

species at 24 hours), and its oligomer density was also slightly higher than at 24 hours 

(Figure 3-8D, 120 h (o)). These two effects increased the level of Aβ40 bound to the 

membrane (Figure 4E, 120 h (o)). On the other hand, Aβ42 oligomers grew at a slightly 

slower rate than Aβ40 oligomers (57.4% for 7+ species at 120 hours vs. 24.5% for 7+ 

species at 24 hours), and the oligomer density was similar to that at 24 hours and slightly 

lower than that for Aβ40. Therefore, the increase in the total membrane-bound Aβ42 

peptide was less dramatic than for Aβ40 (Figures 3-8D and 3-8E, 120 h (o)). Interestingly, 

the sample containing the Aβ40:Aβ42 mixture did not change in oligomer size or peptide 

density at 120 hours in comparison to at 24 hours (Figure 3-8, 120 h (o)). Considering 

that the solution predominantly contained monomers (~90% for either Aβ40 or Aβ42 and 

~75% for the Aβ40:Aβ42 mixture), the dramatic growth in the size of either Aβ40 or 

Aβ42 oligomers and the nearly unaltered oligomer density after 24 hours provides 

additional support for the notion that the membrane facilitates oligomerization and also 

indicates that the oligomerization mechanism involves the incorporation of free Aβ into 

originally immobile oligomers. The additional Aβ peptides originate either directly from 

Aβ peptides in solution or from membrane-bound mobile Aβ peptides that interact with 

immobile Aβ. After prolonged incubation, the binding of free Aβ40 is more favorable 
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than that of Aβ42, whereas the presence of both Aβ40 and Aβ42 effectively arrests 

oligomerization of either peptide on the membrane. This result appears to contradict the 

results in Chapter 4 in which the mixed species formed larger oligomers than Aβ42 and 

Aβ40 alone at the cell membrane. Chapter 5 will summarize and provide potential 

mechanisms to explain these observations. 

 

 

Figure 3-9. Size distribution and density of membrane-bound immobile Aβ. (A) Aβ 

(Aβ40, Aβ42, or a 1:1 Aβ40:Aβ42 mixture) at a concentration of 4 nM was incubated 

with the lipid bilayer for 24 hours. (B) Aβ in solution was removed with washing after 
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the initial 24-hour incubation, and the system was then incubated for an additional 96 

hours. The image was collected after a total 120-hour incubation. (C) Aβ was incubated 

with the lipid bilayer for 120 hours followed by imaging. The raw image of each Aβ 

sample is shown next to each condition. The scale bars represent 10 µm. (D) Oligomer 

density (i.e., the number of immobile oligomers) per 100 μm2. (E) Total peptide density 

(i.e., the number of monomeric peptides including mobile and immobile species) per μm2. 

The percentage represents the fraction of each oligomer size to the total immobile 

oligomer in each experiment. The data were collected from at least four experiments, and 

each experiment contained at least 300 oligomers. The error bars represent the standard 

deviation of the mean (*P < 0.05; **P > 0.05). Here (x) means incubated in buffer 

without Aβ and (o) means with Aβ.   
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CHAPTER 4 

STUDIES OF Aβ40 AND Aβ42 INTERACTIONS ON THE PRIMARY NEURON 

NEURITES 

 

 

(This work has been published: Chang et al, PLOS ONE, 2013 (161)) 

4-1 Motivation for study of Stoichiometry of Aβ40 and Aβ42 on the primary neuron 

neurites  

Although in vitro model membrane provides a pure platform for monitoring and 

characterizing individual membrane–bound Aβ species over long periods of time at 

nanomolar to picomolar peptide levels, an added complexicity is the fact that in vivo Aβ 

oligomers are heterogeneous and metastable, continuously interconverting between 

species (34, 143, 168) and their cellular membrane interactions are potentially complex 

and variable. For example, there is evidence that the peptide may associate with specific 

cellular receptors or protein complexes (e.g. NMDA receptors (92, 93) and α7 nicotinic 

acetylcholine receptors (94)), it may associate with phosphatidylserine in the membrane 

(97), or bind to and insert directly into the lipid bilayer (70, 98). Since Aβ is an 

amphiphilic peptide, the initial binding affinity of Aβ is correlated with the polar 

interactions and anionic charge of lipid head groups (37). Each of these modes of 

interaction reflects a different potential pathway to cell disruption.  

Recently, our group and other employed single molecule microscopy, both in 

Total Internal Reflection Fluorescence (TIRF) and confocal to study the assembly and 

size distribution of Aβ oligomers generated at physiological concentrations on the surface 

of live cells. Nag et al., first documented small Aβ40 oligomers is capable of attaching to 
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the PC12 cell membrane and further aggregate. The size of membrane bound oligomer 

correlates with the Aβ concentration in solution (163). Johnson et al. specifically 

discovered Aβ40 forms mostly dimer and larger oligomers upon binding to SH-SY5Y 

neuroblastoma cells, those oligomers also induces mild, sporadic calcium leakage (153). 

Narayan et al. also found both Aβ40 and Aβ42 form larger oligomers on Murine 

hippocampal HPL cell as compared to mostly monomers in solution. Larger oligomers 

also diffuse slower and their interactions with membrane are inhibited by the presence of 

ATP-independent molecular chaperones (162). Overall we found that at these low peptide 

concentrations, only insignificant oligomerization occurred in solution even after five 

days of incubation, whereas the membrane facilitated the formation of surface bound 

oligomers with an obviously larger size distribution.  

Alzheimer’s disease causes loss of neurons and formation of amyloid plaques 

near hippocampus region.  Therefore, choosing a hippocampal cell as a platform will be 

more physiological relevant. Johnson et al., first observed Aβ40 as well as Aβ42 initially 

form larger oligomers on rat’s primary hippocampal neurites than on glass slides. 

Especially with 1 nM peptide in solution, Aβ40 oligomers do not grow over the course of 

48 h, Aβ42 oligomers grow slightly, and oligomers of a 1:1 mix grow substantially.    

In the present study we extend our previous work to focus on synergistic 

interactions between Aβ40 and Aβ42 during their assembly into oligomers on the surface 

of primary cultured neurons, at physiological concentrations of peptides. As discussed 

above, such synergy is potentially of great significance for the development of our 

understanding of the molecular events underlying cell disruption in AD. The 

identification of those oligomers that develop on the membrane at nM peptide 

concentrations is of special relevance. 

 

4-2 FRET Confirms Aβ40 and Aβ42 Form Heterogeneous Species on Neurites 

In order to explore potential cooperative interactions between Aβ40 and Aβ42 

when they are incubated together with cultured neurons, we employed a FRET pair that 

enables us to distinguish the heterogeneous oligomers from homogeneous oligomers; 
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only when Aβ42 binds to Aβ40 and forms heterogeneous oligomer do the systems 

generate a FRET signal (Figure 4-1). In addition, labeling Aβ40 and Aβ42 with 

fluorophores that emit significantly different wavelengths enables us to distinguish 

Aβ40’s signal from Aβ42 when both are present. Aβ40 is labeled with HilyteFluor555, a 

Cy3 derivative as the FRET donor, and Aβ42 is labeled with HilyteFluor647, a Cy5 

derivative as the FRET acceptor. The Förster radius (R0) for this pair is estimated ~ 53 Å 

(169), providing a sensitive reporter on the distance between these two fluorophores.  

 

Figure 4-1. Mixed Aβ40-HL555 and Aβ42-HL647 are incubated with neurons and 

show FRET. Homogeneous Aβ40 (green arrow) is imaged by 532 nm excitation but 

does not show signal in acceptor’s channel. Heterogeneous Aβ (brown arrow) is 

determined by FRET in Acceptor’s channel upon 532 nm excitation. Homogeneous Aβ42 

(pink arrow) is imaged by 635 nm excitation but without FRET. Scale bars are 10 µm.  

 

When Aβ40 and Aβ42 are mixed together, three different classes of oligomers 

develop on the neurites: those that contain Aβ40 only (homogeneous oligomer), those 

made of Aβ42 (homogeneous oligomer), and mixed Aβ40/Aβ42 (heterogeneous 

oligomer). Only the heterogeneous mixed species show FRET signal (Aβ40 and Aβ42 

that are co-localized within the laser beam focus but do not form heterogeneous 

oligomers do not show FRET). Three quantitative steps are used to identify the FRET 

species: first, possible FRET pairs are selected by exciting the sample at 532 nm and 

recording the position of the spot that emitted in Aβ42 channel. Second, those selected 
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fluorescent spots showed in Aβ40 channel with lifetime above 0.53 ns are excluded as 

autofluorescence. Third, the remaining selected spots showed in Aβ42 channel are double 

confirmed as the FRET signal by excluding those spots that do not co-localize with spots 

directly excited by the 635 nm laser. Using this process, the heterogeneous species is 

filtered out from homogeneous Aβ40 and Aβ42. The homogeneous Aβ40 is determined 

as those spots that showed fluorescence lifetime below 0.53 ns but do not co-localize 

with the heterogeneous species. The homogeneous Aβ42 is the one that is directly excited 

by 635 nm but does not co-localize with the heterogeneous oligomer (see Chapter 2-4-2).  

 

4-3 Aβ40 and Aβ42 Form Mainly Dimers on Neurites and Show Little Growth upon 

Incubation  

We have previously shown that 1 nM of either HilyteFluor647 labeled Aβ40 (or 

Aβ42) forms predominantly dimers on neurites, whereas the incubating media still 

contains 90% monomeric Aβ (154). This may suggest dimeric Aβ preferentially interacts 

with the membrane. Similar results have been observed in the current study for using 2 

nM Aβ40-HL555 or Aβ42-HL647. Aβ40 species bound to the neuritic membrane are 

mostly dimeric showing minimal additional growth even after additional 48 hours of 

incubation. Aβ42 behaved similarly, though some additional growth beyond that at 10 

minutes was detected at 48 hours with the appearance of some trimer and larger specie 

(Figure 4-2). The incremental growth of Aβ42 (compared to what we reported earlier 

(154)) could be due to a higher peptide concentration used in the current experiment than 

the previous work (2 nM vs. 1 nM). Nevertheless, the important point is that the overall 

oligomeric growth for both Aβ40 and Aβ42 is limited. We note that for the dimers found 

on the membrane at 10 minutes, we cannot distinguish whether these are formed from 

bound monomers through assembly on the membrane or from residual dimers in 

solutions. 
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Figure 4-2. Aβ40 or Aβ42 oligomers form mainly dimers and show little growth on 

neuritis. 2nM Aβ40-HL555 or Aβ42-HL647 was incubated with primary hippocampal 

neurons for 10 minutes and 48 hours before imaging. Comparison of the oligomeric size 

distribution between 10 minutes and 48 hours shows limited growth for both Aβ40-

HL555 (Mann-Whitney U test, p > 0.1) and Aβ42-HL647 (Mann-Whitney U test, p = 

0.001). The distribution is normalized to total Aβ oligomers. Percentages of each 

condition were calculated from two different experiments, 5 images each. Each image 

contained at least 50 oligomers. Error bars represent standard deviation of the mean. The 

percent is obtained by normalizing to the total number of oligomers.   
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4-4 Number of Heterogeneous Species (i.e., oligomers comprised of both Aβ40 and 

42) Increases Over Time due to Continuous Binding of Aβ42 to Heterogeneous 

Oligomers on the Neurites  

As illustrated in Figure 4-3, when a mixture of 2 nM Aβ40 and 2 nM Aβ42 is 

incubated with cultured neurons at the same time, four fluorescent species are detected: 

homogeneous Aβ40 oligomer (green), homogeneous Aβ42 oligomer (red), heterogeneous 

Aβ40-Aβ42 oligomer showing FRET (brown), and co-localized Aβ40-Aβ42 oligomers 

with no FRET (blue). To get information on the changes of Aβ40 and Aβ42’s populations 

over time, we compared the percentage of each species at two incubation time points. By 

counting the number of different oligomer species on the neurite, we found that less than 

10% of either Aβ40 or Aβ42 oligomers co-localized without showing a FRET signal and 

that most of the co-localized assemblies containing 40 and 42 showed FRET. 

Approximately 35% of Aβ40-HL555 oligomers formed FRET pairs with Aβ42-HL647 

after 10 minute incubation, and this number increased to ~45% by 48 hours (Figure 4-

3A). This was not due to dissociation of homogeneous Aβ40 oligomers because the total 

number of Aβ40 oligomers remained unchanged while the total number of Aβ42 

oligomers slightly increased over time (Figure 4-3B). Therefore, the increased fraction of 

Aβ40 oligomer that is bound to Aβ42 was due to continued binding of solution Aβ42 to 

homogeneous Aβ40 oligomers over time.  

Figure 4A reveals that ~25% of Aβ42 oligomers formed FRET pairs with Aβ40 

after 10 minute incubation, and the 25% remained nearly constant over 48 hours. In 

addition, at 48 hours the total number of Aβ42 oligomers was significantly higher than 

Aβ40 oligomers (Figure 4-3B). These results indicate that not only did the additional 

Aβ42 bind to homogeneous Aβ40 oligomers thereby increasing the number and fraction 

of heterogeneous Aβ40-Aβ42 over time, but that additional Aβ42 also bound to 

homogeneous Aβ42 oligomers and likely also formed new oligomers. This explains the 

increased number of heterogeneous Aβ40-Aβ42 oligomers (and the increased fraction of 

heterogeneous Aβ40) but the much smaller effect on Aβ42 distribution. This is illustrated 

by the diagram in Figure 4-4. 
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Figure 4-3. Heterogeneous species increases over time due to continuous binding of 

Aβ42 to the neurites. 2 nM Aβ40 and 2 nM Aβ42 were mixed and incubated with 

cultured neurons at the same time. By comparing the population changes of each species, 

we get general idea of how these species interact over time. (A) The relative number of 

oligomers of each species in each sample (percentage of each species). The blue shading 

(colocalization without FRET) represents the co-localized Aβ40 and Aβ42 that do not 

show a FRET signal. This species accounts for at most 10% for both Aβ40 and Aβ42. 

The green shaded sections represent the percentage of homogeneous Aβ40 in total Aβ40 

species, and show the fraction of homogeneous Aβ40 to decrease over time. The red bar 

represents the percentage of homogeneous Aβ42 in total Aβ42 species. This number 

remains almost unchanged over time, indicating the fraction of homogeneous Aβ42 

remains unchanged. The brown bar represents the percentage of heterogeneous mixed 

species in total Aβ40 (left two) or Aβ42 (right two) species. The fraction of 

heterogeneous species among the whole Aβ40 species increases over time (from 35% to 

45%), whereas the fraction of heterogeneous species among whole Aβ42 species remains 

similar. (B) The density (number of Aβ42 per 100 µm) of Aβ42 oligomers on the neurites 

(including both homogeneous and heterogeneous species) is slightly higher than Aβ40 at 

10 minutes and becomes significantly larger by 48 hours, whereas the total number of 

Aβ40 is only slightly changed (unpaired two-tailed t-test, *P > 0.1 and **P < 0.05). Data 

was averaged from two different experiments, at least 5 images each and each image 
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contained at least 50 oligomers. Error bars represent standard deviation of the mean. 

Figure 5 provides a pictorial display of the implications. 

 

 

Figure 4-4. Diagram of the number of Aβ40 and Aβ42 oligomers on the neurites. The 

color assignments are the same as in Figure 4.  Green and red circles represent the total 

number of Aβ40 and Aβ42 species respectively (including both homogeneous and 

heterogeneous species). The overlap region of the two circles (brown area) represents the 

heterogeneous species. And the blue circle inside the brown area represents those 

heterogeneous species that do not show FRET signal. At 10 minutes, there are slightly 

more Aβ42 species than Aβ40, therefore larger red circle. By 48 hours, the number of 

Aβ40 species remains similar; therefore the green circle remains the same. The number of 

Aβ42 species increases over 48 hours (the dashed red circle depicts the population at 10 

minutes). Since additional Aβ42 also binds to homogeneous Aβ40, the fraction of 

heterogeneous species among Aβ40 increase (unpaired two-tailed t-test, **P < 0.05), and 

the fraction of homogeneous Aβ40 decreases over 48 hours. 
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4-5 Heterogeneous Oligomers are Larger than Homogeneous Oligomers  

In order to study how different Aβ species oligomerizes on the membrane over 

time, we further analyzed the size of each type of membrane bound oligomer by 

measuring their fluorescence intensity (see Chapter 2-5-3). This examination of the 

relative oligomer sizes (number of peptides in a single oligomer) in the sample containing 

both Aβ40 and Aβ42 reveals that both homogeneous Aβ40 and Aβ42 remain mostly 

dimeric over 2 days (Figure 4-5A and 4-5B), very similar to samples incubated with only 

Aβ40 or Aβ42 (Figure 4-2). 

For the heterogeneous oligomers, Aβ40’s emission is quenched due to energy 

transferring to Aβ42, therefore to obtain the true Aβ40’s original emission intensity, we 

collected all the photons emitting from both donor and acceptor and corrected the 

quantum yield and detection efficiency (see Supporting Information). The size of Aβ42 

was measured by direct excitation of 630 nm laser. To calculate the size of each 

heterogeneous oligomer, we rounded each Aβ40 and Aβ42’s calculated size to the nearest 

integer and summed them up (Figure 4-5C). The minimal heterogeneous oligomer is of 

course dimeric (~5%), while ~20% are heptamers or larger at 10 min.  This suggests the 

interactions between Aβ40-Aβ40 and Aβ42-Aβ42 favor dimeric structure on the 

membrane, where the interaction between Aβ40-Aβ42 favors trimeric, tetrameric and 

larger structures, which show further growth on the membrane. 
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Figure 4-5. Heterogeneous oligomers are larger than homogeneous oligomers. (A) 

Homogeneous Aβ40 remains mainly dimeric on the neurites over 48 hours. (B) 

Homogeneous Aβ42 also forms mainly dimeric with slight increase in size over 48 hours. 

(C) Heterogeneous species contains mainly trimer and tetramer and many other 

oligomers larger than heptamer. The size of heterogeneous species was calculated by 

summing the number of Aβ40 and Aβ42 in that particular mixture. Percentages of each 

condition were calculated from two different experiments, at least 5 images each. Each 
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image contained at least 50 oligomers. Error bars represent standard deviation of the 

mean.  

 

4-6 Determining the Relative Fractions of 40 and 42 in Heterogeneous Oligomers  

We further analyzed the stoichiometry of Aβ40 and Aβ42 in each heterogeneous 

oligomer by comparing the size distributions of Aβ40 and Aβ42 inside the oligomer. 

Results show the fraction of Aβ40 in the heterogeneous species has declined by 48 hours 

(Figure 4-6A) which is caused by the continued binding of Aβ42 from solution to 

homogeneous Aβ40 oligomers (primarily monomeric and dimeric Aβ40) while additional 

Aβ40 does not bind (Figure 4-4 and 4-5).  As a result, by 48 hours, the newly formed 

heterogeneous species contain more monomeric and dimeric Aβ40. Also, the increase in 

the monomeric fraction is larger than the homogeneous Aβ40, this could indicate that 

Aβ40 in heterogeneous oligomers may be cleared by cell or dissociate into solution. In 

contrast, the relative fraction of Aβ42 in the heterogeneous oligomer increased markedly, 

producing about 4 fold larger oligomers (7+) at 48 hours (Figure 4-6B). Combining this 

knowledge with the fact that Aβ42 continues to bind to neurites over time (Figure 4-4), 

where the size distribution of homogeneous Aβ42 remains largely constant (Figure 4-5B), 

suggests Aβ42 binds equally to homogeneous Aβ42 and new locations on the neurite, but 

it preferentially binds to the heterogeneous species, increasing the fraction and size of 

Aβ42 in the heterogeneous species (Figure 4-6B). 

Another way to present the stoichiometric relationship is by calculating the ratio 

of Aβ42/Aβ40 for each heterogeneous oligomer (Figure 4-6C). At 10 minutes, there are 

typically more Aβ40 than Aβ42 in each heterogeneous species (Aβ42/40 ratio < 1, below 

the dashed line). By 48 hours, there are more Aβ42 adding to the heterogeneous species, 

shifting the Aβ42/Aβ40 ratio to larger than 1, above the dashed line. This is due to 

continued binding of Aβ42 from solution to heterogeneous oligomers. 
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Figure 4-6. Aβ42 fraction in the heterogeneous oligomers increases dramatically 

over time but not Aβ40. (A) The size of Aβ40 in the heterogeneous species (as indicated 

by the green arrow) shifts to smaller species after 48 hours (Mann-Whitney U test, p = 

8.6E-7). (B) The size of Aβ42 in the heterogeneous species (as indicated by the red arrow) 

increases considerably up to 48 hours (Mann-Whitney U test, p = 6.3E-7). (C) The ratio 

was calculated by dividing the number of Aβ42 monomer by the number of Aβ40 

monomer in each individual heterogeneous species. The dashed line indicates ratio 1 at 

which value the amount of Aβ42 is equal to Aβ40. Data was calculated from two 
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different experiments, at least 5 images each. Each image contained at least 50 oligomers. 

Error bars represent standard deviation of the mean. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

 

5-1 Introduction 

The pure interaction between Aβ isoforms (i.e. Aβ40, Aβ42, and the mixture) and 

the model membrane is first discussed in this Chapter. This model membrane study 

provides a foundation of structural information for different oligomer species. This 

structural information can further be applied to the Aβ aggregation observed on the 

neuronal cell membrane. Moreover, a detailed discussion of the single molecule FRET 

experiment reveals synergistic interactions between Aβ40 and Aβ42 on the rat primary 

neuronal cells. Combining results obtained from the model membrane and the neuronal 

cell membrane, a more complete picture of Aβ and live-cell membrane interaction will be 

provided. Implications from our studies may also explain the toxicity from different 

oligomers and Aβ42:Aβ40 ratios observed in several studies.    

 

5-2 Aβ Oligomerization on the model membrane 

When incubated in solution at nM concentrations Aβ binds to phospholipid 

membranes initially forming mostly mobile monomers and dimers (~3 peptides/µm2) as 

well as a small number of immobile species composed of larger oligomers (these contain 

~1 peptide/µm2). Both mobile and immobile species binds tightly to the membrane but at 

very low saturation levels (approximately 2 peptides per million lipids) calculated based 

on a cross section for a lipid molecule of 1 nm2 (Figure 3-9E). Similar low Aβ saturation 

level in has been previously reported (152, 160, 170), but is atypical for membrane-

binding peptides that typically reach saturation at approximately 1 peptide per 100 lipids. 
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The basis for the low solubility of monomeric Aβ in the lipid bilayer is unclear; however, 

it is not likely due to the presence of imperfections or “sweet spots” in the membrane (or 

the glass substrate) to which the peptide adheres, for the following reasons: 1. The 

monomers are predominantly freely mobile on the membrane and are not anchored in 

fixed spots. Indeed, when fluorescently labeled lipids are added during membrane 

preparation, the membranes exhibit full fluorescent recovery after photo bleaching 

(FRAP), confirming the normal mobility of the lipids. 2. Free diffusion was also observed 

for Aβ bound to agarose-supported lipid membranes (which also exhibited Aβ saturation 

at a similar peptide/lipid ratio) (152), as well as on membranes supported on glass that 

was cleaned through extensive washing. 3. Similar results have been reported for Aβ on 

large liposomes (170). Notably, the low saturation level is not due to the presence of a 

small fraction of “impure peptide” in our samples that exhibits high membrane-binding 

affinity because our results indicate an identical level of membrane saturation when the 

peptide concentration in solution is increased from 2 nM to 100 nM (160), which would 

have increased the amount of available “impure peptide” and binding by an identical 

factor. The basis for the low saturation density for peptide binding remains under 

investigation.  

The stationary oligomers were found to be immobilized over prolonged time 

periods. One explanation is that Aβ may come into contact with the membrane-

supporting cover glass since the length of an Aβ chain extended in a β strand is about 15 

nm (151), significantly longer than the lipid bilayer thickness (~5 nm) plus the water 

layer between the lipid bilayer and the cover glass (~0.1 nm) (135, 171). FRAP studies 

also indicated that the lipids remain mobile in the presence of Aβ in solution even after 

120-hour incubation, further indicating that oligomer movement is not due to 

immobilization of the lipids (see Chapter 2-3-2). Although the glass-binding mechanism 

remains unclear, it is worth noticing that the density of the immobilized oligomers did not 

correlate with glass surface imperfections as detected in scanning electron microscope 

(SEM) images of cleaned cover glass; the latter revealed a smooth surface at a 10-nm 

resolution (Figure 5-1). Although defects involving local chemically modified lipids or 

glass may not be detected by fluorescence or SEM, from our observations and those 

previously reported, we hypothesize that the Aβ immobilization indicates that the peptide 
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adopts a conformation that enables it to insert across the lipid bilayer and interact with 

the glass surface.   

 

Figure 5-1. SEM image of pre-cleaned cover glass shows no detectable defect. 

 

More than 90% of Aβ in solution is monomeric (Figure 3-1) while the membrane-

bound immobile species contain less than 30% monomer (Figures 3-7, and Figure 3-9). 

Based on the idea that immobilized peptides and oligomers are transmembrane and bind 

to the glass, it is possible that less immobilized monomer indicates that the monomeric 

conformation exhibits a lower probability of inserting across the membrane to interact 

with the glass surface. Similar to antimicrobial peptides, amyloid peptides are 

amphipathic; their monomeric form lies in the intermediate region between the lipid head 

group and acyl chains as shown in Figure 5-2 (151, 167, 172). 
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Figure 5-2. Low-lying structures in terms of potential energy are shown for the 

Aβ42 monomer. (a) the membrane-spanning β-sheet; (b) the β-sheet structure adsorbed 

on the surface, which was found to be lowest in energy; (c) the helix-kink-helix structure 

at the membrane-water interface, which was identified as the next most stable structure; 

and (d) a structure with a mixed helical/ β-sheet conformation. The residues are colored 

according to their physicochemical properties (blue, basic; red, acidic; gray, hydrophobic; 

green, polar); the sequence of Aβ42 is D1-A2-E3-F4-R5-H6-D7-S8-G9-Y10-E11-V12-

H13-H14-Q15-K16-L17-V18-F19-F20-A21-E22-D23-V24-G25-S26-N27-K28-G29-

A30-I31-I32-G33-L34-M35-V36-G37-G38-V39-V40-I41-A42. The black lines denote 

the boundary between the hydrophobic core and polar headgroup regions of the 

membrane (151). 

 

In contrast, less than 20% of the dimer is present in solution, but the membrane-

bound immobile oligomers contain approximately 30% dimer one minute after the Aβ 

solution was incubated with the membrane (Figure 3-7). In vivo single-molecule studies 

also indicate that neuronal cell membranes contain predominantly dimers under 

physiological conditions (153, 154, 161, 162). A recent study using hAPP transgenic 

mice also indicates that Aβ in the interstitial fluid (ISF) of a 24-month-old mouse brain is 

primarily monomeric, whereas the membrane-associated Aβ contained more dimers (173). 

These all in line with the rapid dimer association shown in Figure 3-6, suggesting that 

most of the dimers (i.e., Aβ40, Aβ42, or a heterogeneous dimer) form structures that 

allow them to rapidly incorporate into the membrane and form complete transmembrane 

conformation as predicted by the simulation model as shown in Figure 5-3 (151).   
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Figure 5-3. Dimer structures in the membrane. (a) CNNC, (b) NCNC, (c) NCCN, and 

(d) 2NCb. The residues are colored according to their physicochemical properties: blue, 

basic; red, acidic; gray, hydrophobic; green, polar. The black lines denote the boundary 

between the hydrophobic core and polar headgroup regions of the membrane (151). 

 

Not only does the dimer dominate the initial immobile oligomer formed at the 

membrane as shown in Figures 3 and 4, but certain dimers maintain a structure that 

allows them to freely diffuse in/on the membrane (Figure 3-2). Interestingly, the diffusion 

coefficient of mobile Aβ40 dimer is the lowest and its motion is more anomalous than 

other mobile species (Figure 3-4 and 3-5). This may be due to the lack of the four 

additional hydrophobic residues at the C-terminus of the Aβ40 dimer as compared to 

Aβ42 dimer. Perhaps the Aβ40 dimer can adopt a fully transmembrane conformation 

faster and is likely to be affected by the glass surface and stationary oligomers (obstacles).  

This existence of both mobile and immobile dimers suggests that dimers may 

serve as an important intermediate in the Aβ aggregation and immobilization process 

since all larger oligomers are immobile. Indeed, endogenous Aβ dimers isolated from AD 

patients impair synaptic plasticity and memory (59). The Aβ dimer can also induce tau 

hyperphosphorylation and neuritic degeneration (2). While these results are not sufficient 
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to conclude that the dimer directly impairs neuronal dysfunction, they emphasize the 

importance of the dimer.  

Initial oligomer immobilization is an important step for nucleation-dependent 

oligomer growth at the membrane (Figure 3-9). Significant oligomer growth occurs only 

in the presence of either Aβ40 or Aβ42 in solution. These additional peptides interacting 

with the lipid surface have been suggested to increase the internal surface tension within 

the lipid bilayer due to collision, or due to non-ideal acyl chain packing (174). The 

formation of a fully transmembrane oligomer may release this tension, as it creates an 

additional membrane surface without distorting and thinning the acyl region. Additional 

oligomer growth on the originally immobilized seeds (i.e., immobilized oligomers) can 

also aid in minimizing the surface tension without generating new oligomer sites.  

Oligomer growth was observed after a 120-hour incubation of Aβ with the 

membrane; the impact of the additional two residues at Aβ42’s C-terminus is readily 

apparent from the slower growth of immobile Aβ42 oligomers in comparison to 

immobile Aβ40 oligomers (Figure 3-9). A study using Monte Carlo simulation suggests 

that these two additional hydrophobic residues render Aβ42 more likely to remain within 

the lipid tail groups, whereas the C-terminus of Aβ40 is likely to reach the other side of 

the lipid head groups as shown in Figure 5-4 (167). 

 

Figure 5-4. Primary inserted conformations of the Aβ peptide. We find that in every 

case, the inserted peptides can adopt essentially three different conformations. Mutations 

appear to alter the percentage of steps the peptide spends in each conformation but do not 

fundamentally change the conformations. (a) Transbilayer. The peptide inserts with the 

last several residues near the C-terminus in the lower lipid head region; the portion 
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crossing the bilayer is roughly helical. (b) Fully inserted. Similar to (a), except the last 

several residues are not anchored in the lower head region, meaning that the 

conformation is fairly flexible. (c) Partially inserted. Similar to (b), except now much 

more of the peptide is tethered to the upper head region by the polar residues 22–23 and 

26–28, whereas before only residues 1–15 or so were in the upper head region. The 

conformations shown are for Aβ40, but Aβ42 has similar conformations with two 

additional residues (Isoleucine and alanine) at the C-terminus. And Aβ40 has higher 

chance of adopting conformation (a), whereas Aβ42 has higher chance of adopting 

conformation (b) (167). 

 

A recent in vivo study indicates that endocytosis of Aβ42 requires dynamin to 

provide energy, whereas endocytosis of Aβ40 is energy independent making Aβ40 more 

easily internalized (175). In addition, we have previously shown that the level of cell 

membrane-bound Aβ40 was reduced by approximately twofold more than the level of 

Aβ42 in the absence of free Aβ in the incubation media within 24 hours (154). These 

results are likely due to the two additional hydrophobic residues in Aβ42 that capture 

Aβ42 among the lipid tail groups, whereas Aβ40 is able to more readily cross the 

membrane. Put together, these results support our hypothesis that immobilization on the 

model membrane is likely due to the formation of a transmembrane Aβ structure that may 

be immobilized on the glass surface. Because the structure of Aβ40 enables it to insert 

across the membrane more readily than Aβ42, the formation of higher-order immobile 

oligomers are more significant, as shown in Figure 3-9.  

In Chapter 4, the single-molecule studies on rat primary hippocampal neurons 

indicate that when 1-4 nM of an Aβ40:Aβ42 mixture is incubated with neurons, larger 

aggregates develop at the cell membrane in comparison to those created by either Aβ40 

or Aβ42 alone.  We also found that, Aβ42 accumulates at the cell membrane to a greater 

extent than Aβ40 (154, 161). This result seemingly contradicts our current results (Figure 

3-9); however, the internalization rates of the two peptides into the cell have to be 

considered. As discussed above, Aβ40 more readily traverses the bilayer membrane and 

hence can be more readily internalized by neuronal cells than Aβ42. This can explain 
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why Aβ42 accumulates at the neuronal membrane to a greater extent than Aβ40. When 

Aβ40 is mixed with Aβ42, a lower oligomer density, and marginal oligomer growth, are 

observed even after prolonged incubation (Figure 3-9). We hypothesize that the 

interaction between Aβ40 and Aβ42 inhibits further oligomer growth at the supported 

lipid bilayer, a process that requires free Aβ to adopt a favorable transmembrane 

conformation, interact with existing immobile seeds, and insert across the membrane. In 

in vivo experiments this cross interactions between Aβ40 and Aβ42 may lead to reduced 

cell internalization and larger aggregates on the neuronal cell, which may be more toxic, 

as larger Aβ oligomers correlate with higher cytotoxicity (60, 61). We previously 

performed single-molecule fluorescence resonance energy transfer (FRET) to study the 

stoichiometry of the growth of the Aβ40:Aβ42 mixture on the primary neuronal cell. The 

results suggest that heterogeneous oligomer growth is more rapid than homogeneous 

Aβ40 or Aβ42 oligomer growth, and the rapid growth is due to continuous Aβ42 binding 

to existing seeds (161). Kuperstein et al. have shown that neuronal spontaneous 

postsynaptic depolarization is inhibited when cells are incubated with an Aβ40:Aβ42 

ratio of 7:3 (10). Figure 5-5 summarizes the structural implications for Aβ oligomer 

growth based on observations of Aβ aggregation at the model membrane. 

Potential pathways that lead to neuronal cell death in AD have been intensely 

studied over the last decade (9). However, the molecular mechanism underlying Aβ-

membrane interactions has not been characterized due, in part, to the complex nature of 

these interactions and to technical challenges. However, given the inherent complexity of 

biological membranes, we utilized a structurally and compositionally simplified model 

membrane system combined with single-molecule microscopy, which enabled us to 

quantitatively study the molecular mechanisms and oligomerization by different Aβ 

species. In this system the monomer is highly mobile in the membrane, whereas the 

dimer constitutes an intermediate state and can be either mobile or immobile. Higher-

order oligomers may form from the initial immobilized membrane-crossing “seeds”. 

Immobilization is thus an initial step in oligomerization, the latter occurring upon the 

incorporation of free Aβ into immobilized oligomers. The formation of higher-order 

oligomers, however, is only possible if they are not rapidly removed from the cell surface. 

Additional hydrophobic residues at the Aβ42 C-terminus likely reduce its ability to fully 
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traverse the membrane and to be readily cleared by the cell in comparison to Aβ40. 

Interestingly, Aβ42 appears to interfere with the ability of Aβ 40 to form a fully 

transmembrane structure, which results in dramatic growth of mixed oligomers at the cell 

membrane. This study provides direct evidence for synergistic interactions between Aβ40 

and Aβ42 on a model membrane. The experimental approaches herein are not limited to 

Alzheimer’s peptide research but can be more generally applicable to other protein-

membrane interaction studies. 
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Figure 5-5. Models that summarize the structural properties of monomer, dimer, 
and different Aβ isoforms on the membrane. 

 

5-3 Aβ Oligomerization on the neuronal cells 

In vivo studies have shown that high ratios of Aβ40/Aβ42 may protect neurons 

from the deleterious effects of Aβ42 (116, 117). This might suggest that lowering the 

absolute amounts of Aβ in AD patients could be less crucial than the restoration of the 

correct ratios of Aβ peptides. However, little is known about possible cooperative effects 

between Aβ42 and Aβ40 under in vivo conditions. Aβ42/Aβ40 dependent aggregation 

kinetics has been measured and extensively studied revealing that a slight increase in the 

Aβ42 fraction has a significant effect on oligomerization rate and cytotoxicity (10, 11, 15, 

126–129). However, the peptide concentrations used in these studies (µM) were at least 

103 times higher than the physiological relevant concentration (pM-nM). Although one 
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could argue the local in vivo Aβ concentration might transiently reach µM levels, the 

overall kinetics and mechanisms of Aβ oligomerization almost certainly behave 

differently from those at physiological peptide concentrations on neuronal membranes. 

Moreover, the distribution of the various Aβ oligomers in solution is both concentration 

and buffer/ionic strength depend, and hence the Aβ oligomers prepared in solution may 

differ significantly from membrane bound oligomers (176). To avoid these complications, 

we directly monitored Aβ40 and Aβ42 oligomers that form on the surface of primary 

hippocampal neurons under physiological conditions, using single molecule microscopy. 

Labeling Aβ40 with the FRET donor and Aβ42 with the FRET acceptor reveals the 

stoichiometry of homogeneous and heterogeneous Aβ oligomers that may further explain 

the pathogenesis of AD. Direct observation of Aβ on cultured neurons removes the 

ambiguity caused by SDS-PAGE treatment (See review (176)), and provides structural 

information for each type of oligomer on or inside the membrane which is new 

information.  

We have shown that when dissolved as monomeric peptide at nM concentration, 

both Aβ40 and Aβ42 remain predominantly monomeric (~90%) in solution (154) even 

after prolonged incubation up to 120 hours (Figure 3-1). On the cell membrane each 

peptide formed a distribution of small oligomers peaking at dimers and with less than 

10% of the peptide found in species larger than tetramers (Figure 4-2). Moreover, these 

oligomers formed quickly (i.e., within 10 min) and showed very little further growth over 

48 hours (Figure 4-2). This behavior has also been reported earlier using single molecule 

microscopy (153, 154, 162).  

Molecular dynamics simulation has shown that Aβ dimerizes strongly when it 

interacts with anionic lipid membrane (177) which agrees with the findings in the model 

membrane work where Aβ incubated at nM concentration with a model membrane 

(POPC:POPG 80:20), Aβ initially binds as rapidly diffusing monomers (160) and then 

slowly oligomerizes to form mostly immobile dimers and trimers. It seems likely that this 

last step is also the first step for oligomerization of Aβ on the neuronal membrane 

following binding.  
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A plausible explanation for the abundance and immobility of dimers/trimers is 

that these species incorporate into the membrane (as opposed to be surface bound) and 

are both more stable and less mobile in this state. Hence the membrane selectively 

incorporates the dimer/trimer through a direct insertion mechanism (160). In the case of 

model membranes the oligomers’ immobilization may indicate that the bound peptide 

cross the bilayer and become anchored to the surface of the supporting cover slip. A 

parallel picture for neurites is that binding to surface protein complexes or to 

intracellular/cytoskeletal elements may be the origin for the oligomers’ immobility. 

In the current study we observe that at nM concentration neither Aβ40 nor Aβ42 

oligomerizes on the neuronal membrane to form significant populations of oligomers 

larger than tetramers, even after prolonged incubation. The peptide forms a stable mixture 

of small oligomeric species that changes very little between 10 min and 48 hours. This 

behavior is in sharp contrast to Aβ behavior at µM concentrations where the peptide 

oligomers form rapidly and continuously grow over time to eventually form fibrils within 

few hours (10, 11). No fibrils appear at 1-4 nM peptide concentrations either in solution 

or on the neuronal membrane up to 48 hours. Moreover, the model membrane data 

revealed that when incubated at nM concentrations with a model membrane, both Aβ40 

and Aβ42 develop significantly large oligomers over time; again, this does not happen 

when the peptides interact with neuronal membranes and is likely due to the equilibrium 

balance between cell clearance and continued peptide binding from the solution (154). 

In what perhaps constitutes the most important observation made in the current 

study, a dramatic change in the oligomerization reaction sequence was discovered when 

the cells were exposed to a 1:1 mixture of Aβ40 and Aβ42. Significantly larger 

membrane-bound oligomers developed within 10 min, with species larger than tetramers 

constituting over 50% of total peptide (as opposed to less than 10% for homogeneous 

peptide samples, see Figure 4-5) and with some additional growth occurring over 48 

hours. Concomitantly, the fraction of monomeric peptide completely disappeared and the 

dimeric fraction was dramatically reduced.  

These observations clearly suggest a synergy of binding between Aβ40 and Aβ42 

to the neuronal membrane where initial Aβ40 binding creates “nucleation sites” whose 
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structure favors additional Aβ42 binding to form larger, Aβ42-rich, assemblies. Direct 

evidence for the formation of these heterogeneous oligomers is provided by FRET 

(Figures 2-8 and 4-1) which reveals that the chromophores attached to the two different 

peptides are indeed within several nanometers of each other. An alternate model, where 

the initial Aβ40 binds to a membrane-associated factor (protein) and this complex binds 

Aβ42 with high affinity cannot be ruled out; however, there is no compelling indication 

for this in our data (Aβ40 binding does not show any site-preference). 

Our results are summarized in Figure 5-6 and show that when equal 

concentrations of Aβ42 or Aβ40 were incubated with neurons, slightly more Aβ42 

oligomers formed on the neuronal membrane (Figure 4-3 and 4-4), and the Aβ42 species 

grew slightly larger than Aβ40 (Figure 4-2 and 4-5). A possible explanation for this is 

that Aβ42 possesses a higher affinity towards the membrane, hence the higher membrane 

concentration. In light of recent evidence showing that cells can internalize single Aβ 

oligomers (175), an alternate explanation is that the clearance of membrane bound Aβ42 

is slower than that of Aβ40. Moreover, the use of FRET at the single molecule level 

reveals a strong cooperativity between Aβ40 and Aβ42, the oligomers appear to grow 

exclusively by adding Aβ42 to “seeds” formed by heterogeneous Aβ40/42 and (mostly 

dimeric) homogeneous Aβ40, which later becomes heterogeneous oligomers and 

accelerate further attraction of Aβ42, as reflected by the fact that the ratio of Aβ42/Aβ40 

increases in individual oligomers with increasing size (Figure 4-6).  

The importance of this observation is threefold: (1) the increase in the size of 

heterogeneous oligomers may also indicate the oligomer aggregation rate is faster than 

the cellular clearance rate; (2) the presence of membrane bound Aβ40 is necessary for 

Aβ42 to form heterogeneous oligomers and without Aβ40, the homogenous Aβ42 grows 

only moderately; and (3) the AD brain may contain abundant membrane bound 

heterogeneous oligomers, which accelerate the association of cerebrospinal fluid (CSF) 

Aβ42 and increase the burden of Aβ42 in the membrane, resulting in the decreased 

Aβ42/Aβ40 ratio in CSF but an increased ratio in the plasma membrane.   

A lowering of the level of monomeric Aβ42 in human CSF has been widely 

validated as a robust biomarker for the diagnosis of AD, even in its earliest clinical stages 
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(178–182). Mechanistically, the progressive accumulation of insoluble Aβ42 enriched 

deposits in brain parenchyma has been suggested to explain the decline in the level of the 

highly self-aggregating Aβ42 monomer in both CSF and brain interstitial fluid (179, 183). 

Aβ42 has been shown to associate with loosely membrane-bound pool of brain 

parenchyma in plaque rich mice brains, thereby dropping Aβ42/Aβ40 ratio in the CSF 

but increasing this ratio in the membrane (173). These observations support the notion 

that the association of Aβ42 with the membrane is more favorable than the association of 

Aβ40 and is possibly accelerated by membrane bound heterogeneous oligomers. 

Larger Aβ oligomers have been shown to correlate with higher cytotoxicity (60, 

61). The finding here that larger peptide oligomers contain increasing fractions of Aβ42 

raises the interesting possibility that the higher toxicity is due to the fact that 

heterogeneous Aβ oligomers are more toxic than homogeneous ones. Jin et al. reported 

that synthetically made Aβ40 dimers (produced by crosslinking Aβ40 S26C via a 

disulfide bond) always required much higher concentrations (>100-fold) to induce 

cytoskeletal disruption comparable to those of the endogenous dimers isolated from AD 

cortex (100). Given that heterogeneous oligomers are larger and have been reported in 

Alzheimer’s disease brain (59), we hypothesize that endogenous Aβ is likely to contain 

heterogeneous Aβ which form larger oligomers and can cause higher cytotoxicity than 

synthetic pure Aβ40 or Aβ42. An experiment with cross-linked heterogeneous synthetic 

dimer could support this hypothesis.  
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Figure 5-6. Summary of synergistic interactions between Aβ40 and Aβ42 on the 

neurons. For Aβ40, the total number of membrane bound oligomers (including both 

homogeneous and heterogeneous species) does not change, suggesting either no solution 

Aβ40 binds to the membrane or the association and dissociation of solution Aβ40 to the 

membrane reach the equilibrium. Size of homogeneous Aβ40 remains mostly dimeric. 

For Aβ42, the total number of membrane bound oligomers increases. Solution Aβ42 

preferentially binds heterogeneous species, increasing the Aβ42/Aβ40 ratio in each 

mixture. Solution Aβ42 also binds to homogeneous Aβ40, increasing the number of 

heterogeneous species and shifting the fraction of Aβ40 in the heterogeneous oligomer to 

a slightly smaller species. However, the solution Aβ42 forms new oligomers and also 

binds to homogeneous Aβ42, therefore maintaining the size of homogeneous Aβ42 

unchanged. 
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 5-4 Conclusion from the model membrane to the cell membrane 

The oligomeric Aβ species believed to feature in Alzheimer’s disease are known 

to be numerous and to dynamically interchange, making their characterization 

challenging and the assignment of disease-related effects to specific oligomers a daunting 

task. In addition, the concentration of Aβ in bodily fluids is in the nM range or lower, 

making its study by traditional approaches difficult. Single-molecule microscopy lends 

itself to work at physiological peptide concentrations and allows one to directly follow 

the evolution of monomeric Aβ on the model membrane (based on TIRF) and as well as 

the neuronal membrane (confocal microscopy with FLIM). These studies provide a 

detailed molecular mechanism for the synergistic interaction Aβ40 and Aβ42 on the 

membrane, and these are particularly relevant to the detection and characterization of the 

initial stages of Aβ-induced AD-associated pathology. Here is a brief comparison of Aβ 

oligomerization behaviors on the model membrane and neuronal cells: 
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 On Model Membrane 
* 

On Neuronal Membrane 
** Hypothesis 

Aβ40 

1. Monomer is very 
mobile. 

2. Mobile dimer has 
confined motion.  

3. Dimer is the major 
immobile species upon 
initial incubation. 

4. Dramatic 
oligomerization over 
120 hours. 

1. Dimer is the major 
species of immobile 
population over 48 hours.  

2. No oligomer growth 
over 48 hours. Probably 
reach the equilibrium 
between membrane 
association and cell 
internalization. 

Higher chance of 
forming complete 
transmembrane 
conformation, 
especially when it 
forms dimer and 
larger oligomers. 

Aβ42 

1. Both the monomer 
and dimer are very 
mobile. 

2. Dimer is again the 
major species initially. 

3. Oligomer growth is 
less than Aβ40. 

1. Dimer is the major 
species of the immobile 
population which later 
shifts to slightly bigger 
oligomers over 48 hours. 

2.  Oligomer density is 
slightly higher than Aβ40. 

Less chance than 
Aβ40 to form the 
complete 
transmembrane 
conformation.  

Mixture 

1. Both the monomer 
and dimer are very 
mobile.  

2. Dimer is also the 
major species initially. 

3. Density of immobile 
oligomer is less than 
Aβ40 and Aβ42. 

4. Almost on oligomer 
growth over 120 hours 

1. Trimer and tetramer are 
the major species.  

2. Oligomers growth 
rapidly via recruiting free 
Aβ42 over 48 hours. 

Aβ40 and Aβ42 
inhibit each other 
and form poorly 
transmembrane 
conformation. 

* Do not need to consider cell internalization mechanism for the model membrane system. 

85 
 



** Mobile Aβ could not be observed on the neuronal membrane under the confocal 

imaging method. This is due to image acquisition speed is much slower than the 

movement of mobile species.   

 

Our findings here provide detailed insight into structure, dynamics and the 

mechanism of different types of membrane bound Aβ. Therefore, besides considering the 

reduction in the quantity of Aβ as a therapeutic strategy, the pathogenic interactions 

between different Aβ isoforms may also be important. Moreover, the methodologies 

developed herein are not limited to Alzheimer’s research and are applicable to several 

other protein-membrane studies and live-cell imaging.  

 

Figure 5-7. Hypothesis that explains how Aβ40 and Aβ42 interact on the cell 

membrane. Aβ40 dimer is more likely to form a fully transmembrane structure than 

Aβ42; therefore Aβ40 can be transported from extracellular to intracellular more easily 

than Aβ42. As a result, Aβ40 oligomerizes or accumulates slower than Aβ42 on the cell 

membrane. When Aβ40 binds to Aβ42, an even less transmembrane conformation is 

formed, resulting in more difficult internalization process for the cell. As a result, the 
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mixed oligomer can aggregate on the cell surface faster than either Aβ40 or Aβ42, and 

the oligomerization for mixed oligomer is mainly via recruiting free Aβ42.  

 

5-5 Future Directions 

Reading thus far, you, who care about my research, must are aware that the 

growth of these Aβ aggregates is exclusively by addition of Aβ42. A strong cooperativity 

between Aβ40 and Aβ42 is revealed, where both pure protein forms very little aggregates 

larger than dimers, but where membrane bound Aβ40 can seed the addition of Aβ42 to 

form increasingly larger aggregates. Understanding whether these heterogeneous larger 

aggregates are more toxic than those homogeneous oligomers is another step forward for 

Alzheimer’s research. 

Calcium influx into the cell can be caused by binding of Aβ oligomers to the 

membrane, and this calcium leakage is a well known indicator for the cell toxicity (153, 

184, 185). To compare the toxicity driven by homogeneous Aβ40, Aβ42 and 

heterogeneous Aβ, similar experiment described in Chapter 4 can be used; in addition to 

adding fluorescently labeled Aβ (Hilyte-555 and Hilyte-647), neuronal cells need to be 

loaded with the fluorescent calcium indicator Fluo4-AM (excitation at 488 nm). 

Therefore, membrane bound Aβ can be identified along with the corresponding cell 

toxicity.  

Combining the fluorescence microscopy with electrophysiology experiments done 

on the brain slice (or a live brain) will make the current hypothesis more physiological 

relevant. The oligomers have been shown to potently inhibit long-term potentiation (LTP), 

enhance long-term depression (LTD) and reduce dendritic spine density in normal rodent 

hippocampus. The Aβ concentrations used in LTP and LTD can be as low as pM to nM 

(59), which is ideal for single molecule experiments. Multi-photon microscopy is often 

used to image thick samples such as the brain tissue. However, conventional fluorescent 

dyes (e.g. Alexa and Hilyte dyes) suffer from fast photobleaching upon multi-photon 

excitation. This results in difficulty in conducting single molecule studies. A photo-

resistible small fluorescence molecule must be developed and conjugated to Aβ. 
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