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Negative Ion Electron Capture Dissociation (niECD): 

a Novel Tandem Mass Spectrometric Technique 

 

by 

 

Ning Wang 

 

Chair: Kristina I. Håkansson 

 

 

       Electron capture dissociation (ECD) and electron transfer dissociation (ETD) are 

powerful tandem mass spectrometry (MS/MS) techniques for biomolecular structural 

elucidation.  However, one drawback of ECD/ETD is that they require multiply 

positively charged precursor ions, possibly precluding analysis of acidic molecules such 

as phospho-, sulfopeptides, and sialylated glycopeptides. 

       Electron attachment to anions appears unlikely due to Coulomb repulsion.  However, 

we found that such an intriguing reaction is indeed feasible within a narrow energy range 

(3.5-6.5 eV).  The resulting charge-increased radicals further undergo dissociation 

analogous to ECD/ETD, thus constituting a novel MS/MS technique that we termed 

negative ion electron capture dissociation (niECD).  niECD of phospho- and 

sulfopeptides yields predictable c’/z
•
-type backbone fragments without loss of phosphoric 



xvii 

 

acid or sulfonate.   

       Fragmentation pattern similarities between niECD and ECD indicate that niECD 

proceeds through a mechanism related to that of ECD.  We proposed that gas-phase 

zwitterionic structures are necessary for successful niECD and that a positive charge is 

required to serve as the electron capture site, or to promote electron capture.  N-terminal 

acetylation, which should reduce the probability of zwitterion formation, results in 

decreased niECD efficiency and introduction of fixed positive charge tags, which should 

promote zwitterion formation, enables niECD of peptides which could not undergo 

niECD in their unmodified forms.  niECD efficiency also decreases with decreasing 

zwitterion propensity for five sets of synthetic peptides, further supporting the zwitterion 

mechanism.   

      niECD was further applied to peptide chains bound by natural disulfide bonds or 

disulfide-containing cross-linkers.  niECD of disulfide-linked peptides again results in 

very similar fragmentation patterns as those from ECD.  S-S bond cleavage constitutes 

the preferred fragmentation pathway, producing characteristic fragments, which allow 

rapid detection of disulfide-linked peptides.  Analogous to cation ECD, niECD of both N-

linked and O-linked sialylated glycopeptides, which are readily deprotonated in negative 

ion mode, exhibits peptide backbone fragmentation with retention of labile glycans.   

       Overall, the research presented in this thesis contributes to an increased 

understanding of the mechanism and utility of niECD, thereby allowing this unique 

approach to be developed into a valuable analytical tool for structural analysis of 

important biological samples. 



  

1 

 

Chapter 1 

 

 

Introduction 

 

 

 

 

1.1 Mass Spectrometry-Based Proteomics 

       In this post-genomic era where the name of the game has become proteomics, our 

knowledge of biological systems continues to expand and progress.  The human genome 

has been predicted to comprise between 20,000 and 25,000 protein-coding genes.
[1-3]

  By 

contrast, the human proteome is vastly more complex with the total number of proteins 

estimated to be over 1 million.
[4]

  Complete characterization of the proteome, which 

encompasses identification and structural characterization of proteins and their 

complexes, quantitation of protein expression under different treatments or environmental 

conditions, as well as determination of post-translational modifications (PTMs), remains 

a tremendous challenge.  PTMs constitute a variety of covalent modifications (e.g., 

phosphorylation, glycosylation, acetylation, and disulfide formation) to a protein after its 
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translation and are key factors that exponentially increase the diversity and complexity of 

the proteome.
[5]

  More than 400 different PTMs have been described.  PTMs are required 

for changes in protein subcellular location, complexation, degradation, signal 

transduction, and regulatory control of enzymatic function.
[6]

  Identifying the type and 

location of these protein modifications is a first step in understanding their regulatory 

potential.   

       Mass spectrometry (MS) has evolved into a formidable tool for dissecting the 

primary structures as well as the PTMs of proteins.
[7-9]

  In MS-based proteomics 

experiments, there are two complementary approaches: bottom-up and top-down.
[10-13]

  

Currently, the “bottom-up” approach is the gold standard when analyzing protein(s) by 

mass spectrometry due to its high-throughput protein identification, well-developed MS 

instrumentation and software.
[14]

  Bottom-up proteomics has multiple implementations.  

For example, proteins can first be separated by liquid chromatography (LC) and/or 

electrophoresis, followed by proteolytic digestion into peptides (1-3 kDa).  The protease 

typically used to digest proteins is trypsin, which cleaves C-terminal to arginine and 

lysine.  The resulting peptides are then separated by reverse-phase (RP) HPLC, 

introduced into a mass spectrometer as peptide cations and subjected to tandem mass 

spectrometry (MS/MS) analysis to obtain sequence information.
[10, 15]

  The most widely 

used method for bottom-up MS/MS data analysis is a database search
[16, 17]

 in which 

experimental precursor ion mass and product ion masses are compared with predicted 

peptide fragment masses from a genome-derived database to identify the corresponding 

protein.
[18-20]

  Alternatively, “shotgun” proteomics relies on enzymatic digestion of 

protein mixtures without the need for prior protein fractionation/separation.
[21-24]

  Highly 
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complex samples containing hundreds of thousands of peptides are then analyzed directly 

by online LC/MS (typically by two orthogonal stationary phases such as cation exchange 

and reverse phase chromatography) and MS/MS.  Some benefits associated with the 

bottom-up approach are that peptides are readily solubilized and separated, tasks that are 

considerably more difficult for proteins.  It also provides higher sensitivity and 

throughput than the top-down method.  However, only a small percentage of the digested 

peptides are normally detected, leading to limited protein sequence coverage by identified 

peptides.  An additional drawback of bottom-up includes ambiguity of the origin for 

redundant peptide sequences (the protein inference problem).   

       In contrast to the bottom-up approach, the “top-down” approach, which analyzes 

intact proteins directly without prior digestion, has emerged as an attractive alternative, 

particularly for the analysis of protein PTMs.
[25-28]

  In top-down proteomics, gas-phase 

proteins are isolated and fragmented in a mass spectrometer, yielding masses of both the 

intact proteins and their fragment ions for protein identification.  It has been shown that 

labile PTM loss occurs to a smaller extent in top-down compared with bottom-up 

analysis.
[25, 29, 30]

  Thus, the identity and location of each PTM can be more frequently 

deduced in top-down experiments according to its characteristic mass discrepancy 

relative to unmodified amino acid residues.  Advantages of the top-down approach are 

higher sequence coverage of target proteins
[31]

 and improved PTM characterization.
[25, 32]

  

In theory, the top down approach can provide a complete description of the primary 

structure of proteins, locate all PTMs, and reveal any correlations between these 

modifications.  However, it has proven difficult to produce extensive fragmentation of 

intact protein ions, particularly from large proteins.  Electron-based fragmentation 
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reactions, such as electron capture dissociation (ECD)
[33]

 and electron transfer 

dissociation (ETD),
[34, 35]

 can fragment proteins more effectively than conventional 

collision activated dissociation (CAD) and retain labile PTMs.
[36]

  They have become the 

preferred fragmentation methods in top-down experiments.  Ultraviolet photodissociation 

(UVPD) has also been implemented for characterization of intact proteins, leading to 

near-complete fragmentation of proteins up to 29 kDa.
[37]

  Nevertheless, there are other 

technological obstacles to the top-down method, which prevent it from widespread use.  

For instance, front-end separation of intact proteins is more challenging than the 

separation of peptide mixtures.  This challenge means that larger quantities of protein are 

required and the analytical throughput as well as efficiency is still a major challenge for 

top-down experiments.  In addition, instruments with higher resolution and high mass 

accuracy, such as FT-ICR and Orbitrap, are essential in top-down proteomics to resolve 

isotopic envelopes of co-eluting proteins and isotopic distributions from peptides of 

different charge states.   

1.2 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry  

1.2.1 FT-ICR Overview  

       Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was first 

introduced in 1974 by Comisarow and Marshall.
[38, 39]

  It offers the highest mass 

resolving power
[40, 41]

 and mass measurement accuracy
[41]

 of all mass analyzers, making it 

a superior choice for biological applications such as proteomics
[42-45]

 and analysis of 

extremely complex organic mixtures such as petroleum.
[46]

  One factor contributing to 

this high FT-ICR performance is a highly uniform magnetic field with a stability of a few 
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parts per billion (ppb) per hour.  The cyclotron frequency of a charged species in such a 

magnetic field constitutes a unique signature for ions of a particular mass-to-charge ratio.  

This cyclotron frequency can be measured very accurately because the observation time 

can be as long as several seconds with no influence of ion kinetic energy spread.  Another 

advantage of the FT-ICR mass analyzer is its capability of various MS/MS activation 

techniques, allowing identification of analytes not only by their intact molecular weight, 

but also their dissociation patterns (discussed in details in Section 1.4).   

       All FT-ICR mass analyzers are equipped with three main components: a 

superconducting magnet, an analyzer cell (ICR cell), and an ultrahigh vacuum system.
[47]

  

The performance parameters, such as mass resolving power, mass accuracy, dynamic 

range, and upper mass limit, improve linearly or quadratically with increasing magnetic 

field strength in FT-ICR mass spectrometers.
[48, 49]

  Thus, instruments with higher field 

have broader applications, yielding more informative data, and permitting experiments on 

systems with greater complexity.  Currently, commercially available magnet sizes 

produced for FT-ICR MS instruments are 4.7 T, 7 T, 9.4 T, 12 T, and 15 T.  In addition, 

two 21 T FT-ICR superconducting magnet systems are under construction for the USA 

National High Magnetic Field Laboratory (NHMFL) and the Pacific Northwest National 

Laboratory (PNNL).  The ICR cell, where ions are stored, mass analyzed, and detected is 

the heart of FT-ICR instruments and is discussed shortly in the following section.  An 

ultrahigh vacuum system (in the region of 10
-9

 – 10
-10

 Torr) provided by cryogenic or 

turbo molecular pumps is required in FT-ICR mass spectrometers to generate long-lasting 

signal and to achieve ultrahigh mass resolution.
[47, 50]

  Differential pumping stages are 
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typically applied to gradually decrease the pressure from atmospheric to ultrahigh 

vacuum in the ICR cell.  

1.2.2 General FT-ICR Principle 

       In FT-ICR, the mass-to-charge (m/z) ratio of an analyte ion is determined based on 

its frequency of cyclotron motion in a highly homogenous magnetic field.
[47, 50-54]

  In a 

magnetic field, B, an ion with velocity v and charge q = ze in which e is the elementary 

charge and z is the number of elementary charges, experiences the Lorentz force, which 

is perpendicular to both the ion velocity and the magnetic field.   

                                           

       The Lorentz force causes the ion to travel in a circular trajectory perpendicular to the 

magnetic field, and is counterbalanced by the centrifugal force, which is defined by the 

ion mass, m, the ion velocity, vxy, in the x-y-plane (perpendicular to the magnetic field), 

and the radius of the circular orbit, r.  

   
   

 

 
                         

       By introducing the angular frequency      , the following equation can be 

derived: 

  
   

 
                                            

       The cyclotron frequency f equals      and the cyclotron equation (4) is obtained by 

dividing equation (3) by 2π.  
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       Therefore, each ion of a certain m/z ratio has a unique cyclotron frequency in a given 

magnetic field.  This relation is the governing principle in FT-ICR MS.  One important 

feature of equation (4) is that this characteristic cyclotron frequency is independent of ion 

velocity and kinetic energy, eliminating the need for “focusing” ions as encountered in 

most other mass spectrometers.
[47, 50]

   

       The cyclotron motion described above is detected in an ICR cell, which can adopt 

different geometries.
[53, 55]

  A common design is the cylindrical cell (see Figure 1.1), 

consisting of six electrodes: one front and one back trapping electrode positioned 

perpendicular to the magnetic field, two opposing excitation electrodes, and two 

opposing detection electrodes.  Once inside the ICR cell, ions are trapped axially by the 

two end trapping plates with small DC potentials in addition to being confined radially by 

the Lorentz force.  The trapping plate configuration creates a potential well that allows 

ions to oscillate axially between the trapping electrodes whilst maintaining their 

cyclotron motion.
[50]
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Figure 1.1.  Schematic representation of a closed cylindrical ICR cell.  Two trapping 

plates are mounted perpendicular to the magnetic field at both ends of the ICR cell.  

Detection and excitation electrodes are positioned 180
o
 out of phase (alternating) on the 

ICR cell wall.  The direction of ion motion and the magnetic field are indicated with 

arrows. 

 

       Under initial conditions, ions typically have small cyclotron orbit radius (<1 mm) 

due to their low kinetic energy and cannot induce a measurable image current in the 

detection plates.  In addition, ions have random cyclotron phase, which may generate 

zero net image current.  This lack of signal is due to ions with the same cyclotron 

frequency but different phase inducing image current simultaneously in each of the 

detection plates and thus canceling each other out.
[47, 55]

  To obtain a detectable signal, the 

ions must be excited coherently by applying a spatially uniform electric field, which 

oscillates at the cyclotron frequency of a given m/z ratio.  This field is introduced via the 
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excitation electrodes.
[47]

  Ions in resonance with the applied frequency absorb energy and 

spiral outwards to a larger cyclotron radius.  All ions with the same m/z ratio are 

coherently excited and undergo cyclotron motion as a compact “ion packet”.  In practice, 

a broadband excitation, involving a rapid frequency sweep or chirp over a relatively wide 

range of frequencies, is usually performed to allow simultaneous detection of all ions of 

interest.
[50]

  When ion packets pass near each electrode, alternating image currents are 

induced in the two opposing detection electrodes.  The image current, recorded for a 

predetermined period of time, is then amplified and digitized to generate a time-domain 

signal or transient.  This time-domain signal, which contains all the frequencies of ion 

packets in the cell, is converted to frequency-domain spectra via discrete Fourier 

transformation.  Spectral frequencies are then converted to m/z ratios by applying 

equation (4).  A schematic view of FT-ICR detection is shown in Figure 1.2. 
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Figure 1.2.  (a) Schematic diagram of ion excitation and detection inside the ICR cell.  

An rf voltage waveform containing the resonance frequency of the ion is applied to the 

pair of excitation plates.  An image current of the orbiting ion cloud is detected on the 
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pair of detection plates.  (b) The time-domain signal recorded by image current detection 

from two opposing detection electrodes.  (c) Frequency-domain signal obtained from the 

time-domain signal via fast Fourier transformation.  (d) m/z spectrum obtained by 

converting frequencies to m/z ratios.  Adapted from Marshall.
[56]

 

 

       In FT-ICR MS, the signal from ions of a given m/z ratio is linearly proportional to 

the number of ions and to the radius of the ion motion.
[47, 57]

  At least 100 charges of a 

specific m/z ratio are required to induce a measurable current.
[58]

  The resolving power is 

proportional to the acquisition period for the time-domain transient.
[47]

  The longer the 

image current is recorded, the higher resolving power the mass spectrum has.  However, 

the time-domain transient duration is in turn limited by magnetic and electric field 

imperfection, ion-neutral collisions, and ion-ion interactions.
[59-62]

  Inherently, ion 

detection in FT-ICR MS is non-destructive and a wide m/z range can be detected 

simultaneously. 

1.2.3 FT-ICR Instrumentation 

       Schematic diagrams of our two 7 Tesla Fourier transform ion cyclotron resonance mass 

spectrometers (Bruker Daltonics, Billerica, MA) are shown in Figure 1.3.  The Apex 

instrument incorporates an electrospray ion source, dual ion funnels, an external 

quadrupole (Q), a hexapole collision cell, high voltage ion transfer optics, and the ICR 

cell located in the homogeneous region of a magnetic field.  Electrospray ionization (ESI) 

is the most commonly used ionization technique coupled with FT-ICR MS for 

biomolecule analysis
[63, 64]

 and its principles are described in detail in Section 1.3.  The 

dual stage ion funnels located after the ESI source improve ion transmission and 

therefore increase sensitivity.
[65, 66]

  They are comprised of a series of ring electrodes with 

applied RF fields and a gradient DC potential, resulting in effective focusing and 
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transmission of ions from regions of high pressure to low pressure.  The quadrupole can 

act as a mass filter which allows mass selection of precursor ions.  The following 

hexapole collision cell is used for mass-selective ion accumulation,
[67]

 or to perform 

external CAD (see Section 1.4.1).  A series of ion transfer optics positioned after the 

collision cell is necessary to overcome the magnetic mirror effect and to transport ions 

into the ICR cell.
[68]

  The mass analyzer is an infinity cell, which has a common 

cylindrical geometry design with equipotential-line-segmented trapping plates.  An 

indirectly heated hollow cathode (HeatWave, Watsonville, CA),
[69]

 mounted on the rear 

side of the ICR cell, provides electrons for ion-electron reactions such as ECD and 

negative ion ECD (niECD; see Section 1.4.3).  A 10.6 µm CO2 IR laser (Synrad, 

Mukilteo, WA) is used for infrared multiphoton dissociation (IRMPD).  The SolariX 

instrument shares a similar design with Apex, except that the high voltage ion transfer 

optics is replaced with a transfer hexapole, accounting for an order of magnitude increase 

in sensitivity.  A chemical ionization (CI) source is also coupled to the SolariX instrument 

after the dual ion funnels, to produce radical reagents for ETD, negative ETD (NETD) or 

proton transfer reaction (PTR) events. 
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Figure 1.3.  Schematic diagrams (top, Bruker Apex; bottom, Bruker Solarix) of 7 T Q-

FT-ICR mass spectrometers in our lab.  The instruments are equipped with an ESI source, 

dual stage ion funnels, a quadrupole mass filter, a hexapole collision cell for CAD, and a 

cylindrical infinity ICR cell as mass analyzer. 

 

1.3 Electrospray Ionization (ESI) 

       Ionization of the analyte is the first step in any mass spectrometric analysis.  It is the 

advent of “soft” ionization techniques, in particular electrospray ionization (ESI)
[70, 71]

 

and matrix-assisted laser desorption/ionization (MALDI),
[72]

 that made mass 

spectrometry the preferred method in proteomics applications.  These soft ionization 

methods allow for the ionization of large non-volatile biomolecules in their intact form.  

In this thesis, ESI is used exclusively.  During ESI, samples are typically prepared in an 
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easily evaporated solvent, such as a mixture of water and volatile organic solvent, with a 

small amount of acid or base to promote protonation or deprotonation, respectively.  As 

shown in Figure 1.4, the sample solution is pushed through a capillary needle to which a 

high electric potential (3-6 kV) is applied.  Depending on the polarity of the electric field, 

either cations or anions will accumulate at the tip of the needle.  Due to the Coulomb 

repulsion between the ions, and the pull of the electric field, the analyte solution 

overcomes the surface tension and forms a Taylor cone
[73]

 that emits a spray of charged 

droplets.  Hot drying gas or a heated mass spectrometer inlet is often used to promote 

solvent evaporation from the droplets.  As desolvation of the droplets is continuing, 

droplet radii decrease and the charge density increases.  When the radius of a droplet 

reaches the Rayleigh limit,
[74-76]

 the Coulomb repulsion exceeds the surface tension and 

leads to Coulomb fission, releasing smaller offspring droplets.  The repetitive Coulomb 

fission process eventually results in the molecular ions containing either a single charge 

or multiple charges ready for MS analysis. 
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Figure 1.4.  A diagram of electrospray ionization (positive ion mode used as an example).  

See more information at  

http://www.magnet.fsu.edu/education/tutorials/tools/ionization_esi.html 

 

       The final generation of desolvated ions from droplets in ESI is not yet fully resolved.  

There are two major theories.  Iribarne and Thomson proposed the ion evaporation model 

(IEM),
[77]

 which states that prior to complete desolvation, the field strength at the droplet 

surface becomes large enough to eject ions directly from the droplet surface into the gas 

phase.  The charged residue model (CRM)
[78, 79]

 introduced by Dole and coworkers 

suggests that droplets undergo successive cycles of solvent evaporation and Coulomb 

fission at the Rayleigh limit until a single residual analyte ion is left.  Complete 

evaporation of the solvent finally yields the analyte with the charges that the final droplet 

carried.  Generally, it is believed that small ions are produced through IEM
[80, 81]

 whereas 

larger ions, such as globular proteins, are formed by CRM.
[82, 83]

  More recently, a chain 

ejection model (CEM) has been proposed for unfolded proteins by Konermann and co-
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workers.
[84, 85]

  Upon unfolding, proteins become more hydrophobic and migrate to the 

droplet surface.  One chain terminus then gets expelled into the vapor phase, followed by 

stepwise sequential ejection of the remaining protein.  A schematic diagram illustrating 

these three mechanisms is shown in Figure 1.5.   

 
Figure 1.5.  A schematic representation of the possible pathways for ion formation from a 

charged liquid droplet.  This figure is reproduced from Konermann with permission.
[86]

  

(a) IEM: small ion ejection from a charged nanodroplet.  (b) CRM: release of a globular 

protein into the gas phase.  (c) CEM: ejection of an unfolded protein.  

 

       One characteristic of ESI is that it can produce multiply charged ions, effectively 

extending the mass range of mass analyzers and making detection of large molecules 
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possible with most mass analyzers.  Multiple charging is particularly beneficial in FT-

ICR instruments where generated image current is directly proportional to charge state 

and higher charge states can enhance the signal-to-noise ratio.
[87]

  Furthermore, resolving 

power, mass accuracy and limits of detection in FT-ICR MS are all improved in the low 

m/z region.
[47]

  In addition, certain MS/MS techniques such as ECD (Section 1.4.3) and 

electron detachment dissociation (EDD, Section 1.4.5) require multiply charged precursor 

ions.  Contrary to ESI, MALDI typically produces singly-charged ions.  

1.4 Tandem Mass Spectrometry (MS/MS or MS
n
) 

       Because soft ionization techniques such as ESI primarily yield peptide or protein 

ions with little or no fragmentation in the source, subsequent tandem mass spectrometric 

activation is usually required to provide additional information regarding the primary 

structure of the analytes.  In tandem mass spectrometry (MS/MS or MS
n
),

[51, 88]
 ions of a 

selected m/z ratio (precursor ions) are isolated and dissociated by different ion activation 

techniques to generate fragment ions whose m/z values are then measured.  Based on the 

masses of the fragment ions, more detailed structural information of the precursor ions, 

such as peptide sequence information, can be deduced.  Tandem MS experiments can be 

performed tandem in space, such as in triple quadrupole instruments, or in time, such as 

in FT-ICR mass spectrometers.   

       Effective ion activation is essential in MS/MS experiment, and ultimately defines 

what types of products are produced.
[9, 22, 89, 90]

  Activation can be achieved in various 

ways: via collisions with gases or surfaces, absorption of IR or UV photons, or activation 

by ion-electron reactions.  For confident sequencing of interrogated peptides, the ideal 

activation method should cleave between every backbone position to produce a 
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homologous series of peptide fragment ions that differ in mass by one amino acid.  

Scheme 1.1 illustrates the common types of peptide fragment ions observed from 

different activation techniques, based on the nomenclature proposed by Roepstorff and 

Fohlman.
[91]

  The success of a proteomics experiment often depends on the choice of ion 

activation technique and several of these techniques are described in detail below.   

 
Scheme 1.1.  Nomenclature for peptide/protein fragment ions in tandem mass 

spectrometry.  Adapted from Roepstorff and Fohlman.
[91]

 

 

MS/MS in Positive Ion Mode 

       The vast majority of MS/MS research, both experimental and fundamental, concerns 

positively charged analytes.  Ion activation methods for protonated species are well-

established for the determination of peptide/protein identity and sequence.
[92, 93]

  This 

widespread use of positive ion mode is a result of standard “bottom-up” protocols 

involving the use of trypsin as an enzyme, which yields peptides with at least two basic 

(protonation) sites (i.e., N-terminus and arginine or lysine at C-terminus).  In addition, 
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conventional LC-MS/MS-based peptide analysis in high-throughput proteomic analysis is 

conducted using acidic mobile phases, which facilitate ionization in positive ion mode.   

1.4.1 Positive Ion Mode CAD 

       Collision-activated dissociation in positive ion mode remains the most prevalent 

method used to dissociate peptide ions for subsequent sequence analysis.
[94]

  During CAD, 

a precursor ion population undergoes inelastic collisions with inert gases such as argon, 

helium or nitrogen, resulting in energy transfer and ultimately internal excitation of the 

precursor ion, as shown in Scheme 1.2.
[95, 96]

  CAD is typically divided into two energy 

regimes: high-energy CAD (kiloeV range) and low-energy CAD (1-100 eV range).  High-

energy CAD typically occurs in sector and TOF instruments and ion excitation is mainly 

electronic,
[97]

 whereas low-energy CAD is mostly observed in multipoles and trapping 

devices, such as ion traps and FT-ICR instruments and excitation is generally 

vibrational.
[98]

  In this thesis, only low-energy CAD is applied and the acronym “CAD” 

refers to low-energy CAD.   

 

 

       Low-energy CAD is considered a “slow-heating” fragmentation method.  Ion 

activation is achieved through multiple collisions, each depositing a small amount of 

energy and causing the internal energy of the precursor ion to increase progressively.  

This energy is distributed throughout the ion via intramolecular vibrational-energy 

redistribution (IVR) until the threshold of dissociation is reached.
[90, 99]

  Thus, CAD tends 

[M + nH]
n+ 

+ collision→[M + nH]
n+

*→fragments 

Scheme 1.2.  Fragmentation pathway in positive CAD.  M denotes the neutral 

precursor ion, H denotes a proton, n denotes the number of protons, and the asterisk 

denotes excitation. 
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to cleave the weakest bonds within the molecule and the product ions are formed through 

the lowest energy pathways.
[100]

  In a gas-phase peptide ion, the preferred sites of 

cleavage are the amide (C-N) bonds of the peptide backbone, resulting in formation of b 

ions from the N-terminus and y-type fragments from the C-terminus (Scheme 1.1).
[91]

  

Low-energy CAD can be further divided into “beam-type” and “ion trap-type”.  Beam-

type CAD employs an electric field to accelerate the precursor ions and is typically 

performed in a triple quadrupole or hydrid quadrupole/TOF configuration.  On our hybrid 

FT-ICR mass spectrometers, it is achieved in the hexapole located after the quadrupole.  

In ion trap-type CAD, kinetic energy of precursor ions is raised by resonant excitation.  

This type of fragmentation is also available in ICR-cells via ICR-sustained off-resonance 

irradiation (SORI) CAD, in which selected ions are excited by a slightly off-resonance 

waveform.
[101]

  Generally, ion trap-type CAD involves lower energy per collision and 

thus occurs over much longer timescales than beam-type CAD. 

       The generally accepted fragmentation mechanism for peptide CAD is the “mobile 

proton” model.
[92, 102-104]

  According to this model, protons are initially located at basic 

sites, such as basic side chains or the N-terminus of peptides, and are internally solvated 

by amide oxygens or nitrogens.  Following activation, the proton becomes “mobile” and 

migrates from the basic sites to the solvation sites.  Protonation of the amide nitrogen 

weakens the amide bond and increases the electrophilicity of the adjacent carbonyl, 

which is then subjected to nucleophilic attack by either the neighboring amide oxygen 

(the oxazolone pathway)
[105]

 or the nitrogen (the diketopiperazine pathway).
[106]

  Random 

dissociation of the amide linkages along the peptide backbone allows interpretation of the 

amino acid sequence.  However, enhanced cleavages can occur near certain amino acids, 
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such as N-terminal to proline, C-terminal to histidine and C-terminal to acidic residues 

when no mobile proton is available,
[103, 107, 108]

 and suppress other backbone fragments 

from forming.  

       Despite its wide implementation, one major limitation of CAD is its poor 

applicability in PTM analysis.  Many PTMs are more labile than the backbone amide 

bond and are readily lost upon collisional activation, thus rendering localization of their 

site of attachment a challenging task.
[109]

  Additionally, when a labile group such as a 

phosphate group is present in a peptide or protein, the CAD spectrum is often dominated 

by loss of the PTM.  This dissociation channel preempts peptide backbone bond 

cleavages, resulting in poor sequence coverage.  Furthermore, structural scrambling can 

occur in CAD experiments, producing misleading structural information.  For example, 

Palumbo and Reid showed that, in low-energy (i.e., ion-trap type) CAD, a phosphate 

group can migrate to a different site in the peptide in a rearrangement reaction,
[110]

 

causing ambiguous site assignments.  Other reports state that this phenomenon is not 

prevalent in typical data-dependent liquid chromatography (LC)/CAD/MS/MS 

analysis
[111, 112]

 but such analyses still suffer from preferential PTM loss. 

1.4.2 IRMPD 

       In infrared multiphoton dissociation ,
[113]

 precursor ions are irradiated with an IR 

laser beam and vibrationally excited by absorbing multiple photons.  IRMPD is well 

suited for ion traps
[114]

 and FT-ICR instruments,
[69, 115]

 which allow sufficient interaction 

time between ions and photons.  The most frequently used IR laser is a CO2 laser 

operating at 10.6 µm,
[116, 117]

 although tunable CO2 laser can also be implemented.
[118, 119]

  

Because the energy transferred by each photon is around 0.1 eV,
[114]

 absorption of 
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hundreds or even thousands of IR photons by the precursor ion is required before 

effective activation and fragmentation.  Thus, IRMPD is another type of slow-heating 

technique and produces peptide fragment ions (b- and y-type) similar to CAD.  One 

advantage of IRMPD over CAD in an FT-ICR instrument is that no collision gas is 

introduced into ICR cell during IRMPD and therefore the vacuum is not deteriorated, 

which is essential for high resolving power in FT-ICR.  

1.4.3 ECD and ETD 

       Different from the vibrational techniques discussed above, electron capture 

dissociation 
[36, 120-124]

 and electron transfer dissociation [34, 125-128]
 activate peptide ions 

through ion-electron or ion-ion reactions.  In ECD, multiply charged precursor cations are 

irradiated with low-energy electrons (<1 eV), resulting in charge-reduced radicals from 

electron capture.  This intermediate undergoes rapid radical-driven dissociation into 

unique product ions.  For peptides, c- and z-type backbone fragments are generated in 

ECD by cleaving the backbone N-Cα bonds rather than amide bonds.  Disulfide bonds, 

which are fairly stable under other ion activation conditions, are also preferentially 

cleaved by ECD.
[33]

  ECD is primarily implemented in FT-ICR mass analyzers to allow 

trapping of both electrons and precursor cations.  The discovery of ETD by Hunt and co-

workers made electron-based dissociation available in relatively inexpensive and 

radiofrequency (rf)-based ion trap instruments by using a different source of electrons.
[34]

  

In ETD, instead of free electrons, anion electron carriers are used to transfer electrons to 

multiply charged cationic precursors, producing odd-electron charge-reduced species and 

subsequent product ions similar to those in ECD.  Anion reagents frequently used in ETD 

are anthracene,
[34]

 fluoranthene
[129]

 and azobenzene
[130]

 as they have low electron 
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affinities, thus allowing efficient electron transfer to the precursor peptide ion.  The 

overall ECD and ETD reaction schemes are illustrated in Scheme 1.3.   

 

 

       The exact mechanism of ECD is still a subject of debate.
[33, 131-137]

  According to the 

“hot hydrogen” or “Cornell” mechanism conceived by McLafferty and coworkers,
[33]

 

electron capture occurs at a protonated site, e.g., a lysine ε-ammonium group, an arginine 

guanidinium group, a histidine imidazolium ring, or an N-terminal ammonium group, 

solvated onto one or several backbone carbonyls.  Neutralization of the charged site 

releases a hot hydrogen atom that is transferred to the nearby backbone carbonyl, yielding 

an aminoketyl radical.  This intermediate rapidly dissociates via N–Cα bond cleavage to 

form N-terminal c-type product ions and C-terminal z-type product ions (Scheme 1.4).  

An alternative theory (the “Utah-Washington” or amide superbase” mechanism) was 

proposed by Turecek and co-workers and by Simons and co-workers.
[135, 136, 138]

  In this 

model, the electron is directly captured into the π* orbital of a backbone amide, 

producing an excited amide group with high basicity (superbase) that can abstract a 

proton from a nearby chemical group.  Such direct electron attachment can be 

thermodynamically facilitated by positive charges located in spatial proximity (Coulomb 

stabilization).  The resulting aminoketyl radical undergoes facile N-Cα bond cleavage 

with very low energy barrier, leading to the formation of c- and z-ions, as illustrated in 

Scheme 1.5.  It is further suggested that both mechanisms could be valid, depending on 

[M + nH]
n+

 + e 
– 

(<1 eV)→[M + nH]
(n - 1) +•

→fragments 

Scheme 1.3. Fragmentation routes in ECD (top) and ETD (bottom).  For ECD and 

ETD, n must be greater than two.  In ETD, A denotes the electron carrier. 

[M + nH]
n+

 + A
–•

 →[M + nH]
(n - 1) +•

 + A →fragments 
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the nature of charge carriers (e.g., lysine versus arginine).
[136, 139]

  Zubarev and co-

workers have also suggested that electron capture may occur at a neutral intramolecular 

hydrogen bond with subsequent hydrogen transfer to the backbone carbonyl.
[137]

  There is 

evidence that the fragmentation mechanism of ETD is similar to ECD, although 

thermodynamically an additional barrier is present as an electron has to leave the radical 

anion.
[140, 141]

 

 
Scheme 1.4.  The hot hydrogen mechanism for ECD of peptides.  Scheme adapted from 

references.
[139, 142]
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Scheme 1.5.  The amide superbase mechanism for ECD of peptides.  Reproduced from a 

reference.
[139]

 

 

       ECD/ETD are highly complementary to the slow heating methods such as CAD.  

The fundamentally distinct fragmentation mechanisms associated with these techniques 

result in different backbone bond cleavages, i.e., c/z-type product ions for ECD/ETD, b/y-

type ions for CAD/IRMPD, as well as different fragmentation preferences.  It is often 

advantageous to perform ECD and CAD as a duet to take advantage of this 

complementarity of the two methods.  Moreover, combination of MS/MS data from both 

ECD and CAD of the same sample increases the confidence of peak assignment by 

utilizing the so-called “golden” product pairs with characteristic mass differences, and 

consequently leads to more reliable protein identifications in both database searching 

methods and de novo sequencing.
[143]

  In addition, higher sequence coverage is generally 

obtained from ECD/ETD alone versus CAD alone,
[144, 145]

 presumably because ECD/ETD 

can cleave peptide backbone bonds more randomly.  Another major attraction of 
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ECD/ETD for peptide/protein analysis is their ability to generate extensive peptide 

backbone bond cleavages while leaving the PTMs intact,[146-150] which is particularly 

difficult for the very labile phosphorylation, glycosylation, and sulfation.  Thus, 

ECD/ETD have developed into key techniques for PTM identification and localization. 

       One disadvantage of ECD/ETD is that they are only applicable to positively charged 

precursor ions with at least two charges, because capture of an electron reduces total 

charge by one and neutrals are not detectable in mass spectrometers.  Moreover, 

ECD/ETD efficiency is charge-state dependent, favoring higher charge states.
[128, 151-153]

 

MS/MS in Negative Ion Mode  

       Although much less information is available concerning the fragmentation of 

deprotonated peptides, there are compelling reasons to pursue MS/MS techniques in 

negative ion mode.  One reason for less than 100% sequence coverage in detecting 

digested peptides by the bottom-up mass spectrometry approach is the use of only 

positive polarity.  However, 45% of all human protein sequences and most common 

PTMs, such as phosphorylation, sulfation, and sialylated glycosylation, are acidic.  They 

can readily form anions but produce no or little signal in the positive mode.  This is 

especially true in mixtures where competition for charge results in suppression of less 

basic species.  Thus, the extension of analytical strategies to include negative ion mode 

should offer improved sensitivity and amino acid sequence coverage of proteins.  Further, 

some important PTMs, including phosphorylation and sulfation, are much more labile in 

cations than in anions, and can get easily lost during ionization and ion activation in 

positive ion mode.[154, 155]  Moreover, negatively charged peptide ions can undergo unique 

dissociation processes that provide additional information for peptide identification and 
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sequencing.  Therefore, in principle, negative ion analysis should be able to provide 

complementary structural information, especially for acidic analytes.   

1.4.4 Negative Ion Mode CAD  

       The fragmentation pattern of peptide anions in CAD is quite different from that of 

their positive ion counterparts.  Thus, complementary product ions and amino acid 

sequence information are often obtained in negative ion mode.
[156]

  In addition, CAD of 

deprotonated phosphopeptides has been found to reveal information regarding the site 

specific location of the phosphorylation when consecutive threonine and serine residues 

are present.
[157]

  However, compared with positive ion CAD, CAD of negatively charged 

species is typically more complex, less predictable, and the fragmentation behaviors are 

less understood.
[158]

  Complex product ion patterns, corresponding to backbone a, b, c, x, 

y, z ions, side chain losses as well as internal ion fragments can all be observed in 

negative ion CAD, which often requires extensive manual interpretation of the tandem 

mass spectra.
[156, 159-161]

  The simplest fragmentation pathways for peptide anions involve 

cleavages of the amide backbone unit, producing fragments similar to b- and y-type ions 

in corresponding positive ion spectra.
[158]

  C-terminal y ions which probably contain the 

negative charge at the C-terminus are usually more common and more abundant than the 

N-terminal b ions.  In addition, the presence of certain residues, e.g., Asp, Asn, Glu, and 

Gln, significantly affects dissociation by cleaving the N-Cα backbone bond of these 

residues accompanied by abundant neutral loss of H2O (Asp/Glu) and NH3 (Asn/Gln).
[162]

  

Ser and Thr residues also undergo pronounced cleavages of their side chains, i.e., 

characteristic loss of CH2O from Ser and MeCHO from Thr, which often dominate the 

spectra.
[156]

  These prominent neutral losses from amino acid side chains lead to 
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insufficient peptide sequence information.  In fact, sixteen out of twenty natural amino 

acids exhibit some type of neutral loss in negative ion mode CAD.
[158]

  For acidic 

peptides, the likely deprotonation sites are acidic residues and the terminal carboxylic 

acid.  Fragment ions are preferentially formed from cleavage adjacent to these acidic 

residues.  Neutral loss (e.g., NH3, CH3, H2O, and CO2) is also prevalent from both the 

parent ions and fragment ions.
[159]

  Overall, despite the increasing understanding of the 

dissociation pattern in negative ion CAD of peptides, spectra are generally complicated 

by abundant side-chain losses, neutral losses from the parent ion, and internal ion 

fragments.  

1.4.5  EDD 

       As an electron-mediated technique operating in negative ion mode, electron 

detachment dissociation was first discovered by Zubarev and co-workers in 2001.
[163]

  In 

EDD, instead of capturing a low-energy electron, negatively charged precursor ions are 

bombarded with higher-energy electrons (10-30 eV), resulting in electron 

ejection/detachment from the precursor ions and formation of charge-reduced but 

oxidized radical anions.  For peptides, the electron-deficient radical intermediates mainly 

undergo Cα-C bond cleavages leading to the formation of a-, and x-ions as well as neutral 

loss (e.g., CO2 loss).
[163, 164]

  The EDD fragmentation scheme is shown in Scheme 1.6.  

EDD is useful for the analysis of acidic peptides, including phospho-, sulfopeptides, and 

peptides containing multiple acidic residues.  Similar to ECD/ETD, EDD has shown the 

ability to preserve labile PTMs, such as phosphorylation and sulfation.
[163, 165-167]

  For 

instance, the site of sulfation was deduced from the EDD spectrum of the sulfated peptide 

caerulein.
[163]

  Despite the value of EDD, it is not a very efficient fragmentation process 
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due to its limited reaction cross section between negatively charged peptides and 

electrons.  Consequently, accumulation of tens or hundreds of summed mass spectra is 

often required to obtain satisfactory mass spectral quality.
[167-169]

  In addition, multiply 

negatively charged ions are a prerequisite in EDD because it is initiated by a charge-

reduction process.   

 

 

1.4.6 NETD 

       Negative electron transfer dissociation is the ion-ion analog of EDD.  In NETD, an 

electron is transferred from the multiply deprotonated precursor ion to a radical cation 

with high electron affinity, as demonstrated in Scheme 1.7.
[170]

  The resulting charge-

reduced precursor radical fragments into predominantly EDD-like a• and x ions.  In the 

initial NETD work, xenon radical cations (Xe
+•

) were employed to abstract electrons and 

promote radical formation for subsequent dissociation.  However, this reaction results in 

PTM loss and neutral loss of CO2 which adds complexity to the spectra.
[170]

  More recent 

work by Polfer and co-workers with alternative NETD reagents (fluoranthene) showed 

that the labile phosphorylation could be retained.
[171]

  

 

 

Scheme 1.7.  Fragmentation pathway in NETD.  A denotes the radical cation.  

[M - nH]
n-

 + A
+•

 →[M - nH]
(n - 1) -•

 + A →fragments 

Scheme 1.6.  Fragmentation scheme in EDD.  Similar to ECD/ETD, n here must be 

greater than 2.  

[M - nH]
n-

 + e 
– 

(>10 eV)→[M - nH]
(n - 1) -•*

 + 2e 
–
→fragments 
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1.4.7 niECD 

       Negative ion electron capture dissociation is a novel negative ion mode MS/MS 

technique discovered in our lab and is also the focus of this dissertation.  Detailed 

discussions of its discovery, fundamental studies, and applications are presented in the 

following chapters.  In a nutshell, it is a fragmentation technique for anions analogous to 

ECD for cations.  In niECD, electrons with a narrow energy range (3.5–6.5 eV) can be 

captured by a negatively charged peptide ion to form a charge-increased radical that 

fragments at N—Cα bonds, producing c′ and z• peptide ions.
[172]

  The overall 

fragmentation scheme in niECD can be written as follows (Scheme 1.8):   

 

 

       niECD is not only an unusual chemical reaction, but it also holds promise for 

analytical benefits, including the following: the fragmentation in niECD is similar to 

conventional positive ion mode ECD (and ETD) and complementary to the traditionally 

utilized vibrational technique CAD, thus generating significant structural information; 

labile but crucial PTMs like phosphorylation, are preserved within the fragments, 

allowing their localization; more importantly, niECD is achieved in negative ion mode 

where acidic molecules show improved ionization efficiency and less ion suppression; 

furthermore, the increased charge state generated in niECD improves the sensitivity in 

image-current-based detection (e.g., in FT-ICR MS) where signal is proportional to 

charge state.   

[M - nH]
n-

 + e 
– 

(3.5 – 6.5 eV)→[M - nH]
(n + 1) -•

→fragments 

Scheme 1.8.  Fragmentation route in niECD.  For niECD, n can be one or more.  
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1.5 Dissertation Overview 

       The research presented in this dissertation explores the development, mechanism and 

applicability of the new electron-based fragmentation technique in negative ion mode–

niECD.  The first (current) chapter provides a broad overview of mass spectrometry-

based proteomics, FT-ICR MS used throughout this thesis, the soft ionization technique 

frequently utilized in biomolecule analysis ESI, and a variety of MS/MS techniques for 

structural characterization of peptides and proteins in both positive and negative ion 

modes.  Chapter 2 discusses the discovery of niECD: peptide anions can capture an 

electron within a certain energy range, resulting in charge-increased odd-electron species 

that undergo ECD-like fragmentation.  In this chapter, which has been published in the 

Journal of the American Chemical Society (2011, volume 133, page 16790), 

phosphorylated and sulfated peptides were investigated by niECD in which extensive c- 

and z-type peptide backbone fragments with retention of the labile phosphorylation and 

sulfation are observed.  Following the discovery of this exciting new technique, the 

curiosity of how it works inspired me to keep investigating the mechanism behind it.  The 

striking similarity of niECD results to positive ion mode ECD led to the hypothesis that 

gas-phase zwitterionic structures might play a role in niECD.  In Chapter 3, the 

mechanism of niECD is extensively investigated by modifying peptides and 

carbohydrates with different derivatization techniques to either prevent or promote gas-

phase zwitterion formation.  To systematically validate this mechanism, five sets of 

peptides with varying number and positions of charges were also synthesized.  niECD 

efficiency was calculated and compared between different sets of peptides.  In Chapters 4 

and 5, the applicability of niECD is further expanded to two additional important protein 
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PTMs: disulfide linkage and glycosylation.  In Chapter 4, peptide pairs bound by either 

natural disulfide bridges or disulfide-containing cross-linkers were characterized by 

niECD.  Preferential disulfide cleavage was observed in niECD, which suggests that it 

proceeds through similar pathways that are involved in regular ECD.  Chapter 5 

investigates N-linked and O-linked glycopeptides with both neutral and acidic glycans.  

Similar to positive mode ECD/ETD, niECD of glycopeptide cleaves primarily at the 

peptide backbone bonds while leaving the labile glycan intact, which is essential in site-

specific analysis of glycoproteins.  niECD provides peptide sequence information as well 

as site information of glycan occupancy simultaneously for glycopeptides.  In the end, a 

summary of all results in this dissertation is presented in Chapter 6, together with future 

directions.  Chapters 3-5 are written in the format of journal articles that will be 

submitted for publication.   
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Chapter 2 

 

 

Discovery of Negative Ion Electron Capture 

Dissociation (niECD) and Its Application towards 

Phospho- and Sulfopeptides 

 

 

 

 

2.1 Introduction 

       Gas-phase ion-electron and ion-ion reactions continue to increase their impact as ion 

activation methods in tandem mass spectrometry (MS/MS).  Examples include electron 

capture dissociation (ECD),
[1,2]

 electron transfer dissociation (ETD),
[3]

 electron 

detachment dissociation (EDD),
[4-7]

 negative electron transfer dissociation (NETD),
[8, 9]

 

electron induced dissociation,
[10-12]

 and electron ionization dissociation (EID
[13]

; not to be 

confused with electron induced dissociation that shares the same acronym).  The most 

prominent of these electron-mediated techniques are ECD and the fundamentally similar 

ETD, which are powerful alternatives to conventional collision activated dissociation 
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(CAD).  Major advantages of ECD and ETD include that fragmentation patterns are 

complementary to those observed in positive ion mode CAD, frequently providing more 

extensive peptide sequence information and, importantly, not involving loss of post-

translational modifications (PTMs).  Labile PTMs, such as phosphorylation
[14, 15]

 and 

glycosylation,
[16, 17]

 are preserved upon backbone product ions during ECD/ETD, 

allowing PTM sites to be determined.  By contrast, PTM characterization is often 

challenging with the slow-heating technique CAD.  In CAD, labile PTMs are 

preferentially cleaved, rendering localization of their site of attachment difficult.
[18]

  More 

recently, electron ionization and subsequent extensive dissociation (electron ionization 

dissociation, EID) has been reported following irradiation of [M + nH]
n+

 (n1) peptide 

cations with fast electrons (at least 10 eV higher than the cation ionization energy, i.e., 

>20 eV).
[13]

  Such irradiation causes double ionization to [M + nH]
(n + 2)+

 followed by 

electron capture to form electronically excited [M + nH]
(n + 1)+•*

ions, which dissociate via 

both side-chain losses and backbone fragmentation. 

       Despite the significant developments of various activation methods for biomolecular 

ions (also including photodissociation
[19-23]

), the vast majority of MS/MS research deals 

with cationic analytes.  ECD, ETD, and EID all involve positively-charged precursor ions 

with at least two charges for ECD and ETD because capture/transfer of an electron 

reduces total charge by one and mass spectrometers cannot detect neutrals.  Furthermore, 

the efficiency of ECD/ETD is dependent on the charge state and precursor ions with high 

charge states are more favorable.
[24-27]

  However, generation of multiply-charged cations 

is challenging for acidic analytes, including peptides with important PTMs such as 

phosphorylation and sulfation, particularly from mixtures for which competition for 
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charge results in suppression of less basic species.  Moreover, some PTMs, such as 

sulfation, are much more labile in cations than in anions and sulfonate groups are readily 

lost in both ECD
[28, 29]

 and ETD.
[29]

  Thus, alternative MS/MS techniques operating in 

negative ion mode are desired.  The limited use of negative ion MS/MS is due to 

complications with anion dissociation chemistry: CAD of peptide anions typically results 

in PTM loss,
[30, 31]

 similar to cation CAD.  Furthermore, backbone fragmentation in 

negative ion CAD is more complex and less predictable than in positive ion mode,
[32]

 

frequently yielding little analytically useful information.  Electron-based techniques 

operating in negative ion mode include EDD and NETD.  The former technique has low 

fragmentation efficiency
[7]

 and dominant structurally non-informative CO2 loss for 

peptide dissociation.  The latter technique can result in PTM loss due to the energy 

release from charge reduction.
[8]

  Both EDD and NETD yield backbone a
•
- and x-type 

product ions but also involve structurally uninformative neutral losses as major 

fragmentation pathways.  More recent work by Huzarska and Polfer with different NETD 

reagents (fluoranthene) shows that PTMs can be preserved.
[9]

  In addition, both 

techniques require multiply-charged anions as precursor ions.  Meta-stable atom-

activated dissociation (MAD),
[33, 34]

 also believed to involve radical-driven dissociation, 

was recently shown to yield complementary fragmentation to both CAD, ECD, and EDD 

with little PTM loss for peptide anions.
[35]

  All these factors indicate that developing an 

alternative MS/MS technique for anions analogous to ECD/ETD for cations is highly 

desirable. 

       Intuitively, electron capture by negatively-charged gaseous peptide ions appears 

unlikely due to Coulomb repulsion.  However, previous work has shown attachment of 2-
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3 eV electrons from a heated filament to singly-charged fullerene anions to form dianions 

in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.
[36]

  Electron 

transfer to unmodified
[37]

 and fluorinated
[38]

 fullerene anions has also been observed in 

high-energy (keV) collisions with atomic and molecular targets.  We argued that such a 

phenomenon may also be feasible for peptide anions at a certain mass-to-charge (m/z) 

ratio and an appropriate electron energy.  In order to test this hypothesis, coumarin-

tagged peptides were first investigated in our lab, based on work by O’Connor and co-

workers who showed that coumarin tags act as radical traps in conventional positive ion 

mode ECD.
[39]

  After careful optimization of the electron energy, we found that abundant 

charge-increased radical species, [M + coumarin - H]
2-•

, generated from capture of 

electrons by singly-deprotonated coumarin-tagged peptides, were observed within a 

rather narrow energy range (3.5–6.5 eV).  Electron capture occurred most efficiently 

upon irradiation with 4.5 eV electrons (corresponding to a cathode bias voltage of 6 

V).
[40]

  These preliminary data demonstrate the feasibility of electron capture by peptide 

anions.  However, the generated doubly-charged radical anions appeared stable to further 

dissociation, consistent with the previously observed behavior of coumarin-tagged 

peptides
[39]

 and peptides containing other electron predators
[41, 42]

 in conventional ECD, 

and with the previously observed fullerene dianions.
[36]

  In addition, further activation 

(MS
3
) of the generated [M + coumarin – H]

2-•
 radical species through 10.6 µm infrared 

multiphoton dissociation (IRMPD)
[43]

 mainly resulted in ejection of small structurally 

uninformative neutrals.
[40] 

       In this Chapter, following the discovery that 4.5 eV electrons can be captured by 

coumarin-tagged peptide anions, unmodified peptides are investigated with electron 
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irradiation in this range.  Without a coumarin radical trap, the radical generated from 

electron capture is unstable and thus may undergo further dissociation, providing more 

structural information compared with the coumarin-tagged peptides.  We were eager to 

elucidate the fragmentation chemistry associated with this interesting reaction.  

Particularly, phospho- and sulfopeptide analysis is of great interest.  Protein 

phosphorylation is probably the most extensively studied protein PTM in the literature.  It 

is one of the most widespread regulatory mechanisms found in cells and its reversible and 

transient nature allows signal transduction pathways to carry out diverse cellular 

functions.
[44, 45]

  Typically, protein phosphorylation occurs on serine, threonine, or 

tyrosine side chains and corresponds to covalent attachment of a phosphate group to the 

protein via protein kinases.  For sulfation, tyrosine O-sulfation is the most frequently 

observed within proteins.  It has been implicated in protein-protein interactions of a vast 

number of membrane- and secreted proteins.
[46]

  O-sulfation is also an important PTM to 

characterize as its biological significance is less known.  For a number of reasons, 

characterization of phosphorylation and sulfation is much more complex than sole protein 

identification.  In particular, phospho- and sulfopeptides exhibit low ionization efficiency 

in positive ion mode and are subjected to severe ion suppression by unmodified peptides 

due to the negatively-charged phosphate and sulfate groups.
[47-49]

  Moreover, sulfate 

groups are highly labile in positive ion mode.
[50, 51]

  Thus, negative ion mode analysis 

holds great potential for characterization of both phospho- and sulfopeptides.  Herein, 

phospho- and sulfopeptide anions are subjected to electron irradiation to induce electron 

capture in negative ion mode.   
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2.2 Experimental 

2.2.1 Reagents 

       The following peptides were used: neuromedin B (H-GNLWATGHF-NH2), 

neurokinin B (H-DMHDFFVGLM-OH), cholecystokinin (CCK, H-DYMGWMDF-NH2), 

H-AKPSYP*P*TYK-OH (P* = hydroxyproline), eHWSYGLRPG-NH2 (e = 

pyroglutamic acid), exorphin C (H-YPISL-OH), H-RRREEEpSEEEAA-OH, H-

KRSpYEEHIP-OH, angiotensin I (H-DRVYIHPFHL-OH), H-RRApSVA-OH, H-

TSTEPQpYQPGENL-NH2, bradykinin 2-9 (H-PPGFSPFR-OH), substance P-OH (H-

RPKPQQFFGLM-OH), sulfated cholecystokinin fragment 26-33 (CCKS, H-

DsYMGWMDF-NH2), and hirudin fragment 55-65 (H-DFEEIPEEsYLQ-OH).  Most 

peptides were purchased from Sigma-Aldrich (St. Louis, MO), except H-

TSTEPQpYQPGENL-NH2 (which was from Millipore, Billerica, MA), CCKS and 

hirudin (from Advanced ChemTech, Louisville, NY).  Bovine milk α-casein was 

obtained from Sigma-Aldrich (St. Louis, MO).  Trypsin was from Promega (Madison, 

WI). 

2.2.2 Sample Preparation 

       Trypsin digestion of α-casein was performed for 12 h at 37 °C at an enzyme/substrate 

ratio of 1:50.  The tryptic peptides H-YLGYLEQLLR-OH (α-casein 106-115), H-

FALPQYLK-OH (α-casein 189-196), H-TVDMEpSTEVFTK-OH (α-casein 153-164), H-

DIGpSEpSTEDQAMEDIK-OH (α-casein 58-73), and H-VPQLEIVPNpSAEER-OH (α-

casein 121-134) were subjected to MS/MS.  Phosphopeptide enrichment
[52]

 was 

performed with ZrO2 microtips (Glygen, Columbia, MD), when necessary.  5-10 µM 
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peptide solutions were prepared in 50/50 (v/v, H2O/isopropanol) with 0.1 % triethylamine. 

2.2.3 FT-ICR Mass Spectrometry 

       Negatively-charged peptide ions were generated by external electrospray ionization 

(ESI) at 70 µL/h (Apollo II ion source, Bruker Daltonics, Billerica, MA).  All 

experiments were performed with a 7 Tesla quadrupole (Q)-FT-ICR mass spectrometer 

(APEX-Q, Bruker Daltonics) as previously described.
[6]

  All data were obtained in 

negative ion mode.  For ESI, N2 was used as both nebulizing gas (5 L/s) and drying gas 

(2.5 L/s).  The drying gas temperature was set to 200˚C.  Briefly, ions produced by ESI 

were mass-selectively externally accumulated in a hexapole for 0.2-3 s, transferred via 

high voltage ion optics, and captured in the ICR cell by dynamic trapping.  This 

accumulation sequence was looped three times to improve precursor ion abundance.  For 

MS/MS experiments, mass-selective external accumulation of negatively-charged peptide 

ions was performed.  For negative ion electron capture dissociation (niECD), mass 

selectively accumulated peptide ions were irradiated for 10-20 s (later shortened to 0.5-2 

s) with 4.5-5.5 eV electrons (corresponding to a cathode bias voltage of 6-7 V) provided 

by an indirectly heated hollow dispenser cathode.
[53]

  A lens electrode located in front of 

the hollow cathode was kept 1.5 V more positive than the cathode bias voltage.  For 

isolation of radical species produced from electron capture by negatively-charged peptide 

ions, correlated harmonic excitation fields (CHEF)
[54]

 was used inside the ICR cell.  

Collision activated dissociation was performed in an external hexapole at a collision cell 

DC offset of 20-40 V with argon as collision gas.  All mass spectra were acquired with 

XMASS software (version 6.1, Bruker Daltonics) in broadband mode from m/z 200 to 

3000 with 256K data points and summed over 10-32 scans.   
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2.2.4 Data Analysis 

       Data processing was performed with the MIDAS analysis software
[55]

.  Data were 

zero filled once, Hanning apodized, and exported to Microsoft Excel for internal 

frequency-to-mass calibration with a two-term calibration equation
[56]

.  Peaks in MS
n
 

were assigned within 10 ppm error after internal calibration.  Typically, internal 

calibration was performed with precursor ions and their electron-capture species as 

calibrants.  Product ions were not assigned unless the S/N ratio was at least 3. 

2.3 Results and Discussion 

2.3.1 Discovery of niECD 

       Figure 2.1(a) shows 4.5 eV electron irradiation of a singly-deprotonated unmodified 

peptide with the sequence AKPSYP
*
P

*
TYK (P* represents hydroxyproline).  Similar to 

the coumarin-tagged peptides described in the introduction, a charge-increased radical 

anion, [M – H]
2–•

, is observed at half the m/z ratio of the precursor ion and the zoomed-in 

view of this peak is shown in the inset of Figure 2.1(a).  However, in contrast to the 

coumarin-tagged peptides, four cʹ-type and two z
•
-type product ions (Zubarev 

nomenclature)
[57]

 from backbone N-Cα bond cleavage were also detected, strikingly 

similar to the types of fragments observed in positive ion mode ECD.  We termed this 

phenomenon negative ion electron capture dissociation (niECD).  The charge-increased 

radial species from AKPSYP
*
P

*
TYK was also isolated in the ICR cell to verify that this 

product was not an artifact at twice the ICR frequency of the precursor ion, as shown in 

Figure 2.1(b).   
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Figure 2.1.  (a) niECD (4.5 eV electrons, 20 s irradiation, 10 scans) of singly-

deprotonated underivatized peptide AKPSYP
*
P

*
TYK (P* = hydroxyproline).  c- and z-

type peptide backbone fragments were produced.  The inset shows the zoomed-in view of 

the electron capture species.  (b) The charge-increased radical ion produced from electron 

capture in (a) was isolated inside the ICR cell to confirm that it is not the second 

harmonic peak. 

 



53 

 

2.3.2 niECD of Phospho- and Sulfopeptides 

       After the discovery of this exciting new technique, we moved on to study phospho- 

and sulfopeptides because negative ion mode should be a more logical choice for 

characterization of acidic molecules.  First, phosphopeptides obtained from tryptic 

digestion of α-casein were examined.  niECD of a singly-deprotonated serine-

phosphorylated peptide is shown in Figure 2.2(a).  4.5 eV electron irradiation yielded an 

abundant ammonia-deficient charge-increased radical, [M – NH3 – H]
2-•

, as the major 

product.  Remarkably, three doubly-charged c- and z-type sequence ions were observed 

from the singly-charged precursor ion.  Many singly-charged c/z ions were also produced 

and virtually complete sequence coverage could be obtained from the niECD spectrum.  

More importantly, no phosphate or phosphoric acid loss was observed.  Retention of the 

labile modification upon the peptide backbone fragments points to the serine residue as 

the site of phosphorylation.  By contrast, such fragments were absent in CAD of the same 

singly deprotonated species.  Only two backbone y ions were observed in the CAD 

spectrum, one of which did not contain the phosphate moiety (Figure 2.2(b)).  Peptide 

sequencing as well as modification site determination was not possible based on the CAD 

fragmentation pattern. 
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Figure 2.2.  (a) niECD of an α-casein tryptic phosphopeptide.  10 s electron irradiation 

was applied towards the singly-deprotonated singly-phosphorylated peptide (4.5 eV 

electrons, 10 scans).  (b) Negative ion mode CAD (32 V collision voltage, 10 scans) of 

the same phosphopeptide.  The charge-increased products are marked in red.   

 



55 

 

       niECD of a doubly-deprotonated and doubly-phosphorylated α-casein tryptic peptide 

is shown in Figure 2.3.  For doubly-charged precursor ions, the optimum niECD electron 

energy is slightly higher than for singly-charged precursor ions; 5.5 rather than 4.5 eV 

electrons were utilized, consistent with increased Coulomb repulsion.  The fragmentation 

efficiency was also lower for doubly-charged precursor ions, however, a charge-increased 

triply-charged radical, [M – 2H]
3-•

, was observed along with four other charge-increased 

products and many doubly-charged c/z ions.  Again, phosphate or phosphoric acid loss is 

absent for this phosphopeptide.  

 

Figure 2.3.  niECD (5.5 eV electrons, 20 s irradiation, 10 scans) of a doubly-

deprotonated and doubly-phosphorylated phosphopeptide from trypsin digestion of α-

casein.  
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       Figure 2.4 shows the MS/MS spectra of a tyrosine-sulfated peptide (cholecystokinin, 

CCKS).  Sulfation is even more labile in the gas phase than phosphorylation and this 

modification is frequently lost in positive ion mode, even without ion activation.  Thus, 

negative ion mode in which sulfotyrosine is more stable and shows higher ionization 

efficiency is preferred compared with positive ion mode analysis.  EDD has shown some 

success for sulfate localization in sulfopeptides,
[4]

 however, backbone fragmentation 

competes with neutral loss of CO2 and SO3.  In niECD, extensive series of c/z backbone 

fragments were produced (Figure 2.4(a)).  No sulfonate loss occurred and virtually 

complete sequence coverage was observed.  In comparison, when subjected to negative 

mode CAD, neutral loss of the sulfonate group and additional water loss were the only 

products, leading to minimal peptide structural information (Figure 2.4(b)).   
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Figure 2.4.  (a) niECD of sulfated cholecystokinin (CCKS; 4.5 eV electrons, 20 s, 10 

scans).  (b) Negative ion mode CAD (20 V collision voltage, 10 scans) of the same 

sulfopeptide.  

 

       In addition to the examples shown above, several other phospho- and sulfopeptides 

were subjected to niECD and the corresponding spectra were compared to negative ion 

mode CAD of the same species.  These data are summarized in Table 2.1.  For all the 

phospho- and sulfopeptides studied, niECD provides primarily c- and z-type peptide 
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backbone fragments, significantly more extensive peptide sequence coverage than 

negative mode CAD, and phosphorylation and sulfation is retained.  The only 

phosphopeptide we analyzed that did not undergo niECD (or electron capture by the 

singly-deprotonated anion) had the sequence H-RRApSVA-OH.  This resistance to 

niECD is likely due to the smaller molecular weight and thus decreased favorability for 

accommodating two negative charges in the gas phase.  

 
 

Table 2.1.  Comparison of niECD and CAD for phospho- and sulfopeptide anions.  

Backbone N-Cα bond cleavages to yield cʹ/z
•
 ions are indicated with red lines and 

backbone amide bond cleavages to yield b/yʹ ions are indicated with green lines.  Dashed 

lines indicate accompanying phosphate or phosphoric acid loss.  Lack of indicated 

fragments in CAD is due to extensive neutral losses (e.g., HPO3, H3PO4, SO3, and H2O). 

 

2.3.3 niECD of Unmodified Peptides 

       In addition to phosphorylated and sulfated peptides, a number of unmodified 

peptides were also investigated by niECD.  Table 2.2 summarizes the niECD outcome of 
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these unmodified peptides.  In contrast to phospho- and sulfopeptides for which all but 

one short peptide showed extensive fragmentation in niECD, several singly-deprotonated 

unmodified peptides did not capture electrons, including the larger (>1 kDa) peptides 

cholecystokinin, neurokinin B, substance P-OH, and neuromedin B.  One common 

characteristic of these four peptides is a lack of either strongly basic or strongly acidic 

residues, or both, thus reducing the probability of gas-phase zwitterionic structures.  

Furthermore, previous work by Creese and Cooper
[58]

 and by Woods et al.
[59]

 has shown 

that gas-phase zwitterionic structures are favored for phosphopeptides,
[58, 59]

 which also 

undergo favorable niECD (Figure 2.2 and 2.3, Table 1).  These observations, along with 

the striking similarity of niECD spectra to positive ion mode ECD/ETD spectra suggest 

that zwitterionic structures may play an important role for successful niECD with 

electron capture either occurring at or being directed by the positively-charged site.
[60-62]

  

In addition, work by Vasil'ev and coworkers involving electron capture by neutral 

gaseous peptides,
[63]

 showed somewhat different product ion spectra with a larger variety 

of product ion types compared to niECD, further suggesting that charged sites may play a 

role in niECD.   
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Table 2.2.  Electron irradiation of a selection of unmodified peptides.  Contrary to 

phospho- and sulfopeptides, electron capture was not consistently observed.  e = 

pyroglutamic acid, P* = hydroxyproline. 

 

2.3.4 Optimization of niECD Conditions 

       All peptide niECD spectra shown above were acquired with irradiation times 

between 10 and 20 s.  Such long irradiation times were customary in the early days of 

ECD,
[64]

 however, they are not practical for, e.g., on-line coupling to LC and for limiting 

sample quantities.  Later on, niECD was performed at higher cathode heating current than 

previously used (1.9 vs. 1.8 A).  At the corresponding higher temperature, larger electron 

numbers are generated and remarkably faster niECD was possible.  In Figure 2.5, niECD 

of the singly-deprotonated sulfopeptide hirudin (H-DFEEIPEEsYLQ-OH) was performed 

with shorter irradiation time.  With 2 s irradiation, abundant and extensive c and z ions 

were produced, resulting in high sequence coverage (Figure 2.5(a)).  niECD efficiency 

decreased with decreased irradiation time, as shown in Figures 2.5(b) and 2.5(c).  
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However, even with irradiation time as short as 0.5 s, an acceptable niECD spectrum was 

obtained with the same sequence coverage compared to 2 s irradiation.  These irradiation 

times are shorter than or comparable to typical irradiation times in EDD, a technique that 

has already been coupled on-line with LC.
[65]

  Based on these data, we believe significant 

optimization of niECD still remains before reaching its true potential.  It is also 

interesting to note that niECD so far shows superior performance on the Apex instrument 

as compared to the SolariX instrument.  The main difference between the two instruments 

is the ion transfer optics between the external hexapole collision cell and the ICR cell 

(high voltage transfer optics vs. hexapole).  The former solution results in higher ion loss 

and also higher axial and radial kinetic energy spread.  Manipulation of precursor ion 

kinetic energy may also affect niECD performance.   
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Figure 2.5.  niECD (4.5 eV) at shorter irradiation times: (a) 2 s, (b) 1 s and (c) 500 ms.  

10 scans were summed for the singly-deprotonated sulfopeptide hirudin (H-

DFEEIPEEsYLQ-OH).  niECD efficiency decreased with decreased irradiation time.  

However, even with 500 ms irradiation, an niECD spectrum with acceptable product 

abundance and sequence coverage could be obtained.  

 

2.4 Conclusion 

       In summary, we show that peptide anions ([M – nH]
n–

, n1) could capture electrons 

within a rather narrow energy range (3.5–6.5 eV), resulting in radical species with 

increased charge state, and yielding peptide fragmentation (niECD) analogous to that 

observed in regular cation ECD and ETD.  Predictable cʹ/z
•
-type product ions from N-Cα 

backbone bond cleavage were observed without loss of labile PTMs.  For all the peptide 

examples we studied, higher sequence coverage was obtained in niECD compared with 

conventional CAD.  Increased charge improves signal-to-noise ratios in FT-ICR MS 

because generated image current is proportional to charge state.
[13]

  niECD allows de 

novo sequencing of acidic peptides that show improved ionization in negative mode 

compared with positive mode, e.g., peptides with biologically important PTMs such as 

phosphorylation and sulfation.  Further, niECD is compatible with (but not limited to) 

singly-charged peptides, which allows coupling with MALDI.  Gas-phase zwitterionic 

structures appear to play an important role in this novel MS/MS technique. 
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Chapter 3 

 

 

Mechanistic Investigation of Negative Ion Electron 

Capture Dissociation (niECD) 

 

 

 

 

3.1 Introduction 

       Electron irradiation has seen a surge of interest as an activation method in tandem 

mass spectrometry.  An electron interacting with a molecular ion can trigger a range of 

reactions, depending upon the electron energy as well as the polarity of the precursor 

ion.
[1-5]

  Amongst the several electron-based dissociation techniques in current use, 

electron capture dissociation (ECD), which involves attachment of low-energy electron 

(< 1 eV) to multiply-charged cations, has found the broadest applications in the structural 

analysis of biomolecules.
[1, 6-8]

  In ECD, radical-driven fragmentation of charge-reduced 

peptide/protein cations yields N-Cα backbone bond cleavage and results in predictable 

cʹ/z•-type product ions without loss of labile posttranslational modifications (PTMs).  In 
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parallel with the analytical applications of ECD, there has been much interest in studying 

its dissociation mechanism.  There are two primary mechanisms proposed to explain the 

ECD outcome for peptides/proteins.  In the hot hydrogen model, the electron is proposed 

to be captured at one of the protonated sites and H• resulting from neutralization is 

released and recaptured by a nearby carbonyl oxygen atom, yielding an aminoketyl 

intermediate that dissociates via N-Cα backbone bond cleavage.  In the amide-superbase 

model, it is argued that the electron is first captured in the remote-charge but Coulomb 

stabilized π* orbital of a backbone amide, generating an aminoketyl anion (a super base), 

which abstracts a nearby proton.  The resulting aminoketyl radical undergoes facile 

cleavage of the adjacent N-Cα bond with a very low energy barrier.
[9, 10]

 

       Attachment of electrons to anions is counterintuitive due to Coulomb repulsion.  

However, as described in Chapter 2, such an intriguing phenomenon can indeed occur for 

both singly- and multiply-deprotonated anions within a rather narrow energy range.  The 

resulting charge-increased radical intermediates further undergo extensive dissociation 

and we termed this exciting novel tandem mass spectrometric technique negative ion 

electron capture dissociation (niECD).
[11]

  The fragmentation patterns observed in niECD 

of anions are analogous to those in conventional ECD of cations, with mainly c and z-

type product ions for peptides and d and w-type product ions for oligonucleotides.
[11, 12]

  

Analogous to ECD, niECD is valuable for sequencing and characterizing PTMs because 

peptide fragments from niECD retain labile modifications.  As shown in the previous 

chapter, this novel ion activation method appears particularly promising for analysis of 

acidic peptides, such as biologically important phospho- and sulfopeptides, which show 

improved ionization in negative ion mode and are still challenging to analyze with 



71 

 

currently available MS/MS techniques.  In addition, the increased charge resulting from 

niECD improves signal-to-noise ratios in FT-ICR MS instruments because generated 

image current is proportional to charge state.
[4]

  Furthermore, this feature allows higher 

fragmentation efficiencies than conventional ECD/ETD; in theory >100%, similar to 

electron ionization dissociation in which positive ions are further ionized to form more 

highly charged cationic intermediates.
[4]

  Moreover, niECD is compatible with (but not 

limited to) singly-charged ions, thus allowing coupling with MALDI.   

       In summary, niECD shows promise for becoming a powerful MS/MS technique for 

biomolecular structural elucidation.  However, the mechanism of this new technique 

requires additional investigation.  Mechanistic knowledge of the niECD process is 

essential before it can be routinely applied and reach its full potential.  Understanding the 

fragmentation mechanism also offers the opportunity to design derivatives that control 

gas-phase chemistry, leading to optimized fragmentation and/or wider application.
[13, 14]

  

In addition, gaseous anions exhibit different physics and chemistry compared with the 

same ions in solution.  Fundamental studies of this new phenomenon may also generate 

novel insights into the gas-phase structures of biomolecular anions which are less 

understood compared with biomolecular cations.  Preliminary data (see Chapter 2) have 

shown that niECD is not a universal reaction, i.e., there were a number of unmodified 

peptides that could not undergo niECD.  A zwitterion mechanism for niECD was 

proposed in the previous chapter, stating that zwitterionic gas-phase structures may be 

necessary for successful niECD with electron capture either occurring at, or being 

directed by, the positively-charged site.  This hypothesis is based on the observation that 

all the peptides failing to capture an electron lack either strongly basic or strongly acidic 
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residues in their sequences, and thus they are less likely to form gas-phase zwitterionic 

structures.  In addition, for phosphopeptides, which undergo efficient niECD (see Chapter 

2), it has been suggested that they exist as salt-bridged zwitterions in the gas phase.
[15, 16]

  

The striking similarity observed between niECD and positive ion mode ECD further 

indicates that the mechanism of niECD is related to that of ECD
[9, 10, 17]

 and, thus, 

positively charged sites may play a role in niECD.  Furthermore, recent computational 

work proposes that singly-deprotonated angiotensin II is zwitterionic in the gas phase.
[18]

   

       In this Chapter, the presented research strives to verify the zwitterion hypothesis 

described above and to further explore the fundamental aspects of niECD.  In order to test 

this hypothesis, two different strategies were applied to alter the peptide structures: 

inhibition of zwitterion formation for peptides that underwent facile niECD, and 

enhancement of the probability for zwitterion formation for peptides that did not capture 

an electron.  Inhibition of gas-phase zwitterions was realized by removing potential 

protonation sites, e.g., the peptide N-terminal amine, or deprotonation sites, e.g., 

phosphate and sulfate groups in phospho- and sulfopeptides.  By contrast, gas-phase 

zwitterionic structures were promoted by chemical derivatization techniques that 

introduce positive charge-carrying or highly basic groups into the molecules.  Fixed 

charge derivatives have been frequently utilized in mass spectrometry research to 

improve peptide/protein sequencing and to explore the mechanisms of several 

fragmentation techniques.
[19-22]

  Various positive charge tags, such as tris (2,4,6-

trimethoxyphenyl)phosphonium (TMPP),
[19, 20, 23, 24]

 2,4,6-trimethylpyridinium,
[25, 26]

 2,2′-

bipyridyl
[27]

, and trimethylammoniumalkyl,
[28-30]

 have been implemented based on their 

chemical availability or synthetic convenience.  With the addition of these tags, cationic 
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charges are affixed to the peptides at specific sites.  Consequently, in order to be detected 

in negative ion mode, peptides have to become zwitterions.  Enhancing zwitterion 

formation can also be achieved by introducing readily chargeable groups into the peptides, 

such as the basic guanidino group by various guanidination strategies.
[31-35]

  The niECD 

fragmentation patterns of unmodified analytes and their derivatized counterparts were 

then compared.  

       In addition to chemical labeling techniques, a more systematic approach to probe the 

niECD mechanism is to synthesize one or more sets of peptides with decreased (or 

increased) zwitterion probabilities.  Herein, niECD measurements were performed on 

five sets of synthetic peptides with defined sequences to further illuminate the mechanism 

of this process. 

3.2 Experimental 

3.2.1 Reagents 

       Sulfated cholecystokinin (CCKS, H-DsYMGWMDF-NH2) was purchased from 

Advanced Chemtech (Louisville, NY).  Other peptides used, cholecystokinin (CCK, H-

DYMGWMDF-NH2), substance P-OH (H-RPKPQQFFGLM-OH), phosphopeptide H-

KRSpYEEHIP-OH, were from Sigma-Aldrich (St. Louis, MO).  The oligosaccharide, 

disialyl-lacto-N-tetraose (DSLNT), was purchased from V-labs Inc (Covington, LA).  

Acetic anhydride, barium dioxide (Ba(OH)2), 12.5% (w/v) aqueous trimethylamine 

solution, iodoacetic anhydride, Girard’s T reagent (1‐(hydrazinocarbonyl-methyl) 

trimethylammonium chloride), S-methylisothiourea hemisulfate were obtained from 

Sigma-Aldrich (St. Louis, MO).  DABCO (1,4-diazabicyclo[2.2.2]octane)-based N-
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hydroxysuccinimide (NHS) ester reagent was a generous gift from Dr. Philip Andrews’ 

lab at the University of Michigan.  Synthetic peptides were purchased from GenicBio 

(Shanghai, China).   

3.2.2 Sample Preparation 

Acetylation  

       The sulfopeptide CCKS was N-terminally acetylated according to previously 

published procedures.
[36]

  200 μL of 25% acetic anhydride in methanol was incubated 

with 50 μL peptide solution in water for 3 h at room temperature.   

Solution-phase Dephosphorylation 

       3 μL saturated Ba(OH)2 was added to 10 μL of 200 μM phosphopeptide.  Next 6 μL 

water was added and the mixture was then heated to 37 °C for 2 h.  

Fixed-charge Derivatization  

       Trimethylammoniumacetyl (TMAA) derivatization of peptides was performed 

following the method of Stults and Wetzel.
[29]

  One µL of 40 mM peptide solution was 

combined with 12 µL of 0.30 M MES buffer (pH 6.0).  The mixture was chilled in an ice 

bath and 5 µL of 0.01 M iodoacetic anhydride in dry THF was injected.  The solution was 

immediately vortexed for 1 min.  The tube was returned to the ice bath for another 5 min 

and then allowed to equilibrate to room temperature for 2-3 min.  5 µL of 12.5% (w/v) 

aqueous trimethylamine was then immediately added to this solution of iodoacetyl 

peptide.  The mixture was vortexed and the reaction was allowed to proceed for 2 h at 

37 °C.  During this period, the tube was vortexed every 30 min to ensure adequate mixing.   

       DABCO-based NHS-ester was incubated with peptides at 5:1 molar ratio in HEPES 

buffer (pH=7) at room temperature for 20 min.   
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       Girard’s T reagent was used to derivatize the model oligosaccharide as described in 

the previous report by Unterieser and Mischnick.
[37]

  The Girard’s T solution was 

prepared by dissolving 20 µmol Girard’s T reagent in 350 µL MeOH and 150 µL acetic 

acid, and then added to 500 µL aqueous solution of 10 µmol DSLNT.  The reaction was 

performed for 30 min at 40 °C.   

Guanidination 

       N-terminal guanidination reactions were carried out as previously described
[38]

 with 

some modifications.  1 M S-methylisothiourea hemisulfate in 6% NH4OH (v/v) was 

combined with 200 µM peptide in 1:1 ratio (v/v) at 65 °C for 1 h.  The pH was adjusted 

to 10.5.  The mixture was incubated at 65 °C for 1 h.   

       After the reactions, the solvents were removed under vaccum.  All the derivatized as 

well as the synthetic peptides were purified using C18 microtips (Millipore, Billerica, 

MA).  The derivatized DSLNT was purified using graphitized carbon solid-phase 

extraction (SPE) cartridges (Supelco, Bellefonte, PA).  All the samples were dissolved in 

1:1 isopropanol/water (v/v) with 0.1% triethylamine for negative ion mode analysis.   

3.2.3 FT-ICR Mass Spectrometry 

       The samples were directly infused via an external Apollo II electrospray ion source 

(Bruker Daltonics, Billerica, MA) at a flow rate of 70 µL/h in negative ion mode.  All 

experiments were performed with an actively shielded 7 Tesla hybrid quadrupole (Q)-FT-

ICR mass spectrometer (APEX-Q, Bruker Daltonics), as previously described.
[39]

  Briefly, 

ions produced by ESI were accumulated in the first hexapole for 0.05 s, mass-selectively 

accumulated in the second hexapole collision cell for 0.5-4 s, transferred through high 

voltage ion optics, and captured in an Infinity ICR cell by dynamic trapping.  This 
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accumulation sequence was looped one to three times to improve precursor ion 

abundance.  For MS/MS experiments, mass-selective external accumulation of 

negatively-charged precursor ions was performed.  For negative ion electron capture 

dissociation (niECD), the electrons were provided by an indirectly heated hollow 

dispenser cathode.
[40]

  The cathode heating current was kept at 1.8 A, and the cathode 

voltage was pulsed to a bias voltage of – 6 V (corresponding to 4.5 eV electrons) for 5-20 

s.  A lens electrode located in front of the hollow cathode was kept 1.0–1.5 V more 

positive than the cathode bias voltage.  For nozzle-skimmer dissociation, the voltage of 

skimmer 1 was increased to 120 V to cleave the phosphate or sulfate group 

(corresponding to phosphoric acid and sulfonate loss, respectively).  

3.2.4 Data Analysis 

       All mass spectra were acquired with XMASS software (version 6.1, Bruker Daltonics) 

in broadband mode from m/z 200 to 3000 with 256K data points and summed over 10-32 

scans.  Data processing was performed with the MIDAS analysis software.
[41]

  Data were 

zero filled once, Hanning apodized, and exported to Microsoft Excel for internal 

frequency-to-mass calibration with a two-term calibration equation.
[42]

  Typically, internal 

calibration was performed with precursor ions and their electron-capture species as 

calibrants.  Peaks in MS
n
 were assigned within 10 ppm error after internal calibration.  

Product ions were not assigned unless the S/N ratio was at least 3. 
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3.3 Results and Discussion 

3.3.1 Peptide N-terminal Acetylation 

       Peptide N-terminal acetylation was performed with the goal to prevent peptides with 

no other basic sites from becoming zwitterionic anions in the gas phase.  In this reaction, 

the potential protonation site at the N-terminal amine is blocked by an acetyl group, thus 

in theory reducing the probability of gas-phase protonation, required for zwitterion 

formation in negative ion mode.  The tyrosine-sulfated peptide cholecystokinin (CCKS), 

which typically undergoes favorable niECD, was chosen as a model peptide.  Figure 3.1 

compares niECD of unmodified and N-terminally acetylated CCKS.  As expected, 

unmodified CCKS demonstrated highly favorable niECD with a fragmentation efficiency 

of 44%, as shown in Figure 3.1(a).  This sulfopeptide does not contain any basic residues.  

Thus, the most basic site is the N-terminus and zwitterion formation should be less 

favorable upon acetylation.  Consistently, in Figure 3.1(b), niECD efficiency of N-

terminally acetylated CCKS was significantly lower (6%) than that of unmodified CCKS.  

However, electron capture and fragmentation still occurred for the acetylated species, 

possibly due to protonation of the tryptophan residue.  
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Figure 3.1.  (a) niECD of sulfated cholecystokinin (CCKS; 4.5 eV electrons, 20 s, 10 

scans).  (b) niECD of N-terminally acetylated CCKS under identical conditions as in (a).  

Charge-increased product/precursor ions are marked in red.  3 = third harmonic.  

 

3.3.2 Peptide Dephosphorylation/Desulfation 

       Because all the phospho- and sulfopeptides studied in Chapter 2 showed extensive 

fragmentation in niECD, the effects of the presence of phosphate and sulfate groups were 
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also investigated.  Intriguingly, the non-sulfated version of CCKS (CCK) did not undergo 

niECD at all (Figure 3.3(a)).  Gas-phase desulfation of CCKS via nozzle-skimmer 

dissociation inside the electrospray ion source eliminated the occurrence of electron 

capture by the resulting CCK-like peptide as well (data not shown).  Phosphopeptides 

were also examined and one example is shown in Figure 3.2.  Irradiation with 4.5 eV 

electrons was performed for this phosphorylated peptide, resulting in successful electron 

capture and a series of c- and z-type backbone fragments from niECD, as demonstrated in 

Figure 3.2(a).  Similar to desulfation, dephosphorylation in the gas phase (Figure 3.2(b), 

by nozzle skimmer dissociation), or in the solution phase (Figure 3.2(c), by reacting with 

saturated Ba(OH)2 causing β-elimination of the phosphate group) decreased niECD 

efficiency.  The absence of electron capture, or poorer niECD performance, upon 

desulfation and dephosphorylation are likely caused by the decreased zwitterion 

propensity following removal of potential deprotonation sites, corresponding to the acidic 

phosphate and sulfate groups.  This observation is also consistent with the fact that 

phosphopeptides likely exist as zwitterions in the gas phase.
[15, 16]
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Figure 3.2.  Dephosphorylation of a tyrosine-phosphorylated peptide.  (A) niECD of the 

singly deprotonated phosphopeptide.  (B) niECD of gas-phase dephosphorylated peptide 

(phosphate group was removed via in source nozzle-skimmer dissociation followed by 

quadrupole isolation).  (C) niECD of solution-phase dephosphorylated peptide (phosphate 

group was removed by reacting with saturated Ba(OH)2).  All the three niECD 

experiments were performed with 4.5 eV electrons for 10 s and accumulated for 10 scans.  

* represents electronic noise. 

 

3.3.3 Peptide Fixed-Positive Charge Derivatization 

       An alternative approach to examine the zwitterion mechanism is to promote 

zwitterion formation for peptides that failed to capture an electron.  This may be achieved 
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by attaching a fixed positive charge to the peptides via charge-containing tags.  The first 

fixed-charge tag explored is trimethylammoniumacetyl (TMAA), which contains a 

positive quaternary group adjacent to three methyl groups.  TMMA was placed onto the 

peptide N-terminus through iodoacetylation of the N-terminal amine, followed by further 

reaction with trimethylamine to produce a quaternary ammonium-derivatized molecule.  

The TMAA structure as well as the full mass spectrum of the derivatization mixture is 

shown in Figure 3.3(b).  The singly-charged peptide anion carrying a TMAA group, 

needs to have at least two deprotonation sites.  Thus, addition of a permanent cationic 

charge forces the peptide to form a gas-phase zwitterion.  TMAA-modified CCK was 

isolated and subjected to niECD, as illustrated in Figure 3.3(c).  As discussed above, 

niECD of non-sulfated CCKS (CCK) was not successful.  However, introduction of the 

TMAA tag did enable niECD of CCK.  A charge-increased electron capture species, a 

number of charge-increased product ions as well as a c5 sequence ion were present in the 

spectrum.  The TMAA derivative was also evaluated with another model peptide, 

Substance P-OH, which was also unable to undergo electron capture in its unmodified 

form (Figure 3.4(a)).  The niECD spectrum of TMAA-modified Substance P-OH is 

shown in Figure 3.4(b): quaternary ammonium derivatization also rescued its niECD 

ability.  An abundant charge-increased electron capture signal and two backbone 

fragments resulting from N-Cα bond cleavages were observed in niECD of TMAA-

Substance P-OH.  However, for both CCK and Substance P—OH, the presence of the 

fixed-charge site altered the fragmentation behavior with the dominant pathway 

corresponding to loss of the tag (trimethylamine), similar to the reported fragmentation 

behavior of fixed charge-containing peptides in conventional ECD/ETD.
[20, 21, 26, 43]
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Figure 3.3.  A trimethylammoniumacetyl (TMAA) group was attached to the N-terminus 

of the peptide CCK to introduce a fixed positive charge. (a) niECD MS/MS of 

underivatized CCK (4.5 eV electrons, 20 s, 32 scans).  No electron capture was observed.  

(b) Negative ion mode MS of the reaction mixture after derivatization (10 scans).  (c) 

niECD MS/MS of isolated CCK derivatized by the TMAA tag (4.5 eV electrons, 10 s, 32 

scans).  Charge-increased product ions are high-lighted in red.  
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Figure 3.4.  Electron irradiation (4.5 eV, 10 s, 32 scans) of substance P-OH without (top) 

and with (bottom) an N-terminal TMAA fixed-charge tag.  The underivatized peptide did 

not undergo niECD whereas the presence of the tag allowed electron capture and 

detection of cʹ/z•-type ions.  Similar to TMAA-derivatized CCK (Figure 3.3(c)), 

trimethylamine loss is dominant. 

 

      We also investigated a second charge-providing tag: another quaternary amine tag but 

including two intrinsic positive charges in its 1,4-diazabicyclo[2.2.2]octane (DABCO) 

moiety.  The structure of the DABCO-based N-hydroxysuccinimide (NHS) ester reagent 
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is provided in Figure 3.5(a).  It specifically reacts with primary amines and was 

synthesized by Dr. Philip Andrews’ group as part of an effective MS-cleavable 

crosslinking reagent.
[44]

  The DABCO-labeled CCK anion was subjected to niECD, as 

shown in Figure 3.5(b).  In this case, in order to obtain a net charge of -1, the precursor 

ion has to have three deprotonation sites.  Similar to the TMAA tag, the DABCO group 

allowed electron capture by CCK.  However, the major dissociation pathway in niECD 

was again the elimination of part, or all, of the derivative moiety.  No backbone 

fragmentation was observed, leading to no information regarding the peptide sequence.  

For the second model peptide, substance P-OH, detection of its DABCO derivative in 

negative ion mode was unsuccessful, probably because of the much lower acidity of this 

peptide and thus difficulty to introduce three negative charges. 

 

Figure 3.5.  (a) Structure of the DABCO-based NHS ester reagent.  (b) niECD (4.5 eV, 5 

s, 32 scans) of DABCO-modified CCK.  The DABCO ring is high-lighted in blue.  

Partial and entire tag losses were the major product ions.  
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       It is interesting to note that addition of metal ions (Na
+
, Ca

2+
, and Cs

+
), which may 

promote zwitterion formation,
[45]

 did not enable electron capture by CCK (Figure 3.6).  

Neither did N-terminal tris(2,4,6-trimethoxyphenyl) phosphonium-acetyl (TMPP) 

derivatization,
[11]

 which introduces a different type of fixed charge, a positive quaternary 

phosphonium, to the peptide (Figure 3.7).  The lack of success for TMPP-Ac 

derivatization, or metal adduction, may be explained by effective shielding of the 

positively-charged site by the aromatic groups surrounding the phosphonium, or by the 

peptide carbonyls wrapping around the metal ion.   

 
Figure 3.6.  Electron irradiation (4.5 eV, 20 s, 10 scans) of metal-adducted CCK.  None 

of the metal complexes underwent niECD. 
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Figure 3.7.  Electron irradiation (4.5 eV, 10 s, 10 scans) of tris(2,4,6-

trimethoxyphenyl)phosphonium-acetyl (TMPP-Ac)-CCK (see inset for structure).  No 

electron capture was observed. 

 

3.3.4 Oligosaccharide Fixed-Positive Charge Derivatization 

       Oligosaccharides are particularly challenging to analyze by MS due to their non-

linear structures.  In addition, they typically lack basic sites and can therefore be difficult 

to ionize in positive ion mode, particularly for sulfated and sialylated species.  Both 

ECD
[46, 47]

 and EDD
[48]

 have been shown to generate extensive cross-ring cleavages for 

oligosaccharides, necessary to determine carbohydrate linkage information.  However, 

smaller glycans, particularly O-glycans, are difficult to multiply charge.  Electron 

induced dissociation and vacuum ultraviolet photodissociation, which are compatible 

with singly-charged ions, are being explored as alternative strategies.
[49, 50]

  niECD could 

fill a need here as well, particularly for acidic carbohydrates, including sialylated and 

sulfated species, which are known to be altered in cancer.
[51-57]
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       The first attempt to apply niECD towards carbohydrate analysis failed.  A branched 

doubly-sialylated oligosaccharide, disialyl-lacto-N-tetraose (DSLNT), was chosen as a 

model molecule because it contains two acidic sialic acid residues and should readily get 

deprotonated in negative ion mode.  A diagram depicting the DSLNT structure is shown 

in the inset of Figure 3.8(a).  niECD was applied towards the carbohydrate with and 

without metal adduction.  However, neither form of the DSLNT anion captured an 

electron (data not shown).  If the zwitterion hypothesis is valid, the absence of such a gas-

phase structure may explain why niECD was not observed.  This oligosaccharide 

includes two deprotonation sites but lacks a favorable protonation site, and thus has a 

smaller probability of becoming a zwitterion.  In order to overcome this problem, 

chemical derivatization with Girard’s T reagent was performed to enhance the generation 

of a gas-phase zwitterionic structure.  This reagent carries a hydrazide functionality that 

allows glycan-specific modification and introduces a fixed cationic charge (a quaternary 

amine center) to the reducing terminus of the glycan (Scheme 3.1).  Girard’s T 

derivatization has been reported in many mass spectrometric applications of 

oligosaccharides to facilitate their ionization, fragmentation and/or quantification.
[50, 58, 59]

  

A negative ion ESI-FT-ICR mass spectrum of the reaction mixture with Girard’s T and 

DSLNT is shown in Figure 3.8(a), where the unreacted substrate peak was not observed 

and thus the DSLNT was converted to its Girard’s T derivative at high yield.  The niECD 

fragmentation pattern of Girard’s T-treated DSLNT is shown in Figure 3.8(b).  As 

expected, the modified carbohydrate captured an electron very efficiently.  However, the 

dissociation pattern is again not that analytically informative.  Pronounced neutral tag 

loss and several B, C, Y, Z glycosidic fragments, which correspond to terminal sialic acid 
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loss, were produced.  These cleavages are typical for CAD and may result from excess 

vibrational energy in niECD.  Cross-ring fragments did not appear in the spectrum.   

 

Scheme 3.1.  Schematic representation of oligosaccharide reaction with Girard’s T 

reagent (adapted from reference
[50]

). 
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Figure 3.8.  The oligosaccharide DSLNT was derivatized by Girard’s T reagent.  (a) Full 

mass scan in negative ion mode of the derivatization mixture (10 scans).  (b) niECD (4.5 

eV, 10 s, 32 scans) of Girard’s T-modified DSLNT.  The charge-increased electron 

capture species is marked in red.  The letter α refers to the largest branch and the letter β 

represents the second largest branch of DSLNT. 
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3.3.5 Peptide Guanidination 

       Due to the prominent tag loss observed in niECD of fixed charge-tagged peptides, an 

alternative derivatization method that incorporates a group with high basicity rather than 

a permanent charge was pursued.  Guanidination reaction is a common peptide 

modification process used to improve the signal intensity of lysine-containing peptides in 

MALDI, assist peptide sequencing and identification, or enable peptide quantification.
[31, 

34, 38, 60]
  In guanidination, the ε-amino groups of lysine residues are converted to 

guanidino groups, thereby creating more basic homoarginine residues.  A similar strategy 

was adapted here to increase N-terminal basicity by converting the α-amino group to a 

guanidino group.  This change in basicity should enhance N-terminal protonation and 

thus increase the probability of zwitterion formation.  The same model peptide as 

investigated above, CCK, was examined.  As shown in Figure 3.9, electron capture was 

successfully observed for the guanidinated precursor ion, producing a charge-increased 

radical intermediate, one c-, one z-, and one y-type backbone fragment.  No tag loss was 

detected.  Although relatively more structural information was obtained in this case 

compared with the above fixed charge-derivatized CCK experiments, the niECD 

fragmentation efficiency of guanidinated CCK is quite low.  This low efficiency is due to 

the highly inefficient process of N-terminal guanidination, consequently resulting in low 

precursor ion abundance.  Low reaction yield is consistent with previous reports on this 

modification chemistry.
[61, 62]

  The guanidination reaction specifically targets the ε-amine 

of lysines, which are less sterically hindered than α-amines of peptide N-termini.  Critical 

factors that affect derivatization efficiency in this reaction, including pH, methylisourea 

concentration and temperature,
[33]

 were all optimized, but no substantial improvement 
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was achieved.  

 
Figure 3.9.  niECD (4.5 eV, 32 scans, 5 s irradiation) spectrum of the N-terminally 

guanidinated peptide CCK.  The charge-increased radical is high-lighted in red and 

several backbone fragments were produced.  

 

3.3.6 Synthetic Peptides 

       One problem with the natural peptides investigated to date is that they frequently 

have multiple possible protonation and deprotonation sites.  For example, the 

sulfopeptide CCKS (H-DsYMGWMDF-NH2), which undergoes highly favorable niECD, 

has two aspartic acid residues and one sulfate group as likely deprotonation sites and the 

N-terminus as a likely protonation site.  Prediction of the number of gas-phase charged 

sites (positive and negative) and their location is highly challenging.  In order to examine 

the mechanism more systematically, niECD was applied to several series of synthetic 

peptides in which the number and positions of charges could be controlled.  Peptides 

were carefully designed around the sequence of the sulfopeptide hirudin (which 

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=All&N3=mode+matchpartialmax&N4=Aspartic+acid&D7=0&D10=Aspartic+acid&N1=S_ID&ST=RS&N25=0&F=PR
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undergoes highly efficient niECD).  The peptide lengths were chosen so that electron 

capture will not be disfavored due to excessive increase in charge density upon electron 

attachment.  Five sets of peptides were synthesized and their sequences are listed in Table 

3.1.   

 

 
Table 3.1.  Five sets of peptides were synthesized based on the sequence of the 

sulfopeptide hirudin.  (a) In the first series, the acidic residues were gradually replaced 

with more neutral ones from P1 to P6, thus decreasing the probability of zwitterionic 

structures.  (b) P7-12 were synthesized with lysine replacing the C-terminal glutamine in 

P1-6.  (c) For P13-18, the C-terminal lysine in P7-12 was moved to the N-terminus to be 

located further away from acidic sites.  (d) In P19-24, the lysine side chains in P7-12 

were converted to more basic guanidino groups.  (e) In P25-30, the lysine side chains in 

P13-18 were converted to guanidinio groups.  The acidic residues are marked in purple 

and the basic ones in blue.  K* represents guanidinated lysine. 
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       Among the first six synthetic peptides (Table 3.1(a)), P1 has the same peptide 

sequence as hirudin but without the sulfate group.  This peptide has multiple acidic sites 

for possible deprotonation and the N-terminus for protonation.  Thus, it should have a 

high chance of being zwitterionic in the gas phase.  Consistently, singly deprotonated P1 

showed efficient niECD with a fragmentation efficiency of 50% (Figure 3.10(a)).  When 

calculating niECD efficiencies, product ion peak abundances were normalized to charge, 

summed and divided by the precursor ion abundance in the same spectrum.  These 

experiments were performed in triplicate for all samples.  In P2, the acidic glutamic acid 

residue was replaced with a less acidic tyrosine.  This peptide still contains many acidic 

sites and should still readily form a zwitterion in the gas phase.  However, compared with 

P1, statistically it should have a lower probability of becoming a zwitterion.  This change 

in sequence decreased niECD efficiency to 41%.  The probability of a zwitterionic 

structure was further reduced by gradually replacing acidic residues with more neutral 

residues (P3-6).  The replacement residues were chosen to maintain the peptide masses 

close to each other, so that the size would not be a factor in the experiments.  Consistent 

with the hypothesis, niECD efficiency decreased from P3 to P6 with decreased 

zwitterionic propensity.  For the singly-charged anion of P6, which is completely 

composed of neutral residues, it could exist as a zwitterion with one protonation site at 

the N-terminus, and one deprotonation at the C-terminus.  The other site of deprotonation 

is likely the tyrosine residue, which has been reported to be deprotonated under high pH 

conditions,
[63]

 or the backbone amide as a means of charge solvation.
[64]

  The lower 

probability of tyrosine or backbone deprotonation compared with that of more acidic 

residues leads to lower efficiency (1%) of niECD for P6 (Figure 3.10(b)).  niECD mass 
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spectra of P1 and P6 in the first series are shown in Figure 3.11 as two examples.  A 

dramatic difference between these two spectra is observed: niECD of P1 (the top 

spectrum) is significantly more efficient than that of P6 (the bottom spectrum) (50% for 

P1 vs. 1% for P6), resulting in much richer fragmentation and higher sequence coverage 

(75% for P1 vs. 40% for P6).  All the niECD efficiency data of these six peptides are 

summarized in Figure 3.11(a).  In this plot, niECD efficiency is decreasing with 

decreased zwitterion probability, well correlated with the proposed zwitterion 

mechanism.   
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Figure 3.10.  niECD (4.5 eV, 16 scans, 5 s irradiation) MS/MS spectra of singly-

deprotonated (a) P1 and (b) P6.  niECD efficiency decreased from P1 to P6.  The electron 

capture species are high-lighted in red. 
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       Following manipulation of the acidic sites, the effects of the basic sites were 

investigated as well.  The second series of peptides, P7-12 (see their sequences in Table 

3.1(b)) was synthesized by replacing the C-terminal glutamine residue in P1-6 with a 

lysine residue.  With more basic residues in the sequences, peptides should have more 

available sites for protonation and, in principle, zwitterions should form more readily.  

The niECD efficiencies of P7-12 are also plotted in Figure 3.11(a).  Similar to P1-6, the 

niECD behavior of P7-11 follows the same trend: the efficiency drops as the number of 

acidic sites drop.  Unexpectedly though, the niECD efficiency of P7-12 was lower overall 

than the corresponding ones for P1-6.  We argue that, because the lysine residue is at the 

C-terminus, a favorable salt bridge could be formed between the lysine side chain and the 

C-terminal carboxylic acid, rendering the cation less accessible.  

       To eliminate this potential non-covalent interaction in P7-12, the sequences of the 

peptides were adjusted and the lysine residue was moved to the N-terminus to be located 

further away from any acidic sites (P13-18; Table 3.1(c)).  In this third series of synthetic 

peptides, P13 and P14 experienced a significant increase in niECD efficiency, strongly 

supporting the zwitterion hypothesis, but a decrease in efficiency was observed for P15-

18 compared with the corresponding ones for P1-6 (Figure 3.11(a)).  This deviation in 

niECD performance may be rationalized by the gas-phase structural changes of these 

peptides.  Additional experiments, such as ion mobility MS and computational modeling, 

are necessary to lend more insights into the structural effects of niECD. 

       In the last two sets of peptides, the basicity of the lysine residue in P7-12 and P13-18 

was further enhanced by converting the lysine side chains to guanidino groups through 

lysine guanidination reaction and thus converting them into arginine-like residues.  
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niECD was then applied to P19-24 and P25-28 and similar decreasing trends in niECD 

efficiency were observed for both of these two series (Figure 3.11(b) and 3.11(c)).   

 

 

 
Figure 3.11.  niECD efficiency of all five sets of synthetic peptides: (a) the first three sets 

P1-18, (b) P19-24, (c) P25-30.  All niECD experiments were performed under the same 

conditions: 4.5 eV electron irradiation was applied for 5 s and the spectra were collected 

for 16 scans.  niECD measurement of each peptide was repeated three times to obtain a 

standard deviation.   
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3.4 Conclusion 

       The proposed zwitterion mechanism of niECD was investigated by applying various 

chemical derivatization techniques and by synthesizing peptides with different zwitterion 

probabilities.  Peptide N-terminal acetylation and dephosphorylation/desulfation, which 

may prevent zwitterion formation, decreased niECD efficiency.  Addition of fixed-charge 

tags in the form of quaternary amine, i.e., TMAA, DABCO, and Girard’s T-based tags, as 

well as N-terminal guanidination, which should promote zwitterion probability, enabled 

niECD of peptides and an oligosaccharide that were unable to capture electrons in their 

unmodified forms.  Although not all the labeling strategies are analytically useful in 

generating structurally informative fragments, successful electron capture observed for 

most of the modified peptides and oligosaccharide strongly lends support to the 

hypothesis that niECD requires gas-phase zwitterionic structures.  For synthetic peptides, 

niECD of five sets (30 peptides in total) was evaluated.  All of the datasets followed the 

same decreasing niECD efficiency trend with decreasing zwitterionic propensity, again 

correlating with the proposed zwitterion mechanism.   

       However, it is worthwhile to point out that fixed-positive-charge derivatization/metal 

adduction to promote zwitterion formation did not consistently rescue the ability of a 

peptide to undergo niECD.  Data points with unexpected niECD efficiency increase or 

decrease were also observed for synthetic peptides.  Thus, the presence of a gas-phase 

zwitterionic structure does not appear to be the only criterion for successful niECD.  The 

particular gas-phase zwitterion structure is likely also crucial: the influence of peptide 

gas-phase structure has been extensively studied in conventional cation ECD and is 

known to have a profound influence on fragmentation behavior.
[65-68]

  Additional 
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mechanistic exploration, particularly regarding the effects of higher order gas-phase 

structure, is necessary to further elucidate the fundamental aspects of niECD. 
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Chapter 4 

 

 

Negative Ion Electron Capture Dissociation (niECD) of 

Disulfide-linked Peptide Anions 

 

 

 

 

4.1 Introduction 

       Disulfide linkages constitute one of the most frequently encountered PTMs in 

extracellular proteins.
[1]

  Disulfide bonds are critical for establishing and maintaining 

correct three-dimensional structures of proteins and, consequently, proper biological 

functions.
[2-5]

  Unnatural disulfides are introduced by disulfide-containing cross-linkers in 

cross-linking experiments, which are utilized to map interfaces in protein complexes as 

well as to determine low resolution protein structures.
[6-8]

  The customary approach for 

characterizing disulfide-containing peptides by mass spectrometry involves solution-

phase chemical reduction of the disulfide bonds, often followed by alkylation of the thiol 
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group, prior to MS measurements.  This approach involves rather lengthy analysis times 

and additional sample consumption compared with direct analysis.
[9, 10]

 

       An alternative approach is to cleave intact cystine bonds in the gas phase directly 

with tandem mass spectrometry (MS/MS).  Many efforts have been made to develop gas-

phase dissociation techniques as means of studying disulfide-linked peptides and 

proteins.  Low-energy collision-activated dissociation (CAD) of cations, the typically 

used MS/MS technique, shows limited use for this purpose as it is often observed to lead 

to little disulfide cleavages.
[11-13]

  High-energy CAD, on the other hand, has been utilized 

to cleave both native disulfide bridges and disulfides of 3,3’-dithiobis (sulfosuccinimidyl 

propionate) (DTSSP)-modified peptides.
[14, 15]

  However, high energy CAD is mainly 

available on MALDI TOF/TOF mass spectrometers and involves significant ion 

scattering that reduces sensitivity.  In ultraviolet photodissociation (UVPD), disulfide-

linked peptide and protein polycations exhibit selective and efficient cleavage of the S-S 

bonds at 157 nm
[16]

 and at 266 nm
[17]

, as a result of electronic excitation by photon 

absorption. 

       Electron-mediated techniques, such as electron capture dissociation (ECD)
[18, 19]

 and 

its ion-ion reaction analog electron transfer dissociation (ETD)
[20]

, have seen a surge of 

interest as ion activation methods in tandem MS.  They tend to produce c’-
 
and z

• 
-type 

backbone fragments, providing complementary, and usually more extensive, structural 

information compared with CAD.  A significant attraction of ECD/ETD is that they can 

cleave backbone bonds without losing labile PTMs, such as phosphorylation and 

glycosylation, thus making them valuable techniques for PTM determination.
[21-24]

  

Another distinct feature of ECD/ETD is that they have been demonstrated to 
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preferentially fragment disulfide bonds over backbone bonds.
[25-27]

  Thus, effective 

characterization of disulfide linkages can be obtained from ECD/ETD spectra for 

peptides and proteins.  A study of intrachain disulfides reported that both disulfide and 

backbone cleavages could be induced in a single ETD experiment.
[28]

  Several hypotheses 

have been proposed to explain the mechanism of specific disulfide bond cleavage in ECD.  

The “hot hydrogen” mechanism suggests that the capture of an electron occurs at a 

cationic site, which releases a hot hydrogen.  Favored cleavage of S-S linkages has been 

proposed to be due to the high hydrogen affinity of the disulfide bond.
[25]

  In alternative 

mechanisms, an electron can be directly captured into the σ* orbital of a disulfide bond 

through Coulomb stabilization by nearby positive charges,
[29]

 or initially captured into a 

Rydberg state of a cationic site and then undergo through bond transfer to a disulfide 

linkage.
[30]

  However, a more recent study by Ganisl and co-workers demonstrates that 

disulfide bonds of proteins are preserved, or not preferentially dissociated, during ECD, 

indicating that a more intricate mechanism may be involved in cleaving disulfide bonds 

by ECD than previously anticipated.
[31]

  One drawback of ECD/ETD is that the precursor 

ions must be at least doubly charged in order to observe the products of ECD/ETD by 

mass spectrometry as capture or transfer of an electron by a singly-charged ion would 

result in a net charge of zero.  Furthermore, the efficiency of ECD/ETD is dependent on 

charge state and high charge states are preferred.
[32-34]

  However, generation of multiply-

charged cations can be challenging for acidic molecules.  

       Although most mass spectrometric analysis focuses on peptide or protein cations, 

negative ion mode can provide complementary information and is particularly valuable 

for acidic proteins.  In contrast to positive mode, disulfide bonds can undergo facile 
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cleavage during negative ion CAD.
[35-37]

  Characteristic fragments arising from disulfide 

bond cleavages acquired with beam-type instruments allow fast mapping of disulfide 

linkage positions within proteins.
[37]

  Recently, Calabrese and co-workers applied 

negative ion CAD to cross-linked peptides and proteins using the cystine-based cross-

linking reagent dithiobis(succinimidyl) propionate (DSP).
[38]

  Diagnostic MS/MS spectra 

were generated, allowing the identification of cross-linked peptides.  Subsequent MS
3
 

analysis could be readily performed to sequence the peptides and localize the cross-

linking site at a residue-specific level.  Specific cleavage of S-S and C-S bonds has also 

been investigated by the electron-based technique operating in negative mode, electron 

detachment dissociation (EDD).
[39]

  Ions arising from separation of the two peptide 

chains, at either the S-S or the C-S bonds, are apparent in EDD spectra.  Negatively-

charged peptides and proteins reacting with Fe
+
 ions were examined by Glish and co-

workers and was found to cause fragmentation near sulfur atoms, either adjacent to the 

cysteine residue or the disulfide bond between the two cysteines.
[40]

  

       Negative ion electron capture dissociation (niECD) is a novel MS/MS technique for 

anions, recently discovered in our lab.
[41]

  In niECD, singly or multiply deprotonated 

precursor ions can capture electrons within a certain energy range (~3.5-6.5 eV) to 

generate charge-increased distonic radicals that undergo dissociation analogous to 

conventional ECD/ETD.  A significant advantage of niECD is that ECD/ETD-like 

fragmentation, which is complementary to the more common CAD and thus generates 

valuable structural information, can be achieved in negative ion mode.  niECD have been 

applied to phospho- and sulfopeptides (See Chapter 2).
[41, 42]

  Just like ECD/ETD, niECD 

produces c’/z
• 
type backbone fragmentation and preserves the labile phosphorylation and 
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sulfation, while CAD typically does not.  Similarities in terms of peptide backbone 

fragments and retention of labile PTMs led us to believe that niECD proceeds through a 

zwitterion mechanism related to positive ion ECD.  We proposed that gas-phase 

zwitterionic structures are necessary for successful niECD and that a positive charge is 

required to serve as the site of electron capture, or to promote electron capture.  This 

hypothesis is correlated with our experimental data: N-terminal acetylation, which should 

reduce the probability of zwitterion formation, results in decreased niECD efficiency and 

introduction of fixed positive charge tags, which should promote zwitterion formation, 

enables niECD of peptides which could not undergo niECD in their unmodified form.
[41]

  

niECD efficiency also decreases with decreased zwitterion propensity for five sets of 

synthetic peptides, further supporting the zwitterion mechanism (see details in Chapter 3). 

       Because another characteristic of ECD/ETD is that they cleave peptide cations 

preferentially at disulfide bonds in most cases, it is also of interest to examine the 

dissociation behavior of disulfide-linked peptides in niECD and to compare their 

fragmentation behavior to conventional ECD/ETD.  In this Chapter, we employ the new 

method niECD to characterize systems with polypeptide chains bound by a disulfide 

bridge.  Both natural protein disulfide bonds (in insulin and lysozyme) and disulfides 

introduced by the cystine-based cross-linker DTSSP are investigated.  This work focuses 

on intermolecular disulfide linkages in singly- and doubly-deprotonated peptide anions.  

The analytical utility of niECD for disulfide analysis is also addressed.  These 

experiments provide further insights into the degree to which ECD and niECD are 

analogous, and into the mechanism of niECD.   
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4.2 Experimental 

4.2.1 Reagents 

       Insulin from bovine pancreas, chicken egg white lysozyme and ubiquitin were 

obtained from Sigma-Aldrich (St. Louis, MO).  The cross-linking reagent, 3,3’-dithiobis 

(sulfosuccinimidyl propionate) DTSSP, was purchased from Pierce (Rockford, IL).  Glu-

C and trypsin were purchased from Roche (Indianapolis, IN) and Promega (Madison, WI), 

respectively.  Isopropanol, formic acid, triethylamine, ammonium bicarbonate, and 

ammonium acetate were from Fisher Scientific (Fair Lawn, NJ). 

4.2.2 Sample Preparation 

       For digestion, insulin was incubated with Glu-C at 1:40 enzyme to protein ratio for 

10 h at 25 °C.  Lysozyme was digested with trypsin at a 1:20 enzyme to protein ratio for 

12 h at 37 °C.  The digestion was quenched with 0.1% formic acid.  For lysozyme, C18 

reverse-phase micro-columns, Ziptip (Millipore, Billerica, MA), were used to desalt the 

resulting peptides, which were then diluted by 40% isopropanol and 15 mM ammonium 

bicarbonate for negative ion mode MS analysis.  For insulin, the digestion was diluted 

with 40% isopropanol and 5 mM ammonium acetate without any purification. 

       For the cross-linking reaction, the protein ubiquitin was incubated with DTSSP in 

15mM HEPES buffer (pH=7.6) at 1:100 protein to cross-linker ratio for 40 min at room 

temperature.  The reaction was quenched with 1 M ammonium bicarbonate.  The cross-

linked protein was then denatured by heating (100 °C) for 10 min followed by prompt 

placing on ice.  The cross-linked protein was digested with trypsin or Glu-C at a 1:50 

enzyme to protein ratio overnight at 37 °C.  The resulting peptides were desalted with 
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C18 Ziptips and diluted with H2O/isopropanol (50/50 v/v) and 0.1% triethylamine as 

spraying solvent.  

4.2.3 FT-ICR Mass Spectrometry   

       Negatively-charged peptide ions were generated by external electrospray ionization 

(ESI) at 70 µL/h (Apollo II ion source, Bruker Daltonics, Billerica, MA).  All 

experiments were performed with an actively shielded 7 Tesla quadrupole (Q)-FT-ICR 

mass spectrometer (APEX-Q, Bruker Daltonics) as previously described.
[43]

  All data 

were obtained in negative ion mode.  For ESI, N2 was used as both nebulizing gas (5 L/s) 

and drying gas (2.0 L/s).  The drying gas temperature was set to 200˚C.  Briefly, ions 

produced by ESI were mass-selectively accumulated in an external hexapole for 0.2-3 s, 

transferred via high voltage ion optics, and captured in the ICR cell by dynamic trapping.  

This accumulation sequence was looped three times to improve precursor ion abundance.  

For negative ion electron capture dissociation (niECD), mass selectively accumulated 

peptide ions were irradiated for 10 s with 4.5-5.5 eV electrons provided by an indirectly 

heated hollow dispenser cathode.
[44]

  The cathode heating current was kept at 1.8 A.  A 

lens electrode located in front of the hollow cathode was kept 1.5 V more positive than 

the cathode bias voltage.   

4.2.4 Data Analysis   

       All mass spectra were acquired with XMASS software (version 6.1, Bruker Daltonics) 

in broadband mode from m/z 200 to 3000 with 256K data points and summed over 10-32 

scans.  Data processing was performed with the MIDAS analysis software.
[45]

  Data were 

zero filled once, Hanning apodized, and exported to Microsoft Excel for internal 
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frequency-to-mass calibration with a two-term calibration equation.
[46]

  Peaks in MS
n
 

were assigned within 10 ppm error after internal calibration.  Product ions were not 

assigned unless the S/N ratio was at least 3.  Typically, internal calibration was performed 

with precursor ions and their electron-capture species as calibrants. 

4.3 Results and Discussion  

       For the notation used in this study, R1 and R2 are used to indicate the two peptide 

chains bound by the disulfide bonds, respectively.  The peptide backbone fragments are 

denoted as R1SSmn(R2) if chain R2 is fragmented to generate product ion mn with retention 

of the intact chain R1.  Likewise, R2SSmn(R1) indicates that the mn product ion is from 

chain R1 and is disulfide-bound to the intact chain R2.  RS• (odd electron species and 

RSH (even electron species) represent product ions resulting from cleavage of the S-S 

bond.  Other product ion structures observed in niECD of natural disulfide-linked 

peptides and nomenclature are summarized in Scheme 4.1.  For ease of discussion, 

similar notation of product ions to that for natural disulfide bonds is used for cross-linked 

peptides, as illustrated in Scheme 4.2(b).   
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Scheme 4.1.  Structures and nomenclature used for product ions of natural disulfide-

linked peptides.  The main fragmentation pathway, S-S bond cleavage, is labeled in 

purple. 

 

4.3.1 niECD of Insulin Peptide Pairs  

       Figure 4.1(a) presents an niECD tandem mass spectrum of a singly-deprotonated ([M 

- H]
-
) peptide pair, generated from insulin proteolysis and containing one intermolecular 

disulfide bond.  Glu-C is chosen as the digestion enzyme to introduce acidic residues at 

the C-termini of each peptide chain and to increase the acidity of the molecule.  The 

shorter peptide sequence NYCN, corresponding to residues 18-21, is termed chain R1, 

and ALYLVCGE, residues 14-21, is termed chain R2.  Irradiation of the precursor ion, 

[M - H]
-
, with 4.5 eV electrons yielded a charge-increased radical species, [M - H]

2-•
, 

consistent with the previously observed behavior of peptide anions in niECD.
[41, 42]

  The 

two most dominant product ions observed in the mass spectrum correspond to cleavage 

of the S-S bond, resulting in two peptide monomers each containing one sulfur atom.  
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The insets in Figure 4.1 show a zoomed-in view of peptide chains R1 and R2.  The 

isotopic distribution pattern indicates that both R1 and R2 chains are comprised of a 

mixture of two product ions, differing in mass by 1 Da, corresponding to one hydrogen 

atom.  These products can be explained as the odd-electron product, R1S•/R2S•, and the 

even-electron species, R1SH/R2SH, with retention of the neutralized H• (from hydrogen 

migration).
[47]

  Similar results have been reported from ECD and ETD of disulfide-linked 

peptides, which fragment to produce one odd electron species, S•, and one even electron 

species, SH.
[25, 48]

  Thus, disulfide-bound peptides fragment analogously in niECD 

compared with ECD/ETD, generating both odd- and even-electron species.   

       In addition to the pronounced sulfur-sulfur bond cleavage, the neighboring carbon-

sulfur bond cleavages, resulting in peptide chains containing none or two sulfur atoms, 

are also observed but with much lower efficiency (labeled as [R1SS•]
- 

, [R2SS•]
- 

/[R2SSH]
-
, and [R2•]

-
/[R2H]

-
).  Inspection of the isotopic clusters reveals that some of 

these products are also mixtures of odd- and even-electron products.  There is evidence 

for cleavages in the peptide backbone region as well: limited backbone fragments (three 

c’ ions and one z
•
 ion with low abundance) are observed in the spectrum, in contrast to 

the predominant S-S disulfide bond cleavage.  The specific backbone fragment types are 

in good agreement with the fact that niECD generally produces c’/z
•
 type ions.

[41]
  

Particularly, two doubly-charged backbone product ions, which have higher charge state 

than the precursor ion, are generated, whereas ECD/ETD results in charge reduction.  

This increase of charge is particularly useful for the FT-ICR instrument we use in this 

experiment, for which signal-to-noise ratios are proportional to charge state and increased 

charge states result in improved ion signal.
[49]

  niECD also resulted in neutral ammonia 
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(NH3) loss from the charge reduced species, constituting a ubiquitous fragmentation 

channel in niECD and also frequently occurring in ECD.
[50, 51]

  NH3 loss from one peptide 

monomer was also observed.  Overall, the limited fragmentation at backbone bonds and 

abundant peptide chain ions following S-S cleavage observed in Figure 4.1 indicate that 

disulfide bonds are cleaved preferentially over backbone bonds in niECD for this insulin 

peptide pair, analogous to previously reported behavior of disulfide-bound peptides in 

ECD and ETD.   
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Figure 4.1.  niECD of (a) singly- and (b) doubly-deprotonated Glu‐C-derived 

disulfide‐linked insulin peptide pairs.  For the singly-deprotonated peptide pair, 

irradiation was performed with 4.5 eV electrons for 10 seconds; for the doubly-

deprotonated species, 5.5 eV electrons were used for the same time.  The charge-
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increased product ion is marked in red and the dominant S-S cleavages marked in purple.  

Electronic noise is marked as *.  The insets show a mixture of RSH and its radical form 

RS• for both the peptide chains. 

 

      niECD of a relatively larger Glu-C-digested insulin peptide pair, peptide 

GIVEQCCASVCSLYQLE (residues 1-13) of chain R1 disulfide-linked to the peptide 

FVNQHLCGSHLVE (residues 1-17) of chain R2, is shown in Figure 4.1(b).  This analyte 

contains an intermolecular disulfide bridge at cysteine 7 of chain R1 and cysteine 7 of 

chain R2, as well as an intramolecular disulfide bridge formed between cysteine 6 and 

cysteine 11 of chain R1.  niECD was performed on a doubly-deprotonated precursor ion 

as a result of the increased peptide size.  A charge state effect was observed.  For the 

doubly charged precursor ion, higher electron energy (5.5 eV) was necessary to enable 

maximum electron capture, which can be explained by higher Coulomb repulsion 

between the precursor ion and electrons.
[41]

  The increased charge state of the precursor 

ion also caused relatively lower fragmentation efficiency, indicating that capture of 

electrons by more highly charged anions is not as efficient as that by singly-charged ones.  

A charge-increased triply-charged radical, [M – 2H]
3-•

, is generated as a major product 

ion together with ammonia loss from this species, similar to niECD of peptide 

monomers.
[41]

  However, unlike the singly-charged insulin peptide (Fig. 4.1a), only one 

bond is cleaved for the larger peptide pair, the S-S bond, leaving one sulfur atom within 

each peptide chain.  The main dissociation products correspond to the singly-charged R2 

chain and doubly-charged R1 chain, which has a relatively larger size and thus a higher 

tendency to contain multiple negative charges.  For each of these two chains, is the 

products are a mixture of two species, the odd- and even-electron fragments (shown in 

the insets).  These dominant characteristic fragment ions can be easily recognized and 
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thus used to identify the presence of disulfide bonds, and to define the constituent 

peptides.  The abundant signal obtained in niECD makes it possible to subject the 

disulfide-cleaved products to MS
3
 for sequencing of each peptide chain.  In addition to 

the two major product ions, two small peaks were observed in the lower mass region, 

corresponding to the mass of the triply-charged R1 chain and the doubly-charged R2 chain.  

The increased charge state of the triply-charged product ion indicates that it must arise 

from the electron capture reaction.  No C-S bond or backbone bond cleavages were noted 

in this spectrum.  These data again show that cysteine-cysteine bond cleavage is the much 

preferred fragmentation pathway in niECD for disulfide-linked insulin peptides.  The lack 

of other fragmentation pathways may be due to a higher energy barrier and the overall 

decreased fragmentation efficiency for doubly-charged precursor ions.  It could not be 

determined if the intrachain disulfide was cleaved or not based on these data, as the 

disulfide cleavage will not yield a product ion of changed mass.  Absence of other 

dissociation patterns leads to a highly simple and clean spectrum, rendering data 

interpretation straightforward.   

4.3.2 niECD of Lysozyme Peptide Pairs  

 

       As a comparison, trypsin instead of Glu-C was utilized for lysozyme proteolysis, 

which should result in the presence of an arginine or lysine residue at each peptide C-

terminus and, therefore, increased basicity of the precursor ions.  Following digestion, 

two disulfide bond-containing species were investigated with niECD. niECD of the 

peptide GCR (denoted as chain R1, corresponding to residues 5-7) connected via an 

intermolecular disulfide bond to the peptide CELAAAMK (denoted as chain R2, 

corresponding to residues 127-134) is shown in Figure 4.2(a).  The precursor ion 
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experienced lower ionization efficiency in negative ion electrospray compared to Glu-C-

digested insulin peptide pairs due to its decreased acidity.  The singly-deprotonated 

lysozyme peptide pair captured a 4.5 eV electron to generate a charge-increased radical 

intermediate.  One and two ammonia neutral losses from the radical species are observed 

as well as one ammonia loss from peptide chain R2.  Similar to the niECD results for 

insulin peptides discussed above, the most predominant fragments correspond to S-S 

bond cleavage between the two peptide chains, generating product ions for both peptide 

halves.  For this lysozyme peptide pair, the R2 chain is an even-electron product ([R2SH]
-
) 

from hydrogen migration, retaining most of the hydrogen, whereas the R1 chain is the 

odd-electron product ([R1S•]
-
).  In conventional ECD, it has been reported that even-

electron products tend to originate from the peptide chain with higher charge state, 

presumably due to S-S polarization.
[25]

  However, in our niECD experiment, both the 

odd- and the even-electron species are singly-charged ions.  Thus, their distribution 

cannot be explained by the same mechanism.  One feature shared between previous ECD 

and our current niECD results, though, is that the even-electron product is always the 

peptide chain with larger size, which may have some effect on the distribution between 

odd- and even-electron species.  In addition to the primary cleavage at the S-S bond, 

weak signals corresponding to C-S bond cleavage in the R2 chain are present in the 

spectrum.  One backbone bond cleavage in the R2 chain also resulted in the product ion c6 

disulfide-linked to the intact R1 chain, as shown by the presence of the signal labeled as 

R1SSc’6(R2).  Again, this example demonstrates that disulfide bond cleavage constitutes 

the dominant dissociation process in niECD, analogous to positive ion ECD/ETD.  

Although relatively more basic peptides are examined here, the dissociation pattern is 
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virtually the same as those observed for Glu-C-digested peptide pairs, indicating that, 

other than ionization efficiency, the acidity does not have a large impact on fragmentation 

behavior in niECD.   
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Figure 4.2.  niECD of (a) singly- and (b) doubly-deprotonated trypsin-derived 

disulfide‐linked insulin peptide pairs.  For the singly-deprotonated peptide pair, 

irradiation was performed with 4.5 eV electrons for 10 seconds; for the doubly-

deprotonated species, 5.5 eV electrons were used for the same time.  
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       In the second species from lysozyme proteolysis, the peptide chain R1 WWCNDGR 

(residues 62-68) is disulfide-linked to chain R2 NLCNIPCSALLSSDITASVNCAK 

(residues 74-96) with an additional intramolecular disulfide bond between cysteine 3 and 

cysteine 21 of chain R2, aside from the intermolecular disulfide bridge between cysteine 3 

of chain R1 and cysteine 7 of chain R2.  niECD of the doubly-charged peptide pair is 

demonstrated in Figure 4.2(b).  Again, higher electron energy was necessary for the 

precursor ion with increased charge state.  5.5 eV electron irradiation yielded maximum 

electron capture signal [M - 2H]
3-•

.  As expected, the spectrum looks very similar to that 

of the doubly-charged insulin peptide pair.  Ammonia loss from the charge-increased 

radical intermediate is observed in the spectrum.  niECD generates prominent signals 

corresponding to one singly-charged and one doubly-charged free monomer of the 

peptide pair and, thus, to cleavage of the S-S bond.  Both the monomers are comprised of 

a mixture of odd- and even-electron fragments based on their isotopic patterns.  Similar 

to the doubly-charged insulin peptide, these two characteristic product ion peaks can be 

easily identified, allowing facile detection of the disulfide-bound peptides within a 

complex proteolytic mixture.  A triply-charged species of peptide chain R2, containing 

higher charge state than the precursor ion is observed as well.  Singly-charged peptide 

chain R1, doubly- and triply-charged peptide chain R2 with lack of a sulfur atom are also 

produced to a small extent in niECD, arising from cleavage at a C-S bond.  No backbone 

fragmentation was obtained from niECD for this peptide pair, which again suggests that, 

similar to ECD/ETD, S-S disulfide bond cleavage is the more favored dissociation 

pathway in niECD, and this preference can serve as a suitable tool for identifying 

disulfide linkages in peptides.  Taken collectively, all the data for the natural disulfides 
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described above are consistent with preferential cleavage of the S-S bond of the peptide 

pairs to yield free peptide monomers in niECD, analogous with conventional ECD/ETD.   

4.3.3 niECD of Disulfide-Containing Cross-Linked Peptides 

       In addition to native disulfide bonds, the niECD fragmentation pathways of cross-

linked peptides containing a disulfide-linked cross-linker is also of great interest.  

Ubiquitin was selected as the model protein and reacted with DTSSP, a cystine-like 

disulfide-containing cross-linker.  DTSSP includes N-hydroxysuccinimide (NHS) esters 

at both ends, allowing reaction with lysine side chains in the protein.  The structure of 

DTSSP is shown in Scheme 4.2(a).  Following the cross-linking reaction, the cross-linked 

protein was enzymatically digested by trypsin and Glu-C, respectively.  As expected, a 

series of intermolecularly cross-linked peptides, intramolecularly cross-linked peptides, 

and dead-end products were observed in the mass spectrum.  Only intermolecularly 

cross-linked peptides can provide information on inter-protein interactions and are 

therefore the interest of the study here.  The structures of niECD product ions from 

intermolecularly cross-linked peptides are shown in Scheme 4.2(b). 
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Scheme 4.2.  (a) Structure of the cross-linker DTSSP.  (b) Structures and nomenclature 

used for product ions of DTSSP cross-linked peptides.  The only cleavage observed in the 

cross-linking region is the S-S bond, labeled in purple. 

 

       niECD of a tryptic ubiquitin peptide pair is shown in Figure 4.3.  The peptide 

IQDKEGIPPDQQR (referred to as chain R1), corresponding to residues 30-42, is 

intermolecularly cross-linked to LIFAGKQLEDGR (referred to as chain R2), 

corresponding to residues 43-54, at lysine residues.  In this example, the cross-links 

introduced by DTSSP dissociate in an analogous manner to native disulfide bridges.  

Similar to the doubly-charged precursor ions discussed above, irradiation with higher 

energy electrons (5.5 eV) was required for maximum electron capture.  A charge-

increased radical intermediate, [M - 2H]
3-•

, together with NH3 deficient and CO2 deficient 

radical ions were produced upon irradiation.  With the exception of the electron capture 

species, doubly-charged R1 chain and singly-charged R2 chain, resulting from cleavage of 
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the S-S bond, are the most abundant product ions observed in the niECD spectrum.  

Similarly, the expanded views of these two peaks show that both of the peptide 

monomers correspond to a mixture of odd- and even-electron species.  Particularly, a 

triply-charged R1 chain ([R1SH]
3-

) is observed.  It is interesting to note that C-S bond 

cleavage is absent for this cross-linked peptide pair, whereas low abundance C-S bond 

fragments could be observed for some naturally occurring cystine disulfides.  Moreover, 

chain R1 and chain R2 are cleaved to generate some backbone fragments.  z5 and z6 

sequence ions from chain R2 do not involve the cross-linked lysine.  The z11 product ion 

from the R1 chain and the c6 product ion from the R2 chain are cross-linked to the intact 

R2 chain or R1 chain, respectively, through the intact cross-linker.  Therefore, niECD of 

peptides cross-linked by a disulfide-containing cross-linker generates similar 

fragmentation patterns to those of natural disulfide-containing peptides.  One challenge 

remaining in chemical cross-linking experiments coupled with mass spectrometry is that 

low abundance cross-linked peptides are challenging to detect among the plenitude of 

other potentially higher ionizing proteolytic fragments.  The unique niECD fragments 

observed here, associated with preferential and selective S-S bond cleavage, may be used 

to assign cross-linked peptides in a background of non cross-linked peptides.   
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Figure 4.3.  niECD of a doubly-deprotonated cross‐linked ubiquitin peptide pair (DTSSP 

cross‐linked ubiquitin was digested with trypsin).  Precursor ions were irradiated with 5.5 

eV electrons for 10 seconds. 

 

       An analogous niECD experiment was conducted on Glu-C-digested ubiquitin cross-

linked peptides (Figure 4.4).  Peptide chain R1 GIPPDQQRLIFAGKQLE (residues 35-51) 

was cross-linked to peptide chain R2 DGRTLSDYNIQKE (residues 52-64).  This 

DTSSP-cross-linked peptide pair again yields similar niECD results to natural cystine 

disulfide-containing peptides, and to the tryptic cross-linked peptides shown above.  

Electron capture at 5.5 eV by the doubly-deprotonated precursor ion lead to dissociation 

of the resultant charge-increased distonic ion.  Neutral losses such as NH3 and CO2 are 

also observed following the electron capture process.  S-S bond cleavage is again the 

dominant dissociation pathway observed in niECD, resulting in the doubly-charged R2 
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chain ([R2S•]
2-

), and the singly- as well as doubly-charged R1 chain ([R1SH]
-
 and 

[R1SH]
2-

) of the peptide dimer.  Intriguingly, for this peptide pair, the R2 chain is present 

only in the odd-electron form, while the R1 chain only is observed in even-electron form.  

Because most of the R2 chain is singly charged, a lower charge state compared with the 

doubly-charged R1 chain, this finding is opposite to what would be expected according to 

the mechanism proposed for conventional ECD.
[25]

  In contrast, the odd-electron R1 chain 

is the longer peptide chain within the peptide dimer, consistent with the observation that 

longer peptides tend to retain the extra hydrogen, both in the niECD work shown above, 

and in previous ECD experiments.
[52]

  A number of c’ and z
•
 sequence ions, one of which 

is triply charged, were also produced for this peptide pair.  Overall, niECD of cross-

linked peptides results in efficient dissociation of disulfide bonds, and generates 

characteristic “signatures” in the resulting tandem mass spectra.  Sequence information, 

including cross-linking sites, can be further obtained through MS
3
 of the resulting 

fragment ions.  Such information can subsequently be used to generate distance 

constraints, allowing approximation of the structure of the protein, and determination of 

the interaction site.   
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Figure 4.4.  niECD of a doubly-deprotonated cross‐linked ubiquitin peptide pair (DTSSP 

cross‐linked ubiquitin was digested with Glu-C).  Precursor ions were irradiated with 5.5 

eV electrons for 10 seconds.  

 

4.4 Conclusion 

       This Chapter shows that disulfide-bound peptide pairs, including both naturally 

occurring disulfides and cross-linked products from cystine-based reagents, exhibit 

niECD dissociation patterns very similar to those in positive ion ECD/ETD.  S-S bond 

cleavage constitutes the dominant fragmentation pathway and can serve as “signature” 

fragments for rapid detection and identification of disulfide-linked peptides in complex 

mixtures.  niECD also generates limited C-S bond cleavage and low abundance backbone 

bond cleavage.  The preference for cleavage of the S-S bond in niECD renders it a 

promising tool for characterizing disulfide-bound peptides.  This Chapter also sheds some 



129 

 

additional light onto the niECD mechanism.  The dissociation chemistry in niECD is 

similar to ECD/ETD in many aspects, including competitive dissociation at disulfide 

bonds within peptides, both odd- and even-electron species generated from cleavage of 

an S-S bond, as well as c’/z
.
 type backbone fragments.  This observation further suggests 

that niECD proceeds through a similar mechanism as conventional ECD, –including both 

the hot hydrogen mechanism and direct electron capture through space or through bond.  
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Chapter 5 

 

 

Negative Ion Electron Capture Dissociation 

(niECD) of N-linked and O-linked Glycopeptides 

with Neutral and Sialylated Glycans 

 

 

 

 

5.1 Introduction 

       Among myriad post-translational modifications (PTMs), protein glycosylation, which 

involves the attachment of oligosaccharides to proteins, represents one of the most 

ubiquitous in eukaryotic cells, and it has been suggested that more than half of the 

proteins present are glycosylated.
[1-3]

  Glycosylation serves key functions in an array of 

biological processes, including cell to cell recognition
[4, 5]

, immune response
[6, 7]

, protein 

folding
[4, 8, 9]

, as well as protein solubility and stability
[5]

.  Moreover, alternation in 

glycosylation can lead to protein malfunction and has been implicated in a variety of 

human diseases.
[10-12]

  Particularly, due to its pivotal role in cancer biology, sialic acid-
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containing glycoproteins have attracted a great deal of attention and have been 

extensively investigated as potential tumor markers for cancer detection.
[13, 14]

  A general 

increase in sialylation and changes in sialic acid linkage type have been linked to cancer 

metastasis and inflammation.
[15-21]

  Despite its frequency and significant influence on 

cellular systems, structural elucidation of glycosylation remains hindered due to its great 

complexity and diversity.  In order to fully understand its relevance for cellular functions, 

complete glycosylation characterization requires different tiers of information with 

respect to protein identity, glycan composition as well as the site of glycosylation and its 

occupancy.  Among these, site-specific glycosylation analysis presents one of the key 

obstacles in mass spectrometry (MS) analysis due to the lability of glycosidic bonds, 

which require less energy to cleave compared with the amide bonds in the peptide 

backbone.
[22]

 

       Though other forms have been reported,
[1, 23]

 protein glycosylation can be 

categorized into two primary classes, N-linked and O-linked glycosylation.
[24]

  In N-

glycosylation, glycans with a common pentasaccharide core structure are covalently 

attached to asparagine residues through a nitrogen atom in the specific peptide sequence 

Asn-Xxx-Ser/Thr (Xxx may be any amino acid except proline).  The presence of the 

consensus sequeon makes N-glycosylation site determination relatively predictable.  

More specific motifs such as D/E-X-N-X-S/T have been reported for N-glycosylation as 

well.
[25, 26]

  By contrast, the more prevalent O-glycosylation exhibits a much higher 

degree of diversity and heterogeneity as O-linked glycosylation does not have a known 

amino acid sequence motif or one single saccharide core region for all O-linked glycans.  

O-glycans can be connected to the peptide backbone at any serine or threonine residue, 
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rendering structural analysis more intricate, and thus considerably less is understood 

about O-glycosylation compared with N-glycosylation.  Moreover, O-glycans are 

frequently found in regions rich in serine and threonines, further complicating site-

specific characterization.
[27, 28]

  The variety of distinct oligosaccharide structures as well 

as the diversity of glycan attachment sites leads to a substantial degree of heterogeneity in 

O-glycosylation. 

       With the benefits of high selectivity, sensitivity and specificity, mass spectrometry 

has become increasingly attractive for structural elucidation of protein glycosylation.
[2, 22, 

29-31]
  In particular, tandem MS (MS/MS) has emerged as one of the most versatile and 

powerful techniques capable of providing glycan structural information from MS/MS 

data, depending on the specific activation method employed.  The standard strategy for 

MS-based analysis of protein glycosylation typically involves a combination of 

enzymatic digestion of glycoproteins, separation or enrichment of glycopeptides, 

followed by glycopeptide analysis with MS and MS/MS.
[32-37]

  Various MS/MS 

techniques have been utilized to characterize glycopeptides.  In general, collision 

activated dissociation (CAD),
[2, 38-42]

 infrared multiphoton dissociation (IRMPD)
[43-45]

 and 

post-source decay (PSD)
[46-48]

 primarily provide information about monosaccharide 

connectivity in the glycan, as preferential cleavages at glycosidic bonds in the glycan 

moiety are observed with little or no fragmentation at the peptide backbone.  

Consequently, these MS/MS activation techniques are effective tools for elucidating the 

carbohydrate portion of glycopeptides, while the peptide sequence remains undefined and 

the direct assignment of glycan attachment sites is hampered.
[2, 39, 41, 44]

  For N-

glycosylation, in certain cases, glycan sites can still be deduced as a result of its specific 
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peptide sequon.
[2, 3, 39]

  Additionally, N-glycan structures are routinely released from 

glycoproteins using the selective glycosidic enzyme, peptide-N-glycosidase F (PNGase 

F), which cleaves the amide bond between the glycan and the asparagine residue, 

allowing structural analysis of glycans and peptides separately.
[24, 49]

  Deduction of glycan 

attachment sites is also possible based on the mass change in the peptide portion 

introduced by converting asparagine residues to aspartic acid residues upon PNGase F-

induced glycan release,
[50, 51]

 however, this approach greatly increases analysis time and 

is labor intensive.  Unlike N-glycosylation, a selective enzyme that can cleave all O-

glycans is not available for global analysis of O-glycosylation, and hence, there is no 

universal method established for release of O-glycans.
[52, 53]

  The lack of a reliable 

peptide consensus sequence and a specific enzyme to cleave the glycans, as well as the 

vast heterogeneity of O-glycan core structures, make structural characterization, 

particularly site determination of O-glycosylation, a formidable analytical task.
[39]

   

       In order to improve site-specific determination of relationships between glycans and 

proteins, electron-based MS/MS techniques have been applied as alternative activation 

strategies for glycopeptide analysis.  Electron capture dissociation (ECD)
[54, 55]

 and 

electron transfer dissociation (ETD),
[56]

 which involve capture of a low-energy electron 

or electron transfer to multiply protonated precursor ions, respectively, are valuable 

tandem MS approaches for PTM characterization.  These two radical-driven dissociation 

techniques are well-known to generate c and z type peptide backbone fragments without 

eliminating the thermolabile modifications.
[44, 57-59]

  For glycosylated peptides, unlike 

CAD or IRMPD, ECD and ETD generally lead to dissociation at the polypeptide 

backbone with retention of the labile saccharide moiety, rendering localization of their 
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site of attachment possible.
[41, 42, 44, 45, 60]

  Thus, ECD/ETD are well suited for direct 

assignment of protein-glycan connectivity.  A combination of the slow-heating 

CAD/IRMPD and radical-driven ECD/ETD has also demonstrated to be a powerful 

strategy for glycoprotein studies by yielding orthogonal structural information.
[41, 42, 45]

  

However, one drawback with ECD and ETD is that they require positively charged 

precursor ions with at least two charges whereas acidic glycopeptides, e.g., sialylated 

ones, are readily deprotonated.  Furthermore, ECD/ETD are charge-state dependent, 

favoring high charge states and a decrease in fragmentation efficiency has been reported 

for ETD as the precursor ion m/z increases.
[61-63]

  Unfortunately, glycopeptides tend to 

have lower charge states and higher m/z ratios such that further activation is usually 

needed to improve the sequence coverage by combining IRMPD and ECD, or CAD and 

ETD.
[42, 45]

   

       The great majority of glycopeptide MS experiments in the current literature targets 

positively charged precursor ions.
[2, 64]

  However, negative ion mode has compelling 

benefits that are worth pursuing, particularly for acidic glycopeptides.  Acidic saccharides 

such as sialic acids render glycopeptides substantially less basic and preferentially 

deprotonated, thus exhibiting increased ionization efficiency, improved sensitivity, and 

less ion suppression in negative ion mode.  Negative mode MS and MS/MS have proven 

beneficial for glycopeptide analysis, offering advantages such as enhanced detection of 

glycopeptides as anions, sialylated ones in particular, unique dissociation pathways and 

complementary structural information as compared with positive ion mode.
[38, 39, 65]

  

However, CAD of peptide anions often involves complex backbone fragmentations as 

well as side chain losses, yielding less predictable cleavages compared with positive ion 
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CAD.
[66]

  Ion-electron and ion-ion methods, such as electron detachment dissociation 

(EDD)
[67]

 and similar negative electron transfer dissociation (NETD),
[68]

 can also be 

applied for negative precursor ion dissociation.  EDD of glycosylated peptides induces 

extensive glycan (glycosidic and cross-ring cleavages) and peptide (a/x, b/y ions) 

fragments, providing rich structural information but rendering data interpretation 

difficult.
[69]

  Ultraviolet photodissociation (UVPD) is also a feasible choice for 

characterizing deprotonated glycopeptides: 193 nm UVPD has been investigated for 

negative ion mode O-glycopeptide analysis, in which a/x-type peptide fragments with 

intact glycan attached as well as glycan-specific ions were produced.
[70]

 

       The novel MS/MS technique operating in negative ion mode, negative ion electron 

capture dissociation (niECD),
[71]

 which involves peptide anions capturing an electron 

within a specific energy range (3.5-6.5 eV) and generating c/z-type cleavages at the 

peptide backbone, may also be of interest as an activation technique for glycopeptide 

structural analysis.  The analytical merit of niECD lies in its ECD-like fragmentation.  

Previous studies of phospho- and sulfopeptides demonstrated that, in niECD, peptide 

anions are fragmented in a manner highly analogous to positive mode ECD with 

generation of c/z fragment ions and without loss of labile substituents.
[71, 72]

  For 

disulfide-linked peptides, preferential disulfide bond cleavage is observed in niECD (see 

Chapter 4), a characteristic phenomenon in conventional ECD/ETD.
[73]

  Gas-phase 

zwitterion structures were proposed to be important for successful niECD and a positive 

charge is necessary to either serve as the site to capture the electron, or to promote the 

capture (see Chapter 3).
[74]

  Based on our promising results from niECD of different 

modified peptides together with the similarity observed between niECD and ECD, we 
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hypothesized that glycopeptides should also benefit from niECD analysis and valuable 

structural information may be extracted from niECD spectra of glycopeptides.  Thus, here, 

we expand the applicability of niECD towards protein glycosylation.  niECD 

fragmentation behaviors for both N-linked and O-linked glycopeptides with neutral and 

sialylated glycans are explored.   

5.2 Experimental 

5.2.1 Reagents 

       Lectin from Erythrina cristagalli, human apo-transferrin, bovine fetuin, and protease 

E from Streptomyces griseus Type XIVin (pronase E) were from Sigma-Aldrich (St. 

Louis, MO), and trypsin from Promega (Madison, WI).  Ammonium bicarbonate, 

isopropanol, methanol, acetonitrile, water, triethylamine, and formic acid were purchased 

from Fisher (Fair Lawn, NJ) 

5.2.2 Lectin Preparation 

       0.15 mg of the lectin from Erythrina cristagalli was dissolved in 100 µL buffer 

solution containing 200 mM ammonium bicarbonate.  10 µL of 0.1 mg/mL trypsin was 

then added to accomplish digestion and the protein solution was incubated for 12 hours at 

37 ºC.  After digestion, the resulting peptide mixture was desalted with a C18 reverse-

phase micro-column, ZipTip (Millipore, Billerica, MA), dried down in a vacuum 

concentrator (Eppendorf, Hamberg, Germany), and reconstituted in 50:50 

isopropanol/water with 0.1% triethylamine (v/v) prior to MS analysis.  
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5.2.3 Human Apo-transferrin and Bovine Fetuin Preparation 

       20 nmol of human apo-transferrin or bovine fetuin in 500 µL buffer solution 

containing 50 mM NH4HCO3 was mixed with pronase E.  Different protein-to-enzyme 

ratios of 1:1, 25:1, or 50:1 (w/w) were used to generate glycopeptides with different 

peptide lengths.  The digestion proceeded at 37 ºC from 2h to overnight.  After digestion, 

the peptide mixture was desalted with graphitized carbon solid-phase extraction (SPE) 

cartridges (Supelco, Bellefonte, PA).  The carbon cartridge was first activated with 3 mL 

of 0.1% formic acid in 80% acetonitrile/H2O (v/v) and then washed with 3 mL of 

deionized water.  The digest solution was loaded onto the cartridge and washed with 3 

mL to 4.5 mL of water.  Glycopeptides were then eluted with 1.5 mL of 0.1% formic acid 

(v/v) in 20%, 40%, or 60% acetonitrile/water (v/v), dried in vacuo and dissolved in 50:50 

isopropanol/water with 0.1% triethylamine (v/v) as spray solvent in negative ion mode.  

For positive ion mode analysis, the samples were diluted with electrospray solvent 

consisting of 50:50 methanol/water with 0.1% formic acid. 

5.2.4 FT-ICR Mass Spectrometry  

       Peptide digests were directly infused via an external Apollo II electrospray ion 

source (Bruker Daltonics, Billerica, MA) at a flow rate of 70 µL/h.  All experiments were 

performed with an actively shielded 7 Tesla hybrid quadrupole (Q)-FT-ICR mass 

spectrometer (APEX-Q, Bruker Daltonics), as previously described.
[75]

  For ESI, N2 was 

used as both nebulizing gas (5 L/s) and drying gas (2.5 L/s).  The drying gas temperature 

was set to 180˚C.  Briefly, ions produced by ESI were accumulated in the first hexapole 

for 0.05 s, mass-selectively accumulated in the second hexapole collision cell for 0.5-4 s, 

transferred through high voltage ion optics, and captured in an Infinity ICR cell by 
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dynamic trapping.  This accumulation sequence was looped up to three times to improve 

precursor ion abundance.  For MS/MS experiments, mass-selective external accumulation 

of negatively-charged peptide ions was performed.  For niECD, electrons were provided 

by an indirectly heated hollow dispenser cathode.
[76]

  The cathode heating current was 

kept at 1.8 A, and the cathode voltage was pulsed to a bias voltage of – 5 to – 7 V for 5 s.  

A lens electrode located in front of the hollow cathode was kept 0.5-1 V more positive 

than the cathode bias voltage.   

5.2.5 Data Analysis  

       All mass spectra were acquired with XMASS software (version 6.1, Bruker Daltonics) 

in broadband mode from m/z 200 to 3000 with 256K data points and summed over 10-32 

scans.  Data processing was performed with the MIDAS analysis software.
[77]

  Data were 

zero filled once, Hanning apodized, and exported to Microsoft Excel for internal 

frequency-to-mass calibration with a two-term calibration equation.
[78]

  Typically, internal 

calibration was performed with precursor ions and their electron-capture species as 

calibrants.  Peaks in MS
n
 were assigned within 10 ppm error after internal calibration.  

Product ions were not assigned unless the S/N ratio was at least 3. 

5.3 Results and Discussion 

       Glycopeptide fragment ions generated in niECD experiments are designated by 

combining peptide fragmentation nomenclature adapted from Roepstorff and 

Fohlman.[79]with oligosaccharide fragmentation nomenclature from Domon and 

Costello.[80]  Peptide fragments are labeled with lowercase letters, whereas glycan 

fragments with uppercase letters.  Two varieties of cleavages are generally observed in 
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MS/MS of glycans: glycosidic cleavages (B-, C-, Y-, Z-type ions) and cross-ring 

cleavages (A- and X-type ions).  The former occurs between saccharide units, and the 

latter are cleavages across the carbohydrate rings.  A system of monosaccharide symbols 

are used to represent the glycans according to the nomenclature of Varki et al.[81]  

5.3.1 Glycopeptide with a Neutral Glycan  

       First, in order to evaluate the general dissociation pattern associated with 

glycopeptide anions in niECD, an N-glycosylated peptide, well characterized in the 

literature was examined.  The niECD fragmentation behavior was mapped with a tryptic 

glycopeptide from the lectin of Erythrina cristagalli (UniProtKB/Swiss-Port P83410), 

consisting of amino acid residues 100-116 and one N-glycosylation site at asparagine 

(Asn) 113 with a known neutral xylose-type glycan.
[82]

  The monoisotopic mass of the 

glycopeptide is 2999.3281 Da, consistent with the trend that trypsin digestion of 

glycoproteins tends to generate large size peptides.
[2]

  The peptide sequence and glycan 

structure of this N-glycopeptide are shown in Figure 5.1.   

       For niECD, the doubly-charged glycopeptide anion was subjected to irradiation with 

5.5 eV electrons for 5 seconds.  The niECD spectrum of this glycopeptide and its 

corresponding dissociation sites (illustrated by lines denoting the cleavage sites) are also 

shown in Figure 5.1.  A major reaction product was the charge-increased radical anion, 

[M – 2H]
3-•

, generated from electron capture by the doubly-charged precursor ion.  The 

only type of cleavage observed at the peptide backbone is between N-Cα bonds, 

producing a series of c ions and one odd-electron z ion.  The occurrence of c/z-type 

fragments is in accordance with what was previously reported for unmodified, 

phosphorylated, sulfated, and disulfide-linked peptide anions in niECD.
[71-73]

  More 
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importantly, similar to the dissociation behavior in positive ion ECD, the labile glycan 

substituent was preserved upon the peptide backbone, which allows facile inference of 

the glycosylation site.  Six contiguous c-type products generated in the niECD spectrum 

forms a peptide sequence tag that could be potentially used for protein searching and 

identification in a database.  The missing c1 ion may be produced but failed to be detected 

due to its small m/z ratio.  The c2 fragment, which involves cleavage at the N-terminal 

side of proline, is not registered in the spectrum either.  Similarly, this type of 

fragmentation is known to be a disfavored channel in positive ion mode ECD, attributed 

to the cyclic structure of proline and the concomitant necessity to cleave two bonds.
[83]

  

Absent from the spectrum are also peptide backbone cleavages in the proximity of the 

glycosylated asparagine residue.  Similar dissociation preferences have been reported in 

ECD and ETD spectra of glycopeptides.
[44, 60, 84]

  The proposed explanation is that the 

bulky glycan moiety prevents access to the backbone carbonyl oxygens and thus 

sterically hinders cleavage close to glycosylation sites.  It is interesting to note that 

mostly N-terminal c ions and only a few complementary C-terminal z ions are present in 

the niECD spectrum, likely due to the lower stability of radical z ions.
[54]

  This 

observation is analogous to what was reported in previous ECD work of a very similar 

lectin glycopeptide.
[44]

  However, this result is opposite to what was shown for ETD, in 

which primarily z ions were produced for the same glycopeptide.
[41]

  Preferred generation 

of even-electron c ions has also been observed in other ECD studies,
[60, 84-86]

 supporting 

that niECD proceeds through similar fragmentation channels as compared with positive 

ion ECD.  In this example, the glycan can be confidently assigned to the first asparagine 

residue based on the N-X-S/T sequon for N-glycosylation.  However, in cases where 
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multiple glycosylation sites are present, more complete sequence coverage may be 

necessary to positively identify the modification location.  Such identification becomes 

more problematic for O-glycopeptides, as they lack a consensus sequence and tend to 

occur in sequence tracts with a high density of threonines and serines.   

 

 
Figure 5.1.  niECD (32scans, 5s irradiation, cathode bias -7.0 V) FT-ICR mass spectrum 

of a doubly-deprotonated N-glycopeptide obtained from trypsin digestion of Erythrina 

cristagalli lectin.  The electron capture species is highlighted in red in the spectrum.  3 

represents the third harmonic and * electronic noise.  The fragmentation pattern is 

summarized on top of the spectrum.  The glycosylation site in the peptide sequence is 

shown in red.  In the diagram depicting glycopeptide structure, green circles indicate 

mannose, blue squares indicate N-acetylglucosamine, red triangles indicate fucose, and a 

rhombus indicates xylose. 
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       This particular glycopeptide was also studied by the vibrational activation techniques 

CAD and IRMPD as well as the electron-mediated techniques ECD and ETD.  The 

niECD fragmentation behavior was dramatically different from that in CAD and IRMPD, 

which primarily cleave glycosidic bonds in the glycan portion while leaving the peptide 

region intact.
[41, 43]

  Conversely, the niECD data shown here looks almost identical to 

those observed in ECD by Hakansson et al.
[44]

 and very similar to ETD results obtained 

by Hogan et al.
[41]

 for the same glycopeptide, both in the appearance of various peptide 

backbone fragments as well as the absence of glycan-specific products.  Therefore, for 

glycopeptides with neutral glycans, niECD appears to proceed very much like positive 

ion mode ECD/ETD.  

5.3.2 MS Analysis of Sialyated Glycopeptides 

       Due to more abundant ion signal and less ion suppression, it is a more logical choice 

to perform negative ion mode analysis for acidic analytes.  Thus, we moved on to 

investigate two model glycoproteins harboring acidic sialic acid oligosaccharides.  Sialic 

acids (e.g., N-acetyl neuraminic acid, NeuAc) contain a carboxylic acid at the C-1 

position of the six-member sugar ring and are frequently located at the terminal position 

of N- and O-glycans.  Human apo-transferrin is a 77 kDa protein (UniProtKB/Swiss-Port 

P02787) and has several potential sites for both N- and O-glycosylation.
[87, 88]

  Bovine 

fetuin (38 kDa protein, UniProtKB/Swiss-Port P12763) also has multiple putative sites 

for sialylated glycans.
[89]

   

       Both of these proteins were digested with pronase E, a protease mixture capable of 

cleaving every peptide bond in a protein nonspecifically, except for those near the 

glycosylation site.
[90]

  The use of pronase takes advantage of steric hindrance from the 
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glycan moiety and hydrolyzes non-glycosylated portions of glycoproteins to free amino 

acids while leaving a short peptide tag surrounding the glycosylation site.  This approach 

has the potential to determine glycan microheterogeneity at specific sites even in 

mixtures of proteins.  On the other hand, traditional tryptic digestion primarily results in 

non-glycosylated peptides that tend to suppress glycopeptide signals.  In addition, trypsin 

typically generates glycopeptides with large sizes that may not be optimal for MS 

analysis and do not fully represent the glycan heterogeneity.  Trypsin also yields peptides 

with basic R or K residues at the C-terminus, decreasing the ionization efficiency in 

negative ion mode.  Non-specific proteolysis by pronase followed by MS analysis has 

proven highly useful for site-specific glycosylation analysis of both N- and O-linked 

glycoproteins.
[39, 65]

   

       One example of MS analysis is provided in Figure 5.2, which depicts an ESI FT-ICR 

MS spectrum of human apo-transferrin digested by pronase E at 50:1 protein/enzyme 

ratio overnight.  The top spectrum was obtained from electrospray ionization in positive 

ion mode using acidic spray solution (0.1% formic acid)routinely used in proteomics 

protocols.  The bottom spectrum was obtained from spraying in negative ion mode using 

basic spray solution (0.1% triethylamine).  The inverted triangles represent peaks of 

interest as they correspond to sialylated glycopeptides as determined by their accurate 

masses.  In the positive mode analysis, acidic sialylated glycopeptides were generated at 

such low abundance that they are barely noticable.  Non-glycopeptides and non-acidic 

glycopeptides dominate the spectrum, preventing detection of the less efficiently ionized 

acidic glycopeptides.  With such signal abundance, it would be highly challenging to 

perform MS/MS techniques like ECD and ETD.  In sharp contrast with the positive mode, 
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the same sialylated glycopeptides preferentially ionized and experienced a dramatic 

signal increase in negative ion mode (shown in Figure 5.2(b).  This comparison strongly 

confirms that negative ion mode is superior to positive mode for detecting sialylated 

glycopeptides, by providing more intense ion signal, which further benefits the 

subsequent tandem MS analysis.  In addition, it is worthwhile to point out that 

glycopeptides are known to appear at relatively high m/z ratios, as observed here.  

However, ECD and ETD exhibit poor fragmentation behavior at low charge states and 

high m/z ratios.
[61, 62]

  As a result, additional activation (IRMPD or CAD) is often 

required for ECD and ETD analysis of glycopetides.  Dissimilarly, niECD prefers high 

m/z ratios due to lower charge density and decreased Coulomb repulsion, which makes 

electron capture more viable.  Overall, it appears that negative ion mode MS and niECD 

MS/MS are more suitable for characterization of sialylated glycopeptides compared with 

positive ion mode MS and ECD/ETD.  
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Figure 5.2.  (a) Positive ion mode electrospray FT-ICR mass spectrum of human apo-

transferrin glycoprotein after pronase E digestion at 1:1 protein/pronase ratio for 2 h.  (b) 

Negative ion mode electrospray FT-ICR mass spectrum of the same digestion mixture.  

Inverted triangles with the same color represent the same sialylated glycopeptides.  The 

corresponding structures of the sialylated glycopeptides are shown in the inset. 

 

5.3.3 Sialyated O-Glycopeptides with One Potential Glycosylation Site 

       As mentioned above, O-glycoproteins are highly challenging to characterize and site-

specific exploration of O-glycosylation has seen much less progress because there is no 

characterized peptide sequence motif.  This problem is further compounded by the fact 

that O-glycans are often observed within domains rich in serine and threonine, 

introducing significant complications in assigning O-glycans to a specific site.  With the 

aid of pronase digestion, glycopeptides harboring only a couple or even one threonine or 

serine in their sequences can be prepared, greatly facilitating determination of glycan 
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attachment sites.  Figure 5.3 shows an O-glycopeptide with only one possible 

glycosylation site from pronase E digestion of bovine fetuin.  Due to the presence of one 

acidic amino acid residue (aspartic acid) in the peptide and two sialic acids in the glycan, 

this glycopeptide has a very low pI, hence leading to improved ionization in the negative 

mode.  There are two peptide sequences possible for this glycopeptide (shown in Figure 

5.3).  Without the aid of MS/MS, it is impossible to distinguish these structural isomers. 

       For niECD, 4.5 eV electron irradiation was applied to the singly-deprotonated O-

glycopeptide.  A major product corresponding to the charge-increased radical 

intermediate, a doubly charged c-type peptide fragment, and several singly charged c- 

and z-type peptide sequence ions are present in the spectrum (Figure 5.3).  Some small 

molecule losses (water and CO2), commonly observed in niECD, were also seen from the 

charge-increased radical anion.  The presence of two prolines reduced the total number of 

possible cleavages at peptide backbone bonds to 4, out of which 3 were detected in the 

niECD spectrum.  The missing cleavage at the N-terminal side of Ser may result from 

steric effects: this serine is located adjacent to the glycosylation site and the cleavage may 

be prevented by the nearby carbohydrate structure.  Apart from the dissociation pathways 

yielding c- and z-type ions, one y-type peptide backbone cleavage was observed.  Such 

cleavage has been previously reported as a minor reaction channel in conventional ECD 

as well.
[83, 85]

  Similar to what was observed for the lectin glycopeptide, all the peptide 

fragments that contain the modified serine preserve the complete oligosaccharide moiety, 

thus rendering assignment of the glycan attachment site possible.  It is noteworthy that c4, 

z3, c6 ions in the niECD spectrum can be exclusively designated to the amino acid 

sequence APSAVPD, allowing unequivocal discrimination of the isomeric structure.  The 
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structural information derived from the niECD spectrum is in agreement with what was 

obtained previously via EDD of the same glycopeptide.
[69]

   

 

Figure 5.3.  niECD (32scans, 5s irradiation, cathode bias -5.4 V) FT-ICR mass spectra of 

a singly-deprotonated sialylated O-glycopeptide containing one potential glycosylation 

site.  The peptide was generated by pronase digestion of bovine fetuin at 1:1 

protein/enzyme ratio overnight.  The niECD fragmentation pattern is summarized on top 

of the spectrum.  For branched oligosaccharides, the letter α refers to the largest branch 

and the letter β represents the second largest branch.  An alternative assignment of the 

peptide sequence is shown in the brackets. 

 

       Interestingly, in addition to ion signals corresponding to regular peptide fragments, 

niECD of this acidic O-glycopeptide yielded some glycan-specific products  formed 

through rupture of glycosidic bonds.  B1 and C1 (B, C ions represent glycan-only 

products), Y2 and Z2 (Y, Z ions indicate the intact peptide losing parts of the glycan) ions, 
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arising from losing the sialic acid residue in the glycan moiety, were the most prominent 

in the spectrum.  Remarkably, some of these sugar product ions are present as hydrogen-

deficient (or hydrogen-abundant) species appearing at mass values 1 or 2 Da lower (or 

higher) than their expected masses.  These atypical glycosidic cleavages as well as the 

observed mass shifts may be explained by a series of hydrogen-rearrangement reactions, 

induced by a radical site at the peptide backbone and prior to elimination of the sugar unit 

from the radical anion [M – H]
2-•

.  Y2 – 1 and B1 + 2 ions could originate from one or two 

steps of hydrogen transfer processes from the peptide backbone to the leaving sialic acid 

residue, leading to cleavage of the glycosidic bond between sialic acid and its 

neighboring sugar residue.  The formation of Z2 + 1 ion may be interpreted through a 

similar process but with hydrogen transfer from the sugar moiety to the peptide chain.  

Although the provision of peptide sequence ions without fragmentation of the glycan 

portion is considered the most prevailing feature in glycopeptide ECD and ETD, 

exceptions to this general behavior have been reported in ECD of O-glycopeptides.
[60, 84, 

91]
  Mormann and co-workers applied ECD to mucin-derived glycopeptides and noted 

analogous Z-, Y-type glycan fragments along with hydrogen gains and losses.
[84]

  A 

similar mechanism was proposed, involving a radical site-initiated process causing 

cleavage at glycosidic bonds, followed by a subsequent series of hydrogen migrations.  

With this evidence, we hypothesize that, when applied to O-glycopeptides, niECD 

involves similar dissociation processes.  

       Two more niECD examples of sialylated O-glycopeptides with only one putative 

glycosylation site are shown in Figures 5.4(a) and (b).  These two glycopeptides also 

favor efficient ionization in negative ion mode by including two acidic amino acid 
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residues (aspartic acid and glutamic acid) and one sialic acid saccharide in their structures.  

As expected, the charge-increased electron capture species as well as a number of N-

terminal c-type and C-terminal z-type peptide backbone fragments were produced in 

niECD.  Each of these peptide sequence ions retains the intact glycan, except the z3 ion in 

Figure 5.4(a), as it does not contain the modified serine.  Similar to the previous example, 

niECD of these two O-glycopeptides exhibit ion signals corresponding to glycan 

fragmentation.  Abundant loss of one or two sialic acid units from the precursor ions with 

hydrogen migration were observed in these two spectra.  This pronounced and 

characteristic niECD fragmentation pathway within the glycan region can potentially 

serve as a screening method, allowing rapid detection and identification of sialylated 

glycopeptides in a digest mixture.   
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Figure 5.4.  niECD (32scans, 5s irradiation, cathode bias -5.4 V) FT-ICR mass spectra of 

two singly-deprotonated sialylated O-glycopeptides derived from pronase digestion of 

bovine fetuin at 1:1 protein/enzyme ratio overnight.  niECD fragmentation patterns of 

these sialylated O-glycopeptides are summarized on top of each spectrum, respectively.   
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       The three O-glycopeptides shown in this section have overlapping peptide sequences, 

indicating that they originate from the same segment of bovine fetuin.  However, the 

glycan structure in the first glycopeptide (Figure 5.3) is different from the latter two 

(Figure 5.4(a) and 5.4(b)), consistent with O-glycan structures being prone to having high 

structural heterogeneity.  On the basis of similar and consistent fragmentation patterns for 

these three examples, niECD is again considered to proceed very similarly to ECD/ETD 

also in terms of O-glycopeptide analysis.  

5.3.4 Sialyated O-Glycopeptides with Multiple Potential Glycosylation 

Sites 

       Even for nonspecific proteolysis with pronase, glycopeptides containing multiple 

potential sites for O-glycan attachment were produced, largely due to the tendency of O-

glycosylation to occur in areas with a high frequency of threonine and serine residues.  In 

Figure 5.5, an O-glycopeptide from a pronase digest of the glycoprotein bovine fetuin has 

two potential glycosylation sites, the threonine and serine residues in the sequence.  On 

the basis of accurate mass, the structure of this O-glycopeptide could either be two 

trisaccharides attached to the serine and threonine separately, or one hexasaccharide 

attached to the serine or threonine.
[92-94]

  Again, without tandem MS data, one cannot 

determine the specific structure of this glycopeptide.  With 5.5 eV electron irradiation, 

niECD of the doubly-charged precursor anion resulted in a charge-increased electron 

capture species, [M – 2H]
3-•

, together with water loss from this intermediate as noted for 

other peptides upon niECD.  As the main diagnostic ions produced in niECD, singly- and 

doubly-charged c/z type peptide sequence ions generated from peptide backbone cleavage 

were observed as well.  No glycan detachment was observed from the peptide backbone 
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fragments.  Although the complete peptide sequence cannot be derived from the niECD 

spectrum, the presence of z6 and c4 product ions is sufficient to differentiate these two 

isomeric structures.  Because the two fragments each contain one trisaccharide, the 

glycopeptide could be assigned to the corresponding structure with two trisaccharides 

attached to threonine and serine respectively.  In concert with the observation for 

sialylated O-glycopeptides in Figures 5.3 and 5.4, radical-driven fragmentation at the 

glycosidic bonds, resulting in neutral loss of the sialic acid residue, also occurred here.  

Appearance of these characteristic satellite peaks (sialic acid loss) in niECD again 

implies that this favored dissociation channel may be used as an important indicator of 

the presence of sialylated O-glycans.  

 
Figure 5.5.  niECD (32scans, 5s irradiation, cathode bias -6.6 V) FT-ICR mass spectrum 

of a doubly-charged O-glycopeptide precursor anion from bovine fetuin.  The pronase 
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digestion proceeded at 50:1 protein/enzyme ratio overnight.  This sialylated glycopeptide 

has one threonine and one serine residue in the sequence, both of which are potential O-

glycosylation sites.  The two peptide sequence ions that could be utilized to differentiate 

the isomeric structures are highlighted in purple.  If ions are generated due to multiple 

cleavage sites, they are designated with a slash between sites of cleavage. 

 

5.3.5 Sialyated N-Glycopeptides with Long Peptide Length 

       Another glycopeptide type, deprotonated N-glycopeptides from the model 

glycoprotein human apo-transferrin, was characterized by negative ion ECD.  According 

to previous studies, the length of the peptide portion in glycopeptides from pronase 

digestion is tunable via alteration of the mass ratios between pronase and protein, or the 

incubation time of the digestion.  In order to evaluate the differences in dissociation 

behavior of glycopeptides varying in peptide length, a series of glycopeptides bearing 

different peptide moiety sizes but sharing the same N-linked glycan structure were 

prepared by adjusting mass ratios of protein and protease from 1:1 to 50:1.  It appears 

that the fragmentation patterns of N-glycopeptides is highly sensitive to the peptide 

sequence length in niECD experiments. 
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Figure 5.6.  niECD (32scans, 5s irradiation, cathode bias -7.2 V) spectrum of a triply-

charged sialylated N-glycopeptide prepared by incubating the glycoprotein with pronase 

E at 50:1 mass ratio for 2 h.  

 

       In Figure 5.6, the N-glycopeptide under inspection was generated by incubating the 

glycoprotein human apo-transferrin with pronase E at 50:1 ratio (w/w) for 2 h.  This 

peptide comprises a relatively long amino acid portion (residues 628-638) and is 

glycosylated at asparagine 630 with a biantennary bisialylated oligosaccharide.  Given its 

relatively large size (monoisotopic mass 3304.1965), triply-deprotonated precursor ions 

were generated upon negative mode electrospray ionization.  It has been found previously 

that appropriate electron energy is key for successful niECD and appears to be 

substantially dependent on the charge state.
[71]

  For peptides that are highly charged, 

electrons with relatively higher energy are required to overcome the increased Coulomb 

repulsion between the precursor anions and electrons.  The fragmentation characteristics 
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of this sialylated N-glycopeptide in niECD are similar to other glycopeptides that have 

been investigated so far.  Electron irradiation at 6 eV energy for 5 seconds gave rise to 

electron capture and the resulting radical species, [M – 3H]
4-•

.  Signal due to neutral loss 

of ammonia from the molecular radical anion was also observed.  Radical-driven 

fragmentation of the peptide chain was obtained, resulting in two c-type (c8, c9), two z-

type (z5, z9), and one y-type (y10) sequence ions without cleavages in the carbohydrate 

moiety.  Again, this information can be readily used to confirm the amino acid sequence 

and the correct site of glycosylation.  Analogous to the sialylated O-glycopeptides 

described above, the N-glycosylated peptide underwent some glycan cleavage processes: 

the major products present in the spectrum are glycan-specific fragments, i.e., B1 and Y6, 

which correspond to the loss of sialic acid.  For N-glycopeptides, similar instances of ions 

originating from cleavages of the glycosidic bonds but not the peptide backbone bonds 

have been reported occasionally in ETD.
[32]

  Wuhrer and co-workers performed ETD of 

several N-glycopeptides, and noticed that next to the apparent c and z peptide product 

ions, fragmentation of the glycosidic bonds as well as elimination of the entire N-glycan 

chain also occurred.
[32]

  Similar to O-glycopeptides, a radical site-induced dissociation 

channel could probably account for the cleavages in the carbohydrate moiety for N-

glycopeptides.  Overall, the niECD fragmentation pathways for N-glycosylated peptides 

with high peptide length is very similar to those of O-glycopeptides. 

5.3.6 Sialyated N-Glycopeptides with Short Peptide Length 

       For N-glycopeptides with shorter peptide length, niECD provides dissimilar 

fragmentation spectra as compared to the previous glycosylated peptides discussed above.  

By reducing the mass ratio between the protein and the protease to 25:1 and increasing 
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the digestion time to 12 h, glycopeptides with a shorter peptide sequence (and relatively 

larger glycan moiety compared to the peptide) were generated.  Figure 5.7(a) illustrates 

the fragmentation pattern of the N-glycopeptide with five amino acid residues.  The 

doubly-charged precursor anion was interacted with 5.5 eV electrons for 5 seconds.  A 

charge-increased odd electron species and typical neutral loss of 17 Da (ammonia) from 

the precursor radical were observed.  Two fragments that arose from peptide bond 

cleavages were observed as c/z-type ions.  Consistently, the entire glycan remained intact 

on these peptide sequence ions, allowing mapping of the glycosylation site.  Nonetheless, 

the dissociation pattern in this particular analysis is somewhat distinct from what have 

been found so far in niECD, and contains highly rich information with respect to the 

glycan structure.  An extensive series of glycan-specific fragments, corresponding to 

cleavage of glycosidic bonds (B, C, Y, and Z ions) with retention of the intact peptide 

chain, was generated.  The dominant glycan cleavages are probably due to the 

significantly increased glycan/peptide mass ratio.  The fragmentation comprises complete 

coverage of monosaccharide composition and the entire structure of the glycan can be 

inferred from the niECD spectrum.  The most abundant product ions again corresponded 

to the loss of the labile sialic acid unit.  Similar to the sialylated O-glycopeptides, 

hydrogen migration was observed for this N-glycosylated peptide, indicating that 

elimination of the glycan residues is highly likely through the same radical-site induced 

process as described above.  Concurrent with the glycosidic cleavages, niECD of this N-

glycopeptide yielded one cross-ring cleavage (namely the 
2,5

X6 ion), providing 

information regarding saccharide linkage positions.  The dissociation behavior for this 

particular N-glycopeptide is not entirely surprising, as it has also been found that ECD or 
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ETD occasionally deviate from their “typical” dissociation behavior by eliminating the 

carbohydrate moiety as a  whole or in part.  Although the factors that influence loss or 

cleavage of the oligosaccharide during ECD and ETD of glycopeptides remain obscure, it 

has become clear that these pathways can contribute significantly to the overall 

dissociation behavior, similar to those observed in glycopeptide niECD.   
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Figure 5.7.  niECD (32scans, 5s irradiation, cathode bias -5.5 V) FT-ICR mass spectra of 

three doubly-charged N-glycopeptides from human apo-transferrin.  The sialylated N-

glycopeptide in (a) was generated through overnight pronase digestion at 25:1 mass ratio 

between the protein and the protease, whereas the glycopeptides in (b) and (c) were 

produced at 1:1 protein/enzyme ratio.  Superscript numerals indicate between which 

bonds cross-ring cleavage occurred. 

 

In Figures 5.7(b) and (c), two N-glycopeptides with even shorter peptide length were 

obtained by further decreasing the protein to protease ratio to 1:1 for overnight digestion.  

The glycan portion is much more massive than the peptide section in these two examples.  

The N-glycopeptides with rather small peptide moieties yielded a much simpler 

dissociation pattern, and therefore less information compared to the spectrum in Figure 

5.7(a).  The two niECD spectra look almost identical.  With such a short peptide length, it 

is not surprising that neither of the glycopeptides gave rise to any peptide sequence ions 

upon electron capture (for the glycopeptide in Figure 5.7(c), peptide cleavage is not 

possible because it only contains one amino acid residue).  Instead, glycan-specific 

fragment ions resulting from glycosidic cleavages were readily apparent in the spectra.  

The most abundant products were also generated by losing the terminal sialic acid residue.  

Neutral loss of two sugar residues was detected, but with a signal of minor abundance.  

For the N-glycopeptide containing two amino acid residues (shown in Figure 5.7(b)), loss 

of the three outermost sugar residues was present in the spectrum, whereas this particular 

fragment was missing for the N-glycopeptide with only one amino acid residue (Figure 

5.7(c)).  Notably, elimination of the sialic acid was observed on a consistent basis for all 

the sialylated glycopeptides studied here, confirming that the characteristic sialic acid 

ions could be potentially applied to distinguish sialylated glycopeptides from non-

sialylated ones.  
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5.4 Conclusion 

       N-linked and O-linked glycopeptides with both neutral and acidic glycans were 

investigated by negative ion ECD.  Similar to positive mode ECD and ETD, niECD of a 

glycopeptide with a neutral glycan showed cleavage of the peptide backbone, producing 

c- and z-type peptide fragments while the intact glycan was largely preserved.  The 

retention of the labile glycan is critical for site-specific glycan determination in 

glycopeptide analysis.  Amino acid sequence information as well as glycan occupancy 

site information could be obtained from niECD spectra directly and simultaneously, 

aiding the interpretation of glycopeptide structures.  For sialylated glycopeptides, 

significantly enhanced detection was achieved in negative mode MS analysis.  In the case 

of sialylated O-glycopeptides, which are far more challenging to study than N-

glycopeptides, niECD generated peptide backbone fragments retaining the glycan.  The 

peptide sequence and glycosylation site was confirmed via niECD.  Analogous niECD 

results were acquired for sialylated N-glycopeptides with high peptide length.  However, 

for N-glycopeptides with short peptide length, glycan cleavages are dominant in niECD 

spectra.  Glycosidic bond cleavages have also been reported in ETD of N-glycopeptides.  

Abundant sialic acid loss was observed in all the sialylated glycopeptide examples in this 

study, suggesting its ability to constitute a characteristic signature in detecting sialylated 

glycopeptides in complex mixture.   
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Chapter 6 

 

 

Conclusions and Future Directions 

 

 

 

 

6.1 Summary of Results 

       The electron-based ion activation techniques, ECD and ETD, involve electron 

attachment/transfer to multiply-charged peptide and protein cations and have found broad 

applications in the structural analysis of biomolecules.  In Chapter 2, we demonstrated 

that negatively charged peptide ions ([M – nH]
n–

, n1) can also capture electrons, 

resulting in charge-increased radical intermediates that undergo further fragmentation 

analogous to that observed in positive ion mode ECD and ETD.  We termed this 

phenomenon niECD.  A rather narrow electron energy range (3.5-6.5 eV) appears 

acceptable for niECD.  The acidic and biologically important PTMs, phosphorylation and 

sulfation, were investigated by this new MS/MS technique.  For all examined 

phosphorylated and sulfated peptides, predictable cʹ and z
•
 product ions from N-Cα 
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backbone bond cleavage were observed with retention of the labile modifications.  In 

addition, higher sequence coverage was obtained in niECD compared with negative ion 

mode CAD.  Thus, niECD holds great promise for characterization of acidic peptides that 

show improved ionization efficiency and less ion suppression in negative mode, and for 

localization of PTMs.  However, niECD is not universal.  Electron capture did not occur 

for several unmodified peptides which do not contain either strongly acidic or strongly 

basic residues in their sequences.  This shared characteristic among these peptides led us 

to hypothesize that gas-phase zwitterionic structures may play an important role in 

successful niECD.   

       In Chapter 3, the proposed zwitterion mechanism of niECD was first explored by 

implementing a variety of chemical derivatization techniques with the goal to either 

prevent or promote gaseous zwitterionic structures.  Peptide N-terminal acetylation and 

dephosphorylation/desulfation remove potential protonation and deprotonation sites, 

respectively, and thus may inhibit zwitterion formation.  Consistently, both of these 

reactions resulted in decreased peptide niECD efficiency.  Enhancement of gas-phase 

zwitterion structures was achieved by introducing positive charge-carrying or readily 

chargeable groups to the molecules.  Attachment of fixed-charge tags in the form of 

quaternary amine (i.e., TMAA, DABCO, and Girard’s T-based tags), as well as peptide 

N-terminal guanidination, rescued niECD ability of peptides and an oligosaccharide that 

were unable to capture an electron in their unmodified forms.  Although structurally 

uninformative fragments such as partial and entire tag losses were dominant in the niECD 

spectra, successful electron capture upon derivatization correlates with our hypothesis 

that niECD requires zwitterionic gas-phase structures.  In order to examine the 
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mechanism more systematically, niECD was applied to five sets of synthetic peptides 

with varying propensities for zwitterion formation.  All the five datasets followed the 

same decreasing niECD efficiency trend with decreasing zwitterionic probability, thus 

supporting the zwitterion niECD mechanism.   

       In Chapter 4, application of niECD was expanded towards disulfide-linked peptide 

pairs.  Both natural protein disulfide bonds in insulin and lysozyme and disulfides 

introduced by the cystine-based cross-linker DTSSP were investigated.  When subjected 

to niECD, disulfide-bound peptides exhibited dissociation patterns highly analogous to 

those in conventional ECD/ETD.  S-S bonds are preferentially cleaved in niECD, 

rendering it a promising tool for rapid detection of disulfide-linked peptides in complex 

mixtures.  Limited C-S bond cleavage and N-Cα backbone bond cleavage were also 

generated in niECD.  This work also sheds some light on the niECD mechanism.  

Selective dissociation at disulfide bonds observed in both ECD and niECD further 

indicates that niECD proceeds through a mechanism related to that of conventional 

peptide ECD/ETD. 

       The applicability of niECD towards another important PTM, glycosylation, was 

explored in Chapter 5.  Site-specific characterization of glycosylation by mass 

spectrometry remains challenging due to the lability of glycosidic bonds.  Both N-linked 

and O-linked glycopeptides with neutral and acidic glycans were examined by niECD.  

For a lectin glycopeptide with a neutral glycan, niECD exclusively cleaved the peptide 

backbone bonds while preserving the labile glycan, analogous to cation ECD and ETD.  

Thus, peptide sequence information as well as glycan attachment site information could 

be extracted simultaneously from the niECD spectrum.  For sialylated glycopeptides, a 
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dramatic signal increase was achieved in negative ion mode electrospray due to their 

acidic nature.  In the cases of sialylated O-glycopeptides, which are far more challenging 

to analyze than N-glycopeptides, similar peptide backbone fragments with retention of 

the intact glycans were produced in niECD.  Analogous niECD results were obtained for 

sialylated N-glycopeptides with high peptide length.  However, for N-glycopeptides with 

short peptide length, niECD spectra were dominated by glycan cleavages.  Similar radical 

site-induced glycosidic bond fragmentation has also been reported in positive ion mode 

ECD and ETD experiments.   

6.2 Prospects for Future Work 

6.2.1 Further Mechanistic Exploration of niECD 

       As discussed in Chapter 3, fixed-positive charge tags (quaternary amine groups) 

successfully enabled niECD for peptide anions failing to capture an electron in their 

unmodified forms.  However, abundant tag losses were observed for the chosen 

derivatization techniques, precluding peptide/oligosaccharide sequence analysis.  

Additional charge tags could be investigated to promote peptide gas-phase zwitterion 

formation in negative ion mode.  Fixed-negative charge tags are also of interest, 

particularly for peptides with multiple basic sites (e.g., tryptic peptides).  Two tag 

candidates providing a negative charge are shown in Scheme 6.1.  The first example is 4-

aminonaphtalene sulfonic acid (ANSA), previously used to invoke charge-remote 

fragmentation in negative ion CAD.
[1]

  ANSA reacts with peptide C-termini and acidic 

side chains, replacing the carboxylic acids with a more acidic sulfonic acid.  Introduction 

of a negative charge may also be achieved by derivatization with 4-sulfophenyl 
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isothiocyanate (SPITC).
[2, 3]

  In this case, the N-terminal amino group is modified to a 

highly acidic/negatively charged sulfonate derivative.   

 
 

Scheme 6.1.  Negative-charge tags to be explored for promoting peptide zwitterions in 

negative ion mode.  (a) 4-aminonaphtalene sulfonic acid (ANSA) (b) 4-sulfophenyl 

isothiocyanate (SPITC). 

 

       The synthetic peptide data shown in Chapter 3 also indicate that higher-order 

structure may influence the niECD process.  We proposed that the unexpected decrease in 

niECD fragmentation efficiency upon replacing C-terminal glutamine with lysine (the 

second series of synthetic peptides) is due to salt bridge formation between the lysine side 

chain and the C-terminal carboxylic acid.  To address this problem, an infrared laser pulse 

before or after electron irradiation could be applied to break these potential non-covalent 

bonds, thus unfolding the peptide gas-phase structures, and presumably enhance niECD 

fragmentation.  Further experiments with activated ion niECD will lend more insights 

into the structural effects in niECD.  Another approach to investigate gaseous zwitterion 

structure is through computational modelling, which will be conducted in collaboration 

with Dr. Charles Brooks’ group in the Department of Chemistry, University of Michigan.  
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Calculations of the gas-phase structures of the synthetic peptides will be performed and 

theoretical zwitterion propensity will be compared for peptides within the same sets as 

well as corresponding peptides in different sets.  These computational data will be 

important for comparison with our experimental work and to verify the zwitterion 

hypothesis.   

6.2.2 Optimization of niECD 

       It has been shown that niECD efficiency decreases with increasing charge state with 

maximum efficiency at an overall negative charge of one.  However, for peptides, ESI 

favors higher charge states (2- or higher depending on peptide mass and sequence).  In 

niECD experiments, mass spectral scan times are often lengthened due to the necessity to 

acquire sufficient signal from low abundance singly-charged precursor anions.  Thus, 

charge state manipulation techniques to promote low precursor ion charge states may be 

necessary for optimum niECD.   

       Proton transfer reactions (PTR), which involve gas-phase reactions between 

precursor ions and reagent ions of opposite polarity, have shown utility for reducing 

precursor ion charge
[4-6]

, charge-state purification
[7]

, and even charge inversion
[8]

.  PTR 

can be carried out in the external collision cell of our SolariX FT-ICR mass spectrometer.  

The external CI source is used to generate protonated fluoranthene ions, which provide 

efficient proton transfer to multiply charged peptide anions.  PTR has been successfully 

applied in our lab to peptide anions and enhanced the signal of the singly-charged species.  

Experimental data demonstrate that niECD is achieved in a shorter time and more 

extensive structural information is generated when PTR is employed.  However, there is 

still room for improvement.  Further exploration of PTR, including reagent ion type, ion 
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mixing time, and ion introduction time could be performed in order to optimize this 

process.  Alternative PTR reagents will include protonated isobutylene, pyridine, 

qunioline, isoqunioline, and benzoquinoline, all of which have been shown to 

predominantly affect proton transfer in reactions with multiply deprotonated 

oligonucleotides.
[9, 10]

  Protonated reagent molecular ions should be relatively 

straightforward to produce with the existing CI source.  Alternative CI reagent gases, 

including isobutane and ammonia rather than methane, could also be used as needed.   

       In addition to gas-phase charge state manipulation, solution-phase manipulation 

could be performed to improve niECD.  Solution pH may play a role in affecting 

precursor charge states.  Currently, basic pH is used to promote anion generation, 

however, lower pH may be ideal for generation of lower charge states.  Furthermore, 

different solvent additives could be explored, such as piperidine/imidazole as reported by 

Taucher and Breuker for lowering charge states of RNA.
[11]

   

6.2.3 niECD of Intact Proteins 

       One major contribution of conventional ECD is its utility for protein top-down 

analysis.
[12-14]

  Given the extent of backbone fragmentation and retention of PTMs 

associated with ECD of intact proteins, it provides great benefits in protein 

characterization during top-down analysis.  However, for acidic proteins, the high acidity 

affects protonation during positive mode ESI.  In particular for phosphoproteins, salt 

bridges between the negatively charged phosphates and protonated groups may be 

induced, potentially affecting their fragmentation behavior.   

       Alternatively, negative ion mode may be valuable for acidic proteins, as reported by 

Breuker and co-workers for EDD of unmodified acidic proteins.
[15]

  EDD and negative 
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ion IRMPD were applied in our lab to a phosphoprotein (β-casein) and valuable 

complementary information was generated.
[16]

  Particularly, additional backbone cleavage 

was observed in the highly acidic multiply-phosphorylated region compared to 

conventional ECD, possibly due to salt-bridge formation in positive ion mode as 

discussed above.  Thus, further exploration of negative ion mode for top-down MS/MS is 

of interest.  Because niECD is very similar to regular ECD, it should also be 

advantageous in dissociating intact proteins and directly localizing labile PTMs.  

Moreover, niECD should be complementary to both negative mode IRMPD and EDD 

because IRMPD yields a variety of product ions, EDD yields a/x-type ions, and niECD 

should provide c/z-type ions.   

       Preliminary data for quadruply deprotonated, [M – 4H]
4-

, ubiquitin (8.5 kDa) 

precursor ions from niECD are illustrated in Figure 6.1.  Successful electron capture 

resulting in charge-increased [M – 4H]
5-•

 ions was observed but no backbone fragments 

were generated.  For positive ion mode ECD or negative ion mode EDD, when applied to 

proteins, “activated ion” ECD or EDD (AI-ECD or AI-EDD) are often utilized to 

maximize the amount of informative backbone fragments.  A similar precursor ion pre- or 

post-activation strategy may also be necessary for niECD, i.e., activated ion niECD.  IR 

laser irradiation could be applied before or after electron capture to help unfold the 

sterically constrained structure and increase backbone cleavage coverage.  Since the pI of 

ubiquitin is around neutral, investigation of more acidic standard proteins such as 

calmodulin and standard phosphoproteins such as caseins may also be valuable future 

work.  
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Figure 6.1.  niECD of ubiquitin (SolariX FT-ICR MS instrument).  [M – 4H]

4- 
precursor 

ions were irradiated with electrons for 5 s.  The cathode voltage was set to – 7.1 V.  The 

spectrum was accumulated for 32 scans. 

 

       The approaches proposed to be developed in the previous section for charge state 

manipulation will be employed for maximizing niECD outcome as well.  PTR prior to 

niECD could be applied to lower the charge state of precursor ions, decrease Coulomb 

repulsion and thus increase niECD efficiency.  Nano ESI and native ESI, where proteins 

are sprayed in an aqueous solution containing a volatile salt, e.g., ammonium acetate, 

could also be utilized to shift charge state distribution of proteins.  Ionization conditions 

in both cases are much gentler than regular ESI, and thus, more native-like proteins could 

be generated, which usually carry fewer charges.  It also makes niECD a promising 

technique for investigating non-covalent interactions in protein complexes, as low charge 

states are preferred to retain solution-phase higher order structure into the gas phase. 
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