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Professor Gonçalo Abecasis
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ABSTRACT

Using Rare Genetic Variation to Understand Human Demography and the Etiology
of Complex Traits

by

Mark Reppell

Chair: Associate Professor Sebastian Zöllner

Modern sequencing technology has revolutionized almost every aspect of human

genetics research. Among the novel findings made possible by the sequencing of

large samples is how abundant extremely rare genetic variation is in the human

genome. Rare genetic variants are likely to have arisen recently. Thus, they pro-

vide novel information about recent population history, and because selection has

had little time to act on them, sets of rare variants are potentially enriched with

important regulatory and biologically functional variants.

Detecting associations between rare variants and genetic traits is challenging; con-

ventional single marker association statistics have little power at low allele counts.

Several statistics that aggregate information from multiple variants to increase

power and detect group-wise associations have been proposed. In chapter 2 we ad-

dress the robustness of these group-based tests to population stratification. Using

the joint site frequency spectrum of samples from multiple European populations,

we show that group-based tests cluster into two classes, and p-value inflation in

each class is correlated with a specific form of population structure.
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An abundance of rare genetic variation is evidence of recent population growth.

Large sequencing studies have found the frequency spectra they observe in their

samples are inconsistent with models of simple exponential growth, likely due to

a recent acceleration in the growth rate. To address this, in chapter 3 we pro-

pose a two-parameter model of accelerating, faster-than-exponential population

growth and incorporate it into the coalescent. We show that our model can gen-

erate samples containing large quantities of rare genetic variants without inflating

the quantity of more common variants, making them well suited to modeling the

recent history of humans.

In chapter 4 we develop a series of analytic calculations that allow us to directly

sample internal and external branches from a sample’s genealogy without resort-

ing to full coalescent simulations. We show that for constant size populations an

exact probability function can be defined for branch lengths, and that by using the

expected times between coalescent events we can expand our method to a broader

range of demographic models.
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CHAPTER 1

Introduction

The development of technology to rapidly and cost effectively sequence the DNA of pro-
gressively larger study samples has revolutionized almost every aspect of human genetics
research. Among the surprising and novel findings driven by this revolution, the charac-
terization of the full human frequency spectrum stands out for both its importance, and the
distance between previous belief and current observation. Large scale sequencing projects
have revealed that the human genome is characterized by an abundance of extremely rare
genetic variation. In Nelson et al. (2012) the sequencing of 202 drug target genes in 14,001
individuals revealed > 60% of all single-nucleotide polymorphisms (SNPs) were present
in a single individual, and an additional 14% were seen in only two subjects. Subsequent
studies (Tennessen et al., 2012; Gazave et al., 2014) confirmed the finding that the vast ma-
jority of genetic variants observed in humans are extremely rare. The ability to assay and
recognize extremely rare variation in human samples adds critical new information to both
the search for genetic causes of complex disease and efforts to reconstruct human history.

The role of rare variants in disease and trait etiology is a question of pressing concern
(Maher et al., 2012; He et al., 2013; Lohmueller et al., 2013). While their rarity makes any
individual variant unlikely to play a substantial role in the prevalence of common diseases,
in aggregate, their quantity and potential for larger effects relative to common variants
makes an important role in disease etiology likely. Unfortunately, single variant associa-
tion tests, employed with great success to uncover associations between common variants
and disease (Wellcome Trust Case Control Consortium, 2007; Teslovich et al., 2010; Peden
et al., 2011), have very little power when applied to genetic variants with low minor allele
counts. One approach to overcome this limitation has been the development of statistics
to aggregate information from multiple variant sites in order to detect a group-based asso-
ciation with a phenotype of interest. Many group-based methods have been proposed, for
example: Li and Leal (2008), Madsen and Browning (2009), Morris and Zeggini (2010),
Zawistowski et al. (2010), Neal et al. (2011), and Wu et al. (2011). These methods are
known to differ in their power, and their robustness to the inclusion of non-causal variants
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or variants with different effect directions. An open question is the robustness of these
methods to sources of confounding likely to result in spurious associations, like population
stratification.

Population stratification occurs when cases and controls for a study are selected at dif-
ferent rates from populations with differences in allele frequencies. For single variant asso-
ciation tests, effective methods for controlling population stratification—like genomic con-
trol (Devlin and Roeder, 1999) and principal components analysis (Price et al., 2006)—are
well known and widely used (Feenstra et al., 2013; Bentley et al., 2014). However, the
impact of population stratification on group-based association tests, where each statistic
contains multiple alleles, each with its own population specific history, is a more complex
problem.

In chapter 2 we examine how different group-based association tests respond to the
introduction of rare variant population structure. We find that group-based tests can be
broadly divided into two classes, with tests of the same class responding to population
stratification similarly. We quantify two forms of rare variant population structure, using
allele sharing (Gravel et al., 2011) and a new statistic we develop named weighted symme-
try. We show that each form of population structure is correlated with p-value inflation in
one class of group-based statistics. These findings lead to a strategy for detecting p-value
inflation due to population stratification in real study settings where whole-genome data are
unavailable. The results also suggest that correction for population stratification in group-
based tests may best be approached on a case-by-case basis, with appropriate strategies
differing between tests and datasets.

In addition to expanding our understanding of disease etiology, rare variants provide us
with novel information about recent human demography. At neutral genetic sites, variant
frequency is a function of variant age, and consequently the rarest variants give us insight
into the most recent past. Thus, it is only with the recent characterization of the rarest
portions of the frequency spectrum, requiring both large sample sizes and deep sequenc-
ing coverage for accurate genotype calling, that inferences about humanity’s most recent
past are possible. An abundance of rare genetic variation is a signature of recent popula-
tion growth (Tajima, 1989). Previously, studies using small samples (Marth et al., 2004;
Schaffner et al., 2005; Voight et al., 2005; Gutenkunst et al., 2009; Gravel et al., 2011)
were unable to detect the quantity of rare variants present in human samples, and estimated
recent growth rates of< 0.75% per generation. This stands in stark contrast to the estimates
from recent large sequencing studies, with Nelson et al. (2012) estimating a recent growth
rate of 1.7% per generation, Tennessen et al. (2012) estimating 1.95%, and Coventry et

al. (2010) more than 9% per generation. To arrive at their estimates all of these studies
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except Tennessen et al. (2012) rely on either instantaneous growth models (Marth et al.,
2004; Schaffner et al., 2005; Voight et al., 2005), or continuous models with a single ex-
ponential growth parameter (Gutenkunst et al., 2009; Coventry et al., 2010; Gravel et al.,
2011; Nelson et al., 2012). Coventry et al. (2010) questioned the suitability of such models
to generate results consistent with the observed abundance of rare variation. When fitting
the exponential growth model which they inferred to have the highest likelihood, Coventry
et al. (2010) found the resulting frequency spectrum contained significantly fewer single-
tons than were observed in their samples. The authors suggested a recent acceleration in
population growth could account for their findings. This suggestion was bolstered by Ten-
nessen et al. (2012), who found that by using a piecewise exponential growth model, one
that allowed for a recent phase of faster population growth, they were able to significantly
improve the fit of the model to their data. However, piecewise models suffer from several
severe limitations: an a priori unknown number of growth phases, a parameter space that
expands with every additional growth phase, and an unrealistic discontinuous population
growth rate.

In chapter 3 we propose a method to model recent accelerating population growth using
a continuous two-parameter model that avoids the limitations of a piecewise approach. In
addition to the standard exponential growth parameter, our models incorporate an “accel-
eration” parameter, which causes not only a population’s size, but the rate of growth itself,
to increase with time. After implementation in a coalescent framework we show that the
second parameter in our model can lead to an abundance of singletons in samples with-
out inflating the quantity of more common variants, impossible with simple exponential
growth. In chapter 3 we also demonstrate the importance of large samples for distinguish-
ing between growth models, and discusses how models like ours, incorporating accelerating
growth, may shrink the large gap between current census estimates of human population
size and the effective population size estimates used by population geneticists.

Finding demographic models that accurately reflect the history of real human popula-
tions is a challenging problem. Selecting between models with different parameters to find
one that best fits observed data is often accomplished using likelihood estimates based on
summary statistics. Recent studies with large datasets have generally used either of two
approaches. The first method relies on the coalescent, which is used to simulate large num-
bers of sample ancestries under different demographic models. Then, summary statistics
from the simulated sequences are compared to find the model that gives results most closely
resembling real observations. Gazave et al. (2014), Nelson et al. (2012), Coventry et al.

(2010), and Schaffner et al. (2005) all use this coalescent based approach. The second
method, introduced in Gutenkunst et al. (2009) and used by both Gravel et al. (2011)
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and Tennessen et al. (2012), uses a diffusion approximation to simultaneously calculate
multi-population expected allele frequency spectra under a demographic model of growth
and migration.

The diffusion approach to demographic inference explicitly models only the expected
frequency spectrum of samples, making additional summary statistics unavailable for in-
clusion in likelihood calculations. In contrast, coalescent simulations model haplotype se-
quence, making possible the calculation of summary statistics beyond the frequency spec-
trum for comparison with observed data. As discussed in both chapter 3 and Gutenkunst
et al. (2009), the pattern of linkage disequilibrium in a sample contains information about
recent demography lacking from the frequency spectrum. The inclusion of pairwise r2

in likelihood estimation would increase power to distinguish between models of recent
growth, and is something we are currently researching (Appendix C.0.12). While it is pos-
sible to use coalescent simulations in this effort, they are computationally burdensome,
making desirable the development of more efficient alternatives.

In chapter 4 we present one such alternative to the coalescent, a series of equations
that allow direct sampling of internal branch lengths from a sample’s ancestral tree. The
calculations are designed to allow accurate inference of recent population growth rates,
including the generation of individual branch lengths necessary for inclusion of pairwise
r2 into likelihood estimation, without requiring simulation of entire genealogies. We show
that for a population with constant size, the probability distribution function of internal
branch lengths can be written explicitly. Building on the work of Rosenberg (2006), we
recursively calculate the distribution of the number of branches with a given number of
descendants in an ancestral tree. Finally, we show that by using the expected values for
times between coalescent events we can expand our calculations to models with varying
past population sizes.

It is only very recently that the abundance of rare variation that characterizes the hu-
man genome has been uncovered. The new insight into human genetics and history made
possible by this discovery are only beginning to take shape, already our estimates of recent
growth have been greatly altered (Keinan and Clark, 2012) and important new disease as-
sociations have been detected (Guerreiro et al., 2012; Cruchaga et al., 2014; Ortega et al.,
2014). In this dissertation I seek to add our efforts to this new understanding, and present
three novel methods making use of rare variation to shed light on human demography and
disease.

4



CHAPTER 2

Sources of population stratification in
gene-based rare variant tests identified using the

joint site frequency spectrum

2.1 Introduction

Recent large-scale sequencing studies have identified an abundance of rare variation in the
human genome, likely resulting from recent rapid population expansion and purifying se-
lection against deleterious variants (Keinan and Clark, 2012; Reppell et al., 2012). Coding
regions of the genome are thus enriched for rare, putatively functional variants (Nelson
et al., 2012; Tennessen et al., 2012), attractive candidates for explaining some of the miss-
ing heritability in complex diseases (Pritchard, 2001; Stahl et al., 2012; Huyghe et al.,
2013). A variety of group-based tests that simultaneously analyze multiple rare variants
have been proposed to assess the role of rare variation in the etiology of complex disease.
The majority these tests can be partitioned into two categories based on the underlying as-
sumptions of the genotype-phenotype model (Liu et al., 2013a). The first category, based
on the concept of rare variant “burden” tests for a significant correlation between a disease
phenotype and an aggregate rare variant summary statistic computed for each individual in
a dataset. Example burden test summary statistics include an indicator for presence of at
least one rare allele (Li and Leal, 2008), the total count of rare alleles (Morris and Zeggini,
2010; Zawistowski et al., 2010), and a weighted count of rare alleles (Madsen and Brown-
ing, 2009). In contrast, “dispersion” tests model the marginal effects of individual rare
alleles and combine this information across multiple sites to test for association, specifi-
cally modeling variants with opposite directions of risk effect. Two popular examples of
dispersion tests include the Sequence Kernel Association Test (Wu et al., 2011) (SKAT)
and C-Alpha (Neale et al., 2011).

Comparative analyses have shown that performance can vary dramatically among rare
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variant tests, particularly with respect to the underlying phenotype model and the inclusion
of non-causal variants (Ladouceur et al., 2012; Liu et al., 2013c). For example, disper-
sion tests have more power to identify regions containing a mix of risk and protective rare
variants while burden tests can have more power when all rare variants either increase or
decrease risk. Thus, both classes of tests will routinely be applied to the same sequencing
dataset, and understanding the behaviors of each test is critical for interpreting results. In
this chapter we demonstrate that the two classes of group-based tests respond differently to
rare variant population structure, leading to unique patterns of population stratification.

Population stratification arises when cases and controls are sampled at differential rates
from genetically divergent populations (Li, 1969; Devlin and Roeder, 1999). Frequencies
of individual rare alleles differ between populations due to geographic localization and
limited sharing of rare variation (Gravel et al., 2011; Nelson et al., 2012). Also, pop-
ulations can differ in the total quantity of rare alleles they harbor due to differences in
effective population sizes, demographic events, bottlenecks, or selective pressures (1000
Genomes Project Consortium et al., 2010; Gravel et al., 2011; Nelson et al., 2012). For
example, African populations contain a larger number of rare variant sites than European
populations, and within Europe, there is an increasing gradient of cumulative rare varia-
tion moving from north to south (1000 Genomes Project Consortium et al., 2010; Nelson
et al., 2012). Stratification in single marker tests depends only on differences in population
allele frequencies at individual sites (Price et al., 2006; Gravel et al., 2011). In contrast,
group-based tests, which aggregate information across multiple sites, must contend with
population differences in both individual allele frequencies and the total quantity of rare
alleles.

Several recent papers address stratification in group-based tests. Mathieson and McVean
(2012) and Kiezun et al. (2012) initially demonstrated that burden-style tests are prone to
inflation due to underlying population structure, and that the degree of inflation can differ
from single-marker tests. Liu et al. (2013) reported differential levels of stratification be-
tween C-Alpha and a collapsing test in data simulated using a specific coalescent model.
In addition, burden tests had lower levels of inflation relative to C-Alpha in a recent anal-
ysis of rare variation in autism spectrum disorders (Liu et al., 2013b). In this chapter, we
investigated the specific patterns of rare variant population structure that affect the type I
error of group-based tests. In particular, we find that frequency differences of individual
rare variants have a much stronger effect on dispersion tests than burden tests. In con-
trast, population differences in overall abundance of rare alleles inflate only burden tests.
This difference leads to differential inflation between group-based rare variant tests. We
quantified the rare variant patterns in European populations and conclude that the pattern
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responsible for inflating dispersion tests is likely more common in real data.
We designed an analysis around the joint site frequency spectra (JSFS) of rare, non-

synonymous variants identified as part of a previously published sequencing study initially
designed to identify and characterize variation in 202 drug-target genes in 14,002 world-
wide individuals (Nelson et al., 2012). The JSFS is a common tool in population genetics
to summarize the configuration of observed allele counts between two groups of samples,
typically from different populations (Gravel et al., 2011). Here, we used the JSFS as prob-
abilistic models from which we generated examples of case-control data sets containing
realistic patterns of population structure, but without any true genotype-phenotype associ-
ation. We focused on the JSFS from four geographically-defined European populations:
Central, Western, Northwestern, and Northern Europeans (see map in Figure 2.1). The ge-
netic diversity in our JSFS reflects population structure that could reasonably be present in
an association study of European samples, and provides an ideal method to study realistic
group-based test inflation. In addition to the empirical data we developed an analytic model
of the JSFS. This model was motivated by the hierarchical beta model for population-
specific allele frequencies introduced by Balding and Nichols (1995) and yielded simulated
results qualitatively identical to the empirical analysis. More details of the analytic model
are provided as as appendix A.0.1.

Our JSFS-based simulation strategy was motivated by the fact that although the Nel-
son et al. (2012) data set contains sequence data from many populations, the number of
samples within individual populations does not allow for standard resampling techniques.
The joint distribution of rare alleles between pairs of populations, summarized in the JSFS,
provided a means for unlimited sampling of population allele counts from their empiri-
cal distributions. As group-based tests operate directly on the JSFS of cases and controls,
our approach retained the critical population-level information that confounds group-based
tests without requiring individual-level sequence data.

2.2 Methods

2.2.1 The joint site frequency spectrum

Consider a sequencing dataset with N haplotypes sampled from population 1 and N hap-
lotypes sampled from population 2. For a given polymorphic site in the data set, let φ(i, j)

denote the probability that i copies of the non-reference allele are observed among the N
population 1 haplotypes and j copies are observed among the the N population 2 haplo-
types. Then, we define Φ = {φ(i, j)|i, j ∈ (0, N)} to the the JSFS of populations 1 and 2

7



JSFS Probability (-log10) 

W
e
ig

h
te

d
 S

y
m

m
e
tr

y
 

A
lle

le
 S

h
a
ri
n
g
 

F
S
T
 (

x
 1

0
-3
) 

E 

F 

G 

A 

B 

C 

D 

Figure 2.1: Rare variant diversity statistics and p-value distributions for group-based tests
in structured European populations. We focused on the empirical joint site frequency spec-
tra (JSFS) of rare, nonsynonymous variants identified by sequencing of Northern, North-
western, Western and Central European population samples (labeled N, NW, W and C in
insert). Heatmaps of the JSFS, pictured for (C) Central and Northern European and (D)
Central and Western European comparisons, provide a graphical representation of the dis-
tribution of rare alleles between populations. We quantified aspects of rare variant structure
using: (E) the FST statistic of population divergence, (F) the allele sharing statistic, mea-
suring variation in population-specific allele frequencies, and (G) the weighted symme-
try statistic, measuring the evenness of cumulative rare variant load between populations.
We analyzed datasets simulated from each JSFS containing population structure but no
genotype-phenotype association using several group-based rare variant tests. QQ-plots of
the resulting p-value distributions are shown for (A) Central and Northern Europeans and
(B) Central and Western Europeans. Genomic control (λ50) quantifies p-value inflation rel-
ative to a uniform null distribution. For illustrative purposes, we display the QQ-plots for
an extreme sampling scenario where all cases are sampled from one population and all con-
trols from the other population. Results for less extreme scenarios are shown in Figure 2.3.
We find that datasets from more divergent populations produce higher levels of p-value
inflation for each group-based test than datasets from more closely related populations.
Furthermore, SKAT and C-alpha (blue dots in QQ-plots) consistently show much higher
inflation than the Collapsing, GRANVIL, CMAT and WSS tests (red dots in QQ-plots).
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for our sample.
The empirical JSFS for multiple worldwide populations were previously estimated

and reported as part of Nelson et al. (2012). In this study, 202 drug-target genes were
deep sequenced in 14,002 samples, including European (N = 12, 514), African-American
(N = 594) and Southern Asian (N = 566, mostly from India) individuals. The sequenced
samples were derived from several case-control data sets. Within each disease study, indi-
viduals with pairwise relatedness, π̂, of> 0.0625 were removed to eliminate closely related
individuals. Previous rare variant analyses of these disease studies discovered no significant
phenotype associations (Nelson et al., 2012). We focused our analysis on four European
subpopulations that were geographically classified according to the UN geoscheme for Eu-
rope: Northwestern European (Great Britain and Ireland), Northern Europeans (Norway
and Sweden), Western European (Belgium, France, Luxembourg, and The Netherlands)
and Central Europe (Austria, Germany, and Switzerland). To account for differences in
population sample sizes, the JSFS were computed by averaging over downsampled realiza-
tions of 474 individuals per population. We focused on rare, putatively functional variants
likely to be included in group-based tests by restricting attention to the JSFS of nonsyn-
onymous variants with sample minor allele frequency < 1%.

2.2.2 JSFS summary statistics

We quantified rare variant population structure within a JSFS using three summary statis-
tics. To focus on rare variants, we computed each summary statistic over allele counts i, j
for which the pooled sample allele frequency (i+ j)/2N ≤ 0.01. We calculated an overall
measure of genetic diversity using a variation of the standard FST statistic:

FST = 1−
∑

i

∑
j φ(i, j)1

2
[2 i
N

(1− i
N

) + 2 j
N

(1− j
N

)]∑
i

∑
j φ(i, j)2 i+j

2N
(1− i+j

2N
)

. (2.1)

Allele sharing (Gravel et al., 2011) is the probability that two individuals carrying an
allele of count n in the sample come from different populations, normalized by the expected
frequency in a panmictic population, it is calculated as

ASn =

∑
i+j=n 2ijφ(i, j)∑
i+j=n

(
n
2

)
φ(i, j)

. (2.2)

The allele sharing statistic (AS) for an entire JSFS of rare alleles (with nrare defined by
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the frequency cutoff above) is defined as the weighted average of ASn:

AS =

∑
n≤nrare

[
ASn

∑
i+j=n φ(i, j)

]
∑

i+j≤nrare φ(i, j)
. (2.3)

where nrare = 2N × 0.01 denotes a 1% sample allele frequency threshold.
Weighted symmetry (WS) measures how evenly rare alleles are distributed between

the two populations:

WS =
min(

∑
i

∑
j [i× φ(i, j)] ,

∑
i

∑
j [j × φ(i, j)])

1
2

∑
i

∑
j(i+ j)φ(i, j)

. (2.4)

In a JSFS for two populations, allele sharing measures the relative weight of probability
away from the x = y line. Greater probability weight off the JSFS diagonal means a
greater probability that two copies of a randomly sampled allele will be found in members
of the same population rather than in different populations, yielding a lower allele sharing
statistic. Weighted symmetry measures the balance of probability weight across the x = y

line of a JSFS. When probability is greater on one half of the JSFS, there is an imbalance
in the quantity of variation between the populations, and weighted symmetry decreases.
Figure 2.2 provides a graphical interpretation of the statistics.

2.2.3 JSFS transformations

To isolate the effects of allele sharing and weighted symmetry on test statistic inflation, we
designed two transformations that redistribute probability within a JSFS. For each trans-
formation we began with a panmictic JSFS (Gravel et al., 2011) with weighted symmetry
WS = 1 and allele sharing AS = 1.

The first transformation created a sequence of JSFS, each with the same weighted sym-
metry but with decreasing allele sharing by iteratively applying the following function:

φ(i, j)(k+1) =(1− αφ(i,j))× φ(i, j)(k) + αφ(i−1,j+1) × φ(i− 1, j + 1)(k) × I(i−1)≥(j+1)

+ αφ(i,j) × φ(i, j)(k) × Ii=0

(2.5)

for i > j and
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Figure 2.2: Graphical interpretation of allele sharing and weighted symmetry JSFS sum-
mary statistics. The heatmap of a JSFS for two closely related populations is characterized
by a “cloud” of probability that is heaviest near the origin and dissipates as you move
away.The probability cloud of a JSFS based on panmictic population sampling is symmet-
ric about the x = y line (WS = 1) and has a thin width corresponding to a hypergeometric
distribution (AS = 1). Allele sharing measures the width of the probability cloud while
weighted symmetry measures the symmetry of the cloud with respect to the x = y line. For
divergent populations the probability cloud increases in width as population allele frequen-
cies become more dispersed, corresponding to reduced allele sharing; if either population
contains a higher load of rare alleles, corresponding to reduced weighted symmetry, mass
within the cloud shifts across the x = y line towards that population.

φ(i, j)(k+1) =(1− αφ(i,j))× φ(i, j)(k) + αφ(i+1,j−1) × φ(i+ 1, j − 1)(k) × I(i+1)≤(j−1)

+ αφ(i,j) × φ(i, j)(k) × Ii=0

(2.6)

for i < j. Here φ(i, j)(k) is the (i, j)th element of the kth iteration of the sequence of
JSFS and αφ(i,j) is a weight which decreases as the transformation moves away from the
x = y line. This transformation moves probability away from the x = y line, increasing
the probability of observing larger differences between population allele counts i and j.

Second, we created a sequence of JSFS with a fixed value of allele sharing but decreas-
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ing weighted symmetry by iteratively moving probability across the x = y line from one
half of the spectrum to the other using the following transformation:

φ(i, j)(k+1) = φ(i, j)(k) + αφ(j, i)(k)

φ(j, i)(k+1) = φ(j, i)(k) − αφ(j, i)(k).
(2.7)

Where, φ(i, j)(k) is the (i, j)th element of the kth iteration in the sequence of JSFS.
As in the previous transformation, the probability of observing a variant with n total mi-
nor alleles in the 2N haplotypes does not change with this transformation. However, the
probability of observing i > j where i and j are the number of minor alleles observed in
populations 1 and 2, respectively, increases.

2.2.4 Data simulation and association testing

For each of the six Nelson et al. (2012) inter-European comparisons, we treated the re-
spective JSFS as a joint probability distribution from which we simulated sequence data.
The JSFS depends on sample size, so as our empirical JSFS were computed using 474
individuals from each population, we simulated genotypes for 948 total individuals at
each gene: 474 individuals (N=948 haplotypes) from each of the two populations. For
each genic realization, we sampled pairs of allele counts for S different rare variant sites
(is, js|1 ≤ s ≤ S), each with probability according to the JSFS. At the sth site, we ran-
domly distributed the is copies of the minor allele amongN = 948 population 1 haplotypes
and js copies among N = 948 population 2 haplotypes. Allele counts for the S different
sites were independently drawn from the JSFS, implicitly assuming a lack of correlation
between rare variants in a gene. Although this may not reflect the true relationship between
all rare variants, it does not affect test performance as each test is designed to account for
correlation between sites.

To induce varying degrees of population structure, we first created diploid samples by
randomly pairing haplotypes within each population group. We then assigned a phenotype
status to each diploid sample based solely on population affiliation. Treating r as a mixing
parameter, we randomly selected r × N/2 samples from the first population to be cases
and the remaining (1 − r) × N/2 to be controls. We then assigned (1 − r) × N/2 and
r × N/2 haplotypes from the second population to be cases and controls, respectively.
Data sets constructed with r = 0.5 contained equal numbers of cases and controls from
each population. Alternatively, r = 1.0 indicated an extreme sampling scenario where all
cases were from one population and all controls were from the other population.
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We treated each set of S allele counts as an independent “gene” and test for association
with the assigned phenotype using 6 tests: Collapsing (Li and Leal, 2008), CMAT (Za-
wistowski et al., 2010), GRANVIL (Morris and Zeggini, 2010), Weighted Sum Statistic
(WSS) (Madsen and Browning, 2009), SKAT (Wu et al., 2011), and C-alpha (Neale et al.,
2011). We report p-value distributions for 1,000 genes averaged across 10 replicate runs.
With our sample size fixed (474 cases, 474 controls), we varied S between 10 and 60, and
used a range of r values between 0.5 and 1.0. We quantified inflation in the distribution of
p-values of each test relative to the expected uniform null distribution using a variation on
the genomic control statistic of Devlin and Roeder (1995). For p(50) and p(90), the median
and 90th percentile p-value for a test statistic’s observed p-value distribution, we define

λ50 =
f−1
χ2 (p(50))

f−1
χ2 (0.5)

and λ90 =
f−1
χ2 (p(90))

f−1
χ2 (0.9)

where f−1
χ2 () is the quantile function for a one-degree of freedom chi-squared random vari-

able.

2.3 Results

We simulated data sets containing various degrees of rare variant population differentiation
using the empirical JSFS of rare, nonsynonymous variation in four geographically-defined
European populations: Central, Western, Northwestern and Northern Europeans (Nelson
et al., 2012). Pairwise variant FST computed on the JSFS ranged from 6.26 × 10−4 to
8.66× 10−4 (Figure 2.1), indicating low overall genetic divergence (Weir et al., 2005).

We analyzed the data sets with four burden tests—Collapsing (Li and Leal, 2008),
CMAT (Zawistowski et al., 2010), GRANVIL (Morris and Zeggini, 2010), and the Weighted
Sum Statistic (WSS) (Madsen and Browning, 2009)—and two dispersion tests: SKAT (Wu
et al., 2011), and C-alpha (Neale et al., 2011). With a fixed sample size of 474 cases and
474 controls, and a fixed number of variants in each gene (S = 30), we allowed r, the mix-
ing parameter, to vary between 0.5 and 1.0. We summarized the resulting p-value inflation
using genomic control values (Devlin and Roeder, 1999), and reported the inflation in both
the medians (λ50) and toward the right tails (λ90) of the p-value distributions (Figure 2.3).

Data sets simulated with balanced population sampling (r = 0.5) yielded median ge-
nomic control values of λ50 ≈ 1.00 for all tests in each population comparison, indicating
no inflation. Dispersion tests were deflated for λ90 and above, consistent with the con-
servative nature of these tests for smaller samples sizes and at stringent alpha levels (Wu
et al., 2011). Genomic control values increased for each test and population comparison
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Figure 2.3: Genomic control (GC) values for group-based rare variant tests in structured
European datasets. Median GC values (λ50, solid lines) and 90th percentile GC values
(λ(90), dashed lines) are shown at a range of mixing parameters (r) for each inter-European
population comparison. For scenarios containing population structure (r > 0.5), the disper-
sion tests (blue lines) consistently have higher λ50 values than the burden tests (red lines)
in all population scenarios. In addition, λ(90) << λ50 in many scenarios for the dispersion
tests, indicating that inflation in the dispersion tests is not consistent across the p-value
distribution.

as the mixing ratio increased from r = 0.5 to r = 1.0, indicating p-value inflation due
to population structure. More divergent populations, as quantified by FST , showed higher
levels of inflation for each test. For example, at mixing ratio r = 0.8, the genomic con-
trol of the Collapsing test was λ50 = 1.05 in the Central European and Western European
comparison (FST = 6.29 × 10−4) but λ50 = 1.23 in the more divergent Central European
and Northwestern European comparison (FST = 7.07× 10−4). In many cases, inflation in
the medians of the p-value distributions was larger than in the tails (ie λ50 > λ90) as evi-
denced by the difference between dashed (λ90) and solid lines (λ50) in each panel of Figure
2.3. The inconsistent inflation was more pronounced in dispersion tests, and increased in
magnitude with both increasing r and increasing population diversity. As a result, standard
genomic control severely over corrected inflated p-values more often for dispersion tests
than for burden tests (Appendix A.0.2).

Comparing inflation statistics between tests, we observed two consistent patterns across
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all scenarios. First, the level of p-value inflation for the different tests clustered into two
distinct groups, one consisting of the dispersion tests: SKAT and C-Alpha, and the other
containing the burden tests: CMAT, Collapsing, WSS, and GRANVIL. Within each group,
the level of inflation was similar between tests. For example, in data sets of Central and
Western Europeans with r = 0.7, each burden test had λ50 ≈ 1.04, whereas SKAT and
C-Alpha had λ50 values near 1.15. The distinct patterns of inflation for the two classes of
tests can be seen in Figures 2.1a and 2.1b where burden tests (red dots) clustered together
tightly, and are clearly separated from dispersion tests (blue dots). The second consistent
pattern in the analysis was higher inflation for dispersion test statistics relative to burden test
statistics; the difference increasing with both the divergence of the underlying populations
and the mixing parameter r. For example, the difference in inflation between CMAT and
SKAT rose from λ50 = 1.04 and 1.13, respectively, in Central and Western data sets to
λ50 = 1.15 and 1.56 for the JSFS of the more divergent Northern and Western Europeans
at r = 0.7.

We hypothesized that the observed patterns of p-value inflation for burden and disper-
sion tests could be explained by specific underlying rare variant population structures. To
test this, we quantified specific patterns of population structure within the JSFS using two
statistics: allele sharing and weighted symmetry (see Methods, Figure 2.2). The allele shar-
ing (AS) statistic (Gravel et al., 2011) quantifies inter-population differences in individual
allele frequencies for a JSFS. AS = 1 indicates allele frequency differences consistent
with panmictic population sampling and the statistic decreases towards zero as differences
in population allele frequencies increase. We developed the weighted symmetry (WS)
statistic to summarize the difference in overall rare allele abundance between populations.
Weighted symmetry of 1 indicates an equal quantity of rare alleles in each population, and
WS decreases towards zero with increasing inequality in rare allele abundance.

We isolated the effects of the population structures quantified by weighted symmetry
and allele sharing on test statistic inflation by analyzing data sets simulated from JSFS
where one statistic was fixed and the other decreased in value (see 2.2.3). We first analyzed
JSFS with weighted symmetry fixed at WS = 1 (Figure 2.4a). When allele sharing also
equaled one, the JSFS is equivalent to panmictic sampling and there is no inflation for
any test. As allele sharing decreased, genomic control values quickly increased for the
dispersion tests, indicating p-value inflation. In comparison, there was only a slight increase
in inflation for the burden tests. Next, we considered JSFS with allele sharing fixed at
AS = 1 and allowed weighted symmetry to decrease. p-value inflation for every burden test
increased with decreasingWS, but both SKAT and C-Alpha were unaffected (Figure 2.4b).
Taken together, these results imply that the two classes of tests have opposite responses

15



to the rare variant structures quantified by decreasing weighted symmetry and decreasing
allele sharing. Inflation in burden tests is primarily due to unequal contributions of rare
alleles between the two populations, whereas dispersion test inflation is driven solely by
differences in population-specific frequencies of individual rare alleles.
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Figure 2.4: The isolated effects of weighted symmetry and allele sharing on p-value infla-
tion in group-based rare variant tests. (A) For dataset simulated with weighted symmetry
fixed at WS = 1 and decreasing allele sharing, inflation grows much larger for the dis-
persion tests than for the burden tests. (B) In contrast, for datasets simulated with allele
sharing fixed atAS = 1 and decreasing values of weighted symmetry, inflation in each bur-
den test increases while the dispersion tests remain well-controlled. Thus, the two classes
of group-based tests have differing responses to these patterns of rare variant population
structure. The purple arrows in each plot indicate the minimum and maximum values of
that statistic observed in the European joint site frequency spectra. The range of empirical
values explains why we observed higher levels of inflation in the dispersion tests.

Having established that burden test inflation correlates strongly with weighted sym-
metry and dispersion test inflation with allele sharing, we computed these quantities for
our European JSFS (Figures 2.1f and 2.1g). Allele sharing ranged between 0.86 and 0.62,
with the lowest values observed for JSFS containing the Northern Europeans. We observed
weighted symmetry values as high as 0.99 for the JSFS of Central and Northwestern popu-
lations and as low as 0.94 for Northern and Western Europeans. The lower weighted sym-
metry values for JSFS containing Northern Europeans are indicative of fewer rare alleles in
that population, consistent with the hypothesis that a historical bottleneck event decreased
the population’s effective size. Our simulations with fixed weighted symmetry and allele
sharing provide context for the differential inflation observed in the inter-European data
sets. Allele sharing between European populations was sufficiently low to produce large
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inflation in the dispersion tests (purple arrows in Figure 2.4a). Alternatively, weighted sym-
metry between European populations did not decrease to levels that produced substantial
inflation in burden tests (Figure 2.4b).

For comparison, we also computed allele sharing and weighted symmetry for the JSFS
between our European samples and both African-American and South Asian samples from
the same Nelson et al. (2012) data set. As expected we saw smaller values of both statistics
for these intercontinental population comparisons (Figures 2.1f and 2.1g). Allele sharing
between Europeans and African-Americans ranged from 0.22 to 0.28, and from 0.27 to
0.37 between Europeans and the South Asians. Weighted symmetry between the European
populations and South Asian took values of 0.90, slightly less than the inter-European
comparisons. Weighted symmetry between the African-Americans and Europeans however
was much lower, between 0.62 and 0.66, highlighting the larger difference in the total
number of rare alleles between these populations. Extrapolating on the theoretical results
in Figure 2.4, the values of weighted symmetry between Europeans and African-Americans
or Europeans and South Asians are capable of significantly inflating burden tests. However,
for these comparisons, allele sharing is even lower and inflation would still be larger for the
dispersion tests.

For the previous results we assumed a fixed number of rare variants within each gene
(S = 30). In reality, the number of rare variants combined into a group-based test varies
depending on several factors, including gene length, sample size, population genetic diver-
sity, annotation, and frequency thresholds. To understand the impact that the number of
variants per gene has on stratification we repeated our simulations over a range of values
for the number of pooled variants S (Figure 2.5). The two classes of tests responded quite
differently to a varying number of pooled sites: dispersion tests showed a clear increase
in inflation as S increased, whereas inflation in burden tests remained effectively constant.
The differential sources of stratification explain this result. In these closely related Euro-
pean populations, the cumulative quantity of rare alleles is quite similar (WS ≈ 1) but
most individual allele frequencies vary slightly between populations. Additional variants
do not alter the cumulative allele balance tested for by burden statistics. However, each
additional variant provides further evidence of differing allele frequencies between cases
and controls, leading to the increasing inflation for dispersion tests. We expect that in a sce-
nario of populations with smaller WS, inflation in burden tests would also increase with
the number of variants.
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Figure 2.5: The effect of number of rare variant sites (S) pooled together in a group-based
tests on p-value inflation (shown for mixing parameter r = 1.0). There is a clear increase
in inflation for the dispersion tests (blue lines) as the number of rare variant sites pooled
into a group-based test increases. Inflation in the burden tests (red lines) remains relatively
consistent as the number of sites increases.

2.4 Discussion

We used the JSFS as a model to study the structure of rare variants within European popu-
lations and its effect on group-based tests. By quantifying specific patterns in the JSFS, we
established that different aspects of population differentiation are responsible for inflating
the type I error rates in the two classes of group-based tests. Our results build on those of
previous studies examining rare variant population stratification. We independently demon-
strated different levels of inflation in C-Alpha and burden tests previously reported in both
coalescent simulations (Liu et al., 2013c) and real sequencing data (Liu et al., 2013b). We
found that the pattern of differential inflation held more broadly for burden and dispersion
tests over a range of population sampling scenarios. Modeling our data sets using the em-
pirical JSFS from several European populations illustrated the magnitude of stratification
in realistic samples. Moreover, we identified the precise underlying characteristics of rare
variant population structure responsible for the differential stratification, namely, imbal-
ance in rare allele load and overdispersion of individual rare allele frequencies. By looking
at the empirical weighted symmetry and allele sharing values observed between multiple
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European populations we explained the patterns of population stratification observed in
group-based rare variant tests.

A major advantage of dispersion tests over burden tests is a greater power to detect asso-
ciation in genes containing rare variants with opposite directions of effect. Interestingly, it
is precisely this ability to accommodate a mix of risk and protective variants that makes dis-
persion tests more vulnerable to stratification in real population scenarios. Dispersion tests
view the population-specific differences in allele frequency at each variant site, regardless
of direction, as signal for association. Alternatively, burden tests require the population-
specific differences to be predominantly in the same direction, a more stringent criterion.
Intuitively, differences in allele frequency (low allele sharing) are more pronounced be-
tween populations than differences in the number of rare variants (low weighted symme-
try) because all forms of population differentiation resulting in genetic drift lead to allele
frequency differences. Creating a significant imbalance in the total quantity of rare vari-
ants requires more specific models, for example, a recent bottleneck, unequal migration,
or differential growth rates. Thus, the forms of population structure that produce inflation
in dispersion tests are more prevalent in real data and we predict that, although dispersion
tests provide more power to detect many true rare variant associations, they also require
more caution to avoid spurious results.

We anticipate that differential inflation will be particularly problematic for interpreting
burden and dispersion test results of sequencing studies that target only a handful of can-
didate genes. It is straightforward to determine if differential inflation exists when many
genes are sequenced (i.e. exome sequencing) by comparing the distributions of p-values
for the dispersion and burden tests. This may not be possible in a targeted sequencing data
set, and if population structure exists, smaller p-values in dispersion tests could easily be
interpreted as stronger signals of true associations rather than increased susceptibility to
inflation.

The effect of the number of variants per gene on dispersion statistic inflation provides
a practical approach for recognizing stratification. Typically, only rare variants predicted
to be deleterious (e.g. nonsynonymous) are included in a gene-level analysis. The remain-
ing excluded rare variants, which likely outnumber the predicted deleterious variants, are
predominantly null with respect to phenotype status, yet still contain signal for population
structure (Appendix A.0.3). Thus, a dispersion test analysis of the excluded variants is
more powerful for detecting population stratification than the analysis of the fewer pre-
dicted deleterious variants. We therefore recommend performing the same dispersion test
analysis planned for the predicted deleterious variants on the excluded variants as a method
to test for population stratification. This method could be particularly helpful for interpret-
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ing dispersion test p-values in targeted sequencing studies.
Previous studies have emphasized the challenge of correcting for rare variant popu-

lation structure in multi-marker group-based tests. Kiezun et al. (2012) corrected the
stratification using a modified permutation algorithm requiring that population labels be
both discrete and either known or accurately estimated, neither of which may be satisfied
in real data sets. Mathieson and McVean (2012) and Liu et al. (2013b) each showed the
standard application of principle components could not correct for all scenarios in either
single marker or group-based analyses of rare variants. In light of our finding that inflation
differs according to the type of group-based test, the appropriate correction strategy may
be context specific depending on the test and populations. We illustrated this point using
genomic control. Even in a set of homogeneous genes with a uniform number of variants
and identical underlying JSFS, we often observed that the median of the p-value distribu-
tion was more highly inflated than the tail of the distribution (λ50 > λ90). Under these
conditions applying a standard genomic control correction based on λ50 over corrects the
most significant genes in the analysis (Appendix A.0.2), which reduces power for real as-
sociations. The overcorrection was more severe for dispersion tests, implying that genomic
control may be more appropriate for burden tests.

Presently, attempts to identify rare risk variants using the pooling approach of group-
based tests have had limited success. Despite the potential for stratification seen here, real
data sets have often identified no statistically significant genes rather than too many. This
lack of significant findings, even false positives, is likely the result of current studies being
underpowered due to insufficient sample sizes. Larger sample sizes in future sequencing
studies will increase power to find true signals, but will also increase the likelihood of
subtle population structure and the number of variants pooled within genes, both of which
increase the potential for rare variant population stratification.
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CHAPTER 3

The impact of accelerating, faster than
exponential population growth on genetic

variation

3.1 Introduction

Large-scale, deep sequencing studies have revealed a previously unknown abundance of
genetic variation in the human genome, the majority of which is very rare. Nelson et al.

(2012) sequenced 202 drug target genes in 14,002 individuals and found an alternate allele
at 1 in 17 sequenced sites. These variants were overwhelmingly rare, with > 60% of the
observed single nucleotide variants (SNVs) being singletons, present in just one individual.
The Exome Sequencing Project (ESP) sequenced the exome of 2,440 individuals and found
> 500, 000 different variant sites, with 57% of these variants singletons (Tennessen et al.,
2012). Coventry et al. (2010) sequenced the genes HHEX and KCNJ11 in 13,715 individ-
uals and estimated 579 sites with alternate alleles in 12.3 kilobases (kb); singletons made
up > 28% of variants at HHEX and > 17% of variants at KCNJ11. This newly discovered
abundance of variation in humans, composed primarily of very rare variants, is consistent
with recent massive population growth (Tajima, 1989). This result is in stark contrast to
older studies where only weak signals of population growth were observed and the precise
model of population growth (instantaneous or exponential growth) had little impact on the
expected pattern of diversity (Adams and Hudson, 2004; Marth et al., 2004; Williamson
et al., 2005; Gutenkunst et al., 2009; Tennessen et al., 2012). Keinan and Clark (2012) ex-
plained that many of these studies (Schaffner et al., 2005; Gutenkunst et al., 2009; Gravel
et al., 2011) were based on genotype or small scale resequencing data and thus were unable
to assay the rarest portions of the frequency spectrum. As a result, models fit with these
data failed to account for very recent history, and arrived at low estimates of human growth
rates and small current effective population sizes. Coventry et al. (2010), with a much
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larger sample size, using a method of likelihoods based on the observed site frequency
spectrum and coalescent simulations, arrived at a faster estimated exponential growth rate
in their European origin samples than previous studies. However, when they generated
simulated samples using their best estimate growth rate and compared the results to the site
frequency spectrum observed at HHEX they found the exponential model was still lack-
ing: the number of singleton variants in their sequenced samples significantly exceeded
model predictions. Such an abundance of singletons suggests a very large recent popula-
tion size, but the observed frequencies of less rare variants are consistent with exponential
growth rates that fail to achieve a sufficient population size to explain the quantity of sin-
gletons. Coventry et al. (2010) hypothesized that a recent acceleration in growth could
address the discrepancies between their models and their data. To address this issue in their
data, Tennessen et al. (2012) fit a piecewise growth model with two periods of growth to
model a recent acceleration, improving the fit of the simulated frequency spectrum to the
observed data. A technical weakness of modeling accelerating growth by piecewise expo-
nential functions is that the resulting growth curve is not continuous. Moreover, piecewise
model’s parameter space increases in size with every growth rate change and a priori the
correct number of changes is unknown. Additionally, the exponential models fit by Coven-
try et al. (2010), Tennessen et al. (2012), and Nelson et al. (2012) all arrived at current
effective population size estimates for Europe of< 5 million individuals, a seemingly small
number compared to the recent census estimates of a continental population > 738 million
(United Nations Department of Economic and Social Affairs Population Division, 2011).
The potential for continuous models incorporating faster than exponential (FTE) growth
to accurately reflect recent acceleration in population growth, explain the abundance of
singleton variation discovered in human samples, maintain accurate prediction of the ob-
served patterns of common variants, and avoid a drastic expansion of the growth parameter
space is an important open question. Such FTE models may also result in much larger
estimates of present day effective population size than the numbers obtained by Coventry
et al. (2010), Tennessen et al. (2012), and Nelson et al. (2012) and thus conveniently
provide a way to reduce the gap between census population sizes and effective population
size estimates.

To address this question, we propose a two-parameter class of continuous population
growth functions which allow accelerating, faster than exponential (FTE) growth. We in-
tegrated this model into the coalescent framework (Reppell et al., 2012), a widely used
stochastic model which traces the ancestry of a sample backwards through time to its most
recent common ancestor (Kingman, 1982a; Hudson, 1983). The original coalescent as-
sumed a constant population size; Donnelly and Tavaré (1995) extended the model to allow
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for populations with size varying deterministically over time. Using our model, we study
rare variant frequency spectra and population genetic summary statistics under a wide range
of model parameters. In models with the same initial growth rate, where faster acceleration
in FTE models results in larger current population sizes, we find that our model produces an
abundance of singleton variation in samples without a subsequent increase in the quantity
of more common variants. We also find that when time of growth, ancestral size, and cur-
rent population size are fixed, FTE growth actually results in fewer total variants, fewer rare
variants, and slower decay of LD than exponential growth. With a fixed current size we find
that pairwise linkage disequilibrium between very rare variants contains information about
recent growth rates. Our work highlights the importance of sample size in distinguishing
between growth models and explores the impact of the duration of growth. We find that
the addition of the acceleration parameter to growth time and present population size in our
models creates a parameter space where sequence summary statistics are consistent with
multiple growth times and current sizes, and in particular samples from populations which
underwent accelerating growth to larger current sizes share characteristics with samples
from exponentially growing populations with smaller current sizes.

3.2 Methods

3.2.1 Faster than exponential growth

We model faster than exponential growth with a set of functions that fit well into the coa-
lescent framework and are motivated by the differential equation suggested by Tolle (2003)

dP
dt

= αP β
t . (3.1)

Here, P is population size in number of haplotypes, t is time in generations, and the
model parameters α and β are constants. When β = 1, the solution to this equation is
an exponential growth function, for β < 1 the solution results in slower than exponential
growth, while for β > 1, the solution results in FTE growth, where not just the population
size but also the rate of growth increases with time. If we solve equation (3.1) with initial
population size P0 the result is

Pt =

[
Pβ−1
0

1+Pβ−1
0 (β−1)αt

]
1

β−1 for β 6= 1

P0e
−αt for β = 1

. (3.2)

With this parametrization, we interpret α as the exponential growth constant and β as an
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“acceleration” parameter (Figure 3.1). Under this model, populations can achieve infinite
population size in finite time (Appendix B.0.4). As the coalescent conditions on a finite
present-day population size, this property does not affect our model or results.
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Figure 3.1: (A) When conditioning on growth time, ancestral population size and current
population size, and comparing to exponential growth (β = 1), a population where β > 1
was smaller in size during its past, while growth with β < 1 results in a population that
was larger. (B) When current population size is allowed to vary, and the exponential growth
parameter α is fixed, values β > 1 result in current population larger than an exponentially
growing population (β = 1), while values of β < 1 results in smaller current population
sizes.

3.2.2 FTE growth in the coalescent

In the coalescent model we begin with a sample of haplotypes drawn from a current popu-
lation. Moving backwards in time, coalescent events occur where two sample lineages co-
alesce into a single lineage through a common ancestor, decreasing the number of distinct
lineages by one. Coalescent events are observed until the most recent common ancestor
of the entire sample has been reached, and only a single lineage remains. The distribu-
tion of coalescent event times depends on the population size and the number of distinct
sample lineages remaining. Donnelly and Tavaré (1995) showed that in a population with
deterministically varying past size, given an original sample of n haplotypes with j distinct
lineages remaining and previous times between coalescent events Ti(i = n, n−1, ..., j+1),
the probability of the time to next coalescent event Tj is defined by

Prob(Tj > k|Tn + ...+ Tj+1 = S) = exp(−

(
j

2

)
[Λ(k + S)− Λ(S)]). (3.3)
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Here Λ(t) determines how the population size changes over time, and is defined as:

Λ(t) =

∫ t

0

1

λ(s)
ds (3.4)

where
λ(s) =

Ps
P0

(3.5)

is the ratio of population size at time s and the present time. Once Λ(t) is specified, it can
be substituted into (3.3) and the time between coalescent events Ti, i = n, n − 1, ..., 2 can
be drawn. For our model, because the coalescent models populations backwards in time,
(3.1) must be changed to

dP
dt

= −αP β
t (3.6)

before it can be transformed into the corresponding Λ(t). For β 6= 1:

Λ(t) =

∫ t

0

(1 + αs(β − 1)P β−1
0 )

1
β−1 =

(1 + αt(β − 1)P β−1
0 )

β
β−1 − 1

αβP β−1
0

. (3.7)

And when β = 1:

Λ(t) =

∫ t

0

1

eαs
ds =

eαt − 1

α
. (3.8)

By substituting Λ(t) into (3.3) we can generate coalescent event times for a population that
has been growing or contracting according to our two-parameter model.

3.2.3 Simulations

In our simulations, we assume an ancestral population of 20,000 haplotypes which grows
over the most recent 100 to 3,000 generations. We simulate 30 kb from samples of between
100 and 20,000 haplotypes and assume an ancestral mutation parameter θ = 16.8 = 2Nem

where Ne is the effective ancestral population size in haplotypes and m is the product of
per base mutation rate and the number of bases analyzed. We also assume a uniform an-
cestral recombination parameter ρ = 12 = 2Ner. Here, Ne is again the effective ancestral
population size in haplotypes and r is the product of per base recombination rate and num-
ber of bases analyzed. The parameter value θ corresponds to a per base mutation rate of
1.4 × 10−8 (Campbell et al., 2012; Nelson et al., 2012) and ρ to a recombination rate of 1
cM/Mb (Kong et al., 2002). In our initial analyses we assume a current population size of
8×106 haplotypes and 500 generations of growth, approximately consistent with estimates
from Coventry et al. (2010). For comparison we also simulate samples drawn from (1)
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populations which maintain a constant size of 20,000 haplotypes throughout history and
(2) populations that grow from the ancestral 20,000 haplotypes to a size of 8 × 106 hap-
lotypes instantaneously 500 generations in the past. For each pair of α and β values, we
report results for 1,000 independent simulation replicates. We also use simulation to verify
that for the range of β values investigated, the coalescent assumption that sample size re-
mains much smaller than effective population size is not violated in a way that changes our
findings or conclusions (Appendix B.0.5).

To capture the scale of patterns in linkage disequilibrium (LD) we simulate longer se-
quences of 100 kb and calculate pairwise r2 and the absolute value of D’ (Appendix B.0.6).
We bin variants based on minor allele count and sample a subset for which we calculate
all pairwise statistics. Binning allows us to compare LD across models without having the
results determined solely by differences in the abundance of very rare variants.

3.3 Results

Using coalescent simulations, we generate samples from populations that grow according
to our two-parameter model in which α is an exponential like growth parameter and β an
acceleration parameter. We then quantify how changes in growth patterns affect different
portions of the sample allele frequency spectrum and linkage disequilibrium. We also
demonstrate how varying sample sizes and growth times alter the quantity and nature of
genetic diversity within our growth models.

3.3.1 Accelerating growth with fixed current population size

To isolate the trajectory of the population size under a model of accelerating growth we
first simulate samples under a simple model where ancestral size, growth time, and current
population size are fixed while β varies between 0.1 and 3.5. We use an ancestral size of
20,000 haplotypes which grows over a period of 500 generations to a current effective size
of 8×106 haplotypes. We also fit models where the population remains at its ancestral size
throughout and where the population instantaneously grows to 8,000,000 haplotypes 500
generations in the past.

When conditioning on a fixed current size, a population with accelerating growth ini-
tially grows more slowly than a population with constant growth, accelerating to exceed
the constant rate only during the very recent past (Figure 3.1). With increasing β, large
changes of population size occur more recently, and the population size is closer to its an-
cestral size for longer. Hence the total variation decreases as β increases (Figure 3.2A). For
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example, samples of 10,000 haplotypes drawn from a model where β = 0.5 have on aver-
age 54.0 variants per kilobase (kb), 1.4 times greater than the average of 39.6 variants/kb
under exponential growth, and 5.9 times greater than the average of 9.1 variants/kb under
accelerating growth with β = 3.5.
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Figure 3.2: Sequence properties for growth models with a current size fixed at 8 × 106

haplotypes reached after 500 generations of growth (A) Average number of variant sites
per kilobase by sample size. Each colored line represents a different growth model. (B)
Average number of singleton versus non-singleton variants per kilobase under different
growth models as sample size increases. (C) Site frequency spectrum showing the average
number of variants with a given minor allele count per kilobase of sequence in a sample
of 10,000 haplotypes. (D) The change in the proportion of all variants that have the given
allele counts as growth accelerates in a sample of 10,000 haplotypes.

Rare variants drive the divergence in the total number of variant sites between models
(Figure 3.2B). In a sample of 10,000 haplotypes, variants with minor allele count ≤ 10

account for 99% of the reduction in variable sites between models with β = 1 and β = 2

and 99.8% of the reduction between models with β = 1 and β = 3.5. Correspondingly, the
proportion of variants that are very rare also decreases with increasing β (Figure 3.2D). The
proportion of variants that are singletons drops from 0.66 to 0.25 between models where
β = 1 and β = 3.5.

Models with constant population size and models with instantaneous growth bound the
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family of FTE models with a fixed current population size (Figure 3.2). As β increases,
the average frequency spectrum more closely resembles the average frequency spectrum of
a model without growth. Conversely, as β approaches 0, the average frequency spectrum
more closely resembles the average frequency spectrum from a model with instantaneous
growth. For larger values of β, population size is very close to its ancestral value for al-
most the entire population history. Consequently, genetic sequences simulated under these
models share many similarities to those generated under a constant population size model.
As β decreases, achieving the current size requires initially fast growth that is slowing over
time and sequences simulated under these models bear resemblance to those from instan-
taneous growth models. Differences between growth models become apparent only with
increasing sample size (Figure 3.2, A and B). In a sample of 100 haplotypes, the most ex-
treme models we simulate differ by <1 variant/kb: a model with no growth averages 2.9
variants/kb compared with 3.6 variants/kb with instantaneous growth. And samples with
β = 1 contain <0.1 more variants/kb on average than β = 1.1, both resulting in an aver-
age of 3.4 variants/kb. When we expand sample size to 20,000 haplotypes, instantaneous
growth averages 108.5 more variants/kb than a model without growth (114.4 variants/kb
vs. 5.9 variants/kb), and the differences between β = 1 with 62.1 variants/kb and β = 1.1

with 56.1 variants/ kb become apparent.

3.3.2 Accelerating growth with a variable current population size

In practice, accelerating growth should lead to a larger present day population size than
growth at a constant rate. To examine this, we sample 100 to 20,000 haplotypes from
populations where the initial growth rate α has been fixed at a value of 100 and β is allowed
to vary between exponential growth (β = 1) and 1.1. Growth accelerates very quickly with
increasing β; when we fix the time of growth at 500 generations our parameter settings
result in growth from an ancestral size of 20,000 haplotypes to a current size of between
2.4 × 105 and 1.4 × 109 haplotypes, with most of the change in population size occurring
in the very recent past.

As growth accelerates, the total quantity of genetic variation in samples quickly in-
creases (Figure 3.3A). For example, in a sample of 10,000 haplotypes there are on average
15.5 variants/kb with exponential growth, 25.5 variants/kb when growth accelerates with
β = 1.04, and 50.8 variants/kb when β = 1.1. This increase in variation is driven al-
most entirely by an increase in the quantity of singleton variants (Figure 3.3, B and C),
which proportionally come to dominate the frequency spectrum (Figure 3.3D). For exam-
ple, in 10,000 haplotypes, there are on average 4.9 singletons/kb with exponential growth,
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12.3 singletons/kb when growth accelerates with β = 1.04, and 40.2 singletons/kb when
β = 1.1. Between β = 1 and β = 1.1 the proportion of all variants which are singletons
rises from 0.32 to 0.79. For non-singleton rare variants, the effect of accelerating growth is
relatively small, and in fact the average number observed in a sample can be smaller under
faster accelerating models (Figure 3.3C, and Appendix B.0.7). In samples of 10,000 haplo-
types the number of variants per kb with minor allele counts between 4 and 10 drops from
2.6 to 2.0 between β = 1 and β = 1.1. Additionally, the number of variants with a given
minor allele count does not follow a linear trend as growth accelerates. For example, with
10,000 haplotypes, the number of doubletons increases between β = 1 and β = 1.04 from
2 to 3.7/kb before decreasing to 3.4/kb when β = 1.1, and the proportion of all variants
that are doubletons follows the same trend (β1 = 0.14, β1.04 = 0.15, β1.1 = 0.07) (Figure
3.3D).
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Figure 3.3: Sequence properties for growth models with same initial growth rate α = 100
and 500 generations of growth (A) Average number of variant sites per kilobase by sam-
ple size. Each colored line represents a different growth model. (B) Average number of
singleton versus non-singleton variants per kilobase as sample size increases for an expo-
nential growth model and a model where β = 1.1. (C) Site frequency spectrum showing
the average number of variants with a given minor allele count per kilobase of sequence in
a sample of 10,000 haplotypes. (D) The change in the proportion of all variants that have
the given allele counts as growth accelerates in a sample of 10,000 haplotypes.
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As is the case with a fixed current size, differences between growth models become
apparent only as sample size increases (Figure 3.3A). With samples of 100 haplotypes, a
model where β = 1 has an average of 3.3 variants/kb, only 0.2 variants/kb smaller than
when β = 1.1. This contrasts sharply with the situation with 10,000 haplotypes, where the
difference grows to 35.3 more variants/kb (β1 = 15.5 variants/kb, β1.1 = 50.8 variants/kb).

3.3.3 The duration of accelerating growth

To quantify how the duration of population growth impacts our results we perform simula-
tions with samples of 10,000 haplotypes where the initial growth rate α is fixed at 20, β is
allowed to vary between 1 and 1.1, and growth duration varies between 100 and 3,000 gen-
erations. When we calculate the site frequency spectra for these samples we observe that
for all growth durations, the patterns observed in the section above hold: singleton variation
increases with accelerating growth, common variation is relatively unaffected, and nonsin-
gleton rare variation follows nonmonotonic patterns where maxima occur at intermediate
growth rates. The shorter the duration of growth the less pronounced these patterns are,
and the smaller the differences between the growth models. When we compare models
with the same rate of acceleration but different growth durations, we find that shorter du-
rations result in frequency spectra with fewer of all variant types, and proportionally fewer
singletons and other rare variants (Appendix B.0.8).

Growth time, present population size, and acceleration create a parameter space where
sequence characteristics are consistent with multiple sets of growth parameters. With ex-
ponential growth, once growth time and growth rate are defined, a population’s current
size is fixed, and the frequency spectrum can be predicted from these parameters. The
addition of an acceleration parameter changes this determinism; the β parameter allows a
model where growth time and a have been defined to grow to any current size. Therefore,
different combinations of acceleration and current population size can generate the same
values of a sequence summary statistic (Figure 3.4). In particular, in a model of accelerated
growth the same summary statistic can be generated by a much larger present-day popula-
tion size compared to a model of constant growth. Assuming an ancestral size of 20,000
haplotypes, 500 generations of growth, and a sample of 10,000 haplotypes, an average of
40 variants/kb of sequence is consistent with both a population that grew to a current size
of 8.4 × 106 haplotypes at a constant exponential rate or 18.9 × 106 haplotypes following
β = 1.1. In this example the initial growth rate is slower under accelerating growth (Ap-
pendix B.0.9) but the β parameter results in a rapid acceleration and much larger current
population size. Note that even though growth follows very different trajectories between
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these models, the ancestral trees have the same mean total branch length; consequently the
same average number of variants is found in the resulting samples.
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Figure 3.4: Contour plots showing that under different growth parameters summary statis-
tics are consistent with multiple current population sizes. In 30 kilobases of sequence from
samples of 10,000 haplotypes, after 500 generations of growth the average quantities of
(A) singletons and (B) all variants from models with larger current population sizes that
grew at faster than exponential rates are the same as the average quantities in models with
smaller current sizes where the population grew at a slower rate. Each colored line repre-
sents a different number of singletons or total variants. Contour lines were generated using
linear interpolation over a fine-scale range of α determined using a grid search. For each
α in the grid, average parameter values were calculated from 100 independent simulation
replicates.

Similarly, different combinations of acceleration and growth time can generate the same
values of a sequence summary statistics (Figure 3.5). For example, assuming an ancestral
size of 20,000 haplotypes and 30 kb sequenced in a samples of 10,000 haplotypes, we
expect about 750 variant sites both from a model of constant growth with rate of α = 20

for 2,589 generations and a model where α = 20 but growth accelerates with β = 1.1 for
1,064 generations. Likewise, under the same scenario, we expect 200 singletons both from
a model of exponential growth for 2,605 generations and from a model with accelerating
growth (β = 1.1) for 903 generations.

3.3.4 Linkage disequilibrium

To understand the impact of growth on linkage disequilibrium (LD) decay, we simulate
10,000 haplotypes of length 0.1 cM for α = 100 and 500 generations of growth and cal-
culate pairwise r2 and the absolute value of D′. Even though these growth models result
in current population sizes that differ by three orders of magnitude, historically their sizes
are very similar, and as a result the pattern of LD decay with faster acceleration is sub-
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Figure 3.5: Contour plots showing that under different growth parameters summary statis-
tics are consistent with multiple growth durations. In 30 kilobases of sequence from sam-
ples of 10,000 haplotypes, after beginning with the same initial growth rate of α = 20,
the average quantities of (A) singletons and (B) all variants from models that grow for a
shorter amount of time at an accelerated rate are the same as those from models that grow
for longer at a slower rate. Each colored line represents a different number of singletons
or total variants. Contour lines were generated using linear interpolation over a fine-scale
range of α determined using a grid search. Average parameter values were calculated from
100 independent simulation replicates at each grid point.

tle. For variants with minor allele count > 50 the rate of pairwise LD decay increases
as β increases and accelerated growth results in larger current population sizes. Between
variants with minor allele frequencies between 0.1 and 0.15, at a distance of 40 kb r2 is
on average 0.046 in an exponential growth model, 0.045 for β = 1.04, and 0.041 when
β = 1.1 (Appendix B.0.10). In the same frequency bin, at 40 kb D’ is on average 0.598
in populations with growth at β = 1 compared to 0.597 for populations with growth at
β = 1.04, and 0.569 when β = 1.1. In rarer variants, independent of growth model, at a
given physical distance the average r2 is lower and D′ is higher (Devlin and Risch, 1995;
VanLiere and Rosenberg, 2008). For example, both with β = 1 and β = 1.1 the average
pairwise r2 decays below 0.1 in 2 kb for variants with minor allele frequencies between
0.01 and 0.02, compared with 22 kb in variants with minor allele frequencies between 0.1
and 0.15. However, when we look at the relationship between LD decay and acceleration of
population growth, it is qualitatively the same across allele counts. Pairwise r2 in variants
with minor allele frequencies between 0.01 and 0.02 from a sample of 10,000 haplotypes
and 500 generations of growth with α = 100, at 40 kb is on average 0.026 when β = 1

versus 0.023 when β = 1.1, and for the same comparison with D’ the values are 0.944 for
β = 1 and 0.852 for β = 1.1. he pattern of faster decay as β increases holds true in smaller
sample sizes, but is less pronounced. In samples of 1,000 haplotypes, at 40 kb, variants
with minor allele frequencies between 0.01 and 0.02 have an average pairwise r2 of 0.024
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when β = 1 compared with 0.023 for β = 1.1, and average D’ is 0.018 greater (D′(β=1) =
0.955, D′(β=1.1) = 0.973).

Varying growth duration between 250 and 750 generations, we find that for any given
duration and α, LD decays faster in models where β is greater. When we compare models
with the same α and β values but different growth durations we find that shorter growth
times, with smaller current sizes, have slower LD decay. For example, in samples of 10,000
haplotypes from models with α = 100 and β = 1.06, the average pairwise r2 of variants
with minor allele frequencies between 0.01 and 0.02 decays below 0.03 at distances of 42
kb, 28 kb, and 24 kb in models with 250, 500, and 750 generations of growth, respectively.

By returning to models with fixed current size we are able to compare pairwise LD
decay over a larger range of accelerating growth models. As was described in the section
above, with a fixed current size, larger β and hence faster acceleration of growth means a
population has been large for a shorter period of time. We find the same pattern of faster LD
decay in larger populations with these models; only their relationship with β is reversed.
Lower values of β correspond to larger recent population sizes and consequently faster
decay in LD (Figure 3.6).

In samples of 10,000 haplotypes from populations which expand from an ancestral size
of 20,000 haplotypes to a current size of 8 × 106 haplotypes over 500 generations when
we look at variants with minor allele frequencies between 0.1 and 0.15 average pairwise r2

decays below 0.1 at a distance of 18 kb, 20 kb, and 21 kb for models where β = 0.5, 1, or3.5

respectively, and D’ falls below 0.75 at distances of 17 kb, 18 kb, and 23 kb. As above,
the trends in LD decay are qualitatively the same across variant frequencies, but variants
with lower frequencies have lower average pairwise r2 and the D’ between them decays
over greater distances. In variants with minor allele frequencies between 0.01 and 0.02
at a distance of 40 kb, pairwise r2 is 27% greater in a model where β = 3.5 than when
β = 0.5 (r2

(β=0.5) = 0.022, r2
(β=3.5) = 0.028), and likewise D’ is 16% greater (D′(β=0.5) =

0.835, D′(β=3.5) = 0.968).
The range of models we are able to consider with a fixed current size allows us to ob-

serve an interesting pattern in variants with minor allele count between 2 and 20. For these
variants, D’ maintains the same pattern of decay occurring over increasingly long genetic
distances, but faster decay in models with smaller β and larger recent population sizes. In
contrast, average pairwise r2 for the rarest variants is lower in models with intermediate
rates of growth (Figure 3.6C). For example, at a minor allele count of 10, average r2 for
variants 20kb apart where β = 1 is 38% lower than when β = 0.5 and 70% lower than for
β = 3.5 (r2

(0.5) = 0.013, r2
(1) = 0.008, r2

(3.5) = 0.027).
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Figure 3.6: Pairwise linkage disequilibrium decay measured by r2 and D’ in samples of
10,000 haplotypes from populations with current population sizes of 8 × 106 haplotypes
reached after 500 generations of growth. The panels show LD decay in variants with a
sample minor allele frequency of (A) 10% to 15%; (B) 1% to 2%; (C) a fixed allele count
of 10. Each colored line represents a different growth model.

3.4 Discussion

Recent sequencing studies suggest a recent acceleration of growth in human populations,
as exponential growth models cannot capture the observed excess of singleton variants
(Coventry et al., 2010; Tennessen et al., 2012). The frequency spectra in these studies can
be better modeled by defining growth as a discontinuous piecewise function with an arbi-
trarily selected number of segments. However, even the simplest of such models require
several additional parameters. Instead, we provide an approach for including an accelera-
tion parameter β into the population growth model, thus obtaining a continuous model that
can allow for a wide range of growth trajectories.

When modeling accelerating growth while conditioning on current population size, we
observed that the total amount of variation and the amount of rare variation both decrease
with increasing β. With a fixed current size, when β > 1 the initial growth parameter a
must be large, and as β increases a correspondingly decreases. Large values of α result in
populations that quickly expand at the onset of growth and have a larger size for much of
their history. Small α values yield populations with slow initial growth, which achieve only
sizes significantly larger than their ancestral size in the recent past. In smaller populations
common ancestors are found more quickly, coalescent trees are smaller, and fewer variants
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are found in samples, explaining our results as β increases. For large β the population
history closely resembles a model without growth for all but a small fraction of its history,
explaining why models without growth bound our FTE models as β approaches infinity.
Likewise, the closer β is to 0, the faster a population’s size diverges from its ancestral state,
and so more closely resembles a model of instantaneous growth. In this study we assume
an ancestral size of 20,000 haplotypes and a period of growth lasting 500 generations; how-
ever, the manner in which the demographic history of a population is altered by our growth
model, as described in this paragraph, is completely independent of the exact parameter
values.

Under an alternate set of conditions, where current size is not fixed and accelerating
growth leads to a greater current population size, we observe that the total amount of vari-
ation increases with increasing β, and that this increase is driven almost entirely by the
amount of singleton variation present in samples. Under these conditions, when we com-
pare a population which grows exponentially to one which grows with β > 1, initially,
growth and population size are determined by the initial growth rate α. Acceleration only
manifests itself in the most recent generations. Consequently, for both common and nons-
ingleton rare variants, the frequency spectra from FTE models closely resemble those from
exponentially growing models; however, the very recent acceleration to a much larger cur-
rent size gives these models an abundance of singletons unmatched by simple exponential
models.

Our work shows that the quantity of nonsingleton rare variants changes in a nonmono-
tonic fashion as β increases. This is best explained by looking at the average population
size at the time these variants arise. The number of alleles with a given allele count is a
function of the total length of coalescent branches with that number of descendants, a value
dependent on population size. In a large population branches are longer; however, coales-
cent events are also less common, so branches with a given number of descendants occur
further in the past than they would in a smaller population. As β increases the population
size and mutation age change at different rates. As β increases from low to intermediate
values, population size at the times nonsingleton rare variants arise increases even as av-
erage mutation age decreases. However, as β increases further, even as average mutation
age continues to decrease, the population size at the time nonsingleton rare variants arise
decreases more rapidly and is smaller than in the intermediate growth models. Thus, the to-
tal length of branches with a given number of descendants is larger at intermediate growth
rates and the quantity of variants changes in the observed nonmonotonic manner.

In both the fixed and variable current size contexts we illustrate the importance of sam-
ple size for detecting differences between growth models. Small samples contain a limited
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amount of genetic variation for use in inference. And the inability to distinguish between
variants with allele frequencies <1/(sample size) means that small samples lack resolution
for studying rare and recently arisen variants that contain information about recent demo-
graphics. This finding supports the work of Keinan and Clark (2012) in their explanation of
why earlier, smaller studies failed to detect evidence of recent massive population growth.
It also underpins why more accurate models are needed as study sample sizes increase: in
100 haplotypes failing to include any growth has limited consequences, in 20,000 haplo-
types the difference between a model where β = 1 and β = 1.02 are substantial.

The addition of the acceleration parameter allows better modeling of very rare variants;
the resulting model can “bend” growth trajectories between any ancestral and current size,
over any amount of time, flexibility impossible with exponential growth alone. Our work
shows how samples from populations which have undergone accelerating growth share the
summary statistics of samples from populations with much smaller current sizes achieved
via slower growth. Similarly, samples from populations which have grown at an accelerat-
ing FTE rate for a shorter length of time share summary characteristics with samples that
grew at a slower rate for a longer period of time. Thus, estimates of current population size
and the duration of growth estimated from genetic data may differ greatly if accelerating
growth is considered.

Our linkage disequilibrium results are also a direct result of how demographic history
changes with β. When we look at our models where current population size is allowed to
expand with accelerating growth we find that both r2 and D’ decay more quickly in models
with larger β, but the effect is small. In larger populations the average time since samples
have shared a common ancestor is longer, increasing the likelihood of recombination events
that break down D’ and r2. In our models with accelerating growth, it is only over a very
brief recent time that the models with larger β have been substantially larger than those with
smaller β, and consequently while they show faster decay, it is a very modest difference.
However, differences between models are detectable, and this suggests that pairwise LD
could be used to help assess the fit of growth models.

The effects of accelerated growth on LD are larger in our models with fixed current
size, as these populations substantially differ in size for much longer. We observe that as
β increases LD decays more slowly. This pattern holds across the full frequency spectrum
for D′, and the majority of the frequency spectrum for r2; however, as minor allele count
approaches 1 the pattern for r2 changes. When we look at the ancestry of a sample, ex-
tremely rare variants likely arose only recently and are carried by very few lineages, so the
probability of a recombination event occurring between them is small. For these variants
every pair of variants has an r2 of either 1 if they arose on the same lineage or near 0 if they
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did not. Therefore, average pairwise r2 becomes equivalent to the probability that the two
variants arose on the same lineage. The total quantity of variants with a given minor allele
count in a sample is a function of the total length of all lineage branches with exactly that
number of descendants, which is itself a function of population size. The probability that
two variants with a given minor allele count arise on the same branch is a function of the
variability of the branch lengths with exactly that number of descendants. As variability
decreases, the probability that two variants arose on the same branch also decreases. The
distribution of branch lengths for a given minor allele count reflects how the population size
changes while ancestral lineages with that number of descendants exist. For rare variants,
in both models with small β and those with large β we observe that the majority of lengths
are very short, and the variance is lower than under models with intermediate β. For large
β, the population size shrinks so fast that branch lengths corresponding to every variant
count are predominantly short. For small β the population size has been large for some
time, so lineages rarely find common ancestors during the period of growth, and nonsin-
gleton variants arise mostly in the ancestral population, where all branch lengths are again
short. Intermediate β yield a Goldilocks situation, where population sizes result in lineages
that have found enough common ancestors that mutations are found in multiple present-
day samples, but branch lengths remain relatively long because the time between common
ancestors is longer than it would be at the ancestral population size. This observation gives
rise to the idea, to be explored in chapter 5, that pairwise r2 between very rare variants can
be used as a tool to estimate recent growth rates.

Presently, the amount of high-quality deep coverage sequencing data available to the
research community is increasing by the day. These data offer not only the potential for
a better understanding of the genetic underpinnings of a multitude of diseases and traits,
but also important insight into the demographic history of our species. The accuracy of
these insights will be directly dependent on the models they are based on. The general two-
parameter models introduced by this study can substantially revise estimates of current
population sizes while simultaneously modeling the excess of very rare variants observed
in large human resequencing studies, providing a valuable tool for modeling the complex
history of humanity.
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CHAPTER 4

Sampling from the distribution of internal
branch lengths of a Kingman coalescent

4.1 Introduction

While written history records an inexorable and increasingly rapid expansion of human
population sizes, until very recently we lacked genetic evidence of this growth. Large hu-
man sequencing studies (Coventry et al., 2010; Nelson et al., 2012; Tennessen et al., 2012;
Gazave et al., 2014) have revealed a frequency spectrum characterized by an abundance of
extremely rare genetic variation, a signature of recent population growth (Tajima, 1989).
This discovery has led to substantial revisions of estimated human population growth rates.
Generally, recent large studies have performed inference of growth rates using either of two
methods. The first, pioneered by Schaffner et al. (2005), relies on coalescent simulations,
while the second, from Gutenkunst et al. (2009), uses diffusion approximations. The goal
of both methods is to estimate the likelihood of observed data under different demographic
models. Although widely used (Coventry et al., 2010; Gravel et al., 2011; Tennessen et al.,
2012; Nelson et al., 2012; Gazave et al., 2014), the methods are not without substantial
drawbacks: the diffusion approach is incapable of using any summary statistics other than
the frequency spectrum to estimate likelihoods, while the coalescent approach is computa-
tionally burdensome, especially with large samples.

Here we propose a novel method that analytically realizes portions of a sample’s ge-
nealogy without modeling the entire genealogy. Our method allow us to directly sample
external and internal branches from the Kingman coalescent (Kingman, 1982a; Hudson,
1983), providing us with the genealogical features necessary for demographic inference
without the computational burden of full coalescent simulations. Additionally, this method
retains the individual branch lengths necessary for calculating the probability of observed
patterns of pairwise r2 as outlined in appendix C.0.12, an advantage over the diffusion
approach of Gutenkunst et al. (2009).
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The Kingman coalescent models the ancestry of a sample backwards in time. The
model follows chromosomes back through common ancestors; when two ancestries in a
sample reach a common ancestor they join into a single shared ancestry. The process con-
tinues until the most recent common ancestor of the entire sample is reached. Mutations
are modeled as occurring at a constant rate across the resulting tree-shaped genealogy, with
the number of mutations on any given branch a function of branch length. Consequently,
longer branches on a tree, corresponding to longer waiting times between common ances-
tors, have more mutation events. Mutations appear as a variants in the final sample on the
chromosomes which descend from the branch where the mutation occurred. The waiting
times between common ancestors are a function of the size of the population from which
the sample was drawn, with greater times in larger populations. Thus, when a popula-
tion has recently grown, we expect the genealogy of samples to have proportionally longer
branches near the terminal nodes, and correspondingly more mutation events along the
lower branches. The lower branches of a coalescent tree have relatively few descendants in
the final sample, so mutations that occur along them appear at very low minor allele counts,
hence an abundance of rare variation is a signal of recent growth.

While the lengths of coalescent branches are a function of population size, the topology
of a tree is not. For a given sample size, the probability of observing a given tree topology
are identical for every model of varying population size (Kingman, 1982b). In the tradi-
tional coalescent, tree topology and length are simulated together for every genealogical
realization. Our method separates the topology from the generation of individual branch
lengths, allowing us to calculate and store the probabilities of the number of branches with
a given number of descendants in a topology, as well as the probabilities of branches start-
ing and ending at specific coalescent events. We can then reuse these calculations for any
demographic history from which we are interested in sampling branch lengths.

Once we have the probabilities of different topologies for a sample size, we can generate
a realized genealogy under any demographic model by sampling the lengths of individual
branches. In constant size populations, the branch lengths are a sum of independent expo-
nential variables, and an exact probability distribution can be written and sampled from. For
variable size populations, we show it is possible to first calculate expected times between
coalescent events, and use these to generate branch lengths. By generating distributions of
individual branches we can calculate the likelihood of observed frequency spectra, patterns
of linkage disequilibrium, or any other statistic found to contain information about recent
demography. In addition to decoupling tree topology from branch lengths, out method
generates branch length distributions for each minor allele count (MAC) separately. As
discussed above, information about recent growth is contained in the branches with few
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descendants in the final sample, the branches occurring low on a genealogical tree. Thus,
our method allows us to generate individual branch lengths for MAC below a threshold,
facilitating inference of recent growth, while summarizing the rest of the genealogy with
a single value, saving the computational effort required to simulate the portions of the ge-
nealogy unrelated to the research questions we are interested in.

Previous work on the distribution of internal branches of the Kingman coalescent was
focused on their summed length (Fu and Li, 1993; Kersting and Stanciu, 2013). Summed
length was of interest because the number of mutations observed in a sample with a given
MAC is a function of the total length of branches with a number of descendants equal to the
MAC. Fu and Li (1993) presented the expectation and variance of the total summed length
of both external and internal branches along a Kingman coalescent without recombination.
Recently, Kersting and Stanciu (2013) published the asymptotic distribution of the summed
length of all branches with the same number of descendants. With our interest in finite
sample sizes and individual branch lengths, our work more closely builds on the findings
of Rosenberg (2006), who derived the expectation and variance for the number of internal
branches with a given number of descendants in a sample’s ancestry.

With our method we calculate the probability of different topological features for a ge-
nealogy, we then sample from these probabilities without simulating the entire genealogy.
First, we use a recursive algorithm to expand on the results of Rosenberg (2006) and calcu-
late the exact probabilities for the number of branches with a given number of descendants
in a sample’s genealogy. Our second set of equations allow us to calculate the probability
that a branch with a given number of descendants arose at a specific coalescent event, and
conditional on its origin, the probability of the branch ending at a later specific event. For
a constant size model, by combining our topological probabilities with the exponentially
distributed waiting times between coalescent events, we derive an exact probability dis-
tribution function for internal and external branch lengths. For demographic models with
varying past sizes we substitute expected waiting times in place of the exponential random
variables to generate individual branch lengths. We show that using an accept-reject al-
gorithm we are able to directly sample from the branch length distribution in the case of
the constant size population. We compare the output of our method with coalescent sim-
ulations to show that summary statistics from the branch length distributions are the same
between methods. Finally, we discuss how our method provides an important step towards
the estimation of demographic likelihoods using an expanded range of summary statistics
without resorting to full coalescent simulations.
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4.2 Methods

4.2.1 Realizing a genealogy through the sampling of branch lengths
from the Kingman coalescent

Our method for generating the realized genealogy of a sample proceeds through several
stages. Before beginning, we select a minor allele count (MAC) threshold. Below this
threshold we generate individual branch lengths, above the threshold we summarize the
entire genealogy using a single length. For every MAC below our threshold, we first sam-
ple the number of individual branches seen in the realized genealogy, according to equation
4.1 in section 4.2.2. Then, for each individual branch we sample a beginning and ending
coalescent event. The probability distribution for beginning and ending events are given by
the equations in sections 4.2.3 and 4.2.4. The beginning and ending coalescent events de-
fine a series of random variables: the waiting times for all the coalescent events between the
origination and termination of the branch. In the case of a constant size population, these
waiting times are independent exponential random variables, and their sum follows a hypo-
exponential distribution with a rate vector defined by the rates of the individual exponential
random variables. In section 4.2.5 we give an explicit formula for the distribution of branch
lengths in a constant size population. In a variable size population, following the method
of Donnelly and Tavaré (1995), the waiting times are no longer independent, and an exact
calculation of branch length requires integration over all possible previous times for each
term in the series, problematic for series with dozens or hundreds of terms. To expand our
method to variable size populations we therefore estimate the expected waiting times under
a model of interest, and the sum these values as determined by the sampled beginning and
ending coalescent events. By combining our distributions of individual branches with the
single value that summarizes the total length of the genealogy above our MAC threshold,
we have the features of a genealogy necessary for inference, without simulating the entire
ancestry of a sample.

4.2.2 The number of branches with j descendants in a genealogy

The distribution of the number of branches with j descendants in a sample’s ancestry can be
calculated recursively. A genealogy of size n can be divided bn/2c ways, where bc denotes
the floor function, and observing x branches with j descendants in the full sample, n, is
equivalent to observing x−y and y branches with j descendants in the divided genealogies.
We define Pn,j(x) as the probability of observing x branches with j descendants in a sample
of size n, then
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Pn,j(x) =


0 for n < j

1 for n = j∑
i≤n

2

2−I[i=n
2

]

n−1

x−1∑
y=1

Pi,j(x− y)Pn−i,j(y) for n > j

(4.1)

4.2.3 The probability that a branch with j descendants originated at
coalescent event n− k + 1

Given a branch with j descendants, we are interested in the probability it originated at a
specific coalescent event in a sample’s ancestry. To calculate this value, we first calculate
the related probability: at a given coalescent event what is the probability a branch with j
descendants forms? At an arbitrary coalescent event, where two ancestral lines are chosen
to coalesce and k ancestral lines become k − 1 lines (event n − k + 1), a branch with
j descendants is created if the number of descendants of the two lines coalescing sum
to j. The number of ways such a coalescence can occur is a function of the number of
descendants of the k ancestral lines present at the coalescent event. Thus, to calculate
the probability of a branch with j descendants forming, we must sum over all possible
genealogical histories preceding even n− k + 1, corresponding to all the different ways of
dividing n − k descendants among k ancestral lines. We calculate the probability of each
history using the formula presented in Kingman (1982a) and then multiply it by the number
of ways a branch with j descendants can form from the distribution of descendants in the
history. Define λd as the number of branches with d descendants in the final sample for a
given history. Then, the probability that the n − k + 1 event gives rise to a branch with j
descendants in the final sample is

P (Branch formed at event n− k + 1 has j descendants) =

∑
~λ

2(n− k)!(k − 1)!(k − 2)!

(n− 1)!
∏n−k+1

d=1 λd!

(λ j
2

2

)
I[j is even] +

j−1
2∑

m=1

(
λj−m

1

)(
λm
1

) (4.2)

Here ~λ = (λd : 1 ≤ d ≤ n − k + 1,
n−k+1∑
d=1

λd = k,
n−k+1∑
d=1

dλd = n) are the constraints

that define a legitimate history, one with the correct number of lines and ancestors present
at the n − k + 1 event. In equation 4.2, the term outside the brackets is the probability of
the history; inside the brackets is the number of ways a branch with j descendants can form
from the ancestral lines present in the history. Independent of our work, Spouge (2014)
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used a formulation very similar to equation 4.2 as a transition probability in a Markov
chain designed to calculate the probability that the most recent common ancestor of a nested
subsample has additional descendants in the larger sample from which the subsample was
drawn.

Equation 4.2 gives us the conditional probability that at event n− k+ 1 the branch that
originates has j descendants. However, for our sampling algorithm we are interested in the
opposite, conditional on observing a branch with j descendants, what is the probability the
branch arose at event n− k + 1?

P (Branch began at event n− k + 1|Branch has MAC j) =

P (Branch has MAC j|Event n− k + 1)
n−1∑
i=1

P (Branch has MAC j|Event i)

(4.3)

Using equation 4.2 this can be written as
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(4.4)

4.2.4 The conditional probability that a branch with j descendants
ends at coalescent event n− b+ 1

The conditional probability that a branch originating at event n − k + 1 finds a common
ancestor and ends at event n−b+1 is straightforward, and similar to a geometric probability.
At each coalescence the probability that the branch ends is a function of the number of
remaining ancestral lines:

Pend,j(n− b+ 1) =
2

b

k−1∏
a=b+1

(1− 2

a
) (4.5)
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4.2.5 A probability distribution function for coalescent branches in a
model with constant population size

The probability that a coalescent tree branch has length l is the product of three probabili-
ties: the probability the branch begins at event n−k+1, conditional on its starting event the
probability that the branch ends at event n− b+ 1, and then conditional on its starting and
ending events the probability that the sum of the exponential random variables comprising
its length sum to l:

P (Lj = l) =
∑
Start

∑
End

P (Length = l|Start, End)P (End|Start)P (Start). (4.6)

P (End|Start) and P (Start) are given by 4.5 and 4.4, respectively. The sum of expo-
nential random variables with different rates is a hypoexponential distribution. In the case
of coalescent times from a constant size population, the exponential rates are determined
by the number of ancestral lines remaining. Referring to 4.4 as PStart,j(n− k+ 1), we can
write the exact distribution of branch lengths with j descendants as

P (Lj = l) =
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With expected value
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]
(4.8)

4.2.6 Implementation and simulations

By combining the methods of the previous sections it is possible to generate the features
of a genealogy necessary for demographic inference without performing a full coalescent
simulation. Equations 4.1, 4.4, and 4.5 give the probabilities of a tree topology. These
values are independent of the branch lengths, and can be calculated, stored, and reused for
samples with the same size. For a constant size population, branch lengths can be sampled
directly from equation 4.7 using an accept-reject algorithm (Robert and Casella, 2004) with
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an exponential proposal distribution. For variable size populations, branch lengths are the
sum of expected waiting times. We estimate these times as the average value of 100,000
simulations, using the method of Donnelly and Tavaré (1995), where times from a constant
size model are “shifted” to the correct values for a model of changing population size
(Section 3.2.2). In addition to our individual branch lengths, we generate a length for the
genealogy above our MAC threshold. The proposed likelihoods of Boyko et al. (2008),
Keinan et al. (2007), and appendix C.0.12 all require the total length of the genealogy, so
an estimate of time remaining in the ancestry above our threshold is essential. Originally,
we calculated the time remaining in a genealogy using the sum of the expected total lengths

for all branches above our MAC threshold (
2∑

r=CMAC+1

2/r, where CMAC is our threshold).

However, the distribution of summed total branch lengths is highly skewed, and has a
large variance during the period of a sample’s genealogy when few ancestral lines remain.
Using the expected value significantly changed our inference results relative to coalescent
simulations. To overcome this, we again use the method of Donnelly and Tavaré (1995),
simulating realizations of the total time in a sample’s genealogy above our MAC threshold,
dependent on past population sizes. Instead of averaging across realizations to estimate
the expected value, we instead store the individual realizations and sample from them,
combining this value with the summed total length of our sampled branches below the
MAC threshold to get the total tree length for a realized genealogy.

We compare our method with the full coalescent using simulations. For individual
branch lengths, we generate values from equation 4.7 using an accept-reject algorithm
with an exponential proposal distribution, and compare these values with branch lengths
from coalescent simulations with a constant size population. We also use our method with
expected waiting times in place of exact branch lengths and compare the results with coa-
lescent simulations. We compare the number of branches in each genealogy, the summed
length of branches, and the inter-branch variances between genealogies realized using our
method versus the coalescent.

4.3 Results

For constant size populations we can explicitly write the probability distribution function
for coalescent branch lengths (equation 4.7). With an accept-reject algorithm, using an ex-
ponential proposal distribution, we can then sample individual coalescent branch lengths.
Using our method we sample 3 million branch lengths from the genealogies of a current
sample of 50 haploid individuals; 1 million each for branches with 3, 6, or 9 descendants.
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For comparison, we generate 1 million independent coalescent trees and record the length
of all observed branches with 3, 6, or 9 descendants. In table 4.1 we compare the distribu-
tion of lengths, in coalescent units, between the methods.

Proportion of Branches

Descendants Method < 0.001 < 0.005 < 0.01 < 0.05 < 0.1 < 0.5 < 1

3
Analytic 0.0280 0.127 0.230 0.638 0.806 0.978 0.993

Coalescent 0.0280 0.128 0.231 0.639 0.807 0.978 0.993

6
Analytic 0.0170 0.0800 0.149 0.486 0.674 0.945 0.981

Coalescent 0.0168 0.0795 0.149 0.486 0.674 0.945 0.981

9
Analytic 0.0119 0.0566 0.108 0.388 0.573 0.907 0.965

Coalescent 0.0120 0.0567 0.107 0.387 0.573 0.907 0.965

Table 4.1: The distribution of branch lengths generated using our analytic formulas com-
pared with those generated via coalescent simulations in a sample of 50 haploid individuals.
Lengths are given in coalescent units of 2N generations. For each analytic row 1 million
random variables were sampled according to an accept-reject algorithm with an exponen-
tial(2) proposal distribution. For each coalescent row, 1 million independent simulations
were run, and the length of all branches with the specified number of descendants was
recorded.

For a further comparison we calculate summary statistics for the set of branches with
the same number of descendants, again comparing the output of our method with full coa-
lescent simulations. Instead of sampling exact lengths, we use the sum of expected waiting
times. We realize 1 million genealogies for a sample of 50 haploids, drawn from a pop-
ulation of 30,000 haploids, and for branches with 3, 6, or 9 descendants we recorded the
number of branches in the genealogy, the summed length of the branches, and the variance
in lengths (Figure 4.1A).

We find that the number of branches we observe in genealogies realized with our
method and with coalescent simulations match very closely. For branches with 3 descen-
dants, we observe between 1 and 15 branches in > 99.99% of genealogies with both meth-
ods, and the probability of observing each value between 1 and 15 never differs by more
than 0.12%. For branches with 6 or 9 descendants the methods also produce very similar
results, with the differences between the probabilities of a given number of branches never
exceeding 0.10%. When we investigate the summed length of branches and the variance
between branch lengths, we again find that the methods give similar results, however, there
is one distinct difference. Our method, relying on the sum of expected values, does not
produce genealogies with extremely long waiting times like the coalescent (Figure 4.1B).
For branches with 3 descendants, using our method, we never observe a summed branch
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Figure 4.1: Using our analytic method and coalescent simulations we calculate summary
statistics across 1 million realized genealogies for a sample with 50 haploids drawn from
a population of 30,000 haploids. (A) For branches with 3, 6, or 9 descendants in the fi-
nal sample we calculate the two-dimensional probability distribution for branch number
and summed branch length using our method and coalescent simulations. (B) The differ-
ences between the distributions presented in A, with the probability of observing a given
variable pair in our method subtracted from the probability in the coalescent simulations.
Blue represents a higher probability using our method, pink a higher probability using the
coalescent.

length > 7 coalescent units, and < 0.05% have a summed length > 4 coalescent units.
With coalescent simulations 0.02% of simulations have summed lengths > 7 coalescent
units, and 0.34% are > 4 coalescent units. In these extreme cases, the variance between
branch lengths is often great, and we observe a variance > 1 in 0.52% of coalescent sim-
ulations compared with < 0.002% of analytic calculations. While this pattern is real, it
is important to note how small these values are. Outside of the tails of the distributions,
the two methods produce very similar results. For example, using our calculations 14.99%

of realizations have a summed length of branches with 3 descendants between 0.8 and 1.2
coalescent units, while 14.95% of coalescent simulations fall in this range.
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4.4 Discussion

To create a computationally efficient method for sampling internal branch lengths from
the Kingman coalescent we derived a series of analytic calculations. In the case of a
constant size population, we can explicitly write the probability distribution function for
branch lengths, and sample from it using an accept-reject algorithm. When we compare
the output of this algorithm to coalescent simulations we find that the methods result in the
same distributions of branch lengths. For populations with variable sizes we estimate ex-
pected branch lengths in place of an exact length distribution. When we compare summary
statistics between this approach and coalescent simulations we find they are generally very
similar. The number of branches with a specific number of descendants is nearly identical
between methods. However, coalescent simulations have a greater probability of generat-
ing extremely long branches, and correspondingly we find more extremely long summed
branch lengths and inter-branch variances in coalescent simulations.

Thinking about the use of our method in an inference setting, the lack of extreme re-
alizations with our analytic approach should not alter conclusions, at least for inference
based exclusively on the frequency spectrum. Outlying realizations add noise to likeli-
hood estimation, but inference is performed using hundreds or thousands of realizations,
and averaged across multiple loci, each with their own genealogical history. Inference is
concerned with finding the model which on average looks the closest to the observed data,
and that should remain the same between both our method and coalescent simulations. In
the context of including linkage disequilibrium measures into inference, a goal of future
research, the variance between branches is important, and the impact of using expected
values is still an open question.

At the core of our analytic method is an assumption that branch lengths are independent.
While branches generated using the coalescent violate this assumption, for branches during
periods where many lines remain on the coalescent tree the correlation between branches is
negligible. It is the portions of the coalescent tree with the smallest amounts of correlation
between branch lengths along with we are applying our method to sample branches. Conse-
quently, for most cases our assumption of independence should not alter results. However,
where correlation between branches rises above negligible levels in the coalescent, it will
result in smaller variances between branch lengths. As with our use of expected waiting
times discussed above, inference based on the frequency spectrum is based on expected
values and should not be effected by correlation between branch lengths, but inference us-
ing pairwise r2 may be altered by the differences in variance. It is interesting to note that in
our model, the use of expected waiting times and the assumption of independence change
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inter-branch variance in different directions; how these effects interact is another topic for
further investigation.

We designed our method to be more efficient than full coalescent simulations in two key
ways. The first results from the fact that coalescent topology is independent of demography,
and for a given sample size, with our method the probabilities of different topology struc-
tures can be calculated, stored, and then re-used repeatedly. This limits the computational
cost of performing likelihood estimation over many demographic models. The second effi-
ciency gain from our method is the ability to summarize ancestry above a MAC threshold
with an easily calculated value. This calculation would remove the need to model a large
portion of each genealogy, a significant advantage, particularly as sample size expands.
Currently, due to the large variances on times between coalescent events when few ances-
tral lines remain, we have been unable to directly generate the length above our threshold.
Our workaround, simulating full sample genealogies to calculate a distribution of times
remaining above the MAC threshold, is less optimal. Developing a way to directly sample
from the distribution of these times would be a substantial improvement, however, in the
case of models with variable past sizes this is particularly challenging due to the lack of
independence between inter-coalescence times.

The applicability of our method to demographic inference is contingent on scaling it to
large enough samples that power exists to detect recent growth. Critical to our sampling
approach is calculation of the probability that branches start and end at specific coalescent
events. As mentioned in the methods section, the calculation of the probability a branch
with j descendants starts at a given coalescent event requires summing over all possible
histories preceding the event. This value increases incredibly quickly with sample size.
For event n − k + 1 the number of possible histories is the total way to partition n −
k items, at n = 250 and k = 50 this value is over 2.1 × 1014, and this sum needs to
calculated at every event. Even with an importance sampling approach that limits the space
of considered histories to only those with a non-zero probability of giving rise to a branch
with j descendants, calculation of P (start) is too computationally burdensome for sample
sizes above ≈ 100. In the future, an efficient method to calculate or estimate P (start)

would greatly expand the capabilities of the work presented here.
A driving motivation for our development of the sampling method presented in this

chapter was to facilitate incorporation of pairwise r2 into demographic estimation. In ap-
pendix C.0.12 we present a novel likelihood the includes the probability of a sample’s ob-
served pattern of pairwise r2 under a given demographic likelihood. The likelihood can be
calculated using either coalescent simulations or the method presented here, and research
is ongoing into the potential power gains it can provide versus likelihood estimation made
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using the frequency spectrum exclusively.
A global picture of the varying rates at which human populations have grown is going

to require inference to be made on many large genetic samples. The current widely applied
methods, performing multitudinous coalescent simulations or using diffusion approxima-
tions, can accomplish such inference, but leave substantial room for improvement. Here we
have developed a novel method designed to be more efficient than coalescent simulations,
while not limiting the possible summary statistics used for likelihood estimation. While our
method has issues with scalability, with further work it has the potential to be an important
building block in our effort to understand the history of our species.
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CHAPTER 5

Discussion

From the search for a population level understanding of disease and demography to the
personal level of clinical diagnoses, genetic sequencing has become an integral tool in all
areas of human genetics. One major discovery made possible through the sequencing of
large samples is the great quantity of rare genetic variation present in human populations. In
this dissertation, we have presented three novel methods aimed at leveraging that abundance
to further our knowledge of both complex disease and human history.

In chapter 2 we evaluated the robustness of group-based association tests to population
stratification using the joint site frequency spectrum of samples from several European
populations. We found that the tests clustered into two classes which differed in their
susceptibility to p-value inflation caused by population structure. Using the statistics of
allele sharing and weighted symmetry, we quantified two types of rare variant population
structure, and showed that each is correlated with inflation of p-values in one of the group-
based test classes.

Genomic control (Devlin and Roeder, 1999) and principal components analysis (Price
et al., 2006) are broadly applicable methods for correcting p-value inflation due to pop-
ulation stratification in single variant association tests. Such general remedies have not
been forthcoming for group-based association tests. Correction is much more challeng-
ing for group-based statistics, which are composed of variants that each have their own
unique population history. While correction of population stratification remains problem-
atic for group-based tests, its existence in genome-wide data should be easily recognized
using QQ-plots. For candidate gene studies, or other studies with insufficient data to detect
p-value inflation using a QQ-plot, our work suggests an additional method for detecting
stratification. To minimize the number of null variants in a statistic, annotation based filters
are used to select variants for inclusion. Variants excluded by these filters will still contain
signal for underlying population structure, however, we expected them to be mostly unasso-
ciated with phenotypes of interest. Thus, performing association testing using group-based
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statistics comprised of excluded variants should detect inflation due to structure, and is
applicable in datasets of any size.

Generally, the application of group-based association statistics to real datasets has re-
sulted in too few rather than too many associations. The most compelling explanation for
the absence of group-based findings in current studies is a lack of power. Even though
group-based tests often have substantially more power than single variant tests to detect
genotype-phenotype associations in the context of rare variants, in reality that power rests
on a precarious balance between including enough variants, without including too many
non-causal variants. Recent studies are using several approaches to address the lack of
power and findings in the context of rare variants. New methods, building on the statistics
we reviewed in chapter 2, have been proposed to optimize the power of group-based tests
(Chen et al., 2012; Lee et al., 2012). For many complex diseases, large meta-analyses that
combined the results from multiple smaller studies yielded extensive novel single variant
associations (Teslovich et al., 2010; Peden et al., 2011). Methods to allow meta-analysis of
group-based tests is an active area of research (Lee et al., 2013; Feng et al., 2014), likely
to be widely adopted by the consortia that successfully collaborated to find common vari-
ants associated with disease. Study design is another area where efforts are being made to
increase the power to detect rare variant associations. Family based studies were critical
for early genetic discoveries (Tsui et al., 1985; MacDonald et al., 1993), and with their
potential for enrichment of rare variants (Peng et al., 2013), interest has been renewed in
studies of related samples. For example, as part of the T2D-GENES consortium the San
Antonio Family Heart Study (SAFHS) (Mitchell et al., 1996) and San Antonio Family
Diabetes/Gall Bladder Study (Hunt et al., 2005) have strategically selected samples from
20 large pedigrees and performed whole genome sequencing with the goal of maximizing
their power to detect rare variant associations with type 2 diabetes and related metabolic
phenotypes (Matt Zawistowski, personal communication, July 2, 2014).

While it is possible that some of the initial excitement over rare variant’s potential to
explain the heritability of complex traits was misplaced (Simons et al., 2014), there have
been some exciting discoveries made (Guerreiro et al., 2012; Cruchaga et al., 2014; Ortega
et al., 2014). With the growing quantity of data available, and with more powerful statistics
and study designs being used, it is nearly certain that additional significant findings are on
the horizon. As studies grow more powerful, distinguishing true phenotype associations
from spurious findings caused by population structure will be critical, and the methods
introduced in chapter 2 to quantify population structure and predict its impact on testing
results will likewise become increasingly valuable.

In chapter 3 we moved from disease genetics to population demography and introduced
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a two-parameter model of accelerating, faster than exponential population growth. We
showed that the additional “acceleration” parameter, β, in our models made possible the
generation of samples containing large quantities of very rare variants without inflating
the quantities of more common variants, and thus overcame the inadequacies of simple
exponential growth models as observed in Coventry et al. (2010).

While we showed the potential of our models in chapter 3, an important next step is
showing that they can accurately reflect human history. This is a challenging problem, and
is likely to require very large samples. While α and β are theoretically identifiable, there
are an infinite number of pairs for every possible current size and growth duration, making
fine scale distinction more difficult than with a single exponential growth parameter. A
complicating factor is that accurate inference of the rate of population growth requires
genetic regions as free of selection as possible. Current practice holds that the regions least
likely to be under selection are those containing few genes or known regulatory elements,
regions of little interest to functional and disease association studies generating the majority
of publicly available human sequence data. While Gazave et al. (2014) were able to secure
funding for the sequencing of a sample specifically for inference of population growth rates,
it was modest in size and scope, limiting their potential findings. The best possibility for the
creation of large datasets with coverage of putatively neutral regions of the genome comes
from the continuing decline in the price of whole genome sequencing. The sequencing of
whole genomes in large samples by well funded disease association studies will have the
added benefit of making accurate inferences about the rate of population growth possible.

Efforts to expand on the findings of chapter 3 will need to be cognizant of the limitations
of the coalescent model with respect to large samples. A key assumption of the coalescent
model is that the sample whose ancestry is being simulated is significantly smaller than the
overall population it is drawn from. We show in appendix B.0.5 that for the sample and
population sizes considered in this dissertation, any distortions to the frequency spectrum
caused by violations of this assumption are likely to be mild. However, if in the future
larger samples are available for inference, it will be important to verify that the coalescent
assumptions remain reasonable. In the event that the coalescent is unable to accurately
model a genealogy due to the sample’s size, a strategy like that of Bhaskar et al. (2014) can
be employed. Bhaskar et al. (2014) presents a hybrid model, making use of a computation-
ally intensive discrete time process, one that allows more than two samples to coalesce in a
generation and more than two samples to coalesce to the same ancestor, during the period
when the ratio of sample size to population size is too great for accurate approximation via
the coalescent.

In chapter 4 we proposed a series of analytic equations that allowed us to sample the
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lengths of internal and external branches from realizations of a sample’s genealogy. We
showed that the results of our method were comparable with those of full coalescent simu-
lations, with room for substantial improvements in computational efficiency. As currently
implemented, these efficiency gains remain largely theoretical, especially for large sample
sizes. However, with further research, hopefully uncovering a way to quickly estimate the
conditional probability of a branch with a given number of descendants starting at a specific
coalescent event (equation 4.5) and an accurate way of sampling from the distribution of
time remaining in a genealogy above a given threshold, our calculations have the potential
to prove very useful in future inference endeavors.

In addition to our analytic calculations, deriving a method for incorporating linkage
disequilibrium information into demographic inference is also a major goal of our current
research. In the appendix for chapter 4 we develop a framework for likelihood estimation
that includes the probability of observed pairwise r2. Work is ongoing to determine how
much additional power our likelihood provides for distinguishing between the increasingly
complicated demographic models necessary for capturing a recent acceleration in popula-
tion growth.

The recent rate of discovery in human genetics has been staggering, and has generated
a technology fueled avalanche of data. Pulling further findings from this data will require
robust and powerful methods of analysis. In this dissertation we have presented three new
statistical approaches, each aimed at harnessing the abundance of rare variation in the hu-
man genome to expand our understanding of complex disease and human demography.
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APPENDIX A

Appendix for Chapter 2

A.0.1 An analytic model of the JSFS

In our research we also develop a way to generate analytic JSFS, and perform simulations
with them parallel to our empirical JSFS. The qualitative results from these models are the
same as those shown in Figures 2.1, 2.3, 2.4, 2.5.

Analytic JSFS are created by calculating the expected JSFS, Φ = {φ(i, j)|f1, f2}, be-
tween two populations with divergence parameters f1 and f2. Motivated by the work of
Balding and Nichols (1995) we use a hierarchical beta model to define the marginal prob-
abilities of allele frequencies for two populations (labeled 1 and 2). For a given single
nucleotide variant, let pA ∼ Beta(α, β) be a prior distribution for the frequency of a non-
reference allele in the ancestral population of population 1 and 2. Let p1 be the frequency
of the non-reference allele in population 1, and p2 the frequency in population 2. To induce
a correlation between the frequencies, let

p1|pA ∼ Beta(
1− f1

f1

pA,
1− f1

f1

(1− pA)) and p2|pA ∼ Beta(
1− f2

f2

pA,
1− f2

f2

(1− pA))

(A.1)
such that f1 and f2 are controlling the extent of correlation. An interpretation of this model
is two daughter populations diverging from an ancestral population A with allele frequen-
cies pA, and under these conditions f1 and f2 are the FST values between repeated draws
from Beta(1−f1

f1
pA,

1−f1
f1

(1− pA)) and Beta(1−f2
f2
pA,

1−f2
f2

(1− pA)) respectively.
For a given variant site, let 0 ≤ X1 ≤ N1 be the number of non-reference alleles

observed in N1 population 1 haplotypes, and 0 ≤ X2 ≤ N2 be the number of non-
reference alleles observed in N2 population 2 haplotypes. Then X1|f1, pA follows Beta−
Binomial(N1, θ1pA, θ1(1−pA)) andX2|f2, pA followsBeta−Binomial(N2, θ2pA, θ2(1−
pA)) where θz = 1−fz

fz
. Then, conditional on pA, the joint distribution of allele counts in a
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dataset is

φ(i, j|f1, f2, pA) = P (X1 = i,X2 = j|f1, f2, pA)

=

(
N1

i

)
B(i+ θ1pA, N1 − iθ1(1− pA))

B(θ1pA, θ1(1− pA))

(
N2

j

)
B(j + θ2pA, N2 − jθ2(1− pA))

B(θ2pA, θ2(1− pA))

(A.2)

where B(x, y) is the β function. The unconditional distribution of X1 and X2 for popula-
tions with divergence parameter f1 and f2 is therefore

φ(i, j|f1, f2, pA) = P (X1 = i,X2 = j|f1, f2, pA)

=

∫ 1

0

P (X1 = i,X2 = j|f1, f2, pA)g(pA|α, β)dpA
(A.3)

where g(pA|α, β) is the density of a Beta(α, β) random variable. The integral in A.3 can
be computed either numerically or stochastically.

A.0.2 Using genomic control to correct for stratification

Figure A.1: A QQ-plot showing p-values for the dispersion test SKAT (blue) and burden
test GRANVIL (orange) before (solid circles) and after (hollow circles) applying a correc-
tion based on genomic control (λ50). The correction leads to overly conservative p-values
for group-based rare variant test. The overcorrection is more severe in dispersion tests such
as SKAT. The pictured scenario is Central and Northern Europeans at a mixing proportion
of r = 0.8.
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A.0.3 Summary statistics by functional annotation

Allele Sharing Weighted Symmetry

Populations Nonsynonymous Fourfold Degenerate Intronic Nonsynonymous Fourfold Degenerate Intronic

Central-Northern 0.665 0.692 0.714 0.955 0.963 0.961

Central-Northwestern 0.817 0.868 0.872 0.999 0.996 0.999

Central-Western 0.866 0.903 0.908 0.983 0.972 0.978

Northern-Northwestern 0.684 0.688 0.735 0.952 0.954 0.958

Northern-Western 0.618 0.621 0.678 0.937 0.936 0.943

Northwestern-Western 0.841 0.843 0.863 0.985 0.980 0.987

Table A.1: We computed allele sharing and weighted symmetry values for the JSFS of rare
(MAF < 1%) nonsynonymous, fourfold degenerate and intronic sites within four Euro-
pean populations. Differences in selective pressures and allele frequencies produce unique
JSFS for each class of variants, and we therefore do not expect identical summary statistics.
However, similar patterns of population structure captured by nonsynonymous variants are
also seen for fourfold degenerate and intronic sites. As a result, group-based analyses of
either fourfold degenerate or intronic sites would produce differential stratification between
the dispersion and burden tests, and provide a method for observing population stratifica-
tion in candidate gene studies without genome-wide data.
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APPENDIX B

Appendix for Chapter 3

B.0.4 Achieving infinite population size in finite time

Our two parameter formulation of growth has the form

Pt =

[
Pβ−1
0

1+Pβ−1
0 (β−1)αt

]
1

β−1 for β 6= 1

P0e
−αt for β = 1

(B.1)

P is the initial population size in haplotypes, t is time, and the model parameters α and
β are constants. For β 6= 1 population size approaches infinity as the denominator of the
solution approaches 0 which occurs as

P β−1
0 (β − 1)αt→ 1. (B.2)

This can be rewritten as
t→ 1

αP β−1
0 (β − 1)

, (B.3)

implying there is a finite time at which a population growing according to this model ap-
proaches infinite size. Assuming t, α, and P0 are all positive, β > 1 results in infinite size in
finite time. In coalescent simulation, the parameters α and β can be selected with equation
(B.3) to make sure population size in the present is finite.

B.0.5 A comparison of sample size and current effective population
size

An underlying assumption of the coalescent model is that the sample size is much smaller
than the overall population size. When this assumption does not hold, the simplifying as-
sumptions that there is at most one coalescent event per generation and that no more than
two samples coalesce to the same common ancestor in a given event become unrealistic.
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Wakeley and Takahashi (2003) performed a thorough study of how violations of the as-
sumption n << N alter a coalescent sample’s frequency spectrum and conclude that while
n ≤ N the effects are “surprisingly mild”. Of concern in our work is that FTE growth is so
rapid that looking backwards in time the underlying population shrinks at a faster rate than
our sample, resulting in a situation where the sample size and population size are of com-
parable magnitude and consequently the simplifying assumptions of the basic coalescent
no longer hold.

To assess this possibility, we perform a series of simulations with a sample size of
20,000 haplotypes, a current population size of 8,000,000 haplotypes and an ancestral size
of 20,000 haplotypes during which we calculate the ratio of sample size to average overall
population size during growth. We find that for β between 0.1 and 3.5, the range investi-
gated for this study, the average sample size to population size ratio does not exceed 0.177
(Figure B.1). In particular, for β values close to exponential growth, those between 0.5 and
1.5, the ratio does not exceed 0.05. In light of this and the values observed in our models,
our work does not appear to be violating simplifying assumptions of the basic coalescent
too substantially, and using our growth model within this framework is reasonable.

In our paper, we also present a constant population size model and a model of instan-
taneous growth as bounds on many of the results. While they are not present on figure
B.1, the constant population size model begins with a ratio of sample size to population
size of 1, and spends a good portion of its history close to this value. Likewise, at the time
where the transition between current and ancestral size occurs in the instantaneous growth
model sample size is still very large relative to population size, achieving a maximum ratio
of 0.61. In both these cases the simplifying assumptions of the basic coalescent are likely
more substantially violated than in our FTE models. Wakeley and Takahashi (2003) re-
port that the major effect of violating this assumption is a deficiency in singleton variation,
so results for these models may under-represent singletons. We include these models in
this study for comparison only. If drawing accurate inferences from these models were
of real interest, it would be important to correct for this issue, and it would likely require
simulations using a more complex coalescent model.

B.0.6 Measuring linkage disequilibrium decay

We measure the decay of linkage disequilibrium in our samples with two commonly used
pairwise statistics: r2 and D′. For two variants, A and B, let pA and pB be their respective
minor allele frequencies and pAB the frequency of the haplotype with both minor alleles,
then we can define the disequilibrium coefficient DAB = pAB − pApB. Using D, r2 is the
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Figure B.1: Ratio of sample size to average population size across a range of β values.
Results are based on average values from 1,000 independent samples, each of 20,000 hap-
lotypes simulated from an ancestral population of 20,000 haplotypes growing to 8,000,000
haplotypes over 500 generations. The figure also gives a sense of the average number of
haplotypes remaining at the end of growth for each model, corresponding to the beginning
of linear decline and particularly noticeable for β = 0.1 and 0.5.

correlation coefficient between the loci and is defined as

r2
AB =

D2
AB

pA(1− pA)pB(1− pB)
. (B.4)

D′ is defined as

D′AB =

 DAB
min(pApB ,(1−pA)(1−pB))

DAB ≤ 0

DAB
min(pA(1−pB),(1−pA)pB)

DAB > 0
. (B.5)

In our research we are interested in the magnitude but not the sign of D′, and conse-
quently, for the sake of comparison, we use the absolute value of this statistic in our results.
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B.0.7 Non-singleton rare variation as growth accelerates
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Figure B.2: The amount of very rare non-singleton variation in samples of 10,000 haplo-
types with an initial growth rate of α = 100 and 500 generations of growth.
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B.0.8 The quantity of variation changes with the duration of growth
and the rate of acceleration
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Figure B.3: The average number of variants per kilobase (kb) in samples of 10,000 haplo-
types with an initial growth rate of α = 20. Each colored line represents a different growth
duration, with dashed lines giving the values for all variants per kb, and solid lines only
the values for singleton variants per kb. The shorter the duration of growth, the less impact
accelerating growth has on the values. And for any given acceleration value β the longer
the duration the greater the number of variants and singletons present in the samples.

62



B.0.9 The quantity of variation changes with the duration of growth
and the rate of acceleration
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Figure B.4: The current population sizes presented in figure 3.4 correspond to distinct α,
β pairs, plotted here. These results are based on the average number of (A) singletons and
(B) all variants in 30 kb of simulated sequence in 10,000 haplotype samples drawn from
a population growing from an ancestral size of 20,000 haplotypes over 500 generations.
Each colored line represents a different number of singletons or total variants. Contour
lines were generated using linear interpolation over a fine-scale range of α determined
using a grid search.
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B.0.10 Linkage disequilibrium decay in models with the same initial
growth rate
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Figure B.5: Pairwise linkage disequilibrium decay measured by r2 and D’ in samples of
10,000 haplotypes from populations with an initial growth rate of α = 100 and 500 gen-
erations of growth. The panels show LD decay in variants with a sample minor allele
frequency of (A) 10% to 15%; (B) 1% to 2%; (C) a fixed allele count of 10. Each colored
line represents a different growth model.
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APPENDIX C

Appendix for Chapter 4

C.0.11 Pairwise r2 and recent demography

Existing inference frameworks that summarize data using the frequency spectrum rely on
a function of the mean aggregate length of branches with the same number of descendants
in the final sample. This suggests that power to distinguish between demographic models
can be increased by incorporating statistics that capture additional information about the
distribution of branches in the ARG. Pairwise r2 (Appendix B.0.6), a measure of LD be-
tween two variants, is one such statistic. Given two ARGs with identical mean lengths for
branches with j descendants, the expected number of variants observed in the final sample
with minor allele count j will be the same. However, if the variances in individual branch
lengths differ between the ARGs then the probability of observing multiple mutations on
the same branch will be different. When mutation events occur on the same branch of
an ARG, they are perfectly correlated and have r2 = 1 until they are split by a recombi-
nation event. Similarly, mutations arising on different ARG branches have r2 = 0 until
they are combined on a haplotype via recombination. Hence, for pairs of genetically close,
putatively young genetic variants, unlikely to have been split by recombination during the
ancestry of a sample, pairwise r2 takes on a binary nature, and indicates whether mutations
arose on the same branch of the ARG. As a result, pairwise r2 gives information about
the variance in individual branch lengths along a sample’s ARG, which is influenced by
population demography but not captured by the frequency spectrum.

C.0.12 A demographic likelihood incorporating pairwise r2

Given an observed frequency spectrum and the pattern of pairwise r2 at a locus we can write
the likelihood of the observations under a given demographic model in the following way.
Let Ψ denote the space of all possible genealogies G at the locus. Then for a model where
the population size is 2N haplotypes, the per base mutation rate is µ, and growth occurs
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according to a pair of growth parameters (α, β) (Reppell et al., 2014), the likelihood of the
model based on the observations can be written as

L(N,α, β, µ|S, LD) =
∑
G∈Ψ

P (LD|S,G, µ)P (S|G, µ)P (G|N,α, β, µ), (C.1)

where S represents the observed frequency spectrum and LD the observed pattern of
pairwise r2. The parameter space Ψ is too large for summation over its entirety, so we
approximate the likelihood via Monte-Carlo estimation using sampled realizations from Ψ,
indexed by z:

L̂(N,α, β, µ|S, LD) =
1

Z

Z∑
z=1

P (LD|S,Gz, µ)P (S|Gz, µ). (C.2)

Our likelihood is comprised of three components. P (S|Gz, µ) encompasses both a
“rate” component calculated using the total amount a variation observed at the locus and a
“shape” component calculated using the allele counts of the observed variation. The third
component is the probability of the observed pattern of pairwise r2, written as P (LD|S,Gz, µ).
For a sample of n haplotypes, at a locus with m sites, including non-variable sites, we use
j ∈ [1, n − 1] to index variant minor allele counts (MACs) in the sample and i to index
individual branches along a genealogy (Table C.1). Note, mutations that occur on a branch
of the genealogy with exactly j descendants in the final sample appear as variants with j
minor alleles.

Define Stot =
n−1∑
j=1

Sj , where Stot is the total number of variants observed at the locus

and Sj is the number of observed variants with with MAC j. Correspondingly, Sj =
wj∑
i=1

si,j

where si,j is the number of mutations which occur along genealogy branch i and i runs from
1 to wj , with wj the total number of branches in the genealogy with j descendants in the
final sample. The branches of the genealogy are measured in units of 2N generations, and

the total length of the genealogy is written as Ltot, with Ltot =
n−1∑
j=1

Lj =
n−1∑
j=1

wj∑
i=1

li,j for the

individual branches i.
Following the approach of Boyko et al. (2008), subsequently employed in both Coven-

try et al. (2010) and Nelson et al. (2012), the rate likelihood component is specified by a
Poisson distribution for Stot, of the form

P (Stot|Gz, µ) = e−mµLtot
(mµLtot)

Stot

Stot!
, (C.3)
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Parameter Definition

Gz genealogy z

µ mutation rate (mut/base/gen)

n number of haplotypes in sample

m total number of sites (both variant and monomorphic) at locus

Stot Total observed variants at locus

Sj number observed variants with MAC j at locus

si,j number of mutation events along branch li,j
Ltot total length of entire ancestral tree

Lj total length of branches in tree with MAC j

li,j individual tree branch with j descendants, indexed by i

wj the number of branches in a genealogy with j descendants

Table C.1: Parameters used in our proposed likelihood, with indices i ∈ [1, wj] and j ∈
[1, n− 1].

and the shape likelihood follows a multinomial distribution:

P (Sj, j = 1, ..., n− 1|Gz, Stot, µ) =
Stot!

n−1∏
j=1

Sj!

n−1∏
j=1

(
Lj
Ltot

)Sj (C.4)

Like the shape likelihood component, the LD likelihood component follows a multi-
nomial distribution. For each MAC j, with Sj total observations and success probabilities
determined by individual branch lengths, the probability of the observed pairwise r2 is
calculated as:

P (LD|S,Gz, µ) =
n−1∏
j=1

∑
Sj

Sj!
wj∏
i=1

si,j!

wj∏
i=1

(
li,j
Lj

)si,j =
n−1∏
j=1

∑
Sj

P (sj|lj, Sj) (C.5)

Sj denotes the possible configurations of mutations along the lj = (l1,j, l2,j, ..., lwj ,j)

branches that result in the observed number of variant pairs with r2 = 1. For example,
if we observe three variants with a given MAC, and two have r2 = 1, we sum over all
possible configurations where two variants occur on the same branch and the third occurs
on a different branch.

To calculate this probability we make the assumption that variants with r2 = 1 arose
on the same branch, while those with r2 < 1 did not. This assumption only makes sense
for very rare and genetically close variants. To address this, instead of calculating over
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j ∈ [1, n − 1] we specify a MAC cutoff CLD above which we do not calculate the proba-
bility of observed pairwise r2. Likewise, for the shape likelihood, there are relatively few
observations of variants with larger MACs in the size of loci we perform inference over.
Subsequently, a MAC cutoff is also applied to the shape likelihood, with all variants above
the threshold grouped into a single category with success probability (1−

∑Cshape
j=1 Lj)/Ltot.

Note, CLD need not equal Cshape.
Using formulas C.3, C.4, and C.5, we estimate the likelihood for a single locus. We

then extend our inference across multiple loci (1, ..., p) by taking the product:

L̂(N,α, β, µ) =
P∏
p=1

L̂p(N,α, β, µ) (C.6)

C.0.13 Likelihood estimation using importance sampling

In equation C.5 the number of terms in Sj is often so large that direct summation is pro-
hibitive. Sj is composed of individual configurations of mutations sj = (s1,j, s2,j, ..., swj ,j)

which can be grouped by sorting their entries in descending order (Figure C.1). We label
these ordered configurations s∗j , then the sum from equation C.5 can be written as

∑
Sj

P (sj|lj, Sj) =
∑
s∗j∈Sj

∑
sj∈s∗j

P (sj|lj, Sj). (C.7)

After ordering, K of the configurations, sj have the same form s∗j , then we have the
useful identity

∑
sj∈s∗j

P (sj|lj, Sj) = KP̂ (sj|lj, Sj) (C.8)

where P̄ (sj|lj, Sj) is the average value of P (sj|lj, Sj) for sj ∈ s∗j . For each s∗j we estimate
P̄ (sj|lj, Sj) using importance sampling, and through equations C.7 and C.8 this allows us
to calculate the likelihood P (LD|S,Gz, µ) across Sj of any size.
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s          (3,1,1,1) 

s          (1,3,1,1) 

s          (1,1,3,1) 

s          (1,1,1,3) 

s          (2,2,2,0) 

s          (2,2,0,2) 

s          (2,0,2,2) 

s          (0,2,2,2) 

S 

s*= (3,1,1,1) 

s* = (2,2,2,0) 

Figure C.1: Visual representation of S, s, and s*. For an arbitrary minor allele count, six
variants are observed at a locus in a sample, with three of them in r2 = 1. A realization
of the sample’s ancestry contains four branches with the corresponding number of descen-
dants. S is then comprised of eight possible mutation configurations, s, across the four
branches. By ordering the mutation counts the eight s configurations are grouped into two
vectors s*.

The importance sampling algorithm works as follows. we begin with an s∗, comprised
of wj ordered counts st,j , t ∈ [1, wj] is used here to make the distinction that these mutation
counts are not associated with a specific genealogy branch i before sampling. Then, for
each st,j > 0 we sample a branch i with length li,j to place the st,j mutations on according
to

P (li,j, st,j) =
(li,j)

st,j

wj∑
i=1

(li,j)st,j
for j = 1, ..., CLD. (C.9)

Branches can only be selected once, so the probability of a complete configuration,
where a branch has been sampled for every st,j > 0, is written as:

P (lj, s
∗
j) =

wj!

(wj −
n−wj+1∑
k=1

λk)!
n−wj+1∏
k=1

λk!

wj∏
i,t=1

P (li,j, st,j) (C.10)

Where n is the sample size and λk is the number of branches with k mutation events.
Using this sampling algorithm with U iterations, we estimate
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P̂ (sj|lj, Sj) =
1

U

U∑
u=1


Sj!(wj −

n−wj+1∑
k=1

λk)!
n−wj+1∏
k=1

λk!

wj!
wj∏
t=1

st,j!

wj∏
i,t=1

(
li,j,u
Lj

)st,j,u

P (li,j,u, st,j,u)

 . (C.11)

Which is substituted into equation C.8 to estimate the likelihood.

70



BIBLIOGRAPHY

1000 Genomes Project Consortium, Abecasis, G., Altshuler, D., Auton, A., Brooks, L.,
Durbin, R., Gibbs, R., Hurles, M., and McVean, G. (2010). A map of human genome
variation from population-scale sequencing. Nature, 467, 1061–73.

Adams, A. and Hudson, R. (2004). Maximum-likelihood estimation of demographic pa-
rameters using the frequency spectrum of unlinked single-nucleotide polymorphisms.
Genetics, 168(3), 1699–712.

Balding, D., , and Nichols, R. (1995). A method for quantifying differentiation between
populations at multi-allelic loci and its implications for investigating identity and pater-
nity. Genetica, 96, 3–12.

Bentley, A., Chen, G., Shriner, D., Doumatey, A., Zhou, J., Huang, H., Mullikin, J.,
Blakesley, R., Hansen, N., Bouffard, G., Cherukuri, P., Maskeri, B., Young, A.,
Adeyemo, A., and Rotimi, C. (2014). Gene-based sequencing identifies lipid-influencing
variants with ethnicity-specific effects in african americans. PLoS Genet., 10, e1004190.

Bhaskar, A., Clark, A., and Song, Y. (2014). Distortion of genealogical properties when
the sample is very large. Proc. Natl. Acad. Sci. USA, 111, 2385–90.

Boyko, A., Williamson, S., Indap, A., Degenhardt, J., Hernandez, R., Lohmueller, K.,
Adams, M., Schmidt, S., Sninsky, J., Sunyaev, S., White, T., Nielsen, R., Clark, A., and
Bustamante, C. (2008). Assessing the evolutionary impact of amino acid mutations in
the human genome. PLoS Genet., 4, e1000083.

Campbell, C., Chong, J., Malig, M., Ko, A., Dumont, B., Han, L., Vives, L., O’Roak, B.,
Sudamant, P., Shendure, J., Abney, M., Ober, C., and Eichler, E. (2012). Estimating
the human mutation rate using autozygosity in a founder population. Nat. Genet., 44,
1277–81.

Chen, L., Hsu, L., Gamazon, E., Cox, N., and D.L., N. (2012). An exponential combination
procedure for set-based association tests in sequencing studies. Am. J. Hum. Genet., 91,
977–86.

Coventry, A., Bull-Otterson, L., Liu, X., Clark, A., Maxwell, T., Crosby, J., Hixson, J., Rea,
T., Muzny, D., Lewis, L., Wheeler, D., Sabo, A., Lusk, C., Weiss, K., Akbar, H., Cree,
A., Hawes, A., Newsham, I., Varghese, R., Villasana, D., Gross, S., Joshi, V., Santibanez,
J., Morgan, M., Chang, K., Hale IV, W., Templeton, A., Boerwinkle, E., Gibbs, R., and

71



Sing, C. (2010). Deep resequencing reveals excess rare recent variants consistent with
explosive population growth. Nature Communications, 1, 131.

Cruchaga, C., Karch, C., Jin, S., Benitez, B., Cai, Y., Guerreiro, R., Harari, O., Norton,
J., Budde, J., Bertelsen, S., Jeng, A., Cooper, B., Skorupa, T., Carrell, D., Levitch,
D., Hsu, S., Choi, J., Ryten, M., UK Brain Expression Consortium, Hardy, J., Ryten,
M., Trabzuni, D., Weale, M., Ramasamy, A., Smith, C., Sassi, C., Bras, J., Gibbs, J.,
Hernandez, D., Lupton, M., Powell, J., Forabosco, P., Ridge, P., Corcoran, C., Tschanz,
J., Norton, M., Munger, R., Schmutz, C., Leary, M., Demirci, F., Bamne, M., Wang,
X., Lopez, O., Ganguli, M., Medway, C., Turton, J., Lord, J., Braae, A., Barber, I.,
Brown, K., Alzheimer’s Research UK Consortium, Passmore, P., Craig, D., Johnston, J.,
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J., Dyer, T., Duggirala, R., and Stern, M. (2005). Genome-wide linkage analyses of
type 2 diabetes in mexican americans: the san antonio family diabetes/gallbladder study.
Diabetes, 54, 2655–62.

Huyghe, J., Jackson, A., Fogarty, M., Buchkovich, M., Stanlokov, A., Stringham, H., Sim,
X., Yang, L., Fuchsberger, C., Cederberg, H., Chines, P., Teslovich, T., Romm, J., Ling,
H., McMullen, I., Ingersoll, R., Pugh, E., Doheny, K., Neale, B., Daly, M., Kuusisto,
J., Scott, L., Kang, H., Collins, F., Abecasis, G., Watanabe, R., Boehnke, M., Laakso,
M., and Mohlke, K. (2013). Exome array analysis identifies new loci and low-frequency
variants influencing insulin processing and secretion. Nat. Genet., 45, 197–201.

Keinan, A. and Clark, A. (2012). Recent explosive human population growth has resulted
in an excess of rare genetic variants. Science, 336, 740–43.

Keinan, A., Mullikin, J., Patterson, N., and Reich, D. (2007). Measurement of the hu-
man allele frequency spectrum demonstrates greater genetic drift in east asians than in
europeans. Nat. Genet., 39, 1251–55.

Kersting, G. and Stanciu, I. (2013). The internal branch lengths of the kingman coalescent.
arXiv, page 1303.4562 [math.PR].

Kiezun, A., Garimella, K., Do, R., Stitziel, N., Neale, B., McLaren, P., Gupta, N., Sklar, P.,
Sullivan, P., Moran, J., Hultman, C., Lichtenstein, P., Magnusson, P., Lehner, T., Shugart,
Y., Price, A., de Bakker, P., Purcell, S., and Sunyaev, S. (2012). Exome sequencing and
the genetic basis of complex traits. Nat. Genet., 44, 623–30.

Kingman, J. (1982a). The coalescent. Stoch. Process Appl., 13, 235–48.

73



Kingman, J. (1982b). On the genealogy of large populations. Essays Stat. Sci., 19, 27–43.

Kong, A., Gudbjartsson, D., Sainz, J., Jonsdottir, G., Gudjonsson, S., Richardsson, B., Sig-
urdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson, S., Frigge, M.,
Thorgeirsson, T., Gulcher, J., and Stefansson, K. (2002). A high-resolution recombina-
tion map of the human genome. Nat. Genet., 31, 241–7.

Ladouceur, M., Dastani, Z., Aulchenko, Y., Greenwood, C., and Richards, J. (2012). The
empirical power of rare variant association methods: results from sanger sequencing in
1,998 individuals. PLoS Genet., 8, e1002496.

Lee, S., Emond, M., Bamshad, M., Barnes, K., Rieder, M., Nickerson, D., NHLBI GO
Exome Sequencing Project Lung Project Team, Christiani, D., Wurfel, M., and Lin, X.
(2012). Optimal unified approach for rare-variant association testing with application
to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet., 91,
224–37.

Lee, S., Teslovich, T., Boehnke, M., and Lin, X. (2013). General framework for meta-
analysis of rare variants in sequencing association studies. Am. J. Hum. Genet., 93,
42–53.

Li, B. and Leal, S. (2008). Methods for detecting associations with rare variants for com-
mon diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–21.

Li, C. (1969). Population subdivision with respect to multiple alleles. Ann. Hum. Genet.,
33, 23–29.

Liu, K., Fast, S., Zawistowski, M., and Tintle, N. (2013a). A geometric framework for
evaluating rare variant tests of association. Genet. Epidemiol., 37, 345–57.

Liu, L., Sabo, A., Neale, B., Nagaswamy, U., Stevens, C., Lim, E., and Bodea, C. (2013b).
Analysis of rare, exonic variation amongst subjects with autism spectrum disorders and
population controls. PLoS Genet., 9, Epub.

Liu, Q., Nicolae, D., and Chen, L. (2013c). Marbled inflation from population structure in
gene-based association studies with rare variants. Genet. Epidemiol., 37, 286–92.

Lohmueller, K., Sparsø, T., Li, Q., Andersson, E., Korneliussen, T., Albrechtsen, A., Ba-
nasik, K., Grarup, N., Hallgrimsdottir, I., Kiil, K., Kilpeläinen, T., Krarup, N., Pers, T.,
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