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ABSTRACT

On Existence and Properties of Rotating Star Solutions to the Euler-Poisson Equations

by
Yilun Wu

Co-chairs: Joel Smoller, Fred Adams

The Euler-Poisson equations are used in astrophysics to model rotating gaseous

stars. Auchmuty and Beals in 1971 first found a family of rotating star solutions by

solving a variational free boundary problem. A great many results followed to gen-

eralize the solutions to more diverse situations. Recent interests in extrasolar planet

structures require extension of the picture to include a solid rocky core together with

its gravitational potential. In this dissertation, we discuss various extensions of the

classical rotating star results to incorporate a solid core. We also study the effect of

a non-isentropic equation of state on the structure of the rotating star solutions.
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CHAPTER I

Introduction

To seek a mathematical model for the internal structure of a star has always been

a fascinating problem in astrophysics. Dating back to as early as Newton, there is a

long history of investigation of the balancing shapes of rotating homogeneous incom-

pressible fluid bodies. See Chandrasekhar [7], Kopal [24], Lamb [25], and Poincaré

[37] for more details. Also see Chandrasekhar [8] for a historical account of equilib-

rium ellipsoids of homogeneous fluids. In comparison, the physical model of a star as

self gravitating compressible gas in equilibrium had not capture significant attention

until the late nineteenth century. Part of the reason for this delayed attention on

the compressible nature of the model is that such a model requires a mature theory

of thermodynamics to bring out a fruitful analysis, which was not really available

at Newton’s time. The first works on gaseous stellar structure models considered a

spherically symmetric star in hydrostatic equilibrium. The well-known Lane-Emden

equation is a key entity to summarize the properties of such a configuration. It al-

lowed Lane [26] to calculate a theoretical estimation of the temperature of the sun.

Chandrasekhar’s classic [7] gives a detailed mathematical account of the analysis and

implications of the Lane-Emden equation, and has long served as the starting point

of many physical models on stellar structures. In contrast, a rigorous mathematical

1
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theory for rotating gaseous stars came much later. It turns out that in order to

allow breaking of spherical symmetry, one needs to consider the system of partial

differential equations known as the Euler-Poisson equations. This system is capable

of describing the dynamical evolution of a star without any symmetry restriction.

Auchmuty and Beals [3] initiated the search for rotating star solutions to the Euler-

Poisson equations. As opposed to the spherically symmetric case where the solutions

and their behaviors are more or less explicit, the rotating star solutions are provided

by abstract existence theorems from the calculus of variations. Many works followed

to provide existence theorems in diverse situations as well as to study the properties

of the solutions whose existence are guaranteed by [3].

This dissertation is aiming to extend the work for rotating star solutions to the

following new situations.

1. Studies in planet structures have revealed that a large number of giant planets

are gaseous with a solid rocky core. Recent interests in the astrophysical com-

munity proposes the question of extending stellar structure models to include

planets with solid cores. See Militzer et al. [34], Miller et al. [35], Burrows

et al. [5], and Anderson and Adams [1]. I will prove numerous existence and

non-existence results on a modified version of the Euler-Poisson equations. This

allows one to characterize a generalized model for planet structures that include

a solid rocky core.

2. Almost all of the previous works on Euler-Poisson equations assumed an isen-

tropic equation of state for the gas.1 Luo and Smoller [31] considered a non-

isentropic equation of state for an ideal gas and proved some existence results

1Here isentropy means the pressure - density relation is given: p = p(ρ), i.e. pressure is determined by density
alone. We do not assume any particular form of this dependence. In the physics literature, this condition is more
often called barotropy.
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for simple prescribed entropies. I will prove several existence results related to

the non-isentropic Euler-Poisson equations for more general entropy profiles.

The rest of this chapter will provide a background introduction to stellar structure

models. In section 1.1, we derive and briefly study the Lane-Emden equation. In

section 1.2, we describe the Euler-Poisson equations and give a precise formulation of

the rotating star solutions. In section 1.3, we introduce the modified Euler-Poisson

equations which describe a planet with a solid rocky core, and propose the problem

of finding rotating planet solutions. In section 1.4, we introduce a non-isentropic

equation of state, and present a preliminary study of their impact on the standard

Euler-Poisson equations. In section 1.5, we give an overview of the entire thesis.

1.1 Stationary Stars and the Lane-Emden Equation

Let us consider a model for spherically symmetric stationary stars. Instead of

building in the spherical symmetry from the very beginning, let us take a slightly

more general approach. Throughout our presentation, integrals without limits or

differentials mean volume integrals over space (R3). Let U be an arbitrary domain

in the star. The gas in U is subject to two forces: the pressure from the surrounding

gas on the boundary:

(1.1) −
∫
∂U

pn dS,

and the gravitation of the star:

(1.2) −
∫
U

ρ∇φ dV.

Here n is the unit outward normal, p is pressure, ρ is gas density, and φ is the

gravitational potential of the star. It is given by

(1.3) −φ(x) = ρ ∗ 1

|x|
=

∫
ρ(y)

|x− y|
dy,
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where we have chosen units so that Newton’s gravitational constant G is equal to 1.

When the star is in equilibrium, force must balance:

(1.4) −
∫
∂U

pn dS −
∫
U

ρ∇φ dV = 0.

Applying the divergence theorem on the first term, we get

(1.5) −
∫
U

∇p dV −
∫
U

ρ∇φ dV = 0.

Since U is arbitary, we conclude that

(1.6) ∇p = −ρ∇φ.

Now let us impose spherical symmetry. Let r be distance to the origin, and er the

unit vector in the outward radial direction, (1.6) becomes

(1.7)
dp

dr
er = −ρdφ

dr
er.

Furthermore, either by a direct calculation or by applying the divergence theorem

and noticing that ∆φ = 4πρ, one can get

(1.8) −dφ
dr

= − 1

r2

∫ r

0

4πs2ρ(s) ds.

Hence

(1.9)
dp

dr
= −ρ 1

r2

∫ r

0

4πs2ρ(s) ds.

This is a relation between p and ρ. One can impose an equation of state p = p(ρ) to

reduce it to an equation for ρ only. Following [7], let us use the polytropic equation

of state

(1.10) p = cργ,
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then (1.9) becomes

(1.11)
d

dr

(
r2

ρ

d(cργ)

dr

)
= −4πr2ρ.

This is a second order ODE on ρ. We may try to solve the initial value problem for

(1.12) ρ(0) = ρ0, ρ′(0) = 0.

The derivative condition on ρ is natural if we require ρ be smooth at the origin. The

problem with this approach is that most of the time we do not know the value of ρ0.

What one can measure experimentally are some overall quantities of the star. For

instance, one can measure the radius of the sun by astronomical observations; one

can also measure the mass of the sun by knowing the gravitational acceleration it

exerts on the earth and the distance between the earth and sun. We may ask the

following question:

Question I.1. Suppose we know the total mass M , and the radius R of a star.

Furthermore, assume that we know the polytropic index γ of the gas. Can we estimate

its interior density, pressure, temperature, etc?

To illustrate a solution to this question, let us make the following transformation:

(1.13) ρ = ρ0θ
q, r = aξ =

√
(1 + q)c

4π
ρ

1
q
−1

0 ξ,

where q =
1

γ − 1
. (1.11) then becomes dimensionless:

(1.14)
1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θq.

(1.14) is called the Lane-Emden equation of index q. If we want to solve the initial

value problem (1.11), (1.12), the corresponding conditions for θ(ξ) will obviously be

(1.15) θ(0) = 1, θ′(0) = 0.
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The advantage of this nondimensionalization procedure is that the resulting intial

value problem of the Lane-Emden equation does not depend on the physical pa-

rameter ρ0. The solution to (1.14) and (1.15) is called the Lane-Emden function of

index q, and is denoted by θq. [7] provides a very nice account of the Lane-Emden

functions. Some Lane-Emden functions have exact formulas. For example

θ0(ξ) = 1− 1

6
ξ2,(1.16)

θ1(ξ) =
sin(ξ)

ξ
,(1.17)

θ5(ξ) =

√
1

1 + 1
3
ξ2
.(1.18)

For general q, although one does not have exact formulas, the behavior of the so-

lutions remain very nice due to the elliptic nature of the Lane-Emden equation. In

fact, one has the following

Proposition I.2. For 0 ≤ q < 5, θq(ξ) decreases monotonically to its first zero at

some finite value ξq. For q ≥ 5, θq(ξ) decreases monotonically but does not have a

finite zero.

Therefore for q < 5

(
γ >

6

5

)
, one has for the stellar radius R and total mass M :

(1.19) R = aξq =

√
(1 + q)c

4π
ρ

1
q
−1

0 ξq
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M =

∫ R

0

4πr2ρ(r)dr

=

∫ ξq

0

4πa3ξ2ρ0θ
q
q(ξ)dξ

= 4πa3ρ0

∫ ξq

0

ξ2θqq(ξ)dξ

= −4πa3ρ0

∫ ξq

0

d

dξ

(
ξ2dθq
dξ

)
dξ

= −4πa3ρ0ξ
2
qθ
′
q(ξq)

= −4π

√
(1 + q)c

4π

3

ρ
3−q
2q

0 ξ2
qθ
′
q(ξq).(1.20)

We observe that in (1.19) and (1.20), the only unknowns are c and ρ0. Solving the

two equations, we can determine the density function ρ(r). By the equation of state,

this will give us a complete characterization of the thermodynamic quantities in the

interior of the star.

Although this is a pretty much oversimplified model of the structure of a star, the

Lane-Emden equation does capture the dominant effect of gravitation on producing

pressure and energy gradient in the stellar interior. Since its emergence in the late

nineteenth century, it has become the standard equation for stellar models. The

nondimensionality of the Lane-Emden functions makes their value tables powerful

and easy to use, another great feature that adds to their popularity in practice.

1.2 Rotating Stars and the Compressible Euler-Poisson Equations

Relying on a simple force balance, the Lane-Emden equation is apparently in-

sufficient if the dynamical evolution of a star must be taken into account. In this

scenario, one needs the following compressible Euler-Poisson equations:

(1.21)


ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v) +∇p = −ρ∇φ



8

Here ρ, p, φ are the same as before, whereas v is the velocity vector field of the

motion of the gas under consideration. This system is closely related to the standard

compressible Euler system in fluid dynamics. The first equation in (1.21) indicates

mass conservation. The second equation indicates momentum conservation. The

external forcing term −ρ∇φ signifies self coupling of the fluid via gravitation. The

absence of second order derivatives of the velocity field v indicates that this is an

invisid fluid. The derivation of the Euler equations is standard. See, for example,

[10].

We observe immediately that (1.6) is none other than (1.21) with v and all t

derivatives set to zero. Therefore the Euler-Poisson equations generalize the Lane-

Emden equation. Like in the case of the Lane-Emden equation, we need to set an

equation of state p = p(ρ) to close the Euler-Poisson system.

Our goal in mind is to construct a model for rotating stars. For that purpose, we

need to make the assumptions that the star is axisymmetric and that it is in dynami-

cal equilibrium. One could apply these conditions at once and simplify the equations

immediately. However, in order to better understand the effect of axisymmetry on

the Euler-Poisson equations, let us take a first step in assuming axisymmetry only.

A precise mathematical formulation is as follows:

Assumption I.3 (axisymmetry). Consider the Euler-Poisson equations in three spa-

tial dimensions. Let x = (x1, x2, x3) be spatial coordinates. We assume the following:

• Let Q ∈ SO(3) be any rotation matrix which fixes the x3-axis. Then all scalar

functions f in the equations satisfy f(x, t) = f(Qx, t). The velocity vector field

v satisfies v(x, t) = Q−1v(Qx, t).

The standard Euler equations have rotational symmetry. See [33]. A similar

calculation shows that the same is true for the Euler-Poisson equations. In fact
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Proposition I.4. If ρ(x, t), p(x, t), v(x, t) solve the Euler-Poisson equations, let

Q ∈ SO(3) be any rotation matrix, then ρ(Qx, t), p(Qx, t), Q−1v(Qx, t) also solve

the Euler-Poisson equations.

This implies that a well-posed initial value problem for the Euler-Poisson equa-

tions will have an axisymmetric solution if the initial value is axisymmetric.

Let (r, θ, z) be the cylindrical coordinates in three spatial dimensions, and er, eθ,

ez be the standard unit vector field in the cylindrical radial, angular and vertical

directions. One sees easily that assumption I.3 is satisfied if and only if f = f(r, z, t)

and v = vr(r, z, t)er + vθ(r, z, t)eθ + vz(r, z, t)ez. Here vr, vθ, vz are the components

of v in the er, eθ, ez directions. An interesting quantity is conserved along particle

trajectories in this axisymmetric setting.

Proposition I.5. j = rvθ is conserved along particle trajectories.

Proof. Let us take the material derivative of j = rvθ,

(rvθ)t + v · ∇(rvθ)

= r(vθ)t + (vrer + vθeθ + vzez) ·
(
ervθ + r

(
∂vθ
∂r

er +
∂vθ
∂z

ez

))
= r(vθ)t + vr

(
vθ + r

∂vθ
∂r

)
+ rvz

∂vθ
∂z

.(1.22)

The momentum balance equation in the Euler-Poisson system is equivalent to

(1.23) ρvt + ρv · ∇v +∇p = −ρ∇φ.

In an axisymmetric setting, ∇p and ∇φ have zero eθ component. Let us project

(1.23) onto the eθ direction:

(1.24) ρ(vθ)t + ρ(v · ∇v) · eθ = 0,
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or

(1.25) (vθ)t + (v · ∇v) · eθ = 0,

if one looks only at the non-vacuum region. A direct calculation shows

(1.26) (v · ∇v) · eθ =
vrvθ
r

+ vr
∂vθ
∂r

+ vz
∂vθ
∂z

.

We may now observe that (1.22) is none other than r times the left hand side of

(1.25).

Let us now give the assumptions that lead to rotating star solutions.

Assumption I.6 (rotation, dynamical equilibrium). Consider a solution to the

Euler-Poisson equations that is axisymmetric in the sense of assumption I.3. Let

(r, θ, z) and er, eθ, ez be the cylindrical setup as before. We further assume

• The velocity field is given by v = rΩ(r, z)eθ.

• None of the functions in the equations depends on t.

Under assumption I.6, the first equation (mass conservation) in (1.21) is inden-

tically satisfied, whereas the second equation (momentum conservation) is reduced

to

(1.27)
∇p
ρ

= −∇φ+ rΩ2er.

Notice that in (1.27) only the square of Ω appears. Therefore in principle Ω could

change sign abruptly and not affect the solution. This is a consequence of our neglect

of viscous effects in the fluid. In a realistic model Ω will always be smooth. Let us

now present the rotating star problem.

Question I.7. Does there exist a solution to (1.27) with given equation of state,

angular velocity profile Ω2 and total mass

∫
ρ = M?
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The answer is affirmative. The existence and properties of rotating star solutions

to (1.27) were attained by Auchmuty and Beals [3], Auchmuty [2], Caffarelli and

Friedman [6], Friedman and Turkington [15, 17, 16], Li [28], Chanillo and Li [9], Luo

and Smoller [31], and Luo and Smoller [32].

Auchmuty and Beals [3] imposed some non-trival decay conditions on Ω2 and

got the first existence results for rotating stars. However, these conditions excluded

constant Ω. Li [28] obtained existence results for small constant Ω and also a non-

existence result for large constant Ω. In my work on a modified version of the

Euler-Poisson equations, I will prove some parallel results for rotating planets with

a solid core, and more.

Notice that if Ω2 is prescribed, ρ is the only unknown in (1.27), since φ is the

gravity potential of ρ, and p is determined by ρ from the equation of state p = p(ρ).

Different components of (1.27) seem to provide too many equations for the single

unknown function ρ. This is a subtle point of the problem. In order to appreciate

this subtlety, let us take the curl of (1.27),

(1.28) ∇×
(
∇p
ρ

)
= ∇× (rΩ2er),

which simplifies to

(1.29)
∇p×∇ρ

ρ2
= r

∂Ω2

∂z
eθ.

(1.29) implies the following crucial proposition,

Proposition I.8. Both sides of (1.27) are curl free if and only if ∇p × ∇ρ = 0 if

and only if Ω2 depends only on r.

For a given equation of state p = p(ρ), one sees immediately the following

Corollary I.9. If p is a given function of ρ, then (1.27) is curl free, and Ω2 can

depend only on r.



12

This shows that in order for the equations to be consistent, we can only prescribe

Ω2 as functions of r. Notice that the vanishing of curl is a necessary condition for

a vector field to be a gradient. That indeed is the case here. In fact, (1.27) can be

rewritten as

(1.30) ∇
(
a(ρ)

)
= −∇φ+∇J,

where

(1.31) a(s) =

∫ s

0

p′(t)

t
dt, J(r) =

∫ r

0

sΩ2(s)ds.

Taking off the gradients, we get

(1.32) a(ρ) = −φ+ J(r) + λ

for some constant λ. With φ given as the gravity potential of ρ, (1.32) appears a

single equation for the unknown function ρ, although we still don’t know the value

of λ.

In the literature, there is a way of prescribing the angular velocity profile without

giving Ω2 directly. See Auchmuty and Beals [3], Friedman and Turkington [15, 17,

16], Caffarelli and Friedman [6], and Luo and Smoller [32]. What one does instead

is to consider the function

(1.33) mρ(r) =

∫
x21+x22≤r2

ρ(x)dx

representing the mass enclosed by a cylinder around the x3-axis with radius r. One

prescribes a function j(s), and calculates the angular velocity by

(1.34) r2Ω(r) = j(mρ(r)).

Under this setup, (1.27) can be written as

(1.35)
∇p
ρ

= −∇φ+
j2(mρ(r))

r3
er,
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and the equivalent for (1.32) is

(1.36) a(ρ) = −φ−
∫ ∞
r

j2(mρ(s))

s3
ds+ λ.

One can motivate this point of view as follows. First observe that r2Ω is the same

as rvθ. Let us consider an axisymmetric dynamical solution to the Euler-Poisson

equations in the sense of assumption I.3. Further assume that the vr and the vθ

component of the velocity field depends only on r at any given time t. Let X : R3×

R → R3 be the particle trajectory mapping. Writing X in cylindrical coordinates,

the assumptions can be summarized as

(1.37) X(r, θ, z, t) =
(
X1(r, t), X2(r, t), X3(r, z, t)

)
.

(1.37) is naturally satisfied by a configuration that has no z variation, but for general

configurations is quite non-trivial. In any case, let us force this setup to get

(1.38) mρ(·,t)
(
X1(r, t)

)
= mρ(·,0)(r)

by mass conservation, and

(1.39) X1(r, t)vθ
(
X1(r, t), t

)
= rvθ(r, 0)

by proposition I.5. Since X(·, t) is a diffeomorphism, (1.38) and (1.39) shows that

there is a fixed relation between rvθ and mρ(r) for any given time t. In other words,

one could write

(1.40) rvθ(r, t) = j(mρ(·,t)(r)).

Therefore (1.34) can be thought of as an equilibrium version of (1.40). That being

said, for the rest of this dissertation, we will focus mainly on the formulation with

prescribed Ω, although a similar theory for prescribed j could also be developed.
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The key idea to solve relation (1.32) is to regard it as the Euler-Lagrange equation

of the following energy functional

(1.41) E(ρ) =

∫
A(ρ) +

1

2
ρBρ− ρJ

subject to the constraint

(1.42)

∫
ρ = M.

Here

(1.43) A(s) =

∫ s

0

a(t)dt

and

(1.44) Bρ = ρ ∗ 1

|x|
=

∫
ρ(y)

|x− y|
dy.

Under this formulation the unknown constant λ in (1.32) is naturally realized as a

Lagrange multiplier. We will give a more detailed exposition of the existence theory

by calculus of variations in chapter II.

1.3 Rotating Planets with a Solid Core

Recent observations on extrasolar giant planets have raised fundamental questions

about their interior structure and origin. Many of the extrasolar planets possess un-

expectedly small radii, suggesting high metallicity in their composition and possibly

the existence of a solid core in the center (Anderson and Adams [1]). Efforts have

been made to simulate the evolution of these planets, and evidence for the existence

of a solid core has been found (Militzer et al. [34]). Models involving high metallicity

and center core have been constructed and examined (Miller et al. [35], Burrows et

al. [5]). As a first model from a mathematical perspective, one could modify the
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Euler-Poisson equations for rotating stars to include a solid core and its gravitational

potential. Let K be an axisymmetric bounded domain in R3, and ρK be a given ax-

isymmetric non-negative function on K, indicating the density of the solid core. Let

φK = −ρK ∗
1

|x|
denote the gravitational potential of ρK . Then by the −φK-modified

Euler-Poisson system we mean the following

(1.45)


ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v) +∇p = −ρ∇(φ+ φK)

Here we only require the equations be satisfied on R3\K. As is in the case of rotating

star solutions, we can again make assumption I.6, and reduce the equations to

(1.46)
∇p
ρ

= −∇(φ+ φK) + rΩ2er.

Since the new term φK appears inside the gradient, it does not contribute to the

curl of the equation. Following the previous calculation, we again get corollary I.9.

Therefore we can prescribe some Ω2 which depends only on r, and ask the following

Question I.10. Does there exist a solution to (1.46) with given equation of state,

angular velocity profile Ω2 and total mass

∫
ρ = M?

At first sight, this question might seem easy if not trivial given all the previous

work on rotating star solutions, for the following reasons. 1. From a mathematical

standpoint, this is just one extra term in the equation, which is a given potential

function. It should not add too much difficulty to the problem. 2. From a physical

intuitive standpoint, the inclusion of a solid core potential should help pull the gas

together and hence stabilize the star. An existence result is expected to hold “more

true” in this circumstance. However, a further examination of the methodologies

leading to the rotating star solutions reveals a different story. Indeed, in order to
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show that a solution to (1.32) exists, one needs to assume that J has small L∞ norm.

See [28]. The mathematical reason for this assumption cannot be easily explained

without digging deep into the existence proof, but the physical intuition is that one

should only expect a solution to exist if the rotation is slow. In fact, for sufficiently

fast constant rotation, [28] provides a non-existence result. On the other hand, with

the addition of the φK term, (1.32) gets modified to

(1.47) a(ρ) = −φ− φK + J(r) + λ

Recall that φK = −ρK∗
1

|x|
is the physical potential of ρK , and is apparently negative.

Therefore −φK and J in (1.47) are of the same sign! This seems to be in strong

disagreement with the intuition that core gravity and centrifugal force from the

rotation should somehow cancel each other. The reason for this strange phenomenon

is, roughly speaking, that the centrifugal potential increases as one moves away from

the center, while gravity potential decreases, hence, although they are in opposite

directions in the force equation, on the potential level, they actually have the same

sign. As we have pointed out, the previous work on rotating star solutions assumes

smallness of J in light of slow rotation, but here in this planet structure model, there

is no physical reason to assume −φK to be small. The core gravity potential need

not be small for a slowly rotating planet. Therefore different methods are needed to

treat this new case.

Moreover, coming back to the physical intuition of core gravity - centrifugal force

balance, one could imagine a super heavy core pulling the surrounding gas very

tightly around it, and spinning with a very fast angular velocity. This picture of

heavy core and fast rotation suggests one to ask the following

Question I.11. With given J , not necessarily small, given equation of state, and
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given total mass M , does there exist a solution to (1.47) when −φK is sufficiently

large in the appropriate sense?

Again, although the heuristic picture strongly suggests a positive answer, the

current methodologies in rotating star solution theory does not provide a proof. If a

regular sized −φK creates a problem in the arguments, a very large −φK is certainly

going to make things worse.

On the other hand, one should still not expect a solution to exist if the core is of

regular size while the rotation is too fast. Motivated by the non-existence result in

[28], one could ask

Question I.12. With given core potential −φK, equation of state, and total mass

M , can one be sure that there is no solution to (1.47) if J is given by a constant

rotation that is too large?

The argument provided in [28] is a subtle contradiction involving integral equali-

ties derived from (1.47) and carefully chosen test functions. This subtle construction

breaks down if one adds the φK term and change the domain from R3 to R3 \K. As

is the case for most non-existence proofs involving integral equalities, the arguments

get quite sensitive to the equation and the domain and is usually not very flexible.

As we will show in this dissertation, all three questions raised in this section can

be answered in the affirmative if suitable conditions are given. For question I.10, one

has existence if J has small L∞ norm or is given by small constant rotation. For

question I.11, one has existence if the core potential is given by µφK for some given

φK and large enough µ. For question I.12, one has non-existence for large enough

constant rotation.
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1.4 Non-isentropic Equation of State

As is manifested by corollary I.9, there is a direct connection between the isentropy

of the equation of state and the fact that Ω2 has only cylindrical radial dependence.

Almost all previous works on rotating star solutions are based on an isentropic equa-

tion of state. If one attempts to study solutions that allow a general velocity profile

that has non-trivial z dependence, a non-isentropic equation of state is inevitable:

(1.48) p = p(ρ, s).

Here s is entropy. In standard thermodynamics, the state of a gas is determined

by two state variables. Therefore (1.48) is sufficient to describe any general state

changes in the gas. The introduction of the new variable s calls for another equation

to close the system. Indeed, the full Euler-Poisson system has another equation for

energy conservation, which we have been ignoring until now:

(1.49)

(
1

2
ρ|v|2 + ρe

)
t

+∇ ·
((1

2
ρ|v|2 + ρe

)
v

)
= −ρ∇φ · v −∇ · (pv).

Here e is specific internal energy. By the second law of thermodynamics, one has

(1.50) de = T (ρ, s)ds+
p(ρ, s)

ρ2
dρ,

or

(1.51) e(ρ, s) =

∫ ρ

0

p(ξ, s)

ξ2
dξ.

Here we have assumed the relation

e(0, s) = 0.

(1.51) implies that the dependence of e(ρ, s) and therefore T (ρ, s) on ρ and s are

determined if we pick an equation of state p = p(ρ, s). (1.49) will then provide a new
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equation for s and ρ. Let us simplify (1.49) using (1.21). After a simple calculation,

we get

(1.52) ρet + ρv · ∇e = −p∇ · v.

By (1.50), this becomes

ρTst + ρ
p

ρ2
ρt + ρv ·

(
T∇s+

p

ρ2
∇ρ
)

= −p∇ · v

ρT (st + v · ∇s) +
p

ρ
(ρt + v · ∇ρ+ ρ∇ · v) = 0

ρT (st + v · ∇s) = 0

st + v · ∇s = 0.(1.53)

Notice that we have used the mass conservation equation to get the penultimate

step. Let us summarize the equations as the full Euler-Poisson system

(1.54)



ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v) +∇p = −ρ∇φ

st + v · ∇s = 0

where the three equations stand for mass conservation, momentum conservation,

and entropy transport, respectively. To look for rotating star solutions, let us again

assume assumption I.6. We observe that mass conservation and entropy transport are

automatically satisfied under these assumptions. The momentum balance equation

is reduced to

(1.55)
∇p
ρ

= −∇φ+ rΩ2er.

This equation looks deceptively similar to (1.27). The difference between the two

will become apparent once we impose a non-isentropic equation of state. Let us
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introduce the equation of state of an ideal gas (Courant and Friedrichs [11])

(1.56) p = exp(s)ργ

for some constant γ. (1.55) now becomes

(1.57)
∇(exp(s)ργ)

ρ
= −∇φ+ rΩ2er.

We wish that we could treat this vector equation as the gradient of a scalar equation

like (1.32). To see that this is not possible, let us take the curl of (1.57),

(1.58) exp(s)ργ−2∇s×∇ρ = r
∂Ω2

∂z
eθ.

Hence (1.57) is a gradient only if

(1.59) ∇s // ∇ρ.

This is a very awkward relation between s and ρ. One way to make sure this condition

be satisfied is to prescribe s as a function of ρ. But that also means we give up on

non-isentropy. If we treat s and ρ as two independent functions, (1.59) is too strong

a connection between the two and the resulting equation will still lack a variational

structure, which is the very core of the method treating the classical rotating star

problem.

In this dissertation we will prove two types of existence results pertaining to the

non-isentropic Euler-Poisson equations. One is to consider the divegence of equation

(1.57):

(1.60) ∇ ·
(
∇(exp(s)ργ)

ρ

)
= −4πρ+∇ · (rΩ2er),

and to solve for ρ with s and Ω prescribed; the other is to consider equation (1.55)

and to solve for p and Ω2 with ρ prescribed.
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To better see the structure of (1.60), let us make the change of variable:

(1.61) w =
γ

γ − 1
exp

(
γ − 1

γ
s

)
ργ−1.

(1.60) now becomes

(1.62) ∇ · (exp(αs)∇w) +K exp(−αs)|w|q − f = 0.

Here

(1.63) q =
1

γ − 1
, α =

1

γ
, K = 4π

(
γ − 1

γ

) 1
γ−1

,

and

(1.64) f = 2Ω2 + r
∂Ω2

∂r
= 2Ω

∂

∂r
(rΩ).

With s and Ω prescribed, Luo and Smoller [31] considered (1.62) and obtained some

existence results when the entropy is assumed to be either constant or radially de-

pendent, and a non-existence result when the entropy is non-constant. I will find

some existence results for (1.62) with axisymmetric entropy. Standard elliptic theory

(Gilbarg and Trudinger [19]) can solve the Dirichlet problem to (1.62) on bounded

domains given suitable range of q, but in order to conclude positivity of w inside the

domain, it is desirable that f be negative. Unfortunately for most physically inter-

esting Ω, f is positive. For example, constant Ω will produce a positive f . Therefore

the gist of the proofs is to show existence of positive solutions.

One could also consider (1.55) with prescribed ρ. Let us rewrite (1.55) in cylin-

drical coordinates.

(1.65)


pr = ρ(−φ)r + ρrΩ2

pz = ρ(−φ)z
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If ρ is given, the second equation in (1.65) will determine p, and consequently the

first equation in (1.65) will give Ω2. However, thus obtained solutions in general do

not satisfy the following conditions to be considered physically significant: p and Ω2

should be sufficiently regular (e.g. no blow ups), positive where ρ is positive, and

vanish where ρ is zero. It turns out that it is possible to give sufficient conditions on

ρ that would guarantee the existence of solutions with the above mentioned physical

merits.

1.5 Outline of Thesis

In this dissertation, we will attempt to address the formerly proposed questions on

rotating planets with a solid core and rotating stars with a non-isentropic equation

of state. Chapter II serves as an introduction to the existence theory for rotating

star solutions. We outline the ideas that yield existence of solutions for slow rotation

and non-existence of solution for fast constant rotation. We also discuss a non-linear

stability result whose proof relies on a stronger existence theorem. Chapter III deals

with rotating planets with a solid core and answers the questions raised in section

1.3. Chapter IV treats a non-isentropic equation of state and answers the questions

raised in section 1.4. Chapter V provides further inquiries about rotating stars, and

indicates some possible directions for future research.



CHAPTER II

Existence of Rotating Star Solutions to the Isentropic
Euler-Poisson Equations

In this chapter, we give an overview of the methods leading to existence theorems

on rotating star solutions to the isentropic Euler-Poisson equations. Section 2.1

explains the variational formulation introduced in Auchmuty and Beals [3]. Section

2.2 and 2.3 outline the proofs of the existence and non-existence results in [3] and

in Li [28]. Section 2.4 discusses a non-linear stability result in Luo and Smoller [32].

To avoid complicated technicalities, let us assume the equation of state used in this

chapter to be1

(2.1) p = cργ.

Here c and γ are constants. As we will see later, the value of c is insignificant to

the analysis while the value of γ is important. We will freely choose c to make the

equations look simpler. (2.1) is already sophisticated enough to capture the essential

difficulty in results with more general equations of state.

1Gas satisfying this equation of state is often called a polytrope.

23
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2.1 A Variational Free Boundary Problem

Recall that rotating stars are modeled by solutions to (1.32). Imposing the equa-

tion of state (2.1) and choosing c = γ − 1, this is

(2.2) γργ−1 = Bρ+ J(r) + λ,

where

(2.3) Bρ(x) = ρ ∗ 1

|x|
=

∫
R3

ρ(y)

|x− y|
dy.

We can view (2.2) as an Euler-Lagrange equation. In fact, let us consider the follow-

ing energy functional

(2.4) E(ρ) =

∫
R3

((
ρ(x)

)γ − 1

2
ρ(x)Bρ(x)− ρ(x)J(r(x))

)
dx

on the space of admissible functions

(2.5)

W =

{
ρ : R3 → R, ρ is axisymmetric, ρ ≥ 0 a.e., ρ ∈ Lγ(R3),

∫
R3

ρ dx = M

}
.

One has the following

Proposition II.1. Assume J is smooth. Let ρ be a local minimum of E on W , then

ρ is continuous on R3, smooth on its own positive set, and satisfies (2.2) there.

To prove this proposition, one does a standard calculation to get the following

variational inequality (See also [23]):

γργ−1 −Bρ− J ≥ λ a.e.,(2.6)

γργ−1 −Bρ− J = λ a.e. where ρ > 0.(2.7)

From (2.6) and (2.7) one deduces that

(2.8) γργ−1 = max(Bρ+ J + λ, 0).
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The smoothing effect of B will now give the desired result.

Before we move on to discuss the existence of minimizers of E, let us present a few

convolution inequalities which prove to be very useful in the rotating star existence

theory. Their proofs can be found in [3].

Lemma II.2. Suppose ρ ∈ L1(R3)∩Lp(R3), and 1 < p ≤ 3

2
. Then Bρ ∈ Lr(R3) for

all 3 < r <
3p

3− 2p
, and

(2.9) ‖Bρ‖r ≤ C(‖ρ‖b1‖ρ‖1−b
p + ‖ρ‖c1‖ρ‖1−c

p )

for some constant C and 0 < b, c < 1 depending on p and r. If p >
3

2
, then Bρ is

bounded and continuous and satisfies (2.9) with r =∞.

Lemma II.3. If ρ ∈ L1(R3) ∩ L4/3(R3), then

(2.10)

∣∣∣∣ ∫
R3

ρBρ dx

∣∣∣∣ ≤ C

(∫
R3

|ρ|4/3 dx
)(∫

R3

|ρ| dx
)2/3

.

Lemma II.4. If ρ ∈ L1(R3) ∩ Lp(R3) for some p > 3, then Bρ is continuously

differentiable.

To see that E is well-defined on W and is bounded away from −∞, we apply

lemma II.3 to the second term in (2.4).∫
1

2
ρBρ

≤C
∫
ρ4/3

(∫
ρ

)2/3

≤C
∫
ρ4/3M2/3(2.11)

We wish to control (2.11) by the first term in (2.4). For that purpose, we need to

make the crucial assumption

(2.12) γ >
4

3
.
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Now for any small ε > 0, we can choose s(ε) sufficiently large, so that ρ4/3 ≤ εργ for

ρ > s, and

C

∫
ρ4/3M2/3

≤C(M)

(∫
ρ<1

ρ4/3 +

∫
1≤ρ≤s

ρ4/3 +

∫
ρ>s

ρ4/3

)
≤C(M)

(∫
ρ<1

ρ+ s1/3

∫
1≤ρ≤s

ρ+ ε

∫
ρ>s

ργ
)

≤C(M, s(ε)) + C(M) ε

∫
ργ.(2.13)

Choosing ε so small that C(M) ε <
1

2
, we see that

E(ρ) =

∫ (
ργ − 1

2
ρBρ− ρJ

)
dx

≥ 1

2

∫
ργ dx− C(M, s(ε))−M‖J‖∞.(2.14)

Therefore we have the following

Proposition II.5. Suppose γ >
4

3
, and let M > 0 and J ∈ L∞ be given. Then there

is a constant C(M,J) such that

(2.15) E(ρ) ≥ 1

2

∫
ργ dx− C(M,J)

for all ρ ∈ W .

Let I = inf
ρ∈W

E(ρ). We see from proposition II.5 that I > −∞. Pick a minimizing

sequence {ρn} of E in W . (2.15) implies that {ρn} is bounded in Lγ, and therefore

has a weakly convergent subsequence. Without loss of generality, we still denote

that subsequence by {ρn}. In order for the limit to be a minimizer, we need to show

that E is weakly lower semicontinuous on Lγ. The first term in (2.4) is weakly lower

semicontinuous by a standard convexity argument. See, for example [29]. The third

term in (2.4) is linear in ρ, hence is weakly continuous, at least if J has sufficient
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decay. To show convergence of the second term, it is desirable that Bρn should

converge in Lγ
′
norm, where γ′ is the conjugate exponent of γ. If the functions under

consideration are restricted to SR, a ball of radius R, then B : Lγ(SR) → Lγ
′
(SR)

is compact when γ >
6

5
by the Sobolev embedding theorem. Since we have already

assumed γ >
4

3
, in that case, we do get the desired convergence. Unfortunately,

we have no such knowledge a priori about the support of the functions in W . The

unboundedness of the domain makes this problem difficult.

The prescription to circumvent loss of compactness is the following. We first

minimize E on a restricted space of functions WR, which comprises essentially those

functions inW which are supported in SR. This can be done exactly by the arguments

given above. Such minimizers are denoted by ρR, and they will satisfy the Euler-

Poisson equations in the interior of SR, but there is no guarantee that they would

vanish on the boundary. Such solutions are not sufficient to model rotating stars.

However, we can try to prove bounds on the support of ρR, and hopefully, the size of

the support would have some uniform bound for all large R. Once we let R increase

past that bound, we will have found a compactly supported solution to the Euler-

Poisson equations, since the support of ρR will be contained in a smaller ball inside

SR.

2.2 Existence of Solutions for Slow Rotation

In this section we outline the ideas in the proof of the following

Proposition II.6. Given M > 0, γ >
4

3
, there is an ε > 0 and R0 > 0, such that the

support of ρR is contained in SR0 if ‖J‖∞ < ε, and R > R0. Here ρR is a minimizer

of E on

(2.16) WR =

{
ρ ∈ W

∣∣ ρ = 0 a.e. outside SR, ρ ≤ R a.e.

}
,
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and SR is the ball of radius R centered at the origin.

We first need an a priori bound on the L∞ norm of ρR.

Lemma II.7. There exists some constant C1, depending on γ, M and ‖J‖∞ such

that

(2.17) ‖ρR‖∞ ≤ C1 for all R ≥ 1.

This can be proven by a bootstrap argument. One starts with a uniform bound

on ‖ρR‖4/3 given by (2.13). The fact that ρR minimizes E on WR allows one to come

up with estimates on the Lp norm of ρR for a slightly larger power p. After finitely

many steps, p becomes greater than
3

2
. Lemma II.2 then gives the L∞ bound.

Next we write down the Euler-Lagrange equations similar to (2.6) and (2.7), this

time on SR.

Lemma II.8. For R > C1, there is a unique constant λR such that

γργ−1
R −BρR − J ≥ λR a.e. on SR,(2.18)

γργ−1
R −BρR − J = λR a.e. where ρR > 0.(2.19)

Our next goal is to show that λR is negative and bounded away from 0 for all R

sufficiently large. This is a crucial step in the argument. The idea is to use (2.18). If

we can find a point x ∈ SR for which ρR(x) is much smaller compared with BρR(x),

λR will be negative. Hence we need some uniform lower bound on ‖BρR‖∞. This

may not be true for a general family of functions having the same L1 norm, because

they could become more and more dilute and converge to zero as R increases.

Lemma II.9. There exist δ > 0, ε1 > 0, R1 > 0 such that,

(2.20) ‖BρR‖∞ ≥ δ

if ‖J‖∞ < ε1 and R > R1.
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The truthfulness of this lemma can be motivated as follows. Let us first assume

that J = 0. By simple scaling considerations,

(2.21) E(ρR) =

∫
ργR −

1

2
ρRBρR < 0

for R large enough. We fix some R1 large so that E(ρR1) is negative. Since ρR1 ∈ WR

for all R > R1, we have

(2.22) E(ρR) ≤ E(ρR1) < 0.

Therefore

(2.23) 0 < −E(ρR1) ≤
1

2

∫
ρRBρR ≤

M

2
‖BρR‖∞.

When J is non-zero but small, the same result holds true.

Once this lower bound on ‖BρR‖∞ is established, with some decent amount of

work in the direction suggested above, we can get the following

Lemma II.10. There exist δ > 0, ε1 > 0, R1 > 0 such that

(2.24) λR < −δ if ‖J‖∞ < ε1, and R > R1.

The values of δ, ε1 and R1 may be different from the previous lemma. We use

these letters to represent generic constants depending on γ and M .

Now, in view of (2.19), we have

(2.25) γ(ρR(x))γ−1 −BρR(x)− J(r(x)) < −δ

whenever ρR(x) > 0. If we furthermore assume that ‖J‖∞ <
δ

2
, (2.25) implies

(2.26) BρR(x) >
δ

2
whenever ρR(x) > 0.

Therefore in order to show that ρR(x) is zero outside some ball of uniformly bounded

radius, one just need to estimate BρR(x) and show that it is smaller than
δ

2
there.

In fact, one has the following
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Lemma II.11. There exist ε > 0 and R0 > 0 such that if ‖J‖∞ < ε

(2.27) BρR(x) <
δ

2
for |x| > R0.

To understand the main idea behind this lemma, let us provide a schematic ar-

gument for the case when x is far away from the x3-axis. We split BρR into three

parts:

BρR(x) =

∫
ρR(y)

|x− y|
dy

=

∫
|x−y|<1

ρR(y)

|x− y|
dy +

∫
1<|x−y|<a

ρR(y)

|x− y|
dy +

∫
|x−y|>a

ρR(y)

|x− y|
dy(2.28)

Denote by r the distance of x to the x3-axis. The first term in (2.28) should be small,

because by axisymmetry, the portion of ρR on |x−y| < 1 can be rotated around the

x3-axis to create a ring of radius r. Since the total mass M is given, the portion of

ρR on |x − y| < 1 is O

(
1

r

)
, and will therefore be small when r is large. The last

term in (2.28) will be small if we pick a large enough, since ρR is bounded in L1. The

integration domain of the second term can be covered by O(a3) balls of radius one.

The contribution from each of these balls will be O

(
1

r − a

)
by a similar argument

as before. Hence the second term will be small if r is sufficiently large.

Lemma II.11 implies proposition II.6, which gives existence of compactly sup-

ported rotating star solutions for J having small L∞ norm. Notice that for constant

angular velocity Ω, J(r) =
1

2
Ω2r2 is not in L∞. Knowing that the above mentioned

solutions are supported in SR0 , we replace J by a smooth cut-off function

J̃(r) =


1

2
Ω2r2 when r ≤ R0

Ω2R2
0 when r > 2R0

where J̃ is smooth and increasing between R0 and 2R0. The solution corresponding

to J̃ will be supported in SR0 as long as we pick Ω small enough to make sure that
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‖J̃‖ < ε. Such solutions only see the effect of J̃ up to r = R0, hence they will solve

the Euler-Poisson equations with a uniform angular velocity profile.

2.3 Non-existence of Solution for Fast Constant Rotation

In this section we outline the ideas that lead to the following

Proposition II.12. Given γ >
4

3
and M > 0, there is an Ω0 > 0 such that if

Ω(r) ≡ Ω > Ω0, there does not exist a continuous bounded function ρ : R3 → R for

which

1. ρ ≥ 0,

∫
R3

ρ = M .

2. ρ satisfies the equilibrium relation

(2.29) γργ−1 − 1

2
Ω2r2 −Bρ = λ

where ρ > 0.

We first need a few direct estimates on the gravity potential Bρ. See [28] for their

proofs.

Lemma II.13.

(2.30) ‖Bρ‖∞ ≤ CM2/3‖ρ‖1/3
∞ .

Compare lemma II.13 with (2.29). We see that

(2.31)
1

2
Ω2r2 = γργ−1 −Bρ− λ ≤ γ‖ρ‖γ−1

∞ + CM2/3‖ρ‖1/3
∞ − λ.

Hence d = sup
(r,θ,z)∈Suppρ

r < ∞ if ρ is bounded and Ω > 1. Let us present some more

estimates.

Lemma II.14. There exist some constant d1(M, ‖ρ‖∞) and C > 0 such that

(2.32) ‖Bρ‖∞ ≤ C‖ρ‖∞d2 log

(
1 +

M

2πd3‖ρ‖∞

)
for d < d1.
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Let d be defined as before and ε = sup{d − r
∣∣ (r, θ, z) ∈ Suppρ}. We have the

following

Lemma II.15. There exist some constant d2(M, ‖ρ‖∞) and C > 0 such that

(2.33) ‖Bρ‖∞ ≤ C‖ρ‖∞εd
(

log

(
1 +

√
d

ε

)
+ log

(
1 +

M

2πεd2‖ρ‖∞

))

for d < d2 and ε <
d

2
.

The logarithmic factors in lemma II.14 and lemma II.15 come naturally from

calculating the gravity potential of a denisty function supported in a cylinder of

radius d. Next, we observe that λ ≤ −1

2
Ω2d2 by evaluating (2.29) at a sequence of

points (rn, θn, zn) ∈ Suppρ such that rn → d:

λ = γ(ρ(rn, θn, zn))γ−1 − 1

2
Ω2r2

n −Bρ(rn, θn, zn)

≤ γ(ρ(rn, θn, zn))γ−1 − 1

2
Ω2r2

n → −
1

2
Ω2d2.(2.34)

With this knowledge on λ, we conclude from (2.29) that

(2.35) γργ−1 ≤ Bρ.

Therefore

(2.36) ‖ρ‖∞ ≤ C‖Bρ‖
1

γ−1
∞ .

Combining (2.36) with lemma II.13 and using γ >
4

3
, we can get an a priori bound

on the L∞ norm of ρ.

Lemma II.16. There is a constant C2(γ,M) > 0 such that

(2.37) ‖ρ‖∞ ≤ C2.
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On the other hand, combining (2.36) with lemma II.14 and lemma II.15, one can

get rid of the logarithmic factors in these lemmas and even create an small extra

power of d or εd.

Lemma II.17. There exist some constant d3(M, ‖ρ‖∞), C2 > 0 and δ > 0 such that

(2.38) ‖Bρ‖∞ ≤ C2d
2+δ,

and

(2.39) ‖Bρ‖∞ ≤ C2(εd)1+δ

for d < d3 and ε <
d

2
.

Now let us prove proposition II.12 in the following two cases: first when d < d3,

and later when d ≥ d3.

Let us first assume d < d3 so that lemma II.17 can be applied. The fact that

λ ≤ −1

2
Ω2d2 can be further utilized with (2.29) to give

1

2
Ω2d2 − 1

2
Ω2r2 ≤ Bρ,

d− r ≤ 2‖Bρ‖∞
Ω2d

.(2.40)

where ρ > 0. Hence by (2.38)

(2.41) ε = sup{d− r
∣∣ (r, θ, z) ∈ Suppρ} ≤ 2‖Bρ‖∞

Ω2d
≤ 2C2

Ω2
d1+δ <

d

2

if Ω is sufficiently large. (2.39) in lemma II.17 can now be applied to give

(2.42) Ω2 ≤ 2‖Bρ‖∞
εd

≤ 2C2(εd)δ < 2C2d
2δ
3 .

This produces a contradiction when Ω is sufficiently large.
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Having dealt with the d < d3 case, let us now assume that d ≥ d3. Since ‖Bρ‖∞

is uniformly bounded by lemma II.13 and lemma II.16, we have from (2.40) that

(2.43) d− r ≤ 2C

Ω2d3

≤ d3

2
≤ d

2

if Ω is sufficiently large. Therefore we get

(2.44) r ≥ d

2

whenever ρ(r, θ, z) > 0.

Choose a smooth, non-negative, and compactly supported function g : R → R

satisfying

(2.45)

∫
R3

g(z)ργ−1 > 0.

Multiply both sides of (2.29) by g(z)
1

r
(r2ργ−1)r and integrate over R3. After a few

steps of simple estimates and integration by parts, and using (2.44), one gets

(2.46)

(
Ω2d2

C
− C(1 + d)

)∫
R3

g(z)ργ−1 ≤ 0 for some constant C,

which gives the desired contradiction when Ω is sufficiently large.

As one can see, this proof relies quite heavily on the domain being R3 (to facilitate

integration by parts), and the equation being free of external potential term (to get

smallness estimates like lemma II.14 and lemma II.15 for density function supported

in a thin cylinder of radius d). In the case of rotating planets with a core potential,

a different proof is needed.

2.4 Non-linear Stability

Luo and Smoller [32] obtained a non-linear stability result whose proof relies on

a refined version of existence theorem. In this result they use the formulation in
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which one prescribes r2Ω(r) as a function of mρ(r), as is explained in section 1.2. In

this case, the equilibrium relation is given by (1.36), and the corresponding energy

functional is

(2.47) E(ρ) =

∫
R3

((
ρ(x)

)γ − 1

2
ρ(x)Bρ(x) +

1

2
ρ(x)

j2
(
mρ[r(x)]

)
r(x)2

)
dx.

Compared with (2.4), (2.47) has a very desirable property: it coincides with the

physical energy of the system. For a smooth dynamical solution, the physical energy

is conserved. For a solution with shock waves, the physical energy can only decrease.

This will prove to be crucial for the stability result. With the space of admissible

functions W chosen, and a few physically reasonable conditions on the function j,

they were able to show the following

Proposition II.18. Let γ >
4

3
, M > 0 and j be given. If {ρn} ∈ W is a minimizing

sequence of E, then there exists a sequence of vertical shifts ane3, and a subsequence

of {ρn} (still labelled {ρn}), such that the weak limit of Tρn := ρn(x+ane3) in Lγ(R3)

is a minimizer of E in W . Furthermore {∇B(Tρn)} converges to its limit in the

L2(R3) norm.

The reason we say this is a refined version of existence theorem is that it does not

start from a special minimizing sequence as the other existence theorems do. Instead

of using the minimizers on finite balls, this theorem asserts that any minimizing

sequence contains a convergent subsequence. Its proof relies more explicitly on the

concentration compactness principle (compare Lions [30]), in the sense that it does

not assert the minimizing sequence to be compactly supported. It suffices to know

that an arbitrarily large portion of the mass is contained in a bounded ball to conclude

convergence of the energy functional and effective compactness of B.

To explain the ideas leading to the non-linear stability result, let us consider
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an axisymmetric dynamical solution to the Euler-Poisson equations in the sense

of assumption I.3. As before we write the velocity field v as v = vr(r, z, t)er +

vθ(r, z, t)eθ+vz(r, z, t)ez. Let us further assume that the particle trajectory mapping

satisfies (1.37), so that rvθ(r, t) is given by (1.40) for some fixed function j. In this

case the physical energy of the dynamical solution is

E1(ρ(t),v(t)) =

∫
R3

((
ρ(x, t)

)γ − 1

2
ρ(x, t)Bρ(x, t)

+
1

2
ρ(x, t)

j2
(
mρ(·,t)[r(x)]

)
r(x)2

+
1

2
ρ(v2

r + v2
z)(x, t)

)
dx.(2.48)

Now consider the rotating star solution ρ̃ produced by proposition II.18 with the

same mass M and angular velocity profile j as ρ(0). Since such an equilibrium

solution has no vr and vz component, its physical energy is the same E(ρ̃) given by

(2.47). Because the physical energy is non-increasing, we have

(2.49) E1(ρ(t),v(t))− E(ρ̃) ≤ E1(ρ(0),v(0))− E(ρ̃).

A careful analyis on E1(ρ(t),v(t))− E(ρ̃) reveals that it has a very nice structure:

E1(ρ(t),v(t))− E(ρ̃)

= d(ρ(t), ρ̃) + d1(ρ(t), ρ̃)− 1

8π
‖∇Bρ(·, t)−∇Bρ̃‖2

2

+

∫
R3

1

2
ρ(v2

r + v2
z)(x, t) dx.(2.50)

where d and d1 are both non-negative expressions involving ρ(t) and ρ̃. We even

have

(2.51) d(ρ(t), ρ̃) ≥ C‖ρ(t)− ρ̃‖2
2

for γ < 2. Notice that in (2.50), if the sign in front of
1

8π
was positive, we would

have obtained a stability result already, because (2.49) says E1(ρ(t),v(t)) − E(ρ̃)
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should stay small if started small. Of course we cannot make this simple argument

in reality, but let us take this as a good motivation for defining the following

F (ρ(t),v(t))

= d(ρ(t), ρ̃) + d1(ρ(t), ρ̃) +
1

8π
‖∇Bρ(·, t)−∇Bρ̃‖2

2

+

∫
R3

1

2
ρ(v2

r + v2
z)(x, t) dx.(2.52)

F (ρ(t),v(t)) may grow very large only if
1

8π
‖∇Bρ(·, t)−∇Bρ̃‖2

2 grows very large in

time. Let us make a heuristic argument to see why ‖∇Bρ(·, t) −∇Bρ̃‖2 must stay

small. In fact, if ρ(0) is very close to ρ̃, F (ρ(0),v(0)) will be small. This implies that

E1(ρ(0),v(0)) − E(ρ̃) is small, which entails the smallness of E1(ρ(t),v(t)) − E(ρ̃).

Since by definition E(ρ(t)) ≤ E1(ρ(t),v(t)), we conclude that E(ρ(t)) − E(ρ̃) is

small. If we assume ρ̃ to be the unique minimizer of E, proposition II.18, roughly

speaking, will imply that ρ(t) is close to ρ̃ in the weak topology on Lγ(R3) and that

∇Bρ(·, t) and ∇Bρ̃ are close in the L2(R3) norm. Therefore F (ρ(t),v(t)) should stay

small if started small. One can see that, in order for this line of reasoning to work,

proposition II.18 must provide convergence for an arbitrary minimizing sequence,

rather than a particularly chosen one as in the other existence proofs.



CHAPTER III

Existence of Rotating Planet Solutions to the Isentropic
Euler-Poisson Equations with Core Potential

In this chapter, we establish a number of existence and non-existence theorems for

the modified Euler-Poisson equations. Theorems III.1 and III.2 are proved in section

3.3. Theorems III.3 and III.4 are proved in section 3.4. Theorem III.5 is proved in

section 3.5.

3.1 Statement of Results

Let us consider the following axisymmetric equilibrium ΦK-modified Euler-Poisson

equations in R3 \K, for a bounded axisymmetric domain K:

(3.1)
∇p
ρ

= ∇
(
Bρ+ J + ΦK

)
,

which is the gradient of the following equilibrium relation

(3.2) A′(ρ)−Bρ− J − ΦK = λ.

Here

(3.3) Bρ(x) =

∫
R3\K

ρ(y)

|x− y|
dy

is the Newtonian potential of ρ,

(3.4) J(r) =

∫ r

0

sΩ2(s) ds,

38
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where r =
√
x2

1 + x2
2, is the potential of centrifugal force, and ΦK is the potential

generated by the core. We assume

(3.5) sΩ2(s) is a given non-negative function in L1[0,∞) ∩ C[0,∞).

If gravity is the only effect of the core, ΦK is given by

(3.6) ΦK(x) = BρK(x) =

∫
K

ρK(y)

|x− y|
dy

where ρK ∈ Lq(K) for some q > 3 is a given axisymmetric non-negative function on

K. More generally, ΦK is a function satisfying

(3.7) ΦK ∈ C1(R3) is positive, axisymmetric, and lim
x→∞

ΦK(x) = 0,

and

there is a z0 > 0 such that if |x3| > z0, ΦK is non-increasing as(3.8)

|x3| increases.

The equation of state is given by p = f(ρ), where f is a function satisfying

(3.9) f(s) is non-negative, continuous, and strictly increasing for s > 0.

(3.10) lim
s→0

f(s)s−
4
3 = 0, lim

s→∞
f(s)s−

4
3 =∞.

The internal energy potential A in (3.2) is related to f by

(3.11) A(s) = s

∫ s

0

f(t)

t2
dt.

We then have the following

Theorem III.1. Given M > 0, ΦK satisfying (3.7), and f satisfying (3.9) and

(3.10), there is an ε1 > 0, such that if ‖J‖∞ < ε1, there exists a compactly supported

axisymmetric continuous function ρ : R3 \K → [0,∞), such that
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• ρ is differentiable where it is positive, and satisfies the ΦK-modified Euler-

Poisson equation (3.1) there.

•
∫
R3\K

ρ(x) dx = M .

Theorem III.2. Given M > 0, ΦK satisfying (3.7), and f satisfying (3.9) and

(3.10), there is an ε2 > 0, such that if Ω(s) ≡ Ω < ε2, there exists a compactly

supported axisymmetric continuous function ρ : R3 \K → [0,∞), such that

• ρ is differentiable where it is positive, and satisfies the ΦK-modified Euler-

Poisson equation (3.1) there.

•
∫
R3\K

ρ(x) dx = M .

Theorem III.1 and theorem III.2 establish existence of rotating planet solutions

with given mass and core potential for sufficiently small angular velocity profile.

Furthermore, we have the following

Theorem III.3. Given M > 0, J satisfying (3.5), f satisfying (3.9) and (3.10), and

ΦK satisfying (3.7), there is a µ0 > 0, such that if µ > µ0, there exists a compactly

supported axisymmetric continuous function ρ : R3 \ C → [0,∞), such that

• ρ is differentiable where it is positive, and satisfies the µΦK-modified Euler-

Poisson equations there.

•
∫
R3\K

ρ(x) dx = M .

Theorem III.4. Given M > 0, Ω(r) ≡ Ω ≥ 0, f satisfying (3.9) and (3.10), and

ΦK satisfying (3.7), there is an µ0 > 0, such that if µ > µ0, there exists a compactly

supported axisymmetric continuous function ρ : R3 \ C → [0,∞), such that
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• ρ is differentiable where it is positive, and satisfies the µΦK-modified Euler-

Poisson equations there.

•
∫
R3\K

ρ(x) dx = M .

Theorem III.3 and theorem III.4 establish existence of rotating planet solutions

with given mass and angular velocity profile for sufficiently large core potential.

Finally, in order to describe a non-existence theorem for fast constant rotation, we

need some further assumptions on the equation of state f .

(3.12) lim inf
s→∞

f(s)s−γ > 0, for some γ >
4

3
.

f(s) is continuously differentiable for s > 0 and

(3.13) lim inf
s→0

f ′(s)s−µ > 0

for some µ > 0.

Theorem III.5. Suppose f satisfies (3.9), (3.10), (3.12) and (3.13). Let ΦK be given

by (3.6), and let M > 0 be given. Also assume that K satisfies the “no trapping”

condition:

• If (x, y, z) ∈ R3 \K, then the half line (x, y, z) + t(x, y, 0), (t ≥ 0) also belongs

to R3 \K.

Then there exists an Ω0 > 0 such that for Ω(r) ≡ Ω > Ω0, there does not exist a

bounded continuous function ρ : R3 \ C → [0,∞), such that

• ρ satisfies (3.2) where positive.

•
∫
R3\K

ρ(x) dx = M .
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3.2 Variational Formulation

As [3] and [28], we will solve this problem via a variational approach. Let us

consider the energy functional

(3.14) E(ρ) =

∫
R3\K

(
A(ρ)(x)− 1

2
ρ(x)Bρ(x)− ρ(x)J(x)− ρ(x)ΦK(x)

)
dx,

where A is given by (3.11), on the space of admissible functions

W =

{
ρ : R3\K → R, ρ is axisymmetric, ρ ≥ 0 a.e.,

∫
R3\K

A(ρ) <∞,
∫
R3\K

ρ = M

}
.

We first verify that E is well-defined on W . From (3.10), it follows easily that

(3.15) lim
s→0

A(s)s−
4
3 = 0, lim

s→∞
A(s)s−

4
3 =∞.

(3.9) and (3.15) imply the existence of a c > 0 such that

(3.16) A(s) ≥ cs4/3

for s > 1. Hence ∫
ρ4/3 ≤ 1

c

∫
A(ρ) +

∫
ρ<1

ρ4/3

≤ 1

c

∫
A(ρ) +M.(3.17)

(3.17) and lemma II.3 give the finiteness of the second term in (3.14). The last two

terms in (3.14) are finite because J and ΦK are bounded functions. We have shown

that E is well-defined on W .

The basic assertion is the following:

Proposition III.6. If ρ is a local minimum for E in W , then ρ is continuous and

is differentiable where it is positive, and satisfies (3.1) there.

Proof. The proof is standard. See [3].
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3.3 Existence of Solution for Slow Rotation and Fixed Core Density

In the following proof, we will come up with a number of bounds Rn on the size of

the support of the density functions. Without further mentioning, we always assume

that Rn+1 is no less than Rn. All constants in the following may depend on M , f ,

‖J‖∞ and ΦK . Cartesian coordinates x = (x1, x2, x3) and cylindrical coordinates

(r, θ, z) are used interchangeably. To look for a minimizer of E in W , let us first

show that E is bounded from below.

Proposition III.7. There is a C > 0 such that E(ρ) ≥ −C for all ρ ∈ W .

Proof. By lemma II.3, we have

(3.18) E(ρ) ≥
∫
A(ρ) dx−M‖J + ΦK‖∞ −

1

2
cM2/3

∫
ρ4/3 dx.

By (3.15), there is an s > 0 such that for ρ > s, A(ρ) >
1

2
cM2/3ρ4/3. Therefore

E(ρ) ≥
∫
ρ>s

A(ρ) dx−M‖J + ΦK‖∞ −
1

2
cM2/3

∫
ρ>s

ρ4/3 − 1

2
cM2/3s1/3

∫
ρ<s

ρ dx

≥ −M‖J + ΦK‖∞ −
1

2
cM5/3s1/3.

Now that we know E is bounded from below, it makes sense to talk about the

infimum of E. Let

(3.19) I = inf
ρ∈W

E(ρ).

We will take a sequence of minimizers in bounded balls as a minimizing sequence for

I. For that purpose, we need to define

(3.20) WR =

{
ρ ∈ W

∣∣ Suppρ ∈ SR, 0 ≤ ρ ≤ R a.e.

}
.
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Here SR is the ball centered at the origin with radius R > R0 so large that K is

contained in SR. As usual we will extend functions in WR by zero values outside

SR, and treat them as functions defined on the whole space if necessary. The next

assertion is the starting point of this method.

Proposition III.8. There is an R0 > 0 such that for R > R0, there exists some

ρR ∈ WR which minimizes E:

(3.21) IR = E(ρR) = inf
ρ∈WR

E(ρ).

Proof. The proof is standard. See [3] or [28].

As in [28], we can give a uniform L∞ bound on ρR.

Lemma III.9. There is a C > 0, such that

(3.22) ‖ρR‖∞ ≤ C

for all R ≥ R0.

Proof. Notice that ΦK ∈ L∞(R3). The proof in this case is basically the same as

that in [28].

The L∞ bound frees the restriction on ρR from above, and therefore implies a

variational inequality in one direction:

Lemma III.10. There is an R1 > 0, such that for all R > R1, there exists a λR

such that

A′(ρR)−BρR − J − ΦK ≥ λR, in BR,(3.23)

A′(ρR)−BρR − J − ΦK = λR, where ρR > 0.(3.24)

Proof. See [3].
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Lemma III.11. There is an R2 > 0 and e1 > 0, such that IR ≤ −e1 for all R > R2.

Proof. Let

(3.25) F (ρ) =

∫
R3\K

(
A(ρ)(x)− 1

2
ρ(x)Bρ(x)

)
dx.

This is the corresponding energy functional for an Euler-Poisson system with no

rotation and a zero density core. The method in [3] is fully applicable to this case.

We therefore get a compactly supported minimizer σ ∈ W of F . Let

(3.26) e1 = −F (σ) = − inf
ρ∈W

F (ρ).

e1 is seen to be positive by the following scaling argument: pick a non zero ρ ∈ W

that is bounded and compactly supported in R3 \ SR̃ for some SR̃ ⊃ K. Let

(3.27) ρt(x) = t−3ρ(t−1x)

for t > 1. We see easily that ρt is supported in R3 \ tBR̃, and therefore belongs to

W .

F (ρt) =

∫
R3\tBR̃

A(ρt)−
1

2
ρtBρt

=

∫
R3\BR̃

(t3A(t−3ρ)− 1

2
t−1ρBρ)

=

∫
Suppρ

o(t−4‖ρ‖∞)t3 − t−1 1

2

∫
ρBρ

= o(t−1)−Θ(t−1).

The penultimate step follows from (3.15). This shows that the minimum of F must

be negative. Now let R2 be large enough to contain the support of σ, then σ ∈ WR
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for R > R2, and

E(ρR) ≤ E(σ)

=

∫
(A(σ)− 1

2
σBσ − Jσ − ΦKσ)

≤
∫

(A(σ)− 1

2
σBσ)

= F (σ)

= −e1.

Lemma III.12. Suppose ‖J‖∞ <
e1

2M
. There is an ε0 > 0 and an R2 > 0 such that

for all R > R2, εR := sup
x∈R3

∫
|x−y|<1

ρR(y)dy ≥ ε0.

Proof. Under the assumption on ‖J‖∞∫
1

2
ρRBρR + ρRΦK

=− E(ρR) +

∫
A(ρR)− ρRJ

≥ e1 − ‖J‖∞M

≥ e1

2
.

Therefore either

(3.28)

∫
1

2
ρRBρR ≥

e1

4
,

or

(3.29)

∫
ρRΦK ≥

e1

4
.

If (3.28) happens, then

(3.30)
e1

2
≤
∫
ρRBρR ≤M‖BρR‖∞.
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Now

BρR(x) =

∫
R3

ρR(y)

|x− y|
dy

=

∫
|y−x|<1

ρR(y)

|x− y|
dy +

∫
1<|y−x|<R̃

ρR(y)

|x− y|
dy +

∫
|y−x|>R̃

ρR(y)

|x− y|
dy

:= B1 +B2 +B3.

By lemma III.9 and lemma II.2, we have

(3.31) B1 ≤ C(εbR + εcR)

for some 0 < b, c < 1. The annulus 1 < |y − x| < R̃ can be covered by CR̃3 balls of

radius one, hence

(3.32) B2 ≤ CR̃3εR.

One clearly has

(3.33) B3 ≤
M

R̃
.

Hence

(3.34) ‖BρR‖∞ ≤ C(εbR + εcR) + CR̃3εR +
M

R̃
.

Choosing R̃ sufficiently large and comparing (3.30) with (3.34), we see that there

must be an ε0 > 0 such that εR > ε0. Now let us assume that (3.29) happens. We

have ∫
ρRΦK

=

∫
|x|>R̃

ρR(x)ΦK(x)dx +

∫
|x|<R̃

ρR(x)ΦK(x)dx

:=B1 +B2.
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By (3.7), we can choose R̃ so large that ΦK(x) ≤ e1

8M
when |x| > R̃. Then

(3.35) B1 ≤
e1

8
.

The ball |x| < R̃ can be covered by CR̃3 balls of radius one, hence

(3.36) B2 ≤ CR̃3εR.

Therefore

(3.37)

∫
ρRΦK ≤

e1

8
+ CR̃3εR.

Comparing (3.29) with (3.37), we again see that such an ε0 exists.

Lemma III.13. There is an Ra > 0 such that if

(3.38)

∫
|y−x|<1

ρR(y)dy ≥ ε0
2
,

then r(x) ≤ Ra. Here r(x) =
√
x2

1 + x2
2.

Proof. Assume |r(x)| > R̃ + 1 where SR̃ ⊃ K. By the axisymmetry of ρR,

Cr(x)
ε0
2
≤
∫
T

ρR ≤M,

r(x) ≤ 2M

Cε0
.

Here T is the torus obtained from rotating the the ball |y − x| < 1 around the

z-axis.

Lemma III.14. Suppose ‖J‖∞ ≤
e1

2M
. There is an R3 > Ra and an e2 > 0 such

that λR ≤ −e2 for all R > R2.

Proof. By lemma III.12, for R > R2 there is an xR such that

(3.39)

∫
|y−xR|<1

ρR(y)dy ≥ ε0
2
.
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By lemma III.13, r(xR) < Ra. Let x0 be on the z-axis such that z(x0) = z(xR). Let

B(x0, R3) be the ball centered at x0 with radius R3 > Ra to be determined. When

R > R3, the volume of the set B(x0, R3) ∩ BR is of order R3
3. There must exist a

point x ∈ B(x0, R3) ∩BR such that

(3.40) ρR(x) ≤ CM

R3
3

for some constant C > 0. Clearly

(3.41) |x− xR| ≤ |x− x0|+ |xR − x0| ≤ 2R3.

Hence

(3.42) BρR(x) ≥
∫
|y−xR|<1

ρR(y)

|x− y|
dy ≥ 1

2R3 + 1

ε0
2
.

By (3.23),

λR ≤ A′(
CM

R3
3

)− 1

2R3 + 1

ε0
2

(3.43)

Notice that (3.10) implies

(3.44) lim
s→0

A′(s)

s1/3
= 0.

Hence (3.43) implies

λR ≤ o(R−1
3 )−Θ(R−1

3 ).(3.45)

Pick R3 so large that the right hand side of (3.45) becomes negative, and call that

−e2.

Lemma III.15. Suppose ‖J‖∞ ≤ min

{
e1

2M
,
e2

2

}
, then

(3.46) BρR + ΦK ≥
e2

2
where ρR > 0

for R > R3.
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Proof. By (3.24) and lemma III.14, we have

(3.47) A′(ρR)−BρR − J − ΦK = λR ≤ −e2

when ρR > 0.

Lemma III.16. Suppose ‖J‖∞ ≤ min

{
e1

2M
,
e2

2

}
. There exists an R4 > 0 such that

ρR(x) = 0 if R > r(x) > R4.

Proof. We have

BρR(x) =

∫
ρR(y)

|x− y|
dy

=

∫
|x−y|<1

ρR(y)

|x− y|
dy +

∫
1<|x−y|<R̃

ρR(y)

|x− y|
dy +

∫
|x−y|>R̃

ρR(y)

|x− y|
dy

:= B1 +B2 +B3.

Clearly

(3.48) B3 ≤
M

R̃
.

We choose R̃ >
12M

e2

, so that

(3.49) B3 <
e2

12
.

By lemma II.2,

B1 ≤ c0

((∫
|x−y|<1

ρR(y)dy

)b
+

(∫
|x−y|<1

ρR(y)dy

)c)
(3.50)

for some 0 < b, c < 1. By requiring R > r(x) > R4 to be large enough, we have

(3.51) B1 ≤ c0

((
CM

R4

)b
+

(
CM

R4

)c)
<
e2

12

by axisymmetry, just like in lemma III.13. The annulus 1 < |x − y| < R̃ can be

covered by CR̃3 balls of radius 1. Again by axisymmetry, we have

(3.52) B2 ≤
CR̃3M

R4 − R̃
<
e2

12
,
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provided R4 is chosen to be sufficiently large. Therefore

(3.53) BρR(x) = B1 +B2 +B3 <
e2

4

if R > r(x) > R4. Enlarge R4 if necessary so that ΦK(x) <
e2

4
when r(x) > R4. We

get

(3.54) BρR(x) + ΦK(x) <
e2

4
+
e2

4
=
e2

2

when R > r(x) > R4. Comparing (3.54) with (3.46), we see that the assertion is

true.

Lemma III.17. Suppose ‖J‖∞ ≤ min

{
e1

2M
,
e2

2

}
. There exist R5 > 0, δ > 0 and

r > 0 such that if R > z(x) > R5, and if

(3.55)

∫
|z(x)−z0|<r

ρR(x)dx < δ,

then ρ(x) = 0 for |z(x)− z0| < 1.

Proof. Suppose r > 2. If |z(x)− z0| < 1, dist
(
x, {y

∣∣ |z(y)− z0| > r}
)
> r− 1. Just

like in lemma III.16, we have

BρR(x) =

∫
|z(y)−z0|<r

ρR(y)

|x− y|
dy +

∫
|z(y)−z0|>r

ρR(y)

|x− y|
dy

≤ C(δb + δc) +
M

r − 1

<
e2

4

by choosing δ small and r large. Furthermore ΦK(x) <
e2

4
if z(x) > R5 is sufficiently

large. These imply

(3.56) BρR(x) + ΦK(x) <
e2

2
.

The assertion follows again from a comparison with (3.46).
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Lemma III.18. Suppose ‖J‖∞ ≤ min

{
e1

2M
,
e2

2

}
. There is an R6 > 0 such that

ρR(x) = 0 if R > z(x) > R6.

Proof. Let Zn = {x : |z(x) − 2n| < 1}, n = ±([R5] + 1),±([R5] + 2), . . . , and let

Z ′n =
{
x
∣∣ |z(x) − 2n| < r

}
. By lemma III.17, if ρR is not identically zero on a

Zn, then

∫
Z′n

ρR ≥ δ. Let m be the number of such n’s. Since each point in R3 is

covered by at most r different Z ′n’s, mδ ≤ rM . Also such Zn’s must be contiguous, if

they lie in the region |z| > z0 + 2 for z0 given in (3.8). Otherwise there would be an

“empty” Zn below a “non-empty” half space. If one slides the whole “non-empty”

half space down by two units to create a new ρ′R,

∫
A(ρR)− JρR =

∫
A(ρ′R)− Jρ′R,

but

∫
−1

2
ρRBρR − ρRΦK >

∫
−1

2
ρ′RBρ

′
R − ρ′RΦK . This implies E(ρR) > E(ρ′R),

but ρ′R ∈ WR, a contradiction. Now pick R6 > 2

(
[R5] +

rM

δ

)
+ z0 + 3. The proof

is complete.

We are now in a position to prove theorem III.1 and theorem III.2.

Proof of theorem III.1. Let ε1 = min

{
e1

2M
,
e2

2

}
. From lemma III.16 and lemma

III.18, we see that ρR = ρR7 when R > R7 :=
√

2R6. Since ΦK ∈ L∞(R3), a similar

argument as in [3] shows that ρ = ρR7 minimizes E in W . By proposition III.6, ρ

solves (3.1) and has the stated properties.

Proof of theorem III.2. Let ε2 =

√
ε1
R7

, and let J̃(r) ∈ C∞(0,∞) be an increasing

function such that

(3.57) J̃(r) =


1

2
Ω2r2 if r ≤ R7,

Ω2R2
7 if r ≥ 2R7.

If Ω < ε2, we have ‖J̃‖ < ε1, hence by theorem III.1, there is a solution ρ to (3.1)

where J is replaced by J̃ , supported in SR7 . Clearly such a ρ also solves (3.1) with
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the original J , and has the stated properties.

3.4 Existence of Solution for Fast Rotation and Heavy Core Density

In this section, we give proofs to theorem III.3 and theorem III.4. That corre-

sponds to establishing existence of minimizer of

(3.58) Eµ(ρ) =

∫
R3\C

(
A(ρ)(x)− 1

2
ρ(x)Bρ(x)− ρ(x)J(x)− µρ(x)ΦK(x)

)
dx

for large enough µ. We will omit an argument in the proof if it runs parallel to the

proof in the previous section.

As before, Eµ is bounded from below on W and has an infimum which we denote

by Iµ. If we pick

(3.59) WR =

{
ρ ∈ W

∣∣ Suppρ ∈ SR, ρ ≥ 0 a.e.

}
.

Eµ will also attain its infimum Iµ,R on each WR. We still denote the minimizers by

ρR. It is understood that ρR implicitly depends on µ. Comparing (3.20) with (3.59),

we see that the L∞ bound on WR (namely, the ≤ R constraint) is removed. This is

to allow large ρR on BR. As we will see later, the L∞ bound of ρR depends on µ and

J . For that purpose, we start by modifying the bound on ‖ρ‖4/3.

Lemma III.19. Let ρR be a minimizer of Eµ in WR, and assume that BR0 contains

the core K. There is a constant C depending only on f , M , J and ΦK such that

(3.60)

∫
ρ

4
3
R dx ≤ C(1 + µ)

for all R > R0.
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Proof. Let ρ0 be some fixed function in WR0 . For R > R0,∫ (
A(ρ0)− ρ0J −

1

2
ρ0Bρ0 − µρ0ΦK

)
dx

≥
∫ (

A(ρR)− ρRJ −
1

2
ρRBρR − µρRΦK

)
dx

≥
∫ (

A(ρR)− ρR(J + µΦK)

)
dx− CM

2
3

∫
ρ

4
3
R dx.

The last step follows from lemma II.3. By condition (3.10), there is an s1 > 0 such

that

(3.61) A(s)s−
4
3 > 2CM

2
3

for s > s1. Therefore

C̃ =

∫ (
A(ρ0)− ρ0J −

1

2
ρ0Bρ0 − µρ0ΦK

)
dx

≥
∫
ρR≤s1

A(ρR) dx +

∫
ρR>s1

A(ρR) dx−M(‖J‖∞ + µ‖ΦK‖∞)

− CM
2
3 s

1
3
1M −

∫
ρR>s1

1

2
A(ρR) dx

≥ 1

2

∫
A(ρR) dx− C ′(1 + µ).

Or,

(3.62)

∫
A(ρR) dx ≤ C(M, s1)(1 + µ).

Notice that we have∫
ρ

4
3
R dx =

∫
ρR≤s1

ρ
4
3
R dx +

∫
ρR>s1

ρ
4
3
R dx

≤ s
1
3
1M +

1

2CM
2
3

∫
ρR>s1

A(ρR) dx

≤ C(M, s1)

(
1 +

∫
A(ρR) dx

)
.

The assertion is now apparent.
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Now let us give an L∞ bound on ρR. It is crucial to make the power of µ as low

as possible.

Lemma III.20. There is an R1 > 0 and a constant C depending on f , M , J and

ΦK such that

(3.63) ‖ρR‖∞ ≤ C(1 + µ)

for R > R1.

Proof. Let ER =
{
x ∈ R3 \K

∣∣ ρR(x) > 10M
}

, Fn =
{
x ∈ R3 \K

∣∣ 10M < ρR(x) <

n} for n large. It is easy to see that the Lebesgue measure |ER| <
1

10
. Choose

D ⊂ BR\ER such that |D| = 1. This is possible if we choose some R1 > max{R0, 10}.

Now let γ1 =
4

3
and α1 =

5γ1 − 6

3
− ε =

2

9
− ε for some very small ε > 0 to be

determined later. Now define

(3.64) v1 =



−ρ1+α1
R on Fn∫

Fn

ρ1+α1
R on D

0 otherwise

One sees that ρR + tv1 ∈ WR for t > 0 sufficiently small. Since ρR is a minimizer of

Eµ in WR, we have lim
t→0+

Eµ(ρR + tv1)− Eµ(ρR)

t
≥ 0. Calculating the limit, we get

(3.65)

∫
(A′(ρR)− J −BρR − µΦK)v1 ≥ 0,

from which it follows that

(3.66) −
∫
Fn

v1A
′(ρR) ≤

∫
D

v1A
′(ρR)−

∫
Fn

v1(J + µΦK)−
∫
Fn

v1BρR.

Condition (3.10) on f implies that A′(s) ≥ C1ρ
1
3 for s > 10M . Therefore

(3.67) −
∫
Fn

v1A
′(ρR) ≥ 1

C1

∫
Fn

ρ
4
3

+α1

R .
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Furthermore, ∫
D

v1A
′(ρR) ≤ A′(10M)

∫
Fn

ρ1+α1
R ,

−
∫
Fn

v1(J + µΦK) ≤ (‖J‖∞ + µ‖ΦK‖∞)

∫
Fn

ρ1+α1
R ,

−
∫
Fn

v1BρR ≤ ‖ρ1+α1
R ‖ 3γ1

5γ1−3−3ε
‖BρR‖( 1

γ1
− 2

3
+ ε
γ1

)−1

= ‖ρR‖1+α1

(1+α1)
3γ1

5γ1−3−3ε

‖BρR‖( 1
γ1
− 2

3
+ ε
γ1

)−1

= ‖ρR‖1+α1
γ1
‖BρR‖( 1

γ1
− 2

3
+ ε
γ1

)−1

≤ C‖ρR‖2+α1
γ1

.

Here the last step follows from lemma II.2. Now∫
Fn

ρ
4
3

+α1

R

≤C1(A′(10M) + ‖J‖∞ + µ‖ΦK‖∞)

∫
Fn

ρ1+α1
R + C‖ρR‖2+α1

γ1

≤C2(1 + µ)‖ρR‖1+α1
1+α1

+ C‖ρR‖2+α1
γ1

.

Since 1 + α1 < γ1, by the interpolation inequality for Lp spaces,

(3.68) ‖ρR‖1+α1 ≤ C(M)‖ρR‖
4α1
1+α1
γ1 .

Hence ∫
Fn

ρ
4
3

+α1

R

≤C3(1 + µ)‖ρR‖4α1
γ1

+ C‖ρR‖2+α1
γ1

≤C3(1 + µ)

(∫
ρ

4
3
R

)3α1

+ C

(∫
ρ

4
3
R

) 3
4

(2+α1)

≤C4(1 + µ)1+3α1 + C4(1 + µ)
3
4

(2+α1)

≤2C4(1 + µ)
5
3 .
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Lemma III.19 is needed for the penultimate step, and the last step follows from the

choice of α1. Now let n tend to infinity. Since the Fn’s increase to ER, one gets

(3.69)

∫
ER

ρ
4
3

+α1

R ≤ 2C4(1 + µ)
5
3 .

∫
ρ

4
3

+α1

R =

∫
ER

ρ
4
3

+α1

R +

∫
ρR≤10M

ρ
4
3

+α1

R

≤ 2C4(1 + µ)
5
3 + (10M)

4
3

+α1−1M

≤ C5(1 + µ)
5
3 .

Or,

(3.70) ‖ρR‖ 4
3

+α1
≤ C5(1 + µ)

5
4+3α1 .

Here we assumed that we had chosen ε so small that

(3.71)
4

3
+ α1 =

14

9
− ε > 3

2
.

Let b1(x) =
1

|x|
χS1(x) and b2(x) =

1

|x|
− b1(x). We have BρR = ρR ∗ b1 + ρR ∗ b2.

(3.72) ‖ρR ∗ b2‖∞ ≤ ‖b2‖∞‖ρR‖1 ≤ C.

Now let us pick some p between 1 and 2. Assume that we have chosen ε so small

that the following is true

(3.73)
1

1− p
5
(1 + 3α1)

>
3

2
.

Notice that since α1 =
2

9
− ε < 2

9
, 1− p

5
(1 + 3α1) > 1− p

3
> 0. (3.73) is equivalent to

α1 >
1

3
(

5

3p
− 1). Since the right hand side is less than

1

3
(
5

3
− 1) =

2

9
, this is possible.

Now choose q satisfying q >
3

2
, q <

4

3
+α1, q <

1

1− p
5
(1 + 3α1)

. That this is possible

follows from (3.71) and (3.73). Since b1 ∈ Lq
′

for 1 ≤ q′ < 3,

‖ρR ∗ b1‖∞ ≤ ‖b1‖q′‖ρR‖q

≤ C(M)‖ρR‖a4
3

+α1
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where a =
1− 1

q

1− 1
4
3

+α1

, by the interpolation inequality for Lp spaces. Now it follows

from (3.70) that

(3.74) ‖ρR ∗ b1‖∞ ≤ C6(1 + µ)
5a

4+3α1 .

Combining this with (3.72), we get

(3.75) ‖BρR‖∞ ≤ C7(1 + µ)
5a

4+3α1 .

Let us calculate the exponent:

5a

4 + 3α1

=
1− 1

q

1− 1
4
3

+α1

5

4 + 3α1

=
5(1− 1

q
)

1 + 3α1

< p

by the choice of q. Therefore

(3.76) ‖BρR‖∞ ≤ C7(1 + µ)p.

Now if p ≥ 3, the same inequality is obviously true since it is already true for smaller

exponents. Now let αl+1 = αl +
1

3
. Define

(3.77) vl =



−ρ1+αl
R on Fn∫

Fn

ρ1+αl
R on D

0 otherwise

and repeat the previous argment, only this time using the better estimate (3.76).

That gives us

(3.78)

∫
ρ

4
3

+αl
R ≤ C8(1 + µ)p

∫
ρ1+αl
R ,
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or, ∫
ρ

1+αl+1

R ≤ C8(1 + µ)p
∫
ρ1+αl
R

≤ (C8(1 + µ)p)l
∫
ρ1+α1
R

≤ (C9(1 + µ)p)l
∫
ρ

4
3
R

≤ (C9(1 + µ)p)lC(1 + µ).

Therefore

‖ρR‖∞ = lim
l→∞
‖ρR‖1+αl+1

≤ lim
l→∞

(C9(1 + µ)p)
l
l+1 (C(1 + µ))

1
l+1

≤ C9(1 + µ)p.

We now use this better bound on ρR to estimate

‖ρR ∗ b1‖∞ ≤ ‖b1‖2‖ρR‖2

≤ C(M)‖ρR‖
1
2∞

≤ C10(1 + µ)
p
2 .

Hence

(3.79) ‖BρR‖∞ ≤ C11(1 + µ)
p
2 .

Since we have chosen p < 2, this grows at most linearly in µ. We can now repeat the

previous bootstrap argument with this better estimate on ‖BρR‖∞. One gets

(3.80)

∫
ρ

4
3

+αl
R ≤ C12(1 + µ)

∫
ρ1+αl
R ,

and the assertion of the lemma follows.
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ρR still satisfies variational equations like (3.23) and (3.24) for R > R1. From

here on, we will construct a series of bounds Rn on the support of ρR, and a series of

lower bounds µn for µ. Let us emphasize from the beginning that although the µn’s

depend on f , M , ΦK and J , the Rn’s are independent of J and µ. Also we always

take Rn+1 ≥ Rn and µn+1 ≥ µn.

Lemma III.21. There is an R2 > 0 and a K̃ > 0 such that λR ≤ 1 − µK̃ for

R > R2.

Proof. One first observes that if R > R2 > R1, there must be a point x ∈ SR2 such

that

(3.81) ρR(x) ≤ M
4
3
πR3

2

.

By (3.23),

(3.82) λR ≤ A′
(

M
4
3
πR3

2

)
− µΦK(x).

(3.10) implies that

(3.83) lim
s→0

A′(s)

s1/3
= 0.

Hence

(3.84) A′
(

M
4
3
πR3

2

)
= o(R−1

2 ).

Pick R2 large enough to make A′
(

M
4
3
πR3

2

)
< 1, and let K̃ = inf

BR2

ΦK > 0. By (3.82),

(3.85) λR ≤ 1− µK̃.

Lemma III.22. There is a µ2 > 0 such that if µ > µ2 and R > R2,

(3.86) BρR + µΦK ≥
µK̃

2
where ρR > 0.
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Proof. By (3.24) and lemma III.21,

(3.87) A′(ρR)−BρR − J − µΦK = λR ≤ 1− µK̃

where ρR > 0. Hence

(3.88) BρR + µΦK ≥ µK̃ − 1− J.

Pick µ2 >
2(1 + ‖J‖∞)

K̃
to get the result.

Lemma III.23. There is a µ3 > 0 and an R3 > 0 such that ρR(x) = 0 if R > |x| >

R3 and µ > µ3.

Proof. We only need to prove BρR + µΦK <
µK̃

2
in view of (3.86). By (3.79),

‖BρR‖∞ ≤ C(1 + µ)a for some 0 < a < 1. We may choose µ3 so large that

C(1 + µ)a

µ
<
K̃

4
when µ > µ3, and R3 so large that ΦK(x) <

K̃

4
when |x| > R3.

The lemma then follows.

Proof of theorem III.3 and theorem III.4. The argument goes exactly as before. For

the constant angular velocity case just notice that the R3 in lemma III.23 only

depends on f , M , ΦK and not on J and µ, so we can construct a smooth increasing

function

(3.89) J(r) =


1

2
Ω2r2 if r < R3,

Ω2R2
3 if r > 2R3,

and find a µ0 such that a solution exists and is supported in SR3 if µ > µ0.

3.5 Non-existence of Solution for Fast Rotation and Fixed Core Density

We now show that a solution does not exist for large enough constant rotation if

the core potential ΦK is given by the gravity of a density function ρK . Let us start

with a few estimates.
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Lemma III.24. Let ρ ∈ L∞(R3) be a non-negative function such that

∫
ρ = M ,

then there is a C > 0 such that

(3.90) ‖Bρ‖∞ ≤ CM
2
3‖ρ‖

1
3∞.

Proof. See [14].

Lemma III.25. Let ρ ∈ L∞ be a nonnegative function supported in the infinite

cylinder x2
1 + x2

2 ≤ d2. Then there is a C > 0, such that for x2
1 + x2

2 ≤ d2,

(3.91) |(Bρ)r(x)| ≤ C‖ρ‖∞
(
d+

√
x2

1 + x2
2

)
.

Here the subscript r denotes directional derivative in the cylindrical radial direction,

even if the function under consideration is not axisymmetric.

Proof. Without loss of generality, we may assume x1 ≥ 0, x2 = 0, x3 = 0.

|(Bρ)r(x1, 0, 0)| ≤
∣∣∣∣ ∫

suppρ

ρ(x′1, x
′
2, x
′
3)(x1 − x′1)√

(x′1 − x1)2 + x′22 + x′23
3dx

′
1dx

′
2dx

′
3

∣∣∣∣
≤
∫
suppρ∩{x′1<x1}

‖ρ‖∞(x1 − x′1)√
(x′1 − x1)2 + x′22 + x′23

3dx
′
1dx

′
2dx

′
3

≤ ‖ρ‖∞
∫
−d<x′1<x1

x1 − x′1√
(x′1 − x1)2 + x′22 + x′23

3dx
′
1dx

′
2dx

′
3

= C‖ρ‖∞(d+ x1).

The last equality follows either from a direct calculation or a simple application of

the divergence theorem.

Lemma III.26. Let l = sup
{
|x3|

∣∣ (x1, x2, x3) ∈ K
}

+ 1, Z =
{

(x1, x2, x3)
∣∣ |x3| ≤

l
}

. Then ΦK |Z = BρK |Z ∈ C1, 3
q (Z̄), ΦK |R3\Z = Bρc|R3\Z ∈ C1,1(R3 \ Z).

Proof. We first estimate ΦK |R3\Z :

ΦK(x1, x2, x3) =

∫
SuppρK

ρK(x′1, x
′
2, x
′
3)√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2
dx′1dx

′
2dx

′
3.
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Since (x1, x2, x3) is bounded away from SuppρK , we can differentiate under the

integral sign and see that

|DΦK(x, y, z)| ≤ C

∫
SuppρK

ρK(x′1, x
′
2, x
′
3)√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2
2dx

′
1dx

′
2dx

′
3

≤ C

∫
SuppρK

ρK(x′1, x
′
2, x
′
3)dx′1dx

′
2dx

′
3

≤ C‖ρK‖1

≤ C̃‖ρK‖qq.

In the above inequalities, the second line is because |x3 − x′3| ≥ 1, the last line is

because SuppρK is compact. We can give a similar estimate for D2ΦK , therefore

ΦK |R3\Z ∈ C1,1(R3 \ Z). As for ΦK |Z , the Lipschitz continuity of the first derivative

in a neighborhood of ∞ follows in the same way as above, whereas the Hölder

continuity of the first derivative in a neighborhood of Supp ρK follows from the

standard Calderon-Zygmund inequality and the Sobolev embedding theorem.

From now on, we assume Ω is at least 1 and use cylindrical coordinates (r, θ, z).

Let us suppose, contrary to the assertion of theorem III.5, that there is such a ρ

satisfying all the properties stated.

Lemma III.27. d = sup
{
r
∣∣ (r, θ, z) ∈ Suppρ

}
<∞.

Proof. By (3.2),

(3.92)
1

2
r2 ≤ 1

2
Ω2r2 ≤ A′(ρ)−Bρ− ΦK − λ ≤ A′(ρ)− λ.

We know that A′(s) =

∫ s

0

f(t)

t2
dt +

f(s)

s
. It follows from (3.9) and (3.10) that

A′(ρ) ∈ L∞ if ρ is.

By the expression of A′(s) in the proof, we see that A′(ρ) > 0 iff ρ > 0.
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Lemma III.28. λ ≤ −1

2
Ω2d2.

Proof. Pick a sequence (rn, θn, zn) such that ρ(rn, θn, zn) > 0, and rn → d. We claim

that A′(ρ)(rn, θn, zn) → 0. If not, a subsequence will be bounded away from zero.

Without loss of generality, we still call that subsequence A′(ρ)(rn, θn, zn). By the no

trapping condition, A′(ρ)(r, θn, zn) is defined for all r > rn, in particular we have

A′(ρ)(d, θn, zn) = 0. By Rolle’s theorem there is an r∗n between rn and d such that

A′(ρ)(r∗n, θn, zn) > 0 and (A′(ρ))r(r
∗
n, θn, zn) → −∞. By (3.2) and the smoothing

effect of B, A′(ρ) is differentiable when positive. Differentiating (3.2), we get

(3.93) (A′(ρ))r − Ω2r − (Bρ)r − (Φc)r = 0.

We see a contradiction if we evaluate this expression at (r∗n, θn, zn): the first term

goes to −∞ while the last three terms are bounded by lemma III.27, lemma III.25

and lemma III.26 respectively. Now evaluate (3.2) at (rn, θn, zn). By the limit of

A′(ρ)(rn, θn, zn) and the positivity of Bρ and ΦK , we get the desired result.

Lemma III.29. There is a constant C1 > 0, depending on ΦK, f and M , such that

‖ρ‖∞ ≤ C1.

Proof. By lemma III.28,

(3.94) A′(ρ) ≤ Bρ+ ΦK .

By (3.12), there is a C > 0 such that if s > C,

(3.95) Csγ−1 ≤ A′(s).

Hence either ρ < C or Cργ−1 ≤ Bρ+ ΦK . Therefore

(3.96) C‖ρ‖γ−1
∞ ≤ Cγ + ‖ΦK‖∞ + CM

2
3‖ρ‖

1
3∞.
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The last term follows from lemma III.24. Here we have taken the liberty of using the

same constant C. Now take ε > 0 so small that εM
2
3 <

1

2
. Since γ− 1 >

1

3
, we have

(3.97) ‖ρ‖
1
3∞ ≤ ε‖ρ‖γ−1

∞ + C(ε).

It follows that

C‖ρ‖γ−1
∞ ≤ Cγ + ‖ΦK‖∞ +

1

2
C‖ρ‖γ−1

∞ + C(M)

1

2
C‖ρ‖γ−1

∞ ≤ Cγ + ‖ΦK‖∞ + C(M).

The assertion now follows from the fact that ΦK ∈ L∞(R3).

Lemma III.30. There is an Ω1 > 0 and 0 < d0 <
1

4
such that if Ω > Ω1, then

d < d0.

Proof. Pick an (r, θ, z) such that ρ(r, θ, z) > 0, r >
d

2
. Then there is an r∗ between

r and d such that (A′(ρ))r(r
∗, θ, z) ≤ 0. Evaluating (3.93) at this point, we have

Ω2d

2
≤ Ω2r∗

≤(Bρ)r(r
∗, θ, z) + (ΦK)r(r

∗, θ, z).

The first term above is bounded by 2CC1d by lemma III.25 and III.29. Noticing

(ΦK)r(0, θ, z) = 0 by axisymmetry, the second term above is therefore bounded by

Cd
3
q by lemma III.26. Now we have

Ω2d

2
≤ C̃(d+ d

3
q )

(
Ω2

2
− C̃)d1− 3

q ≤ C̃,(3.98)

and the assertion follows.

Lemma III.31. ρ ∈ C0,α(S̄) for some 0 < α < 1, where S is any ball of radius
1

2

whose center is on (R3 \ Z) ∩ x3-axis, and we have ‖ρ‖C0,α(S̄) ≤ C2. Here C2 is a

constant depending on ΦK f and M , and Z is the region given in lemma III.26.
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Proof. We first observe that since A′′(s) =
f ′(s)

s
, A′(s) is strictly increasing. Also

notice that A′(0) = 0. By (3.2), A′(ρ) is uniformly Lipschitz continuous on S ∩{ρ >

0} and continuous on S, hence is uniformly Lipschitz continuous on S. It is sufficient

to prove

|ρ(x)− ρ(y)| ≤ C̃2|A′(ρ(x))− A′(ρ(y))|α,

or

(3.99) A′(t)− A′(s) ≥ C̃2(t− s)
1
α

for 0 ≤ s < t ≤ ‖ρ‖∞ ≤ C1. By (3.13) there exists a C > 0 such that f ′(s) ≥ Csµ

for 0 ≤ s ≤ ‖ρ‖∞ ≤ C1. Now let u = t− s,

(A′(t)− A′(s))(t− s)−
1
α

=(A′(s+ u)− A′(s))u−
1
α

=u−
1
α

∫ s+u

s

A′′(ξ)dξ

=u−
1
α

∫ s+u

s

f ′(ξ)

ξ
dξ

≥u−
1
α

∫ s+u

s

Cξµ

ξ
dξ

=C̃u−
1
α ((s+ u)µ − sµ)(3.100)

If µ ≥ 1, (3.100) is equal to

C̃

[(
1 +

s

u

)µ
−
(
s

u

)µ]
uµ−

1
α

≥C̃uµ−
1
α

≥C̃Cµ− 1
α

1 ≥ C̃2 > 0.

The last step is correct if we choose α <
1

µ
. On the other hand if 0 < µ < 1, (3.100)

is equal to C̃µξµ−1u1− 1
α , where ξ is between s and s+u. This in turn is greater than
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or equal to

C̃µCµ−1
1 u1− 1

α ≥ C̃µCµ−1
1 C

1− 1
α

1 ≥ C̃2 > 0

if we choose an α < 1.

Lemma III.32. There is an Ω2 > 0 such that if Ω > Ω2, ρR3\Z ≡ 0. Here Z is the

region given in lemma III.26.

Proof. We first show that ‖Bρ‖C1,1(S̄1) is uniformly bounded, where S1 is any ball of

radius
1

4
whose center is on (R3 \Z)∩ x3-axis. Let S be a ball concentric with S1 of

radius
1

2
, then Bρ = B(ρχS) +B(ρχR3\S). The first term is bounded in C2,α(S̄1) by

lemma III.31 and elliptic Schauder estimates. The second term is bounded in C2(S̄1)

by a direct differentiation under the integral sign argument since R3 \ S is bounded

away from S1.

We first pick Ω > Ω1 so that d < d0 <
1

4
. Now suppose ρ(r, θ, z) > 0 for

some (r, θ, z) in R3 \ Z. Let us switch to Cartesian coordinates for the moment

and, without loss of generality, denote this point (x, 0, z) with x ≥ 0. Let x∗ =

sup
{
x
∣∣ ρ(x, 0, z) > 0

}
. There must be a sequence xn → x∗ such that ρ(xn, 0, z) > 0

and (A′(ρ))x(xn, 0, z) ≤ 0, differentiating (3.2) with respect to x and evaluating at

(xn, 0, z), we have

(3.101) Ω2xn ≤ −(Bρ)x(xn, 0, z)− (ΦK)x(xn, 0, z).

Taking limit as n→∞, we get

(3.102) Ω2x∗ ≤ −(Bρ)x(x
∗, 0, z)− (ΦK)x(x

∗, 0, z).

If there was an x0 ∈ [0, x∗) such that ρ(x0, 0, z) > 0 and (A′(ρ))x(x0, 0, z) ≥ 0, we

would have

(3.103) Ω2x0 ≥ −(Bρ)x(x0, 0, z)− (ΦK)x(x0, 0, z).
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Subtracting (3.103) from (3.102), we get

Ω2(x∗ − x0) ≤
(
(Bρ)x(x0, 0, z)− (Bρ)x(x

∗, 0, z)
)

+
(
(ΦK)x(x0, 0, z)− (ΦK)x(x

∗, 0, z)
)
.(3.104)

The first term on the right hand side is bounded by C(x∗ − x0) because Bρ is

uniformly bounded in C1,1(S̄1) as indicated above, while the second term is bounded

by C(x∗ − x0) because of lemma III.26. Hence (3.104) becomes

(3.105) Ω2(x∗ − x0) ≤ 2C(x∗ − x0),

which is impossible if we choose Ω2 > max{Ω1, 2C}. Therefore such an x0 does not

exist. This in particular implies that there is no x ∈ [0, x∗) for which ρ(x, 0, z) = 0,

which then implies that ρ(0, 0, z) > 0 and (A′(ρ))x(0, 0, z) < 0. But exactly the same

argument in the −x direction would imply (A′(ρ))x(0, 0, z) > 0. This contradiction

indicates that there is no such (r, θ, z) in the first place, and the assertion is therefore

true.

We are now ready to give

Proof of theorem III.5. By lemma III.32, Suppρ is uniformly bounded in the z di-

rection. Recall from lemma III.26 that this bound is given by l,

M =

∫
Suppρ

ρ

=

∫
|z|≤l,r≤d

ρ

≤ ‖ρ‖∞2πd2l

≤ 2C1πd
2l.(3.106)

Therefore

(3.107) d ≥
√

M

2C1πl
.
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Compare this with (3.98), we get

(3.108) (
Ω2

2
− C̃)

√
M

2C1πl

1− 3
q

≤ C̃,

which is clearly false if we choose Ω0 > Ω2 sufficiently large. This contradiction

indicates that such a solution ρ does not exist.



CHAPTER IV

Existence of Rotating Star Solutions to the Non-isentropic
Euler-Poisson Equations

In this chapter, we establish a number of existence theorems related to the non-

isentropic Euler-Poisson equations. Theorems IV.1 is proved in section 4.2. Theo-

rems IV.2 and IV.3 are proved in section 4.4. Theorems IV.5 and IV.7 are proved in

section 4.5.

4.1 Statement of Results

Let us consider the following axisymmetric equilibrium non-isentropic Euler-Poisson

equation in R3:

(4.1)
∇p
ρ

= Bρ+ rΩ2er

with equation of state

(4.2) p = esργ.

Here γ is a constant called the adiabatic index. The divergence of (4.1) is

(4.3) ∇ ·
(
∇(esργ)

ρ

)
= −4πρ+∇ · (rΩ2er).

After the change of variable

(4.4) w =
γ

γ − 1
e
γ−1
γ
sργ−1,

70
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(4.3) becomes

(4.5) ∇ · (eαs∇w) +Ke−αs|w|q − f = 0,

where

(4.6) q =
1

γ − 1
, α =

1

γ
, K = 4π

(
γ − 1

γ

) 1
γ−1

,

and

(4.7) f = 2Ω2 + r
∂Ω2

∂r
= 2Ω

∂

∂r
(rΩ).

We have the following

Theorem IV.1. Let f and s be given axisymmetric smooth functions. If 0 < q < 1

(γ > 2), and x · ∇s ≤ 0, then there is a finite ball centered at the origin on which

there exists an axisymmetric positive smooth solution to (4.5) with zero boundary

value.

The condition on entropy has the physical interpretation that it is decreasing in

the radial direction, so that the star is thermally more active the further one goes

down surface.

The q > 1 case is more difficult. Let us take a look at a simple ODE model

u′′ + λuq = 0. Suppose q > 1. In order for u to stay positive, symmetric about

the origin, and be zero on the boundary of a given symmetric domain, u(0) will be

unbounded as λ gets close to 0. Therefore there is no a priori bound for Leray-

Schauder type arguments. However, if one is allowed to rescale the velocity field, the

equation can still be solved. The results are as follows:

Theorem IV.2. Let f and s be given axisymmetric smooth bounded functions. Sup-

pose there exists a c > 0 such that f ≥ c, and suppose 1 < q < 3

(
4

3
< γ < 2

)
, then
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for any R > 0, and sufficiently large P > 0, there exists a non-negative axisymmetric

function w in H1
0 (SR), and a λ > 0, such that w is smooth on its own positive set

and satisfies

(4.8) ∇ · (eαs∇w) +Ke−αswq − λf = 0,

and

(4.9)

∫
SR

fw dx = P.

Here SR is a ball of radius R centered at the origin. The positive set of w will

turn out to be open, so there is no ambiguity in defining (4.8). Since λ > 0, (4.5) is

solved with a rescaled the velocity field (compare (4.7)). Also

P =

∫
SR

fw dx

≤
∫
SR

Cw dx

≤ C̃

∫
SR

ργ−1 dx

≤ ˜̃C

(∫
SR

ρ dx

)γ−1

.

Therefore the largeness of P implies the largeness of the total mass in this case.

The method for deriving this result is variational. It is possible to extend the

variational method to allow functions defined on the entire R3 once we find a way to

address the lost of compactness issue.

Theorem IV.3. Let f and s be given axisymmetric smooth functions. Suppose s is

bounded, f ≥ c > 0, and 1 < q < 3

(
4

3
< γ < 2

)
, then for sufficiently large P > 0,

there exists a non-negative axisymmetric function w in H1(R3), and a λ > 0, such
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that w is smooth on its own positive set, and satisfies (4.8) and

(4.10)

∫
R3

fw dx = P.

Another way of investigating solutions to (4.1) is by prescribing ρ and solving for

p and Ω2. Apart from being suitably smooth, an obvious requirement for p and Ω2

is that they should be positive where ρ is positive. Furthermore, p should be zero

on the boundary of the positive set of ρ. It is possible to develop conditions on ρ

that will guarantee the existence of such p and Ω2. To find out what conditions on ρ

are natural, we observe some features of the classical Auchmuty and Beals solutions

with isentropic equation of state. In [6], Caffarelli and Friedman studied the shapes

of the Auchmuty and Beals solutions. Some of their results can be summarized as

follows:

Proposition IV.4. Assume Ω2 is analytic, and the equation of state is given by

(4.11) p = cργ

for some
4

3
< γ < 2 (1 < q < 3). Then the Auchmuty and Beals solution ρ to (4.1)

has the following properties:

1. Let D =
{
x ∈ R3

∣∣ ρ(x) > 0
}

, then D̄ is compact, ∂D is smooth and D is a

finite union of sets of the form
{

(r, z)
∣∣ 0 ≤ a < r < b, |z| < ψ(r)}, where ψ is

a function vanishing at the end points except if a = 0. ρ ∈ C0,β(R3) ∩ C∞(D)

for some β > 0.

2. ρ(r, z) = ρ(r,−z).

3. ρz(r, z) > 0 for (r, z) ∈ D, r > 0, and z < 0.

4. ρzz(r, 0) < 0 for (r, 0) ∈ D.

Motivated by this result, we will prove the following
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Theorem IV.5. Let ρ be an axisymmetric nonnegative function such that

1. ρ ∈ Ck(D̄) (k ≥ 2), where D is a finite union of sets of the form
{

(r, z)
∣∣ 0 ≤

a < r < b, |z| < ψ(r)}, where ψ is a function vanishing at the end points except

if a = 0. Also assume ∂D is smooth, ρ > 0 on D, ρ = 0 on ∂D.

2. ρ(r, z) = ρ(r,−z).

3. ρr(Bρ)z − ρz(Bρ)r ≥ 0 for z < 0.

4. ρz > 0 for z < 0.

Also assume the following is satisfied:

(a) There is a c > 0, such that ρzz < −c on {z = 0} ∩ ∂D.

Then (4.1) is solvable for a nonnegative angular velocity function Ω2 ∈ Ck−2(D)∩

C0(D̄) and a positive pressure p ∈ Ck(D̄), such that p = 0 on ∂D.

Remark IV.6. If ∇ρ and ∇(Bρ) point approximately to the center of the star, condi-

tion 3 in theorem IV.5 means that the gradient of ρ is more inclined with respect to

the plane {z = 0} than the gravity force. Simple calculations with ellipsoids suggest

that shapes that are wider at the equator tend to satisfy condition 3.

It is desirable to relax the regularity conditions of ρ at the boundary, since for some

γ, the Auchmuty and Beals solutions are only Hölder continuous at the boundary. A

similar result with weaker boundary regularity needs more control on the derivatives

when close to the boundary. Here is one way of formulating the conditions:

Theorem IV.7. Let ρ be an axisymmetric nonnegative function such that

1. ρ ∈ C2(D) ∩ C0,β(D̄), for some 0 < β < 1, where D is a finite union of sets of

the form
{

(r, z)
∣∣ 0 ≤ a < r < b, |z| < ψ(r)}, where ψ is a function vanishing

at the end points except if a = 0. Also assume that ∂D is smooth, convex at

(0,±ψ(0)) ∈ ∂D (if there are such points), i.e., the interior of the segment
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(0, ψ(0)) − (r, ψ(r)) lies in D for r sufficiently small. ρ > 0 on D, ρ = 0 on

∂D.

2. ρ(r, z) = ρ(r,−z).

3. ρr(Bρ)z − ρz(Bρ)r ≥ 0 for z < 0.

4. ρz > 0 for z < 0.

5. ∀ε > 0, ∃C > 0 such that on D ∩ {|z| ≥ ε}: |ρr| ≤ C|ρz|, |ρrr| ≤ C|ρz|,

|ρrz| ≤ C|ρz|.

Also assume that one of the following is satisfied:

(a)
ρrz
ρzz

and
ρr
ρzz

are bounded in a neighbourhood of {z = 0} ∩ ∂D.

(a’) ρr ≤ 0 in a neighbourhood of {z = 0} ∩ ∂D.

(a”)
zρr
ρz

is bounded on U \ {z = 0}, where U is some neighbourhood of {z =

0} ∩ ∂D.

Then (4.1) is solvable for a nonnegative angular velocity function Ω2 ∈ C0(D) ∩

L∞(D) and a positive pressure p ∈ C1(D) ∩ C0(D̄), such that p = 0 on ∂D.

Remark IV.8. If D has only one connected component containing the origin, {z =

0} ∩ ∂D is the equator, and since ρ is zero on the equator and positive in the

interior of D, the condition (a’) is most likely satisfied in this case. Condition (a”)

is equivalently to
z

r

/
ρz
ρr

being bounded on U \ {z = 0} and has the geometrical

interpretation that the when x gets close to {z = 0} ∩ ∂D, the inclination of x to

the horizontal plane is bounded by the inclination of ∇ρ(x).

4.2 Existence of Solution for High Adiabatic Index

Without loss of generality, we may absorb α into s in (4.5) and work with

(4.12) ∇ · (es∇w) +Ke−swq − f = 0.
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We first find a subsolution to this equation.

Lemma IV.9. If x · ∇s ≤ 0, there is a ball of radius R, denoted by SR, centered at

the origin, on which there is a smooth spherically symmetric positive function u with

zero boundary value satisfying

(4.13) ∇ · (es∇u) +Ke−suq − f ≥ 0.

Proof. Let A1, A2 be two positive constants such that Ke−2s ≥ A1, e−sf ≤ A2. We

look for a positive function u on a ball which satisfies

(4.14) ∆u+ A1u
q − A2 ≥ 0.

By lemma 3.1 in [41], we only need to check that the primitive of g(t) = A1t
q − A2,

which is G(t) =
A1

q + 1
tq+1 − A2t, satisfies G(t) > 0 for some t > 0. But this is

certainly true for large enough t. It follows that there is a ball of radius R, and a

spherically symmetric positive solution u of (4.14) on this ball with zero boundary

value, which satisfies x · ∇u < 0. By the definition of A1 and A2, we have

(4.15) ∆u+Ke−2suq − e−sf ≥ ∆u+ A1u
q − A2 ≥ 0.

Furthermore, by

(4.16) ∇u = −|∇u|
|x|

x,

we have

(4.17) ∇s · ∇u = −(x · ∇s) |∇u|
|x|
≥ 0.

Therefore,

(4.18) ∆u+∇s · ∇u+Ke−2suq − e−sf ≥ 0,

which differs from (4.13) only by a factor of e−s. Hence the assertion is proved.
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Having found a subsolution to (4.12), we now only need a supersolution to produce

a genuine solution. That is given by

Lemma IV.10. Suppose 0 < q < 1. There is a smooth positive function ū on SR,

such that ū ≥ u on SR, and satisfies

(4.19) ∇ · (es∇ū) +Ke−sūq − f ≤ 0.

Proof. Let C = ‖u‖L∞(SR), and M = ‖f‖L∞(SR). Let g(t) ≥ 0 be a smooth function

on R such that

(4.20) g(t) =


tq if t ≥ C

0 if t ≤ 0

and 0 ≤ g′(t) ≤ 2Cq−1 when 0 < t < C. We look for a solution to the equation:

(4.21) ∇ · (es∇u) +Ke−sg(u+ C) +M = 0

by the standard Leray-Schauder estimate. For that we define

A : H1
0 (SR)→ H1

0 (SR)

u 7→ v

by

∇ · (es∇v) +Ke−sg(u+ C) +M = 0 on SR

v = 0 on ∂SR

By the definition of g(t) we have

(
g(u+ C)

)2 ≤ C2q + (u+ C)2q,

≤ C̃(1 + u2)
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where C̃ is a constant which will be enlarged appropriately in the following. Therefore

A(u) ∈ H2(SR), and

(4.22) ‖A(u)‖H2(SR) ≤ C̃(1 + ‖u‖H1
0 (SR)).

It follows easily that A is continuous and compact. Furthermore if u = tA(u), for

0 ≤ t ≤ 1, we have

(4.23) ∇ · (es∇u) + t(Ke−sg(u+ C) +M) = 0

weakly. Therefore for some c > 0

c

∫
SR

|∇u|2

≤
∫
SR

es|∇u|2

=t

∫
SR

Ke−sg(u+ C)u+Mu.

Notice that g(u+ C) ≤ Cq + C̃(uq + Cq),

c

∫
SR

|∇u|2

≤C̃(1 +

∫
SR

uq+1 + C̃Mu)

≤C̃(1 + C(ε) + ε

∫
SR

u2)

≤C̃(C(ε) + ε‖u‖2
H1

0 (SR)).

Here the constants C̃ and C(ε) are enlarged appropriately from line to line. Let us

now choose ε so small that C̃ε <
c

2
. It follows that

{
u
∣∣ u = tA(u), 0 ≤ t ≤ 1

}
is

bounded in H1
0 (SR). Therefore there exists a u in H1

0 (SR) solving (4.21). By the
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Sobolev imbedding theorem, u ∈ H2(SR) ⊂ W 1,6(SR) ⊂ C0, 1
2 (SR). Since

|g(u(x) + C)− g(u(y) + C)|

≤ |g′(θ)||u(x)− u(y)|

≤ max(2Cq−1, q(C + ‖u‖C0(SR))
q−1)[u]0, 1

2
;SR
|x− y|

1
2 ,

where θ is between u(x) + C and u(y) + C, it follows that g(u + C) ∈ C0, 1
2 (SR).

Elliptic regularity estimates imply u ∈ C2, 1
2 (SR), and an iteration of the regularity

estimates imply that u is smooth. Now by the classical maximum principle, u ≥ 0

on SR, therefore u solves

(4.24) ∇ · (es∇u) +Ke−s(u+ C)q +M = 0.

Hence

(4.25) ∇ · (es∇(u+ C)) +Ke−s(u+ C)q − f ≤ 0.

Let ū = u+ C, the proof is complete.

Proof of theorem IV.1. It follows from lemma IV.9, lemma IV.10, and a standard

construction (see Smoller [40]) that a solution to (4.12) exists. The construction also

guarantees the resulting solution to be axisymmetric if u is.

4.3 Variational Formulation

The main purpose of this section is to show existence of minimizer of the following

energy functional:

(4.26) E(w) =

∫
R3

(
es

2
|∇w|2 − K

q + 1
wq+1e−s

)
dx

subject to the constraint:

(4.27) N(w) =

∫
R3

fw dx = P.
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where f is assumed to be locally bounded, and

(4.28) f ≥ c > 0.

We take the set WP of admissible functions to be

H1(R3) ∩ L1(R3) ∩
{
w : R3 → R, w ≥ 0 a.e., w is axisymmetric, N(w) = P

}
.

(4.29)

In fact, one has

Proposition IV.11. If 1 < q < 3, there exists a minimizer in WP of the energy

functional E for P sufficiently large.

We will apply this proposition to construct solutions to (4.1) when 1 < q < 3 and

the domain is infinite.

The proof will need a bound of the Lq+1 norm by the Lp norm and the L2 norm

of the derivative. We will only concern ourselves with the case in R3. This is given

by the following inequality (see, for example, [36]).

Proposition IV.12 (Gagliaro-Nirenberg inequality). Let 1 ≤ p < 6, p ≤ q + 1 ≤ 6.

If w ∈ Lp(R3) ∩H1(R3), then ∃C > 0, such that

‖w‖Lq+1(R3) ≤ C‖∇w‖aL2(R3)‖w‖1−a
Lp(R3).

If w ∈ Lp(R3 \ SR) ∩ H1(R3 \ SR), where SR is the ball centered at the origin with

radius R > R0 > 0, then ∃C(R0) > 0, such that

‖w‖Lq+1(R3\SR) ≤ C‖∇w‖aL2(R3\SR)‖w‖1−a
Lp(R3\SR).

In both of these inequalities,

a =

1
p
− 1

q+1

1
p
− 1

6

.
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Notice when q ≤ 5, 0 < a ≤ 1. This is the useful range of exponents for us. With

the Gagliardo-Nirenberg inequality, we can show that E is bounded from below on

WP .

Lemma IV.13. Suppose w ∈ L1(R3) ∩ H1(R3), N(w) = P , and q < 3, then there

exists a constant C depending only on P , such that

E(w) ≥ 1

2

∫
R3

es

2
|∇w|2 dx− C.

Proof. Since s is bounded,∫
wq+1e−s dx ≤ C

∫
wq+1 dx = C‖w‖q+1

q+1.

By the Gagliardo-Nirenberg inequality, we have

C‖w‖q+1
q+1

≤C‖∇w‖a(q+1)

L2 ‖w‖(1−a)(q+1)

L1

≤C(P )‖∇w‖a(q+1)

L2 .

The last inequality follows from the boundedness of s, (4.27), and (4.28).

Since q < 3, an easy calculation shows a(q + 1) < 2. By an elementary inequality

we have

C(P )‖∇w‖a(q+1)

L2

≤C̃(P, ε) + ε‖∇w‖2
L2

≤C̃(P, ε) + ε

∫
|∇w|2 dx

≤C̃(P, ε) + C ′ε

∫
es

2
|∇w|2 dx.

Therefore,

E(w) ≥ (1− C ′ε)
∫
es

2
|∇w|2 dx− C̃(P, ε).

Choose ε so small that (1− C ′ε) > 1

2
, the assertion is established.
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Let us define:

(4.30) IP = inf
w∈WP

{E(w)|N(w) = P}.

lemma IV.13 shows that IP > −∞. We can quickly find a few useful scaling inequal-

ities on IP .

Lemma IV.14. Suppose q > 1. Given s and f , IP < 0 for P sufficiently large. If

P ′ > P > 0, then IP ′ ≤
(
P ′

P

)q+1

IP .

Proof. Notice in (4.27) that N(w) is linear in w. We have for θ > 1,

IθP = inf
{
E(w)

∣∣ N(w) = θP
}

= inf
{
E(θw)

∣∣ N(w) = P
}

= inf
{∫ es

2
θ2|∇w|2 − K

q + 1
θq+1wq+1e−s|N(w) = P}.

Now observe that ∫
wq+1e−s > 0

and the term with the coefficient θq+1 will dominate as θ increases, we can conclude

that IθP < 0 if θ is sufficiently large.

Following the same line of reasoning,

IP ′ = inf
{
E(w)

∣∣ N(w) = P ′
}

= inf

{
E

((
P ′

P

)
w

) ∣∣ N(w) = P

}
= inf

{∫
es

2

(
P ′

P

)2

|∇w|2 − K

q + 1

(
P ′

P

)q+1

wq+1e−s
∣∣ N(w) = P

}
=

(
P ′

P

)q+1

inf

{∫
es

2

(
P ′

P

)1−q

|∇w|2 − K

q + 1
wq+1e−s

∣∣ N(w) = P

}
≤
(
P ′

P

)q+1

inf

{∫
es

2
|∇w|2 − K

q + 1
wq+1e−s

∣∣ N(w) = P

}
=

(
P ′

P

)q+1

IP .
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We get the inequality because P ′ > P and q > 1.

We are now ready to introduce a concentration compactness principle due to Lions

[30]. This is the starting point of the existence argument.

Lemma IV.15. Let {wn} be a sequence in L1(R3) such that wn ≥ 0 a.e. Suppose

wn’s are axisymmetric, and

∫
R3

fwn dx = P . Then there exists a subsequence {wnk}

such that one of the following is true:

1. ∃ {ak} ∈ R such that ∀ε > 0,∃R > 0, K0 > 0 such that ∀k > K0

P ≥
∫
ake3+SR

fwnk dx ≥ P − ε.

2. ∀R > 0

lim
k→∞

sup
y∈R3

∫
y+SR

fwnk dx = 0.

3. ∃λ ∈ (0, P ),∀ε > 0,∃R0 > 0, {ak} ∈ R,∀R > R0,∃k0 > 0,∀k > k0:∫
ake3+SR

fwnk dx > λ− ε,∫
ake3+S2R

fwnk dx < λ+ ε.

Proof. Denote fwn by ρn. Let Qn(t) = sup
y∈R3

∫
y+St

ρn dx.

Qn(t) is a sequence of nondecreasing, nonnegative, uniformly bounded functions

on R+, and lim
t→+∞

Qn(t) = P . By the Helly selection theorem, there exists a subse-

quence Qnk(t), and a function Q(t), such that Qnk(t)→ Q(t) pointwise on R+. Q(t)

is hence non-decreasing and non-negative.

Let λ = lim
n→∞

Q(t) ∈ [0, P ].

1. If λ = P , then ∀ε > 0, ∃R(ε) > 0 such that Q(R) > P − ε

2
.
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Since lim
k→∞

Qnk(R) = Q(R), ∃K0(ε) > 0, ∀k > K0(ε): Qnk(R) > P − ε

2
.

Hence, ∃yk(ε) ∈ R3 such that

∫
yk(ε)+SR

ρnk dx > P − ε

2
. Take yk = yk

(
P

2

)
.

We claim that |yk(ε)− yk| < R

(
P

2

)
+R(ε) for ε small. If not,

∫
R3

ρnk dx ≥
∫
yk+R(P

2
)

ρnk dx +

∫
yk(ε)+R(ε)

ρnk dx

> P − P

2
+ P − ε

2

=
3P

2
− ε

2
> P if ε is small.

Take R′(ε) = 2R(ε) +R

(
P

2

)
. By the previous inequality, we have

yk +R′(ε) ⊃ yk(ε) +R(ε).

Therefore, ∫
yk+BR′(ε)

ρnk dx > P − ε

2
.

Take ak = yk · e3, and let r(y) be the distance of y to the e3 axis. There must

exist an r0 such that r(yk) ≤ r0. Otherwise the integral of ρnk on the torus

obtained from revolving yk + SR(P
2

) around the e3 axis will give∫
Tk

ρnk dx ≥ C

(
P − P

2

)
r(yk)

for some constant C. The right hand side is bounded because the left hand side

is.

Let R′′(ε) = R′(ε) + r0, then∫
ake3+BR′′(ε)

ρnk dx > P − ε.

2. If λ = 0, then lim
R→∞

Q(R) = 0, which implies Q(R) ≡ 0. The result follows

immediately.
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3. If λ ∈ (0, P ), since lim
t→∞

Q(t) = λ, lim
k→∞

Qnk(t) = Q(t), we know:

∀ε > 0, ∃R(ε) > 0, K0 > 0, ∀k > K0, R ≥ R(ε):

Qn(R) = sup
y∈R3

∫
y+SR

ρnk dx > λ− ε.

Let fk(y) =

∫
y+BR(ε)

ρnk dx. It is easy to verify that fk(y) is a continuous

function. Consider the set
{
y
∣∣ fk(y) ≥ λ − ε

}
. This set is nonempty because

sup
y∈R3

fk(y) > λ− ε, is closed by the continuity of fk, and is bounded because the

contrary will indicate that ρnk has infinite mass. Therefore, there exists yk ∈ R3

such that

fk(yk) =

∫
yk+SR(ε)

ρnk dx = sup
y∈R3

∫
y+BR(ε)

ρnk dx > λ− ε.

Also for any R ≥ R(ε), we have∫
yk+SR

ρnk dx > λ− ε.

For the same reason as in case 1, there must be an r0 = r0(ε) such that r(yk) ≤

r0. Let ak = yk · e3, and R0 = R(ε) + r0, ∀R > R0, k > K0,∫
ake3+SR

ρnk dx > λ− ε.

On the other hand, because lim
k→∞

Qnk(2R) ≤ λ, there must be a k0 > K0 such

that ∀k > k0:

Qnk(2R) < λ+ ε,

which implies ∫
ake3+S2R

ρnk dx < λ+ ε.

This concludes the proof of the lemma.
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Intuitively, lemma IV.15 says that if we have a sequence of densities with fixed

total mass, then the densities will either concentrate in a ball of radius R, or vanish

as n goes to infinity, or split up into at least two parts (with masses roughly λ and

M − λ) that escape infinitely far from each other as n goes to infity. Our analysis

in the following will show that case 2 and case 3 cannot happen, provided that the

scaling inequalities hold. On the other hand, case 1 will force the existence of a

minimizer.

Lemma IV.16. Let 1 < q < 3. If wn is bounded in L1(R3) ∩H1(R3), wn ≥ 0 a.e.,

and if

∃R > 0, lim
n→∞

sup
y∈R3

∫
y+SR

wn dx→ 0,

Then

∫
R3

wq+1
n dx→ 0.

Proof. Fix α ∈
(

max

{
3

2
,
2(q + 1)

3

}
, q+ 1

)
, and let β =

q + 1

α
. We get 1 < β <

3

2
.

For any w ∈ L1(R3) ∩H1(R3), by Sobolev embedding W 1,1 ⊂ Lβ,∫
y+SR

wq+1 dx

=

∫
y+SR

wαβ dx

≤C(R)

(∫
y+SR

(wα + αwα−1|∇w|) dx
)β

≤C(R)

(∫
y+SR

wα dx + α
[ ∫

y+SR

w2(α−1) dx
] 1

2
[ ∫

y+SR

|∇w|2
] 1

2

)β
=C(R)(‖w‖αLα(y+SR) + α‖∇w‖L2(y+SR) · ‖w‖α−1

L2α−2(y+SR))
β.(4.31)

By the Gagliardo-Nirenberg inequality,

‖w‖Lα(y+SR) ≤ C(R)‖∇w‖aL2(y+SR)‖w‖1−a
L1(y+SR)

‖w‖L2α−2(y+SR) ≤ C(R)‖∇w‖bL2(y+SR)‖w‖1−b
L1(y+SR),
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where

a =
1− 1

α

1− 1
6

b =
1− 1

2α−2

1− 1
6

.

One has a, b ∈ (0, 1) if 1 < α < 6, 1 < 2α−2 < 6, or
3

2
< α < 4, which is guaranteed

by the choice of α. Hence given the hypotheses for wn, we can easily get

‖wn‖Lα(y+SR) → 0,

‖wn‖L2α−2(y+SR) → 0,

as n→∞. By (4.31) ∫
y+SR

wq+1
n dx

≤C(R)

(∫
y+SR

(wαn + αwα−1
n |∇wn|) dx

)β
:=C(R)εβn

≤C(R)εβ−1
n

∫
y+SR

(wαn + αwα−1
n |∇wn|) dx,

where

εn =

∫
y+SR

(wαn + αwα−1
n |∇wn|) dx

≤ ‖wn‖αLα(y+SR) + α‖∇wn‖L2(y+SR) · ‖wn‖α−1
L2α−2(y+SR)

→ 0.

Cover R3 with these balls of radius R in such a way that each point in R3 is contained

in an overlap of at most m balls. Then,∫
R3

wq+1
n dx ≤ C(R)mεβ−1

n

∫
R3

(wαn + αwα−1
n |∇w|) dx.(4.32)
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Just as in (4.31), we have∫
R3

(wαn + αwα−1
n |∇w|) dx

≤‖wn‖αLα(R3) + α‖∇wn‖L2(R3) · ‖wn‖α−1
L2α−2(R3).

Similarly by the Gagliardo-Nirenberg inequality,

‖wn‖Lα(R3) ≤ C‖∇wn‖aL2(R3)‖wn‖1−a
L1(R3)

‖wn‖L2α−2(R3) ≤ C‖∇wn‖bL2(R3)‖wn‖1−b
L1(R3).

By the boundedness of wn in L1(R3) ∩H1(R3), we conclude from (4.32) that∫
R3

wq+1
n dx→ 0

as n→∞.

Corollary IV.17. If {wn} is a minimizing sequence of E in WP , and if IP < 0,

then case 2 in lemma IV.15 cannot happen.

Proof. If case 2 in lemma IV.15 happens, there will be a subsequence {wnk} such

that ∀R > 0,

lim
k→∞

sup
y∈R3

∫
y+SR

fwnk dx = 0

Since f ≥ c > 0, this implies

lim
k→∞

sup
y∈R3

∫
y+SR

wnk dx = 0

By lemma IV.16 and the boundedness of s this implies

lim
k→∞

∫
R3

K

q + 1
e−swq+1

nk
dx = 0,

which then implies IP ≥ 0.
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For the purpose of eliminating the possibility of case 3 in lemma IV.15, we need

an elementary inequality.

Lemma IV.18. If 0 ≤ λ1, λ2 ≤ 1, λ1 + λ2 = 1, q > 1, then

1− λq+1
1 − λq+1

2 ≥ 2λ1λ2.

Proof. Since q > 1, q + 1 > 2. Hence

1− λq+1
1 − λq+1

2 ≥ 1− λ2
1 − λ2

2

= (λ1 + λ2)2 − λ2
1 − λ2

2

= 2λ1λ2.

Now we are ready to eliminate case 3 in lemma IV.15.

Lemma IV.19. Let {wn} be a minimizing sequence of E in WP . Suppose IP < 0,

and ∀P2 > P1 > 0, IP2 ≤
(
P2

P1

)q+1

IP1. Then case 3 in lemma IV.15 cannot happen.

Proof. Assume the contrary. Then there exists a subsequence {wnk} such that ∃λ ∈

(0, P ),∀ε > 0,∃R0 > 0, ak ∈ R, ∀R > R0,∃k0 > 0,∀k > k0:∫
ake3+SR

fwnk dx > λ− ε,∫
ake3+S2R

fwnk dx < λ+ ε.(4.33)

Let ϕ : R+ → [0, 1] be a smooth cut off function, such that

ϕ(t) = 1 when |t| ≤ 1,

ϕ(t) = 0 when |t| ≥ 2,

|∇ϕ(t)| ≤ 2 for all t.
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Let us now define

ϕk,1(x) = ϕ

(
|x− ake3|

R

)
,

ϕk,2(x) = 1− ϕk,1(x),

wk,1(x) = ϕk,1(x)wnk(x),

wk,2(x) = ϕk,2(x)wnk(x),

Pk,1 =

∫
R3

fwk,1 dx,

Pk,2 =

∫
R3

fwk,2 dx.

Obviously wk,1 ∈ WPk,1 , wk,2 ∈ WPk,2 , |∇ϕk,1| ≤
2

R
, |∇ϕk,2| ≤

2

R
, also P = Pk,1 +Pk,2.

We now estimate

E(wnk) =

∫
R3

(
es

2
|∇wnk |2 −

K

q + 1
wq+1
nk

e−s
)
dx

=

∫
R3

(
es

2
|∇wk,1 +∇wk,2|2 −

K

q + 1
(wq+1

nk
− wq+1

k,1 − w
q+1
k,2 )e−s

− K

q + 1
(wq+1

k,1 + wq+1
k,2 )e−s

)
dx

=

∫
R3

(
es

2
|∇wk,1|2 −

K

q + 1
wq+1
k,1 e

−s
)
dx

+

∫
R3

(
es

2
|∇wk,2|2 −

K

q + 1
wq+1
k,2 e

−s
)
dx

+

∫
R3

(
es∇wk,1 · ∇wk,2 −

K

q + 1
wq+1
nk

(1− ϕq+1
k,1 − ϕ

q+1
k,2 )e−s

)
dx

≥ IPk,1 + IPk,2 +

∫
R3

(
es∇wk,1 · ∇wk,2 −

K

q + 1
wq+1
nk

(1− ϕq+1
k,1 − ϕ

q+1
k,2 )e−s

)
dx

≥
[(

Pk,1
P

)q+1

+

(
Pk,2
P

)q+1]
IP

+

∫
R3

(
es∇wk,1 · ∇wk,2 −

K

q + 1
wq+1
nk

(1− ϕq+1
k,1 − ϕ

q+1
k,2 )e−s

)
dx.
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The last inequality follows from the hypothesis in the lemma. If we denote

Re =

∫
R3

(
es∇wk,1 · ∇wk,2 −

K

q + 1
wq+1
nk

(1− ϕq+1
k,1 − ϕ

q+1
k,2 )e−s

)
dx,

then the above estimate gives us

IP − E(wnk) ≤
[
1−

(
Pk,1
P

)q+1

−
(
Pk,2
P

)q+1]
IP −Re.

Since P = Pk,1 + Pk,2, and IP < 0, by lemma IV.18, we get

IP − E(wnk) ≤
[
1−

(
Pk,1
P

)q+1

−
(
Pk,2
P

)q+1]
IP −Re

≤ 2
Pk,1Pk,2
P 2

IP −Re,

or

(4.34) − 2

P 2
IPPk,1Pk,2 ≤ E(wnk)− IP −Re.

Let us now estimate Re:

−Re = −
∫
R3

(
es∇wk,1 · ∇wk,2 −

K

q + 1
wq+1
nk

(1− ϕq+1
k,1 − ϕ

q+1
k,2 )e−s

)
dx.

By the definition of ϕk,1 and ϕk,2, we know 1− ϕq+1
k,1 − ϕ

q+1
k,2 ∈ [0, 1], and is nonzero

only when R ≤ |x− ake3| ≤ 2R. Therefore

−Re ≤ −
∫
R3

es∇wk,1 · ∇wk,2 dx + C(q,K, s)

∫
R≤|x−ake3|≤2R

wq+1
nk

dx

= L1 + L2.
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We estimate L1 and L2 separately.

L1 = −
∫
R3

es∇wk,1 · ∇wk,2 dx

= −
∫
R3

es∇(wnkϕk,1) · ∇(wnkϕk,2) dx

= −
∫
R3

es∇ϕk,1 · ∇ϕk,2|wnk |2 dx−
∫
R3

eswnkϕk,2∇ϕk,1 · ∇wnk dx

−
∫
R3

eswnkϕk,1∇ϕk,2 · ∇wnk dx−
∫
R3

esϕk,1ϕk,2|∇wnk |2 dx

≤ −
∫
R3

es∇ϕk,1 · ∇ϕk,2|wnk |2 dx−
∫
R3

eswnkϕk,2∇ϕk,1 · ∇wnk dx

−
∫
R3

eswnkϕk,1∇ϕk,2 · ∇wnk dx

≤ C(s)

R
.

The last inequality follows from |∇ϕk,1| ≤
2

R
, |∇ϕk,2| ≤

2

R
and that {wnk} is bounded

in H1(R3). On the other hand, by the Gagliardo-Nirenberg inequality,

L2 ≤ C(q,K, s)‖wnk‖
q+1
Lq+1(R≤|x−ake3|≤2R)

≤ C(q,K, s)‖∇wnk‖
a(q+1)

L2(R≤|x−ake3|≤2R)‖wnk‖
(1−a)(q+1)

L1(R≤|x−ake3|≤2R)

≤ C(q,K, s)[(λ+ ε)− (λ− ε)](1−a)(q+1)

The constant C(q,K, s) is enlarged in different lines. The last inequality above

follows from (4.33), and the fact that {wnk} is bounded in H1(R3).

In summary, we have

−Re ≤ C(s)

R
+ C(q,K, s)(2ε)(1−a)(q+1).

From the range of q, we deduce that a ∈ (0, 1). Choose R > R0 so big that

−Re ≤ C(q,K, s)ε(1−a)(q+1).

By the definition of wk,1, we have

Pk,1 ≥
∫
|x−ake3|≤R

fwnk dx > λ− ε.
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By (4.34), and the estimates on Re, we have

Pk,2 ≤ C(P, IP , λ, q,K, s)(ε+ ε(1−a)(q+1)).

However,

Pk,2 =

∫
R3

fwk,2 dx

≥
∫
R3\ake3+S2R

fwnk dx.

Hence, ∫
R3\ake3+S2R

fwnk dx ≤ C(P, IP , λ, q,K, s)(ε+ ε(1−a)(q+1)).

On the other hand, ∫
ake3+S2R

fwnk dx < λ+ ε.

This implies

P =

∫
R3

fwnk dx

< λ+ ε+ C(P, IP , λ, q,K, s)(ε+ ε(1−a)(q+1)).

If we have initially chosen ε so small that

λ+ ε+ C(P, IP , λ, q,K, s)(ε+ ε(1−a)(q+1)) < P.

a contradiction will be obtained.

With the preparation above, we are ready to prove the existence of a minimizer.

Proof of proposition IV.11. By lemma IV.14, the scaling inequalities are true in this

q range, therefore lemma IV.15, lemma IV.16 and lemma IV.19 apply. For any

minimizing sequence {wn}, there exists a subsequence {wnk} such that case 1 in
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lemma IV.15 is true. Without loss of generality, we assume {wn} is already shifted,

and satisfies: ∀ε > 0, ∃R > 0, n0 > 0, ∀n > n0:

P ≥
∫
SR

fwn dx ≥ P − ε.

By lemma IV.13, {wn} is bounded in H1(R3). The Banach-Alaoglu theorem implies

that there exists a subsequence of {wn} which converges weakly in H1(R3) to w̃.

Without loss of generality, we call this subsequence {wn} again. We claim that w̃ is

a minimizer of E(w) in WM .

Let us first show w̃ ∈ WM . Obviously w̃ ∈ H1(R3). Notice for any R > 0, we

have wn ⇀ w weakly in H1(SR). By the Rellich-Kondrachov theorem, H1(SR) is

compactly embedded in Lp(SR) for 1 ≤ p < 6. This implies ∀R > 0, wn → w̃

in Lq(SR) for 1 ≤ q < 6. The conditions w ≥ 0 a.e. and w axisymmetric are

now easily established if we integrate the wn’s against positive smooth test functions

with compact supports and take the limit. Let us now show N(w̃) = P . For that we

observe ∀ε > 0, ∃R > 0, n0 > 0, ∀n > n0:∫
SR

fwn dx ≥ P − ε.

Since wn → w̃ in Lq(SR) for all R > 0, and f is locally bounded, we have∫
SR

fw̃ dx ≥ P − ε.

Therefore for any ε > 0

(4.35)

∫
R3

fw̃ dx ≥ P − ε.

On the other hand, for any R > 0,

P ≥
∫
SR

fwn dx,
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which implies

P ≥
∫
SR

fw̃ dx,

which implies

(4.36) P ≥
∫
R3

fw̃ dx.

Combine (4.35) and (4.36), we get∫
R3

fw̃ dx = P.

This also shows w̃ ∈ L1(R3). We have shown w̃ ∈ WM , it remains to establish the

weak lower-semicontinuity of E. The first term in E can be treated by the standard

method. Let us observe that

Fc =

{
w

∣∣∣∣ ∫
R3

es

2
|∇w|2 dx ≤ c

}
is a convex norm closed set in H1(R3), therefore is weakly closed.

For the second term

−
∫
R3

K

q + 1
wq+1e−s dx

we recall, ∀ε > 0, ∃R > 0, n0 > 0, ∀n, n′ > n0:∫
R3\SR

fwn dx ≤ ε∫
R3\SR

fwn′ dx ≤ ε

‖wn − wn′‖Lq+1(SR) < ε.

Therefore,

‖wn − wn′‖Lq+1(R3) ≤ ‖wn − wn′‖Lq+1(SR) + ‖wn − wn′‖Lq+1(R3\SR)

< ε+ C
(

sup
n
‖wn‖H1(R3)

)a(‖wn‖L1(R3\SR) + ‖wn′‖L1(R3\SR)

)1−a

≤ ε+ C ′ε.
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The second inequality above follows from the Gagliardo-Nirenberg inequality. Hence

{wn} converges in Lq+1(R3). But wn → w̃ in Lq+1(SR) for any R > 0. This implies

wn → w̃ in Lq+1(R3). Therefore,

lim
n→∞

∫
R3

wq+1
n e−s dx =

∫
R3

w̃q+1e−s dx.

Combine the two terms in E. We have

lim inf
n→∞

E(wn) ≥ E(w̃).

This shows that w̃ is a minimizer.

One can establish a similar proposition for functions restricted to a finite ball.

Since one has compact Sobolev embedding theorems on bounded balls, the corre-

sponding proof will be a lot easier. In particular, if we let

(4.37) E(w) =

∫
SR

(
es

2
|∇w|2 − K

q + 1
wq+1e−s

)
dx,

(4.38) N(w) =

∫
SR

fw dx,

and let WP be

H1
0 (SR) ∩ L1(SR) ∩

{
w : SR → R, w ≥ 0 a.e., w is axisymmetric, N(w) = P

}
,

then proposition IV.11 with these newly defined E and WP remains true. The proof

for that is standard.

4.4 Existence of Solution for Low Adiabatic Index

In this section, we give proofs to theorems IV.2 and IV.3. The argument is based

on proposition IV.11. We will only lay out the demonstration for the compactly

supported case, i.e. theorem IV.2. The whole space case is virtually identical.
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We first study the Euler-Lagrange equation. Let W be

H1
0 (SR) ∩ L1(SR) ∩

{
w : SR → R, w ≥ 0 a.e., w is axisymmetric, N(w) <∞

}
,

one has

Lemma IV.20. ∃λ ∈ R,∀u ∈ W :

(4.39)

∫
SR

(
es∇w̃ · ∇(u− w̃)−Ke−sw̃q(u− w̃)

)
dx ≥ −λ

∫
SR

f(u− w̃) dx.

Proof. Given u ∈ W , when t > 0 is small enough,

w̃ + t

[
(u− w̃)− N(u− w̃)

N(w̃)
w̃

]
∈ WP ,

therefore,

d

dt
E

(
w̃ + t

[
(u− w̃)− N(u− w̃)

N(w̃)
w̃

])∣∣∣∣
t=0+

≥ 0.

Denote (u− w̃)− N(u− w̃)

N(w̃)
w̃ by σ, we have

E(w̃ + tσ)− E(w̃)

t

=

∫
SR

(
es∇w̃ · ∇σ − K

q + 1
e−s(q + 1)(w̃ + θσ)qσ

)
dx +O(t),

where θ is between 0 and t, and depends on x. Take the limit as t → 0+. By the

dominated convergence theorem, we get

lim
t→0+

E(w̃ + tσ)− E(w̃)

t
=

∫
SR

(
es∇w̃ · ∇σ −Ke−sw̃qσ

)
dx.

Denote this by E ′w̃(σ), we have

0 ≤ E ′w̃(σ)

= E ′w̃(u− w̃)− E ′w̃(w̃)

N(w̃)
N(u− w̃).

Let −λ =
E ′w̃(w̃)

N(w̃)
, the proof is complete.
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Lemma IV.21. If IP < 0, q > 1, then λ > 0.

Proof. Observe that 2w̃ ∈ W , therefore we may plug in u = 2w̃ to find

−λP = −λ
∫
SR

f(2w̃ − w̃) dx

≤
∫
SR

(es|∇w̃|2 −Ke−sw̃q+1) dx

=

∫
SR

(
es

2
|∇w̃|2 − K

q + 1
e−sw̃q+1) dx +

∫
SR

(
es

2
|∇w̃|2 − qK

q + 1
e−sw̃q+1) dx

≤ 2IP

< 0.

For any ϕ ∈ C∞0 (SR), ϕ ≥ 0, let S(ϕ) be

(4.40) S(ϕ)(r, θ, z) =
1

2π

∫ 2π

0

ϕ(r, θ, z)dθ.

Then S(ϕ) is axisymmetric, w̃ + S(ϕ) ∈ W , and∫
SR

(
es∇w̃ · ∇ϕ−Ke−sw̃qϕ+ λfϕ

)
dx

=

∫
SR

(
S(es)∇S(w̃) · ∇ϕ−KS(e−sw̃q)ϕ+ λS(f)ϕ

)
dx

=

∫
SR

(
es∇w̃ · S(ϕ)−Ke−sw̃qS(ϕ) + λfS(ϕ)

)
dx

≥0.(4.41)

One can pass from the second line to the third line by Fubini’s theorem. The last

line follows from (4.39). Therefore,

(4.42) −∇ · (es∇w̃)−Ke−sw̃q + λf

is a positive distribution on SR. By a theorem of Schwartz (see Schwartz [38]), it

must be a positive Borel measure:

(4.43) −∇ · (es∇w̃)−Ke−sw̃q + λf = dµ.
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Let us write w̃ = w1 + w2, where w1 ∈ H1
0 (SR) weakly solves

(4.44) −∇ · (es∇w1)−Ke−sw̃q + λf = 0,

and w2 ∈ H1
0 (SR) weakly solves

(4.45) −∇ · (es∇w2) = dµ.

From the range of q and the fact that w̃ ∈ H1
0 (SR) ⊂ L6(SR), we have w̃q ∈ L2(SR).

By standard elliptic regularity theory, w1 is continuous. We next show that w2 is

lower semicontinuous, following Lewy and Stampacchia [27].

Lemma IV.22. Let S̃ be any ball contained in SR. Let G(x,y) be the Dirichlet

Green’s function of S̃ with respect to the operator −∇ · (es∇), i.e.

−∇x(es∇xG(x,y)) = δy on S̃

G(x,y) = 0 on ∂S̃

then

(4.46) w2(x) =

∫
S̃

G(x,y)dµ(y)−
∫
∂S̃

es(y)∂G(x,y)

∂n(y)
w2(y)dσ(y)

in S̃, where σ is the standard surface measure on ∂S̃.

Proof. Pick any ball S contained in S̃. ∀ϕ ∈ C∞0 (S), ϕ ≥ 0, ∃u solving

−∇ · (es∇u) = ϕ on S̃

u = 0 on ∂S̃

It follows from the Green’s theorem that

(4.47) u(x) =

∫
S

G(x,y)ϕ(y) dy.
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Now∫
S

w2(x)ϕ(x) dx

=

∫
S̃

w2(x)ϕ(x) dx

=−
∫
S̃

w2∇ · (es∇u) dx

=

∫
S̃

es∇w2 · ∇u dx−
∫
∂S̃

esw2
∂u

∂n
dσ

=

∫
S̃

udµ−
∫
∂S̃

esw2
∂u

∂n
dσ

=

∫
S̃

(∫
S

G(x,y)ϕ(y) dy

)
dµ(x)−

∫
∂S̃

es(x)w2(x)

(∫
S

∂G(x,y)

∂n(x)
ϕ(y) dy

)
dσ(x)

=

∫
S

(∫
S̃

G(x,y)dµ(x)

)
ϕ(y) dy −

∫
S

(∫
S̃

es(x)w2(x)
∂G(x,y)

∂n(x)
dσ(x)

)
ϕ(y) dy.

The last equality follows from Fubini’s theorem and the fact that G(x,y) > 0 when

x 6= y.

Proof of theorem IV.2. Without loss of generality, we can assume α = 1 in (4.8).

When x is in a compact subset of S̃, and y on ∂S̃,
∂G(x,y)

∂n(y)
is a smooth function in

x and y. Hence first term in (4.46) is continuous in x. Also notice that G(x,y) is a

pointwise limit of

Ga(x,y) =


G(x,y) if G(x,y) ≤ a

a if G(x,y) > a

and that

(4.48)

∫
S̃

Ga(x,y)dµ(y)

is continuous in x on S̃. By the monotone convergence theorem,∫
S̃

G(x,y)dµ(y)
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is an increasing pointwise limit of (4.48), and hence is lower semicontinuous. We can

now conclude that w2, and w̃ also, are lower semicontinuous. This implies that the

set U+ =
{
x ∈ SR

∣∣ w̃(x) > 0
}

is open. If ϕ ∈ C∞0 (U+), then w̃ + tS(ϕ) ∈ W for |t|

sufficiently small. A similar calculation as (4.41) will show that

(4.49)

∫
SR

(
es∇w̃ · ∇ϕ−Ke−sw̃qϕ+ λfϕ

)
dx = 0.

In other words, w̃ solves

(4.50) ∇ · (es∇w) +Ke−swq − λf = 0

weakly on U+. Regularity of the solution follows from standard elliptic regularity.

4.5 Existence of Solution for Given Gas Density

We prove theorems IV.5 and IV.7 in this section. To avail ourselves in establishing

regularity at r = 0, let us prove the following lemma.

Lemma IV.23. Let f : (−ε, ε)× (−ε, ε)→ R be such that f(−r, z) = −f(r, z), and

assume that f ∈ Ck, k ≥ 1, then the function

(4.51) g(r, z) =


f(r, z)

r
r 6= 0

fr(0, z) r = 0

is in Ck−1.
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Proof. Obviously f(0, z) = 0, hence for r 6= 0,

g(r, z)

=
1

r
(f(r, z)− f(0, z))

=
1

r

∫ r

0

fs(s, z)ds

=
1

r

∫ 1

0

fs(rs, z)rds

=

∫ 1

0

fs(rs, z)ds(4.52)

Apparently the same equation is true for r = 0, and the assertion is clear from this

formula.

Proof of theorem IV.5. Let us write (4.1) in cylindrical coordinates:

(4.53)


pr = ρ(Bρ)r + ρrΩ2

pz = ρ(Bρ)z

From the definition of Bρ, we get

(4.54) (Bρ)z(x) =

∫
D

ρz(y)

|x− y|
dy.

Therefore Bρz(r,−z) = −Bρz(r, z) and Bρz(r, z) > 0 when z < 0, by hypothesis 4

and the symmetry of ρ and D. Let

(4.55) p(r, z) =

∫ z

−ψ(r)

ρ(r, ξ)Bρξ(r, ξ)dξ.

From now on we allow r to take negative values by evenly extending all the relevant

functions across r = 0. It is easily seen that p > 0 in D, p = 0 on ∂D and that p

satisfies the second equation in (4.53). Since ρ ∈ Ck(D̄) and ∂D is smooth, we have

Bρ ∈ Ck+1(D̄). It is not difficult to see that p ∈ Ck(D̄). Differentiate (4.55) under

the integral sign, we get

(4.56) pr(r, z) =

∫ z

−ψ(r)

(
ρr(r, ξ)Bρξ(r, ξ) + ρ(r, ξ)Bρrξ(r, ξ)

)
dξ.



103

By the first equation in (4.53), when r > 0, Ω2 has to have the form:

Ω2 =
1

rρ
(pr − ρBρr)

=
1

rρ

(∫ z

−ψ(r)

(
ρrBρξ + ρBρrξ

)
dξ − ρBρr

)
=

1

rρ

(∫ z

−ψ(r)

(
ρrBρξ + ρBρrξ

)
dξ −

∫ z

−ψ(r)

(
ρBρr

)
ξ
dξ

)
=

1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ.(4.57)

(4.57) is non-negative on D by hypothesis 3. Define Ω2 by (4.57), when r > 0, and

if D contains points at r = 0, by

(4.58) Ω2(0, z) =
1

ρ
(pr − ρBρr)r(0, z)

Notice pr − ρ(Bρ)r is odd in r. By lemma IV.23, ρΩ2 ∈ Ck−2(D), hence so is Ω2.

Such p and Ω2 obviously satisfy (4.53). It remains to show that Ω2 extends to a

continuous function on D̄. Let us consider the following three cases:

1. Let r0 be a nonzero radius such that (r0,−ψ(r0)) ∈ ∂D and ψ(r0) > 0.

lim
(r,z)→(r0,−ψ(r0))

Ω2(r, z)

= lim
(r,z)→(r0,−ψ(r0))

1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ

= lim
(r,z)→(r0,−ψ(r0))

1

rρz

(
ρrBρz − ρzBρr

)
=

1

r0ρz(r0,−ψ(r0))

(
ρrBρz − ρzBρr

)
(r0,−ψ(r0)).(4.59)

Here we have used the differential mean value theorem and hypothesis 4.

2. If ∂D contains points at r = 0, since ∂D is smooth and symmetric about z = 0
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and r = 0, we have ψ(0) > 0, ψ′(0) = 0. Hence

lim
(r,z)→(0,−ψ(0))

r 6=0

Ω2(r, z)

= lim
(r,z)→(0,−ψ(0))

r 6=0

1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ

= lim
(r,z)→(0,−ψ(0))

r 6=0

1

rρz

(
ρrBρz − ρzBρr

)
=

1

ρz(0,−ψ(0))

(
ρrBρz − ρzBρr

)
r
(0,−ψ(0)),(4.60)

and

lim
z→−ψ(0)

Ω2(0, z)

= lim
z→−ψ(0)

1

ρ
(pr − ρBρr)r(0, z)

= lim
z→−ψ(0)

1

ρ(0, z)

(∫ z

−ψ(0)

(
ρrBρξ − ρξBρr

)
r
dξ

+ ψ′(0)
(
ρrBρz − ρzBρr

)
(0,−ψ(0))

)
=

1

ρz(0,−ψ(0))

(
ρrBρz − ρzBρr

)
r
(0,−ψ(0)).(4.61)

3. Let r0 be such that ψ(r0) = 0. When (r, z) gets close to (r0, 0) and z ≤ 0, we

observe by the differential mean value theorem that

Ω2(r, z)

=
1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ

=
1

rρz

(
ρrBρz − ρzBρr

)
(r, z′)

=
1

rρzz

(
ρrBρz − ρzBρr

)
z
(r, z′′),(4.62)

where z′ is between −ψ(r) and z, and z′′ is between z′ and 0. Therefore

lim
(r,z)→(r0,0)

Ω2(r, z) =
1

rρzz

(
ρrBρz − ρzBρr

)
z
(r0, 0).(4.63)
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We use hypothesis (a) to conclude that the limit is finite.

Remark IV.24. It is possible to establish higher regularity for Ω2 at the first two types

of boundary points. However, at the third type of boundary points, ψ′(r0) = ∞, in

order to get higher regularity, we need conditions on how fast ψ′(r) grows at around

r0, which we do not employ ourselves doing here.

With relaxed regularity conditions at the boundary, the same computation works

if further growth conditions are imposed on the derivatives of ρ when close to the

boundary. Let us now give

Proof of theorem IV.7. As before, we define

(4.64) p(r, z) =

∫ z

−ψ(r)

ρ(r, ξ)Bρξ(r, ξ) dξ.

It follows from hypothesis 1, 2, 4 that p > 0 in D, p = 0 on ∂D and that p satisfies

the second equation in (4.53). Since ρ ∈ Cβ(D̄), we have Bρ ∈ C2,β(D̄), hence

p ∈ C0(D̄). Now let us calculate the r partial derivative of p. In the following, let

b = max
r≤s≤r+h

(
− ψ(s)

)
.

1

h

(∫ z

−ψ(r+h)

ρBρξ(r + h, ξ) dξ −
∫ z

−ψ(r)

ρBρξ(r, ξ) dξ

)

=
1

h

(∫ b

−ψ(r+h)

ρBρξ dξ −
∫ b

−ψ(r)

ρBρξ dξ +

∫ z

b

(
ρBρξ(r + h, ξ)− ρBρξ(r, ξ)

)
dξ

)
.

(4.65)

It is easily seen that the first two terms converge to 0 as h goes to 0. Let us focus

on the last term:

1

h

∫ z

b

(
ρBρξ(r + h, ξ)− ρBρξ(r, ξ)

)
dξ

=

∫ z

b

(
ρBρξ

)
r
(r′, ξ) dξ,(4.66)
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where r′ is between r and r + h. We will use the dominated convergence the-

orem to compute the limit of (4.66). For that purpose we need an estimate on

χ(b,z)

(
ρBρξ

)
r
(r′, ξ). For the moment let us assume z < 0. By hypothesis 5, there is

a C > 0 such that |ρr| ≤ C|ρξ|, |ρrr| ≤ C|ρξ|, |ρrξ| ≤ C|ρξ| for ξ < z. Also ρξ > 0.

Therefore

|
(
ρBρξ

)
r
(r′, ξ)|

≤C1|ρr(r′, ξ)|+ C2|ρ(r′, ξ)|

≤C1

∣∣∣∣ρr(r, ξ) +

∫ r′

r

ρss(s, ξ)ds

∣∣∣∣+ C2

∣∣∣∣ρ(r, ξ) +

∫ r′

r

ρs(s, ξ)ds

∣∣∣∣
≤(C1 + C2)

(
|ρr(r, ξ)|+ |ρ(r, ξ)|+ C

∫ r+h0

r−h0
ρξ(s, ξ)ds

)
≤C̃
(
ρξ(r, ξ) + ρ(r, ξ) +

∫ r+h0

r−h0
ρξ(s, ξ)ds

)
,(4.67)

for some fixed h0 > h. In the integral term, if (s, ξ) lies outside D, then extend ρξ

to be 0. The fact that the integral of (4.67) is finite is manifested by the following:

(4.68)

∫ z

−ψ(r)

ρξ(r, ξ) dξ = ρ(r, z)

(4.69)

∫ z

−ψ(r)

ρ(r, ξ) dξ <∞

∫ z

−ψ(r)

∫ r+h0

r−h0
ρξ(s, ξ) dsdξ

≤
∫ r+h0

r−h0

∫ z

−ψ(s)

ρξ(s, ξ) dξds

≤
∫ r+h0

r−h0
ρ(s, z)ds

<∞.(4.70)

Therefore, by the dominated convergence theorem,

(4.71) pr(r, z) =

∫ z

−ψ(r)

(
ρBρξ

)
r
dξ.
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Now if z ≥ 0, the integral in (4.66) can be broken into two pieces: one from b to

z′ and the other from z′ to z, for some z′ < 0. Notice that the second piece lies

completely inside D, where ρ is C2, so the limit is the same as before. We have

proved p ∈ C1(D). Now define Ω2 by

(4.72)
1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ.

when r > 0, and if D contains points at r = 0, by

(4.73) Ω2(0, z) =
1

ρ

∫ z

−ψ(0)

(
ρrBρξ − ρξBρr

)
r
dξ

The convergence of these integrals are guaranteed by hypothesis 5. It is easy to verify

that such p and Ω2 satisfy (4.53). Let us now show that Ω2 is continuous on D. Since

∂D is smooth and convex at (0,−ψ(0)), −ψ(r) = max
0≤s≤r

(
−ψ(s)

)
for r small enough.

Therefore,

1

r

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ

=

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
r
(r′, ξ) dξ,(4.74)

where r′ is between 0 and r. As before we assume z < 0 and estimate the integrand,

|
(
ρrBρξ − ρξBρr

)
r
(r′, ξ)|

≤C1(|ρrr(r′, ξ)|+ |ρrξ(r′, ξ)|+ |ρr(r′, ξ)|+ |ρξ(r′, ξ)|)

≤C̃ρξ(r′, ξ)

≤C̃
(
ρξ(0, ξ) +

∫ r′

0

ρsξ(s, ξ)ds

)
≤C̃
(
ρξ(0, ξ) +

∫ r0

0

ρξ(s, ξ)ds

)
,(4.75)

where r0 > r is small and fixed. As before, (4.75) has a finite ξ integral. By the

dominated convergence theorem,

(4.76) lim
(r,z)→(0,z0)
r 6=0,z0<0

Ω2(r, z) = Ω2(0, z).
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Again by splitting the integral (4.72) into boundary and interior parts, (4.76) contin-

ues to be true when z0 ≥ 0, and Ω2(0, z) is evidently continuous in z. This establishes

the continuity of Ω2 at D ∩ {r = 0}. The continuity of Ω2 away from the z axis is

obvious. It remains to show that Ω2 ∈ L∞(D). Let us consider the following three

cases:

1. Let r0 be a nonzero radius such that (r0,−ψ(r0)) ∈ ∂D and ψ(r0) > 0. When

z < −1

2
ψ(r0),

Ω2(r0, z)

=
1

r0ρ

∫ z

−ψ(r0)

(
ρrBρξ − ρξBρr

)
dξ

=
1

r0ρz

(
ρrBρz − ρzBρr

)
(r0, z

′)

≤ 1

r0

(C|Bρz|+ |Bρr|)

≤ C̃
r0

,(4.77)

where C is given by hypothesis 5.

2. If ∂D contains points at r = 0, as (r, z) gets close to (0,−ψ(0)), r 6= 0,

Ω2(r, z)

=
1

rρ

∫ z

−ψ(r)

(
ρrBρxi − ρξBρr

)
dξ

=
1

rρz

(
ρrBρz − ρzBρr

)
(r, z′)

=

(
ρrBρz − ρzBρr

)
r

ρz + rρrz
(r′, z′)

≤ C̃

1 + r′C
(4.78)

where z′ is between −ψ(r) and z, and r′ is between 0 and r. In this process

we have used the mean value theorem several times, the justification being that
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the convexity of ∂D at (0,−ψ(0)) guarantees that all the relevant segments lie

inside D. On the other hand if r = 0,

Ω2(0, z)

=
1

ρ

∫ z

−ψ(0)

(
ρrBρξ − ρξBρr

)
r
dξ

=
1

ρz

(
ρrBρz − ρzBρr

)
r
(0, z′)

≤C̃.(4.79)

3. Let r0 be such that ψ(r0) = 0. When (r, z) gets close to (r0, 0) and z ≤ 0,

Ω2(r, z)

=
1

rρ

∫ z

−ψ(r)

(
ρrBρξ − ρξBρr

)
dξ

=
1

rρz

(
ρrBρz − ρzBρr

)
(r, z′)(4.80)

=
(ρrBρz
rρz

− Bρr
r

)
(r, z′)(4.81)

=
1

rρzz

(
ρrBρz

)
z
(r, z′′)− Bρr

r
(r, z′),(4.82)

where z′ is between −ψ(r) and z, and z′′ is between z′ and 0. If hypothesis

(a) is satisfied, by (4.82), Ω2(r, z) is bounded. If hypothesis (a’) is satisfied, by

(4.80) and the fact that ρz > 0, Bρz > 0 when z < 0,

0 ≤ Ω2(r, z) ≤ −1

r
Bρr(r, z

′).(4.83)

Therefore Ω2(r, z) is bounded. If hypothesis (a”) is satisfied, by (4.81) and the

fact that |Bρz| < C|z|, we again get the boundedness of Ω2(r, z).



CHAPTER V

Further Extensions of the Physical Equations and Future
Work

5.1 Solving for Entropy and Density Simultaneously

One differenet way of viewing equation (1.57) is to regard it as a system of equa-

tions for s and ρ with given Ω. That this gives the correct number of equations for

the number of unknowns is manifested by its cylindrical form:

(5.1)


(esργ)r = ρ(Bρ)r + ρrΩ2

(esργ)z = ρ(Bρ)z

Whether this system has a variational formulation is unknown. With Ω(r, z) having

generic dependence on r as well as z, (5.1) poses a very different problem than the

previously mentioned ones for isentropic Euler-Poisson equations. In chapter IV, we

solved the divergence of (1.57) with prescribed s. In that process, s is essentially

chosen arbitrarily since any axisymmetric stationary s would satisfy the entropy

transport equation in the Euler-Poisson system, therefore is not excluded a priori. In

comparison, (5.1) poses much stronger constraints on s to the extent that it becomes

an unknown to solve for. Before arriving at the ultimate goal of solving (5.1), one

may try to formulate questions that “interpolate” between these two views. Here

is one possible question: for given total mass, what entropy configuration can give
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existence of a density function that solves the divergence equation?

5.2 Other Ways to Extend the Euler-Poisson Equations

Tassoul [42] provides a comprehensive exposition of the detailed physical principles

employed in rotating star models. One can extend the physical equations to account

for heat conduction, radiation pressure and nuclear fusion in the star. The resulting

equation is conceivably much more complicated, but one could progressively include

more terms into the analysis and come up with new results of increasing physical

relevance to the state of the art stellar models used in astrophysics.

Another scheme of extending the Euler-Poisson equations is to incorporate electro-

magnetism. Federbush et al. [13] considered a model for stationary magnectic stars.

They augmented the Euler-Poisson equations by the Maxwell equations (see also

[12], [39] and [43]):

(5.2)



ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v) +∇p = −ρ∇φ+
1

4π
(∇×B)×B

∂B

∂t
= ∇× (v ×B)

∇ ·B = 0

∆φ = 4πρ

and proved an existence result for axisymmetric non-rotating magnetic stars. The

next possible step is to add rotation or perhaps even a solid core.

Another big problem related to the Euler-Poisson equations is the existence of

rotating relativistic stars. See Friedman and Stergioulas [18] and Gourgoulhon [20]

for an introduction. Heilig [22] provided solutions with small deviation from a New-

tonian rotating star, assuming that the speed of light is sufficiently large. Hartle and
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Sharp [21] and Bardeem [4] proposed variational formulations for rotating relativis-

tic stars with given integral constraints in a flavor like the rotating star solutions to

the Euler-Poisson equations, but the energy functionals are strongly indefinite and

non-convex. Some fundamentally new ideas are needed to show existence in this

setting.
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