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ABSTRACT

Essays on the Weather Derivatives Market

by

Daniel Weagley

Co-Chairs: Associate Professor Amiyatosh Purnanandam and Professor Tyler Shumway

This dissertation consists of two essays examining the functioning and effects of a

recent financial innovation: the weather derivatives market. The modern weather

derivatives market originated in the late 1990s and allows participants to share non-

catastrophic weather risks. The structure and development of the market provide a

relatively clean empirical setting to study and better understand financial markets.

The first essay examines how financial sector stress affects asset prices in the

weather derivatives market. The structure of the market allows price movements due

to financial sector stress to be disentangled from price movements due to fundamen-

tals. Estimated risk premiums, which are small and statistically indistinguishable

from zero on average, are 31% per year during the 2008-09 financial crisis. Contracts

with greater margin requirements and idiosyncratic risk experience larger increases in

risk premiums. Open interest falls by 40%. The results provide evidence that adverse

shocks to the capital of financial institutions lead to increased hedging costs for end

users and less risk sharing in the economy.

The second essay examines how the introduction of weather derivatives affect

x



a government stakeholder: the National Weather Service. More broadly, the essay

examines the ability of markets to discipline government agencies. The Chicago Mer-

cantile Exchange has introduced several temperature related derivative contracts on

different U.S. cities in a staggered fashion since 1999. The payoffs of these contracts

depend on the temperature levels at a specific weather station in the underlying city.

We show that the introduction of these contracts improves the accuracy of tempera-

ture measurement by the dedicated weather station of the National Weather Services

(NWS) in that city. We argue that temperature-based financial markets generate

additional scrutiny of the temperature data measured by the NWS, which in turn

motivates the agency to minimize measurement errors. Consistent with this idea,

stations with higher economic interests in weather derivatives see greater improve-

ment in measurement accuracy. Our results indicate that the visibility and scrutiny

generated by financial markets can improve the efficiency of government agencies even

in the absence of explicit incentive contracts.

xi



CHAPTER I

Financial Sector Stress and Asset Prices: Evidence

from the Weather Derivatives Market

1.1 Abstract

I examine the impact of financial sector stress on asset prices in a novel setting:

the Chicago Mercantile Exchange’s weather derivatives market. The structure of the

market allows me to disentangle price movements due to financial sector stress from

price movements due to fundamentals. Estimated weather risk premiums, which are

small and statistically indistinguishable from zero on average, rise to over 30% per

year during the 2008-09 financial crisis. Contracts with greater margin requirements

and idiosyncratic risk experience larger increases in risk premiums. These results

support the notion that adverse shocks to the capital of financial institutions lead to

increased hedging costs for end users and less risk-sharing in the economy.

1.2 Introduction

A recent theoretical literature argues that adverse shocks to financial sector capital

can affect asset prices. After an adverse capital shock, asset prices may fall below their

fundamental values if the positions of financial institutions are limited by their capital
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constraints.1 However, it is difficult to measure the effect of financial sector stress on

asset prices in most market settings. The difficulty arises because asset fundamentals

are likely to change during periods of financial sector stress, which can lead to biased

estimates of the effect of stress. In this paper, I estimate the causal effect of financial

sector stress on asset prices by exploiting a novel setting in which fundamental values

are unlikely to be systematically mis-estimated. Specifically, I examine the impact of

financial sector stress on risk premiums in the Chicago Mercantile Exchange’s (CME)

monthly temperature futures market.

The monthly temperature futures market allows end users to hedge monthly tem-

perature risks. Energy and utility companies are the predominant end users. The

typical trade is for utilities to sell the local temperature future to minimize their

exposure to mild temperature outcomes and, thus, low energy sales. Financial insti-

tutions satisfy this asymmetric hedging demand by going long the futures contract

and bearing this mild temperature risk. Financial sector stress likely affects the will-

ingness and ability of financial institutions to bear risk in this market, but it should

not affect the weather. To measure the effect of financial sector stress on asset prices,

I compare expected returns of going long temperature futures (i.e, risk premiums)

during a period of financial sector stress (the 2008-09 financial crisis) to expected

returns in normal times. This test properly identifies the causal effect of financial

sector stress on asset prices because any error in measuring the fundamental value of

the futures contract is uncorrelated with the financial sector stress period.

Four qualities of temperature futures ensure that asset fundamentals (payoffs and

risks) are not systematically mis-estimated during the financial stress period. First,

contract payoffs are based on local temperature outcomes, which are exogenous to

1See Aiyagari and Gertler (1999), Gromb and Vayanos (2002), Fostel and Geanokoplos (2008),
Brunnermeier and Pedersen (2009), Adrian and Shin (2010) and Garleanu and Pedersen (2011) for
models on how asset prices may be sensitive to margin and debt constraints. He and Krishnamurthy
(2012,2013) examine the effect of equity constraints on asset prices and find that asset prices will
depend on the aggregate wealth of the financial sector. For a review of the literature, see Duffie
(2010).
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financial sector stress. Thus, the adverse shock to the financial sector does not affect

the distribution of contracts’ payoffs. Second, contract payoffs are largely idiosyn-

cratic. This rules out the possibility that changes in the price of systematic risk

are driving the change in risk premiums. Third, changes in expected payoffs due

to random temperature variation can be controlled for by modeling and estimating

a temperature process for each contract. Fourth, there is no counterparty risk be-

cause trades clear on an exchange. These four features allow me to clearly identify

the causal effect of financial sector stress on asset prices in a manner that no other

empirical setting allows.

Contracts in the monthly temperature futures market vary by location, month and

temperature index. In Figure A.1, I plot the logarithm of contract prices for contracts

on three different locations which settle based on June temperature realizations. For

each location, I plot the average price (32 days before maturity) and the average

payoff at maturity over the years 2000-2012. I also plot the price (32 days before

maturity) during the crisis period. The average price and payoff of each contract are

nearly identical, consistent with the contracts being priced near their actuarially fair

value. In contrast, the price during the crisis is far below the average price and payoff

of each contract. This figure illustrates the relatively low prices on weather derivative

contracts during the crisis.

[Figure A.1 Here]

Figure A.1 does not control for market expectations of contract payoffs. In the

main empirical tests, I control for market temperature expectations by modeling

a daily temperature process for each location and calculating a model simulated

expected payoff. With the expected payoff and market price, I calculate the expected

return from going long the futures contract, i.e. the weather risk premium.

To formally test for the effect of financial sector stress on risk premiums, I com-

pare the risk premium for a contract pre- and post-crisis to the risk premium for the

3



same contract during the 2008-09 financial crisis. The average risk premium across

all contracts over the entire period is less than 2% per year and is statistically in-

significant. This is consistent with idiosyncratic risk not being priced during normal

times. During the financial crisis, estimated average risk premiums rise to a statis-

tically significant 30% per year. In sum, contracts are typically priced near their

actuarially fair value, but during the crisis, contract prices are consistently below this

value. This is consistent with financial institutions decreasing their supply of capital

to the weather derivatives market during a period of financial sector stress.

Documenting the effect of financial sector stress on asset prices is important for

understanding the risks that hedgers and investors face, the way those risks are priced,

and how risks are shared in the economy. Pérez-González and Yun (2013) find that

after the introduction of weather derivative contracts, firms most exposed to tem-

perature risks were more likely to use weather derivatives, experience an increase in

firm value, invest more, and increase their leverage. If risk premiums rise because of

financial sector stress, the costs to use these contracts and to obtain these benefits

increase. As a result, there will be less risk-sharing than in a perfect market. Further

if the effect of financial sector stress documented in this market is present in other

markets, financial crises may cause large dislocations in prices and significantly lower

amounts of risk-sharing in the economy.

There are two main reasons why financial institutions may decrease their supply of

capital to the weather derivatives market after an adverse shock to their capital. First,

capital is necessary to meet margin requirements in the market. Without sufficient

capital, financial institutions will be unable to meet these requirements. Modeling

a market equilibrium with constrained traders, Brunnermeier and Pedersen (2009)

show that higher margin contracts experience a greater decline in market liquidity,

defined as the difference between market and fundamental values, after an adverse

capital shock. Second, monthly temperature futures have significant amounts of total

4



risk that financial institutions may be unwilling to take on during a period of stress.

When financial institutions’ capital levels are low, increasing the risk on their balance

sheet will significantly increase the probability they will have to raise costly new

capital in the future.2 To limit their risk exposure, financial institutions will supply

less capital to markets with more total risk (Froot and Stein 1998).

Motivated by these theories, I examine the differential impact of stress on higher

margin contracts and contracts with more total risk. By early 2008, the CME

had introduced temperature contracts on 18 U.S. locations geographically dispersed

throughout the United States, on 12 different months and 2 different indices. Each

location-month-index has a different amount of total underlying risk (coefficient of

variation of contract payoffs) and the CME has location-index specific margin require-

ments. I run difference-in-difference regressions, where the financial crisis dummy

variable is interacted with the contract’s margin requirement or total risk or both. I

find a one standard deviation increase in margin increases risk premiums by about

76% per year in the financial crisis. Of similar magnitude, I find a one standard

deviation increase in total risk increases risk premiums by about 80% per year. In

addition, contracts with both high margin and high coefficient of variation are the

most impacted by financial sector stress. This evidence supports the notion that ad-

verse capital shocks to financial institutions have a significant effect on asset prices,

especially on prices of high-margin and high-risk contracts.

An increase in risk premiums alone does not imply that the supply of financial

capital to the weather derivatives market decreased during the financial crisis. Risk

premiums may also increase if hedging demand increases and the supply of capital

2There are many reasons why financial institutions in the weather derivatives market may be
capital constrained. Financial institutions could suffer from an asymmetric information problem
(Myers and Majluf 1984; Stein 1998), debt-overhang (Myers 1977) or a moral hazard problem
(Holmstrom and Tirole 1997). In addition, the costs of searching for capital are likely to be high
considering most individual investors and financial professionals are unfamiliar with the market and,
as a recent financial innovation, may have appeared unsafe to investors flying to safety during the
crisis (Caballero and Krishnamurthy 2008; Gennaioli, Shleifer and Vishny 2012).
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is not perfectly elastic in the short-run.3 If hedging demand is driving the increase

in risk premiums, we would expect greater quantities of risk to be hedged during the

crisis. This is not the case. The notional value of the entire weather derivatives mar-

ket decreased by over 50% from $32 billion to $15 billion during the crisis. Similarly,

open interest in the monthly futures market fell by 40% between the third and fourth

quarter of 2008. In describing the collapse of the market, the Weather Risk Manage-

ment Association President, Martin Malinow, said “It’s just mirroring what’s going

on in the greater financial markets. We are surviving from the same pool of capital.

We’ve had a financial storm over the past year that’s destroyed trillions of dollars of

capital.”4 Further supporting a decrease in capital supply, I find that markets for

high-margin contracts and riskier contracts were significantly more likely to collapse,

i.e. have zero open interest, during the crisis. The dramatic decline in notional value

and open interest rules out the alternative that an increase in hedging demand is

driving the increase in risk premiums.5

The existing literature has documented the effects of adverse capital shocks on

market outcomes in the commodities, currency exchange, convertible bond, lending

and other markets.6 Additionally, Adrian, Etula and Muir (2013) find that a factor

based on the leverage of financial intermediaries can explain a large portion of the

3Keynes (1930) and Hicks (1939) first proposed this argument to explain risk premiums in the
commodities market. Garleanu, Pedersen and Poteshman (2009) document a demand effect in the
options market, by showing that option prices increase as constrained market makers respond to
positive demand shocks.

4“Survey: Weather Risk Market Value Plunges 53%” Claims Journal, June 2009 http://www.

claimsjournal.com/news/national/2009/06/03/101075.htm
5Another alternative is that hedging demand declined. If this is the case, we would expect risk

premiums to be unchanged or fall during the crisis, not increase.
6Cheng, Kirilenko and Xiong (2013) find that an increase in the VIX index leads to lower

commodity prices and a “convective” flow of risk from financial institutions to hedgers. Examining
the currency markets, Brunnermeier, Nagel and Pedersen (2008) show that the funding constraints
of speculators can lead to currency crash risk and this can help explain the “forward risk premium
puzzle.” Chava and Purnanandam (2011), Paravisini (2008), Paravisini et al. (2011) and Iyer et
al. (2013) find evidence that adverse shocks to bank capital affect lending and other real outcomes.
Mitchell, Pedersen and Pulvino (2007) find price effects of slow moving capital in the convertible
bond market and merger spreads. Mitchell and Pulvino (2011) find substantial price differences in
similar assets during the 2008 financial crisis.
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variation in the cross-section of expected returns. I extend these results by providing

clean evidence of the large impact that capital constraints can have on asset prices

and that idiosyncratic risk and margin requirements are priced during periods of fi-

nancial sector stress. The most closely related empirical evidence is on the increase in

catastrophe insurance risk premiums after adverse shocks to insurers and reinsurers

capital (Froot and O’Connell 1999).7 The effect of financial sector stress on prices in

the weather derivatives market is similar, but the markets differ from each other in

three important ways. First, the main players in the catastrophe insurance market are

reinsurers and insurers, while hedge funds, investment banks, energy trading desks,

commodity traders, and monoline weather traders all participate in the CME weather

derivatives market. Second, the contracts examined in this paper are exchange traded

on the CME, so the market should be relatively more competitive and liquid than the

catastrophe insurance market as the barriers to entry are lower and intermediaries

provide more depth. Third, estimating risk premiums in the catastrophe insurance

market is more difficult than in the temperature futures markets. Catastrophes are

less predictable than temperature outcomes, which makes controlling for fundamen-

tals a difficult task. Beyond examining a market with different characteristics, the

results in this paper differ from the catastrophe insurance literature by providing ev-

idence of price spillovers across markets and the differential impact of financial sector

stress on more “capital-intensive” and riskier contracts.

Overall, the results in this paper show that financial sector stress can have a large

impact on the prices of financial assets. If the effects documented in the weather

derivatives market are similar in other markets, the impact of financial crises on risk-

sharing and capital flows in the economy are substantial. Hedgers and other insurance

purchasers may be exposed to dramatically more risk during financial crises than in

a world with perfect markets.

7Also, see Zanjani (2002) and Born and Viscusi (2006)
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The rest of the paper proceeds as follows. Section 2.3 describes the weather deriva-

tives market, the main players and the main hedging strategy by energy companies.

Section 2.4 discusses the data. Section 2.5 presents the research design and empirical

results. Section 2.6 concludes.

1.3 Weather Derivatives Market and Hedging Tactics

Almost all business is subject to weather risks. Dutton (2002) estimates that over

$3 trillion of the U.S. GDP is associated with weather-sensitive industries. Although

the importance of weather in affecting business outcomes has been understood for

millenniums, the first modern-day weather derivative contract was written in 1996.

The contract obligated Aquila Energy to sell ConEdison Company electric power at

a discount if August temperatures were cooler than expected (Everitt and Melnick

2008). This simple financial innovation, contracting based on temperature realiza-

tions, was well received by the energy sector. The market for contracts based on

temperature and other non-catastrophic weather outcomes, such as frost, snowfall

and rainfall, grew dramatically from a notional value below $2 billion in 1998 to $32

billion in 2008 (WRMA surveys).

In 1999, the CME introduced standardized monthly temperature contracts on

10 locations in the United States. Exchange-traded contracts were not immediately

popular. The market grew in the over-the counter market, where Enron was a main

player and market maker. When Enron collapsed in 2001, end users and financial

intermediaries became more aware of counterparty risk in the over-the-counter market

and shifted trading to the CME. The CME has periodically added contracts on 14 new

locations throughout the United States and expanded into Canada, Europe, Japan

and Australia. Contracts are based on temperature outcomes over seasonal, monthly

or weekly time periods and multiple temperature indices. As of 2012, there were 47

locations around the world with temperature-based weather contracts traded on the

8



CME.

I focus on the U.S. monthly degree day futures in this paper. In 2005, temperature

contracts accounted for over 95% of the entire market and 50% of the temperature

contracts were monthly degree day futures (Weather Risk Management Association

Survey 2006). Contracts on U.S. locations have been introduced in 5 waves: 1999,

2000, 2003, 2005 and 2008. In Table A.1, I document the 18 U.S. locations with

temperature-based weather derivatives traded on the CME pre-2008.8 Purnanandam

and Weagley (2013) show that the introduction of contracts is correlated with proxies

for hedging demand, such as a city’s population (energy usage) and the region’s crop

production. Open interest and notional value in the monthly temperature market

closely mirrored the growth in the entire weather derivatives market during the 1999

to 2008 period.

[Table A.1 Here]

Although the CME temperature futures market has seen tremendous growth it

is relatively illiquid. Bid-ask spreads are large and many deals are conducted off

exchange and submitted as block trades. Markets typically open in the 3 weeks

before the contract month, the median market is opened 39 days before maturity,

and participants rarely change their positions. After a market is initially opened,

open interest does not change on 85% of trading days.9 Open interest decreases on

less than 5% of trading days. The market’s illiquidity is likely to amplify financial

institutions’ unwillingness to take risk and lead to larger price distortions during stress

as predicted by Garleanu and Pedersen (2007).10

8The 6 locations added in 2008 were Colorado Springs, Jacksonville, Little Rock, Los Angeles,
Raleigh Durham and Washington D.C.

9Calculated over the years 2006-2012 for the monthly temperature futures market
10Although the market is illiquid, it appears to be relatively efficient. Similar to Roll (1984),

Chincarini (2011) finds that prices in the temperature market can improve temperature predictions
beyond National Weather Service forecasts.
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1.3.1 Contract Structure

The payoffs of the standard temperature derivative contracts traded on the CME

are based on either the heating degree day (HDD) index or the cooling degree day

(CDD) index for a specific location and time duration. The monthly indices are

calculated as follows:

HDDim =
Tm∑
t=1

max{65− Tempit, 0}, (1.1)

CDDim =
Tm∑
t=1

max{Tempit − 65, 0}, (1.2)

where HDDim (CDDim) is the HDD (CDD) index for location i and month m, Tm is

the number of days in month m, and Tempit is the average temperature of location

i on day t. The average temperature is the arithmetic mean of the maximum and

minimum temperatures recorded during the day. The contract payoffs are $20 ∗

HDDim and $20∗CDDim. The indices received their names due to their relationship

with energy usage. When the heating degree day (cooling degree day) index is high,

temperatures are cold (hot) and consumers need more energy to heat (cool) their

homes and buildings.

1.3.2 Main Players and Their Hedging Tactics

In this section, I will argue that the net hedging position of end users is short

in the monthly futures market due to the large presence of energy companies and

their desire to hedge against mild temperatures. This asymmetry in hedging demand

is necessary for a shift in hedging demand or capital supply to affect the price and

quantity of contracts, and allows me to calculate a risk premium charged by financial

institutions.

In 2004-05, the Weather Risk Management Association documented that 69% of
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over-the-counter weather derivative end users were energy companies. This number

has hovered around 50% over time and is likely greater on the CME, where energy

companies helped structure the market.11 For energy suppliers, there are opposing

cost and volume risks associated with temperature outcomes. Energy sales usually

fall if temperatures are mild because firms and households use less natural gas or elec-

tricity to heat or cool their building. Concomitantly, input costs usually rise during

a period of extreme temperatures when demand for energy is high and the supply of

inputs is relatively fixed. The exposure of utilities to cost fluctuations can be par-

tially diminished by passing through changes in costs to consumers (Perez-Gonzales

and Yun 2013). Every state in the United States, has purchased gas adjustments

(PGA) for natural gas utilities (American Gas Association, 2007). The PGA adjust

rates based on the price of natural gas, which helps mitigate utilities’ exposure to

fluctuations in the price of natural gas.

Although the costs due to a temporary spike in temperatures are more salient

for customers, e.g. summer blackouts or high natural gas prices, the costs to energy

suppliers and distributors of long term mild temperatures can be quite large. For

example, in justifying the decline in DTE Energy’s earnings from $147M in the second

quarter of 2012 to $109M in the second quarter of 2013, executive vice president David

Meador explained “while last years second quarter operating earnings were boosted

by record-setting (extreme) temperatures, we are on track to realize our financial

and operational goals for this year.”12 Perez-Gonzales and Yun (2013) find that

energy firms most exposed to mild temperature risks have valuations approximately

4% lower than other energy firms and have lower revenues, return on assets and

operating income.

11The year-by-year OTC percentage of end user demand attributed to the energy sector was:
56% in 2003-04, 69% in 2004-05, 46% in 2005-06, 47% in 2006-07, 36% in 2007-08, 59% in 2008-09,
58% in 2009-10 and 46% in 2010-11

12“DTE Energy Earnings Fall Due To Cooler Weather” CBS Detroit, July 2013 http://detroit.

cbslocal.com/2013/07/28/dte-energy-earnings-fall-due-to-cooler-weather/

11
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The monthly temperature futures examined are better suited to hedge the quantity

risk associated with mild temperatures than the spike in input costs due to a few hours

or days of extreme temperatures for multiple reasons. First, energy companies can

hedge the cost of inputs through traditional futures or by switching between energy

sources, if possible, and use monthly temperature futures to hedge low sales. Second,

risks of a spike in input prices due to a few days of extreme temperature are better

hedged using other, shorter-duration contracts, such as critical day options or daily

weather contingent power options, not a contract on the monthly aggregate of daily

temperature deviations. Third, call options on monthly or seasonal degree days can

be purchased on the CME, which pay out when temperatures are extreme over the

month or season, respectively. These option contracts will better capture extreme

temperature events that will lead to a shortage in natural gas supply.

Not all utilities will find it beneficial to use weather derivatives to hedge volume

risks. The sensitivity of revenue to temperature and the fluctuations in temperature

will vary across locations and utilities. In addition, the utility’s regulatory body may

allow for rate changes based on volume fluctuations either through full or partial

decoupling of revenues and sales volume or a flat fee structure. Decoupling mecha-

nisms were introduced to incentivize energy utilities to promote energy efficiency and

to share volume risks between customers and shareholders. Full decoupling adjusts

rates to keep revenue per customer relatively constant over time. Partial decoupling,

or weather normalization adjustments (WNA), adjust rates in response to weather-

driven changes in revenue, effectively shifting temperature risk to customers. There

are also flat free programs, where customers pay a flat monthly fee for their energy.13

In 2009, natural gas utilities in 36 states had non-volumetric rate designs. Electric

utilities in only 9 states had decoupling mechanisms.14 Not all utilities have these

13http://www.aga.org/SiteCollectionDocuments/RatesReg/Issues/Revenue%

20Decoupling%20and%20other%20Non-Volumetric%20Rate%20Designs/2009%20Aug%

20Accounting%20Presentation.pdf
14http://switchboard.nrdc.org/blogs/rcavanagh/decouplingreportMorganfinal.pdf
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adjustments. Utilities with these adjustments may still be exposed to volume risks

either because the rate adjustment is not contemporaneous with the weather shock,

revenues are only adjusted for non-weather related revenue changes, there is regula-

tory risk or the adjustment is only for the regulated portion of the utility’s business

(see Perez-Gonzales and Yun (2013) for a more complete discussion). Even with the

prevalence of regulatory mechanisms, Perez-Gonzales and Yun (2013) find that one-

quarter of utilities use weather derivatives and the CME reports that 35% of energy

companies used weather derivative instruments in 2008.

An example of a utility using weather derivatives to hedge against low revenue

due to mild temperature is Washington Gas Light Company, a natural gas distributor

in the Washington DC area. In its 2012 10-K filing, Washington Gas describes its

weather derivative usage as such:

During the fiscal years ended September 30, 2012, 2011 and 2010, Wash-

ington Gas used HDD weather-related instruments to manage its financial

exposure to variations from normal weather in the District of Columbia.

Under these contracts, Washington Gas purchased protection against net

revenue shortfalls due to warmer-than-normal weather and sold to its

counterparty the right to receive the benefit when weather is colder than

normal.

Washington Gas’ position in the weather derivatives market is a prime example

of a utility hedging mild temperature risks with weather derivatives. Consistent

with weather derivatives being used by utilities to hedge mild temperatures, Perez-

Gonzales and Yun (2013) find that energy companies that were especially sensitive to

mild temperature outcomes were 2 to 3 times more likely to use weather derivatives

after their introduction than less exposed energy companies.

To hedge low revenues due to mild temperatures, energy companies will sell

monthly futures. This position will have a positive return if temperatures are suf-
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ficiently mild. If energy companies are the main end users in the market and their

desire to hedge leads them to sell the monthly contract, then there will be a net

short hedging position on average. This asymmetry creates an active role for finan-

cial institutions to bear risk in the market, where a direct exchange between hedgers

is uncommon (Perez-Gonzales and Yun 2013, Brix and Jewson 2005). The Weather

Risk Management Association documents that hedge funds, investment banks, in-

surance/reinsurance companies, monoline weather trading desks and energy trading

desks all play an active role in the exchange market. On net, these financial inter-

mediaries should be long the monthly temperature futures. Consistent with financial

institutions being net long, Bellini (2005) estimates a positive risk premium in both

HDD and CDD contracts for three U.S. locations over January 2002 to February

2004. Similarly, I find a positive, but insignificant average risk premium in my sam-

ple. I maintain the assumption that financial institutions are net long in the market

throughout my analysis.

1.4 Data Description

End-of-day price, open interest and margin data for the Chicago Mercantile Ex-

change monthly temperature futures was provided by the Chicago Mercantile Ex-

change. To eliminate concerns about cross-country differences, I only analyze con-

tracts on U.S. locations. Due to a lack of trading pre-crisis, I eliminate the 6 U.S.

locations that were introduced in 2008, leaving 18 U.S. locations. The sample covers

monthly contracts from the first month traded, October 1999, to February 2012. The

temperature data was obtained from MDA Information Systems, Inc. MDA is the

provider of official temperatures used to settle CME temperature contracts.

In Figure A.4, I plot the average price and open interest of February HDD con-

tracts by location. HDD contracts capture deviations in temperature below 65oF.

Prices and open interest in the weather derivatives market vary as would be expected.
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Prices are higher in locations with more extreme temperature, e.g. Minneapolis, and

open interest is higher in locations with more economic interest, e.g. New York.

[Figure A.4 Here]

In the first panel of Table A.2, I present summary statistics for contract open

interest. Contracts are defined along location, index, month and year dimensions.

The sample is limited to the 1,104 contracts that were open at least 32 days before

maturity. Open interest is the maximum open interest achieved at least 32 days before

maturity. The mean open interest over the entire period is 236 per contract. There is

a lot of variation in open interest with a 10th percentile of 12 and a 90th percentile of

550.15 There is slightly more open interest per contract in CDD contracts than HDD

contracts, but fewer contracts traded.

[Table A.2 Here]

A sample of 1,104 contracts is relatively small considering there would be 432

contracts traded each year if every available contract were traded. In 2008, the number

of contracts traded peaked at 154 contracts. There are a few reasons why the actual

number of contracts traded is below the number of available contracts. First, weather

risks are seasonal, so there is rarely an HDD and CDD contract traded on the same

location in the same month. HDD contracts are mainly traded in the winter months,

while CDD contracts are mainly traded in the summer months. Second, there is little

activity in the months of April and October. These are considered transition months

in the weather derivatives market because temperatures are relatively mild. Third,

different locations face different risks. For example, locations with warmer climates

are less likely to have significant hedging demand in HDD contract markets. Fourth,

15The open interest 32 days before maturity is typically about one-half of the maximum open
interest achieved during the trading period. Summary statistics for the maximum open interest
achieved during the trading period are: mean=455, standard deviation=734, 10th percentile=20,
50th percentile=200, 90th percentile=1,150 and 1,661 contracts traded.
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the level of economic interest tied to temperature risks can vary across locations

even if the climates are identical. Fifth, I examine contracts that were trading 32

days before maturity, while some markets might first experience trading closer to

maturity. These reasons limit the number of contracts that trade each month.

In Table A.3, I summarize speculator maintenance margin requirements and the

historical coefficient of variation of the contract index (for location specific margin

requirements see Table A.1.). These are the main independent variables of interest in

the difference-in-difference regressions. The maintenance margin requirements vary

from 3.1% to 17%. Margin requirements are greater for CDD contracts on average.

The mean maintenance margin requirement for HDD contracts is 5.4% and for CDD

contracts is 7.7%. Margin requirements are likely lower for HDD contracts because

margins are set based on price volatility and HDD contracts are less volatile than

CDD contracts. The mean coefficient of variation for CDD contracts is 0.28 and for

HDD contracts is 0.22. The distribution of total risk is right skewed. The mean

coefficient of variation is 0.25 and the median is 0.21. Values range from .08 to 1.03,

with a standard deviation of 0.13. Although margins are set based on price volatility,

the correlation between margin and coefficient of variation is only 0.55. The relatively

low correlation is due to margins being set at the location-index level, while coefficient

of variation is calculated at the location-index-month level. Also, margins are set at

round numbers and are unlikely to be a perfect linear function of contract risk.

[Table A.3 Here]

1.4.1 Estimating Risk Premiums

The risk premium for each contract is calculated as follows: E[Payoff ]
Price

− (1 + rf ),

where rf is the monthly risk-free rate, Price is the price 32 days from contract

maturity and E[Payoff ] is the expected payoff based on information 32 days from

maturity. The maturity date is the last day of the contract’s specified month. 32 days
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was chosen as a trade-off between the number of contracts traded in the market and

the amount of temperature information (realized or forecasted temperatures) embed-

ded in prices. This also allows for a discussion of the risk premium as approximately

a monthly risk premium.

To estimate the expected payoff I model the average daily temperature process for

each location as a discrete-time AR(1) process following Bellini (2005) and Dornier

and Querel (2000). The model captures seasonality in the mean and standard de-

viation of daily temperatures. I use maximum likelihood estimation to estimate the

parameters for each location separately. I estimate the model using temperature re-

alizations from January 1, 1999 to January 31, 2012. In Appendix A, I detail the

temperature process, the likelihood estimation and give the parameter estimates for

each location. The parameter estimates align with the behavior of temperature in

each location. In Figure A.3, I plot the average temperature versus the estimated

mean temperature by day of the year for the 4 largest cities by population in my

sample. In blue, I plot the average temperature for each day of the year calculated

over the years 1999-2012. In green, I plot the estimated mean temperature. The

model estimates appear to capture the mean temperature dynamics fairly well.

[Figure A.3 Here]

After the temperature process has been estimated, I calculate expected payoffs by

using the temperature realization 32 days before contract maturity and simulating 500

temperature paths over the next 32 days until contract maturity. From the simulated

temperatures, I apply the HDD and CDD temperature formulas to calculate the payoff

of the contract for each path. The expected payoff is the average of the simulated

contract payoffs. Once I have obtained the expected payoff, I can calculate a weather

risk premium using the expected payoff, contract price, and the risk free rate.

In the second and third panels of Table A.2, I present summary statistics for

the weather risk premium and realized contract returns. Realized contract returns
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are calculated as follows: Payoff
Price

− (1 + rf ), where Payoff is the realized index

value, Price is the price 32 days before maturity and rf is the risk-free rate. The

risk premiums and realized returns are presented as percentages. Risk premiums

are winsorized at the 1% level to reduce the impact of outliers. I cut the sample

into CDD, HDD and all contracts. The mean weather risk premium for the entire

sample is 0.16% and is not significantly different from 0. The mean risk premium

for CDD contracts, 0.50, is higher than the mean risk premium for HDD contracts,

-0.10. Neither mean is significantly different from zero. The median risk premium

for the entire sample is -.79%. Examining the realized returns, the mean realized

return is -1.08% and is statistically insignificant. The mean realized return for HDD

contracts is -1.79% and for CDD contracts is -0.14%. The mean realized return

for HDD contracts is statistically different from zero at the 5% level. The negative

returns are concentrated in the low open interest (<300) contracts. High open interest

HDD contracts have a positive mean return. The relatively low risk premiums and

returns for heating degree day contracts could be due to the prevalence of regulatory

mechanisms to hedge temperature risk during the winter months for many utilities.

Most of the natural gas decoupling mechanisms are for the winter months and there

are very few states with weather adjustment clauses for electric utilities.

Why would financial institutions participate in the market if risk premiums are

near zero on average? Even if risk premiums are zero, financial institutions enjoy a

diversification benefit from investing in weather derivatives. Second, as will be dis-

cussed in Section 1.5.4, returns on weather derivatives appear to be slightly negatively

correlated with the market, so risk premiums should be zero or negative in a world

with perfect capital markets.
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1.5 Empirical Analysis

1.5.1 Research Design

My main hypothesis is that that a loss of financial sector capital and the inability

of financial institutions to immediately and costlessly raise new capital causes finan-

cial institutions to decrease their supply of capital to the weather derivatives market.

The decline in capital supply to the market will lead to higher risk premiums and lower

open interest. To test this hypothesis, the ideal empirical design would compare risk

premiums during periods of financial sector stress to the risk premiums that would

exist if the financial sector were not stressed. This counterfactual does not exist; in-

stead, I compare risk premiums during a period of financial sector stress, the 2008-09

financial crisis, to risk premiums pre- and post-crisis. The identifying assumption

is that the fundamental values of the contracts are not systematically misestimated

during the financial crisis period. This seems reasonable for three reasons: (1) the

temperature processes are relatively stationary over time and are unaffected by finan-

cial sector stress, thus, it is unlikely there is an unmodeled change in the distribution

of contract payoffs during the crisis, (2) contract risks are largely idiosyncratic, so

risk premiums should not vary with the price of systematic risk, and (3) there is no

counterparty risk since contracts clear on the exchange.

The following is the regression specification used in the main test:

WRPimdy = αimd + β · FinancialCrisisym + εimdy, (1.3)

where FinancialCrisisym is an indicator variable equal to 1 during the financial crisis

period and is based on the contract year y and month m, αimd is the contract fixed

effect for the contract on location i, month m and index d. I control for contract

fixed effects because risk premiums are likely to vary across contracts with different

risk profiles, margin requirements, hedging demand and possibly other sources of het-
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erogeneity. This test analyzes the annual variation in risk premiums for the same

contract defined along the location, index and month dimensions. For example, the

risk premium for the 2009 New York February HDD contract will be compared to

the risk premiums for the New York February HDD contract in the years 2000-2008

and 2010-2012. β provides the coefficient estimate of interest. The main hypothesis

predicts β > 0, i.e. risk premiums increase during the financial crisis. The financial

crisis period is defined as the months including and between October 2008 and De-

cember 2009. The failure of Lehman Brothers in mid-September 2008 precipitated

a systemic crisis in the global financial system (Brunnermeier 2009). October 2008

contracts should be the first impacted by Lehman’s failure because risk premiums are

based on prices measured 32 days before maturity. December 2009 is chosen as the

ending date to capture the entire period of crisis. The VIX spiked in September 2008

and did not return to its pre-crisis level until late 2009. The S&P 500 plummeted

around the Lehman Brothers bankruptcy, reached its nadir in March 2009 and slowly

grew throughout 2009. An end date of December 2009 should capture the majority

of the crisis.

After controlling for contract fixed effects, any variation in estimated risk premi-

ums should be due to movements in market expectations of forecasted temperatures,

changes in the market structure or shifts in the contract supply and demand curves.

The identifying assumption in the main test is that the remaining variation in risk

premiums due to changes in forecasted temperatures or market structure is uncorre-

lated with the financial crisis time period. The validity of this assumption is critical to

the interpretation of my results, so I will briefly discuss each of the potential sources

of bias.

I observe an increase in risk premiums during the financial crisis, therefore, prices

relative to expected payoffs must have dropped. For this to be explained by a bias in

temperature forecasts, forecasted temperatures must have been systematically more
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mild during the financial crisis leading to lower forecasted index levels and lower

prices. This does not seem to be the case. In Figure A.4, I provide five maps of

National Oceanic and Atmospheric Administration’s three-month temperature fore-

casts during the financial crisis period. The maps are shaded based on the chances of

temperatures being above or below normal. During this 15 month period, forecasted

temperatures appear to be barely warmer than normal on average, not more mild.

Even if there is a bias in forecasted temperatures, this will be partially adjusted for

by the temperature process model, which uses realized temperatures to model future

temperatures each month throughout the crisis. Additionally, in Appendix B, I ana-

lyze realized temperatures during the crisis and find that realized temperatures were

significantly more extreme in the HDD months and insignificantly cooler in the CDD

months. This is inconsistent with unusually mild temperature forecasts driving the

results. Lastly, when realized temperatures are included as controls in the empirical

tests there is no change in the statistical or economic significance of the estimates.

[Figure A.4 Here]

There are two main concerns about how the structure of the weather derivatives

market may have changed during the financial crisis period. The first concern is

that the fees the CME charged may have increased during the financial crisis time

period. I only know the fees present in the market on September 13, 2013. The fee to

trade weather products is under $0.20, or about one fifty-thousandth of the average

contract price. It is unlikely that any fee increase would have caused a significant

increase in risk premiums. The second concern is that margin requirements may have

changed over time and this is biasing my results. The CME held margins constant

for all contracts in my sample from January 2008 to early 2010. The CME chooses

margin levels to cover approximately 99% of price moves during a trading day. The

volatility of the underlying temperature likely did not change during the crisis, so it

is not surprising that margins did not change.
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To further analyze the role of adverse capital shocks in affecting asset prices, I

conduct difference-in-difference tests examining the differential impact of financial

sector stress on contracts with different margin requirements and total risk. I will

present the empirical strategy with the contract’s margin requirement as the cross-

sectional variable of interest, but the same method is used in the total risk regressions.

The regression is specified:

WRPimdy = αimd+β ·FinancialCrisisym+γ ·FinancialCrisisym ·Marginimd+εimdy,

(1.4)

where Marginimd is the margin requirement for the contract on location i, month

m and index d. I do not include the Marginimd variable as an additional regressor

because each contract’s margin is captured in the contract fixed effect. The financial

crisis dummy controls for the average change in risk premiums due to financial sector

stress and any fixed time effect in the mis-measurement of expected payoffs. γ will

capture the differential change in risk premiums of high versus low margin contracts

during the financial crisis. Only if the mis-measurement of expected payoffs was

systematically different for high-margin contracts during the financial crisis would

the regression be misidentified. If capital constraints are driving the increase in risk

premiums, then γ should be greater than 0, as financial institutions should be less

willing to take more “capital-intensive” positions during a period of stress.

1.5.2 Risk Premium Results

I estimate the impact of financial sector stress on risk premiums in the weather

derivatives market by estimating Equation 1.3. Results of the main test are reported

in Table A.4. The coefficient of interest is the indicator variable for the period of

financial sector stress (Financial Crisis). In Column 1, I include all contracts. In

Columns 2 and 3, the sample is limited to CDD and HDD contracts, respectively. I
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cluster standard errors at the year-month level in all regressions.16 The coefficient

estimates vary from 1.62 for HDD contracts to 7.97 for CDD contracts, with a coef-

ficient of 3.34 for all contracts. An average increase in risk premiums of 3.34% per

month, or 40.08% per year, during the financial crisis is economically quite large. The

increased risk premium is about 7% of the average contract notional value (two times

the historical standard deviation of the monthly degree day index) and more than

half of the average margin requirement. The notional value of the CME temperature

market in 2009 was $14.5 billion. If the effect in other temperature markets was sim-

ilar to the effect in the monthly futures market, the direct increase in hedging costs

would have been $900 million or more. This estimate does not consider the indirect

costs due to the lower quantity of risk being shared in the market.

[Table A.4 Here]

It should be emphasized that both HDD and CDD contracts experienced an in-

crease in risk premiums. This decreases the probability that warmer temperature

forecasts are driving the results. If the market forecasted temperatures to be warmer

than the model-predicted temperatures during the crisis period, then the financial

crisis coefficient should only be significant for HDD contracts since warmer temper-

atures result in a mild winter, lower prices and a higher risk premium. Instead, the

16The main independent variable, FinancialCrisisym, is both serially and cross-sectionally cor-
related. If the regression error terms are serially or cross-sectionally correlated (or both), then
OLS standard errors will be biased. The dependent variable, WRPimdy, is likely correlated within
months, as temperature fluctuations are, at a minimum, regionally correlated. To address this issue,
I cluster the standard errors at the year-month level. Clustering at the year-month level will also
address heteroskedasticity in risk premiums across months. It is also likely that risk premiums are
correlated within contracts at the location, index & month level. The margin requirement, idiosyn-
cratic volatility, systematic risk and hedging demand will vary across contracts and may affect the
risk premium charged. To control for the time invariant difference in risk premiums across contracts,
I include contract fixed effects in all regressions. Fixed effects seem more reasonable than imprecisely
controlling for the effect of idiosyncratic volatility, systematic risk and margins on risk premiums.
In unreported regressions, I also cluster standard errors at the contract level as hedging demand or
other omitted variables may be serially correlated, but temporary. Clustering at the contract level
does not meaningfully change the standard error estimates once contract fixed effects are included
and standard errors are clustered at the year-month level.
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results are even stronger for the CDD contracts. One possible reason the CDD con-

tracts experienced a greater increase in risk premiums is that CDD contracts have

larger margin requirements and more total risk in the underlying.

Next, I examine the impact of financial sector stress on contracts with different

margin requirements. All else equal, if a financial institution faces costs to raising

new capital and experiences an adverse capital shock, it will require greater returns

on assets that are more capital intensive (Brunnermeier and Pedersen 2009). If an

adverse shock to financial sector capital is driving the increase in risk premiums,

we should see greater risk premiums in contracts with higher margin requirements.

To test for the impact of financial sector stress on contracts with different margin

requirements, I estimate Equation 1.4. I use the July 2008 maintenance margin

requirements for speculators as the margin measure. The initial margin requirements

are perfectly correlated with the maintenance margin requirements, so the results are

identical if initial margins are used.

The results are reported in Table A.5. The regression including all, CDD and

HDD contracts are presented in Columns 1, 2 and 3, respectively. Consistent with

financial sector stress differentially impacting markets with greater margin require-

ments, the coefficient estimates range from 2.19 for CDD contracts to 3.38 for HDD

contracts. The coefficient for all contracts is 2.66. The coefficient is significant at the

1% level for both the full sample and the HDD sub-sample and is significant at the

5% level for the CDD sub-sample. A coefficient of 2.66 corresponds to a 6.36% (76%)

increase in the monthly (yearly) risk premium with a one standard deviation increase

in margin requirements. For a Las Vegas HDD contract with a margin of 5.4%, the

full (HDD) sample regression coefficient implies an increase in the risk premium of

2.25% (2.21%) per month during the crisis. For the higher margin Chicago CDD

contract with a margin of 11%, the estimated increase in risk premium would be

17.15% per month using the full sample coefficient and 15.89% per month using the
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CDD sample coefficient. These results imply a very large market-wide shadow cost

of external capital. For this result to be explained by misestimation of risk premiums

during the financial crisis, the misestimation would have to be systematically biased

towards high-margin contracts. This bias would have to occur for both HDD and

CDD indices, which capture opposing temperature extremes. This is highly unlikely.

[Table A.5 Here]

To further document the price impact of adverse capital shocks, I examine the

differential impact of financial sector stress on contracts with different amounts of

total risk. Froot and Stein (1998) show that if a financial institution faces costly

external capital, its effective risk aversion will be decreasing in its internal capital. In

other words, after an adverse shock to the financial institution’s capital, it will become

effectively more risk averse. Because contract risks cannot be perfectly hedged, an

increase in the risk aversion of a financial institution will lead the financial institution

to decrease its supply of capital to riskier contracts after a loss in capital. Additionally,

if individual traders use value-at-risk metrics to determine their positions and their

value-at-risk constraint tightens during periods of financial sector stress, contracts

with greater total risk, all else equal, should experience a larger decline in capital

supply.

To test for the differential effect of stress on contracts with greater total risk, I

run difference-in-difference regressions with total risk as the cross-sectional variable

of interest. I proxy for total risk with the contract’s coefficient of variation, which

is calculated as follows: σindex
µindex

, where σindex and µindex are the standard deviation

and mean, respectively, of the degree day index for the specific location and month.

The mean and standard deviation are calculated over the years 1974 to 2011. The

coefficient of variation closely approximates the standard deviation of contract returns

over the life of the contract and is equivalent to the standard deviation of contract
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returns if the contract price is always equal to the historical mean.17

Results are presented in Table A.6. The coefficient of interest is the interac-

tion term for the contract’s coefficient of variation and the financial crisis indicator

variable, CV*Financial Crisis. Results for regressions including all, CDD and HDD

contracts are presented in Columns 1, 2 and 3, respectively. The coefficient estimates

range from 28.83 for CDD contracts to 63.37 for the HDD contracts and the coeffi-

cient for the full sample is 51.61. The coefficient is significant at the 1% level for both

the full sample and the HDD sub-sample. These results indicate that more volatile

contracts experienced relatively higher risk premiums in the financial crisis. Eco-

nomically, a one-standard deviation increase in a contract’s coefficient of variation is

associated with an increase in monthly (yearly) risk premiums of approximately 6.7%

(80%) during the financial crisis. For a Cincinnati April HDD contract, which has

the median coefficient of variation of 0.21, the coefficient estimates imply an increase

in monthly risk premiums of 4.45% (1.14%) during the crisis based off the full (HDD)

regression. For the higher risk New York May CDD contract with a coefficient of

variation of .62, the coefficient estimates imply an increase in monthly risk premi-

ums of 23.23% (18.12%) based off the full (CDD) regression. These results support

the notion that financial institutions become effectively more risk averse after capital

losses.

[Table A.6 Here]

Margin requirements are based off market conditions, mainly price volatility. If

margin requirements are just proxies for idiosyncratic risk, then the results presented

above may be redundant and it would be difficult to disentangle the increase in

risk premiums due to margin from the increase due to total risk. Beneficial for this

study, margins are not a linear function of total risk. The correlation between margin

17Further motivation for using the coefficient of variation comes from Hirshleifer (1988). He shows
that the risk premium on a commodity should be increasing in its coefficient of variation if there is
a fixed cost to participating in the market.
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requirements and coefficients of variation is 0.55. The two are not perfectly correlated

for two reasons: (1) margins are set at the location-index level, while contract risks are

at the contract level, and (2) margin requirements are clustered at certain numbers

(e.g. 4 and 7), even though risks are not identical across locations with the same

margin.

To determine whether margin and contract risk have unique effects, I run difference-

in-difference regressions including a three-way interaction between margin, total risk

and the crisis dummy. If both margin requirements and contract risk are drivers of

risk premiums during financial sector stress, there should be a positive and significant

coefficient on the three-way interaction.

Results are reported in Table A.7. Consistent with margin and total risk affecting

risk premiums, the coefficient on the triple interaction is positive in all regressions.

The coefficient is 8.10 and statistically significant at the 10% level for the regression

with all contracts. For the HDD contracts, the coefficient is 26.30 and is significant at

the 1% level. The coefficient is 4.51 and insignificant for the CDD sample. Examining

the regressions without the triple interaction term, both margin and contract risk

have positive coefficients. For the regression with all contracts, the effect of margin

is significant at the 5% level and the coefficient on contract risk is positive, but

insignificant. In sum, it appears that both margin levels and contract risk appear to

matter to stressed financial institutions.

[Table A.7 Here]

I have shown that margin requirements and total risk matter for asset prices during

a period of financial sector stress, but do they also matter during periods when the

financial sector is healthy? To answer this question, I run separate regressions of

contract risk premiums on contract characteristics over the entire period, in the crisis

period and in normal times. Regressions are of the form:
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WRPimdy = γ ∗Ximd + δm + εimdy,

where the dependent variable is the weather risk premium for location i, month m,

degree day index d and year y, Ximd is either Marginimd or CVimd, and δm is a month

fixed effect. I do not include a contract specific fixed effect because the margin

requirement and coefficient of variation are fixed at the contract level.

Regression results are reported in Table A.8. Regressions with margin require-

ments (coefficient of variation) as the independent variable are reported in Columns

1-3 (4-6). The entire period regressions are labeled “Entire” and are reported in

Columns 1 and 4, the periods outside of the financial crisis are labeled “Normal”

and are reported in Columns 2 and 5, and the crisis period regressions are labeled

“Crisis” and are reported in Columns 3 and 6. Focusing on the impact of margin

requirements on risk premiums, we see that risk premiums are positively related to

margins over the entire sample period, but the coefficient is statistically insignificant

and small. The positive relationship between margins and premiums is due to the

crisis period. The normal period regression shows that margins are insignificantly

negatively related with risk premiums during periods of financial sector health with

a coefficient of -0.32. The coefficient during stress is positive and large at 2.23, and

is significant at the 1% level. We see a similar pattern in the total risk analysis. The

results suggest that total risk and margin only affect contract pricing during periods

of financial sector stress.

[Table A.8 Here]

1.5.3 Notional Value and Open Interest

The previous results show that risk premiums increase during a period of financial

sector stress and the effect is strongest for higher margin and riskier contracts. These

results are consistent with a shift in the supply curve of capital, but they are also

consistent with an increase in hedging demand. If hedging demand is driving the
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increase in risk premiums, then the open interest and the notional value of contracts

should have increased during the crisis. If a decrease in the supply of capital is driving

the rise in risk premiums, then these quantities should have decreased.

In Figure A.5, I plot total open interest in the monthly temperature futures market

by quarter. Open interest grew rapidly from introduction until the fourth quarter of

2008, then fell by nearly 40% with the start of the crisis. The decrease in open interest

is consistent with a decrease in the supply of financial institution capital, not solely

an increase in end user hedging demand during the crisis period. At the contract

level, of the 136 contracts (defined at the location, month and index) that traded

in the 12 months pre-crisis, 65 contracts experienced a decline in open interest of at

least 66% during the first 12 months after the Lehman failure. 36 contracts collapsed

completely (zero open interest) and only 33 experienced an increase in open interest.

Surprisingly, there were 46 contracts with zero open interest in the 12 months pre-

crisis that traded during the crisis period.18

[Figure A.5 Here]

The monthly temperature futures market did not fully recover after the crisis

during the sample period. The lack of renewed activity is likely due to participant

concerns about market liquidity after the crisis. Participants discussed the rapid

growth of the market pre-crisis as “liquidity breeding liquidity” in the market.19 After

the crisis, participants were likely hesitant to take positions, concerned others would

not participate in the market and create liquidity.

Another reason for the lack of renewed activity in the monthly temperature fu-

tures market is that some activity migrated to the OTC and seasonal futures market

after the crisis (WRMA Survey 2010). A concern is that activity just shifted across

18In the crisis, April and October both saw a dramatic increase in the number of contracts traded
(14 in each month). The cause of this increase is unclear. It could be due to investors hedging
seasonal contract positions after the onset of the crisis. Post-crisis there were very few contracts
traded in these months.

19

29



markets and the quantity of risk shared did not change. This is not the case. The

notional value of the entire weather derivatives market decreased dramatically during

the financial crisis. The Weather Risk Management Association surveys market par-

ticipants and the Chicago Mercantile Exchange each April about weather derivative

activities over the previous calendar year. WRMA computes a market-wide notional

value across all weather derivative contracts, both OTC and exchange-traded. The

April 2007 to March 2008 notional value was $32B, the 2008/9 value was $15B and

the 2009/10 value was $10B. The 50% decline in notional value between 2007/8 and

2008/9 is remarkable and contradicts an increase in hedging demand driving the in-

crease in the risk premiums. The entire weather derivatives market did not completely

rebound after the crisis, but the notional value increased by 20% to $12B in 2010/11.

To further examine the effect of financial sector stress on the supply of capital to

a market, I examine whether a contract’s margin requirement and total risk affected

its likelihood of collapsing in the crisis. I run probit regressions with the dependent

variable equal to 1 if the contract collapsed. I define a market as collapsing if the

contract traded in the 12 months pre-crisis, but did not trade in the first 12 months

after the start of the crisis. Whether or not the contract traded is based on open

interest 32 days before maturity. If the supply of capital is driving the collapse,

we would expect margin and total risk to be positively correlated with a contract

collapsing. In Table A.9, I report the results. When each explanatory variable is

included separately, the coefficients are positive and significant. When margin and

risk are both included in the probit, the coefficients are positive, but insignificant.

When an interaction term is included, the coefficient is just slightly negative and

insignificant, and the coefficients on margin and contract risk are positive. Overall,

the results are consistent with financial sector stress causing a decrease in capital

supply to the market. In fact, because the higher margin and more volatile contracts

were more likely to collapse, I may be underestimating the effect of financial sector
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stress on risk premiums.

[Table A.9 Here]

1.5.4 Robustness

A maintained assumption throughout the previous tests is that there is zero sys-

tematic risk in the weather derivatives market. This assumption is in line with the

prevailing sentiment among market participants. The Weather Risk Management As-

sociation writes “weather essentially is uncorrelated with secular or systemic risk in

general financial markets and provides an opportunity for diversification for traders.”

Unlike stocks, whose discount rates and cash flows are driven by changes in the econ-

omy, it is not obvious how or in what direction temperature outcomes in Cincinnati,

for example, would be correlated with the return on the market. Supporting this view,

Cao and Wei (1999) implement a Lucas (1978) equilibrium model with temperature

as a fundamental variable and find little evidence that temperature risks should be

priced.

Although realized returns are noisy and the return data is a relatively short time

series, I attempt to measure the amount of systematic risk in the market. Ideally,

tests for systematic risk would be conducted at the individual contract level because

risks will differ across the location, month and degree index dimensions. Contract

level regressions are not feasible with only 13 years of data, i.e. 13 observations per

contract. Instead, I run CAPM regressions at the market level. Regressions are of

the form:

Rp −Rf = β ∗ (Rm −Rf ) + α,

where Rp is the return on an equal-weighted portfolio of monthly weather derivative

contracts, Rf is the monthly risk-free rate and Rm is the monthly market return.

Returns are calculated using 2 different measures: “physical” returns and realized
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returns. The “physical” returns are Payoff
E[Payoff ]

−1, where Payoff is the realized payoff

of the contract and E[Payoff ] is the model implied expected payoff of the contract 32

days before maturity. The “physical” return proxies for contract returns if contracts

were priced at their actuarially fair value. The realized returns are calculated as

follows: Payoff
Price

− 1, Payoff is the realized payoff of the contract and Price is the

outstanding price 32 days before maturity. The realized return is the more natural

return for a CAPM style regression. For the “physical” return regressions, I include

a location-month in the portfolio return calculation if a contract was ever open 32

days before maturity for that location and month. If both an HDD and CDD contract

trade for the same month and location, then I use the index with the highest expected

payoff. For the realized return regression, only those contracts with a market price 32

days before maturity are included in the regression. The regressions include month

fixed effects to soak up any seasonality in the returns. I calculate White standard

errors as there is likely heteroskedasticity in returns.

The results are reported in Table A.10. The results from the “physical” return

regressions are reported in Columns 1-3 and the realized returns in Columns 4-6. I run

regressions for all contracts, as well as CDD contracts and HDD contracts separately.

The beta is significant at the 10% level in the realized return and the physical return

regressions with all contracts. The coefficients range from -.32 to -.55. The coefficients

imply that the market does poorly when temperatures are extreme. It appears that

a portion of the risk in the temperature market is systematic risk, but the amount of

systematic risk is negative.

[Table A.10 Here]

One may be concerned that an increase in the price of systematic risk is driving

the relationship between financial sector stress and risk premiums. This is not the

case. If the price of systematic risk increased during the crisis, we would expect risk

premiums to drop on average because the market has negative systematic risk. If
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anything, not adjusting for systematic risk will bias the regressions against finding

an increase in risk premiums. As further evidence that risk premiums are not being

driven by systematic risk, in Appendix A.3, I calculate location specific betas and

find that there is no relationship between a location’s beta and its average estimated

risk premium. Also in Appendix A.3, I control for a location’s beta in the difference-

in-difference regressions and the coefficients on margin and total risk are basically

unchanged and still highly significant. High beta contracts experienced higher risk

premiums during the crisis, but the effect is insignificant. In sum, it does not appear

that risk premiums increased in the weather derivatives market due to an increase in

the price of systematic risk.

For my tests to be properly identified, the model estimated expected payoff must

not be systematically biased during the financial crisis. This bias may manifest if

market forecasted temperatures were systematically biased during the crisis and not

captured by my model. To explain the observed results, forecasted temperatures

would have to be significantly warmer in the winter and cooler in the summer dur-

ing the financial crisis and the bias stronger for high-margin and riskier contracts.

This assumption is impossible to test without precise knowledge of the market’s fore-

casted temperatures. As a robustness, I can control for market expectations using

the realized payoffs of contracts. I run regressions where the negative logarithm of

the contract price is the dependent variable and I include the logarithm of realized

index payoffs as a control. The realized index payoffs should proxy for market ex-

pectations of contract payoffs. I use the negative logarithm of contract price because

the financial institutions are net long in the weather derivative’s market; an increased

risk premium is associated with a decline in price. I also control for the risk-free

rate and the logarithm of the realized degree index on the contract’s location during

the previous month. By controlling for the realized payoff, this regression gives the

market a lookahead bias.
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I present the results in Table A.11. In Column 1, I include the financial crisis

dummy variable and the control variables. The coefficient is .054 and significant at

the 1% level. Not surprisingly, this coefficient is of similar magnitude as in the risk

premium regression (3.34). It does not appear that a bias in the my pricing model

is driving the main result. In Columns 2-4 (5-7), I include the interaction between

contract margin (coefficient of variation) and the financial crisis dummy. The results

are very similar to the risk premium regressions. The interaction between margin

and the financial crisis is positive and significant in all regressions. The coefficient

on the interaction between the crisis and the coefficient of variation is positive in all

specifications and is significant at the 1% level for the entire sample and the HDD sub-

sample. If realized temperatures are a reasonable proxy for forecasted temperatures,

then systematic bias in market temperature forecasts is not driving the results.

[Table A.11 Here]

Another concern is that there was an unobserved shift in the structure and use

of the weather derivatives market around the start of the crisis (e.g. new regulation

of the financial sector or the decline in natural gas prices following the shale gas

boom) and this led to high risk premiums and low open interest. The fact that open

interest did not rebound by the end of 2009 is consistent with a long-term structural

shift. Natural gas prices remained low relative to their 2007-2008 peak and any

regulatory regime shift likely did not ease through the sample period. If a structural

shift is driving the results, we would expect contract prices to continue to remain low

after the crisis. In Table A.11, Column 8, I include a dummy variable for the post-

crisis period. This coefficient will capture the difference in contract price post-crisis

relative to pre-crisis. The coefficient is -.0170 and is insignificant. Prices post-crisis

were relatively higher than pre-crisis, i.e. risk premiums were actually lower. It does

not appear that a shift in regulation or the decline in natural gas prices is driving the

increase in risk premiums.
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As a further test, I run the difference-in-difference regressions with realized returns

instead of implied risk premiums as the dependent variable. There is little justification

for using realized returns considering ex post returns are not a good proxy for ex ante

premiums over such a short time period. In unreported results, in the regression

with all contracts, I find the coefficient on the financial crisis, margin interaction

and coefficient of variation interaction are positive, but insignificant. For the HDD

sub-sample, results are similar. For the CDD sub-sample, realized temperatures were

slightly cooler than normal in the summer of 2009, which led to a negative realized

return on CDD contracts during the crisis period. Overall, there is very little evidence

that a systematic bias in the difference between the model estimated expected payoffs

and market expectations during the crisis is driving the results.

1.6 Conclusion

During periods of financial sector stress, financial institutions’ capital constraints

may bind. This will limit their supply of capital to various markets and affect market

equilibrium prices and quantities. Supporting this notion, I document that during

a period of financial sector stress, risk premiums in the weather derivatives market

increased by over 30% and notional value declined by 50%. Higher margin contracts

experienced a greater shift in capital supply as financial institutions were less willing

to supply capital to these capital intensive markets. Consistent with the theories of

Froot and Stein (1998) and Garleanu, Pedersen and Poteshman (2009), which argue

that financial institutions willingness to bear risk is decreasing in the unhedgeable

portion of the asset’s variance, contracts with more total risk also experienced a

greater decline in capital supply during the crisis.

Overall, these results show that financial institutions’ funding constraints lead

to lower risk-sharing between hedgers and financial institutions during periods of

financial sector stress. Hedgers may experience lower investment, increased costs

35



of debt and debt-like contracts (lines of credit, labor contracts, etc.) and lower firm

values when the financial sector is under stress. Although I examine a relatively small

and youthful market, the effects documented could exist in other markets where risks

cannot be perfectly hedged. The results give insight into the risks investors and

hedgers face, the importance of financial sector capital in the pricing of contracts,

and how risks are shared in the economy.
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CHAPTER II

Can Markets Discipline Government Agencies?

Evidence from the Weather Derivatives Market

2.1 Abstract

The Chicago Mercantile Exchange has introduced several temperature related

derivative contracts on different U.S. cities in a staggered fashion since 1999. The

payoffs of these contracts depend on the temperature levels at a specific weather sta-

tion in the underlying city. We show that the introduction of these contracts improves

the accuracy of temperature measurement by the dedicated weather station of the

National Weather Services (NWS) in that city. We argue that temperature-based

financial markets generate additional scrutiny of the temperature data measured by

the NWS, which in turn motivates the agency to minimize measurement errors. Con-

sistent with this idea, stations with higher economic interests in weather derivatives

see greater improvement in measurement accuracy. Our results indicate that the

visibility and scrutiny generated by financial markets can improve the efficiency of

government agencies even in the absence of explicit incentive contracts.
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2.2 Introduction

How do financial markets affect real outcomes? This is a question of fundamental

importance to economists and policymakers. It has long been argued that market

prices can influence real decisions of economic actors by aggregating information

in a meaningful way (Hayek, 1945). Similarly, markets can enable individuals and

households to achieve optimal risk-sharing in the economy (Allen and Gale, 1994).

An additional channel through which markets can influence real outcomes is via their

role in affecting the economic agent’s effort level. While this line of research has been

studied well for corporations, little is known about the role of markets in influencing

the performance of government agencies. Our paper fills this gap in the literature by

exploiting an interesting empirical setting: the launch of a new financial market that

has payoffs linked to the measurement of temperature by National Weather Service

(NWS).1

There is a rich theoretical and empirical literature highlighting the importance of

financial markets in disciplining corporate managers.2 This line of research argues

that market participants such as block-holders and pension funds can discipline cor-

porate managers through explicit or implicit performance-based incentive contracts

(e.g., see Shleifer and Vishny (1986), Holmstrom and Tirole (1993), Burkart, Gromb,

and Paunzi (1997), Bolton and Von Thadden (1998), Gopalan (2009), Admati and

Pfleiderer (2009), and Edmans (2009).). But why should a government bureaucracy

respond to financial markets when there is no market-based incentive mechanism in

place?

1Our study also contributes to the literature on the role of financial innovations and derivative
contracts on real outcomes (e.g., Froot, Scharfstein, and Stein (1993), Tufano (2003), and Stulz
(2004)). Unlike the prior empirical literature that studies the effect of derivative contracts on firms
using them, we study their effect on the actions of a government bureaucracy.

2There are numerous important contributions in this area. They have been nicely summarized in
survey articles such as Shleifer and Vishny (1997), Gillan and Starks (1998), Black (1998), Karpoff
(1998), Romano (2001), Hermalin and Weisbach (2003), and Becht, Bolton, and Roell (2003) among
others.
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We argue that the launch of financial markets linked to NWS reported temperature

numbers generates additional visibility and scrutiny of its actions, which in turn

produces better outcomes by the agency even in the absence of any explicit incentive

contract. The underlying motivations behind better outcomes can range from the

avoidance of potential reputational losses to career concerns of the NWS officers. In

analyzing the motivations and biases of bureaucrats, Prendergast (2007) notes that

the clients of a bureaucracy typically point out errors when it harms them. As the

client’s capability in pointing out these mistakes increases, it is even more likely that

the mistakes are caught and immediately pointed out. The introduction of derivative

contracts creates a new set of clients for the NWS, who are likely to be both skillful

and motivated in pointing out measurement errors. This additional scrutiny increases

the likelihood that the NWS will suffer reputational loss due to poor measurement.

If a public agency experiences a loss in reputation they may be subject to political

hearings and downsizing. Noted social scientist James Q. Wilson observes, “The

head of a business firm is judged and rewarded on the basis of the firm’s earnings–the

bottom line. The head of a public agency is judged and rewarded on the basis of

the appearance of success, when success can mean reputation, influence, charm, the

absence of criticism, personal ideology, or victory in public debate” (Wilson (1989),

page 197).

In a similar spirit, Dewatripont, Jewitt, and Tirole (1999) stress the importance of

career concerns as a motivating tool for bureaucrats. Finally, once a weather-related

financial market opens up, there is a higher probability of disputes arising out of

improper recording of the temperature since an error can now cause immediate and

direct financial loss to third parties. Even though the government agency may not

be a party in resulting litigations, they may experience negative publicity or a loss of

reputation due to the lawsuit.3

3We provide a number of pieces of descriptive evidence, collected from a variety of sources such
as NWS’s directives and the industry interest groups’ documents, in support of these channels.
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Our empirical tests exploit the staggered introduction of weather derivative con-

tracts based on daily temperature levels of several U.S. cities over the past 14 years.

Weather has a large impact on a variety of economic and social decisions. While

there has always been a need for hedging weather related risk by sectors such as

utilities and crop production, it was only in 1999 that the Chicago Mercantile Ex-

change (CME) introduced its first exchange traded weather derivative instruments.

Since then, the CME has introduced weather contracts on a number of U.S. cities in

waves. A vast majority of these instruments are temperature related, allowing the

end-users to hedge their exposure to undesirable warm or cold weather conditions.4

These contracts are city specific and are settled based on the temperature readings

of a specific NWS weather station within or near the contract city. These stations

are almost always located at the underlying city’s main airport, and are prone to

measurement errors due to factors such as improper calibration of the sensors, poor

maintenance, and lax monitoring of the equipment. The introduction of derivative

contracts directly ties the NWS reported temperature measures at these stations to

the large economic interests of traders and hedgers in the market.

As of June 30, 2012 there are 24 U.S. cities with temperature related deriva-

tive contracts trading on them. These contracts were issued in four different waves

in 1999-2000, 2003, 2005, and 2008. Our empirical setting allows us to compare

the improvement in temperature accuracy of the weather stations with derivatives

(the treatment group) around the derivative launch dates with a set of non-shocked

stations (the control group) during the same period. The staggered nature of the

derivative launch allows us to separate the effect of any time trend in error rate or

any general improvement in NWS’s technology over time from improvements due to

derivative introduction. Our empirical setting has another important advantage in

terms of establishing causality. Unlike stocks, bonds, or foreign currencies, the vari-

4As per the survey results of Weather Risk Management Association (WRMA), an industry
body for weather risk, in notional terms, more than 95% of these contracts are temperature related.
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able underlying the weather derivatives contract is not a traded commodity and is

completely exogenous. Thus the introduction of the derivative contract is not going

to affect the value of the underlying asset – a concern that is always present in studies

that analyze the effect of derivative contracts on the underlying assets.

We obtain the initial or raw temperatures from a report, called METAR report,

produced hourly by the NWS. These reports contain the initial record of tempera-

ture for each weather station and are disseminated immediately to users. The initial

temperature records can sometimes be erroneous due to reasons such as equipment

malfunction, improper installation of the equipment, or improper calibration and

maintenance of the station.5 At the time of its initial report, NWS makes it clear

that the initial temperature numbers are preliminary and subject to change based

on their data cleaning and verification exercise. To compute the accuracy of these

numbers, we obtain corrected temperature data from two sources. National Climatic

Data Center (NCDC), an affiliated agency of NWS, is mandated with the task of

correcting mistakes in NWS measurement and issuing a restatement after a time lag.

In addition, a private company called MDA Information Systems Inc. (MDA) spe-

cializes in correcting the raw temperature data from the NWS. They use a number of

techniques to correct the error in initial measurement including recovering data from

alternative sources, using their proprietary model to correct mistakes, cross-checking

the NWS data against other nearby stations and by calling up the climate centers, in-

cluding NWS field offices, to discuss possible errors. We define measurement error as

any discrepancy between the raw values obtained from METAR reports and the cor-

rected values. Our results are not dependent on the source of corrected temperature

values since NCDC and MDA reported temperatures are almost identical.

We obtain measurement error data for all the weather stations with derivative

contracts along with a set of control stations. Using a sample period of 1999-2012

5For example, see NWS instruction number 10-1302 or NWS 10-1004 for steps undertaken by
the weather stations to minimize errors in the data gathering exercise.
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for 49 treatment and control stations, we find that the median weather station in

our sample has an error rate of 12 days per year. To examine the effect of derivative

introduction on error rate, we estimate a difference-in-differences model using station

and year fixed effects. Our estimation shows that after the introduction of weather

derivative contracts, the treated station’s error rate comes down significantly by 1.6

to 2.4 days depending on the model specification. The decline in error rate represents

about 13-20% of the median error rate in our sample. Thus, weather stations with

derivative contracts have lower incidence of inaccurate data after their recorded tem-

perature numbers become reference points for billions of dollars of financial contracts

in an open market.

Are these improvements driven by economic interests generated by the financial

contracts? To answer this question, we conduct three tests. First, we show that the

improvement is larger for stations that received derivative contracts in earlier waves.

These stations are likely to have relatively higher economic interests based on CME’s

revealed preference. Second, we show that the effects are stronger for cities with rela-

tively higher populations, i.e., for cities that are likely to have higher energy demands

and hence higher economic interests in weather derivative products. In our third test,

we exploit an interesting seasonality of this market. An overwhelming majority of

these contracts are traded in very hot and cold months. The Heating Degree Day con-

tracts (HDD) are used by hedgers in the winter months to hedge against variability

in cold weather. Conversely, the Cooling Degree Days (CDD) contracts are used in

summer months to hedge against variability in hot weather. There are two months of

the year, called the “cross-over months” by many market participants, when there is

very little activity in either contract’s market. These are the months of April and Oc-

tober. Consistent with our assertion that economic interests influence measurement

accuracy, we find that all the accuracy improvements come from months excluding

April and October, and there is no change in the measurement accuracy in these two
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months.6 Overall these results establish our main claim that the launch of weather

derivatives results in better measurement outcomes by the NWS and the result is

most likely linked with economic interests generated through derivative contracts.

There are two main channels of improvement that could lead to the decrease

in error rates: better technology or better effort by NWS employees. If the NWS

improves its technology at the derivative launch stations precisely at the time of

derivative introduction, then the effect that we document would come mainly from

this improvement. We provide both anecdotal and empirical evidence to the contrary.

While NWS weather stations undergo regular upgrades in their measurement tech-

nology, we show the major shift in technology happened before September 1999, i.e.,

before the launch of CME weather derivatives. Additionally, our test based on the

seasonality of this market allows us to separate the two channels as well. If the NWS

selectively introduces better equipment at these stations at the time of derivative

launch then the improvement in measurement accuracy should be felt throughout

the year. If, on the other hand, better effort is put forth by officials when economic

interests are high, then we expect to see higher improvement in peak months and not

much of a difference in April and October. As mentioned above, our results support

the latter interpretation. Finally, we investigate the extent of maintenance activity

performed by NWS at these weather stations to directly link the launch of derivatives

launch to the agency’s actions. Consistent with our effort based interpretation, we

document a significant increase in the frequency of maintenance operations by the

NWS for derivative stations with higher economic interests.

Our results have important implications for the role of markets in improving ef-

ficiency. While there has been a large body of research on the role of markets in

improving the allocative efficiency of the economy, little is known empirically about

6As a robustness exercise, we widen the cross-over period to six months including months imme-
diately preceding and following April and October. We show that our results mainly come from the
peak activity months of June-August and December-February, i.e., from a period of high economic
interest in this market.
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the role of markets in improving government agencies’ actions. Our evidence shows

that while governments often regulate markets for better behavior by market partic-

ipants, markets can regulate governments through the channels of increased scrutiny

and visibility. These improvements in government performance can affect real out-

comes as the benefits accrue to society as a whole. The positive externality of better

weather measurement could be enjoyed by the many businesses that rely on timely and

accurate temperature measurements to make decisions. As an example, energy com-

panies use both high and low frequency temperature data to plan energy production.

An improvement in temperature accuracy will lead to better production planning by

such companies. Indeed, NCDC has established a number of sector-specific user en-

gagement programs that highlight the needs for timely and accurate data by a diverse

set of industries such as energy, transportation, tourism, and construction.7 In this

respect, our study directly relates to the role of financial innovations and derivatives

in affecting real outcomes.8 Our study also relates to the literature on the effect of

financial derivatives on firm valuation. Perez-Gonzalez and Yun (2012) analyze the

effect of weather risk-management on energy utilities. They show that derivative

usage leads to higher valuation, investments and leverage for such firms.9

Finally, our study contributes to the corporate governance literature that focuses

on the role of markets in disciplining corporate managers. Our paper complements

this literature by providing evidence on the monitoring role of markets in a public

sector setting. Researchers have for long recognized the difficulty in achieving efficient

outcomes in government bureaucracies through performance based incentive contracts

(e.g., see Heckman, Heinrich, and Smith (1997)). The difficulty arises mainly because

7see http://www.ncdc.noaa.gov/oa/userengagement/userengagement.html .
8See Tufano (2003) for a survey on financial innovation including the role of innovation on society.

See Stulz (2004) for a survey of the literature and discussions on costs and benefits of derivatives.
9There is a large literature on the effect of financial derivatives on firm valuation and investment

decisions in non-weather risk related context as well. For example, see Allayannis and Weston
(2001), Carter, Rogers, and Simkins (2006), Purnanandam (2007), and Berrospide, Purnanandam,
and Rajan (2010) among others.
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the goals of a public agency are not easily defined and the performance relative to

these goals is also hard to quantify. Heckman et al. (1997) study the performance

standard systems of Job Training Partnership Act (JTPA) to assess the effectiveness

of incentive contracts in such a setting.10 Our study shows that visibility generated

through financial contracts that are tied to the bureaucracies’ actions can work as

a device to obtain better outcomes from these agencies. This mechanisms can be

especially useful for agencies that face difficulty in establishing performance based

contracts. Overall our study has important implications for the literature on the effi-

ciency of public enterprise (see Karpoff (2001)) and financial markets’ role in making

public bureaucracies more efficient.

The rest of the paper is organized as follows. In Section 2.3 we describe the

weather derivatives market in detail and highlight some key aspects of temperature

measurement by the NWS. Section 2.4 describes the data and provides sample statis-

tics. Section 2.5 provides the empirical design and results of the paper. Section 2.6

concludes.

2.3 Weather Derivatives Market

Weather has a significant impact on the operating and financial performance of

several industries, municipalities, and households. Some survey evidence suggests that

over $3 trillion of the U.S. GDP is associated with weather-sensitive industries.11 In-

dustries such as energy, construction, food processing, retail, and transportation are

especially exposed to weather risk. Weather derivative products can provide insur-

ance against weather related losses to these businesses. In addition, these products

provide an alternative investment and diversification opportunity to the financial in-

10Heinrich (2002) provides a detailed discussion of outcome-based performance management for
public sector agencies. Dixit (2002) provides an overview of the theory of incentives with a special
focus on the public sector.

11See Dutton (2002) for details.
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vestment community. While the need for insurance against weather conditions has

been felt for a long time, it was only in 1999 that the first set of exchange traded

weather contracts was listed on the Chicago Mercantile Exchange (CME). The ex-

change launched temperature based futures and options contracts on 10 U.S. cities

within 13 months of September 1999. It launched contracts on several other cities

in three more waves in 2003, 2005, and 2008. As of June 30, 2012, CME weather

contracts are available for 24 U.S. cities spanning all broad meteorological areas of the

country.12 We provide a timeline of the introduction of these contracts in Figure B.1.

As described in detail later, the staggered introduction of these contracts provides us

with several econometric advantages in identifying the effect of the derivatives market

on the NWS station’s error rate.

[Figure B.1 Here]

As of September 2005, approximately the middle point of our sample period, the

total notional value of all CME traded weather contracts amounted to about $22

billion and an overwhelming majority of weather contracts are based on temperature.

Based on survey evidence, the Weather Risk Management Association (WRMA) re-

ported that over 95% of the CME contracts, in notional value terms, were related

to temperature in 2005-06 (WRMA Survey Report (2006)). Other major categories

included contracts on rain, wind, and snow. Temperature related contracts insure the

buyers from either excessive heat or cold during a specified period of time. There are

two types of contracts under this category: Heating Degree Days (HDD) and Cooling

Degree Days (CDD) contracts. The buyer of an HDD contract receives payments

for cold days defined as days with average temperature below 650F; conversely the

buyer of a CDD contract receives payments for hot days defined as days with average

12In addition to these 24 cities, CME also has snowfall contracts on Newark and the hurricane
index on the Eastern US from Brownsville, Texas to Eastport, Maine. We do not include these two
locations in our analysis since our focus is on city specific temperature related contracts.
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temperature exceeding 650F. These contracts are written on observed temperature of

a specific city for a specific period.

An Example Contract: As an illustration, consider a CDD option contract

on Chicago for the month of August. The contract specifies a weather station in

Chicago as the reference station for this trade. The weather station is typically

located near the underlying city’s airport and is identified by a WBAN number.13 The

Chicago contracts in our example are settled based on the weather station at O’Hare

International Airport with WBAN station number 94846. Every day in August the

CDD contract compares the average of daily maximum and minimum temperatures

(Tavg) reported at this station with 650F and computes the cooling degree for the

day as max[0, Tavg − 65]. These degree days are cumulated over the entire month of

August and payments are made based on the cumulative month-end number called

the CDD index for August. Typically, one point in the index entitles the buyer to

a payment of $20 from the seller. With hundreds of thousands of such contracts

in the market, the reported temperature at these stations has tremendous economic

implications for the market participants.

The final settlement of these contracts are based on the CDD or HDD index

reported by MDA Information Systems, Inc. The settlement occurs on the second

business day after the contract month.14 MDA (formerly Earth Satellite Corporation,

founded in 1969) is a private company and a leading provider of weather data to the

weather trading industry. CME uses MDA’s services to obtain temperatures based

on NWS data for its trade settlements. MDA obtains weather data reported from

the NWS and performs several quality control checks before transmitting it to the

CME for trade settlements. MDA’s quality checks are based on cross-verification,

consistency of the data with other nearby stations, and their own meteorological

13WBAN, an acronym for Weather-Bureau-Army-Navy, is a five-digit weather station number
that uniquely identifies a measurement location.

14See the guidelines on CME’s website at: http://www.cmegroup.com/trading/weather/files/Monthly-
CDD-Index-Futures-Final-Settlement-Procedure.pdf
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models. For example, NWS occasionally reports missing temperature data for a

weather station. The missing data can arise due to improper recording or other

instrument malfunctions. In such cases, “MDA Federal first attempts to recover this

data from alternative data sources, such as Climate Summary Reports, contacting

the local NWS office or local media reports, as appropriate.” (quoted from MDA’s

procedure manual). This is one direct example of increased outside scrutiny and

visibility of the temperature numbers reported by the NWS.

2.3.1 Temperature Measurement and Sources of Error

There are many government agencies that coordinate to meet the public’s weather

needs. The ultimate weather authority is the Department of Commerce (DOC), which

is a Cabinet department of the federal government. Within the DOC, the National

Oceanic and Atmospheric Administration (NOAA) is a bureau “focused on the con-

dition of the oceans and the atmosphere.” NOAA oversees 6 main offices out of which

2 offices focus on surface temperatures: the National Weather Service (NWS) and

the National Environmental Satellite, Data and Information Service (NESDIS). The

NWS handles most weather related government activities, including producing and

disseminating temperature readings. The NESDIS manages and archives data col-

lected by many government agencies. The National Climactic Data Center (NCDC)

is an office within the NESDIS that archives and processes past weather records. In

summary, the NWS and NOAA are the main agencies ensuring accurate on site mea-

surement of temperatures throughout the United States, while the NCDC handles

cleaning and storing past temperatures.

As mentioned earlier, weather derivative contracts are settled on the basis of tem-

perature readings produced by the underlying WBAN stations. Although there could

be multiple weather stations within a city, 23 out of 24 CME derivative stations

are located at the city’s main airport. A great degree of care is needed to obtain
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temperature with high accuracy even in a laboratory setting (e.g., see McGee (1988)

for a detailed analysis of temperature measurement issues). These WBAN stations

measure temperature in an outside environment, which can be even more difficult

to measure with precision. A wide variety of factors affect accurate temperature

measurement at a WBAN station. These factors can be broadly classified into three

(non-exclusive) groups: (a) technological, (b) environmental, and (c) human. The

technological factors relate to basic quality of the thermometer such as the sensor’s

effectiveness, calibration errors, and self-heating of the instrument. Environmental

factors relate to issues such as the location of the sensors and the effect of nearby

electric disturbances, radiation, sunlight, and wind. The human factor captures the

effect of manual intervention needed to measure temperature accurately. These inter-

ventions come in several forms such as active maintenance of the instrument, proper

calibration, and minimizing the impact of environmental factors that can lead to

inaccurate reports.

An Example of Measurement Error: A well publicized case from the Oahu

weather station in Hawaii provides an illustrative example of measurement error in

temperature. In June, 2009, the NWS weather station at the Honolulu airport re-

ported a daily maximum temperature of 920F for 6 consecutive days. On the same

days, a nearby tsunami warning station located about 3 miles away reported tem-

perature that was about 60F to 90F below the Honolulu station’s recordings. Once

this discrepancy was pointed out, NOAA officials investigated the situation and de-

tected an error at the Honolulu station. After reparation of the Honolulu station, the

temperature recordings of the two stations converged. In this example, the initial tem-

perature recorded at the Honolulu station would be subsequently corrected/restated

to reflect this error.

NOAA and NWS have detailed procedure manuals for collecting these readings in

a timely and accurate manner. They also issue regular directives to their field offices
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on best practices in measuring temperature. These directives can be obtained from

NOAA’s website.15 As an example, consider the NWS instruction 10-1302, dated

June 21, 2010. It details out requirements and standards for NWS temperature and

precipitation recordings.16 It lays out procedures for proper installation, monitoring,

and maintenance of these instruments. A few examples of these guidelines are: (a) the

instrument must be placed at least 100 feet from any concrete or paved surface; (b) all

attempts should be made to avoid areas with rough terrain, air drainage, areas where

water tends to collect, and areas where drifting snow collects; (c) the instrument

should not have any major obstruction (for example nearby buildings, trees, or fence)

close-by that can affect its readings. Similarly, the NWS directive 10-1004 issued

on February 17, 2011 provides a detailed set of instructions on the monitoring of

surface weather stations. These instructions point out the possible sources of error in

temperature measurement and the NWS’s attempts at training their staff to minimize

these error rates. These guidelines also show the role of humans in measuring weather

variables in an accurate manner.

In addition to CME and MDA, traders and financial parties regularly monitor

these numbers and establish financial positions in this market based on their needs.

Weather scientists have taken note of the increased attention paid to climate observa-

tions by the private sector in recent years (e.g., see Changnon and Changnon (2010)).

As expected, NOAA, NWS and weather industry professionals have all recognized

the need for better data quality from the WBAN stations. A number of initiatives

such as joint conferences and exchange of ideas have taken place between these groups

in light of the weather derivatives introduction. A workshop report in 2002 by the

American Meteorological Society (Muranane et al. (2002)) discusses the data needs

of the private sector of the weather derivatives market.

We argue that the introduction of a weather derivative market attaches immediate

15http://www.nws.noaa.gov/directives/010/010.htm.
16See http://www.nws.noaa.gov/directives/sym/pd01013002curr.pdf
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and large economic importance to the NWS temperature numbers, which in turn

results in tremendous scrutiny of these numbers by investors, media, and other related

parties. Indeed, the NWS also recognizes the need for better data collection exercises

in light of the increased scrutiny by outside parties. In the Appendix, we provide

an excerpt from an NWS directive to the field offices that highlights this aspect of

monitoring. We also provide an excerpt from a meeting of NWS officials with weather

industry representatives regarding the need for better data in the Appendix. In the

rest of the paper we empirically test our main hypothesis that markets improve the

measurement accuracy of NWS temperature recordings.

2.4 Data

We collect data from several sources and combine them together for our analysis.

We first collect information on the launch dates of monthly derivative contracts on

a city’s temperature from the CME and press releases. For some cities, the CME

introduced weekly and seasonal contracts at a later date as well. These contracts

were introduced after the monthly contracts, hence we focus on the monthly contract

introduction dates. There are 24 weather stations with temperature derivative con-

tracts as of June, 2012. In addition, we identify 25 stations without weather derivative

contracts as the control group. The 25 control weather stations are chosen by sorting

all U.S. metropolitan areas by population and using the 25 highest population cities

without weather derivatives. We use the 2011 population estimates for metropoli-

tan areas from the United States Census Bureau for this purpose.17 We identify the

WBAN number (i.e., the exact station number) of all derivative cities based on the

contract specification. For the control cities, we use the weather station at the largest

nearby airport. In total we have 49 weather stations in our sample. These weather

stations, their WBAN identification number, and the derivative introduction dates

17http://www.census.gov/popest/data/metro/totals/2011/
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for the treatment group are provided in Table B.1. There have been four main waves

of derivative introductions: 1999-2000, 2003, 2005, and 2008. The list of derivative

stations cover mostly large cities as well as a few smaller cities that are likely to have

large economic interests tied to weather.

[Table B.1 Here]

We obtain all weather data from MDA Information Systems, Inc. As mentioned

earlier, MDA is a leading provider of weather data to weather traders as well as to

the CME. We obtain two pieces of information for each weather station: (i) the raw

temperature readings, and (ii) the cleaned or corrected temperature values. The raw

temperature readings are the actual reported temperature numbers by the NWS or

an affiliated organization for each station on a given day. We obtain data on the daily

maximum and minimum temperature because the weather derivative contracts are

settled based on the average of these two values. The raw temperature comes from

METAR readings, which are standardized weather reports produced by Automated

Surface Observing Systems stations. These stations are collectively operated by the

Federal Aviation Administration, National Weather Service and the Department of

Defense. For expositional simplicity we call these stations NWS operated stations

throughout the paper since they are the main nodal agency for temperature related

activities. MDA obtains the raw temperature data for each WBAN station from the

NWS METAR reports.18

The second key measure is the ‘cleaned’ or ‘corrected’ temperature value for every

station-date pair. MDA uses a detailed five step process to clean the raw temperature

values obtained from the government agencies. Through this process they ensure that

18The NWS stations produce hourly weather reports, 6-hour min/max temperature reports and
24-hour min/max temperature reports at midnight local time. We obtain the 24-hour min/max
temperature values as the measures of raw temperature. If this value is not available for a specific
station-date, then MDA provides us with the minimum and maximum temperature based on 6-hour
or hourly reports.
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the data is consistent with nearby reporting stations, and it conforms to meteorolog-

ical consistency. They also take care of missing temperature values, which occur in

the NWS reports due to reasons such as improper or incomplete METAR record-

ings. If the raw data has missing values, MDA uses other sources, such as NWS

Climate Summary Reports, contacts at the local NWS office or local media reports

to obtain temperature values. Equally important, MDA checks all the raw tempera-

tures for erroneous values by checking “the data against itself and against alternative

data sources, such as hourly data, Climate Summary Reports, surrounding stations,

and additional observations, as appropriate.” MDA’s meteorologists then examine

the temperatures to ensure they are meteorologically consistent, i.e., they conform to

basic consistency checks against other weather related variables. If temperatures are

missing or erroneous, then new values are created using proprietary estimation tech-

niques of the MDA. Using this detailed process, MDA arrives at a clean temperature

measure that is used widely by the financial services industry as well as several other

sectors. In essence, the MDA cleaned values are third-party corrected temperature

numbers for these weather stations. We use the difference between the corrected and

raw value as our key measure of measurement error in NWS temperature recordings.

We also obtain data on cleaned temperatures with corrections to the raw NWS

temperature numbers from the NCDC. NCDC issues these official temperatures with

a couple months’ time lag. These corrections, or restatements, by the NCDC provide

us with yet another measure of measurement accuracy at the time of initial report.

Further information on preliminary and cleaned data can be obtained from NWS

instruction manuals such as NWSI 10-1004 dated February 17, 2011 (NWS, 2011)

and NWSPS 10-10 dated September 29, 2010 (NWS, 2010). NCDC restated numbers

are extremely close to the MDA corrected values. Therefore, we use the difference

between NWS raw numbers and MDA corrected values as the main variable in all

our tests. We prefer the MDA based clean values because it alleviates the concern
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that the government agencies may be less inclined to restate their recordings after

these contracts begin to trade. Figure B.2 provides a timeline of initial temperature

measurement by the NWS, the corrections reported by MDA for contract settlement

by CME, and the final cleaned value generated by NCDC.

[Figure B.2 Here]

2.4.1 Descriptive Statistics

Our sample covers all 49 stations, 24 with derivative contracts and 25 control

stations, from 1999 to 2011. We begin in 1999 because we are unable to obtain

high quality historical data on raw NWS temperature values for years prior to 1999.

This data restriction should have only a minor impact on our study because 20 out

of 24 treatment stations received derivative contracts after 1999. Thus we have 20

stations for which we have data on both before and after the derivatives’ introduction

– we exploit the variation generated by these stations around the launch date in our

empirical tests.

We take the number of days a given station reports erroneous or missing values as

the main measure of temperature inaccuracy. These are the dates when the raw and

corrected values differ from each other. We aggregate this number at the yearly level

and use the yearly count as the key measure of measurement error rate of a station

in a year. We have 49 annual observations spread over 13 years in our sample. Some

station-years show considerable error rate leading to skewness in the data. The Los

Angeles weather station, for example, has very high levels of error rate across many

years. In our empirical tests we remove such station specific effects using station fixed

effects. Further, we winsorize the data at 5% from both tails to ensure that our results

are not driven by outlier observations. We also use log transformed error rate as an

alternative measure of the dependent variable to alleviate concerns about outliers. As

reported later, our results remain robust to either specification. Summary statistics
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are presented in Table B.2. A representative median station reports about 12 error

days per year. There is considerable cross-sectional variation in the data as evident

by the 90th (20 days) and 10th (5 days) percentiles of error days in the sample (see

also Figure B.3). In unreported results, we find that raw and final numbers remain

the same for 96.69% of days. Of the remaining 3.31% days, 2.12% have a difference

of 10F between the raw and cleaned data. The remaining 1.19% observations have

considerably large discrepancies mostly ranging from 2-100F .

[Table B.2 Here]

[Figure B.3 Here]

In addition to the main data on temperature recordings, we also obtain open

interest data from the Chicago Mercantile Exchange. We use this information to

analyze the relationship between derivative introduction and temperature accuracy

across months with high and low economic interest.

2.5 Empirical Design and Analysis

2.5.1 Research Design

We estimate the effect of weather derivative introduction on the accuracy of tem-

perature measurement in a difference-in-differences framework. We compare the mea-

surement accuracy of a weather derivative station after the shock (i.e., after the in-

troduction date) with the same station’s accuracy before the shock to get the first

margin of difference. The second margin of difference comes from the change in the

accuracy level of non-shocked stations around the same time period. The underlying

assumption is that the changes in the non-shocked stations’ accuracy level separates

out the effect of other (i.e., non-derivative related) factors on the accuracy level of the

shocked stations. These non-derivative related changes in accuracy can come from
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sources such as technological advancement over time, climatic changes, or NWS’ over-

all effort in improving its accuracy levels across all its stations. A key advantage of

the staggered launch of weather derivative contracts across cities is that it allows us

to remove the effect of any such macro-economic or broad climatic factors on mea-

surement accuracy. We implement this research design using the following regression

model using both station and year fixed effects:

yst = αs + β × derivativest + yeart + εst (2.1)

yst denotes measurement error at the WBAN station s in year t; αs stands for

station fixed effects; yeart denotes the year fixed effects. derivativest takes a value of

one for station-year observations after the introduction of derivatives, zero otherwise.

The year of introduction is included in the post-introduction period. In this speci-

fication, station fixed effects remove the station specific component of measurement

error whereas year fixed effects control for broad time-specific effects including the

possibility of any secular improvement in measurement accuracy across all stations.

Thus, the coefficient on derivativest provides the difference-in-differences estimate of

interest.

The key identifying assumption behind our empirical exercise is that the weather

derivative’s launch is not correlated with any unobserved improvements in the sta-

tion’s ability to measure the temperature. It is unlikely that the unobserved ability

of the station officers change precisely at the same time when the derivative contracts

are launched. The staggered nature of our shock makes it even less likely that our

results are confounded by any such omitted factors. Further, our maintained assump-

tion is that the CME’s selection of these derivative contracts is primarily driven by

the demand for these hedging products at these cities, and not by anticipated im-

provement in the accuracy level of temperature measurement. Note that it poses
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no identification challenge for us if the CME chooses these stations based on their

historical measurement accuracy. Station fixed effects separate out any such effect

from our analysis. Our estimation comes from within-station changes in the accuracy

level and not from the average differences between the stations.

Before presenting our main results, we estimate a simple selection model to un-

derstand the key drivers behind the selection of these stations. We estimate a Probit

model with a cross-section of 281 metropolitan cities obtained from the U.S. census

data.19 The dependent variable equals one for the 24 cities that have weather deriva-

tives and zero for the remaining cities. We include only three explanatory variables in

the model as proxies for the demand of weather derivative products. These variables

are: (a) the city’s population rank,20 (b) whether the city has any financial or com-

modity exchange or not,21 and (c) whether the city is the largest city in a top 15 crop

producing state.22 The key idea behind the selection of these variables is to capture

the effect of hedging demands from energy and farming sectors, two main end-users

of the weather derivative products, and the presence of financial intermediaries in

these cities. A city’s population is used as a proxy for energy demand. The largest

city in a top crop producing state is likely to have large trading interests related to

the farming sector. Finally, if a city has exchanges, such as the Kansas City Board

of Trade, then it is less costly for the financial intermediaries to trade with the end

users. Exchanges may also proxy for central locations in local economies that are

19For the selection model we use all metropolitan cities available in the U.S. census data. In
subsequent tests involving measurement errors, we limit our attention to control cities that are
highly populated. This ensures comparability across our treatment and control stations on important
dimensions such as the NWS-designated service level of the weather station.

202011 population estimates from the U.S. Census Bureau
21Financial exchange cities are: Chicago (CBOE, CME, etc.), Jersey City (EDGA, NSE), New

York (NYSE, NASDAQ, etc.), Philadelphia (Philadelphia Stock Exchange), Boston (Boston Stock
Exchange) and Lenexa (BATS Exchange). Commodities exchange cities: Chicago (CBOT, CME,
etc.), Atlanta (Intercontinental Exchange), Kansas City (KCBT), Memphis (Memphis Cotton Ex-
change), Minneapolis (Minneapolis Grain Exchange) and New York (NY Mercantile Exchange)

22Crop rankings are based on the state’s value-added to the U.S. economy by the agriculture
sector in 2011. Data is from the United States Department of Agriculture Economic Research
Service: http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics

57



likely to have common weather risks.

With these three variables we estimate the Probit model and present the results

in Column 1 of Table B.3. Larger cities, top cities in farming states, and cities with

trading exchanges are all more likely to have a derivative contract, although the coef-

ficient on farming states is not significant. The McFadden’s Psuedo R2 of the model is

reasonably high, indicating that these simple measures of hedging demand capture a

large variation in the selection of these contracts.23 In Column 2, we estimate a model

that predicts the likelihood of receiving a derivative contract in the first wave, i.e.,

in 1999-2000. The dependent variable equals one for stations that received derivative

contracts in the first wave, and zero otherwise. The coefficient estimate on the high

crop variable increases in economic magnitude and is now significant at the 10% level.

The coefficients on population and exchange cities continue to be significant and have

similar economic magnitude. Overall these findings are consistent with our claim

that demand side considerations played a major role in the selection of these cities.

Further, cities chosen in earlier cohorts are more likely to have higher demands for

weather hedging products from energy and farming sectors.

[Table B.3 Here]

2.5.2 Empirical Analysis

We estimate the difference-in-differences model using data on 49 weather stations

for the 1999-2011 period. As mentioned earlier, 24 stations have the weather deriva-

tive contract, whereas 25 do not. The 25 control stations are the 25 most populated

cities that do not have a weather derivative contract. In addition to their population,

the treatment and control cities are comparable on several other relevant dimensions

as well. In particular, they are similar in terms of the NWS’s designated service level

23For interpretational simplicity of R2, we also estimate these models using a linear regression
model and obtain traditional R2 in the range of 30%.
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for the maintenance of the weather station. NWS classifies weather stations into 4

service levels (A,B,C, and D) based on air traffic and bad weather outcomes. Service

Level D stations are completely automated. Service Level C stations have an addi-

tional human observer when the tower is open. Service Levels A and B have a human

observer practically all the time, and the observers have more responsibilities at these

stations. Almost all of our treatment and control stations belong to category A, i.e.,

to a category that requires the utmost care from human observers.24 More important,

the service level of our treatment and control stations are comparable as documented

in Table B.1. Thus the control group is likely to serve as a reasonable counterfactual

for our study. We also document some other key characteristics of the treatment and

control group in the Table. These groups are comparable in terms of population and

air traffic level as well.25 In sum, the control cities are not very different from the

treatment cities in terms of their designated service levels and non-derivative related

interests in temperature.

As a prelude to the main regression analysis, we provide the average number of

error days for the shocked stations (treatment group) for the 3 years before and after

the shock and compare that to the corresponding averages of the control firms. We

take the average number of error days for all control stations during the given calendar

year for this exercise. We compute the average error days across the two groups for

the periods before and after the shock and plot them in Figure B.4.26 The error rate

drops slightly for the control group before and after the shock, whereas there is a

remarkable drop in the corresponding number for the treatment group. The average

error rate drops from 12.86 to 11.29 days per year for the treatment group compared

24Service level data comes from the Aviation Weather Assets Database:
http://apps.avmet.com/awad/AWADReport.cfm

25Air traffic ranks come from the Airports Council International: http://www.aci-
na.org/content/airport-traffic-reports

26For this figure, we are unable to use the data for stations that received derivatives in the first
wave of 1999-2000. We do not have data for the past three years for these stations. All our formal
tests, presented in the rest of the paper, include these stations as well.
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to a corresponding drop from 13.16 to 12.44 days per year for the control stations. In

our regression model, we formally assess the statistical significance of the difference

after removing the station and year fixed effects.

[Figure B.4 Here]

Results of the estimation exercise are provided in Table B.4. Models 1 and 2 use

the number of error days as the dependent variable, whereas Models 3 and 4 use its

log transformed values. Model 1 presents the results without year fixed effects. We

obtain a coefficient of -2.36 on the derivative variable, indicating a decline of about

2.36 days in the annual error rate. The effect is statistically significant at the 1%

level. In Model 2 we include the year fixed effects to remove the effect of any secular

improvement in weather measurement technology over time or other macroeconomic

and climatic changes that might affect the measurement error of all stations. We

obtain a coefficient estimate of -1.63 that is also significant at the 1% level. Models 3

and 4 obtain similar results and ensure that our estimates are not driven by outliers.

These baseline results establish the effect of derivatives introduction on measurement

accuracy: NWS reported raw temperature readings become significantly more accu-

rate once there is a direct financial market interest tied to these readings. In real

terms, depending on the model specification these estimates translate into a decline

of about 13-20% in the error rate of the median station after the introduction of the

derivative contracts.

[Table B.4 Here]

As a robustness exercise, we check for and rule out the presence of any pre-existing

declining trend in the error days of the shocked stations. We compute the change in

error days from three years before to the year before derivative introduction. Before

the shock both treatment and control stations show an increase, not a decrease, in
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the error rate. The shocked stations experienced an average change of +7% in the

error rate during the pre-introduction period as compared to the control stations.

The difference in the rate of change for the two groups during the pre-shock period

is statistically indistinguishable from zero. After the introduction of the derivative,

however, the treatment stations experience a steady decline over the next three years.

By the end of the third year after the shock, there is a decline of about 20% in the error

rate of the shocked stations as compared to the corresponding decline for the control

stations. This shows that there is no declining trend in measurement error of shocked

stations before the launch, but a remarkable decline afterwards. The improvement,

therefore, is likely caused by the introduction of financial markets.

Overall these results show that the introduction of temperature related financial

contracts results in better measurement outcomes by the NWS. We argue that these

effects arise due to increased economic interests and the resulting scrutiny of these

measures by market participants. As economic interests increase, the reputational

costs of measurement error are likely to increase as well. Market participants are

more likely to monitor these numbers and point out mistakes when economic interests

are high.

If an increase in economic interests is driving the improvement in temperature

readings, then we would expect locations with higher economic interests to see greater

improvement. Our next set of tests is designed to exploit the cross-sectional variation

in the level of economic interests across cities to provide evidence in support of this

channel.

2.5.3 Economic Interests and Channels of Improvement

2.5.3.1 Cohort Analysis

We first exploit the variation generated by the year of introduction of these con-

tracts to relate economic interests to measurement errors. Contracts introduced in
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earlier cohorts are likely to have higher economic interests as compared to later co-

horts. This is based on the underlying assumption that CME’s incentive to introduce

a weather contract in a city is primarily driven by the demand for weather hedging

products in that city. Thus cities with higher demand are likely to get these contracts

in earlier cohorts. This assumption is consistent with our results in the selection model

discussed earlier in Section 2.5.1 of the paper. We expect a higher impact of derivative

launch on measurement accuracy for the earlier cohort as compared to later ones.

We separately estimate the effect of derivative introduction on measurement ac-

curacy for each cohort as a first test of this hypothesis. We take all the shocked

stations for a given cohort and include data from 1999 (i.e., the beginning year of

the sample) to three years after the introduction year in the sample. We limit the

sample to three years post-derivative introduction to estimate our main effects in

the immediate aftermath of the launch. As an example, for the 2003 cohort, we in-

clude data from 2000 to 2006 for all the stations that launched derivative contracts in

2003 (Kansas City, Houston, Boston, Minneapolis, and Sacramento) in the treatment

group. All the non-derivative stations during these years are included in the control

group. Results are provided in Table B.5. We obtain a negative coefficient on the

derivative variable for all four cohorts, with significant coefficients for all but one.

Consistent with our hypothesis, the strongest effect comes from the earliest cohort

(2000) in the sample, whereas the weakest result comes from the last cohort (2008).

For the 2000 cohort, we find a decline of almost 5 days per year in the error rate.

The corresponding improvements are -2.0, -2.7, and -1.0 for the 2003, 2005, and 2008

cohorts, respectively.

[Table B.5 Here]

As an additional empirical test of the cohort effect, we estimate the following
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model:

yst = αs + βearly · derivativeearlyst + βlate · derivativelatest + yeart + εst (2.2)

In this model derivativeearlyst equals one for years after the derivative launch for all

cities in the 1999/2000 cohorts, and zero otherwise; derivativelatest equals one for years

after the derivative launch for all cities in the later cohorts, and zero otherwise. This

model modifies our base case specification by allowing us to separately estimate the

effect for the earliest cohort versus the rest. We estimate this model with data from

the entire sample period. Results are provided in the last column of Table B.5. The

coefficient estimate of -5.1 on derivativeearlyst is considerably larger than the estimate

of -1.2 on derivativelatest variable. The difference is statistically significant at the 11%

level.

The improvement in measurement accuracy comes from all cohorts, with the

strongest effect from the 2000 cohort. The evidence is consistent with the idea that

higher economic interests leads to higher visibility and better monitoring effects.

2.5.3.2 End-user Interest

The energy sector is the most important set of end-users of weather derivative

products. Cities with high demand for energy are, therefore, likely to have relatively

higher interest in weather derivative products. We exploit this heterogeneity across

weather derivative cities to provide further support for our main claim that when

economic interests are high, there is a higher improvement in measurement accuracy.

We take a city’s population as a proxy for its energy demand. If a city falls among

the top 25 population cities in the U.S., then we classify it as a high energy demand

location for our empirical test. Further, consistent with the analysis of the previous

section, if a city gets a derivative contract in the first two waves (1999 and 2000),
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we consider it as a high demand station as well. We create an indicator variable

High Demand that equals one if the weather derivative station falls among the top 25

population cities or belongs to the early cohort. We similarly create another indicator

variable Low Demand that equals One minus High Demand. There are six cities

in the Low Demand category: cities that received their derivative contract in later

cohorts and are among the low energy demand places. We expect these cities to have

relatively lower economic interests and market scrutiny as compared to the remaining

treatment cities in the sample. Our test is designed to pick up these differences in

market scrutiny on the measurement outcomes.

We estimate our main regression model after including High Demand and Low

Demand variables separately in the model. Results are provided in Table B.6. We

find that the improvements are concentrated in the subset of high demand cities.

The coefficient estimate on High Demand variable is almost four times larger: -2.22

as compared to -0.66 for Low Demand. The difference is significant at the 6% level. In

the log specification, the estimated coefficient on the High Demand variable is almost

twice as large as the coefficient on Low Demand. The difference in these coefficients is

statistically significant at a p-value of 0.11. Overall these results are consistent with

the notion that measurement outcomes improve with economic interests and market

scrutiny.

[Table B.6 Here]

2.5.3.3 Effort versus Technology

We have shown that the introduction of financial markets improves the actions

of the NWS by bringing more visibility and scrutiny of the reported temperature

numbers. We now focus on the sources of improvement. In particular, there are two

possible, not mutually exclusive, channels of improvement. First, the NWS might

install better thermometers or sensors at these stations precisely at the time when
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derivatives start trading. We call this the technology channel. Second, the NWS

officers might put forth more effort to better capture the temperature data in an

accurate manner after contract introduction. We call this the effort channel. While

the net effect of both these channels remains the same, i.e., an improvement in the

measurement of weather, our focus is more on the second channel. Said differently, we

want to investigate the disciplining effect of market purely on account of higher effort

put in by the government officials. These improvements can come through better

maintenance and monitoring of the weather stations to minimize erroneous reports.

One of the most important recent changes in the NWS’s temperature measurement

technology was the installation of Automated Surface Observing Systems (ASOS).

Although the NWS consistently upgrades these stations, the installation of ASOS

was the most important event on the technology side of temperature measurement.

We collected data on the ASOS installation dates for 48 out of 49 weather stations

in our sample.27 For each one of these stations, the ASOS was commissioned before

September 1999. This rules out the possibility of any major change in measurement

technology for weather derivative stations just after the introduction of the derivative

contract. In addition, we correlate the year of introduction of ASOS with an indicator

variable that equals one for the treatment group, and zero for the control group.

The correlation coefficient is almost zero. Thus, we do not find any evidence that

derivative stations in our sample get better and/or earlier technology from the NWS

as compared to the control stations.

We empirically separate the effort and technology channels by exploiting an im-

portant cross-sectional variation in trading activities across calendar months in the

weather derivatives market. This test also allows us to strengthen our claim that

economic interests drive more accurate measurement. As mentioned earlier, the end-

users of the weather derivatives market are typically sectors such as utilities, farming,

27The data for the Los Angeles Station is not available.
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transportation, retail, and food products. A majority of their hedging demands arise

in the months with higher levels of heat or cold. Not surprising, an overwhelm-

ing majority of these contracts are based in peak summer and peak winter months

(see Figure B.5). This leaves the months of April and October as the least traded

months on the exchange. We estimate the basic regression model separately for these

two months and the rest of the year. The key idea is to assess the improvement in

measurement efforts keeping the underlying measurement technology the same.

[Figure B.5 Here]

We aggregate all the error days in April and October for the first analysis and

similarly the error days in the remaining months for the second analysis. Results are

provided in Columns (1) and (2) of Table B.7, respectively. Examining Column 1, we

find no improvement in October and April, whereas there is significant improvement

in the active trading months. In an additional test, we separate the sample into two

groups by clubbing ±1 month around April and October in one group, and the rest in

another. Thus we have exactly six months in each group. As shown in Columns (3)

and (4) of the Table, we find negative coefficients for both groups, but the coefficient

is significant only for the peak months. Further, the coefficient for the peak months’

sub-sample is more than double the off-peak months’ regression coefficient. Thus

even at the same station, the improvement comes from months with active trading

interest. These are the months where the pressure and monitoring from the outside

market is likely to be the highest. In these months, the frequency of follow ups with

the NWS stations and analysis of the weather data by the trading professionals is

expected to be higher than the remaining months. Our result supports the view that

financial markets induce higher effort by the stations in measuring the temperature

accurately.

[Table B.7 Here]
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2.5.3.4 Station Maintenance

In this section we provide some direct evidence on actions undertaken by the

NWS in improving weather measurement. We investigate the frequency of mainte-

nance performed by NWS officers at the weather stations before and after the launch

of derivative instruments. MDA Inc, our data vendor, maintains a list of major main-

tenance operations for all the derivative trading stations since the year 2003. Similar

data for the control stations is not available.28 Since the data is available for only the

trading stations, we are only able to exploit the cross-sectional variation within these

stations. Following the variable definition in Section 2.5.3.2, we create an indicator

variable called High Demand. High Demand equals one for stations with potentially

higher economic interest in weather derivative products after the introduction of the

derivative contract. We analyze the difference in maintenance frequency across the

low and high demand categories of derivative stations using the same empirical design

as in in our base case estimates.

These maintenance operations are performed only occasionally. Most maintenance

operations include fixing and recalibrating sensors that have been corroded, damaged

or failed. We create a variable called Maintenance that equals the number of days

a maintenance was performed at the station. We use its log transformed value in

the regression model to avoid the impact of outliers. As an alternative measure, we

create an indicator variable, Any Maintenance, that equals one for that station-year

observation if there is any maintenance during the year, and zero otherwise. Results

are provided in Table B.8. In Models 2 and 4, we include year fixed effects and in

all Models we include station fixed effects. Since we use station fixed effects, this

estimation exploits changes in maintenance frequency for stations with derivative

introduction in either 2005 and 2008 only. Despite this data limitation, we find

28The non-availability of maintenance data for the control stations is consistent with our basic
assertion that market players pay relatively higher attention to the performance of stations with
weather contracts.
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that stations with higher demand of derivative products perform more maintenance

after the derivative launch as compared to their low demand stations. Based on

the coefficient estimate of Model 2 in the Table, high demand stations perform 1.40

times higher maintenance than their low demand counterparts. Overall these results

provide evidence in support of one potential channel of higher effort to measure

the temperature numbers correctly. In addition to the maintenance channel, the

weather measurement outcomes can be improved through channels such as better

monitoring of the stations and proper calibration of sensors. While we are unable

to directly document the role of all these channels in our empirical analysis, our

overall evidence supports the view that the introduction of financial contracts leads

to efficient outcomes.

[Table B.8 Here]

2.5.4 Robustness Tests

2.5.4.1 NCDC Cleaned Values

All our results so far have been based on the difference between a third-party

(MDA) certified measure of clean data and the NWS raw data for a station’s tem-

perature. We also obtain the corrected or restated data produced by an affiliated

government agency of the NWS, namely the NCDC. The NCDC is responsible for

producing the government’s final data after removing measurement errors by the

station. These cleaned data become NOAA’s official data and are widely used in

meteorological studies.

We begin with all 49 stations in our sample. However, we do not have high

quality NCDC data for the year 1999. In addition, the agency did not produce

corrected values for two control stations (San Jose and Riverside) during our sample

period. Hence, we lose the year 1999 and two control stations from the sample. Also,

the NCDC did not produce corrected values for 8 stations in December 2001, so
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we lose one observation month for this part of the study. We re-estimate our main

regression models based on the NCDC data and report the results in Table B.9. As

can be seen from the Table, the results are almost identical to the ones reported

using MDA values. These results provide confidence in our measure of temperature

accuracy since data from both these parties – MDA, a third-party private company,

and NCDC, an affiliated government agency – produce similar results. Their broad

agreement on the cleaned or correct temperature value alleviates the concern that we

might have a bad measure of temperature accuracy. Indeed, on the set of overlapping

observations, common to both MDA and NCDC, we find that they agree on the

correct temperature values in almost all cases. There are only 4 instances out of over

200,000 daily observations where there is a disagreement between the two agencies

about the correct temperature value. Therefore, it is not surprising that we get almost

identical results using either one of these measures.

[Table B.9 Here]

2.5.4.2 Controlling for Changes in Weather Condition

It is unlikely that weather conditions become more conducive to better measure-

ment outcomes after the launch of derivative contracts in a city. If that were not

the case, then an improvement in measurement accuracy could simply be an artifact

of changes in weather condition itself. To rule out this possibility, we re-estimate

our main empirical model after including the volatility of annual temperature and

the level of temperature as additional explanatory variables in the model. The key

idea is to separate out the effect of volatile weather conditions or changes in average

temperature from the main effect that we are interested in. Results are produced

in Table B.10. The coefficient on derivative remains negative and significant. In

fact the inclusion of these two variables does not change the magnitude of estimated

coefficient in any meaningful manner as compared to our base case estimate.
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[Table B.10 Here]

2.6 Conclusion

We show that the launch of a weather derivatives market on a city’s temperature

results in more accurate temperature measurement by the dedicated weather station

for that city. After the launch of these contracts, the NWS reported numbers become

reference points for billions of dollars of contracts in the private market. Thus there

is an increased interest and monitoring of these numbers by third parties, which in

turn creates more pressure on the NWS to produce better measures. The increased

pressure can come in the form of potential reputational loss or the possibility of future

disputes among the contracting parties.

Our results highlight an important role of financial markets. They can work

as a disciplining device even in the absence of explicit incentives and monitoring

mechanisms that are present in the corporate settings. Here, the numbers reported

by a government agency become more accurate after the markets open up. To the

extent that we care about accurate measurement of these numbers, there is a positive

externality that comes from the financial markets. Indeed there are several industries,

most notably the energy sector, that directly benefit from high frequency accurate

data. Overall, our study provides one of the first empirical estimates of the impact of

financial innovations on the real outcomes produced by parties that are not directly

affected by the payoffs from the contract.
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APPENDIX A

Financial Sector Stress and Asset Prices: Evidence

from the Weather Derivatives Market

A.1 Estimating Risk Premiums

The risk premium for each contract is calculated as follows:

rimdy =
E[Payoffimdy]

Priceimdy
− (1 + rf ) (A.1)

where rimdy is the risk premium on the location i, month m, degree day index d

and year y contract, E[Payoffimdy] is the model-based expected payoff, Priceimdy is

the price of the contract and rf is the monthly risk-free rate for month m and year

y. I use the contract price 32 days from contract maturity and calculate expected

payoffs based on information 32 days from maturity. The maturity date is defined as

the last day of the contract’s specified month. The closer to contract maturity, the

more realized temperatures are embedded in the price and the less risk that needs to

be hedged. The further away from contract maturity, the fewer open contracts. 32

days was chosen as a trade-off between the amount of contracts with prices and the
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amount of information in prices. This also allows for a discussion of the risk premium

as approximately a monthly risk premium.

To estimate the expected payoff I model the average daily temperature process

for each location following Bellini (2005) and Dornier and Querel (2000). The tem-

perature process for each location is a generalized Ornstein-Uhlenbeck process:

dT (t) =
dθ(t)

dt
+ e−κ[θ(t)− T (t)]dt+ σ(t)dW (t) (A.2)

where T (t) is the temperature on day t, θ(t) is the moving average, κ is the mean

reversion parameter, σ(t) is the standard deviation of temperature on day t and W (t)

is a Brownian motion. Dornier and Querel (2000) show that dθ(t)
dt

is necessary for the

model to tend towards the historical mean.1 The mean, θ(t), and standard deviation,

σ(t), of temperature vary with the day of the year:

Mean Temperature = θ(t) = β0 + δt+
P∑
p=1

βp sin(
2π

365
pt+ φp) (A.3)

Std. Dev. of Temperature = σ(t) = γ0 +

Q∑
q=1

γp sin(
2π

365
qt+ ψp) (A.4)

where β0 (γ0) captures the average expected (standard variation of) temperature of a

location during the year, P (Q) is the number of sinusoidal functions, βp (γq) governs

the magnitude of the seasonal movements and φp (ψq) is the phase parameter, which

shifts the seasonal variation so the peak and trough of the sinusoidal curve align with

the peak and trough of temperature (standard deviation of temperature) during the

year. δt captures any long-run trend in temperature such as global warming. P or

Q equal to 1 captures annual seasonality, P or Q equal to 2 captures semi-annual

seasonality, etc. By allowing for P > 1 and Q > 1, I allow for seasonality at shorter

1The equation for dθ(t)
dt is: dθ(t)

dt = δ +
∑P
p=1

2π
365pβp cos( 2π

365pt+ φp)
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than annual frequencies.

Bellini (2005) shows that the continuous process in equation A.2 can be repre-

sented in discrete-time as an AR(1) process:

T (t) = ρT (t− 1)− ρθ(t− 1) + θ(t) + s(t)ε(t) (A.5)

where ρ = e−κ, ε(t) is distributed N(0, 1) and s(t) is:

s2(t) =

t∫
t−1

e−2κ(t−u)σ2(u)du (A.6)

I use maximum likelihood estimation to estimate the parameters for each location

separately. I estimate the model using temperature realizations from January 1, 1999

to January 31, 2012. I estimate a maximum likelihood function, where the conditional

likelihood of each temperature observation is:

f(T (t)|T (t− 1),Θ) = (2πσ2(t))−
1
2 e

− 1
2σ2(t)

(T (t)−θ(t)−ρ(T (t−1)−θ(t−1)))2
(A.7)

The maximum log-likelihood function is:

ln L(Θ|{T}Nt=2) = −N − 1

2
ln 2π − 1

2

N∑
t=2

ln σ2(t)

−1

2

N∑
t=2

1

σ2(t)
(T (t)− θ(t)− ρ(T (t− 1)− θ(t− 1)))2

(A.8)

I maximize the likelihood for each city separately. I maximize the log-likelihood

function for P={1,2,3,4} and Q={1,2,3,4}. To choose the optimal P and Q, I step

through the P-Q grid by calculating the likelihood of the model with an additional P

and the likelihood of the model with an additional Q and step towards the function

with the greatest improvement. A step is only taken if the LR-test statistic between

74



the alternative and null models has a p-value less than or equal to 10%. I limit P

and Q to a maximum of 4 for ease of calculation and simplification. This should not

affect the results presented in the paper.

The resulting parameter estimates are presented in Table A.12. The mean re-

version parameter (κ) has a mean value of .33, which corresponds to a ρ = e−κ of

.72. The speed of mean reversion is inversely related to κ, so Colorado Springs and

Boston have the slowest speed of reversion, while the warmer climates (Los Angeles,

Las Vegas, Tucson) have the fastest mean reversion. In Column 3, I present the

amount of long-term drift in temperature (µ0). The parameter can be interpreted as

the yearly increase in the mean temperature for each location (I present the drift term

multiplied by 365). The mean drift is greater than 0 and ranges between .000 and

.004. There appears to be a modest amount of warming over time at 21 of the 24 lo-

cations, although I do not test for the significance of these parameters. The long-run

mean temperature (β0) varies as expected across cities. Houston and Tucson have the

highest estimates with mean temperatures just greater than 70, while Minneapolis

and Colorado Springs have the lowest estimates with mean temperatures slightly less

than 50. The magnitude of seasonality in temperature is captured by parameter β1.

The least “seasonal” location is Los Angeles with a β1 equal to 8.04, much lower

than the estimates for other cities. The most “seasonal” locations are Kansas City,

Chicago and Salt Lake City with estimates slightly greater than 24. As discussed in

the previous paragraph, additional sine functions are added when the introduction

of the additional parameters is significant at the 10% level. When P=2, there is an

additional sine function that captures semi-annual variation in mean temperatures.

There is significant semi-annual variation in temperature in 19 of the 24 cities. For 9

cities, there is significant variation in mean temperature at the tri-annual frequency.

Turning to the parameters for the standard deviation process, the estimates for the

mean level of variation (γ0) align with expectations. Locations in the Southwest (Los
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Angeles, Las Vegas, Tucson and Sacramento) have parameter estimates less than 4,

while some locations in the midwest (Chicago, Cincinnati, Kansas City and Min-

neapolis) have parameter estimates greater than 6. All but 2 locations have at least

2 significant seasonal frequencies in the standard deviation (Q ≥ 2), 7 have at least

3 and Tucson has 4 seasonal frequencies in the standard deviation.2

[Table A.12 Here]

After the temperature process has been estimated, I calculate expected payoffs by

using the temperature realization 32 days before contract maturity and simulating 500

temperature paths over the next 32 days until contract maturity. From the simulated

temperatures, I apply the HDD and CDD temperature formulas to calculate the payoff

of the contract for each path. The expected payoff is the average of the simulated

contract payoffs.

2My estimates for the optimal P and Q vary slightly from Bellini’s (2005) estimates. She esti-
mates parameters for 4 cities: Chicago, Philadelphia, Portland and Tucson. Her estimated P and
Q were (2,3) for Chicago, (1,3) for Philadelphia, (2,3) for Portland and (5,3) for Tucson. The dis-
crepancies are most likely due to estimating over different sample periods and different criteria for
increasing P and Q.

76



A.2 Temperature Outcomes

[Table A.13 Here]
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A.3 Systematic Risk Results

[Table A.14 Here]

[Table A.15 Here]

A.4 Figures
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Figure A.1: Sample of June CDD Contracts

This figure shows the average logarithm of the contract price 32 days before maturity
(Average Price), the average logarithm of the contract settlement value at maturity
(Average Payoff at Maturity) and the average logarithm of the contract price 32 days
before maturity during the crisis (Crisis Price) for three June cooling degree day
contracts (Chicago, Kansas City and New York). Averages are taken over the years
2000-2012.
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Figure A.2: Average Price and Open Interest for February HDD Contracts

This figure shows the average price and open interest (32 days before maturity) for
February HDD contracts from 2000 to 2011.
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Figure A.3: Estimated Mean Temperature vs. Average Temperature

I plot the estimated mean temperature (θt) and the average temperature for each day
of the year for Chicago, Houston, New York and Philadelphia. The parameters of
the mean temperature process are estimated separately for each city. The average
temperature is calculated over the period from January 1, 1999 to January 31, 2012.
The discrete time representation of the temperature process is an AR(1) process with
time-varying mean temperature and time-varying standard deviation of temperature:
T (t) = e−κ[T (t−1)−θ(t−1)]+θ(t)+s(t)ε(t), where θ(t) = β0+δt+

∑P
p=1 βp sin( 2π

365
pt+

φp) and σ(t) = γ0 +
∑Q

q=1 γp sin( 2π
365
qt+ ψp)
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Figure A.4: NOAA’s Temperature Forecasts from the CPC Monthly & Seasonal Fore-
cast Archive.

Oct.-Dec. 2008 Jan.-Mar. 2009

Apr.-Jun. 2009 Jul.-Sep. 2009

Oct.-Dec. 2009

These maps give NOAA’s three month temperature outlook for the United States.
The maps are from the 18th of the month before the start of the three month period.
A stands for a higher probability of above normal temperatures, EC stands for an
equal chance of above, normal or below normal temperatures, and B stands for a
higher probability of below normal temperatures.
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Figure A.5: Monthly Open Interest

This figure shows the total open interest (maximum open interest during trading
period summed across contracts) by contract year-month.

A.5 Tables
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Table A.2: Summary Statistics for Open Interest, Contract Risk Premiums and Re-
alized Returns

This table presents summary statistics for contract open interest measured 32
days before contract maturity, the model implied risk premiums and realized
returns. Contracts are grouped by heating degree day index contracts (HDD),
cooling degree day index contracts (CDD) and all contracts (All). I present the
mean (Mean), standard deviation (Std. Dev.), 10th percentile (10th), median
(Median), 90th percentile (90th) and the number of observations (N). Each
observation is a location-month-index-year.

Open Interest
Index Mean Std. Dev. 10th Median 90th N
CDD 282 512 20 120 700 475
HDD 202 348 10 97 500 629
All 236 428 12 100 550 1,104

Risk Premiums (Monthly %)
Index Mean Std. Dev. 10th Median 90th N
CDD 0.50 12.15 -13.33 -0.32 15.74 475
HDD -0.10 10.86 -12.35 -0.93 13.32 629
All 0.16 11.43 -12.55 -0.79 14.10 1,104

Realized Returns (Monthly %)
Index Mean Std. Dev. 10th Median 90th N
CDD -0.14 28.56 -33.02 -0.64 32.21 475
HDD -1.79 18.64 -23.44 -1.24 17.62 629
All -1.08 23.43 -25.93 -1.17 21.84 1,104
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Table A.3: Summary Statistics for Margin Requirements and Coefficients of Variation
This table presents summary statistics for contract margin requirements and
coefficients of variation. Contracts are grouped by heating degree day index
contracts (HDD), cooling degree day index contracts (CDD) and all contracts
(All). I present the mean (Mean), standard deviation (Std. Dev.), 10th per-
centile (10th), median (Median), 90th percentile (90th) and the number of
observations (N). Each observation is a location-month-index-year.

Maintenance Margin (%)
Index Mean Std. Dev. 10th Median 90th N
CDD 7.15 2.96 4.00 7.00 11.00 475
HDD 5.16 1.31 4.00 4.80 8.00 629
All 6.01 2.39 4.00 5.20 9.00 1,104

Coefficient of Variation
Index Mean Std. Dev. 10th Median 90th N
CDD 0.28 0.16 0.12 0.26 0.45 475
HDD 0.22 0.10 0.14 0.20 0.31 629
All 0.25 0.13 0.14 0.21 0.41 1,104
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Table A.4: The Effect of Financial Sector Stress on Risk Premiums

This table reports the main regression results. The regression
model is:

WRPimdy = β ∗ FinancialCrisismy + δimd + εimdy,

The dependent variable is the weather risk premium for
location i, month m, degree day index d and year y.
FinancialCrisismy is an indicator variable equal to 1 dur-
ing the time period when financial institutions were under
stress (October 2008 to December 2009). δimd is the contract
fixed effect for the contract on location i, month m and index
d. R-squared is the within contract r-squared. The regression
results presented in Column 1 includes all contracts. The re-
gression in Column 2 (3) includes only CDD (HDD) contracts.
Standard errors are clustered at the year-month level.

(1) (2) (3)
VARIABLES WRP-All WRP-CDD WRP-HDD

Financial Crisis 3.340** 7.968** 1.620
(1.632) (2.994) (1.761)

Observations 1,104 475 629
R-squared 0.016 0.051 0.005
Number of Contracts 207 90 117
Contract Dummies Yes Yes Yes
HDD contracts Yes No Yes
CDD contracts Yes Yes No

Standard Errors Clustered by Year-Month in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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Table A.5: Margins

This table reports the regression results examining the effect
of margin requirements on risk premiums during a period of
financial sector sector stress. The regression model is:

WRPimdy = β ∗ FinancialCrisismy + βmar ∗Marginimd ∗
FinancialCrisismy + δimd + εimdy,

The dependent variable is the weather risk premium for
location i, month m, degree day index d and year y.
FinancialCrisismy is an indicator variable equal to 1 during
the time period when financial institutions were under stress
(October 2008 to December 2009). Marginimd is the main-
tenance margin requirement for the contract on location i,
month m and index d. δimd is the contract fixed effect for the
contract on location i, month m and index d. R-squared is the
within contract r-squared. Column 1 includes all contracts.
The regression in Column 2 (3) includes only CDD (HDD)
contracts. Standard errors are clustered at the year-month
level.

(1) (2) (3)
VARIABLES WRP-All WRP-CDD WRP-HDD

Financial Crisis -12.12*** -8.222 -16.03***
(3.746) (5.525) (4.673)

Margin*Financial Crisis 2.661*** 2.192** 3.378***
(0.650) (0.848) (0.961)

Observations 1,104 475 629
R-squared 0.068 0.089 0.051
Number of Contracts 207 90 117
Contract Dummies Yes Yes Yes
HDD contracts Yes No Yes
CDD contracts Yes Yes No

Standard Errors Clustered by Year-Month in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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Table A.6: Contract Risk

This table reports the regression results examining the effect
of contract risk on risk premiums during a period of financial
stress. The regression model is:

WRPimdy = β ∗ FinancialCrisismy
+βcv ∗ CVimd ∗ FinancialCrisismy + δimd + εimdy,

The dependent variable is the weather risk premium for
location i, month m, degree day index d and year y.
FinancialCrisismy is an indicator variable equal to 1 during
the time period when financial institutions were under stress
(October 2008 to December 2009). CVimd is the coefficient
of variation of historical contract payoffs (calculated over the
years 1974-2011) for the contract on location i, month m and
index d. δimd is the contract fixed effect for location i, month
m and index d. R-squared is the within contract r-squared.
Column 1 includes all contracts. The regression in Column 2
(3) includes only CDD (HDD) contracts. Standard errors are
clustered at the year-month level.

(1) (2) (3)
VARIABLES WRP-All WRP-CDD WRP-HDD

Financial Crisis -8.725** 0.269 -12.41***
(3.761) (4.864) (3.331)

CV*Financial Crisis 51.61*** 28.83 63.37***
(16.47) (27.37) (12.10)

Observations 1,104 475 629
R-squared 0.056 0.062 0.069
Number of Contracts 207 90 117
Contract Dummies Yes Yes Yes
HDD contracts Yes No Yes
CDD contracts Yes Yes No

Standard Errors Clustered by Year-Month in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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Table A.8: Normal and Financial Stress Periods

This table reports regression results examining the effect of contract risk and
margin requirements on weather risk premiums over the full sample, in the
crisis and outside of the crisis period. The regression model is:

WRPimdy = β ∗Ximd + δm + εimdy,

where the dependent variable is the weather risk premium for location i, month
m, degree day index d and year y, Ximd is either Marginimd or CVimd, and
δm is a contract month fixed effect. Marginimd is the maintenance margin for
the contract on location i, month m and index d. CVimd is the coefficient of
variation of historical contract payoffs (calculated over the years 1974-2011)
for the contract on location i, month m and index d. Margin (contract risk)
results are reported in Columns 1-3 (4-6). In Columns 1 and 4, regressions
are run on the entire sample period (labeled “Entire”). In Columns 2 and 5,
regressions are run on time periods outside of the stress period (all months
except those from October 2008 to December 2009; labeled “Normal”). In
Columns 3 and 6, regressions are run on observations during the financial
stress time period (October 2008 to December 2009; labeled “Crisis”) All
regressions include both HDD and CDD contracts. R-squared is the within
contract r-squared. Standard errors are clustered at the year-month level.

(1) (2) (3) (4) (5) (6)
VARIABLES Entire Normal Crisis Entire Normal Crisis

Margin 0.0520 -0.317 2.233***
(0.228) (0.215) (0.512)

CV 7.079 0.383 28.68***
(6.253) (7.419) (8.475)

Observations 1,104 940 164 1,104 940 164
R-squared 0.074 0.068 0.458 0.078 0.064 0.418
HDD contracts Yes Yes Yes Yes Yes Yes
CDD contracts Yes Yes Yes Yes Yes Yes

Standard Errors Clustered by Location-Index in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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Table A.9: Collapsed Markets

This table reports results for probit regressions examining the probability the
market for a contract collapsed during the crisis period. The regression model
is:

P (Collapsed = 1) =
Φ(βm ∗Marginimd + βCV ∗ CVimd + βInt ∗ CVimd ∗Marginimd),

The dependent variable is an indicator variable equal to 1 if the contract for
location i, month m, degree day index d and year y traded in the 12 months
preceding the distress, but not in the 12 months post-distress. Marginimd is
the maintenance margin for the contract on location i, month m and index d.
CVimd is the coefficient of variation of historical contract payoffs (calculated
over the years 1974-2011) for the contract on location i, month m and index
d. All regressions include both HDD and CDD contracts. Standard errors are
clustered by month.

(1) (2) (3) (4)
VARIABLES Collapsed Collapsed Collapsed Collapsed

Margin 0.119* 0.0597 0.103
(0.0669) (0.0670) (0.103)

CV 2.539** 2.023 3.016**
(1.098) (1.262) (1.501)

CV*Margin -0.137
(0.221)

Observations 136 136 136 136
Pseudo R-squared 0.0432 0.0667 0.0747 0.0759

Standard Errors Clustered by Month in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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The dependent variable is the negative of the logarithm of the contract price 32
days before contract maturity (−log(Price)). Financial Crisis is an indicator vari-
able equal to 1 during the time period when financial institutions were under stress
(October 2008 to December 2009). CV*Financial Crisis is an interaction between the
coefficient of variation of the relevant monthly degree day index and Financial Crisis.
Margin*Financial Crisis is an interaction between the contract’s margin requirement
and Financial Crisis. Log(Settle) is the logarithm of the price of the contract on the
settlement date. Last Month is the logarithm of the relevant index in the previous
month for a specific location. Risk-Free Rate is the risk-free rate of return. All re-
gressions are standard OLS regressions. All regressions include contract fixed effects.
Standard errors are clustered at the year-month level. R-squared is the within con-
tract r-squared. Columns 1 and 4 include all contracts. Regressions in columns 2 &
5 (3 & 6) are run on the CDD (HDD) contracts only.
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Table A.14: Systematic Risk By Location
This table reports results for CAPM-style regressions of the form:

Rp −Rf = β ∗ (Rm −Rf ) + δm,

where Rp is the “physical” return, Rf is the monthly risk-free rate and δm is a

month fixed effect. Rp is calculated as follows: Payoff
E[Payoff ] − 1, where Payoff is the

realized degree index value and E[Payoff ] is the expected payoff calculated 32 days
before maturity based on the temperature model. Regressions are run separately
for each location. The sample contains all months from February 1999 to January
2012. Only those location-month-indices that had a contract based on the specific
index trade at least once from September 1999 to January 2012 are included in
the sample. For months in which HDD and CDD contracts trade, I include only
the index with the highest E[Payoff ] for each location-month. The CAPM β is
reported in the column labeled β. The regression constant is reported in the column
labeled “Constant” (note: this is not the CAPM α, as the regressions include month
fixed effects. Standard errors calculated using Huber-White sandwich estimators
are reported in parentheses in the column to the right of the coefficient. N is the
number of observations and R-squared is the regression r-squared. All regressions
are standard OLS regressions.

WBAN β s.e. α s.e. N R-squared
Dallas -0.43 (0.48) -2.52 (2.00) 156 0.06

Kansas City -0.72 (0.43) -0.08 (2.07) 156 0.05
Houston -0.09 (0.61) -1.64 (2.16) 156 0.03

Philadelphia -0.88 ** (0.38) -0.40 (1.86) 156 0.14
Atlanta -1.04 ** (0.50) 1.01 (2.01) 156 0.12

New York -0.76 ** (0.38) -0.75 (1.77) 156 0.18
Boston -0.95 * (0.50) -0.54 (2.27) 156 0.08

Minneapolis -1.40 ** (0.61) -1.48 (2.48) 156 0.09
Des Moines -0.95 ** (0.39) -1.23 1.91 156 0.09

Tucscon -0.37 (0.53) -1.52 (1.95) 156 0.08
Las Vegas 1.00 * (0.55) -0.09 (2.52) 156 0.07

Sacramento 0.77 (0.48) 2.93 (2.42) 156 0.07
Salt Lake City -0.50 (0.43) -1.15 (2.54) 52 0.14

Portland 1.75 * (1.01) 10.85 ** (5.26) 156 0.27
Baltimore -0.60 (0.40) -1.46 (1.74) 91 0.11
Cincinnati -0.86 ** (0.42) -0.35 (2.08) 156 0.08
Chicago -1.30 *** (0.49) 1.46 (2.28) 156 0.07
Detroit -0.90 *** (0.33) -0.06 (1.81) 117 0.09

Mean -0.46 * (0.23) 0.17 (0.70) 144 -

Correlation(WRPi,β̂i) = -.09, p-value=.73
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Table A.15: Systematic Risk and Stress
This table reports results for regressions examining the effect of contract risk, margin
requirement and the location CAPM beta on weather risk premiums during a period
of financial stress. The regression model is:

WRPimdy = β ∗ Crisismy + βX ∗Ximd ∗ Crisismy + βbeta ∗Betai ∗ Crisismy +
βint ∗Ximd ∗Betai ∗ Crisismy + δimd + εimdy,

The dependent variable is the weather risk premium for location i, month m, degree
day index d and year y. Crisismy is an indicator variable equal to 1 during the
time period when financial institutions were under stress. Ximd is either the margin
requirement or coefficient of variation for the contract on location i, month m and
index d. Betai is the CAPM beta for location i. δimd is the contract fixed effect
for location i, month m and index d. All regressions include both HDD and CDD
contracts. R-squared is the within contract r-squared. Standard errors are clustered
at the year-month level.

(1) (2) (3) (4) (5)
VARIABLES WRP WRP WRP WRP WRP

Financial Crisis 3.678** -12.71*** -12.53*** -8.523** -9.859***
(1.640) (3.293) (3.451) (3.592) (3.210)

Beta*Financial Crisis 0.608 -0.659 2.674 0.317 -3.117
(1.147) (1.024) (2.251) (1.076) (3.001)

Margin*Financial Crisis 2.700*** 2.718***
(0.626) (0.633)

Beta*Margin*Financial Crisis -0.533
(0.397)

CV*Financial Crisis 51.50*** 57.26***
(16.36) (14.42)

Beta*CV*Financial Crisis 15.18
(13.96)

Observations 1,104 1,104 1,104 1,104 1,104
R-squared 0.016 0.068 0.071 0.056 0.059
Number of Contracts 207 207 207 207 207
Contract Dummies Yes Yes Yes Yes Yes
HDD contracts Yes Yes Yes Yes Yes
CDD contracts Yes Yes Yes Yes Yes

Standard Errors Clustered by Year-Month in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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APPENDIX B

Can Markets Discipline Government Agencies?

Evidence from the Weather Derivatives Market

B.1 Some Descriptive Evidence & Supporting Claims

In this appendix we produce pieces of evidence collected from several sources such as
the NWS directives, NOAA, weather trading industries, and atmospheric science journals
that are relevant to our study. We present some key facts and opinions from these sources
as well as our summary of the material below:

1. NWS directives on data collection exercise: NWS issues directives to its regional
offices and weather stations on a regular basis on a range of issues including data
quality control and assurance standards. Some of these directives highlight the need
for more accurate and consistent data in light of increased outside scrutiny. We
provide an example from the NWS’s directive (number NWSI 10-1305) issued on
April 28, 2008:

“The NWS has the responsibility of collecting and providing weather and climate
observation data. However, the methods for the collection, quality control, and de-
livery of these data vary from office to office. Many of the data quality initiatives
between the NWS and NCDC have been uncoordinated. Even with the NWS itself
such activities vary greatly between field offices. This situation must change in the
interest of efficiency, data record integrity and public use.

Today, with the ever increasing use of observational data by the research community,
the media, private industry, and the general public it is of the utmost importance to
accurately and consistently apply QC/QA at all field offices. In order to ensure the
highest quality data and data products within Central Region, the QC/QA methods
discussed in this supplement are highly recommended at each WFO.”

Note: Emphasis added by the authors. QC/QA stand for quality control and quality
assurance in the above quote.

2. NOAA’s information on preliminary (i.e., raw) versus official (i.e., clean) data: Below
we provide some examples of Frequently Asked Questions and their Answers from the
NOAA’s web-site about the raw versus cleaned data.
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“Are the data in NOWData considered ‘official’ for legal and other such purposes?

No. NOWData provides up-to-date information based on archived AND prelimi-
nary data holdings by NOAA. For official data, you should contact NOAAs National
Climatic Data Center or the Regional Climate Centers. NCDC provide official certi-
fication for data being used in U.S. courts.”

“I noticed that the most recent data does not match data that I found of the NCDC
web site. Why is that?

Preliminary data can be different from NCDC official data for a number of reasons
related to quality assurance and processing schedules, as well as synchronization of
the NCDC and ACIS databases. Ultimately, when processing is completed, the two
data files will match.”

Note: NOWData stands for NOAA Online Weather Data, which comes from METAR
readings, which is also our source of initial data recording.

3. A summary of the meetings between NWS and weather industry representatives:
There have been quite a few meetings between the NWS officials and the weather
derivative professionals regarding the weather derivatives market. The weather in-
dustry has often expressed its need for better quality data from the weather station.
Here is an excerpt from a meeting between NOAA staff and the representatives of
the weather derivative industry during the very early stages of this market (meeting
dated March 12, 1998).1 This meeting occurred before the launch of official CME
contracts.

“Data issues, both short and long-term, pertaining to these contracts were the im-
mediate reason for this meeting. On their own initiative, industry participants have
chosen to use daily temperature data from the National Weather Service to calculate
their cumulative degree day indices upon which the contracts are based and which
will be used to settle the contracts.

One concern they had was regarding the difference between preliminary and official
data. NOAA indicated that the preliminary data are usually quite close to the official
historical data, which are published with a lag of two to three months. With this
understanding, the firms said they felt more comfortable using the preliminary data
for initial settlement of the contracts, subject to a “true-up” to the official data several
months later.

A second interest was that there be one set of tailored data for common reference.
This could reduce disputes that might arise from different sources for the weather
data.”

4. Meridian Environmental Technology is a company specializing in atmospheric infor-
mation and technology (amongst other things). Their website provides evidence of
private enterprise’s need for accurate weather information:

“Power production planning requires accurate and reliable weather information. Merid-
ian has been providing historical and forecasted site-specific weather information to
the agriculture, transportation, and utilities industries for years. Whether you are
needing hourly, daily, weekly or longer information, Meridian can help you!

1See the full document at http://www.srh.noaa.gov/topics/attach/html/ssd98-14.htm
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We understand your needs for forecasted power production and the high penalties a
wrong estimate can cost...”2

5. NOAA’s NCDC Sectoral Engagement Fact Sheets3 document industries that depend
on quality weather information from NOAA. NOAA lists Agriculture, Civil Infras-
tructure, Coastal Hazards, Energy, Health, Insurance, Litigation, Marine and Coastal
Ecosystems, National Security, Tourism, Transportation and Water Resources as in-
dustries sensitive to the climate. Not all of these industries will be directly affected
by inaccurate temperature measurements, but some are. For example, in the Energy
Fact Sheet NOAA writes about how companies are:

“Using temperature information to aid in the assessment of equipment requirements
for heavy power line loads during extremely hot weather.”

These loads will be determined by weather measurements produced by the govern-
ment. If the numbers are incorrect, energy companies may use the incorrect amount
or type of equipment.

B.2 Figures

Figure B.1: Derivative Introduction Dates

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

New York City
Atlanta
Chicago

Cincinnati
Dallas

Des Moines
Philadelphia
Las Vegas
Portland
Tucson

Minneapolis
Boston

Kansas City
Houston

Sacramento

Baltimore
Salt Lake City

Detroit

Raleigh-Durham
Little Rock

Washington D.C.
Colorado Springs

Los Angeles
Jacksonville

10 initial
contracts

introduced
5 new

contracts
3 new

contracts
6 new

contracts

This figure shows the introduction years of U.S. weather derivatives listed on the
CME. For each year, we list the locations that received a derivative.

2http://www.meridian-enviro.com/pages.pl?pg=usf
3http://www.ncdc.noaa.gov/oa/userengagement/userengagement.html
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Figure B.2: Weather Measurement Timeline

This figure shows the timeline of initial temperature measurement by the NWS, the
corrections reported by MDA for contract settlement, and the final cleaned value
generated by NCDC.
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Figure B.3: Weather Station-Year Total Errors Distribution

This figure shows the kernel density of the total errors each year for each weather
station in our sample. We use the Gaussian kernel and a bandwidth that minimizes
the mean integrated squared error assuming the data were Gaussian.
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Figure B.4: Average Yearly Errors Pre- and Post- Introduction

This figure graphs the average errors for the treatment and control groups before and
after weather derivative introduction. The Before period is the 3 years before intro-
duction and the After period is the year of introduction plus the 3 years afterwards.
The treatment group consists of the 14 weather stations that experienced a weather
derivative introduction after 2002 and the control group consists of the 25 stations
that never experienced a weather derivative introduction during our sample period.
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Figure B.5: Open Interest By Month

This figure plots open interest in each month during our sample. For each contract, we
calculate the maximum open interest during the contract’s trading period. We then
sum this value across all contracts that settle based on temperatures in month i during
our sample. We include all futures and option contracts of monthly durations. The
open interest data starts with the initial opening of the CME temperature derivative
market (September 22, 1999) and ends December 4, 2012.
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B.3 Tables
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Table B.2: Summary Statistics for Total Weather Station Errors

This table presents summary statistics on weather station
errors. Each observation is a weather station-year. The 49
stations consist of the 24 weather stations underlying a CME
temperature contract and 25 control weather stations. Year
is the year for which the summary statistics are calculated.
N is the number of weather stations in the sample during
the year. Mean and Median are the mean and median num-
ber of errors in that year, respectively. SD is the standard
deviation of the number of errors across stations during the
year. 10th and 90th are the 10th and 90th percentile cut-offs,
respectively.

Year N Mean Median SD 10th 90th

1999 46 11.91 11.5 5.31 6 19
2000 49 11.49 11 5.40 4 19
2001 49 11.14 10 5.30 5 19
2002 49 15.51 16 5.21 8 23
2003 49 14.45 15 6.37 5 22
2004 49 13.57 13 5.83 6 23
2005 49 11.49 11 4.74 5 17
2006 49 10.57 9 4.82 4 17
2007 49 12.73 13 5.02 7 20
2008 49 12.47 12 4.59 5 19
2009 49 10.63 10 3.89 4 15
2010 49 10.49 10 4.36 4 16
2011 49 10.71 10 4.19 5 17
All 634 12.09 12 5.23 5 20
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Table B.3: Location Selection Probit Regression

This table presents results for a probit model of the selection of derivative
locations. The dependent variable in column 1 is a dummy variable equal to
1 if a location ever receives a derivative. The dependent variable in column 2
is a dummy variable equal to 1 if a location receives a derivative in the years
1999 or 2000. Population is zero minus the population rank (-population rank)
based on 2011 metropolitan statistical area populations. Exchange is a dummy
variable equal to 1 if the city has a major commodities or financial exchange.
High Crop is a dummy variable equal to 1 if the location is the most populated
location in a state with a top 15 rank in value-added from agriculture in 2011.

(1) (2)
VARIABLES Derivative 1999-2000

Population 0.0205*** 0.0141**
(0.00537) (0.00661)

Exchange City 1.514** 1.087**
(0.664) (0.546)

High Crop 0.620 0.799*
(0.432) (0.451)

Observations 366 366
McFadden’s Pseudo R-squared .5448 .4651

Standard Errors in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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This table presents results for regressions of weather station errors on CME derivative
introduction by cohort. For each regression, we include only the derivative stations in the
cohort of interest and all control stations. We run each regression for the years from 1999
to 3 years after the cohort’s introduction. The dependent variable is the total number
of weather station errors for each station-year observation. The regression in Column 1
includes weather stations with CME derivative introduction in year 2000 and all control
stations for the years 1999-2003. The regression in Column 2 includes weather stations with
CME derivative introduction in year 2003 and all control stations for the years 1999-2006.
The regression in Column 3 includes weather stations with CME derivative introduction
in year 2005 and all control stations for the years 1999-2008. The regression in Column
4 includes weather stations with CME derivative introduction in year 2008 and all control
stations for the years 1999-2011. The regression in Column 5 includes all observations.
Early Cohorts is an indicator variable equal to 1 if a station is in the 1999-2000 wave of
introduction and has a derivative in that year. Late Cohorts is an indicator variable equal
to 1 if a station is in the 2003, 2005 or 2008 waves of introduction and has a derivative
in that year. All regressions include station and year fixed effects. Standard errors are
clustered by weather station.

114



Table B.6: High Demand Locations and The Effect of CME Derivative Introductions
on Weather Station Errors

This table presents results from regressions of weather station errors on CME
derivative introduction where the sample is separated into high demand and
low demand locations. The dependent variable in Column 1 is the total number
of weather station errors for each station-year observation. The dependent
variable in Column 2 is the log of the total number of weather station errors
for each station-year observation. High Demand (Low Demand) is an indicator
equal to 1 if a derivative is traded on the station in that year and the station is a
high demand (low demand) location. High demand locations are locations with
a population rank in the top 25 or in the first 2 cohorts (1999 and 2000). All
regressions include year and station fixed effects. Standard errors are clustered
by weather station.

(1) (2)
VARIABLES Total Errors Log(Total Errors)

High Demand -2.222*** -0.189***
(0.717) (0.0626)

Low Demand -0.661 -0.0799*
(0.560) (0.0456)

Observations 634 634
R-squared 0.471 0.477
Year Fixed Effects Yes Yes
Station Fixed Effects Yes Yes
t-test βH = βL .0576 .1140

Clustered Standard Errors in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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Table B.7: Active Months and The Effect of CME Derivative Introductions on
Weather Station Errors

This table presents results from regressions of weather station errors on CME
derivative introduction where the sample is separated into active and inactive
months. The dependent variable is the total number of weather station errors
for each station-year observation. The regression in Column 1 excludes all
months except April and October, the least active months based on open
interest. The regression in Column 2 includes all months except April and
October. Similarly, the regression in Column 3 excludes the top 6 active
months based on open interest. The regression in Column 4 includes includes
the top 6 active months based on open interest. Open interest for month i
is calculated by summing across all contracts the average open interest for
each contract that settles based on temperatures in month i. Derivative is an
indicator equal to 1 if a derivative is traded on the station in that year. All
regressions include year and station fixed effects. Standard errors are clustered
by weather station.

(1) (2) (3) (4)
VARIABLES Total Errors Total Errors Total Errors Total Errors

Derivative 0.0546 -1.714*** -0.483 -1.164***
(0.247) (0.576) (0.419) (0.415)

Observations 634 634 634 634
R-squared 0.211 0.445 0.374 0.355
Year Fixed Effects Yes Yes Yes Yes
Station Fixed Effects Yes Yes Yes Yes
Active/Inactive Months Inactive Active Inactive Active

Clustered Standard Errors in Parentheses
*** p<0.01 ** p<0.05 * p<0.1

116



T
ab

le
B

.8
:

T
h
e

E
ff

ec
t

of
C

M
E

D
er

iv
at

iv
e

In
tr

o
d
u
ct

io
n

on
W

ea
th

er
S
ta

ti
on

M
ai

n
te

n
an

ce

T
h
is

ta
b
le

p
re

se
n
ts

re
su

lt
s

fr
om

re
gr

es
si

on
s

of
w

ea
th

er
st

at
io

n
m

ai
n
te

n
an

ce
on

C
M

E
d
er

iv
at

iv
e

in
tr

o
d
u
ct

io
n

at
h
ig

h
d
em

an
d

st
at

io
n
s.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
in

C
ol

u
m

n
s

1
an

d
2

is
th

e
lo

ga
ri

th
m

of
th

e
to

ta
l

n
u
m

b
er

of
d
ay

s
th

at
d
o
cu

m
en

te
d

m
ai

n
te

n
an

ce
w

as
p

er
fo

rm
ed

on
ea

ch
st

at
io

n
w

it
h
in

ea
ch

ye
ar

.
T

h
e

d
ep

en
d
en

t
va

ri
ab

le
in

C
ol

u
m

n
s

3
an

d
4

is
an

in
d
ic

at
or

va
ri

ab
le

eq
u
al

to
1

if
an

y
m

ai
n
te

n
an

ce
w

as
p

er
fo

rm
ed

on
a

st
at

io
n

d
u
ri

n
g

th
e

ye
ar

.
H

ig
h

D
em

an
d

is
an

in
d
ic

at
or

eq
u
al

to
1

if
a

d
er

iv
at

iv
e

is
tr

ad
ed

on
th

e
st

at
io

n
in

th
at

ye
ar

an
d

th
e

st
at

io
n

is
a

h
ig

h
d
em

an
d

lo
ca

ti
on

.
H

ig
h

d
em

an
d

lo
ca

ti
on

s
ar

e
lo

ca
ti

on
s

w
it

h
a

p
op

u
la

ti
on

ra
n
k

in
th

e
to

p
25

or
in

th
e

fi
rs

t
2

co
h
or

ts
(1

99
9

an
d

20
00

).
T

h
e

re
gr

es
si

on
s

ar
e

ru
n

fo
r

th
e

ou
tc

om
es

d
u
ri

n
g

th
e

ye
ar

s
20

03
to

20
11

at
th

e
21

lo
ca

ti
on

s
w

it
h

m
ai

n
te

n
an

ce
d
at

a.
A

ll
re

gr
es

si
on

s
in

cl
u
d
e

st
at

io
n

fi
x
ed

eff
ec

ts
an

d
re

gr
es

si
on

s
in

C
ol

u
m

n
s

2
an

d
4

in
cl

u
d
e

ye
ar

fi
x
ed

eff
ec

ts
.

S
ta

n
d
ar

d
er

ro
rs

ar
e

cl
u
st

er
ed

b
y

w
ea

th
er

st
at

io
n
.

(1
)

(2
)

(3
)

(4
)

V
A

R
IA

B
L

E
S

L
og

(M
ai

n
te

n
an

ce
)

L
og

(M
ai

n
te

n
an

ce
)

A
n
y

M
ai

n
te

n
an

ce
A

n
y

M
ai

n
te

n
an

ce

H
ig

h
D

em
an

d
0.

41
0*

**
0.

33
3*

*
0.

33
8*

**
0.

26
5*

(0
.0

60
2)

(0
.1

27
)

(0
.0

76
1)

(0
.1

28
)

O
b
se

rv
at

io
n
s

18
9

18
9

18
9

18
9

R
-s

q
u
ar

ed
0.

06
7

0.
20

0
0.

08
6

0.
22

9
Y

ea
r

F
ix

ed
E

ff
ec

ts
N

o
Y

es
N

o
Y

es
S
ta

ti
on

F
ix

ed
E

ff
ec

ts
Y

es
Y

es
Y

es
Y

es
C

lu
st

er
ed

S
ta

n
d
ar

d
E

rr
or

s
in

P
ar

en
th

es
es

**
*

p
<

0.
01

**
p
<

0.
05

*
p
<

0.
1

117



T
ab

le
B

.9
:

T
h
e

E
ff

ec
t

of
C

M
E

D
er

iv
at

iv
e

In
tr

o
d
u
ct

io
n

on
W

ea
th

er
S
ta

ti
on

E
rr

or
s

U
si

n
g

N
C

D
C

C
le

an
ed

V
al

u
es

T
h
is

ta
b
le

p
re

se
n
ts

re
gr

es
si

on
s

u
si

n
g

N
C

D
C

cl
ea

n
ed

va
lu

es
in

st
ea

d
of

M
D

A
cl

ea
n
ed

va
lu

es
to

id
en

ti
fy

w
ea

th
er

st
at

io
n

er
ro

rs
.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
in

co
lu

m
n
s

1-
2

&
5-

7
is

th
e

to
ta

l
n
u
m

b
er

of
w

ea
th

er
st

at
io

n
er

ro
rs

fo
r

ea
ch

st
at

io
n
-y

ea
r

ob
se

rv
at

io
n
.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
in

co
lu

m
n
s

3
an

d
4

is
th

e
lo

ga
ri

th
m

of
th

e
to

ta
l

n
u
m

b
er

of
w

ea
th

er
st

at
io

n
er

ro
rs

fo
r

ea
ch

st
at

io
n
-y

ea
r

ob
se

rv
at

io
n
.

D
er

iv
at

iv
e,

20
03

sh
o
ck

,
20

05
sh

o
ck

an
d

20
08

sh
o
ck

ar
e

al
l

a
d
u
m

m
y

eq
u
al

to
1

if
a

w
ea

th
er

d
er

iv
at

iv
e

is
tr

ad
ed

on
th

at
lo

ca
ti

on
in

th
at

ye
ar

.
T

h
e

re
gr

es
si

on
in

C
ol

u
m

n
5

in
cl

u
d
es

on
ly

th
e

co
n
tr

ol
st

at
io

n
s

an
d

th
os

e
st

at
io

n
s

th
at

re
ce

iv
ed

a
d
er

iv
at

iv
e

in
20

03
fo

r
th

e
ye

ar
s

20
00

-2
00

6.
T

h
e

re
gr

es
si

on
in

C
ol

u
m

n
6

in
cl

u
d
es

on
ly

th
e

co
n
tr

ol
st

at
io

n
s

an
d

th
os

e
st

at
io

n
s

th
at

re
ce

iv
ed

a
d
er

iv
at

iv
e

in
20

05
fo

r
th

e
ye

ar
s

20
00

-2
00

8.
T

h
e

re
gr

es
si

on
in

C
ol

u
m

n
7

in
cl

u
d
es

on
ly

th
e

co
n
tr

ol
st

at
io

n
s

an
d

th
os

e
st

at
io

n
s

th
at

re
ce

iv
ed

a
d
er

iv
at

iv
e

in
20

08
fo

r
th

e
ye

ar
s

20
00

-2
01

1.
T

h
e

S
an

J
os

e
an

d
R

iv
er

si
d
e

st
at

io
n
s

ar
e

n
ot

in
cl

u
d
ed

in
th

es
e

re
gr

es
si

on
s.

A
ll

re
gr

es
si

on
s

in
cl

u
d
e

st
at

io
n

fi
x
ed

eff
ec

ts
.

C
ol

u
m

n
s

2
&

4-
7

in
cl

u
d
e

ye
ar

fi
x
ed

eff
ec

ts
.

S
ta

n
d
ar

d
er

ro
rs

ar
e

cl
u
st

er
ed

b
y

w
ea

th
er

st
at

io
n
.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

V
A

R
IA

B
L

E
S

T
o
ta

l
E

rr
o
rs

T
ot

al
E

rr
or

s
L

og
(T

ot
al

E
rr

or
s)

L
og

(T
ot

al
E

rr
or

s)
T

o
ta

l
E

rr
o
rs

T
o
ta

l
E

rr
o
rs

T
o
ta

l
E

rr
o
rs

D
er

iv
at

iv
e

-2
.1

6
9*

**
-0

.9
18

*
-0

.1
75

**
*

-0
.0

96
3*

(0
.4

17
)

(0
.5

45
)

(0
.0

31
9)

(0
.0

49
8)

20
03

sh
o
ck

-2
.3

7
0
*
*

(1
.1

3
2
)

20
05

sh
o
ck

-2
.1

3
0
*
*

(0
.8

8
9
)

20
08

sh
o
ck

-0
.3

8
2

(0
.8

5
0
)

O
b

se
rv

at
io

n
s

5
64

56
4

56
4

56
4

22
1

2
4
3

3
4
8

R
-s

q
u

ar
ed

0.
4
66

0.
55

4
0.

48
0

0.
54

2
0
.6

2
8

0
.6

1
7

0
.5

6
7

Y
ea

r
F

ix
ed

E
ff

ec
ts

N
o

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

S
ta

ti
o
n

F
ix

ed
E

ff
ec

ts
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

C
lu

st
er

ed
S

ta
n

d
ar

d
E

rr
or

s
in

P
ar

en
th

es
es

**
*

p
<

0.
01

**
p
<

0.
05

*
p
<

0.
1

118



Table B.10: The Effect of CME Derivative Introduction on Weather Station Errors
With Temperature Controls

This table presents the results for regressions of weather station errors on
CME derivative introduction and temperature controls. Observations are at
the station-year level. The dependent variable in Column 1 is the total number
of weather station errors. The dependent variable in Column 2 is the logarithm
of the total number of weather station errors. Derivative is a dummy variable
equal to 1 in the year of CME derivative introduction on the station and
all years afterwards. Average Temperature is the average daily temperature
of a location each year. Temperature Volatility is the standard deviation of
the daily temperature of a location each year. All regressions include station
fixed effects. Columns 2 and 4 include year fixed effects. Standard errors are
clustered by weather station.

(1) (2)
VARIABLES Total Errors Log(Total Errors)

Derivative -1.592*** -0.145***
(0.565) (0.0477)

Average Temperature -0.675*** -0.0582***
(0.218) (0.0182)

Temperature Volatility -0.0183 0.00263
(0.210) (0.0180)

Observations 634 634
R-squared 0.479 0.487
Year Fixed Effects Yes Yes
Station Fixed Effects Yes Yes

Clustered Standard Errors in Parentheses
*** p<0.01 ** p<0.05 * p<0.1
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