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ABSTRACT

Experiments and Inverse Analysis for Determining Non-Linear Viscoelastic
Properties of Polymeric Capsules and Biological Cells

by

Nhung T. Nguyen

Co-Chairs: Anthony M. Waas and Alan S. Wineman

The mechanics of capsules and cells plays an important role in many applications,

including designing and efficiency testing for drug delivery purposes, establishing po-

tential biomarkers for disease detection, and providing insight into many cells’ func-

tions and processes. Hence, techniques like indentation, micropipette aspiration, and

atomic force microscopy (AFM) based testing have been employed widely to probe

their mechanical properties. Interpreting data from these experimental platforms,

however, is still a challenging problem. It requires the incorporation of many factors

into the model, such as contact mechanics, large deformations, nonlinearity in the

material and the geometry, and history-dependent characteristics. This leads to sig-

nificant computational cost associated with extracting mechanical properties. This

thesis aims to address this issue by presenting a methodology to automatically and

efficiently characterize non-linear viscoelastic (NLV) properties from time dependent

data of polymeric capsules in compression and biological cells in AFM indentation.

In addition, this thesis also investigates the possibility of utilizing the extracted NLV

parameters for distinguishing cell groups.
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The mechanical behavior of fluid-filled polymeric capsules was studied by com-

pressing them between two flat, rigid, parallel plates. Displacement was controlled,

and the corresponding force-time responses for ramp-reverse and ramp-hold loading

were acquired. The compression process was simulated using finite element (FE) mod-

eling, in which the capsule material is modeled by a NLV constitutive relationship

as suggested by experimental data. An inverse analysis based on surrogate modeling

and a Kriging estimator is employed in order to reduce the total time needed for op-

timizing the error between the experimental force-time data and the FE predictions.

The method allows for the efficient extraction of the capsule wall’s NLV parameters.

The study on polymeric capsules is a precursor to a study on biological cells,

using AFM indentation technique to investigate the correlation between the NLV

properties of the cells and alterations in the cytoskeletal structures. For this purpose,

two approaches were utilized. In the first, breast cancer cells at the benign (MCF-10A)

and malignant (MCF-7) states were indented in their culture medium using spherical

probes in AFM contact mode in fluid. A two-step indentation loading input was

employed. It was comprised of applying a small force to initiate the contact between

the probe and the cell, followed by controlling the AFM piezo movement in a ramp-

reverse and ramp-hold manner. The force-time responses of the cells were recorded

and used for the extraction of the mechanical properties. The indentation experiment

was also simulated using the FE method, and the same inverse technique (surrogate

modeling with a Kriging estimator) was applied to extract the NLV properties of

MCF-10A and MCF-7 cells. In the second approach, MCF-10A cells treated with

the drug cytochalasin D to disrupt the cytoskeleton structure were studied, and their

NLV parameters were characterized through the same procedure.

Comparison between the extracted NLV properties indicates that malignant cells

(MCF-7) are softer and exhibit more relaxation. Disrupting the cytoskeleton using

the drug cytochalasin D also results in a larger amount of relaxation in the cell’s

xx



response. These results may be useful for disease diagnosing purposes.
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CHAPTER I

Introduction

The characterization of a material’s mechanical properties has many important

applications, such as in the design and testing of products as well as in identifying

and distinguishing materials. Two approaches are often employed for the purpose of

determining material properties (Wineman et al., 1979). The first is a direct method

in which a specimen with a specific shape is carefully prepared for traditional testing

scenarios, such as uniaxial, biaxial, or shear experiments (Boyce and Arruda, 2000).

With the assumption of homogeneous deformation, the deformed shape, and the

force-deformation relationship in these tests can be obtained in an analytical/semi-

analytical form and is normally not computationally expensive. Hence, the charac-

terization of material properties can be obtained by comparing these solutions with

the experimental data using a fast and efficient iterative inverse analysis. The disad-

vantage of this method is that sample preparation and test setups, such as the tensile

grips in tension experiments, have to be precisely designed to be compatible with each

other. Furthermore, for systems like biological cells, it is impractical to conduct these

traditional tests. These drawbacks can be overcome by testing the actual structural

shapes. This second approach assumes that the sample is an assembly of an infinite

number of infinitesimal blocks and the deformation of the sample is a combination

of simultaneous homogeneous deformations of these blocks. An inverse technique is
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required to automatically extract the material parameters. This analysis optimizes

the error between the experimental data and the calculations using an appropriately

selected theoretical constitutive model. However, an experiment on real structures is

often associated with time-consuming and computationally expensive modeling. In

addition, the inverse approach also encounters difficulties arising from the number of

unknown material parameters needed to be determined in the constitutive models,

and the large amount of experimental data required for testing samples with large

variations, such as biological materials. A recently developed method, surrogate mod-

eling (Sacks et al., 1989; Lophaven et al., 2002; Queipo et al., 2005; Forrester et al.,

2008), has been used to address these problems. In this thesis, an inverse analysis

based on a surrogate model is employed, which reaps the benefits of testing actual

structural shapes and reducing the difficulty of the inverse process. Inverse model-

ing in connection with surrogate modeling has been successfully used to characterize

the mechanical properties of many traditional materials (Gustafson and Waas , 2009;

Heinrich and Waas , 2009), however, there is still relatively little that has investigated

the potential applications of this method to evaluate and understand the mechanical

behavior of biological materials, such as living cells. In this thesis, the effectiveness of

surrogate modeling in studying the mechanics of polymeric and biological structures

is discussed in details.

In particular, this thesis focuses on synthetic polymeric and biological structures

that are widely available, such as polymeric fluid-filled capsules used in the pharma-

ceutical industry, engineered polymeric cells and microcapsules, and biological cells.

In the context of these structures, time-dependent or viscoelastic characteristics are

essential mechanical features. They have been known to relate closely to the changes

in the material’s internal organization (Wineman and Rajagopal , 2000; Bursac et al.,

2005; Mofrad and Kamm, 2006). Therefore, developing a methodology to understand

and characterize these properties has been an interesting subject of research.
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1.1 Importance of Material Identification for Synthetic Poly-

meric and Biological Capsules and Cells

Polymeric capsules are common products in the pharmaceutical industry used for

drug delivery. Their mechanical properties play a key role in the drug release process.

For instance, as soon as the capsules are swallowed, they can undergo deformation

due to mechanical interactions with the surrounding tissue environment. The amount

of deformation is highly dependent on how the capsule material reacts under certain

loading conditions. Hence, knowing the mechanical behavior of the capsule under

contact situations leads to a more precise prediction of how much the capsule will

deform upon being swallowed. Such predictions can be used in the investigation

of the time of drug release and for evaluating the capsule’s performance. Many

of these products are made of soft gel shells and enclose a fluid. One example is

the commercial vitamin capsule composed of a gelatin shell filled with fish-liver oil.

The shell material exhibits typical viscoelastic properties, including stress relaxation

features (Nguyen et al., 2014). Understanding these features requires testing the

actual objects subjected to contact interactions, modeling the tests, and incorporating

an inverse process.

Commercially available pharmaceutical fluid-filled capsules might also be viewed

as a macroscopic model of micro-scale structures like synthetic polymeric and bio-

logical cells. Many attempts have been made to manufacture engineered polymeric

cells and microcapsules that either mimic the real cells or deliver drug and imaging

particles (Kühtreiber et al., 1999). For the purpose of mimicking real cells, there is

a necessity of matching the mechanical properties of synthetic cells with those that

are present in the blood stream. Thus, it is necessary to make synthetic cells that

mechanically resemble actual cells. For example, to function properly when interact-

ing with organs inside the body such as blood vessels, the synthetic cells should have
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the same range of stiffness as the actual cells. Hence, knowledge of the mechanical

behavior of both engineered and biological cells is beneficial in guiding the selection

of materials for manufacturing synthetic cells as well as examining their effectiveness.

In addition to being useful for the design of synthetic polymeric microcapsule and

cells, such knowledge can contribute to better quantifying the physiology of biological

cells (Bao and Suresh, 2003; Suresh et al., 2005; Suresh, 2006, 2007). Cell mechanics is

also closely linked with alterations in cytoskeletal structures, which may be associated

with invasive diseases such as cancer. For instance, several studies (Cross et al.,

2007; Prabhune et al., 2012) have investigated the difference in cell stiffness between

cancerous cells and their corresponding normal cells. Initial results indicated that

certain types of diseased cells might be softer and more deformable, which may explain

the spreading ability of cancerous cells within the body. Furthermore, changes in cell

stiffness have been reported between different states of cancer. The studies by Guck

et al. (2005); Faria et al. (2008); Li et al. (2008, 2009) showed that as cells transform

from benign to malignant stages, the stiffness exhibits a decreasing trend. In addition

to stiffness, the viscoelastic behavior of the cells has also been observed (Darling

et al., 2006, 2008; Li et al., 2008, 2009), but this still requires further investigation,

especially at the large deformation range. Preliminary results suggest that viscoelastic

characteristics may be effective indicators and biomarkers for better diagnosis and

treatment of this dangerous disease, and could also aid testing the efficiency of anti-

cancer drugs to combat cancer. Therefore, various techniques and theoretical models

have been developed to characterize the mechanical behavior of capsules and biological

cells; these are summarized in the two following sections, (1.2) and (1.3).

1.2 Literature Review: Experimental Work

To study the mechanical properties of capsules and cells, various experimental

methods have been employed. These are designed to imitate many aspects of the real
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loading conditions. One important aspect is the contact feature that the capsules and

cells are frequently subjected to. The following is an overview of some widely used

techniques.

1.2.1 Compression Test

In this experiment, capsules and cells are squeezed between two flat, rigid, parallel

plates as shown in Figure 1.1. The displacement of one plate is controlled while

Figure 1.1: Illustration of compression test.

the other remains stationary. During the compression process, the reaction force is

recorded and subsequently used to analyze the mechanical behavior of the capsules

and cells. This technique was employed in the work by Carin et al. (2003) in order

to investigate the mechanical response of liquid-filled HSA-Alginate capsules.

1.2.2 Atomic Force Microscopy (AFM)

AFM indentation, as shown in Figure 1.2, has the capability to control and mea-

sure very small forces and displacements. This is a popular tool for probing me-

chanical properties of various structures at the micro/nano scale (Bao and Suresh,

2003; Mofrad and Kamm, 2006). In addition, the ability to conduct experiments in

fluid environments makes it applicable for testing biological samples. For indenta-

tion on cells and soft microcapsules, the AFM cantilever is often attached with a

spherical particle to reduce damage to the samples during the test. The relationship
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Figure 1.2: Illustration of AFM indentation test.

between the sample’s reaction force, the cantilever deflection (measured through the

photodiode), and the piezo’s movement is utilized in the extraction of the mechanical

properties. For this purpose, a model of the cell behavior must be a-priori assumed

in order to interpret the mechanical data.

1.2.3 Magnetic Twisting Cytometry (MTC)

In MTC (Karcher et al., 2003; Bao and Suresh, 2003; Bursac et al., 2005), a

magnetic microsphere is partially embedded in the cell surface as shown in Figure 1.3.

A torque is applied to the spherical bead while its displacement is measured. The

material properties of the cells are extracted from the relationship between the applied

torque and this measured displacement. Again, a model of the cell behavior must be

a-priori assumed in order to interpret the mechanical data.

Figure 1.3: Illustration of MTC test.
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1.2.4 Micropipette Aspiration

This technique was developed in order to gain insight into the squeezing process

of cells through small blood vessels. For this purpose, a small diameter glass pipette

is brought into contact with the cell, and a known suction pressure is applied while

the rise into the pipette is recorded (Evans and Young , 1989; Dong and Skalak ,

1992; Drury and Dembo, 2001; Bao and Suresh, 2003). Figure 1.4 is an illustration

of the aspiration process of a cell. It is unclear whether the results of this test

can provide useful information on extracting cell mechanical properties, due to the

complex deformation history that the cell undergoes.

Figure 1.4: Illustration of micropipette aspiration test.

1.2.5 Optical Trap

As described in Dao et al. (2003), the optical trap setup is comprised of two

silica microbeads diametrically bound to a cell. One bead is fixed while the other is

trapped by a laser beam as shown in Figure 1.5. The movement of the free bead due

to the laser beam causes the cell to stretch. The power setting of the laser determines

the amount of force generated on the microbead, causing the cell to deform axially

and transversely. The deformed shape is captured using a CCD camera and video

recorders. The output provides important information for the study of cell mechanical

behavior.
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Figure 1.5: Illustration of optical trap test.

1.3 Literature Review: Theoretical Models and Inverse Tech-

niques

Amongst the various techniques described above, it appears that contact of a

capsule and a cell with a “rigid” indentor, followed by measurement of the sample

response to controlled motion of the indentor, is a common technique by which the

capsule and cell properties are probed. The measured data is then interpreted by

formulating and solving a corresponding boundary value problem with an assumed

constitutive model for the capsule and cell material. This section presents an overview

and discussion of current theoretical models used in formulating such a problem,

focusing on the ones pertaining to compression and AFM indentation tests that are

employed in this thesis.

1.3.1 Material Property Extraction from Compression Test

Many studies have been focused on the development of theoretical constitutive

models to interpret experimental data from compression tests on liquid-filled capsules,

microcapsules, and cells. Earlier work by Feng and Yang (1973) used a non-linear

elastic (NLE) model to solve the contact problem of an inflated spherical membrane

with gas inside. Recent work by Nadler (2010) utilized the same model for a con-
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tact problem of a spherical membrane enclosing an incompressible fluid. The work

by Nguyen et al. (2013a) takes into account the non-linear history-dependent (vis-

coelastic) properties of a polymeric capsule’s wall. However, these studies have not

considered the inverse problem to determine the actual capsule shell/membrane prop-

erties from the experimental data. This material identification problem is a difficult

task that requires an inverse technique to automatically extract the optimized sets

of material parameters. In Carin et al. (2003), the mechanical properties of a liquid-

filled HSA-Alginate capsule were determined by comparing the results of compression

experiments to predictions from a non-linear theoretical model such as neo-Hookean

non-linear elasticity. Nevertheless, the simplified inverse approach used in this study,

which was based on a semi-analytical solution for the compression of spherical cells

by Lardner and Pujara (1980), might not be applicable to study more general cases,

such as those with non-spherical, non-uniform thickness capsules. Additionally, the

contact area, in particular how it varies during the compression process, was not

investigated.

1.3.2 Material Property Extraction from AFM Indentation

As mentioned earlier, AFM is a technique widely used to probe the mechanical

properties of microcapsules and cells (Mofrad and Kamm, 2006; Radmacher , 2007;

Faria et al., 2008; Li et al., 2008, 2009; Fernandes et al., 2010). However, processing

the AFM data is still a challenging problem and is highly dependent on the chosen

constitutive model. In the literature, the Hertz contact model has been frequently

used to analyze the data. This model examines the contact between two elastic

bodies, including the case between a rigid sphere and an elastic infinite half-space.

The rigid sphere of radius R is taken to be the probe of the AFM cantilever while the

half-space is used to model the microcapsules and cells. As explained in Hertz (1882),

this model predicts the relationship between the applied force F and the indentation
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depth δ, in this case, as follows:

F =
4

3
E∗R1/2δ3/2, (1.1)

where:

1

E∗
=

1− ν21
E1

+
1− ν22
E2

. (1.2)

E1, E2 are the elastic moduli, and ν1, ν2 are the Poisson ratios of the sphere and the

half-space, respectively. The sphere is rigid compared to the half-space, or E1 >> E2,

thus,

E∗ ' E2

1− ν22
. (1.3)

It is important to note that the Hertz contact model is only valid given the following

assumptions:

- Strains are small and within the elastic limit.

- Each body can be considered to have large radii of curvature, and the length of

contact is much smaller than the characteristic radius of each body.

- Surfaces are continuous, non-conforming, and frictionless.

However, in the actual context of an AFM indentation test, these assumptions

are not normally satisfied. For example, polymeric microcapsules and cells cannot

be treated as perfectly elastic bodies. One reason for this is the viscoelastic behavior

that has been observed in experiments (Darling et al., 2006, 2008; Li et al., 2008,

2009; Bernick et al., 2011). In addition, in many cases, the indentation depth is

not sufficiently smaller than the characteristic dimension of the indenter and the cell

body, and the strains are no longer small (Bernick et al., 2011). Therefore, using the

Hertz model to predict the relationship between force and indentation depth under

these circumstances might result in inaccurate estimations of material parameters.

As polymeric capsules and cells can be subjected to large deformations, ap-

proaches, in which contact in AFM indentation tests are included in the context
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of non-linear continuum mechanics, were also employed. One approach interprets the

experimental data using the FE method to take into account many aspects of the

indentation process, including the dimensions of the probe and the sample, contact

features, and non-linear material models (Charras and Horton, 2002; Bernick et al.,

2011). This method can better capture the response at the large strain range. How-

ever, the computational cost associated with FE models is a drawback for inversely

extracting material properties. Furthermore, the number of unknown material param-

eters needed to identify mechanical behavior and the large amount of experimental

data increase the difficulty of the inverse process. In the literature, recent work by

Bernick et al. (2011) employed an inverse FE approach for interpreting AFM experi-

mental data; nevertheless, details related to these computational issues have still not

been thoroughly discussed. Additionally, in many cases of AFM indentation, the ex-

periment is neither force nor displacement control because of the manner by which an

AFM operates. This is normally neglected during FE modeling, which is also another

source of inaccuracy.

1.4 Thesis Objectives

The aim of this thesis is to present a methodology that can be applied to deter-

mine the NLV properties of materials and structures in various testing scenarios and

in the large strain regime. Two specific applications related to fluid-filled polymeric

capsules and biological cells are considered in order to illustrate the effectiveness

of the method. Specifically, capsule and cell mechanical properties are probed by

conducting compression and AFM indentation tests, respectively. The experimental

force-time data is acquired and analyzed using a FE approach, which incorporates

nonlinearity in both material and geometry as well as history-dependent characteris-

tics. An inverse process is implemented to automatically determine the optimized set

of material parameters that can predict the responses observed in experiments. An
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inverse technique based on a surrogate model and a Kriging predictor is employed

in order to overcome the computational cost problem associated with the property

extraction process (Forrester et al., 2008; Gustafson and Waas , 2009; Heinrich and

Waas , 2009).

This thesis also includes a discussion on the use of cell relaxation response as a po-

tential marker for cancer diagnosis. For this purpose, the above procedure is applied

to analyze time-dependent AFM indentation data obtained using two approaches.

The first focuses on the differences between benign and malignant breast cancer cells

in terms of their viscoelastic behavior while the other studies how cytoskeletal disrup-

tion induced by drug treatment can affect this behavior. This supplements current

attempts to investigate the potential use of viscoelastic features for disease detection

purposes.

1.5 Thesis Outline

This thesis includes six chapters, with the introduction presented in Chapter I.

Chapter II is a discussion of a NLV model to interpret time-dependent responses. The

chapter serves as a forward problem in material property characterization process. It

includes the development of a NLV model based on a single integral Pipkin-Rogers

NLV model, the FE implementation of the model, and verification by comparison

with an analytical solution. Different aspects of viscoelastic phenomena are also

investigated to gain insight into the mechanics of the problem.

Chapter III is an overview of inverse analysis, utilizing surrogate modeling with a

Kriging estimator to solve inverse problems. Two specific problems of interest are to

determine the NLV properties using experimental data from compression and AFM

indentation tests.

Chapter IV presents an experimental setup and inverse analysis for determining

the NLV properties of a polymeric capsule filled with a fluid. It contains a detailed
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description of compression tests on polymeric capsules and an optical arrangement

for getting contact information. The error between the recorded force-displacement-

time data and predictions from FE simulations of the compression process is optimized

through an inverse analysis utilizing surrogate modeling and a Kriging estimator. The

inverse process allows an efficient extraction of the NLV properties from compression

tests.

Chapter V focuses on experiments and inverse analysis used to characterize the

NLV properties of breast cancer cells. Results for two approaches are acquired with

a two-step indentation procedure composed of force control and AFM piezo displace-

ment control followed by a combination of ramp-reverse and ramp-hold piezo loading.

The first approach concerns AFM indentation data from benign (MCF-10A) and ma-

lignant (MCF-7) cells. The second uses data from a drug treatment approach, includ-

ing experimental force-time responses from untreated MCF-10A cells and MCF-10A

cells treated with the drug cytochalasin D. The same inverse process, based on a

surrogate model and a Kriging predictor, is employed to obtain the NLV properties

for each cell group, allowing a quantitative comparison of the differences in their

viscoelastic properties. A discussion of the use of such differences in formulating

potential marker for cancer detection is also included in this chapter.

Chapter VI includes conclusions and future work.

A study of prostate cancer cells using AFM indentation technique is presented in

Appendix A. Appendix B provides additional details for the AFM indentation setup,

including calibration procedures that were employed. Appendix C has the expressions

used in establishing governing equations for solving the forward problem in Chapter II.

Appendix D contains the detailed derivation of a user material subroutine (UMAT)

for implementing a NLV model in the FE ABAQUS commercial software. The source

code for the UMAT subroutines are provided in Appendix E.
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CHAPTER II

Non-Linear Viscoelastic Model and Forward

Problem

2.1 Introduction

The process of using data obtained from the techniques described in Chapter I

requires a better understanding of the forward problem, which is used to model the

corresponding experiment. For such a problem, an appropriate theoretical consti-

tutive model is selected, and the material parameters are assumed to be known in

advance. A boundary value problem is then formulated and solved with an analytical

and/or FE approach to predict the response of an experimental process. The obtained

solutions are useful for investigating the influences of a sample’s material parameters

on its deformation as well as for gaining insight into the constitutive model. Another

advantage is that the analytical formulation approach, if available, can be used to

cross-check the FE solution. Therefore, the purpose of this chapter is to study se-

lected forward problems that can mimic testing scenarios for material identification

as well as capture important features within experiments.

One class of models for a cell or microcapsule regards them as a closed mem-

brane containing a fluid. Such membrane-fluid structures can be modeled with the

theory developed for non-linear membranes. The formulation of the theory for NLE
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membranes can be found in the classic work by Green and Adkins (1970) (see Fu

and Ogden (2001) for a more recent presentation). Selvadurai (2006) provides a very

useful and thorough review of the extensive literature on NLE membranes. Much

of the literature involves membranes loaded by tractions along their edges or by lat-

eral pressure. A smaller body of work is concerned with loading by contact with a

hard object. Among the earliest work in this latter category is that of Yang and

Hsu (1971), who considered a planar membrane that is supported along a circular

boundary and indented at its center with a smooth rigid sphere. This problem was

revisited by Selvadurai (2006) and Selvadurai and Yu (2006), who studied off-center

indentation. The membrane indentation study by Yang and Hsu (1971) was followed

by that of Feng and Yang (1973), who considered a closed NLE spherical membrane

containing compressible gas. The system was compressed between two rigid parallel

plates. Lardner and Pujara (1980) subsequently carried out a similar contact study

with the purpose of determining the mechanical properties of cell membranes. A sys-

tem consisting of a NLE spherical membrane enclosing an incompressible fluid and

compressed between smooth, rigid, parallel plates was recently studied by Nadler

(2010). Interesting phenomena were observed with increasing plate displacements,

such as the decrease in principal stresses from positive to negative and the onset of

wrinkling in the contact region.

As polymeric capsules and cells have been shown to exhibit non-linear history-

dependent properties, it is natural to consider the influence of non-linear viscoelastic-

ity on their response. Until recently, the literature on NLV membranes (see Wineman

(2007)) has been limited to loading by edge tractions or by lateral pressure. Nguyen

et al. (2013b) presented perhaps the first study of NLV membrane contact. They

extended the indentation study of Yang and Hsu (1971) to NLV membranes. The

purpose of the present chapter is to extend the work of Nadler (2010) by adding non-

linear viscoelasticity to the mechanical properties of the container. The results can
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thus provide a useful context in which to interpret results of contact type experiments

that probe the behavior of cells and microcapsules.

The viscoelastic response of the membrane is described by a non-linear single

integral constitutive equation as presented in Nguyen et al. (2013b). Section 2.2 gives

an overview of the model. A special case is a quasi-linear viscoelasticity model (Fung ,

1981), which arises when the material properties satisfy certain conditions. The

analytical formulation and solution method for the corresponding NLV membrane

problem suggested in Wineman (2007) are implemented in section 2.3. This provides

insight into the mechanical behavior of a spherical membrane containing a fluid in an

axisymmetric contact problem. A discussion of the FE approach is included in section

2.4. This approach can be extended to general cases, where the problem is no longer

axisymmetric. In section 2.5, specific choices for the NLV material properties are made

and numerical results are presented. Many aspects of the non-linear response are also

discussed, including the instantaneous and long-term equilibrium elastic response,

the time-dependent transition between the two limits, and how they are affected

by material properties. It is shown that, in a step deformation experiment, time

dependence of the deformation indicates that the membrane should not be modeled

using quasi-linear viscoelasticity. Section 2.6 contains concluding comments.

2.2 A NLV Constitutive Model

Let t denote the current time and s denote a generic time, s ∈ (−∞, t]. It

is assumed that the viscoelastic solid body occupies the same configuration at all

t < 0, which is taken as its reference configuration. The position of a material

particle is denoted by X in this reference configuration and by x(s) at a generic

time s ∈ (−∞, t]. The deformation gradient and right Cauchy-Green tensor are,

respectively, F(s) = ∂x(s)/∂X and C(s) = F(s)TF(s). Note that x(s) = X and

F(s) = C(s) = I for s ∈ (−∞, 0). The invariants of C are defined by I1(C)=tr(C),

16



and I2(C) = 1
2

[
tr(C)2 − tr(C2)

]
, with tr(C) denoting the trace. For notational

brevity, explicit mention of t is omitted when quantities are evaluated at the current

time, i.e. x(t) = x. It is assumed that the NLV material is incompressible, isotropic

and can be modeled by the Pipkin and Rogers constitutive theory (Pipkin and Rogers ,

1968), whose form is

σ(t) = −qI + F(t){R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds}F(t)T . (2.1)

In the first term of (2.1), q is an arbitrary scalar that arises from the constraint of

incompressibility, det(F(s)) = det(C(s)) = 1, s ∈ [0, t]. R[C, t] is a tensor-valued

function of the right Cauchy-Green tensor C and time t. For isotropic materials,

R[C, t] = α0I + α1C + α2C
2, (2.2)

where αi = αi(I1(C), I2(C), t), i = 0, 1, 2 are scalar coefficients that represent material

properties. For fixed C, αi = αi(I1(C),I2(C), t) monotonically decreases with t to a

non-zero limit. When the material is undeformed, (2.1) and (2.2) reduce to σ(t) =

(−q(t) + α0(3, 3, t) + α1(3, 3, t) + α2(3, 3, t))I. The scalar q(t) can be chosen so that

σ(t) = 0.

There are three cases when the constitutive theory (2.1), (2.2) reduces to the form

σ(t) = −qI + α̂2I + [α̂0 − I2α̂2]B + [α̂0 + I1α̂2]B
2, (2.3)

where B = FFT , the left Cauchy-Green tensor, I1 and I2 are now the invariants of B

and the scalar coefficients α̂i are functions of I1, I2, and t. In these cases, the Pipkin-

Rogers model has the general form of the constitutive equation for an incompressible

non-linear isotropic elastic solid.
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Note for reference that the Mooney-Rivlin material is the special case of (2.3) when

α̂0 − I2α̂2 = C1 + I1C2 = C1(1 + γI1),

α̂1 + I2α̂2 = −C2 = −C1γ, (2.4)

where C1, C2 are positive constants. The ratio γ = C2/C1 is referred to as the

Mooney-Rivlin parameter.

Case 1. Instantaneous response at t = 0+

At t = 0+, (2.1) and (2.2) reduce to

σ(0) = −q(0)I + F(0){α0I + α1C(0) + α2C(0)2}F(0)T , (2.5)

in which αi = αi(I1(C(0)), I2(C(0)), 0). Equation (2.5) reduces to the form (2.3) on

introducing the left Cauchy-Green tensor B(0) = F(0)F(0)T , recalling that C(0) =

F(0)TF(0), noting that Ik(C(0)) = Ik(B(0)), and making use of the Cayley-Hamilton

theorem.

Case 2. Fixed deformation as t→∞

Suppose the body approaches a fixed deformed state, i.e. F(s) → F(∞) as t → ∞.

Then, as in linear viscoelasticity, it can be expected that (2.1) and (2.2) reduce to

σ(∞) = −q(∞)I + F(∞){α0I + α1C(∞) + α2C(∞)2}F(∞)T , (2.6)

in which αi = αi(I1(C(∞)), I2(C(∞)),∞), with the notation indicating the limit as

t→∞. Equation (2.6) reduces to (2.3) on introducing the left Cauchy-Green tensor

B(∞) = F(∞)(∞)T , recalling that C(∞) = F(∞)TF(∞), noting that Ik(C(∞)) =

Ik(B(∞)), and making using of the Cayley-Hamilton theorem.

Case 3. Step deformation history

Let the material undergo a step change in deformation at t = 0. The deformation
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gradient and right Cauchy-Green tensor change from F(t) = C(t) = I for t < 0 to

F(t) = F0 and C(t) = C0 = FT
0 F0 for t ≥ 0, where F0 is constant. The integral in

(2.1) becomes:

t∫
0

∂

∂(t− s)
R[C0, t− s]ds = R[C0, t]−R[C0, 0], (2.7)

and equations (2.1) and (2.2) reduce to

σ(t) = −q(t)I + F0

{
α0I + α1C0 + α2C

2
0

}
FT

0 , (2.8)

in which αi = αi(I1(C0), I2(C0), t). Equation (2.8) reduces to (2.3) on introducing the

left Cauchy-Green tensor B0 = F0F
T
0 , noting that Ik(C0) = Ik(B0) and proceeding as

in Cases 1 and 2. Note that the second expression in (2.8) monotonically decreases

with t to a non-zero limit and thus represents deformation dependent stress relaxation.

A reasonable restriction on the Pipkin-Rogers constitutive equation (2.1), (2.2) is

that it reduces to the constitutive equation for an incompressible isotropic linear

viscoelastic material in the limit of infinitesimal strains. To this end, let x(s) =

X + u(s), s ∈ [0, t], where u(s) is the displacement history. Then F(s) = I + H(s),

where H(s) = ∂u(s)/∂X. Let it be assumed that |H(s)| � 1, where |H(s)| denotes

the magnitude of any component of H(s). The infinitesimal strain tensor is then

e(s) = (H(s) + H(s)T )/2. As the material is incompressible, tr(e(s)) = 0. Retaining

only first order terms in H(s),

C(s) = I + 2e(s), (2.9a)

I1(C(s)) = I2(C(s)) = 3. (2.9b)
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The linearized form of (2.1) and (2.2) is found to be

σ(t) = −qI + [ᾱ0(t) + ᾱ1(t) + ᾱ2(t)](I + 2e(t))

+ [ᾱ1(0) + 2ᾱ2(0)]2e(t) +

t∫
0

∂

∂(t− s)
[ᾱ1(t− s) + 2ᾱ2(t− s)]2e(s)ds, (2.10)

where ᾱk(t) = αk(3, 3, t). Let the moduli ᾱk(t) satisfy the condition

ᾱ0(t) + ᾱ1(t) + ᾱ2(t) = K, (2.11)

where K is a constant. Then, (2.10) reduces to the form

σ(t) = (−q +K)I + µ(0)2e(t) +

t∫
0

∂

∂(t− s)
µ(t− s)2e(s)ds. (2.12)

in which µ(t) = ᾱ1(t)+2ᾱ2(t)+K. This has the form of the constitutive equation for

incompressible isotropic linearized viscoelastic response in which the shear modulus is

given by µ(t) = ᾱ1(t) + 2ᾱ2(t) +K. Thus (2.11) imposes a restriction on the material

scalar coefficients αi.

A special case arises when the scalar properties have the following form,

αi (I1(C), I2(C), t) = ᾱi(I1(C), I2(C))G(t), i = 0, 1, 2, (2.13)

where G(t) is a monotonically decreasing function of t that accounts for the previously

mentioned time dependence of the scalar properties αi. Then (2.2) becomes:

R[C, t] = RE[C]G(t), (2.14)

where

R(E)[C] = ᾱ0I + ᾱ1C + ᾱ2C
2. (2.15)
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The model becomes:

σ(t) = −qI + F(t)

R(E)[C(t)]G(0) +

t∫
0

R(E)[C(s)]
∂G(t− s)
∂(t− s)

ds

F(t)T . (2.16)

This is the form of the constitutive equation for quasi-linear viscoelasticity (Fung ,

1981).

2.3 Analytical Approach

2.3.1 Formulation

The contact problem of a spherical membrane enclosing an incompressible fluid

(the weight of the enclosed fluid is neglected) and squeezed between two rigid smooth

parallel plates as shown in Figure 2.1 is investigated. The undeformed membrane





 , ,
s

Q r  

 
'

, ,Q   

Sphere before 

inflation

Sphere after 

inflation

Side view





0
r

s
r

Figure 2.1: Geometry of contact problem of an inflated spherical membrane between
two flat, rigid, parallel plates. The spherical coordinates are used for the
inflated membrane before contact, the cylindrical coordinates are used for
the inflated membrane after contact: ρ = ρ(ψ, t), η = η(ψ, t).
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has a uniform thickness h0 and a radius r0, with h0
r0
� 1. It is inflated slightly

to radius rs before being compressed between the two rigid, smooth, and parallel

plates. The two plates stay parallel and compress the membrane by a displacement

along their common perpendicular axis. Either the height of the membrane H1(t)

or the contact force F (t) is specified at each t ≥ 0. This deforms the membrane

into an axisymmetric closed shape with two time-dependent regions: contact and

non-contact. At each time t ≥ 0, the former has a flat geometry, while the latter

has an unknown geometry. The usual membrane approximations are assumed to

hold: variations through the membrane thickness can be neglected and all physical

quantities can be regarded as evaluated at the mid-surface.

The inflated spherical membrane before contact can be described using spherical

coordinates while cylindrical coordinates are used for the membrane during contact.

Let (r0, φ, ψ) be the spherical coordinates of a particle of the membrane midsurface

in the reference configuration. After contact, the coordinates of the particle (ρ, φ, η)

are with respect to a cylindrical coordinate system. The deformation is described as

ρ = ρ(ψ, t), η = η(ψ, t). (2.17)

Because of axial symmetry, the principal directions of stress and stretch are known

in advance to be in the meridianal direction (1), circumferential direction (2), and

normal direction (3) at each time t in the deformed membrane. The principal stresses

and stretches in these directions are denoted respectively by (σ1, λ1), (σ2, λ2), (σ3, λ3).

The governing equations then are derived separately for the two regions. All physical

quantities depend on the angle ψ and time t. For the purpose of notational simplicity,

explicit indication of dependence on ψ will be suppressed. Because of the history

dependence of the membrane material, dependence on the time variable t or s will be

made explicit as needed.
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2.3.1.1 Kinematics and Field Equations

The principal stretch ratios are given by

λ1 =
1

r0

√
ρ′2 + η′2,

λ2 =
ρ

r0sinψ
, (2.18)

λ3 =
1

λ1λ2
,

where the notation ()′ = ∂
∂ψ

() has been introduced. The last equation arises from

the incompressibility constraint. The deformation gradient and right Cauchy-Green

tensor histories are given by

F(s) =


λ1(s) 0 0

0 λ2(s) 0

0 0 λ3(s)

 ,C(s) =


λ21(s) 0 0

0 λ22(s) 0

0 0 λ23(s)

 , 0 ≤ s ≤ t. (2.19)

The stretch invariants are given by

I1 = λ21 + λ22 + λ23,

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1, (2.20)

I3 = λ21λ
2
2λ

2
3 = 1.

2.3.1.2 Constitutive Equation

According to the membrane approximation, σ3(t)� σ1(t), σ2(t). Thus,

σ1(t) ' σ1(t)− σ3(t),

σ2(t) ' σ2(t)− σ3(t). (2.21)
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Therefore, by (2.1), (2.2), (2.19), and (2.20),

σ1(t) = g1[λ(t)] +

t∫
0

G1[λ(t), λ(s), t− s]ds,

σ2(t) = g2[λ(t)] +

t∫
0

G2[λ(t), λ(s), t− s]ds, (2.22)

in which λ denotes the set of stretch ratios (λ1, λ2) and

gα[λ(t)] = gα[λ1(t), λ2(t)]

= α0[λ(t), 0]

[
λ2α(t)− 1

λ21(t)λ
2
2(t)

]
+ α1[λ(t), 0]

[
λ4α(t)− 1

λ41(t)λ
4
2(t)

]
+α2[λ(t), 0]

[
λ6α(t)− 1

λ61(t)λ
6
2(t)

]
, (2.23)

Gα[λ(t), λ(s), t− s] = Gα[λ1(t), λ2(t), λ1(s), λ2(s), t− s]

=
∂

∂(t− s)

{
α0[λ(s), t− s]

[
λ2α(t)− 1

λ21(t)λ
2
2(t)

]
+α1[λ(s), t− s]

[
λ2α(s)λ2α(t)− 1

λ21(s)λ
2
1(t)λ

2
2(s)λ

2
2(t)

]
+α2[λ(s), t− s]

[
λ4α(s)λ2α(t)− 1

λ41(s)λ
2
1(t)λ

4
2(s)λ

2
2(t)

]}
,

(2.24)

where α = 1, 2. As the invariants are given by (2.20), the material properties αi can

now be regarded as functions of λ1(t), λ2(t), and t.

2.3.1.3 Equations of Motion

Neglecting the effects of inertia, the equations of linear momentum reduce to force

balance equations. The equation in the circumferential direction is automatically met

owing to axisymetry. In the meridian and the normal directions of the deformed
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membrane, and for t ≥ 0, these are:

dT1
dρ

+
T1 − T2

ρ
= 0, (2.25)

K1T1 +K2T2 = p, (2.26)

where T1, T2 are the stress resultants per unit length in the meridian and circumfer-

ential directions respectively,

T1 = σ1λ3h0, T2 = σ2λ3h0, (2.27)

and p is a pressure normal to the membrane. Note that the right hand side of (2.25)

is zero because the contacting plates are assumed to be smooth. K1 and K2 are

principal curvatures in the deformed configuration determined as follows:

K1 =
dθ

ds
, K2 =

sinθ

ρ
, (2.28)

where θ is the angle between the normal to the membrane and the centerline. This

angle is related to the deformed configuration by:

cosθ =
dρ

ds
, sinθ = −dη

ds
. (2.29)

Let the associated variable w be defined:

w =
1

r0

∂ρ

∂ψ
. (2.30)

Note that w satisfies the compatibility condition obtained from the second equation

of (2.18)

∂λ2
∂ψ

=
w − λ2cosψ

sinψ
. (2.31)
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The principal curvatures can be expressed in terms of λ1, λ2, w, ψ by using (2.18),

(2.28)-(2.30), and observing that η′ = −r0
√
λ21 − w2,

K1 =
wλ′1 − w′λ1

r0λ21(λ
2
1 − w2)1/2

, K2 =

√
λ21 − w2

r0λ1λ2sinψ
. (2.32)

Using (2.30) and (2.32), equations (2.25) and (2.26) can be written in terms of

T1, T2, λ1, λ2, w, ψ in the reference coordinates, for t ≥ 0

∂T1
∂ψ

+ T1−T2
λ2 sinψ

w = 0, (2.33)

wλ′1−w′λ1
r0λ21(λ

2
1−w2)1/2

T1 +

√
λ21−w2

r0λ1λ2sinψ
T2 = p. (2.34)

2.3.2 Boundary Value Problem

Let ψc(t) denote the value of ψ corresponding to the boundary between the contact

and non-contact regions at time t. In the contact region, 0 ≤ ψ ≤ ψc(t), the shape

of the deformed membrane is flat, and the principal curvatures are known to be:

K1 = K2 = 0. Therefore, the pressure between the membrane and the flat plate

is balanced with the internal pressure between the fluid and the membrane, which

is unknown. Equation (2.33) must be part of the system of equations to be solved.

In the non-contact region, ψc(t) ≤ ψ ≤ π/2, the shape of the membrane and the

curvatures are unknown, and there is only the pressure from fluid. Both equations

(2.33) and (2.34) are part of the system of equations. Thus, different systems of

equations are solved in the contact and non-contact regions, with matching conditions

to be specified at ψc(t). In the approach taken here, as in Feng and Yang (1973), the

governing equations in each region are reduced to systems of first order equations for

(λ1, λ2, w).
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2.3.2.1 Non-contact Region, ψc(t) ≤ ψ ≤ π/2

Let T1(t), T2(t) from (2.22) and (2.27) and K1, K2 from (2.32) be substituted into

(2.33) and (2.34). The result, along with (2.31) is a system of three first order partial

differential-Volterra integral equations for (λ1, λ2, w).

∂λ1(t)
∂ψ

{
F1[λ(t)] +

t∫
0

F̂1[λ(t), λ(s), t− s]ds
}

+
t∫
0

∂λ1(s)
∂ψ

F̂2[λ(t), λ(s), t− s]ds

= F2[λ(t), w(t), ψ] +
t∫
0

F̂3[λ(t), λ(s), w(t), w(s), t− s, ψ]ds, (2.35)

∂λ2(t)

∂ψ
=
w(t)− λ2(t)cosψ

sinψ
, (2.36)

∂w(t)

∂ψ
=
w(t)λ′1(t)

λ1(t)
+
λ21(t)w

2(t)

λ2(t)sinψ

σ2(t)

σ1(t)
− pr0

2h0

√
λ21 − w2λ21(t)λ2(t)

σ1(t)
. (2.37)

Expressions for F1, F2, F̂1, F̂2, F̂3 are given in the Appendix C.

2.3.2.2 Contact Region, 0 ≤ ψ ≤ ψc(t)

The deformed membrane in the contact region is flat. Thus, η′ = 0 and by the first

of (2.18) and (2.30), w = λ1. The principal curvatures are known to be K1 = K2 = 0.

This known geometry of the contact region reduces the governing equations for the
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contact region to the following,

∂λ1(t)
∂ψ

{
F1[λ(t)] +

t∫
0

F̂1[λ(t), λ(s), t− s]ds
}

+
t∫
0

∂λ1(s)
∂ψ

F̂2[λ(t), λ(s), t− s]ds

= F2[λ(t), w(t), ψ] +
t∫
0

F̂3[λ(t), λ(s), w(t), w(s), t− s, ψ]ds, (2.38)

∂λ2(t)

∂ψ
=
w(t)− λ2(t)cosψ

sinψ
. (2.39)

2.3.2.3 Boundary Conditions

At ψ = 0: an analysis in Green and Adkins (1970) that considers the boundedness

of the solution at ψ = 0 implies:

λ1(0, t) = λ2(0, t) = λ0(t), w = λ1, (2.40)

∂λ1
∂ψ
|ψ=0 =

∂λ2
∂ψ
|ψ=0 = 0. (2.41)

At ψ = ψc(t): λ2(t), w(t), T1(t) must be continuous. It is assumed by (2.22), (2.23),

(2.24), and (2.27) that this is equivalent to requiring λ1(t), λ2(t), w(t) to be continuous

at ψ = ψc(t). The same interface condition was used in Feng and Yang (1973) and

Nadler (2010).

At ψ = π/2:

(λ2sinψ)′ = 0. (2.42)

Displacement control:

This is specified by giving the displacement of the plate D(t) = rs − H1(t), t ≥ 0,

where H1(t) is the height of the membrane and rs = λsr0 is the radius of the slightly-

inflated membrane. H1(t) is related to the deformation of the membrane by recalling
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η′ = −r0
√
λ21 − w2, and observing that η(0, t) = η(ψc(t), t),

H1(t) = η(0, t) =

π/2∫
0

r0

√
λ21 − w2dψ. (2.43)

Force Control:

This is specified by giving the force applied to the plate, (or the contact force between

the plate and the membrane) F (t), t ≥ 0. Consideration of the equilibrium of the

plate and the portion of the membrane 0 ≤ ψ ≤ ψc(t) gives the relation,

F (t) = π(sin2ψρ2)p|ψc . (2.44)

Since the fluid inside the membrane is incompressible, another constraint is that the

volume maintains a constant. The volume before contact is

V0 =
4

3
πr30λ

3
s. (2.45)

The volume after contact can be written in the from

V = 2πr0

π/2∫
0

ρ2
√
λ21 − w2dψ. (2.46)

Hence, the incompressibility of the contained fluid implies: V = V0. Additionally,

the viscosity of the fluid is also neglected so that the pressure throughout the fluid is

uniform. Taking into account the condition that K1 = K2 = 0 in the contact region,

(2.26) means that in the contact regions the pressure from the fluid and from the

plates on the membrane balance each other.
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2.3.3 Method of Solution

Let the following dimensionless quantities be introduced:

r̄ = r
r0
, ρ̄ = ρ

r0
, η̄ = η

r0
, h̄ = h

h0
, H̄1 = H1

r0
,

p̄ = p
C1

r0
h0
, σ̄1 = σ1

C1
, σ̄2 = σ2

C1
, F̄ = F

C1h0r0
, (2.47)

where C1 is a constant with the dimension of stress to be specified later. When

λ1, λ2, w are expressed in terms of the dimensionless variables in (2.47), they are

unchanged. All variables in (2.35)-(2.39) are now dimensionless, with p/h0 in (2.37)

replaced by p̄. Henceforth, the upper bar notation is removed for notational simplicity.

Let ti, i = 1, 2, . . . , n be a discrete set of times at which the contact problem is to

be solved. The time integrals in (2.35), (2.37), and (2.38) are approximated as finite

sums using the trapezoidal rule,

tn∫
t1

f [λ(s), tn − s] ds = tn−tn−1

2
[f (λ(tn), 0) + f (λ(tn−1), tn − tn−1)]

+
∑n−2

k=1
tk+1−tk

2
[f (λ(tk+1), tn − tk+1) + f (λ(tk), tn − tk)] .

(2.48)

At each time tn, the terms involving λ1(ψ, tn), λ2(ψ, tn), w(ψ, tn) can be separated

out from the other terms. Equations (2.38), (2.39) in the contact region and (2.35)-

(2.37) in the non-contact region can then be written as systems of ordinary differential

equations of the form,

∂

∂ψ
Λ˜(ψ, tn) = F

[
Λ˜(ψ, tn); Λ˜(ψ, ti)|n−1i=1

]
, (2.49)

where Λ˜ = (λ1, λ2) in the contact region and Λ˜ = (λ1, λ2, w) in the non-contact region.

Suppose the contact problem has been solved at times t1, . . . , tn−1. The notation
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Λ˜(ψ, ti)|n−1i=1 indicates that F depends on the independent variable ψ by means of the

dependence on ψ of the solutions determined at times t1, . . . , tn−1.

Let values be assumed for λ0(tn) in (2.40), the angle of the contact region ψc(tn),

and the pressure p(tn). With (2.40) and (2.41) as boundary conditions, the system

(2.49) for the contact region is integrated using the 4th order Runge-Kutta procedure

for 0 ≤ ψ ≤ ψc(tn). The values λ1(ψc(tn), tn), λ2(ψc(tn), tn), w(ψc(tn), tn) are then

used as boundary conditions for the integration of system (2.49) for the non-contact

region, Newton’s iteration is used to determine λ0(tn), ψc(tn), and p(tn) so that (2.42),

V = V0 and either (2.43) or (2.44) are satisfied. This method is repeated for each

time ti, with the final values for λ0(ti), ψc(ti), and p(ti) used as the initial estimates

of the values at time ti+1.

2.4 FE Approach

2.4.1 Implementation of a NLV Model in ABAQUS

In order to extend the investigation to general cases of loading, the problem was

also studied using a FE approach with the commercial code ABAQUS 6.10-1. This FE

software allows the implementation of the NLV model through the material subroutine

UMAT (ABAQUS-v6.10 , 2010).

For an incompressible, NLV Pipkin-Roger model, with the use of a penalty ap-

proach, the Kirchhoff stress for a 3D solid element is written as follows:

τ (t) = F (t)

R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds

F T (t) +KJ(J − 1)(2.50)

Here: KJ(J − 1) is the penalty term, coefficient K is chosen large enough to impose

incompressiblity. It is somewhat similar to the bulk modulus.

The stresses are updated at each time ti. This updating process includes two
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aspects: the time dependence of stresses, and the nonlinearity in the constitutive

model. The first aspect is performed in a similar way with that discussed in the

method of solution (section 2.3.3) of the analytical approach. The nonlinearity of the

constitutive model requires an appropriate implementation of the material Jacobian

(DDSDDE). The following procedure (Simo and Hughes , 1998; Bažant and Cedolin,

2003; ABAQUS-v6.10 , 2010; Ji et al., 2013) has been employed in the derivation of

the UMAT subroutine.

At each time t = tn, 2nd Piola-Kirchhoff stress S = JF−1σF−T has the following form:

S(t) = R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds+KJ(J − 1)C−1

= R[C(tn), 0] +
tn − tn−1

2

∂

∂(t− s)
R[C(s), t− s]|tn +KJ(J − 1)C−1

+

tn−1∫
0

∂

∂(t− s)
R[C(s), t− s]ds

(2.51)

Let: E = 1
2
(C− I), material tangent denoted by C or L is computed as

C = L =
∂S

∂E
= 2

∂S

∂C
. (2.52)

Note that here: C = C(tn), hence the derivative of
tn−1∫
0

∂
∂(t−s)R[C(s), t−s]ds in (2.51)

with respect to C(tn) vanishes.

Using a push-forward step, the material tangent Lijkl becomes FipFjqFkrFlsLpqrs,

and the final formula for material Jacobian (DDSDDE) used in UMAT subroutine

for commercial code ABAQUS is as follows

LJijkl =
1

J
FipFjqFkrFlsLpqrs +

1

2
(δikσjl + δjlσik + σilδjk + σjkδil)
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Prior to applying the UMAT subroutine to complicated cases like the forward problem

considered in this chapter, the solutions obtained by using UMAT subroutine for

simple cases (uniaxial, biaxial, simple shear of a block) are compared with the exact

analytical solutions for verification. The detailed derivation of a UMAT subroutine

for 3D solid elements with the above described procedure for an incompressible NLV

single integral Pipkin-Rogers model and verifications are included in the Appendix D.

A UMAT subroutine for membrane elements was also developed and was used in

the modeling of a contact problem of a fluid-filled membrane between two rigid, flat,

parallel plates.

2.4.2 FE Modeling of the Contact Problem of a Fluid-Filled Membrane

The boundary value problem as shown in Figure 2.2 for the compression of a NLV

fluid-filled spherical membrane between two flat, rigid, parallel plates is simulated and

solved using the commercial code ABAQUS with the UMAT subroutine discussed in

section 2.4.1. In the FE simulation, the spherical membrane is modeled using mem-

Figure 2.2: Boundary value problem for FE modeling of the contact problem of a
fluid-filled membrane between two flat, rigid, parallel plates.

brane element M3D4 while the incompressible fluid inside the membrane is described

by hydrostatic fluid elements F3D4 (ABAQUS-v6.10 , 2010). The two rigid plates

are modeled using the rigid planar shell R3D4. The problem includes two steps: the
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slight inflation process and the step displacement. For step 1, the inflation process

before contact is specified by imposing a pressure to the reference node of the cavity

of the incompressible fluid. For step 2, a relaxation type of loading is performed

by ramping the displacements of the two plates to a certain value, then holding it

constant.

2.5 Numerical Results

For the purpose of illustrating the features associated with non-linear viscoelas-

ticity during contact, specific choices are made for the scalar coefficients αi, i = 0, 1, 2

in (2.2). The choice of these properties was guided by two criteria: 1) The membrane

responds as a Mooney-Rivlin material at t = 0 and t → ∞; 2) Condition (2.11) is

satisfied.

These two criteria are met by the following choices:

α0 − I2α2 = 2 [G1(t) + I1G2(t)] ,

α1 + I1α2 = −2G2(t), (2.53)

α2 = −2Φ(I1, I2) [G1(t) + 2G2(t)] ,

in which

Φ(I1, I2) = e−a(I1−3), (2.54)

where a is a constant such that Φ and α2 decrease to zero as the deformation gets

large. G1(t), and G2(t) have the properties of stress relaxation functions. Then (2.11)
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is satisfied with K = 0 and:

α0 = 2G1(t) [1− I2Φ(I1, I2)] + 2G2(t) [I1 − 2I2Φ(I1, I2)] ,

α1 = 2G1(t)I1Φ(I1, I2) + 2G2(t) [2I1Φ(I1, I2)− 1] , (2.55)

α2 = −2Φ(I1, I2) [G1(t) + 2G2(t)] .

With (2.53), (2.1) with (2.2) reduce to (2.3) and (2.4). These are the forms of the

constitutive equations for a Mooney-Rivlin material at t = 0, and t → ∞. Note

that γ0 = G2(0)/G1(0) and γ∞ = G2(∞)/G1(∞) are the Mooney-Rivlin parameters,

respectively, at t = 0, and t→∞. In the special case where G2(t) = βG1(t), β being

a constant, the material parameters in (2.55) have the form in (2.3) and the model

reduces to quasi-linear viscoelasticity.

As particular choices for G1(t) and G2(t), let

Gα(t) = Gα∞ + (Gα0 −Gα∞) e−t/τα

= Gα0

[
gα + (1− gα) e−t/τα

]
, α = 1, 2. (2.56)

Then, Gα0 = Gα(0), Gα∞ = Gα(∞), and τα are relaxation times. The parameters

g1 = G1∞/G10 and g2 = G2∞/G20 represent the amount of decrease of G1(t) and

G2(t). The parameters γ0 = G20/G10 and γ∞ = G2∞/G1∞ characterize the Mooney-

Rivlin material at t = 0 and t→∞. They are related by

γ∞ =
g2
g1
γ0. (2.57)

In the list of dimensionless parameters introduced in (2.47), let C1 = G1(0). In

addition, the dimensionless time t0 is defined as t0 = t/τ1. Thus, equations in (2.56)
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become:

G1(t) = G10

[
g1 + (1− g1)e−t/τ1

]
= C1 [g1 + (1− g1)e−t0 ] ,

G2(t) = G20

[
g2 + (1− g2)e−t/τ2

]
= γ0C1 [g2 + (1− g2)e−ct0 ] ,

where c = τ1/τ2.

2.5.1 Analytical Formulation Solution

The numerical results to follow are presented in two groups so to illustrate: (a)

The influence of the parameters in (2.56) on the elastic solution at t = 0 and t→∞,

and (b) The evolution of the solution between these limits. Calculations were carried

out for a dimensionless radius of the slightly inflated membrane rs = 1.03. Figure 2.3

shows membrane profiles for different displacements for NLE response at t = 0 or

t → ∞, with the Mooney-Rivlin parameter γ = 0.1. The large dot indicates the

transition between the contact and non-contact regions. Figure 2.4 shows contact

force vs. contact displacement for several values of the Mooney-Rivlin parameter.

The response becomes stiffer as γ increases. A comparison of force vs. displacement

curves for elastic response and for viscoelastic response at different displacement rates

is shown in Figure 2.5. Calculations were carried out with G1(t) = G2(t). The force

corresponding to a given displacement is less than in the elastic case and decreases

as displacement rate decreases. When D = 2t, the deformation increases rapidly

before significant stress relaxation occurs and the difference in contact force from the

elastic case is small. When D = t/2 the deformation increases slowly, there is time

for significant stress relaxation to occur and the difference in contact force from the

elastic case is larger. Similar results are obtained when G1(t) 6= G2(t). These results

show that plot of force versus displacement is not a unique property, but depends on

the time dependence of the viscoelastic material.
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Figure 2.3: Profiles for a NLE membrane at different levels of displacement, with
γ = 0.1. The heavy dot indicates the boundary of contact and non-
contact regions.
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Figure 2.4: Force vs. displacement for a NLE membrane showing the influence of the
Mooney-Rivlin parameter γ.
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Figure 2.5: Comparison of force vs. indentation plots for a NLE membrane and a
quasi-linear viscoelastic (QLV) membrane at various constant displace-
ment rates.

The next set of figures explore the time-dependent response when each plate

is subjected to a step displacement history, D = D0, t ≥ 0, where D0 is a con-

stant. Figure 2.6 shows the influence of the amount of displacement on the con-

tact force relaxation when G2(t) = βG1(t) (QLV) and when G2(t) 6= G1(t) (NLV).

The parameters are g1 = g2 = 0.2, c = 1 and γ0 = γ∞ = 0.1 for QLV and

g1 = 0.2, g3 = 0.3, c = 1/2 and γ0 = 0.1, γ∞ = 0.15 for NLV. Results are shown for

displacements of D/r0 = 0.53(H1/r0 = 0.5) and D/r0 = 0.78(H1/r0 = 0.25). When

D/r0 = 0.53(H1/r0 = 0.5), there is very little difference between force relaxation for

QLV and NLV. When D/r0 = 0.78(H1/r0 = 0.25), the force relaxation for QLV is

slightly faster than that for NLV. When the displacement increases from D/r0 = 0.53
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to D/r0 = 0.78, the force increases by a factor of 10, showing a significant stiffening

of response. Figure 2.7 shows the influence of the ratio c = τ1/τ2 on the contact

force relaxation at the displacement D/r0 = 0.78. Calculations were carried out with

g1 = g2 = 0.2, γ0 = 0.1 and for c = 1, 0.5, 2. The response is QLV when c = 1. Stress

relaxation for NLV is slightly faster or slower than that for QLV accordingly as c = 2

and c = 0.5. The dependence of contact force relaxation on the decrease of G2(t)

relative to G1(t) is shown in Figure 2.8. When D/r0 = 0.78, calculations were carried

out with γ0 = 0.1 and c = 1. QLV corresponds to g1 = g2 = 0.2. When g1 = 0.2

and g2 = 0.1, G2(t) decreases more than G1(t) and the contact force relaxes faster

than for QLV. When g1 = 0.2 and g2 = 0.3, G2(t) decreases less than G1(t) and the

contact force relaxes slower than for QLV.
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Figure 2.6: Contact force relaxation at two displacements for both the QLV and NLV
cases.
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Figure 2.7: Contact force relaxation at displacement D/r0 = 0.78 for both the QLV
and NLV cases. G1(t) and G2(t) have different relaxation times for the
case of NLV.

Figure 2.4 shows the non-dimensional force-displacement curve for a Mooney-

Rivlin membrane for several values of the Mooney-Rivlin parameter γ. The instan-

taneous force F (0) for t = 0 and the asymptotic force F (∞) for t → ∞ correspond

to Mooney-Rivlin parameters γ0 and γ∞, respectively. F (0) and F (∞) can be deter-

mined from the non-dimensional force-displacement curve in Figure 2.4 by a discussion

similar to that given in section 7 of Nguyen et al. (2013b). For a specified displacement

D/r0, let the curves corresponding to γ0 and γ∞ give the values F/(C1h0r0)|γ0 = F ∗0

and F/(C1h0r0)|γ∞ = F ∗∞. Then, F (0) = G10h0r0F
∗
0 and F (∞) = G1∞h0r0F

∗
∞.
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Figure 2.8: Contact force relaxation at displacement D/r0 = 0.78 for both the QLV
and NLV cases. G1(t) and G2(t) have different amounts of relaxation for
the case of NLV.

The variation of contact position ψc with time is illustrated in Figure 2.9 for the

case when D/r0 = 0.78. The manner in which it varies has a complicated dependence

on the material properties that can be accounted for by the following considerations.

The instantaneous response at t = 0 is the same for all choices of material properties

shown and corresponds to the Mooney-Rivlin parameter γ0 = 0.1. The equilibrium

state in the limit as t → ∞ depends on γ∞ which by (2.57) is determined by the

ratio g2/g1. Figure 2.4 shows that the force-displacement response curves for the

equilibrium states at t = 0 and as t → ∞ depend on the Mooney-Rivlin parameter.

Thus, even though the displacement may be fixed, force relaxation in combination

with the change in this parameter leads to different states at t = 0 and as t → ∞.

For QLV, the states at t = 0 and as t → ∞ are the same with γ0 = γ∞ = 0.1. It is
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found that ψc does not vary with time. This is consistent with the result established

in Nguyen et al. (2013b) that when the plates undergo a step displacement, then the

deformation of the membrane does not vary with time. The states at t = 0 and as

t → ∞ are the same with γ0 = γ∞ = 0.1. On the other hand, when g1 = 0.2 and

g2 = 0.1, then γ∞ = 0.05 and when g1 = 0.2 and g2 = 0.3 then γ∞ = 0.15. In

these two cases, ψc, respectively, increases or decreases monotonically from its value

in the instantaneous configuration at t = 0 to its value in the large time configuration

as t → ∞. Figure 2.9 also shows the case with g1 = g2 = 0.2, but G1(t) 6= G2(t)

because of different relaxation times. The states at t = 0 and as t → ∞ are the

same with γ0 = γ∞. When c = τ1/τ2 = 1/2, ψc initially decreases with time because

of the different relaxation processes and then increases to its original value. When

c = τ1/τ2 = 2 the opposite behavior occurs.
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Figure 2.9: Variation of the contact position over time.
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At a location inside the contact region ψ = 0.25, the behaviors of stresses and

stretches of the spherical membrane at the step displacement D/r0 = 0.78 are shown

in Figure 2.10- 2.12. The influence of the ratio c = τ1/τ2 on the stretch ratio histories is

shown in Figure 2.10. Calculations were carried out with g1 = g2 = 0.2, γ0 = γ∞ = 0.1

and for c = 1, 0.5, 2. When c = 1 the model reduces to QLV. The stretch ratios do not

vary with time. When c = 1/2 both stretch ratios λ1 and λ2 increase then decrease

to approach the long time value of QLV model. This behavior is reversed when c = 2.

Changing the amount of relaxation g1 and g2 also affects the behaviors of the

stretch ratios λ1(t) and λ2(t) at ψ = 0.25 as shown in Figure 2.11. The stretch ratios

increase and approach an asymptotic value when g1 < g2. On the other hand, when

g1 > g2, they both decrease and approach smaller values. Figure 2.12 shows the prin-

cipal stretches and stresses versus angle ψ at t = 10 for the displacement D/r0 = 0.78

and material properties g1 = 0.2, g2 = 0.3, c = 1 and γ0 = 0.1 (corresponding to

γ∞ = 0.15). As seen from Figure 2.11, these are essentially the distributions in the

equilibrium state as t → ∞. The distributions show substantial non-homogeneity,

with λ2 varying from about 1.1551 at the crown to 1.7564 at the edge. The big dot

indicates the transition between the contact and non-contact regions. Nadler (2010)

showed similar plots for a Neo-Hookean material. Here, calculations for the case of

Neo-Hookean material (γ = 0) at a smaller displacement D/r0 = 0.309 (not shown)

agree with those in Nadler (2010). Both sets of calculations show that λ2 > λ1 and

σ2 > σ1 for all ψ. Consider the radial line from the origin to the material particle

at the transition point between the contact and non-contact regions. Its angle in the

reference configuration is ψ = ψc ' 73.7◦. In the current configuration at t = 10 it

makes an angle of about 80.6◦.
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Figure 2.10: Influence of the relative relaxation times of G1(t) and G2(t) on the his-
tories at ψ = 0.25 of stretches λ1 and λ2. This location is inside the
contact region (ψc = 1.2917 for the case of QLV).
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Figure 2.11: Influence of the amounts of relaxation of G1(t) and G2(t) on the histories
at ψ = 0.25 of stretches λ1 and λ2. This location is inside the contact
region (ψc = 1.2917 for the case of QLV).
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Figure 2.12: Stresses and stretches versus angle ψ in the reference configuration at
time t = 10. Top figure: stretches λ1, λ2; bottom figure: stresses σ1, σ2.
The heavy dot corresponds to the angle ψc at the boundary between the
contact and non-contact regions.

In indentation experiments, piece-wise histories, loading and unloading, are nor-

mally performed. The initial unloading slope is usually related to the elastic proper-

ties using the Oliver-Pharr approach (Olivera and Pharr , 1992). Figure 2.13 and 2.14

present responses to tests with constant loading and unloading rates. The loading rate
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is the same in all tests, sl = Ḋ/r0 = 1. The maximum displacement is D/r0 = 0.28 in

Figure 2.13 and D/r0 = 0.78 in Figure 2.14 (with the corresponding material prop-

erties g1 = 0.2, g2 = 0.6, c = 1, γ0 = 0.1, γ∞ = 0.3). Both figures show results for two

different unloading rates: su = Ḋ/r0 = 1 and su = Ḋ/r0 = 1/5. These rates and the

initial unloading slopes of the force displacement plots are listed in Table 2.1. For

clarity, only results for the cases of non-linear elasticity and non-linear viscoelasticity

are plotted, however, the initial slope of the QLV response is also included in Table

1 for comparison. As can be seen, the initial unloading slope shows a lot of variation

depending on the rate of unloading as well as amount of deformation. The variation

is due to the effect of both viscoelasticity and nonlinearity of the material properties.

Hence, it is misleading to relate this initial unloading slope to elastic behavior.
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Figure 2.13: Loading and unloading behaviors for NLE and NLV membranes with
D/r0 = 0.28, g1 = 0.2, g2 = 0.6, c = 1/2, γ0 = 0.1, γ∞ = 0.3.
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Figure 2.14: Loading and unloading behaviors for NLE and NLV membranes with
D/r0 = 0.78, g1 = 0.2, g2 = 0.6, c = 1/2, γ0 = 0.1, γ∞ = 0.3.

Initial Initial Initial
D/r0 Unloading rate unloading unloading unloading

slope for NLE slope for QLV slope for NLV

D/r0 = 0.28 su = Ḋ/r0 = 1 4.7 4.6 4.5

su = Ḋ/r0 = 1/5 6 6

D/r0 = 0.78 su = Ḋ/r0 = 1 324.5 257 241

su = Ḋ/r0 = 1/5 297 287.5

Table 2.1: Comparisons of the initial unloading slopes for different amounts of dis-
placements and unloading rates for three cases: NLE, QLV, and NLV

2.5.2 FE Formulation Solution

Comparisons between FE models and the analytical formulation were also car-

ried out. Figure 2.15 shows profile and perspective views of the deformed spherical
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membrane at time t = 10 at two displacements, left figure: D/r0 = 0.28, right figure

D/r0 = 0.53 with the corresponding material properties g1 = g2 = 0.2, c = 1, γ0 =

γ∞ = 0.1. At a fixed time, the maximum principal stress is lowest at the crown and

largest at the edge (around the biggest horizontal circumference of the membrane).

These results are consistent with those of Nadler (2010) in the case of an elastic mem-

brane. He showed that the principal stresses at the crown are very small and could

become negative, indicating wrinkling. This is avoided by the small initial inflation

from r0 to rs.

 

Figure 2.15: Profile and perspective views of the deformed membrane at two dis-
placements from the FE model. Left figure: D/r0 = 0.28, right figure:
D/r0 = 0.53 with the corresponding material properties: g1 = g2 =
0.2, c = 1, γ0 = γ∞ = 0.1 at time t = 10.

Figure 2.16 shows the relaxation of the stresses at the crown and the edge with

D/r0 = 0.28, g1 = g2 = 0.2, c = 1, γ0 = γ∞ = 0.1. The stresses remain positive

for all times thereby showing that the membrane will not wrinkle. Figure 2.16 also

compares σ2 versus t as determined from the analytical formulation and from the

FE formulation using ABAQUS. The comparison shows good agreement with the
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analytical approach which is also based on membrane theory (the maximum difference

|σFE−σAnalytical|
(σFE+σAnalytical)/2

< 0.2% at each time instant).
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Figure 2.16: Comparison of the principal stresses versus time t at the crown and the
edge of the spherical membrane, D/r0 = 0.28, g1 = g2 = 0.2, c = 1, γ0 =
γ∞ = 0.1.

2.6 Concluding Comments

This chapter considered the mechanics of a NLV closed membrane that contains

a fluid and is squeezed between two rigid, smooth, parallel plates. The membrane
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material is modeled by the Pipkin-Rogers single integral constitutive equation for

non-linear viscoelasticity. This choice was made for several reasons. It incorporates

many essential features of non-linear viscoelasticity, and is a straightforward extension

of non-linear elasticity. Additionally, it includes QLV (Fung , 1981) as a special case.

The governing equations are solved by reducing the system of equations to a

three-point boundary value problem with a contact region and a non-contact region

separated by a time-dependent boundary. A system of non-linear partial differential

Volterra integral equations associated with each region was studied. A numerical

method is presented that marches forward in time. At each time, the boundary value

problem reduces to one equivalent for a NLE material. A FE model of the problem

using membrane elements is also included. Material properties are chosen such that

the problem reduces to one for Mooney-Rivlin materials at t = 0 and in the limit as

t → ∞. Two plate displacement histories are investigated: constant rate and step

loading histories. Force-displacement plots demonstrate the importance of the char-

acteristic time for displacement relative to the characteristic relaxation time of the

material. The results for step displacements show the effects of different elastic re-

sponses at t = 0 and in the limit as t→∞, as well as the time-dependent transition.

Results for the elastic responses at t = 0 and in the limit as t→∞ are in qualitative

agreement with corresponding results obtained in other work for a neo-Hookean non-

linearly elastic spherical membrane enclosing a fluid. The time-dependent transition

is studied for different step plate displacements, as well as the influence of different

material properties. A particular choice of material properties shows response in the

special case of QLV. When the material is modeled by QLV, the results show that

the deformation does not vary with time. Thus, in an experiment, time dependence

of the deformation indicates that the material should not be modeled using QLV.

A good agreement between the results obtained by direct numerical solution of the

system of partial differential Volterra integral equations and the use of the commer-
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cial code ABAQUS with membrane elements leads to a promising approach to tackle

asymmetric contact problems.

The constitutive theory used here is fully characterized when the scalar coefficients

α1, α2, α3 are known. For the numerical examples presented here, these are expressed

in terms of the relaxation properties G1(t), G2(t) and Φ as defined in (2.54). The

simplest form for the relaxation properties corresponds to the three parameter solid

shown in (2.56). Thus, seven scalar parameters are required to specify the constitutive

equation used here, namely, G10, G1∞, τ1, G20, G2∞, τ2 and α. If, as experimental data

suggests, the material can be modeled as QLV, then the number of scalar parameters

reduces to four. The identification of these parameters using AFM is still a formidable

problem. It appears likely that data from a single experimental configuration may

not be sufficient to determine all the scalar parameters. A more extensive experimen-

tal program that includes tests conducted at different rates of loading and different

applied forces may be necessary. In order to extract the scalar parameters from this

extensive experimental configuration, one approache is to use an inverse analysis to

fit the experimental data. However, the standard inverse analysis, which utilizing the

sequential iteration process, is inefficient, due to expensive evaluations of the errors

between the experimental data and simulations. Hence, an inverse technique that

can overcome this limitation is necessary for the extraction of material properties.

Surrogate modeling is a valuable tool for developing such a technique, as will be the

focus of the next chapter.
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CHAPTER III

Surrogate Model Based on Kriging and Inverse

Problem

3.1 Iterative Inverse Analysis

The study of forward problems, as discussed in Chapter II, is a precursor to a

harder and more challenging task, which is solving inverse problems for determining

the NLV properties. Figure 3.1 shows the inverse scheme that is usually employed

for extracting the optimized set of material parameters from the experimental data.

The scheme involves the selection of an appropriate experimental setup to probe the

mechanical properties. For polymeric synthetic capsules and biological cells, several

techniques can be employed, as mentioned in Chapter I. The force-displacement-

time response of a displacement control test is often utilized in the characterization

process. The test process is then modeled using the FE method, in which the force-

displacement-time response associated with an assumed set of NLV parameters is

predicted. A cost function is constructed by computing the root mean square er-

ror (RMSE) between the experimental data and the FE prediction. The cost function

at the assumed set of material parameters is compared with a tolerance value. If the

cost function value is less than the tolerance, the assumed set is considered to be the

optimized set. If this criterion is not met, the FE model and the cost function are
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Figure 3.1: Iterative inverse technique for solving inverse problem.

re-evaluated at a different set of material parameters. This iterative inverse technique

was employed in the literature (Bernick et al., 2011; Prevost et al., 2011). For ex-

ample, an iteration number of about 500 was reported in the work by Prevost et al.

(2011). However, this repeated process of FE simulations and cost function evalua-

tions is associated with a computational cost issue (Ladjal et al., 2009), which makes

it difficult to analyze large amounts of experimental data and to use a complex FE

model. In addition, the number of unknown material parameters needed to identify

the experimental responses increases the difficulty of the problem. To overcome these

issues, an inverse analysis approach based on establishing a meta model and a Kriging

estimator (Sacks et al., 1989; Jones et al., 1998; Lophaven et al., 2002; Queipo et al.,

2005; Forrester et al., 2008; Gustafson and Waas , 2009; Heinrich and Waas , 2009) is

utilized. The purpose is to replace the FE simulation by a functional relationship that

can be evaluated quickly. An overview of this approach is presented in the following

section.
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3.2 Overview of Meta Model and Kriging Estimator

Figure 3.2 describes the inverse technique based on a surrogate model with a

Kriging predictor.

Figure 3.2: Surrogate model based on Kriging technique for solving an inverse prob-
lem.
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A meta model is built by evaluating computationally intensive FE simulations at

sets of selected training points and at sets of selected checking points. Here, a set of

training points or a set of checking points is a combination of material parameters

generated based on an appropriate sampling technique. Though this step might

be costly initially, the FE evaluations can be done in parallel to reduce the total

computation time. Additionally, the optimization process utilizing this meta model

is much faster than the one performed on the actual model. The selected training

points and checking points are obtained by the Latin Hypercube sampling algorithm.

Optimal Latin Hypercube sampling algorithm can also be used owing to its capability

to create a more uniformly distributed grid over the domain of the material parameters

(Queipo et al., 2005; Forrester et al., 2008). This inverse approach has been used

successfully in prior studies (Gustafson and Waas , 2009; Heinrich and Waas , 2009).

The process is summarized as follows:

Let N denote the number of sets of training points. X = [x1, ..., xN ] represents

the design site over the design domain, D: xi ∈ D ⊂ Rn, i = 1, N where n is the

number of material parameters in each set, Rn is a real space of n dimensions, and

the design domain D is a subset of this n-dimension space. Y = [y1, ..., yN ] represents

the corresponding responses from FE simulations: yi ∈ Rm, i = 1, N where m is

the number of time steps in each force-time response and Rm is a real space of m

dimensions. A meta model is composed of X and Y .

A separate N1 sets of checking points are also generated to check the accuracy

of the technique. Let X1 = [x1, ..., xN
1
] denote the generated sets over the design

domain, D: xi ∈ D ⊂ Rn, i = 1, N1 and Y 1 = [y1, ..., yN
1
] are the corresponding

responses from FE simulations: yi ∈ Rm, i = 1, N1.

Once a meta model is constructed, surrogate modeling based on a Kriging estima-

tor is applied to predict a functional relationship between the design site X and the

response site Y, as illustrated in Figure 3.3. This relationship is used to capture the
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Figure 3.3: Kriging Predictor.

underlying FE simulations at the untried points in the design domain D. To serve

this purpose, a fundamental assumption is employed in Kriging, which assumes that

errors are correlated (Sacks et al., 1989; Jones et al., 1998; Lophaven et al., 2002;

Forrester et al., 2008). In other words, the errors of two “close points” are “close”.

This assumption is reasonable when the problem involves no sources of random er-

rors. Thus, in the case of deterministic computer simulations as are considered here,

it is appropriate to assume that error terms are correlated. With this assumption,

Kriging constructs a mapping y(x) from the design site X to the response site Y using

the following form:

y(x) = f(β, x) + Z(x), (3.1)

where x ∈ D ⊂ Rn is an n-dimensional input in the domain D of the design site. The

first function f(β, x) is a regression model represented as a linear combination of p

chosen functions fi : Rn → Rm, i = 1, p as follows:

f(β, x) = β1f1(x) + ...+ βpfp(x) = f(x)Tβ, (3.2)

where β is a vector of regression coefficients. The second function Z(x) is a stochastic
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(random) process. Its mean is assumed to be zero, and its variance is denoted as σ2.

The representation in (3.1) can be interpreted as the combination of a global approx-

imation for y(x) through the use of the regression model f(β, x) and local deviations

captured by the stochastic process Z(x). The covariance of this stochastic process is

related to the correlation between two points:

Cov[Z(x(i)), Z(x(j))] = σ2Rkrg(θ, x
(i), x(j)), (3.3)

where Rkrg is a correlation function and θ are correlation parameters.

The algorithm for the Kriging predictor has been implemented in the MATLAB

DACE toolbox (Lophaven et al., 2002) and is employed in this study. This toolbox

contains several options for the regression model f(β, x) in the forms of polynomial

functions of orders 0, 1, 2. It also provides several choices for correlation models. With

a selected polynomial regression function and a correlation model, the regression coef-

ficients β and the correlation parameters θ for constructing the Kriging predictor are

determined using the training group (X,Y). Prior to applying this predictor to pre-

dict the response at untrained points, its accuracy is verified using the checking group

(X1,Y 1). Recall that X1 has N1 sets of checking points generated independently of

the sets of training points in X, which are used to construct a meta model and a Krig-

ing predictor, whereas Y 1 has N1 corresponding force-time responses obtained from

actual FE simulations. The accuracy of the predictor is determined by comparing

these actual FE responses with the responses predicted using the constructed Kriging

predictor. In this thesis, the RMSE values will be computed and used to evaluate

the performance of the Kriging estimator in capturing the FE simulations. If the

errors are small enough, this Kriging predictor will be employed to replace the costly

FE simulations in the inverse scheme. With a sufficiently large number of training

points to start with, one-shot Kriging predictors (shown in following chapters) are
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sufficient to predict the responses in FE simulations within the material domain, for

the examples studied in this thesis.

3.3 Application to Inverse Problem

The inverse problem for extracting the NLV properties from experimental data

using various testing scenarios can be solved automatically and efficiently with the

presented inverse analysis methodology. This method can be combined with many

constitutive models and overcomes the issues resulting from the sequential inverse ap-

proach (section 3.1), which is lengthy and impractical, requiring iterative evaluations

of costly FE modeling. It also allows for efficient analysis of large amounts of data,

which is necessary in testing samples with large variations, such as biological cells.

Two inverse problems are selected to illustrate the efficiency of the method. The first

focuses on analyzing experimental data from the compression of a fluid-filled capsule.

The second studies the AFM indentation problem on biological cells. Details of the

experimental setups, FE models, and inverse processes are presented in Chapter IV

and Chapter V.

In addition to the above application in solving inverse problems, which is the fo-

cus of this thesis, the following additional aspects of surrogate modeling and Kriging

predictor are also worth to be noted.

- As discussed in the work by Gustafson and Waas (2009), Kriging predictor can be

used to investigate the sensitivity of input parameters. Specifically, the regression co-

efficients β were employed to analyze and compare how sensitive each input variable

is with respect to the model output. Such a study can also be incorporated in order to

examine the role of each NLV parameter considered in this thesis. The sensitivity of

each material parameter is expected to be useful for narrowing and lowering the range

and the dimension of the design domain. This can further reduce the computational

cost of the inverse process.
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- Additionally, in this thesis, the domain was chosen sufficiently large to encompass

the sets of material parameters that correspond to the experimental responses. A

Kriging predictor is constructed within this design domain and is applied to predict

the response at an arbitrary set of material parameters, which also lies within this

domain. Such a prediction is considered as an interpolation. A question remains

is the effectiveness of the constructed Kriging predictor in predicting the responses

at sets of material parameters that lie outside this domain. It might be interesting

to investigate this extrapolation capacity of the constructed Kriging predictor. One

approach is to generate checking groups that contains sets of checking points lying

outside the design domain. Comparisons between the actual FE simulations and

Kriging predictions for these checking sets then can be utilized to determine whether

or to which extent the Kriging predictor is effective for extrapolating purposes. Un-

derstanding this aspect might provide insight to address the cases when the selected

design domain does not include the sets of material parameters that yield the re-

sponses measured in experiments.

- Another question is related to the determination of the range of the design domain.

In this thesis, the upper and lower bounds (range) of the design domain were still

selected mainly based on trial and guessing. Specifically, the inverse problem was

solved with an assumed design domain, which might be small initially. Based on

the obtained sets of material parameters and comparisons of their corresponding FE

responses with the experimental data, the domain was then manually adjusted and

expanded until it was sufficiently large to encompass the sets of material parame-

ters that correspond to the experimental responses. This manual process might be

enhanced by incorporating the sensitivity study and the knowledge of extrapolation

capacity of the Kriging predictor.

- For the two problems discussed in Chapter IV and Chapter V, the options in the

MATLAB Dace toolbox for the polynomial regression function of either second (reg-
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poly2) or first order (regpoly1) and the general exponential (correxpg) correlation

model were utilized. These options were chosen as the RMSE values evaluated for

the checking sets corresponding to the use of these options were sufficiently small.
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CHAPTER IV

Compression of Fluid-Filled Polymeric Capsules

and Inverse Analysis to Determine Non-Linear

Viscoelastic Properties

4.1 Introduction

This chapter considers an experiment in which commercially available soft gel

capsules filled with a fluid are compressed between two flat, relatively rigid, parallel

plates. The bottom plate is stationary while the displacement of the top plate is

controlled. The bottom plate is a transparent prism through which the contact area

can be monitored by means of an optical arrangement. The reaction force on the cap-

sule is recorded and the force-displacement-time data is used in an inverse analysis to

determine the capsule wall material properties. This inverse analysis uses a surrogate

model based on a Kriging estimator (Sacks et al., 1989; Lophaven et al., 2002). It is

based upon optimizing the error between simulated force-displacement-time responses

obtained from a FE model of the experiment and the experimental data. Since the

capsule is subjected to large relative displacement of the top plate with respect to

the stationary plate, material and geometric nonlinearity are incorporated into the

FE model. Furthermore, as observed from experiments, the capsule material exhibits

time-dependent characteristics. Therefore, in this study, a NLV constitutive relation
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for modeling the capsule material is used. The enclosed fluid is assumed to be incom-

pressible, nonviscous, and in a steady state. Combining FE modeling and a Kriging

estimator will allow for automatic identification of the NLV properties of a capsule

wall from a general 3D compression test.

The remainder of this chapter is composed of three sections. Section 4.2 includes

details of the compression experiment and the optical arrangement for obtaining the

reaction force-displacement-time as well as contact area outputs. The FE model

and measurements of the geometrical dimensions and wall thickness are described in

section 4.3. The constitutive relation for the capsule material is also discussed in this

section. An inverse technique utilizing a surrogate model with a Kriging predictor

is applied to the measured data and the results are shown in section 4.4. The use

of contact area measurements is also presented together with a discussion of many

phenomena such as the buckling of the capsule wall. The conclusions and suggestions

for further studies are included in this section as well.

4.2 Details of Experiment

Commercially available polymeric capsules (Brand name: Natural Vitamin D3

400 IU 100 Softgels), which are fish liver oil, soft gel capsules made of bovine gelatin

and enclosing a fluid, were compressed between two flat, rigid, parallel plates using an

Instron testing machine. Displacement control tests were conducted by specifying the

displacement of the top plate while the bottom one remained stationary. Two types of

input were used: ramp-hold (RH) or relaxation, and ramp-reverse (RR) or hysteresis,

each consisting of two steps. For the RH (relaxation) test, the top plate moved down

at a rate of 5 mm/s to a specified value. After reaching that value, the applied

displacement of the top plate was held constant to study the relaxation behavior

of the polymeric capsules. For the RR (hysteresis) test, the plate moved down at

a slower rate of 0.2 mm/s to acquire the loading path. Upon reaching a specified
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value, the plate moved upward at the same rate; this corresponded to the unloading

stage. The time variation of the capsule’s reaction force during the loading, holding,

and unloading stages was measured through a load cell attached to the top plate. A

clear cube beam splitter (Edmund Optics) was used as the bottom plate in order to

record the contact area between the capsule and the bottom plate. This beam splitter

reflects the horizontal contact area onto a vertical, planar image. Contact area images

(after reflection through the beam splitter) while the capsule is in RH (relaxation)

as well as RR (hysteresis) tests are captured through an optical arrangement using a

high speed camera (Grasshopper camera with 15 frames/second). The specified value

for the displacement is chosen such that the capsule undergoes large deformation.

The values employed in this study are d = 1.0 mm and d = 1.5 mm. Significant

changes in the contact curvature were observed, which gives rise to the nonlinearity

in the geometry of the problem. A typical experimental setup is shown in Figure 4.1.

The left figure shows an undeformed capsule, while the right is an illustration of the

deformed state and exhibits a change in curvature within the contact region.

Figure 1a: An undeformed state of the capsule Figure 1b: A deformed state of the capsule with

contact area image

Figure 4.1: Compression experiment setup

Using this setup and the optical arrangement, contact area and force-time data

are acquired simultaneously. The applied displacement input, typical contact area

image, and force-time data for four compression inputs are shown in the following four
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figures. Figure 4.2 contains the data for the RH (relaxation) tests with a specified

displacement of d = 1.5 mm, while the data for RR (hysteresis) tests with the same

specified displacement input is shown in Figure 4.3. The data for RH (relaxation)

and RR (hysteresis) tests with a specified displacement of d = 1.0 mm are presented

in Figure 4.4 and Figure 4.5, respectively. Comparisons between these tests allow the

investigation of the effect of the amount of deformation as well as that of the rate of

loading.

The contact area edge is observed to be close to an elliptical shape and increases

with increasing deformation during the loading part. The force-time data shows the

typical relaxation behavior of the polymeric capsule. General consistency was obeyed

when comparing the experimental data from these four tests. At a higher value of the

displacement, the maximum reaction force is higher. At the same value of displace-

ment, the peak value of the RR (hysteresis) test is smaller than the corresponding

value of the RH (relaxation) test, since the former’s (RR) rate of loading is much

slower, hence the material has more time to relax.

4.3 FE Modeling

The compression experiment with RR (hysteresis) and RH (relaxation) inputs is

simulated by FE analysis using the commercial software ABAQUS-6.10 (ABAQUS-

v6.10 , 2010). To obtain information about the geometry, each capsule is sliced into

two halves. Each half is put on the prism such that the planar, horizontal image of

the cross section is reflected onto a vertical plane and is captured by the Grasshopper

camera. Figure 4.6 shows typical images of two cross sections: one is along the

longitudinal axis of the capsule and the other is along the shorter axis. Using the

averaged dimensions and thicknesses of 20 samples, the polymeric capsule is modeled

as a deformable ellipsoidal shell with a major axis dimension of 2a = 9.96 mm and

a minor axis dimension of 2b = 2c = 6.51 mm. The variations in the capsule shell
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Figure 4.2: Experimental data for RH (relaxation) tests at the specified displacement
of d = 1.5 mm (n = 9) with loading rate of 5 mm/s and 10s hold time
(a) Force-displacement-time (b) Contact area at time t>0.4s
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Figure 4.3: Experimental data for RR (hysteresis) tests at the specified displacement
of d = 1.5 mm (n = 9) with loading and unloading rates of 0.2 mm/s (a)
Force-displacement-time (b) Contact area at time t=7.5s
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Figure 4.4: Experimental data for RH (relaxation) tests at the specified displacement
of d = 1.0 mm (n = 9) with loading rate of 5 mm/s and 10s hold time
(a) Force-displacement-time (b) Contact area at time t>0.3s
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Figure 4.5: Experimental data for RR (hysteresis) tests at the specified displacement
of d = 1.0 mm (n = 7) with loading and unloading rates of 0.2 mm/s (a)
Force-displacement-time (b) Contact area at time t=5.0s
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Figure 4.6: Dimensions and thickness measurements

Figure 4.7: FE model for fluid-filled capsules
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are accounted for by using non-uniform wall thicknesses incorporating the values of

t1 = 0.62mm and t2 = t3 = 0.4mm. The shell wall is modeled with the use of 3D solid

elements C3D8R. The enclosed fluid is assumed to be incompressible and modeled by

F3D4 fluid elements. The nodes of these fluid elements coincide with the nodes of the

inner surface of the shell wall and are arranged in a counter clockwise order such that

the positive normal directions of the elements point toward the center of the capsule.

The two contact plates are modeled as rigid bodies using R3D3 and R3D4 elements.

A convergence study was also performed to optimize the mesh size. In this study, a

mesh size of 12662 elements with four elements along the capsule thickness is utilized

for obtaining the force-time response, while a more refined mesh, especially in the

contact region, of 101132 elements having four elements along the capsule thickness

is employed for extracting contact-area information. An illustration of FE model is

shown in Figure 4.7. The tangential contact behavior between the plates and the

capsule is assumed to be frictionless, while the vertical contact behavior is modeled

using the hard contact feature for pressure-overclosure relationship in ABAQUS. In

this contact feature, the option that allows separation after contact is applied to

investigate whether there is any loss of contact during the compression test.

The actual displacement-time history of the top plate from the experiment is used

to specify the input for FE simulations. For the case of RH (relaxation) tests, this

actual history is essential for capturing the effect of the overshoot in the input data

due to the very fast ramp rate (as shown in Figure 4.2 and Figure 4.4). Reaction

force and contact area are extracted from FE simulations and compared with the

experimental data. For the contact area, since there might be a gap between the

capsule and the plates in the contact region, the history output CAREA (an option

in ABAQUS allows the extraction of contact area) was not used. The profiles of the

contact pressure were utilized instead to determine the boundary of the contact region

and compute the area. Different NLV constitutive models for the capsule’s material
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can be employed with the approach considered here. For convenience, the ABAQUS

6-10 NLV model is chosen owing to its built-in option in the software.

ABAQUS built-in NLV model

As presented in section 4.8-2 of ABAQUS Theory Manual version 6-10 (ABAQUS-

v6.10 , 2010), the finite-strain viscoelasticity model employed in ABAQUS has the

following hereditary integral form:

τD(t) = τD0 (t) + dev

 t∫
0

Ġ(s)

G0

F̄−1t (t− s)τD0 (t− s)F̄−Tt (t− s)ds

 ,
τH(t) = τHo (t) +

t∫
o

K̇(s)

K0

τH0 (t− s)ds,

where τD and τH are the deviatoric and volumetric parts respectively. G(s) is the

shear relaxation function while K(s) is the bulk relaxation function. This form is a

non-linear single integral model based on a generalization of the linear viscoelastic

model considering a transformation of the stress state at time (t− s) to the one at

time t through the relative deformation gradient Ft(t− s) defined as follows:

Ft−s(t) =
∂x(t)

∂x(t− s)
.

Note that this can be rewritten as:

Ft−s(t) = F(t)F−1(t− s),

F̄t−s(t) = F̄(t)F̄−1(t− s),
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where F is the deformation gradient and F̄ = det(F)−1/3F. Therefore, the deviatoric

part can also be represented as:

τD(t) = τD0 (t) + dev

F̄(t)

 t∫
0

Ġ(s)

G0

F̄−1(t− s)τD0 (t− s)F̄−T (t− s)ds

 F̄T(t)

 .

With the assumption of incompressible shell wall material, the material properties

that need to be determined in this model belong to two parts of the model. For the

elastic part, an incompressible, Mooney-Rivlin relation is used which requires two

parameters C1, C2 = αC1:

τ0 = −pI + 2(C1 + I1C2)B− 2C2B
2, (4.1)

where p is the indeterminate pressure arising from the incompressibility constraint.

B is the left Cauchy-Green tensor. The incompressibility is taken cared by ABAQUS

using a high bulk modulus value.

For the viscoelastic part, the relaxation function expressed in terms of an n term

Prony series (gk, τk) is employed.

G(s) = G∞ +
n∑
k=1

Gke
−s/τk = G0

[
g∞ +

k=n∑
k=1

gke
−s/τk

]
, (4.2)

where

g∞ = 1−
k=n∑
k=1

gk > 0. (4.3)

4.4 Results and Discussions

4.4.1 Implementation of Inverse Process

The ABAQUS built-in NLV material model with incompressibility was used to

model the capsule shell wall. Six unknown material properties need to be determined.
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Two Mooney-Rivlin parameters C1, C2 = αC1 are utilized for describing the NLE

part. A two term Prony series (gk, τk), k = 1, 2 are to capture the relaxation behavior.

Therefore, the material domain is a sixth dimensional space of x(C1, α, g1, τ1, g2, τ2).

To illustrate the application of the above inverse process, consider the mean data of

the RH (relaxation) test with the specified displacement of d = 1.5 mm. The lower

bound and upper bound for material parameters are in Table 4.1.

C1(MPa) α g1 τ1(s) g2 τ2(s)
Lower bound 5 0 0.5 0.03 0 1
Upper bound 50 0.5 1 0.3 0.5 5

Table 4.1: Boundary of the material domain used in the process of determining the
NLV properties of the tested polymeric fluid-filled capsules

The process is divided into five steps following the description in Chapter III.

Step 1: Generate sets of material properties to build a meta model and testing cases

In the sixth dimensional space, select N sets of x(C1, α, g1, τ1, g2, τ2) for training

points and M sets for testing the Kriging estimator. The selection technique is based

on the Latin Hypercube sampling (using MATLAB function “lhsdesign” (MATLAB

R2010a, 2010)) and satisfies the constraint g1+g2 < 1. For the problem here, N = 492

and M = 92 correspond to X(6, 492) and X1(6, 92).

Step 2: Evaluation of FE simulations

The time period of the RH (relaxation) test is divided into 1200 time steps ti, i =

1, 1200. For each set in X(6, 492) and X1(6, 92), FE simulation is used to extract

the force-time response (ti, yi(ti)), i = 1, 1200. These evaluations of FE simulations

were done in parallel to reduce the computational time. The corresponding force

values are saved in Y (1200, 492) and Y 1(1200, 92). The combination of X(6, 492)

and Y (1200, 492) constructs a meta model for the problem, while the combination of

X1(6, 92) and Y 1(1200, 92) is used for testing the accuracy of the predictor.

Step 3: Apply a Kriging Predictor

Once a meta model is generated, a non-linear relationship between the material in-
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puts and force responses is derived based on a Kriging predictor as described in Chap-

ter III. This step utilizes the DACE toolbox implemented in MATLAB (Lophaven

et al., 2002).

Step 4: Checking the accuracy of the Kriging Predictor

The accuracy of the predictor is evaluated by applying it to the testing sets

X1(6, 92), Y 1(1200, 92). Here, each set x(C1, α, g1, τ1, g2, τ2) in X1(6, 92) is composed

of six material parameters and was not used for training the Kriging Predictor in

step 3. Each set y(ti), i = 1, 1200 in Y 1(6, 92) is the corresponding FE force time

response. Figure 4.8 shows representative comparisons of the actual FE responses in

testing cases Y 1 and the corresponding predictions from Kriging.
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Figure 4.8: Representative comparisons of force-time responses between the actual
FE simulations and Kriging predictions of the test cases for the RH (re-
laxation) input at d = 1.5 mm

As observed in the figure, many of Kriging predictions overlayed with the actual

FE responses. This indicates that the difference between the actual FE response and
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the corresponding Kriging prediction is small. Particularly, the RMSE values are

RMSE(i) =
1

range(yiFE)

√√√√ 1

1200

1200∑
k=1

(yiFE(k) − yiKrg(k))2, (4.4)

is evaluated for each test case i = 1, 92. For the 92 test cases considered here, the

RMSE values range from 0.05% to 4%. The accuracy of the predictor can also be

improved by adding more training points to the meta model. Since the basis of the

inverse technique is the same, so for this problem, we only consider one shot Kriging

and the above error is considered to be reasonable, Forrester et al. (2008).

Step 5: Optimization on the Kriging Predictor

The Kriging predictor now is used to interpolate the force-time response at the un-

trained material sets. This evaluation is much faster than FE simulations, therefore,

an optimization can be performed to quickly extract the optimized sets of material

parameters that can fit the experimental data. The function fmincon in MATLAB

with multiple start points optimization technique is utilized. This option also takes

into account the constraint g1 + g2 < 1. The optimized set obtained after this step

for the problem considered here is,

C1 = 21.2546 MPa, α = 0.3720, g1 = 0.7674, τ1 = 0.0623s, g2 = 0.1546, τ2 = 1.3936s.

Since the Kriging predictor gives only an approximation, the response of this opti-

mized set is re-checked by using an actual FE simulation. A comparison between FE

simulation at this optimized set with the mean experimental data for RH (relaxation)

test at d = 1.5 mm is shown in Figure 4.9. A prediction of the RH (relaxation) re-

sponse at d = 1.0 mm using this obtained material parameter set is also included. The

RMSE values for the fitting and for the prediction are 0.0147 and 0.0224, respectively,

indicating quite good agreement with experimental data.
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Figure 4.9: Comparisons between experimental data with FE predictions using the
optimized material set from inverse analysis for the mean RH (relaxation)
data at d = 1.5 mm

4.4.2 Fitting Experimental Data

The above approach is also applied to other displacement inputs: RH (relaxation)

at d = 1.0 mm, RR (hysteresis) at d = 1.5 mm and d = 1.0 mm by constructing

their corresponding meta models and Kriging predictors. Representative comparisons

between actual FE force-time responses and Kriging predictions for the testing cases

X1 (untrained sets of material parameters), and Y1 (corresponding FE force-time re-

sponses) in the case of RR (hysteresis) tests at d = 1.5 mm are shown in Figure 4.10.

Very small differences between actual FE responses and corresponding Kriging predic-

tions indicate that Kriging can be used to predict the responses from FE simulations

of RR (hysteresis) tests.
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Figure 4.10: Representative comparisons of force-time responses between the actual
FE simulations and Kriging predictions of the test cases for the RR
(hysteresis) input at d = 1.5 mm

Inverse analysis can be done on these meta models and Kriging predictors simul-

taneously to extract better predictions for the material parameter set. Specifically,

simultaneously fitting the two RH (relaxation) tests were performed to improve the

predictions for both RH (relaxation) data as shown in Figure 4.11. The RMSE values

are 0.0166 and 0.019 for responses at d = 1.5 mm and at d = 1.0 mm, respectively,

with the following optimized parameter set:

C1 = 24.6162 MPa, α = 0.0818, g1 = 0.7281, τ1 = 0.0693s, g2 = 0.1812, τ2 = 1.4148s.
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Figure 4.11: Comparisons between experimental data with FE predictions using the
optimized material set from inverse analysis for both RH (relaxation)
experimental data at d = 1.5 mm and d = 1.0 mm

By the use of Kriging predictors and also verification with actual FE simulations,

several different combinations of Mooney-Rivlin parameters C1, C2 with the same

(C1 + C2) or instantaneous shear modulus were found to give very close force-time

results. This suggests that optimization based on force-time curve might not be sen-

sitive enough to extract a unique set of C1 and C2 = αC1.

Similar observations were also found for RR (hysteresis) loading. One optimized set

extracted from the mean experimental data of the RR (hysteresis) test at d = 1.5

mm is

C1 = 28.8179 MPa, α = 0, g1 = 0.7652, τ1 = 0.1608s, g2 = 0.2183, τ2 = 5s.

The fitting for this test and the prediction for the response at d = 1.0 mm are pre-

sented in Figure 4.12. The RMSE values are 0.0188 and 0.0444 respectively. Similarly,
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Figure 4.12: Comparisons between experimental data with FE predictions using the
optimized material set from inverse analysis for the mean RR (hysteresis)
data at d = 1.5 mm

fittings by simultaneously optimizing these two RR (hysteresis) tests can also be done

(results are not shown here). The RMSE value is 0.0212 for response at d = 1.5 mm

and 0.0391 for response at d = 1.0 mm with the following set of material parameters

C1 = 21.3007 MPa, α = 0.0134, g1 = 0.6860, τ1 = 0.2365s, g2 = 0.2885, τ2 = 4.8279s.

It is also noted that optimizing the data from RR (hysteresis) inputs might yield

several optimized sets which result in close force-time responses, hence similar RMSE

values when compared to the experimental data. One way to observe this is in the

optimization step on the Kriging predictor for RR (hysteresis) test at d = 1.5 mm

using the fmincon function in MATLAB. If the domain is narrowed down by chang-

ing the upper bound of g1 + g2 (which is related to the long term response), different

sets of material parameters can be obtained. For example, consider two material sets
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obtained by varying the upper bound of g1 + g2 from 0.999 to 0.85:

Material Set 1:

C1 = 28.8179 MPa, α = 0, g1 = 0.7652, τ1 = 0.1608s, g2 = 0.2183, τ2 = 5s, where

g1 + g2 = 0.9835.

Material Set 2:

C1 = 21.9096 MPa, α = 0, g1 = 0.5036, τ1 = 0.2018s, g2 = 0.3464, τ2 = 1.1285s,

where g1 + g2 = 0.85.

As shown in Figure 4.13, verifications by actual FE simulations show that the RR

(hysteresis) responses of these two material sets are almost the same (the differences

are very small to be seen in the figure) while the RH (relaxation) responses exhibit

more variations. This implies that the RR (hysteresis) test data might not be sensitive

to extract the long term response of the relaxation behavior.
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Figure 4.13: Comparisons of FE predictions with two material parameter sets for RH
(relaxation) and RR (hysteresis) tests at d = 1.5 mm
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Within one group of loading, the inverse analysis is able to yield the optimized set

of material parameters that can also capture the experimental response at another

amount of displacement quite reasonably. Using one group to predict the other has

higher error. Specifically, Figure 4.14 and Figure 4.15 show the fits for RH (relaxation)

and RR (hysteresis) experimental data at two applied displacement d = 1.0 mm and

d = 1.5 mm using the optimized set obtained from inverse analysis for three cases:

(a) Using a combination of two mean RH (relaxation) tests at d = 1.0 mm and d = 1.5

mm

(b) Using a combination of two mean RR (hysteresis) tests at d = 1.0 mm and d = 1.5

mm

(c) Using a combination of the mean RH (relaxation) and RR (hysteresis) tests at

d = 1.5 mm.

As can be seen in Figure 4.14, using two RH (relaxation) tests results in the best

fit while using the two RR (hysteresis) tests has the poorest fit for the ramp and

hold type of loading. On the contrary, for the ramp and reverse type of loading in

Figure 4.15, the best fit is resulted from the use of two RR (hysteresis) tests while

the poorest fit is resulted from the use of two RH (relaxation) tests. Combining two

groups: RH (relaxation) and RR (hysteresis) such as in case (c) can improve the

predictions for both types of loading as shown in these two figures.
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Figure 4.14: Fitting RH (relaxation) data at two applied displacements d = 1.0 mm
and d = 1.5 mm with the optimized parameter sets obtained from in-
verse analysis for three combinations: (a) Using a combination of two
mean RH (relaxation) tests (red), (b) Using a combination of two mean
RR (hysteresis) tests (black), (c) Using a combination of the mean RH
(relaxation) and RR (hysteresis) tests (green)
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Figure 4.15: Fitting RR (hysteresis) data at two applied displacements d = 1.0 mm
and d = 1.5 mm with the optimized parameter sets obtained from in-
verse analysis for three combinations: (a) Using a combination of two
mean RH (relaxation) tests (red), (b) Using a combination of two mean
RR (hysteresis) tests (black), (c) Using a combination of the mean RH
(relaxation) and RR (hysteresis) tests (green)

The differences in these predictions which correspond to different combinations

of the material parameters that were obtained above might be attributed to the

differences in the type of loading: RH (relaxation) versus RR (hysteresis); the loading

rates: fast 5 mm/s versus slow 0.2 mm/s; and the behavior of the enclosed fluid

under these loading rates that the model might not be able to capture perfectly.

Another source of the difference is the variation between samples including the capsule

thickness and dimensions. Since the main purpose here is to present an inverse

approach for fitting experimental data based on a 3D NLV, FE model and a Kriging

predictor, a detailed study of these differences and a discussion of constitutive model

84



selection are not included in the scope of this work. These can be investigated further

by performing tests at different loading rates to examine the range of the loading

that can be captured well by the model. More samples can be tested to quantify the

variations between them. In addition, utilizing a mixture of RR (hysteresis) and RH

(relaxation) tests will be a good combination to enhance the prediction of the model

and justify the best set of NLV material properties for various responses. It is also

observed that the experimental results also depend on many factors such as humidity

or temperature, hence further study might be needed to investigate these influences.

4.4.3 Contact Area

To extract contact area from FE simulations, a finer mesh is required, especially in

the contact region. Due to this very fine mesh which leads to a much more expensive

computational cost of FE modeling, the study here did not consider the dependence

of contact area on the six material parameters using an inverse analysis. Instead,

another approach is employed which is to compare the experimental contact area

with the predicted value from FE model using the optimized material set obtained

from the above inverse analysis process on force-time data. The process is as follows:

after getting the optimized material set for the force-time response, a very fine mesh

FE simulation with this material input is evaluated. As observed in the experiment,

there is a possibility of the contact loss between the capsule and the plates. Therefore,

to determine the contact area, two contact pressure paths were used. One path is

along the longitudinal axis while the other is along the shorter axis. Contact pressure

at various times shows the existence of zero contact pressure between the plate and the

capsule as in Figure 4.16 which presents typical pressure profiles along the longitudinal

axis for the RH (relaxation) test at d = 1.5 mm. In this figure, the zero-distance is at

the center of the contact region. Similar results (not shown here) were also found for

pressure along the shorter axis of the capsule. This indicates a loss of contact between
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the capsule and the plates (buckling) at certain time steps such as at t = 0.21s. The

contact region is approximated as an ellipse, and hence the area can be calculated

using the two contact pressure paths.
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Figure 4.16: Typical contact pressure along the longitudinal profile for the case of a
RH (relaxation) test at d = 1.5 mm

For experimental contact area measurement, image processing software (ImageJ)

is utilized to extract the magnitude of the contact area. A comparison between

the mean experimental data and the FE prediction of the contact area is presented

in Figure 4.17. The set of material parameters C1 = 21.2546 MPa, α = 0.3720,

g1 = 0.7674, τ1 = 0.0623s, g2 = 0.1546, τ2 = 1.3936s obtained from the inverse

analysis using the mean RH (relaxation) data at d = 1.5 mm was used for the

FE simulation. Similarly, a comparison between the RR (hysteresis) mean contact

measurement at d = 1.5 mm with FE prediction is in Figure 4.18. In this figure,

86



the optimized set from inverse analysis for this RR (hysteresis) test: C1 = 28.8179

MPa, α = 0, g1 = 0.7652, τ1 = 0.1608s, g2 = 0.2183, τ2 = 5s was utilized. For

each test, these comparisons imply that using the optimized set obtained from each

corresponding inverse analysis can yield a reasonable contact area value as measured

in experiments. This shows the effectiveness of the inverse analysis in capturing both

force-time response and contact area of each individual test. In Figure 4.17, due to

the overshooting in the applied displacement, the FE model predicts an overshoot

in the contact area as well. However, this overshoot is not clear in the experimental

data which might be due to the image resolution as well as the slight changes of the

amount of overshooting between different tests. Hence, when averaging the contact

area, the artifacts lead to a mean data with a not very visible overshoot behavior.
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Figure 4.17: Comparison of contact areas between FE modeling and mean experi-
mental measurement for the RH (relaxation) test at d = 1.5 mm
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Figure 4.18: Comparison of contact areas between FE modeling and mean experi-
mental measurement for the RR (hysteresis) test at d = 1.5 mm

As the current optical arrangement does not have enough resolution to verify if and

when any buckling phenomenon happens during the compression process, it might be

useful to couple this setup with other approaches such as using a compression pad for

pressure measurement between the plate and the capsule. This can be an interesting

aspect for future studies in order to gain more insight in the contact feature in these

types of problems.

4.4.4 Concluding Comments

An inverse analysis methodology has been presented that uses experimental data

from compression of a fluid-filled capsule and a corresponding 3D FE model based

on surrogate modeling with a Kriging predictor. It is shown to have the capability to

automatically and efficiently extract the NLV properties from various testing scenar-
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ios. This method can be combined with many constitutive models and overcomes the

lengthy, impractical issue of the sequential inverse approach which requires iterative

evaluations of costly FE simulations. Furthermore, the Kriging predictor can also be

utilized to study the sensitivity of the material parameters with respect to the test

responses. For example, the use of Kriging predictor indicates that with the NLV

constitutive model considered in this study, the RR (hysteresis) test seems to be less

sensitive in extracting the long term response of the relaxation behavior. Hence, a

combination of both RH (relaxation) and RR (hysteresis) data should be used in order

to obtain better predictions. This aspect will be further investigated for evaluations

of the effectiveness of various models in capturing behavior observed in experiments.
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CHAPTER V

AFM Indentation for Non-Linear Viscoelastic

Identification of Breast Cancer Cells

5.1 Introduction

In this chapter, the methodology presented in the previous Chapters (II, III, IV)

is applied to investigate a more complicated problem associated with the mechanics

of single cells and its potential use for cancer detection. Specifically, a combination

of AFM indentation experiments, FE modeling, and an inverse process based on

surrogate modeling and a Kriging predictor is employed to characterize the NLV

properties of single breast cancer cells. Additionally, comparison studies are also

included to determine the differences between breast cancer cell lines in terms of

their NLV behaviors.

Details of the AFM experiments are discussed in section 5.2. They are conducted

to examine the correlation between changes in the NLV responses of the cells and

the induced alterations in their cytoskeletal structures in two cases. The first aims

to study this link when the alteration is due to the transformation between different

states of cancer. For this goal, non-malignant (MCF-10A) and malignant (MCF-7)

cells are indented by 5 µm spherical probes. Many complex aspects, such as large

deformations, loading rate dependencies, and relaxation phenomena, are combined
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to address several limitations in many current studies, which were discussed in detail

in Chapter I. Thus, a series of loading “programs” is employed. It is composed of

applying a small force to initiate the contact between the probe and the cell surface

followed by a sequence of ramp-reverse (RR) and ramp-hold (RH) piezo movements.

In the second case, the same indentation procedure was applied to investigate the

effect of the induced cytoskeletal structure on the cells’ NLV characteristics due to a

drug treatment.

The AFM indentation test results are then modeled using the FE method. A

widely used model, in which the cell is described as an isotropic, homogenized, ax-

isymmetric body with an oblate-shape and a circular base, is employed (Ladjal et al.,

2009). The cell material constitutive relationship, however, is a large strain viscoelas-

tic model. The non-linear elastic part of the material is captured by a hyper-elastic

model while the viscoelastic part composes of a two term Prony series to describe the

time-dependent relaxation. In order to simulate the actual operation in the AFM, the

FE model also includes the AFM cantilever in the modeling by using a spring with

the same stiffness. One end of the spring is attached to the spherical indenter; the

other is loaded with the prescribed input. Details of this modeling part are presented

in section 5.3.

Once a FE model is constructed, an inverse analysis is needed to optimize the

error between the experimental data and FE predictions. The iterative inverse ap-

proach is computationally expensive, as also noted in Ladjal et al. (2009). Therefore,

an inverse technique based on a surrogate model with the use of a Kriging estimator

(Sacks et al., 1989; Lophaven et al., 2002; Queipo et al., 2005; Forrester et al., 2008;

Gustafson and Waas , 2009; Heinrich and Waas , 2009) is employed to address this

issue. Its implementation and application to the analysis of the obtained AFM ex-

perimental data are included in section 5.4. This procedure allows an automatic and

efficient extraction of the NLV parameters. The variations of the shear relaxation
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modulus over time for each tested cell is, therefore, also obtained. Next, statistical

comparisons using the shear relaxation modulus and the amount of relaxation for the

two cases (MCF-10A versus MCF-7, and untreated versus treated MCF-10A) were

also conducted to investigate differences in terms of these mechanical properties. Re-

sults are presented along with a discussion on the use of the cell’s relaxation responses

as potential cell markers for cancer detection. The section concludes with a summary

of limitations and concluding comments.

5.2 Details of AFM Indentation Experiment

5.2.1 Cell Culture and Sample Preparation

Human mammary epithelial cells (MCF-10A) were cultured in mammary epithe-

lial growth medium (MEGM, Lonza) with the GA-1000 replaced by 100 ng/ml cholera

toxin (Sigma). Human breast cancer cell line (MCF-7) was maintained in Dulbecco’s

modified eagle medium (DMEM, Life Technologies) supplemented with 10% fetal

bovine serum (FBS, Life Technologies), 1% penicillin/streptomycin (P/S, Life Tech-

nologies), 1% fungizone (Life Technologies), and 5 g/ml gentamycin (Life Technolo-

gies). For preparing samples for AFM tests, cells were resuspended and seeded onto

glass coverslips at density of 40,000 - 80,000 cells per coverslip. Cells were cultured

under 370C and 5% CO2 for at least overnight before any test was performed. For

pharmacological treatment assays, MCF-10A cells were incubated with 500 µM cy-

tochalasin D (Life Technologies) for 2 hours and then tested by indentation. More

details are provided by Shao (2014) from whom this section has been taken.

5.2.2 AFM Indentation Setup

The working principle of an AFM Bruker Dimension Icon instrument (Veeco In-

struments Inc., 2010) is illustrated in Figure 5.1. The sample is fixed to a rigid
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Figure 5.1: Illustration of working principle of AFM indentation test on cells.

substrate and compressed by a probe attached to one end of an AFM cantilever (for

indenting cells, a spherical probe is often used to reduce damage during the tests).

The other end of the cantilever is connected to a piezo. As this piezo extends, the

probe moves downward and comes into contact with the sample. On the other hand,

as the piezo retracts, the probe moves upward.

Upon contact, the sample’s reaction force F causes the cantilever to bend leading

to a shift of the laser beam on the photodiode. The amount of shifting is related to

the deflection d of the cantilever, which is in turn related to the reaction force by

a linear relation F = kd. Here, k is the spring constant of the cantilever normally

calibrated using the built-in thermal tune function in the AFM instrument (Matei

et al., 2006). The deformation δ of the sample is the difference between the piezo

distance Z and the cantilever deflection d: δ = Z − d. With this working principle,

the sample’s deformation δ, therefore, cannot be controlled. In other words, in the

AFM, the control modes can only be either controlling the piezo movement Z or using

a feedback loop to control the deflection d, which is correlated to the force F . The

first control mode, in which the indentation is performed by ramping and reversing

the piezo movement Z, is frequently employed. However, this leads to variations
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in the loading inputs upon changing samples and setups. In addition, variations in

cell heights and properties also contribute to this issue. Therefore, in order to get

almost the same input and also to combine many aspects into the loading process,

including loading rate dependencies, hysteresis and relaxation behaviors, the following

procedure was employed.

Indentation experiments were performed in a cell culture medium at room tem-

perature using the contact mode in fluid of an AFM Bruker Dimension Icon system

(Electron Microbeam Analysis Laboratory, University of Michigan). Cantilevers ad-

hered with 5 µm diameter spherical borosilicate particles (Novascan Technologies,

Inc.) were employed. Their nominal manufactured spring constant value is k = 0.06

N/m. Before indentation on cells, the deflection sensitivity (DS) to convert the photo-

diode (or laser) signal of the cantilever deflection from Voltage to nm was calibrated

by obtaining force curves on a clean glass slide and measuring their slope values.

Once the DS value was attained, the thermal tune option (Matei et al., 2006) was

used to measure the cantilever spring constant. The values used in this work were

found to be 0.120 N/m, 0.083 N/m, and 0.080 N/m. The clean glass slide was then

replaced by a glass coverslip with the cells seeded on the top. When replacing the

coverslip, the laser sum signal was maintained the same to minimize the change in

DS value (Taatjes and Mossman, 2005). Next, the spherical indenter was positioned

at the center region of each selected cell, and indentation tests were conducted using

the script mode, that included two steps as follows:

Step 1: Ramping the setpoint (force) to engage the probe on the cell’s surface with

a small force value (ramp velocity: 1 nm/s, δd = 4 nm, and the applied force value

was about 0.3 - 0.5 nN). This step was to initiate the contact between the probe with

the sample’s surface. A small value of force was utilized to reduce its effects on the

subsequent step, in which the piezo movement (Z) was controlled.

Step 2: A sequence of RR (hysteresis) and RH (relaxation) loading processes, as
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shown in Figure 5.2, was applied to the piezo. It was employed to study the hystere-

sis as well as relaxation responses of the cells. This loading series consisted of one

load-unload cycle at rate 10 µm/s, one load-unload cycle at rate 5 µm/s, and one

load-unload cycle at rate 1 µm/s followed by a fast ramp at rate 10 µm/s and a hold

period of 50s. In the first RR cycle, the piezo moved down by an amount of 2 µm,

then retracted by an amount of 1 µm. These positions of loading were repeated in the

following cycles. These values were chosen to examine a relative large deformation,

and also to reduce the negative range of the force-time responses in the unloading

paths due to the characteristics of viscoelasticity under displacement control of the

AFM piezo.

0 10 20 30 40 50
0

0.5

1

1.5

2

Time t(s)

Pi
ez

o 
D

is
pl

ac
em

en
t Z

(µ
m

)

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time t(s)

Pi
ez

o 
D

is
pl

ac
em

en
t Z

(µ
m

)

(b)

Figure 5.2: Applied input Z for controlling the AFM piezo movement: (a) The entire
step (b) Zoom-in view of the RR (ramp-reverse) cycles.

For each cell, offset option is also utilized to move the probe to the nearby locations

to acquire force-time data at these neighboring positions (2 - 4 locations per cell
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were used). In this work, data for each individual cell is the average of these local

measurements.

A similar process was employed in a recent work by Bernick et al. (2011) to study

the biomechanics of neurons, however, no comparison studies were included. To the

extent of the author’s knowledge, this work is the first to study the experimental data

obtained from this type of experimental setup for distinguishing different cell lines.

5.2.3 Experimental Data

For the purpose of investigating the roles of viscoelastic properties in establishing

biomarkers for cancer detection purpose, two approaches were studied with the de-

scribed indentation procedure. In the first, experiments were conducted on two groups

of benign (MCF-10A) and malignant (MCF-7) cells to study the changes of viscoelas-

tic parameters at different states of breast cancer. In the second approach, the drug

cytochalasin D, which can disrupt the cytoskeleton structure, is used to treat MCF-

10A cells. The hypothesis here is that alteration in the cytoskeleton structure, either

by cancer transformation (Li et al., 2008, 2009) or by drug treatment (Moreno-Flores

et al., 2010; Lam et al., 2012), is correlated with the change in viscoelastic behavior.

Data obtained from three setups is presented in this chapter to validate this hy-

pothesis. Table 5.1 is a summary of the number of cells tested as well as the value of

the calibrated spring constant of the cantilever used in each setup.

Cell Groups Expt.#1 Expt.#2 Expt.#3
MCF-10A (Benign) n=23 n=24
MCF-7 (Malignant) n=23 n=24

MCF-10A (Untreated) n=17
MCF-10A (Treated) n=17

k (N/m) 0.120 0.083 0.080
Probe No. 1 2 3

Table 5.1: Number of breast cancer cells tested in three AFM indentation setups

Mean and standard deviations for MCF-10A and MCF-7 groups from the first
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setup are shown in Figure 5.3. The top figure shows the force-time responses for both

RR (hysteresis) and RH (relaxation) loading types. The bottom one is a zoom-in view

of the force-time behavior in RR (hysteresis) cycles. Similarly, Figure 5.4 presents

the mean and standard deviations for MCF-10A and MCF-7 groups acquired from

the second setup. Data obtained from the drug treatment approach is presented in

Figure 5.5 which includes the mean and standard deviations for the untreated MCF-

10A cells as compared to the treated cells. Due to the nature of biological cells,

large variations were observed. Additionally, the magnitudes of the peak forces are

significantly influenced by the loading rates. As shown in Figures 5.3 - 5.5, in all

three setups, the peak force value drops as the loading rate decreases. This suggests

a relaxing behavior of the cell, which also corresponds to the relaxation parts during

the ramp-hold (RH) periods.

For a preliminary, qualitative comparison, each force-time curve is normalized by

the value of its maximum peak force. The corresponding normalization data from

these setups are plotted in Figures 5.6 - 5.8. As observed in Figure 5.6, the force-

time responses of MCF-7 cells exhibited more relaxation than the ones obtained from

MCF-10A cells. Specifically, at the end of the loading range, the mean force-time of

the MCF-10A group dropped by about 57.72%, while an amount of about 76.86%

was seen in the MCF-7 group. This trend was also observed in Figure 5.7. Here,

the mean force-time of the MCF-10A group decreased by about 50.62% as compared

to about 77.19% drop in MCF-7 group. Similarly, the treated MCF-10A group also

experienced more relaxation than the untreated MCF-10A group. Data presented in

Figure 5.8 showed that, at the end of the loading range, the decreases in the force-

time responses for the untreated and treated groups were about 53.13% and 87.23%,

respectively. These may imply that changes in the cytoskeleton, either due to disease

states or a drug treatment, can be correlated with the viscoelastic (history-dependent)

properties, especially the relaxation characteristics.
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Figure 5.3: AFM experimental data (mean and standard deviations) for MCF-10A
and MCF-7 cells obtained in the first setup: (a) Both RR (ramp-reverse)
and RH (ramp-hold) responses (b) Zoom-in view of the RR (ramp-reverse)
responses.
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Figure 5.4: AFM experimental data (mean and standard deviations) for MCF-10A
and MCF-7 cells obtained in the second setup: (a) Both RR (ramp-
reverse) and RH (ramp-hold) responses (b) Zoom-in view of the RR
(ramp-reverse) responses.
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Figure 5.5: AFM experimental data (mean and standard deviations) for MCF-10A
cells, untreated and treated with the drug cytochalasin D, obtained in the
third setup: (a) Both RR (ramp-reverse) and RH (ramp-hold) responses
(b) Zoom-in view of the RR (ramp-reverse) responses.
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Figure 5.6: Normalization by the peak force for MCF-10A and MCF-7 cells (first
setup).
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Figure 5.7: Normalization by the peak force for MCF-10A and MCF-7 cells (second
setup).
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Figure 5.8: Normalization by the peak force for MCF-10A cells and MCF-10A cells
treated with the drug cytochalasin D (third setup).

5.3 FE Modeling

The FE method with the commercial code ABAQUS (ABAQUS-v6.10 , 2010)

was employed to model the two-step indentation process described in section 5.2.2.

The seeded cell was assumed to be an isotropic, homogenized, axisymmetric body

having an oblate-shape with a circular base (Ladjal et al., 2009). For each tested

cell, the diameter of the base was estimated as the square root of the product of two

representative distances taken from its optical images (Bernick et al., 2011). A typical

image for a tested cell is shown in Figure 5.9. The cell height was estimated using

the contact points of force-curves on the cell body and on the nearby glass surface

(Bernick et al., 2011). For this purpose, after the measurements using the above

two-step indentation process were conducted, the typical indentation procedure, in

which the AFM ramp mode was used to ramp the piezo movement in a ramp-reverse

loading, were also performed to acquire the force curves on specified locations of the

102



cell body and the glass coverslip’s surface. A trigger value of 50 nm was selected to

limit the amount of the maximum cantilever deflection, which corresponded to a limit

value of about 4 - 6 nN for the maximum applied force. A typical comparison between

force curves on the cell body and on the glass substrate is shown in Figure 5.10. The

difference between the two contact points gives an estimation for the cell height.

Figure 5.9: An optical image of a single breast cancer cell on a glass substrate cap-
tured by the optical microscopy in an AFM Bruker Dimension Icon.
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Figure 5.10: Cantilever deflection vs. the piezo movement curves (with the reference
corresponds to the highest location of the scanner): (a) On a breast
cancer cell body (b) On the glass surface. The difference between the
two contact points gives an estimation of the cell height.

Mean and standard deviations of the estimated diameters and heights for the
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tested cell groups are shown in Table 5.2.

Expt.#1
MCF-10A MCF-7 Combine

Height H(µm) 9.91± 2.47 14.64± 5.21 12.22± 4.66
Diameter D(µm) 28.31± 6.07 29.52± 4.32 28.88± 5.28

Expt.#2
MCF-10A MCF-7 Combine

Height H(µm) 10.16± 2.94 13.78± 4.90 11.96± 4.40
Diameter D(µm) 31.66± 6.15 30.07± 5.06 31.00± 5.60

Expt.#3
MCF-10A (Untreated) MCF-10A (Treated) Combine

Height H(µm) 8.54± 2.00 9.15± 2.36 8.84± 2.17
Diameter D(µm) 27.30± 5.15 27.96± 4.50 27.63± 4.77

Table 5.2: Mean and standard deviations for cell’s diameter and height estimated
from three setups

For the first setup, an axisymmetric FE model for a representative cell, using the

mean height and diameter values of H = 12.22 µm and D = 28.88 µm, was used to

simulate the indentation process. The cantilever with the spherical probe was modeled

as a spring connected to a rigid sphere of diameter 5 µm. The spring stiffness was set

equal to the calibrated value obtained from the AFM experiments, which was 0.12

N/m in this case. The spherical probe was modeled as a rigid body. Its contact with

the cell was assumed to be frictionless, and the normal behavior was modeled by the

hard contact option in ABAQUS. The entire procedure of the two-step indentation

as described in section 5.2.2 was simulated, in which the input was applied to the free

end of the spring. The cell deformation was extracted as the displacement of the other

end of the spring. The difference between the displacements of these two ends of the

spring is how much the cantilever bends during the indentation process, and is related

to the reaction force by the linear relation: F = kd. The boundary conditions of the

problem were imposed by fixing the bottom surface with the assumption that the cells

attach firmly to the coverslip. This approach was also used to model the indentation

processes in the other two setups. Specifically, for the second setup, the dimensions
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of the representative cell were H = 11.96 µm and D = 31.00 µm, and the spring

constant stiffness was 0.083 N/m. For the third setup, these values were H = 8.84

µm, D = 27.63 µm, and k = 0.080 N/m. Convergence studies were also performed

by varying the mesh size of each model. Illustrated in Figure 5.11 are three cases

of meshing used for the first setup, in which the numbers of total elements were (a)

1192, (b) 4213, and (c) 16582. The force-time responses from the last two mesh sizes

were converged, and were only slightly different from the response obtained from the

first mesh. In this work, the middle mesh size was used to simulate the indentation

for the first setup. The same process was applied to determine the optimum mesh size

in modeling the second and the third setups. FE models using the mean geometric

values for individual groups in each setup were also constructed. Their use will be

discussed in detail in the next section.

(a) (b) (c)

Figure 5.11: FE model for an AFM indentation test on breast cancer cells with three
cases of meshing: (a) 1192 elements, (b) 4213 elements, and (c) 16582
elements
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5.4 Results and Discussions

5.4.1 Implementation of the Inverse Analysis

At a relatively large imposed displacement (Figure 5.2), the cell behavior is bet-

ter captured using a non-linear constitutive relation. Here, the built-in NLV model

in ABAQUS (ABAQUS-v6.10 , 2010) presented in section 4.3 was also employed to

describe the time-dependent behavior of the cells. For simplicity, a neo-Hookean type

model for the NLE part was utilized. With the incompressibility assumption, for each

tested cell, five unknown material parameters need to be characterized, and its shear

relaxation modulus as a function of time is constructed as follows:

G(s) = G∞ +
2∑

k=1

Gke
−s/τk = G0

[
g∞ +

k=2∑
k=1

gke
−s/τk

]
, (5.1)

where G0 = G(0) is the instantaneous shear modulus, which also has the meaning

of the neo-Hookean parameter C1, is used to capture the NLE part. The coefficients

g1, τ1, g2, τ2,in which g1 + g2 < 1, are from the two term Prony series (gk, τk), k = 1, 2

utilized to capture the relaxation behavior.

The inverse analysis based on surrogate modeling with a Kriging estimator, as

discussed in Chapters III and IV (Sacks et al., 1989; Lophaven et al., 2002; Queipo

et al., 2005; Forrester et al., 2008; Gustafson and Waas , 2009; Heinrich and Waas ,

2009), was employed to extract these five NLV properties for each tested cell from its

AFM indentation data. In this work, the material properties for all tested cells were

searched within the material domain given in Table 5.3.

C1(kPa) g1 τ1(s) g2 τ2(s)
Lower bound 0.08 0.01 0.01 0.01 2
Upper bound 4 1 2 1 40

Table 5.3: Boundary of the material domain used in the process of determining the
NLV properties of the tested breast cancer cells in three setups
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For each FE model discussed in section 5.3, within the given material domain, the

MATLAB’s function “lhsdesign”, in which the Latin Hypercube sampling technique

was implemented, was applied to generate N and N1 sets of material properties

for a training group and a checking group, respectively. With the condition that

g1 + g2 < 1, a training group composed of N = 970 sets of xi(G0, g1, τ1, g2, τ2),

i = 1, N was used in this work. A checking group composed N1 = 354 sets of

xi(G0, g1, τ1, g2, τ2), i = 1, N1, which are different from the sets in the training group,

was also generated. Since these sets of material parameters are independent, FE

simulations were evaluated and the corresponding force-time responses were extracted

in parallel. In this work, each force-time response was represented by m = 5095

discrete times, which were used to discretize the total loading time in the ramp-

reverse and ramp-hold cycles. Specifically, N = 970 sets of (tj, F (tj)), j = 1,m and

N1 = 354 sets of (tj, F
1(tj)), j = 1,m were obtained for the training and checking

groups, respectively. In other words, the training group has N = 970 sets of material

parameters xi(G0, g1, τ1, g2, τ2), i = 1, N , which correspond to N = 970 sets of force

values yi(F (tj)), i = 1, N, j = 1,m. Similarly, the checking group contains N1 =

354 sets of material parameters xi(G0, g1, τ1, g2, τ2), i = 1, N1, which correspond to

N1 = 970 sets of force values yi(F 1(tj)), i = 1, N1, j = 1,m. The MATLAB’s

Dace Toolbox (Lophaven et al., 2002) is, therefore, applied to the training group to

construct a non-linear functional relationship betweenX(5, 970) and Y (5095, 970). Its

accuracy is checked through the checking group X1(5, 354) and Y 1(5095, 354). For the

specific problem considered here, since no experimental force-time curve obtained in

the three setups has a peak force value smaller than 4 nN, an extra criterion is utilized

to remove the force responses which violate this observation in both training and

checking groups. This extra criterion is used to help the construction of the surrogate

model easier and reduce the need of adding more training points. Typically, with this

criterion, about 4-10 cases were removed from the training group, and about 2-5 were
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removed from the checking group. The specific numbers depend on the FE model

used in generating the surrogate model. For brevity, this section only discusses the

surrogate model and the Kriging predictor constructed using one particular FE model

from the first setup. Surrogate models and Kriging predictor for other FE models, as

discussed in section 5.3, were also constructed using this described procedure.

In particular, a surrogate model with a Kriging predictor was constructed, using

the FE model for a representative cell of H = 12.22 µm and D = 28.88 µm (first

setup). It is a non-linear relationship between sets of material properties X(5, 962)

and sets of the corresponding force responses Y (5095, 962). The accuracy of this

Kriging predictor was verified through the checking group, which is composed of

X1(5, 349) and Y 1(5095, 349). For these 349 cases, the RMSE values were evaluated

as follows:

RMSE(i) =
1

range(yiFE)

√√√√ 1

5095

5095∑
k=1

(yiFE(k) − yiKrg(k))2. (5.2)

These values range from 0.03 % to 8 %. Representative comparisons between the

actual FE responses and the predictions obtained by Kriging predictor are shown in

Figure 5.12. As shown in this figure, many predictions from Kriging overlayed with

the actual FE responses, and the differences between the two corresponding curves

(red and blue) are not visible in this plot. The property extraction process is then

implemented by optimizing the error between the obtained experimental data with

predictions from this Kriging predictor using the MATLAB’s function fmincon. FE

simulations were also evaluated at these extracted sets of material properties, and then

were compared with the experimental data. Representative comparisons between the

experimental data and FE evaluations using the optimized sets of material properties

from this inverse procedure are presented in Figure 5.13.
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Figure 5.12: Representative comparisons between FE and Kriging predictions: (a)
Both RR (ramp-reverse) and RH (ramp-hold) loadings (b) Zoom-in view
of RR (ramp-reverse) cycles
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Figure 5.13: Representative comparisons between experimental data and FE predic-
tions at the corresponding extracted sets of material parameters: (a)
Both RR (ramp-reverse) and RH (ramp-hold) loadings (b) Zoom-in view
of RR cycles.
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As shown in this Figure, predictions from FE captured quite well the complicated

responses of the experimental data from five individual MCF-10A cells in the first

setup. The RMSE values for these fittings were evaluated as follows:

RMSE(i) =
1

range(yiexp)

√√√√ 1

5095

5095∑
k=1

(yiFE(k)) − yiexp(k))2. (5.3)

Such values for fitting the data obtained from n = 23 MCF-10A and n = 23 MCF-7

cells of the first setup lie between 2 % to 8 %, with a mean value of about 4 % which

indicate reasonable agreement between FE predictions and experimental data from

all tested cells. With the same approach, NLV properties were also extracted from

the experimental data from the other two setups.

At this step, an optimal set of five NLV parameters (G0, g1, τ1, g2, τ2) was extracted

for each tested cell. For comparison purpose, the shear relaxation moduli were con-

structed using equation (5.1). Comparisons utilizing this shear relaxation modulus

is expected to be more reasonable and consistent than using individual material pa-

rameters. Results are discussed in detail in the next section.

5.4.2 Discussion, Limitations, and Concluding Comments

Shear relaxation moduli for MCF-10A and MCF-7 cells measured in the first setup

are shown in Figure 5.14(a). Here, the instantaneous shear modulus values for MCF-

10A cells are G(0) = 2.94±1.35 kPa as compared to G(0) = 1.94±1.02 kPa obtained

for MCF-7 cells. The mean results of the instantaneous shear modulus indicate that

MCF-10A cells are about 1.5 times stiffer than MCF-7 cells at the instantaneous

response. At the long term response, such as at the end of the loading, t = 52s,

the shear modulus values for MCF-10A and MCF-7 cells obtained in this setup are

G(52) = 1.00 ± 0.64 kPa and G(52) = 0.36 ± 0.21 kPa, respectively. The mean

results of this long-term shear modulus indicate a larger difference of 2.8 times as
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compared to the corresponding instantaneous values. To further determine whether

the observed differences here are significant or not, statistical comparisons using the

Wilcoxon rank sum test in MATLAB are used. Figure 5.14(b) shows that the two

groups exhibit significant differences in terms of the shear relaxation modulus. The

difference becomes more significant at the long term response. Such results indicate

that combining the history-dependent characteristics into the calculations of the shear

relaxation modulus might help to rule out larger difference between these two cell

groups.
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Figure 5.14: Comparisons between MCF-10A and MCF-7 cells (in the first setup):
(a) Mean and standard deviations of the shear relaxation modulus for
n = 23 MCF-10A (blue) and n = 23 MCF-7 (red) cells (b) Statistical
comparison: p < 0.05 indicates significant difference.

In addition to the shear relaxation modulus, the amount of relaxation G(t)/G(0)

can also be compared between two groups. Figure 5.15 shows the mean and standard

deviation of the normalized shear relaxation modulus for both groups. In this case, the

mean amount of relaxation for the MCF-10A group is about 67 %, while an amount

of about 81 % was found for the MCF-7 group. At the end of the loading, statisti-

cal analysis using the MATLAB Wilcoxon rank sum test also indicates a significant
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difference in the amount of relaxation between the two groups (p = 1.2× 10−4).
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Figure 5.15: Mean and standard deviations of the normalized shear relaxation mod-
ulus G(t)/G(0) for MCF-10A and MCF-7 cells (in the first setup)

Similar observations were also obtained when analyzing the data taken from the

second setup. As shown in Figure 5.16(a), at each time, the shear relaxation modulus

of the MCF-10A group exhibits a higher value than the modulus of the MCF-7 group.

The statistical analysis also results in a significantly small p-value for the comparisons

using the shear moduli of both groups. Again, the p-value becomes smaller at the

long term response, as this might be due to the incorporation of viscoelasticity in

the calculation of the shear relaxation modulus function. MCF-7 group also exhibits

a larger amount of relaxation as compared to the MCF-10A group as presented in

Figure 5.17. Specifically, the mean shear relaxation modulus for the MCF-7 group

drops by 78 %, while the shear modulus for the MCF-10A group decreases by 57 %

at the end of the loading. The p-value for this case is p = 9.7 × 10−7, which means

the difference in terms of the amount of relaxation is significant as well.
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Figure 5.16: Comparisons between MCF-10A and MCF-7 cells (in the second setup):
(a) Mean and standard deviations of the shear relaxation modulus for
n = 24 MCF-10A (blue) and n = 24 MCF-7 (red) cells (b) Statistical
comparison: p < 0.05 indicates significant difference.
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Figure 5.17: Mean and standard deviations of the normalized shear relaxation mod-
ulus G(t)/G(0) for MCF-10A and MCF-7 cells (in the second setup).

So far, the results obtained for MCF-10A and MCF-7 cells from both setups
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exhibit a similar trend for the relative difference between these two cell groups. The

benign cells (MCF-10A) are stiffer and exhibit less relaxation than the malignant

(MCF-7) cells. By considering viscoelasticity in the characterization of the shear

modulus, the relative difference between them are also exhibited in terms of the long-

term shear modulus. The data exhibited a larger difference in the long term response

as compared to the corresponding difference in the instantaneous one.

Next, the data obtained for the untreated and treated MCF-10A cells using the

drug cytochalasin D are also compared. Figure 5.18(a) shows the difference of the

shear relaxation modulus between the two groups. Treating MCF-10A cells by the

drug cytochalasin D does lead to a decrease in the stiffness. The difference is amplified

in the long term response. As shown in Figure 5.18(b), the p-value drops drastically

from the instantaneous to long term responses. Here, the plot was presented only

up to a time t = 3s for clarity. This agrees with the large difference in terms of the

amount of relaxation obtained from these two cell groups. Specifically, at the end of

the loading, the mean shear modulus of the untreated group decreases by about 60

%, while the mean value of the treated group drops by about 89 % (Figure 5.19).

The p-value for this difference is p = 1.2× 10−6.

Notice that the above comparisons in each setup were based on the NLV properties

for both cell groups extracted using a FE model with a representative cell having the

mean geometric dimensions. It is still challenging to take into account the dimension

of each individual cell and construct separate FE models and surrogate modelings.

Here, an alternative approach to investigate the effect of geometry on the relative

difference between two group of cells is taken. For brevity, only results from the first

setup are considered here. In particular, two separate FE models were used to model

two cell groups. The first uses the mean height and diameter estimated for MCF-10A

(H = 9.90 µm, D = 28.30 µm) group while the second uses the mean height and

diameter (H = 14.64 µm, D = 29.52 µm) estimated for MCF-7 group.
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Figure 5.18: Comparisons between the untreated MCF-10A cells and MCF-10A cells
treated with the drug cytochalasin D (in the third setup): (a) Mean
and standard deviations of the shear relaxation modulus for n = 17
untreated MCF-10A (blue) and n = 17 treated MCF-10A (red) cells (b)
Statistical comparison: p < 0.05 indicates significant difference.
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Figure 5.19: Mean and standard deviations of the normalized shear relaxation mod-
ulus G(t)/G(0) for untreated and treated MCF-10A cells (in the third
setup).
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Figure 5.20: Comparisons between MCF-10A cells and MCF-7 cells (in the first setup)
using the data extracted based on two separate FE models: (a) Mean
and standard deviations of the shear relaxation modulus for n = 23
MCF-10A and n = 23 MCF-7 cells (b) Statistical comparison: p < 0.05
indicates significant difference.
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Figure 5.21: Mean and standard deviations of the normalized shear relaxation mod-
ulus G(t)/G(0) for MCF-10A cells and MCF-7 cells (in the first setup)
using the data extracted based on two separate FE models.
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Interestingly, similar observations were still found for the relative difference be-

tween the two MCF-10A and MCF-7 groups as shown in Figure 5.20 and Figure 5.21.

The above analysis focuses only on the relative differences between two cell groups

within one setup. The benign cells (MCF-10A) exhibit higher shear relaxation mod-

ulus statistically, as compared to the malignant cells (MCF-7). The amount of re-

laxation is also useful to distinguish these two groups of cells. Transformation into

the malignant state might contribute to more relaxation in the response of the ma-

lignant cells. Disrupting the cytoskeleton of the MCF-10A cells also causes a drop in

both shear relaxation modulus and an increase in the amount of relaxation. These

relative differences were found to be consistent from setup to setup, which means

that under the same experimental condition, including viscoelastic characteristics

into the determination of the material properties proves helpful in providing more

insight to differentiate different cell groups for disease detection purpose. Though

the absolute values are not reliable (Harouaka et al., 2013), the values for the shear

relaxation modulus for MCF-10A and MCF-7 cells found in this work are within the

range reported in the literature. For example, Li et al. (2008, 2009) reported the

range for Young’s modulus of MCF-7 cells to be 0.3-0.6 kPa, and the modulus of

MCF-10A to be 1.4-1.8 times stiffer; Leporatti et al. (2009) reported the values in the

range 15-30 kPa for MCF-7 cells; and the value in the work of Moreno-Flores et al.

(2010) for MCF-7 cells is 4.7± 0.4 kPa. In this work, a combination of three setups

provides a prediction of the instantaneous modulus of E(0) = 3G(0) = 6.5 ± 3.3

kPa and E(0) = 3G(0) = 4.2 ± 2.7 kPa for n = 64 MCF-10A and n = 47 MCF-

7 cells, respectively. The predictions for the long term modulus, at t = 52s, are

E(52) = 3G(52) = 2.5 ± 1.5 kPa and E(52) = 3G(52) = 0.8 ± 0.5 kPa for n = 64

MCF-10A and n = 47 MCF-7 cells, respectively.

The following limitations and sources of errors are noted in order to further inves-

tigate NLV aspects of living cells and evaluate whether the above differences could be
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adopted for clinical use. Among these limitations, several are related to experimental

issues, including the uncertainty in determining the contact points between cell body

and the cantilever, cell geometric determination, and errors in the AFM calibrations.

For example, an error of about 10-20% could be associated with the calibration of de-

flection sensitivity and spring constant (Cumpson et al., 2004; Dokukin et al., 2013).

The optical resolution in the AFM Dimension Icon system used for all the tests in

this thesis was limited, so it is advisable to enhance this feature for better estimations

of the cell dimensions and shapes. Having a higher optical resolution also aids the

selections of the cells for indentation purposes. This might help to reduce scatter

due to geometry effects in the measured data. This issue could be addressed using

an AFM system that has an inverted optical microscopy. Such a system is the MFP

3D, manufactured by Asylum Research. Other sources, such as the resolution and

backlash in the Z-stepper motor intrinsic mechanical design (Appendix B, (Titushkin,

2013)), might cause error in cell height determination. Unintended delay can happen

in running a script with high loading rates, such as in the first ramp-reverse cycle

at the rate of 10µm/s. This contributes to an artifact in the acquisition of the force

responses. For instance, instead of having a sharp peak force between the loading and

unloading paths, a delay of the piezo might occur and cause unintended relaxation

in the force-time response. A possible reason for this issue is the clogging up of the

messaging in the computer operation (Shaw , 2013). Additionally, as a cell is dynamic

and heterogeneous, the model considered here is still a very simple model. Though

the NLV constitutive model with Prony series terms was able to capture various

aspect of the responses, such as loading rate dependencies and relaxation characteris-

tics, further refinement is necessary. For instance, the response associated with high

rate loading and transition between various loading rates, if improved, is expected

to lead to better agreement with the experimental data. Furthermore, improvements

can be made to enhance the accuracy of the current surrogate modeling and Kriging
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predictor, including adding more training points in the design site.

In summary, this chapter presents a methodology to study the NLV properties of

breast cancer cells. Experimental data was acquired at a large strain regime incor-

porating many aspects, such as non-linear mechanics, rate dependency, and history-

dependent characteristics. The data was analyzed using FE models and inverse mod-

eling in connection with surrogate modeling and a Kriging predictor to resolve the

computational cost issue. Comparisons were made based on the extracted shear re-

laxation modulus and results indicated significant differences in terms of the NLV re-

sponses between MCF-10A and MCF-7 cells as well as between untreated and treated

MCF-10A cells.
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CHAPTER VI

Conclusions and Future Work

6.1 Summary

A study of polymeric capsules and biological cells from a mechanics perspective

is presented in this thesis. One objective is to develop an efficient methodology to

determine history-dependent (viscoelastic) properties of these structures with a con-

sideration of non-linear, large deformation theory and a combination of experiments,

FE modeling, and a material property identification process. Another objective is

to correlate the changes in these extracted properties with alterations in cell inter-

nal structure. Such a correlation may potentially lead to a useful disease detection

method.

First, a constitutive relationship that can capture history-dependent behaviors

(viscoelasticity) was discussed in Chapter II. Here, various aspects of a model based

on a single integral NLV Pipkin-Rogers framework were studied by formulating and

solving a boundary value problem. The formulation and solution methods incorpo-

rate important features in testing scenarios used for material identification. A prob-

lem of interest was compression of a liquid-filled, polymeric membrane by contact

between two flat, rigid, and parallel plates. Under a displacement control assump-

tion, the compression process was simulated and information, such as the relaxation

force-time response, stretch distribution, and stretch history for the NLV membrane,
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was obtained through both analytical and FE formulation approaches. Results pro-

vided insight into how viscoelastic parameters, including the relaxation time and the

amount of relaxation, affect the deformation process. The presented procedure and

the understanding obtained in this chapter served as a basis for the modeling process

needed in solving the inverse problem to extract the NLV properties.

The next focus of this thesis was determining the NLV parameters using a sim-

ple and efficient inverse procedure to optimize the error between experimental data

and FE predictions. For this purpose, a surrogate model and a Kriging predictor

were applied. The goal was to construct a non-linear functional relationship that

can be evaluated quickly to replace the need for repeating evaluations of costly and

time-consuming FE simulations. In particular, the following steps are included in the

inverse process.

- Within the material domain, sets of material parameters are generated for a training

group and a checking group using a Latin Hypercube technique.

- FE simulations are evaluated and the corresponding force-time responses are ex-

tracted in parallel to allow a reduction in the total time cost of the inverse procedure.

- A Kriging predictor is constructed by training the relationship between the sets of

material properties and their corresponding force-time responses using the MATLAB

Dace toolbox. The predictor’s accuracy is then checked through the use of the sets of

material parameters and force-time responses in the checking group. When the error

is small enough, the predictor is used to replace actual FE simulations.

- An optimization technique is implemented on the predictor to yield the optimized set

of material parameters that can predict the force-time data observed in experiments.

The efficiency of the above inverse technique was examined by considering two spe-

cific inverse problems. In the first problem, experimental force versus time responses

of liquid-filled polymeric capsules subjected to specified ramp-reverse and ramp-hold

displacement control inputs in compression tests were used as the targets for the
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fitting process. Results showed good agreement between the experimental data and

predictions from the inverse process. The fitting procedure was more efficient than

the traditional sequential inverse analysis, which would require repetitive evaluations

of the 3D FE model used in this problem to simulate the compression process. Fur-

ther studies in Chapter IV also suggest that using a combination of ramp-reverse and

ramp-hold inputs leads to better predictions of the optimized NLV parameters.

The second problem dealt with a more challenging setup which was AFM inden-

tation on biological cells. Breast cancer cells were tested to examine how the cell’s

NLV properties change as the cell’s cytoskeleton structure was altered. Two cases

were considered in Chapter V. The first studied two groups corresponding to the

benign (MCF-10A) and malignant (MCF-7) states. The second examined two groups

of MCF-10A cells, untreated and treated with the drug cytochalasin D. Force-time

data for both cases were acquired following the experimental setup described in this

chapter. It includes a two-step indentation input and combines both ramp-reverse

and ramp-hold loading types with loading rates spanning between 1 µm/s to 10 µm/s.

With the use of the same inverse technique (surrogate modeling and a Kriging Pre-

dictor), the relaxation properties of all the tested cells were extracted. The shear

relaxation modulus for each tested cell was then determined as a function of time

and used for quantitative comparisons to evaluate how statistically significant the

relative differences between the two cell groups are. Results indicated that the shear

relaxation modulus values for the two groups (MCF-10A and MCF-7 cells in the first

case, and untreated and treated MCF-10A cells in the second case) were statistically

different. Under an identical testing setup, the mean shear relaxation modulus of the

benign (MCF-10A) is higher as compared to the mean value of the malignant (MCF-

7) cells. Similarly, the untreated group also exhibits a higher value of the mean shear

relaxation modulus as compared to the mean value of the treated one. The obtained

results also suggested that significant differences might be associated with the long
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term shear modulus. Additionally, the amount of relaxation was also observed to

exhibit a statistically significant difference between the groups in each case. The

benign group exhibits less relaxation as compared to the malignant group. Treating

with the drug cytochalasin D to disrupt the cytoskeleton also leads to a drop in the

amount of relaxation in the cell’s response. These results may imply that considering

viscoelastic aspects, such as the amount of relaxation and history effects, into the

calculations of material parameters might provide potential criteria for comparison

purposes. Together with preliminary work, which mostly uses analytical approaches

to examine the differences in the stiffness (Li et al., 2008, 2009), the approach and re-

sults obtained here serve as additional attempts for formulating effective bio-markers

for breast cancer detection. The presented methodology in this thesis is, to the best

knowledge of the author, the first that studies the differences between breast cancer

cell lines by considering many features obtained using AFM experimental data (large

strain regime, hysteresis responses with various loading rates, and relaxation behav-

ior), utilizing the FE method for modeling purpose, and applying an automatic and

efficient inverse process for material property identification.

6.2 Future Work

Various aspects of this thesis can be extended to further explore the methodology

needed for understanding and determining the mechanical properties of polymeric

capsules and biological cells. Suggestions for future research are presented next.

6.2.1 Experiments

6.2.1.1 Compression Test

As observed in compression tests, a buckling (loss of contact between specimen and

indentor) phenomenon could occur at a large enough applied displacement. Studying
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this event when taking into account viscoelastic effects, such as loading rates and

loading types (RR-Hysteresis and RH-Relaxation), can provide more precise under-

standing of the mechanical features for the tested structures, especially at the large

deformation regime. The knowledge might also be applied to the analysis of mechani-

cal responses obtained from other testing setups, such as an AFM indentation test on

micro-capsules using a tipless cantilever. Hence, it would be useful to improve the res-

olution of the optical arrangement used in this thesis to capture this time-dependent

buckling phenomenon.

6.2.1.2 AFM Indentation

In this thesis, AFM indentation tests on breast cancer cells were conducted at room

temperature. It is recommended to repeat the presented testing procedure at 370C

to keep the cells at their physiological temperature and to study the effects of testing

temperature on cells’ viscoelastic properties. This purpose can be implemented by

using an AFM system with a temperature control function. Such a system is the

MFP 3D instrument, manufactured by Asylum Research.

Another feature that was not considered in this thesis is the effect of the probe’s

size on the measured force-time data. It might be useful to investigate such an effect

by employing AFM cantilevers attached to spherical probes of various diameters.

Additionally, the effectiveness of the presented methodology for comparison and

diagnosing purposes can also be further studied by conducting the following additional

AFM indentation measurements:

- It is necessary to extend the current drug treatment approach to include the

effects of the drug concentration on the cell’s viscoelastic responses. A suggestion is

to treat MCF-10A and MCF-7 cells with different amounts of drugs and investigate

the changes in relaxation properties. It might also be interesting to examine whether

the alterations in terms of these properties are cell-type dependent. If this is the case,
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the drug treatment method followed by measuring viscoelastic features may be useful

for differentiating different cell types.

- Cell’s preparation using a patterning technique is another useful approach (Shao,

2014). The technique enables the control of the cell’s size and shape through confining

it into a specific area. Due to the differences in the confinement area, the cytoskeletal

structure can be altered differently. Therefore, characterizing the viscoelastic prop-

erties for the patterned cells will allow a further study of the correlation between the

alteration in the cell’s cytoskeleton and the viscoelastic properties.

- As this thesis’s main focus is from a mechanics perspective, it did not examine

specific changes and alterations in the cytoskeleton structure. Future studies should

combine both mechanical measurements and observations of cytoskeletal structure to

investigate the correlation between them. An AFM system that can be used to obtain

this goal is the MFP-3D, Asylum Research system. The instrument allows simulta-

neous AFM and fluorescence measurements. Hence it is able to capture the changes,

such as actin filament’s orientation, while measuring the mechanical responses (Li

et al., 2008).

In addition, the presented procedure is also applicable to the study of viscoelastic

features of other soft materials, such as biological tissues.

6.2.1.3 Other Experimental Setups

As the presented procedure uses a FE method, it is expected to be useful for the

analysis of experimental data obtained from other experimental setups. For example,

the aspiration process in a micropipette experiment can be captured by a FE model

that includes contact features, history-dependent characteristics, and variations in

the applied pressure (Dong and Skalak , 1992). Hence, an extension of this thesis is

to employ other experimentations for testing purposes and to analyze the obtained

data by a combination of FE modeling and an inverse process based on a surrogate
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model and a Kriging predictor. Outcomes are expected to contribute to the current

methods for data interpretation from these mechanical testing platforms.

6.2.2 Modeling

A cell is a complex and dynamic structure. In this work, it is simplified as a

homogeneous, axisymmetric, and solid body. Therefore, in future work, many com-

plicated features should be added to this model. One possibility is to model the cell

as a 3D capsule filled with a fluid (cytoplasm). Another is utilizing the application of

tensegrity concepts (Mofrad and Kamm, 2006) to include various components, such

as actin and intermediate filaments, into the cell model.
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APPENDIX A

AFM Indentation of Prostate Cancer Cells

This Appendix contains a study of mechanical properties of two prostate cancer

(PC-3) cell lines, provided by Elbez (2013). Specifically, epithelial (PC-3E) and mes-

enchymal (PC-3M) cells (Roca et al., 2013) were indented using AFM indentation

technique. The following is a summary of experiments, data analysis, discussions,

and suggestions for further work.

A.1 Experiments and FE Model

A.1.1 Materials

Prostate cancer cells (PC-3E and PC-3M) were cultured in RPMI-1640 supple-

mented with 10% Foetal Bovine Serum (FBS), and 1% Anti-Anti (anti-miccotic, anti-

microbial) in a cell incubator at 370C, with humidity control and 5% CO2. Cells were

plated on tissue culture dishes until reaching a confluency of 80%. Cells were then

washed using Phosphate Buffer Saline (PBS), and were put back in 8 mL cell culture

media before being detached using a cell scrapper. Glass coverslips were drawn in cell

culture media and placed in cell culture dishes, before adding cells at a confluency of

around 10%, and let to adhere and divide for 24 hours.
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To keep cells healthy before experiments, they were kept in a smaller incubator at

370C. The growth media with HEPES at 25 mM to avoid pH changes in the absence of

CO2 were supplemented. CO2 independent media was regularly changed in between

experiments. More details are provided by Elbez (2013) from whom this section has

been taken.

A.1.2 AFM Indentation Tests

With the experimental setup described in Chapter V, PC-3E and PC-3M cells

were indented in the CO2 independent medium using the following loading input,

which is composed of two steps.
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Figure A.1: Applied input Z for controlling the AFM piezo movement: (a) The entire
step (b) Zoom-in view of the RR (ramp-reverse) cycles.

Step 1: Ramping the setpoint (force) to engage the probe on the cell’s surface with

a small force value (ramp velocity: 1 nm/s, δd = 5 nm, and the applied force value
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was about 0.2 - 0.4 nN, depending on the spring constant value of each cantilever).

A hold period of 15s was utilized in these experiments.

Step 2: A sequence of RR (hysteresis) and RH (relaxation) loading processes, as

shown in Figure A.1, was applied to the piezo. In the first RR cycle, the piezo moved

down by an amount of 3 µm, then retracted by an amount of 1 µm. These positions

of loading were repeated in the following cycles (Figure A.1).

A.1.3 Experimental Data

Table A.1 presents the number of cells tested in four setups and the value of the

calibrated spring constant of the cantilever used in each setup.

Cell Groups Expt.#1 Expt.#2 Expt.#3 Expt.#4
PC-3M (Mesenchymal) n=9 n=20 n=7 n=11

PC-3E (Epithelial) n=27 n=14 n=8 n=13
k (N/m) 0.072 0.072 0.054 0.072

Probe No. 1 1 2 3

Table A.1: Number of prostate cancer cells tested in four AFM indentation setups

Mean and standard deviations for PC-3M and PC-3E groups from these four

setups are shown in Figures A.2 - A.5, respectively. Data suggested significant vis-

coelastic features, including the dependence of the peak forces on the loading rates

and the relaxation behavior in the ramp-hold loading. Each force-time curve is also

normalized by the value of its maximum peak force. The corresponding normalized

data are plotted in Figures A.6 - A.9. At the end of the loading, the mean amount of

relaxation of the PC-3E group is slightly higher than the mean value of the PC-3M

group. Specifically, the relaxation amounts of the PC-3E group are 68 %, 70 %, 82 %,

and 63 % as compared to 61 %, 61 %, 74 %, and 56 % drops observed in PC-3M group

for the four setups, respectively. The difference between the two groups, however, was

not significant.
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Figure A.2: AFM experimental data (mean and standard deviations) for PC-3M and
PC-3E cells obtained in the first setup: (a) Both RR (ramp-reverse) and
RH (ramp-hold) responses (b) Zoom-in view of the RR (ramp-reverse)
responses.
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Figure A.3: AFM experimental data (mean and standard deviations) for PC-3M and
PC-3E cells obtained in the second setup: (a) Both RR (ramp-reverse)
and RH (ramp-hold) responses (b) Zoom-in view of the RR (ramp-
reverse) responses.
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Figure A.4: AFM experimental data (mean and standard deviations) for PC-3M and
PC-3E cells obtained in the third setup: (a) Both RR (ramp-reverse) and
RH (ramp-hold) responses (b) Zoom-in view of the RR (ramp-reverse)
responses.
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Figure A.5: AFM experimental data (mean and standard deviations) for PC-3M and
PC-3E cells obtained in the fourth setup: (a) Both (ramp-reverse) and
RH (ramp-hold) responses (b) Zoom-in view of the RR (ramp-reverse)
responses.
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Figure A.6: Normalization by the peak force for PC-3M and PC-3E cells (first setup).
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Figure A.7: Normalization by the peak force for PC-3M and PC-3E cells (second
setup).
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Figure A.8: Normalization by the peak force for PC-3M and PC-3E cells (third setup).
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Figure A.9: Normalization by the peak force for PC-3M and PC-3E cells (fourth
setup).
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No definitive conclusion is made at this point. More experiments, in which more

cells are tested, are necessary to determine whether these two cell groups have different

mechanical characteristics or not. In addition, better understanding of their physiol-

ogy and the transition between them might be needed in order to progress and achieve

a strong conclusion about these two cell lines. Therefore, more well-characterized cell

lines were studied for comparison purpose. The study was presented in Chapter V. In

this appendix, results obtained from PC-3M and PC-3E cells are used to investigate

the effectiveness of the inverse process and to determine whether the extracted prop-

erties are in the range reported in the literature for prostate cancer cells. Therefore,

in the following sections, a FE model, using a representative cell having the mean

diameter and height of n = 109 cells tested in four setups, is employed in modeling

the indentation process.

A.1.4 FE Model

Specifically, with the methods described in Chapter V for estimating a cell’s ge-

ometric dimensions, the height and the diameter of the cell base are approximated

to be H = 18.84 ± 3.97 µm and D = 21.84 ± 2.52 µm, respectively. Figure A.10

shows a typical optical image of a single prostate cancer cell for cell base’s diameter

estimation. Prostate cancer cell height determination is illustrated in Figure A.11.

Figure A.10: An optical image of a single prostate cancer cell on a glass substrate in
AFM Bruker Dimension Icon.
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Figure A.11: Cantilever deflection vs. the piezo movement curves (with the reference
corresponds to the highest location of the scanner): (a) On a prostate
cancer cell body (b) On the glass surface. The difference between the
two contact points gives an estimation of the cell height.

An axisymmetric FE model of the cell, using the mean diameter of D = 21.84

µm for the circular base and the mean cell height of H = 18.84 µm, is utilized to

simulate the indentation process for all tested cells. The same approach as discussed

in Chapter V is applied to the modeling. Illustrated in Figure A.12 is the utilized FE

model, which has a converged, and refined mesh at the contact region (1021 elements).

Figure A.12: FE model for AFM indentation tests on PC-3 cells.
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Based on the calibration values in Table A.1, two cases of the above FE modeling

were constructed. In the first, the spring has a stiffness of k=0.072 N/m, and a force

of 5× 0.072 = 0.36 nN is applied in the first step. In the second one, the spring has a

stiffness of k=0.054 N/m, and a force of 5×0.054 = 0.27 nN is applied in the first step.

The first model is used to construct a surrogate model and a Kriging predictor for

inverse analysis of experimental data from experiments (#1,#2,#4) while the second

model is used for inverse analysis of experimental data from experiment (#3).

A.2 Inverse Analysis and Fitting Experimental Data

For each case of FE modelling, a surrogate model with a Kriging predictor (Sacks

et al., 1989; Lophaven et al., 2002; Queipo et al., 2005; Forrester et al., 2008; Gustafson

and Waas , 2009; Heinrich and Waas , 2009) is constructed for the inverse process.

The material domain is a fifth dimensional space of x(C1, g1, τ1, g2, τ2) with the bounds

as shown in Table A.2 with the constraint g1 + g2 < 1.

C1(Pa) g1 τ1(s) g2 τ2(s)
Lower bound 20 0.01 0.01 0.01 2
Upper bound 1000 1 2 1 40

Table A.2: Boundary of the material domain used in the process of determining the
NLV properties of the tested prostate cancer cells in four setups

In this study, for each case of FE modeling, a meta model was constructed us-

ing N = 717 sets of training points X(5, 717) which result in Y (5095, 717) corre-

sponding force responses. N1 = 241 sets of checking points were also used to gen-

erate X1(5, 241), Y 1(5095, 241) for checking the accuracy of the Kriging predictor.

Here, the time period of the loading is divided into 5095 discrete time steps. All

the training points and checking points were generated using the Latin Hypercube

technique (lhsdesign function in MATLAB) with the consideration of the constraint

g1 +g2 < 0.99. It is noted that the extreme cases of the material parameter selections
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might lead to difficulty in predicting the non-linear relationship between X and Y .

Hence, to improve the prediction of the surrogate model and Kriging predictor, two

criteria were applied in this study for removing these extreme cases from the sets of

training and checking points:

(1) For t > 0, the force response is in the repulsive range,

(2) The maximum peak force is larger than 3nN .

The first criterion was based on the observation that with the applied piezo dis-

placement, all the force-time data obtained in this work remains in the repulsive

range. The second criterion is based on the minimum value of the maximum peak

force of n = 109 obtained force-time data. This criterion can be relaxed by adding

more training points. The cases that violate at least one criterion were removed

form the meta model and checking sets. With this consideration, this study uses

a training group composed of (X(5, 656), Y (5095, 656)) and a checking group com-

posed of (X1(5, 210), Y 1(5095, 210)) for the first FE model. The second case has

(X(5, 658), Y (5095, 658)) for training and (X1(5, 211), Y 1(5095, 211)) for checking

groups, respectively.

Typical comparisons between the Kriging’s predictions and actual FE results for the

checking cases are shown in Figure A.13 and Figure A.14 for the first FE and the

second FE modeling, respectively. The comparisons show good agreements between

the two predictions. The maximum RMSE values for these two cases are 4.38 % and

5.29 %, respectively.

Next, optimization with fmincon option in MATLAB is applied to the Kriging

predictors in order to minimize the error between the experimental data and pre-

dictions of Kriging. For each cell’s data, this process yields an optimized set of five

parameters, which in turn are used to construct a shear relaxation modulus.
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Figure A.13: Representative comparisons between FE and Kriging predictions using
the first FE model.
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Figure A.14: Representative comparisons between FE and Kriging predictions using
the second FE model.
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Figure A.15: Representative comparisons between experimental data and FE pre-
dictions at the corresponding extracted sets of material parameters: (a)
Both RR (ramp-reverse) and RH (ramp-hold) loadings (b) Zoom-in view
of RR (ramp-reverse) cycles.
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Figure A.15 shows representative comparisons between the experimental data and

actual FE solutions evaluated at these optimized sets, which indicate the effective-

ness of the inverse modeling in connection with surrogate modeling in extracting the

optimal set of material parameters that can predict the behavior observed in experi-

ments. Here, the inverse method was able to analyze data from all (n = 109) tested

cells. The mean and standard deviations of the extracted shear relaxation moduli

for these n = 109 cells are plotted in Figure A.16. Specifically, the instantaneous

value is E(0) = 3G(0) = 1.32 ± 0.54 kPa, while the long term value, at t = 52s, is

E(52) = 3G(52) = 0.45 ± 0.26 kPa. In the literature, Faria et al. (2008) reported

a value of 1.4 ± 0.16 kPa for Young’s modulus of the PC-3 cell lines. In their work,

a pyramid probe was used for indenting the cells at only one rate of 5.7 µm/s, and

the data was interpreted by the Hertz contact model. In another work, Lekka et al.

(2012) obtained the value of 1.95 ± 0.47 kPa for the Young’s modulus of the PC-3

cell line. Thus, though a direct comparison can not be made due to the differences in

these studies, the modulus obtained using the approach presented in this thesis lies

within a reasonable range.
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Figure A.16: Mean and standard deviations of the shear relaxation modulus for n =
109 prostate cancer cells.
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As mentioned earlier, in this study, a definitive conclusion about the differences in

terms of the NLV properties for the two groups PC-3E and PC-3M haven’t been made.

Understanding the physiological/biological aspects of these two cell lines is needed to

provide insight into the mechanical aspects of these two cell lines. To progress next, it

is suggested to utilize more well-characterized cell lines for comparison purpose, such

as the benign and malignant prostate cancer cells as studied in Faria et al. (2008).

Chapter V provides details of such a study, focusing on the differences between benign

and malignant breast cancer cell lines in terms of their viscoelastic characteristics.

It would be useful to extend it to investigate the differences between benign and

malignant prostate cancer cells.
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APPENDIX B

AFM Indentation Experiment

Bruker Dimension Icon system (Veeco Instruments Inc., 2010) as shown in Fig-

ure B.1 was employed in this work. Figure B.2 shows the Dimension Icon Head

(scanner), which is an important part of the system. Its working principle is illus-

trated in Figure B.3 (Veeco Instruments Inc., 2010).

Figure B.1: Dimension Icon system (Veeco Instruments Inc., 2010)
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Figure B.2: AFM Dimension Icon head

Figure B.3: Working principle within the AFM head (Veeco Instruments Inc., 2010)
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This appendix provides additional details associated with the procedure that was

followed in Chapter V and Appendix A to setup indentation tests in fluid environment

using the contact mode of this AFM system. The mechanism related to the ramp

mode in this AFM for acquiring force curve and determining the sample’s height is

also discussed in more detail in section B.2 of this appendix.

B.1 Procedure for Setting Up AFM Indentation Tests

Step 1: Preliminary Setup

AFM cantilever is inserted into a fluid cell holder, which is then mount into the

AFM scanner as depicted in Figure B.4. A protective, plastic skirt is used to cover

the fluid cell holder to prevent fluid from the electronic parts of the scanner.

(a) (b)

Figure B.4: AFM scanner with a fluid cell holder and a protective, plastic skirt: (a)
Fluid cell holder with a cantilever (b) Fluid cell holder mounted on the
scanner. The white, plastic skirt is used for protective purpose

Step 2: Align and Optimize Laser Signal in Air

Aligning the laser is the trickiest step in the procedure. It requires manual ad-

justments of the two top laser knobs (shown in Figure B.3) to align the laser on the

free end of the cantilever. First, this step is performed in air by manually adjusting

these knobs until a maximum laser sum signal is achieved. Next, the two side knobs

(detector mirror positioners in Figure B.3) are adjusted to center the reflected laser
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in the photodiode (which means both vertical (d) and horizonal cantilever deflections

are zero), and false engagement is performed to check the quality of the laser position.

In this case, since the probe is not prevented by any sample, moving the piezo up and

down (Z) should not result in any change in the cantilever deflection. In other word,

in false engagement, d is equal to zero. However, in AFM, due to laser interference,

tilt in the force curve (d versus Z) might occur. The amount of tilt is significantly

affected by the laser position as shown in Figure B.5. In this figure, both laser posi-

tions provide significant laser sum signal, however, the amounts of tilt are different.

Therefore, extra effort was used in each setup to manually optimize the laser position

in order to minimize this tilt artifact (Taatjes and Mossman, 2005).

0 10 20 30 40
−20

−15

−10

−5

0

5

Z (V)

d 
(m

V
)

 

 

Figure B.5: Cantilever deflection (d) versus piezo movement (Z) in false engagement

Step 3: Add Fluid, Realign and Optimize Laser Signal

Once the laser is optimized in air, a drop of fluid (culture medium) is added to

cover the cantilever and the probe as illustrated in Figure B.4(b). The laser sum

signal drops significantly due to the effect of the added fluid. To gain back the laser

signal, the right top laser knob is adjusted counter clockwise to move the laser back
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to the free end of the cantilever. False engagement is performed and the laser position

is slightly adjusted until the tilt in the force curve is minimized.

Step 4: Calibration

- A clean glass slide with a drop of fluid is loaded onto the sample stage. The

scanner is lowered until the two fluid drops merge and form a meniscus (Figure B.6).

The laser sum signal is rechecked to make sure that there is still a high laser sum

signal.

(a) (b)

Figure B.6: AFM setup for calibration purpose using a clean glass slide

Next, focusing is performed to manually bring the cantilever closer to the glass

substrate. The side knobs are then adjusted to set the vertical deflection of the

cantilever around -1V while the horizontal signal is set to be zero. At this point,

engagement are conducted to engage the probe on the glass surface. A force curve

is then acquired in the ramp mode. If the baseline of the acquired force curve is

tilted, it is necessary to withdraw the probe out of contact with the glass surface and

slightly re-adjust the top two knobs, re-engage, and acquire a new force curve. The

procedure is repeated until a force curve with a flat base line is achieved. Normally,

at this step it should not be difficult to get this optimized laser position owing to the

previous steps with alignment and false engagement performed in air and in the drop

of fluid. Slightly adjustment is recommended at this step. Once the optimized laser
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position is achieved, the top two knobs are fixed, and no longer adjusted for the rest

of the setup. The DS value is then calibrated using the slope of the acquired force

curve. In this work, the DS calibrated value is the average of multiple measurements.

- The spring constant of the cantilever is then calibrated using thermal tune option

in the AFM. A typical image for the built-in thermal tune acquisition option in this

AFM system is shown in Figure B.7. The principle of this calibration method was

explained in the literature (Matei et al., 2006) as well as in the instrument software. In

this work, simple harmonic oscillator option is used to fit the resonant peak obtained

from free thermal vibration of the cantilever.

Figure B.7: Thermal tune for calibrating the cantilever spring constant
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Step 5: Indentation on Samples

After the calibration step, the clean glass slide is replaced by a coverslip with cells

seeded on the top and covered by fluid (culture medium) as shown in Figure B.8(a).

Indentations on cells are performed within a meniscus illustrated in Figure B.8(b).

When changing the coverslips, it is important to not adjust the two knobs at the top

of the scanner, since this will affect the laser position and the calibration values.

(a) (b)

Figure B.8: AFM setup for indentation on cell

For indentation on cells, script mode was used to combine two control modes:

force control and piezo movement control. A typical script is shown in Figure B.9

B.2 AFM Ramp Mode Mechanism

In AFM Dimension Icon, estimating the cell height requires understanding of both

piezo movements and the mechanism of the Z-stepper motor in moving the scanner

up and down. Figure B.10 shows the working principle of a piezo. Illustration of the

piezo in connection with Z-stepper motor in a ramp mode is shown in Figure B.11

(Veeco Instruments Inc., 2010; Titushkin, 2013). Here, the Z-stepper motor position

(or Z[Scanner]) is measured downward. Its reference point is at the highest position

of the scanner.
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Figure B.9: Script used in AFM indentation tests

Figure B.10: Schematic illustration of the piezo in AFM Dimension Icon system
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Figure B.11: Schematic illustration of AFM ramp mode

This value of the scanner position corresponds to the piezo position when no

voltage is applied. The voltage applied to the piezo at the beginning of each force

curve is computed through the maximum applied voltage (Z[ScanStart]) and the

ramp size. When trigger mode is on, the piezo extends downward until the cantilever

deflection (d) reaches the trigger value. This position is updated as the Z[ScanStart]

value. The piezo is then retracted by an amount of one ramp size. Therefore, the

position of the contact point with the sample is calculated using a force curve (d

versus Z) as follows:

Z[surface] = Z[scanner]− Z[scanstart] + [rampsize]− Z[non− contact]. (B.1)

Here, Z[non−contact] is the distance in the non-contact part of the force curve. With

this method, the difference between the Z[surface] values obtained from a force curve

on sample and on glass substrate provides an estimate for the sample height.
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APPENDIX C

Governing Equations

This Appendix contains expressions that were used in establishing the partial

differential-Volterra integral governing equations in Chapter II.

F1[λ(t)] = − 1

λ1(t)2λ2(t)
g1[λ(t)]

+
1

λ1(t)λ2(t)

∂g1[λ(t)]

∂λ1(t)
,

F2[λ(t), η(t)] = − g1[λ(t)]

λ1(t)λ2(t)

−η(t)− λ2(t)
λ1(t)λ2(t)

∂g1[λ(t)]

∂λ2(t)
+
η(t)g2[λ(t)]

λ1(t)λ2(t)2
,

H1[λ(t), λ(s), t− s] = −G1[λ(t), λ(s), t− s]
λ1(t)2λ2(t)

,

+
1

λ1(t)λ2(t)

∂G1[λ(t), λ(s), t− s]
∂λ1(s)

H2[λ(t), λ(s), t− s] =
1

λ1(t)λ2(t)

∂G1[λ(t), λ(s), t− s]
∂λ1(s)

,

H3[λ(t), λ(s), η(t), η(s), t− s] = − 1

λ1(t)λ2(t)
G1[λ(t), λ(s), t− s]

+
η(t)

λ1(t)λ2(t)2
G2[λ(t), λ(s), t− s],

−η(t)− λ2(t)
λ1(t)λ2(t)

∂G1[λ(t), λ(s), t− s]
∂λ2(t)

,

−η(s)− λ2(s)
λ1(t)λ2(t)

∂G1[λ(t), λ(s), t− s]
∂λ2(s)

.
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APPENDIX D

Derivations for Material Subroutine (UMAT)

This Appendix presents the derivation of a user subroutine (UMAT) for a NLV

single integral Pipkin-Rogers model discussed in Chapter II.

D.1 Constitutive Model

The Kirchhoff stress τ = Jσ for an incompressible, NLV, single integral Pipkin-

Rogers model is represented as follows:

τ (t) = −pI + F (t)

R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds

F T (t),

R[C(t), s] = α0I + α1C(t) + α2C
2(t),

αi = αi(I1(t), I2(t), s). (D.1)

Here, the coefficients αi(I1(t), I2(t), s) have the following forms:

α0 = G1(s)[1− I2Φ(I1, I2)] +G2(s)[I1 − 2I2Φ(I1, I2)],

α1 = G1(s)I1Φ(I1, I2) +G2(s)[2I1Φ(I1, I2)− 1],

α2 = −Φ(I1, I2)[G1(s) + 2G2(s)], (D.2)
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where Φ(I1, I2) = e−a(I1−3).

Particular choices of G1 and G2 are in terms of Prony series:

G1(s) = G1∞ +
n∑
k=1

G1ke
−s/τ1k

= G10

[
g1∞ +

n∑
k=1

g1ke
−s/τ1k

]
, (D.3)

with the condition: g1∞ +
∑n

k=1 g1k = 1.

G2(s) = G2∞ +
m∑
k=1

G2ke
−s/τ2k

= G20

[
g2∞ +

m∑
k=1

g2ke
−s/τ2k

]
, (D.4)

with the condition: g2∞ +
∑m

k=1 g2k = 1.

D.2 User Subroutine (UMAT)

In the case of incompressibility, using a penalty approach, the Kirchhoff stress is

rewritten as follows:

τ (t) = F (t)

R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds

F T (t) +KJ(J − 1), (D.5)

where KJ(J − 1) is the penalty term, and coefficient K is chosen large enough to

impose incompressibility. The material subroutine requires the update of both the

true stress and the material Jacobian (DDSDDE).

D.2.1 Update the True Stress in UMAT

This section presents two main steps used for updating the true stress: σ = 1
J
τ .

Step 1: Calculate R[C(t), 0]:
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Let: G20 = dG10, the formulae used for calculations of R[C(t), 0] become:

α0 = G10[1 + dI1]−G10ΦI2(1 + 2d),

α1 = −dG10 +G10ΦI1(1 + 2d),

α2 = −G10Φ(1 + 2d),

R[C(t), 0] = α0I + α1C + α2C
2. (D.6)

Step 2: Calculate the time integration
t∫
0

∂
∂(t−s)R[C(s), t− s]ds

∂

∂(t− s)
R[C(s), t− s] = α′0I + α′1C(s) + α′2C

2(s) (D.7)

Here: α′i = ∂
∂(t−s)αi(I1(s), I2(s), t− s). For brevity, let: I = (I1, I2). The integration

is calculated by discretizing the time domain as follows:

tn1∫
t1

R [I(s), tn1 − s] ds = tn1−tn1−1

2
[R (I(tn1), tn1 − tn1) + R (I(tn1−1), tn1 − tn1−1)]

+
∑n1−2

k=1
tk+1−tk

2
[R (I(tk+1), tn1 − tk+1) + R (I(tk), tn1 − tk)] .

Detailed calculation of this integration uses “STATEV” variables for storing and

updating purposes.

D.2.2 Update the Material Jacobian: DDSDDE

2nd Piola-Kirchhoff stress: S = JF−1σF−T , at t = tn1

S(t) = R[C(t), 0] +

t∫
0

∂

∂(t− s)
R[C(s), t− s]ds+KJ(J − 1)C−1

= R[C(tn1), 0] +
tn1 − tn1−1

2

∂

∂(t− s)
R[C(s), t− s]|tn1 +KJ(J − 1)C−1

+

tn−1∫
0

∂

∂(t− s)
R[C(s), t− s]ds (D.8)
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Using Cayley-Hamilton’s principle

C2 = I1C − I2I + I3C
−1,

2nd Piola-Kirchhoff stress becomes:

S = (P +QI1)I−QC +RI3ΦC−1 +KJ(J − 1)C−1

+

tn−1∫
0

∂

∂(t− s)
R[C(s), t− s]ds, (D.9)

P,Q,R are calculated as follows:

A =
n∑
k=1

(
g1k
τ1k

)
B =

m∑
k=1

(
g2k
τ2k

)
4t = tn1 − tn1−1

P =

[
1− 4t

2
A

]
G10

Q =

[
d− 4t

2
dB

]
G10

R =

{
− [1 + 2d] +

[
4t
2

(A+ 2dB)

]}
G10

Denote E = 1
2
(C − I) and C (or L) as the material tangent, which is related to

2nd Piola-Kirchhoff stress as follows:

C = L =
∂S

∂E
= 2

∂S

∂C

Note that here: C = C(tn), hence the derivative of
tn−1∫
0

∂
∂(t−s)R[C(s), t−s]ds in equa-
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tion (D.9) with respect to C vanishes. Therefore,by recalling the following derivatives,

∂I1
∂C

= I,

∂I3
∂C

= I3C
−1,

∂J

∂C
=

J

2
C−1,

∂Φ

∂C
= −aΦI,

and using index notation, the material tangent L becomes:

Lpqrs = 2Qδpqδrs −Q(δprδqs + δpsδqr)

+2RΦI3C
−1

pqC
−1

rs − aRΦI3(δpqC
−1

rs + C−1pqδrs)

−RI3Φ(C−1prC
−1

qs + C−1qsC
−1

qr)

−KJ(J − 1)(C−1prC
−1

qs + C−1qsC
−1

qr)

+K(2J − 1)JC−1pqC
−1

rs. (D.10)

To obtain the final material Jacobian (DDSDDE) used in UMAT subroutine, L is

pushed-forward:

1

J
FipFjqFkrFlsLpqrs =

1

J
{2QBijBkl −Q(BikBjl + BilBjk)

+2RΦI3δijδkl − aRΦI3(Bijδkl + δijBkl)

−RI3Φ(δikδjl + δilδjk)}

−K(J − 1)(δikδjl + δilδjk).

+K(2J − 1)δijδkl (D.11)

Final formula for DDSDDE

LJijkl =
1

J
FipFjqFkrFlsLpqrs +

1

2
(δikσjl + δjlσik + σilδjk + σjkδil). (D.12)
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D.3 Verification by Comparing with Analytical Solutions

FE solutions for three simple testing scenarios (uniaxial, biaxial, and simple shear

of a cubic block) were compared with the corresponding analytical solutions to verify

the use of UMAT subroutine. Such a comparison is presented in Figure D.1. Here,

a uniaxial test on a cubic block by applying a stretch λ in the x direction with the

stretch history described as follows:

λ = 1 + t, 0 ≤ t ≤ 0.01,

λ = 2, 0.01 ≤ t ≤ 0.15.

In this example, the following set material properties was used: g1 = g2 = 0.99,

τ1 = τ2 = 0.01, G10 = 100, a = 0, d = 1.

0 0.05 0.1 0.15
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50
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150

200

250
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t

σ 11

 

 

 Analytical Solution 
 FE Solution with UMAT 

Figure D.1: Comparisons between analytical and FE solutions in the case of uniaxial
deformation

Similar results were also obtained for the other two test cases. However, a con-

vergence issue occurs when the applied stretch ratio is too large. For example, in the

case of uniaxial testing consider here, the FE code aborted if λ = 3.
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APPENDIX E

User Subroutine (UMAT) for ABAQUS

E.1 UMAT User Subroutine for an Incompressible, NLV Sin-

gle Integral Pipkin-Rogers Model for 3D Solid Elements

C***********************************************************************

C UMAT describing 3D , NLV single integreal Pipkin_Rogers Model

C Two relaxation functions : G1 ( t ) , G2 ( t )

C Relaxation functions are described by n terms Prony Series

C************************************************************************

SUBROUTINE UMAT ( STRESS , STATEV , DDSDDE , SSE , SPD , SCD , RPL , DDSDDT ,

1 DRPLDE , DRPLDT , STRAN , DSTRAN , TIME , DTIME , TEMP , DTEMP , PREDEF , DPRED ,

2 CMNAME , NDI , NSHR , NTENS , NSTATV , PROPS , NPROPS , COORDS , DROT , PNEWDT ,

3 CELENT , DFGRD0 , DFGRD1 , NOEL , NPT , LAYER , KSPT , KSTEP , KINC )

INCLUDE 'ABAPARAM. INC '

CHARACTER*80 CMNAME

DIMENSION STRESS ( NTENS ) , STATEV ( NSTATV ) , DDSDDE ( NTENS , NTENS ) ,

1 DDSDDT ( NTENS ) , DRPLDE ( NTENS ) , STRAN ( NTENS ) , DSTRAN ( NTENS ) , TIME (2 ) ,

2 PREDEF (1 ) , DPRED (1 ) , PROPS ( NPROPS ) , COORDS (3 ) , DROT ( 3 , 3 ) ,

3 DFGRD0 ( 3 , 3 ) , DFGRD1 ( 3 , 3 ) , TSIG ( 3 , 3 ) , TFP ( 3 , 3 ) , TDP ( 3 , 3 ) , TDTSTP ( 3 , 3 ) ,

4 TDTFE ( 3 , 3 ) , TDTFP ( 3 , 3 ) , TDTSIG ( 3 , 3 ) , TDTDP ( 3 , 3 )
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DIMENSION STRESST ( 3 , 3 ) , B ( 3 , 3 ) , BB ( 3 , 3 ) , C ( 3 , 3 ) , CC ( 3 , 3 ) , CNM1 ( 3 , 3 ) ,

1CCNM1 ( 3 , 3 ) , AR0 ( 3 , 3 ) , ARNM11 ( 3 , 3 ) , ARNM12 ( 3 , 3 )

2 , ARSTOREINT1 ( 3 , 3 ) , ARSTOREINT2 ( 3 , 3 ) , ARUSET ( 3 , 3 )

3 , ARSTORE1M ( 3 , 3 ) , ARSTORE2M ( 3 , 3 ) , ARSTOREM ( 3 , 3 )

C NOTE : Sizes of Agc1−Atauc2 can be changed based on Prony series terms used

DIMENSION ARSTORE1 (9 ) , ARSTORE2 (9 ) , ARUSE1 (9 ) , ARUSE2 (9 ) , ARUSE (9 ) ,

#ARSTOREIN1 (9 ) , ARSTOREIN2 (9 ) ,

#Agc1 (100) , Agc2 (100) , Atauc1 (100) , Atauc2 (100)

COMMON/MECHPROP/EYONG , GNU , EN , CR

COMMON/RATE/A , GAMDOT0 , SS , H

COMMON/TEMP11/TEMP0 , BK , ALPHA

C***********************************************************************

C******** Variable Names :

C******** F=(Jˆ(−1/3) ) *DFGRD , deformation gradient with eliminated volume change

C******** B : Left−Cauchy Tensor at time t ( n ) : B , BB=B*B

C******** Right−Cauchy Tensor at time t ( n ) : C , CC=C*C

C******** CNM1 : Right−Cauchy Tensor at time t (n−1) , CCNM1=CNM1*CNM1

C******** AR0 : R [ C ( t ( n ) ) , 0 ] inside the constitutive model

C******** ARNM11 , ARNM12 , ARSTOREINT , ARSTORE , STRESST : store the previous quantities

C******** Ac1 : relaxtion time of G1 ( t ) , Ac=Ac2/Ac1

C************************************************************************

C MATERIAL PROPERTIES FROM THE INPUT DECK ( SI UNITS )

C************************************************************************

C Prony series terms of G1 ( t )

An=Props (1 )

C Prony series terms of G2 ( t )

Am=Props (2 )

C Relaxation properties of G1 ( t )

Do I=1,An

Agc1 ( I )=Props(2+I )

Atauc1 ( I )=Props (2+An+I )

enddo

C Relaxation properties of G2 ( t )

Do I=1,Am

Agc2 ( I )=Props (2+2*An+I )

Atauc2 ( I )=Props (2+2*An+Am+I )

enddo

C Initial Modulus of G1 ( t ) , G2 ( t ) : G20=d *G10

C Length of props : 2+2*An+2*Am+3

163



AG10=Props (2+2*An+2*Am+1)

Ad=Props (2+2*An+2*Am+2)

Akz=Props (2+2*An+2*Am+3)

Aa=0D0

Do I=1,An

Aa=Aa+Agc1 ( I ) /Atauc1 ( I )

enddo

Ab=0D0

Do I=1,Am

Ab=Ab+Agc2 ( I ) /Atauc2 ( I )

enddo

C****** Time

ATNM1=TIME (2 )

ATN=ATNM1+DTIME

C Large Bulk Modulus for enforcing Incompressibility

Ag1=0D0

Do I=1,An

Ag1temp=1D0−STATEV (50+I )

Ag1=Ag1+Agc1 ( I ) *(1 D0−Ag1temp*EXP(−DTIME/Atauc1 ( I ) ) )

STATEV (50+I )=1D0−Ag1temp*EXP(−DTIME/Atauc1 ( I ) )

enddo

Ag1=AG10 *(1 D0−Ag1 )

Ag2=0D0

Do I=1,Am

Ag2temp=1D0−STATEV (50+An+I )

Ag2=Ag2+Agc2 ( I ) *(1 D0−Ag2temp*EXP(−DTIME/Atauc2 ( I ) ) )

STATEV (50+An+I )=1D0−Ag2temp*EXP(−DTIME/Atauc2 ( I ) )

enddo

Ag2=Ad*AG10 *(1 D0−Ag2 )

AK=1000D0 *( Ag1+Ag2 )

AK2=0D0

C***** Deformation gradient DFGRD1 ( 3 , 3 ) , Jacobian

AJ=DFGRD1 ( 1 , 1 ) *( DFGRD1 ( 2 , 2 ) *DFGRD1 ( 3 , 3 )−DFGRD1 ( 2 , 3 ) *DFGRD1 ( 3 , 2 ) )

#−DFGRD1 ( 2 , 1 ) *( DFGRD1 ( 1 , 2 ) *DFGRD1 ( 3 , 3 )−DFGRD1 ( 1 , 3 ) *DFGRD1 ( 3 , 2 ) )

#+DFGRD1 ( 3 , 1 ) *( DFGRD1 ( 1 , 2 ) *DFGRD1 ( 2 , 3 )−DFGRD1 ( 1 , 3 ) *DFGRD1 ( 2 , 2 ) )
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AJM1=DFGRD0 ( 1 , 1 ) *( DFGRD0 ( 2 , 2 ) *DFGRD0 ( 3 , 3 )−DFGRD0 ( 2 , 3 ) *DFGRD0 ( 3 , 2 ) )

#−DFGRD0 ( 2 , 1 ) *( DFGRD0 ( 1 , 2 ) *DFGRD0 ( 3 , 3 )−DFGRD0 ( 1 , 3 ) *DFGRD0 ( 3 , 2 ) )

#+DFGRD0 ( 3 , 1 ) *( DFGRD0 ( 1 , 2 ) *DFGRD0 ( 2 , 3 )−DFGRD0 ( 1 , 3 ) *DFGRD0 ( 2 , 2 ) )

C********************************** UPDATE STRESSES

C********** Calculate right cauchy tensor at time t ( n )

DO I=1,3

DO J=1,3

C (I , J ) = 0D0

CNM1 (I , J )=0D0

DO L=1,3

C (I , J ) = C (I , J )+DFGRD1 (L , I ) *DFGRD1 (L , J )

CNM1 (I , J ) = CNM1 (I , J )+DFGRD0 (L , I ) *DFGRD0 (L , J )

ENDDO

ENDDO

ENDDO

C*********** Calculate CC=C*C at time t ( n )

DO I=1,3

DO J=1,3

CC (I , J ) = 0D0

CCNM1 (I , J ) = 0D0

DO L=1,3

CC (I , J ) = CC (I , J ) + C (I , L ) *C (L , J )

CCNM1 (I , J ) = CCNM1 (I , J ) + CNM1 (I , L ) *CNM1 (L , J )

ENDDO

ENDDO

ENDDO

C************ Calculate R [ C ( t ) , 0 ]

AI1=C ( 1 , 1 )+C ( 2 , 2 )+C ( 3 , 3 )

AI2=C ( 1 , 1 ) *C ( 2 , 2 )+C ( 2 , 2 ) *C ( 3 , 3 )+C ( 3 , 3 ) *C ( 1 , 1 )−C ( 1 , 2 ) **2D0−

#C ( 2 , 3 ) **2D0−C ( 1 , 3 ) **2D0

Aphy=EXP(−Akz *( AI1−3D0 ) )

Alpha00=1D0+AI1*Ad−AI2*Aphy *(1 D0+2D0*Ad )

Alpha10=−Ad+AI1*Aphy *(1 D0+2D0*Ad )

Alpha20=−Aphy *(1 D0+2D0*Ad )

Do I=1,3

Do J=1,3
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AR0 (I , J )=0D0

i f ( I .EQ. J ) then

AR0 (I , J )=Alpha00+Alpha10*C (I , J )+Alpha20*CC (I , J )

e l s e

AR0 (I , J )=Alpha10*C (I , J )+Alpha20*CC (I , J )

end i f

Enddo

Enddo

C********** Update the integral R [ C ( s ) ,t−s ]

AI1NM1=CNM1 ( 1 , 1 )+CNM1 ( 2 , 2 )+CNM1 ( 3 , 3 )

AI2NM1=CNM1 ( 1 , 1 ) *CNM1 ( 2 , 2 )+CNM1 ( 2 , 2 ) *CNM1 ( 3 , 3 )+CNM1 ( 3 , 3 )

#*CNM1 ( 1 , 1 )−CNM1 ( 1 , 2 ) **2D0−CNM1 ( 2 , 3 ) **2D0−CNM1 ( 1 , 3 ) **2D0

AphyNM1=EXP(−Akz *( AI1NM1−3D0 ) )

C For each term of G1 ( t )

Do I=1,9

ARUSE1 ( I )=0D0

Enddo

Do I1=1,An

C At time : ATNM1

Alpha0NM1p1=(−1D0+AphyNM1*AI2NM1 ) *Agc1 ( I1 ) /Atauc1 ( I1 )

#*EXP(−DTIME/Atauc1 ( I1 ) )

Alpha1NM1p1=−AphyNM1*AI1NM1*Agc1 ( I1 ) /Atauc1 ( I1 )

#*EXP(−DTIME/Atauc1 ( I1 ) )

Alpha2NM1p1=AphyNM1*Agc1 ( I1 ) /Atauc1 ( I1 )

#*EXP(−DTIME/Atauc1 ( I1 ) )

Do I=1,3

Do J=1,3

ARNM11 (I , J )=0D0

i f ( I .EQ. J ) then

ARNM11 (I , J )=Alpha0NM1p1

#+Alpha1NM1p1*CNM1 (I , J )

#+Alpha2NM1p1*CCNM1 (I , J )

e l s e

ARNM11 (I , J )=

#Alpha1NM1p1*CNM1 (I , J )

#+Alpha2NM1p1*CCNM1 (I , J )
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end i f

Enddo

Enddo

C At time : ATN

Alpha0p1=(−1D0+Aphy*AI2 ) *Agc1 ( I1 ) /Atauc1 ( I1 )

Alpha1p1=−Aphy*AI1*Agc1 ( I1 ) /Atauc1 ( I1 )

Alpha2p1=Aphy*Agc1 ( I1 ) /Atauc1 ( I1 )

C Cal l the saved values

DO I=1,9

ARSTORE1 ( I )=STATEV ( I1*9−9+I )

ENDDO

DO I=1,3

DO J=1,3

ARSTOREINT1 (I , J )=0D0

i f ( I .EQ. J ) then

ARSTOREINT1 (I , J )=0.5D0*DTIME *( Alpha0p1

#+Alpha1p1*C (I , J )+Alpha2p1*CC (I , J )

#+ARNM11 (I , J ) )

e l s e

ARSTOREINT1 (I , J )=0.5D0*DTIME *(

#Alpha1p1*C (I , J )+Alpha2p1*CC (I , J )

#+ARNM11 (I , J ) )

end i f

ENDDO

ENDDO

CALL VOIGTV ( ARSTOREINT1 , ARSTOREIN1 )

DO I=1,9

ARSTORE1 ( I )=ARSTORE1 ( I ) *EXP(−DTIME/Atauc1 ( I1 ) )+ARSTOREIN1 ( I )

ARUSE1 ( I )=ARUSE1 ( I )+ARSTORE1 ( I )

ENDDO

Do I=1,9

STATEV (9* I1−9+I )=ARUSE1 ( I )
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enddo

enddo

C For the each term of G2 ( t )

Do I=1,9

ARUSE2 ( I )=0D0

Enddo

Do I1=1,Am

C At time : ATNM1

Alpha0NM1p2=(−AI1NM1

#+AphyNM1*AI2NM1 *2D0 ) *Ad*Agc2 ( I1 ) /Atauc2 ( I1 )

#*EXP(−DTIME/Atauc2 ( I1 ) )

Alpha1NM1p2=(1D0−

#AphyNM1*AI1NM1 *2D0 ) *Ad*Agc2 ( I1 ) /Atauc2 ( I1 )

#*EXP(−DTIME/Atauc2 ( I1 ) )

Alpha2NM1p2=AphyNM1 *2D0*Ad*Agc2 ( I1 ) /Atauc2 ( I1 )

#*EXP(−DTIME/Atauc2 ( I1 ) )

Do I=1,3

Do J=1,3

ARNM12 (I , J )=0D0

i f ( I .EQ. J ) then

ARNM12 (I , J )=Alpha0NM1p2

#+Alpha1NM1p2*CNM1 (I , J )

#+Alpha2NM1p2*CCNM1 (I , J )

e l s e

ARNM12 (I , J )=

#Alpha1NM1p2*CNM1 (I , J )

#+Alpha2NM1p2*CCNM1 (I , J )

end i f

Enddo

Enddo

C At time : ATN

Alpha0p2=(−AI1

#+Aphy*AI2*2D0 ) *Ad*Agc2 ( I1 ) /Atauc2 ( I1 )
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Alpha1p2=(1D0−

#Aphy*AI1*2D0 ) *Ad*Agc2 ( I1 ) /Atauc2 ( I1 )

Alpha2p2=Aphy*2D0*Ad*Agc2 ( I1 ) /Atauc2 ( I1 )

C Cal l saved values :

DO I=1,9

ARSTORE2 ( I )=STATEV (9* An+9*I1−9+I )

ENDDO

DO I=1,3

DO J=1,3

ARSTOREINT2 (I , J )=0D0

i f ( I .EQ. J ) then

ARSTOREINT2 (I , J )=0.5D0*DTIME *( Alpha0p2

#+Alpha1p2*C (I , J )+Alpha2p2*CC (I , J )

#+ARNM12 (I , J ) )

e l s e

ARSTOREINT2 (I , J )=0.5D0*DTIME *(

#Alpha1p2*C (I , J )+Alpha2p2*CC (I , J )

#+ARNM12 (I , J ) )

end i f

ENDDO

ENDDO

CALL VOIGTV ( ARSTOREINT2 , ARSTOREIN2 )

DO I=1,9

ARSTORE2 ( I )=ARSTORE2 ( I ) *EXP(−DTIME/Atauc2 ( I1 ) )+ARSTOREIN2 ( I )

ARUSE2 ( I )=ARUSE2 ( I )+ARSTORE2 ( I )

ENDDO

DO I=1,9

STATEV (9* An+9*I1−9+I )=ARUSE2 ( I )

ENDDO

enddo

DO I=1,9

ARUSE ( I )=ARUSE1 ( I )+ARUSE2 ( I )

enddo
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CALL INVOIGTV ( ARUSE , ARUSET )

DO I=1,3

DO J=1,3

STRESST (I , J )=0D0

IF ( I .EQ. J ) THEN

DO M=1,3

DO N=1,3

STRESST (I , J )=STRESST (I , J )+AG10*DFGRD1 (I , M ) *

#(AR0 (M , N )+ARUSET (M , N ) ) *DFGRD1 (J , N ) /AJ

ENDDO

ENDDO

STRESST (I , J )=STRESST (I , J )+AK *( AJ−1D0 )+AK2* l og ( AJ ) /AJ

ELSE

DO M=1,3

DO N=1,3

STRESST (I , J )=STRESST (I , J )+AG10*DFGRD1 (I , M )

#*(AR0 (M , N )+ARUSET (M , N ) ) *DFGRD1 (J , N ) /AJ

ENDDO

ENDDO

ENDIF

ENDDO

ENDDO

DO I=1,3

STRESS ( I )=STRESST (I , I )

ENDDO

STRESS (4 )=STRESST ( 1 , 2 )

STRESS (5 )=STRESST ( 1 , 3 )

STRESS (6 )=STRESST ( 2 , 3 )

C********************* UPDATE MATERIAL JACOBIAN

C***** Left−Cauchy tensor : B

Do I=1,3

Do J=1,3

B (I , J )=0D0

Do M=1,3

B (I , J )=B (I , J )+DFGRD1 (I , M ) *DFGRD1 (J , M )

Enddo

Enddo

Enddo
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C**** Square of Left−Cauchy Tensor : B*B

Do I=1,3

Do J=1,3

BB (I , J )=0D0

Do M=1,3

BB (I , J )=BB (I , J )+B (I , M ) *B (M , J )

Enddo

Enddo

Enddo

C***** Invariants of B , BB

AP=(1D0−0.5D0*DTIME*Aa ) *AG10/AJ

AQ=(Ad−0.5D0*DTIME*Ad*Ab ) *AG10/AJ

AR=(−(1D0+2D0*Ad )+0.5D0*DTIME *( Aa

#+2D0*Ad*Ab ) ) *AG10

C*** Jacobian

DDSDDE ( 1 , 1 )=

#−2D0*Akz*AR*AJ*Aphy*B ( 1 , 1 )

#−2D0*AK *( AJ−1D0 )

#+AK *(2 D0*AJ−1D0 )

#+2D0*STRESST ( 1 , 1 )

#−2D0*AK2* l og ( AJ ) /AJ

#+AK2/AJ

DDSDDE ( 2 , 2 )=

#−2D0*Akz*AR*AJ*Aphy*B ( 2 , 2 )

#−2D0*AK *( AJ−1D0 )

#+AK *(2 D0*AJ−1D0 )

#+2D0*STRESST ( 2 , 2 )

#−2D0*AK2* l og ( AJ ) /AJ

#+AK2/AJ

DDSDDE ( 3 , 3 )=

#−2D0*Akz*AR*AJ*Aphy*B ( 3 , 3 )

#−2D0*AK *( AJ−1D0 )

#+AK *(2 D0*AJ−1D0 )

#+2D0*STRESST ( 3 , 3 )

#−2D0*AK2* l og ( AJ ) /AJ

#+AK2/AJ

DDSDDE ( 1 , 2 )=

#2D0*AQ*B ( 1 , 1 ) *B ( 2 , 2 )
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#−2D0*AQ*B ( 1 , 2 ) *B ( 1 , 2 )

#+2D0*AR*AJ*Aphy

#−Akz*AR*AJ*Aphy *( B ( 1 , 1 )+B ( 2 , 2 ) )

#+AK *(2 D0*AJ−1D0 )

#+AK2/AJ

DDSDDE ( 1 , 2 )=DDSDDE ( 1 , 2 )

DDSDDE ( 2 , 1 )=DDSDDE ( 1 , 2 )

DDSDDE ( 2 , 3 )=

#2D0*AQ*B ( 2 , 2 ) *B ( 3 , 3 )

#−2D0*AQ*B ( 2 , 3 ) *B ( 2 , 3 )

#+2D0*AR*AJ*Aphy

#−Akz*AR*AJ*Aphy *( B ( 2 , 2 )+B ( 3 , 3 ) )

#+AK *(2 D0*AJ−1D0 )

#+AK2/AJ

DDSDDE ( 2 , 3 )=DDSDDE ( 2 , 3 )

DDSDDE ( 3 , 2 )=DDSDDE ( 2 , 3 )

DDSDDE ( 1 , 3 )=

#2D0*AQ*B ( 1 , 1 ) *B ( 3 , 3 )

#−2D0*AQ*B ( 1 , 3 ) *B ( 1 , 3 )

#+2D0*AR*AJ*Aphy

#−Akz*AR*AJ*Aphy *( B ( 1 , 1 )+B ( 3 , 3 ) )

#+AK *(2 D0*AJ−1D0 )

#+AK2/AJ

DDSDDE ( 1 , 3 )=DDSDDE ( 1 , 3 )

DDSDDE ( 3 , 1 )=DDSDDE ( 1 , 3 )

DDSDDE ( 1 , 4 )=

#−Akz*AR*AJ*Aphy*B ( 1 , 2 )

#+STRESST ( 1 , 2 )

DDSDDE ( 1 , 4 )=DDSDDE ( 1 , 4 )

DDSDDE ( 4 , 1 )=DDSDDE ( 1 , 4 )

DDSDDE ( 1 , 5 )=

#−Akz*AR*AJ*Aphy*B ( 1 , 3 )

#+STRESST ( 1 , 3 )
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DDSDDE ( 1 , 5 )=DDSDDE ( 1 , 5 )

DDSDDE ( 5 , 1 )=DDSDDE ( 1 , 5 )

DDSDDE ( 1 , 6 )=

#2D0*AQ*B ( 1 , 1 ) *B ( 2 , 3 )

#−2D0*AQ*B ( 1 , 2 ) *B ( 1 , 3 )

#−Akz*AR*AJ*Aphy*B ( 2 , 3 )

DDSDDE ( 1 , 6 )=DDSDDE ( 1 , 6 )

DDSDDE ( 6 , 1 )=DDSDDE ( 1 , 6 )

DDSDDE ( 2 , 4 )=

#−Akz*AR*AJ*Aphy*B ( 1 , 2 )

#+STRESST ( 1 , 2 )

DDSDDE ( 2 , 4 )=DDSDDE ( 2 , 4 )

DDSDDE ( 4 , 2 )=DDSDDE ( 2 , 4 )

DDSDDE ( 2 , 5 )=

#2D0*AQ*B ( 2 , 2 ) *B ( 1 , 3 )

#−2D0*AQ*B ( 1 , 2 ) *B ( 2 , 3 )

#−Akz*AR*AJ*Aphy*B ( 1 , 3 )

DDSDDE ( 2 , 5 )=DDSDDE ( 2 , 5 )

DDSDDE ( 5 , 2 )=DDSDDE ( 2 , 5 )

DDSDDE ( 2 , 6 )=

#−Akz*AR*AJ*Aphy*B ( 2 , 3 )

#+STRESST ( 2 , 3 )

DDSDDE ( 2 , 6 )=DDSDDE ( 2 , 6 )

DDSDDE ( 6 , 2 )=DDSDDE ( 2 , 6 )

DDSDDE ( 3 , 4 )=

#2D0*AQ*B ( 3 , 3 ) *B ( 1 , 2 )

#−2D0*AQ*B ( 1 , 3 ) *B ( 2 , 3 )

#−Akz*AR*AJ*Aphy*B ( 1 , 2 )

DDSDDE ( 3 , 4 )=DDSDDE ( 3 , 4 )

DDSDDE ( 4 , 3 )=DDSDDE ( 3 , 4 )
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DDSDDE ( 3 , 5 )=

#−Akz*AR*AJ*Aphy*B ( 1 , 3 )

#+STRESST ( 1 , 3 )

DDSDDE ( 3 , 5 )=DDSDDE ( 3 , 5 )

DDSDDE ( 5 , 3 )=DDSDDE ( 3 , 5 )

DDSDDE ( 3 , 6 )=

#−Akz*AR*AJ*Aphy*B ( 2 , 3 )

#+STRESST ( 2 , 3 )

DDSDDE ( 3 , 6 )=DDSDDE ( 3 , 6 )

DDSDDE ( 6 , 3 )=DDSDDE ( 3 , 6 )

DDSDDE ( 4 , 4 )=

#2D0*AQ*B ( 1 , 2 ) *B ( 1 , 2 )

#−AQ *( B ( 1 , 1 ) *B ( 2 , 2 )+B ( 1 , 2 ) *B ( 1 , 2 ) )

#−AR*AJ*Aphy

#−AK *( AJ−1D0 )

#+(STRESST ( 1 , 1 )+STRESST ( 2 , 2 ) ) /2D0

#−AK2* l og ( AJ ) /AJ

DDSDDE ( 5 , 5 )=

#2D0*AQ*B ( 1 , 3 ) *B ( 1 , 3 )

#−AQ *( B ( 1 , 1 ) *B ( 3 , 3 )+B ( 1 , 3 ) *B ( 1 , 3 ) )

#−AR*AJ*Aphy

#−AK *( AJ−1D0 )

#+(STRESST ( 1 , 1 )+STRESST ( 3 , 3 ) ) /2D0

#−AK2* l og ( AJ ) /AJ

DDSDDE ( 6 , 6 )=

#2D0*AQ*B ( 2 , 3 ) *B ( 2 , 3 )

#−AQ *( B ( 2 , 2 ) *B ( 3 , 3 )+B ( 2 , 3 ) *B ( 2 , 3 ) )

#−AR*AJ*Aphy

#−AK *( AJ−1D0 )

#+(STRESST ( 2 , 2 )+STRESST ( 3 , 3 ) ) /2D0

#−AK2* l og ( AJ ) /AJ

DDSDDE ( 4 , 5 )=

#2D0*AQ*B ( 1 , 2 ) *B ( 1 , 3 )
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#−AQ *( B ( 1 , 1 ) *B ( 2 , 3 )+B ( 1 , 3 ) *B ( 1 , 2 ) )

#+STRESST ( 2 , 3 ) /2D0

DDSDDE ( 5 , 4 )=DDSDDE ( 4 , 5 )

DDSDDE ( 4 , 6 )=

#2D0*AQ*B ( 1 , 2 ) *B ( 2 , 3 )

#−AQ *( B ( 2 , 2 ) *B ( 1 , 3 )+B ( 1 , 2 ) *B ( 2 , 3 ) )

#+STRESST ( 1 , 3 ) /2D0

DDSDDE ( 6 , 4 )=DDSDDE ( 4 , 6 )

DDSDDE ( 5 , 6 )=

#2D0*AQ*B ( 1 , 3 ) *B ( 2 , 3 )

#−AQ *( B ( 3 , 3 ) *B ( 1 , 2 )+B ( 1 , 3 ) *B ( 2 , 3 ) )

#+STRESST ( 1 , 2 ) /2D0

DDSDDE ( 6 , 5 )=DDSDDE ( 5 , 6 )

C9987 format ( ' ' , ' **************************** ' )

C ITERATION ENDS HERE

RETURN

END

C==============================

SUBROUTINE VOIGTV ( AA1 , VOIGT1 )

C IMPLICIT REAL*8(A−H , O−Z )

INCLUDE ' aba param . inc '

C REAL A , VOIGT1 , VOIGT2

c−−−− converts a 2nd order tensor to column vector using chi2 mapping

c−−−− Note order : {11 ,22 ,33 ,12 ,13 ,23 ,21 ,31 ,32}

DIMENSION AA1 ( 3 ,* ) , VOIGT1 (* )

DO I=1,3

VOIGT1 ( I ) = AA1 (I , I )

ENDDO

VOIGT1 (4 ) = AA1 ( 1 , 2 )

VOIGT1 (5 ) = AA1 ( 1 , 3 )

VOIGT1 (6 ) = AA1 ( 2 , 3 )

VOIGT1 (7 ) = AA1 ( 2 , 1 )

VOIGT1 (8 ) = AA1 ( 3 , 1 )
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VOIGT1 (9 ) = AA1 ( 3 , 2 )

RETURN

END

C======================

SUBROUTINE INVOIGTV ( VOIGT , AB1 )

C IMPLICIT REAL*8(A−H , O−Z )

INCLUDE ' aba param . inc '

C REAL A , VOIGT1 , VOIGT2

c−−−− obtains a 2nd order tensor from column vector using inverse chi2 mapping

c−−−− Note order : {11 ,22 ,33 ,12 ,13 ,23 ,21 ,31 ,32}

DIMENSION AB1 ( 3 ,* ) , VOIGT (* )

DO I=1,3

AB1 (I , I ) = VOIGT ( I )

ENDDO

AB1 ( 1 , 2 ) = VOIGT (4 )

AB1 ( 1 , 3 ) = VOIGT (5 )

AB1 ( 2 , 3 ) = VOIGT (6 )

AB1 ( 2 , 1 ) = VOIGT (7 )

AB1 ( 3 , 1 ) = VOIGT (8 )

AB1 ( 3 , 2 ) = VOIGT (9 )

RETURN

END

E.2 UMAT User Subroutine for an Incompressible, NLV Sin-

gle Integral Pipkin-Rogers Model for Membrane Ele-

ments

C*************************************************************************

C UMAT : membrane elements , NLV single integral Pipkin−Rogers Model

C*************************************************************************

SUBROUTINE UMAT ( STRESS , STATEV , DDSDDE , SSE , SPD , SCD , RPL , DDSDDT ,

1 DRPLDE , DRPLDT , STRAN , DSTRAN , TIME , DTIME , TEMP , DTEMP , PREDEF , DPRED ,

2 CMNAME , NDI , NSHR , NTENS , NSTATV , PROPS , NPROPS , COORDS , DROT , PNEWDT ,

3 CELENT , DFGRD0 , DFGRD1 , NOEL , NPT , LAYER , KSPT , KSTEP , KINC )
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INCLUDE 'ABAPARAM. INC '

CHARACTER*80 CMNAME

DIMENSION STRESS ( NTENS ) , STATEV ( NSTATV ) , DDSDDE ( NTENS , NTENS ) ,

1 DDSDDT ( NTENS ) , DRPLDE ( NTENS ) , STRAN ( NTENS ) , DSTRAN ( NTENS ) , TIME (2 ) ,

2 PREDEF (1 ) , DPRED (1 ) , PROPS ( NPROPS ) , COORDS (3 ) , DROT ( 3 , 3 ) ,

3 DFGRD0 ( 3 , 3 ) , DFGRD1 ( 3 , 3 ) , TSIG ( 3 , 3 ) , TFP ( 3 , 3 ) , TDP ( 3 , 3 ) , TDTSTP ( 3 , 3 ) ,

4 TDTFE ( 3 , 3 ) , TDTFP ( 3 , 3 ) , TDTSIG ( 3 , 3 ) , TDTDP ( 3 , 3 )

DIMENSION STRESST ( 3 , 3 ) , B ( 3 , 3 ) , BB ( 3 , 3 ) , C ( 3 , 3 ) , CC ( 3 , 3 ) , CNM1 ( 3 , 3 ) ,

1CCNM1 ( 3 , 3 ) , AR0 ( 3 , 3 ) , ARNM11 ( 3 , 3 ) , ARNM12 ( 3 , 3 )

2 , ARSTOREINT1 ( 3 , 3 ) , ARSTOREINT2 ( 3 , 3 ) , ARUSET ( 3 , 3 ) , STRESST1 ( 3 , 3 )

3 , ARSTORE1M ( 3 , 3 ) , ARSTORE2M ( 3 , 3 ) , ARSTOREM ( 3 , 3 )

DIMENSION ARSTORE1 (9 ) , ARSTORE2 (9 ) , ARUSE (9 ) , ARSTOREIN1 (9 ) , ARSTOREIN2 (9 )

COMMON/MECHPROP/EYONG , GNU , EN , CR

COMMON/RATE/A , GAMDOT0 , SS , H

COMMON/TEMP11/TEMP0 , BK , ALPHA

C*****************************************************************

C******** F=(Jˆ(−1/3) ) *DFGRD , deformation gradient with eliminated volume change

C******** B : Left−Cauchy Tensor : B , BB=B*B

C******** C : Right−Cauchy Tesor at time t ( n ) : C , CC=C*C

C******** CNM1 : Right−Cauchy Tensor at time t (n−1) , CCNM1=CNM1*CNM1

C******** AR0 : R [ C ( t ( n ) ) , 0 ] inside the constitutive model the constitutive model

C******** ARNM11 , ARNM12 , ARSTOREINT , ARSTORE , STRESST : to store the previous ←↩

quantities

C*****************************************************************

C MATERIAL PROPERTIES FROM THE INPUT DECK ( SI UNITS )

C*****************************************************************

Aa=PROPS (1 )

Ab=PROPS (2 )

Ac=PROPS (3 )

Ad=PROPS (4 )

Akz=PROPS (5 )

AG10=PROPS (6 )

AK=PROPS (7 )

C****** Time

ATNM1=TIME (2 )

ATN=ATNM1+DTIME

C***** Deformation gradient DFGRD1 ( 3 , 3 ) , Jacobian

AJ=DFGRD1 ( 1 , 1 ) *( DFGRD1 ( 2 , 2 ) *DFGRD1 ( 3 , 3 )−DFGRD1 ( 2 , 3 ) *DFGRD1 ( 3 , 2 ) )

1−DFGRD1 ( 2 , 1 ) *( DFGRD1 ( 1 , 2 ) *DFGRD1 ( 3 , 3 )−DFGRD1 ( 1 , 3 ) *DFGRD1 ( 3 , 2 ) )
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2+DFGRD1 ( 3 , 1 ) *( DFGRD1 ( 1 , 2 ) *DFGRD1 ( 2 , 3 )−DFGRD1 ( 1 , 3 ) *DFGRD1 ( 2 , 2 ) )

AJM1=DFGRD0 ( 1 , 1 ) *( DFGRD0 ( 2 , 2 ) *DFGRD0 ( 3 , 3 )−DFGRD0 ( 2 , 3 ) *DFGRD0 ( 3 , 2 ) )

1−DFGRD0 ( 2 , 1 ) *( DFGRD0 ( 1 , 2 ) *DFGRD0 ( 3 , 3 )−DFGRD0 ( 1 , 3 ) *DFGRD0 ( 3 , 2 ) )

2+DFGRD0 ( 3 , 1 ) *( DFGRD0 ( 1 , 2 ) *DFGRD0 ( 2 , 3 )−DFGRD0 ( 1 , 3 ) *DFGRD0 ( 2 , 2 ) )

AJ1=AJ**(−2D0/3D0 )

AJ1M1=AJM1**(−2D0/3D0 )

C****** UPDATE STRESSES

C********** Calculate right cauchy tensor CE at time t ( n )

DO I=1,3

DO J=1,3

C (I , J ) = 0D0

CNM1 (I , J )=0D0

DO L=1,3

C (I , J ) = C (I , J ) +AJ1*DFGRD1 (L , I ) *DFGRD1 (L , J )

CNM1 (I , J ) = CNM1 (I , J ) +AJ1M1*DFGRD0 (L , I ) *DFGRD0 (L , J )

ENDDO

ENDDO

ENDDO

C*********** Calculate CEE=CE*CE at time t

DO I=1,3

DO J=1,3

CC (I , J ) = 0D0

CCNM1 (I , J ) = 0D0

DO L=1,3

CC (I , J ) = CC (I , J ) + C (I , L ) *C (L , J )

CCNM1 (I , J ) = CCNM1 (I , J ) + CNM1 (I , L ) *CNM1 (L , J )

ENDDO

ENDDO

ENDDO

C************ Calculate R [ C ( t ) , 0 ]

AI1=C ( 1 , 1 )+C ( 2 , 2 )+C ( 3 , 3 )

AI2=C ( 1 , 1 ) *C ( 2 , 2 )+C ( 2 , 2 ) *C ( 3 , 3 )+C ( 3 , 3 ) *C ( 1 , 1 )−C ( 1 , 2 ) **2−

1C ( 2 , 3 ) **2−C ( 1 , 3 ) **2

Alpha00=1D0+AI1*Ad−AI2*EXP(−Akz *( AI1−3D0 ) ) *(1 D0+2D0*Ad )

Alpha10=−Ad+AI1*EXP(−Akz *( AI1−3D0 ) ) *(1 D0+2D0*Ad )
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Alpha20=−EXP(−Akz *( AI1−3D0 ) ) *(1 D0+2D0*Ad )

Do I=1,3

Do J=1,3

AR0 (I , J )=0D0

i f ( I .EQ. J ) then

AR0 (I , J )=Alpha00+Alpha10*C (I , J )+Alpha20*CC (I , J )

e l s e

AR0 (I , J )=Alpha10*C (I , J )+Alpha20*CC (I , J )

end i f

End do

End do

C********** Update the integral R [ C ( s ) ,t−s ]

AI1NM1=CNM1 ( 1 , 1 )+CNM1 ( 2 , 2 )+CNM1 ( 3 , 3 )

AI2NM1=CNM1 ( 1 , 1 ) *CNM1 ( 2 , 2 )+CNM1 ( 2 , 2 ) *CNM1 ( 3 , 3 )+CNM1 ( 3 , 3 )

1*CNM1 ( 1 , 1 )−CNM1 ( 1 , 2 ) **2−CNM1 ( 2 , 3 ) **2−CNM1 ( 1 , 3 ) **2

AphyNM1=EXP(−Akz *( AI1NM1−3D0 ) )

Alpha0NM1p1=(−1D0+AphyNM1*AI2NM1 )*(1−Aa ) *EXP( ATNM1 )

Alpha0NM1p2=(−AI1NM1

1+AphyNM1*AI2NM1 *2D0 ) *Ad*Ac*(1−Ab ) *EXP( Ac*ATNM1 )

Alpha1NM1p1=−AphyNM1*AI1NM1*(1−Aa ) *EXP( ATNM1 )

Alpha1NM1p2=(1D0−

1AphyNM1*AI1NM1 *2D0 ) *Ad*Ac*(1−Ab ) *EXP( Ac*ATNM1 )

Alpha2NM1p1=AphyNM1*(1−Aa ) *EXP( ATNM1 )

Alpha2NM1p2=AphyNM1 *2D0*Ad*Ac*(1−Ab ) *EXP( Ac*ATNM1 )

Do I=1,3

Do J=1,3

ARNM11 (I , J )=0D0

ARNM12 (I , J )=0D0

i f ( I .EQ. J ) then

ARNM11 (I , J )=Alpha0NM1p1

1+Alpha1NM1p1*CNM1 (I , J )
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2+Alpha2NM1p1*CCNM1 (I , J )

ARNM12 (I , J )=Alpha0NM1p2

1+Alpha1NM1p2*CNM1 (I , J )

2+Alpha2NM1p2*CCNM1 (I , J )

e l s e

ARNM11 (I , J )=

1Alpha1NM1p1*CNM1 (I , J )

2+Alpha2NM1p1*CCNM1 (I , J )

ARNM12 (I , J )=

1Alpha1NM1p2*CNM1 (I , J )

2+Alpha2NM1p2*CCNM1 (I , J )

end i f

End do

End do

Aphy=EXP(−Akz *( AI1−3D0 ) )

Alpha0p1=(−1D0+Aphy*AI2 )*(1−Aa ) *EXP( ATN )

Alpha0p2=(−AI1

1+Aphy*AI2*2D0 ) *Ad*Ac*(1−Ab ) *EXP( Ac*ATN )

Alpha1p1=−Aphy*AI1*(1−Aa ) *EXP( ATN )

Alpha1p2=(1D0−

1Aphy*AI1*2D0 ) *Ad*Ac*(1−Ab ) *EXP( Ac*ATN )

Alpha2p1=Aphy *(1 D0−Aa ) *EXP( ATN )

Alpha2p2=Aphy*2D0*Ad*Ac*(1−Ab ) *EXP( Ac*ATN )

DO I=1,9

ARSTORE1 ( I )=STATEV ( I )

ARSTORE2 ( I )=STATEV ( I+9)

ENDDO

DO I=1,3

DO J=1,3

ARSTOREINT1 (I , J )=0D0
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ARSTOREINT2 (I , J )=0D0

i f ( I .EQ. J ) then

ARSTOREINT1 (I , J )=0.5D0*DTIME *( Alpha0p1

1+Alpha1p1*C (I , J )+Alpha2p1*CC (I , J )

2+ARNM11 (I , J ) )

ARSTOREINT2 (I , J )=0.5D0*DTIME *( Alpha0p2

1+Alpha1p2*C (I , J )+Alpha2p2*CC (I , J )

2+ARNM12 (I , J ) )

e l s e

ARSTOREINT1 (I , J )=0.5D0*DTIME *(

1Alpha1p1*C (I , J )+Alpha2p1*CC (I , J )

2+ARNM11 (I , J ) )

ARSTOREINT2 (I , J )=0.5D0*DTIME *(

1Alpha1p2*C (I , J )+Alpha2p2*CC (I , J )

2+ARNM12 (I , J ) )

end i f

ENDDO

ENDDO

CALL VOIGTV ( ARSTOREINT1 , ARSTOREIN1 )

CALL VOIGTV ( ARSTOREINT2 , ARSTOREIN2 )

CALL INVOIGTV ( ARSTORE1 , ARSTORE1M )

CALL INVOIGTV ( ARSTORE2 , ARSTORE2M )

DO I=1,9

ARSTORE1 ( I )=ARSTORE1 ( I )+ARSTOREIN1 ( I )

ARSTORE2 ( I )=ARSTORE2 ( I )+ARSTOREIN2 ( I )

ARUSE ( I )=ARSTORE1 ( I ) *EXP(−ATN )+ARSTORE2 ( I ) *EXP(−Ac*ATN )

ENDDO

CALL INVOIGTV ( ARUSE , ARUSET )

Do I=1,3

Do J=1,3

ARSTOREM (I , J )=ARSTORE1M (I , J ) *EXP(−ATN )+ARSTORE2M (I , J ) *EXP(−Ac*ATN )

1+0.5D0*DTIME *( ARNM11 (I , J ) *EXP(−ATN )+ARNM12 (I , J ) *EXP(−Ac*ATN ) )

Enddo

Enddo
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DO I=1,3

DO J=1,3

STRESST1 (I , J )=0D0

STRESST (I , J )=0D0

IF ( I .EQ. J ) THEN

DO M=1,3

DO N=1,3

STRESST (I , J )=STRESST (I , J )+AG10*AJ1*DFGRD1 (I , M ) *

1( AR0 (M , N )+ARUSET (M , N ) ) *DFGRD1 (J , N ) /AJ

STRESST1 (I , J )=STRESST1 (I , J )+AG10*AJ1*DFGRD1 (I , M ) *ARSTOREM (M , N )

3* DFGRD1 (J , N )

ENDDO

ENDDO

STRESST (I , J )=STRESST (I , J )+AK *( AJ−1)

ELSE

DO M=1,3

DO N=1,3

STRESST (I , J )=STRESST (I , J )+AG10*AJ1*DFGRD1 (I , M )

1*( AR0 (M , N )+ARUSET (M , N ) ) *DFGRD1 (J , N ) /AJ

STRESST1 (I , J )=STRESST1 (I , J )+AG10*AJ1*DFGRD1 (I , M ) *ARSTOREM (M , N )

3* DFGRD1 (J , N )

ENDDO

ENDDO

ENDIF

ENDDO

ENDDO

DO I=1,2

STRESS ( I )=STRESST (I , I )

ENDDO

STRESS (3 )=STRESST ( 1 , 2 )

wr i t e (17 ,* ) STRESST ( 3 , 3 )

wr i t e (18 ,* ) AJ

Do I=1,9

STATEV ( I )=ARSTORE1 ( I )

STATEV ( I+9)=ARSTORE2 ( I )

Enddo

C***** UPDATE MATERIAL JACOBIAN

C***** Left−Cauchy tensor : B

Do I=1,3
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Do J=1,3

B (I , J )=0D0

Do M=1,3

B (I , J )=B (I , J )+DFGRD1 (I , M ) *DFGRD1 (J , M )

Enddo

Enddo

Enddo

C**** Square of Left−Cauchy Tensor : B*B

Do I=1,3

Do J=1,3

BB (I , J )=0D0

Do M=1,3

BB (I , J )=BB (I , J )+B (I , M ) *B (M , J )

Enddo

Enddo

Enddo

C***** Invariants of B , BB

AI1b=B ( 1 , 1 )+B ( 2 , 2 )+B ( 3 , 3 )

AI2b=B ( 1 , 1 ) *B ( 2 , 2 )+B ( 2 , 2 ) *B ( 3 , 3 )+B ( 3 , 3 ) *B ( 1 , 1 )

1−B ( 1 , 2 ) **2−B ( 2 , 3 ) **2−B ( 1 , 3 ) **2

AP=(1D0−0.5D0*DTIME *(1 D0−Aa ) ) *AG10/AJ

AQ=(Ad−0.5D0*DTIME*Ac*Ad *(1 D0−Ab ) ) *AG10/AJ

AR=(−(1D0+2D0*Ad )+0.5D0*DTIME *(1 D0−Aa+2D0*Ac*Ad *(1 D0−Ab ) ) ) *AG10/AJ

Aphy=EXP(−Akz *( AI1b−3D0 ) )

B11=B ( 1 , 1 )

B22=B ( 2 , 2 )

B33=B ( 3 , 3 )

B12=B ( 1 , 2 )

B21=B ( 2 , 1 )

B13=B ( 1 , 3 )

B31=B ( 3 , 1 )

B23=B ( 2 , 3 )

B32=B ( 3 , 2 )

C*** Jacobian ( Integrations inside the derivation were done by Maple )

DDSDDE ( 1 , 1 )=(2D0*B11 *( AQ*B11 *(−B33 * (−2D0*(−AQ*B33+ AR * Akz *

#Aphy ) / B33 +(2D0*AR*Aphy + AK ) * B22 ) /(2 D0* AQ * B11+(2D0*A

#P * B33 + AK−2D0* AR * Akz * Aphy * B33 +2D0* AR * Aphy ) / B33 +

#2D0*AQ* B22 )+1D0 )+AQ* ( B11 + B22 + B33 )+B33 * ( AP + AQ * ( B1
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#1 + B22 ) ) * (−2D0*(−AQ * B33 + AR * Akz * Aphy ) / B33+(2D0 * AR *

#Aphy + AK ) * B22 ) /(2 D0*AQ * B11+(2D0 * AP * B33 + AK−2D0 * AR *

#Akz * Aphy * B33+2D0 * AR * Aphy ) / B33+2D0*AQ * B22 )−2D0 * AQ *

# B11 + AP − AQ * B33 )+2D0 *( AQ * B33 * B12 *(2 D0* AR * Aphy + AK )

# /(2 D0* AQ * B11+(2D0* AP * B33 + AK−2D0 * AR * Akz * Aphy * B33

#+2D0* AR * Aphy ) / B33+2D0* AQ * B22 ) * B11 − AQ * B12 − ( AP + AQ

# * ( B11 + B22 ) ) * B33 * B12 *(2 D0 * AR * Aphy + AK ) /(2 D0*AQ * B11

# + (2 D0*AP* B33+ AK−2D0 * AR * Akz * Aphy * B33 +2D0 * AR * Aphy )

# / B33 +2D0 * AQ * B22 ) ) * B12 )+(STRESST1 ( 1 , 1 ) ) *2D0/AJ

DDSDDE ( 2 , 2 )=(2D0*(−2D0*B12 **2D0*B33 **2D0*AQ*B11 *AR * Aphy+2D0 *

#B12 **2D0*AQ* AR * Akz * Aphy * B33 + 2D0*B22 * AP * B11 * B33 *

#*2D0* AR * Aphy+2D0* B22 * AQ * B11 **2D0*B33 ** 2D0 * AR * Aphy −

# B12 **2D0* B33 **2D0* AQ * B11 * AK−4D0* B22 * B33 * AP * AR * A

#kz * Aphy + B22 * AP * AK+2D0 * B22 * AP**2D0 * B33 − B12 **2D0 * A

#Q * AK + B22 * AP * B11 * B33 **2D0* AK + B22 * AQ * B11 **2D0 * B3

#3 **2D0* AK +4D0* B22 * AQ * B11 * AP * B33+2D0 * B22 * AQ * B11 *

# AR * Aphy−2D0*B12 **2D0* B33 **2D0* AP * AR * Aphy−4D0 * B22 *

#AQ * B11 * AR * Akz * Aphy * B33 −2D0* B12 **2D0 * AQ * AR * Aphy −

# 2D0* B12 **2D0* AQ**2D0 * B22 * B33 +2D0*B22 * AQ **2D0* B11 * B3

#3 **2D0+2D0* B22 * AQ * AP * B33 **2D0−2D0*B12 **2D0 * AQ * AP * B

#33 + 2D0*AQ **2D0*B22 **2D0*B11 * B33+2D0 * AQ * B22 **2D0 * AP *

# B33 −2D0*B12 **2D0* AQ**2D0* B11 * B33+2D0 * B22 * AQ**2D0 * B1

#1 **2D0* B33 + 2D0* B22 * AP * AR * Aphy+ B22 * AQ * B11 * AK − B1

#2 ** 2D0*B33 **2D0 * AP * AK ) / (2 D0* AQ * B11 * B33+2D0* AP * B33

#+ AK − 2D0*AR * Akz * Aphy * B33 + 2D0* AR * Aphy+2D0* AQ * B22 *

#B33 ) )+STRESST1 ( 2 , 2 ) *2D0/AJ

DDSDDE ( 1 , 2 )=(2D0 *(2 D0*B12 **2*AQ* AR * Akz * Aphy * B33+2D0* B22 *

#AP * B11 * B33 ** 2 * AR * Aphy − 2D0*B22 * B33 * AP * AR * Akz *

#Aphy − B12 ** 2 * AQ * AK + AQ * B22 ** 2 * B11 * B33 ** 2 * AK −

#B12 ** 2 * AQ * B33 ** 2 * B22 * AK−2D0* B12 ** 2 * AQ * B33 ** 2

# * B22 * AR * Aphy−2D0* AQ * B22 ** 2 * AR * Akz * Aphy * B33+2D0

# * AQ * B22 ** 2 * B11 * B33 ** 2 * AR * Aphy+2D0 * B22 * AQ * AR

#* Akz * Aphy * B33 ** 2 + B22 * AP * B11 * B33 ** 2 * AK+2D0 * B22

# * AQ * B11 * AP * B33+2D0 * B22 * AQ * B11 * AR * Aphy−2D0 * B12

#** 2 * B33 ** 2 * AP * AR * Aphy − B22 * AQ * B33 * AK−2D0 * B22 *

# AQ * B11 * AR * Akz * Aphy * B33−2D0* B12 ** 2 * AQ * AR * Aphy

#−2D0* B12 ** 2 * AQ ** 2 * B22 * B33−2D0* B22 * AQ ** 2 * B11 * B

#33 ** 2 − 2D0* B12 ** 2 * AQ * AP * B33+2D0* AQ ** 2 * B22 ** 2 *

#B11 * B33 − 2D0*B12 ** 2 * AQ **2D0*B11 * B33+2D0 * B22 * AQ ** 2

184



# * B11 ** 2 * B33 + B22 * AQ * B11 * AK − B12 ** 2 * B33 ** 2 * AP

# * AK−2D0* B22 * AQ * B33 * AR * Aphy ) /(2 D0*AQ* B11 * B33 + 2D0

#* AP * B33 + AK −2D0*AR * Akz * Aphy * B33+2D0* AR *Aphy+2D0*

#AQ * B22 * B33 ) )+(STRESST1 ( 2 , 2 )+STRESST1 ( 1 , 1 ) ) /2D0/AJ

DDSDDE ( 2 , 1 )=(2D0*(−2D0*B12 **2* B33** 2* AQ * B11 * AR * Aphy+2D0 *

#B12 ** 2 * AQ * AR * Akz * Aphy * B33 +2D0* B22 * AP * B11 * B33 *

#* 2 * AR * Aphy+2D0* B22 * AQ * B11 ** 2 * B33 ** 2 * AR * Aphy −

# B12 ** 2 * B33 ** 2 * AQ * B11 * AK−2D0 * B11 * AQ * B33 * AR * A

#phy − B12 ** 2 * AQ * AK−2D0*AQ * B11 ** 2 * AR * Akz * Aphy * B

#33−2D0* B11 * B33 * AP * AR * Akz * Aphy+2D0* B11 * AQ * AR * Ak

#z * Aphy * B33 ** 2 + B22 * AP * B11 * B33 ** 2 * AK + B22 * AQ *

#B11 ** 2 * B33 ** 2 * AK +2D0* B22 * AQ * B11 * AP * B33+2D0 * B22

# * AQ * B11 * AR * Aphy−2D0* B12 ** 2 * B33 ** 2 * AP * AR * Aphy

# −2D0* B22 * AQ * B11 * AR * Akz * Aphy * B33−2D0* B12 ** 2 * AQ

#* AR * Aphy−2D0*B12 ** 2 * AQ ** 2 * B22 * B33−2D0 * B22 * AQ **

# 2 * B11 * B33 ** 2−2D0* B12 ** 2 * AQ * AP * B33+2D0 * AQ ** 2 *

# B22 ** 2 * B11 * B33−2D0* B12 ** 2 * AQ ** 2 * B11 * B33+2D0 * B

#22 * AQ ** 2 * B11 ** 2 * B33 + B22 * AQ * B11 * AK − B11 * AQ * B

#33 * AK − B12 ** 2 * B33 ** 2 * AP * AK ) /(2 D0*AQ * B11 * B33 + 2D0

# * AP * B33 + AK−2D0*AR * Akz * Aphy * B33+2D0* AR * Aphy+2D0 *

# AQ * B22 * B33 ) )+(STRESST1 ( 2 , 2 )+STRESST1 ( 1 , 1 ) ) /2D0/AJ

DDSDDE ( 1 , 3 )=(B12 *(2 D0*AP**2* B33 + AP * AK+2D0* AQ ** 2 * B22 * B3

#3 ** 2 − 2 * AQ ** 2 * B11 * B33 ** 2 + 2 * AQ * AP * B33 ** 2 − A

#Q * B33 * AK + 2 * AP * AR * Aphy − 4 * B33 * AQ * B22 * AR * Akz

#* Aphy − 6 * B33 * AP * AR * Akz * Aphy + 2 * AQ * AR * Akz * Aphy

# * B33 ** 2 + 2 * B22 * AQ * B33 * AP + 2 * B11 * AQ * B33 * AP −

#2 * AQ * B33 * AR * Aphy ) / (2 * AQ * B11 * B33 + 2 * AP * B33 + A

#K − 2 * AR * Akz * Aphy * B33 + 2 * AR * Aphy + 2 * AQ * B22 * B33

#))+(STRESST1 ( 1 , 2 ) ) /AJ

DDSDDE ( 3 , 1 )=(B12*(−AQ**2D0*B11 * B33 +2D0*AQ*B11 * AR * Akz * Aphy

# + AP**2D0+ AQ * B11 * AP + AQ * B22 * AP − AP * AR * Akz * Aphy

#+ AQ * B33 * AP + B33 * AQ**2D0 * B22 − AQ * B33 * AR * Akz * Aphy

#) / AJ / ( AP + AQ * B11 + AQ * B22 − AR * Akz * Aphy ) )

#+(STRESST1 ( 1 , 2 ) ) /AJ

DDSDDE ( 2 , 3 )=(B12 * (−B33 * AQ **2D0*B22+AQ*B22*AP−3D0 * AP * AR *

#Akz * Aphy−2D0 * AQ * B11 * AR * Akz * Aphy + AQ * B33 * AR * Akz

#* Aphy + AQ **2D0* B11 * B33 + AQ * B11 * AP + AQ * B33 * AP + AP
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#**2D0 ) / AJ / ( AP + AQ * B11 + AQ * B22 − AR * Akz * Aphy ) )

#+(STRESST1 ( 1 , 2 ) ) /AJ

DDSDDE ( 3 , 2 )=(B12*(−B33*AQ**2D0*B22+2D0*AQ * B22 * AR * Akz * Aphy

# + AP **2D0+ AQ * B11 * AP + AQ * B22 * AP − AP * AR * Akz * Aphy

#+ AQ * B33 * AP + AQ**2D0 * B11 * B33 − AQ * B33 * AR * Akz * Aphy

#) / AJ / ( AP + AQ * B11 + AQ * B22 − AR * Akz * Aphy ) )

#+(STRESST1 ( 1 , 2 ) ) /AJ

DDSDDE ( 3 , 3 )=(B12 *( AQ*B12*(−B33 *(−2D0* (−AQ * B33 + AR * Akz * Aph

#y ) / B33+(2D0* AR * Aphy + AK ) * B22 ) /(2 D0* AQ * B11+(2D0 * AP *

# B33 + AK−2D0* AR * Akz * Aphy * B33+2D0* AR * Aphy ) / B33+2D0 *

# AQ * B22 )+1D0 ) − AQ * B12 ) + ( AQ * B33 * B12 ** 2 *(2 D0* AR * Aph

#y + AK ) / (2 * AQ * B11 + (2 * AP * B33 + AK − 2 * AR * Akz * Aphy

# * B33 + 2 * AR * Aphy ) / B33 + 2 * AQ * B22 ) + AP + AQ * ( B11 + B

#22 + B33 ) − AQ * ( B11 + B22 ) ) * B22 + ( AQ * B33 * B12 ** 2 * (2 *

#AR * Aphy + AK ) / (2 * AQ * B11 + (2 * AP * B33 + AK − 2 * AR * Ak

#z * Aphy * B33 + 2 * AR * Aphy ) / B33 + 2 * AQ * B22 ) + AP + AQ *

#(B11 + B22 + B33 ) − AQ * ( B11 + B22 ) ) * B11 + B12 * ( AQ * B12 * (−

#B33 * ( (2 * AR * Aphy + AK ) * B11 − 2 * (−AQ * B33 + AR * Akz * Ap

#hy ) / B33 ) / (2 * AQ * B11 + (2 * AP * B33 + AK − 2 * AR * Akz * A

#phy * B33 + 2 * AR * Aphy ) / B33 +2D0 * AQ * B22 )+1D0 )−AQ*B12 ) )

#+(STRESST1 ( 2 , 2 )+STRESST1 ( 1 , 1 ) ) /2D0/AJ

C CALCULATE INTEGRAL OF DMU/DR

C wr i t e (100 ,9987)

C9987 format ( ' ' , ' **************************** ' )

C ITERATION ENDS HERE

RETURN

END

C==============================

SUBROUTINE VOIGTV (A , VOIGT1 )

C IMPLICIT REAL*8(A−H , O−Z )

INCLUDE ' aba param . inc '

C REAL A , VOIGT1 , VOIGT2

c−−−− converts a 2nd order tensor to column vector using chi2 mapping

c−−−− Note order : {11 ,22 ,33 ,12 ,23 ,31 ,21 ,32 ,13}

DIMENSION A ( 3 ,* ) , VOIGT1 (* )

DO I=1,3
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VOIGT1 ( I ) = A (I , I )

ENDDO

VOIGT1 (4 ) = A ( 1 , 2 )

VOIGT1 (5 ) = A ( 1 , 3 )

VOIGT1 (6 ) = A ( 2 , 3 )

VOIGT1 (7 ) = A ( 2 , 1 )

VOIGT1 (8 ) = A ( 3 , 1 )

VOIGT1 (9 ) = A ( 3 , 2 )

RETURN

END

C======================

SUBROUTINE INVOIGTV ( VOIGT1 , A )

C IMPLICIT REAL*8(A−H , O−Z )

INCLUDE ' aba param . inc '

C REAL A , VOIGT1 , VOIGT2

c−−−− obtains a 2nd order tensor from column vector using inverse chi2 mapping

c−−−− Note order : {11 ,22 ,33 ,12 ,23 ,31 ,21 ,32 ,13}

DIMENSION A ( 3 ,* ) , VOIGT1 (* )

DO I=1,3

A (I , I ) = VOIGT1 ( I )

ENDDO

A ( 1 , 2 ) = VOIGT1 (4 )

A ( 1 , 3 ) = VOIGT1 (5 )

A ( 2 , 3 ) = VOIGT1 (6 )

A ( 2 , 1 ) = VOIGT1 (7 )

A ( 3 , 1 ) = VOIGT1 (8 )

A ( 3 , 2 ) = VOIGT1 (9 )

RETURN

END
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