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Chapter 1 

Introduction 

More and more novel materials with unique material properties have been utilized 

for microelectromechanical systems (MEMS).  Among these materials, magnetoelastic 

material is of interest because it builds a bridge between the magnetic field and the stress 

and the strain of the material.  Magnetoelastic material exhibits strain under an applied 

magnetic field, while the stress also generates a magnetic flux simultaneously.   This bi-

directional coupling is especially preferred for a wireless microsystem, which is a very 

attractive topic because of the potential biomedical, structural monitoring, and remote 

monitoring applications.  This work explores the possibility of utilizing magnetoelastic 

material for miniature wireless actuators and sensors.   

Rotary micromotors are a classic type of MEMS actuators researched since the 

1980s, from which many applications would benefit.  Furthermore, such motors are a 

good demonstration of the capability of a material to be used as an actuator because the 

rotary motor is typically a relatively complex device requiring precise structural design 

and dimensional control to operate.  Thus, magnetoelastic rotary motors are studied in 

this work.  The advantages of magnetoelastic rotary motors include wireless actuation, 

high payload carrying capability, simple passive architectures, and so on.   The wireless 

and passive properties of this magnetoelastic motors allow simplification of the design by 

avoiding integration of the control electrodes and circuits alongside the device.  This 

simplification provides enough space for integration of a capacitive sensor for real time 

speed measurements.  With this advantage, one application is demonstrated by utilizing a 
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magnetoelastic rotary motor for providing rotational stimulus for in situ calibration of a 

gyroscope. 

Magnetoelastic materials are also attractive for sensing or tagging systems.  One 

of the most commercially successful applications involves utilizing magnetoelastic 

resonators as anti-theft tags; this application takes specific advantage of the low cost and 

good resonant performance of the material.  Despite the great progresses made in this 

field, miniaturization of the magnetoelastic tags remains a challenge due to the loss of 

signal strength as the size of the tag decreases.  Another effort for this work is devoted to 

making advances on the challenges of magnetoelastic tag miniaturization.  

In section 1.1, the motivations for developing micromotors are described and 

different types of micromotor are compared. In section 1.2, the motivation for a tagging 

system is presented, as well as the advantages and disadvantages of different types of 

tags.  Section 1.3 describes the previous work in magnetoelastic sensors and actuators.   

Section 1.4 gives the goals and structure of this dissertation. 

 

1.1 Motivation and Previous Efforts in Micromotors 

1.1.1 Motivation for Micromotors 

Chip-scale rotary motors have been of interest since the 1980s.  With the ongoing 

progress in microsystem miniaturization, there are a number of emerging microsystem 

applications that would benefit from micromotors including medical, laboratory 

equipment, microbotics, automation, optics, photonics, aerospace, defense, and so on.  

For example, endoscopes equipped with a video camera, light source and remotely 

controlled surgical tools are likely to conduct minimally-invasive surgeries within human 

body.  This would benefit patients by reducing trauma and recovery time.  However, a 

breakthrough in this field would be difficult without development of ‘practical’ 
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micromotors [Wat10].  Similar technology is potentially able to conduct in-situ 

monitoring and repair of large-scale complex machines such as engines, rather than 

requiring disassembling.  Another example of micromotor application involves actuation 

of optical elements in microsystems for communication or microanalytical applications.    

Among various applications, one practical and worthwhile effort is to develop a 

rotary stage for in-situ calibration of inertial sensors by providing a desired physical 

stimulus, as shown in Fig. 1-1.  Inertial sensors, such as accelerometers and MEMS 

gyros, are usually integrated into electronic systems.  Such systems are becoming more 

and more commonplace in our daily lives, including navigation in cell phones, and 

motion sensing for video games.  These systems also play crucial roles in military 

applications.  For example, MEMS-based gyros can offer precision navigation aids that 

are essential for aviation and smart munitions, as well as in autonomous land vehicles, 

robotics, personal locators, and so on.  Although focusing on different applications, these 

systems all benefit from long-term accuracy.  However, for inertial sensors, the bias and 

scale factor drift due to aging, particle buildup, and temperature.  These errors are 

typically more troublesome in MEMS inertial sensors in comparison to macro-scale 

sensors.  Calibration typically requires sensors to be taken out of service or be replaced.  

On-chip in situ calibration potentially provides a more efficient solution.  For example, 

miniature rotary stages can provide sensors with a desired physical stimulus for on-chip 

calibration (i.e., rotation or displacement, angular rate or velocity, and acceleration). 
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Fig. 1-1: Potential application of magnetoelastic motor in an in-situ micro-gyroscope 
calibration system.  The motor is utilized to generate accurate stimulus, such as rotation 
rate or acceleration.  [Najafi, Private Communication, May 2012] 
  

Another motivation for developing a magnetoelastic rotary motor is wireless 

actuation.  The main advantage of wireless actuation is the capability of operation in an 

environment that makes integration of power supply a challenge, such as minimally 

invasive surgery as mentioned previously.  Other advantages include simplified device 

architecture and reduced total cost through reutilization of an external driving setup for 

multiple devices. 

Although there are promising applications, micromotors still require profound 

development and demonstration in performance – such as torque, speed, precision, 

payload and miniaturization – to meet practical requirements.  Thus, there have been 

efforts on miniaturization of motors and development of different actuation methods.   

 

 

Magnetoelastic	  Stator 
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1.1.2 Efforts on Developing Different Types of Miniature Motors 
 

Rotary motor actuation methods include electrostatic, electromagnetic, 

piezoelectric, and so on.  In this section, characteristics of three major miniature motor 

technologies, as just mentioned, are described in aspects of history, working principle, 

category, advantage and disadvantage, and potential performance improvement.  Then, 

brief discussions on other less studied motor technologies, such as electrothermal, optical, 

and Marangoni-flow-driven, are given. 

 
1.1.2.1 Electrostatic Motors 

In the 1750s, the first electrostatic motors were developed by Benjamin Franklin 

and Andrew Gordon.  These motors utilize the attraction and repulsion of electric charge 

to drive the rotor.  For example, the electrostatic force between two parallel plate 

capacitor with opposite charges can be expressed as (the fringe effect of the capacitor is 

not considered here and applied voltage is smaller than breakdown voltage): 

Fx = −
1
2
εaV

2

z
                                                          (1-1) 

Fz = −
1
2
εabV

2

z2
                                                        (1-2) 

where Fx and Fz are the tangential force and normal force, respectively; ε  is 

permittivity;  a, b, are length and width, and z is the gap between two plates.  The 

equations show that the electrostatic force is proportional to a/z, b/z and V2.  In macro 

world, a/z and b/z is typically less than 101 and motors require large force.  Consequently, 

electrostatic motors in large scales typically require a high voltage power supply, which 

has limited their application.  However, in MEMS systems, a/z and b/z can be as high as 
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103, and required driving forces can be as low as 10-6 Newton.  This allows the operation 

voltage to be reduced to below 100 V and has drawn attention of researchers from both 

academic and industrial areas.  Electrostatic micromotors were first considered in the 

MEMS field in 1987 [Tri87] and fabricated and characterized by Tai et al [Tai88, Fan88], 

and Mehregany et al [Meh90].  Electrostatic micromotors are considered as one of the 

milestones in MEMS history and there have been many efforts on performance 

improvement since then. 

Broadly speaking, there are two types of electrostatic micromotors: VCMs 

(variable-capacitance motors) and electric induction motors.  VCMs are synchronous 

systems and the rotors are driven by torque generated by spatial misalignment of 

electrodes on the stator and rotor.  Typically, the stators and rotors are patterned into a 

structure with periodic electrode with a fixed spacing between them.  The electrodes on 

the stator are connected in several groups and are typically driven by a three-phase or six-

phase signal.  The torque is a function of rotor position.  VCMs can be further classified 

as side-drive, top-drive and bottom-drive with respect to positions of driving electrodes.  

Most VCMs are side-drive because the top-drive suffers from a “rotor clamping” 

phenomenon.  Recently, bottom-drive has been developed that is based on a miniature 

ball-bearing system [Gha08].  

Electric induction motors are asynchronous systems.  The stators are typically 

patterned with an array of radial electrodes that are excited with ac voltages to create a 

traveling wave of potential around the stator surface.  The rotors are coated with a 

slightly conducting layer, in which image charges are induced by electric potential on the 

stators.  The image charges follow the travelling wave of potential on the stators, but with 

a lag behind the excitation due to the slightly conductive property of the rotor.  
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Tangential electric fields are generated between the rotors and stators, which drive rotors 

tangentially.  This type of motors is intensively studied in [Bar89, Liv04, Nag05].  

Generally speaking, electrostatic micromotors operate at very high rotation rate 

and the surface micromachining processes are compatible with IC processes.  The 

disadvantages include low torque and small payload.  However, there have been many 

efforts on increasing the torque and payload capacity by utilizing different bearing 

systems.  For example, Ghalichechian et al. use miniature ball-bearings to reduce the 

friction and allow a bottom drive configuration that increases the effective area of 

capacitors.  A 5.6 µN·m torque is achieved while the rotation rate is still maintained as 

high as 517 rpm [Gha08].  The electric induction motor, developed by Nagle et al., has a 

torque of 3.5 µN·m at rotation of 55000 rpm [Nag05].  By utilizing liquid a ring bearing, 

the latest electrostatically driven rotary motor can carry a 700 mg payload [Sun12].  

 
1.1.2.2 Electromagnetic Motors 

Macro-scale electromagnetic motors are very mature but efforts toward their 

miniaturization have resulted in landmark accomplishments for the microsystems 

research community. H. Guckel et al. demonstrated a first functional planar 

electromagnetic micromotor [Guc91, Guc93]. H. Ahn et al. made a planar 

electromagnetic micromotor with fully integrated stator and coils [Ahn93].  In 2006, 

permanent magnets were utilized in the electromagnetic micromotors to improve 

performance on torque and rotation rate [Ach06, Arn06].  Other latest electromagnetic 

micromotors reports include [Mer11, Cha12].  

In general, the main types of electromagnetic motors are DC and AC motors.  In 

MEMS, according to working principles, these motors can be generally categorized as 

variable reluctance magnetic (VRM) motors and magnetic induction motors.  VRMs  
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[Guc93, Ahn93, Mer11] are very similar to that of electrostatic VCMs.  VRMs are also 

synchronous systems and the rotors are driven by torque generated by spatial 

misalignment of salient poles on the stators and rotors.  Salient poles are typically 

arranged in one or several sets with different phases. When the rotors rotate and align 

with the excited stator poles to minimize the reluctance, the excited phase is switched off 

and the next phase is switched on to maintain continuous rotation.  Instead of electrostatic 

force, magnetic force is used in this case.   

Magnetic induction motors utilize a similar driving mechanism as that of electric 

induction micromotors [Arn06, Kos06, Cro06].  Instead, the stators of magnetic induction 

motors have symmetrically-patterned permanent magnetic cores that are surrounded by 

exciting planar coils.  By exciting the coils in different phases, a travelling magnetic 

wave can be generated between stators and rotors, and an eddy current is induced in the 

rotors.  The eddy current interacts with the travelling magnetic wave, and generates an 

attractive force between rotors and stators, which drives the rotors tangentially.   

More research has been focused on electrostatic micromotors compared to that on 

electromagnetic micromotors, partly because fabrication technologies for coils and usage 

of permanent magnets are not well known in the traditional microfabrication field.  

Regardless, current results sill showed very good performance on rotation rate (up to 200 

krpm) and torque (most in 1-100 µN·m scale).  If developments on integrating fabrication 

processes continually occur, electromagnetic micromotors are one of the most promising 

technologies.  

 
1.1.2.3 Piezoelectric Motors 

Another successful and well-studied technology is piezoelectric motors.  The first 

practical ultrasonic piezoelectric motor was proposed by Barth of IBM in 1973 [Bar73].  
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Since the 1980s, along with improvements on the fabrication and assembling 

technologies on piezoelectric materials, these motors have always been one of most 

interesting topic in the MEMS community.  Every few of years, there is a review paper 

summarizing the latest developments in this area [Uch98, Mor03, Wat09].  The basic 

fundamental actuation behind these complicated structures is illustrated in constitutive 

equations (stress-charge form) [IEEE88] for piezoelectric materials:  

                                                 (1-3) 

where T is mechanical stress; c is the stiffness of the material measured at zero 

electric field; S is the mechanical strain; e is the piezoelectric constants; E is the electric 

field; D is the electric displacement; and   is the dielectric permittivity of the material 

measured at zero mechanical stress.  It can be seen from this equation that piezoelectric 

rotary motors – such as ultrasonic motors – typically transfer electric energy to 

mechanical vibration energy that drives rotor rotation.  From a vibration characteristic 

viewpoint, piezoelectric motors can be categorized as standing-wave type and traveling-

wave type. 

The standing-wave type motors typically utilize the elliptical motion of tips in the 

stator to drive the rotor.  A simple 1-D standing wave is expressed by:  

                                         (1-4) 

where  is the displacement at location x; A is the amplitude; k is determined by 

the mode shape;  is the frequency and t is the time.  The stators are designed to ensure 

the elliptical motion of the stator-rotor contacting tips.  For example, as shown in Fig. 1-2 

(a), Iino et al achieved elliptical motion of teeth by arranging them offset from the 

antinodes of a ring-shaped disk [Iin00].  Suzuki et al developed a “windmill” stator so 

Tij = cijkl
E Skl − ekijEk,

Di = eiklSkl +εij
SEk,

ε

us (x, t) = Acoskxcosωt

us

ω
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that the tips of three flexible cantilevers move elliptically (Fig. 1-2 (b)) [Suz00].  Other 

approaches such as utilizing elastic fins [Dub98] and a pre-twisted beam [Waj08] have 

also been studied. 

 
                             (a)                                                                               (b) 
Fig. 1-2: Examples of standing wave piezoelectric miniature motors.  (a) A disc-shaped 
stator with projections located offset from antinodes drives rotor. The large torque allows 
practical application in a commercial watch [Iin00]. (b) A “windmill” stator design 
facilitates elliptical motion of the tip that drives rotor rotating [Suz00]. 
 

By comparison, the traveling wave type motors typically utilize the elliptical 

motion of every point on the surface of the stator, rather than using only elliptical motion 

of tips on the stators for the standing wave type.  A simple 1-D traveling wave is 

expressed by: 

                                                                                                  (1-5) 

                                              (1-6) 

where the parameters have the same definition as the standing wave equation.  As 

shown in the equation, the traveling wave is combined by two standing waves with 90˚ 

phase difference both in space and time.  The first miniature traveling wave ultrasonic 

motor is reported by Sashida in 1983 [Sas85].  The traveling elastic wave is induced by a 

thin piezoelectric ring that is divided into 16 positively and negatively poled regions.  

The positively and negatively poled regions provide 90˚ phase difference in time for two 

standing waves.  90˚ phase difference in space is achieved by locating reversely poled 

ut (x, t) = Acos(kx −ωt)

ut (x, t) = Acoskxcosωt + Acos(kx −π / 2)cos(ωt −π / 2)
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piezoelectric material regions with  distance from each other (Fig. 1-3 (a)).  This 

famous and successful design has still been studied lately in [Rud12].  A similar idea has 

been utilized in a cylindrical structure in order to maintain the performance while 

decreasing the diameter of the motor [Mor00, Koc02, Kan06] (Fig. 1-3 (b)).  After 

noticing that the traveling wave is limited in vibration amplitude of the stator, Kaajakari 

used a piezoelectric plate to generate a traveling wave of air between the rotor and the 

stator [Kaa07].  

 

                                                (a)                                                               (b) 
Fig. 1-3: Examples of travelling wave piezoelectric miniature motors.  (a) A disc-shaped 
stator driven by two AC signals with 90˚ phase difference. Such designs are utilized in 
commercial digital cameras for lens auto focus [Rud12]. b) Similar designs are studied in 
cylindrical stators to decrease the diameter [Mor00]. 
 

Among all the motor technologies, piezoelectric motors have outstanding 

performance on torque.  Thus, most practical motors applications prefer to use 

piezoelectric actuation.  The standing-wave motors have been used in commercialized 

watches [Iin00] and the traveling-wave motors have been utilized in digital cameras for 

lens auto focusing [Uch98].  Compare to traveling-wave type, the standing-wave type 

reduces the cost and the complexity of circuit design.  Traveling-wave type typically has 

advantage on bi-directional rotation and payload ability.  Overall, piezoelectric motors 

have been the most successful miniature motors in practical applications.   

 

λ / 2



 12 

1.1.2.4 Other Types of Micromotors 

Besides the three types of motor described above, different actuation methods 

have been reported.  Thermally actuated rotary motors can be used for applications 

requiring large forces [Par01].  Han et al reported a light-powered micromotor [Han10].  

A Marangoni-flow-driven micromotor allows operation in liquid medium [Hen12].  A 

variety of actuation methods offer more options for different motor applications.    

 

1.2 Motivation and Previous Efforts in Electronic Surveillance Articles 

One of the most successful applications utilizes magnetoelastic tags for electronic 

article surveillance (EAS) systems [Kim96, Her03].  A typical magnetoelastic EAS 

system – firstly patented in [And85] – consists of a magnetoelastic tag, power source, 

transmitter, receiver and an alarm (Fig. 1-4 (a)).   A simple magnetoelastic tag design 

should at least include a magnetoelastic resonator, a magnetizable sheet that provides a 

DC magnetic field, and a package that allows the vibration of the resonator (Fig. 1-4 (b)).  

 

(a)                                                         (b) 
Fig. 1-4 (a) A typical magnetoelastic EAS tagging system consists of a power source, a 
transmitter, a magnetoelastic tag, a receiver and an alarm. (b) The basic mangetoelastic 
tag includes a magnetoelastic resonator (as marked as 18), a magnetic sheet (as marked as 
60), and the packages (as marked as 44 and 62) providing a space for its vibration 
[And85].  
 

There are three types of EAS tags commonly used for theft deterrence in libraries, 

supermarkets, retail stores, etc.  One type of EAS tag, the radiofrequency (RF) label, 
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consists of an inductor-capacitor (LC) tank circuit that absorbs an RF signal at its 

resonant frequency [Mon88, Cha92].  The presence of an RF label can be detected by 

measuring the reduction in the received signal while sweeping the frequency of the 

transmitted signal near the resonant frequency of the LC circuit.   

 Another type of EAS tag, the magneto-harmonic tag, consists of a ferromagnetic 

material strip with moderate magnetic permeability, and another ferromagnetic strip that 

has higher coercivity.  When interrogated by an AC magnetic field that spans a 

predetermined range of frequencies, the tag generates a harmonic signal that is then 

detected by a receive coil, indicating the presence of the tag [Bla90, Bru92].    

The third type of EAS tag, the magnetoelastic or acousto-magnetic tag, utilizes a 

magnetoelastic strip, a hard ferromagnetic strip to provide magnetic bias, and a package 

to provide space for vibration [And85, Her00].  In acousto-magnetic systems, 

magnetoelastic strips oscillate mechanically at a resonant frequency when interrogated, 

and generate an AC magnetic flux that can be detected wirelessly by a receive coil.  

Amongst the three types of EAS tags, magnetoelastic tags provide an attractive 

price/performance ratio, and hence have gained wide commercial acceptance.  In 

addition, magnetoelastic resonators – with appropriate design and packaging – can be 

used for a variety of sensing applications. 

Despite great improvements in signal strength and detection range provided by 

advances in material properties and detection approaches, the miniaturization of 

magnetoelastic tags remains a challenge.  Challenges resulting from miniaturization 

include signal loss and compromises in dimensional tolerances [Her02, Fab06].  Many 

applications would benefit from miniaturization of magnetoelastic tags.  For example, a 

much smaller magnetoelastic tag would be less conspicuous for anti-theft systems.  

Miniaturized tags could be helpful in the management of inventories.  New applications 
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can be envisioned, including some in medical sectors.  For example, tagging of surgical 

supplies and instruments could reduce procedural errors and allow tracking of items.  

Tags with different resonant signatures would provide more granularity.  Miniaturization 

also brings other benefits, such as reducing material costs and increasing the resonant 

frequency.  Higher resonant frequencies generally permit smaller antenna dimensions, 

and can also be helpful in evading 1/f noise in interface electronics.  

The main concerns for miniaturization include diminished signal and fabrication 

challenges.  Signal strength is directly related to the effective volume of the 

magnetoelastic material.  The typical commercial magnetoelastic tags operating at 58 

kHz are about 38 mm long, 12.7 mm or 6 mm wide and 27 µm thick [And85].  Smaller 

tags operating at 120 kHz, with adequate signal strength for commercial use, still have a 

length of about 20 mm and width of 6 mm, as shown in Fig. 1-5 [Fab06].   These 

magnetoelastic tags are usually strips or ribbons and the length-to-width ratio is normally 

larger than 3:1.   

 

Fig. 1-5: A miniature magnetoelastic tag that includes two magnetoelastic strip resonators 
with size of 20 mm x 6 mm x 26 µm (45 and 48), four magnets (54s and 54n), and a 
package.  Two magnetoelastic resonators are arranged perpendicular to each other to 
reduce the sensitivity to the orientation of the interrogation field [Fab06].    
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1.3 Magnetoelastic Sensors and Actuators 

Magnetoelastic coupling represents the interaction between the material 

conditions of strain, stress and magnetization.  Magnetoelastic materials exhibit strains 

under external magnetic fields due to the field-directed rotation and alignment of tightly-

coupled, elongated structural and magnetic domains in the materials (magnetostrictive 

effect).  The strain induces stress in the material, which, in turn, alters the magnetization 

(inverse magnetostrictive effect or Villari effect).  When excited with oscillatory 

magnetic fields, these two simultaneously existing effects make magnetoelastic materials 

attractive for wireless resonant sensing.  Further, the magnetostrictive effect, comparable 

to the reverse piezoelectric effect (the internal generation of a mechanical strain resulting 

from an applied electrical field), can be used for actuators.  In this section, magnetoelastic 

sensor systems are first briefly reviewed, and magnetoelastic or so-called 

magnetostrictive actuators in microsystems are discussed.  

 
1.3.1 Magnetoelastic Sensors 
 

As mentioned above, magnetoelastic coupling is attractive for wireless resonant 

sensing because it offers bi-directional wireless communication between magnetic field 

and the mechanical stress or strain.  Although a variety of wireless magnetoelastic 

sensing systems have been studied, they can be summarized as a system concept as 

shown in Fig. 1-6 [Gri11].  When excited by a magnetic field, the magnetoelastic sensors 

vibrate at their mechanical resonant frequency.  Simultaneously, the sensors generate a 

magnetic field due to induced stress.  The resonant frequency shift, due to the change of 

mass and environment, is detected acoustically, optically or magnetically.  
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Fig. 1-6: A general configuration for magnetoelastic wireless sensing system.  The strip 
sensor is actuated by magnetic field and its resonant frequency shift due to Young’s 
modulus, mass load and environment changes. This frequency can be picked up optically, 
acoustically or magnetically [Gri11].  
 

For example, the resonant frequency of a simple ribbon-like film sensor can be 

expressed by [Lan86]: 

                                                       (1-7) 

where L is the length of the sensor; E is the young’s modulus; and  is the 

density.  Further, the frequency shift due to mass and damping coefficient in the 

environment can be expressed as [Sto00]:  

                                                         (1-8) 

                                                  (1-9) 

where m is the mass; d is the thickness of the sensor;  is the density of the sensor;  

and  are the density and viscosity of the surrounding medium.  These relationships 

offer sensing capabilities for measurements including Young’s modulus [Sch01], 
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pressure [Kou00], temperature and humidity [Jai00], liquid density and viscosity [Gri00], 

fluid flow velocity [Gri00’], chemical [Cai00, 04], biliary stent monitoring [Gre09, 10] 

and so on.  With such various sensing capabilities, these systems no doubt have a 

promising future in practical applications. 

 
1.3.2 Magnetoelastic Actuators 

Although magnetoelastic materials have a large impact on sensing systems, 

utilizing magnetoelastic material for actuation of a miniature and micro-scale system 

remains an open challenge.  In the macro world, magnetoelastic or so-called 

magnetostrictive alloys, especially giant magnetostrictive materials (GMM), have been 

used for actuating devices such as linear and rotary motors [Cla97].  In the micro world, 

there have been only a few actuators developed utilizing the magnetostrictive effect.  

Quandt et al developed a micropump using 7.5-µm-thick sputtered giant 

magnetostrictive TbFe/FeCo multilayer [Qua00].  Magnetostrictive micro mirrors for an 

optical switch matrix have been studied.  A 0.5 µm to 2 µm TbDyFe multilayer was 

sputtered on a 50 µm thick Si cantilever.  A maximum deflection of about 330 µm has 

been achieved [Lee07].  A miniature rotary motor with 20 mm diameter was developed 

by utilizing bulk GMM Terfenol-D [Zho09].  The motor was driven by an ac current with 

50 Hz and it exhibits a speed of 18 rpm.  Another bulk magnetostrictive material – iron 

gallium alloy (Galfenol) – is used for a translating and bending microactuator [Uen10].  

A wireless swimming microrobot driven by giant magnetostrictive thin film – 

TbDyFe/Polyimide (PI)/SmFe has been studied.  It operates at 4.7 Hz and has 4.7 mm/s 

mean speed [Liu10]. 

The examples described above demonstrate the potential of the magnetostrictive 

actuators in microsystems.  However, there are still some challenges including (a) 
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developing of microfabrication compatible machining techniques, (b) designing an 

efficient energy transfer mechanism, (c) seeking suitable applications, and so on.  Further 

discussing these challenges: (a) There is no standard microfabrication process for 

magnetoelastic materials.  Sputter technology offers a promising solution.  But it is not 

accessible for many researchers; and the process has not been standardized yet.  It also 

has high cost especially for robust actuation requiring thick magnetoelastic layers.  

Further, although the bulk magnetoelastic material – like GMM – has large 

magnetostrictivity, it is difficult to pattern using standard microfabrication.  The actuators 

using bulk GMM, as mentioned above, require electrical discharge machining (EDM) or 

precision micro milling [Uen10].  Thus, magnetoelastic actuators would benefit greatly 

from fundamental research on magnetoelastic material deposition and bulk 

magnetoelastic material patterning and bonding.  (b) Besides fabrication, magnetoelastic 

actuator designs require careful consideration.  Successful designs should provide 

efficient transformation from excitation to intended motion, facilitate the integration of 

the microsystem, and offer performance comparable to other technologies.  (c) 

Magnetoelastic actuators have a specific advantage over other actuation modalities 

because they can be wirelessly actuated.  That is the same reason for such a success in 

magnetoelastic sensors.  By exploring proper applications requiring wireless actuating, 

this technology will no doubt attract more resources from both academic and industry 

field.   

 

1.4 Focus of This Work 

1.4.1 Wireless Magnetoelastic Resonant Rotary Motor 

One major focus of this work is to explore magnetoelastic resonant rotary motor.  

Along the path, it also seeks possible solutions for magnetoelastic actuation challenges.  
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First, lithographically patterned bulk-magnetoelastic-thin-films and Si-bulk-

magnetoelastic-thin-films are used as actuators.  The fabrication process employs 

photochemical machining (PCM) and Au-In transient liquid phase (TLP) bonding 

process, which are available and already mature technique compared to sputtering.  

Second, a 2-D ring-shaped stator design avoids the complex 3-D structures for 

magnetoelastic motors as presented in [Zho09, Uen10, Par13].  The stacked 2-D structure 

should also facilitate microsystem integration.  Third, standing wave and traveling wave 

operation approaches are developed based on the stack of 2D structures.  The capacitive 

sensing electrodes are also integrated for real time speed measurement.  The performance 

of the magnetoelastic resonant rotary motors is evaluated.  

Fig. 1-7 shows the history of miniaturization of magnetoelastic actuators.  The 

smallest magnetoelastic rotary motor developed so far still have a size that much larger 

than 1 cm3.  The reported magnetoelastic rotary motors are typically constructed by 

magnetoelastic rods, requiring complicated 3D structures with relatively large sizes.  

Although actuators, such as miropump, micromirror can be achieved with less than 0.01 

cm3 volume by using 2D cantilever or diaphragm structure, they are limited to bending 

motion.  In this work, 2D magnetoelastic structures are firstly investigated for achieving 

rotary actuation in a very small scale.  
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Fig. 1-7: The history of miniaturization of magnetoelastic actuators.  The research 
described in this thesis is represented by the first-generation and the second generation 
motors. 

 

1.4.2 Miniaturization of Magnetoelastic Tags 

Another topic of this PhD work focus on miniaturizing magnetoelastic tags for 

detection purposes.  For example, magnetoelastic tags are widely used for anti-theft 

system because of the low cost and high performance.  However, miniaturization remains 

a challenge because of the signal loss due to reduce material.  The typical sizes of 

commonly used different types of tags are compared in Fig. 1-8.  Two approaches are 

investigated in order to maintain strong signal response while miniaturization.  First, a 

frame-suspension is used for diminishing the interaction between the magnetoelastic 

resonator and substrate during the vibration.  Second, the signal strength is further 

boosted by using multiple arrayed or clustered magnetoelastic tags.   
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Fig. 1-8: Comparison of the sizes different types EAS tags.   
 

 

1.5 Organization of this Dissertation 

Chapter 2 of this work presents two types of the standing wave magnetoelastic 

resonant rotary motor, defined as first-generation wireless magnetoelastic motors.  First 

prototype, defined as Design M, is actuated by a ø8 mm magnetoelastic stator 

lithographically micromachined from Metglas™ 2826MB-bulk-foil with 25 µm thick. It 

successfully demonstrates the working principle for a magnetoelastically-actuated 

standing wave resonant motor.   Then, a hybrid-integrated silicon and magnetoelastic 

structure, defined as Design S, is invested for improving performance and realizing bi-

directional rotation.   

Chapter 3 describes the continuous development of the magnetoelastic resonant 

rotary motors.  The new devices are called second-generation motors.  Taking the 

advantage of the simple structure of the magnetoelastic motor, capacitive sensing 

electrodes are integrated for achieving real time measurement of the rotational rate.  

Further, a traveling wave actuation method is first investigated for a magnetoelastic 

motor.   
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Chapter 4 changes the focus from actuators and explores the methods to maintain 

signal strength while miniaturizing magnetoelastic tags for detection purposes.  Two 

approaches are investigated.  The first approach employs a frame-suspended 

magnetoelastic tag is used to increase the response signal strength by reducing the 

interaction of between the vibration portion and the substrate.  The second approach 

focuses on achieving signal superposition from arrayed or cluster magnetoelastic tags 

with similar resonant frequencies.   

Finally, Chapter 5 gives a summary of the performance for the motors and tags.  

Potential future work is also proposed for performance improvements.  
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Chapter 2 

First-Generation Wireless Magnetoelastic Motor – Standing Wave Motor 

This chapter1 presents wireless, chip-scale magnetoelastic resonant motors based 

on standing wave actuation.  Two designs are described and defined as first-generation 

magnetoelastic motors.  Design M is actuated by a ø8 mm magnetoelastic stator 

lithographically micromachined from Metglas™ 2826MB-bulk-foil with 25 µm thick. 

Design M successfully demonstrates the working principle for a magnetoelastically-

actuated standing wave resonant motor.  Design S uses a stator with a bilayer of Si (ø8 

mm diameter and 65 µm thick) and magnetoelastic foil (ø8 mm diameter and 25 µm 

thick) to tailor the stiffness.  Design S provides a significant performance improvement 

compared to Design M, along with facile bi-directional rotation functionality.  It is also a 

successful device-level demonstration of using a hybrid-integrated silicon and 

magnetoelastic structure, taking advantage of the mechanical properties and precision 

micromachining offered by silicon and the wireless actuation capability offered by 

magnetoelastic materials.  More details on the architectures, fabrication, and 

characterization are given in the following sections. 

 

2.1 Design 

2.1.1 Theory 

The rotary actuation mechanism in this effort is similar to that for piezoelectric 

ultrasonic rotary motors [Iio00].  A vibratory wave, which could be either standing wave 

                                                
1 Contents presented in journal paper form in [Tan13]. 
2 Contents presented in journal paper form in [Tan14] and in patent form in [Gia14]. 
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or travelling wave, is generated in the stator.  In this case, the vibratory micro-motion is a 

standing flexural resonant wave and is generated magnetoelastically.  The resulting 

vibratory mode shape of the stator has antinodes at which maximal out-of-plane 

deflection occurs.  Teeth are located on the stator such that they are slightly offset from 

the antinodes, resulting in elliptical motion of the teeth tip and a contact force with a 

tangential component that causes the rotor to rotate (Fig. 2-1).  By selecting resonant 

frequency of different mode shape of the stator, bi-directional rotation can be achieved.  

A rotor, which can contain other microsystem components, is then stacked above the 

stator.  

 
Fig. 2-1: Wireless magnetoelastic resonant rotary motor operation concept: (a) a standing 
wave in stator, (b) bi-directional rotation operation method. 

 

Singular magnetoelastic material, which can either be the vibrating stator itself or 

the actuator for the stator, can be wirelessly driven by magnetic fields.  The deformation 

is substantially enhanced if a proper DC magnetic field is superimposed on the AC 

magnetic field.  Thus, both DC and AC magnetic field are required for rotary motor 

wireless actuation [Gri01]. 
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2.1.2 Modeling 

A custom magneto-mechanical harmonic finite element technique [Gre09] is used 

to estimate modal displacements, shapes, and frequencies for the magnetoelastic material.  

Although magnetoelastic materials are generally non-linear, it is appropriate to use 

linearized constitutive equations describing the coupling between magnetic flux density, 

magnetic field strength, stress, and strain in a magnetostrictive material: 

                                                              (2-1)  


H = −

[d][C]
µ0µr


ε +

1
µ0µr


B                                                             (2-2) 

where s is the stress vector, C is the stiffness matrix, e is the strain, d is the 

magnetostrictivity matrix, B is the magnetic flux density vector, H is the field strength 

vector, µ0 is the permeability of free space, and µr is the relative permeability.  Equations 

(1) and (2) are implemented in this work utilizing COMSOL Multiphysics and coupled 

time-harmonic induction current and stress-strain frequency response modes.  A detailed 

look at a Finite Element Analysis (FEA) implementation for magnetostrictive materials is 

presented in [Ben05]; the approach used in this work is modified for application to 

resonant actuators.  In this paper, two types of magnetoelastic rotary motor: Design M 

and Design S are modeled and investigated.  

 
2.1.3 Design M 

The Design M motor consists of a stator fashioned from magnetoelastic material ‒ 

Metglas™ 2826MB – and two stainless steel bases (Fig. 2-2).  The stacked architecture is 

modular, which significantly simplifies the fabrication process.  Each layer can be easily 

fabricated utilizing photochemical machining (PCM) process, as described in the 


σ = [C]ε − [C][d]

T

µ0µr


B
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fabrication section.  Alignment pins ensure reasonable assembly accuracy.  Two stainless 

steel bases provide a recess – allowing stator vibration – and initial positions for 

alignment pins and a hub.  The ring-shaped stator is suspended with four crab-leg springs, 

which are stiff in the rotational direction but flexible in the out-of-plane direction – 

preventing stator rotation during rotor actuation while allowing large vertical 

deformation. 

 

Fig. 2-2: Schematic of Design M geometry (a) and customized teeth design (b).  In 
Design M, the stator is fabricated from magnetoelastic metal foil alone. 
 

For a stator fabricated solely from Metglas™ 2826MB, careful consideration is 

required for the placement of the driving teeth.  The number of driving teeth is usually 

the same as the number of antinodes in the desired mode shape for a standing wave 

resonant rotary motor [Iin00].  The driving teeth are typically offset from the location of 

the antinodes in order to ensure elliptical motion of the tooth tip.  However, in the case of 

the extremely lightweight MetglasTM 2826MB stator, the mass loading added by the 

driving teeth causes the antinodes to shift to the same location as the teeth.  

Consequently, the teeth no longer move elliptically and no rotation is generated.  

Therefore, as shown in Fig. 2-2, a design employing 8 teeth is proposed to address the 

issue.  There are still four sets of teeth, but one set of teeth is a combination of two teeth: 

an auxiliary tooth and a driving tooth, each separated slightly from each other.  The 
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auxiliary teeth and driving teeth have the same mass so that the mass center and 

antinodes of the vibratory mode shape will be in the center between the two different 

teeth. However, the driving tooth is taller so only it will contact the rotor.  As a result, the 

driving teeth can move in an elliptical manner, and drive the rotor tangentially.  

The FEA results shown in Fig. 2-3 predict that a stator (4 mm inner diameter, 8 

mm outer diameter and 25 µm thickness) has the desired mode shape at a resonant 

frequency of about 11.43 kHz, with 0.1 µm out-of-plane deformation under harmonic 

excitation with amplitude of 2 Oe.  Due to the orientation and size of the teeth and spring 

suspension, slightly different performance is predicted for different directions of 

alternating magnetic excitation.  Simulation results suggest that applying magnetic field 

between the suspension springs gives the largest out-of-plane displacement amplitude.  

As desired, the vibration mode shape demonstrates that the antinodes are located in the 

center between a driving tooth and an auxiliary tooth. 

 

Fig. 2-3: FEA simulation results of frequency response of bulk-magnetoelastic-foil stator 
of Design M. 
 

2.1.4 Design S 

As shown in Fig. 2-4, the Design S has a stacked structure similar to that of 

Design M, but the stator is made of a silicon-Metglas sandwich instead of solely 
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Metglas™ 2826MB.  The benefit of silicon is that it has better surface uniformity 

compared to magnetoelastic foil.  Further, the higher resonant frequency and quality 

factor of the thicker silicon can potentially increase the rotation rate and improve the 

positioning resolution.  Using standard micromachining processes, silicon should 

facilitate the direct integration of the driving teeth on the stator.  The thicker silicon also 

means that no auxiliary teeth are required in this design, and the intended bi-directional 

rotation can be realized by switching the driving frequency and mode shapes.  A ring-

shaped Metglas™ 2826MB disc is attached to the Design S stator so that the motor is still 

wirelessly driven by magnetic fields.  The rotor is patterned to have six radial segments 

so that the rotation rate can be measured visually or optically. 

 

Fig. 2-4: Schematic of Design S geometry.  In Design S, the stator is fabricated from a 
layer of magnetoelastic metal foil bonded to Si. 

 

The FEA simulation results show that the design of the teeth can be simplified 

because the stator is thick and robust compared to the teeth. Additionally, bi-directional 

rotation can be achieved by switching the mode shapes of stator (Fig. 2-5).  The intended 

CW vibration mode shape of a Design S stator with 4 mm inner diameter, 8 mm outer 

diameter and 65 µm thickness is simulated to be at 8 kHz with 3.2 µm amplitude; the 

CCW vibration mode shape exists at 11 kHz with 2.7 µm out-of-plane amplitude.  A 6 

Oe magnitude AC magnetic field is applied in the simulation. 
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Fig. 2-5: FEA simulation results of frequency response of Design M stator with two 
mode shapes. 
 
2.1.5 Material Selection 

MetglasTM alloys provide excellent magnetostrictive properties as well as 

adequate mechanical properties.  In this design, Metglas™ 2826MB, an amorphous 

NiFeMoB alloy, is used.  Its saturation magnetostriction is 12 ppm and its DC 

permeability is larger than 50000 [Met08].  These materials are readily available in foils 

(≈25 µm thick) and are easy to pattern utilizing PCM.  Relative to other Metglas™ alloys 

and magnetoelastic materials, 2826MB also requires a small DC bias (less than 10 Oe) 

and can be stimulated with a relatively small alternating field. 

 
2.1.6 Driving Methods 

     In principle, an on board coil and permanent magnets can be implemented to 

provide the driving AC and DC magnetic fields.  For example, inductive coils for 

generating AC magnetic fields can be patterned on an underlying silicon substrate using 

standard micromachining techniques.  On the same substrate, permanent magnet 

materials such as permalloy or samarium cobalt can be deposited and used to provide the 

DC fields required to bias the magnetoelastic material. However, for the motors presented 

in this work, external coils are used. 
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2.2 Fabrication 

2.2.1 Design M Fabrication 

The fabrication process flow of a Design M motor is illustrated in Fig. 2-6 (a).  

First, the magnetoelastic stator is batch-patterned using PCM [ASM89] from the 

Metglas™ 2826MB foil.  The ring-shaped stator is patterned with inner diameter of 4 

mm and outer diameter of 8 mm, and with thickness of 25 µm.  Other base layers are also 

fabricated using PCM from 0.5 mm thick stainless steel foils.  The layers are stacked and 

aligned with pins, and bonded to each other with epoxy.  The stainless steel auxiliary 

teeth (500-µm-wide and 300-µm-tall) and driving teeth (300-µm-wide and 500-µm-tall) 

are manually placed on the stator and fixed with epoxy.  The rotor is micro-electro-

discharge-machined (µEDM) from Metglas™ 2826MB foil; it has a total mass of about 9 

mg.  A hub with diameter of 2 mm is used to constrain the rotor.  The overall size of the 

chip is 2 × 2 cm2 (Fig. 2-6 (b)). 

 

 

Fig. 2-6: Fabrication process flow of Design M (a) and optical image of assembled device 
(b). 
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2.2.2 Design S Fabrication 

     For Design S, the stator and the rotor are fabricated side-by-side using a two-mask 

deep reactive-ion etching (DRIE) process, as shown in Fig. 2-7 (a-d).  The fabrication 

process starts with coating a layer of KMPR 1010 on the backside of a silicon wafer, to 

serve as an etch stop and support layer for through-wafer etching. Silicon oxide of 4 µm 

thickness is then deposited on the front side of the wafer by PECVD and is patterned 

using mask 1.  The silicon oxide layer is wet etched in 5:1 BHF (buffered hydrofluoric 

acid) solution.  Photoresist is used to mask the first DRIE step in which the ring-shaped 

stator is defined.  Then, the PR is removed and remaining silicon oxide layer is used as a 

mask to etch with DRIE through the remainder of the wafer.  At the end of this process, 

the ring-shaped stator is fully etched out along with the teeth that are located on the 

stator.  After removing KMPR 1010 by immersing the wafer in Remover PG 

(MicroChem Corporation, Newton, MA) at 80 °C for 1 hour, the silicon rotor is ready for 

assembling.  The silicon stator must be bonded to Metglas™ 2826MB as described in 

following steps. 

 

Fig. 2-7: Fabrication process flow of Design S. 
 

2.2.3 Indium Rich Au-In Bond 

An Au-In liquid transient phase bonding (TLP) is used because it can be 

performed at relatively low temperature, ensuring that magnetic properties of Metglas™ 
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2826MB will not change. Additionally, gold and indium can be easily coated using 

standard microfabrication steps.  The possible stages of TLP bonding for an indium rich 

bond layer are shown in Fig. 2-8 [Lee93, So00].  Liquid-solid inter-diffusion, stage 1, 

occurs when two substrates are brought into intimate contact while the temperature is 

above 157 ˚C, and the appropriate pressure is applied.  Liquid indium dissolves gold 

layers on both the silicon substrate and the Metglas™ 2826MB substrate.  

Simultaneously, dissolved gold diffuses into the indium layer to form AuIn2.  Stage 2 

occurs upon cooling; the final bonding layer is a mixture of solid indium and AuIn2 

because the quantity of gold is insufficient to react with all the indium.   

 

Fig. 2-8.  Composition of Au-In TLP bonding and possible stages of bonding process: 
Stage 1 melting of In and liquid-solid interdiffusion at 157-200 °C, Stage 2 solidation of 
the mixture below 157 °C [Lee93, So00]. 

 

The use of this bonding step with the process sequence of the Design S motors is 

shown in Fig. 2-7 (d-g).  Initially, chrome (0.1 µm) and gold (0.5 µm) is evaporated on 

both the Metglas™ 2826MB ring-shaped structure and the backside of the silicon stator.  

The step is followed by electroplating of ≈8 µm indium on the backside of the silicon 
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stator.  The chosen indium thickness is sufficient to cover the bonding surface of the 

Metglas with a surface roughness of ≈1 µm and maximum peak-to-peak variations of ≈4 

µm, which is measured by interferometer.  The silicon stator and the Metglas™ 2826MB 

component are aligned and bonded. The bonding process is performed in a vacuum oven 

so that oxidation is prevented.  The temperature is held at 200 °C for 1 hour during this 

step.  After bonding, the connections between ring-shaped disc and frame in the 

Metglas™ 2826MB layer are cut using µEDM.  An SEM image of the silicon stator with 

bonded ring-shaped Metglas™ 2826MB is shown in Fig. 2-9 (a).  

     As the final step before testing, the Design S stator, stainless steel bases, and a 

hub are aligned, stacked and fixed to each other with epoxy.  The silicon rotor located 

directly above the stator is constrained by the hub and touches the stator only at the teeth. 

The optical image of assembled Design S motor is shown in Fig. 2-9 (b). 

 

Fig. 2-9: SEM image of the Design S stator (a) and optical image of assembled device (b). 
 
 

2.3 Experimental Methods and Results 

2.3.1 Experimental Methods 

The motors were actuated wirelessly using two sets of coils.  Two coils with a 

diameter of 12.5 cm, shown in Fig. 2-10, were connected to a DC power supply 

providing constant current to provide DC magnetic field.  This arrangement was used to 
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bias the magnetoelastic material into an operating region in which the strain is sensitive 

to magnetic field.  For Design M, based on the relationship between the magnetostriction 

coefficient and the applied field for Metglas™ 2826MB [Kim99], the DC bias field was 

set to 3 Oe, with ±2 Oe AC field.  However, the effective magnetostriction curve appears 

to be shifted for Design S, as suggested by the magnetic bias at which the rotation rate is 

highest.  The cause of bias shift for Design S may be related to residual stresses from the 

bonding process; the reference curve was measured on a free-free sample.  Thus, the DC 

bias field of Design S was set to 8 Oe to achieve a high rotation rate (Fig. 2-11). 

 

Fig. 2-10: Experimental set up for motor actuation and frequency response measurement. 

 

Fig. 2-11: Magnetostriction versus applied field for Metglas™ 2826MB (reproduced 
from [Kim99]) and rotation rate versus applied DC bias at fixed AC field.  The derivative 
of the reference curve at a bias point leads to the magnetostrictivity (“d” in the 
constitutive equations in section 2.1.2) at that bias point.  The effective magnetostriction 
curve appears to be shifted for Design S, as suggested by the magnetic bias at which the 
rotation rate is highest.  
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Another two coils with diameter of 11.5 cm were placed inside the DC coils; 

these smaller coils generated an alternating magnetic field with amplitude from 2 to 6 Oe, 

depending on the applied power.  A DC current, equal to the measured AC current 

amplitude, was first applied on the AC coils.  Subsequently, the DC magnetic field, 

equivalent to the AC magnetic field amplitude, was experimentally measured by a FW 

Bell 5180 Hall Effect Gaussmeter (Pacific Scientific OECO, Milwaukie, OR).    The 

device under test (D.U.T.) was placed between the coils. 

To measure the frequency response of the stator, a laser vibrometer and a network 

analyzer were used in conjunction (Fig. 2-10).  The vibration mode shape can be 

determined by measuring a number of points along the rim of the stator; antinodes of a 

given mode shape exist at locations of strong response at a given frequency. 

A video camera was used to record the motors from above, and the video is 

analyzed frame-by-frame to derive the rotation rate and initial acceleration.  In addition to 

this method, a laser displacement sensor was used to monitor the patterned surface of the 

rotor.  The frequency of the resulting square wave was used to calculate the rotation rate. 

 

2.3.2 Design M Results 

The desired mode shape with four antinodes was confirmed to exist at 11.35 kHz, 

with 0.2 µm unloaded out-of-plane deflection at the antinodes.  As shown in Fig. 2-12, 

the frequency response is stable over at least 5 minutes of operation time.  In preliminary 

tests, a typical rotation rate of approximately 44 rpm (4.6 rad/s) was obtained (Fig. 2-13).  

An angular driving step size of about 23 milli-degree is calculated from the measured 

angular velocity and resonant frequency.  The angular velocities from different trials 

were calculated from the recordings and are shown in Fig. 2-14.  
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Fig. 2-12: Experimentally measured frequency response of bulk-magnetoelastic-foil 
stator of Design M, with 3 Oe DC, 2 Oe amplitude AC magnetic field. 
 
 

 

Fig. 2-13: Optical images of Design M rotating with 3 Oe DC, 2 Oe amplitude AC 
magnetic field at frequency of 11.35 kHz, and 9 mg payload. 

 

Fig. 2-14: Experimentally measured angular velocity of Design M as a function of time 
with 3 Oe DC and 2 Oe amplitude AC magnetic field at frequency of 11.35 kHz.  Linear 
fits of different trials were used to calculate initial acceleration. 
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The associated start torque (i.e., the motor driving torque minus friction torque 

when rotation rate is approximately zero) is ≈2 nN⋅m.  This is calculated by τ = αI, where 

τ is the start torque, α is the angular acceleration.  The angular acceleration, before the 

angular velocity plateaus, was derived from the average of linear fit slopes from different 

trials.  The moment of inertia, I, is further given by I = 1
2
m(r1

2 + r2
2 ) , where m is the mass of 

the rotor, and r1 and r2 are the inner and outer radii of the rotor, respectively. 

 

2.3.3 Design S Results 

The frequency response of Design S was also measured and it was confirmed that 

two mode shapes exist that can provide bi-directional operation.  The CW mode shape 

was confirmed to exist at 6.08 kHz, with about 2 µm unloaded out-of-plane deflection at 

the antinodes (Fig. 2-15 (a)), whereas the CCW mode shape was confirmed to exist at 

7.85 kHz, with about 1.8 µm unloaded out-of-plane deflection at the antinodes (Fig. 2-15 

(b)).  The frequencies are lower than FEA results.  Further study is required to understand 

the reason for the lower-than-expected resonant frequencies.  

 

Fig. 2-15: Experimentally measured frequency response of Design S stator (65 µm thick) 
with no load, 8 Oe DC and a 6 Oe amplitude AC magnetic field. The quality factors of 
resonant response of CW mode and CCW are 150 and 79, respectively. 
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The bi-directional rotation was demonstrated at corresponding resonant 

frequencies.  The typical rotation rates of CW and CCW directions are about 30 and 100 

rpm when an 22 mg rotor was used, an AC magnetic field with about 6 Oe amplitude, 

and a DC magnetic field with 8 Oe amplitude was applied.  However, the CW rotation 

rate is relatively slow and rotor wobbling was observed.  This is possibly due to the fact 

that the tooth locations are too close to the antinodes of CW vibration mode shape.  

Consequently, vertical movement instead of tangential movement dominates the motion 

of the tooth tip so that the rotor is mainly pushed vertically rather than tangentially.  This 

problem can be solved by placing the tooth equally far from the antinodes of both CW 

and CCW mode shapes in future designs.  More characterization was performed on the 

CCW mode. 

The effect of payload on CCW rotation rate was characterized by using rotors 

with different weight.  For example, for the 43 mg rotor with six patterned segments used 

in this test, a square wave was obtained to calculate the rotation rate of about 60 rpm 

(Fig. 2-16).  As shown in Fig. 2-17 (a), the rotation rate decreases when the payload 

increases in an approximate linear relationship.  Design S showed at least 43 mg payload 

capability.  The rotation rate was also closely related to applied power or applied AC 

magnetic field strength.  The rotation rates were measured when the magnitude of the AC 

magnetic field increases from 3 Oe to 6 Oe.  As shown in Fig. 2-17 (b), rotation rate 

increases with the increasing AC magnetic field in an approximately linear manner.  This 

indicates that magnetoelastic material still operates in the intended linear region of 

magnetostriction versus applied field curve.  
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Fig. 2-16: Rotation rate measurement of Design S with 43 mg payload, 8 Oe DC and a 6 
Oe amplitude AC magnetic field at frequency of 7.85 kHz. 
 
 
 

 

             (a)                                                                         (b) 

Fig. 2-17: (a) Experimentally obtained effect of payload on rotation rate of Design S, 
with 8 Oe DC and a 6 Oe amplitude AC magnetic field at frequency of 7.85 kHz; (b) 
Experimentally obtained effect of applied AC magnetic field on rotation rate of Design S, 
with 8 Oe DC, 22 mg payload, and at frequency of 7.85 kHz. 
 

The transient response of Design S was experimentally evaluated.  Results 

obtained with a 22 mg payload are shown in Fig 2-18.  This data was obtained by 

analyzing a slow-motion video.  The typical performance achieved a rotation rate of 

about 100 rpm (10.5 rad/s), start torque of 30 nN·m, and step size of 74 milli-degree.  The 
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start torque is calculated using the same method for Design M.  The performance of the 

two designs is summarized and compared in Table 2-1. 

 

Fig. 2-18: Experimentally measured angular velocity of Design S as a function of time 
with 8 Oe DC and a 6 Oe amplitude AC magnetic field, at frequency of 7.85 kHz, and 22 
mg payload.  Linear fit was used to calculate initial acceleration. 
 
Table 2-1: Typical rotation rate, driving step size, start torque, payload, and bi-directional 

rotation capability of Design M and Design S. 
 Design M Design S 

Rotation rate (rpm) 44 100 
Step size (milli-degree) 23 74 
Start torque (n⋅Nm) 2 30 
Payload (mg) 9 43 
Bi-directional No Yes 

 

For Design S, one advantage of utilizing silicon is the ability to tune the resonant 

frequency during fabrication by changing the thickness of the silicon stator.  Different 

resonant frequencies can provide different performance according to application 

requirements.  In general, a higher resonant frequency means a smaller step size of each 

push between the rotor and the teeth, resulting in a more precise rotation and slower 

speed.  Table 2-2 summarizes the resonant frequencies and performance of Design S 

motors with different thickness of silicon stator. 
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Table 2-2: Resonant frequencies, rotational rate and average step size for Design S 
motors with 65 µm and 150 µm thick silicon stator.  The rotational rates of two motors 

were measured when 22 mg payload was applied. 
Thickness of 
silicon stator 

CW Res. 
Res. Freq.  

CCW  
Res. Freq. 

Rotational 
Rate 

Average 
Step size 

65 µm 6.08 kHz 7.85 kHz ≈940˚/s 0.116˚ 
150 µm 12.3 KHz 18.2 kHz ≈500˚/s 0.008˚ 

 

2.4 Discussion 

Design M demonstrated the concept of wireless magnetoelastic actuation, but the 

performance was compromised by two factors.  First, the positioning and assembling of 

the teeth, which was performed manually, contributed to a loss of performance.  Second, 

an uneven magnetoelastic stator surface resulted in unstable rotation rate.  Further, 

because the customized teeth design limits vibration mode shapes of the stator, only CW 

rotation was achieved.  Design S was designed based on the results of Design M.  The 

thick silicon stator has better surface uniformity and simplifies the tooth design.  This 

resulted in stable rotation rate and bi-directional operation capability.  Design M also 

exhibited larger payload capability.  The Au-In TLP bonding process was customized to 

attach magnetoelastic material to silicon.  This bonding process has potential applications 

in other magnetoelastic actuation and sensing systems. 

 
2.4.1 Advantages of Magnetoelastic Wireless Motor 

The magnetoelastic wireless resonant motors demonstrate that the magnetoelastic 

material has significant potential for actuation in miniature and micro-scale devices.  The 

main advantage – the wireless aspect of the actuation approach – allows miniaturization 

and eliminates lead transfer to the actuator, which is especially preferred for implantable 

applications.   

In addition to being wireless, magnetoelastic resonant motors offer other 
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advantages shared by ultrasonic piezoelectric motors, such as high precision and high 

torque.  Design S was able to move at least 100 mg payload.  These capabilities will 

enable integration of inertial sensors on the rotor in the future.  For example, it is 

demonstrated that Design S motor can provide a bi-directional rotational stimulus 

(≈360˚/s) for a commercial gyroscope with about 60 mg mass.    

Compared to conventional electromagnetic motors, magnetoelastic micro-motors 

have very simple structures and only require a single AC excitation signal.  The 

performance of rotation rate and step size can be potentially improved by increasing the 

resonant frequency of the silicon stator.  This can be achieved by either increase the 

thickness of the stator or decrease the size of the stator.  Additionally, a method for 

braking the motion of the rotor can be provided by exploiting bi-directional rotation 

capability.  For example, CCW rotation can be stopped abruptly by switching the exciting 

frequency from CCW to CW with a calibrated AC magnetic field.  Finally, as mentioned 

before, external coils can be potentially replaced by on-chip driving coils for short-range 

wireless operation. 

 
2.4.2. Long-Term Performance and Passive Lock Down 

Because the rotation results from the friction and collisions between the silicon 

teeth and rotor, the material in contact areas will be worn after long-term operation.  This 

wear changes the contact area and friction coefficient during the contact, and results in a 

slightly different performance of the motor.  This effect was characterized by monitoring 

the rotational rate when the motor is driving for 25 hours continuously, as shown in Fig. 

2-19.  The rotational rate varies at a range of 50±10 revolutions per second (RPM). This 

suggests that a real time speed measurement and a feedback control loop are necessary if 

an application requires accurate rotational rate output.   
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Fig. 2-19: Experimentally measured rotational rate of Design S motor with 65 µm thick 
silicon stator for 25 hours.  
 

2.5 Summary 

In summary, this chapter presents the analysis, fabrication, and experimental 

results of wirelessly actuated, chip-scale standing wave rotary motors.  Two designs are 

described.  Design M is actuated by a ø8 mm magnetoelastic stator lithographically 

micromachined from Metglas™ 2826MB-bulk-foil with 25 µm thick.  It operates at a 

resonant frequency of 11.35 kHz while a 3 Oe DC and a 2 Oe-amplitude AC magnetic 

field are applied.  The measured rotation speed, start torque, calculated driving step size, 

and payload are 44 rpm, 2 nN·m, ≈23 milli-degree and 9 mg, respectively.  Design S uses 

a stator that is a sandwich of Si (ø8 mm diameter and 65 µm thick) and magnetoelastic 

foil (ø8 mm diameter and 25 µm thick) to tailor the stiffness. The typical resonant 

frequency of clockwise (CW) mode and counterclockwise (CCW) mode are 6.1 kHz and 

7.9 kHz, respectively. The CCW mode provides a rotation rate of about 100 rpm, start 

torque of 30 nN·m, driving step size of 74 milli-degree, while a 8 Oe DC and a 6 Oe-

amplitude AC magnetic field are applied.  Bi-directional rotation is realized by switching 

the applied frequency, thereby exciting the stator in a slightly different mode shape.  

Design S shows at least 100 mg payload capability. 
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Chapter 3 

Second-Generation Wireless Magnetoelastic Motor – Integrated with Capacitive 

Sensing for Real Time Rotation Rate Measurement 

Chapter 2 described the successful demonstration of the magnetoelastic resonant 

motor with bi-directional rotation based on a standing wave.  The utility of these motors 

could be improved through real time rotational rate measurement functionality provided 

by integrated on-chip capacitive sensors.  Another potential avenue for improving the 

motor operation and sensing precision is the utilization of a traveling wave operation 

method for magnetoelastic motors.  Because a traveling wave motor can potentially 

handle more preload between the rotor and the stator (and in some cases requires a 

preload for sufficient driving torque), such an architecture may result in a more 

constrained rotor less prone to wobble and lateral runout.  As described in this chapter, 

both of these approaches are incorporated in second-generation motor designs.  These 

second-generation motors utilize a bilayer of silicon and magnetoelastic material 

structures, similar to that incorporated in Design S of the first-generation motors.  The 

second-generation motors are carefully designed and fabricated to provide better control 

of deformation induced by the AuIn bonding process due to the thermal expansion 

difference between silicon and MetglasTM.  This deformation is particularly important in 

these second-generation motors because it is one aspect defining the vertical gap between 

the capacitive sensing electrodes.  The details of the architectures, fabrication, 

characterization and future plans are given in the following sections.    
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3.1 Design  

3.1.1 Standing Wave Motor Design 

The second-generation standing wave magnetoelastic motor also utilizes a bilayer 

of silicon and magnetoelastic material as a stator, which is similar to that of the first-

generation magnetoelastic motor (Design S).  The standing waver motor has teeth located 

offset from the “crab-leg” spring suspensions, and electrodes patterned on the stator 

frame.  Completing the motor is a silicon rotor with patterned electrodes and open 

windows for optical measurements (Fig.3-1).  The stator shape is changed slightly from 

that used in Design S: a thin silicon “ring” is used rather than the wider “donut”.  

Additionally, the magnetoelastic layer is a full disc rather than the “donut” used 

previously.  These shapes were used in order to reduce the resonant frequencies while 

obtaining a larger vibration amplitude.    

 
Fig. 3-1: 3D schematic of the standing wave motor. 

 
Compared to the first-generation magnetoelastic motor, the second-generation 

motor requires a precise control of the deformation of the stator resulted from thermal 

expansion coefficient mismatch between the silicon and Metglas™ after the bonding.  
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The deformation of the stator can push the top surface of the teeth significantly above the 

plane of the electrodes, resulting in a large reduction in the nominal sensing capacitance.  

A smaller nominal sensing capacitance is inherently more difficult to measure.  Thus, the 

dimensions of the “crab-leg” springs are specifically chosen to reduce the displacement 

of the top surface of the teeth, with the detailed description of the method given in next 

section.  

 

3.1.1.1 “Crab-leg” Spring Design 

There are two advantages of “crab-leg” springs for this specific issue.  First, the 

“crab-leg” springs is tangential to the “ring” structure, leading to a small spring constant 

in radial directions.  This facilitates stator expansion in radial direction, and radial 

expansion is one avenue for relieving stresses due to thermal expansion mismatch.  

Second, the “crab” springs also have a very small vertical spring constant, which allows a 

“downward” deformation of the stator rim that can compensate the “upward” 

deformation at the center of the stator that is a result of the bending stresses induced by 

thermal expansion mismatch.   

For predictive design, COMSOL Multiphysics can calculate stresses and 

deformation due to thermal expansion mismatches and differences between the 

solidification temperature during bonding (157˚C) and normal operating (room) 

temperature.  The FEA model used in this study is verified by comparing its output to the 

experimental results of the first-generation motor.  The FEA generated results (72.4 µm 

deformation) matched very well with the fabricated and measured devices (70 µm 

deformation).  Thus, the same model was used as a predictive tool to estimate the 

displacement of the teeth due to thermal expansion mismatch and to determine suitable 
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geometry for the “crab-leg” springs.  The expected out-of-plane deformation of the stator 

is estimated using FEA simulation (Fig. 3-2 (a)). 

 

(a)                                                                       (b) 
Fig. 3-2: (a) FEA simulation result of deformation of the bilayer of silicon and 
magnetoelastic stator after bonding process. The flexible “crab-leg” springs allow 
“downward” deformation that compensates the “upward” deformation. (b) By changing 
the length of the “crab-leg” spring, a “zero” deformation of the teeth and rotor contact 
point can be achieved under different payloads. 

 
The out-of-plane displacement of the teeth as a function of spring length is 

simulated when no payload is applied (Fig. 3-2 (b)).  As expected, the displacement of 

the teeth changes from positive to negative values when the spring length increases.  

Thus, with proper design, it is theoretically possible to find a proper spring length that 

provides zero out-of-plane displacement of the teeth after bonding.   

 In this study, three payloads – corresponding to zero payload, the payload of the 

rotor, and the payload of the rotor and typical inertial sensors – are important for 

demonstration of the motor operation.  Initial measurements can be carried out with zero 

payload; the real time rotational rate measurements can be carried out with only a rotor 

load (15.9 mg); finally, the motor needs to carry an inertial device for calibration, such as 

a gyroscope (60 mg).  Utilizing similar methods, the preferred azimuthal spring lengths 

(resulting in a predicted zero tooth displacement after bonding and carrying the static 
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payload) for a 5 mm diameter stator are 21.5˚, 40˚ and 60˚ for payloads of 0 mg, 15.9 mg 

and 60 mg, respectively.  These angles correspond to spring lengths of approximately 1.1 

mm, 2.0 mm, and 2.9 mm.  

 
3.1.1.2 Modal Analysis  

FEA modal analysis was carried out for estimation of eigenfrequencies for the 

desired mode shapes of the standing wave stator.  The crab-leg length of 21.5˚ and a 

silicon “ring” inner radius of 2 mm were used in the simulation.  The deformation 

induced by thermal expansion coefficient mismatch was also included in the simulation 

model by using a pre-stressed eigenfrequency analysis in COMSOL multiphysics.  The 

FEA simulation results showed that the eigenfrequencies of CCW mode and CW mode 

have an approximately linear relationship with the thickness of the silicon (Fig. 3-3).   

 

Fig. 3-3: FEA simulation result of eigenfrequencies of CW and CCW mode shapes as a 
function of thickness of the silicon.  
 

3.1.2 Traveling Wave Motor Design 

3.1.2.1 Concept 

A traveling wave is initiated through an appropriate combination of two standing 

waves.  These two standing waves are ideally at the same frequency and have a +/-π/2 
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phase difference both in time and in space.  In order to excite the two standing waves 

with a spatial and temporal phase difference, two input excitation signals are required.    

These signals should be directed along lines of symmetry of the structure at which the 

antinodes of the two standing waves are generated.  In order to achieve this, 8 “crab-leg” 

springs were used to provide a symmetrical structure so that two standing waves with 4 

antinodes located at the connection between the spring and the “ring” will have mode 

shapes with a π/2 spatial phase difference (Fig.3-4 (a-b)).  

 

                                 (a)                                                             (b) 
Fig. 3-4: (a) 3D schematic of traveling wave stator with symmetrical springs suspensions. 
(b) 2D schematic of working principle of the traveling wave, which is generated as a 
combination of two standing waves with a π/2 spatial phase difference. These two 
standing waves are driven by AC magnetic fields with a π/2 phase difference in time. 
 

In the traveling wave, the contact point between the rotor and the stator undergoes 

an elliptical motion that has an opposite direction compared to that of the traveling wave.  

The bidirectional rotation can be realized by changing the excitation order of each 

standing wave.  As shown in Fig. 3-4(b), assuming two standing waves have the same 

out-of-plane amplitude and π/2 spatial difference in mode shapes, the two standing waves 

along the edge of the stator can be illustrated as a gray-colored wave and a red-colored 
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wave (excited at a π/2 temporal and spatial phase separation).  The mathematical 

expressions describing the gray and red standing waves are given as:  

Asin(2θ )sin(ωt)                                               (3-1) 

                                       Acos(2θ )sin(ωt −π / 2)                                          (3-2) 

The combination of these two standing waves is a traveling wave: 

Acos(2θ −ωt)                                                (3-3) 

Thus, the peak of the wave occurs at , and the traveling wave moves in a 

positive direction.  This results in a rotation in the negative direction due to the elliptical 

movement of the teeth.  If instead the gray-colored wave is excited with a π/2 phase delay 

in time, the traveling wave is expressed as: 

Acos(2θ +ωt)                                                  (3-4) 

Accordingly, the peak of the wave occurs at , and the wave traveling 

direction and the rotation direction reverses.  

 

3.1.2.2 Modal Analysis 

Modal analysis was carried out for estimation of eigenfrequencies with the 

desired mode shapes of the traveling wave stator. The FEA simulation results showed 

two desired mode shapes exist at 33.8 kHz and 34.4 kHz, respectively.   The two mode 

shapes have a spatial phase difference of π/2, which means the antinodes of Mode 1 

became the nodes of Mode 2, and vice versa.  In the FEA simulation, the anisotropic 

material properties of silicon resulted in a ∆f of 0.6 kHz between two mode shapes.  

Ideally, the mode shapes would have no frequency split (∆f of 0 Hz), but a small 

frequency split can be managed in practice as described later.   

θ =ωt / 2

θ = −ωt / 2
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Fig. 3-5: The FEA simulation results of eigenfrequencies of two desired mode shapes 
with a π/2 spatial phase difference. 

 

3.1.3 Capacitive Sensing Electrodes 

3.1.3.1 Concept 

Both standing wave motors and traveling wave motors include capacitive sensing 

electrodes for real time measurement of the rotational rate.  For the capacitive sensing 

architecture, floating electrodes are implemented to avoid leads connecting the stator and 

rotor layers.  The sensing capacitor consists of a pair of two stator electrodes (V+ and V-) 

and a pair of two rotor electrodes connected to each other (Fig. 3-6).  The capacitance is 

approximately linearly related to the overlap area between the rotor electrodes and stator 

electrodes.  The capacitance reaches a maximum when a pair of rotor electrodes is 

perfectly overlapping a pair of stator electrodes, as shown in Fig. 3-6.  Thus, ideally, the 

capacitance across these electrodes should result in a triangle waveform during the 

rotation of the rotor, with the peak occurring when the electrodes are exactly overlapped.  

This information would then be used to reconstruct the rotor position and velocity during 

rotation.   
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Fig. 3-6: Schematic of rotor and stator electrode positions when measuring capacitance 
reaches maximum. 
 

3.1.3.1 Modeling 

This detection scheme can be sensitive to parasitic capacitances, which, if large, 

could result in an obscured sensing capacitance or in undesired cross-talk between 

electrode pairs.  To evaluate the relative size of the measured and parasitic capacitances, 

and the effect of the parasitic capacitances on the measured electrodes, a model is 

developed.  The geometry of the model is established based on the geometry of the 

electrodes and the anticipated sensing gap.  The modeled stator and rotor are oriented 

such that one pair of the rotor electrodes and the targeted pair of stator electrodes are 

fully overlapped, resulting in a maximum capacitance (Fig. 3-7).  Consequently, along 

the clockwise path, the second rotor electrode set is misaligned with the stator electrodes 

underneath it, resulting in two very small fringe capacitors (Fig. 3-6). The third rotor 

electrode set fully overlaps with the above stator electrode set.  The corresponding 

equivalent circuit is developed and simulated.  
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Fig. 3-7: An equivalent circuit model of the capacitive sensing components. 
 
The equivalent circuit, as shown in Fig. 3-8, is established based on the model 

provided in Fig. 3-7. The definitions and estimates of each capacitor and each resistor are 

given in Table 3-1.  The values of capacitance and resistance are estimated using 

practical fabrication parameters and the following standard equations:  

C = ε0εrAC
d

                                                             (3-4) 

R = ρl
AR

                                                               (3-5) 

 
where ε0 is the permittivity of free space, εr is the relative permittivity of the intervening 

material, AC is the area of the capacitive electrodes, ρ is the resistivity of the material 

forming the resistor, l is the length of the resistor, and AR is the cross-sectional area of the 

resistor. 

The equivalent circuit was built and simulated using PSPICE software Capture 

CIS.  For comparison, the ideal circuit model simply included a measuring capacitor and 

a wire resistor, as shown in Fig. 3-8.  Then, the ideal equivalent circuit was replaced by 

an equivalent circuit including all the parasitic capacitors and resistors, as shown in Fig. 
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3-9.  The latter complicated equivalent circuit was then connected to the same external 

measurement circuit.  

Table 3-1. Parameter definitions and estimated values. 
CM Measuring capacitor consists of a rotor electrode and a stator electrode, 

with 10 µm air gap, and 0.8 mm2 area (fully overlapped area).  Estimated 
capacitance is 0.7 pF. 

CN1 Parasitic capacitor between the stator electrode and the silicon substrate, 
with 0.1 µm silicon nitride gap, and 0.8 mm2 area.  Estimated capacitance 
is 525 pF. 

CN2 Parasitic capacitor between two adjacent stator electrodes through ≈1.3 mm 
longitudinal silicon nitride gap, and 0.8 mm2 area.  Estimated capacitance 
is 0.04 pF.  

RS1 Silicon resistor across two adjacent stator electrodes with length of ≈1.3 
mm and cross-section of ≈1 mm2. Estimated resistance is 106 Ω. 

RS2 Silicon resistor across two furthest stator electrodes (connected to 
measurement circuit) with length of ≈10 mm and cross-section of ≈1 mm2. 
Estimated resistance is 107 Ω. 

RN1 Vertical nitride resistor between the stator electrode and the silicon 
substrate, with 0.1 µm silicon nitride long, and 0.8 mm2 cross-section area.  
Estimated resistance is 1015 Ω. 

RN2 Longitudinal nitride resistor between two adjacent stator electrodes with 
nitride length of ≈1.3 mm and cross-section of ≈1 mm2. Estimated 
resistance is 1019 Ω. 

CA1 Capacitor between the stator electrodes through ≈1.3 mm longitudinal air 
gap, and 0.8 mm2 area.  Estimated capacitance is 0.0054 pF. 

CA2 Capacitor between a rotor electrode and a stator electrode with no 
overlapped area (only fringe effect is considered). The gap is 10 µm of air, 
and the effective capacitance is calculated to be 0.075 pF by using FEA. 

CA3 Capacitor consists of a rotor electrode and a stator electrode, with 10 µm 
air gap, and 0.8 mm2 area (fully overlapped area).  Estimated capacitance is 
0.7 pF. This value is same as the measuring capacitance. 

 
The external measurement circuit mainly included four components: a power 

source, a first amplifier stage, a signal mixer, and a second amplifier stage.  The power 

source provides a square wave with frequency of 100 kHz and peak value of 3 V. The 

first amplifier stage served as a high pass filter.  The mixer was used to obtain the 

absolute value of the output signal. The second amplifier stage was a low pass filter.  



 55 

 
Fig. 3-8: An ideal equivalent capacitive sensing circuit model for the magnetoelastic 
motor and the external measurement circuit. 

 

 
Fig. 3-9: An equivalent capacitive sensing circuit for magnetoelastic motor including the 
parasitic resistors and capacitors.  
 

The output waves of two modeled circuits were compared (Fig. 3-10).  The 

measuring capacitance is directly related to integration of the area of the decaying wave.  

According to the simulation results, there is a DC offset induced by the parasitic 

resistance and capacitance.  However, this offset can be subtracted in post-processing of 

the data.  Thus, the modeling indicates that parasitic capacitances will not present a 

practical limitation of the measurement scheme.  
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Fig. 3-10: Simulated transient response of the signal output for the ideal model (red) and 
the model (green) with parasitic parameters. 
 

 

3.2 Fabrication 

3.2.1 Process Flow 

The second-generation motor is fabricated using a four mask process, as shown in 

Fig. 3-11.   The process is developed based on the process used for first-generation 

motor.  In addition, the fabrication process for the second-generation motor includes 

another DRIE step for defining the electrode gap, metal coating and patterning steps for 

capacitive sensing electrodes, as well as a XeF2 etching step for removal of the residual 

silicon sidewalls resulting from the final DRIE step (Fig. 3-11(i)).  For the second-

generation motor, a more “anisotropic” DRIE with a well-balanced etch time and 

passivation time of each cycle of the BOSCH process is necessary to achieve intact 

profiles of the silicon springs and the “ring” structures.  However, this more “anisotropic” 

DRIE induces thin silicon sidewalls resulting from the passivation layers – at locations 

with a height difference – as a DRIE mask.  Thus, a XeF2 etching step is used to quickly 

remove these thin residual silicon sidewalls without significantly attacking other 

structures.  The first-generation motor did not have this issue because of its large feature 

size that allows using a less “anisotropic” DRIE with a large portion of etch time 
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compared to the passivation time.  The full details of the fabrication processes are as 

follows. 

 

Fig. 3-11: Process flow for second-generation motor: (a) DRIE 10 µm (Mask 1); (b) 
Deposit 0.1 µm Si3N4 and 1 µm high temperature SiO2 (HTO) using low-pressure 
chemical vapor deposition (LPCVD);  (c) Wet etch HTO using buffered hydrofluoric acid 
(Mask 2);  (d) Wet etch evaporated 0.1 µm thick Cr and 0.5 µm thick Au (Mask 3); (e) 
Reactive-ion etch (RIE) Si3N4 (Mask 4); (f) Deep reactive-ion etch (DRIE) 150 µm depth 
of silicon; (g) Wet etch HTO using BHF; (h) RIE Si3N4; (i) DRIE etch through silicon; (j) 
Remove PR and XeF2 etch residual silicon sidewalls resulting from DRIE step; (k) 
Evaporated 0.1 µm Cr and 0.5 µm Au, and electroplate 6 µm indium layer for Au-In 
bonding; (l) Evaporated 0.1 µm thick Cr and thick 0.5 µm Au on PCM’d Metglas pieces; 
(m) Indium rich Au-In bonding and wire bonding. 
 

The process starts with a standard silicon wafer with ≈525 µm thickness.  The 

first step is to DRIE a 10 µm recess for defining of a gap between the stator electrodes 

and the rotor electrodes (Mask 1).  An isolation layer of 0.1 µm thick silicon nitride and 1 
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µm thick silicon oxide (HTO) are deposited using LPCVD.  The HTO is then wet etched 

using BHF (Mask 2).  This is followed by an evaporation of 0.1 µm thick Cr and 0.5 µm 

thick Au for the electrodes.  The metal layers are wet etched (Mask 3).  A thick PR layer 

of ≈8 µm is coated and patterned (Mask 4).  Then, 150 µm thick silicon is DRIE etched 

using PR and silicon oxide as the mask.  The exposed silicon oxide is BHF wet etched 

and silicon nitride is etched using RIE.  The last DRIE process is used to etch through the 

wafer and release the stator.  After that, the PR is stripped.  Another Cr/Au (0.1µm/0.5 

µm) seed layer is evaporated on backside of the silicon wafer.  An indium layer with 

thickness of ≈6 µm is electroplated on the backside of the silicon wafer for the indium 

rich Au-In bonding.  This completes the fabrication of the silicon parts.   

A MetglasTM 2826MB sheet is PCM’d into pieces with the same geometry as the 

silicon parts.  These pieces are also coated with a Cr/Au (0.1µm/0.5 µm) layer via 

evaporation as required for the bonding.  For the bonding process, about 1 MPa pressure 

is applied between the silicon parts and the MetglasTM pieces after manual alignment of 

the components under a microscope.  The indium rich Au-In bonding is conducted in a 

vacuum oven (≈50 mTorr) at 200 ˚C for 1 hour, plus 30 minutes of ramping to the 

bonding temperature and several hours of cooling.  The more detailed description of each 

fabrication process is given in Appendix C. 

 
3.2.2 Fabrication Results 

 Typical optical and SEM images of the fabricated second-generation standing 

wave motors and traveling wave motors are given in Fig. 3-12, 13.   The SEM images 

show a bilayer of silicon and Metglas™ with a good alignment after bonding.  The 

profile of the fabricated motor is measured optically using a LEXT interferometer 

(Olympus Corporation, PA, USA), as shown in Fig. 14.  The measurements show that the 
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height differences between the teeth and the stator frames are 14 µm, 22 µm and 25 µm 

for stators with spring lengths of 21.5˚, 40˚ and 60˚, respectively.  Considering a pre-

defined 10 µm height difference, the bonding induced out-of-plane displacements of the 

teeth are 4 µm, 12 µm and 15 µm, in good agreement with the FEA simulated 

displacements of the teeth – 0 µm, 10 µm and 15 µm – for the three spring length 

designs, as described in section 3.1.1.1.  The thickness of the silicon is also measured to 

be ≈70 µm.  

 

Fig. 3-12: Optical and SEM images of standing wave motor. 
 

 

Fig. 3-13: Optical and SEM images of traveling wave motor.  
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Fig. 3-14: Surface profile of a standing wave stator with 60˚ spring length, after the 
bonding process. 
 
 
 

3.3 Experimental methods and results 

3.3.1 Experimental Methods 

The resonant responses of the stators were characterized using a laser vibrometer, 

while the mode shapes were confirmed by examining the displacement amplitudes of 

points along the rim of the “ring” stator.  Similar to the first-generation motors, the 

second-generation motors were actuated by a combination of a DC and AC magnetic 

field.  Two layers of miniaturized coils are used for providing two sets of DC and AC 

magnetic fields with 45 degree azimuthal separation, as required for the traveling wave 

motor actuation (Fig. 15(a)).  Each layer consists of AC Helmholtz coils with 30 turns for 

each coil and a DC coil with 110 turns.  All coils are wound with 36 AWG insulated 

magnet wire.  The cores on which the coils are wound are each 6 layers of 100 µm thick 

1018 low carbon steel, bonded together with polymeric adhesive.  The magnetic field 

direction of a given layer of miniaturized coils is defined as along the long axis of the two 

extensions in the center of the layer.  The tips of these extensions are about 6 mm apart.  

The extensions are bent upward out of plane slightly so that the strongest magnetic field 
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is in the plane of the magnetoelastic portion of the stator, which is placed on top of the 

coils.   

The motors are assembled under a microscope.  The stator is stacked on top of the 

miniaturized coils and the rotor rests on the stator.  An adjustable probe stage is used to 

apply preload and to center the rotor on the stator during rotation.  

 

(a)                                                                          (b) 
Fig. 3-15: (a) Two stacked layers of miniaturized coils providing DC and AC magnetic 
field with 45 degree azimuthal separation, as required for traveling wave actuation. (b) 
3D schematic of the assembly method for the second-generation motor.   
 

3.3.2 Standing Wave Stator  

The CW mode and CCW mode of second-generation stator were confirmed to 

exist at resonant frequencies of 12.1 kHz and 22.4 kHz respectively.  Out-of-plane 

deflection amplitudes of 0.44 µm and 0.4 µm, respectively, existed near the antinodes 

(Fig. 3-16) of the modes when a ≈2 Oe amplitude AC magnetic field and a ≈6.5 Oe DC 

magnetic bias field were applied.  The experimental results were similar to FEA 

simulation results eigenfrequencies of 15 kHz and 24.5 kHz for the CW mode and CCW 

mode, respectively, as described in section 3.1.1.2.  The measured quality factors for the 

CW mode and CCW were 107 and 250, respectively.   

 

DC coil 

AC coils 1 

AC coils 2 
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Fig. 3-16: Experimentally measured frequency response of a standing wave stator (≈70 
µm thick) with no load, in response to a 6.5 Oe DC and a 2 Oe amplitude AC magnetic 
fields.  The traces are measured while the interrogating fields are azimuthally aligned 
with the measured antinode. 
 
3.3.3 Traveling Wave Stator  

3.3.3.1 Frequency Response 

The experimental results confirm that two desired mode shapes with π/2 spatial 

phase shift exist at frequencies of 28.4 kHz and 29.9 kHz, with out-of-plane deflection of 

74 nm and 70 nm at the antinodes, respectively.  For these measurements, an AC 

magnetic field with ≈6 Oe amplitude and a DC magnetic bias field of ≈3 Oe were applied 

along one antinodal diameter of the measured mode shape (Fig. 3-17).  The quality 

factors for the two modes are 630 and 665, respectively.  For the traveling wave stator, 

although the two mode shapes ideally should have an identical resonant frequency, it was 

expected that a ∆f between two mode shapes would exist.   This ∆f resulted from 

anisotropic material properties of silicon (as demonstrated by FEA simulation that was 

described 3.1.2.2), non-symmetrical geometry from fabrication, small misalignment 

between the silicon and the Metglas™, non-uniform driving magnetic fields, and other 

factors.  Because of this ∆f, careful consideration of the driving approach is required. 
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Fig. 3-17: Experimentally measured frequency response of a traveling wave stator (≈70 
µm thick silicon) with no load, in response to a 3 Oe DC magnetic field and a 6 Oe 
amplitude AC magnetic field.  The traces are measured while the interrogating fields are 
azimuthally aligned with the measured antinode.   
 

3.3.3.2 Resonant Frequency Tuning  

Initial experiments were carried out for reducing the frequency split.  The 

resonant frequency of mode 2 was reduced by adding small amount of mass on the 

backside of the stator at antinodes locations.  A total of ≈2 mg added mass consisted of 

four tungsten rods with diameter of 125 µm and length of 1 mm and the epoxy applied 

for attachment.  As a result, the resonant frequency of mode 2 shifted from 29.9 kHz to 

28.33 kHz, and the quality factors of mode 1 and 2 reduced to 450 and 300, as shown in 

Fig. 18.  The frequency split was successfully reduced to 0.04 kHz.  Near the resonant 

frequencies, the phases of the responses are separated by approximately 10˚; if no 

frequency split existed, the two responses would have zero phase separation.  
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Fig. 3-18: Experimentally measured frequency response of a traveling wave stator (≈70 
µm thick) with added mass (≈2 mg total) at the four antinodes of Mode 2, in response to a 
3 Oe DC magnetic field and a 6 Oe amplitude AC magnetic field.  The traces are 
measured while the interrogating fields are azimuthally aligned with the measured 
antinode.   

 

3.3.3.3 Time Domain Response  

In order to confirm the formation of the traveling waves in the stator, the time 

domain responses of the displacements of three points located between the antinodes of 

the two mode shapes were measured using an LDV (Fig. 3-19).  During the measurement, 

the driving current was used as a time reference for synchronizing the LDV data for the 

three separately measured points.  

 

Fig. 3-19: Schematic of locations of three monitoring points.  
 

 

1 
2 

3 
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First, the responses of the traveling wave stator with 1.5 kHz frequency split were 

obtained when the two mode shapes were driven by two AC magnetic fields (with 7.2 

Gauss AC magnetic field amplitude at corresponding resonant frequencies of two mode 

shapes) with 90 degree phase difference, as shown in Fig. 3-20.  A DC bias field of 3 Oe 

was applied along X-axis direction (Fig. 2-19) during these tests.  Fig. 3-20 (a) shows that 

the amplitudes of displacement at the three points began to overlap from 0.4 millisecond 

to 0.6 millisecond, indicating the switch of the traveling wave direction.  Fig. 3-20 (b) 

shows the crest of the wave travels in one direction (from point 1 to point 2, and then to 

point 3) over a time period of about 0.25 millisecond.  A proper control system, which 

only energizes the vibration when the desired wave direction is occurring, would be 

required to achieve rotation in one direction with a stator exhibiting a resonant frequency 

split of 1.5 kHz. 

 
(a)                                                                     (b) 

Fig. 3-20: LDV measured vertical displacement of monitoring points in the time domain. 
(a) Evidence of slowing and switching of the traveling wave direction. (b) Evidence of a 
traveling wave in one direction for short period of time.      

 

Another approach for achieving a unidirectional traveling wave is to reduce the 

frequency split by tuning the resonant frequencies.  As mentioned above, the frequency 

split was reduced to 0.04 kHz after adding mass at the locations of the antinodes of the 
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mode that had the higher as-fabricated resonant frequency.  Thus, similar time domain 

responses of three points were obtained, when the two mode shapes were driven by two 

AC magnetic fields (with 5.1 Gauss and 7.2 Gauss AC magnetic field amplitudes for 

driving mode 1 and 2, respectively) with the same frequency of 28.435 kHz, and 100˚ 

phase difference.  The maximum displacements occurred in a sequence from point 3 to 

point 2 and to point 1, confirming that the traveling wave was propagating in one 

direction (Fig. 3-21).  A phase difference of 100˚, instead of 90˚, was used between the 

two driving AC magnetic fields because the extra 10˚ phase difference in the frequency 

responses for the two mode shapes at the driving frequency needs to be included, as 

suggested in Fig. 3-18.  

 

 
Fig. 3-21: LDV measured vertical displacement of three monitoring points after the 
frequency split was tuned to be 0.04 kHz. 

 

3.3.4 Stationary Capacitance Measurement  

The value of the capacitance between the sensing electrodes was measured while 

the rotor and stator were oriented in different positions (Fig. 3-22).  The orientation of the 

positions was defined by the angle between a pair of rotor electrodes and the stator 

electrodes being measured.  The capacitance was measured using an Agilent 4284A LCR 
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meter (Agilent Technologies, CA, USA), with a measurement frequency of 100 kHz, an 

applied voltage of 1 V and a measurement mode of Cp-D, while the stator electrodes were 

probed with a typical semiconductor probe station.  An angle of 0˚ signifies that the rotor 

electrode pair is exactly aligned with the stator electrode pair.  For the measured design, 

which uses the circular electrode geometry (as shown in Fig. 3-12 (a)), there is no overlap 

area when the angle is larger than ≈7.9˚.  The differential capacitance ∆C was measured 

by subtracting the capacitance measured with the rotor on the top of the stator from the 

capacitance measured without a rotor on top of the stator.  As expected from theory, the 

measured ΔC is maximum when the electrodes are aligned and decreases non-linearly as 

the angle between the electrodes increases.  The theoretical curve was generated by the 

ratio of the overlap area of the rotor and the stator circular electrodes to its maximum 

value (exact overlap), superposed with the FEA calculated fringe capacitance as` used in 

the model of section 3.1.3.1 (0.075 pF). 

 

Fig. 3-22: Measured and theoretical stationary differential capacitance due to the rotor 
electrodes at different positions with respect to the stator electrodes. 
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3.4 Summary and Discussion 

 The intent of the second-generation motor design was to implement capacitive 

sensing electrodes while providing control over the capacitive gap, and to investigate the 

feasibility of a traveling wave motor.  This chapter has presented the analysis, fabrication, 

and experimental results of wirelessly actuated, chip-scale standing wave and traveling 

wave magnetoelastic rotary motors with integrated capacitive sensing electrodes.   

The capacitive sensing architecture was integrated in both standing wave and 

traveling wave motors.  The floating electrode design allowed avoiding leads that connect 

to rotor.  The initial tests of fabricated devices demonstrated an ability to control the 

sensing capacitor gaps between the rotor electrodes and the stator electrodes through 

design of the “crab-leg” stator suspension and compensation of the thermal expansion 

mismatch of the silicon and magnetoelastic layers.  The stationary differential 

capacitance of the sensing electrodes was successfully measured as a function of the 

relative positions between the rotor and the stator.  The real time rotational rate 

measurement under investigation could provide useful data for many applications, such 

using the measured rotation for an in-situ calibration of a gyroscope. 

The second-generation designs also investigated the practical generation of 

traveling waves in a magnetoelastic resonant motor.  Two mode shapes, spatially offset 

by 45º (half of a wavelength for these mode shapes), were identified in the fabricated 

devices.   If driven by oscillating magnetic fields that are offset by π/2 in phase, a 

traveling wave should be generated.  However, due to the anisotropic material properties 

of the stator, misalignment between the silicon and Metglas™ layers, and other factors, a 

1.5 kHz frequency split existed between the modes.  This frequency split results in a 

continuously switching of the direction of the traveling wave and compromises the 

traveling wave performance.  The frequency split was successfully reduced to 0.04 kHz 
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by adding a total of ≈2 mg mass at the antinodes of the mode shape with the initially 

higher resonant frequency.  This reduction in frequency split allowed the generation of a 

traveling wave with a consistent direction.  This study represents the first measurements 

of magnetoelastically-generated traveling waves at this scale. 
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Chapter 4 

Scalable, High-Performance Magnetoelastic Tags Using Frame-Suspended 

Hexagonal Resonators 

This chapter 2  presents the analysis, design and experimental evaluation of 

miniaturized magnetoelastic tags using frame-suspended hexagonal resonators.  

Magnetoelastic tags – also known as acousto-magnetic or magnetomechanical tags – are 

used in wireless detection systems – for example, electronic article surveillance and 

location mapping systems – that electromagnetically query the resonant response of the 

tags.  In order to obtain a strong resonant response for miniaturized tags, a frame-

suspended configuration is utilized to diminish the interaction between the vibrating 

portion of the tag and the substrate.  The signal strength can be boosted by utilizing signal 

superposition with arrayed or clustered magnetoelastic tags.  The hexagonal tags with a 

diameter of 1.3 mm are batch fabricated by photochemical machining from 27 µm thick 

Metglas™ 2826MB.  A preferred DC magnetic field bias for these tags is experimentally 

determined to be ≈31.5 Oe.  A single frame-suspended magnetoelastic tag shows quality 

factors of 100-200.  This design provides ≈75X improvement in signal amplitude 

compared to the non-linear signal superposition of the response has been experimentally 

measured for sets of frame-suspended tags that include as many as 500 units.  Across 10 

individual frame-suspended tags, the average resonant frequency is 2.13 MHz with a 

standard deviation of 0.44%, illustrating that this fabrication method provides 

repeatability.  

                                                
2 Contents presented in journal paper form in [Tan14] and in patent form in [Gia14]. 
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4.1 Design 

4.1.1 Concept 

A typical magnetoelastic tagging system includes a transmit coil, a receive coil, 

magnetoelastic tags and DC bias magnets, as shown in Fig. 4-1.  In the presence of a DC 

magnetic field, the magnetoelastic tags can be resonated by an applied AC magnetic field 

provided by a transmit coil.  The magnetic flux resulting from the vibration can be 

detected inductively by a remotely positioned receive coil.  The DC bias can be generated 

electromagnetically or provided by magnets packaged alongside the tags.   

 

Fig. 4-1: Magnetoelastic tags resonate under an applied AC magnetic field generated by a 
transmit coil.  The magnetic field resulting from the resonant vibration is detected by a 
receive coil, indicating the presence of the tags. 

 
Magnetoelastic tagging systems are not limited to this configuration.  The 

interrogating and detecting approaches can both be different for a variety of applications.  

For example, a pulsed signal – rather than a continuous wave signal – can be used for the 

interrogating magnetic field, and the receive coil can detect the signal generated during 
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the post-stimulation “ring-down” [Zen02, She10].  This allows temporal separation of the 

tag signal from that induced by the AC interrogating magnetic field.  The detection can 

also be performed by acoustic or optical approaches [Jai01].  

The frame-suspended resonator is designed to be attached to its package by its 

frame.  Because the tags have a slight out-of-plane curvature that is an artifact of the 

casting and photochemical machining (PCM) process (described in in Section 4.2), the 

suspension is effective even when unpackaged tags are placed on a flat substrate.  With 

the convex surface away from the substrate, only the perimeter frame of the tag contacts 

the substrate, allowing the central vibrating part to resonant with minimum interaction 

with the supporting substrate. 

The hexagonal geometry is specifically chosen to allow maximum usage of 

material for a batch patterning process.  The symmetrical geometry is also expected to 

reduce the signal strength sensitivity to orientations of applied magnetic field.  Another 

benefit of the shape pertains to signal orientation.  When excited by an applied AC field, 

the symmetrical hexagonal tag generates two major magnetic response components, with 

one parallel and the other orthogonal to the applied AC signal.  Consequently, an 

orthogonally-oriented receive coil couples weakly with the applied signal and strongly 

with the response of the magnetoelastic tag.  This interrogating and detecting approach is 

used in this study.  

 

4.1.2 Modeling 

4.1.2.1 Magnetic Field Strength 

In order to estimate the applied AC magnetic field strength necessary for 

interrogating the tags, transmit coils were modeled in COMSOL Multiphysics.  Because 

the size difference between the coils and the magnetoelastic tags is large, it is appropriate 
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to first calculate the magnetic field strength generated by the coils in a separate model 

and then use the calculated values as exciting conditions in the customized magneto-

mechanical model that is spatially focused on a single magnetoelastic tag.  In this work, 

two experimental setups were utilized – configurations A and B (Fig. 4-2).  Detailed 

descriptions of these two configurations are given in section 4.3.1.  Modeling results 

indicated that the applied AC fields per unit electrical current that are available at the 

locations of interest from configurations A and B are 2.69 Oe/A and 0.85 Oe/A, 

respectively.  

 

Fig. 4-2: Results of FEA simulations of signal strength generated by transmit coils for 
configurations A and B.  The ratios of the AC magnetic field amplitude to the applied AC 
current amplitude for configurations A and B are 2.69 Oe/A and 0.85 Oe/A, respectively, 
at the locations of interest. 
 

4.1.2.2 Mode Shapes, Resonant Frequencies of Hexagonal and Disc Magnetoelastic 

Tags 

The pre-calculated AC magnetic field was used for modeling the resonant 

response of hexagonal and disc magnetoelastic tags in the magnetomechanical coupled 

FEA model described in Chapter 2.  Fig. 4-3 shows the calculated mode shapes of 

hexagonal (1.4 mm circumscribed diameter) and disc tags (1 mm diameter) at resonant 
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frequencies of about 2.09 and 2.1 MHz, respectively.  The desired mode shape – which 

exhibits both longitudinal and transverse motion – generates an oscillating magnetic field 

with one significant response component that is orthogonal to the applied AC field, 

facilitating the decoupling of the applied AC field from the received signal by orienting 

the transmit coil and receive coil orthogonally.  Because it is difficult to estimate the 

interaction between the tag and the supporting substrate, the “free-standing” condition is 

used for both FEA models of hexagonal and disc-shaped tags.  Accordingly, these two 

types of tags have similar theoretical performance without considering the interaction 

between the substrate and the tag.  In practice, only the frame of the hexagonal tag 

interacts with the supporting substrate while the central resonator can vibrate freely.  In 

contrast, the entire disc or disc perimeter interacts with the substrate.  Therefore, a 

significant signal amplitude advantage for the frame-suspended tag is expected.  The 

FEA simulations also show that the frame-suspended tag is sensitive to the azimuthal 

direction of applied AC magnetic field (Fig. 4-3).   

In order to compare the azimuthal characteristics of the hexagonal tag with a 

conventionally-shaped rectangular strip, a strip design of 1 mm x 0.2 mm x 27 µm was 

also modeled.  According to FEA simulations, under different orientations of applied AC 

magnetic field, the azimuthal variation in the response amplitude was 26.7:1 for the strip.  

In contrast, for the frame-suspended hexagonal tag, it was only 4:1, indicating that this 

shape presents an improvement. 
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Fig. 4-3: FEA simulation results of hexagonal and disc tags. The hexagonal tag, with a 
size of ø1.3 mm x 27 µm, resonates at 2.09 MHz.  Its response is sensitive to the 
orientation of the applied AC field.  The disc tag, with a diameter of 1 mm, resonates at 
2.1 MHz.  These simulations do not account for contact with the substrate encountered in 
practice.  Frame-suspended resonators contact the substrate only at the frame whereas the 
others do so over the entire surface. 

 

 

4.2 Fabrication 

In the PCM process, magnetoelastic tags are batch patterned from a ≈27 µm thick 

foil of as-cast Metglas™ 2826MB, an amorphous NiFeMoB alloy [Met08], utilizing a 

“tabless” approach.  In this process, the MetglasTM thin foil is laminated with photoresist 

film on each side.  The photoresist films are then lithographically patterned, resulting in 

the selective removal of portions of the films and revealing the metal beneath.  The 

exposed metal is etched away by an acid spray, leaving the patterned MetglasTM 

structures.  The etching process is isotropic.  Normally, PCM fabricated devices have tabs 

that keep the devices connected to the foil throughout the etch process.  However, the 

“tabless” process is utilized in this work because it allows hundreds of tags to “drop” 

from the MetglasTM foil automatically during the etching process, eliminating the extra 

time, cost, and geometrical variability resulting from an additional tab cutting process.   
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Approximately 500 disc tags (resonator only) and 1000 hexagonal tags (resonator 

and frame) were fabricated.  As shown in Fig. 4-4, the lateral undercut for sidewalls of a 

hexagonal tag is 32 µm.  This is small compared to the size of the tag, so predictability 

and consistency is expected in the resonant frequency across a batch of tags.  The 

undercut can be further reduced by utilizing double-sided lithography and etching instead 

of the one-sided process that is used for this study.  

 

 

Fig. 4-4: SEM pictures of a frame-suspended hexagonal tag show the maximum sidewall 
over-etch is about 32 µm. Inspection of fabricated disc tags revealed a similar edge 
profile. 
 

4.3 Experimental Methods and Results 

4.3.1 Experimental Methods 

As noted in Section 4.1.2.1, two configurations (A and B) of transmit coils and 

receive coils were utilized for characterization of small and large quantities of 

magnetoelastic tags (Fig. 4-2).  Configuration A is suitable for small quantities of tags, as 

it provides a strong and concentrated interrogating field.  Configuration B is suitable only 
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for very large quantities of tags, as it provides a weaker but more uniform interrogating 

field.   

Both configurations included a network analyzer, an RF amplifier, and a receive 

coil.  For these tests, the magnetic bias necessary for the tags was not provided by a 

permanent magnet, but instead by DC Helmholtz coils that were included in the setup.  

The transmit coil(s) and the receive coil were configured orthogonally.  This arrangement 

of coils and symmetrical design of resonators contributed to decoupling the applied AC 

field from the received signal, reducing the signal feedthrough and emphasizing the 

response of the tags.  The network analyzer provided the input signal, which was sent to 

the amplifier and then to the transmit coil.  The receive coil was connected directly to the 

network analyzer as well.  For all data presented here, the baseline signal feedthrough 

(without tags present) has been subtracted. 

In configuration A, the transmit coil and receive coils were placed ≈0.5 cm apart.  

The targeted 1-10 tags were placed close to the transmit coils to provide a strong 

interrogation field.  The transmit and receive coils used in configuration A had four turns 

of 60-strand 22 AWG Litz wire, in which each individual conducting strand is insulated 

to reduce impedance at high frequencies.  These coils had 3.6 cm diameter and 0.5 cm 

axial length.  In configuration B, which provided a weaker but more uniform field that 

could accommodate hundreds of resonators, the applied AC field was provided by two 

Helmholtz coils, each with four turns of the same Litz wire, a diameter of 7.2 cm and an 

axial length of 0.5 cm.  The two Helmholtz coils were separated by 3.6 cm.  The receive 

coil for configuration B was the same as for configuration A.  The DC bias field was 

applied using two additional Helmholtz coils, placed 12 cm apart, each with 12.5 cm 

diameter and 3.3 cm axial length. 
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The applied AC current amplitudes for configuration A and B were 

experimentally measured to be 2.9 A and 0.94 A (N2774A current probe, Agilent, Santa 

Clara, CA).  According to the FEA simulated relationship between magnetic field and the 

AC current (Section 4.1.2.1), the amplitudes of AC magnetic fields used for experiments 

at the location of the tags were estimated to be 7.8 Oe and 0.8 Oe for configurations A 

and B, respectively.   

 
4.3.2 Experimental Results of a Single Magnetoelastic Tag using Configuration A 

Fig. 4-5 shows the typical measured signal amplitude and resonant frequency of a 

hexagonal tag as a function of DC bias.  The signal amplitude reaches a maximum and 

the resonant frequency reaches a minimum [Cop94] when a preferred 31.5 Oe DC bias 

was applied.  In a similar study, the required DC magnetic field bias for disc tags was 

experimentally determined to be 33 Oe.   

 

Fig. 4-5: The typical preferred DC magnetic field bias for a single frame-suspended 
hexagonal tag is experimentally measured to be 31.5 Oe. The signal amplitude is 
normalized to the peak when a preferred DC magnetic field is applied.  At this bias field 
strength, the resonant frequency and signal amplitude reach a minimum and maximum, 
respectively.   
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Fig. 4-6: A typical resonant response of a frame-suspended tag, exhibiting quality factors 
of 100-200 at a resonant frequency of 2.11 MHz. 
 

Because the signal amplitudes of tags vary with different experimental setups and 

the measuring conditions, signal amplitudes in this paper are normalized to the measured 

maximum signal amplitude of a single frame-suspended hexagonal tag with a preferred 

DC bias under the condition that the DC and AC fields are aligned.  The measured signal 

amplitude of a frame-suspended hexagonal tag was 75X that of a disc-shaped tag 

(without a suspension) that was measured for comparison (Fig. 4-6).  The resonant 

response of frame-suspended hexagonal tags showed quality factors of 100-200.   

As expected, the response of the frame-suspended hexagonal tags varies in 

amplitude with the azimuthal orientation of the applied AC magnetic field (Fig. 4-7(a)).  

Although signal amplitude varied with angle, it was larger than that of disc-shaped tags in 

every orientation.  In this measurement, the DC bias magnetic field and the applied AC 

field had the same direction while the axis of the receive coil was orthogonal to the 

directions of those two fields.  Fig. 4-7(b) shows the effect of orientations of DC bias 

field on the signal amplitude while the applied AC field and the received AC field were 

maintained at angles of 90˚ and 0˚ to the tag, respectively.  With a 45˚ offset between the 
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applied AC and DC bias field, the response increased by about 80%. The AC field 

amplitude was 7.8 Oe, whereas the DC field was 31.5 Oe. 

 
 

 

Fig. 4-7: (a) The measured normalized signal amplitudes of a typical frame-suspended 
hexagonal tag and an unsuspended ø1 mm disc-shaped tag as a function of orientation of 
azimuthal angle of applied AC magnetic field.  The DC bias field and applied AC field 
have the same orientation. (b) While changing the direction of the DC bias field, the 
applied AC field and received field are maintained at 90˚ and 0˚ with respect to the tag.  
All signal amplitudes for (a) and (b) are normalized to the maximum signal amplitude 
measured with the applied AC field and DC bias aligned with each other at 90˚ with 
respect to the tag, as used in (a).   
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4.3.3 Experimental Results of Small Quantities of Hexagonal Tags using 

Configurations A and B      

A number of hexagonal tags were measured individually to evaluate the basic 

variability in resonant frequency.  Across 10 hexagonal tags, the average resonant 

frequency was 2.128 MHz with a 0.44% standard deviation.  The small process 

variability facilitates signal superposition when the tags are arrayed or clustered. 

Signal superposition for small quantities of hexagonal tags (up to 10) was 

measured using configuration A.  The tags were placed in a 2X5 array in the proximity of 

the AC transmit coil.  Evidence of signal superposition was provided by the analysis of 4 

tags (Fig. 4-8).  When tested individually, the peak-to-peak amplitude of these tags varied 

from 100 µV to 150 µV, and their resonant frequency ranged from 2.118 to 2.127 MHz.  

When tested together, the peak-to-peak response was 700 µV, and the resonant frequency 

was 2.123 MHz.  As shown in Fig. 4-9, the signal strength increased linearly with the 

number of arrayed tags for modest counts.  

The resonant responses of small quantities of tags were experimentally measured 

by configuration B as well, and normalized to the response of a single tag in 

configuration A.  The equivalent normalized signal amplitudes for 4, 6, 8 and 10 tags in 

configuration B were calculated by multiplying measured signal amplitudes by the ratio 

of the simulated magnetic field strengths: 7.8 Oe/0.8 Oe.  Fig. 4-9 shows a good match 

for the normalized equivalent signal amplitudes measured by the two different 

configurations.  
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Fig. 4-8: Signal superposition for four frame-suspended tags: the overall signal amplitude 
of four tags is 4.67, whereas individual tags have signal amplitude of 0.93, 1, 0.67, and 1, 
normalized to the largest signal amplitude in the group. 
 

 

Fig. 4-9: Signal amplitudes of arrayed frame-suspended tags as a function of number of 
tags ranging from 1-10.  The signal amplitudes are normalized to the largest signal 
amplitude measured amongst 10 tags in configuration A.  The equivalent normalized 
signal amplitudes reported for configuration B are corrected by the ratio of the simulated 
applied magnetic fields in the two configurations. 

 

4.3.4 Experimental Results of Large Quantities of Randomly Clustered Tags using 

Configuration B      

The frequency responses of large clusters of hexagonal tags were experimentally 

evaluated.  These tags were randomly clustered because of the difficulty in arraying such 

large quantities with preferred orientation and with convex surfaces away from the 
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substrate.  The inset within Fig. 4-10 shows the typical resonant response for 500 

randomly clustered frame-suspended tags at a resonant frequency of 2.13 MHz, 

presenting a signal amplitude that is ≈500X the signal amplitude from a single tag.  Fig. 

10 also indicates that although there may be signal loss due to random orientation and 

placement of the tags, the signal amplitude varied in approximately linear fashion with 

the number of tags.  Interaction between tags might have contributed to the compensation 

of the signal loss expected by random tag orientations and placement, but this requires 

further study that is beyond the scope of this paper.  

 

Fig. 4-10: Equivalent normalized signal amplitudes of randomly clustered hexagonal tags 
as a function of number of tags (up to 500).  Test configuration B was used. 
 
 

4.4 Discussion 

In order to maintain the signal strength at millimeter dimensions for 

magnetoelastic tags, two features were investigated: frame suspensions and signal 

superposition.  Experimental results showed that the frame suspension provides a 

significant signal amplitude increase for a single magnetoelastic tag.  Although the frame 

suspension was demonstrated for hexagonal tags, a similar approach for performance 
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improvement may also apply to typical conventional rectangular strips.  For example, a 

strip can be suspended by two springs connecting its center to an outer frame.   

It was also confirmed that signal superposition boosts the signal strength 

dramatically for both carefully arrayed or randomly clustered small and large quantities 

of magnetoelastic tags.  The signal superposition for large quantities (up to 500) of 

clustered magnetoelastic tags was experimentally evaluated.  The advantages of 

miniaturization as demonstrated in this work is the ability to tag small items individually 

or the ability to distribute tags into networks of small tubes or crevices.  Clustered large 

quantities of these tags can be utilized for applications that require long-range detection.  

A package with appropriate support and an integrated DC bias magnetic material 

requires further consideration.  For a product-level implementation, the magnetoelastic 

tag should be supported by the frame so that the resonant element can vibrate freely.  The 

package should also include a magnetic material that provides the DC field bias.  The 

biasing magnet material – preferably with a geometry similar to that of the tag – should 

have high coercivity, and a material like Arnokrome™ (an iron-chromium-cobalt alloy) 

may fit the purpose.  

Metglas™ 2826MB has been used for this work, but other amorphous alloys with 

high magnetostrictivity, good mechanical properties, and demanding a modest DC bias 

field might provide better performance than this work.  Although the PCM process is 

appropriate for the fabrication of hundreds of magnetoelastic tags, other low cost 

fabrication processes capable of producing large quantities may be worthwhile to explore.  

MetglasTM and other amorphous alloys can be fabricated with desired geometry by metal 

alloy quenching [Che89].  Typically, metal powders or granules with preselected portions 

are melted and homogenized, and then the molten alloy is rapidly quenched on a surface 

or in a recess with the desired geometry.   
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Annealing of the magnetoelastic material – especially transverse field annealing – 

can potentially improve the performance [Bro79].  However, transverse field annealing 

will likely increase the signal strength sensitivity to the orientation of the applied 

magnetic field because, unlike the as-cast material, a transverse-field-annealed material 

has induced magnetic anisotropy.  Implementation of a transverse-field-annealed tag 

would require further study for the specific intended application.     

The detection range is normally limited by the interrogation and detection 

approach – especially in how the approach accommodates transmitter-to-receiver 

feedthrough.  This work employed spatial separation of applied and received signals 

afforded by the coupled longitudinal and transverse resonant motion of the tags.  

However, other approaches may complement this approach and further enhance 

transmitter-to-receiver isolation and thereby increase range.  For example, a pulsed 

interrogating signal can be used, and the magnetic flux generated during the “ring-down” 

vibration of tags could be detected so that the excitation signal is temporally decoupled 

from the received signal.  An acoustic interrogating signal, instead of a magnetic field 

signal, could also be used for decoupling the excitation signal from the receive signal. 

 

4.5 Summary 

This chapter described the investigation of PCM fabricated hexagonal 

magnetoelastic tags of about ø1.3 mm X 27 µm, which is approximately 100X smaller 

than commercial tags currently in use.  The preferred DC field bias for the fabricated tags 

was ≈31.5 Oe.  The tags showed quality factors of 100-200.  The frame suspension of 

hexagonal tags resulted in ≈75X improvement in signal amplitude compared to that of 

non-suspended tags with similar size, frequency, and DC field bias orientation.  For the 

frame-suspended hexagonal tags, misalignment DC bias field by 45˚ with respect to the 
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applied AC field provided another 80% improvement in signal amplitude.  Although the 

frame suspension is demonstrated in miniaturized magnetoelastic tags, it may also be 

used to improve the performance of commercial tags or other magnetoelastic sensors.  

The signal amplitude of a hexagonal tag was a function of the azimuthal orientation of 

the applied AC magnetic field.  Varying signal was observed for different orientations.  

For 1-10 arrayed tags, the signal amplitudes were at least the sum of the amplitude of 

each tag.  Across 10 hexagonal tags, the average resonant frequency was 2.13 MHz, with 

a standard deviation of 0.44%.  Such a small variation of frequency response favors 

signal superposition and increased signal strength for ensemble detection.  Signal 

superposition was also observed for up to 500 clustered tags.  
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Chapter 5 

Conclusions and Future Work 

5.1 Performance Summary  

This work studied wireless tagging and actuation with shaped magnetoelastic 

transducers.  Magnetoelastic resonant rotary motors were studied as a classic actuator 

example while the magnetoelastic tags were also investigated to explore the limitations of 

miniaturization. 

 

5.1.1 Magnetoelastic Resonant Rotary Motor Performance Summary 

 The first generation motors demonstrate a standing wave resonant rotary motor, 

which uses a stator with a bilayer of silicon (ø8 mm x 65 µm thick) and magnetoelastic 

foil (Metglas™ 2826MB bulk foil, ø8 mm x 25 µm thick) to tailor the stiffness and mode 

shapes.   The motor provides bi-directional rotation capability.  The counterclockwise 

mode provides a rotation rate of ≈100 rpm, start torque of 30 nN·m, a step size of 74 

milli-degree and a capability for driving a 100 mg payload while a 8 Oe DC and a 6 Oe-

amplitude AC magnetic field are applied.  One advantage of the magnetoelastic motor is 

the wireless actuation.  This reduces the complexity of integrating the control circuit with 

the device and facilitates miniaturization.  The motor also provides high payload (up to 

100 mg), which is preferred for applications that requires the rotary stage to be able to 

carry and drive other hybrid-integrated sensors.  The magnetoelastic motors can operate 

with a very small step (less than 10 milli-degree), which can potentially provide very 

accurate rotation resolution with proper control design.   
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The second-generation of motors include both standing wave and traveling wave 

designs (ø5 mm stator) with integrated capacitive sensors for real-time position 

measurement and speed estimation.  Clockwise and counterclockwise mode shapes with 

resonant frequencies of 12 kHz and 22.4 kHz, respectively, are measured for the standing 

wave motor.  Two mode shapes (with π/2 spatial phase difference) at resonant 

frequencies of 30.2 kHz and 31.7 kHz are measured for the traveling wave motor.   

 

5.1.2 Promising Advantages of Magnetoelastic Actuation 

The output power, one important performance metric for practical applications, is 

compared between different types of chip-scale rotary actuation methods in Fig. 5-1.  In 

general, piezoelectric motors provide relatively large output power.  There is also 

significant improvement that has been achieved for electrostatic and electromagnetic 

micromotors over the years.  The first generation magnetoelastic motors provide 

moderate performance among all the chip-scale motors; however, considering that 

magnetoelastic motors are early in development, there is still large space for 

improvement.  Because of the similar energy density and coupling coefficient [Lun97, 

Wan07], the theoretical potential performance of magnetoelastic motors is comparable to 

that of piezoelectric motors.  In addition, the unique promising advantages of 

magnetoelastic motors lie in wireless actuation and simplified system architecture.  
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Fig. 5-1: Comparison of the output power of different types chip-scale rotatory actuation 
methods: electromagnetic (EM), electrostatic (ES), piezoelectric (PZ) and magnetoelastic 
(ME). 
 

A major advantage of the magnetoelastic motors is wireless actuation.  Although 

electromagnetic motors are also wirelessly driven, the driving distances are typically in 

micron scale [Guc91, Liv04].  In this work, at least a few centimeters of actuation 

distance is achieved for magnetoelastic rotary motors, because a uniform, unidirectional 

magnetic field is all that needed for actuating the standing wave motor.  The actuation 

distance can be further increased by sacrificing power efficiency due to energy loss in the 

coils and the intervening medium (e.g. air).  This unique advantage provides an actuation 

approach for remote applications, such as wireless implantable medical devices.  The 

wireless actuation also allows operation in confined space, in which the integration of the 

power supply or other active electric components is a challenge.  

Another major benefit of magnetoelastic actuation lies in the simplified 

architecture.  The magnetoelastic actuation method described in this work is developed 

based on 2D structures with integration between the magnetoelastic material and silicon.  
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In addition, this magnetoelastic actuation method utilizes passive structures.  

Miniaturization can be easily achieved or more functional components can be easily 

integrated into the motor by taking advantage of the space freed by the reduced 

requirement for onboard power and wiring.  This is demonstrated in the second-

generation motors with the integration of the capacitive sensing electrodes. 

 
5.1.2 Miniaturization of Magnetoelastic Tags 

Another major achievement of this work is the miniaturization of magnetoelastic 

tags while maintaining the response signal strength.  Miniaturized magnetoelastic tags 

have an overall size of ø1.3 mm x 27 µm and a resonant frequency as high as 2.13 MHz.  

The tags are about 100x smaller than the commercial anti-theft magnetoelastic tags.  A 

unique feature is the frame-suspension, which results in ≈75x improvement in signal 

amplitude compared to that of non-suspended disc tags with similar size and frequency.  

The signal amplitude can be boosted by utilizing signal superposition of an ensemble of 

tags.  This superposition is experimentally measured for up to 500 clustered 

magnetoelastic tags.   

Although these two approaches provide a significant increase in the response 

signal strength of magnetoelastic tags, the detection range is limited by feedthrough from 

the transmit signal in the current interrogation approach.  For future designs, it is 

important to investigate other interrogation approaches for increasing the detection range.   

 

5.2 Future Work 

5.2.1 Integrated Wafer-Level Fabrication Process for Magnetoelastic Motors 

There are some potential design improvements worthy to be studied.  For standing 

wave motors, miniaturization is facilitated because they are made with micro-fabricated 
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passive components.  A layer with proper design of hub and cap structures is necessary to 

reduce the lateral and out-of-plane motion of the rotor.  This layer should be attached to 

the stator with good alignment.  A close-loop control system is also preferred for a 

precise rotational output.  For the prototype of the traveling wave motor, the frequency 

mismatch between the desired mode shapes compromises the performance.  Thus, the 

next design should focus on reducing this frequency mismatch by either using an 

isotropic material or compensating for the anisotropy of silicon with targeted mass and 

stiffness distributions.  Minimizing susceptibility of the geometry to asymmetry as a 

result of fabrication is also important.  Another solution is to tune the resonant 

frequencies of the stator by precisely trimming the stator or springs after fabrication.   

For the first-generation magnetoelastic rotary motors, a stainless steel hub with a 

diameter of 1 mm is used for constraining the rotatory motion.  However, the lack of 

control of the gap between the hub and rotor results in relatively large lateral walking of 

the rotor.  The center hub also does not have any features that prevent the out-of-plane 

wobbling of the rotor.  The relatively large diameter of the hub also increases frictional 

torque that reduces rotation rate and motor efficiency.  Thus, one future work should 

focus on integration of the hub and rotor with the stator with a wafer-level fabrication 

process.  In the next sub-sections, a possible architecture is first given, then the 

fabrication processes for such an approach are also discussed.  

 
5.2.1.1 Architecture 

A possible architecture of the magnetoelastic resonant motors with integrated 

fabrication processes for stators and rotors is shown in Fig. 5-2.  It consists of a stator 

with a bilayer of silicon and magnetoelastic material, and a cap rotor layer with self-

alignment features.  The rotor and the capping layer are made out of a silicon on insulator 
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(SOI) wafer.  The rotor layer and the stator layer are fabricated separately and can be 

bonded at the wafer or die level.  The rotor is released after the bonding process.  The 

detailed description of the fabrication processes is given in the next sub-section.  

 
Fig. 5-2: 3D schematic and each layer of Gen.2.0 motor design. The design the rotor 
layer allows integration of alignment marks for the inertial sensors or fabricated together 
with the rotor layer.  

 

5.2.1.2 Overall Process Description 

The proposed fabrication process includes a standard silicon wafer and a SOI 

wafer, as shown in Fig. 5-3.  The wafer level integration can be realized by fabricating a 

rotor and a capping layer simultaneously from a SOI wafer.  The rotor is released after 

bonding the rotor layer to the stator layer.  The lateral gaps between the rotor and the hub 

are defined lithographically (less than 10 µm).  The out-of-plane gap can be controlled by 

adjusting the thickness of the bonding layer.  This approach provides a lateral and an out-

of-plane misalignments that are less than 10 µm.  The Metglas™ layer can be fabricated 

separately and bonded with the stator in the same process, or it can be deposited directly 

on the silicon.  

 
Fig. 5-3: A schematic of the cross-section of the bonded rotor layer, stator layer and 
Metglas™ layer. 
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 The stator can be fabricated using the same process developed for second-

generation magnetoelastic motors described in Chapter 3.  In addition, the magnetoelastic 

material can be directly deposited and patterned on the backside of the silicon.  

The rotor is fabricated from a SOI wafer with a 50 µm thick device layer and a 

340 µm thick handle layer, as shown in Fig. 5-4.  First, a 2 µm thick silicon nitride and 2 

µm silicon oxide are deposited on the device layer using PECVD.  The oxide is then 

patterned using BHF wet etch.  A 0.5 thick Al layer is evaporated then patterned on the 

handle layer by using lift-off.  Another 2 µm silicon nitride layer is then deposited on the 

top of the aluminum layer.  This layer is for passivation of the electrodes to reduce 

shorting between the rotor and stator layers and to allow active electrostatic rotor 

lockdown, if desired.  A Cr/Au (0.1 µm/0.5 µm) seed layer is evaporated and patterned 

on the handle layer by using lift-off.  An Indium layer with thickness of 6 µm is 

electroplated on the device layer for gold rich Au-In bonding between the rotor wafer and 

the stator wafer.  A thick PR is coated and patterned as the mask for the DRIE steps.  

Silicon nitride is etched using RIE and the silicon is DRIE etched down to the buried 

oxide as an etching stop layer.  Then, the silicon of the device layer is DRIE etched using 

silicon oxide as an etching mask.  An Al2O3 layer is then deposited all over the devices.  

The Al2O3 layer at the bottom of the trench in the device layer is selectively etched using 

RIE to expose the silicon.  The exposed silicon area is DRIE etched to the buried oxide.  

After that, an isotropic silicon etch allows undercutting the silicon structures with small 

dimension, while leaving the wide structures in the device layer remaining in contact with 

the handle layer through the buried oxide.   The fabrication of the rotor layer is 

completed.   
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Fig. 5-4: Fabrication processes of a rotor layer. The fabricated rotor layer has a center 
hub that confines the lateral and in-plane motion of the rotor.  The center hub design 
reduces the friction force between the hub and rotor significantly compared to an outer 
hub, which is more easily to be fabricated.  
 

After fabrication of the stator and rotor separately, the rotor wafer and stator layer 

is first bonded using gold rich Au-In bonding. Then, the rotor can be released or detached 

from the capping layer using wet etching.  Finally, MetglasTM is bonded to the stator 

wafer, which completes the fabrication.   
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5.2.2 Magnetoelastic Tags 

5.2.2.1 Increase Detection Range by Exploring Different Interrogation Approaches 
 

Although the frame-suspended magnetoelastc tags provide a significant advantage 

in signal strength compared to that of non-suspended magnetoelastic tags, the 

interrogating range is limited by the feedthrough from the transmit signal.  For current 

interrogating approach, the receive signal is a combination of the transmit signal and the 

response signal generated by the tags, making it difficult to extract the latter signal when 

the sensing distance increases and the transmit signal is very strong.  Other approaches 

are worth studying. 

One promising approach is to differentiate the transmit signal and the receive 

signal in the time domain.  First, a transmit signal that can be a pulse or a short period of 

AC signal is sent to the tags.  Then the receive coils start to pick up the signal generated 

during the “ring-down” vibration of the tags.  Because the miniaturized magnetoelastic 

tags resonates at a very high frequency, the transmit coil should have a relatively small 

quality factor, in order to prevent the transmit signal being generated after the period of 

the applied exciting signal.   In the opposite, the receive coils should have a high quality 

factor and a resonant frequency similar to that of the tags for a strong receiving signal 

response.  For the magnetoelastic tags, high quality factors are preferred for a long “ring-

down” vibration time.  The quality factors of the magnetoelastic tags can be increased by 

changing the suspensions (i.e. reducing anchor loss), or by using a vacuum package, or 

by bonding the magnetoelastic material to other materials with high quality factors.   

Another approach is to differentiate the transmit signal and receive signal by 

changing the exciting physical domain.  Instead of driving the vibration of the 

magnetoelastic tags magnetically, an acoustic signal can be used for excitation.  In that 

case, mainly the electromagnetic response signal from the tags is picked up by the receive 
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coils.  However, appropriate approaches for generating and propagating an acoustic wave 

that targets and sufficiently excites the tags remain a challenge.  

 
5.2.2.2 Further Miniaturization of the Magnetoelastic Tags 
 

For some applications, magnetoelastic tags have to be distributed through a very 

small space into the detection regions of interest.  This requires further miniaturization of 

the tags.  However, when the size of the magnetoelastic tags is further reduced, the 

sensitivity of resonant frequency with respect to the dimensions of the tags increases 

dramatically, as shown in Fig. 5-5.  Thus, a low cost fabrication approach for large 

quantities of magnetoelastic tags with accuracy of tens of microns requires further study.  

 

Fig. 5-5: FEA simulation results of the resonant frequency versus the size of a disc or a 
“ring” magnetoelastic tag.  
 

5.3 Major Contributions to the Field 
 

One focus of this work is the wireless magnetoelastic resonant rotary motor.  The 

concept of utilizing 2D magnetoelastic structures for standing wave and traveling wave 

resonant motors is new to the field.  The successful demonstration of a bi-layer of the 

silicon and bulk magnetoelastic material shows the promising potential for actuation.  

D 

W 

For a ø2 mm ring 
with 400 µm width, 
D/W=10/2. 
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One specific advantage – wireless actuation – makes miniature magnetoelastic motors an 

attractive candidate for wireless microsystems.   

Another focus of this work lies in miniaturization of the magnetoelastic tags.  

With proper designs and packages, the frame-suspension concept can also be applied to 

other magnetoelastic tags for an improvement of response signal strength.  The signal 

strength can also be boosted by utilizing small or large quantities of arrayed or clustered 

magnetoelastic tags.  This opens a new window for many applications.  For example, 

large quantities of magnetoelastic tags can be distributed into a network of cracks or 

pipes, which then can be mapped by the detection of the locations of the accumulated 

magnetoelastic tags.   
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APPENDIX A 

Dynamic Model of Magnetoelastic Standing Wave Rotary Motors 

 

Precision measurement of rotary stages requires exceptionally high motion 

accuracies in order to meet gyroscope calibration requirements of rotation at up to 1000 

degree/s over arbitrary angles with a resolution less than ±10 milli-degree. To reach such 

accuracy, the dynamic behavior of a given micro-motor must be very well understood 

and distilled into an analytical or numerical model. A model of the motor dynamics that 

is simple yet captures the essential behaviors, including transient and steady state stator 

motions, stator-to-rotor momentum transfer mechanics and energy loss mechanisms 

could be used for predictive design in Kalman filters or other estimation and control 

schemes for motion reconstruction from intermittently sampled rotor position data and in 

servo-control systems that improve motion accuracy.  The basic development of such a 

model is the subject of this appendix3. 

The dynamic model presented in this paper focuses on the standing wave 

magnetoelastic rotary motors described in Chapters 2 and 3 of this thesis.  Both the stator 

and rotor motion is substantially affected by contact interactions between the two.  Thus, 

the model presented here captures the second order linear system dynamics of the stator 

and the linear and angular momentum transfer between the stator and rotor, coupled with 

the rigid body dynamic response of the rotor. This model is coupled with the rigid body 

dynamic response of a rotor to model magnetoelastic motor behavior. 

                                                
3 The work in this appendix was done in collaboration with Mr. Jinhong Qu, Dr. Scott Green, and Prof. Kenn Oldham. 
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A.1 Dynamic Rotary Motor Model 

The basic approach to the dynamic rotary motor model is first described, followed 

by the assumptions made by the model. Then, the stator geometry and dynamic motion, 

both steady state and transient, are discussed; a second-order linear model of the stator 

will be introduced.  Next, the analyses around the collision time points are developed 

based on the linear model of stator.  The final step is to model the motion of the rotor 

between two separate collisions.  At the end of this section, the typical model output is 

presented and the parameters in this model are discussed. 

 

A.1.1 Modeling Approach 

A.1.1.1 Modeling Method 

To understand and predict the dynamic motion of the motor, both a Parametric 

Modal Model (PMM) and a Finite Element Model are used. The Parametric Modal 

Model is based on the parameters of the stator and rotor measured experimentally, which 

can be used to predict the dynamic motion of the stator and rotor.  It captures the major 

features of the motor motion, and is especially useful in simulating long durations of 

operation with many stator-to-rotor collisions.  The Finite Element Model (FEM) is based 

on a multiphysics model implemented in COMSOL and is used to predict additional 

behavior of the stator, including mode shapes, driven stator amplitude, and residual 

deformation.  It is helpful to predict the motion of stator before fabrication and serves to 

validate some assumptions used in the PMM. 
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A.1.1.2 Flow of the Parametric Modal Model 

The first step in the parametric model is to determine the parameters of the device 

(geometrical parameters, modal frequencies, damping factors), and then initialize the 

model.  Subsequently, in each step, the motion of rotor and stator is estimated by a 

transient motion model, until a collision between the stator and rotor is determined to 

occur.  If a collision occurs, the states after collision are calculated.  If these states are 

such that rotor and stator separation occurs, transient motion is again calculated until the 

next collision point.  If the states indicate that no separation occurs, further instantaneous 

collisions are simulated until separation does occur. 

 
A.1.1.3 Finite Element Model 

The custom magneto-mechanical finite element technique described in Chapter 2 

is used to evaluate a number of stator behaviors that are used in the dynamic rotary motor 

model, including: deformation due to thermal expansion mismatch between the silicon 

and MetglasTM layers; eigenfrequency and mode shapes of the stator (both with and 

without thermal expansion deformation), magnetomechanical response of the stator 

(again, with and without thermal expansion deformation), and impulse response of the 

stator.  For predictive design, the target stator geometry can be implemented in the FEM 

and analyzed.  For the model verification done in this paper, the measured stator 

geometry is implemented and analyzed. 

The following assumptions are made in deriving the dynamic model for stator and 

rotor interaction: 

1. The teeth are treated as rectangular bodies with a negligible moment of inertia. 

2. A collision occurs at the inner edge of the teeth, and the measurement of tooth 

motion is assumed to be at the center of mass of the tooth. 
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3. During contact, slippage could occur between the teeth and the rotor. The friction 

force is proportional to the normal force without slippage (i.e. a dry Coulomb friction 

model). 

4. A pair of teeth, each tooth located on opposite sides of the stator, collides with the 

rotor at the same time with identical velocities (some randomness of each pair of 

teeth will later be introduced to account for non-uniformity of the fabricated system). 

5. The mass distribution of the stator is uniform. 

6. The damping coefficients and spring constants of the stator are mode-dependent 

constants. 

Important parameters used in the dynamic model are introduced here at the 

beginning of the derivation. First, as shown in Table A-1, the velocities of the stator and 

rotor in tangential and vertical directions are defined, both before and after a collision 

occurs. 

 

Table A-1: The definitions of different dynamic parameters of micro-motor 
Parameter Parameter description Positive Direction 
𝑣!"# Vertical velocity of rotor, after collision Opposite to gravity 
𝑣!"# Vertical velocity of rotor, before collision Opposite to gravity 
𝑣!"# Vertical velocity of stator at tooth position, after collision Opposite to gravity 
𝑣!"# Vertical velocity of stator at tooth position, before collision Opposite to gravity 
𝑣!"# Tangential velocity of rotor, after collision Clockwise 
𝑣!"# Tangential velocity of rotor, before collision Clockwise 
𝑣!"# Tangential velocity of stator at tooth position, after collision Clockwise 
𝑣!"# Tangential velocity of stator at tooth position, before collision Clockwise 

 

Four different forces are defined in the derivation.  𝐹! stands for the friction 

between stator and rotor in the tangential direction and 𝐹! stands for the normal force 

between the stator and rotor in vertical direction.  𝑓! is the magnetic force acting on the 

stator, generated by the coils, resulting in the out-of-plane driven stator motion.    𝑓! is the 

impulse force, and appears only when a vertical collision occurs between stator and rotor. 
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In this case, 𝐹! = 𝑓!.  Fig. A-1 shows all the velocity and force parameters on the stator 

and rotor. Also 𝑢(𝜃, 𝑡) is defined as the vertical displacement of the stator as a function 

of time (t) at the angular position on the stator (𝜃).  Other important definitions of stator 

dimensions are illustrated in Fig. A-2. 

 

Fig. A-1: Velocities and forces occurring during motor operation: (a) directions of 
velocities before collision; (b) free body diagram of collision; (c) directions of velocities 
after collision. 

 

Fig. A-2: Stator geometry and key dimensional parameters. 
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A.1.2 Stator Geometry and Dynamics 

The teeth on the stator are offset from the locations of maximum motion for both 

actuation modes. This offset occurs so that the teeth will move periodically under both of 

the actuation modes, with opposite directions between modes. When a collision between 

a tooth on the stator and the rotor occurs, the impact force between them changes the 

velocity of the rotor and stator both vertically and tangentially.  A series of these 

collisions over time continues to transfer overall positive angular momentum to the rotor 

during operation. 

 
A.1.2.1 FEA results: Resonant Mode Shapes and Static Deformation 

The dynamic model introduced here is applicable to a standing wave motor as 

described in Chapters 2 and 3.  Via the applied magnetic field or as a result of collisions 

between the teeth and the rotor, different vibration modes of the stator can be excited 

(Fig. A-3).  The lowest frequency mode excited, referred to as mode A in this appendix, 

is a pseudo-rigid-body motion of the entire stator ring.  The magnetoelastically-driven 

modes are the ones used to generate the rotary motion and are referred to as modes B and 

C in this appendix.  Two other tilting modes exist between mode A and modes B and C; 

however, these are not strongly excited by the symmetric collisions nor by the driving 

magnetic field.  In the prototype motor studied, mode B occurs at about 6.3 kHz and has 

its maximum vibration position located between the suspensions connections; this mode 

shape causes the rotor to rotate clockwise. Mode C occurs at about 7.4 kHz and has its 

maximum vibration positions at the connections of the stator to the suspension; mode C 

causes the rotor to rotate counter-clockwise.   
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Fig. A-3: Excited stator mode shapes: (1) pseudo-rigid-body mode (first mode, mode A); 
(2) first actuation mode (fourth mode, mode B, clockwise); (3) second actuation mode 
(fifth mode, mode C, counterclockwise). 
 

Eigenfrequencies and mode shapes for the stator can also be calculated using the 

FEM.  For modes B and C, the driving magnetic field is implemented by assigning a 

surface current to the curved surface of a cylindrical domain positioned around the stator, 

with the long axis of the cylinder in the direction of the driving field. The surface current 

density amplitude is specified such that the resulting magnetic field amplitude is the same 

as that generated by the experimentally-used Helmholtz coils at the position of the motor.  

For mode A, a periodic force is applied to the top surfaces of the teeth in order to excite 

that mode shape.  A frequency sweep analysis is performed near the eigenfrequencies of 

interest to estimate the steady-state amplitude of the driven mode shapes, and to estimate 

the quality factor (and associated damping coefficient) of the resonant peaks. 

An analysis of the unstressed stator (neglecting thermal expansion mismatch) and 

an analysis of the pre-stressed stator were performed.  Calculated mode shapes, evaluated 

as displacements from the unstressed or pre-stressed state, were identical for both 

analyses; however, the pre-stressed eigenfrequency analysis exhibited higher modal 

frequencies for each shape.  It was also found that the driven amplitudes, mode shapes, 
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and quality factors were not significantly different between unstressed and pre-stressed 

analyses. The residual deformation leads to the assumption that the collision between 

stator and rotor happens at the inner edge of the teeth (Fig. A-4). 

 

Fig. A-4: residual deformation of the stator from FEA. 
 
 
 
A.1.2.2 Tooth Directional Relationships 

The relation between tangential and vertical motion of the stator teeth becomes 

useful in deriving momentum transfer effects, and can be derived from the geometry of 

the stator before dynamic interactions are considered (Fig. A-2). The stator vibrates in a 

given mode shape with the amplitude of out-of-plane motion of the neutral axis (𝐴) 

described by a sinusoidal function of angular (𝜃) and radial (r) position, 

𝐴 = 𝐴! +
!!!!! !!!!

!!!!!
                                                  (A-1) 

where Ri and Ro are the inner and outer radii of the stator, and Ai and Ao are the 

amplitudes of displacement at the inner and outer radii of the stator, respectively, of its 

antinodes of vibration. These amplitudes are determined by the driving field strength and 

geometry.  

During vibration, the tooth tilts through an angle of amplitude (𝜃!"#!). This tilting 

angle will cause both vertical (𝛿𝑧) and tangential (𝛿𝜃) motion. The motion is periodic, the 

amplitude of which can be described as follows: 

𝛿𝜃 = !!!!"!
!

𝑠𝑖𝑛  (𝜃!"#!)         (A-2a) 
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𝛿𝑧 = 𝐴𝑐𝑜𝑠(2𝜃!) +
!!!!!!

!
(𝑐𝑜𝑠 𝜃!"#! − 1)           (A-2b) 

The tilt angle amplitude is the derivative of the vertical displacement with respect 

to the tangential displacement at tooth position (r) when the small angle approximation is 

made for  𝜃!"!". 

𝑡𝑎𝑛 𝜃!"#! = !"#
!"!!

= !!!"#$ !!!
!

       (A-3) 

Also the radial position (r) is the inner radius of tooth mass (𝑅!) because of the 

residual deformation of stator caused by the stress remained in the stator from 

fabrication: 

𝜃!"#! ≈ 𝑡𝑎𝑛 𝜃!"#! = !!!"#$ !!!
!!

    (A-4) 

𝛿𝜃 = !!!!!
!

𝑠𝑖𝑛  (𝜃!"#!) ≈
!(!!!!!!)!"# !!!

!!
   (A-5a) 

𝛿𝑧 = 𝐴𝑐𝑜𝑠(2𝜃!) +
!!!!!!

!
(𝑐𝑜𝑠 𝜃!"!" − 1) ≈ 𝐴𝑐𝑜𝑠(2𝜃!)  (A-5b) 

 Hence, tangential and vertical motions are related by the stator geometric 

parameters.  

 

A.1.2.3 Steady State Motion 

Steady state motion of the stator is generated only when it is under the influence 

of a steady state magnetic field alone. While the actual magnetic force on the stator 

cannot be measured accurately, by assuming the stator as a mass-spring-damper system, 

its magnitude can be inferred by observing the steady-state motion of different positions 

on the stator before the rotor is present.  Given the proposed model of the stator, the 

displacement of a given position on stator is expected to be a sinusoidal function with 

respect to time, while the relation between the amplitude of vertical and tangential motion 

is derived from the geometry of the stator. 
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The stator motion at each tooth position is periodic under a driving magnetic field 

of a certain frequency (f), so the position of the tooth during steady-state motion in 

vertical (𝑥!",!!) and tangential (𝑥!",!!) directions can be described as follows: 

𝑥!",!! =   𝐴cos(2𝜃!)sin  (2𝜋𝑓𝑡)                  (A-6a) 

𝑥!",!! =
!(!!!!"!)!"# !!!

!
sin(2𝜋𝑓𝑡)        (A-6b) 

And the stator vertical (𝑣!",!!) and tangential (𝑣!",!!) velocity at tooth position is 

just the derivative of the position 

𝑣!",!! =   2𝜋𝑓𝐴cos(2𝜃!)cos(2𝜋𝑓𝑡)   (A-7a) 

𝑣!",!! =
!!"#(!!!!"!)!"# !!!

!
cos(2𝜋𝑓𝑡)      (A-7b) 

The upward direction is positive for vertical motion and velocity, and the 

clockwise direction is positive for tangential motion and velocity. 

 

A.1.2.4 Stator Impulse Response 

The stator is treated as a ring with uniform mass distribution. Once the inertia of 

the teeth is assumed to be negligible, it is reasonable to model the stator as a linear mass-

spring-damper system with respect to angle (𝜃) and time (𝑡):  

𝑚𝑢 𝜃, 𝑡 + 𝑏 𝜃 𝑢 𝜃, 𝑡 + 𝑘 𝜃 𝑢 𝜃, 𝑡 = 𝑓! + 𝑓!  (A-8) 

in which mass (𝑚), damping coefficient (𝑏), the spring constant (𝑘), and both forces 𝑓! 

(magnetic force from the coil) and 𝑓! (impulsive force due to collision with the rotor) are 

given in units per angle. For example, 𝑚 is defined as !!
!!

, in which 𝑚! is the mass of the 

stator. 

 Taking the displacement of the stator at the inner radius of the tooth (Rt) as a 

function of time and angle (𝑢(𝜃, 𝑡) ), the displacement can be decoupled into a 

combination of three different modes, 
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𝑢 𝜃, 𝑡 = 𝑔! 𝑡 + 𝑔! 𝑡 sin(2𝜃) + 𝑔!(𝑡)cos(2𝜃)  (A-9) 

in which the first mode is the pseudo-rigid-body motion (mode A), and the terms with 

sin 2𝜃  and cos(2𝜃) correspond to the two actuation modes (modes B and C). 

The impulsive force between the stator and the rotor, acting on the stator, can be 

determined by linear momentum conservation at the rotor.  Describing the impulse force 

𝑓! as force per angle, the expression for momentum transfer from an impulse impact 

between the rotor and stator becomes as follows: 

𝑓! = −!! !!"!!!" ! !!!!
!∆!

   (A-11a) 

Here, the interaction force is placed at the tooth position, 𝜃!, and determined by 

the rotor velocity before (𝑣!") and after (𝑣!") collision. 𝛿 𝑡 − 𝑡!  is the Dirac delta 

function defined at the collision time (𝑡!).  When wobble and tilting of the rotor are 

insignificant, two teeth in each set are assumed to be identical to each other, and the rotor 

will collide with both teeth in a set simultaneously.  The interaction force is assumed to 

act on the entire arc length of the tooth in angle direction at lateral surface, occupying 

angle of ∆𝜃.  Therefore the force could be expressed as a function of pulse train with 

amplitude  − !
!
𝑚!(𝑣!" − 𝑣!"), duty cycle (∆𝜃) and period (π). 

Applying a Fourier series expansion to the spatial distribution of the interaction 

force, (A-11a) becomes 

𝑓! = − !
!∆!

𝑚! 𝑣!" − 𝑣!" 𝛿 𝑡 − 𝑡!
∆!
!
+ !

!"
𝑠𝑖𝑛 𝑛∆𝜃 cos 2𝑛 𝜃 − 𝜃!!

!!!  (A-11b) 

For  ∆𝜃 ≪ 𝜋, (A-11b) simplifies to:  

𝑓! ≈ − !
!
𝑚! 𝑣!" − 𝑣!" 𝛿 𝑡 − 𝑡!

!
!
+ !

!
𝑐𝑜𝑠 2𝑛𝜃 𝑐𝑜𝑠 2𝑛𝜃! + 𝑠𝑖𝑛 2𝑛𝜃 𝑠𝑖𝑛 2𝑛𝜃!!

!!!  

 (A-11c) 

Only the first three terms in the Fourier series are listed here because only the 

response of the rigid body and actuation modes are important in this model, and later 
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terms are small enough to be neglected because the frequencies of the later terms are 

well-separated higher modes which are difficult to excite and relatively small in 

amplitude. The interaction force is thus finally reduced to the form: 

𝑓! ≈ − !
!
𝑚!(𝑣!! − 𝑣!")𝛿(𝑡 − 𝑡!)[

!
!
+ !

!
𝑐𝑜𝑠 2𝜃 𝑐𝑜𝑠 2𝜃! + 𝑠𝑖𝑛 2𝜃 𝑠𝑖𝑛 2𝑛𝜃! ]  (A-11d) 

From the assumption that the damping coefficient (𝑏) and the spring constant (𝑘) 

are constants depending on the modes, the second order linear equation of the stator can 

be decoupled into three second order linear equations with different damping coefficients 

and spring constants. Since all terms in (A-9), (A-10), (A-11d) in this system are known, 

the second order linear equation of motion of the system in (A-8) can be decoupled into 

three equations: 

𝑚𝑔! 𝑡 + 𝑏!𝑔! 𝑡 + 𝑘!𝑔! 𝑡 = − !
!!
𝑚!(𝑣!"# − 𝑣!"#)𝛿(𝑡 − 𝑡!)          (A-12a) 

𝑚𝑔! 𝑡 + 𝑏!𝑔! 𝑡 + 𝑘!𝑔! 𝑡 = − !
!
𝑚! 𝑣!"# − 𝑣!"# 𝛿 𝑡 − 𝑡! 𝑠𝑖𝑛 2𝜃! + 𝑓!" 𝑠𝑖𝑛 2𝜋𝑓!𝑡     

(A-12b) 

𝑚𝑔! 𝑡 + 𝑏!𝑔! 𝑡 + 𝑘!𝑔! 𝑡 = − !
!
𝑚! 𝑣!"# − 𝑣!"# 𝛿 𝑡 − 𝑡! 𝑐𝑜𝑠 2𝜃! + 𝑓!" 𝑠𝑖𝑛 2𝜋𝑓!𝑡      

(A-12c) 

The response of each equation can be superposed as the sum of responses under 

the magnetic force and interaction force.  The magnetic force response is the steady state 

response to a second order linear equation and the interaction force response is the 

impulse response. 

 
A.1.3 Collision Model 

Before deriving the collision model, the coefficient of restitution and friction need 

to be defined. Then the closed-form solution of the dynamic model can be solved and 

used in later simulation. 
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Coefficient of restitution: By definition, the coefficient of restitution equals the 

ratio of the relative velocity in the normal direction after collision to the relative velocity 

in the vertical direction after collision: 

𝑒 = !!"#!!!"#
!!"#!!!"#

          (A-13) 

in which 𝑣!"# and 𝑣!"# is the velocity of rotor and stator after collision,  𝑣!"# and 𝑣!"# is 

the velocity of rotor and stator before collision. 

Coefficient of friction: A dry (Coulomb) friction model is assumed, and no 

slippage occurs between the tooth and the rotor during the collision. Thus, the 

relationship between the normal force and the friction can be described in the following 

equation: 

𝐹! = 𝜇𝐹!                    (A-14) 

 

A.1.3.1 Model Derivation 

When the rotor is present, the vertical stator displacements due to a collision is 

modeled as the sum of impulse responses for the three equations decoupled from the 

original system equation (A-12a-c):  

𝑢! 𝜃, 𝑡 =
2𝜋𝐹

𝑚!𝜔!,!
𝑒!!!  !! sin 𝜔!,!𝑡 +

4𝜋𝐹
𝑚!𝜔!,!

𝑒!!!  !! sin 𝜔!,!𝑡 𝑠𝑖𝑛 2𝜃! sin 2𝜃  

+ !!"
!!!!,!

𝑒!!!  !!sin  (𝜔!,!𝑡) 𝑐𝑜𝑠 2𝜃! 𝑐𝑜𝑠  (2𝜃)                  (A-15) 

in which 𝐹 = − !
!
𝑚!(𝑣!" − 𝑣!")

!
!

,   𝜔! = 2𝜋𝑓! =
!!
!!

, 𝜔!,! =   𝜔! 1 − 𝜉! , 𝜉! =
!!

!!!  !!
, 

n=A, B or C 

Likewise, the tangential response can be found as a combination of three 

responses. Because the vertical and the tangential motion of the tooth on the stator are 

related, the relation between 𝑣!"#  (vertical velocity of the tooth) and 𝑣!"#  (tangential 
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velocity of the tooth) for each single mode is derived from the geometry of the stator, as 

shown in (A-7), as: 

𝑣!!" =
!"# !!! !!!!!

!
𝑣!"#        (A-16) 

Here, we define the ratio between 𝑣!"# and 𝑣!"# as Κ = !"# !!! !!!!!
!

 to simplify 

later notation. Mode A results in vertical tooth motion only, as there is no tooth tilting 

associated with the mode, and the two actuation modes will have tangential motions in 

opposite directions. By considering the direction of tangential motion of each mode, the 

tangential motion in the clockwise direction of the stator at tooth position can be written 

as: 

𝑢!,!"#$%#!&"' 𝑡 = !!"#
!!!!,!

𝑒!!!  !! sin 𝜔!,!𝑡 𝑠𝑖𝑛 2𝜃! ! − !!"#
!!!!,!

𝑒!!!  !!sin  (𝜔!,!𝑡) 𝑐𝑜𝑠 2𝜃! ! 

  (A-17) 

After determining the analytical solution of the stator motion, the change of 

velocity at the tooth position right after a collision can be derived from (A-15) in 

analytical form: 

𝑢! 𝜃! , 0 = !!"
!!

+ !!"
!!

𝑠𝑖𝑛! 2𝜃! + !!"
!!

𝑐𝑜𝑠! 2𝜃!   (A-18a) 

This expression can be simplified to a form with change of rotor velocity and the 

mass of rotor and stator only: 

𝑢! 𝜃! , 0 = − !!!
!!

(𝑣!"# − 𝑣!"#)        (A-18b) 

 Defining a ratio of mass 𝑟! from (A-18b) as 𝑟! = !!!
!!

, then the relation between 

the velocities of the stator/rotor before/after collision is derived: 

𝑟! 𝑣!"# − 𝑣!"# = −(𝑣!"# − 𝑣!"#)   (A-19) 
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Given the definition of the coefficient of restitution from (A-13) and the equation 

(A-19), the expression for 𝑣!"# (stator velocity after collision at tooth position) can be 

derived: 

𝑣!"# =
!!"#!!! !!!"#!(!!!)!!"#

!!!!
            (A-20a) 

 Also, the expression of 𝑣!" can be derived from (A-13) and (A-19): 

𝑣!"# = 𝑒 𝑣!"# − 𝑣!"# + 𝑣!"#         (A-20b) 

Finally, the 𝑣!"#  (tangential velocity of the rotor after collision) can also be 

written as a function of 𝑣!"# (tangential velocity of the rotor before collision), depending 

on whether the friction exceeds the maximum allowance (i.e. whether static or kinetic 

friction is occurring): 

𝑣!"# =
𝑣!"# +

!!! !!"#!!!"# !
!

                    𝑖𝑓  𝜇 < tan(𝛼)

𝑣!"# +
!"#(!)!! !!"#!!!"# !

!
                    𝑖𝑓  𝜇 > tan(𝛼)

  (A-20c) 

in which 𝛼 is the angle between the vertical direction and the interaction the force acting 

on the rotor. The 𝛼 at each collision is defined as the ratio of the tangential and vertical 

displacement of the stator at tooth position. 

 

A.1.4 Rotor Geometry and Dynamics 

In the basic actuator, the rotor is just a disc with some small features on the top 

surface for optical testing purposes, so only the mass (𝑚!) and radius of the collision 

point (𝑟, same as the radius of collision position on stator) are considered in vertical 

direction model and the momentum of inertia (𝐽!) for the tangential rotation. 

After a collision, the transient motion of rotor is a ballistic motion affected by the 

gravity force, squeeze film damping force and the drag force. The squeeze film damping 

force and the drag force are mainly produced by the air between the stator and rotor. The 
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free body diagrams of the rotor are shown in Fig. A-5. The vertical velocity (𝑣!") and 

tangential velocity (𝑣!") can be written as follows: 

𝑚!𝑣!" = −𝑚!𝑔 − 𝑏!𝑣!"       (A-21a) 

𝐽!𝜔!" = −𝑏!𝜔!"                     with            𝛼!" = 𝜔!"                       𝜔!" =
!!"
!

 (A-21b) 

in which 𝑏! and 𝑏! are the damping coefficients in the vertical and tangential directions. 

    

Fig. A-5: (a) free body diagram of the rotor transient motion in a vertical direction; (b) 
free body diagram of the rotor transient motion in a tangential direction. 
 

A.1.4.1 Parameter Identification 

Before running the simulation of the model, several system parameters must be 

defined when comparing results to experimental measurements. Parameters can be 

determined either from prior literature, such as coefficient of restitution and coefficient of 

friction, or experimentally, such as rotor mass or stator steady-state vibration amplitude. 

Coefficient of Restitution: In general, coefficients of restitution may range from 0 

to 1. These coefficients depend on the speed of collision, the materials, and the 

geometries of the surfaces involved in the collision. Previous studies have shown the 

coefficient of restitution of collisions between poly-silicon and silicon micro-geometries 

to range from 0.57 to 0.642 [Den10, Lee93].  Within that range, Coefficient of restitution 

can be used as a tuning parameter in this model to better match the measured results. 

Coefficient of Friction: The coefficient of friction (µ) for silicon-on-silicon 

interaction has been shown to vary widely depending on the exact conditions of the 
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interaction, from 0.03 to 0.69 [Bhu96, 97].  This coefficient thus can also be considered 

as a tuning parameter for this model. 

Rotor mass: The mass of the rotor can be measured accurately as a discrete 

component. It is measured to be 46 ± 0.5 mg. However, the mass of the stator is 

estimated from the stator geometry, which is about 10.7 mg in this case. The formula to 

determine the stator mass is the following: 

𝑚! = 𝜋 𝑅!! − 𝑅!! 𝜌!𝑡! + 𝜌!𝑡! + 4𝜋 𝑅!! − 𝑅!! 𝜌!𝜃!"/180°  (A-22) 

in which 𝑅!, 𝑅!, 𝑅! is the stator outer, stator inner, tooth inner radius; 𝜃!" is the angle 

each tooth occupied, which is 2.6°; the 𝜌! and 𝜌! is the density of Metglas™ 2826MB 

and silicon, which is 7900 kg/m3 and 2330 kg/m3 [Met08]. 

Squeeze film damping and Drag coefficients: From previous literature the squeeze 

film damping coefficient can be approximated a few different ways [Bao07, Gri66]; 

𝑏! =
!"!!! !!! !!! !

!!!!
≈ 0.6  mNs/m   (A-23a) 

in which 𝛽 = !!
!!

, the air viscosity (𝜂) is assumed to be 1.983 ∗ 10!! at 300K and d is the 

distance between rotor and stator. A second model used to estimate  𝑏! , from [Gri66], 

was: 

𝑏! =
!.!"
!!

𝜂 𝑅!! − 𝑅!! ≈ 3.6  mNs/m   (A-23b) 

For the two cases, the coefficient varies from 0.6 to 3.6 mNs/m. Due to the wide 

range of reasonable damping coefficients, this parameter was also treated as a tuning 

parameter for the model. 

The viscous drag from air acting to oppose tangential motion was estimated by 

integrating drag forces about the circumference of the hub: 

𝑏! =
!  !"
!

= !!!
!
𝑑𝐴 = !!"

!
𝑟!𝑑𝑟 = !"(!!!!!!

!)
!!

≈ 4.3 ∗ 10!!!  (A-24) 
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in which 𝜔 is the angular velocity of the rotor, 𝐽 is the momentum of the viscous drag, 

and 𝑑𝐹 is the viscous drag force at each area 𝑑𝐴. 

The steady state motion of the stator in magnetic field is measured 

experimentally. The mode frequencies and amplitudes of the stator are measured 

experimentally by giving a frequency sweep to the sinusoidal voltage input and 

measuring the motion response of the stator.  These results allow the model assignation 

of modal frequencies, damping parameters, and steady state amplitudes. 

 From previous studies, analytical solutions and experiment results, the system 

parameters could be determined for simulation. The full description of the system 

parameters are shown in Table A-2(a-c). The value of parameters used in a nominal 

simulation is listed in the column “Simulation”. 

Table A-2(a): Motor geometric parameters used in simulation 
Parameter (Symbol) Range Simulation Method to determine 
Stator inner radius (𝑅!) 2.13 ±0.02 mm 2.125 mm Measured 
Stator outer radius (𝑅!) 3.89 ±0.02 mm 3.89 mm Measured 
Tooth inner radius (𝑅!) 3.06 ±0.02 mm 3.063 mm Measured 
Stator thickness (ts) 70 ±10 um 70 um Measured 
Tooth height (ht) 260 ±10 um 260 um Measured 
Tooth location angle (𝜃!) 27.37 ±0.2 ° 27.365° Measured 
Mode shift angle (𝜃!) 0 ±3 ° 2.5° Estimated 

 
Table A-2(b): Motor frequency response parameters used in simulation 

Parameter (Symbol) Range Simulation Method to determine 
Mode A frequency (𝑓!) 2150 ±10 Hz 2150 Hz FEA 
Mode A damping ratio (𝜉!) 0.0225 ± 0.0014 0.0225 FEA 
Mode B frequency (𝑓!) 6.30 ± 0.01 kHz 6.30 kHz Measured 
Mode B tooth amplitude 20.72 ± 1.24 µm 20.72 µm Measured 
Mode C frequency (𝑓!) 7.46 ± 0.01 kHz 7.46 kHz Measured 
Mode C tooth amplitude 1.81 ± 0.11µm  1.81 µm Measured 
Mode B & C damping ratio 
(𝜉! 𝜉!) 

0.0050 - 0.0077 0.0063 (𝜉!) 
0.0075 (𝜉!) 

Measured 
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Table A-2(c): Motor properties used in simulation 
Parameter (Symbol) Range Simulation Method to 

determine 
Rotor mass (𝑚!) 46 ± 0.5 mg 46 mg Measured 
Stator mass (𝑚!) 10.7 ± 1.0 mg 10.7 mg Eq. (24) 
Coefficient of restitution (e) 0.570 - 0.642 0.6 [Dem10, Lee93]  
Coefficient of friction (µ) 0.03 - 0.69 0.4 [Bhu96, 97]] 
Squeeze film damping coefficient (𝑏!) 0.6 - 3.6 mNs/m 3.6 mNs/m Eq. (25a) (25b) 
Air viscous drag (𝑏!) 4.3x10-11 Ns/m 4.3x10-11 Ns/m Eq. (26) 

 

A.1.5 Typical Model Output 

A.1.5.1 Simulation Features and Trends 

Using the parameters in Table A-2(a-c), a simulation code was developed in 

Matlab to simulate the dynamic behavior of the micro-motor.  Fig. A-6 shows sample 

results from the simulated rotor motion. The vertical motion of the rotor can be 

recognized as a ballistic motion (Fig. A-6(a), (b)), with the vertical velocity having a 

sudden change at impacts and deceleration otherwise nearly constant, differing only from 

deceleration due to the gravity and the squeeze film damping effect. The tangential 

velocity is accelerated at beginning and eventually oscillates around a steady state value 

(Fig. A-6(c)). 

After generating the time domain simulation results, a Fast Fourier Transform 

(FFT) was applied to the results to obtain a frequency spectrum for motion (Fig. A-6(d)), 

which can used to check the reliability of the model quantitatively against experimental 

results.  Because stochastic variation prevents a one-to-one comparison of experimental 

and simulated time domain data sets, statistical comparisons are made to validate model 

predictions against experimentally observed behavior.  These comparisons are made by 

first applying a FFT algorithm to each data set. In the frequency domain, collision 

frequency distribution and vertical motion amplitude were checked, in particular from the 

frequency and amplitude of the peak vertical motion in frequency domain. Detailed 



 117 

simulation results will be further discussed in the next section, when assessing 

experiment validation. 

 
Figure A-6(a): Sample simulation of tangential velocity and displacement in time domain 
(mode B on the left and mode C on the right). The black line stands for the 
displacement/velocity of the rotor, red and blue lines stand for the 
displacements/velocities of the two sets of teeth. 

 
Fig. A-6(b): Zoom in around collisions in time domain (mode B and mode C). Black 
lines stand for the displacement/velocity of the rotor, red and blue line stands for the 
displacements/velocities of two sets of tooth. 
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Fig. A-6(c): Sample simulations of angular velocity and angle rotated in tangential 
direction (mode B and mode C). 

 
Fig. A-6(d): Frequency domain velocity and displacement from simulated rotor motion 
(mode B and mode C). 
 

A.2 Experimental Validation 

A.2.1 Experimental Design and Setup 

An experimental system is used to check the reliability of the simulation. Vertical 

motions of multiple points on the unloaded stator are measured by a Laser Doppler 

Vibrometer (LDV) to check the accuracy of the stator FEA model. Then, vertical motion 

near the center point on the rotor is measured, when the micro-motor is in place and 
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rotating. Comparison of the motion of rotor, particularly in the vertical direction, is used 

to validate the model of the micro-motor. 

The LDV used in the experiment is Polytec OFV 303 sensor head and Polytec 

OFV 3001 S vibrometer controller. The voltage amplifier used in the experiment to 

provide voltage to the Helmholtz coils is a Krohn-Hite Model 7500. The magnetic field 

amplitude generated by the coils at the position of the motor is measured to be 8 Oe 

typically, by a gaussmeter (F.W. Bell model 5170) 

In addition to the LDV, a microscope with a high-speed camera (Photron 

FASTCAM MC2.1 and LEICA 104459290.5x) is used to track rotation of the rotor. The 

resolution of the camera is approximately 2 micron. A coil is used to generate the 

sinusoidal magnetic field at actuation frequency by being supplied with a sinusoidal 

voltage signal. The entire experimental setup is shown in Fig. A-7. 

 

  

Fig. A-7: (a) Experimental set-up scheme with LDV (red) and microscope (blue). The micro-
motor (green) is actuated by the voltage signal in the coiling (yellow); (b) photo of the 
experimental set-up. 
 

 

 

 

Microscope 

LDV 

Coils 

Micro-motor Microscope 

LDV 

Coils 

Micro-motor 



 120 

A.2.1 Experimental Results and Comparison to Model 

A.2.1.1 Velocity and Displacement 

Results from experimental measurement of vertical rotor velocity are shown in 

Fig. A-8 and Fig. A-9 for modes B and C, respectively. The displacement of the rotor is 

calculated by integrating the velocity over time (shown in Fig. A-8 (left) and Fig. A-9 

(left)). With simulation results, an FFT is also applied to the experimental measurement. 

The peak frequency in the resulting FFT spectrum is considered the representative 

collision frequency for the data set. The amplitude at the peak frequency is also a point of 

comparison between data sets. The FFTs of typical experimental and simulation results 

are shown in Fig. A-8 (right) and Fig. A-9 (right).  

 

Fig. A-8: (left) typical time domain experimental velocity and displacement under mode 
B; (right) frequency domain experimental velocity and displacement under mode B. 
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Fig. A-9: (left) typical time domain experimental velocity and displacement under mode 
C; (right) frequency domain experimental velocity and displacement under mode C. 
 

Tangential velocities are measured by the high-speed camera at frame rates of 

5000 fps (mode B) and 10000 fps (mode C).  The average tangential velocity measured 

by the camera is listed in Table A-3. The average and error based on the standard 

deviation of three experimental data sets presented. 

Table A-3: Experimentally measured results 
Rotor behavior Experiment 
Mode B collision frequency 76 ± 20Hz 
Mode B collision amplitude 3.94 ± 0.57 mm/s 
Mode B tangential velocity ~1 rad/s 
Mode C collision frequency 400 ± 104 Hz 
Mode C collision amplitude 0.88 ± 0.28 mm/s 
Mode C tangential velocity ~1.4 rad/s 

 

A.2.1.2 Comparison between simulation and experimental results 
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and mode C (Table A-4, Fig. A-10 and Fig. A-11).  The average simulated vertical rotor 
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between the hub and the rotor).  The average and error are based on the standard 

deviation of five simulated and three experimental data sets. 

 
Fig. A-10: Frequency spectrum of simulated (black solid line) and experimental (red dash 
line) velocity and displacement under mode B. 

 
Fig. A-11: Frequency spectrum of simulated (black solid line) and experimental (red dash 
line) velocity and displacement under mode C. 
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Table A-4: Comparison of simulated and experimental results 
Motor behavior Simulated Experiment 
Mode B collision frequency 88.8 ± 7.13 Hz 76 ± 20Hz 
Mode B collision amplitude 4.08 ± 1.17 mm/s 3.94 ± 0.57 mm/s 
Mode B tangential velocity 8.01 ± 0.63 rad/s ~1 rad/s 
Mode C collision frequency 422 ± 51.8 Hz 400 ± 104 Hz 
Mode C collision amplitude 1.48 ± 0.26 mm/s 0.88 ± 0.28 mm/s 
Mode C tangential velocity 1.02 ± 0.17 rad/s ~1.4 rad/s 

 

A.3 Conclusion 

The dynamic model has substantial benefits in predictive design, allowing many 

collisions to be simulated and the sensitivity to many parameters understood.  However, 

the model still has limits. For example, for mode B in the prototype system, the simulated 

and experimental results with respect to the tangential velocity amplitude of the rotor do 

not match well, either in the frequency domain behavior or to a lesser extent its average 

velocity. The reasons for this difference highlight two limitations of the model: First, 

larger motion may lead to imbalanced rotor motion and the collisions with the hub, which 

are not included in the model; second, friction effects in particular are difficult to predict 

and model, either between the teeth and the rotor or, in this latter case, between the hub 

and rotor. 

Future work of modeling may include tracking each of four teeth separately while 

the tooth motion amplitude differences are applied to each tooth individually. This 

modification could allow the model to include the tilting of the rotor, which while smaller 

than the effects studied in the current paper, can be caused by the difference of motion of 

each tooth and needs to be determined by further analytical modeling. 
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APPENDIX B 

Run Sheet of Second-Generation Motor Fabrication Process 

A general description of the fabrication process of second-generation motor is 

given in Chapter 3.  A detailed description of each step defined in Table B-1 is provided 

in this appendix. 

Table B-1: The Definition and numbering of each fabrication step 
Pre-fabrication clean 
           00.10 Piranha Clean 
DRIE 10 µm depth for electrodes gap (Mask 1) 

10.10 Photolithography 
10.20 DRIE 10 µm 
10.30 Plasma stripping 

Wet etch SiO2 (Mask 2) 
20.00 Pre-furnace clean 
20.10 LPCVD 0.1 µm nitride and 1 µm HTO 
20.20 Photolithography 
20.30 BHF wet etch SiO2 
20.40 Remove PR 

Metallization (Mask 3) 
30.10 Evaporate 1000Å Cr and 5000Å Au 
30.20 Photolithography 
30.30 Cr/Au wet etch 
30.40 Remove PR 

DRIEs (Mask 4) 
40.10 Photolithography 
40.20 RIE Si3N4 

40.30 DIRE 150 µm  
40.40 BHF wet etch SiO2 
40.50 RIE Si3N4 
40.60 Etch through wafer 
40.70 XeF2 etch to remove silicon sidewalls 

Metallization on backside of the device for Au-In bonding 

50.00 Pre-evaporation Descum treatment for Metglas 
50.10 Evaporate 1000Å Cr and 5000Å Au 
50.20 Electroplate ≈8 µm Indium on backside of silicon 

Bonding and deposit isolation layer on the rotor electrodes 

60.10 Indium rich Au-In bond 
60.20 ALD deposit Al2O3 on rotor electrodes 
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The run sheet for this process further provides the detailed the parameters, tools, 

and methods as follows: 

Pre-fabrication clean 
00.10 Prepare starting wafers 

• Piranha Clean [H2O2:H2SO4=1:1];  
• Tool: Acid Bench 12 
• 5 minutes in Piranha solution and followed by at least 10 minutes DI 

wafer 
1st DIRE for defining electrodes gap 
10.10 Lithography 

• Spin-coat photoresist 
o Photoresist: SPR220-3.0 
o Tool: ACS 200 
o Recipe: SPR_3µm (HDMS vapor coating, soft bake 115˚C 90 

sec) 
• Expose 

o Tool: (MA/BA6) 
o Mask: M1, Clear field 
o Expose time/type: (10 sec/hard) 

• Develop 
o Tool: ACS 200 
o Recipe: Bake&Dev_300DEV_30sec 
o Post bake 115˚C 90 sec, develop 30 s using AZ 300 MIF 

10.20 Etch 10 µm silicon 
• Tool: STS PEGASUS 4 
• Recipe: (LNF Pegasus recipe 1) 
• Etch rate (Expected: 4.02 µm /min; Measured: ≈4 µm /min) 
• Results: Etch time and depth – 2 minute 30 sec and ≈10 µm 

10.30 Strip photoresist 
• Stripper/Time: Plasma Etcher/ 6 min 
• Tool: Yes Plasma Stripper 
• Results PR is removed (confirmed by optical images under microscope) 
• Results: PR is removed 

LPCVD nitride and HTO 
20.00 Pre-furnace clean    

• Tool: PFC-01 Wet Bench 
• Recipe: RCA cleaning 

o Organic clean. H2O:H2O2:NH4OH =1:1:5 (10 min) 
o Oxide strip. 10:1 HF (30 s) 
o Ionic clean. H2O:H2O2:HCL = 1:1:6 (10 min) 
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o Q-Rinse  
 

20.10 LPCVD Si3N4 layer and HTO   
• Tool: S2/T3 
• Recipe: Nitride/HTO 

o Time: 20 min / 3 hour 14 min 
• Measure silicon nitride layer thickness (Å) using NanoSpec 6100 
• Inspection: 
• Comments: 

20.20 Lithography   
• Spin-coat photoresist  

o Tool: ACS 200 
o Mask 2, Clear Field 
o Recipe: SPR_3µm (thickness ≈3 µm) 
o Photoresist: (SPR220-3.0) 
o Relevant parameters: HDMS vapor coating, soft bake 115˚C 90 

sec 
• Expose 

o Tool: (MA/BA6)   
o Mask: M2 
o Expose time/type: (12 sec / hard) 

• Develop:  
o Tool: ACS 200 
o Recipe: Bake&Dev_300DEV_40sec 
o Post bake 115˚C 90sec, develop 300 MIF 40 s 
o Another Post bake 115˚C 90sec 

20.30 Etch SiO2   
Notes: Opening is necessary for etching out silicon cavity. 

• HF wet etching 
• Recipe: BHF (1:5 DI water) 
• Expected etch rate: (≈1300 Å/min) 
• Etch time: 8 Min 30 sec
• Comments: the etch rate is quite consistent with that measured by LNF 

staff. 
20.40 Remove PR   

• Tool: Solvent bench 12 
• Recipe: PRS 200 85 ˚C 
• Strip time: 10 Min 
• DI rinse
• Comments: Clean

Metallization  



 

 127 

30.10 Evaporate 1000Å Cr and 5000Å Au    
• Tool: Enerjet Evaporator 
• Comments: 4 PWs and 2 DWs were coated

30.20 Lithography   
• Spin-coat photoresist  

o Tool: ACS 200 
o Mask 3, Dark Field 
o Recipe: SPR_3µm (thickness ≈3 µm) 
o Photoresist: (SPR220-3.0) 
o Relevant parameters: HDMS vapor coating, soft bake 115˚C 90 

sec 
• Expose 

o Tool: (MA/BA6)  Mask: M2 
o Expose time/type: (12 sec / hard) 

• Develop:  
o Tool: ACS 200 
o Recipe: Bake&Dev_300DEV_40sec 
o Post bake 115˚C 90sec, develop 300 MIF 40 s 
o Another Post bake 115˚C 90sec 

• Rinse: (DI water, 3min) 
• Spin dry: 
• Inspection: 
• Comments: 

30.30 Wet etch Cr/Au   
• Tool: Acid Bench 12 
• Etchant: Gold etchant TFAC (No dilution); Cr etchant 1020 
• Etch Rate: 1900 Å/min for Au and 770 Å/min for Cr 
• Etch time: 2 min 30 sec for Au and 1 min 30 sec for Cr 
• DI rinse 
• Comment: With accurate time control, and dehydration of the PR, ≈ 17 
µm wide gold wires was achieved (design is 20 µm).  

30.40 Remove PR   
• Tool: Solvent bench 12 
• Recipe: PRS 200 85 ˚C 
• Strip time: 10 Min 
• DI rinse
• Comments: Clean 

DRIEs 
40.10 Lithography   

• Spin-coat photoresist  
o Tool: ACS 200 
o Mask 4, Dark Field 
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o Recipe: Run twice SPR220-3.0 5 µm 
o Photoresist: (SPR220-3.0) 
o Relevant parameters: HDMS vapor coating, soft bake 115˚C 90 

sec 
• Expose 

o Tool: (MA/BA6)  Mask: M2 
o Expose time/type: (33 sec / hard) 

• Develop:  
o Tool: ACS 200 
o Recipe: Bake&Dev_300DEV_40sec 

• Rinse: (DI water, 3min) 
• Spin dry 
• Inspection: 
• Comments: Do not do post exposure bake, which will induce bubbles 

in PR layer 
40.20 RIE silicon nitride 

• Tool: STS PEGASUS 4 
• Recipe: (LNF Oxynitride) 
• Etch rate: ≈ 1000 Å/min; Etch time: 1 min 20 sec  
• Results: Observed silicon surface 

40.30 DRIE 150 µm  
• Tool: STS PEGASUS 4 
• Recipe: (LNF Pegasus 3) 
• Etch rate: ≈ 17 µm/min (measured by Jun);  
• Etch time: 10 min 
• Results: Etch rate is slightly different for different depth etch. The 

measured etching depth is 175 µm. 
40.40 BHF SiO2 

• Tool: Acid bench 12 
• Recipe: BHF 
• Etch rate: ≈ 1300 Å/min (measured by Jun) 
• DI rinse 

40.50 RIE silicon nitride 
• Tool: STS PEGASUS 4 
• Recipe: (LNF Oxynitride) 
• Etch rate: ≈ 1000 Å/min; Etch time: 1 min 20 sec  
• Results: Observed silicon surface 

40.60 DRIE etch through  
• Tool: STS PEGASUS 4 
• Recipe: (LNF Pegasus 1) 
• Etch rate: ≈ 6.6 µm/min (measured by Jun);  
• Etch time: 53 min  



 

 129 

• Results: Etch rate is different for different region of the device. The 
trenches between springs have relatively slow etch rate. Thus, the 
actual thickness of stator is thinner than the 150 µm.  Residual 
sidewalls are observed. 

40.70 XeF2 etch to remove silicon sidewall 
• Tool: Xactix XeF2 
• Recipe: 10 sec etch time per cycle, 3.0 Torr XeF2 
• Etch time: 30 cycles 

Metallization on backside of the device for Au-In bonding 
50.00 Pre-evaporation Descum treatment for Metglas 

• Tool: Yes Plasma 
• Recipe: Descum 
• Etch time: 20 second 

50.10 Evaporate 1000Å Cr and 5000Å Au 
• Tool: Enerjet Evaporator 
• Deposit rate: 10 Å/sec for both Au and Cr 

50.20 Electroplate ≈8 µm Indium on backside of silicon 
• Tool: Acid Bench in wet-chemistry room 
• Electroplating current and time: 0.75 A for 10 min 
• Measured thickness: ≈8 µm 

Bonding and deposit isolation layer on the rotor electrodes 
60.10 Indium rich Au-In bond 

• Tool: Vacuum oven 
• Temperature and time: 30 min heat up to 200 ˚C and maintain 200 ˚C 

for 2 hours and cool down 
60.20 ALD deposit Al2O3 on rotor electrodes 

• Tool: Oxford ALD 
• Cycles: 20 cycles 
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APPENDIX C  

Study on Different Designs of Miniaturized Magnetoelastic Resonators  

C.1 Disc and Ring Resonator Design, Fabrication and Evaluation 

C.1.1 Modeling 

Utilizing a magnetomechanically-coupled finite element analysis (FEA) method 

implemented in COMSOL Multiphysics [Gre09], the resonant frequencies and 

deformations of candidate geometries were estimated (Fig. C-1).  Both disc and ring 

geometries were studied; these shapes provide the desired symmetry while also allowing 

control over resonant frequency through simple changes in diameter.  Pertinent calculated 

resonant frequency results are listed in Table C-1.   

 
Figure C-1: FEA calculated deformations of candidate geometries at the fundamental 
resonant frequency of each geometry.  

 
Table C-1: FEA calculated resonant frequencies of candidate geometries 

Resonators Ø 4-8 mm 
ring 

Ø 2-4 mm 
ring 

Ø 1.6-2 mm 
ring 

Ø4 mm disc Ø2 mm disc 

Resonant 
Frequency 

101 kHz 201 kHz 315 kHz 517 kHz 1.035 MHz 
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To evaluate the effect of geometrical variations on the resonant frequency of the 

device, a number of geometries were simulated with FEA, and the results were fit with 

simple curves (Fig. C-2).  In general, the resonant frequency of disc shapes were shown 

to be less sensitive to diameter than the resonant frequency of ring shapes as the diameter 

is decreased.  Additionally, the resonant frequency of ring shapes is sensitive to both 

inner and outer diameters; this shape thus may be less robust to process variations. 

 
Figure C-2: FEA study of resonant frequency dependency on geometry.  The 
experimental results shown are evaluated using the method described in the Evaluation 
section. 

 

C.1.2 Fabrication 

Initial prototype disc and ring resonators were fabricated using micro-electro-

discharge machining (µEDM).  Although this process can achieve micron precision, it is 

not likely appropriate for very high volume requirements.  In this case, only a few 

prototypes were required for our initial studies, and serial fabrication of the prototypes 

was used.  Figures C-3 and C-4 show optical and SEM images of the fabricated 

resonators, respectively.  In all magnetoelastic elements in this report, as-cast MetglasTM 

2826MB was used as the material. 

D

W

For a ø2 mm ring 
with 400 µm width,
D/W=10/2.

D

W

For a ø2 mm ring 
with 400 µm width,
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D
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with 400 µm width,
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Fig. C-3: Optical images of EDM’d resonators. 

 

 
Fig. C-4: SEM images of EDM’d discs and rings. 

 
A fabrication process appropriate for low-to-medium volumes was also utilized 

for disc and ring resonators – photochemical machining (PCM).  The larger volume 

capability of this process (10-100 devices in a batch) enabled evaluation of gains in signal 

strength due to superposition of clustered or arrayed resonators.  This process was carried 

out in this case by an out-of-house commercial vendor (Kemac Technologies, Inc., 

Azusa, CA).  A one-sided etch was used.  The etch process was also “tabless”; in other 

words, no connection between the unetched metal and the resonators remained once the 

etch was complete, and the resonators were free to drop out of the unetched metal.  This 

Ø2 mm discsØ1.6-2 mm rings Ø4 mm disc

2 mm 2 mm2 mm

Ø2 mm discsØ1.6-2 mm rings Ø4 mm disc
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is in contrast to a typical “tabbed” etch.  The “tabless” process provides the advantages of 

no required post-processing (to fully remove the resonators from the substrate metal) and 

the variability that small leftover tabs may add to the resonant frequencies of the 

resonators.  However, the “tabless” process can result in more geometrical variation, as 

some resonators may remain in the etching process longer than others that drop out.  The 

fabrication of “tabless” devices was a new extension of the standard Kemac process, so 

this attempt was also an experiment to evaluate the feasibility of a “tabless” MetglasTM 

etching process in a commercial foundry.  The effect of process variation in this case is 

demonstrated in the subsequent “Evaluation” section.  Figures C-5-7 show optical and 

SEM images of four different designs of the photochemically machined resonators.   

 
Fig.C-5: PCM fabricated resonator designs. 

 

 
Fig. C-6: SEM images of PCM fabricated discs 

Design A
Ø2 mm discs

Design B
Ø0.985 mm discs

Design D
Ø0.2-0.5 mm rings

Design C
Ø0.4-1 mm rings

Design A
Ø2 mm discs

Design B
Ø0.985 mm discs

Design D
Ø0.2-0.5 mm rings

Design C
Ø0.4-1 mm rings

SEM image of backside of Design A: ø2mm disc

SEM image of backside of Design B: ø0.985 mm disc

SEM image of backside of Design A: ø2mm disc

SEM image of backside of Design B: ø0.985 mm disc
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Fig. C-7: SEM images of PCM fabricated rings 

 

The SEM images in Figs. C-6 and 7 illustrate a noticeable sidewall angle created 

by the one-sided isotropic etching process.  This angle is shallow but consistent; thus, its 

impact can be compensated by appropriate modeling and design. 

 

C.1.3 Evaluation 

C.1.3.1 Interrogation Setup 

There are four main components of the interrogation setup for benchtop testing in 

air: a network analyzer, an amplifier, a transmit coil, and a receive coil.  The coils are 

configured orthogonally such that the transmit coil and receive coil can both couple 

strongly to the resonators, but weakly with each other (Fig. C-7).  The symmetry of the 

resonators and the excited mode shape allows for the transmitted oscillating magnetic 

field signal to be delivered in one direction while a response oscillating magnetic field is 

developed in a direction oriented orthogonally to the transmit direction.  By also 

configuring the transmit and receive coils orthogonally to each other, the arrangement 

SEM image of backside of Design C: ø0.4-1 mm ring

SEM image of front side of Design D: ø0.2-0.5 mm ring

SEM image of backside of Design C: ø0.4-1 mm ring

SEM image of front side of Design D: ø0.2-0.5 mm ring
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helps to decouple the transmit signal from the received signal, improving the signal-to-

noise ratio. 

The network analyzer sweeps the frequency of the input signal, which is sent to 

the amplifier and to the transmit coil.  The transmit coil generates an oscillating magnetic 

field, which causes the resonator to vibrate and generate a magnetic field in response.  

This response magnetic field induces a voltage on the receive coil, which is measured by 

the network analyzer.  A frequency response for the resonator is thus generated, with the 

resonant response of the sensor indicating its presence in the interrogated region. 

For this work, the coils have been turned using 60-stranded 22 AWG Litz wire, in 

which each individual conducting strand is insulated.  For oscillating currents at the 

higher frequencies used in this work, the skin effect in a conductor is important in 

determining the overall impedance of the conductor.  The individually-insulated 

conductors in the Litz wire are meant to reduce the skin effect and provide a higher 

conductance for high frequency signals.  The higher conductance results in lower noise in 

the voltages induced on the receive coil, serving to increase the wireless range of the 

system.  Similarly, the number of turns in the transmit and receive coils have been kept 

few (10) in order to lower the coil impedance and increase the magnitude of the 

transmitted magnetic field at the frequencies of interest.  The transmit and receive coils 

have a diameter of ~3.8 cm.     
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Fig. C-8: Schematic of preliminary evaluation setup for benchtop testing in air.  The DC 
coils are used to provide a magnetic bias to the resonator when no permanent magnet is 
packaged with the resonator. 
 
 
C.1.3.2 µEDM’d Prototypes and Signal Superposition 

The µEDM’d prototypes described in the fabrication section were first evaluated.  

Individual discs and rings were measured while in air.  Subsequently, these same discs 

were placed in arrays of larger number to evaluate the possibility of signal superposition 

for closely spaced resonators.  As shown in Figs. C-9 and 10, results with these 

prototypes indicate that signal superposition can occur.  Note that the responses of the 

individual discs are similar but not identical.  This indicates that some process variability 

can be tolerated while still gaining the advantage of signal superposition.      

 
Fig. C-9: Magnitude (left) and phase (right) response of individual discs (colored curves) 
fabricated by µEDM, and the same discs in an array (black curves), illustrating the signal 
superposition that occurs. 

DC coils
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(Number of strands/Size (AWG))
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Transmit coil
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Fig. C-10:  Magnitude (left) and phase (right) swings in the measured response of 
clustered resonators fabricated by µEDM exhibit properties of superposition of the 
individual responses. 
 

C.1.3.3 Effect of Process Variability in PCM’d Resonators 

A number of resonators fabricated in the “tabless” PCM process were measured to 

evaluate the variability in resonant frequency that may occur from such a process.  

Typical results with 2 mm discs (in air) are shown in Fig. C-11.  Across 19 devices, there 

is a 0.7% standard deviation in resonant frequency.  Based on the superposition analysis 

done with the µEDM’d resonators, we expect this small process variability to still result 

in signal superposition as the resonators are clustered. 

 
Fig. C-11: Measured resonant frequency response of individual PCM’d 2 mm discs (in 
air).  The DC bias in this case is provided by the Helmholtz coils. 

 

DC bias provided by Helmholtz coilsDC bias provided by Helmholtz coils
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The effect of a preliminary resonator encapsulation method – including a flexible 

magnet layer for biasing the resonator – on the resonant frequency variability was also 

investigated.  This encapsulation method is very preliminary and will thus not be covered 

in detail here; it is intended only to allow the resonators to be immersed in sand while 

biased with an integrated magnet.  Devices with similar resonant frequencies as measured 

in Fig. C-12 were encapsulated and measured again.  As shown in Fig. C-13, this process 

results in a very consistent resonant frequency distribution, with a standard deviation of 

0.5% across 9 encapsulated resonators. 

 

 
Fig. C-12: Resonant frequency response of PCM’d 2 mm discs after encapsulation (in 
air).  The DC bias in this case is provided by a flexible magnet that is encapsulated with 
the resonator. 

 

C.1.3.4  Signal Transmission in Sand 

The six most closely matched devices encapsulated and measured in Figure 14 

were arranged in a 3 x 2 array for measurement.  The transmit and receive coils were 

spaced apart by 4 cm in this case (Fig. C-13) to investigate the feasibility of a small 

increase in wireless range.  As shown in Fig. C-13, the resulting resonant signal of the 

clustered, encapsulated resonators (in air) is clear and distinct.    

DC bias provided by flexible magnetsDC bias provided by flexible magnets
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Fig. C-13: Measured signal amplitude of a 3 x 2 cluster of encapsulated resonators in air. 
 

The array and coils were then buried in dry, room temperature sand as illustrated 

in Fig. C-14.  A comparison between the frequency responses as shown in Fig. C-13  (air) 

and Fig. C-14 (sand) reveals negligible changes in signal strength or resonant frequency.  

This indicates that the response of the encapsulated particles is not affected by the 

presence of the dry sand.     

 
 

Fig. C-14: Measured signal amplitude of a 3 x 2 cluster of encapsulated resonators in dry 
sand 
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C.2 Disc Resonator Packaging, Increasing Sensing Range and Refining Structure 

C.2.1 Package 

C.2.1.1 Magnetic Field Bias Effect Characterization and Permanent Magnet 

Preparation 

In order to resonate with optimum signal, the resonators must be biased with a DC 

magnetic field.  Due to the ranges at which this technology is expected to operate, 

packaging a small permanent magnet with the resonators is preferable to supplying a 

large field from the borehole or other external source.  The DC field required is a 

function of resonator size and geometry.  The relationship between magnetic bias and 

measured signal amplitude has been characterized on ø1 mm disc resonators by utilizing 

two orthogonally placed small coils, one as a transmitter and another a receiver, and a set 

of DC coils as a source of magnetic field bias (Fig. C-15).   

The results, as shown in Fig. C-15, suggest appropriate magnetic field biases for 

ø1 mm should be around 30-40 G.  A number of possible permanent magnetic materials 

may be suitable for this type of application.  One such material is NdFeB (magnets made 

from this material are commonly referred to as “neodymium” magnets).  Magnets of this 

material can provide a very strong field for a given volume, but in general the material is 

relatively expensive.  Another option is a chromium-iron permanent magnet alloy named 

Arnokrome™ 5, (Arnold Magnetic Technologies Corp., Rochester, NY). The 

Arnokrome™ 5 has magnetic remanence (Br) of 2000 – 16000 G, coercivity (Hc) of 20 - 

50 Oe.  Further, the Arnokrome™ foil is cold rollable to 0.002” thick, which can 

facilitate miniaturization of the package as well as high volume stamping processes. For 

preliminary packages, Arnokrome™ foil was EDM’d into ø1 mm discs, the same size as 
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the disc resonators.  As a final step before packaging, these disc permanent magnets were 

magnetized using a bench-top pulse magnetizer.  

 

 
Fig. C-15: DC magnetic bias optimization for 1 mm diameter disc resonators. 

 
 

  
C.2.1.2  Packaging Approach 

A preliminary packaging approach consists of a ø1 mm disc resonator, a ø1 mm 

disc permanent magnet (fashioned from ArnokromeTM 5 material, ≈50 µm thick), a ring-

shaped polymer spacer, isolating Mg3Si4O10(OH)2 powder and two layers of adhesive 

tape, as shown in Fig. C-16 (a).  First, a relatively thick transparent layer (≈200 µm thick) 

is punched with ø1.5 mm holes large enough for resonators.  Second, the transparent 

layer is attached to one (bottom) layer of adhesive tape.  The isolating powder is then 

used to cover the exposed area of adhesive tape, such that the resonator does not become 

adhered to the tape.  This step is followed by placing both the permanent magnet and 

resonator inside the cavity. In some cases, intermediate spacing layers may be placed 

between the resonator and the magnet to adjust the DC bias level.   Next, another thin 

layer of isolation powder is placed on the top of resonator and a second layer of adhesive 

tape is used to seal the cell.  Finally, the whole unit is punched out from all layers, 
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forming a sealed cavity with resonator and magnet within. The packaged device has a 

total thickness of 600 µm and a diameter of 3 mm; an optical image is shown in Fig. C-16 

(b).  It is important to note that this preliminary packaging approach is intended to 

determine the amount of signal attenuation that may occur in a packaged resonator; it is 

not intended to withstand the expected pressures or temperatures of a down-hole 

application.  Final packaging has been deferred to later stages of development based on 

guidance from Aramco. 

(a) 

(b) 
Fig. C-16: (a) Preliminary packaging approach.  (b) Optical images of packaged 
resonators  
 
 
C.2.1.3 Packaged Resonator Response  

Measurement of the frequency response of the packaged “smart” pseudoparticle 

has been carried out using two small coils placed orthogonally to each other and closely 
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spaced. The orientation of the coils – one transmit coil (TC) and one receive coil (RC) – 

is shown in schematic form in Figure 23 below.  For this work, the coils have been turned 

using 60-stranded 22 AWG Litz wire, in which each individual conducting strand is 

insulated.  The number of turns in the transmit and receive coils have been kept few (10) 

in order to lower the coil impedance and increase the magnitude of the transmitted 

magnetic field at the frequencies of interest.  The transmit and receive coils have a 

diameter of ≈3.9 cm.  The network analyzer sweeps the frequency of the input signal, 

which is sent to the amplifier and the transmit coil. The transmit coil generates an 

oscillating ac magnetic field that drives the resonator into vibration.  The vibration in the 

resonator, along with the magnetoelastic nature of the resonator material, generates a 

magnetic field in response. This response magnetic field induces a voltage on the receive 

coil, which is measured by the network analyzer.  In this measurement, 25 dBm (≈0.3 W) 

was applied to the transmit coil.  It is important to note that a large “common mode” 

signal exists between the transmit coil and receive coil, on top of which is the resonator 

signal.  To better illustrate the resonator response in these figures, post-processing has 

been used to remove the common mode signal.  The common mode signal usually exists 

as a linear function between magnitude and frequency.  Thus, the post-processing 

consists of subtracting a linear estimate of the common mode signal (found from fitting 

multiple data points that are away from the resonant frequency of the resonator) from the 

overall signal.  As shown in Figs. C-17 and 18, it is confirmed that the intended signals 

exist for the ø2 mm and ø1 mm packaged resonators.   
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Fig. C-17: Typical frequency response of a ø2 mm disc resonator, encapsulated and 
biased with a neodymium magnet. 

 

 
Fig. C-18: Typical frequency response of a ø1 mm disc resonator, encapsulated and 
biased with a ArnokromeTM 5 magnet. 

 
 

C.2.2 Signal Superposition 

  Signal superposition is crucial for the fracture imaging system because it not 

only improves signal strength – and thus total imaging range – but also enables the ability 

to distinguish whether a given interrogated volume contains a large or small number of 

resonators.  The concept of superposition has already been proven with four ø2 mm disc 

resonators.  However, it is worthwhile to investigate whether superposition continues to 

be advantageous with a larger amount of ø1 mm disc resonators.  By utilizing the same 
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experimental setup as that used for DC bias characterization measurement, the resonant 

response of ≈100 ø1 mm disc resonators was obtained with 1.4 mV amplitude, as shown 

in Fig. C-19.  Compared to the signal amplitude of 2 µV for one ø1 mm disc resonator, 

the signal amplitude is magnified by 700 times.  This not only shows superposition, but is 

a surprising result that suggests non-linear effects are occurring that provide further 

advantages than what would be expected from linear superposition.  Further, this result 

shows that even a relatively large amount of resonators provides a single peak resonant 

response, regardless of the variation of the resonant frequency for each resonator.  

 
Fig. C-19: Signal superposition of ≈100 unpackaged 1 mm diameter disc resonators 

 
 

C.2.3 Increasing Sensing Range 

C.2.3.1 Interrogation Setup4 

To increase sensing range, an interrogation setup was used that consists of a small 

transmit coil (≈3.9 cm diameter), a receive antenna of the form developed (referred to as 

the HMMF antenna), DC coils, a network analyzer and an amplifier.  The network 

analyzer sweeps the frequency of the input signal, which is sent to the amplifier and to 

                                                
4 This work was done in collaboration with Prof. Kamal Sarabandi and Jihun Choi. 
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the transmit coil.  The transmit coil generates an oscillating magnetic field, which causes 

the resonator to vibrate and generate a magnetic field in response.  This response 

magnetic field induces a voltage on the receive antenna, which is measured directly by 

the network analyzer.  DC coils are used to provide an appropriate magnetic bias as 

required by the magnetoelastic resonators.  Further, because the resonators can be 

activated and deactivated by switching the DC coils “on” and “off”, the transmitted signal 

was decoupled from the received signal by subtracting the frequency response of the 

“off” status from the frequency response of the “on” status, improving the signal-to-noise 

ratio. The resulting frequency response exhibits the resonant response of the resonators in 

the interrogated region.  A total of ≈100 ø1 mm resonators were placed inside the 

transmit coil, in order to be driven by a strong magnetic field.  Different sensing distances 

between resonators and the receive antenna (Range, R) were characterized.  In this set of 

experiments, the receive antenna was the tuned, narrow band antenna described in section 

7.2.  It was developed for this effort to perform characterization of 2 MHz ø1 mm 

resonators during preliminary investigations. Two different orientations of the transmit 

coils with respect to the receive antenna, shown in Fig. C-20, have been investigated.  

 
 

Fig. C-20: Schematic of antenna Orientations 1 and 2. 
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C.2.3.2 Experimental Results 

The sensing distances (Range, R) for Orientation 1, as shown in Fig. C-20, were 

set at 25 cm, 40 cm, and 60 cm.  The signal amplitudes for the distance of 25 cm, 40 cm, 

and 60 cm are 60 µV, 30 µV and 12 µV, respectively, demonstrating amplitude as 

inversely proportional to range.  A typical response with the distance of 60 cm is shown 

in Fig. C-21. The noise level for this configuration is about 5 µV, which makes it 

challenging to detect a resonant response with distance beyond 60 cm with this 

configuration.  For the results shown in Fig. C-21, the data has been pre- and post-

processed to better illustrate the sensor signal.  The pre-processing step involves 

measurement of the baseline signal, which is taken with the resonators in place but 

without a biasing field applied.  This baseline signal is subtracted from the signal 

measured with a 30 G DC bias applied to the resonators.  For both the baseline and 

measured signal, 16 traces are averaged together.  The resulting measurement, which 

contains 401 sample points across the measured frequency band, is then post-processed 

via a 30 point moving average smoothing process. 

The sensing distances for Orientation 2 were set at 20 cm, and 40 cm.  The signal 

amplitude for the distance of 20 cm is about 15 µV. The resonant response for the 

distance of 40 cm is on the order of a few microvolts and has become comparable to the 

noise level at this range.  

As shown in Fig. C-22, Orientation 1 exhibits a stronger received signal than 

Orientation 2 at all ranges.   This may be due to slight anisotropy present in the near field 

of the receive antenna.  In the far field, the antenna is expected to be isotropic.  Further 

increase of the sensing range may require more transmitted power, a large quantity of the 



 

 148 

resonators, or reduced noise on the receive antenna (which may be achievable with 

reduced signal feedthrough or improved antenna quality factor).  

 

Fig. C-21: Resonant response of 100 unpackaged 1 mm diameter disc resonators, R=60 
cm 
 

 
Fig. C-22: Comparison of orientations in air. 
 
 
C.2.4 Detection of Resonators in Brine Tank 

The salinity of the terrain between the interrogating antenna and the dispersed 

smart proppants may result in significant attenuation of the electromagnetic signals and 

reduce the usable range of the system (or alternatively increase the power requirements 

significantly).  To evaluate the effect of salinity and to demonstrate that sensors can still 

be interrogated in the presence of salinity, a test setup was developed as shown in Fig. C-
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23.  In this setup, 40 unpackaged 2 mm diameter discs were positioned on a flexible 

magnetic strip (for DC biasing purposes) and placed inside the small transmit coil used 

and described previously.  This transmit coil and its contents were placed inside a capped 

tube and connected to the amplifier driven by the network analyzer.  The small receive 

coil was also placed inside a separate capped tube and connected to the network analyzer.  

These tubes were placed inside a tank, which was then filled with 3.5% (by weight) 

saline (seawater equivalent).  The distance between the coils was varied, and the resultant 

response of the cluster of resonators measured at each distance (as well as with and 

without saline in the tank).   

 

 
Fig. C-23: Brine tank test setup 
 

Fig. C-24 shows a typical measured response from the cluster of resonators, at a 

range of 6 cm and with saline in the tank.  Fig. C-25 summarizes the magnitude of the 

measured responses at various ranges and with air or saline in the tank.  As can be seen, 

the presence of saline results in ≈40% reduction in signal strength compared to the signal 

received in air.  The presence of saline also adds a small amount of noise to the measured 
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signal.  Importantly, this test demonstrates that the presence of saline does not completely 

annihilate the transmitted signal in this frequency range. 

 

 
Fig. C-24: Typical measured response from resonator cluster. 
 

 
Fig. C-25: Comparison of measured responses at various ranges and with air or saline in 
the tank 
 
 

C.3 3D Hexagonal Resonator Structure 

C.3.1 Modeling 

Utilizing the similar FEA simulation method, the simulated mode shapes, 

resonant frequencies, and maximum tip displacements of 3D “petal-shaped” hexagonal 

structures are given in Fig. C-26.  The overall size of Design H is less than ø1.5 mm × 0.8 
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mm.  There are two mode shapes that have resonant frequencies of 1.1 MHz and 1.3 

MHz respectively.  

  
          (a) Geometry                (b) 1.1 MHz and 12 nm deformation     (c) 1.3 MHz and 8 nm deformation 
 
Fig. C-26: Geometry and FEA simulation results of Design H. 
 
 
C.3.2 Fabrication 

The fabrication process of 3D hexagonal structures was more complicated and is 

illustrated in Fig. C-27.  The process started with 2D “starfish” structures fabricated using 

µEDM.  An array of moulds was patterned on a brass substrate also using µEDM.  Then, 

the 2D “starfish” structures were placed into the moulds, and pins were pushed through 

an aligning cover and towards the substrate, transforming 2D structures into 3D “petal-

shaped” structures.  The whole setup was clamped and put in a vacuum oven (~30 mTorr) 

for an annealing process at 275˚C for 12 hours.  After the annealing process, the 

deformation of the structure became permanent. 
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Fig. C-27: Fabrication process of 3D hexagonal structures. 
 
C.3.3 Experimental Results 

The resonant response of 3D hexagonal resonators was obtained using similar 

experimental setups described in Appendix 3.1.3.1.  The signal amplitude of Design H 

(27 µV) is also larger than that of the disc resonator (described in Appendix C.1) because 

more magnetoelastic material is involved in the vibration.  In addition, it has been 

experimentally confirmed that signal superposition also works for 3D hexagonal 

resonators.  There are three resonant peaks obtained for 15 clustered 3D hexagonal 

resonators, and the signal amplitudes of each resonant peak is smaller than 15x the signal 

amplitude of single resonator.  The multiple peaks and small signal amplitudes may be 

caused by the large variation in resonant frequencies for the 3D hexagonal structure 

induced during the fabrication process.   

 
 
 
 
 
 
 

µEDMed 2d “starfish” 
structure 

  

 

Molds for 3d structure Placing 2d structures 
into mould 

Punch to keep 3d 
shape

 

Annealing at 275˚C 
for 12 hours   
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C.4 Asterisk Magnetoelastic Tag Simulations 

Asterisk geometry is potential a good candidate for magnetoelastic tags because it 

allows reduce the signal strength sensitivity to the orientations of the interrogation field.  

The FEA simulations are used to investigate the resonant frequency, mode shapes and 

signal strength of the asterisk magnetoelastic tag.  The geometry used in the simulation is 

shown in Fig. C-28.  The dimension of each bar in the sensor is 0.25mm × 1.5mm.  The 

angle between the central line and direction of the applied DC and AC magnetic field is 

defined as ϴ.  Two specific cases when the ϴ is equal to 0 degree and 22.5 degree are 

investigated. 

 

Fig. C-28: Geometrical parameters of the asterisk magnetoelastic tag. The angle between 
the applied AC and DC magnetic field and the center axis of the tag is defined as ϴ. 

 

The FEA simulations are carried out using customized magneto-mechanical 

coupled model in Comsol 3.4 [Gre09].  The magnitude and phase of the signal generated 

by the tag are calculated from the integration of the magnetic flux density within the pick 

up coil.  The resonant frequency for the tag with different oriented applied magnetic field 

ranges from 1.48 MHz to 1.5 MHz.  The resonant frequencies and the mode shapes of the 

asterisk tag with ϴ of 0 degree and 22.5 degree are given in Fig. C-29. 
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(a)                                                                                     (b) 

Fig. C-29:  (a) ϴ = 0 degree model shape and resonant frequency of 1.4896MHz; (b) ϴ = 
22.5 degree mode shape and resonant frequency of 1.492MHz. 
 

The frequency responses of the tag with ϴ of 0 and 22.5 degree are given in Fig. 

C-30. The FEA simulation results show small variations of the peak-to-peak magnitude 

and frequency shift for two simulated conditions.  

 

Fig. C-30:  (Left) Magnitude and (Right) Phase frequency response of the voltage 
induced in the pick up coil. 
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