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ABSTRACT

Periodized Radial Basis Functions and RBF-Vortex Method for the Barotropic
Vorticity Equation

by

Jianping Xiao

Chair: John P. Boyd

Fluids spontaneously develop fronts, narrow spiral filaments and other features of

rapid spatial variation which are very challenging for numerical methods. Like most

competing numerical schemes, Radial Basis Function (RBF) methods are based on

interpolation. It has been previously proved that the RBF approximation converges

to the correct solution as the number of grid points increases. When the flow is

varying rapidly, high accuracy requires a high density of interpolation points while

smooth regions require a lower density of points. A method that can adaptively

allocate more grid points to where the fronts develop and fewer grid points to where

the flow is smooth is of great value in fluid simulation on the surface of a sphere. In

this thesis, a method that combines the meshfree nature of RBF interpolation and the

Lagrangian particle method is developed. On the one hand, the particles serving as

fluid elements are advected by the velocity field such that rapidly varying regions are

densely populated; on the other hand, the particles serving as RBF centers provide

higher density of interpolation points and therefore give a better resolution of the

regions.

xiii



CHAPTER I

Introduction

1.1 Radial Basis Functions (RBFs)

The approximation to a function using radial basis functions(RBFs), in any num-

ber of dimensions d, is

f(~x) ≈
N∑
j=1

ajφ(‖ ~x− ~cj ‖), ~x ∈ Rd (1.1)

for some “kernel” φ(r), always a univariate function even when the dimension d > 1,

and some set of N points ~cj, which are called the “centers”. The symbol || || denotes

the usual distance norm, ||~x|| =
√
x2

1 + x2
2 + . . . x2

d. The coefficients aj are always

found by interpolation at a set of points ~xi, which are usually chosen to coincide with

the centers. The coefficients are computed by solving the matrix problem

~~V ~a = ~f (1.2)

where matrix
~~V is the interpolation matrix with entries

~~Vi,j = φ(‖ ~xi− ~xj ‖); ~f is the

vector whose entries are f(~xi).

Interpolation using Radial Basis Functions (RBFs) first appears in the litera-

ture as a method for interpolating scattered topographic data (Hardy , 1971). Kansa

1



(Kansa, 1990a,b) first used RBFs to solve Partial Differential Equations (PDEs),

where the partial derivative is approximated by taking the partial derivative of the

basis functions. In recent two decades, Radial Basis Functions are growing in pop-

ularity for solving partial differential equations (Barba and Rossi , 2010; Fedoseyev

et al., 2002; Moroney and Turner , 2007; Platte and Driscoll , 2005; Wong et al., 2002;

Flyer and Wright , 2009) and have proved very useful in computer graphics and neural

networks (Fasshauer , 2007; Buhmann, 2003; Wendland , 2005; Iske, 2004; Buhmann,

2000; Schaback and Wendland , 2006).

To solve a partial differential equation(PDE) problem, the procedure is similar to

interpolation. Suppose the differential equation is

Lf(x) = g(x) (1.3)

where L is a linear operator. The approximation is fN(x) =
N∑
i=1

aiφ(‖ x− xi ‖). The

discretization is

~~L~a = ~g (1.4)

Here, the elements of the discretization matrix
~~L are generated by applying the op-

erator L on the basis functions,

~~L =


Lφ(‖ x− x1 ‖)|x=x1 . . . Lφ(‖ x− xN ‖)|x=x1

...
. . .

...

Lφ(‖ x− x1 ‖)|x=xN . . . Lφ(‖ x− xN ‖)|x=xN


and ~g is the vector whose elements are g(xi) at grid points xi, with i = 1, ..., N . The

interpolation coefficients are

~a =
~~L−1~g (1.5)
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1.1.1 Shape parameters, saturation error and other issues

Table 1.1 lists Five RBF species that are infinitely differentiable. All of the RBF

kernels (Gaussian, Inverse Quadratic, Hyperbolic Secant, Multiquadric and Inverse

Multiquadric) contain a parameter which controls the width of the basis function.

This parameter, which is really the inverse width of the basis function, is commonly

Table 1.1: The five RBF kernels: Gaussian, Inverse Quadratic, Hyperbolic Secant,
Multiquadric and Inverse Multiquadric

RBF names RBF kernels

Gaussian exp(−ε2x2)
Inverse Quadratic 1/(1 + ε2x2)
Hyperbolic Secant 2/[exp(εx) + exp(−εx)]

Multiquadric
√

1 + ε2x2

Inverse Multiquadric 1/
√

1 + ε2x2

called the “shape” parameter. For theoretical purposes, it is convenient to work with

an “absolute shape parameter” ε; for numerical purposes, it is more convenient to use

a parameter α which is relative to the grid spacing, h = 2π/N , where

ε ≡ α

h
=
αN

2π
(1.6)

Thus, the Gaussian kernel is

φ(x) = exp
(
−ε2x2

)
= exp

(
−α

2N2

4π2
x2

)
(1.7)

In applications, it is typical to choose the relative width parameter α for Gaussian

RBFs to lie in the range 0.2 to 0.5, and similarly but with different ranges for the

other RBF species discussed here. When α → 0, RBF interpolation error increases

exponentially because of the ill-conditioning of the interpolation matrix. However,

Fornberg proposed several strategies to do stable computations in this limit (Driscoll

and Fornberg , 2002; Fornberg and Wright , 2004). When α is large, RBFs approximate
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smooth functions as a sum of delta functions, which is obviously inaccurate. For

moderately large α, the error will decrease exponentially with increasing number of

grid points N but then plateau and decrease no further. This phenomenon is called

“error saturation” as shown in Fig. 1.2. These perils of large and small α are avoided

by choosing the relative shape parameter to be in the range 1/5 to 1/2, typically, as

already indicated. In this moderate range, it has been proven that RBFs converge

exponentially fast for approximating smooth functions. Fig. 1.1 shows the Gaussian

kernel with three different shape parameters.
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0.8
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Gaussian kernel

 

 

ε=0.1

ε=0.35

ε=1.0

Figure 1.1: Gaussian kernel with different shape parameters. As the shape parameter
ε becomes smaller, the Gaussian function becomes flatter. In the limit
ε = 0, the Gaussian function is a constant.

Although interpolation of smooth functions using RBFs are spectrally accurate,

we have to solve a dense matrix problem, which is very expensive especially for large

number of grid points. The RBF Finite Difference (RBF-FD) method proposed in

(Flyer et al., 2012; Fornberg and Lehto, 2011) reduces a dense interpolation matrix

to a sparse matrix by computing the FD weights on the n nearest neighbors for all

the grid points. The computational effort is reduced using RBF-FD method, but

the accuracy of the method is not spectral. Another strategy to solve the linear

dense matrix problem is to use iterative methods to find an approximate solution.

However, in many cases, the dense matrices are very ill-conditioned indicating a
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Figure 1.2: Saturation error of Gaussian RBF interpolation using different α. The
interpolation error approaches a error plateau. In this graph, f(x) =
(sin(3x)+5 cos(x)) exp(−5 cos(2x)+0.25 sin(x)) is interpolated on [−π, π]
using Gaussian RBF.

slow convergence even when iterative methods are applied. This is because a larger

λmax/λmin usually has a slower convergence and a smaller λmax/λmin indicates a

faster convergence. Various preconditioners have been devised to assure fast RBF

interpolations using iterative methods (Torres and Barba, 2009; Brown et al., 2005;

Ling and Kansa, 2004; Baxter , 2002; Beatson et al., 1999; Diago et al., 2004).

1.1.2 RBF methods in geoscience

Radial Basis Functions neural networks have been extensively used in weather pre-

dictions, climate and geophysical data analysis(Hickernell and Hon, 1998; Santhanam

and Subhajini , 2011; El-Shafie et al., 2012; Binaghi et al., 2013; Zhang et al., 2011;

Panakkat and Adeli , 2007; Shiguemori et al., 2008; Paes et al., 2011). In the field of

geophysical fluid dynamics, RBFs have been widely used, too. Recent development

on geophysical flow simulation using RBF methods have been advanced by Fornberg

and his colleagues (Flyer and Wright , 2009, 2007; Fornberg and Piret , 2008; Wright

et al., 2010; Flyer and Lehto, 2010; Flyer et al., 2012). Specifically, RBFs methods

are applied to solve Shallow Water Equations (SWE), transport equations on the
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surface of the sphere as well as thermal convection equations in a 3-D spherical shell.

The experiments are performed on a near-uniform grid either with or without local

refinement. Compared with other methods (Spectral elements, Spherical harmonics)

on the surface of the sphere, RBF methods use a much smaller number of nodes and

longer time steps while achieve higher accuracy as discussed in (Flyer and Fornberg ,

2011).

1.2 Vortex methods

The vorticity is defined as the curl of the velocity:

~ω = ∇× ~u (1.8)

For incompressible flow, the velocity must satisfy the continuity equation:

∇ · ~u = 0 (1.9)

This condition can be satisfied by introducing a vector streamfunction ~ψ such that

the velocity is defined as:

~u = ∇× ~ψ (1.10)

We can check ∇·~u = ∇· (∇× ~ψ) = 0. If the vector streamfunction is divergence-free,

then

~ω = ∇×∇× ~ψ = ∇(∇ · ~ψ)−∇2 ~ψ = −∇2 ~ψ (1.11)

If the flow is on a surface only, then ~ψ = (0, 0, ψ) and ~ω = (0, 0, ω), we have

∇2ψ = −ω (1.12)
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The conservation of vorticity following the flow can be written down as

dω

dt
=
∂ω

∂t
+ ~u · ∇ω = 0 (1.13)

which can be derived from the Eulerian equations as in (Beale, 1988). On the surface

of a rotating sphere, the absolute vorticity consists of two parts: the relative vorticity ζ

and the coriolis parameter 2Ω cos(θ). Therefore, the conservation of absolute vorticity

on the surface of a rotating sphere can be written as

d (ζ + cos(θ))

dt
= 0 (1.14)

where 2Ω is set to unity. Eqn. 1.14 is the Barotropic Vorticity Equation (BVE).

For Eqn. 1.13 and Eqn. 1.14, a Lagrangian method is natural. The vortex method

discretizes the vorticity field into Lagrangian elements that carry vorticity and move

with the local fluid velocity.

The vortex method first appeared in the classic work by Rosenhead (Rosenhead ,

1932), where he approximated the discontinuous velocity surface by a set of point

vortices. The point vortex method approximates a continuous flow by a set of point

vortices that travel with the flow. The circulation of a vortex is concentrated at a

point. The velocity field at a given location is the superposition of the velocities

induced by all other point vortices. Although there is an extensive literature on point

vortex methods on the sphere (Sakajo, 2007a,b, 2004; Pekarsky and Marsden, 1998;

Newton and Sakajo, 2008, 2006, 2007; Newton and Ross , 2006; Klyatskin and Reznik ,

1989; Kimura and Okamoto, 1987; Kidambi and Newton, 1998b,a,c; Jamaloodeen and

Newton, 2007; Dibattista and Polvani , 1998; Bogomolov , 1979, 1977), point vortices

were abandoned for vortex blob methods except for computations on the surface of

a sphere. On the one hand, this is because the streamfunctions of the point vortices

have singularities at the locations of the point vortices. As vortices move close enough,
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the velocities of the vortices become large and the simulations blow up in finite time.

On the other hand, a sum of Dirac delta point vortices is a poor approximation to a

smooth, continuous vorticity field. In geophysical fluid dynamics, point vortex mod-

els have not been taken seriously as a numerical method for simulating geophysical

flows. However, due to the theoretical simplicities of point vortex methods, there

are extensive publications on fluid dynamics on a rotating sphere using point vortex

methods (Reznik and Kizner , 2007; Reznik , 1992, 1986; Kuhlbrodt and Nevic, 2000;

Hogg and Stommel , 1985; Gryanik , 1988b,a, 1986; McWilliams and Zabusky , 1982).

In point vortex methods, the circulation concentrates on a point vortex. Unlike

point vortex methods, the vortex blob methods (Chorin and Bernard , 1973) allow

the vorticity to have a distribution that decays to zero, for example a Gaussian

distribution. In the Gaussian vortex blob method, the fractional contribution from

vortex i to location ~x is

ζi(~x) =
1

2πσ2
exp

(
−(~x− ~xi)2

2σ2

)
(1.15)

The vorticity at location ~x is sum of the contribution from all the vortex blobs, that

is,

ω(~x) =
N∑
i=1

Γiζi(~x) (1.16)

where Γi is the strength of the vortex.

The vortex blob methods were first introduced by Chorin and Bernard (1973). In

the vortex blob methods, the continuous flow is represented as a sum of many vortex

blobs. The convergence of simulations using vortex blob methods were provided

in (Beale and Majda, 1982a; Hald and Del Prete, 1978; Hald , 1979, 1987). Beale &

Majda studied and developed higher order kernels for vortex methods in two and three

dimensions (Beale and Majda, 1982b, 1985). Numerical experiments of the 2-D Euler

equations indicated that the higher order kernels yield a considerably more accurate
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representation of the velocity field than the lower order kernels. Krasny analytically

and numerically showed that the vortex blob methods converged as the inter-particle

spacing converged to zero and as the smoothing parameter converged to zero (Krasny ,

1986), for periodic vortex sheets roll-up simulations. General discussion of vortex

methods can be found in (Cottet and Koumoutsakos , 2000; Majda and Bertozzi ,

2002). Comprehensive review articles of flow simulations using vortex methods are

found in (Leonard , 1980; Koumoutsakos , 2005).

Although the vortex blob methods provided convergent and accurate simulations

for fluid flows, for long time simulations the accuracy is degraded by the vortex

distortion problem. This is because the accuracy of the vortex blob method is very

sensitive to the overlap ratio h/σ, where σ is the Gaussian blob width and h is the

vortex distance (Perlman, 1985; Barba et al., 2003). As the particles travel with the

flow, due to strain, the vortex blobs will become sparsely populated in some areas

while cluster together in other areas. If the ratio h/σ is too large, it means that the

continuous flow field is not well covered and represented by the vortex blobs, and

therefore simulation error arises. The cure to the vortex distortion problem is by

vortex remeshing (Barba et al., 2003, 2005), where after some time steps the particle

circulations on a more regular grid are re-calculated. The prevailing remeshing scheme

on a Cartesian coordinate consists in constructing a square lattice of new particles

locations, and obtaining the circulation values from the old particles by interpolation

using tensor-product kernels.

Adding viscosity to a vortex model is another difficulty in vortex methods. The

first attempt to add viscous effects was by Chorin (1973). The diffusion of the vor-

ticity was simulated via the Brownian motion of the vortex particles. This method is

based on the statistical interpretation of the diffusion equation. However the random

walk technique only applies to slightly viscous flow. The core spreading method sim-

ulates the diffusion effect by expanding the vortices. The idea behind this is that the
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Gaussian function with growing core size is an exact solution to the diffusion equa-

tion. However, it was shown that the core spreading method does not converge to the

Navier-Stokes equations (Greengard , 1985). A third damping method is the Particle

Strength Exchange (PSE) method, which approximates the diffusion by smoothing

the difference between the target particle and the surrounding particles using a Gaus-

sian kernel (Degond and Mas-Gallic, 1989; Koumoutsakos , 1997; Koumoutsakos and

Leonard , 1995; Ploumhans and Winckelmans , 2000). However, the PSE method relies

heavily on the accuracy of the integration schemes, and therefore on the regularity of

the particle locations.

The meshfree nature of RBF methods has been applied to do the vortex regrid-

ding/remeshing in fluid simulations using vortex methods (Barba et al., 2003, 2005;

Barba and Rossi , 2010; Torres and Barba, 2009). In these works, the Gaussian RBFs

are used to find the circulations of the new particles via solving an interpolation

problem given the vorticity of the old particles. Compared with other tensor-product

interpolation kernels, the RBF interpolation does not introduce a sharp increase at the

initial remeshing step, and keeps the simulation highly accurate for a long period of

time. This is because vortex regridding/remeshing using tensor-product kernels brings

back the idea of “mesh”, i.e., a tensor-product grid, for a “meshless” method, i.e.,

the vortex methods. While the Radial Basis Functions are “meshless” kernels. They

do not rely on the regularity of the grid, although best interpolations are achieved on

a near-uniform grid. Accurate interpolations are usually possible using RBF kernels

on an irregular grid.
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CHAPTER II

Periodized Radial Basis Functions

2.1 RBF basics and imbricate series

2.1.1 Motivation

Previous studies on RBF methods focused on nonperiodic domains. Very little

work has been done on RBF interpolation on a periodic domain and solving PDEs

using Periodized Radial Basis Functions (PRBFs). The trigonometric basis has been

the default choice on a periodic domain. However when applied to resolve very narrow

sharp structures in a wide domain, much more grid points are needed on a uniform

grid than on a nonuniform adaptive grid. Although a standard interpolation on a

nonuniform grid using trigonometric basis is possible, the condition number of the

interpolation matrix is very large, which results in a very inaccurate solution. In Pe-

riodic RBF interpolation, we can appropriately manipulate the free shape parameter

ε to supress the ill-conditioning of the interpolation matrix. This makes accurate

interpolation using PRBF on a highly nonuniform grid possible.

2.1.2 A review of previous work on periodic RBFs

We have found only three papers, all highly theoretical, which focus on periodic

RBFs: the 1992 articles of Xu & Cheney (Xu and Cheney , 1992) and Light & Cheney
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(Light and Cheney , 1992) and the 2006 article of Hubbert & Mueller (Hubbert and

Mueller , 2006). RBFs are usually chosen to be Strictly Positive Definite (SPD). These

authors establish conditions for a periodic RBF to be Strictly Positive Definite (SPD)

or Almost Strictly Positive Definite (ASPD) and then collectively demonstrate the

following for general periodic RBF:

1. A Strictly Positive Definite θ(x) [“kernel”] has a Fourier cosine series with non-

negative coefficients.

2. An SPD basis function is symmetric, that is, θ(−x) = θ(x).

3. The interpolation matrix for a periodic but otherwise arbitrary grid is always

invertible, and the interpolation problem therefore always has a unique solution.

4. The interpolation matrix for a periodic uniform grid is circulant.

5. The circular matrix can be diagonalized by a similarity transformation using

the Fourier transform matrix.

6. Series for the Fourier coefficients of RBF cardinal functions are found.

Using special formulas for circulant matrices, the eigenvalues of the interpolation

matrix can be derived for a number of species of periodic RBFs. In particular, the

condition number of the interpolation matrix for Periodic Inverse Quadratic (PIQ)

functions is p−N/2 where p is the positive constant such that the Fourier coefficients

of the PIQ kernel θIQ(x; ε) are 2pn. Both Periodic Gaussian (PGA) and the PIQ

functions are Strictly Positive Definite. Hubbert and Mueller derive a closed form

expression for the interpolation error in the least squares norm for the interpolation

of f(x) = cos(x) by the PIQ basis. All these authors knew the closed form for PIQ,

but none discussed the imbricate series for PIQ and PGA which we give below.

Platte and Driscoll (Platte and Driscoll , 2006), although focusing on a wider range

of RBF issues, prove that periodic RBF differentiation matrices are stable provided

12



that the RBFs are positive definite. Abe and Iiguni (Abe and Iiguni , 2006a,b) have ap-

plied periodic Gaussian RBFs to neural networks for image processing and show that,

for a uniform grid with N points, the coefficients can be computed in O(N log2(N))

operations. However, their data sets are not periodic and their accuracy is not spec-

tral.

There are three reasons why the literature on periodic radial basis functions is

sparse. First, periodic domains are rarer in applications than nonperiodic intervals.

Second, Fourier pseudospectral methods are very fast due to the blazing speed of

the Fast Fourier Transform for non–adaptive periodic problems. Third, when the

RBFs are narrow compared to the periodicity interval, the RBFs closely resemble

their infinite interval counterparts except near the edges of the interval x ∈ [−π, π].

Nevertheless, we shall show that periodic RBFs are interesting objects with good

value for applications.

2.1.3 Poisson Summation and imbricate series

Theorem II.1 (Imbricate Series/Poisson Summation). Any periodic function with

period L has the two series representations

f(x) = χ
∞∑

n=−∞

g(χ n) exp(i 2 π n x /L ) =
∞∑

m=−∞

G

(
2 π

L χ
[x−m L ]

)
(2.1)

where the series on the left is the usual (complex) Fourier series, the series on the

right is “imbricate” series, χ is an arbitrary positive constant, and where g(k) and

G(x) are Fourier transforms of one another:

G(x) =

∞∫
−∞

g(k) exp(i k x) dk (2.2)
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g(k) =
1

2 π

∞∫
−∞

G(x) exp(− i k x) dx (2.3)

The theorem is valid if the following sufficient conditions are satisfied: (i) g(k) ∈

L1(R), that is, if the integral of the absolute value of g(k) over the entire real axis is

bounded and also (ii) G(x) = O ((1 + |x|)−α) as |x| → ∞ for some α > 1.

Proof. (Zayed, 1996, pg. 239). The theorem is a special case of the Poisson Summa-

tion Formula.

Definition II.2 (Pattern Function). The function G(x), which is repeated with even

spacing over all x to create a periodic function, is said to be the “pattern” function

of the imbricate series.

Definition II.3 (Imbrication). The periodic function f(x) which is the sum of the

imbricate series with pattern function G(x) is said to be the “imbrication” of G(x).

Fig. 2.1 is a schematic that illustrates the simple idea behind an imbricate series.

Given an arbitrary function G(x) which decays sufficiently fast as |x| → ∞, duplicate

an infinite number of copies and place one copy at x = m L where m ranges over

all the positive and negative integers and L is an arbitrary constant. The result will,

by construnction, be a periodic function. If G(x) decays sufficiently fast — decay as

O(1/x2) will suffice although this condition can be considerably relaxed — then the

imbricate series can be easily proved to converge.

2.1.4 Erf-Unitary Function for periodic functions

Lemma II.4 (Erf-Unitary Function). The function

Ω(x) =
1

2
{erf(

π − x
2S

) + erf(
π + x

2S
)} (2.4)
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Figure 2.1: Schematic of an imbricate series. Thick, unmarked curve: the periodic
function f(x) which is the sum of the imbricate series. Dashed: Three of
the infinite number of copies of the pattern function G(x).

is a Periodic Partition-of-Unity, in the sense that

∞∑
m=−∞

Ω(x− 2πm;S) = 1,∀x (2.5)

for all values of S > 0, a constant.

Proof. Boyd (Boyd , 1997).

Lemma II.5. If f(x) is a periodic function, then it may always be represented as the

”imbricate” series

f(x) =
∞∑

m=−∞

G(x− 2πm;S),∀x (2.6)

where the ”pattern function” is

G(x) = f(x)Ω(x;S) (2.7)

with Ω a Periodic Partition-of-Unity (Boyd, 1989).
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Proof.

G(x− 2πm) = f(x− 2πm)Ω(x− 2πm;S)

= f(x)Ω(x− 2πm)

(2.8)

because f(x) is periodic with periodic 2π. Since f(x) is now a common factor for

every term in the imbricate sum, it may be extracted from the sum:

f(x) =
∞∑

m=−∞

G(x− 2πm;S)

=
∞∑

m=−∞

f(x− 2πm)Ω(x− 2πm;S)

=
∞∑

m=−∞

f(x)Ω(x− 2πm;S)

= f(x)
∞∑

m=−∞

Ω(x− 2πm;S)

= f(x)

(2.9)

where we invoked the Periodic Partition-of-Unity property of Ω in the last line.

The important thing here is, every periodic function, i.e., with period 2π, can be

written as an imbricate series. In the next section, the periodized version of RBFs

will be given using Poisson Summation theorem. Two forms of the Periodized RBFs

will be given, i.e., imbricate series and Fourier series.
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2.2 Periodizing RBFs

2.2.1 Construction of basis functions through the Poisson Summation

Theorem

Any function φ(x) which decays as fast as O(1/|x|2) as |x| → ∞ can be periodized

by being made the “pattern function” of an “imbricate series” of the form

θ(x) ≡
∞∑

m=−∞

φ(x− 2πm) (2.10)

The function θ, which is the sum of an infinite number of copies of the pattern

function, is by construction a periodic function of period 2π. The Poisson Summation

Theorem shows that the Fourier coefficients of θ are the Fourier transform Φ(k) of

the pattern function φ(x).

The three RBF species we shall discuss here are all good basis sets for approxi-

mating a function G(x) on the real axis. One way of interpreting and justifying their

periodic equivalents is to regard the RBF approximation (without periodization) as

an approximation to the pattern function G(x); applying the periodization process

to both the pattern function and to the individual terms of the RBF approximation

generates an approximation for the periodic function f(x) as a series of the periodic

RBFs. That is to say,

G(x) =
∑N

n=1 anφ(x− xn) (2.11)

m

f(x) =
∑N

n=1 anθ(x− xn) (2.12)
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where θ(x) ≡
∑∞

m=−∞ φ(x− 2πm) is the periodic RBF and

f(x) ≡
∞∑

m=−∞

G(x− 2πm) (2.13)

In the following subsections, the periodized version of Radial Basis Functions will be

generated.

2.2.2 Periodized Gaussians (PGA)

φ(x) = exp
(
−ε2x2

)
(2.14)

where ε is the absolute inverse width or “shape parameter”. The Periodic Gaussian

(PGA) is

θGA(x; ε) =
∞∑

m=−∞

exp
(
−ε2[x− 2πm]2

)
=

1

2 ε
√
π

{
1 + 2

∞∑
n=1

exp

(
− n

2

4ε2

)
cos(nx)

}

=
1

s
√
π
θ3(x/2; ε)

(2.15)

where θ3(z; s) is the usual Jacobian Theta function defined below.

In practice, of course, the infinite imbricate series must be truncated. For the

Periodic Gaussian basis, the “pattern function” decays so rapidly that usually just

three terms suffice. Thus the PGA basis is quite efficient even though the Jacobian

theta function cannot be evaluated in closed form. The Periodic Inverse Quadratic

function [next subsection] has an imbricate series that converges very slowly; this

basis is practical because a simple, explicit closed form for the basis-defining sum is
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known.

2.2.3 Periodic Inverse Quadratic (PIQ)

φ(x) =
1

1 + ε2x2
(2.16)

imbricates to the PIQ kernel:

θIQ(x;N, ε) ≡
∞∑

m=−∞

1

(1 + ε2(x − 2π m )2)

=
1

2 ε

{
1 + 2

∞∑
n=1

exp(−n/ε) cos(n x)

}

=
1

2 ε

(1− p2)

(1 + p2)− 2 p cos(x)

(2.17)

where

p = exp(−1/ε) (2.18)

2.2.4 Periodized Sech (Psech)

φ(x) = sech(εx) (2.19)

periodizes as the Periodic Hyperbolic Secant (Psech) kernel:

θsech(x;N, ε) ≡
∞∑

m=−∞

sech[ε(x− 2πm)]

=
1

ε

{
(1/2) + 2

∞∑
n=1

[qn/(1 + q2n)] cos(nx)

}

=
2K(
√

1− k2)

π
dn

(
2

π
K(
√

1− k2)εx; k

)
(2.20)
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where the required auxiliary relationships are

ε ≡ π/ [ 2 log(1/q)] ⇔ elliptic nome q = exp
(
− π

2 ε

)
(2.21)

k [elliptic modulus] = EllipticModulus(q) ≡
(
θ2(0; q)

θ3(0; q)

)2

(2.22)

where dn is the usual Jacobian elliptic function, K is the complete elliptic integral

and θ2(x; q) and θ3(x; q) are standard Jacobian theta functions. The necessary ellip-

tic function and theta function can be found in (Olver et al., 2010) and its online

equivalent, the NIST Digital Library of Mathematical Functions (dllmf.nist.gov; see

also functions.wolfram.com).

Since Sech functions are exponentially decaying functions, in numerical compu-

tations, we can truncate the summation series so that the computational effort is

reduced significantly.

2.2.5 Periodic generalizations of the multiquadric (MQ) and inverse mul-

tiquadric (IMQ)

Imbricating the kernels

φ =
√

1 + ε2r2 [ Multiquadric (MQ)] (2.23)

and

φ =
1√

1 + ε2r2
[Inverse Multiquadric (IMQ)] (2.24)
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fails because the resulting series are divergent due to the slow decay (or lack of decay)

of the kernels. However, these kernels do have generalized Fourier Transforms:

FT (
√

1 + ε2x2) = −K1(|K|/ε)
π|K|

[MQ] (2.25)

FT
(

1√
1 + ε2X2

)
= −K0(|K|/ε)

πε
[IMQ] (2.26)

By following the same procedure as before, the periodization of MQ and IMQ

would be the summation of the corresponding Fourier series over the integer wave

numbers only, as long as the summation is convergent. However, the corresponding

series have zeros mean. We experimented with adding the constant as a separate

basis function, but a better option proved to be arbitrarily adding a constant to the

Fourier series and thus defining

θMQ(x; ε) ≡ 1 +
∞∑
n=1

K1(n/ε)/(πn) cos(nx) (2.27)

Similarly,

θIMQ(x; ε) ≡ 1 +
∞∑
n=1

K0(n/ε)/(πε) cos(nx) (2.28)

Figs. 2.3 and 2.4 show that both proposed basis sets, despite the lack of a standard

imbricate series, give spectral accuracy. Fig. 2.2 confirms the expected geometric rate

of convergence, that is, the error is falling as exp(−qN) for some positive q, which

appears as a straight line on this graph with log and linear scales.
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Figure 2.2: Periodic Inverse Multiquadric errors in the L∞ norm for the approxima-
tion of f(x) = (1 + sin(x))/(1− cos(x)/2) with the RBF shape parameter
α = 0.15.

2.3 Cardinal functions (Lagrange basis) for periodic RBF

The cardinal functions Cj(X) are linear combinations of the basis functions, which

satisfy the ”cardinal conditions”

Cj(xk) =

 1, k≡j

0, k 6=j
(2.29)

In the cardinal basis, the interpolant of a function is simply

fN(~x) ≡
N∑
j=1

f(~xj)Cj(~x) (2.30)

For any interpolating basis, the equivalent cardinal basis always exists so long as

the interpolation (Vandermonde) matrix is invertible. Indeed, we can write without
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norm

f=1/(1-cos(x)/2),    N=40 pts

Figure 2.3: Maximum pointwise errors (errors in the L∞ norm) for Periodized Multi-
quadrics (PMQ) for f(x) = 1/(1− cos(x)/2) with forty uniformly spaced
interpolation points.

approximation, in any number of dimensions,

Cj(x) =
N∑
k=1

V kjφ(‖ ~x− ~xk ‖), ~x ∈ Rd (2.31)

where the V kj are the elements of the inverse of the interpolation matrix whose

elements are Vjk = φ(||~xj − ~xk||).

To analyze cardinal functions for periodic RBFs, we need the following.

Definition II.6 (Periodic Grid). Let the N interpolation points xk lie on the interval

[−π, π). A periodic grid on the entire real axis is then defined as the union of these

points plus all other points of the form

xk+mN = xk + 2πm, m = any integer (2.32)
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Figure 2.4: Maximum pointwise errors (errors in the L∞ norm) for Periodized Inverse
Multiquadrics (PIMQ) for f(x) = (1 + sin(x))/(1 − cos(x)/2) with forty
uniformly spaced interpolation points.

The infinite-interval cardinal functions can always be written as RBF series:

C∞j (x) =
∞∑

k=−∞

Wkjφ(x− xk) (2.33)

where for simplicity we retreat to one space dimension although the ideas below

generalize rather easily to as many dimensions as we please. We impose the usual

cardinal conditions over the entire infinite periodic grid:

C∞j (xk) =

 1, k = j

0, k 6=j
j, k = 0,±1,±2, . . . (2.34)

Theorem II.7 (Cardinal Function Imbrication). Define the N-point periodic RBF
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cardinal functions to be sums of the form

Cj(x) =
N∑
n=1

W njθ(x− xn) (2.35)

satisfying the cardinal conditions for the N points xk ∈ [−π, π):

Cj(xk) =

 1, k = j

0, k 6=j
j, k = 1, 2, . . . N (2.36)

Then the periodic RBF cardinal functions are the imbrication of the infinite grid

cardinal functions:

Cj(x) =
∞∑

m=−∞

C∞j (x− 2πm) (2.37)

Proof. Define C̃j by the first line in Eqn. 2.38. Substitute the series for the infinite

grid cardinal function to obtain the second line. Interchanging the order of summation

gives the third line. Next, the definition of the periodized basis function allows one

to collapse each sum in m to a copy of the kernel θ. The definition of a periodic grid

allows us to write each point in the form xn+mN where n is restricted to the range

1, 2, . . . N , yielding the fifth line below. Because xn − xn+mN = 2πm, the periodicity

θ(x) yields θ(x− xn+mN) = θ(x− xn), generating the sixth line. The final row of the

equation comes from the definition which is given immediately after the equations
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themselves.

C̃j(x) =
∞∑

m=−∞

C∞j (x− 2πm)

=
∞∑

m=−∞

∞∑
n=−∞

Wnjφ(x− xn − 2πm)

=
∞∑

n=−∞

Wnj

∞∑
m=−∞

φ(x− xn − 2πm)

=
∞∑

n=−∞

Wnjθ(x− xn)

=
N∑
n=1

∞∑
m=−∞

Wn+mN,jθ(x− xn+mN)

=
N∑
n=1

∞∑
m=−∞

Wn+mN,jθ(x− xn)

=
N∑
n=1

W njθ(x− xn)

(2.38)

where we have defined W nj ≡
∑∞

m=−∞ Wn+mN,j. Thus, C̃j(x) is of the correct series

form to be a periodic RBF cardinal function; we now must verify that it satisfies the

cardinal conditions, too. However, each infinite interval cardinal function is zero at

all the points of the infinite periodic grid except for one. When we imbricate the

infinite interval cardinal functions, using h = 2π/N

C̃j(xk) =
∞∑

m=−∞

C∞j (xk − 2πm)

=
∞∑

m=−∞

C∞j (
2π

N
k − 2πm)

= δj,k j = 1, 2, . . . N & k = 1, 2, . . . N

(2.39)

where the infinite sum becomes redundant when j and k are each restricted to the

range [1, N ]. It follows that the sum defined as C̃j(x) = Cj(x).

When the grid is uniform, all cardinal functions are translates of the cardinal
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function peaked at the origin, which we shall denote by C(x) without a subscript:

Cj(x) ≡ C(x− xj) (2.40)

We now recall the following theorem

Theorem II.8. On a uniform, infinite grid with grid spacing h, the cardinal functions

for Gaussian, Inverse Quadratic, Sech [Hyperbolic Secant], Multiquadric and Inverse

Multiquadric RBFs are given by the common form

C∞(x;α, h) ∼ sin(πx/h)
ℵ

sinh (ℵ πx/h)
(2.41)

where ℵ(α) depends on the shape parameter α, a different function for each RBF

species as catalogued in Table 2.1 and justified in (Boyd, 2011).

Proof. Trivial combination of theorems from Boyd and Wang (2009) and Boyd (2011).

Table 2.1: ℵ in C(X) ∼ ℵ sin(πX)/sinh(ℵ πX)
Type φ [unit grid] ℵ

Gaussian exp(−α2X2) α2/π
sech sech(αX) α/π
IQ 1/(1 + α2X2) α/2

MQ
√

1 + α2X2 {(2/α)(K0(π/α)/K1(π/α)) + (4/π)}−1 ≈ α/2− 3
4π
α2 + 15

(16π2)
α3

IMQ 1/
√

1 + α2X2 (αK0(π/α)/(2K1(π/α)) ≈ α/2− 1
4π
α2 + 3

16π2)
α3

Theorem II.9 (Approximate Periodized Cardinal Functions).

C(x;α, h) =
∞∑

m=−∞

ℵ(α) sin(π[x− 2πm]/h)

{sinh (ℵ(α)π[x− 2πm]/h)}

= sin(
π

h
x)ℵ(α)

2K(
√

1− k2)

π
cs

(
2

π
K(
√

1− k2)
πℵ(α)

h
x; k

) (2.42)
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for the PGA, PIQ and Periodic Hyperbolic Secant RBFs with the appropriate

choice of ℵ(α) where

q = exp

(
− h

2ℵ(α)

)
= exp

(
− π

N ℵ(α)

)
k = EllipticModulus(q) ≡

(
θ2(0; q)

θ3(0; q)

)2 (2.43)

where cs is the usual Jacobian elliptic function and θ2(x; q) and θ3(x; q) are standard

Jacobian theta functions.

All cardinal functions Cj are translates of C:

Cj(x;α, h) ≡ C(x− xj;α, h) (2.44)

Proof. Combination of the two preceding theorems.

Note that for all spectrally accurate RBF species, α → 0 is equivalent to ℵ → 0.

(This is what Fornberg calls the “flat limit” of very wide RBFs.) The pair of hyper-

bolic tangent functions become a “top hat” function, the cardinal function Fourier

series becomes a trigonometric polynomial, and the cardinal function becomes the

Dirichlet kernel of Fourier series theory, which is also the usual trigonometric inter-

polation cardinal function.

2.4 Convergence rates

We shall assume that there are N grid points on the periodicity interval, x ∈

[−π, π]. We shall not require that the points be uniformly distributed. We apply a

periodic grid as defined in the preceding section: xj+kN ≡ xj + 2πk for all integers k.

It will be convenient to use a cardinal function representation. Let C∞n (x) denote

the non–periodized infinite interval cardinal functions constructed from the RBF ker-

nel φ(x). The periodic cardinal functions Cj(x) are the imbrication of C∞n (x) as in
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Figure 2.5: Comparison of the RBF and trigonometric cardinal functions. For the
Gaussian RBF, α = 1/

√
2 and ℵ = 1/(2π) — and 30 interpolation points.

Left: C(x) itself; the curve of larger amplitude is the trigonometric cardi-
nal function for the same number of points. Right: the Fourier coefficients
of the RBF cardinal function (solid) and the trigonometric cardinal func-
tion (dashed).

Theorem 2. Since C∞n (xm) = δnm, it follows that

Cj(xm+kN) =

 1, j = m, k = 0,±1,±2, . . .

0, j 6= m, k = 0,±1,±2, . . .
(2.45)

Cj+kN(x) = Cj(x) (2.46)

The periodic RBF interpolant is

f(x) ≈ fN(x) ≡
N∑
j=1

f(xj)Cj(x)

=
N∑
j=1

f(xj)

{
∞∑

m=−∞

C∞j (x− 2πm)

} (2.47)
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Using the Partition-of-Unity, every periodic function can be rewritten in an ”im-

bricate” form, and we can write without approximation

f(x) ≡
∞∑

m=−∞

g(x− 2πm) (2.48)

Let us now approximate this parent function on the unbounded interval by the infinite

cardinal function series

g(x) ≈ g∞(x) ≡
∞∑

n=−∞

g(xn)C∞n (x) (2.49)

Note that this is an infinite series even though we use only N grid points in calculating

the periodic RBF interpolant.

The imbrication of g∞ is

Imb(g∞) =
∞∑

m=−∞

g∞(x− 2πm)

=
∞∑

m=−∞

∞∑
n=−∞

g(xn)C∞n (x− 2πm)

=
∞∑

n=−∞

g(xn)

{
∞∑

m=−∞

C∞n (x− 2πm)

}

=
∞∑

n=−∞

g(xn)Cn(x)

=
N∑
j=1

∞∑
k=−∞

g(xj+kN)Cj+kN(x)

=
N∑
j=1

∞∑
k=−∞

g(xj+kN)Cj(x)

=
N∑
j=1

Cj(x)

{
∞∑

k=−∞

g(xj+kN)

}

(2.50)
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However, the fact that g is the pattern function for f implies that

f(xj) =
∞∑

m=−∞

g(xj − 2πm)

=
∞∑

k=−∞

g(xj+kN)

(2.51)

Therefore

Imb(g∞) =
N∑
j=1

Cj(x)

{
∞∑

k=−∞

g(xj+kN)

}

=
N∑
j=1

Cj(x)f(xj)

= fN(x)

(2.52)

It follows that if g∞ is a good approximation to g(x),

g∞ = g + E∞ (2.53)

where |E∞| << 1, then imbrication gives

fN(x) = Imb(g∞)

= Imb(g) + Imb(E∞)

= f(x) + Imb(E∞)

(2.54)

Thus, the accuracy of RBF approximation an infinite interval implies the periodic

interpolant must be equally accurate. The formal statement is the following.

Theorem II.10 (Equiconvergence Theorem). Suppose that f(x) is periodic with

period 2π and is analytic in a strip of width w about the real axis, |=(x)| ≤ w,

<(x) = anything. Suppose we can construct a pattern function g(x) which is analytic

in the same strip and decays exponentially fast within the strip as |<(x)| → ∞, such
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as g(x) ≡ P(x;L) f(x).

Then if such a g(x) can be approximated by RBFs with the kernel φ(x) so as to

achieve a given rate of convergence, then the approximation of f(x) on the periodicity

interval by interpolation using a basis θ(x − xj) which is the periodization of φ will

converge at the same rate. More precisely, denoting the RBF approximations by g∞

and fN(x)

g∞ = g + E∞ (2.55)

then

fN(x) = f(x) + Imb(E∞) (2.56)

In particular, if the convergence rate on the infinite interval is geometric, the periodic

RBF interpolant will also converge at a geometric rate.

We now need to prove the following:

Theorem II.11 (Geometric Convergence on the Infinite Interval). Let N denote

the number of points on x ∈ [−∞,∞] and generate an infinite grid by periodically

replicating this N-point grid over the entire real axis. Suppose g(x) is analytic in

a strip of width w about the real axis, |=(x)| ≤ w, <(x) = anything and decays

exponentially fast within the strip as |<(x)| → ∞, such as g(x) ≡ P(x;L) f(x).

Then the error in

g(x) ≈ g∞(x) ≡
∞∑

n=−∞

g(xn)C∞n (x) (2.57)

is bounded by exp(−Nµ) for some positive constant µ.

Proof. Platte and Driscoll (Platte and Driscoll , 2005) and Platte (Platte, 2011) have

established a geometric rate of convergence for RBF interpolation on a finite interval
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for any of the five RBF species considered here. Let us suppose that we approximate

g(x) on the truncated, finite domain x ∈ [−Mπ,Mπ] using P = MN interpolation

points. For fixed M , the Platte-Driscoll theory proves that the RBF approximation

error decreases geometrically fast. Because by assumption g(x) is decaying exponen-

tially fast with |x|, the error in truncating the domain decreases exponentially fast

with M . For fixed M and increasing N , the approximation error in the finite interval

will eventually decrease below the domain truncation error, ED ∼ O(|g(Mπ)|); the

overall maximum pointwise error can decrease further only if the size of the finite

domain is increased. If g(x) is decreasing like a Gaussian on x ∈ [−∞,∞], then

minimizing the sum of the truncation error and of the approximation error on the

finite, truncated interval requires M =
√
N and thus P = N3/2. The error decreases

as O(exp(−µ′P 2/3)) for some constant µ′. This is only a subgeometric rate of con-

vergence as measured by the usual computational standard of the total number of

interpolation points P .

However, our computational problem involves only the N points on the periodicity

interval; no computer will ever be tasked with evaluating the infinite sum that defines

g∞. Since P = N3/2, O(exp(−µ′P 2/3)) ∼ O(exp(−µ′N)). We have thus demonstrated

that the rate of convergence is geometric in N .

We have sloughed over one issue, which is that the asymptotic rate of convergence

µ′ depends upon the distance d to the expansion interval of the singularity of f(x)

which is closest to the expansion interval. When we make a change of coordinate,

y = x/(Mπ), to transform a very large approximation interval in x to the canonical

interval for RBF approximation on a finite domain, y ∈ [−1, 1], we find that in the

coordinate y, the distance from this singularity to the interval is d′ = d/M . For a

fixed number of interpolation points P in y, this would seem to imply slower and

slower rate of convergence as M increases. However, the logarithm of the error is also
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proportional to P , and P increases with increasing M . The error bound is

exp(−Pcd′) = exp(−MNc(d/M)) = exp(−cdN) (2.58)

where c > 0 is a constant independent of M , N and d whose numerical value is

irrelevant here, though given by the Platte-Driscoll theory. The error does indeed fall

geometrically with N .

The combination of the two previous theorems then trivially proves the following.

Theorem II.12 (Geometric Rate-of-Convergence Theorem). Suppose that f(x) is

periodic with period 2π and is analytic in a strip of width w about the real axis,

|=(x)| ≤ w, <(x) = anything. Let N denote the number of points on x ∈ [−π, π].

Then the periodic RBF approximation error is geometrically converging, that is,

E(x) ≡ |f(x)− fN(x)| ≤ exp(−Nµ) (2.59)

Figure 2.6 shows a typical instance of interpolation using Periodic Gaussian RBFs

which provides experimental confirmation of our analysis.

2.5 Symmetry-respecting RBFs

Many problems have parity symmetries; the eigenfunctions of the Mathieu equa-

tion, discussed below, have definite parity with respect to both x = 0 and x = π/2

and thus divide into four classes. Since it is usually much cheaper to solve several

small problems than one big problem, it is highly desirable to build basis functions

that explicitly incorporate such symmetries as explained in Boyd (1999).

For parity about the origin, it is convenient to choose the grid points to lie on

x ∈ (0, π]. Then

θS(x) ≡ θ(x− xj) + θ(x+ xj) (2.60)

34



−3 −2 −1 0 1 2 3
−300

−200

−100

0

100

200

x

f(
x)

interpolation using PGARBF, N=256, α=0.33333

 

 

exact function value
PGARBF interpolation value

50 100 150 200 250
10

−15

10
−10

10
−5

10
0

N(number of grid points)

in
te

rp
ol

at
io

n 
er

ro
r

interpolation error, α=0.33333

Figure 2.6: Up: Exact values and values interpolated using PGA of function f(x) =
(sin(3x) + 5 cos(x)) exp(−5 cos(2x) + 0.25 sin(x)), over the domain x ∈
[−π, π]. Down: Maximum pointwise errors (L∞ error norms) for the
interpolation of f(x) = (sin(3x) + 5 cos(x)) exp(−5 cos(2x) + 0.25 sin(x))
using Periodic Gaussian RBFs as a function of the number of grid points
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satisfies the property of parity with respect to the origin,

θS(x) = θS(−x) ∀x (2.61)

because of the property of Strictly Positive Definite periodic RBF, proved by earlier

workers, that θ(−x) = θ(x). Similarly,

θA(x) ≡ θ(x− xj)− θ(x+ xj)

= θ(x− xj)− θ(−x− xj)
(2.62)

is antisymmetric, that is,

θA(x) = − θA(−x) ∀x (2.63)

Analogously, basis functions which have definite parity with respect to both x = 0

and x = π/2,

θSS(x;xj) = θ(x− xj) + θ(−x− xj) + θ(π − x− xj) + θ(π + x− xj) (2.64)

θSA(x;xj) = θ(x− xj) + θ(−x− xj)− θ(π − x− xj)− θ(π + x− xj) (2.65)

θAS(x;xj) = θ(x− xj)− θ(−x− xj) + θ(π − x− xj)− θ(π + x− xj) (2.66)

θAA(x;xj) = θ(x− xj)− θ(−x− xj)− θ(π − x− xj) + θ(π + x− xj) (2.67)

These four species are schematically illustrated in Fig. 2.7.

Some care is necessary in choosing good points and basis functions to match. For

example, let us suppose that N is odd. The grid spacing is space h = 2π/N . The

origin will not be a grid point for any odd N . We therefore choose the grid

xj = −π + jh, j = 1, 2, . . . N (2.68)
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so that x = π is always a grid point. Since an odd number cannot be divided in

two, when we split the grid points and basis functions according to parity, we must

employ (N + 1)/2 basis functions symmetric about the origin but one fewer basis

function which is antisymmetric with respect to x = 0. The grid used in computations

for symmetric functions is the set of all positive grid points including x = π while

antisymmetric calculations include all positive points with the exception of x = π.

When the functions also have parity with respect to x = π/2, the four-fold splitting

described above can be implemented. However, when (N − 1)/2 is odd, the functions

which are antisymmetric with respect to the origin cannot be split into two and

matched with the grid points on the interval x ∈ [π/2, π), excluding π where all

functions antisymmetric about the origin are zero. We therefore must restrict N for

four-fold symmetry to odd integers such that (N − 1)/2 is even; the allowed values

are therefore restricted to N = {5, 9, 13, 17, . . .}.

2.6 Numerical Example: Mathieu functions

In this section, we will solve an eigenvalue problem using periodic Gaussian and

Inverse Quadratic RBF basis functions. However, the procedure can be generalized

to almost any ODE or PDE with periodic coefficients on a periodic domain.

2.6.1 Mathieu equation: Symmetry, asymptotics and resolution

The Mathieu functions have been intensively investigated since their introduction

in 1868. (Olver et al., 2010; McLachlan, 1947; Morse and Feshbach, 1953). Math-

ieu functions are the eigenfunctions in the angular elliptical coordinate when the

Helmholtz equation is solved in an elliptical domain. As such, they arise in many

applications as catalogued in McLachlan’s book (McLachlan, 1947) and in Chapter

28 of the NIST Digital Library (Olver et al., 2010). Although they arise through the

method of separation of variables for one particular partial differential equation, they
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are a good spectral basis for a wide range of PDEs in elliptical coordinates (Shen and

Wang , 2009; Wang and Zhang , 2011).

The Mathieu eigenfunction solves

uxx − 2q cos(2x)u(x) = −λu(x) (2.69)

where q is a real parameter on the range q ∈ [0,∞] and λ is the eigenvalue. For all

q, the eigenfunctions fall into four distinct symmetry classes which are catalogued in

Table 2.2.
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Table 2.2: Symmetry Classes of Mathieu Eigenfunctions
Symbol Parity: x = 0 Parity: x = π/2 Period Fourier basis
ce2n(x; q), n = 0, 1, . . . Even Even π cos(2mx),m = 0, 1, 2
ce2n+1(x; q), n = 0, 1, . . . Even Odd 2π cos([2m− 1]x),m = 0, 1, 2
se2n(x; q), n = 1, . . . Odd Odd π sin(2mx),m = 1, 2
se2n+1(x; q), n = 0, 1, . . . Odd Even 2π sin([2m− 1]x),m = 1, 2

In the limit q = 0,

ce2n(x; 0) = cos(2nx), λ = −4n2, n = 0, 1, . . . (2.70)

ce2n+1(x; 0) = cos([2n+ 1]x), λ = −(2n+ 1)2, n = 0, 1, . . . (2.71)

se2n(x; 0) = sin(2nx), λ = −4n2, n = 1, . . . (2.72)

se2n+1(x; 0) = sin([2n+ 1]x), λ = −(2n+ 1)2, n = 1, . . . (2.73)

For small q, the eigenfunctions are well approximated by trigonometric functions

(Olver et al., 2010). In the large q limit, the eigenfunctions are approximated by

asymptotic expansions in which each order is a finite sum of Hermite functions. The

leading order for the doubly-symmetric modes is

cem(x; q) ∼ const exp(−√q sin2(x+ π/2))Hm(
√

2q1/4 sin(x+ π/2)), q � 1 (2.74)

The Hermite form is most easily derived from an equivalent form of the Mathieu

equation. Define

x = y + π/2, ν ≡ λ+ 2q (2.75)

then the Mathieu equation is

uyy − 4q sin2(y)u(y) = −νu(y) (2.76)

where we have used the identities cos(2y+π) = − cos(2y) and 1−cos(2y) = 2 sin2(y).

For small y, power series expansion of the sine function gives the parabolic cylinder
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equation, uyy − 4qy2u(y) = −νu(y),whose eigenfunctions on an unbounded domain

are the Hermite functions. Of course, the domain is periodic rather than infinite,

but because the Hermite functions decay exponentially as |y| increases, the Hermite

approximation is not bad when the mode number is small and the parameter q is

large.

The Hermite asymptotics imply that the peaks of the eigenfunctions become nar-

rower and narrower as q increases. Define Nδ(δ) to be such that all Fourier coefficients

an ≤ δ for n ≥ Nδ(δ) when the eigenfunctions are normalized so that the largest

Fourier coefficient is one. If we arbitrarily pick δ = 2.2 × 10−16, then the Hermite

asymptotic approximation suggests

Nδ(δ) ∼ const. 4
√
q, q >> 1 (2.77)

Numerical experimentation has shown that the constant is about 6 for the ground

state and also that the asymptotic approximation is superb for large q. We must

expect a similar scaling for other numerical methods without adaptation.

Table 2.3:
Fourier resolution required to achieve machine precision for the lowest
eigenmode for different Mathieu parameters q; Nδ is the number of basis
functions of the same double parity class as the eigenmode

q Nδ 6 4
√
q relative error [when N = Nδ]

10 14 10.7 .238
100 21 19.0 0.096
1000 36 33.7 0.063

10,000 61 60. 0.016
100,000 108 106.70 0.012

1,000,000 191 189.74 0.0066
10,000,000 338 337.40 0.0018
100,000,000 601 600 0.0017

1× 109 1068 1067 0.00097
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2.6.2 RBF discretization of Mathieu equation

The discretization of the second order derivative can be obtained by differentiating

the corresponding periodic RBF basis functions θj(x) twice, with respect to x.

For periodic Gaussian RBFs,

θx,j(x) =
dθj(x)

dx
=

d

dx

N∑
m=−N

exp(−ε2(x− xj − 2mπ)2)

=
N∑

m=−N

{−2ε2(x− xj − 2mπ) exp(−ε2(x− xj − 2mπ)2)}

(2.78)

θxx,j(x) =
d2θj(x)

dx2
=

d2

dx2

N∑
m=−N

exp(−ε2(x− xj − 2mπ)2)

=
N∑

m=−N

{[−2ε2 + 4ε4(x− xj − 2mπ)2] exp(−ε2(x− xj − 2mπ)2)}

(2.79)

For periodic Inverse Quadratic RBFs,

θx(x) ≡ dθj(x)

dx
= −e

−1/ε(1− e−2/ε)

ε

sin(x)

[1 + e−2/ε − 2e−1/ε cos(x)]2
(2.80)

θxx(x) ≡ d2θj(x)

dx2
=

e−1/ε(1− e−2/ε)

ε[1 + e−2/ε − 2e−1/ε cos(x)]2

[
4e−1/εsin(x)2

1 + e−2/ε − 2e−1/ε cos(x)
− cos(x)

]
(2.81)

A function f(x) with period 2π can be expanded as,

f(x) =
N∑
j=1

ajθ(x− xj) (2.82)

which is substituted into the Mathieu equation yielding

N∑
j=1

[θxx(x− xj)− 2q cos(2x)θ(x)]aj = λ

N∑
j=1

θ(x− xj)aj (2.83)
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We discretize the domain [−π, π] into N intervals where N is also the number of

grid points. (Note that since a periodic interval is topologically a circle and therefore

x = π and x = −π are identical, one of the two points must be omitted to avoid

redundancy and a singular interpolation matrix; our convention is to delete x = π.)

The grid is

xj = −π + j
2π

N
, j = 0, ..., N − 1 (2.84)

(To exploit symmetry, we then take a subset of this by keeping only those xj ∈

[0, π/2].) Then, the above equations can be rewritten as the generalized matrix

eigenvalue problem

~~A~a = λ
~~B~a (2.85)

where
~~A is the discretization matrix on the left hand side(LHS) of Mathieu equation

with the elements,

~~Ai,j = θxx(xi − xj)− 2q cos(2xi)θ(xi − xj)

and
~~B is the discretization matrix on the right hand side (RHS) of the Mathieu

equation whose matrix elements are

~~Bi,j = θj(xi) (2.86)

2.6.3 Spurious eigenvalues from periodized RBFs

Table 2.4 shows the eigenvalues of the Mathieu equation with q = 0 as computed

using thirty periodized Gaussian RBFs. As explained in Chapter 7 of (Boyd , 1999),

many of the eigenvalues of the matrix eigenvalue problem which falls out of the dis-

cretization are poor approximations to those of the differential equation. For smooth

differential equations, usually only the largest eigenvalues are inaccurate. The table

shows that here, alas, spurious eigenvalues are interspersed with accurate eigenvalues
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even for small mode number. In his book (Boyd , 1999), Boyd advocates checking

eigenvalue calculations by running each case twice with a different number of de-

grees of freedom N , and accepting only those eigenvalues which differ little from one

resolution N to another. The table clearly demonstrates the necessity of this caution.

When the Maple parameter “Digits” was increased to 32, imposing a floating point

precision of 32 decimal digits, the spurious eigenvalue disappeared and all the matrix

eigenvalues were very close approximations to nonpositive integers.

When Digits is reduced to 10, but α increased to 0.5, the incorrect eigenvalues

also disappear. (Note that so large an α causes the error to saturate at relatively

large values, and is not recommended).

The cause of the spurious small eigenvalues is thus almost certainly the notorious

ill-conditioning of RBFs when the shape parameter α is too small relative to the

precision of floating point arithmetic.

2.6.4 Adaptive grids

The Hermite function asymptotic approximation to the Mathieu functions shows

that the spatial scale of the oscillations becomes smaller and smaller as the Mathieu

parameter q → ∞, proportional to q1/4. For q = 108, the Fourier Galerkin method

needs about 600 basis functions (even cosines) to resolve the ground state (ce0) eigen-

value to sixteen decimal places. But the ground state and the other eigenmodes

have utterly negligible amplitude outside narrow zones at x = ±π/2 as illustrated in

Figs. 2.8 and 2.9. The uniform Fourier grid is extremely wasteful. For large q, an

adaptive grid is much more efficient.

We shall illustrate adaptive grids using the shifted coordinate, y = x − π/2, the

modified eigenvalue ν ≡ λ+ 2q and the transformed equation uyy − 4q sin2(y)u(y) +

νu(y) = 0.
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Table 2.4: Eigenvalues of symmetric modes of Mathieu equation with N = 30
Mode exact λ Digits=10/α=0.25 Digits=32/α=0.25 Digits=10/α=0.5

Spurious - 4.05958759734745822 .273800268075611e-25 .206934972636144e-9
Spurious - -3.11473959534470124 - -
Spurious - -36.2597865482689770 - -
Spurious - -52.554190 + i 14.8624 - -
Spurious - -52.554190 - i 14.8624 - -
Spurious - -220.042978041256106 - -
Spurious - 404.027044291163179 - -

1 0 6.422561716e-10 0 2.290259500e-9
2 1 1.000000000185287 1.000000000000000 0.999999999764141
3 1 0.999999999838865 1.000000000000000 1.000000000185500
4 4 3.999999999151707 4.000000000000000 3.999999999523566
5 4 3.999999998710813 4.000000000000000 3.999999999391799
6 9 8.999999999052327 9.000000000000000 8.999999995948817
7 9 8.999999993342662 9.000000000000000 8.999999999320595
8 16 15.999999979102717 16.000000000000000 16.000000001352959
9 16 15.999999982029369 16.000000000000000 15.999999998751971
10 25 25.000000180935661 25.000000000000000 25.000000003577390
11 25 25.000000065647399 25.000000000000000 25.000000005130897
12 36 36.000001917099461 36.000000000000000 36.000000032679722
13 36 36.000000235394317 36.000000000000000 36.000000033153320
14 49 49.000001901481056 49.000000000000000 49.000000346489074
15 49 48.999995707317360 49.000000000000000 49.000000348987243
16 64 63.999809832303974 64.000000000000000 64.000004158663217
17 64 63.999251017453886 64.000000000000000 64.000004181804272
18 81 80.993470252996772 81.000000000000000 81.000049834199885
19 81 80.965140591885785 81.000000000000000 81.000049791460626
20 100 99.962221607817071 100.000000000000000 100.00057785704419
21 100 100.096910918191327 100.000000000000000 100.00057781743992
22 121 122.499446837142017 121.000000000000000 121.00642793070180
23 121 129.247850830095358 121.000000000000000 121.00642823915618
24 144 - 144.000000000003461 144.06699569113613
25 144 - 144.066996808346971 144.00000000000345
26 169 - 169.000000086107382 169.61788113787765
27 169 - 169.000000086107954 169.61787820829832
28 196 - 196.001607202398301 200.02683005486756
29 196 - 196.001607202329676 200.02682533724413
30 225 - 224.999999997070203 225.00001175290069
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Figure 2.8: The lowest four eigenmodes of the Mathieu equation for q = 108. The
functions are computed using 2000 PIQ basis functions on a uniform grid
with α = 0.20.

2.6.5 Truncated uniform grid

RBFs are much more tolerant of irregular grids than are other spectral basis sets.

The simplest nonstandard grid is a uniform grid that is truncated so that the grid

points fill the interval y ∈ [0, L] instead of y ∈ [0, π/2](Huang et al., 2014). To choose

L, recall that the Hermite functions ψn(y), which approximate the Mathieu functions

for large q as noted earlier, change from oscillation for small y to exponential decay

at large |y| at the“turning point” [a zero of its second derivative] at (Boyd , 1999)

yt = S(q)
√

2nH + 1 (2.87)
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Figure 2.9: Same as previous graph, but zoomed in around x = ±π/2. The lowest
four eigenmodes of the Mathieu equation for q = 108. The functions are
computed using 2000 PIQ basis functions on a uniform grid with α = 0.20.

where nH is the degree of the Hermite function and

S(q) =
1√

2 q1/4
(2.88)

It follows that we should choose L, the size of our truncated grid, to be a multiple of

S(q).

Fig. 2.10 shows a typical experiment. The leftmost points are for L = S(q), which

is clearly too small. For the lowest four modes, roughly L = 6S(q) is optimum.

In higher precision arithmetic, Periodic Gaussian RBFs achieve relative errors

smaller than 10−16 with L = 6S(q), α = 1/5 and just twenty interpolation points —

a vast improvement over the 600 interpolation points required for the Fourier basis!
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Figure 2.10: Truncated Uniform Grid: Relative errors, |νRBF − ν|/ν, for the lowest
four doubly symmetric Mathieu modes, ce0 [bottom curve], ce2, ce4 and
ce6 [top curve], plotted versus the grid parameter L. All computations
were done in 16 decimal digit precision using Gaussian RBFs with α =
0.15 and 20 interpolation points on the interval y ∈ [0, L]. For q = 108,
the scale factor in the Hermite asymptotic approximations is S(108) =
0.0071, so L = 0.042, the minima of the curves, is about 6S(q).

The turning points, y = ±S(q)
√

2nH + 1, move further and further from the

origin as the ode number nH increases. The eigenmode oscillates over a wider and

wider interval (bounded by the turning points) with increasing nH . It follows that

one needs a wider and wider truncated grid as the mode number increases. Fig. 2.11

confirms this expectation: The optimum grid width is L = 11S(q), nearly double

what is optimum for the lowest mode.

The practical advice is to optimize L for the highest mode which is of interest.

Although L = 11S(q) is not the best for the ground state (lowest mode), the need

to use a relatively large number of interpolation points to resolve the higher mode

means that for Ñ = 50 points, for example, the eigenvalue for ce0(x) is resolved with

the relative error of less than 10−30 for α = 0.16, far better than the relative error in

ν38, 1.0× 10−15 in 16-digit arithmetic.
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The curves show that the error becomes smaller and smaller as α decreases, but

it is well-known that RBFs are exponentially ill-conditioned as α → 0 unless one

makes a very complicated and expensive change of basis (Fornberg et al., 2011). The

smallest α that is accurate in sixteen-decimal-digit-precision is α = 0.15, but this and

50 points suffice to yield an error ce38 of about 10−12.

0 5 10 15
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−15

10
−10

10
−5

10
0

L/S

20th doubly symmetric Mathieu modes, q=100000000
relative eigenvalue ν errors, PGA, 50 pts, 16 Digits

 

 

α=0.25
α=0.2
α=0.15
α=0.1 (32 Digit)

Figure 2.11: Truncated Uniform Grid: Relative errors, |νRBF − ν|/ν, for the twen-
tieth (lowest) doubly symmetric Mathieu modes, ce38(y, q = 108) plot-
ted versus the grid parameter L for four different values of the RBF
inverse width [shape] parameter α. Periodic, doubly-symmetrized Gaus-
sian RBFs with 50 interpolation points on the interval y ∈ [0, L]. Com-
putations were done in 16 decimal digit precision. This precision failed
miserably for α = 1/10, so the curve is dotted and without markers to
indicate that these small errors are attainable only with higher precision
arithmetic. The minimum error is at L = 11S(q).

2.6.6 Arctan/Tan periodic mapping

The truncated uniform grid is simple, but has no grid points at all over most of

the interval. This is likely to be a drawback for moderate q.

Boyd introduced (Boyd , 1992) a periodic change of coordinate such that a uniform
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grid in the computational coordinate ξ is mapped into a very non-uniform grid in the

physical coordinate y:

y = arctan(L tan(ξ)); (2.89)

where L is a user-choosable constant, the “map parameter”. For L < 1, the high

resolution regions are centered around y = 0,±π,±2π, . . .. The density of the grid in

y is proportional to the first derivative of the mapping function,

dy

dξ
=

2L

1 + L2 + (1− L2) cos(2ξ)
(2.90)

One option is to apply a Fourier spectral method on the uniform grid in ξ. Un-

fortunately, the transformed differential equation is much more complicated than the

original differential equation in y because of the “metric factors” generated by the

transformation. In one dimension, this is not a great burden, but a change of coordi-

nates is messy in higher dimensions.

It is far simpler to solve the problem in the original coordinate y, and employ

the mapping only to generate the grid. Fourier methods fail on highly nonuniform

grids. In contrast, radial basis functions are very tolerant of nonuniform grids and

are triumphant here.

There is one technical complication. Spectrally accurate RBFs contain a “shape

parameter” ε which specifies the inverse width of the basis function. On a uniform

grid, it is convenient to specify the absolute shape parameter as ε = α/h where α is

the relative shape parameter and h is the grid spacing. When α� 1/4, RBFs are very

inaccurate because each basis function is narrow compared to the interval between

the grid points and the RBFs have little overlap. A smooth function is therefore

approximated by sum of delta function-like spikes. When α� 1/4, the interpolation

matrix is extremely ill conditioned. On a uniform grid, standard practice is to choose

α to be of moderate value in the range α ≈ 1/10− 1/2.
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Figure 2.12: Arctan/Tan Mapping: Condition number of the Gaussian RBF inter-
polation matrix. The upper panel shows the condition number (on a
logarithmic scale) when the shape parameter is the same for all basis
functions ε = α/hav where hav = π/(2N), α = 1/3 is the average grid
spacing. The lower panel shows the condition number for variable ε
where the formula is given in the text.

Figure 2.12 shows that when we apply this prescription by replacing h by its

average value, the condition number of the interpolation matrix grows exponentially

as the map parameter L is decreased. A far better procedure, already widely used,

is to choose the absolute width parameter ε to be different for each basis function

where here we chose

εj =
α

hav
/
dy

dξ
(ξj) (2.91)

where the average grid spacing is

hav ≡
π

2N
(2.92)
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Thus, basis functions centered at points in the high resolution region are narrow while

RBFs centered where the grid points are far apart are very wide. The lower panel of

the figure shows that with this variable-width basis, the condition number stabilizes

at a value which is considerably smaller than the reciprocal of machine precision in

Matlab (or IEEE double precision), allowing accurate calculations without the use of

multiple precision arithmetic. (An O(1) condition number is never possible with a

standard RBF basis.)

Figs. 2.13 and 2.14 show that the arctan/tan mapping is much more effective

than a uniform grid. More than 600 points are needed to barely resolve ce0(x) for

q = 108, but with the mapping, thirty points yield near machine precision accuracy.

For higher modes (Fig 2.14), a few more points are needed, but the mapping is still

vastly superior to a uniform grid.

Many other adaptive strategies are possible. Our point is not an exhaustive com-

parison, but merely a demonstration that periodic RBFs are very adaptation-tolerant.
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Figure 2.14: Arctan/Tan Mapping: Relative errors, |νRBF − ν|/ν, for three higher
doubly symmetric Mathieu modes, ce18, ce28 and ce38, plotted against
the reciprocal of the mapping parameter L. The computations were done
using 16-digit arithmetic with α=0.3.
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CHAPTER III

Periodized RBF interpolations with Tikhonov

regularization

3.1 Introduction

3.1.1 Motivation

Nonlinear interactions are common in fluid simulations. The nonlinear interactions

produce smaller and smaller scales. On a finite grid, the continuous production of

small scales will eventually blow up the simulation. This is because as the length

scale gets smaller than twice of the grid spacing, the modes cannot be resolved but

get aliased to larger wave lengths. This kind of aliasing is not predicted by the

dynamic equations. So we have to eliminate the non-physical energy cascade using

certain filter techniques. Tikhonov regularization has been a very powerful method

in filtering noises. In this chapter, the Tikhonov regularization is studied and applied

as a fast implementation of hyperviscosity in fluid simulations using RBF methods.

3.1.2 Tikhonov Regularization

In this section, we will review the principle of Tikhonov regularization as a filter.

Further discussion can be seen in (Hansen, 1992; Hansen and O’Leary , 1993). The

Tikhonov solution xtk2 solves the problem
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min
x

(||~~P~x−~b||22 + λ||~x||22) (3.1)

and the solution is formally given by

~xtk2 = (
~~P T ~~P + λ

~~I)−1 ~~P T~b =
~~P−1
tik
~b (3.2)

To understand the minimization problem, we need to look at the following overdeter-

mined linear system  ~~P
√
λ
~~I

 ~x =

 ~b

~0

 (3.3)

Usually this system has no exact solutions unless vector ~b lies in the range of matrix ~~P
√
λ
~~I

. Based on Theorem 11.1 in Trefethen’s Book (Trefethen and Bau, 1997),

the projection of the residual

 ~~P~x−~b
√
λ
~~I~x

 onto the column space of matrix

 ~~P
√
λ
~~I


must be zero, that is

 ~~P
√
λ
~~I


T  ~~P~x−~b

√
λ
~~I~x

 = 0 (3.4)

Rearrange Eqn. 3.4, we have

[
~~P T ~~P + λ

~~I]~x =
~~P T~b (3.5)

the solution of which is Eqn. 3.2.

For matrix P, the SVD is

~~P =
~~U
~~S
~~V T (3.6)
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where,
~~U = [u1, ..., un],

~~S = diag(s1, ..., sn), and
~~V = [v1, ..., vn], with s1 ≥ s2 ≥ s3... ≥

sn ≥ 0. The matrices
~~U and

~~V are both unitary, i.e.,
~~U−1 =

~~UT and
~~V −1 =

~~V T .

~~P−1
tk2 = (

~~P T ~~P + λ
~~I)−1 ~~P T = (

~~V
~~ST
~~UT ~~U

~~S
~~V T + λ

~~V
~~I
~~V T )−1~~V

~~ST
~~UT

=
~~V (
~~ST
~~S + λ

~~I)−1~~ST
~~UT =

~~V diag(
s2
i

s2
i + λ

1

si
)
~~UT =

∑
i

(
s2
i

s2
i + λ

1

si
)~vi~u

T
i

=
∑
i

wi
1

si
~vi~u

T
i

(3.7)

and,

~xtk2 =
∑
i

wi
(~uTi

~b)

si
~vi (3.8)

with the weighting function wi = si
2/(si

2 + λ).

We had seen from the weighting function, as s2
i → 0, wi → 0; while s2

i � λ, wi → 1.

This shows that small SVD components have smaller effects on ~xtk2. In the limit

λ→ 0, Eqn. ( 3.8) recovers the non-regularized case with wi = 1.

~x =
∑
i

(~uTi
~b)

si
~vi (3.9)

The Tikhonov regularization has been a very powerful method in filtering out the

influence of noise. The choice of the Tikhonov parameter λ is based on the L-curve

method. This method was used by Lawson and Hanson (Lawson and Hanson, 1974)

and further studied by Hansen (Hansen, 1992; Hansen and O’Leary , 1993). The basic

idea is the regularized solution ||~xλ||22 is a monotonic decreasing function of λ and the

residual ||~~P~x−~b||22 is a monotonic increasing function. To understand this argument,

we will need to take a look at the regularized solution Eqn. 3.8. The 2-norm of the

solution is

||~x||22 =

[∑
i

wi
(~uTi

~b)

si
~vi

]T [∑
j

wj
(~uTj

~b)

sj
~vj

]
(3.10)
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Since
~~V is unitary and ~vi~vj = δi,j, therefore

||~x||22 =
∑
i

w2
i

(~uTi
~b)2

s2
i

=
∑
i

[
si

2

si2 + λ

]2
(~uTi

~b)2

s2
i

(3.11)

Since w2
i = [ si

2

si2+λ
]2 are monotonically decreasing functions of λ and

(~uTi
~b)2

s2i
are all

positive, therefore, ||~x||22 is a monotonically decreasing function of λ. Next, we have

a look at the residual ||~~P~x−~b||22, where we will expand ~b =
∑

i(~u
T
i
~b)~ui and

~~P~x =
∑
i

si~ui~v
T
i

∑
j

wj
(~uTj

~b)

sj
~vj (3.12)

Again, due to the unitarity of matrices
~~U and

~~V , the residual equation becomes

||~~P~x−~b||22

=

[∑
i

∑
j

siwj
(~uTj

~b)

sj
~uiδi,j −

∑
i

(~uTi
~b)~ui

]T [∑
k

∑
l

skwl
(~uTl

~b)

sk
~ukδk,l −

∑
j

(~uTj
~b)~uj

]

=

[∑
i

siwi
(~uTi

~b)

si
~ui −

∑
i

(~uTi
~b)~ui

]T [∑
j

sjwj
(~uTj

~b)

sj
~uj −

∑
j

(~uTj
~b)~uj

]

=

[∑
i

(1− wi)(~uTi ~b)~ui

]T [∑
j

(1− wj)(~uTj ~b)~uj

]

=
∑
i

[
(1− wi)(~uTi ~b)

]2

(3.13)

Since 0 < wi < 1 are monotonic decreasing functions of λ, therefore 0 < 1−wi < 1 are

monotonic increasing functions of λ. Therefore, residual ||~~P~x −~b||22 is a monotonic

increasing function of λ. The optimum Tikhonov parameter for the minimization

problem Eqn. 3.1 is a λ that balances the two competing terms: the increasing ||~~P~x−

~b||22 and the decreasing ||~x||22. A plot of ||~x||22 against ||~~P~x −~b||22 is a L-shape curve,

which is called L-curve(Calvetti et al., 2000). The L-curve has been a guide to select
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the optimum Tikhonov parameter for the minimization problem 3.1.

3.1.3 Tikhonov regularization for global RBF interpolation

Hickernell and Hon (1999) interpreted Radial Basis Function interpolation with

Tikhonov regularization as roughness-minimizing splines. For global RBF interpola-

tion, the interpolation matrix is symmetric and positive definite. The interpolation

matrix can then be written as

~~P =
~~U
~~S
~~UT (3.14)

The Tikhonov regularized solution becomes

~xtk2 =
∑
i

wi
(~uTi

~b)

si
~ui (3.15)

where, as shown before, wi =
s2i

s2i+λ
, λ > 0. Fig. 3.1 shows the weighting function of

Tikhonov regularization with three different parameters.

3.2 Properties of the 1D Periodic Gaussian RBF(PGARBF)

interpolation

Suppose we have a set of grid points x0 = −π, x1 = −π + h, ..., xN−1 = π − h;

to satisfy periodic condition, we let xi+mN = xi. To interpolate a function using

PGARBF, we will have to solve the linear system,

~~A~a = ~f ; (3.16)

where, matrix
~~A is a symmetric matrix with elements

~~Ai,j =
∑+∞

m=−∞ φ(xi−xj+2mπ).

φ(x) is the Gaussian radial basis function. However, the following properties can

similarly be applied to other PRBFs.
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Figure 3.1: Weighting function
s2i

s2i+λ
of Tikhonov regularization using different λ = α2.

The figure is plotted on a log-log scale. The curves start to decay at
si ≈ α. When si is greater than α, the weighting function is close to unity.
As si approaches zero, weighting function decays rapidly, and effectively
filters out components of small singular values.

3.2.1 The 1D PGARBF interpolation matrix: a circulant matrix

Definition III.1. Let
~~A be an N ×N matrix.

~~A is a circulant matrix if and only if

~~Ai,j =
~~Ak,l, whenever j − i ≡ l − k(mod N)

Theorem III.2. The 1D Periodic Gaussian RBF interpolation matrices are sym-

metric and circulant.

Proof. Circulant:

On a uniform grid, xi = ih, 2π = Nh,

~~Ai,j =
+∞∑

m=−∞

φ(|xi − xj + 2mπ|) =
+∞∑

m=−∞

φ(|(j − i+mN)h|) (3.17)
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Eqn. ( 3.17) shows
~~A is just a function of j−i. All elements

~~Ak,l with j−i ≡ k−l±mN

are the same.

Symmetric:

~~Ai,j =
+∞∑

m=−∞

φ(|(i− j +mN)h|) =
+∞∑

m=−∞

φ(|(j − i−mN)h|) =
~~Aj,i (3.18)

3.2.2 Positive definiteness of the PGARBF interpolation matrix

Definition III.3. A real symmetric matrix
~~A is called positive definite if its associ-

ated quadratic form is non-negative, i.e.,

N∑
j=1

N∑
k=1

cjck
~~Aj,k ≥ 0 (3.19)

for a non-zero ~c = [c1, ..., cN ]T ∈ RN , and it is zero only for ~c ≡ 0.

Theorem III.4. The 1D Periodic Gaussian RBF interpolation matrix is positive

definite.

Proof. The Fourier series of a Periodized Gaussian RBF is the Jacobian Theta func-

tionBoyd and Xiao (2013),

θGA(x; ε) =
∞∑

m=−∞

exp(−ε2(x− 2mπ)2)

=
1

2ε
√
π
{1 + 2

∞∑
n=1

exp(− n
2

4ε2
) cos(nx)}

=
1

2ε
√
π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(inx)}

(3.20)

The relation between Jacobian theta fuction and PGARBF can be derived as follows:

the periodicity of the Gaussian imbricated series restricts the wave numbers to be
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integers only; and then we do a regular Fourier transform of a single Gaussian centered

at xi = 0 to obtain the Fourier coefficients, and then an inverse Fourier transform is

applied.

N∑
i=1

N∑
j=1

cicj
~~Ai,j =

N∑
i=1

N∑
j=1

cicjθ
GA(xi − xj, ε)

=
1

2ε
√
π

N∑
i=1

N∑
j=1

cicj{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(in(xi − xj)}

=
1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
){

N∑
i=1

N∑
j=1

cicj exp(inxi) exp(−inxj)}

=
1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
){

N∑
i=1

ci exp(inxi)
N∑
j=1

cj exp(−inxj)}

=
1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
) |

N∑
i=1

ci exp(inxi) |2≥ 0

(3.21)

So the PGARBF interpolation matrix is positive definite. All the eigenvalues of

~~A are positive.

3.2.3 Eigen-analysis of the PGARBF interpolation matrix

The PGARBF interpolation matrices are positive definite, symmetric and circu-

lant.

Theorem III.5. The eigenvalues of a circulant matrix is given by Hubbert and

Mueller (2006)

λj =
N∑
l=0

cle
−i 2π

N
jl =

N∑
l=0

cle
−ihjl, j = 0, 1, ..., N − 1. (3.22)

and, the corresponding eigenvectors are

~uj = (1, e−ihj, e−i2hj, ..., e−i(N−1)hj)T (3.23)
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where, h = 2π
N

, cl are the elements of first row of matrix
~~A, i.e.,

~~A1,l.

Corollary III.6. The eigenvalues of the PGARBF interpolation matrix are

λj =

√
π

α
exp(− j2π2

N2α2
) (3.24)

and, the corresponding eigenvectors are

uj(~x) = exp(−ij~x) (3.25)

where, uj(~x) = [exp(−ijx0), exp(−ijx1), ..., exp(−ijxN−1)].

Proof. The first row of the PGARBF interpolation matrix
~~A1,l = cl. On a uniform

grid, xl = lh, h = 2π
N

,

cl =
1

2ε
√
π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(in(x0 − xl))}

=
1

2ε
√
π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(−inlh)}

(3.26)

From Theorem( III.5), the eigenvalues of matrix
~~A are

λj =
N−1∑
l=0

cl exp(−ijlh)

=
N−1∑
l=0

1

2ε
√
π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(−inlh) exp(−ijlh)}

=
1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
){
N−1∑
l=0

exp(−i(n+ j)lh)}

=
1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
){Nδ(n+ j)}

(3.27)
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Since, if n+ j 6= 0,

N−1∑
l=0

exp(−i(n+ j)lh) =
1− exp(−i(n+ j)h)N

1− exp(−i(n+ j)h)
=

1− exp(−i(n+ j)Nh)

1− exp(−i(n+ j)h)

=
1− exp(−i(n+ j)N 2π

N
)

1− exp(−i(n+ j)h)
=

1− exp(−i(n+ j)2π)

1− exp(−i(n+ j)h)

= 0

(3.28)

if n+ j = 0, then,

N−1∑
l=0

exp(−i(n+ j)lh) =
N−1∑
l=0

exp(−i0) = N (3.29)

Therefore,

λj =
N

2ε
√
π

exp(− j2

4ε2
) =

√
π

α
exp(− j2π2

N2α2
) (3.30)

Here, we have used ε = α
h

= Nα
2π

.

Since xl = lh, the eigenvector is simply uj(~x) = exp(−ij~x). The notation exp(−ij~x)

means [exp(−ijx0), exp(−ijx1), ..., exp(−ijxN−1)].

3.2.4 Properties of 1D harmonic operator discretized using PGARBF

In this section, we study the properties of 1D harmonics operator, defined as − d2

dx2 ,

discretized using PGARBF.

θGAxx (x; ε) = − d2

dx2
{
∞∑

m=−∞

exp(−ε2(x− 2mπ)2)}

= − d2

dx2
{ 1

2ε
√
π

∞∑
n=−∞

exp(− n
2

4ε2
) exp(inx)}

=
1

2ε
√
π
{
∞∑

n=−∞

n2 exp(− n
2

4ε2
) exp(inx)}

(3.31)

63



5 10 15 20 25 30

10
−5

10
0

index

E
ig

en
 v

al
ue

s

Eigenvalues of 1D PGARBF interpolation matrix, N=64

 

 

numerical

analytical

Figure 3.2: Eigen spectrum of 1D PGARBF interpolation matrix. Numerical values
and analytical values fall on the same curve.

The analysis of 1D harmonic operator is quite similar to that of Section 3.2. The

discretized form of the 1D harmonic operator is
~~P , whose element

~~Pj,k is given by

~~Pj,k = θGAxx (xj − xk; ε) =
1

2ε
√
π
{
∞∑

n=−∞

n2 exp(− n
2

4ε2
) exp(in(xj − xk))} (3.32)

Then, the properties of matrix
~~P immediately follows from Section 3.2 that

1. Matrix
~~P is symmetric, circulant and positive definite.

2. The eigenvalues of
~~P are given µj =

√
π
α
j2 exp(− j2π2

N2α2 ), and the eigenvectors are

trigonometric functions.

3.2.5 Condition number of matrices
~~A and

~~P

The spectrum of matrices
~~A and

~~P are λ1, λ2, ..., λM and µ1, µ2, ..., µM , respec-

tively, with M = N/2. This comes from the fact that, numerically, each eigen-

value (with eigenvector exp(−in~x)) actually corresponds to two real eigenvectors, i.e.,

sin(nx), cos(nx). And therefore, on a N points grid, we can only resolve M = N/2
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eigenvalues. The condition number of matrices,
~~A and

~~P , are C(
~~A) = λmax

λmin
and

C(
~~P ) = µmax

µmin
accordingly. Based on the eigenvalues given in the previous sections,

we have

C(
~~A) =

√
π/α

(
√
π/α) exp(− (N/2)2π2

N2α2 )
= exp(

π2

4α2
) (3.33)

To find the maximum of the spectrum of matrix
~~P , we have,

dµ(j)

dj
= 2

√
π

α
j exp(− j2π2

N2α2
)− (

√
π

α
j2)

2jπ2

N2α2
exp(− j2π2

N2α2
) = 0 (3.34)

Solve Eqn. ( 3.34), we have

jmax =
Nα

π
(3.35)

So,

µmax =

√
π

α

N2α2

π2
exp(−1) (3.36)

The smallest eigenvalue µmin is

µmin =

√
π

α
(
N

2
)2 exp(− π2

4α2
) (3.37)

So the condition number of matrix
~~P is

C(
~~P ) =

µmax
µmin

=
4α2

π2
exp(

π2

4α2
− 1) (3.38)

Fig. ( 3.4) shows the condition number of matrix
~~A. One merit has to be noted

here is, the condition number of matrix
~~A and

~~P are independent of the number

of grid points N . Only the shape parameter α enters the expression of condition

number. Eqn. 3.33 agrees with the condition number of Boyd’s numerical result

(Boyd and Gildersleeve, 2011), where the analytical expression is given by fitting
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the numerical condition number on a non-periodic domain. However, for a Gaussian

RBF, the difference between periodic and non-periodic condition numbers is quite

small. Since the GARBF decays very rapidly, and only at the boundary, can we see

the small difference of the interpolation matrix, and therefore it is understandable

that the two results are the same. For a moderate shape parameter, i.e., α ≈ 0.4,

PGARBF interpolation is accurate for arbitrary number of grid points. While, as we

decrease α, the condition number increases exponentially, hence, numerically stable

PGARBF interpolation via direct matrix inversion is impossible. Fornberg (Driscoll

and Fornberg , 2002; Fornberg and Wright , 2004) proposed several schemes to do a

stable computation in the α→ 0 limit on a non-periodic domain.
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Figure 3.3: The condition number of 1D PGARBF interpolation matrix and 1D har-
monic operator discretized using PGARBF. The shape parameter used in
this computation is α = 1/3.

3.3 Eigenvalues of other PRBF interpolation matrices

To compute the Eigenvalues of other PRBF interpolation matrices, we need to

prove a very general theorem.
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lation matrix and 1D harmonic operator discretized using PGARBF. The
shape parameter used in this computation is α = 1/3.

Theorem III.7. A periodic RBF basis function has the form φ(x) =
∑∞

n=−∞ φ(n) exp(−inx)

on a periodic domain [0, 2π], then, the eigenvalue of the interpolation matrix
~~A is given

by Nφ(j), where
~~Aij = φ(xi − xj), xi = ih, i = 0, ..., N − 1 with h = 2π

N
.

Proof. It is straightforward to see the interpolation matrix
~~A is circulant. It follows

from Theorem. III.5 that the eigenfunction of this function is ~uj = (1, e−ihj, ..., e−i(N−1)hj)T .

The eigenvalue of matrix
~~A is given by

λj =
N∑
l=0

cle
−i 2π

N
jl =

N∑
l=0

cle
−ijlh =

N∑
l=0

∞∑
n=−∞

φ(n)e−in(x0−xl)e−ijlh

=
∞∑

n=−∞

φ(n){
N∑
l=0

e−ilh(n−j)} =
∞∑

n=−∞

φ(n)(Nδn,j)

= Nφ(j)

(3.39)

The second line we have switched the two summations and replaced xj = jh.

In 1D space, for other types of PRBFs, i.e., Periodic Inverse Quadratic, Periodized
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Sech, Periodic Multiquadric and Periodized Inverse Multiquadric, we have given the

Fourier series representations in the paper (Boyd and Xiao, 2013). From there, we

can compute the eigenvalues of the interpolation matrices of these PRBFs by Theo-

rem III.7. Table 3.1 summarizes the eigenvalues of the interpolation matrices of the

five species of periodized RBFs. In Table 3.1, we had used the fact ε = α
h

= Nα
2π

.

Table 3.1: The Fourier transform of the five Periodized RBF species: Periodic Gaus-
sian, Periodic Inverse Quadratic, Periodic Hyperbolic Secant, Periodic
Multiquadric and Periodic Inverse Multiquadric and the corresponding
eigenvalues of the interpolation matrices.

PRBFs Fourier Form Eigenvalues

PGA 1
2ε
√
π
{
∑∞

n=−∞ exp(− n2

4ε2
) exp(inx)}

√
π
α

exp(− j2π2

N2α2 )

PIQ 1
2ε
{
∑∞

n=−∞ exp(−n
ε
) exp(inx)} π

α
exp(−2πj

Nα
)

Psech 1
ε
{
∑∞

n=−∞
qn

1+q2n
exp(inx)} 2π

α
qj

1+q2j

PMQ
∑∞

n=−∞
K1(n/ε)
nπ

exp(inx) NK1(2πj/(Nα))
jπ

PIMQ
∑∞

n=−∞
K0(n/ε)
επ

exp(inx) 2K0(2πj/(Nα))
α

3.4 Properties of 2D PGARBF interpolation

To extend the argument of 1D PGARBF to a 2D problem, we will be working on

a 2D tensor product grid, on a [0, 2π]×[0, 2π] domain. The grid is defined as (xj, yk)

with xj = jh, yk = kh, where h = 2π
N

, and N is the grid size in one direction. A 2D

PGARBF basis is defined as,

θGA,2D(x, y; ε) =
∞∑

n=−∞

∞∑
m=−∞

exp(−ε2((x+ 2nπ)2 + (y + 2mπ)2))

=
∞∑

n=−∞

exp(−ε2(x+ 2nπ)2)
∞∑

m=−∞

exp(−ε2(y + 2mπ)2)

=
1

4ε2π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(inx)}{

∞∑
m=−∞

exp(−m
2

4ε2
) exp(imy)}

= θGA(x; ε)θGA(y; ε)

(3.40)
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3.4.1 Interpolation using 2D PGARBF

Suppose,
~~Ax is the PGARBF interpolation matrix in x direction, with elements

~~Axj,k = θGA(xj − xk; ε); and
~~Ay is the PGARBF interpolation matrix in y direction,

with elements
~~Ayj,k = θGA(yj − yk; ε), then the 2D PGARBF interpolation matrix on

this 2D grid is simply the tensor product of the two interpolation matrices, that is,

~~T =
~~Ax ⊗ ~~Ay (3.41)

Theorem III.8. Suppose,
~~A has eigenvalues λj and eigenvectors ~Uj,

~~B has eigenval-

ues µk and eigenvectors ~Vk, then,
~~A⊗ ~~B has eigenvalues λjµk, with the corresponding

eigenvectors ~Uj ⊗ ~Vk .

Corollary III.9. The eigenvalues of a 2D PGARBF interpolation matrix
~~T are γ =

π
α2 exp(− (j2+k2)π2

N2α2 ), with eigenvectors exp(−ij~x)⊗ exp(−ik~y).

Proof. The 2D PGARBF interpolation matrix
~~T =

~~Ax ⊗ ~~T y.
~~Ax has eigenvalues

√
π
α

exp(− j2π2

N2α2 ) and the corresponding eigenvector exp(−ij~x).
~~Ay has eigenvalues

√
π
α

exp(− k2π2

N2α2 ) and the corresponding eigenvector exp(−ij~y). From Theorem III.8,

we have, the eigenvalues of
~~T are

γ =

√
π

α
exp(− j2π2

N2α2
)

√
π

α
exp(− k2π2

N2α2
)

=
π

α2
exp(−(j2 + k2)π2

N2α2
)

(3.42)

The corresponding eigenvectors of
~~T are exp(−ij~x)⊗ exp(−ik~y).

The following are the spectrum of the 2D PGARBF interpolation. Since the

spectrum are highly degenerated, that is, usually there are several eigenvectors cor-

responding to a single eigenvalue, so we just counted this single eigenvalue once, and

compared with the analytical value. The Fig. 3.4.1 verified Corollary III.9. Fig. 3.5

showed 2 eigenmodes of the 2D PGARBF interpolation matrix.
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Figure 3.5: The spectrum on a 2D periodic domain using PGARBF. The relative
shape parameter α = 1/3. In this figure, we counted each distinct eigen-
value only once. Numerical and Analytical values are the same.

3.4.2 2D harmonic operator discretized using PGARBF

The 2D harmonic operator is defined as, 4 = −( d2

dx2 + d2

dy2
). Apply this operator

to a 2D PGARBF basis, we have

4θGA,2D(x, y; ε) = 4{θGA(x; ε)θGA(y; ε)}

=
1

4ε2π
{
∞∑

n=−∞

n2 exp(− n
2

4ε2
) exp(inx)}{

∞∑
m=−∞

exp(−m
2

4ε2
) exp(imy)}

+
1

4ε2π
{
∞∑

n=−∞

exp(− n
2

4ε2
) exp(inx)}{

∞∑
m=−∞

m2 exp(−m
2

4ε2
) exp(imy)}

= θGAxx (x; ε)θGA(y; ε) + θGA(x; ε)θGAyy (y; ε)

(3.43)
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Again, the discretization of the 2D harmonic operator using PGARBF is
~~P 2D,

which is given by

~~P 2D =
~~P x ⊗ ~~Ay +

~~Ax ⊗ ~~P y (3.44)

where,
~~P x and

~~P y are the discretization of 1D harmonic operator in x and y direction

respectively; Similarly,
~~Ax and

~~Ay are the PGARBF interpolation matrices in x and

y direction respectively.

Theorem III.10. The eigenvalues of a 2D PGARBF interpolation matrix are given

by

ν =
π

α2
(j2 + k2) exp(−(j2 + k2)π2

N2α2
) (3.45)

Proof. The eigenvalue of
~~P x is

√
π
α
j2

1 exp(− j21π
2

N2α2 ), and the corresponding eigenvector

is exp(−ij1~x). The eigenvalue of
~~Ax is

√
π
α

exp(− k2
1π

2

N2α2 ), with the corresponding eigen-

vector exp(−ik1~x). The same arguments applies to
~~P y and

~~Ay.

Suppose the eigenvalue of operator
~~P 2D is ν, and the corresponding eigenvector is

exp(−im~x)⊗ exp(−in~y). Then,

~~P 2D{exp(−im~x)⊗ exp(−in~y)} = ν{exp(−im~x)⊗ exp(−in~y)} (3.46)

Since,

~~P x ⊗ ~~Ay{exp(−ij1~x)⊗ exp(−ik1~y)}

= (
π

α2
j2

1 exp(−(j2
1 + k2

1)π2

N2α2
)){exp(−ij1~x)⊗ exp(−ik1~y)}

(3.47)

and,

~~Ax ⊗ ~~P y{exp(−ij2~x)⊗ exp(−ik2~y)}

= (
π

α2
k2

2 exp(−(j2
2 + k2

2)π2

N2α2
)){exp(−ij2~x)⊗ exp(−ik2~y)}

(3.48)
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Compare the above three eigen equations, we have m = j1 = j2; and n = k1 = k2.

We let m = j and n = k, then,

ν =
π

α2
j2 exp(−(j2 + k2)π2

N2α2
) +

π

α2
k2 exp(−(j2 + k2)π2

N2α2
)

=
π

α2
(j2 + k2) exp(−(j2 + k2)π2

N2α2
)

(3.49)

3.5 Filter high frequency waves using Tikhonov regulariza-

tion

In this section, we will prove how the Tikhonov regularization damps high fre-

quency components in an interpolation process which is followed by two numerical

experiments using Tikhonov regularization. As we have seen from the eigen analysis

of 1D and 2D PGARBF interpolation matrices, the eigen modes are simply Fourier

series. The eigenvalues of the PGARBF interpolation matrices decay exponentially.

Theorem III.11. Applying Tikhonov regularization with regularization parameter λ

to an interpolation problem is effectively applying a filter to the problem. In the space

of eigenvectors, an eigenvector with eigenvalue λj is damped by a factor of wj, where

wj are the weighting function of Tikhonov regularization.

Proof. Suppose, we have a grid ~x1, ~x2, ..., ~xN . The interpolation of a function ψ(~x)

can be written as ψN(~x) =
∑N

j=1 ajφj(~x), where in our case, φj(~x) is the PRBF basis

corresponding to center ~xj, i.e., φj(~x) = θGA(~x − ~xj; ε) for Periodic Gaussian RBF.

This interpolation equation is forced to satisfy the interpolation condition on all the

grid points, that is,

ψN(~xj) = ψ(~xj), j = 1, ..., N ; (3.50)
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The above interpolation is written in a matrix-vector product form

~~A~a = ~ψ (3.51)

where, matrix
~~A is the PRBF interpolation matrix with elements

~~Ai,j = φj(~xi),

and ~a is a vector containing the expansion coefficients. Suppose, matrix
~~A has N

eigenvectors ~uj forming a set of complete basis in an N dimensional space. We can

rewrite
~~A as,

~~A =
N∑
j

λj~uj~u
T
j (3.52)

In a Tikhonov regularization interpolation,

~anew =
N∑
j=1

wj
~uTj
~ψold

λj
~uj (3.53)

~ψnew =
N∑
i

λi~ui~u
T
i ~anew = (

N∑
i

λj~ui~u
T
i )(

N∑
j=1

wj
~uTj
~ψold

λj
~uj)

=
N∑
i

λi~uiwi
~uTi
~ψold
λi

=
N∑
i

wi(~u
T
i
~ψold)~ui

(3.54)

So the original ith component of initial function ~ψ has been damped by a factor of

wi, with small eigenvalues components damped more quickly (The weighting function

is plotted in Fig. 3.1). Therefore, Tikhonov regularization can be used as a filter

to high frequency modes. The damping factor for each Fourier mode is plotted in

Fig. 3.6.
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Figure 3.6: Damping factor for different trigonometric modes using standard
Tikhonov regularization. Numerical and analytical damping factor are
the same.

3.6 Tikhonov regularization for RBFs interpolation on a sphere

In this section, we superpose two modes of Legendre polynomial, i.e., P1(µ) +

P10(µ), which gives

Psum(µ) = P1(µ) + P10(µ) (3.55)

Here, µ = cos(θ) sin(θp) + sin(θ) sin(θp) cos(λ− λp), and (θp, λp) is the rotated angle.

In this part, we let θp = π/2, λp = 0. To see the filtering effect of Tikhonov reg-

ularization in RBF interpolation, we interpolated function Psum(µ) using Gaussian

Radial Basis Function(GRBF) on a sphere, and then applied the Tikhonov regular-

ization. The following patterns, i.e., Fig. 3.7 and Fig. 3.8 show that, as Tikhonov

regularization parameter λ increases, the high mode, i.e., P10(µ) becomes diminished,

and the resulting mode becomes simply the lower mode P1(µ). Numerically, we have

successfully filtered out higher mode, P10(µ).

74



λ

θ

RBF vorticity field, P
1
+P

10
, λ=1e−05

−2 0 2

0.5

1

1.5

2

2.5

3

λ

θ

RBF vorticity field, P
1
+P

10
, λ=0.01

−2 0 2

0.5

1

1.5

2

2.5

3

λ

θ

RBF vorticity field, P
1
+P

10
, λ=10

−2 0 2

0.5

1

1.5

2

2.5

3

Figure 3.7: Interpolate P1(µ)+P10(µ) using Gaussian RBF on a sphere with λ = 10−5,
10−2 and 10. The number of icosahedral grid points used are N = 1442,
and Gaussian RBF shape parameter is α = 1/3.
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RBF interpolations with difference Tikhonov regularization parameters
are plotted int Fig. 3.7
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CHAPTER IV

RBF-Vortex Method for the Barotropic Vorticity

Equation

4.1 Introduction

4.1.1 Barotropic Vorticity Equation (BVE)

The Barotropic Vorticity Equation (BVE) on the sphere is the conservation of the

absolute vorticity following the motion,

Dζabs
Dt

= 0 (4.1)

where the absolute vorticity is

ζabs = ζ + 2Ω cos(θ) (4.2)

and the total derivative (particle following derivative) is

D

Dt
=

∂

∂t
+

u

a sin(θ)

∂

∂λ
+
v

a

∂

∂θ
(4.3)
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where, a is the radius of the earth and Ω = 2π/86400s is the angular frequency of the

earth’s rotation. The velocities are given in terms of the streamfunction ψ as

v = a
Dθ

Dt
= − 1

sin(θ)

∂ψ

∂λ
(4.4)

u = a sin(θ)
Dλ

Dt
=
∂ψ

∂θ
(4.5)

Note that v is the southward velocity, which is the opposite of the usual meteoro-

logical convention. The streamfunction ψ is determined from the vorticity by solving

the Poisson equation.

∆ψ = ζ, ∆ψ =
1

a2

1

sin(θ)2

∂2ψ

∂λ2
+

1

a2

∂2ψ

∂θ2
+ cot(θ)

1

a2

∂ψ

∂θ
(4.6)

The vorticity equation can be rewritten as

∂ζ

∂t
= −∂ψ

∂θ

1

a sin(θ)

∂ζ

∂λ
+

1

a sin(θ)

∂ψ

∂λ

∂ζ

∂θ
− 2Ω

a

∂ψ

∂λ
(4.7)

To faciliate the computation, we will nondimensionalize so that the length scale is

a, the earth’s radius, so that the nondimensional distances are m/6.36E6. Similarly,

we nondimensionalize time so that the unit vorticity is 2Ω so that one day is 12.56

nondimensional time units and a unit velocity is equivalent to a speed of 924m/s.

The BVE is a simple mathematical model for the description of planetary scale

horizontal motions of the atmosphere. The first numerical weather prediction is

performed on BVE using finite difference method (Charney et al., 1950). There is

very little work on solving BVE using vortex methods. Recent developments are in

(Wang , 2010; Bosler , 2013; Bosler et al., 2014). In this chapter, an adaptive RBF

method is devised to simulate geophysical flows using BVE.
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4.1.2 Distance on the sphere

There are two popular ways to measure distance on the sphere. The first is

the Euclidean distance between two points in ordinary three-dimensional space; the

Euclidean distance is the length of a line segment connecting the two points which

passes through the interior of the sphere. The second distance metric is the geodesic

distance, which is the length of the shortest arc along the surface of the sphere which

connects the two points.

The geodesic distance is defined for two three-dimensional vectors ~x and ~xj to be

rG = arccos(~x · ~xj) (4.8)

When one of the vectors ~x or ~xj is the north pole, the geodesic distance is the

colatitude θ of the other point.

However, in the RBF literature, the Euclidean distance is more common and is

the definition employed here:

rE =‖ ~x− ~xj ‖

=
√

(~x− ~xj)T · (~x− ~xj)

=
√

(x− xj)2 + (y − yj)2 + (z − zj)2

=
√

2(1− sin(θ) sin(θj) cos(λ− λj)− cos(θ) cos(θj))

(4.9)

4.1.3 Coordinate rotation

To faciliate the computation of the RBF on the sphere, the following theorem will

be exploited repeatedly in the later sections.

Theorem IV.1. (Coordinate Rotation) Suppose f(λ, θ) is a radially symmetric func-
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tion on the sphere in the sense that

f(λ, θ;λj, θj) = f(‖ ~x− ~xj ‖) (4.10)

for point ~xj; thus if the coordinate system is rotated to make ~xj the new north pole,

f is independent of longitude and may be written

f(λ, θ;λj, θj) = f ′(ξ)

equation for some function f ′ that depends only on the new colatitude ξ. Then in

terms of the original coordinate system,

f(λ, θ;λj, θj) = f ′(ξ(λ, θ;λj, θj)) (4.12)

where

cos(ξ) = cos(θ) cos(θj) + sin(θ) sin(θj) cos(λ− λj) (4.13)

4.2 Hyperviscosity

4.2.1 Aliasing instability

In 1D, on a grid of N points, Fourier components exp(ikx) with |k| > N/2 appear

as low wavenumbers. The high wavenumber is said to be aliased to the low wavenum-

ber. This is because, to resolve a given wave k, we need to sample the wave at least

twice as frequent as the wave, which means we must place at least two grid points

within one wave distance, in order to resolve the wave(Boyd , 1999). However, the

computational grid is finite, i.e., h. Therefore, the smallest wave that can be resolved

by this h grid is λ = 2h. Larger wave numbers (correspond to smaller wave lengths

via k = 2π
λ

) get aliased to smaller waves via the relation kA = k±2mK,m = integer,
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where, kA ∈ [−K,K].

In fluid simulation, aliasing can cause numerical instability in the time integration

of nonlinear dynamic equations. For example, the quadratically nonlinear term is

quite typical in fluid dynamic equations,

uux = (
K∑

p=−K

ap exp(ipx))(
K∑

q=−K

iqaq exp(iqx))

=
2K∑

k=−2K

bk exp(ikx)

(4.14)

The nonlinear interaction has generated high wavenumbers which will be aliased into

wavenumbers on the range k ∈ [−K,K], on the finite computational grid, which is

non-physical. The aliasing reflects energies into larger scales, which is not physically

predicted by the nonlinear equations. The simulation will eventually blow up.

The aliasing instability was first observed by Phillips (1956) in his model of the

earth’s general circulation. Phillips tried to stabilized his model by greatly decreasing

both the time step and spatial grid size, but the model blew up anyway. He noticed

that the warning of the instability was the appearance of 2h-waves. The reasoning

behind this is, in the Fourier space, on a finite grid with spacing h, the largest wave

number is K = π
h
, which corresponds to the smallest wave length λ = 2π

K
= 2h. The

aliasing has the largest perturbation at K = π
h
. Therefore the 2h wave is the warning

of the instability.

To suppress the aliasing instability, Phillips applied a filter, which filtered out com-

pletely wavenumbers that are greater than |k| > K
2

, and keeps the smaller wavenumber

intact, i.e.,

ak →

 ak |k| < K/2

0 |k| > K/2
(4.15)

Orszag(1971) pointed out that Phillips’ filtering scheme is wasteful. He was able to
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completely eliminate the aliasing by filtering only the upper one third of the spec-

trum. The two filter schemes fall into the general filtering coefficients scheme, where

we attach a weighting function to the coefficients of spectral basis. The filtering

coefficients (Boyd , 1996) scheme will be described in the next section.

4.2.2 Filtering coefficients

Suppose the original unfiltered and slowly converging series is

uN(x) =
N∑
k=0

akφk(x) (4.16)

where the φk(x) are the basis functions. A smoother and more physical approximation

is the filtered partial sum

u(x) =
N∑
k=0

σkakφk(x) (4.17)

where σ is symmetric with respect to x = 0, that is, σ(−x) = σ(x) for all x. We call

this σ weighting function. The weighting function is designed such that, when the

frequency of the basis approaches zero σ → 1; when the frequency of the basis tends

to ∞, σ → 0. From Eqn. 4.17, we see this procedure effectively filters out the high

frequency waves of the solutions.

We can then rewrite the two schemes as

ak → σkak,

 σk = 1 |k| < K/2

σk = 0 |k| > K/2
Phillips’ scheme (4.18)

and

ak → σkak,

 σk = 1 |k| < 2K/3

σk = 0 |k| > 2K/3
Orszag’s scheme (4.19)

The weighting functions σk can be varied, such that, when k → 0, σk = 1, while

k → kmax, σk = 0. Another very frequently used weighting function is the Boyd-
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Vandeven filter (Boyd , 1996). The Boyd-Vandeven filter of order p is

σk =
1

2
erfc(2

√
p(| k
N
| − 1

2
)

√
−

log(1− 4(| k
N
| − 1

2
)2)

4(| k
N
| − 1

2
)2

) (4.20)

where,

erfc(x) =
2√
π

∞∫
x

e−r
2

dr (4.21)

However, the general filtering coefficients schemes are only valid for filtering orthog-

onal basis. For a non-orthogonal basis, i.e., Radial Basis Functions, filtering one

basis function means filtering the whole spectrum of waves in Fourier space, which

is not desirable. Another general filtering scheme for spectral methods is to add a

hyperviscosity term to the dynamic equations. Boyd(Boyd , 1994) showed that the

hyperviscosity is equivalent to adding a weighting function to the solution in the

spectral basis space.

4.2.3 Hyperviscosity on a plane

The hyperviscosity terms used for spectral methods are ν ∂
2f
∂x2 ,−ν ∂

4f
∂x4 , ν

∂6f
∂x6 , .... One

way to understand the hyperviscosity is to assume f(t, x) = a(t, k)eikx, which can be

generalized to any functions by Fourier expansion, and take a look at the equation,

∂f(t, x)

∂t
= ν

∂2f(t, x)

∂x2
,−ν ∂

4f(t, x)

∂x4
, ν
∂6f(t, x)

∂x6
(4.22)

The above equations become, after we substitute f(t, x),

∂a(t, k)

∂t
= −νk2a(t, k),−νk4a(t, k),−νk6a(t, k), (4.23)
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the solutions to which are,

a(t, k) = a(0, k)e−νk
2t, a(0, k)e−νk

4t, a(0, k)e−νk
6t (4.24)

The filtering effect of hyperviscosity is obvious by looking at the solutions. Every

wave component decays so that a(t, k) = a(0, k)e−νk
2nt. a(0, k) decays faster for

larger k and slower for smaller k, which effectively filters higher modes. If we take,

ak = a(0, k), σk = e−νk
2nt, then the hyperdiffusion falls into the general filtering

coefficient scheme.

To extend to higher dimensions, for example, on a 2D Cartesian coordinate, we recall

that the basis functions ei(kx+jy) in 2D. The corresponding weighting functions are

e−ν(k2q+j2q)t where 2q is the order of the hyperviscosity.

4.2.4 Hyperviscosity on a sphere

On the surface of a sphere, the Laplacian operator is

O2ψ =
1

sin2(θ)

∂2ψ

∂λ2
+

1

sin(θ)

∂

∂θ
(sin(θ)

∂ψ

∂θ
) (4.25)

The eigenfunction of the Laplacian operator on the sphere with eigenvalue −n(n+ 1)

is spherical harmonic Y m
n (λ, θ), that is,

O2Y m
n (λ, θ) = −n(n+ 1)Y m

n (λ, θ) (4.26)

where m can be any integer between [−n, n]. The hyperdiffusion equation of order

2q on the surface of a sphere can be written as

∂ψ(t, λ, θ)

∂t
= (−1)q+1ν2qO

2qψ(t, λ, θ) (4.27)
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If we write ψ(t, λ, θ) = am(t, n)Y m
n (λ, θ), and apply operator O2 q times,

∂am(t, n)

∂t
= (−1)2q+1ν2q[n(n+ 1)]qam(t, n) (4.28)

We can easily derive the solution to Eqn. 4.27

ψ(t, λ, θ) = am(0, n)e−ν2q [n(n+1)]qtY m
n (λ, θ) (4.29)

Again, what it tells us is that the initial amplitude of the spherical harmonic am(0, n)Y m
n (λ, θ)

has been damped by a factor of e−ν2q [n(n+1)]qt after a time interval of t. Here the weight-

ing function σn,m = e−ν2q [n(n+1)]qt, which means all the spherical harmonic modes with

the same n have the same weighting function.

4.3 Numerical considerations, hyperviscosity coefficients and

energy decay

4.3.1 Numerical considerations

There is one numerical stability issue that needs to be addressed when hypervis-

cosity is applied in fluid simulation. When we apply an explicit time-marching scheme

to solve the diffusion equation, the time step ∆t is restricted by

∆t =
c(∆x)2q

ν2q

(4.30)

Eqn. 4.30 can be justified by doing a scale analysis on the following hyperdiffusion

equation.

∂ψ

∂t
= (−1)q+1ν2qO

2qψ (4.31)
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Scale analysis goes as the following

c|∆ψ
∆t
| = |ν2q

∆ψ

∆x2q
| (4.32)

We arrive at,

∆t =
c∆x2q

ν2q

(4.33)

Therefore, as the grid spacing ∆x becomes smaller, ∆x2q gets smaller, too. And this

requires a smaller hyperviscosity coefficients ν2q to keep the simulation at a relative

constant time step ∆t. The following section will present some techniques to choose

the hyperviscosity coefficients ν2q.

4.3.2 Hyperviscosity coefficients

Jablonowski and Williamson (2011) give a very comprehensive review on the

choice of hyperviscosity coefficients. In this section, we briefly discuss some of the

techniques. From Eqn. 4.30, to keep a relative constant time step ∆t for arbitrary

order of hyperviscosity 2q, we let ν2q = γ∆x2q, then, ∆t becomes

∆t =
c∆x2q

γ∆x2q
=
c

γ
= C (4.34)

On a near-uniform grid, i.e., icosahedral grid, ∆x =
√

4π
N

. The assumption be-

hind this equation is the N grid points cover the surface of the sphere with radius

a = 1 and area 4πa2 = 4π. To see the scale-selectivity of hyperviscosity, we can set

ν2q = γ( 1
M(M+1)

)q on a spherical domain; and ν2q = γ( 1
K2 )q for a Cartesian coordi-

nate domain, where M and K are the damping scale of the hyperviscosity. Fig. 4.1

shows the weighting functions of different orders of hyperviscosity. Clearly all the

curves cross at the damping scale wavenumber M and K respectively. What we

see here is as the order of hyperviscosity increases, the weighting functions become
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Figure 4.1: Weighting functions for different orders(2nd-order, 4th-order, 8th-order and
16th-order) of hyperviscosity on the sphere. In this plot, the damping scale
M = 50 is used.

steeper. Therefore, wavenumbers smaller than M(or K) are preserved relatively well

and wavenumbers larger than M(or K) are dissipated rapidly.

4.3.3 Energy decay

While hyperviscosity stabilizes the simulation of nonlinear dynamics, it does de-

grade the accuracy of the simulation. Hyperviscosity causes the energy to decay at a

rate which depends on the time-marching schemes we employ and can be studied nu-

merically too. In this part, I do an analysis of the energy decay of the hyperviscosity

equation on the sphere using a spherical harmonic basis. Suppose we have an initial

profile ψ(0, λ, θ) = a(0, n)φn(λ, θ), where φn(λ, θ) is the spherical harmonic or com-

bination of spherical harmonic of order n, and Forward Euler time-marching scheme

is applied to the hyperdiffusion equation 4.31. We write ψ(t, λ, θ) = a(t, n)φn(λ, θ),

then

a(∆t, n) = a(0, n)−∆tν2q[n(n+ 1)]qa(0, n) = {1−∆tν2q[n(n+ 1)]q}a(0, n) (4.35)
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The damping factor s∆t = 1−∆tν2q[n(n+ 1)]q is the first order Taylor expansion of

the weighting function e−ν2q [n(n+1)]q∆t.

By time t, the initial profile has been damped Nt times

st = sN∆t = (1−ν2q[n(n+1)]q∆t)Nt ≈ 1−ν2q[n(n+1)]qNt∆t = 1−ν2q[n(n+1)]qt (4.36)

In the above equation, we have used Nt∆t = t and (1− x)N ≈ 1−Nx for |x| << 1.

This damping factor is the first order approximation of e−ν2q [n(n+1)]qNt∆t = e−ν2qn(n+1)qt ≈

1−ν2q[n(n+1)]qt, where we have used limNt→∞{1−ν2q[n(n+1)]q t
Nt
}Nt = e−ν2q [n(n+1)]qt.

Using first order approximation, we can easily see the linear relationship between rel-

ative error and time. Therefore, at time t, the relative error is predicted to be

Et = |a(0, n)φn(λ, θ)− (1− ν2q[n(n+ 1)]qt)a(0, n)φn(λ, θ)

a(0, n)φn(λ, θ)
| = ν2q[n(n+ 1)]qt (4.37)

From Eqn. 4.37, the relative error of a spherical harmonic on the sphere after a

period of time t is linearly proportional to ν2q[n(n + 1)]q. This has been verified by

the Rossby-Haurwitz wave test in Fig. 4.5.

4.4 Discretization of BVE with hyperviscosity using Gaus-

sian RBF

4.4.1 Discretization of BVE

We repeat the vorticity equation here,

∂ζ

∂t
= −∂ψ

∂θ

1

a sin(θ)

∂ζ

∂λ
+

1

a sin(θ)

∂ψ

∂λ

∂ζ

∂θ
− 2Ω

a

∂ψ

∂λ
(4.38)
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where, the relation between the relative vorticity ζ and streamfunction ψ satisfies,

∆ψ = ζ (4.39)

ζ and ψ can be interpolated using Gaussian Radial Basis Functions,

ψ(λ, θ) =
N∑
j=1

aψj φj(λ, θ) (4.40)

ζ(λ, θ) =
N∑
j=1

aζjφj(λ, θ) (4.41)

where φi(λ, θ) is the Gaussian RBF corresponding to the center located at (λj, θj).

First, assume that the RBF center is located at the north pole, and the corresponding

GA RBF is

φ0(ξ; ε) = exp(−2ε2(1− cos(ξ))) (4.42)

Apply the Poisson operator, we have,

∆φ0(ξ; ε) = 4ε2{ε2 − cos(ξ)− ε2 cos(ξ)2} exp(−2ε2(1− cos(ξ)) (4.43)

Now, rotate the center from the north pole to the location (λj, θj), since the Poisson

operator is invariant under rotation on the sphere, the coordinate rotation theorem

implies

∆φj(λ, θ) = 4ε2{ε2 − Ξj(λ, θ)− ε2Ξ2
j(λ, θ)} exp(−2ε2(1− Ξj(λ, θ))) (4.44)

where,

Ξj(λ, θ) = cos(θ) cos(θj) + sin(θ) sin(θj) cos(λ− λj) (4.45)
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Therefore,

∆ψ(λ, θ) = ∆(
N∑
j=1

aψj φj(λ, θ)) =
N∑
j=1

aψj ∆φj(λ, θ) (4.46)

Usually, we take the collocation points the same as the RBF centers. Then

Eqn. 4.40 and Eqn. 4.46 becomes,

~~D0~aψ = ~ψ

~~D0~aζ = ~ζ

~~P~aψ = ~ζ

(4.47)

and

~aζ = (
~~D0)−1~ζ =

~~Q~ζ (4.48)

~aψ = (
~~P )−1~ζ =

~~G~ζ (4.49)

where, the interpolation matrices are given by,

~~D0
ij = φj(λi, θi) = exp{−2ε2(1− sin(θi) sin(θj) cos(λi− λj)− cos(θi) cos(θj))} (4.50)

~~Pij = 4ε2{ε2 − Ξj(λi, θi)− ε2Ξ2
j(λi, θi)} exp(−2ε2(1− Ξj(λi, θi))) (4.51)

and,

Ξj(λi, θi) = cos(θi) cos(θj) + sin(θi) sin(θj) cos(λi − λj) (4.52)
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To evaluate the derivative terms in the Eqn. 4.38, we have,

∂ζ

∂λ
=

N∑
j=1

aζj
∂φj(λ, θ)

∂λ
(4.53)

∂ζ

∂θ
=

N∑
j=1

aζj
∂φj(λ, θ)

∂θ
(4.54)

where,

∂φj(λ, θ)

∂λ
= exp{−2ε2(1− sin(θ) sin(θj) cos(λ− λj)− cos(θ) cos(θj))}

(−2ε2) sin(θ) sin(θj) sin(λ− λj)
(4.55)

∂φj(λ, θ)

∂θ
= exp{−2ε2(1− sin(θ) sin(θj) cos(λ− λj))− cos(θ) cos(θj)}

(−2ε2){− cos(θ) sin(θj) cos(λ− λj) + sin(θ) cos(θj)}
(4.56)

Again, we take the collocation points the same as the RBF centers, then, we can

rewrite Eqn. 4.53 as,

∂ζ

∂λ
→ ~~Dλ~aζ =

~~Dλ(
~~D0)−1~ζ =

~~Dλ ~~Q~ζ

∂ζ

∂θ
→ ~~Dθ~aζ =

~~Dθ(
~~D0)−1~ζ =

~~Dθ ~~Q~ζ

(4.57)

Here, matrices
~~Dλ and

~~Dθ are given by,

~~Dλ
ij =

∂φj(λi, θi)

∂λ
=
~~D0
ij{−2ε2 sin(θi) sin(θj) sin(λi − λj)}

~~Dθ
ij =

∂φj(λi, θi)

∂θ
=
~~D0
ij{cos(θi) sin(θj) cos(λi − λj)− sin(θi) cos(θj)}

(4.58)
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Similarly, we have,

∂ψ

∂λ
→ ~~Dλ~aψ =

~~Dλ ~~G~ζ

∂ψ

∂θ
→ ~~Dθ~aψ =

~~Dθ ~~G~ζ

(4.59)

Then it immediately follows that the discrete velocities are

~u =
~~Dθ ~~G~ζ

~v = − 1

sin(~θ)
. ∗ ~~Dλ ~~G~ζ

(4.60)

Here, the MATLAB element-wise multiplication notation .∗ is used.

4.4.2 Discretization of hyperviscosity term

We applied the 4th-order diffusion operator to a Gaussian RBF with center located

at the north pole,

∆2φ0(ξ; ε) = −∆2(e−2ε2(1−cos(ξ))) = −(8ε2e−2ε2(1−cos(ξ)))f1(ξ) (4.61)

where f1(ξ) = {2ε6 cos(ξ)4+8ε4 cos(ξ)3+(7ε2−4ε6) cos(ξ)2+(1−8ε4) cos(ξ)−3ε2+2ε6}.

Again, due to the invariance of operator −∆2 on the sphere, we can apply the rotation

theorem so that the north pole is rotated to (λj, θj), and cos(ξ) becomes

cos(ξ) = Ξj(λ, θ) = cos(θ) cos(θj) + sin(θ) sin(θj) cos(λ− λj) (4.62)

Therefore,

−∆2φj(λ, θ) = −∆2(e−2ε2(1−Ξj)) = −(8ε2e−2ε2(1−Ξj))f2(Ξj) (4.63)

where f2(Ξj) = {2ε6Ξ4
j + 8ε4Ξ3

j + (7ε2 − 4ε6)Ξ2
j + (1− 8ε4)Ξj − 3ε2 + 2ε6}.
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−∆2ζ(λ, θ) = −∆2

N∑
j=1

ajζφj(λ, θ) =
N∑
j=1

ajζ(−∆2φj(λ, θ))

= −
N∑
j=1

ajζ(8ε
2e−2ε2(1−Ξj))f3(Ξj)

(4.64)

where f3(Ξj) = {2ε6Ξ4
j + 8ε4Ξ3

j + (7ε2 − 4ε6)Ξ2
j + (1− 8ε4)Ξj − 3ε2 + 2ε}. Choosing

the collocation points to be the same as the RBF centers, Eqn. 4.64 can be written

as

−∆2ζ(λ, θ)→ ~~D4~aζ =
~~D4 ~~Q~ζ (4.65)

where

~~D4
ij = −(8ε2e−2ε2(1−Ξij)){2ε6Ξ4

ij+8ε4Ξ3
ij+(7ε2−4ε6)Ξ2

ij+(1−8ε4)Ξij−3ε2+2ε6} (4.66)

with

Ξij = cos(θi) cos(θj) + sin(θi) sin(θj) cos(λi − λj) (4.67)

4.5 Simulating BVE with hyperviscosity

In this section, we describe two versions of the algorithm to simulate the Barotropic

vorticity equation with hyperviscosity: Eulerian and Lagrangian.

4.5.1 Eulerian version

In Eulerian coordinates, we fix the interpolation points in time. The Eulerian

version of the Barotropic Vorticity Equation immediately follows,

∂ζ

∂t
= −∂ψ

∂θ

1

a sin(θ)

∂ζ

∂λ
+

1

a sin(θ)

∂ψ

∂λ

∂ζ

∂θ
− 2Ω

a

∂ψ

∂λ
− ν∆2ζ (4.68)
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The discretized form of Eqn. 4.68 is

∂~ζ

∂t
= −~u. ∗ 1

sin(~θ)
. ∗ (

~~Dλ ~~Q~ζ)− ~v. ∗ ~~Dθ ~~Q~ζ − ~~Dλ ~~G~ζ + ν
~~D4 ~~Q~ζ (4.69)

Of course, we can solve Eqn. 4.69 directly using 4th-order Runge-Kutta time-marching

scheme. However, since hyperviscosity is not physical, we can do it separately using

cheaper schemes, i.e., Forward Euler method. That is, we solve

∂~ζ∗

∂t
= −~u. ∗ 1

sin(~θ)
. ∗ (

~~Dλ ~~Q~ζn)− ~v. ∗ ~~Dθ ~~Q~ζn − ~~Dλ ~~G~ζn (4.70)

using RK4 scheme. Before moving to the next time step, we do a hyperdiffusion on

~ζn+1.

~ζn+1 = ~ζ∗ + ∆tν
~~D4 ~~Q~ζ∗ (4.71)

4.5.2 Lagrangian version

The Barotropic Vorticity Equation

D(ζ + cos(θ))

Dt
= 0 (4.72)

tells us that as a fluid element moves with the flow, the absolute vorticity ζ + cos(θ)

on the element is conserved. The Lagrangian approach is: we initialize a set of

vortices with strength ~ζ on the sphere, where the locations of the vortices (~λ, ~θ) are

the RBF centers, too. The ~ζ is used to compute the velocity field ~u and ~v. The

absolute vorticity on the vortex particles are ~ζabs = ~ζ + cos(~θ). The vortices are

advected by the velocity field, i.e., ~u and ~v, using 4th-order Runge Kutta scheme to

new locations, i.e., (~λnew, ~θnew). Due to the conservation of the absolute vorticity ~ζabs

and the change of Coriolis forces on the vortex particles, the new relative vorticity

becomes ~ζnew = ~ζabs − cos(~θnew), which will induce new velocity field, ~unew and ~vnew.

94



Fig. 4.2 shows the flowchart for simulating the BVE using RBF-Vortex method with

hyperviscosity.

The hyperdiffusion process occurs before we move on to next time step. That

is, we do a standard hyperdiffusion using the vortex configuration we have now.

For simulating the Navier-Stokes Equations, Chorin(Chorin, 1973) proposed that the

diffusion of vorticity can be simulated via the Brownian motion of vortex elements. A

widely used method to generate a Brownian motion (Gaussian random numbers) in

Monte Carlo simulations is called Box-Muller method(Ahrens et al., 2013). However,

this scheme is of low accuracy and is applied to slightly viscous flow only.

∂ζ(λ, θ)

∂t
= −ν∆2ζ(λ, θ) (4.73)

Usually, we can just use a lower order time-marching scheme for Eqn. 4.73, i.e.,

Forward Euler, which is cheap and easy to program. That is,

ζn+1 = ζ∗ − ν∆t∆2ζ∗ (4.74)

4.6 Numerical experiments

4.6.1 Rossby-Haurwitz waves

4.6.1.1 Rossby-Haurwitz waves test

Theorem IV.2. : Let Y m
n (λ, θ) denote the spherical harmonics. If the initial con-

dition for the streamfunction is a spherical harmonic Y m
n (λ, θ) or a superposition of

spherical harmonics with arbitrary amplitudes am, but the same subscript(degree) n,

Ψ(λ, θ, 0) = H(λ, θ) =
m∑

m=−n

amY
m
n (λ, θ) (4.75)
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initialize ~ζabs, ~λ, ~θ,
~ζ = ~ζabs − cos(~θ)

compute streamfunction ~ψ

compute ~u and ~v

compute ~λnew and ~θnew

update: ~λ = ~λnew,
~θ = ~θnew, ~ζ = ~ζnew and
~ζabs = ~ζnew + cos(~θnew)

apply hyperviscos-
ity: ~ζ → ~ζnew

graph and stop

Figure 4.2: Flowchart: Simulating the Barotropic Vorticity Equation using RBF-
Vortex Method
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this is an exact, steadily-translating finite amplitude solution to the Barotropic Vor-

ticity Equation. The different zonal wavenumber components propagate with the lon-

gitudinal phase speed

c = −2Ω

a

1

n(n+ 1)

Ψ(λ, θ, t) = H(λ− ct, θ)
(4.76)

The sum of the advective terms in the vorticity equation is zero for all time:

N = −∂Ψ

∂θ

1

a sin(θ)

∂ζ

∂λ
+

1

sin(θ)

∂Ψ

∂λ

1

a

∂ζ

∂θ
= 0 (4.77)

Proof. Because Ψ is an eigenfunction of the Laplacian operator, ζ = −n(n+ 1)Ψ for

all times. The vorticity equation can be written in terms of Ψ as

−n(n+ 1)
∂Ψ

∂t
= n(n+ 1)

∂Ψ

∂θ

1

a sin(θ)

∂Ψ

∂λ
− n(n+ 1)

1

sin(θ)

∂Ψ

∂λ

1

a

∂Ψ

∂θ
− 2Ω

a

∂Ψ

∂λ
(4.78)

It is then obvious by inspection that the two nonlinear terms, the first two to the right

of the equal sign, cancel identically when Ψ and ζ are proportional to one another.

The vorticity equation collapses to the linear wave equation

∂Ψ

∂t
− 1

n(n+ 1)

2Ω

a

∂Ψ

∂λ
= 0 (4.79)

We can easily check that the solution to the above equation is Ψ = H(λ− ct).
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4.6.1.2 Legendre Polynomial Waves

Consider two unit vectors ~x and ~y, respectively, with spherical coordinates (λ, θ)

and (λ′, θ′). The addition theorem states

Pn(~x, ~y) =
4π

2n+ 1

n∑
m=−n

Y ∗nm(θ′, λ′)Ynm(θ, λ) (4.80)

For a fixed rotation angle θ′ = θp, λ
′ = λp, Y

∗
nm(θp, λp) is a function of m only. We

can easily see that the Legendre polynomial is simply a combination of the spherical

harmonics with constant coefficients, the same n and m ranging from −n to n. Then,

Theorem IV.2 applies. Thus, a steadily-translating Rossby-Haurwitz wave can be

generated by a Legendre polynomial. Given the non-dimensionalization condition we

have assumed, the phase velocity is

c = − 1

n(n+ 1)
(4.81)

Pn(~x · ~y) = Pn(cos(ξ)), where ξ is the angle between ~x and ~y, which satisfies,

cos(ξ) = cos(θ) cos(θp) + sin(θ) sin(θp) cos(λ− λp) (4.82)

The Legendre polynomial wave Pn(cos(ξ)) becomes

Pn(cos(ξ)) = Pn(cos(θ) cos(θp) + sin(θ) sin(θp) cos(λ− λp)) (4.83)

For example, the Legendre polynomial

P2(µ) = (3/2)µ2 − 1/2 (4.84)
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with n = 2, c = − 1
n(n+1)

= −1/6 gives the traveling wave

ψ(λ− ct, θ) = (3/2)(cos(θ) cos(θp) + sin(θ) sin(θp) cos(λ− ct− λp))2 − 1/2 (4.85)

Similarly, the Legendre polynomial of tenth degree is

P10(µ) =
1

256
(46189µ10 − 109395µ8 + 90090µ6 − 30030µ4 + 3465µ2 − 63) (4.86)

. The corresponding traveling wave is

P10(µ(t)) =
1

256
(46189µ(t)10−109395µ(t)8+90090µ(t)6−30030µ(t)4+3465µ(t)2−63)

(4.87)

where µ(t) = cos(θ) cos(θp) + sin(θ) sin(θp) cos(λ − ct − λp). This wave is travelling

with c = − 1
110

.

In Fig. 4.3, we simulate the second degree Legendre polynomial wave using La-

grangian and Eulerian approaches. Small scales develop in Eulerian coordinate due

to the small hyperdiffusion coefficient we used; however, as we increase the hyperdif-

fusion coefficient 5 times, the solution becomes smooth. In Lagrangian coordinate,

even for small ν = 2 × 10−6, the numerical result is smooth. In the Lagrangian

coordinate, the particles follow the flow and the numerical error of approximating

Du
Dt

= ∂u
∂t

+ u · ux comes from the discretization of the velocities only. In the Eulerian

coordinate, the error for approximating the advection term u · ux comes from two

parts: the discretization of u and the approximation of ux, which introduces more

error in many cases. In the Rossby-Haurwitz wave test, we use N = 1442 grid points,

that is, we divided each icosahedral edge into 12 equal intervals on the sphere.

Fig. 4.4 shows two smooth looking graphs using the two approaches. The upper

panel shows relative error, streamfunction and relative vorticity using Eulerian coor-

dinate with ν = 10−5; and the lower panel shows the corresponding Lagrangian case
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Figure 4.3: Rossby-Haurwitz wave test: using Eulerian and Lagrangian approaches.
We use icosahedral grid with 1442 points, RBF shape parameter α = 1/3
and 4th-order hyperviscosity. From up to down the three graphs are:
Eulerian coordinate with ν = 2×10−6, Eulerian coordinate with ν = 10−5

and Lagrangian coordinate with ν = 2× 10−6.
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with ν = 2 × 10−6. The relative error of Eulerian case is about 5 times larger than

the Lagrangian, which may result from the fact that we are using a larger ν for the

Eulerian. We track the error of the simulation, and the error is plotted in Fig. 4.3.

The relative errors can be justfied by the analysis in Sec. 4.3.3. The slope of the

relative error using Forward Euler method at time t is predicted to be

Et = ν2q[n(n+ 1)]qt (4.88)

In our simulation, the Rossby-Haurwitz wave we are simulating is the second degree

Legendre polynomial with ν = 2× 10−6 and q = 2; therefore, by Eqn. 4.88, we have

the time-dependent relative error is

Et = 2× 10−6 × [2(2 + 1)]2t = 7.2× 10−5t (4.89)

The theoretically predicted slope of relative error 7.2 × 10−5 agrees well with the

numerical slope of the curve of relative error 7.1341×10−5 in Fig. 4.5. This means that

the RBF-Vortex method is accurate, and the total error is dominated by the artificial

dissipation. Similarly we can predict the ratio of relative errors using different values

of hyperviscosity coefficients, i.e., 10−5 for Eulerian and 2× 10−6 for Lagrangian

ratio =
Eeul
t

Elag
t

=
10−5 × [2(2 + 1)]2t

2× 10−6 × [2(2 + 1)]2t
= 5 (4.90)

From Fig. 4.4, the Eulerian relative error at T (final time) is 0.12689, while the final

Lagrangian relative error is 0.026832, the ratio follows

ratio =
0.12689

0.026832
= 4.7291 (4.91)

Again, the theoretically calculated and numerically computed error ratios are very
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close.

Fig. 4.6 shows the relative error with zero hyperviscosity after a short time interval.

There are two reasons that we consider a short time interval and zero hyperviscosity

in this case. First, to quantify the merits of the two approaches, we need to elim-

inate the effect of hyperviscosity and also aliasing error; a longer time period will

accumulate more aliasing error if there is no hyperviscosity. Second, there is one ob-

vious advantage for vortex method, that is, the vortex distortion after a longer time

has been shown to be a disadvantage of the vortex methods, and by measuring such

a short time, we are able to eliminate the effect of the vortex distortion. Fig. 4.6

shows that at N(<≈ 100), the Eulerian coordinate is superior; while as we increase

the number of grid points, the advantage of Lagrangian approach takes over. For

N(<≈ 100), our result shows that the Lagrangian RBF-Vortex model is of about

5th-order accuracy.

Fig. 4.7 gives the time per 4th-order Runge-Kutta in our Lagrangian and Eulerian

models. The time scales as N2.2 for Lagrangian model. The Eulerian case is plotted

for comparison.

4.6.2 A single vortex on a rotating sphere

In this section, we simulated the dynamics of a Gaussian vortex on a rotating

sphere using BVE. The same kind of numerical experiment via BVE has been studied

by Levy, Nair and Tufo(Levy et al., 2009). In their paper in 2009, they solved the BVE

equation on the β-plane (the coriolis force is approximated by Taylor expansion to

the first order, that is, a plane tangent to the spherical surface), using a discontinuous

Galerkin method. Our numerical experiments show that a vortex on a rotating sphere

tends to shift to the northwest which agrees with Levy’s work. The single vortex

perturbs the atmosphere. The perturbation propagates westward as Rossby waves.

The reasoning behind this is: the rotating vortex drags the surrounding initially
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stationary fluid elements, resulting a displacement, either to the north or to the

south; since we are solving an absolute-vorticity-conserving BVE, the fluid to the

north will experience a larger Coriolis force and therefore obtain a negative relative

vorticity (a clockwise vorticity), which turns the fluid to the south; the fluid to the

south would undergo a smaller Coriolis force and therefore acquires a positive relative

vorticity to compensate, indicating a counter-clockwise vorticity. This perturbation

propagates westward.

4.6.3 Vortex merger on a rotating sphere

Two vortices on a rotating experiment has been performed by (Levy et al., 2009;

Shin et al., 2006), either on a β-plane or f -plane. The general numerical results in

these papers are: the merger or separation between two vorticies is largely determined

by the sign of the initial relative vorticity and relative distance between the two

vortices. When the initial relative vorticity between two vortices is negative, the two

vortices separate. However, the initial positive relative vorticity between the two

vortices does not guarantee their merger. Shin’s research (Shin et al., 2006) suggests,

only when the distance between the two vorticies is smaller than a certain critical

separation distance, can the merger occur. Numerical experiments suggested that the

critical separation distance of binary vortices is slightly smaller than twice the radius

at which the relative vorticity of one vortex becomes zero (Shin et al., 2006). The

existence of the critical separation distance is obvious: we do not expect a typhoon

in the East China Sea to interact with a tropical cyclone in the Indian ocean. In

the atmosphere, the merger of two cyclonic vortices is referred to as Fujiwhara effect,

which is named after Sakuhei Fujiwhara who initially described it in a 1921 paper

about the motion of vortices in water(Fujiwhara, 1921).
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Figure 4.4: Rossby-Haurwitz wave test: relative error with different hyperdiffusion
coefficients–Lagrangian coordinate with ν = 2× 10−6 and Eulerian coor-
dinate with ν = 10−5. The simulation is performed on a icosalhedral grid
with N = 1442,∆t = 0.0015. The upper panel is from a Eulerian coordi-
nate simulation with ν = 2× 10−5. The lower panel is from a Lagrangian
coordinate simulation with 4th-order hyperdiffusion with ν = 2× 10−6.
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Figure 4.5: Rossby-Haurwitz wave test: track of relative error with different hyperdif-
fusion coefficients–Lagrangian coordinate with ν = 2×10−6 and Eulerian
coordinate with ν = 10−5.
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Figure 4.7: Rossby-Haurwitz wave test: time per 4th-order Runge-Kutta step.

Figure 4.8: A single vortex simulation on a rotating sphere without hyperviscosity.
The simulation uses N = 1442,4t = 0.0015, α = 3.6153 on a icosahedral
grid. The initial Gaussian vortex is located at (λ, θ) = (0, 2.000).

106



Figure 4.9: A single vortex on a rotating sphere using Eulerian and Lagrangian
approaches. The simulations are performed using N = 1442,4t =
0.0015, α = 3.6153 on a icosahedral grid. The initial Gaussian vortex
is located at (λ, θ) = (0, 2.000).
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Figure 4.10: Vortex merger using Eulerian and Lagrangian approaches with the num-
ber of grid points N = 1442 and time step 4t = 0.0015, α = 3.6153 on
a icosahedral grid.
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4.7 Grid generation

4.7.1 Latitude-Longitude Grid

A longitude-colatitude grid with uniform grid spacings δλ and δθ has long been

deprecated, although it is easy to generate, because the east-west grid spacing δx =

sin(θ)δλ shrinks to 0 as θ → 0, π, and this implies a severe timestep restriction when

the forecasting model is integrated using an explicit method. The remedy is to thin

the grid near the poles so that the number of points on a circle of constant colatitude

shrinks as θ → 0, π.

For RBFs, there is an added problem. When the RBFs are narrow compared to the

local grid spacing, RBFs are very inaccurate. When the RBFs are very wide compared

to the local grid spacing, the condition number of the RBF interpolation matrix is

huge. Because the uniform longitude-colatitude grid is so highly nonuniform, it is not

possible to find a single absolute width ε that is both accurate and well-conditioned

everywhere. Even a variable ε that is large near the poles and small near the equator

is unsatisfactory. Fig. 4.11 shows that near the poles, the longitude-colatitude grid

has a small grid spacing in the east-west direction but a large north-south spacing;

and choice of ε that is satisfactory in one direction is poor in the other. Rather than

accept the complexities of this near-polar thinning grid, we prefer the icosahedral

grid.

4.7.2 Icosahedral Grid

The grid is generated by subdividing the triangular faces of the icosahedron into

smaller triangles and placing a grid point at each vertex.

One distinction from most of this previous work is that after the grid points are

defined, one must connect the points so as to make triangular or hexahedral cells to

apply finite element or finite volume methods. The RBF/vortex method is gridded,
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Figure 4.11: Latitude-Longitude grid

but meshless: the issue of triangular versus hexahedral elements is irrelevant.

Fig. 4.12 illustrates a plane icosahedron; the spherical harmonic is obtained by

projecting the edges of the equilateral triangles onto the surface of the sphere. If two

vertices are located at the north and south poles, then the remaining ten vertices are

located in two rings of five at latitudes of ±26.5651, which correspond to colatitude

θ = arccos(1/
√

5), π − arccos(1/
√

5). The lower right is rotated by a tenth of a

rotation relative to the upper ring. The coordinates of these vertices are given in

Table 4.1.

To avoid coordinate singularities at the poles, it is convenient to rotate the twelve
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vertices by a small angle χ about the x-axis through

∣∣∣∣∣∣∣∣∣∣
x′

y′

z′

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 cos(χ) − sin(χ)

0 sin(χ) cos(χ)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
x

y

z

∣∣∣∣∣∣∣∣∣∣
(4.92)

We chose χ = 2(1/
√

5) although the choice is arbitrary.

The next step is to unfold the plane icosahedron and assign numerical labels to

each of the twelve vertices, twenty faces and thirty edges. The 20× 3 matrix
~~F and

30× 2 matrix
~~E, combined for brevity into the single Table 4.2

Table 4.1: The twelve vertices of a Icosahedron in Cartesian Coordinates and in Lon-
gitude and Colatitude

vertex no. x y z λ θ

1 0 0 1 - 0
2 0.8506 0.2764 0.4472 π/10 0.3524π
3 0 0.8945 0.4472 5π/10 0.3524π
4 -0.8506 0.2764 0.4472 9π/10 0.3524π
5 -0.5257 0.2764 0.4472 -7π/10 0.3524π
6 0.5257 -0.7236 0.4472 -3π/10 0.3524π
7 0.5257 0.7256 -0.4472 3π/10 0.6476π
8 -0.5257 0.7236 -0.4472 7π/10 0.6476π
9 -0.8506 -0.2764 -0.4472 -9π/10 0.6476π
10 0 -0.8945 -0.4472 -5π/10 0.6476π
11 0.8506 -0.2761 -0.4472 -π/10 0.6476π
12 0 0 1 - π

The faces of the icosahedron are equilateral plane triangles. Such a triangle of

side S can always be subdivided into ν2 equilateral triangles of side S/ν for arbitrary

non-negative integer ν. The vertices of the little triangles give a grid which is uniform

on the plane with the face of side S, and these vertices can be projected onto the

sphere via ~x → ~x/ ‖ ~x ‖2. This almost what we do. However, the projected-little-

plane-triangle grid is not uniform on the sphere.
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For example, if one of the edges of the plane icosahedron is divided into thirds, the

spherical icosahedron is divided into angles(0.350,0.757) but dividing the spherical

arc directly into thirds gives interior angles of (0.369,0.738). This is not a huge

nonuniformity, but most authors have tried to avoid it.

To do so, a basic operation, repeated over and over, is to subdivide the geodesic

arc connecting two points arbitrarily labeled “A” and “B” on the sphere into p equal

angles. This is nontrivial because the geodesic is not straight but curved in the

longitude-colatitude plane. Dividing the line that passed through the sphere between

the two points into even parts and projecting the line onto the geodesic arc gives a

non-uniform subdivision of the arc.

Sadourny et al. (Sadourny et al., 1968) showed that the Cartesian coordinates

of the (p− 1) interior points could be calculated by solving a 3× 3 matrix equation

for each point. The first step is to determine Θ, the central angle subtended by the

arc. Let (λA, θA)) denote the coordinates of one endpoint and (λB, θB) denote the

longitude and colatitude of the other. Then

Θ = 2 arcsin(

√
sin2(

θB − θA
2

) + cos(θA) cos(θB) sin2(
λB − λA

2
)) (4.93)

The Cartesian coordinates of the points on the interior of the arc are found by looping

over the index j = 1, ..., (p− 1). For each j, solve the 3× 3 system

∣∣∣∣∣∣∣∣∣∣
xA yA zA

xB yB zB

(yAzB − zAyB) (zAxB − zAxB) (xAyB − yAxB)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
xj

yj

zj

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
cos( j

p
Θ)

cos((1− j
p
)Θ)

0

∣∣∣∣∣∣∣∣∣∣
(4.94)

The result is the Cartesian coordinate of the j-th interior point on the arc. Note that

the matrix elements depend only on the endpoints (A,B) whereas the righthand side

vector is different for each j.
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The justification for this matrix is as follows. We have three unit vectors ~vA =

(xA, yA, zA), ~vB = (xB, yB, zB) and ~vj = (xj, yj, zj). The scalar product between ~vA

and ~vB is the cosine of the angle between the two vectors, i.e., ~vA · ~vB = xAxj +

yAyj + zAzj = cos( j
p
Θ). Similarly, ~vB ·~vj = xBxj + yByj + zBzj = cos(1− j

p
Θ). Lastly,

the vector ~vj = (xj, yj, zj) lies in the plane expanded by vectors ~vA and ~vB. The

orthonormal of this plane is ~vA × ~vB = (yAzB − zAyB)~i+ (zAxB − zAxB)~j + (xAyB −

yAxB)~k, and therefore ~vj ·(~vA×~vB) = xj(yAzB−zAyB)+yj(zAxB−zAxB)+zj(xAyB−

yAxB) = 0.

To apply the ”Sadourny partition” of an arc, we first employ it to subdivide each

of the thirty faces of the spherical icosahedron into ν parts for some user-chosen non-

negative integer ν. To find these interior points of a face, we pick two edges–it does

not matter which two–and then apply Sadourny’s procedure to arc of varying lengths

connecting pairs of edge points. If we index points along the edges by k such that

k = 1 is closed to the common vertex of the two vertices, and call the edge points

Ak and Bk on the two edges ”in play”, then divide A1 −B1 into one part(no interior

points; do nothing), A2 − B2 into two parts(one interior point) and so on until the

geodesic Aν−1−Bν−1 is divided into ν−1 parts, yielding ν−2 interior points, a total

of (ν−1)(ν−2)
2

interior points per icosahedral face.

The union of icosahedral vertices plus interior points on edges, i.e., 30(ν− 1) plus

interior points on the faces, i.e., 12 yields a total number of point in the Sadourny

icosahedral grid of

N = 12 + 30(ν − 1) + 20(ν − 2)(ν − 1)/2 (4.95)

Fig. 4.12 shows 4 icosahedral grids with: ν = 3, N = 92, ν = 6, N = 362, ν = 9, N =

912, ν = 12, N = 1442.
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Figure 4.12: Icosahedral grid: level-3, level-6, level-9 and level-12 (from up to down).
The corresponding number of grid points for the 4 levels are: N = 92,
N = 362, N = 912, N = 1442.
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Table 4.2: Twenty faces and Thirty edges of a Icosahedron
Face No. F(1:20, 1:3) Edge No. E(1:30,1:2)

1 (1, 2, 3) 1 (1, 2)
2 (1, 3, 4) 2 (1, 3)
3 (1, 4, 5) 3 (1, 4)
4 (1, 5, 6) 4 (1, 5)
5 (1, 6, 2) 5 (1, 6)
6 (2,11, 7) 6 (2, 3)
7 (2, 3, 7) 7 (3, 4)
8 (3, 7, 8) 8 (4, 5)
9 (3, 4, 8) 9 (5, 6)
10 (4, 8, 9) 10 (6, 2)
11 (4, 5, 9) 11 (2, 11)
12 (5, 9, 10) 12 (2, 7)
13 (5, 6, 10) 13 (3, 7)
14 (6,10, 11) 14 (3, 8)
15 (6, 2, 11) 15 (4, 8)
16 (12,11, 7) 16 (4, 9)
17 (12, 7, 8) 17 (5, 9)
18 (12, 8, 9) 18 (5, 10)
19 (12, 9,10) 19 (6, 10)
20 (12,10,11) 20 (6, 11)
- - 21 (11, 7)
- - 22 (7, 8)
- - 23 (8, 9)
- - 24 (9, 10)
- - 25 (10,11)
- - 26 (11,12)
- - 27 (7, 12)
- - 28 (8, 12)
- - 29 (9, 12)
- - 30 (10,12)
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4.8 Vortex Regridding

Vortex methods are notorious for the “vortex distorsion problem”. The lattice of

vortex positions, initially almost uniform or otherwise nicely aligned, become more

and more distorted with time. This distortion has been shown to heavily degrade

the accuracy of vortex method(Perlman, 1985; Barba et al., 2003). Perlman (1985)

showed that the error comes from the fact that as the configuration gets distorted, the

overlap of the Gaussian particles decreases. Note that the accuracy of the Gaussian

vortex method has a super-exponential dependence on the parameter h/σ, where h

is the separation of the vortex particles and σ is the width of the Gaussian vortex.

Radial basis functions methods are “meshfree” method in the sense of yielding high

accuracy even when the grid has become highly distorted.

The procedure for vortex regridding is that after every n time steps we reinterpo-

lated the vorticity field at the initial well-posed configuration using the present vortex

configuration. The velocities of the vortices at the well-posed location are computed

to advect the vortex particles. Fig. 4.14 gives the plot of the relative error with a 10-

steps regridding (regrid every 10 steps). Before regridding is performed the relative

error has a jump at around t = 5. The error increases 4 orders in a very short time

period, which severely degrades the accuracy of RBF-Vortex method. However, after

the implementation of regridding, the relative error doesnot have a sharp increase.

The RBF-Vortex method stays highly accurate.

In Fig. 4.15, a 4th-order hyperviscosity is added to the simulation at t = 4π. As we

have seen, the relative error of the regridding increases rapidly and converges to the

non-regridding curve. This means the error of the regridding RBF-Vortex method is

dominated of the hyperviscosity.

The RBF-Vortex method is self-adaptive, which means the frequency of the re-

gridding matters. Frequent regridding will eliminate the adaptive nature of the RBF-

Vortex method. While sparse regridding will lead to a very distorted vortex con-
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Figure 4.13: Regridding for RBF-Vortex method: relative error for Rossby-Haurwitz
wave test with no hyperviscosity. Regridding is performed every 10 steps,
with 4t = 0.0015.

figuration and the accuracy degraded too. Fig. 4.15 shows that there is an optimal

frequency of regridding. Away from the optimal frequency, we see an increase of the

relative error. Fig. 4.17 shows that a Lagrangian method adds more damping to the

simulation than a Eulerian method.

Fig. 4.8 shows the evolution of one vortex on a rotating sphere after a long time

of integration. At t = 16π of integration, the center of the vortex has been distorted.

Fig. 4.8 shows the figures the regridded Lagrangian case. The Eulerian case is plotted

for comparison. Vortex merger is also studied with regridding RBF-Vortex method.

Fig. 4.8 and Fig. 4.8 show the vortex merger of using regridded Lagrangian RBF-

Vortex and non-regridded version. The Eulerian graph is plotted for comparison.
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Figure 4.14: Regridding for RBF-Vortex method: relative error for Rossby-Haurwitz
wave test with 4th-order hyperviscosity turned on at t = 4π. Regridding
is performed every 10 steps, with 4t = 0.0015.
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Figure 4.15: Regridding for RBF-Vortex method: relative error versus the number of
time steps between regridding, with 4t = 0.0015, α = 3.6153.
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Figure 4.16: One vortex on a rotating sphere using: Lagrangian coordinate without
regridding, Lagrangian coordinate with regridding and Eulerian coordi-
nate ( from up to down ). The Gaussian vortex was initially located at
(λ, θ) = (0, 2.000). The three simulations were done using the same set
of parameters: N = 1442,4t = 0.0015 on a icosahedral grid.
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Figure 4.17: Relative error of Lagrangian, Eulerian and regridding Lagrangian
method. Vortex regridding is performed every 10 time steps. The
three simulations were performed using the same set of parameters:
N = 1442,4t = 0.0015, α = 3.6153 on a icosahedral grid.
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Figure 4.18: Vortex merger experiment using: Lagrangian coordinate without re-
gridding, Lagrangian coordinate with regridding and Eulerian coordi-
nate ( from up to down ). The simulations were performed on a
icosahedral grid with N = 1442,4t = 0.0015, α = 3.6153. The two
Gaussian vortices were initially located at (λ, θ) = (−0.325, 2.000) and
(λ, θ) = (0.325, 2.000).
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CHAPTER V

Summary and Future Work

5.1 Summary

This thesis consists of three parts. First, the theory of Periodized Radial Basis

Functions (PRBFs) has been extended. Although PRBFs have been used before, in

this thesis the theoretical background is extended with proofs and numerical experi-

ments. Interpolation experiments show that the PRBFs are spectrally accurate. An

application to solve the Mathieu equation has shown that PRBFs require a much

smaller number of grid points to achieve the same accuracy than trigonometric ba-

sis(Boyd and Xiao, 2013). Second, an analysis of the PRBFs interpolation with

Tikhonov regularization is given. In this chapter I analytically calculated the eigen-

values of the PRBFs interpolation matrices and showed that the Tikhonov regulariza-

tion can be a filter in PRBFs interpolation. The explicit form of the damping factor

is given. The related numerical tests were performed in both Cartesian coordinates

and spherical coordinates. The Poisson operator that relates the streamfunction

and vorticity is discretized using PRBFs in both one and two dimensional spaces.

The eigenvalues of the resulting matrices are analytically computed(Xiao, 2014). Fi-

nally, the Lagrangian RBF-Vortex method is applied to solve the Barotropic Vorticity

Equation (BVE). The Rossby-Haurwitz wave test, a single vortex and vortex merger

experiments have been performed using Lagrangian RBF-Vortex method. The numer-
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ical results agree well with the corresponding simulation using Eulerian coordinate.

Although the Lagrangian RBF-Vortex method suffers from grid distortion problem,

regridding technique performs well and improves the accuracy by several orders of

magnitude(Xiao et al., 2014).

5.2 Future work

5.2.1 Extension of PRBFs and Tikhonov regularization

Most of our discussion on PRBFs is focused on one dimensional space. Extension

to higher dimension needs further study. For Gaussian PRBF, extension to higher

dimensions are quite straightforward as we have shown in Chapter 3.4, supposing we

work on a tensor product grid. However, no numerical experiments have been done

on solving PDEs on higher dimensional periodic domain. For other PRBFs, further

study is needed to apply them to higher dimensions both for interpolation and solving

PDEs.

Tikhonov regularization has been shown to be a filter on a periodic domain an-

alytically and on a spherical domain numerically. However, there are no numerical

examples on applications of Tikhonov regularization to nonlinear equations, i.e., in-

viscid Burgers’ equation ut + uux = 0. A future direction on Tikhonov filter is to

apply it to solve nonlinear dynamic equations on a periodic domain. Comparisions

of the Tikhonov filter with other numerical dissipation techniques will be helpful.

5.2.2 Accelerate the RBF-Vortex method

In RBF-Vortex method, a dense matrix problem
~~A~x = ~b has to be solved every

time step. Iterative methods have to be employed to solve
~~A~x = ~b. While solving

~~A~x = ~b using iterative methods we need to evaluate
~~A~a frequently. For the Gaussian

RBFs, the computation of
~~A~a needs evaluating

∑N
j=1~aje

−ε2(~xi−~xj)2 N times. The eval-
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uation of
∑N

j=1~aje
−ε2(~xi−~xj)2 is equivalent to computing the interaction of a two-body

problem. This has greatly slowed down the RBF-Vortex method. However, there

are several strategies to accelerate the RBF-Vortex code. First, Krasny (Li et al.,

2009; Krasny and Wang , 2011) have developed a tree code, which is closely con-

nected to (Greengard and Rokhlin, 1987; Beatson and Greengard , 1997), to evaluate

the Coulomb interactions and Multiquadratic RBF sums. With minor modifications,

the tree code can be applied to Gaussian RBF sums, and the related Taylor expansion

for Gaussian RBFs is given in Wang’s thesis(Wang , 2010). Second, Fornberg, Flyer

and Wright have developed the RBF-FD method to solve a variety of problems(Flyer

et al., 2012; Fornberg and Lehto, 2011). The main advantage of this method is to

transform the original dense matrix into a sparse matrix by localization. The initial

O(N3) problem has been reduced to an O(N2) problem. In the RBF-FD method, the

kd-tree algorithm is used to find the nearest n neighbors of the target particle–the

stencil of the target particle. Each particle has its own FD weights, which has to be

computed separately for each particle(Fornberg and Lehto, 2011). Third, the inter-

polation of Gaussian RBFs on the surface of a sphere is very ill-conditioned, which

results in a slow convergence of iterative methods and inaccuracy of the solutions.

Barba(Torres and Barba, 2009) proposed a preconditioner to solve an ill-conditioned

RBF interpolation matrix by localization and iteration.
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