
Balancing Interactive Performance and Budgeted

Resources in Mobile Computing

by

Brett D. Higgins

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2014

Doctoral Committee:

Professor Brian D. Noble, Co-Chair

Associate Professor Jason N. Flinn, Co-Chair

Professor Mingyan Liu

Associate Professor Z. Morley Mao



c© Brett D. Higgins 2014

All Rights Reserved



For Hannah and Naomi

ii



ACKNOWLEDGEMENTS

Let me explain.

...no, there is too much.

Let me sum up.

Inigo Montoya

This dissertation owes its existence to the support of many individuals. My co-advisors,

Brian Noble and Jason Flinn, provided relentless support, encouragement, and wisdom

throughout the entire process. The clarity, impact, and soundness of my work has benefited

tremendously from their guidance. Countless times, they have helped pull me out of the

weeds of low-level hacking and helped me remember the big picture of my work. I am

grateful to them for not giving up on me when it seemed like I might never finish, and I am

honored to have put my name alongside theirs in my humble scientific contributions.

I thank my other committee members, Z. Morley Mao and Mingyan Liu, for their valu-

able feedback and perspective. Their input has helped me see areas in my work that needed

more attention; this dissertation is more thorough and complete for their involvement.

Though not official committee members, TJ Guili, David Watson, and Christopher

Peplin provided helpful insight and feedback during my research career. They helped me

out of ruts when I struggled to make progress, and they provided encouragement during

times when the research process became frustrating. Their industry experience provided an

important perspective on my academic work.

I didn’t interact much with Peter Chen between my prelim exam in 2009 and resuming

teaching duties in 2012, but since then, I’ve gotten to know him as someone technically

iii



brilliant yet extremely humble. I’m grateful to him for getting me started in teaching again

and for involving me so deeply in the details of the course. I sometimes found myself

enjoying teaching more than research, so his continual encouragement to spend more time

on graduating—and his accomodation that allowed me to do so—are greatly appreciated.

For the most part, my CSE colleagues were far-flung across the fourth floor, but Azarias

Reda was a stalwart companion (until graduating well before me). He toiled with me on my

first big project as we both worked to get our PhDs off the ground. His example of diligence

has helped spur me on to finishing. Timur Alperovich was a great friend to me during his

years here. I think he paid me more visits during any given week than I made around the

CSE building in a year. I was glad to have his encouragement and input when research was

especially frustrating. Daniel Fabbri frequently checked in on me, taking time out of his

own work to ask how I was doing, in research and in the rest of my life, and celebrating

the small victories with me. More recently, Kyungmin Lee has been a great collaborator,

helping me finish the last remaining bits of my dissertation while also juggling his own

workload. I would still have a lot more left to do if not for his support.

From my very first undergraduate research role in summer of 2006, the students in the

Pervasive Computing group welcomed me warmly, freely extending their guidance, knowl-

edge, and friendship. Our group lunches made me feel included and valued, and I enjoyed

our conversations on wide-ranging topics which, happily, I eventually grew to understand.

Ed Nightingale drew me into the group with his equal depth of knowledge, insight, and

kindness, and he was patient with me even when the oddities in my code became his re-

sponsibility. Dan Peek was another of my first collaborators, and he is also probably the

student I’ve remained connected with the longest, as he’s always sought me out and in-

cluded me in outings whenever our paths cross. Kaushik Veeraraghavan would often stop

by to check on me and always encouraged me to go deeper, think more for myself, and

pursue every opportunity for growth and learning. Jodie Su and Mona Attariyan offered

great advice and friendly conversation throughout our overlapping time at Michigan, and I

could always look to them as examples. Benji Wester and Jake Czyz gave me equal parts

warning and excitement about becoming a father while finishing my PhD, so that I was—

iv



well, if not exactly prepared per se—at least not as blindsided as I might have been. I’ve

enjoyed my random conversations with folks like Mike Chow, David Devecsery, and Zach

Musgrave over the past couple years, as well as the liveliness they brought to my office.

The CSE department staff has been consistently stellar. Thank you all for doing your

jobs so well, allowing me to focus on my research while worrying about nary a single

administrative concern. Lauri, your friendliness made me smile every time I walked into

the building. Steve, you handled my every request without breaking a sweat, and I could

listen to you passionately rant about any subject, any day of the week. Dawn, you helped

me calm down when I was stressing about failing to meet some deadline or follow some

protocol. To these folks and so many others: your dedication helps make PhDs happen.

My family has been a constant source of support and love throughout this arduous

process. Mom, Rob, Dad, Danni, Steve, Julianna—thank you for forcing me to explain

what I’ve been doing for all these years in a way that someone who lives outside my head

can understand. Thank you for the emotional and financial support that paved my way

before grad school, and for your continued encouragement during my highs and lows.

Thanks to Hannah’s mother Julianna and sister Priscilla, who shared the duty of looking

after Naomi many days while I scrambled to finish the dissertation and find a good job.

Hannah, I can scarcely find words to describe the impact of your love and committment

throughout this process. You’ve picked me up when I’ve fallen flat on my face, you’ve

kicked me into action when I needed it, and you’ve always found a way to remind me why

I started off on this path in the first place. Your fortitude in sticking by me through it all

has given me so much that I’ve needed to see it through. I love you.

Naomi, you are my favorite tiny human in the whole world. Thanks for joining our

family at just the right time. You have brought more love out of me than I ever knew I had.

I can’t wait to explain all of this to you someday.

I feel strange giving a shout out to God as though I just won some sports championship,

but I also know that if I was trying to do this on my own strength, I would have flamed

out years ago. So—to him who is able to do immeasurably more than all I ask or imagine,

according to his power that is at work within me—to him be the glory.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 System support for application-aware network multinetworking . . . . . . 6

2.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Separate concerns . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Be Qualitative . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Embrace Concurrency and Failure . . . . . . . . . . . . . 9

2.2 Abstractions and interface . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Multi-Sockets . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 IROBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Ordering constraints . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Thunks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.6 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Connection scout . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 BlueFS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Mozilla Thunderbird . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Vehicular participatory sensing . . . . . . . . . . . . . . . 23

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Spending budgeted resources to reduce user-visible delay . . . . . . . . . 34

3.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Why is mobile prefetching so complex? . . . . . . . . . . 38

3.1.2 Balancing multiple concerns . . . . . . . . . . . . . . . . 39

3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Background: Intentional Networking . . . . . . . . . . . . 41

3.2.2 Prefetch decision algorithm . . . . . . . . . . . . . . . . . 41

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Incorporating predictor uncertainty in decision-making . . . . . . . . . . . 67

4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Uncertainty and redundancy . . . . . . . . . . . . . . . . . . . . . 71

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Brute force . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



4.3.2 Probabilistic error bounds . . . . . . . . . . . . . . . . . . 75

4.3.3 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . 76

4.3.4 Reevaluation from new information . . . . . . . . . . . . 78

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.3 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.4 Trace-driven evaluation . . . . . . . . . . . . . . . . . . . 87

4.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Intentional Networking . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Informed Mobile Prefetching . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.2 Limited resources in mobile networking . . . . . . . . . . 101

5.3 Coping with predictor uncertainty . . . . . . . . . . . . . . . . . . 102

5.3.1 Code offload . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Network selection . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Other domains . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Practical impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Intentional Networking . . . . . . . . . . . . . . . . . . . 109

6.4.2 Informed Mobile Prefetching . . . . . . . . . . . . . . . . 110

6.4.3 Coping with predictor uncertainty . . . . . . . . . . . . . 111

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



LIST OF FIGURES

Figure

2.1 BlueFS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Thunderbird results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Vehicular Sensing results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Multi-app Vehicular Sensing results . . . . . . . . . . . . . . . . . . . . . 33

3.1 Email application, driving trace . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Email application, walking trace . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Email + IMP prefetch activity . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 News reader application, driving trace . . . . . . . . . . . . . . . . . . . . 62

3.5 News reader application, walking trace . . . . . . . . . . . . . . . . . . . . 63

4.1 Network selection, walking trace . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Network selection, driving trace . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Speech recognition, walking trace . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Speech recognition, server load trace . . . . . . . . . . . . . . . . . . . . . 93

ix



LIST OF TABLES

Table

2.1 Intentional Networking label properties . . . . . . . . . . . . . . . . . . . 11

2.2 Intentional Networking API . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Synthetic network scenarios used in the evaluation . . . . . . . . . . . . . 25

3.1 Informed Mobile Prefetching API . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Meatballs API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Details of the network traces used for evaluation . . . . . . . . . . . . . . . 84

4.3 Performance-energy tradeoff in various scenarios . . . . . . . . . . . . . . 86

x



ABSTRACT

Balancing Interactive Performance and Budgeted Resources in Mobile

Computing

by

Brett D. Higgins

Co-Chairs: Brian D. Noble and Jason N. Flinn

In this dissertation, we explore the various limited resources involved in mobile ap-

plications — battery energy, cellular data usage, and, critically, user attention — and we

devise principled methods for managing the tradeoffs involved in creating a good user ex-

perience. Building quality mobile applications requires developers to understand complex

interactions between network usage, performance, and resource consumption. Because of

this difficulty, developers commonly choose simple but suboptimal approaches that strictly

prioritize performance or resource conservation.

These extremes are symptoms of a lack of system-provided abstractions for managing

the complexity inherent in managing performance/resource tradeoffs. By providing ab-

stractions that help applications manage these tradeoffs, mobile systems can significantly

xi



improve user-visible performance without exhausting resource budgets. This dissertation

explores three such abstractions in detail. We first present Intentional Networking, a system

that provides synchronization primitives and intelligent scheduling for multi-network traf-

fic. Next, we present Informed Mobile Prefetching, a system that helps applications decide

when to prefetch data and how aggressively to spend limited battery energy and cellular

data resources toward that end. Finally, we present Meatballs, a library that helps applica-

tions consider the cloudy nature of predictions when making decisions, selectively employ-

ing redundancy to mitigate uncertainty and provide more reliable performance. Overall,

experiments show that these abstractions can significantly reduce interactive delay without

overspending the available energy and data resources.
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CHAPTER 1

Introduction

The most precious resource in a computer system is no longer its

processor, memory, disk, or network, but rather human attention. [37]

In the past several years, mobile computing has grown remarkably in sophistication

and adoption. Today’s users are accustomed to now-commonplace computing experiences

that would have been difficult to fathom a mere decade ago. Besides technical advances in

portability, battery life, and ease of use, the rise of ubiquitous mobile computing has been

largely driven by the wide availability of network connectivity—the ability to “carry the

Internet in your pocket.”

Unfortunately, current mobile networking applications and systems do not use mobile

networks as effectively as they could. Though mobile users commonly encounter multiple

wireless networks, applications are often designed from the perspective of only using one

network at a time. Further, although these networks have different strengths and weak-

nesses, the default network selection policy on iOS and Android is a simple fixed priority

order. WiFi is preferred over cellular, because WiFi is assumed to provide higher band-

width, lower latency, and lower energy usage. This naive assumption that WiFi will always

outperform cellular breaks down under user mobility and with modern cellular technology

such as LTE.
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State-of-the-art research in multi-networking has likewise produced suboptimal results.

For example, there exist systems that will spread connections over multiple networks [47],

as well as systems that replace the transport layer with a multi-path variant of TCP [106].

Lacking knowledge about the applications using those networks, these approaches can-

not differentiate between, e.g., the user’s request to check their email and the background

download of cloud-synchronized data. As a result, user-centric data can end up queued be-

hind large background downloads, and the user experiences unnecessary delays. Other sys-

tems allow applications to explicitly manage which data is sent on which network, but this

places a heavy burden on application developers to manage their connections and decide

how to use them, especially as network conditions can change rapidly. Further, fundamen-

tal challenges exist in mobile networking that are not as acutely felt in other contexts. For

example, wireless radios, especially cellular radios, have an impact on battery life that of-

ten far outweighs the impact of the processor, a problem that is exacerbated by the fact that

developers often are unaware of the energy impact of network behaviors and protocols [82].

Whereas mobile application developers are typically left on their own to overcome these

challenges, we argue that the system can play a major role in improving user-visible per-

formance, simply by providing developers with the right abstractions for balancing these

tradeoffs. At a high level, we can view the collective concerns of mobile multi-network

usage as a budgeting problem, wherein the battery energy and cellular data resources are

currency that can be spent to purchase reductions in user-visible delay.

Three simple, familiar principles will guide our spending:

• Spend resources effectively.

• Live within your means.

• Use it or lose it.

In the context of mobile multi-networking, spending resources effectively is a matter of

selection and scheduling. As described above, mobile applications have varied and rapidly

changing behaviors, and the networks they use are likewise diverse and volatile. Thus,
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using networks effectively is comprised of selecting the right network for the right traffic

and scheduling traffic to prioritize user-centric traffic over background traffic. If the system

is to accomplish this task, the application must tell the system which traffic is user-centric

and which is not. In this way, we trade a small amount of complexity for a large amount of

power; the system is able to make better decisions as a result.

Besides performance, mobile systems must also consider the use of limited resources

such as battery energy and cellular data allotments. The consequence of overspending a re-

source budget is clearly undesirable; either the battery dies, rendering the device unusable

until recharge, or the user incurs overage charges or throttling. Typically, mobile operat-

ing systems rely on static policies to minimize the usage of these precious resources—for

example, preferring WiFi over cellular because WiFi data transfer is usually more energy-

efficient. Similarly, many applications will avoid fetching large amounts of background

data over cellular. However, these assumptions can often be invalid or irrelevant. For ex-

ample, sometimes the cellular network has much stronger signal than the WiFi network,

and thus it is much more efficient for both throughput and energy.

Though exhausting a resource budget is harmful, it should be considered equally harm-

ful when a resource is conserved unnecessarily. At the time of resource replenishment

(battery recharge or the end of the billing cycle) any unused resource supply is essentially

wasted if it could have been spent to reduce user-visible delay. That is, a mobile device must

use its resources before it “loses” them. Any instance in which user-visible performance is

degraded to conserve an overprovisioned resource represents a wasted opportunity.

The immense complexity of this task and the tendency of applications to avoid tack-

ling it suggests that assistance from the system is required. This dissertation describes

the design and implementation of three abstractions that shift the burden of balancing

resource/performance tradeoffs from the application to the system, managing the above

tradeoffs on the application’s behalf and spending resources judiciously to purchase im-

provements in user-visible performance.
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It is my thesis that:

By providing programming abstractions that simplify the use of multiple net-

works, tailoring network use to application needs, and spending limited re-

sources in a principled way to purchase reductions in delay, mobile systems

can help applications significantly improve user-visible performance without

exhausting those limited resources.

The rest of this document validates the thesis, in three major parts:

System support for application-aware multinetworking. First, recognizing the dif-

ficulty of using multiple networks effectively, we propose, implement and evaluate Inten-

tional Networking, a system that treats multiple networks in a similar fashion to multiple

cores on a multiprocessor and provides abstractions analogous to those found in multi-

threaded programming. Intentional Networking allows applications to characterize their

network traffic with simple labels such as “foreground” and “background”, enabling the

system to reorder traffic to improve the latency of foreground traffic while maintaining

the throughput of background traffic and striping across multiple networks to achieve their

combined bandwidth. Experimental results show significant improvement in interactive

delay with only minor overhead in background throughput.

Spending budgeted resources to reduce user-visible delay. Second, using application-

level data prefetching as a mechanism to spend resources to purchase performance, we

propose, implement, and evaluate Informed Mobile Prefetching (IMP), a system that helps

applications prefetch the right amount of data at the right time. Since energy and cellular

data resources are inherently budgeted resources (fixed-capacity and replenished in pred-

icable intervals), IMP tracks resource spending and adjusts the amount of prefetching to

spend as close as possible to each budget without exceeding it. IMP also tracks how often

prefetched data is actually used, prioritizing prefetching for applications where it is most

beneficial. Experimental results show that IMP reliably succeeds in meeting its resource

budgets while significantly reducing interactive delay.

Incorporating predictor uncertainty in decision-making. Finally, we observe that

mobile applications commonly make decisions based on predictors such as network band-

width and latency—for example, choosing among multiple available wireless networks.

4



When these predictions are wrong, the delay resulting from the application’s incorrect de-

cision can significantly hurt user-visible performance. We therefore propose that mobile

applications should explicitly consider the uncertainty inherent in their predictors when

making decisions. Considering uncertainty introduces another opportunity to purchase per-

formance by spending resources. By starting a redundant operation (e.g., transmission of

the same data on additional networks) when the predictors are suspected to be unreliable,

applications can mask the effects of uncertainty. Just as redundancy is often used in other

domains to produce less variable performance in the face of uncertainty, we apply the same

principles in the mobile networking domain. We implement three methods for quantify-

ing the uncertainty of predictors and using the uncertainty to decide whether to initiate

redundancy. Experimental results show that, when sufficient resources are available and

uncertainty exists, our system reduces user-visible delay by up to a factor of two.

This dissertation explores the utility of each of these system services in detail. We be-

gin in Chapter 2 by describing Intentional Networking, a system that provides abstractions

for multi-network programming. In Chapter 3, we describe Informed Mobile Prefetching,

a system for balancing the costs and benefits of background prefetching. Chapter 4 de-

scribes Meatballs, a library for enabling applications to incorporate predictor uncertainty

when making decisions, employing redundancy to mitigate the effects of this uncertainty.

Chapter 5 gives an overview of prior work related to the topics in this dissertation. The

final chapter summarizes the dissertation’s contributions and concludes.
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CHAPTER 2

System support for application-aware network

multinetworking

Our first step towards enabling applications to use multiple networks more effectively

lies in managing the diversity of the available networks and harnessing the opportunities

they provide. Because these networks have a wide variety of strengths and weaknesses,

there is no single “best choice” in all cases, and such diversity of infrastructure is both

a challenge and an opportunity. The challenge lies in managing these changing options

to best meet each application’s needs, which themselves vary with time. However, by

doing so, we can provide significant benefits to applications, exploiting multiple networks

concurrently and planning future transmissions intelligently. This is particularly valuable

for applications with a mix of on-demand and opportunistic network activity—messages

that still have value even if deferred for a time.

Unfortunately, current approaches to this problem are insufficient. At one extreme,

the operating system or a middleware layer makes all routing and interface decisions on

behalf of applications, in a one-size-fits-all solution [19, 47]. However, because the enti-

ties that make these decisions are ignorant of the intent of the applications that are using

the network, they often miss opportunities for optimization. Worse, in an effort to preserve

current wired-network semantics, persistent connections generally end up “stuck” on wide-

area (but low-performing) networks. At the other extreme, the system makes applications

aware of network changes by exposing the low-level details directly to them [20, 72], and
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applications must explicitly choose among the available options. This approach is expres-

sive, but neither simple nor elegant; managing multiple wireless networks unnecessarily

complicates the task of the application writer.

Intentional Networking occupies the middle ground between these two extremes. In our

approach, the system manages most of the messy details of discovering and characterizing

available network options. Applications provide hints about traffic semantics using a small

number of declarative labels to express intent. For instance, a label might differentiate

between foreground traffic (e.g., a GUI-initiated request for which a user is waiting) and

background traffic (e.g., an opportunistic message that need not happen at any particular

time). The system then matches network traffic to available interfaces in an informed way.

Application data sent using different networks may arrive out of order. Constraining

data delivery to follow in-order TCP-style semantics could dramatically limit the benefit

seen by applications, since short, interactive messages would queue behind all previous

opportunistic transfers. Thus, Intentional Networking allows applications to express re-

laxed ordering constraints for data delivery. The scheduling constraints for mobile net-

work usage are similar to synchronization primitives used by threads running on a multi-

processor. Based on this observation, we provide two primitives: Isolated Reliable Ordered

Bytestreams (IROBs), which provide the mutual exclusion synchronization of mutex locks,

and ordering constraints, which provide the must-happen-before synchronization of condi-

tion variables.

Finally, there are times when none of the currently available network options are ap-

propriate and network traffic is best deferred. For this scenario, Intentional Networking

supports a thunk model of delayed execution in which the application registers a callback

function to be invoked when circumstances change so that it becomes appropriate to trans-

mit data with the specified label. Thunks let applications coalesce, rather than defer, redun-

dant network messages; for instance, an e-mail client that periodically checks for new mail

can send only one such request when an appropriate network becomes available.

The contribution of this work comes from defining simple and powerful abstractions

for exposing the presence of multiple wireless networks to applications. Our work does

7



not define a new over-the-wire protocol, but instead provides a portable, user-level im-

plementation that routes traffic over appropriate networks based on application hints. We

show that, for many applications, application-aware network selection outperforms even

idealized aggregation strategies that lack knowledge of application intent.

We have modified two existing applications to use Intentional Networking: BlueFS [70],

a file system for pervasive computing, and the Mozilla Thunderbird [63] open-source email

client. We have also created a new automotive participatory sensing application that uses

our API. We evaluated the performance of these applications using measurements obtained

by driving a vehicle through WiFi and cellular 3G network coverage. Compared to an

idealized solution that makes optimal use of the aggregated available networks but lacks

knowledge of application intent, our results show that Intentional Networking improves the

latency of interactive messages from 48% to 13x for our three applications, while adding

no more than 7% throughput overhead.

2.1 Design goals

We next list the major goals that drove the design and implementation of Intentional

Networking.

2.1.1 Separate concerns

Our design is guided by the classic principle of separating policy and mechanism. Ap-

plications are best situated to determine the actual intent in using the network, e.g., whether

a particular message is driven by interactive use or whether it is background traffic. This

intent represents the policy for how data should be transmitted.

On the other hand, the operating system or a middleware library is best positioned to

provide a common mechanism to implement the specified policies. A common mechanism

makes deploying new applications that use multiple mobile networks considerably easier

since each application must only provide hints as to its intent. The details of handling
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multiple heterogeneous and intermittent mobile networks is encapsulated at lower layers of

the system. A common mechanism can also aggregate heterogeneous data transmissions

from multiple applications.

Thus, Intentional Networking is designed to have a separation of concerns in which

applications disclose policy decisions by labeling the data they transmit and a lower layer

of the system implements the mechanism that enacts the policy by mapping data to the

networks that best match the labels at the time the data is transmitted.

2.1.2 Be Qualitative

Our design is also guided by the classic principle of keeping the interface as simple

as possible, without unduly sacrificing expressiveness. This has resulted in a minimalist,

qualitative interface. For instance, we could have required each application to disclose

detailed quantitative specifications of the characteristics of the traffic it expects to generate,

as well as the quality of service that it requires. However, such a complex interface would

place a considerable burden on the application programmer, that of carefully tuning for

each possible workload, making it unlikely that the casual developer would use our system.

This principle led to several decisions. Rather than use quantitative specifications,

applications express their intentions using only qualitative attributes over the data; i.e.,

whether a transmission will be small or large, and whether it is interactive or background

traffic. We do not mandate what constitutes “small” vs “large”. We allow the application

to use these labels as it sees fit. While we may eventually add more attributes to our labels

as our experience with the system grows, the current interface is sufficiently expressive to

handle several complex applications, as discussed in Section 2.4.

2.1.3 Embrace Concurrency and Failure

Our original goal for Intentional Networking was to provide a single-socket abstraction

that assigns labeled traffic to the most appropriate network. However, single-socket seman-

tics require data to be delivered in-order for TCP connections. Unfortunately, this severely
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limits the set of optimizations possible when using multiple networks simultaneously.

After several false starts, it became clear to us that going from one to many networks is

akin to the transition from single-threaded programming to multi-threaded programming.

Some interleavings of execution orders are very useful and desirable, but others lead to

incorrect computations.

Just as concurrent systems include mechanisms to allow the programmer to rule out

incorrect orderings, we added synchronization abstractions to express both atomicity and

happens-before constraints. These mechanisms are both simple and expressive, and are

familiar concepts to programmers with training in monitor-style concurrency control.

In addition to expressing such ordering constraints, we also needed mechanisms to

deal with partial failure. There are times when some traffic would be ill-served by any

available transmission alternative. Therefore, we provided a callback mechanism—similar

to exceptions or continuations—to handle delayed transmissions or disconnections.

2.2 Abstractions and interface

In this section, we describe the Intentional Networking application interface. We first

describe the basic abstractions in the interface. Applications use labels to communicate

their intent. These are meaningful in the context of multi-sockets and are expressed over

message units called IROBs (Isolated Reliable Ordered Bytestreams). IROBs provide atom-

icity (mutual exclusion); applications may also specify ordering constraints among IROBs.

When operations must be deferred, applications may register thunks to resume them. Af-

ter describing these fundamental abstractions, we show the Intentional Networking API in

Section 2.2.6.

2.2.1 Labels

The label is the principal abstraction available to applications. It is the mechanism by

which applications declare the properties of any particular network message. Labels are
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Properties Possible values

Interactivity Foreground vs. Background

Size Small vs. Large

Table 2.1: Intentional Networking label properties

system-defined qualitative properties of the message. Our present implementation supports

only four labels across two dimensions, interactivity and size, as shown in Table 2.1. A

message’s label is set to foreground if a user-visible event is waiting for the response. A

message is background if its timely delivery is not critical to correct behavior. For example,

many hints [99] need not be sent. The small label describes messages that are latency-

dominated such as single-packet RPCs, while the large label describes other messages such

as those containing multimedia data. We expect to add further dimensions and label values

as our experience with applications grows. Yet, the eventual number of possible label

values will remain small since interface simplicity is one of our main design goals.

2.2.2 Multi-Sockets

Labels are used in conjunction with label-aware sockets. We call such sockets multi-

sockets. Intuitively, a multi-socket multiplexes several different labels across a single vir-

tual socket. For the most part, multi-sockets behave exactly as normal ones do. However,

multi-socket send calls take a label that is used to assign packets to the best possible in-

terface. Note that the sender is always the entity responsible for assigning labels, and as a

consequence, recv does not require a label. While we could imagine using one to imple-

ment a filtered receive, we have not had to do so for any of our applications so far.

A multi-socket is a single logical connection that dynamically instantiates and uses

actual TCP connections over one or more physical interfaces. Multi-sockets provide en-

capsulation: they hide the presence of multiple network interfaces, routes, and connec-

tions from applications. Multi-sockets also encapsulate transient disconnections caused by

events such as passing through a wireless dead zone. Applications specify only labels,
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which are used by the Intentional Networking traffic manager to choose the right network

over which to send data. Applications may optionally be notified about network unavail-

ability on a per-label, not per-network basis, through the use of thunks, which are deferred

execution environments that execute when an event occurs. Thunks are described in more

detail in Section 2.2.5.

Like TCP sockets, multi-sockets support a reliable delivery abstraction. However,

multi-sockets relax TCP’s ordering constraints by allowing bytes to be reordered subject

to application-specified mutual exclusion and ordering constraints, as described in the next

two sections.

2.2.3 IROBs

An IROB is the unit of network transmission to which labels are applied. The multi-

socket interface guarantees that each IROB is received atomically; i.e., the bytes of the

IROB are produced in order without intervening bytes from other network transmissions.

However, individual IROBs may be reordered with respect to one another. In other words,

an IROB sent after a previously sent IROB may be seen first by the application reading

data from the receiving multi-socket. Yet, bytes from the two IROBs will never be in-

termingled. IROBs thus provide mutual exclusion in the same manner that locks provide

mutual exclusion for threads in a multithreaded program.

2.2.4 Ordering constraints

Since some applications require ordering constraints between IROBs, the multi-socket

interface supports the declaration of such constraints. Each multi-socket assigns a unique,

monotonically increasing identifier to each IROB. When creating a new IROB, the appli-

cation may specify the identifiers of any IROB that must be received prior to receiving the

one being created. Ordering constraints may only specify IROBs that have a lower unique

identifier; this guarantees that such constraints are deadlock free. Applications that desire

the sequential byte stream of a TCP socket specify that each IROB must be received after
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the one with the next lowest identifier; our API provides default send calls with this behav-

ior for simplicity. However, many of our applications have looser constraints; for instance,

the BlueFS file system client requires that asynchronous writes be ordered sequentially

with respect to one another, but allows them to be arbitrarily ordered with respect to all

other RPC types. The ordering constraints in multi-sockets are similar to those provided

by condition variables for threads in a multi-threaded program.

2.2.5 Thunks

It is possible that a labeled IROB may not have any “appropriate” network available at

the time it is sent. For example, consider an opportunistic bulk transfer initiated when only

a low-bandwidth link is available. Such a transfer would preferably be done at a later time,

when a high-bandwidth link is encountered. Alternatively, the mobile computer may be in

a wireless dead-zone, with no connectivity.

Naturally, we do not want applications to have to poll for such a link. We also do

not want applications to have to establish new connections after short periods of transient

disconnection. However, in keeping with our design goals, we want to expose such events

to applications when appropriate.

In our interface, the operations that create IROBs take an optional thunk argument,

which is a function/argument pair that will be used to inform the application about IROBs

that cannot be immediately sent due to the lack of an appropriate network. When an IROB

is deferred, the call that takes the thunk argument returns a special return code. Later, when

data with the specified label can next be transferred, the library notifies the application by

calling the thunk function with the specified arguments. The ownership of the argument’s

resources passes with the thunk, and the handler must take responsibility for them. Thunks

may be canceled—for example, if a subsequent send would invalidate a prior thunked one.

Thunks are useful for applications that send periodic messages, such as checking for

new e-mail. Buffering redundant messages during disconnected periods and sending them

all later is clearly undesirable. Instead, such applications register a thunk for the send and
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Function Arguments and return values

ms socket (IN family, IN type, IN protocol, OUT multi-socket);

ms begin irob (IN multi-socket, IN label, IN dependencies, IN thunk,

IN thunk data, OUT irob id);

ms irob send (IN irob id, IN buf, IN length, IN flags, OUT bytes sent);

ms end irob (IN irob id);

ms send (IN multi-socket, IN buffer, IN length, IN flags, IN label,

IN thunk, IN thunk data, OUT bytes sent);

ms recv (IN multi-socket, IN buffer, IN length, IN flags,

OUT label, OUT bytes rcvd);

This figure shows the Intentional Networking API for creating and using multi-sockets.
Besides the functions shown, multi-sockets also support the traditional socket func-
tions; e.g., accept, select, and setsockopt.

Table 2.2: Intentional Networking API

are notified when an appropriate network is available. The thunk handler sends only one

polling request, thereby preserving valuable network bandwidth.

2.2.6 API

Table 2.2 shows the most important functions in the Intentional Networking API. The

ms socket call creates a new multi-socket, and the ms connect call connects it to a remote

endpoint, which is specified in the same way as for the connect system call. Thus, the

only difference between ms connect and the standard connect system call is that the first

argument is a multi-socket.

Typically, we modify an application by replacing the socket, connect, listen, and accept

calls with their ms * counterparts. Applications create a new IROB through ms begin irob,

passing a label that describes the atomic message, as well as any ordering constraints. This

function also takes an optional thunk and data to be passed to the thunk function. The ap-

plication then calls ms irob send to specify the data sent as part of the IROB; typically,
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we replace send with ms irob send, one-to-one. The application uses ms end irob to

tell the library that no more data will be sent for the IROB. The ms send call is provided

as a convenience; it creates a new IROB that depends on all previous IROBs, specifies the

data that comprises the IROB, and ends the IROB. If an application uses just ms send calls,

it will provide the behavior of TCP with labels, though no reordering will occur.

The ms recv call returns a label. This is useful for server applications that wish to

reply to a client request using the same label provided by the client for the original request.

For instance, an IMAP server may wish to reply to client background requests with a back-

ground label and reply to foreground requests with a foreground label. Although not shown

in Table 2.2, multi-sockets export similar functions to those provided by traditional sockets

such as listen, accept, select, and setsockopt.

2.2.7 Discussion

It is useful to consider what an application would need to provide on its own to achieve

application-aware functionality equivalent to Intentional Networking. First, an application

would need to discover new network options, open sockets for each network option, and

monitor the connection quality of each network in order to decide which network to use

for each transmission. To prioritize on-demand traffic, the application might create multi-

ple sockets per network, then use a platform-specific method to prioritize traffic from one

socket over the other. The application would also need to stripe traffic across connections

to improve throughput, then manage the inevitable re-ordering of data that arises from such

striping. Finally, the application might poll to achieve the functionality of thunks that al-

lows traffic to be altered or dropped if an appropriate network is not currently available.

In contrast, the Intentional Networking abstraction makes this functionality the respon-

sibility of the lower layer of the mobile system, not the application. The application need

only annotate its traffic with the simple API in Table 2.2 to achieve the same functionality.

While strategies that ignore intent can be implemented without application modification,

our evaluation shows that such application-oblivious strategies substantially underperform

Intentional Networking.
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2.3 Architecture

When we began our work, we faced a decision about whether to implement Intentional

Networking at user-level or in the kernel. Good reasons exist for both choices. A kernel

implementation can improve performance by integrating tightly with the network stack.

However, we decided to implement our initial prototype at user level to provide portability

and simplify deployment. Given the wide array of operating systems used by mobile com-

puters and cell phones, a user-level implementation is much easier to port to new platforms.

Further, many popular mobile platforms do not allow kernel modifications at all. Even with

a user-level implementation, our prototype performs well, as shown in Section 2.5. Our im-

plementation consists of a connection scout daemon that runs on the mobile client, plus a

library implementing the API.

2.3.1 Connection scout

The connection scout is a stand-alone user-level process, which we have adapted from

the implementation of Virgil [67]. It is responsible for discovering and evaluating the per-

formance of the networking options available at any given time. For each of the mobile

computer’s wireless network interfaces, the connection scout periodically attempts to es-

tablish network connections. After a connection is established, the scout measures the

throughput and latency of the connection through active probing. The multi-socket library

queries network availability and performance data from the scout using a pipe.

We envision that the connection scout could eventually leverage a lower layer that al-

lows a mobile computer to simultaneously connect to multiple access points via a single

physical interface [20, 69] by having the lower layer expose each access point as a separate

virtual interface.
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2.3.2 Library

The Intentional Networking library exports the interface described in Section 2.2.6. It

is responsible for mapping IROBs to interfaces based on their associated labels. For each

multi-socket, the library dynamically creates separate TCP sockets for each interface over

which it decides to send data. A multi-socket connection persists until no TCP connection

can be maintained using any network interface (for example, if the mobile computer moves

out of range of a WiFi access point and no other network options are available) or the

multi-socket is closed.

We chose to use TCP primarily for simplicity. Since we are not designing a new over-

the-wire protocol, TCP’s reliability mechanisms limit the amount of effort we must spend

implementing ordered delivery of bytes within an IROB or retransmission of bytes lost due

to congestion in the network. For the purposes of our prototype and evaluation, we have not

found TCP to be a significant source of overhead, but we imagine that a more highly tuned

implementation of Intentional Networking would integrate more tightly with the transport

layer for optimal performance.

When an initial connection is established over the first TCP socket, a mobile client

sends its peer data that includes its available IP addresses and the estimated bandwidth and

latency for each one. It piggybacks updates to this information on Intentional Networking

headers, as described below. With this information, either peer may establish a new TCP

connection when it expects that a new connection would be best suited for data with a

specific label.

The library maps labels to TCP connections using active and passive estimates of net-

work bandwidth and latency. The connection scout provides an initial active measurement

of connection quality when a new network option is discovered. As the library sends data

over the connection, it measures the response time for individual transmissions to generate

passive measurements. The connection scout provides periodic active measurements that

are used to assess quality during periods where no data are transmitted and passive mea-

surements are unavailable. Active and passive measurements are combined using a flip-flop

filter [49] to derive a running estimate of the current connection quality.
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The library uses the following strategy to map labels to TCP connections. Foreground

data is given the highest priority. IROBs with the {foreground, small} label are sent

over the lowest latency TCP connection. IROBs with the {foreground, large} label are

sent over the highest bandwidth connection. These may be the same connection (e.g., if

there is only one interface that currently offers connectivity). The actual physical interface

used for a specific label may change over time as estimates of link characteristics vary.

Background data is given lower priority than foreground data.

Background IROBs are striped over all networks that are not currently sending fore-

ground data. Large, background IROBs are broken into smaller chunks, each of which may

be sent over a different network. Our decision to stripe background, but not foreground,

IROBs is driven by the different goals of the two labels. A foreground label demands low

response time; unfortunately, striping can increase the latency for the last packet to ar-

rive unless the networking layer correctly predicts instantaneous latency for each link. In

contrast, the background label specifies data that is not latency-sensitive; thus, a striping

strategy that maximizes the utilization of each link is ideal.

The library maintains a collection of IROBs that have been created by the application.

Each IROB contains data sent by the application but not yet acknowledged by the peer

library on the other side of the multi-socket connection. This means that there is some

double-buffering with data contained in the kernel TCP socket buffer; this double-buffering

is one performance artifact of a user-level implementation.

Each label has a linked list that indexes all IROBs with that label in FIFO order. Each

TCP connection has a list of the labels that it currently is eligible to send; for instance, the

lowest latency TCP connection may send either background or foreground data. For each

connection, the library sorts the labels in order of preference, i.e., with foreground labels

preferred over background ones. When the network is able to send data, the library pulls

data from the first IROB on the list associated with the label with highest priority. If no

such IROB exists, it moves to the label with next highest priority, and so on. The library

encapsulates the IROB data with a 32-byte Intentional-Networking-specific header that

includes the IROB identifier and its label, followed by the IROB’s ordering constraints.
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Additional information may be piggybacked in the header, such as current estimates of

network bandwidth and latency. The library is not constrained to send all of an IROB’s

bytes over a connection at once; it may decide to break an IROB into smaller chunks, each

of which is sent with an individual header. As an example, this allows the library to start

sending IROB data before the application has called ms end irob to indicate the end of the

IROB. IROB chunks sent over multiple TCP connections are re-assembled by the receiving

library so that the bytes of each IROB are delivered atomically and in order.

The receiving library acknowledges each IROB. The acknowledgment is not constrained

to travel over the same network over which the chunk was received. This can be useful if,

for example, a TCP connection becomes unavailable after data has been received but before

the acknowledgment is sent. For efficiency, acknowledgments are piggybacked on outgo-

ing message headers if a message is queued when the acknowledgments are generated.

While Intentional Networking generally relies on the underlying TCP acknowledgments

and retransmissions to provide reliability, some additional work is required when a TCP

connection breaks. In such instances, the sending library polls the receiving library over

a different TCP connection to learn the state of any unacknowledged IROBs that were in

flight when the connection was broken.

One challenge is that background requests may be sent over the same network as fore-

ground requests. If the library were to send a large amount of background data, it might

unnecessarily delay the foreground data. While a kernel implementation could prioritize

one over another at the protocol level, a user-level implementation must use other methods.

We have chosen to adapt the anticipatory scheduling algorithm [42] to solve this dilemma.

Since high-priority traffic is likely to exhibit temporal locality, we bound the amount of

data buffered in the kernel by a lower-priority IROB to no more than the amount of data

that can be sent within 50 ms if a high-priority IROB has recently been sent by the appli-

cation. This bound is increased to one second as long as no further high-priority IROBs

are observed. Anticipatory scheduling therefore optimizes for low latency for foreground

IROBs during periods when many such IROBs are sent, and for high throughput for periods

with few foreground IROBs.
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The library that receives data guarantees that bytes are delivered to the application in

a manner that obeys the mutual exclusion and ordering constraints specified by the sender.

Once at least one byte from an IROB has been received by an application, no other bytes

from another IROB are delivered until all bytes from the first IROB have been delivered.

For this reason, the library does not deliver bytes from a low-priority IROB until it has

received all of its bytes. Further, the library buffers an IROB until its ordering constraints

are satisfied. For instance, if IROB 2 depends on IROB 1, but is received first (because the

two IROBs were transmitted over different networks), the library buffers IROB 2 until after

IROB 1 has been received by the application. If two IROBs are eligible to be received, the

library delivers the higher-priority one first (e.g., a foreground IROB will be received by

the application before a background one). Within a label type, FIFO ordering is used to

decide which IROB to deliver.

If a TCP connection fails while IROBs are being transmitted, any remaining data for

those IROBs will be sent over the next most appropriate connection. The library masks

transient disconnections unless all TCP connections fail simultaneously.

When multiple Intentional Networking applications execute concurrently, the activities

of all processes are coordinated through shared memory variables and synchronization.

We assume that the links closest to the mobile computer are the bottleneck, and that most

of these are shared across all paths of interest. Therefore, each library instance updates a

shared variable containing the amount of buffered but unsent data on each network that may

send foreground data. The total amount of such data across all processes is not allowed to

exceed the limit described above for the anticipatory scheduling algorithm, guaranteeing

good foreground performance. If an application not modified to use Intentional Networking

executes concurrently with one that does use Intentional Networking, the applications use

separate connections and do not coordinate with each other. The Intentional Networking

application will adjust its estimates of network quality based on passive observations during

its execution, and hence will account for the competing traffic in its decisions.

The Intentional Networking library handles connections between two mobile comput-

ers with multiple interfaces by potentially establishing a connection per interface-pair. We
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do not describe this scenario further as our applications to date have all involved commu-

nication between a mobile client and a single-homed server.

2.4 Applications

We have modified three applications to use Intentional Networking: BlueFS, a dis-

tributed file system for mobile clients; Thunderbird, the Mozilla e-mail and news client;

and a vehicular sensing application of our own creation.

2.4.1 BlueFS

BlueFS [70] is an open-source, server-based distributed file system with support for

both traditional mobile computers such as laptops and consumer devices such as cell phones [79].

A BlueFS client interacts with a remote server through remote procedure call, augmented

with bulk-transfer capabilities. BlueFS inherits parts of its design from previous mobile

computing file systems such as Coda [50]. BlueFS clients fetch file and directory informa-

tion on demand from a remote file server. Files are cached locally on the client. Modifi-

cations to file system data are propagated asynchronously to the remote server in the back-

ground, in the same manner as Coda’s weakly-connected mode [64]. Clients also prefetch

data from the server into their caches to improve performance and support disconnected

operation.

We adapted BlueFS to use Intentional Networking by modifying its RPC stub generator

to take three optional arguments: an Intentional Networking label, ordering constraints, and

a thunk. The RPC package uses one socket to connect a client and server; we changed this

to be a multi-socket. We also modified the RPC package to create a new IROB for each

RPC request and response message with the label, ordering constraints, and thunk specified

by the BlueFS client.

We labeled RPCs that are used to prefetch data and asynchronously write modifications

back to the server as {background, large}. Other RPCs which fetch data on-demand
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from the server were labeled as foreground; the vast majority of these are small since

BlueFS fetches data on a per-file-block basis. While it is true that some demand fetches

may be from applications that are not interactive, the Posix API is insufficient to express

this to file systems. Therefore, the conservative approach of treating all such requests as

foreground seemed best.

Since the file server must see modifications in order, we used Intentional Networking

ordering constraints to specify that each file modification IROB depends on the previous

one of that type (e.g., all such IROBs are delivered sequentially with respect to one an-

other). However, no constraints are expressed with respect to IROBs of other types, so, for

example, the library may reorder an on-demand fetch IROB ahead of a modification IROB.

The server RPC library responds to each RPC with the same label used to send the

original request. Since the RPC library already uses a unique identifier for each RPC,

matching requests and responses was trivial.

In total, we added or modified 400 lines of code in the RPC library to support Intentional

Networking, as well as 134 lines of code in BlueFS. For comparison, the original code base

has over 44,000 lines of code.

2.4.2 Mozilla Thunderbird

We also used Intentional Networking to improve the interactive performance of Thun-

derbird [63], Mozilla’s mail and news client. For simplicity, we used an IMAP proxy to

intercept traffic between Thunderbird and an IMAP server. The proxy running on the mo-

bile computer prefetches e-mail contents and headers from the IMAP server and stores

them on the client’s local disk. We replaced the proxy’s outgoing connection with a multi-

socket and labeled the IMAP messages. Prefetch requests and responses are labeled as

background, while on-demand fetches triggered by the user via the Thunderbird GUI are

labeled as foreground. Requests are all labeled as small, while responses are labeled as

small or large, depending on their actual size. Each response message from the IMAP

server is given the same background or foreground designation as the request that gen-
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erated the message. Like the previous application, the IMAP protocol includes a unique

identifier for each request/response pair, making it trivial to match requests and responses.

Out of 2951 lines of proxy code, we added or changed 124 lines to support Intentional

Networking.

2.4.3 Vehicular participatory sensing

Finally, we created a new application targeted at participatory sensing for corporate

vehicle fleets. This application is based on specifications for a research/teaching platform

developed by Ford Motor Company. The application continuously collects data from a ve-

hicle’s internal networks and sensors at a data rate of approximately 25 KB/s. Given ample

network bandwidth, the raw data are sent to a cloud server, where they are stored. Raw

data can be used for suggesting preventative maintenance, route optimization, improving

fuel economy, and other participatory sensing uses.

Since automotive hardware must last a minimum of 10 years and cost reduction is key

to profits, the vehicle is expected to have limited storage and computational resources.

Therefore, raw data is dropped if sufficient network resources are not available to transmit

it immediately. In addition to the raw data, a short 4 KB summary of the data is included.

By default, metadata summaries are sent every second, though if bandwidth is insufficient,

summaries are generated over longer time periods, e.g., the last 10 seconds. Finally, the

vehicle also transmits urgent updates when it encounters anomalous conditions, such as

information from the traction control system that indicates slippery road conditions or sud-

den braking. These updates can be used to warn other vehicles of difficult driving situations

such as ice, accidents, or unexpected traffic.

The Intentional Networking version of this application labels metadata summaries as

{background, small} IROBs and raw data messages as {background, large} IROBs.

Urgent updates are {foreground, small} IROBs. We use ordering constraints to ensure

that each raw data IROB is received after the metadata message that summarizes it. The

application uses the thunk interface to receive a callback if a background IROB cannot

be immediately sent. If the callback is not received before the next raw data message is
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collected, the previous raw data message is dropped, and the metadata summary is updated

to average values over the current time period and all previous ones since the last metadata

summary was sent.

We also created an additional version of the application that does not use Intentional

Networking. This version uses select to determine when the socket buffer is full. Like

the Intentional Networking version, this version omits sending raw data and aggregates

metadata when it is unable to transmit for more than a second. Our vehicular sensing

application has 2080 lines of code. We added or changed 186 lines to support Intentional

Networking.

2.5 Evaluation

We evaluated Intentional Networking by measuring how much it improves network

performance for our three applications. Our evaluation uses two different types of network

connectivity scenarios: synthetic network conditions that are used as microbenchmarks

and traces of actual network connectivity collected from a vehicular testbed. In the latter

case, the use of traces provides experimental repeatability and allows a careful comparison

among strategies.

2.5.1 Experimental Setup

2.5.1.1 Testbed

We ran all experiments on a testbed in which the client computer is a Dell Precision 350

desktop with a 3.06 GHz Pentium 4 processor and 1 GB DRAM, running a Linux 2.6.22.14

kernel. All servers run on a Dell Optiplex GX270 desktop with a 2.8 GHz Pentium 4 pro-

cessor and 1 GB DRAM, running a Linux 2.6.18 kernel. These computers are connected

via local 100 Mbps Ethernet connections. We emulate wireless network conditions by in-

serting delays using the netem [56] network emulator and throttling throughput using the

Linux Advanced Routing and Traffic Control tools [55].
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Scenario Network Bandwidth RTT Connectivity

Type (Mbps) (ms)

Crowded hotspot Low latency 0.6 20 Continuous

High bandwidth 2.0 400 Continuous

Intermittent Wide-area 0.3 400 Continuous

WiFi hotspots 3.0 60 Intermittent

Table 2.3: Synthetic network scenarios used in the evaluation

For Intentional Networking experiments, we modified the client and server component

of each application to use our API as described in the previous section and linked each

with the Intentional Networking library. We also ran the connection scout on the client

computer. For other experiments, the applications are unmodified. All reported values are

the mean of 5 trials; graph error bars show 95% confidence intervals.

2.5.1.2 Synthetic Microbenchmarks

To better understand the behavior of Intentional Networking, we created synthetic net-

work traces that emulate the two network scenarios shown in Table 2.3. These synthetic

traces are intended to help us understand our system’s behavior in controlled scenarios

rather than precisely emulate actual network behavior. The first scenario replicates the net-

work conditions that would be seen by a user with a high-bandwidth 3G network card sit-

ting at a crowded WiFi hotspot. The 3G network offers higher bandwidth than the crowded

AP, but it also inflicts significantly higher latency on network packets. Thus, each network

is superior for different types of traffic. Empirically, we observed several instances of such

scenarios in the network traces we collected, as described in the next section.

The second scenario emulates a vehicular setting in which a low-bandwidth, high-

latency cellular network is continuously available. Opportunistic WiFi connections that

offer better bandwidth and latency are intermittently available. We use empirical distribu-

tions from the Cabernet project [30] to model the availability of WiFi access points. The
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distribution of access point encounters has a median of 4 seconds, a mean of 10 seconds,

a 99th percentile of 250 seconds, and standard deviation of 0.4 seconds. The distribution

of time between APs has a mean of 32 seconds and a median of 126 seconds. Our traces

show several instances in which WiFi dominates 3G. However, the traces indicate that this

is a simplified view: 3G may also dominate WiFi in many instances; one may offer better

uplink bandwidth and worse downlink bandwidth; etc.

2.5.1.3 Trace-driven evaluation

While the microbenchmarks above help us understand the behavior of our system, we

were curious to see how well it would perform in actual vehicular networking conditions.

To generate repeatable experiments, we used a two-part process in which we first drove a

vehicle with WiFi and Sprint 3G network interfaces. We continuously measured the down-

link and uplink bandwidth and latency available through each network interface through

active probing to a server at the University of Michigan. We also noted when each type

of network was unavailable. The WiFi trace includes only those public APs to which we

could associate and establish connections. We collected the traces in Ann Arbor, MI and

Ypsilanti, MI at different times of the day. Trace 1 offers better 3G performance overall but

encounters fewer public APs. Its median 3G bandwidth is 382 Kbps downlink and 57 Kbps

uplink, with maximum bandwidth of 1.3 Mbps downlink and 78 Kbps uplink. Trace 2 has

more WiFi access but poorer 3G performance. Its median 3G bandwidth is 368 Kbps down-

link and 40Kbps uplink, with maximum bandwidth of 1.2 Mbps downlink and 74 Kbps up-

link. Trace 1 has WiFi coverage only 7% of the time, with a median session length of 11

seconds; the longest session was 72 seconds. Trace 2 has WiFi coverage 27% of the time,

with a median session length of 7 seconds; the longest session was 131 seconds. In both

traces, there are periods where each type of network dominates the other, and where each

type of network has better bandwidth but worse latency than the other. Thus, the network

conditions are much more variable than in either of our microbenchmarks.

In the second step, we used the traces to drive the emulator in our testbed. Our traces

lasted 138 and 36 minutes, respectively. Because our experiments run for different dura-
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tions, we use the first portion of each trace for shorter experiments and loop the trace for

longer ones.

We chose to use traces rather than measure application performance directly from the

vehicle platform to provide repeatable conditions for different network management sce-

narios. Changing traffic conditions and external load on networks make it very difficult

to achieve identical connectivity, even over multiple traversals of the same route. This

variability would likely preclude meaningful comparisons across different trials.

2.5.1.4 Comparison strategies

For each application, we compare Intentional Networking with three strategies. The

first two strategies use only a single network at a time but migrate connections to always

use the best network according to a specific criteria. The first of these strategies always uses

the network with the lowest round-trip time, while the second uses the network with the

best bandwidth. We idealize a zero-cost migration by emulating a single virtual network

connection that always has the bandwidth and latency of the best current network according

to the selection criteria. For example, to create a virtual “best-latency” trace with a single

network, we determine whether 3G or WiFi offered the lowest latency for the first second of

the original trace, then use the recorded characteristics of that network for the first second

of our new trace. We repeat the process for each second. Thus, these strategies show the

maximum benefit that could be achieved by a migration strategy if an oracle chooses the

best current connection and there is no migration cost.

We also compare Intentional Networking with an idealized version of an aggregation

protocol, such as MultiNet or FatVAP, that multiplexes traffic over all available networks.

We idealize aggregation by emulating a single virtual network connection that has band-

width equal to the sum of the bandwidths of all networks and latency equal to the mini-

mum of the latencies of all networks. This virtualized network is ideal in the sense that it

offers better connectivity than any protocol that aggregates the individual networks could

actually achieve. It therefore offers an upper bound on application-oblivious aggregation

performance for each scenario.
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(b) Background transfer time

Figure 2.1: BlueFS results

2.5.2 Results

2.5.2.1 BlueFS

To evaluate BlueFS, we run a software development workload that rebuilds the lighttpd

(version 1.4.25) Web server source tree. Such “Andrew-style” benchmarks have long been

used to test file system performance [39]. Our particular benchmark deletes all object

files from the build directory and then runs configure and make to build lighttpd. The

benchmark begins with a cold client file cache, so all files are fetched from the server. We

report the total time taken to execute the benchmark (i.e., the interactive performance), as

well as the total time to finish propagating updates to the server in the background.

Figure 2.1a shows the interactive latency for BlueFS (the time to complete the software

development benchmark). For the hotspot scenario, the best bandwidth strategy always

uses the 3G network. The best latency strategy is an improvement because the workload

is dominated by small fetches of 4 KB blocks. The idealized aggregation strategy works

very well in this scenario because it is given maximum benefit from the diverse latency

and bandwidth of each network. Yet, Intentional Networking still realizes a 14% speedup

compared to aggregation by prioritizing foreground over background traffic. Intentional

Networking improves interactive latency by 3x compared to the best latency strategy and

by 4x compared to the best bandwidth strategy.
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To verify that Intentional Networking does not unduly penalize background traffic, we

also measured the total time to finish sending all background updates to the server, as shown

in Figure 2.1b. Interestingly, Intentional Networking transfers all data 9% faster than the

aggregation strategy in the hotspot scenario. At first, this seems anomalous because our ide-

alized aggregation strategy should make maximum possible use of the networks. However,

because the benchmark includes computation that depends on foreground transfers, com-

pute episodes start earlier using Intentional Networking. This means that background data

is generated sooner in the benchmark. Thus, Intentional Networking is able to use the up-

link bandwidth earlier in periods where the aggregation strategy has no data to send. Where

data dependencies exist, Intentional Networking can use the network more efficiently than

even an idealized aggregation strategy that is unaware of application intent.

In the intermittent scenario, WiFi dominates 3G when it is available. Thus, the best

bandwidth and best latency strategies both choose WiFi when available. The aggregation

strategy derives a small additional benefit from also using 3G during these periods. Inten-

tional Networking, however, reduces interactive latency by 40%. The benefit compared to

aggregation is larger in this scenario because aggregation derives less benefit from its ide-

alized use of two networks to offset Intentional Networking’s benefit from understanding

application intent. Intentional Networking’s total transfer time for all data is 1% better than

the other strategies.

The performance of Intentional Networking for latency-sensitive data is even better

for the measured vehicular scenarios. Across the two traces, Intentional Networking im-

proves interactive response time by 5-8x compared to aggregation, while increasing total

background transfer time by only 1–7%. Compared to the best-bandwidth and best-latency

strategies, Intentional Networking improves interactive latency by 7–8x and background

transfer time by 5–17%. Despite the increased variability of network quality, Intentional

Networking identifies and uses the best network for each type of traffic and thereby maxi-

mize benefit to the user.
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Figure 2.2: Thunderbird results

2.5.2.2 Thunderbird

In our Thunderbird benchmark, a user reads e-mail after a period of disconnection. The

benchmark first fetches the e-mail headers of 100 messages, then downloads in the back-

ground the e-mail messages (with attachments), which range in size from 50 B to 256 KB.

While the caching proxy is downloading these messages, the user selects 5 messages to

read immediately based on the headers. We report the average interactive delay to fetch the

on-demand e-mails, as well as the time to fetch all e-mails in the background.

Results for the Thunderbird e-mail benchmark are shown in Figures 2.2a and 2.2b. In

contrast to the previous benchmark, the migration strategy that maximizes bandwidth is

superior to the one that minimizes latency because transfer times are dominated by several

large e-mails. Intentional Networking improves interactive latency compared to aggrega-

tion by 5x in the hotspot scenario and by 8x in the intermittent scenario. By reordering

messages based on application semantics, Intentional Networking is able to deliver supe-

rior response time. Total background transfer time is 18% longer in the hotspot scenario,

but 1% longer in the intermittent scenario. Results compared to the migration strategies

are even better, with Intentional Networking fetching the on-demand e-mails 8–23x faster,

while also improving total background transfers by up to 3x.
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(b) Background throughput

Figure 2.3: Vehicular Sensing results

For the two vehicular measurements, Intentional Networking improves interactive la-

tency by 7–13x compared to the other strategies. The time to transfer all e-mails is within

1–3% of the idealized aggregation strategy and superior to both migration strategies.

2.5.2.3 Vehicular sensing

In our vehicular sensing benchmark, the vehicle uploads raw data to a server when

network bandwidth is available, as described in Section 2.4.3. Our benchmark lasts for

fifteen minutes. During that time, we have three episodes of urgent data transmissions.

Since urgent messages are very often closely correlated in time, we send five messages in

a period of seven seconds during each episode. We report the average response time for

urgent events and the effective throughput of bulk sensor data, calculated over the entire

15-minute run time of the benchmark.

Figures 2.3a and 2.3b show results for the vehicular sensing application. In the hotspot

scenario, the aggregate bandwidth is sufficient to prevent background data from interfer-

ing with urgent messages. Thus, both Intentional Networking and the aggregation strategy

perform very well. The approximately 30 ms average latency for urgent updates is equiva-

lent within experimental error for the two strategies. The aggregation strategy achieves the
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maximum background data rate of 29 KB/s (a 4 KB summary and 25 KB of raw data per

second), and Intentional Networking comes within 0.5% of this rate. Intentional Network-

ing sends foreground data over 4x faster than the best-latency migration strategy.

In the intermittent scenario, Intentional Networking sends urgent events 41% faster than

the aggregation strategy and also achieves 25% greater bulk data throughput. The through-

put improvement comes from the use of thunks, which allow the Intentional Networking

version to avoid polling and better schedule background transmissions.

For the two vehicular traces, Intentional Networking improves urgent event response

time by 2–5x compared to the other strategies. At the same time, Intentional Network-

ing improves bulk sensor data throughput by 1–6% compared to the idealized aggregation

strategy and by up to 29% compared to the idealized migration strategies.

2.5.2.4 Concurrent applications

Finally, we examined the effect of running multiple Intentional Networking applications

concurrently by splitting the vehicular sensing application into two separate processes. The

first process sends only the urgent messages; the second process sends only the raw sensor

data. Figures 2.4a and 2.4b show results with two processes, including the two-process

version of the application for each of the idealized strategies. The behavior of Intentional

Networking with two processes is very similar to that with one process, showing that the

cost of using shared memory to coordinate across multiple processes is not significant.

The application-oblivious strategies see some benefits from multiple processes in the mi-

crobenchmark scenarios because the urgent updates and sensor data transmissions are now

concurrent, yet Intentional Networking performance remains comparable to or better than

the ideal strategies in all scenarios.

2.6 Summary

Mobile nodes face a changing array of diverse networking options, each of which may

harbor different strengths and weaknesses. As a result, it is rarely the case that any one
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Figure 2.4: Multi-app Vehicular Sensing results

networking option is the best choice for all traffic generated by all applications. By using

the available options judiciously, an application may see significant improvements in ser-

vice. Unfortunately, simply exposing the lower-level details of available networks, leaving

everything to the application, is unlikely to gain much traction.

Intentional Networking addresses this impasse. It provides a simple, declarative in-

terface for application to express the intent behind each network message. The system

matches presented network traffic to the best available interface. If no available network

is suitable, the traffic is deferred until such a network becomes available. Deferring some

types of traffic but not others leads to reordering. Intentional Networking provides mech-

anisms to express mutual exclusion and ordering constraints over their traffic to match

application constraints. Our results using vehicular wireless measurements show that these

strategies improve interactive response time from 48% to 13x, while degrading throughput

by no more than 7%.
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CHAPTER 3

Spending budgeted resources to reduce user-visible delay

With Intentional Networking, we provided applications with a simple abstraction that

allowed them to selectively introduce multi-networking while assuring correct operation,

all while imposing only a small development burden. Applications can separate inter-

active traffic from background traffic, improving the user experience without degrading

background throughput. Our initial work with Intentional Networking focused primarily

on designing the right application interface and improving applications’ interactive perfor-

mance. Following this, we next began to think about other concerns that a multi-network

abstraction would need to handle, energy consumption being at the forefront. We also con-

tinued exploring the common behaviors of real mobile applications and their implications

for Intentional Networking.

Many popular mobile applications are largely user-centric, meaning that most of their

network traffic occurs because the user made some request—opening a web page, for ex-

ample. Since long delays on mobile networks can easily dominate the user experience, we

soon realized that a common solution to this problem—application-level prefetching—is

one of the most common forms of background traffic. By predicting future user requests

and speculatively retrieving and caching the data, applications remove the network delay

from the critical path of servicing the request.

In many ways, mobile computing is an ideal domain for prefetching. Applications that

run on smart phones and tablets frequently fetch data from the cloud. Yet, mobile de-
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vices must often rely on wireless networks, and such networks can exhibit low bandwidth,

high latency, and intermittent connectivity. By prefetching and caching data, a mobile

application can avoid on-demand use of poor and unreliable wireless networks, leading

to a substantial improvement in interactive response time. Thus, the potential rewards of

prefetching are high.

Unfortunately, the potential costs of mobile prefetching are also high. Since wireless

network bandwidth is limited, care must be taken that prefetching does not interfere with

interactive traffic and degrade application response time. Further, prefetching data from

a remote server can consume battery energy and cellular data allotments, so profligate

prefetching may result in a mobile device’s battery expiring too soon or in overage charges

on a cellular plan.

Unfortunately, balancing costs and benefits is complex. The prefetching system must

consider at least three different concerns (performance, energy usage, and wireless data

consumption), no two of which are measured by a common metric. It must understand

how the costs of fetching data from a remote server vary as wireless network conditions

change, and it must take into account network-specific oddities such as 3G tail time [83].

It must account for differences in hit rates caused by variation in behavior across users,

applications, and even among different classes of data within the same application. Finally,

it must ensure that prefetching does not substantially degrade foreground network activity.

Given this host of complexities and the limited resources of many mobile application

developers, it is understandable that no current mobile application addresses all (or even

most) of the above concerns when deciding when to prefetch data. Instead, mobile appli-

cations employ simple, yet often suboptimal, heuristics such as prefetch nothing, prefetch

everything, or prefetch data subject to an arbitrary constraint (such as only prefetching data

items with size less than 32 KB). Our evaluation shows that use of such heuristics represents

a substantial missed opportunity.

Instead, we propose that the mobile computer system provide explicit prefetching sup-

port to all applications. Our prototype system, which we call IMP (Informed Mobile

Prefetching), is structured as a library to which any mobile application may link. The
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application interface is unobtrusive; applications must specify the items that could poten-

tially benefit from prefetching, and they must inform IMP when those items are consumed

or are no longer needed. The IMP library manages the complex mobile prefetching pro-

cess, guiding applications to prefetch the right amount of data at the right time in a manner

that improves performance while still meeting wireless data and battery lifetime goals.

IMP both helps overzealous applications rein in prefetching to meet user budgets and al-

lows tentative applications to make better use of available resources to improve the user’s

experience.

A key observation behind the design of IMP is that many of the prefetching complex-

ities detailed above have been addressed individually, albeit not always within the do-

main of mobile computing. We view the major contributions of IMP as unifying these

disparate ideas, applying them specifically to the domain of mobile prefetching, and pro-

viding prefetching services through a simple, easy-to-use interface that is well-suited for

rapid mobile application development.

The design of IMP is inspired by Transparent Informed Prefetching (TIP), which em-

ploys a cost-benefit analysis to determine when to fetch data from an array of disks into a

file cache [78]. Like TIP, IMP uses a shadowing strategy to predict hit rates for different

prefetch depths. IMP uses a substantially different algorithm than TIP’s to address unique

features of mobile prefetching. IMP considers not just performance but also energy and

wireless data usage. IMP also considers how aggregation of multiple prefetches can reduce

energy usage. Finally, whereas cache space is the bottleneck resource for disk prefetching,

IMP considers wireless network usage and its associated resource costs to be the bottleneck

in mobile prefetching.

IMP leverages lower network layers to prioritize foreground network traffic over prefetch-

ing activity and to discover, characterize, and effectively match traffic to multiple available

wireless networks. While IMP could be built on any layer that provides such services, it

currently uses Intentional Networking (as described in Chapter 2) for these purposes.

Finally, IMP proposes a unified approach for dealing with budgeted resources. A bud-

geted resource has a fixed limit on the amount of the resource that can be consumed within
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a specified time period. One example is cellular data allotments: many cellular plans allow

usage of up to a specified amount of data for a fixed charge. Another example is battery

energy: for predictable behavior, it is reasonable to expect the battery of a smart phone

to last for an entire day so that it can be recharged at night. While the negative conse-

quences of exceeding a budget have been widely observed, the negative consequences of

under-utilizing a budget have received little attention. Yet, we observe that unused cellular

data and leftover battery energy represent a substantial wasted opportunity when the mo-

bile system has degraded user experience in order to conserve those resources. In response

to this observation, IMP takes a “Price is Right” approach to budgeted resources—it tries

to come as close as possible to the budget as possible without exceeding it. IMP continu-

ally measures how well it is doing in meeting its budgets and uses a control loop to adjust

the cost of battery energy or cellular data usage relative to performance accordingly. This

is a variation of Odyssey’s goal-directed adaptation [33], which IMP modifies to manage

multiple resources and applies to the domain of mobile prefetching.

We have implemented IMP as a Java library and modified two applications, the K9 e-

mail client and the OpenIntents news reader, to use IMP. Our experimental results show

that IMP is able to meet all specified energy and cellular data usage goals. Additionally,

in most cases, whenever simple heuristic-based prefetching strategies also meet the goals,

IMP outperforms those strategies on interactive fetch time, often by a factor of two or more.

3.1 Design considerations

In this section, we examine the tradeoffs involved in mobile prefetching, and discuss

why the prefetching decision is more complex in the mobile domain than in many other

areas.
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3.1.1 Why is mobile prefetching so complex?

Most current prefetching systems have the sole goal of maximizing performance, sub-

ject to constraints such as cache space and network bandwidth. Prefetching is beneficial

when a data item that was prefetched speculatively is later requested by a higher layer of the

system. The latency of servicing the request is reduced by the time that would have been re-

quired to fetch the data. However, prefetching consumes resources. For instance, because

prefetch requests are interwoven with demand fetches from the higher layer, a prefetch

request might degrade the performance of those foreground requests. This interference

mitigates the performance benefit of a successful prefetch. Further, when prefetched data

is never consumed by the application, the interference with foreground activity degrades

overall performance. Thus, prefetching systems employ heuristics to try to maximize per-

formance by only prefetching data when the benefits of doing so exceed the costs.

Similar concerns arise in the domain of mobile prefetching when data is fetched from

remote servers. The performance benefit of prefetching can be substantial, especially when

wireless networks offer poor or intermittent connectivity. However, because wireless band-

width is limited, the potential for prefetch requests to degrade other traffic is magnified.

In mobile computing, the prefetch decision must consider resources other than per-

formance. Battery lifetime is often a critical concern. While the performance impact of

prefetching can be mitigated by scheduling prefetches for intervals with little or no demand

requests for data, the energy cost of prefetching data is difficult to mask. Yet, prefetching

can still have substantial energy benefits. For instance, consider that the energy required to

fetch data over a WiFi network is often less than that required to fetch data over a cellular

network and that the energy required to fetch data over networks varies in proportion to

the quality of the wireless connection. Thus, by prefetching data during periods of WiFi or

good cellular connectivity, the mobile computer uses less energy than if it were to service

demand fetches for the same data during periods of poorer connectivity. Further, prefetch-

ing allows the mobile computer to batch multiple requests. This saves energy by amortizing

transition costs across multiple requests—for instance, the energy costs of 3G tail time can

be ameliorated by sending multiple requests back-to-back.
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Since it is increasingly common to cap cellular data consumption, prefetching systems

must also consider cellular data usage when deciding whether to prefetch. Like energy

usage, prefetching can impact cellular data usage either positively or negatively. Prefetch-

ing data over a cellular network will increase data usage if the prefetched item is never

requested. On the other hand, the mobile computer can prefetch data over a WiFi net-

work and thereby reduce data usage by avoiding a subsequent demand fetch over a cellular

network. One could imagine setting a monthly budget for all prefetching and switching

prefetching off if the budget is exceeded. However, it is unclear how to set such a budget

accurately because non-prefetch data consumption can vary widely from month to month

and from user to user.

In summary, mobile prefetching is complex because one must consider at least three

metrics (performance, energy usage, and cellular data usage), whereas current prefetching

algorithms often consider just performance. Further, it is difficult to compare the three

metrics considered in mobile prefetching because no two are expressed in a single currency.

For instance, if a potential prefetch would improve performance and save energy, but would

also require additional cellular data transmission, should the mobile computer perform that

prefetch? The next section describes our solution to this dilemma.

3.1.2 Balancing multiple concerns

Battery energy and cellular data allotments are examples of a resource class that we

term budgeted resources. For such resources, there exists a fixed amount of the resource

that must last for a period of time. For instance, a cellular data plan may provide 4 GB

of data for a month. The consequence of exceeding the budget is severe (e.g., additional

cost or degradation of quality of service). On the other hand, any resources not consumed

during the budgeted period are wasted (unused data allotments do not roll over to the next

month).

Battery energy is also best thought of as a budgeted resource. In this case, the budget

is the amount of energy in the battery, and the budgeted period is the time until the battery

is recharged. Current energy management strategies correctly worry about the negative
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consequences of exceeding the budget (running out of battery energy). However, they do

not focus nearly enough on the negative consequences of undershooting the budget. Since

mobile computers increasingly degrade the user experience to preserve battery energy, any

time the battery is recharged with a substantial amount of energy remaining represents a

substantial wasted opportunity—the user experience was degraded for no purpose.

The inherent challenge is that the importance of a budgeted resource may change dra-

matically over time. Near the end of the month when there is substantial data left in a

cellular plan, or near the end of the day, when the user has a mostly-full battery and plans

to recharge soon, conserving a budgeted resource such as a data allotment or energy is rel-

atively unimportant. Instead, performance should be maximized. On the other hand, when

the battery is low or most of a data allotment is consumed, then the relative importance of

the budgeted resource is very high.

Strategies that assign a fixed conversion rate for budgeted resources (e.g., saving a Joule

of battery energy is worth a 10% degradation in application performance) are doomed to be

incorrect as the relative importance of the budgeted resource changes. A fixed conversion

rate will be too high when the budgeted resource is unimportant and too low when the

resource is precious.

Instead, we argue that the management of the budgeted resource should be adaptive.

IMP uses a control loop to adjust the conversion rate used to equate budgeted resources with

performance. When the system is projected to exceed its budget based on measurements of

current supply and demand, the conversion rate is increased to make the budgeted resource

more precious. This causes future decisions (prefetch decisions in the case of IMP) to

place more weight on conserving the budgeted resource. Thus, demand is reduced to match

supply. On the other hand, when the system is projected to use significantly less than the

budgeted amount, the conversion rate is decreased and the system becomes more aggressive

about using the resource to improve performance (or reduce the use of other budgeted

resources).

An additional benefit of the control approach is that the user experience becomes more

predictable. For instance, users can come to expect that their phone battery will just last
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all day in most circumstances, rather than having to constantly monitor the battery level

and adjust their own behavior. Further, the budget itself is a simple knob through which

the user can adjust system behavior. For instance, if one knows that one will recharge in

an hour, one can just change the budget to reflect that decision rather than adjust numerous

settings like screen brightness, processor speed, etc.

3.2 Design

We next discuss the design of Informed Mobile Prefetching. We first briefly describe

how IMP uses Intentional Networking to simplify the use of multiple networks. We then

describe how IMP decides whether to prefetch data in response to application hints.

3.2.1 Background: Intentional Networking

As described in Chapter 2, Intentional Networking is an abstraction for multiplexing

traffic over multiple wireless networks. IMP uses Intentional Networking to simplify its

use of multiple networks and to differentiate prefetch traffic from other application net-

work activity. By designating prefetches as background requests, IMP causes Intentional

Networking to prioritize other data over prefetches, ensuring that queuing delays due to

excessive in-flight background data do not adversely affect foreground requests. IMP also

gathers passive and active measurements of network quality from the Intentional Network-

ing layer.

3.2.2 Prefetch decision algorithm

IMP decides when and how much data to prefetch using a cost/benefit analysis inspired

by Transparent Informed Prefetching (TIP) [78]. The TIP algorithm regulates prefetching

of file system data from an array of disk drives in a server environment. The core idea be-

hind TIP is that the application should disclose hints that describe opportunities to prefetch

data—these hints are predictions of future accesses. TIP dynamically decides when to
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prefetch data corresponding to the disclosed hints based on a cost/benefit analysis that es-

timates how prefetching will impact application performance. One of the nice features of

the TIP design is that applications do not have to know any details about the environment

in which they are operating (e.g., resource constraints), nor do applications have to specif-

ically estimate how effective prefetch hints will be at predicting future accesses. These

details are managed by the prefetching system.

Since the use case that TIP targets (prefetching file system data from disk arrays) is

considerably different than prefetching data to mobile computers, IMP retains the structure

of the TIP cost/benefit model but changes most of the details. For instance, TIP considers

cache buffers to be the bottleneck resource, and it attempts to optimize only performance.

On the other hand, in mobile prefetching, the wireless network is the bottleneck resource

and one must consider both battery energy and data usage in addition to performance.

We next describe how IMP estimates the potential cost and benefit of prefetching a data

item for each of its three metrics: performance, energy use, and data consumption. IMP

separately considers the impact of prefetching over each currently available network (e.g.,

it calculates the impact for cellular and WiFi when both are available).

3.2.2.1 Performance

The performance benefit of prefetching comes from decreasing the time to service a

subsequent request for the prefetched data. The precise amount of benefit depends on

the size of the data item and the network conditions that will exist at the time the data is

requested. If the item is not prefetched, a demand fetch of the data will take time Tf etch,

where

Tf etch =
S

BW f uture

+L f uture

as given by the size of the data item (S) and the future network bandwidth and latency at

the time the demand fetch occurs (BW f uture and L f uture, respectively).

Although it may sometimes be feasible to predict future network conditions [68], for

many applications it is quite difficult to predict when the user will request data. For this rea-
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son, IMP uses the average network conditions observed in the past for the mobile computer

as a reasonable approximation of future conditions.

For each type of network, IMP tracks the average availability, latency, and bandwidth

of the network. To calculate averages, it obtains active network measurements and supple-

ments those observations with passive measurements of network behavior that occur when

data is prefetched or fetched on demand by applications. IMP uses network availability to

merge the costs of performing the demand fetch over different network types. It assumes

that if the lowest cost network is available, that network will be used. If not, the next lowest

cost network will be used if available, etc. In practice, since IMP currently considers just

cellular and WiFi transmission and since WiFi almost always dominates 3G when all costs

(performance, energy, and data) are considered, this works out to:

Tf etch−WiFi ×AvailabilityWiFi +Tf etch−cellular × (1−AvailabilityWiFi)

or the cost of fetching data over the two network types weighted by the observed average

availability of WiFi.

IMP allows applications to specify the size of each data item when a prefetch is re-

quested. For the applications we have modified to use IMP, it has been trivial for the

application to retrieve the size of each data item from a remote server at the same instance

that it learns of that item’s existence. For example, when an email client requests a listing

of all new messages, it can ask for the size of each email to be returned in the same request.

If an application declines to supply the size of an item to be prefetched, IMP instead uses

the average size of items it has fetched for that application in the past.

The calculation as described so far assumes that prefetch hints are always accurate;

i.e., that the prefetched data will be requested at some time in the future. However, many

prefetched items are never consumed by the application, so IMP must also consider the esti-

mated accuracy of a prefetch hint in its calculations. This is calculated on a per-application

basis as the number of prefetch hints for which the prefetched data was later consumed

divided by the total number of prefetch hints issued. IMP increments the count of total

hints when a new hint is issued, and it increments the count of consumed hints when an

application first requests prefetched data. It uses shadow caching to determine the number

43



of hints for which it did not prefetch data but for which the application later requested the

data. Specifically, IMP remembers all prefetch hints issued, regardless of whether or not it

has yet decided to prefetch the hinted data. Applications inform IMP when a hinted request

that has not yet been prefetched must be fetched on demand—this information is necessary

since prefetching is no longer useful. IMP increments the count of consumed hints when

this happens.

IMP allows applications to optionally differentiate among prefetch hints by associating

each hint with a class. The choice of how to apply classes is left up to the application; in

general, applications will benefit most if their prefetch classes separate prefetches by some

application-specific or user-specific quality that makes some prefetches more likely to be

requested than others. For instance, an email application might use one class for messages

in a priority inbox, and another class for the remaining messages. A news reader application

might associate a different class with each news feed. IMP maintains a separate estimate

of accuracy for each class and uses the appropriate class estimator when new prefetch hints

are issued. In this way, the abstraction we provide simplifies the creation of application-

specific prefetch strategies; the application need only divide its hints into classes, and IMP

takes care of discovering which classes have the most valuable hints.

In summary, IMP calculates the performance benefit of prefetching as the product of

the average time to fetch the data on demand and the application-specific or class-specific

accuracy estimate. The accuracy estimates allow IMP to help the application focus on

prefetching the items that are most likely to be used. Note that since IMP relies on Inten-

tional Networking to ensure that prefetch traffic does not interfere much with foreground

application activity, it need not assign a performance cost to each prefetch.

3.2.2.2 Energy usage

IMP calculates the effect of prefetching on battery energy by comparing the energy that

would be used to prefetch the data immediately (Epre f etch) with the expected energy cost of

later fetching the item on demand (E f etch). The previous section describes how IMP calcu-

lates Tf etch, the expected time to perform a future demand fetch of an item, as well as how it
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calculates the expected size of the data item (if this is not specified by the application). IMP

calculates Tpre f etch, the time to perform a prefetch, the same way it calculates the time for

a demand fetch, except that it uses the current estimates of bandwidth and latency for the

network over which prefetching is being considered (recall that IMP considers prefetching

over WiFi and cellular networks independently). IMP then uses models developed by Pow-

erTutor [105] to calculate the energy impact of both an immediate prefetch and a possible

future demand fetch. These power models are specific to the mobile device and cellular

carrier. They are generated with a suite of automated tests that isolate and exercise differ-

ent components of the device in turn. Once a model is derived, it can be re-used for many

different purposes (as we are reusing models developed by others in our work).

For prefetching on WiFi, the power model provides a power coefficient PWiFi−xmit that

encapsulates the average power usage of the WiFi interface when actively sending and

receiving; thus, Epre f etch = PWiFi−xmit ×Tpre f etch. When prefetching on a 3G cellular net-

work, IMP also includes the transition costs that may be incurred due to network activation.

For instance, tail energy [83] has been shown to be a significant phenomenon in 3G cel-

lular networks. 3G networks use inactivity timers to avoid the delays that can result from

frequent channel release and reacquisition. This results in the network interface spending

substantial time in a high-power state after the last transmission completes.

If a network transmission is predicted to cause a promotion to a high-power state, IMP

includes the transition costs to and from the high-power state (which includes the tail energy

cost for 3G networks) in the energy cost of the prefetch. However, if the radio is predicted

to already be in a high-power state, only the additional time spent in the high-power state

is included. Like PowerTutor, IMP monitors the number of bytes queued on the cellular

interface to infer when power state transitions occur. When calculating the energy cost

of an immediate prefetch, IMP queries the state transition model to learn whether or not

the cellular radio is in a high power state. When calculating the energy cost of a future

demand fetch, it uses the average distribution of power states observed for that interface

to determine the likelihood of being in each power state. Thus, the energy cost of a 3G
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prefetch is (P3G−xmit ×Tpre f etch)+Etail , where

Etail =







Ptail ×Ttail if transition occurs and tail begins

Ptail ×Tinactivity if tail time is extended

For simplicity, we here omit details such as the difference between DCH and FACH power

states, though we include them in our calculations.

Finally, the net energy cost (or benefit) of a prefetch is Epre f etch − (E f etch ×Accuracy),

since the energy cost of the future demand fetch is only paid if the user actually requests

the item. Note that a prefetch can have an expected energy benefit if current network

connectivity is strong (so less energy than average is required to fetch data) or a lower-

power network is currently available, and the estimated accuracy of a prefetch is high.

Batching (described in Section 3.2.2.5) can also lead to energy benefits for prefetching by

amortizing transition costs across multiple requests.

3.2.2.3 Data consumption

IMP also considers the effect of prefetching on cellular data consumption. The esti-

mated future data cost of a demand fetch is calculated as D f etch = S×(1−AvailabilityWiFi).

The benefit of prefetching over WiFi is D f etch, since the cellular data cost on WiFi is zero.

The cost of prefetching over a cellular network is simply S. As in the case of energy cost,

when referring to the data cost of prefetching below, we denote it as Dpre f etch−Accuracy×

D f etch, where Dpre f etch is zero or S depending on which network is used.

3.2.2.4 Putting it all together

As explained in the last three sections, IMP separately calculates the cost or benefit of

prefetching over each type of available network in terms of performance, energy, and data

usage. Unfortunately, these three metrics are expressed in different units (seconds, Joules,

and bytes), making it difficult to determine what to do when the metrics disagree about

whether or not prefetching would be beneficial.

A common solution to this dilemma is to employ a conversion rate or utility function
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to equate metrics expressed in different units (e.g., one could make 10 Joules of energy

expenditure equal to 1 second of interactive delay). However, as argued in Section 3.1.2,

the importance of each metric can change substantially over time, making static conversion

rates arbitrary and dooming them to be incorrect at least some of the time.

Instead, IMP dynamically adjusts conversion rates using a feedback loop that takes as

input how well the system is meeting its resource budgets. Specifically, IMP maintains

two values, cenergy and cdata, that represent the current conversion rate between each re-

spective budgeted resource and performance. For instance, if cenergy is 0.2, then 5 Joules is

considered equal to 1 second of interactive delay.

IMP uses Odyssey’s goal-directed adaptation to adjust these conversion rates. Since

we did not modify this algorithm and it is described elsewhere in detail [31], we provide

a simple overview of its design here. Note that Odyssey applied goal-directed adaptation

only to energy; one of the contributions of this work is the observation that this strategy

can also be used to regulate cellular data usage. Additionally, Odyssey used application-

specific fidelity adjustments to regulate the amount of resource spending over its budget

period, whereas we regulate spending by adjusting the amount of prefetching.

Once a second, IMP measures the remaining supply of a resource. Goal-directed adap-

tation uses an exponential smoothing algorithm to calculate the rate at which the resource is

being consumed from recent observations of supply. It multiplies the estimated rate of con-

sumption by the time remaining in the budgeted period to estimate the remaining demand

for the resource.

IMP relies on having an estimate of the future time at which each budgeted resource

will be replenished. Many cellular data plans have predictable periods coinciding with a

monthly billing cycle, making it simple to estimate the budget period. Additionally, recent

work [85] has identified personal patterns in different users’ battery recharge behaviors,

which suggests it may be possible to predict the budget period for the available battery

energy. The accuracy of such predictions is important, however; a too-long or too-short

prediction of the budget period will increase the likelihood that IMP underspends or over-

spends the budget, respectively.
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Next, the goal-directed adaptation algorithm subtracts from the latest supply measure-

ment 5% of the current remaining supply plus 1% of the original supply. This provides

some insurance against future changes in the resource budgets, which can occur if the user

downloads a new application that consumes a lot of data, or if they arrive home later than

usual to recharge their phone. Finally, it computes a ratio that expresses how much resource

consumption is currently over or under budget:

cad justment =
estimated demand

reduced supply

IMP then updates the current conversion rate with this ratio: cnew = cold ×cad justment . Thus,

if energy consumption is over budget, a Joule becomes more precious compared to other

resources. This feedback process leads IMP to bias further against prefetch decisions that

cost energy, which will eventually bring the energy consumption within budget.

In summary, IMP calculates the net benefit of prefetching an item over a particular type

of network as benefit minus cost, or:

Tf etch ×Accuracy− (cenergy × (Epre f etch −Accuracy×E f etch) +

cdata × (Dpre f etch −Accuracy×D f etch))

If this value is positive for a single network type, IMP prefetches the item over that network.

If the value is positive for multiple network types, IMP tells the Intentional Networking

layer that the data item may be prefetched over all such networks. Intentional Networking

stripes the item over all such networks if the item is large enough that striping makes sense.

3.2.2.5 Batching

Because some costs (most notably 3G tail time) can be amortized across multiple

prefetches, prefetching may be beneficial if several items are fetched in a batch, even

though prefetching each item individually is estimated to have a negative impact. IMP

checks for possible batching benefits by considering the impact of fetching one item, two

items, etc. up to the number of currently outstanding application prefetch requests. If it

predicts a positive impact for any batch size, it initiates prefetching.
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3.2.2.6 Network disconnection

If a network becomes unavailable while a prefetch is being performed using that net-

work, IMP recalculates the potential impact of prefetching over the remaining networks

as above. If a potential benefit is found, it resumes the prefetch over the selected remain-

ing networks. If not, the prefetch is delayed and resumed when an appropriate network

is found. For simplicity, IMP currently relies on application-level support for resuming

prefetch requests without retransmitting the data already received, though it could poten-

tially provide this feature transparently with additional buffering.

3.2.2.7 Discussion

We have designed IMP to manage resources that have a fixed budget to be spent over

a predictable time period. However, there are also cellular data plans where the subscriber

pays for the amount of data actually consumed, rather than paying for a monthly budget.

Though IMP does not handle such cases in its current form, we could imagine extending it

to do so. Rather than targeting a single budget over a single time period, we could treat the

pay-as-you-go data plan as a series of small budgets, in the amount of the data purchase

increments. Once purchased, a unit of data can be treated in the same way as the budgets

IMP currently considers, since there are no refunds for unused data and partially spent units

are generally rounded up to the next full unit for billing. However, we would also need to

consider the monetary cost of each data increment and also incorporate some notion of how

much the user is willing to spend, which would require direct input from the user.

The concerns in this scenario differ from what we consider in IMP’s current long-term

budget approach, because of the added goal of saving the user money, the smaller units

of data for which money is spent, and the fact that less money spent is always favorable.

However, this scenario can still benefit from IMP’s fixed-budget adaptation strategy for

each allotted unit of data. In addition, the same strategy can be applied for each extra

gigabyte that the user effectively purchases if they exceed their data cap on a pay-per-month

plan.
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Application → IMP IMP → Application

prefetch(Fetcher) → Future

Future.get() → Result

Future.cancel()

Fetcher.setSize(int)

Fetcher.setPrefetchClass(int)

Fetcher.fetch(Labels) → Result

This figure shows the IMP API used for hinting, executing, consuming, and canceling
prefetches. Applications create a Fetcher that implements the fetch callback to
execute a (pre)fetch. The fetch method takes as an argument the set of Intentional
Networking labels to be used for the invoked fetch. The prefetch function takes a
Fetcher and returns a Future, a handle that the application uses to retrieve the result
of a fetch. The type of Result that a fetch returns is specified by the application. The
application may optionally call setSize and setPrefetchClass to pass additional
information to IMP.

Table 3.1: Informed Mobile Prefetching API

Caching systems typically have a limited amount of storage available for cached data,

along with an eviction policy. We observe that battery energy and cellular data are usually

far scarcer than storage on today’s mobile devices, so we chose to focus on improving the

use of those resources. We could also apply a TIP-like strategy to include the value of

cache space in our cost-benefit analysis.

Finally, we note that some users have unlimited data plans, and some users are fre-

quently able to charge their phones throughout the day so that they are rarely in danger

of running out of battery. In these situations, IMP will prefetch more aggressively, since

it is given larger resource budgets. In the case of unlimited data, the throttling that some

carriers perform after the user has crossed a certain data limit can be viewed as a budget in

itself, since the reduced bandwidth is undesirable.

3.3 Implementation

This section describes the IMP’s Application Programming Interface and the applica-

tions we have modified to use IMP.
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3.3.1 API

IMP is implemented as a Java library targeted at the Android platform. Its prefetching

API is inspired by Java’s ExecutorService and Future [36], which simplify programming

tasks with arbitrary asynchronous computation. The interface, which is shown in Table 3.1,

is designed so that IMP need not replicate the application-specific details of (pre)fetching

data.

3.3.1.1 Prefetch hinting and execution

Applications use the prefetch method to provide a prefetch hint to IMP. As described

in Section 3.2.2, IMP uses a cost/benefit analysis to decide when and if to act on the hint.

The application supplies a Fetcher object that both identifies the data item to be fetched

and implements the application-specific fetch method that retrieves it from the server.

This method is used for both prefetches and on-demand fetches. In the former case, IMP

initiates the prefetch by calling fetch. The application can optionally supply the size of

the item to be fetched, as well as a prefetch class. Applications can use classes to indicate

prefetch priority. IMP will prefetch items in classes with higher observed accuracy in

preference to items in other classes. Within a class, IMP prefetches objects in the order that

prefetch hints are supplied.

3.3.1.2 Prefetch consumption

Like the submit method in Java’s ExecutorService, IMP’s prefetch method returns a

Future—this is a handle that allows the application to later retrieve the result of the fetch

operation by calling its get method. If the prefetch has started but not yet completed, the

get method blocks until the prefetch completes or until an optional timeout expires. If the

prefetch has not yet started, calling get triggers an immediate demand fetch of the item

(which is effected through the fetch callback).
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3.3.1.3 Prefetch cancellation

If the application no longer needs a item for which it has issued a prefetch hint, it

cancels the prefetch by either calling the cancel method on the Future object or by simply

removing the last reference to the Future object, in which case the prefetch is implicitly

canceled when the Future object is garbage-collected.

3.3.2 Applications

We have modified the K9 [46] open-source email client and the OpenIntents [75] news

reader to use IMP.

3.3.2.1 K9 email

K9 [46] is is an open-source email application for Android, originally based on the

stock Android email client. By default, K9 prefetches messages that are less than 32 KB

(the threshold can be adjusted from the application). We added IMP support by using an

IMAP proxy to intercept traffic between K9 and our IMAP server.

On application start, the proxy downloads the user’s email headers (including the size

of each message), decides which emails to prefetch, and issues prefetch hints for those

messages (including their attachments), in order from newest to oldest.

3.3.2.2 News reader

We also added prefetching to OpenIntents, an open-source Android Atom/RSS feed

reader. OpenIntents stores the content available in a feed but does not prefetch linked

articles. Since the application uses HTTP for its network communication, we modified

Apache HttpComponents [11], a Java HTTP library included in the Android SDK, to add

support for article prefetching.

Frequently, Atom and RSS feeds only contain a summary and link to a given article,

rather than the full contents of the article. Our modified news reader therefore grabs the

52



full-article links from each feed and decides which articles to prefetch. The application-

specific fetcher specified via the Fetcher object issues an HTTP request for the full content

of the article plus any embedded images, and it then stores the fetched data persistently for

later retrieval.

Our news reader associates a prefetch class with each feed and uses the setPrefetchClass

method to specify the class for each hint. To evaluate the impact of using classes, we also

created a version of the news reader that does not specify prefetch classes.

3.3.3 Discussion

IMP needs some information from the application in order to make good prefetching

decisions, but we must avoid making the developer’s task onerous, or else applications will

not use our system. Thus, we have only added features when our applications required

them (e.g. prefetch classes). We could imagine applications that would desire additional

features, such as the ability to retrieve a partial prefetch result instead of waiting for all data

to arrive. Our API design would make such an addition straightforward.

In general, applications must be modified to work with IMP. We can support unmodified

email clients via an email proxy, as features of the IMAP protocol help us discover which

items the user might request and when items are requested on-demand or deleted. For other

applications such as OpenIntents, it is difficult to gather this information without modifying

the application.

3.4 Evaluation

Our evaluation compares IMP with the prefetch strategies most commonly employed

by current mobile applications. We compare results across three metrics: application per-

formance, energy usage, and data consumption. In addition, we examine how well IMP

meets budgets for energy and data usage. Finally, we quantify the benefit of using prefetch

classes.
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3.4.1 Experimental Setup

3.4.1.1 Testbed

We run K9 and OpenIntents on the AT&T version of the Nexus One phone, running

Android version 2.3.4. We modified Android system software to allow the simultaneous

use of WiFi and cellular networks and added Intentional Networking support. To generate

repeatable experiments, the phone connects to an isolated WiFi access point and a private

Cisco MicroCell that is connected to AT&T’s network. Since the MicroCell acts as a

miniature cellular tower, our evaluation captures the effects of the cellular wireless medium

on network bandwidth and latency. We emulate network conditions by passing all traffic

through a computer that inserts delays with the netem [56] network emulator and throttles

throughput using the Linux Advanced Routing and Traffic Control tools [55]. We run

servers for each application on a Dell Optiplex GX270 desktop with a 2.8 GHz Pentium 4

processor and 1GB DRAM.

We measure energy usage by applying the Nexus One power model used in the imple-

mentation of PowerTutor [105]. We measure cellular data usage by reading the number of

bytes sent and received through the Linux sysfs interface.

When we compare with strategies that do not use IMP, we allow those strategies to use

Intentional Networking to isolate prefetching traffic from other foreground traffic and to

take advantage of both cellular and WiFi networks. Thus, the results reported in this work

show only the additional benefit that IMP provides on top of the benefit already provided

by Intentional Networking. All reported results are the mean of five trials; graph error bars

are 95% confidence intervals. Where there is a resource budget set for IMP, the budget is

indicated by a horizontal line above the bar.

To quantify the benefit of different prefetching strategies, we report the average fetch

time over all emails or news articles in a run. We report the average rather than the me-

dian because the median does not distinguish between two prefetch strategies that produce

more than a 50% cache hit rate, and it is the long fetch delays that dominate the user’s

experience when not enough data is prefetched. Though the individual fetch times can vary

54



considerably due to several factors—data size, network bandwidth at the time of the fetch—

lower average response time generally indicates more cache hits and thus more successful

prefetching.

3.4.1.2 Trace-driven evaluation

To evaluate how our system performs in realistic mobile networking conditions, we use

the vehicular network trace previously gathered in Ypsilanti, MI, as described in Section

2.5.1.3. Trace-driven evaluation provides experimental repeatability and allows for mean-

ingful comparison between different prefetch strategies.

We gathered this trace by driving a vehicle equipped with WiFi and Sprint 3G network

interfaces and continuously measuring the downlink and uplink bandwidth and latency via

active probing to a server at the University of Michigan. The median 3G bandwidth is

368 Kb/s downlink and 40 Kb/s uplink, with maximum bandwidth of 1.2 Mb/s downlink

and 74 Kb/s uplink. WiFi is available 27% of the time, with a median session length of 7

seconds; the longest WiFi session length is 131 seconds.

We collected a second trace by walking in downtown Ann Arbor and across the Uni-

versity of Michigan campus, carrying a Nexus One phone and measuring the available

open and campus WiFi and the AT&T cellular network. The median 3G bandwidth is

695 Kb/s downlink and 216 Kb/s uplink, with maximum bandwidth of 1.3 Mb/s downlink

and 358 Kb/s uplink. WiFi is available 18% of the time, with a median session length of 56

seconds; the longest WiFi session length is 99 seconds.

When running benchmarks, we replay the traces on the emulation computer, which

throttles bandwidth and delays packets for each network according to the conditions ob-

served. When no WiFi or cellular coverage is observed in a trace, the throttling computer

causes the connection to drop—the Android OS typically discovers the network disconnec-

tion after several seconds. Since the collected traces are longer than our experiments, we

use only the first portion of each trace.
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3.4.1.3 Comparison strategies

For each application, we compare IMP’s performance to four prefetch strategies com-

monly used by mobile applications today. Unlike IMP, none of these strategies explicitly

considers the cost and benefit of prefetching. The strategies are: never prefetch anything,

prefetch items with size less than an application-specific threshold, prefetch over WiFi

when it is available but never over the cellular network, and always prefetch everything.

3.4.1.4 IMP scenarios

IMP attempts to maximize performance subject to one or more resource constraints.

For each application, we consider three scenarios: one where energy usage is constrained,

one where cellular data usage is constrained, and one where both resources are constrained.

Although we do not show the results, we did verify that when neither budgeted resource

is constrained, IMP (correctly) emulates the always-prefetch strategy because that strategy

maximizes performance.

To run a large number of experiments, we limit execution time to 20 minutes. The

goals for energy and data usage are scaled proportionately. Note that even though longer

experiments would likely show a wider variety of network conditions and usage behaviors,

shorter experiments like these are much more challenging for a feedback strategy like the

one employed by IMP because there is little time to react to under-usage or over-usage of

a budgeted resource. For instance, if IMP is over-using the cellular data budget after half

the budgeted time, it has 15 days to react during a month-long experiment, but only 10

minutes to bring the usage back under budget in these experiments. Similarly, IMP would

have more time to react to unexpected changes in a user’s mobility patterns over the course

of a long experiment—for example, taking a different route to the office and encountering

far fewer open WiFi APs. Thus, we expect that if IMP can meet budgets in these shorter

experiments, it should do quite well in longer ones.
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In each plot, the left set of bars shows results for simple heuristic-based prefetching
strategies; the right set of bars shows results for IMP when energy, cellular data, or
both are constrained. Where there is a budget set for IMP, it appears as a solid line
above the bar. Each bar is the mean of 5 trials. The error bars are 95% confidence
intervals.

Figure 3.1: Email application, driving trace

3.4.2 Results

3.4.2.1 Email

We constructed an email workload from day-long traces of email activity within our de-

partment collected during prior projects. We use a trace of an email user fetching messages

from a server [9] to derive the timing of email fetches and the interleaving user think time.

The size of each email is randomly sampled from a distribution of email sizes in another

trace [93].

At the start of the benchmark, the proxy fetches the list of 35 emails from the server

along with their sizes. It issues prefetch hints for all emails. The reported accuracy of

Gmail’s Priority Inbox is 80% [6]. Since this seems a reasonable mechanism for deciding

which email should be hinted, we assume that 28 of the emails are read during the exper-

iment while the other 7 are deleted before they are read. This models a scenario in which

a user flips through the inbox and decides, based on the subject line and message preview

text, whether or not to read the email. Thus, the accuracy of prefetch hints is 80%. Of

course, IMP is not told which hinted emails will be read and which will be discarded.
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K9’s default settings specify that email messages less than 32 KB will be fetched auto-

matically upon inbox update. We use that value for the size-limit strategy.

Figure 3.1a shows the average email fetch time for each strategy. As expected, the

always-prefetch strategy produces the lowest fetch time, since every fetch is a cache hit.

However, as shown in Figures 3.1b and 3.1c, this strategy uses more energy and data than

any IMP strategy.

Interestingly, the never-prefetch strategy uses more energy than any other strategy. This

is due to a combination of the tail energy incurred with each demand fetch and poorer 3G

bandwidth in later portions of the trace causing the 3G interface to remain in the high-power

state longer.

When resources are scarce, IMP is able to meet resource budgets that are set lower than

the amounts used by most simple strategies. In the constrained-energy scenario, we set

the energy budget to use no more than 300 Joules over 20 minutes (this is indicated by the

solid line over the IMP: energy bar in Figure 3.1b). Despite this goal being lower than

the energy usage of any simple strategy, IMP comes in under budget in every trial. Fur-

ther, IMP provides average fetch time within 300 ms of the (performance-optimal) always-

prefetch strategy. Compared to the other strategies, IMP improves average fetch time by

2–8x and reduces energy usage by 21–43%. The fact that IMP produces a lower average

fetch time than the common WiFi-only prefetching strategy lends credence to our assertion

that prefetching on 3G is often a wise way to spend resources when the budget allows for

it, since doing so provides a clear benefit to the user.

It is perhaps surprising that IMP uses less energy than the WiFi-only strategy in this

scenario, especially since WiFi transmission is usually more energy-efficient than cellular

transmission. Our analysis shows that because the WiFi-only prefetching strategy does not

prefetch over the cellular network, it cannot prefetch some items before the user requests

them. This leads to demand fetches later in the experiment that must be serviced over

cellular because WiFi is unavailable at the time. Further, the cellular network quality at

the time is poor, causing even more energy usage than normal. IMP avoids these demand

fetches through more aggressive prefetching. Additionally, although IMP sends more data
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over cellular than the WiFi-only strategy, it reduces energy usage due to 3G tail time by

batching multiple requests together. In contrast, the demand fetches cannot be batched due

to user think time.

In the constrained-data scenario, we set the budget to use no more than 2 MB of data.

Figure 3.1c shows the 3G data usage for each prefetching strategy. IMP meets this goal in

all trials, whereas WiFi-only is the only simple strategy to use as little data. However, the

WiFi-only strategy more than doubles average fetch time compared to IMP. Meanwhile,

IMP is still able to provide average fetch time within 410 ms of that of the always-prefetch

strategy and 2–7x less than that of the never-prefetch and size-limit strategies.

To constrain both resources, we set an energy budget of 325 Joules and a data budget of

2 MB. The results are similar to the single-budget scenarios. IMP provides average fetch

time within 240 ms of the always-prefetch strategy and 2–8x lower than the other strategies,

while reducing energy usage by 9–38% compared to the simple strategies. Compared to

the always-prefetch, never-prefetch, and size-limit strategies, IMP reduces cellular data

consumption by 3x.

IMP sometimes undershoots its budgets because it is hedging against future spikes in

demand. In this experiment, however, undershoot occurs simply because IMP runs out of

items to prefetch.

Figures 3.2a, 3.2b, and 3.2c show the results for the email application on the walking

trace. In the walking scenario, the best strategy is to always prefetch, because the best WiFi

is available at the beginning of the trace, and the little available WiFi that comes later is

poor. In all scenarios, IMP emulates always-prefetch closely, achieving average fetch time

within 40–150 ms of that of the always-prefetch strategy and 4–6x lower than the other

strategies.

For the energy-constrained experiments using the walking trace, we set an energy bud-

get of 150 Joules. IMP meets the goal in all trials, reducing energy usage by 30–65%

compared to the simple strategies. For the data-constrained experiments, we set a 3G data

budget of 2 MB. IMP meets this goal as well in all trials, reducing 3G data usage by 2–4x

compared to the never-prefetch, size-limit, and always-prefetch strategies. Only the WiFi-
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In each plot, the left set of bars shows results for simple heuristic-based prefetching
strategies; the right set of bars shows results for IMP when energy, cellular data, or
both are constrained. Where there is a budget set for IMP, it appears as a solid line
above the bar. Each bar is the mean of 5 trials. The error bars are 95% confidence
intervals.

Figure 3.2: Email application, walking trace

only strategy meets the data goal, but it increases average fetch time by over 4x compared

to IMP.

To provide some insight into the decisions that IMP makes over the course of an exper-

iment, we show in Figure 3.3 the activity of the email application in one run of the driving

trace, with IMP running with the energy budget only. IMP starts prefetching on WiFi, until

the WiFi fades shortly after the 1-minute mark. At this point, the 3G interface is already

active due to an Intentional Networking control message, so IMP starts prefetching on 3G.

It completes a few prefetches before deciding that the next prefetch is too large to send on

3G, so it subsides. A few minutes later, it begins encountering some spotty WiFi, which it

uses to attempt prefetching the next message. Soon after it starts making forward progress

on WiFi, the WiFi network fails again. IMP then decides that it has enough budget to send

a large batch of prefetches over 3G (taking the tail time savings into account), so it finishes

prefetching the rest of the messages.
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Email prefetch and demand fetch activity for one run of IMP, energy-constrained, on
the driving trace. The horizontal bars show issued prefetches. The diamonds show
demand fetches. The shaded regions show periods when WiFi is available. Each
canceled prefetch hint is marked with an X. Since prefetching finishes early in the
experiment, only the first six minutes are shown.

Figure 3.3: Email + IMP prefetch activity

3.4.2.2 News reader

We constructed a news reader workload based on one of the authors’ Google Reader

subscriptions. Google Reader provides statistics for a user’s feeds for the past 30 days,

including information such as the number of articles published and the number of articles

read, along with the calculated read percentage. We choose five feeds with articles widely

varying in size (primarily due to attached images). We used the relative feed volume over

the past 30 days to choose a subset of each feed’s articles for the benchmark, starting with

the most recent articles. There are 25 articles across the five feeds.

Our simulated user selects a feed and begins iterating through the articles in that feed,

opening and reading some of them and marking others as read without actually opening

them. The fraction of articles that the user actually reads is determined by the read rate for

that particular feed. For the chosen feeds, the read rate ranges from 25% to 100%, and the

total read rate across all feeds is 64%.

Lacking a trace for newsreader user behavior, we chose to model a user’s think time

between article fetches as a random variable. Recent work in modeling web user dwell

61



Simple IMP Single-Class
0

5

10

T
im

e 
(s

ec
on

ds
)

Never
Size-limit
WiFi-only
Always
IMP: energy
IMP: data
IMP: both

(a) Average fetch time

Simple IMP Single-Class
0

100

200

300

400

500

E
ne

rg
y 

(J
) 

(b) Energy usage

Simple IMP Single-Class
0

5

10

3G
 d

at
a 

(M
B

)

(c) Data usage

In each plot, the left set of bars shows results for simple heuristic-based prefetching
strategies. The middle set of bars shows results for IMP when energy, cellular data,
or both are constrained. The right set of bars shows results for IMP with the same
constraints when IMP does not separate prefetch hints by class. Where there is a data
budget set for IMP, it appears as a solid line above the bar. Each bar is the mean of
5 trials. The error bars are 95% confidence intervals.

Figure 3.4: News reader application, driving trace

times observes that the majority of page visits last one minute or less [57]. Thus, after the

user reads an article, the benchmark pauses for a random think time uniformly distributed

between 30 and 60 seconds, then moves on to the next article in the feed, continuing until

the feed is exhausted. The user does not pause after choosing to skip an article. As with

the email application, the benchmark lasts 20 minutes.

Since the news reader does not prefetch article contents by default, we set the value

used in the threshold strategy to 128 KB, which is just above the median article size.

Our news reader associates a different class with each feed. The results of this eval-

uation are shown by the middle set of bars in Figures 3.4a, 3.4b, and 3.4c. In the next

section, we evaluate the benefit of prefetch classes by using only a single class. For ease of

comparison, these results are shown by the rightmost set of bars in each figure.

As with the email benchmark, the always-prefetch strategy produces the best average

fetch time, though the greater inaccuracy of the prefetch hints in this experiment reduces

the benefit of prefetching compared to the email experiment.
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In each plot, the left set of bars shows results for simple heuristic-based prefetching
strategies. The right set of bars shows results for IMP when energy, cellular data, or
both are constrained. Where there is a budget set for IMP, it appears as a solid line
above the bar. Each bar is the mean of 5 trials. The error bars are 95% confidence
intervals.

Figure 3.5: News reader application, walking trace

In contrast to the email benchmark, aggressive prefetching has an adverse affect on

energy usage. This is primarily due to the lower prefetch hint accuracy and the large

size of some articles. Nevertheless, when given an energy budget of 450 Joules, IMP

performs enough prefetching to reduce average fetch time by 29–58% compared to the

never-prefetch, size-limit, and WiFi-only strategies, while also meeting the energy goal.

As we discuss in the next section, IMP benefits from separating prefetch hints into classes

and first prefetching articles most likely to be read. While the always-prefetch strategy has

better performance than IMP, it does not meet the energy goal.

When we constrain data usage to 5 MB, IMP has more freedom in scheduling prefetches

than in the energy-constrained scenario and reduces average fetch time by 47–68% com-

pared to the never-prefetch, WiFi-only, and size-limit strategies. IMP meets the cellular

data goal in all runs, reducing 3G data usage by 45–62%.

When constraining both resources, we kept the 450 Joule energy budget and set a 6 MB

data budget. IMP’s behavior is similar to its behavior in the energy-constrained scenario:

it meets each goal in all runs and reduces average fetch time by 36–62% compared to the

never-prefetch, size-limit, and WiFi-only strategies.
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IMP uses less than the given cellular data budget, for the same reasons as above: IMP

finishes prefetching all the hinted articles, after which no more articles are sent on the

cellular network.

Figures 3.5a, 3.5b, and 3.5c show the results for the newsreader application on the

walking trace. As in the case of the email application, the best strategy for this trace is to

always prefetch. In this application, IMP comes closer to the average fetch time of always-

prefetch than any of the other simple strategies, achieving average fetch time 2–6x lower

than those strategies.

For the energy-constrained experiments using the walking trace, we set an energy bud-

get of 200 Joules. IMP meets the goal in all trials, reducing energy usage by 25–35%

compared to the never-prefetch, size-limit, and WiFi-only strategies.

IMP uses 7–10% more energy than the always-prefetch strategy on average. The rea-

son for this is that IMP decides to pause prefetching when it encounters a particularly

large prefetch early in the benchmark. At this time in the experiment, IMP has sent a few

prefetches on 3G to amortize the tail time, but it decides the potential savings of the tail

time is not worth the energy that will be spent to fetch the large article, especially since

the article is less likely to be read than the articles that IMP has already prefetched. This

results in two demand fetches on 3G later in the benchmark, since IMP does not resume

prefetching until it has ceased spending energy for a while to catch up to its target rate.

Thus, IMP incurs additional tail time compared to the always-prefetch strategy.

For the data-constrained experiments, we set a 3G data budget of 4 MB. IMP meets this

goal as well in all trials, reducing 3G data usage by 17–53% compared to the simple strate-

gies. Interestingly, IMP reduces 3G data usage even compared to the WiFi-only strategy.

The reason for this is that IMP uses prefetch classes, whereas WiFi-only does not, which

causes IMP to prioritize articles most likely to be read. Since WiFi is limited in this trace,

the WiFi-only strategy fails to prefetch some particularly large articles that later must be

demand-fetched over 3G.

64



3.4.2.3 Benefit of prefetch classes

To evaluate the benefit of prefetch classes, we executed the same benchmark, using the

driving trace, without having the news reader use classes to differentiate prefetch hints of

articles in different feeds.

The benefit of prefetch classes is greatest in the scenarios in which energy is con-

strained; in these two scenarios, the multi-class news reader reduces average fetch time

by 42–47% compared to the single-class news reader scenarios. Though the energy con-

straint causes both versions of the news reader to prefetch cautiously, the multi-class news

reader benefits greatly by first prefetching the articles with the highest likelihood of being

read.

When the application uses prefetch classes, IMP meets all goals in every trial. However,

without prefetch classes, IMP meets only 87% of the resource goals, failing to meet the data

goal in 1 of 5 trials of the data-constrained scenario and the energy goal in 1 of 5 trials of the

dual-constraint scenario. In the two trials in which IMP missed the goal, it overshot by less

than 5.3% due to a late demand fetch in the benchmark. While no adaptive system will ever

be perfect, we expect that a longer experiment with larger goals (typical of mobile phone

usage today) would give IMP substantially more room for error and probably eliminate

these overshoots.

Nevertheless, prefetch classes provide an added margin of safety by allowing IMP to

make more informed decisions. IMP is able to target its prefetch effort to articles that are

more likely to be read. Further, IMP’s per-item predictions are more accurate since they

are based on per-feed statistics rather than overall hit rates.

3.4.2.4 Discussion

From the above results, we conclude that IMP does an excellent job of meeting budgets

for constrained resources. IMP meets all budgets in every trial for both the email and news

reader applications (as long as the latter uses prefetch classes to differentiate feeds).

In the newsreader experiment on the walking trace, when energy is the only constraint,
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the always-prefetch strategy is best for both fetch time and energy usage, as discussed

above. However, in all other cases, when one or more budgetary constraints are specified,

IMP outperforms all heuristic-based prefetching strategies we examined that also meet the

budgetary constraints. Often, the performance improvement is a factor of two or more.

The benefit of prefetch classes is apparent not only in improving the percentage of

budgets met for the news reader from 87% to 100%, but also in substantially improved re-

sponse time. There is clearly a tradeoff between complexity and accuracy in the application

interface. IMP can make better decisions if the application provides more information, but

each additional specification places more burden on the application developer. In the case

of prefetch classes, our results indicate that the small effort of differentiating hints by class

(in the case of the news reader) can substantially improve results. This indicates that other,

more contextual methods for differentiating prefetch accuracy could be beneficial.

3.5 Summary

Prefetching is an invaluable tool for improving the performance of mobile applications.

However, prefetching can be costly in terms of the energy and cellular data consumed,

and these costs are exacerbated by the possibility of prefetching data that the user never

requests. As a result, many mobile applications employ simple but suboptimal heuristics

as a means of grasping some benefit while avoiding undue complexity.

We propose that mobile computing systems provide explicit prefetching support to ap-

plications. IMP shifts the burden of complex prefetching decisions from the application

to the system. It assumes responsibility for estimating the cost and benefit of prefetching,

tracking the importance of energy and cellular data over time, and scheduling prefetches to

improve interactive performance while meeting specified resource usage goals.

Our evaluation shows that IMP is able to meet specified energy and cellular data usage

goals. Additionally, we show that in most cases, whenever simple heuristic-based prefetch-

ing strategies also meet the goals, IMP outperforms those strategies on interactive fetch

time, often by a factor of two or more.
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CHAPTER 4

Incorporating predictor uncertainty in decision-making

One major takeaway from our work with Informed Mobile Prefetching is the notion that

conserving energy or cellular data is not always the most appropriate goal. Often, these re-

sources are in surplus, sufficiently so that it becomes advantageous to spend them in pursuit

of reducing user-visible delays. With IMP, we sought a principled approach to decide when

resources are sufficiently in surplus and spend them accordingly, using prefetching as the

mechanism for improving performance; we now turn to another application of this princi-

ple.

Current mobile applications greatly overestimate their ability to predict the future. As

circumstances change, mobile systems and applications adapt their behavior to take best

advantage of their environments. These adaptive decisions are made based on predictions

of the future—network performance and availability, expected computational loads, the

presence and capabilities of support services in the infrastructure, etc.

Unfortunately, these predictions are rarely certain, yet they typically are used as if they

were perfectly precise. Overconfidence in prediction leads to incorrect adaptations and lost

opportunities, with consequences visible to the end user in terms of performance, power,

and network costs. The problem is that mobile applications typically modularize their

decision processes. First, an application calculating estimated values for such quantities as

bandwidth, and application compute needs. Even though the calculation of an estimated

value takes into account underlying distributions and measurement uncertainty, the act of
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collapsing the information into a single scalar value means that the inherent notion of error

in the underlying prediction is no longer captured. Second, applications use the estimated

values to choose the single option that maximizes the difference between estimated benefit

and estimated cost. As a result, even applications that select the optimal strategy based on

the predicted values are bound to make wrong decisions at least some of the time—when

reality does not match the predictions.

We argue that the system and applications should explicitly consider the uncertainty of

their predictions when making decisions based on them, and they should use new infor-

mation to re-evaluate those decisions when necessary. In particular, considering prediction

uncertainty throughout the decision process lets applications properly consider the benefit

of redundant strategies. For example, a network selection application may decide to send

the same data redundantly on multiple networks when it is quite unsure which network will

provide the best response time. By using the first to complete and terminating the second,

the application gets the best performance possible by masking the effects of the predictor

uncertainty.

However, the advantages gained by employing redundancy come at a price. Sending

data on two networks rather than one spends additional energy and potentially also spends

cellular data, which for many users is limited to a fixed budget per month. From the per-

spective that resource conservation is of utmost importance, redundancy may appear to

be obvious folly, since it always spends more resources than choosing the correct strategy

from the start. In the face of uncertainty, however, the correct strategy cannot always be

known. Faced with uncertainty, redundancy is a powerful mechanism that can spend re-

sources to purchase an improvement in performance and a reduction in variability. In this

way, redundancy can be seen as an insurance policy against inaccurate predictions.

Of course, the use of redundancy as a hedge against uncertainty is not a new idea.

It is used in several other domains, including cloud servers [27] and route selection in

wireless networks [7]. But such techniques have not been applied throughout the systems

and application stack in a principled way, and we argue that mobile applications are missing

substantial opportunities by not doing so.
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To explore these ideas, we have implemented a framework that applications can use to

capture the uncertainty in their predictions and incorporate that uncertainty in its decision-

making. Our framework implements three different methods for making decisions while

taking predictor uncertainty into account, each with different tradeoffs. Each explicitly

weighs the importance of performance and resource conservation, employing redundancy

only when spending resources to purchase better performance is likely to be cost-effective.

We have modified two applications to use our framework: network selection and speech

recognition. Our experimental results show that there is significant benefit to be gained

from redundancy when resources are sufficient to justify the tradeoff. Compared to the both

the simple strategies that these applications typically employ, as well as adaptive strategies

that consider performance and cost without considering predictor error, our framework

improves application performance by up to a factor of two.

Thus, the major contributions are:

• Demonstrating that propagating uncertainty throughout the decision process im-

proves mobile applications.

• Demonstrating that redundant strategies are better than non-redundant ones in many

realistic scenarios.

• Providing a library-based abstraction that greatly simplifies the use of predictor

error and the consideration of redundant strategies.

• Measuring the advantages and disadvantages of three methods for quantifying pre-

dictor uncertainty.

4.1 Example

We illustrate the ideas in this chapter with a (very simple) motivating example. Con-

sider two servers that can execute an offloaded computation, with the following known

distributions on response time: server A takes 10 seconds half the time and 20 seconds

otherwise, and server B takes either 12 or 22 seconds with 50-50 probability. A system

that only considers non-redundant solutions would calculate the expected response time
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for each server (15 and 17 seconds, respectively) and execute the computation on server A.

But, since the response times are independent, a system that considers redundant strategies

would calculate the expected fastest response time from either server over the joint distri-

butions as 13 seconds (the fastest response with equal probability will be 10, 10, 12, or 20

seconds).

Thus, if response time is the only consideration, redundant execution offers an expected

benefit of 2 seconds over the best non-redundant solution. However, redundancy uses ad-

ditional resources. A principled approach would balance the expected 2 second benefit

against the 2x server resource usage and choose redundancy only if the value of improved

latency exceeds the added resource cost.

In addition to improving expected response time, redundancy can help mask outlier

behavior. Consider a distribution in which each server takes 10 seconds 99.9% of the time

and 100 seconds 0.1% of the time. Redundant execution reduces the chances of the user

experiencing the outlier behavior from 0.1% to 0.0001%. Cloud systems currently apply

this well-known principle to reduce tail latency [27].

Finally, it is important to reevaluate decisions based on new information. While it is

often unreasonable to modify applications to provide explicit notifications about progress,

the absence of a response can often provide valuable insight.

For instance, in the previous example, consider a system that made the decision to

execute on one server (because the resource cost of redundant execution is high and outlier

behavior is unlikely). Assume that the computation has run on that server for 11 seconds

without a response. Now, the conditional probability distribution reveals that the expected

completion time is an additional 89 seconds (the outlier behavior is essentially certain in

this simplified example). A new evaluation at this point reveals that starting a computation

on a second server is extremely likely to substantially reduce response time. Thus, the

negative information embodied by a lack of response changes the decision about whether

or not to employ redundancy. While timeouts or other failover methods can provide an

ad-hoc solution, consideration of the conditional distributions provides a more general and

precise method of handling unexpected delay.
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We advocate for the principled use of redundancy in mobile applications. Too often,

mobile systems eschew redundant strategies altogether by collapsing predicted distribu-

tions into expected values (as in the first example), or they do not consider negative infor-

mation (as in the final example). They therefore miss many opportunities to improve the

user experience.

4.2 Uncertainty and redundancy

Uncertainty and redundant strategies go hand-in-hand. The following conditions make

redundancy attractive:

• There must be multiple strategies available to accomplish some task. The strategies

must not interfere with each other, or such interference must be minimal.

• Future conditions on which strategy selection depends (e.g., resource supply and

demand) must be uncertain.

• The benefits of better performance must outweigh the costs of greater resource ex-

penditure.

These conditions are present in the cloud computing domains; for instance, Google

systems mask variable component response time with hedged requests that initiate a redun-

dant request to a second server if the first server does not respond quickly [27]. Redundancy

is also used extensively in wireless networks to compensate for unreliable links between

nodes [7] where transmissions can be scheduled to minimize interference.

These conditions are also present in mobile application design. Specifically, non-

interfering strategies exist in network selection (data may be sent over cellular and WiFi

networks simultaneously) and in cyber foraging (computation may be concurrently exe-

cuted on both a mobile computer and a remote server). Compared to controlled data cen-

ter environments, mobile environments are even more variable and future conditions are

even more difficult to predict. While resource usage such as energy consumption is a very
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important concern in mobile computing, performance is also a paramount concern (oth-

erwise, users would not buy the latest and greatest smartphone with the fastest and most

power-hungry processor).

The paradox is that, in hindsight, redundancy is always wrong! Sending on an extra

network always spends more energy than if the application had just chosen the best network

to begin with. With perfect predictors, therefore, redundant strategies are never attractive.

However, when predictions may be wrong, redundancy offers a performance benefit by

giving applications an opportunity to hedge their bets. As the expected error increases, the

performance benefit of redundancy improves.

4.3 Design

We define a predictor to be a software component that estimates the future value of

some quantity. For example, commonly-used predictors in mobile computing estimate

resource supply, such as network bandwidth and latency; failure probability, such as the

chance of moving out of range of a hotspot; and application or user behavior, such as the

length of a speech utterance.

Applications use the output of predictors to select from among different strategies,

which we define to be different means of accomplishing the same task. Strategies may be

non-redundant, such as sending data over a cellular or WiFi network, or redundant, such as

sending the same data over both types of network.

Adding redundancy through the simultaneous execution of multiple strategies tends to

improve performance since the application can use the result of the fastest strategy to com-

plete. However, executing multiple strategies increases resource utilization since each new

strategy consumes network bandwidth, battery energy, etc. A redundant strategy should

therefore be used when its expected benefits in terms of improved performance exceed its

expected costs in terms of additional resource usage.

Meatballs currently considers response time, energy consumption, and cellular data

usage in deciding which strategy to employ. In order to meaningfully compare quantities
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expressed in different units, it assumes that the current relative importance of the metrics is

specified through importance factors given by the user. For example, an importance factor

of 0.0001 expresses the following tradeoff: “I am willing to spend 10 J or 10 KB to avoid 1

second of waiting.” In this work, we focus on the effects of these factors rather than how to

set them; such factors could be set by users through system settings, or by the system using

goal-directed adaptation as in Odyssey [72] and IMP (Chapter 3 of this dissertation).

The weighted cost of a strategy is calculated by multiplying the raw values for time,

energy, and data usage with their respective importance factors and summing the weighted

values together. The best strategy is the one that has the lowest weighted cost.

Note that when uncertainty is low and measurements are probably accurate, a non-

redundant strategy should be preferred. This is because a decision that prefers one non-

redundant strategy over the others is likely to be correct. On the other hand, when prediction

uncertainty is high, the value of redundancy is greater because the likelihood of choosing

the wrong strategy increases. Hedging bets by choosing multiple strategies has a greater

likelihood of significantly improving application performance.

There are many possible methods for incorporating uncertainty in decision-making,

each of which has strengths and weaknesses. Since we were not sure which method would

work best in mobile computing, we implemented three such methods in Meatballs. The

first two, which are described in Sections 4.3.1 and 4.3.2, directly measure prediction error

by comparing the measured value of a quantity with the previously-predicted value. The

sequence of error measurements collected over time is used to predict the uncertainty of

future measurements. In the third method, described in Section 4.3.3, Meatballs measures

decision error by comparing the strategy selected by the application with the strategy it

should have taken.

So far, we have described only how Meatballs makes an initial decision to employ

a redundant or non-redundant strategy. Such decisions should be reevaluated when new

information arrives in the form of updated predictions or even in the form of negative

information such as the lack of response from a remote server. Section 4.3.4 describes how

Meatballs performs reevaluation.
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4.3.1 Brute force

Our first method quantifies predictor error by measuring it over time and maintaining

an empirical distribution. When a new measurement is made, Meatballs calculates the

relative error of a prediction as the measured value divided by the previously predicted

value. A relative error greater than one indicates that the last prediction underestimated

the true value, whereas an error sample less than one indicates that it overestimated the

true value. The set of relative errors observed over time forms the empirical distribution of

predictor error.

In order to incorporate the error distributions into a redundancy decision, Meatballs cal-

culates the expected completion time and resource costs for each non-redundant strategy

as a weighted sum over the joint error distributions of the predictors. For each redundant

strategy, the completion time at each point in the joint distribution is the minimum of the

completion time of any component strategy and the resource costs are the sum of the re-

source costs of all component strategies. These values are likewise calculated as weighted

sum over the joint error distributions. Meatballs combines the individual values to calculate

a weighted cost for each strategy, as described in the previous section.

A number of possible methods exist for storing distributions; e.g., storing all samples

forever, binning samples in histograms, random sampling, etc. We note that predictor error

is constantly changing; e.g., a quantity such as network bandwidth that was unpredictable

seconds ago may have since settled. Thus, Meatballs ages samples using an exponential

weighted moving average so that the most recent error samples are given greater weight.

Aging also limits the number of samples stored; older samples are removed after they drop

beyond a threshold where their impact on the calculation is negligible.

The expected advantage of the brute force method is simplicity and high accuracy; the

expected disadvantage is computational cost. For instance, with a four-year-old Nexus One

phone, decisions for the applications in Section 4.4.3 can take hundreds of milliseconds.

Meatballs mitigates this cost by moving brute force calculations off the critical path. For

instance, a network selection application can make an initial non-redundant decision about

which network to use, then asynchronously run the slower redundancy decision to decide
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whether to use an additional network. Additionally, the predictor error distributions change

slowly, so error calculations are cached and re-used for several decisions.

4.3.2 Probabilistic error bounds

Our second method measures and ages samples of predictor error in the same way

as the brute force method, but it uses probabilistic bounds rather than calculations over

an empirical distribution to make decisions. Compared to the brute force method, use of

probabilistic error bounds is less accurate but has substantially lower computational costs.

Previous work in network queuing uses Chebyshev bounds to give the worst-case error

in packet delay prediction [38]. We initially tried this approach but found the resulting

bounds too loose to be useful. Instead, Meatballs uses a Student’s-t distribution over the

observed relative error samples to construct a statistical prediction interval (α = 0.05) on

the mean error value. Whereas a confidence interval represents the likelihood that the true

value of a sampled population lies within a computed range, a prediction interval repre-

sents the likelihood that the next sample of the quantity falls in that range. Since we are

attempting to make decisions based on observations of quantities such as network band-

width and latency, whose true values are neither known nor fixed, the prediction interval

fits our purpose more closely.

Given the calculated error bounds, we must decide how to use them to make a decision.

First, we can use the bounds on all predictors to calculate the resulting bounds on time,

energy, and cellular data; for example, the minimum network transfer time occurs at the

upper bound of bandwidth and the lower bound of latency. Then, if no two non-redundant

strategies have overlapping time bounds, this means that, with the chosen confidence, re-

dundancy does not offer benefit. In this case, we simply choose the best non-redundant

strategy.

If any non-redundant strategies’ time bounds do overlap, we then evaluate redundancy

as follows. First, we identify the best non-redundant strategy as above. Next, we calculate

the maximum possible benefit from redundancy and the minimum additional cost, and we
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choose redundancy if the benefit exceeds the cost. Since a redundant strategy’s completion

time is the time of its fastest non-redundant strategy, redundancy provides the most benefit

when the supposedly best non-redundant strategy turns out to be worse than expected and

the supposedly worse non-redundant strategy turns out to be better than expected. There-

fore, the maximum benefit from redundancy is the minimum time of the redundant strategy

subtracted from the maximum time of the best non-redundant strategy. Similarly, the addi-

tional cost of redundancy is calculated using the bounds of the additional strategies used,

not including the best non-redundant strategy.

Because the error bounds method captures the distribution of error with less precision

than the empirical distribution of the brute force method, and because the computed bounds

are fairly loose, the error bounds method tends to overestimate the benefit of redundancy.

The choice to use the upper bound on redundancy benefit and the lower bound on re-

dundancy cost also biases this method towards redundancy. These effects are seen in our

evaluation and discussed in Section 4.5.

4.3.3 Bayesian estimation

Our last method quantifies uncertainty by calculating the posterior distribution of the

actual predicted quantities with the predictor values as evidence. This process is known as

Bayesian inference or estimation. It centers around the Bayesian view of statistics and prob-

ability, which provides a way to formulate sound beliefs about an environment given some

prior beliefs and new evidence. Prior work applied this technique to computation offload

but only considered the bandwidth of one network and did not consider redundancy [103].

In our case, the prior beliefs are our historical measurements of predicted quantities

such as bandwidth and latency, and the new evidence is the most recent decision made by

Meatballs; e.g., “based on the predicted bandwidth and latency, WiFi is better than cellular.”

From Bayes’ Theorem, the posterior distribution of bandwidth and latency is proportional

to the product of the prior bandwidth and latency distributions and the likelihood of the
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evidence (the predictors’ decision) given the prior observations:

posterior =
likelihood×prior

p(evidence)

where p(evidence) is a normalizing factor that ensures that the posterior distribution is a

PDF (that it sums to 1).

It may not be immediately clear how the Bayesian formulation incorporates the error

of the predictors, as was explicitly done in the prior two methods. To clarify this, we draw

an analogy to a textbook example of Bayesian reasoning: a simple problem of weather

forecasting, answering the question, “will it rain tomorrow?” In this problem, the prior is

the historical frequency of rain, and the evidence is a forecast (a prediction of “rain” or “no

rain”). Since weather forecasting is imperfect, a forecast will sometimes predict rain when

none occurs, and sometimes it will predict clear skies when rain occurs. This inaccuracy

is captured in the likelihood measure, which answers the questions: “when it does rain,

how often does the forecast agree?” and “when it doesn’t rain, how often does the forecast

agree?”

The likelihood measure answers similar questions for Meatballs; e.g., “when band-

widths and latencies have been such that WiFi was better, how often has WiFi been pre-

dicted to be better?” Thus, the Bayesian formulation captures the accuracy of the pre-

dictors, but in a more abstract sense than the previous methods: by measuring how the

inaccuracy affects the correctness of the resulting decisions.

In order to compute posterior distributions, Meatballs keeps empirical records of the

information specified in Bayes’ Theorem: the prior distributions, the likelihood of the pre-

dictor decisions given the priors, and the normalizing factor p(evidence), which in our

case is the strategy frequency regardless of the priors. These values are binned and kept as

histograms to reduce storage costs.

Each time we obtain a new measurement, we check the predictors’ decision (e.g., which

network is best) just before the measurement was taken. We update the p(evidence) his-

togram with the indicated strategy, and we update one histogram in the likelihood array,

using the new measurements to choose which histogram to update. Note that this is in
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keeping with the Bayesian formulation of the problem discussed above; we are tracking

how often the predictors have agreed with the next observed measurements, for various

values of those measurements.

Given the posterior distributions of predicted quantities, Meatballs calculates the ex-

pected benefit and cost of redundancy in the same way as in the brute force method. That

is, it iterates over the joint prior distributions and uses the information that it has tracked

to compute the posterior joint distribution. It then uses the joint posterior distribution to

compute the weighted sums as before, and it uses the same method to decide whether the

benefit of redundancy is worth the cost.

As in the brute force method, Meatballs ages samples so that older observations have

decreasing impact. In the Bayesian method, it accomplish this by aging the bins in each

prior distribution’s histogram; each bin in the histogram is now a weight rather than a count.

When a new sample is added to a bin, the weight for all other bins in that distribution

decreases.

It may at first appear that the Bayesian method is equivalent in performance to the brute

force method, since it still produces a joint distribution over all predictors. In practice,

however, the likelihood distribution is sparsely populated; when Meatballs calculates the

weighted sum, it avoids including the portions of the joint prior distribution not included

in the likelihood distribution, because it knows they are zero. Thus, whereas the the brute

force method has complexity O(nm) with m predictors having n samples each, the Bayesian

method has complexity O(m×n), or the total number of samples across all predictors.

4.3.4 Reevaluation from new information

The arrival of new information can change the decision about which strategy to employ.

New information may arise from an explicit event such as association with a new access

point. Alternatively, it may arise from the lack of an expected event, such as not receiving

a response from a remote server within some time.
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Meatballs reevaluates a decision by repeating the prior calculations using conditional

probability distributions for the predictors, based on the new evidence. Regardless of the

evaluation method chosen, Meatballs restricts consideration to only the portion of the distri-

butions that fit within observed conditions. For instance, given that a remote operation has

already taken at least x seconds, Meatballs, using the brute force or error bounds method,

considers only the portion of the joint error distributions that agree with a duration of at

least x (e.g., the region of bandwidths and latencies that would cause the operation to take

at least x seconds). Similarly, if Meatballs is using the Bayesian approach, it only consid-

ers the regions of the prior distribution that agree, which produces a conditional posterior

distribution.

The notion of what information is sufficient to trigger reevaluation is application-specific,

so Meatballs allows an application to trigger a reevaluation whenever it observes a sufficient

change in the environment. In the case of an explicit event, deciding to trigger reevaluation

is straight-forward. However, it can be challenging to determine when the lack of informa-

tion is sufficient to justify a reevaluation, so Meatballs provides additional support for this

case.

On application request, Meatballs will calculate the “tipping point” at which the con-

ditional error distributions calculations will cause the decision to change. It does a binary

search over the range of a given predictor, noting the strategy chosen at each point. The

search terminates when the tipping point is found within a specified granularity. Since the

strategy selection is cleanly separable from the details of how a method is implemented,

this binary search works for all three methods without modifications.

Note that the binary search strategy assumes that only one predicted value changes

based on new information. More complex applications for which this assumption is not

valid may simply schedule periodic reevaluations instead.
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Application → Meatballs Meatballs → Application

make strategy(time fn, energy fn, data fn, s arg)

→ strategy

make redundant strategy(strategy[]) → strategy

create predictor() → predictor

get predictor value(predictor) → double

add measurement(predictor, measurement, new prediction)

set predictor bound(predictor, bound, {UPPER,LOWER})

clear predictor bounds(predictor)

register strategies(strategy[], enum method) → evaluator

choose strategy(evaluator, c arg) → strategy

time fn(s arg, c arg) → double

energy fn(s arg, c arg) → double

data fn(s arg, c arg) → double

This table shows the API for incorporating uncertainty into application decisions. Ap-
plications call make strategy to specify a strategy in terms of time, energy, and
cellular data calculation functions. make redundant strategy creates a redundant
strategy composed from multiple non-redundant strategies. The application informs
Meatballs about a predicted quantity via create predictor, and it passes its mea-
surements and predictions to Meatballs via add measurement. To make a decision,
the application first calls register strategies, passing its list of strategies and cho-
sen evaluation method and receiving an evaluator. It then calls choose strategy, and
Meatballs calls into the application’s time, energy, and data functions to perform error-
adjusted calculations. In those functions, the application calls get predictor value
to retrieve error-adjusted values according to the selected evaluation method. Once
finished, Meatballs returns the best strategy.

Table 4.1: Meatballs API

4.4 Implementation

4.4.1 Library

We built Meatballs, a library that makes it easy for mobile applications to consider

predictor error in their decisions. Meatballs encapsulates common code needed to execute

the three methods described in the prior section. Table 4.1 lists the main functions of

Meatballs’ API. An application first specifies the non-redundant strategies from which it

will decide. Each specification includes strategy-specific functions that calculate the time,

battery energy, and data usage of executing the strategy given predicted quantities. Next,

80



the application creates redundant strategies; each such strategy is composed of two or more

non-redundant strategies that will be executed concurrently. Meatballs will calculate the

time and resource usage of the redundant strategies using one of the three methods in the

previous section.

An application next specifies the predictors, each of which is responsible for tracking a

single quantity such as network bandwidth or latency. It may specify any combination of

custom predictors or the generic predictors that we describe in the next section. Meatballs

tracks the error in the predictions. Thus, each time an application makes a new measure-

ment, it passes the measurement, the previous prediction for the quantity, and the new pre-

diction for the quantity to Meatballs. In turn, when Meatballs runs its evaluation method, it

uses its error-adjusted estimates when invoking the application-supplied strategy functions,

which those functions obtain via the predictor interface.

The predictor interface also allows applications to bound the distribution of possible

values based on new information. For instance, if a cyber foraging application has not

received a response in time x, it sets a lower bound of x on the response time. Meatballs

will then use only the portion of the distribution with values greater than x to estimate

response time.

Finally, an application passes the list of strategies to Meatballs and receives back an

evaluator. An evaluator is simply a handle by which the application can ask Meatballs

to choose the best strategy. The evaluation method is specified when the evaluator is cre-

ated, and the evaluator provides a uniform interface for choosing a strategy and scheduling

deferred reevaluation. The evaluator also takes responsibility for caching previously com-

puted decisions and invalidating the cached decisions when new measurements arrive.

4.4.2 Predictors

We provide several generic and customizable predictors for applications to use. We

briefly describe here the specific prediction algorithms that we drew from the literature.
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Network bandwidth and latency. The network predictor implements a flop-flip fil-

ter [49] to smooth estimates of network quality. Separate latency and bandwidth estimates

are calculated via linear interpolation over varying transmission sizes. The predictor pro-

vides separate estimates for each available network (typically WiFi and cellular).

Network dwell time. This predictor estimates the time the mobile computer will re-

main in range of the current WiFi access point. It fits the dwell time to a Weibull distri-

bution via maximum likelihood estimation using the methods reported by Lee et al. [54].

The effect of this is that it has low confidence in the reliability of a newly-associated WiFi

network, but the confidence increases over the time of association. It provides per-AP

estimates given sufficient samples for the current AP; else, it provides a generic prediction.

Application compute time. This predictor estimates the time to complete a application-

specific computation using an approach similar to that of Narayanan et al. [65]. It posits

a linear relationship with computation parameters and performs a regression to generate

the best fit. This is application-specific, so the application must specify the value of the

regression parameters for each observation.

Application energy usage. This predictor uses the PowerTutor models [105] to es-

timate energy usage as a function of communication and computation. Similar to the

previous predictor, the amount of computation and communication is a linear fit over

application-specified parameters.

4.4.3 Applications

We have modified two applications to use Meatballs: network selection and speech

recognition.

4.4.3.1 Network selection

Network selection allows mobile data to be sent over either cellular or WiFi networks,

as conditions warrant. Prior work often focuses on throughput and either sends data over a

single network at a time or stripes data by sending different data over different networks.
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Our work focus on user-facing activities, so latency, not throughput, is the relevant metric.

In such scenarios, it may make sense to redundantly transmit the same data over multiple

networks and use the first instance to arrive at the remote endpoint.

We chose to modify Intentional Networking (see Chapter 2), though several systems

provide similar multi-network functionality. Our modified version estimates network band-

width, latency, dwell time, and energy usage for each available network using the predictors

described above. For each transmission, it calls into Meatballs for a decision as to whether

the transmission should be sent using WiFi, cellular, or both networks redundantly.

The decision of when to reevaluate is application-specific. Intentional Networking

reevaluates its choice of strategy whenever the mobile device associates with a new net-

work, or a network it is currently using fails. In addition, the strategy choice is reevaluated

when a response is not received after a delay of two times the expected completion time.

This avoids the wasted time and resources of spurious retransmissions when networks are

stable, but still allows for quick recovery from real failures. The reevaluation is repeated

every 200 ms until the decision changes or the transfer completes. The effect of reevalu-

ation is a graceful response to failure in which a redundant transfer is started on a second

network as Intentional Networking loses confidence in its initially chosen network.

4.4.3.2 Speech recognition

Speech recognition is a classic application of cyber foraging [13], the offloading of

computation from a mobile client to a remote server. We modified the PocketSphinx [23]

library to perform recognition on the mobile device, on a remote server, or concurrently at

both locations.

This application uses the above predictors for network latency, bandwidth, and dwell

time, as well as the predictors for application compute time and energy usage. The regres-

sion parameter for compute time and energy usage is the length of the spoken utterance.

However, since recognition starts immediately and proceeds in parallel with the speaking

of the utterance, the precise length of the utterance to be spoken is not known when the

initial decision about where to execute recognition is made.

83



Scenario WiFi WiFi 3G Bandwidth (Kbps)

Coverage session length Downlink Uplink

Median Max Median Max Median Max

Walking 69% 41 sec 5 min 137 737 48 454

Driving 27% 7 sec 2 min 368 1200 40 74

Table 4.2: Details of the network traces used for evaluation

Therefore, this application also uses an application-specific predictor to estimate the

length of the utterance using the utterance lengths that have been observed in the past.

The output of this predictor is used to compute recognition time (measured from the point

when the user finishes speaking to the time the recognized text is displayed) and energy

(measured over the entire recognition).

In our experience, the upload bandwidth of both 3G and LTE networks is too low for

remote execution—it is faster and more energy-efficient to run recognition locally. Thus,

remote recognition takes place only when WiFi is available.

The speech application reevaluates its decision in three cases. First, a decision to exe-

cute locally is reevaluated if the mobile device associates with a new WiFi network (since

remote recognition may now make sense). Note that if the local recognition is likely to

complete soon, starting a remote recognition may not make sense even if network quality

is good. Second, the utterance may be significantly longer than predicted. The application

uses Meatballs’ binary search feature to precalculate the tipping point for utterance size and

changes its recognition strategy if the tipping point is reached (e.g., by starting a redundant

remote execution). Finally, the application also uses Meatballs’ binary search feature to

calculate a tipping point in case remote recognition takes longer than expected. This is the

point at which a redundant local recognition is started.
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4.5 Evaluation

Our evaluation answers the following questions:

• When do the benefits of redundancy outweigh the costs?

• How useful is considering prediction uncertainty in identifying opportunities to em-

ploy redundancy?

• How do the three evaluation methods (brute force, error bounds, and Bayesian) com-

pare?

4.5.1 Experimental Setup

4.5.2 Testbed

We run all applications on the AT&T version of the Nexus One, running Android 2.3.4.

We modified Android to allow the simultaneous use of WiFi and cellular networks. To

ensure repeatable experiments, the phone connects to an isolated WiFi access point and a

private Cisco MicroCell that is connected to AT&T’s network. Since the MicroCell acts

as a miniature cellular tower, our evaluation captures the effects of the cellular wireless

medium on network bandwidth and latency. We emulate network conditions by passing

all traffic through a computer that inserts delays with the netem [56] network emulator and

throttles throughput using the Linux Advanced Routing and Traffic Control tools [55]. We

run servers for each application on a Dell Optiplex GX270 desktop with a 2.8 GHz Pentium

4 processor and 1GB DRAM.

We measure energy usage by applying the Nexus One power model used in the imple-

mentation of PowerTutor [105]. We measure cellular data usage by reading the number of

bytes sent and received through the Linux sysfs interface.

85



Battery life reduction

Expected Low-cost Mid-cost High-cost

Usage battery life (100 J) (10 J) (1 J)

Idle 125 hours 37.5 min 3.75 min 22.5 sec

Average 20 hours 6 min 36 sec 3.6 sec

Heavy 2 hours 36 sec 3.6 sec 0.36 sec

This figure shows the approximate battery life impact of spending various amounts of
energy to save 1 second of delay in different evaluation scenarios.

Table 4.3: Performance-energy tradeoff in various scenarios

4.5.3 Scenarios

Performance, energy, and cellular data usage have varying importance to different users.

We capture this through the importance factors described in Section 4.3. Our experimental

results are thus given as a weighted cost that is derived from using these factors to equate

the diverse metrics of time, energy consumption, and data usage. One can contextualize

these factors in order to give them more concrete meaning; e.g., “I am currently willing to

spend X Joules to save Y seconds of waiting.”

We evaluate our results in four different scenarios, each of which reflects a different

potential tradeoff between performance (interactive delay) and resource consumption (en-

ergy and data usage). The first is the no-cost scenario, in which performance is the only

consideration (energy and data usage are not considered). Table 4.3 shows the time-energy

tradeoff in the remaining three scenarios: low-cost, mid-cost, and high-cost. In the

low-cost scenario, a user is willing to spend 100 Joules to save 1 second of waiting. With

that amount of energy, the user could watch 36 seconds of streaming video, or the user

could leave the phone idle for an additional 37 minutes. Based on the average behavior

(including both idle and usage periods) given by a recent study [74], this would equate

to 6 minutes of extended battery lifetime. In the mid-cost scenario, 1 second of waiting

equates to 3.6 seconds of video watching, 3.75 minutes of idle time, or 36 seconds of av-
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erage usage. In the high-cost scenario, 1 second of interactive delay purchases only 0.36

seconds of video playing or 22.5 seconds of battery lifetime on a completely idle phone.

This already seems like a very poor tradeoff, so we did not investigate higher cost scenarios.

Similarly, in the low-cost scenario, 1 second of waiting time equates to saving 100 KB

of data usage. In the mid-cost and high-cost scenarios, 1 second of waiting equates to

10 KB and 1 KB of data, respectively.

4.5.4 Trace-driven evaluation

We use trace-driven emulation to provide experimental repeatability and allow for mean-

ingful comparison between strategies. We gathered these traces by continuously measuring

the bandwidth and latency via active probing to a server at the University of Michigan.

We use two traces that illustrate different mobility scenarios: a walking trace gathered on

the University of Michigan’s north campus, and a vehicular networking trace collected in

Ypsilanti, MI (one of the vehicular traces described in Chapter 2). The vehicular trace il-

lustrates a highly-mobile scenario with challenging network dynamics. The walking-trace

has longer associations with WiFi access points and better overall connectivity. Table 4.2

details the network characteristics for the two traces.

When running benchmarks, we replay the traces on the emulation computer, which

throttles bandwidth and delays packets for each network according to the conditions ob-

served. When no WiFi or cellular coverage is observed in a trace, the throttling computer

causes the connection to drop. The Android OS typically discovers the network disconnec-

tion after several seconds. Since the collected traces are longer than our experiments, we

use only the first portion of each trace.
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4.5.5 Results

4.5.5.1 Network selection

To evaluate the effectiveness of redundancy in network selection for small, interac-

tive transfers, we constructed an experiment in which the application executes a series of

request-response exchanges, using Intentional Networking.

These requests and responses are of random sizes, normally distributed about 1 KB and

4 KB, respectively. The application pauses between requests for a think time uniformly

distributed between 10 and 30 seconds.

We compare the results using Meatballs to two simple network selection strategies:

only use cellular, or use WiFi when available and fall back to cellular when it is not. WiFi-

preferred is effectively the strategy currently employed by both Android and iOS.

For comparison, we also built an adaptive strategy that uses the same cost weights

and formulas as Meatballs to calculate the time, energy, and data cost in order to select

either cellular or WiFi (when available). This is a standard adaptive strategy that treats

predictions as oracles and does not incorporate uncertainty. It also does not reevaluate its

decisions based on new information.

Each experiment runs for 20 minutes. We report the total weighted cost over this 20-

minute interval. All results are the mean of 5 runs; error bars are 95% confidence intervals.

Performance is the time the user spends waiting for a response to each request. We first

discuss the results for the brute force method, and later compare the three methods.

Figure 4.1 shows weighted cost results for the walking trace, normalized to the weighted

cost of the cellular-only strategy. Redundancy provides the most benefit in the no-cost

scenario, when performance is of utmost importance. Compared to a cellular-only strategy,

the user spends 24% less time waiting when redundancy is employed. The reduction in

waiting time due to redundancy is greater than a factor of two compared to both the WiFi-

preferred and the adaptive strategies.

It may seem surprising that the slower cellular-only strategy provides better perfor-

mance than the WiFi-preferred strategy that mobile devices commonly employ. The im-
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Figure 4.1: Network selection, walking trace

pact of WiFi failure detection delay accounts for this gap; even though it often provides

better performance, WiFi is less reliable than cellular when the user is moving. A few long

delays due to failure detection and failover when the mobile device moves out of range of

an access point dwarf the performance difference between cellular and WiFi.

The low-cost scenario shows similar results to the no-cost scenario. However, since

energy and cellular data now have non-zero weight, the WiFi-preferred and adaptive non-

redundant strategies show improved results. Meatballs provides an improvement of 21%

over cellular-only and 44% over WiFi-preferred and adaptive non-redundant.

The utility of redundancy drops as resource conservation becomes more important.

In the mid-cost scenario, the strategies that prefer to send less cellular data have im-

proved considerably. Meatballs’ redundant strategies are equivalent within experimental

error to the best non-redundant strategy (WiFi-preferred). However, for the brute force and

Bayesian methods, both the average and the variance are still lower than WiFi-preferred,

due to redundancy reducing the effect of the outliers caused by WiFi failover delay. This

contributes to a less variable user experience.

In the high-cost scenario, the brute force and Bayesian strategies are equivalent within

experimental error to the best non-redundant strategy (WiFi-preferred). Thus, Meatballs

achieves benefit from redundancy when it is available and correctly chooses to avoid re-

dundancy when it is not helpful.
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Figure 4.2: Network selection, driving trace

Note that since the cellular-only strategy never uses WiFi, a user could potentially

achieve slightly better energy usage by disabling WiFi on their phone. However, the energy

savings from doing so are minimal (1% reduction in weighted cost in the low-cost sce-

nario to 4% in the high-cost scenario). Any potential gains are therefore dwarfed by the

poor performance of the cellular-only strategy. Further, the user would lose the opportunity

to employ WiFi when it is best (as it is in the high-cost scenario).

Figure 4.2 shows the results for the driving trace. Unlike the walking trace, oppor-

tunistic WiFi provides little benefit, because most sessions are short and unreliable. Thus,

cellular only is best in all scenarios. Redundant transmission simply offers little benefit

because the disparity between WiFi and cellular quality is too great. Meatballs correctly

selects the non-redundant cellular strategy in almost all cases. This scenario demonstrates

an important property: Meatballs eschews redundancy when it has high confidence in the

underlying predictions, so it avoids doing harm when redundancy has little benefit.

The unshaded bars in Figures 4.1 and 4.2 compare the relative weighted cost realized

by the three redundancy evaluation methods. The results are mixed when comparing our

three methods. The Bayesian method is often best in higher cost scenarios and the brute-

force method is often best in lower cost scenarios. The brute force method has higher

computational complexity, which may result in higher weighted cost. The Bayesian method

incorrectly sends some transfers non-redundantly in the lower cost scenarios because it is

less accurate than the brute-force method.
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Figure 4.3: Speech recognition, walking trace

The error bounds method performs the poorest in general. It spends resources more

readily, resulting in higher weighted cost in the scenarios where resource conservation is

more important. Since the bounds are loose, the method is prone to having an inflated view

of predictor uncertainty and thus naturally tends more towards redundancy.

4.5.5.2 Speech recognition

To evaluate the effectiveness of redundancy in a speech recognition application, we se-

lected 20 utterances ranging in length from 1 to 8 seconds. We simulate a user speaking at

the original sampling rate of 20 KB/sec, looping over the 20 utterances at 30-second inter-

vals until 20 minutes have elapsed. The performance metric is the recognition delay, or the

interval between the time when the user finishes speaking and the time with the transcribed

text is available. We report the total weighted cost, which reflects only recognition delay

and energy usage in these experiments because cellular usage is negligible.

The two non-redundant strategies are to always execute locally or to prefer remote

recognition if WiFi is available (since remote recognition using cellular transmission is

always inferior to local recognition). We also compare against an adaptive strategy that

considers time and cost but not predictor error. The redundant strategy executes both locally

and remotely.
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Figure 4.3 shows the results for speech recognition on the walking trace. Note that

the approximate break-even point for redundancy is even higher in this application—that

is, redundancy still shows significant benefit in the mid-cost scenario. Speech recognition

generally takes longer than a single small request/response exchange, so there is more delay

to be saved for a given cost.

In the no-cost scenario, redundant strategies are generally best, with performance

improvement of 23–35% over the remote-preferred and adaptive non-redundant strategies,

and improvement of more than a factor of two over the local-only strategy. The exception

is the Bayesian method, which shows high variance and thus is equivalent within error to

the remote-preferred and adaptive non-redundant strategies.

In the high-cost scenario, the remote-preferred strategy dominates due to its reduced

energy usage, and executing a local redundant recognition is not worth the cost. Meatballs

correctly selects the non-redundant strategy in this scenario.

Note that, as was the case in network selection, no single strategy is always best, and

Meatballs reduces weighted cost by up to a factor of two compared to the simple strategies

in scenarios where they are not best. Also, even though local-only is never the best strategy

in any scenario, using local execution in addition to remote execution does provide benefit

in reducing the uncertainty of remote execution, as it mitigates the impact of failover delays.

We also ran this application with the driving trace. We do not show the results because

they mirror the previous application. The poor network quality causes local recognition

to always dominate remote recognition. Meatballs achieves equivalent performance by

correctly selecting the local recognition in almost all cases.

Finally, we ran the speech application in a scenario designed to show the impact of

server load. In this experiment, a high-quality WiFi connection is always available, but

we add a background load of concurrent clients requesting speech recognition. Concurrent

recognitions are performed by separate event-based server processes that compete for the

CPU resource on the server. We vary the number of concurrent requests according to

a Poisson distribution, with the average load increasing from 6 to 10 concurrent clients

during the course of a 10 minute experiment. Since the network is stable, this experiment
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Figure 4.4: Speech recognition, server load trace

shows how Meatballs reacts to changes in recognition time due to server load and varying

utterance lengths.

As Figure 4.4 shows, Meatballs reduces recognition delay in the no-cost scenario by

23% compared to the local-only and remote-only strategies. The adaptive non-redundant

strategy also performs poorly in this scenario because it frequently makes incorrect deci-

sion due to the difficulty in predicting future server load. Meatballs achieves improved

performance by hedging its bets with redundancy. Meatballs achieves similar benefit in

the low-cost and mid-cost scenarios by choosing local recognition in periods where the

server load is likely to be high, remote recognition in period where the server load is likely

to be low, and hedging its bets when there is uncertainty about which strategy is best. In the

high-cost scenario, remote recognition is almost always superior, though the server load

causes high variance. However, Meatballs sometimes hedges its bets via redundancy. The

brute-force method does this in only one of five runs, due to a single high load measure-

ment; it is therefore equivalent within error to the remote-only method. The error bounds

method is equivalent within error to the local-only method due to energy usage, and the

Bayesian method outperforms the local-only strategy but under-performs the remote-only

strategy (saving time but using more energy).

For this application, the error bounds method performs the best on the network trace.

The brute force and Bayesian methods are generally equivalent within experimental error

and best on the server load trace. As with the previous application, the Bayesian method
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is prone to underestimating uncertainty and choosing redundancy less readily. The brute

force method again has high computation complexity.

4.5.5.3 Discussion

Overall, we observe significant benefit from redundancy: user wait time is reduced by

up to a factor of two. Further, our simple back-of-the-envelope estimations suggest that

sufficient resources are available quite often for the average user.

When redundancy offers no benefit, Meatballs usually approximates the best non-redundant

strategy. The one exception is the high-cost scenario for speech recognition with CPU

load: in this case, Meatballs overestimates the inherent variability and sometimes chooses

redundancy inappropriately.

Finally, we observe that the brute force method appears to best capture and act upon

the uncertainty in the applications’ predictions, whereas the error bounds and Bayesian

methods tend to overestimate and underestimate predictor error, respectively. On the other

hand, the brute force method has the highest computational cost, which penalizes it in high-

cost scenarios. Now that we understand these factors, we plan to add a feature in which

Meatballs chooses the best method based on observed application characteristics.

4.6 Summary

Mobile applications operate in environments fraught with uncertainty, yet they fre-

quently depend on predictions made about this environment, such as network bandwidth

and latency. Because applications commonly treat these predictions as oracles, they are

bound to make wrong decisions some of the time, which leads to user-visible delays that

could have been avoided.

We propose that applications should consider uncertainty as a fundamental aspect of

their decision-making. Rather than simply returning an expected value, predictions should

include some measure of uncertainty. Applications should take this uncertainty into ac-
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count when choosing a strategy to complete the task at hand. When applications include

predictor uncertainty in their decisions, it often becomes prudent to employ redundant

strategies, spending a modest amount of energy and cellular data resources to purchase

a reduction in delay and variability, both of which improve the user experience.

We have implemented Meatballs, a library that provides three different methods for

quantifying predictor uncertainty and helps applications make decisions with this uncer-

tainty in mind. We have modified network selection and speech recognition applications

to use this library. Our experiments show that there is significant benefit to be gained by

employing redundancy when sufficient resources are available. In the face of uncertainty,

Meatballs reduces user-visible delays by up to a factor of two.
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CHAPTER 5

Related work

This chapter reviews prior systems related to multinetworking, mobile prefetching, and

consideration of predictor uncertainty. We summarize the approaches in these prior works

and explain where we have borrowed, been inspired, and differed from these.

5.1 Intentional Networking

There is a large body of work that seeks to route network traffic over multiple interfaces.

Prior work largely falls into one of two categories: application-oblivious, in which the

network over which data is sent is chosen based on system-wide goals such as maximizing

throughput and without consideration of application intent, and application-alone, in which

each application must manage the details of selecting among multiple networks on its own

and the system’s role is only to expose the details of possible options to the application.

Virtual WiFi [20] is one application-alone solution. It virtualizes a device’s wireless

interface, fooling applications into believing the device is connected simultaneously to dif-

ferent APs on different channels. This is a step in the right direction, because devices can

now exploit all available connectivity in their vicinity. Unfortunately, Virtual WiFi places

the burden of access point selection entirely on the application. In contrast, Intentional

Networking presents applications and users with a single unchanging network interface

that accepts declarative intent.
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Application-oblivious systems are more numerous. FatVAP [47] presents an infrastruc-

ture similar to that of Virtual WiFi, but operates only within a single layer of an overlay

network, and is concerned only with maximizing throughput, without concern for other

application-level preferences. Other systems attack the bandwidth aggregation problem by

designing new multi-path transport protocols to replace TCP, such as R-MTP [60], pTCP

[40], mTCP [106], and SCTP [97]. SCTP also supports multi-streaming of independent

byte streams; in contrast, Intentional Networking allows applications to specify ordering

and atomicity constraints over data sent to a destination computer. Multi-path transport has

also been built into the kernel just above the transport layer [88]. Chebrolu et al. [21] use

a modified network layer at the mobile host and at a remote proxy to hide the use of mul-

tiple networks, and the resulting reordering of packets, from the transport and application

layers. Though all of the above application-oblivious systems are simple for applications

to use, they only focus on throughput maximization and cannot take into account other

application-specific or request-specific goals such as minimizing latency.

In contrast to application-oblivious and application-alone strategies, Intentional Net-

working splits the burden of network selection among applications and the system. Appli-

cations disclose qualitative hints about their intentions in using the network, and the system

reasons about how traffic labeled with those hints should be mapped to specific networks

based on their current characteristics.

Rather than target throughput maximization, Wiffler [15] opportunistically routes data

over WiFi to minimize cellular usage. Others [21, 81, 104] have argued that throughput

maximization is not the only goal of interest to mobile applications and users, and that the

ability to specify network usage policies on a per-application basis would be useful. We

differ from these prior works in two ways. First, we argue that the application, not the

user, should set policies. Application network usage patterns may change quickly, and the

proper choice of policy changes likewise; it would place too great a burden on the user

to understand their applications’ behavior and constantly update the policies. Second, we

propose, implement, and evaluate a specific mechanism for applications to set fine-grained

policies by describing the intent of each network message.
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The push toward ubiquitous computing makes automatic service discovery in new en-

vironments more important than ever [90]. Existing work, however, has focused more on

enabling application-level services [25, 35, 95] than on choosing and managing a diverse

set of network connections from an application’s point of view.

Several systems seek to allow clients of one wireless service provider to access for-

eign wireless hotspots when roaming [18, 29, 61, 89] or between public and private net-

works [62]. Our work is complementary, since users must find and associate to an access

point before negotiating such roaming agreements. This service discovery is similarly crit-

ical for grassroots wireless collective initiatives [17, 73, 92].

Contact Networking [19] hides the differences between local and remote communica-

tion from users. All communication appears to be local—like a direct Bluetooth connection

between two devices—even if infrastructure such as the Internet is actually involved. Like

us, the authors recognize that mobile devices typically have several heterogeneous wireless

radios at their disposal. Contact Networking is also conscious of the properties of differ-

ent link layers. Their primary focus, however, is on neighbor discovery, name resolution,

and (ultimately) the preservation of application-level sessions in the face of user mobility.

Our work does find common ground with the idea that all network connectivity options are

not equivalent and the operating system should dynamically assign data flows to the most

appropriate link.

Zhao et al. [107] attack problems similar to those addressed by Contact Networking.

Their work lies firmly within the framework of Mobile IP [80] as well. The user’s Home

Agent is required to arbitrate the routing of various data flows. Further, applications must

explicitly bind a data flow to a specific interface through their SO BINDTODEVICE socket op-

tion. We propose a decentralized solution and envision the operating system automatically

assigning flows to the optimal interface, aided at most by simple hints from applications.

Much recent work has argued that the multiple networking options available to mobile

devices are a blessing, not a curse. Johansson et al. [45], among others, show how Blue-

tooth radios are often preferable to IEEE 802.11 for short-range, low-power communica-

tion. Bahl et al. [12] illustrate scenarios where multiple radios can help devices save energy,
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enhance their data communication capacity, make wireless AP handoff more seamless, and

better tolerate wireless link problems. Draves et al. [28] show how overall throughput can

be increased for multi-radio nodes in mesh networks by dynamically choosing the “best”

outbound link when forwarding a given packet. Stemm and Katz [96] recognize the hier-

archical nature of overlapping wireless networks. Much like cache hierarchies in computer

architecture, multiple wireless networks commonly cover one spot, with the utility (e.g.,

bandwidth) of a network usually inversely proportional to its coverage radius.

Labels are partially inspired by the use of hints to guide power management deci-

sions in STPM [8]. Both projects share the goal of having applications disclose a min-

imal amount of information to guide resource management decisions. Yet, the domains

to which these hints are applied are very different. STPM sets wireless network power

management modes, while Intentional Networking changes the scheduling and routing of

network messages.

5.2 Informed Mobile Prefetching

One of the primary contributions of IMP is the unification of prior solutions to a seem-

ingly disparate collection of problems to meet the unique challenges of mobile prefetching.

In this section, we describe prior work in prefetching and in managing limited resources in

mobile computing, and we discuss how IMP unifies and builds upon these ideas.

5.2.1 Prefetching

Prefetching is a long-studied technique used in a wide variety of computing domains.

Processors predict which instructions or data will be needed and populate cache lines in

advance [94]. File systems and databases attempt to infer application access patterns and

fetch data items before they are needed [51, 77]. Distributed file systems fetch files from

servers in advance of their use, both to improve performance and to maintain availability

in the face of unreliable network connections [50].
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The design of IMP is inspired by Transparent Informed Prefetching (TIP), which uses

cost/benefit analysis to manage allocation of disk cache buffers between competing con-

sumers: prefetched data and the LRU cache [78]. Such work recognizes that prefetching

must be done carefully, lest it harm more than it helps. We observe the same high-risk/high-

reward nature of prefetching in mobile computing and construct a cost/benefit analysis

based on user-perceived performance improvement and the cost of prefetching in terms of

battery energy and cellular data.

In the domain of mobile computing, prefetching has long been recommended as a pri-

mary technique for improving application performance [102]. Prior theoretical work in

prefetch algorithm modeling and analysis observes, as we do, the tension between im-

proving data access performance and spending limited bandwidth and energy resources to

achieve that end. Persone et al. develop a prefetch cost model by which to numerically

evaluate prefetch strategies based on mobility patterns [26]. However, their work considers

different costs of prefetching in isolation from each other and from the benefit of prefetch-

ing. In contrast, IMP explicitly considers how different costs, such as energy usage and 3G

data consumption, may be meaningfully combined and weighed against the benefits that

prefetching can provide.

Lee et al. seek to improve the efficacy of prefetching and counteract its inherent uncer-

tainty by improving the accuracy of predictions, using location-specific or context-specific

information [52]. Web prefetching has long used spatial locality to predict what data users

will request next [76]. Such efforts are beneficial and complementary to IMP. IMP al-

lows the application to decide which data should be prefetched and instead addresses the

decision of when to prefetch given limited resources and changing network conditions.

As we have demonstrated, having more accurate prefetch hints from the application

allows IMP to deliver better results. Thus, IMP might benefit from prediction of network

availability and quality, as done systems such as BreadCrumbs [68]. By knowing with

greater accuracy what future bandwidth and WiFi coverage to expect, IMP can make better-

informed decisions about whether prefetching now or waiting until later would be more

cost-effective.
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5.2.2 Limited resources in mobile networking

Several recent projects have proposed techniques for dealing with the different strengths

and weaknesses of WiFi and cellular networks. Wiffler [15] explored the use of intermittently-

available WiFi to reduce 3G data usage and ease pressure on cellular networks, subject to

application-specific delay tolerance. Bartendr [91] observed that the energy cost of sending

data on a cellular network increases significantly as signal strength drops and that energy

savings can be realized by predicting periods of good signal strength and, when possible,

delaying transmissions to target those periods.

Additionally, much recent work targets the poor interaction between naive applications’

cellular data usage patterns and the energy cost of 3G tail time. Balasubramanian et al.

measured the significant amount of energy wasted in 3G tail time and developed TailEnder

to amortize tail energy cost with batching and prefetching [16]. The Tail Optimization Pro-

tocol [83] predicts long idle periods and direct the cellular radio to release radio resources

and enter the low-power idle mode without waiting for the tail time. TailTheft [58] “steals”

parts of the tail time for small transmissions without extending the tail time.

We share these systems’ goal of reducing energy and cellular data costs, and indeed,

many of the techniques they describe are applicable to IMP as well. However, we also

observe that resource conservation, while a worthy goal, is not always the most important

goal for a mobile user, and that often, energy and cellular data can and should be spent

more freely in order to improve the user’s experience. We also observe that prefetching

is not always beneficial, and that aggressively prefetching data that will not be used is

unnecessarily wasteful. Hence, IMP explicitly considers the changing relative importance

of these goals to tune its decisions over time, and it also considers the observed accuracy

of prefetch hints to determine the value of prefetching.

IMP uses Intentional Networking, as described in Chapter 2, to simplify the use of

multiple wireless networks and to prevent prefetch traffic from penalizing the performance

of interactive traffic. IMP also benefits from the power modeling work of the PowerTutor

project [105], which enabled automatic derivation of power models through a series of

tests that exercise different components of a mobile device in turn and isolate the power
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consumption of each. Finally, IMP adopts goal-directed adaptation techniques developed in

Odyssey for energy savings [33], which we additionally apply to the cellular data resource.

IMP applies these ideas to the new domain of mobile prefetching.

5.3 Coping with predictor uncertainty

We apply our techniques to two domains: code offload and network selection.

5.3.1 Code offload

Many prior systems offload computation by migrating software components to remote

servers. MAUI [24] partitions applications by running methods either locally or remotely.

It monitors method runtime, energy, and network conditions and uses a global optimization

to choose the partitioning that minimizes energy usage while keeping added latency under

5%. It starts a new computation only if it detects a remote failure via timeout or dropped

connection.

CloneCloud [22] partitions applications by running threads either locally or remotely.

It profiles applications offline to generate optimal partitions for various network, CPU, and

energy conditions. It measures these conditions when an application starts and chooses a

partition via table lookup.

Spectra [32] also runs software components either locally or remotely. It measures

supply and demand of CPU, network, energy, and storage at runtime. It calculates an

expected value for each and uses those values to decide whether local or remote execution

is best.

Chroma [14] builds on Spectra and so uses the same techniques. It selects from a wider

set of tactics (strategies for partitioning and adapting the fidelity of applications). Addi-

tionally, Chroma provides a mechanism for executing redundant computation on multiple

servers; however, it does not provide any policy for determining when redundancy should

be employed. It is precisely such a policy that is the focus of our work. Because Chroma
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does not implement such a policy, it is similar to Spectra in that its decisions consider only

the expected values of resource supply and demand.

Like Chroma, Slingshot [98] also runs computation on multiple servers, but it always

instantiates redundant computations when multiple servers are available. Thus, it does not

use estimates and, like Chroma, it provides no policy for deciding whether or not to execute

redundantly.

Odessa [84] partitions stages in pipelined processing by executing each stage locally

or remotely. Additionally, it varies data parallelism within a stage by adding or remov-

ing threads; all threads of a stage run on a single computer. It makes such decision by

considering average processing time, CPU speeds, and network and bandwidth estimates.

In summary, none of these prior solutions, nor any other offloading system of which we

are aware provide policies for considering when to execute redundantly. This is because

all partition computation by running components either on the mobile device or on one or

more servers. The two systems that execute redundantly on more than one server (Chroma

and Slingshot) provide a mechanism but no policy for deciding whether or not to execute

redundantly. Thus, our work would improve all of these prior solutions by providing a

policy that identifies when to employ redundancy.

5.3.2 Network selection

Current mobile devices (e.g., iOS and Android) generally use a trivial network selection

policy: prefer WiFi over cellular when available, unless the user has disabled WiFi. This

assumes WiFi will outperform cellular, which is not always the case, especially when the

user is moving and with modern cellular technology such as LTE.

Several prior systems send data concurrently over multiple mobile networks. R-MTP

[60], pTCP [40], and mTCP [106] attempt to aggregate throughput by striping data across

multiple networks. Note that striping is not a redundant strategy; any given unit of data

is only sent on a single network. Striping hinders low latency (the focus of our work)

because the aggregate transmission experiences the latency of the slowest network. Careful
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scheduling is required because a single network estimated poorly is enough to stall the

entire pipe when ordered delivery is required; the designers of FatVAP eschew striping

within flows for exactly this reason [47]. Before our modifications, Intentional Networking

(see Chapter 2) identified latency-sensitive traffic, but it sent such traffic over only a single

network. Compared to these prior systems, our work is the only one to explicitly consider

redundantly sending the same piece of data over multiple networks to lower latency.

Network measurement is itself a well-studied area, encompassing a variety of pas-

sive [49, 44, 100, 53] and active [41, 87, 43] techniques. Most of these techniques pro-

duce spot measurements of available bandwidth and latency without providing a measure

of the uncertainty in those measurements. Jain and Dovrolis [43] characterize available

bandwidth with a variation range, but offer no policy for using the range to make decisions.

5.3.3 Other domains

Redundancy is used in cloud computing [10, 27] to reduce tail latency of compute jobs

by sending them to multiple servers. Routing in ad-hoc sensor networks has long used

multiple redundant paths to provide fault tolerance in the face of packet loss and node or

path failure (e.g., [7]). These prior systems use domain-specific algorithms to determine

when to employ redundancy. We focus on the more general domain of mobile applications,

and therefore offer more generic algorithms for quantifying prediction error and deciding

when to employ redundant strategies.
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CHAPTER 6

Conclusion

In this final chapter, we summarize the contributions of the dissertation and reflect on

its limitations and practical impact. We also describe promising areas of future work in

balancing performance and resource tradeoffs in mobile computing.

6.1 Contributions

In this dissertation, we have argued that mobile systems can significantly improve appli-

cations’ user-visible performance, simply by providing abstractions that enable principled

use of multiple networks and careful spending of limited battery energy and cellular data re-

sources. In support of this thesis, we have described three such abstractions that contribute

to accomplishing this goal.

First, we described Intentional Networking, a system that provides applications with a

simple abstraction for using multiple mobile networks effectively. Applications decorate

their network traffic with simple, qualitative labels, and the system uses those labels to

match traffic to networks and reorder traffic for improved interactive performance. Since

sending traffic on multiple networks introduces reordering, Intentional Networking pro-

vides abstractions for ensuring atomicity and ordering, analogous to the locks and condi-

tion variables used in concurrent programming. Our experiments with three applications

modified to use these abstractions show that Intentional Networking indeed helps appli-
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cations achieve lower interactive response time with only modest background throughput

overhead.

Next, identifying prefetching as a promising mechanism for spending resources to pur-

chase improved performance, we described Informed Mobile Prefetching, a system that

provides applications with a simple abstraction that helps them prefetch the right amount of

data at the right time. IMP tracks the spending rate of battery energy and cellular data, aim-

ing to neither overspend nor underspend these budgeted resources. Further, since prefetch-

ing can be wasteful if the user never requests the prefetched data, the system keeps track of

the likelihood that the user will request a given data item and incorporates this knowledge

when deciding the value of a prefetch. Experiments show that IMP is able to meet specified

resource goals and that in most cases, when simple heuristic-based strategies also meet the

goals, IMP outperforms them on interactive response time, often by a factor of two or more.

Finally, we argued that mobile applications should explicitly consider the uncertainty

involved in using predictors such as network bandwidth and latency. Mobile applications

commonly rely on such predictors to make decisions about e.g. which of two networks to

use, and the user suffers delays when the decisions turn out to be wrong. Instead, applica-

tions could execute redundant operations in parallel and use whichever result finishes first,

thereby eliminating the effects of the uncertainty and achieving interactive performance

approximately equivalent to a perfect strategy with knowledge of the future. We imple-

mented Meatballs, a library that enables applications to consider uncertainty when making

such decisions. We implemented three techniques for quantifying the uncertainty of pre-

dictors and the resulting expected benefit of redundancy. Since redundancy has a cost in

terms of battery energy and cellular data, our system considers these costs when deciding

whether to employ redundancy, based on the relative importance of performance and re-

source conservation at a point in time. Experiments show that, when sufficient resources

are available and uncertainty exists, considering predictor uncertainty improves interactive

performance by up to a factor of two.

Providing mobile application developers with the right abstractions for balancing trade-

offs between user-visible performance and the careful spending of limited resources will
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enable more developers to achieve better experiences for their users by making better use of

the available networks. The applications of these principles articulated in this dissertation

represent a substantial contribution towards achieving this goal.

6.2 Limitations

Though we have shown in our evaluation that the approaches in this dissertation have

substantial benefit in realistic scenarios, there are also scenarios where the benefit of our

strategies is limited. For example, if an application is primarily composed of one type

of traffic (e.g., interactive), or if a user does not have significant background traffic, the

utility of labeling traffic with Intentional Networking is limited. Similarly, if a high-quality

network is always available, then the decision of which network to use or when to fetch

data is less interesting, since the impact of the decision is minimal. Further, in such a

scenario, there would not be much benefit to considering uncertainty in predictions, since

little uncertainty exists. For this reason, it is especially important that our strategies are

adaptive; our systems can detect scenarios when little potential benefit exists and ensure

that they do no harm.

The broadening deployment of high-speed LTE networks raises the question of whether

opportunistic WiFi usage will continue to provide benefit going forward. For instance,

if LTE or some future technology becomes ubiquitous, and if its energy usage improves

greatly or if battery technology turns a corner, it may be reasonable to expect the impact of

the tradeoffs discussed in this dissertation to decline. However, past and present experience

agree that, even as wide-area cellular connectivity improves, local-area wireless connec-

tivity tends to be superior [48]. Further, we can see anecdotally that users’ appetite for

more content, higher fidelity, and more powerful devices has kept pace with the advance of

mobile technology. If there is in fact an asymptote approaching where mobile network, pro-

cessor, and battery technology is almost always sufficient to meet user demand, it appears

to be far from the present.
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All of our techniques require modifications to application source code. We argue that

the benefits we see in our evaluation would not be possible without the application and user

knowledge gleaned through our APIs. Nevertheless, in order to broaden the deployability

of our techniques, it would be useful to reduce or eliminate the amount of modification

required as far as is possible. We describe some potential approaches for this in Section 6.4.

6.3 Practical impact

Since the completion of the work described in this dissertation, several of the ideas

have appeared in similar form in practical real-world contexts. Multipath TCP [34] has

been integrated into recent Linux kernels [86] and has even seen adoption by Apple for

communication related to Siri [1]. MPTCP, like several of the prior works discussed in

Section 5.1, has no knowledge of application intent and thus cannot match the performance

of Intentional Networking for interactive traffic. Nevertheless, it is encouraging that system

support for multinetworking has been realized in a real-world context, and we look forward

to seeing how these deployments evolve and gain wider adoption.

QUIC (Quick UDP Internet Connections) [3] is an experimental network protocol from

Google which shares some of the goals of this dissertation. QUIC is being developed in the

context of the Chromium open-source web browser project and Google’s SPDY replace-

ment HTTP protocol, with the goal of reducing the number of round-trips involved in web

browsing, especially with regard to the overhead of TLS. Because it uses UDP internally,

QUIC is able to avoid the ”head of line blocking” which can occur in multinetwork TCP

implementations, where a lost packet on one network stalls the connection on all networks.

QUIC is also designed specifically with mobile clients in mind, providing support for fast

session suspension and resumption as networks come and go. Further, though the API de-

sign for QUIC is in flux as of this writing, the intended API for QUIC streams (distinct

sequences of data analogous to streams in SCTP or IROBs in Intentional Networking) in-

cludes application-specified priorities. Though it remains to be seen how well the eventual

API will allow applications to express their intent without an onerous development burden,
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it is again encouraging to see high-profile actors such as Google investing in technology

that aims to realize ideas similar to those articulated in this dissertation.

With regard to prefetching and background transfer in general, Microsoft has released

APIs specifically tailored to background transfers [5] and prefetching [4] with Windows

and Windows Phone 8. Apple provides a background data fetch API for iOS developers [2].

Google provides a great deal of advice to developers seeking to use networks efficiently for

background transfers, but to the best of our knowledge, Android does not provide support

via a system API. In general, on the platforms that provide system support for prefetching,

it is not clear how each system decides when to invoke application prefetching, or whether

the system considers and balances the cost and benefit as IMP does. As with the other

examples, we look forward to seeing how these services evolve and gain adoption. It would

be especially interesting in the future to see a cross-platform survey of the various support

APIs and their utility in terms of performance, resource budgeting, and user/developer

overhead.

6.4 Future work

We envision two primary directions for future work: improving the ease-of-use of In-

tentional Networking and Informed Mobile Prefetching, and improving Meatballs’ consid-

eration of aging error observations.

6.4.1 Intentional Networking

Applications must currently be modified to use Intentional Networking. As discussed

in Section 2.4, these modifications have not been onerous. Nevertheless, to broaden the

applicability of Intentional Networking, our future plans include providing mechanisms to

disclose hints on behalf of unmodified applications.

It may be possible to identify on-demand activity by intercepting user actions and cor-

relating them with network usage. We may even be able to classify opportunistic behavior

109



by observing UI updates that do (or, importantly, do not) happen together with I/O activity.

Alternatively, we are planning to combine stack introspection techniques from the security

community [101] with causal analysis techniques recently used to create high-performance

file systems that provide strong persistence guarantees [71]. This scheme tracks user and

UI behavior through the operating system, identifying the set of inputs that can possibly

have influenced a set of outputs. Of course, this set is possibly too large because it tracks

any relationships that might have been causal. We can prune the set via offline analysis,

either by observing many executions of similar code paths and eliminating candidate causal

events that only happen some of the time [59] or by using taint checking to profile causality

within a process [66].

Our current implementation also requires that both ends of a network connection be

modified to use Intentional Networking. When one cannot modify the server, we believe

the best solution is to run a proxy in the cloud that converts Intentional Networking traffic

from the client to a single TCP connection to the server. The application client can thus use

Intentional Networking to manage the wireless connection, which is where the majority of

benefit from network diversity is likely to be found.

6.4.2 Informed Mobile Prefetching

Like Intentional Networking, Informed Mobile Prefetching requires application modi-

fications to gain the knowledge it needs to make decisions. However, since a large portion

of the content consumed on mobile devices comes from HTTP traffic, it may be possible to

integrate IMP with the cross-application HTTP cache already present on a mobile device.

This could potentially transfer the responsibility of code modification to another system

component rather than the application developer, allowing applications to transparently

gain the benefit of HTTP prefetching and caching without modification.
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6.4.3 Coping with predictor uncertainty

During our evaluation of Meatballs, we observed multiple instances in which one strat-

egy became the clear winner—for example, the current WiFi network degrades enough that

there is no longer any benefit to using it for redundant transmission. In the extreme, this

can result in the other strategy never being attempted, and thus its predictors never again

measured. In this situation, even if conditions change such that WiFi becomes competitive

again, because Meatballs has decided not to use WiFi, it will never measure WiFi and thus

will never discover that WiFi has recovered.

In the case of Intentional Networking, we mitigate the impact of this problem by re-

setting the WiFi error distributions each time a new access point is observed. For speech

recognition, there is no similar moment at which the error distribution for server load can

be reset. In both cases, a more general, principled approach is desirable. We view this as

an important piece of future work.

Intuitively, an old measurement should be treated as more uncertain than a recent mea-

surement. This added uncertainty will eventually cause the decision to tilt back towards

redundancy, resulting in the lapsed strategy to be used and measured again. The implemen-

tation of this age-based uncertainty is specific to the evaluation method being used, but like

other details, it can be encapsulated inside Meatballs.

Besides age-based uncertainty, it may be worth considering incorporating periodic ac-

tive measurements for predictors that show lapses in passive measurements. For example,

realistic mobile phone usage involves long periods of idleness in between bursts of activity.

Periodic active measurement is an additional way to spend resources to purchase improved

performance—though in that case, what’s actually being purchased is better information,

which may in turn lead to better decisions and better performance. Meatballs could track

user activity and calculate the probability that a strategy will be used in the near future, and

use this to gauge the importance of obtaining up-to-date measurements.
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