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ABSTRACT 

 

Novel Nitric Oxide (NO)-Releasing Polymers and their Biomedical Applications 

 

by 

 

Elizabeth J. Brisbois 

 

 

 

Chair:  Mark E. Meyerhoff 

 

 

 

 Two common factors that can cause complications with indwelling biomedical 

devices are thrombus and infection.  Nitric oxide (NO) is known to be a potent inhibitor 

of platelet activation and adhesion.  Healthy endothelial cells exhibit a NO flux into the 

bloodstream of 0.5~4×10
-10

 mol cm
-2

 min
-1

.  In addition, NO that is released within the 

sinus cavities and by neutrophils/macrophages functions as a potent natural antimicrobial 

agent.  Therefore, polymer materials that release NO are expected to have similar anti-

thrombotic and antimicrobial properties.   

In this dissertation work, two novel approaches to achieving long-term NO release 

from polymers were studied and evaluated for their potential biomedical applications.  In 

the first approach, S-nitroso-N-acetypenicillamine (SNAP)-doped polymers were studied 

for potential hemocompatibility.  The SNAP-doped Elast-eon E2As (block copolymer of 

poly(dimethylsiloxane) and polyurethane) creates an inexpensive polymer that can 

locally deliver physiologically relevant levels of NO (via thermal and photochemical 
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reactions).  SNAP was also found to be surprisingly stable in the E2As polymer during 

shelf-life stability and ethylene oxide sterilization studies.  The SNAP/E2As polymer was 

coated on the inner walls of extracorporeal circulation (ECC) circuits and was found to 

preserve the platelet count at ~100% of baseline and reduce thrombus area after 4 h blood 

flow in a rabbit model.  The SNAP/E2As polymer was also used to fabricate NO-

releasing catheters that were implanted in sheep veins for 7 d.  The SNAP/E2As catheters 

significantly reduced the amount of thrombus and bacterial adhesion (in comparison to 

E2As control catheters).   

In the second approach, the NO release from diazeniumdiolated 

dibutylhexanediamine (DBHD/N2O2)-doped polymers was significantly improved using 

various poly(lactic-co-glycolic acid) (PLGA) additives.  Using acid-capped PLGA 

additives was found to cause high initial bursts of NO, while using an ester-capped 

PLGA additive extended the NO release for up to 14 d.  The pH changes corresponding 

to the NO release profiles from these films was visualized by doping films with pH 

indicator dyes.  Poly(vinyl chloride)- and Elast-eon E2As were used as the base polymers 

for combined DBHD/N2O2 and PLGA coatings on the inner walls of ECC circuits.  After 

4 h of blood flow in a rabbit model, the E2As-based NOrel circuits preserved platelets at 

a higher level than PVC-based NOrel circuits (97% and 80% of baseline, respectively).  

This demonstrates that the inherent hemocompatibility properties of the base polymer can 

also influence the efficiency of the NO release coatings.  A DBHD/N2O2-doped SG-80A 

polymer material was also studied and used to fabricate patches that were applied to scald 

burn wounds infected with Acinetobacter baumannii.  The NO released from these 

patches applied to the wounds is shown to significantly reduce the A. baumannii infection 

after 24 h (~4 log reduction).   

The results for both of types of NO-releasing polymers studied here demonstrated 

greatly enhanced biocompatibility properties, in terms of reducing thrombus and 

infection.  These materials have the potential for improving the hemocompatibility of a 

wide variety of blood-contacting medical devices.  
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CHAPTER 1 

 

Introduction:  Recent Advances in Hemocompatible Polymers for Biomedical 

Applications 

 

 

 

1.1  Introduction  

 

1.1.1  Hemocompatibility of Common Blood-Contacting Devices 

Blood-material interaction is critical to the success of implantable medical 

devices, including simple catheters, stents and grafts, insulation materials for electrical 

leads of pacemakers and defibrillators, and complex extracorporeal artificial organs, 

which are used in thousands of patients every day.
1
  Polymers, including polyurethanes, 

silicone rubber, and poly(vinyl chloride), are used extensively in the healthcare industry 

to fabricate such biomedical devices.  Among other complications, thrombosis is one of 

the primary problems associated with clinical application of blood-contacting materials, 

which can cause serious complications in patients and ultimately failure of the device’s 

functionality.
2
  Thrombus formation can lead to significant consequences such as 

complete obstruction of blood vessels in which stents are placed,
3
 occlusion of catheters

4
 

and small diameter vascular grafts,
1
 errant results from implantable chemical sensors,

1
 

embolic complications with artificial hearts,
5
 and extensive blood damage and platelet 

consumption during extracorporeal membrane oxygenation.
5
  Such complications can 

result in significantly increased medical costs, extended hospitalization, amputation, or 

increased morbidity.  Despite a thorough understanding of the mechanisms of blood-

surface interactions and decades of bioengineering research effort, the ideal non-

thrombogenic prosthetic surface remains unidentified.
5
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Over the last 50 years, much has been learned about foreign surface-induced 

thrombosis and the attempt to prevent it with systemic anticoagulation and surface 

modifications.  In a clinical setting, many of these devices require the use of systemic 

anticoagulation (e.g., heparin) to avoid device failure.
6
  The long-term use of 

anticoagulants can also have adverse effects, including hemorrhage and 

thrombocytopenia.
7
  Despite these complications, heparin is still used as the standard 

anticoagulation therapy for patients on extracorporeal circulation (ECC), but the use of 

heparin does not prevent platelet activation and consumption.   

In this chapter, a review of some of the current and most promising strategies that 

have been used over the years to develop polymeric materials with improved 

hemocompatibility will be discussed, including highly hydrophilic or hydrophobic 

surfaces, albumin coated surfaces, zwitterionic polymers, attached endothelial cells, 

patterned surfaces, immobilized heparin, and nitric oxide (NO) release/generating 

surfaces.  Some of the important techniques employed (using in vitro and in vivo models) 

to assess the hemocompatibility of any new material, including the measurement of 

platelet preservation, platelet and protein adhesion, the effect of flow rates on thrombosis, 

and the ultimate surface clot area, will also be reviewed.   

 

1.1.2  Blood and the Coagulation Cascade 

 

Biomaterial related thrombosis is a complex process, where the initial biological 

response when blood comes in contact with a foreign surface is protein adsorption, which 

 

Figure 1.1.  Sequence of events leading to thrombus formation on blood-contacting surfaces (e.g., 

implanted medical devices).  
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is followed by platelet adhesion and activation, leading to thrombus formation (Figure 

1.1).
8
  Plasma proteins adsorb onto the surface of the implanted device (e.g., fibrinogen, 

fibronectin, von Willebrand factor (vWF), etc.) within seconds.  These proteins further 

interact with receptors on the plasma membranes of platelets and facilitate platelet 

adhesion on the surface.
9
  Upon contact with the foreign surface and platelet activation, a 

conformational change occurs leading to the exposure of the glycoprotein GPIIb/IIIa 

receptor that binds platelets to fibrinogen.
3
  Platelet activation also leads to conformation 

changes and the excretion of intracellular granulates containing agents (e.g., coagulation 

Factors V and VIII, adhesion molecules P-selectin and vWF, calcium ions, etc.) that 

further induce activation and aggregation of more platelets.  This also activates the 

coagulation cascade, where a series of self-amplifying reactions triggered through surface 

contact (intrinsic pathway) or tissue factors (extrinsic pathway) ultimately converge at the 

final common pathway to form a thrombus (Figure 1.2).  Throughout the coagulation 

 

Figure 1.2.  Simplified schematic of the coagulation cascade, where clotting is initiated by either 

surface contact (intrinsic) or tissue factors (extrinsic) and ultimately converges at the common 

pathway to form a thrombus.  



 

 

4 
 

cascade, the normally inactive factors become enzymatically activated (e.g., Factor X 

becomes Factor Xa) by surface contact or cleavage by other activated enzymes.  This 

sequence allows for rapid activation of other clotting factors and amplification of the 

entire coagulation cascade.  When blood comes in contact with a foreign surface 

(biomedical device) protein adsorption will trigger the first step of the intrinsic pathway, 

with activation Factor XII to Factor XIIa.  The presence of Factor XIIa will lead to the 

activation of Factor XI and eventually lead to the activation of Factor X and formation of 

thrombin (Factor II) in the common pathway.
3
  Thrombin converts fibrinogen into fibrin 

and also activates Factor XIII, which cross-links and stabilizes fibrin into an insoluble gel 

that traps platelets and red blood cells in a thrombus on the surface within hours.
9
   

 

1.1.3  Improving Hemocompatibility of Biomedical Devices 

In contrast to many polymers used in blood-contacting devices, the endothelium 

layer lining the human vasculature remains thrombus-free through several control 

mechanisms:  a non-fouling phospholipid coating, membrane bound/released inhibitors of 

platelet and coagulation factors, as well as an efficient fibrinolytic system that removes 

fibrin deposits.  Many of the major approaches for developing polymeric materials that 

are more hemocompatible are aimed at decreasing activation of key components of the 

coagulation cascade.  Surface pacification is one approach, where the polymer surfaces 

aim to minimize protein adsorption (e.g., fibrinogen) and platelet adhesion/activation.  

Another approach is utilizing active polymer surfaces (e.g., immobilized heparin or nitric 

oxide (NO) release) that can interact with proteins, cells, and platelets to inhibit parts of 

the coagulation cascade.  Research groups have worked to develop materials with 

suppressed blood-material interactions (e.g., polymeric materials which exhibit reduce 

protein and cell adhesion) and materials that mimic the non-thrombogenic endothelium.  

Polymers for blood-contacting devices are evaluated using various in vitro and in vivo 

testing methods, where protein and platelet adhesion are common markers to demonstrate 

the enhanced hemocompatibility properties of the material. 
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1.2  Overview of Current Technology/Strategies 

 

1.2.1  Hydrophilic and Hydrophobic Materials 

 Protein adsorption on polymer surfaces is a well-recognized initiator of thrombus 

formation.  Protein adsorption is dependent on a variety of material properties including 

surface charge, surface free energy, surface roughness, and a balance between 

hydrophobic and hydrophilic groups.
10

  Ikada et al. suggested that protein adhesion can 

be minimized when surface free energy is minimized, which occurs on strongly 

hydrophilic and strongly hydrophobic surfaces.
11

  One widely used approach has been to 

utilize hydrophilic surfaces in order to reduce protein adsorption and surface 

thrombogenicity.  It has been concluded that hydrophilic polymers exert a steric repulsion 

effect towards blood proteins and cells.
12, 13

  Hydrogels for blood contacting devices have 

been prepared using poly(vinyl alcohol) (PVA), polyacrylamides (PAAm), poly(N-vinyl 

pyrrolidone) (PNVP), poly(hydroxyethyl methacrylate) (PHEMA), poly(ethylene oxide) 

(PEO), poly(ethylene glycol) (PEG), poly(ethylene glycol) monomethyl ether (PEGME), 

and cellulose.
14

  These hydrophilic materials strongly adsorb water, increasing its 

similarity to biological tissue and producing minimal interface tension with blood.
15

  This 

strongly bound water also prevents cells and proteins from coming into contact with the 

polymer, reducing their adsorption to the surface.
16

   

 Many hydrogels have poor mechanical properties, thus they have been grafted or 

coated onto other polymeric substrates and have improved hemocompatibility.
15, 17-31

  

Immobilization of PEG (-CH2CH2O-) is another popular means to make a polymer more 

protein and cell resistant.
32

  Balakrishnan et al. demonstrated that PEGylated poly(viny 

chloride) had significantly less fibrinogen and platelet adsorption in comparison to a PVC 

control.
21

  Li et al. reported that poly(poly(ethylene glycol) dimethacrylate) 

(P(PEGDMA)) grafted on silicone rubber reduced platelet adhesion by 90% and also 

reduced plasma protein adsorption.
26

  However, platelets still adsorbed on some PEG 

surfaces during in vivo experiments, despite the low protein adsorption observed during 

in vitro studies.
33

  Plasma oxidation of polyethylene caused increased wettability with 

increased protein adsorption, but still reduced platelet adhesion.
34

  Some hydrogels (e.g., 

cellulose) typically used as dialysis membranes/fibers are known to be thrombogenic, and 
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therefore it can be concluded that low-protein adhesion does not necessarily result in 

hemocompatible surfaces.
35

  Poly(2-methoxyethyl acrylate) (PMEA), which has been 

approved by the U.S. Food and Drug administration for medical use, not only exhibits 

lower protein adsorption and platelet adhesion than other hydrophilic surfaces, but it also 

reduces the amount of conformational changes that proteins undergo when adsorbed.
16, 36

  

This is of benefit since denaturation of adsorbed proteins can lead to platelet activation 

and subsequent thrombus formation, whereas, in contrast, when adsorbed proteins remain 

in their native confirmation, platelets cannot adhere (see discussion in Section 1.2.2).   

 Strongly hydrophobic polymers are also known to have good hemocompatibility 

properties.  Some hydrophobic polymers that are commonly used for medical 

applications include polyurethanes, silicones, polytetrafluoroethylene (PTFE), poly(vinyl 

chloride) (PVC), and polyethylene.
37

  Very smooth silicone rubber and polyurethanes are 

known to have good thromboresistant properties.
38, 39

  Hydrophobic polymers are 

conducive to non-specific protein adsorption (e.g., fibrinogen, albumin), and the adsorbed 

albumin appears to prevent subsequent protein adsorption.
40

  It has been shown that 

increasing surface hydrophobicity also increases the amount of protein adsorbed, which, 

in turn, decreases the amount of conformational changes, potentially having a role in 

pacifying the surface.
41

  For example, Elast-eon polymers (polyurethane and 

polydimethylsiloxane copolymers) are reported to have low surface energy and stronger 

binding to albumin (over fibrinogen).
42

  Alkyl chains have also been grafted on relatively 

hydrophilic polymers in order to increase the hydrophobicity of the surface.
43-45

  

Khorasani et al. reported that both superhydrophobic and superhydrophilic surfaces were 

able to reduce platelet adhesion in comparison to controls.
46

  However, materials that are 

hydrophobic exhibit high protein adsorption and conformational changes of the adsorbed 

proteins.
47, 48

  Polymeric materials with both hydrophilic and hydrophobic domains have 

also been reported to improve hemocompatibility (see Section 1.2.3).  Ultimately, there is 

still no consensus as to which is better, hydrophilic or hydrophobic surfaces, for blood-

contacting biomedical device applications.
49
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1.2.2  Albumin Coated Surfaces 

It is a widely accepted fact that protein adsorption is the first event that occurs 

upon foreign surface-blood contact.  Human albumin (Alb) is the most abundant protein 

in the body with a concentration of 35-53 mg/mL in blood plasma.  Due to its high 

concentration and low molecular weight, it is the first protein that adsorbs on the surface 

of implanted materials.  Unlike fibrinogen, albumin is not known to have a peptide 

sequence that can facilitate binding of the platelet receptors and hence has been used as a 

coating to block non-specific platelet-surface interactions. 

Since the early finding that Alb coated surfaces prevent adhesion of proteins and 

platelets,
50

 Alb has been extensively used as one of the strategies to develop 

hemocompatible surfaces.  In one study, Alb was shown to significantly improve short-

term thrombogenicity of Dacron arterial prostheses.
51

  In another study, Guidoin et al. 

showed that Alb treatment does not affect the strength of polyester arterial prosthesis, but 

also found that within 1-2 weeks of implantation the Alb coating begins to disappear.
52

  

In a comparison of carbon dioxide gas plasma-treated polystyrene (PS-CO2) coated Alb 

and PS-CO2 treated Alb-heparin conjugate, albumin treated surfaces were found to be 

more effective in reducing platelet adhesion.
53

  Albumin-heparin conjugate surface was 

also found to be suitable for endothelial cell seeding, which can further improve the 

hemocompatibility of the surfaces.  Mohammad et al. demonstrated that combining Alb 

with Immunoglobulin G (IgG) results in a significant reduction in platelet adhesion in a 7 

d in vitro study.
54

 

One of the limitations of Alb coating is that other proteins can displace Alb on the 

surface and reduce the long-term effectiveness of this approach.  To prevent this 

displacement, covalent immobilization of Alb has been reported.
55

  Another challenge 

with the Alb coating approach is that it adsorbs to hydrophobic surfaces more tightly than 

the hydrophilic surfaces, which necessitates increasing the hydrophobicity of the surface, 

a modification that is considered undesirable because platelets also adhere strongly to 

hydrophobic surfaces.
56, 57

  Some other limitations of Alb coatings include 

conformational changes, physical degradation, and challenges with sterilization and shelf 

stability.  In a recent study by the Latour group, it was shown that non-activated platelets 

can adhere to adsorbed Alb once a critical degree of adsorption-induced unfolding is 
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reached.
58, 59

  The platelet response shows a strong correlation with the degree of 

adsorption induced unfolding, very similar to the platelet adhesion response to adsorbed 

fibrinogen.  These studies demonstrate the potential challenges with Alb coated surfaces, 

in that, while they may pacify the surface initially, the adsorbed Alb will show a time-

dependent conformational change potentially leading to increased platelet 

adhesion/activation. 

 

1.2.3  Patterned Modifications of Surfaces 

 Surfaces with patterns at the micro- and nanoscale level have also been 

investigated for their hemocompatibility properties.  Copolymers containing both 

hydrophilic and hydrophobic domains (ABA-type block copolymers) have exhibited 

good antithrombotic properties,
60-66

 where the balance between the hydrophilicity and 

hydrobphobicity is important to enhance the biocompatibility.
67

  Surfaces with 

hydrophilic/hydrophobic microdomains are reported to create an organized protein 

structure, albumin adsorbing on hydrophilic domains and fibrinogen adsorbing on 

hydrophobic domains, which suppresses platelet adhesion/activation.
64, 68

  Okano et al. 

reported that copolymers composed of hydrophilic monomers, 2-hydroxyethyl 

methacrylate (HEMA) or poly(2-hydroxyethyl methacrylate) (PHEMA), and 

hydrophobic styrene had excellent thromboresistance properties, in terms of preventing 

platelet adhesion and deformation, during in vitro experiments.
61, 62

  The PHEMA-styrene 

copolymer was coated on vascular grafts and had an occlusion time of 20 d (vs. 2 d for 

controls) when implanted in rabbits.
61

  However, some of these ABA-type copolymers 

have the disadvantage that the hydrophilic segments have high surface free energy and 

bury themselves in the hydrophobic segments.
69

  Oyane et al. has reported a new block 

copolymer (PS-PME3MA) where the hydrophilic blocks remain at the surface when in 

contact with water.
60

  The PS-PME3MA polymer was found to be highly resistant to 

protein adsorption, cell adhesion, and platelet adhesion/activation.   

 Another type of surface modification that has been shown to exhibit improved 

hemocompatibility is attachment of hydrophilic polymer brushes, such as PEO
70, 71

 or 

PEG.
72-75

  These hydrophilic polymer brushes create an antifouling surface on the 

substrate due to steric repulsion.  Long-chain polymer brushes have been attached to 
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surfaces using physical adsorption or covalent binding techniques.
76

  Polymer brushes 

that are more densely packed (high graft density) and have longer chain lengths further 

reduce protein adhesion and platelet adhesion/activation on the surface (Figure 1.3).
77-79

  

Stents coated with a chitosan-PEO coating were tested in an ex vivo porcine model, and 

had low platelet adhesion (similar to the endothelium).
80

  Dialysis membranes grafted 

with PEG brushes also had reduced platelet adhesion and improved hemocompatibility.
72, 

81, 82
  Tetraethylene glycol dimethyl ether grafted on polyethylene tubing was able to 

significantly reduce plasma protein (both fibrinogen and von Willebrand’s factor) and 

platelet adsorption, in comparison to control tubing (PVC/Tygon, polyurethane, silicone, 

and polyethylene).
83

  Rodreguez-Emmenegger et al. recently reported an ultra-low 

fouling surface using poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)) brushes 

which was able to maintain the antifouling properties for up to two years of storage.
84

   

 

1.2.4  Attached Endothelial Cells 

 Another approach to making a surface more hemocompatible is to mimic the 

inner surface of blood vessels by attaching endothelial cells on the artificial surface, 

which provides an advantage in that the blood will come in contact with a surface that 

functions just like the endothelium.  Endothelial cells (EC) line the inner walls of blood 

vessels and help in preventing thrombus formation by releasing anti-platelet agents such 

as nitric oxide (NO) and prostacyclin.  Several research groups have used EC seeding on 

artificial surfaces for various biomedical applications including vascular grafts,
85-87

 

stents,
88

 resorbable meshes,
89

 etc.  

 

Figure 1.3.  Illustration showing relationship between polymer brush grafting density and chain length.  
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Williams and co-workers used a pressure sodding method to introduce EC cells 

into the luminal surface of PTFE grafts before implantation.
86

  These grafts were tested 

for 12 weeks in carotid arteries of dogs.  All of the control grafts clotted, whereas 86% of 

the EC sodded grafts were found to be patent after the 12 week implantation period.  To 

improve the hemocompatibility of vascular grafts, Taite et al. used NO releasing PU-PEG 

copolymer containing cell adhesive pentapeptide sequence to promote EC cell adhesion 

and migration.
90

  In another study, Kutryk et al. used xenotransplantation to seed 

endothelial cells on the surface of the stents to reduce blood contact with the stent 

surface.
88

  Zünd and co-workers seeded fibroblasts and ECs on polyglycolic acid (PGA) 

resorbable mesh as a precursor to vessels or cardiac valves.
89

 

Despite these encouraging results, EC proliferation and seeding on artificial 

surfaces is complex and still has challenges to overcome.  One of the challenges of using 

the EC seeding approach is the difficulty in growing and maintaining the cells on 

artificial surfaces.
91

  Various studies have been conducted to modify the surfaces in such 

a way that they can improve and promote endothelial cell adhesion.  Kawamoto et al. 

showed that by plasma treatment of a PU surface, EC adhesion and proliferation can be 

dramatically improved.
92

  In another study, Li and co-workers showed that increased 

proliferation and cell spreading can be achieved with arg-gly-asp (RGD) peptide grafted 

surfaces.
93

  In yet another study, Yin et al. reported that mussel adhesive polypeptide 

mimic, containing dihydroxyphenylalanine and L-lysine (MAPDL) with PEG spacer, 

improved the cell attachment and growth and also reduced platelet adhesion in 

comparison to the controls.
94

  Other challenges associated with the EC seeding approach 

include complex and expensive experimental procedures and long-term stability issues 

which still need to be addressed. 

 

1.2.5  Zwitterionic Surfaces 

 Another effective approach to obtain a hemocompatible surface includes 

introducing a zwitterionic group, such as phosphobetaine, sulfobetaine or 

carboxylbetaine, to the substrate material (Figure 1.4).  These zwitterionic materials have 

been considered as biomimetic, antifouling, and hemocompatible materials because they 

contain phosphorylcholine-like groups which are present on the lipid bilayers of the cell 
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membranes.
95, 96

  Zwitterionic betaines have both anionic and cationic charged moieties 

in the same side chain which maintains an overall neutral charge.  As discussed earlier, 

PEG and other hydrophilic materials, such as PEO and PHEMA, become hydrated via 

hydrogen bonding with water to prevent fouling.  Zwitterionic materials can bind water 

molecules even more strongly (induced by electrostatic interactions) and hence can 

prevent significant change in protein conformation.
97, 98

  

 There have been numerous publications showing the potential of zwitterion-based 

surfaces in resisting protein adsorption,
95, 99

 platelet adhesion,
100-103

 and consequently 

reduced thrombus formation compared to the control materials.  Atom transfer radical 

polymerization (ATRP) is one of the commonly used methods to graft polymer surfaces 

with zwitterionic groups.
97, 104-106

  Recently, various research teams have modified 

polymers using zwitterionic groups (carboxybetaine and sulfobetaine monomers) to 

mimic cell membrane surfaces.
100, 102, 107, 108

  These surfaces have shown significantly 

lower fouling and platelet adhesion properties.  In an another study, a zwitterionic silane 

coupling agent, N,N-dimethyl, N-(2-ethyl phosphate ethyl)-

aminopropyltrimethyoxysilane (DMPAMS) was synthesized and studied for in vitro 

hemocompatibility.
96

  Surfaces grafted with DMPAMS showed a steep drop in the water 

contact angle from 48º to 21.5º, indicating a more hydrophilic surface.  At 200 mM 

surface concentration of DMPAMS, activated partial thromboplastin time (APTT) was 

prolonged from 28.8 sec for the control to 37.8 sec for the modified surface.  Almost no 

platelet attachment was seen on the DMPAMS modified surface even after 3 h of blood 

 

Figure 1.4.  Generic structures of phosphobetaines (A), sulfobetaines (B), and carboxylbetaines (C).  
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contact.  Lee et al. combined PEG with zwitterions for stent coating applications.
109

  

Significant reduction in protein adsorption and platelet adhesion was observed in addition 

to a substantial increase (compared to controls) in blood coagulation time for the 

zwitterionic-PEG grafted stents.
109

  Polyurethane catheters grafted with a zwitterionic 

sulfobetain monomer (N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium, 

DMMSA) were also able to prevent platelet adhesion when soaked in platelet rich plasma 

(PRP) for 120 min.
110

  Stents coated with phosphorylcholine, such as the commercial 

Biodiv Ysio ™, have also been shown to exhibit enhanced hemocompatibility and 

increased endothelialization.
111, 112

   

 

1.2.6  Heparin Immobilization  

 

 Heparin (Figure 1.5) is a highly sulfonated, anionic blood polysaccharide that 

binds to antithrombin III through ionic interactions, which inactivates thrombin and 

factor Xa and thereby inhibits blood coagulation.  Heparin has been clinically used since 

1935 and is one of the most common anticoagulants employed during surgery and 

treatment of post-operative thrombosis and embolism.
113

  However, systemic 

administration of anticoagulants, such as heparin, increases the risks of hemorrhage, 

thrombocytopenia, and thrombosis.
7
  It is well known that some heparinized and 

sulfonated materials have anticoagulant activity, resulting in prolongation of the blood 

clotting time.
114

  Heparin immobilized on surfaces also suppresses platelet adhesion and 

protein adsorption.
115

  Heparinization of surfaces is one of the most popular techniques to 

improve hemocompatibility and has been commercialized and used in the preparation of 

 

Figure 1.5.  Structure of a disaccharide sequence of heparin.  
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different medical devices (e.g., catheters, extracorporeal circuits, stents, grafts, etc.).
116, 

117
   

Heparin has been physically adsorbed, as well as ionically and covalently 

immobilized, on various polymer surfaces.
117-122

  Ionic immobilization techniques require 

cationic residual groups in the polymer which interact with the ionic groups on heparin 

(e.g., COO
-
, SO4

2-, 
NHSO3

-
), while covalent binding of heparin utilizes the hydroxyl, 

carboxyl, or amino groups of heparin.
120

  Heparin that is ionically bound to a surface will 

slowly be released due to ion-exchange with blood components, and this ultimately 

shortens the usage lifetime of the material.
123

  The success of heparinized materials 

depends on the covalently bound heparin remaining in its native confirmation and its 

ability to complex with antithrombin III, which is most efficient when heparin is coupled 

by endpoint (vs. multipoint) attachment.
124

  Michanetzis et al. compared common heparin 

immobilization techniques, direct
125

 and indirect
126

 covalent binding, applied to the 

surfaces of commercially available polymers (silicone rubber, polyethylene, 

polypropylene, and poly(viny chloride).
120

  While both techniques suffered from a low 

yield of immobilized heparin in comparison to the initial amount of heparin, the direct 

method produced a better heparinization yield (10.5%) and both methods were able to 

improve the hemocompatibility in terms of reduced platelet activation and, therefore, an 

increased platelet retention rate.  The anticoagulation properties of immobilized heparin 

have also been improved by using hydrophilic spacers (e.g., PEG), in comparison to 

heparin immobilized directly to the polymer.  This reduces protein adsorption.
127, 128

  

Polyethylene tubing was modified with immobilized heparin via the method developed 

by Larm et al.
119

 (commercialized as Carmeda ® BioActive Surface) and was able to 

maintain efficacy for up to 4 months when implanted in pigs.
129

  The advantage of 

heparinized surfaces, in addition to the binding of antithrombin III, is the 

reduced/selective adhesion of certain plasma proteins, which alters the composition of the 

surface-adsorbed layer of proteins.
130-133

  Heparin-coated devices, however, also suffer 

challenges, especially for long-term applications, due to heparin’s short half-life and that 

surface-bound heparin only has ~1% of the activity of free heparin.
134

  Other immobilized 

direct thrombin inhibitors, such as hirudin, have demonstrated thromboresistant 

properties as well.
116, 135
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1.2.7  Nitric Oxide (NO) Releasing/Generating Polymers 

Nitric oxide (NO) is known to be a potent inhibitor of platelet activation and 

adhesion.  Healthy endothelial cells exhibit an NO flux of 0.5-4.0 x 10
-10 

mol cm
-2 

min
-

1
.
136

  Polymeric materials with an NO flux that is equivalent to this level are expected to 

have similar anti-thrombotic properties.  Nitric oxide is highly reactive under 

physiological conditions, thus a wide range of NO donor molecules, with functional 

groups that can store and release NO, have been studied for potential biomedical 

applications.  Various reviews have been published that are devoted to a comprehensive 

discussion of different NO releasing/generating materials and their many potential 

biomedical applications.
137-144

  The two major approaches to achieving localized NO 

release from polymeric surfaces are to (1) incorporate NO donor molecules or functional 

groups (e.g., diazeniumdiolates or S-nitrosothiols) into the polymer that will release the 

bound NO under physiological conditions (NO-releasing polymers), or (2) incorporate 

catalysts into the polymers which can react with endogenous S-nitrosothiol (RSNO) 

species (present in blood) to locally generate NO (NO-generating polymers) (Figure 1.6).  

 

 
Figure 1.6.  Types of NO-releasing/generating polymers, where the NO that is released/generated can 

prevent activation of platelets that approach the polymer surface.  Diazeniumdiolate-based materials 

undergo proton and thermal driven mechanisms to release NO.  S-nitrosothiol (RSNO)-based polymers 

can release NO in the presence of heat, light, or metal ions (e.g., Cu
+
).  NO-generating materials 

consist of immobilized catalysts (e.g., Cu or Se compounds) that generate NO from endogenous 

RSNOs. 
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Nitric oxide has many other biological roles, including its antimicrobial action, which 

could potentially be utilized to also reduce the infection and biofilm formation that 

plagues many implantable biomedical devices.  Thus, NO releasing/generating 

chemistries have the potential to create a dual-functioning material that is both 

antithrombotic and antimicrobial.  Duration of the NO release can be tailored to fit the 

specific biomedical application of the device, and NO-generating materials can 

continuously generate NO in the presence of endogenous RSNO species (e.g., S-

nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO), etc.). 

A wide variety of NO donor molecules have been investigated.  The two most 

widely studied and used in combination with biomaterials are diazeniumdiolates and S-

nitrosothiols.  Diazeniumdiolates, also called NONOates, are relatively stable species that 

undergo proton or thermally driven mechanism to release two molecules of NO per 

diazeniumdiolate molecule.  Diazeniumdiolates have been a popular NO donor that can 

easily be dispersed within polymers to facilitate localized NO release.
145-149

  Mowery et 

al. reported that water-soluble diamine-based diazeniumdiolates (e.g., diazeniumdiolated 

N,N’-dimethyl-1,6-hexanediamine (DMHD/N2O2), diazeniumdiolated linear 

polyethylenimine (LPEI/N2O2)) leached from polymer matrices.
145

  Significant leaching 

of the NO donor species can result in non-localized NO release where the therapeutic 

action of NO occurs downstream from the biomedical device.  Another concern with 

diazeniumdiolated-based polymers is the formation and leaching of some potentially 

carcinogenic decomposition products (e.g., N-nitrosamines) that are not intended for 

release into the bloodstream.
145, 150

  To overcome the leaching concerns, strategies to 

covalently bind diazeniumdiolated functional groups to polydimethylsiloxane,
151

 

xerogels,
152-154

 medical-grade polyurethanes,
137, 155, 156

 silica nanoparticles,
157, 158

 

dendrimers,
159-161

 and other nanomaterials
138

 have also been reported.   Zhang et al. 

covalently linked diaminoalkyltrimethoxysilane (DACA) to polydimethylsiloxane and 

then loaded this materials with NO under high pressure to form the diazeniumdiolated 

coating, DACA/N2O2-SR, which released NO for up to 20 d.
151

  The DACA/N2O2–SR 

was coated on extracorporeal circuits (ECC) and was able to reduce platelet consumption 

and thrombus formation during the 4 h blood flow in a rabbit model.   
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Attempts have also been made to add polymer top coats and/or create more 

lipophilic diazeniumdiolated species to minimize leaching into the aqueous phase and 

therefore maintain the localized NO release at the blood-polymer interface.
147, 150, 162, 163

  

Poly(vinyl chloride) and polyurethane have been doped with the lipophilic 

diazeniumdiolated dibutylhexanediamine (DBHD/N2O2).
147, 148, 164, 165

  Vascular grafts 

coated with DBHD/N2O2–doped polyurethane had significantly less thrombus formation 

than controls after 21 d implantation in sheep.
148

  However, the loss of NO from 

DBHD/N2O2 creates free lipophilic amine species within the polymer that react with 

water, thereby increasing the pH within the polymer phase and effectively turning off the 

NO release.  A recent report demonstrated that NO release can be prolonged, by using 

poly(lactic-co-glycolic acid) additives, for up to 14 d from poly(vinyl chloride) (PVC) 

doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) (Figure 1.7) (see 

also Chapter 4 of this thesis).
165

  The  ester linkages of the PLGA hydrolyze in the 

presence of water, producing lactic and glycolic acids that can act as proton sources to 

control the NO release from DBHD/N2O2-doped polymers.  PLGAs can have varying 

hydrolysis rates, which is primarily determined by the copolymer ratio, the end group 

chemistry (either a free carboxylic acid or ester end group), and molecular weight.  

Handa et al. also demonstrated the importance of the inherent hemocompatibility of the 

base polymer (in which the NO chemistry is incorporated) (see Chapter 4).
166

  By 

incorporating the same DBHD/N2O2 and PLGA chemistry into the Elast-eon E2As 

 

Figure 1.7.  Key reactions involved in NO release from diazeniumdiolated dibutylhexanediamine 

(DBHD/N2O2) in the presence of poly(lactic-co-glycolic acid additive, that provides additional protons 

to drive the NO release reaction.  
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polymer (a copolymer with a mixed soft segment of poly(dimethylsiloxane) and 

poly(hexamethylene oxide) with a methylene diphenyl isocyante (MDI) hard segment), 

which inherently is more hemocompatible than PVC, the platelet count after 4 h of ECC 

(97±10% of baseline) was significantly improved over the PVC/DOS-based coating 

(79±11% of baseline).
165, 166

 

 

Another widely studied class of NO donor molecules is S-nitrosothiol (RSNO) 

species (examples shown in Figure 1.8).  Physiological RSNOs, including S-

nitrosoalbumin, S-nitrosocysteine (CysNO), and S-nitrosoglutathione (GSNO), are 

considered an endogenous reservoir of NO in vivo.
167-169

  Other synthetic RSNOs, such as 

S-nitroso-N-acetylpenicillamine (SNAP) and S-nitroso-N-acetylcysteine (SNAC), have 

been shown to exhibit significant antimicrobial and antithrombotic effects.
170-173

  It has 

also been demonstrated that RSNOs are both vasodilators and potent inhibitors of platelet 

aggregation.
174-176

  RSNOs undergo thermal decomposition to release NO and produce a 

corresponding disulfide species (RSSR).  The NO release from RSNOs can also be 

catalyzed by metal ions (e.g., Cu
+
)
177

 and by light, through irradiation at energies that 

correspond to the S-nitroso absorption bands at 340 and/or 590 nm.
178-180

  Incorporation 

of RSNOs into polymers can extend the utility of these NO donors to be applicable in 

biomedical devices.   

Low molecular weight RSNOs have been non-covalently dispersed within various 

polymer matrices.
181-187

  Seabra et al. prepared GSNO-doped poly(vinyl alcohol) and 

poly(vinyl pyrrolidone) blended films.
182

  This polymer matrix provided a stabilization 

effect on GSNO decomposition, in comparison to aqueous solutions of GSNO.  However, 

due to leaching, 90% of the NO was released during the first 24 h under physiological 

 

Figure 1.8.  Structures of example S-nitrosothiols species, S-nitrosoglutathione (GSNO) and S-nitroso-N-

acetyl-D,L-penicillamine (SNAP).  
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conditions.  SNAP-doped polyurethanes (Tecoflex SG-80A and Tecophillic SP-60D-60) 

also exhibit rapid leaching of SNAP when soaked in buffer (see Chapter 2).
186

  The rapid 

leaching of the RSNOs significantly shortened the duration of the NO release from these 

materials.  Therefore, strategies to synthetically bind RSNO functionalities to the 

polymer backbone have also been explored.  S-Nitrosothiol functionalities have been 

covalently bound to polymers such as xerogels,
188, 189

 polyurethanes,
137, 190, 191

 degradable 

polyesters,
192-196

 polyester/poly(methyl methacrylate) blends,
197

 poly(vinyl methyl ether-

co-malic anhydride) (PVMMA) and poly(vinyl pyrrolidone) (PVP),
198

 and 

poly(dimethylsiloxane).
199

  Dendrimers,
200

 fumed silica particles,
180, 191

 and silica 

nanoparticles
155, 156, 201

 have also been synthetically modified with covalently bound 

RSNO functionalities and these materials can be doped into various polymer matrices to 

create coatings for biomedical devices. 

Many of the RSNO-modified materials reported to date have not proven clinically 

useful due to their limited NO release lifetimes, low conversion to RSNO during 

synthesis, or lack of RSNO stability during storage.  Recently, the RSNO-doping method 

has been revisited, utilizing more hydrophobic polymers.  GSNO-doped Tygon, a 

proprietary plasticized poly(vinyl chloride) polymer, exhibited minimal leaching of 

GSNO during soaking under physiological conditions.
187

  Incorporating SNAP into Elast-

eon E2As can create an NO-releasing polymer that is stable during storage (even at 

elevated temperatures), locally delivers NO under physiological conditions, significantly 

reduces the leaching of SNAP, and preserves platelets during a 4 h ECC study (see 

Chapter 2).
186

   

Due to the limited NO reservoir from NO donors that can be incorporated into 

polymers (either covalently bound or non-covalently dispersed), these NO releasing 

materials typically have a finite duration of NO release.  Another approach to achieving 

localized NO delivery at a polymer/blood interface for a longer period of time is to use 

NO generating (NOgen) materials that utilize endogenous RSNOs and/or nitrite to locally 

generate NO at the blood-polymer interface.  Various thiol-containing species (L-

cysteine, 2-iminothiolane, and cysteine polypeptide) have been immobilized on 

polyethylene terephthalate and polyurethane, where the free thiol undergoes a 

transnitrosation reaction with circulating RSNOs (e.g., S-nitroso-albumin).
202, 203

  The 
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resulting CysNO on the PET and PU surface decomposes to elevate the NO levels locally 

at the polymer/blood interface, which reduces platelet adhesion on the surface by more 

than 50%.  Other NOgen materials consist of catalysts (e.g., Cu (I/II) complexes or 

organoselenium species) that are immobilized within the polymer and are capable of 

locally generating NO from endogenous RSNOs and/or nitrite.  Copper (II) sites within a 

polymer can be reduced to Cu(I) by endogenous reducing agents that are present in the 

blood (e.g., thiols, ascorbate).  The Cu(I) sites then can reduce endogenous RSNOs in the 

blood (e.g., GSNO, CysNO, etc.) to NO and free thiolate anions in a catalytic manner.
177

  

Lipophilic copper complexes that were incorporated into polymers were able to reduce 

physiological levels of RSNOs and nitrite to locally generate NO.
204-207

  Another reported 

NOgen polymer consists of copper nanoparticles (Cu
0
) dispersed within a hydrophilic 

polymer (Tecophillic SP-60D-60), which was evaluated using a rabbit model for 

extracorporeal circulation (ECC).
208

  However, continuous infusion of SNAP was needed 

to supplement the endogenous RSNO levels in order to achieve good efficacy in reducing 

thrombus formation.   

Organoselenium species have been studied as mimics of glutathione peroxidase 

(GPx), a selenoenzyme that protects cells from oxidative stress by reducing 

hydroperoxides using glutathione (GSH),
209

 and investigated for their ability to generate 

NO from RSNOs.
210

  Selenium catalysts are highly selective for reduction of RSNOs and 

exhibit no catalytic activity for nitrite or nitrate reduction.
211

  Low molecular weight 

organoselenum species, selenocystamine (SeCA) and 3,3’-diselenidedipropionic acid 

(SeDPA), were immobilized on cellulose filter paper and polyethylenimine (PEI), 

demonstrating potential dialysis membrane applications.
212

  In the presence of reducing 

agents at physiological pH, the diselenides can be converted into selenolates, which are 

the key intermediates that can reduce RSNOs into NO and thiolates.
212

  Selenium species 

were also incorporated into layer-by-layer coatings containing alternating layers of 

sodium alginate (Alg) and selenium-modified PEI.  Alg-PEI layer-by-layer films 

modified with SeDPA were able to generate physiological levels of NO from GSNO and 

also exhibited minimal leaching of catalytic sites after soaking in blood.
211

  The Alg-PEI 

layer-by-layer coating was also modified to immobilize ebselen (2-phenyl-1,2-

benzisoselenazol-3-(2H)-one), an aromatic selenium species with good GPx activity, and 
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coated on catheters.
213

  These selenium-based materials were able to generate 

physiological levels of NO from RSNOs; however, some reduction of NO flux was 

observed after soaking in blood, potentially from catalytic sites being blocked by 

adsorbed plasma proteins or low levels leaching into the solution.  These NOgen 

polymers have an advantage in that they could potential generate NO at the blood-

polymer interface indefinitely, provided that the blood contacting the polymer has 

adequate levels of RSNOs present at all times.
214

   

 

1.3  Methods to Assess Hemocompatibility 

 Extensive reviews on the various methods to evaluate the hemocompatibility of 

polymers and medical devices have been published (summarized in Table 1.1).
1, 215-223

  

Table 1.1.  Common surface characterization and blood compatibility tests used to evaluate the 

hemocompatibility of blood-contacting polymers.   

Surface Characterization 

Elemental and chemical 
composition  
 
Physical properties 

Porosity 

Roughness  

Charge and charge density 

Elasticity 

Surface energy (wettability) 

Blood Compatibility Testing 

In vitro Testing 
 

Static (soaking in blood or plasma) 
 

Dynamic (agitators, centrifugation 
systems, flow chambers, Chandler 
loops, closed loops) 

Platelet adhesion (LDH assay) 

Protein adsorption (fluorescent assay) 

Platelet, plasma fibrinogen, white blood cell counts 

Prothrombin time (PT) 

Activated partial thromboplastin  time (aPTT) 

Thrombin clotting time (TCT) 

Platelet function via aggregation 

Flow cytometry (FACS) analysis of activation  

Thrombus area on the device 

Embolism (e.g., visual, Doppler ultrasound) 

Patency and occlusion time 

In Vivo Models 
 

Coated or fabricated medical 

devices: 

Catheters 

Stents 

Vascular grafts 

Extracorporeal circuits 

Dialysis membranes 

Biomedical sensors 
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Clinical devices still suffer challenges due to thrombosis, even after standard testing as  

developed by the International Organization for Standardization (ISO 10993-4, 

“Selection of Tests for Interactions with Blood”).
219, 224

  The ISO hemocompatibility 

testing requires evaluation of thrombosis, coagulation, hematology, platelet count and 

function, and immunology.  Initial surface and physical-chemical characterization studies 

can provide useful information in order to correlate surface characteristics with 

hemocompatibility.  Surface roughness, surface chemistry, surface charge distribution, 

and interfacial free energy are well known factors that can influence protein adsorption 

and cell-material surface interaction.
225

  Many of the common hemocompatibility testing 

methods involve flowing blood through tubing (both in vitro and in vivo), and then 

conducting hemocompatibility evaluations of the blood exiting the test system.  However, 

while they have potential to still be used as preliminary screening methods, in vitro static 

assays, such as fluorescent-based fibrinogen adsorption or platelet adhesion,
164, 226

 and 

dynamic systems (e.g., Chandler loops 
227

) are limited due to the blood death over time.  

Various medical devices (e.g., catheters, stents, vascular grafts, dialysis membranes, etc.) 

have been fabricated or coated with polymers for evaluation in animal models in order to 

mimic clinical application.  Arterio-venous (A-V) and areterio-arterial (A-A) shunts 

models have been used to test hemocompatibility, and they allow for evaluation of both 

local and systemic effects of the test polymer.  For example, the rabbit model of 

thrombogenicity is a useful model of extracorporeal circulation, where the polymer is 

coated on the inner walls of Tygon tubing that form the ECC circuit.
164, 208

  The ECC 

circuit is placed on the rabbit using an A-V shunt, and blood flows through the circuit for 

4 h.  This model allows a comprehensive evaluation of hemocompatibility (platelet 

preservation/consumption, plasma fibrinogen levels, and occlusion time) as well as the 

thrombus area in the ECC circuit after 4 h of blood flow. 

Despite the encouraging results published for many of the polymer strategies 

discussed above, there are still some challenges with hemocompatibility testing and 

clinical application.  For example, counting adhered platelets on the surface is a common 

method to evaluate hemocompatibility, and has been used as a functional test for many of 

the polymers discussed above.  This may be a good initial test; however, it does not 

provide the complete picture because platelets could be activated by the foreign surface 
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and aggregate downstream from the device.
223

  Similarly, during in vivo testing of a new 

material, any thrombus that forms on the surface may also be carried downstream.  In 

addition, results from short-term in vitro testing cannot necessarily be used to predict 

long-term in vivo results.
220

  Another challenge is the fact that research groups use a wide 

variety of testing methods and controls, so it remains unclear as to how significant the 

improvement is of these new materials over other materials (either published or clinically 

used).
220

  Defining standardized testing methods and appropriate controls/reference 

materials used by researchers (commercial, clinical, and academic) will help improve the 

advancement of novel materials to clinical application. 

 

1.4  Summary 

 Over the last 50 years, much has been learned about blood-material interactions, 

and a variety of strategies have been reported to improve the hemocompatibility of blood-

contacting medical devices.  Materials reported to date primarily target different parts of 

the coagulation cascade (e.g., protein adsorption, platelet adhesion and activation, fibrin 

formation, etc.).  Although many of the approaches described above are promising 

individually, combining two or more of these approaches may prove most beneficial.  

When these materials are effective, they may reduce or eliminate the need for 

administration of systemic anti-coagulation therapeutics (e.g., heparin) which is currently 

clinically utilized to reduce the risk of thrombus formation and other complications 

during use of blood-contacting devices.  However, challenges still exist (e.g., shelf life 

and sterilization stability) and need to be addressed for some of the polymer approaches 

discussed here in order to achieve widespread clinical application.  Standard testing 

methods should be utilized to test and compare the hemocompatibility of commercially 

available and new polymeric materials for biomedical applications. 

 

1.5  Statement of Dissertation Research 

 Various NO-releasing polymers have been reported in the literature with 

encouraging results for potential biomedical applications.  However, none of the 

materials reported to date have been clinically applied, despite their potential benefits.  

This is primarily due to:  1) short durations of NO release (from a few hours to a few 
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days); 2) the need for toxic additives to prolong the NO release; 3) prohibitive costs of 

the NO donor molecules; and 4) instability of the NO donor during storage and/or 

sterilization.  The primary purpose of this dissertation research is to use novel approaches 

to develop polymers with long-term NO release, addressing some of the challenges 

mentioned above, and to demonstrate their potential biomedical applications for reducing 

thrombosis and infection.  This dissertation was prepared using the multiple manuscript 

type format, where the chapters are basically the text as it appears in the publications 

derived from this work, and hence the introduction sections in the chapters are somewhat 

repetitive.  Chapter 1, a review of various approaches to improve hemocompatibility, is a 

section in the book Advanced Polymers in Medicine.
228

 

In Chapters 2 and 3, new S-nitroso-N-acetypenicillamine (SNAP)-doped polymers 

are studied for potential hemocompatibility applications.  The NO release and SNAP 

leaching from various SNAP-doped polymers is measured over 20 d.  A shelf-life 

stability study is conducted with the SNAP-doped Elast-eon polymer, and it is shown that 

this formulation exhibits attractive shelf-live stability.  Finally, the SNAP/E2As polymer 

is coated on the inner walls of extracorporeal circulation (ECC) circuits and tested in a 

rabbit model of thrombogenicity.  This work has been published in Biomaterials in 

2013.
186

   

 In Chapter 3, the SNAP/E2As polymer is used to fabricate intravascular catheters 

using a dip-coating method.  The long-term NO release and stability during ethylene 

oxide sterilization is evaluated.  The SNAP/E2As and E2As catheters are implanted in 

sheep veins for 7 d and evaluated for thrombus formation and bacterial adhesion. 

 Chapters 4 and 5 discuss the optimization and potential applications of polymers 

doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2).  In Chapter 4, 

various poly(lactic-co-glycolic acid) are used as additives to promote and control the NO 

release properties of these new biomaterials.  A comparison between using acid-capped 

and ester-capped PLGA additives is conducted, where the pH changes corresponding to 

the NO release profiles from these films are visualized by doping films with pH indicator 

dyes.  The efficiency of the NO release (in terms of platelet count and thrombus area) 

from DBHD/N2O2 and PLGA doped coatings prepared with 2 different base polymers, 

poly (vinyl chloride) and Elast-eon E2As, is compared by coating these materials on the 
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inner walls of ECC circuits and testing in the rabbit model of thrombogenicity.  This 

chapter is a summary of two papers that have been published in Journal of Materials 

Chemistry B.
165, 166

 

 Chapter 5 focuses on optimizing the NO release from DBHD/N2O2 and PLGA 

doped within two polymers, Tecoflex SG-80A and Tecophilic SP-60D-20.  The optimal 

SG-80A-based NO-releasing and control patches are applied to scald burn wounds on 

mice infected with Acinetobacter baumannii to observe the effects on infection after 24 h.  

The work presented in this chapter has been submitted as a manuscript.
229

 

 Chapter 6 summarizes the findings and conclusions of this dissertation work, and 

also provides some directions for future work.  Potential methods to improve the rate of 

NO release from the SNAP/E2As polymer and methods to make clinical applications 

more feasible are discussed.  Also, plans for future toxicity and long-term animal studies 

with the DBHD/N2O2 and PLGA based polymers will be presented.   
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CHAPTER 2 

 

Long-Term Nitric Oxide Release and Elevated Temperature Stability with S-

Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Polymer 

 

 

 

2.1  Introduction  

 Nitric oxide (NO) is an endogenous gas molecule that plays several key 

physiological roles, including prevention of platelet adhesion and activation, inhibiting 

bacterial adhesion and proliferation, enhancing vasodilation, promoting angiogenesis, and 

aiding in wound healing.
1-10

  The effects of NO are highly dependent on the location and 

its concentration in the physiological system.
11

  For example, endothelial cells that line 

the inner walls of healthy blood vessels produce an estimated NO surface flux of 0.5-

4.0x10
-10 

mol cm
-2 

min
-1

.
12

  The function of many blood-contacting devices, including 

vascular grafts, stents, intravascular sensors, intravascular catheters, and extracorporeal 

life support circuits, can be impaired due to platelet activation and thrombus formation.
13, 

14
  One approach to improve the hemocompatibility of such devices is the use of coating 

materials that mimic the endothelial cells with respect to NO release.  Indeed, in recent 

years there has been considerable interest in developing NO-releasing/generating 

materials that can be used to improve the biocompatibility of such devices.
15-23

 

 Nitric oxide is highly reactive under physiological conditions and thus a wide 

range of NO donor molecules, with functional groups that can store and release NO, have 

been studied for potential biomedical applications.  Such molecules include organic 

nitrates, metal-NO complexes, N-diazeniumdiolates, and S-nitrosothiols (RSNOs).
4, 24

  

Physiological RSNOs, such as S-nitrosohemoglobin and S-nitrosoglutathione (GSNO), 

are considered an endogenous reservoir of NO in vivo.
4, 25-27

  Other synthetic RSNOs, 
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such as S-nitroso-N-acetyl-L-cysteine (SNAC) and S-nitroso-N-acetylpenicillamine 

(SNAP, Figure 2.1A) have been shown to exhibit significant antimicrobial and 

antithrombotic effects.
28-31

  It has also been demonstrated that RSNOs are both 

vasodilators and potent inhibitors of platelet aggregation.
32, 33

  RSNOs undergo thermal 

decomposition releasing NO and producing a corresponding disulfide species (RSSR), as 

shown in Figure 2.1B.  The NO release from RSNOs can be catalyzed by metal ions 

(e.g., Cu
+
)
34

 and by light, through the irradiation at energies that correspond to the S-

nitroso absorption bands at 340 and/or 590 nm.
35-37

  It has been suggested that the more 

potent activity of RSNOs vs. NO as antiplatelet agents arises from the enhanced stability 

of RSNOs vs. NO, and generation of NO from RSNOs locally at the surface of platelets 

by membrane proteins that contain catalytic sites to convert RSNOs to NO.
38

 

 

 Incorporation of RSNOs into polymers can extend the utility of these NO donors 

to be applicable as coatings in biomedical devices, providing localized NO release at the 

blood/device interface.  Several NO-release polymers consisting of small-molecule 

RSNOs dispersed in various polymer matrices, including polyethylene glycol (PEG), 

poly(vinyl alcohol), poly(vinyl pyrrolidone), and Pluronic F127 hydrogel, have been 

reported.
22, 23, 39-42

  These materials have potential applications for topical NO delivery on 

wounds via the diffusion of the hydrophilic RSNOs from the polymer to the tissue.  In 

fact, daily application of a GSNO-containing hydrogel has been shown to accelerate the 

wound healing process.
42

  However, the rapid leaching of the RSNOs from such 

polymers can significantly shorten the NO/RSNO release lifetime, lasting only several 

 

Figure 2.1.  Structure of (A) S-nitroso-N-acetylpenicillamine (SNAP) and (B) scheme of S-nitrosothiol 

(RSNO) decomposition, which can be catalyzed by metal ions (e.g. Cu
+
), light, and heat, yielding the 

disulfide (RSSR) product and nitric oxide (NO). 
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hours.
22, 39, 40

  An alternate approach has been to synthesize RSNO-modified materials, 

where the RSNO functionality is covalently bound to the matrix.  Fumed silica 

particles,
18

 dendrimers,
43

 polyurethanes,
16

 polyesters,
15, 44-46

 poly(dimethylsiloxane) 

(PDMS),
19

 xerogels,
47, 48

 self-assembled monolayers,
49

 and poly(vinyl methyl ether-co-

maleic anhydride) (PVMMA)
50

 have all been modified with RSNO functionalities.  Ricco 

et al. reported RSNO-modified xerogels that release NO for up to 14 d and exhibit 

reduced platelet and bacterial adhesion.
47, 48

  However, such RSNO-modified xerogels 

suffer from synthesis complications leading to cracking and non-uniform films, low 

RSNO conversion efficiency (maximum of 40% for the tertiary RSNO-modified 

xerogels), and thermal instability at room temperature that would limit their shelf-life.  

Many of the other RSNO modified materials reported to date exhibit both thermal and 

photoinitiated NO release, but these materials have not proven clinically useful due to 

their limited NO release lifetimes, low conversion to RSNO during synthesis, or lack of 

RSNO stability during storage  This lack of stability of most NO release materials 

reported to date could pose a significant hurdle with regard to commercializing medical 

devices that employ such materials, owing to the  increased shipping costs to protect 

products from thermal degradation, etc.  This could prevent the application of NO release 

materials in the biomedical market regardless of their potential benefits. 

 Another reported approach to achieve localized NO delivery at a polymer/blood 

interface is to use NO-generating coatings, in which immobilized catalysts (Cu(I/II) or 

organoselenium species) can generate NO from endogenous RSNOs.
20, 51-53

  Recently, a 

NO generating coating containing Cu
0
 nanoparticles was evaluated using a rabbit model 

for extracorporeal circulation (ECC).
20  

However, to achieve good efficacy in reducing 

thrombus formation, continuous infusion of SNAP was required to supplement the 

endogenous RSNO levels.  

As an alternative to the continuous infusion of RSNO species, in this study we 

investigate several biomedical polymers that are capable of storing RSNO species.  Such 

RSNO-doped coatings can release NO as well as potentially supplement the endogenous 

RSNO levels, if NO generating catalysts are also employed.  Five biomedical polymers 

are examined for their potential to act as a storage reservoir for SNAP (Figure 2.2).  
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These include: silicone rubber (poly(dimethylsiloxane)); Elast-eon E2As (a copolymer 

with a mixed soft segment of poly(dimethylsiloxane) and poly(hexamethylene oxide) 

with a methylene diphenyl isocyanate (MDI) hard segment); CarboSil (a thermoplastic 

urethane copolymer with a mixed soft segment of poly(dimethylsiloxane) and hydroxyl-

terminated polycarbonate with a hard segment of an aromatic diisocyanate, MDI); 

Tecoflex SG-80A (a poly(tetramethylene glycol) polyurethane capped with 

diisocyanatodicyclohexylmethane);  and Tecophillic SP-60D-60 (an aliphatic, 

hydrophilic polyether-based polyurethane).  Each of the SNAP-doped polymers are 

examined as films or coatings that can release NO thermally (at physiological 

temperature) and/or can serve as a reservoir to supplement endogenous RSNO levels (by 

SNAP diffusion into blood from the polymer).  The SNAP-doped polymers are 

characterized for their in vitro NO/SNAP release, where the more hydrophobic polymers 

are expected to have slower SNAP/NO release under physiological conditions.  The 

Elast-eon polymer has been reported to have excellent intrinsic biocompatibility and 

biostability properties, and exhibits low levels of blood protein adhesion.
54, 55

  Therefore, 

the SNAP/E2As polymer is further tested for the stability of SNAP during a 4-month 

storage period, in order to ascertain any self-life concerns.  The new SNAP/E2As 

 

Figure 2.2.  Structures of biomedical grade polymers. 
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polymer is also examined for potential biomedical applications via an ECC rabbit model 

of thrombogenicity to assess preservation of platelet count and function, and thrombus 

area after 4 h of ECC. 

 

2.2  Materials and Methods  

 

2.2.1  Materials  

N-Acetyl-DL-penicillamine (NAP), sodium chloride, potassium chloride, sodium 

phosphate dibasic, potassium phosphate monobasic, ethylenediaminetetraacetic acid 

(EDTA), tetrahydrofuran (THF), sulfuric acid and N,N-dimethylacetamide (DMAc) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Methanol, hydrochloric acid and 

sulfuric acid were obtained from Fisher Scientific (Pittsburgh, PA).  Tecophilic SP-60D-

60 and Tecoflex SG-80A were products of Lubrizol Advanced Materials Inc. (Cleveland, 

OH).  Dow Corning RTV 3140 Silicone Rubber (SR) was purchased from Ellsworth 

Adhesives (Germantown, WI).  CarboSil 20 90A was from the Polymer Technology 

Group (Berkeley, CA).  Elast-eon
TM

 E2As was obtained from AorTech International, plc 

(Scoresby, Victoria, Australia).  Human plasma fibrinogen containing > 90% clottable 

proteins was a product of Calbiochem (La Jolla, CA) and fluorescein-labeled goat IgG 

(polyclonal) against denatured human fibrinogen was purchased from MP Biomedicals, 

LLC (Solon, OH).  Black, polypropylene 96-well microtiter plates used for fluorescence 

measurements were obtained from Nalge Nunc International (Rochester, NY).  All 

aqueous solutions were prepared with 18.2 MΩ deionized water using a Milli-Q filter 

(Millipore Corp., Billerica, MA).  Phosphate buffered saline (PBS), pH 7.4, containing 

138 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate, 100µM EDTA was used for all 

in vitro experiments. 

 

2.2.2  Synthesis of SNAP 

SNAP was synthesized using a modified version of a previously reported 

method.
56

  Briefly, an equimolar ratio of NAP and sodium nitrite was added to a 1:1 

mixture of water and methanol containing 2 M HCl and 2 M H2SO4.  After 30 min of 

stirring, the reaction vessel was cooled in an ice bath to precipitate the green SNAP 
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crystals.  The crystals were collected by filtration, washed with water, and allowed to air 

dry.  The reaction and crystals were protected from light at all times.  

 

2.2.2  Preparation of SNAP-Doped Films 

 Polymer films containing 5 and 10 wt% SNAP were prepared by solvent 

evaporation.  For the 10 wt% SNAP films, the casting solutions were prepared by 

dissolving 180 mg of the respective polymer in THF.  The polyurethanes (SP-60D-60, 

SG-80A, CarboSil and Elast-eon E2As) were dissolved in 3 mL THF and SR was 

dissolved in 1 mL THF.  SNAP (20 mg) was then added to the polymer solution and the 

mixture was stirred for 10 min.  The 5 wt% SNAP films were prepared similarly with 

SNAP (10 mg) and polymer (190 mg).  The film solution was cast in Teflon ring (d=2.5 

cm) on a Teflon plate and dried overnight under ambient conditions.  Small disks (d=0.7 

cm) were cut from the parent films and were dip coated 2 times with a topcoat solution 

(200 mg polymer (no SNAP added) in 4 mL THF) and dried overnight under ambient 

conditions, followed by 48 h of drying under vacuum to remove any residual solvent.  

The weight of each small disk was recorded prior to top coating.  All films and film 

solutions were protected from light.  The thickness of the films before and after dip 

coating was measured using a Mitutoya digital micrometer.  The final films had a SNAP-

doped layer that was ~150 µm thick and a top coat layer that was ~50 µm thick.   

 

2.2.3  Preparation of SNAP/E2As Coated ECC Loops 

 The ECC configuration employed in the in vivo rabbit study was previously 

described.
20, 21

  Briefly, the ECC loops consisted of a 16-gauge and 14-gauge IV 

polyurethane angiocatheters (Kendall Monoject Tyco Healthcare Mansfield, MA), two 16 

cm in length ¼ inch inner diameter (ID) Tygon
TM

 tubing and an 8 cm length of 3/8 inch 

ID Tygon
TM

 tubing that created a thrombogenicity chamber where thrombus could form 

more easily due to more turbulent blood flow. 

Due to the short duration of the ECC experiments (4 h), the NO release ECC 

loops were coated with only 5 wt% SNAP in E2As.  The SNAP/E2As solution was 

prepared by dissolving SNAP (125 mg) and E2As (2375 mg) in THF (15 mL).  The E2As 

control solution consisted of E2As in THF (2500 mg in 15 mL).  SNAP/E2As loops were 
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first coated with 2 layers of the SNAP/E2As solution, followed by 1 coat of the E2As 

control solution.  E2As control loops were coated with 2 coats of the E2As control 

solution.  ECC loops were allowed to air dry for 1 h in the dark between each coat.  The 

completely coated ECC was welded together using THF, starting at the left carotid artery 

side, with the 16-gauge angiocatheter, one 15 cm length ¼ inch ID tubing, the 8 cm 

length thrombogenicity chamber, the second 15 cm length ¼ inch ID tubing and finally 

the 14-gauge angiocatheter.  The angiocatheters were interfaced with tubing using two 

luer-lock PVC connectors.  The assembled ECC loops were dried under vacuum while 

protected from light for at least 48 h.  Prior to the ECC experiment, the loops were filled 

with saline solution for overnight soaking, and this solution was discarded immediately 

before the rabbit experiment. 

 

2.2.4  Diffusion of SNAP from SNAP-Doped Polymer Films Immersed in PBS 

All UV-Vis spectra were recorded in the wavelength range of 200-700 nm using a 

UV-Vis spectrophotometer (Lambda 35, Perkin-Elmer, MA) at room temperature.  The 

presence of the S-NO group of SNAP provides characteristic absorbance maxima at 340 

and 590 nm, corresponding to the π → π* and nN → π* electronic transitions.
22, 37, 50

 

 Top coated films were placed in individual vials soaked in 10 mM PBS, pH 7.4, 

containing 100 µM EDTA to minimize any trace metal ion catalyzed decomposition of 

SNAP.  Films were incubated in the dark at room temperature (22 ºC) or 37 ºC.  At 

various time points the UV-Vis spectra of a 1 mL aliquot of the PBS was taken for rapid 

determination of the SNAP concentration.  The aliquots were protected from light and 

were immediately returned to the sample vials for the duration of the experiment.  The 

films were placed in fresh PBS buffer daily.  The molar absorption coefficient for SNAP 

in PBS at 340 nm was determined to be: εSNAP=1024 M
-1

 cm
-1

.  PBS buffer was used as 

the blank.  The % SNAP remaining in the film was determined by the difference between 

the amount of SNAP that had leached into the PBS and the initial amount of SNAP in the 

film. 
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2.2.5  Cumulative NO Release from SNAP/E2As Films  

 After the 10 wt% SNAP in E2As films were prepared, the UV-Vis spectra were 

recorded of individual films dissolved in DMAc to determine the initial concentration of 

SNAP within the films (nmol SNAP/mg film).  Equivalent films were then placed in 

individual vials containing 3 mL PBS (pH 7.4) containing 100 µM EDTA.  Films were 

incubated under various conditions: RT under ambient light, 37 ºC under ambient light, 

37 ºC in dark, and 37 ºC under a 100W floodlight.  These experiments were conducted in 

a basement lab without any windows, so the fluorescent lights in the laboratory are 

referred to as ambient light.  Films were placed in fresh PBS daily.  At various time 

points, the films were dissolved in DMAc for rapid determination of the SNAP present in 

the film.  The amount of NO released was determined indirectly from the amount of 

SNAP decomposed at various time points.  The cumulative NO released over time 

([NO]t) was calculated by the difference between the initial amount of SNAP in the film 

([SNAP]0) and the amount of SNAP at time t ([SNAP]t): [NO]t = [SNAP]0 – [SNAP]t 

(where concentrations are in nmol/mg film).  This calculation was based on the fact that 

the decay of the 340 nm absorption band of SNAP is directly associated with the 

homolytic cleavage of the S-NO bond and concomitant NO release.  The molar 

absorption coefficient for SNAP in DMAc at 340 nm was determined to be: εSNAP=1025 

M
-1

 cm
-1

.  DMAc was used as the blank. 

 

2.2.6  NO Release Measurements 

 Nitric oxide released from the films was measured using a Sievers 

chemiluminescence Nitric Oxide Analyzer (NOA) 280 (Boulder, CO).  Films were 

placed in the sample vessel immersed in PBS (pH 7.4) containing 100 µM EDTA.  Nitric 

oxide was continuously purged from the buffer and swept from the headspace using an 

N2 sweep gas and bubbler into the chemiluminescence detection chamber.  Clear glass 

sample vessels were used for the ambient light and photoinitiated NO release 

experiments.  A 100W halogen floodlight (GE model 17986) was used as a broad 

spectrum light source to initiate NO release and was placed ~60 cm from the sample cell 

for the photolysis experiments.  Films were incubated in the PBS under the same 
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conditions as the NOA measurements (ambient light or 100W floodlight irradiation at 37 

ºC). 

 

2.2.7  SNAP/E2As Stability Study 

 SNAP/E2As films (consisting of 10 wt% SNAP) were placed under the following 

conditions in vials with desiccant: room temperature with ambient light, room 

temperature in dark, 37 ºC in dark, 50 ºC in dark, and in the freezer (-20 ºC) in dark.  At 

various time points over a 4 month period, films were dissolved in DMAc and the UV-

Vis spectra was recorded to determine the % SNAP remaining in the film, as compared to 

the initial 10 wt% SNAP.  

 

2.2.8  In Vitro Fibrinogen Adsorption Assay 

 The in vitro fibrinogen adsorption immunofluorescence assay was performed in a 

96-well format.  The SNAP/E2As and E2As control polymer solutions used to prepare 

the ECC circuits were also employed to coat microwells of the 96-well microtiter plates 

and were dried under the same conditions as the ECC loops.  Briefly, human fibrinogen 

was diluted to 3 mg/mL with Dulbecco’s phosphate-buffered saline (dPBS) without 

CaCl2 and MgCl2 (Gibco Invitrogen, Grand Island, NY), equivalent to the human plasma 

concentration, and then used for adsorption experiments.
20

  One hundred µL of this 

solution were added to each well and the coated wells were incubated with this solution 

for 1.5 h at 37 ºC.  This was followed by eight washing steps using wash buffer (100 µL) 

for each wash, which consisted of a 10-fold dilution of the AbD Serotec Block ACE 

buffer (Raleigh, NC) containing 0.05% Tween 20 (Calbiochem La Jolla, CA).  To block 

nonspecific antibody binding, coated wells were incubated with 100 µL of blocking 

buffer (4-fold dilution of Serotec Block ACE buffer) for 30 min at 37 ºC.  After rinsing 3 

times with wash buffer (100 µL per well), a background fluorescence measurement of the 

plates was performed at 485 nm (excitation) and 528 nm (emission) on a Synergy 2 

fluorescence microplate reader (Biotek Winooski, VT).  To detect the adsorbed 

fibrinogen, fluorescein-labeled goat anti-human fibrinogen antibody was diluted (1:10) in 

a 10-fold dilution of the Serotec Block ACE buffer and 100 µL of this final solution was 

added to each well.  The antibody was allowed to bind to the surface-adsorbed fibrinogen 
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for 1.5 h at 37 ºC.  Human fibrinogen adsorption to non-coated polypropylene was used 

as an internal control to normalize the fluorescence signals within different plates.  All 

measurements were conducted in triplicate. 

 

2.2.9  Rabbit ECC Thrombogenicity Experiments  

Rabbit thrombogenicity protocol:  All animal handling and surgical procedures 

employed were approved by the University Committee on the Use and Care of Animals 

in accordance with university and federal regulations.  A total of 8 New Zealand white 

rabbits (Covance, Battle Creek, MI) were used in this study.  All rabbits (2.5-3.5 kg) were 

initially anesthetized with intramuscular injections of 5 mg/kg xylazine injectable 

(AnaSed® Lloyd Laboratories Shenandoah, Iowa) and 30 mg/kg ketamine hydrochloride 

(Hospira, Inc. Lake Forest, IL).   

Maintenance anesthesia was administered via isoflurane gas inhalation at a rate of 

1.5-3% via mechanical ventilation which was done via a tracheotomy and using an 

A.D.S. 2000 Ventilator (Engler Engineering Corp. Hialeah, FL).  Peek inspiratory 

pressure was set to 15 cm of H2O and the ventilator flow rate set to 8 L/min.  In order to 

aid in maintenance of blood pressure stability, IV fluids of Lactated Ringer’s were given 

at a rate of 10 mL/kg/h. For monitoring blood pressure and collecting blood samples, the 

rabbits’ right carotid artery were cannulated using a 16-gauge IV angiocatheter (Jelco®, 

Johnson & Johnson, Cincinnati, OH).  Blood pressure and derived heart rate were 

monitored with a Series 7000 Monitor (Marquette Electronics Milwaukee, WI).  Body 

temperature was monitored with a rectal probe and maintained at 37 ºC using a water-

jacketed heating blanket.  Prior to placement of the arteriovenous (A-V) custom-built 

extracorporeal circulation (ECC) circuit, the rabbit left carotid artery and right external 

jugular vein were isolated and baseline hemodynamics as well as arterial blood pH, 

PCO2, PO2, total hemoglobin and methemoglobin were measured using an ABL 825 

blood-gas analyzer and an OSM3 Hemoximeter (Radiometer Copenhagen, DK).  In 

addition, baseline blood samples were collected for platelet and total white blood cell 

(WBC) counts which were measured on a Coulter Counter Z1 (Coulter Electronics 

Hialeah, FL).  Plasma fibrinogen levels were determined using  a Dade Behring BCS 

Coagulation Analyzer (Siemens Deerfield, IL), activated clotting times (ACT) were 
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monitored using a Hemochron Blood Coagulation System Model 801 (International 

Technidyne Corp. Edison, NJ), and platelet function was assessed using a Chrono-Log 

optical aggregometer model 490 (Havertown, PA). 

 After baseline blood measurements, the A-V custom-built ECC was placed into 

position by cannulating the left carotid artery for ECC inflow and the right external 

jugular vein for ECC outflow.  The flow through the ECC was initiated by unclamping 

the arterial and venous sides of ECC and blood flow in circuit was monitored with an 

ultrasonic flow probe and flow meter (Transonic HT207 Ithaca, NY).  Animals were not 

systemically anticoagulated during the experiments. 

 After 4 h on ECC, the circuits were clamped, removed from animal, rinsed with 

60 mL of saline and drained.  Any residual thrombus in the larger tubing of ECC (i.e., 

thrombogenicity chamber) was photographed and the degree of thrombus was quantitated 

using Image J imaging software from National Institutes of Health (Bethesda, MD).  

Prior to euthanasia, all animals were given a dose of 400 U/kg sodium heparin to prevent 

necrotic thrombosis.  The animals were euthanized using a dose of Fatal Plus (130 mg/kg 

sodium pentobarbital) (Vortech Pharmaceuticals, Dearborn, MI).  All animals underwent 

gross necropsy after being euthanized, including examination of the lungs, heart, liver 

and spleen for any signs of thromboembolic events. 

Blood Sampling:  Rabbit whole blood samples were collected in non-

anticoagulated 1 cc syringes for ACT, and in 3.2% sodium citrate vacutainers (Becton, 

Dickinson. Franklin Lakes, NJ) with 3 cc volumes for cell counts and aggregometry, and 

1 cc syringes containing 40 U/mL of sodium heparin (APP Pharmaceuticals, LLC 

Schaumburg, IL) for blood-gas analysis.  Following the initiation of ECC blood flow, 

blood samples were collected every hour for 4 h for these in vitro measurements.  

Samples were used within 2 h of collection to avoid any activation of platelets, 

monocytes or plasma fibrinogen. 

Platelet Aggregometry:  Rabbit platelet aggregation was assayed based on the 

Born’s turbidimetric method using a Chrono-Log optical aggregometer.  Briefly, citrated 

blood (1:10 blood to 3.2% sodium citrate solution) was collected (6 mL) and platelet-rich 

plasma (PRP) was obtained by centrifugation at 110 x g for 15 min.  Platelet-poor plasma 

(PPP) was obtained by another centrifugation of the PRP-removed blood sample at 2730 
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x g for 15 min and was used as the blank for aggregation.  PRP was incubated for 10 min 

at 37 ºC and then 25 µg/mL collagen (Chrono-PAR #385 Havertown, PA) was added.  

The percentage of aggregation was determined 3 min after the addition of collagen using 

Chrono-Log Aggrolink software. 

 

2.2.10  Statistical Analysis 

Data are expressed as mean  SEM (standard error of the mean).  Comparison 

between the various SNAP/E2As and E2As control polymer groups were analyzed by a 

comparison of means using student’s t-test.  Values of p<0.05 were considered 

statistically significant for all tests. 

 

2.3  Results and Discussion  

 

2.3.1  Preliminary In Vitro Characterization of Various SNAP-Doped Polymer Films 

 SNAP doped into all of the five biomedical polymers produced homogeneous and 

transparent films of green color, without any observable phase separation.  The 10 wt% 

SNAP films stored approximately 0.42 µmol of SNAP per mg polymer film (or 6 

µmol/cm
2
).  The diffusion of SNAP into PBS from the various polymer films containing 

5 and 10 wt% SNAP was monitored using UV-Vis absorption.  As shown in Figure 2.3, 

which illustrates the calculated % SNAP remaining in the films, all of the SNAP diffuses 

out of the SG-80A and SP-60D-60 polymer films during the first day of soaking in PBS 

at room temperature and at 37 ºC.  The SP-60D-60 polymer is hydrophilic with a water 

uptake of ~60 wt%, while the SG-80A is more hydrophobic, having a water uptake of ~ 6 

wt% (Table 2.1).  All of the SNAP leaves the more hydrophilic SP-60D-60 polymer 

during the initial 2 h of soaking, while the more hydrophobic SG-80A leaches all of the 

SNAP after 24 h.  The diffusion of SNAP from the polymers occurs more rapidly at 

elevated temperatures (room temperature vs. 37 ºC) where the higher temperature allows 

for the polymer to more rapidly absorb water.  Due to the rapid loss of the SNAP from 

the SP-60D-60 and SG-80A polymers, a very large initial burst of NO is observed via 
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Figure 2.3.  Percent of SNAP remaining in films (initially prepared with 10 wt% SNAP) after various 

durations of soaking in 4 mL PBS in the dark at room temperature, 22 ºC (A), or 37 ºC (B).  Data are 

based on the difference between the amount of SNAP that leached from various polymers into the PBS, 

as monitored at 340 nm, and the initial amount of SNAP doped in the film.  Data are the mean ± SEM 

(n=3). 
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chemiluminescence (with NOA) during the first day of soaking (Day 0) and the films 

exhibit no SNAP/NO release after one day (data not shown).  Therefore, these two 

polymers only provide a quick burst of NO/SNAP and were found not to be suitable for 

longer-term release of NO/SNAP.   

In contrast, the silicone rubber, CarboSil, and E2As polymers exhibit significantly 

lower amounts of SNAP diffusing into the soaking buffer after one day (see Figure 2.3).  

For all three of these polymers, an initial burst of SNAP leaching is observed during the 

first day of soaking, corresponding to rapid water uptake by the polymer.  This initial 

burst is ~10% of the total SNAP molecules incorporated into the films.  Small amounts of 

SNAP continue to leach from these polymers during the subsequent days of soaking.  

Silicone rubber, CarboSil (a thermoplastic silicone-polycarbonate-urethane), and E2As (a 

siloxane-base polyurethane elastomer) all are hydrophobic polymers due to their high 

PDMS content
54, 57

 and also have the lowest water uptake (see Table 2.1).  SNAP is 

reported to be slightly hydrophobic.
58

  Therefore, SNAP should have a preference for 

remaining in the more hydrophobic polymer phase.  In addition, the hydrophobic 

property of these polymers also has a significant role in limiting the diffusion of SNAP 

into the buffer, due to the minimal water uptake of these polymers.   

The thermal and photoinitiated NO release from the three SNAP-doped polymers 

was also studied by NOA measurements.  Nitric oxide release can be turned on/off using 

the broad spectrum 100W floodlight for all 3 film types.  As shown in Figure 2.4, there is 

Table 2.1.  The water uptake of the 5 biomedical polymers used in this study.  Polymers films (200 mg 

polymer) were cast in Teflon ring (d=2.5 cm) on Teflon plates.  Small disks (d=0.7 cm) were cut from 

the parent films, weighed, and immersed in PBS for 48 h at 37 ºC.  The wet films were wiped dry and 

weighed again.  The water uptake of the polymer films are reported in weight percent as follows: water 

uptake (wt%) = (Wwet –Wdry)/Wdry x 100, where Wwet and Wdry are the weights of the wet and dry films, 

respectively. 
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little difference in the NO release from the films in the dark or under the ambient lab 

lights, since the ambient fluorescent laboratory lighting does not emit the wavelengths 

responsible for decomposing RSNOs (340 or 590 nm).
37

  Fluorescent lights emit discrete 

wavelengths of light, whereas the 100W halogen floodlight is a broad spectrum light 

source.  For all three polymers, the total NO release detected by the NOA for films 

continuously irradiated with the 100W floodlight is ~100% of the SNAP doped into the 

films.  The photoinitiated NO release from these three films was examined by 

continuously irradiating with a 100W floodlight at 37 ºC and monitoring the NO released 

with the NOA (Figure 2.5A).  The SNAP-doped E2As and CarboSil films exhibit a 

gradual decrease in the photo-induced NO flux over a 3 d period, while the SR-based 

films release NO for only 2 days under the same conditions.  All three types of films 

incubated at 37 ºC under ambient light yielded an initial burst of NO on the first day of 

soaking, corresponding to release of SNAP into the solution, and on subsequent days, the 

NO flux is 1-2 x 10
-10

 mol cm
-2

 min
-1

, still potentially useful to inhibit platelet function 

and kill bacteria.
11, 12

  The NO release is most promising from the film composed of 10 

wt% SNAP in E2As under the 100W floodlight.  Therefore, the wt% of SNAP in E2As 

 

Figure 2.4.  NO release behavior of 10 wt% SNAP/E2As film at 37 ºC in the dark, ambient light, and 

100W floodlight. 
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Figure 2.5.  (A) NO release from 10 wt% SNAP in silicone rubber (SR), CarboSil, and Elast-eon E2As 

films at 37 ºC and continuously irradiated with the 100W floodlight.  (B) NO release from 5 and 10 

wt% SNAP in Elast-eon E2As films at 37 ºC continuously under ambient light (amb) or the 100W 

floodlight.  Data are the mean ± SEM (n=3). 
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was varied and examined in more detail (Figure 2.5B).  The NO release and SNAP 

leaching pattern is similar for a 5 wt% SNAP/E2As film, but the NO release takes place 

over a shorter time period.  The biostability and biocompatibility of the Elast-eon 

polymer in combination with the NO release from SNAP makes this formulation most 

attractive for further in vitro studies and potential biomedical applications.  

 

2.3.2  Long-Term NO Release of SNAP/E2As Formulation 

 In vitro studies were conducted with the SNAP/E2As films to examine the long-

term NO release and SNAP leaching from these films.  The NO release from the 

SNAP/E2As films over time was determined based on the amount of SNAP decomposed 

within the polymer phase (i.e., by measuring the SNAP remaining after dissolving the 

films at given time points).  The initial concentration of SNAP in the 10 wt% films is 420 

nmol SNAP/mg film.  Figure 2.6A shows the UV-Vis spectra of 1.0 mM SNAP solution, 

a 10 wt% SNAP in E2As film redissolved in N,N-dimethylacetamide (DMAc), and E2As 

dissolved in DMAc.  Due to thermal and/or photochemical decomposition of SNAP, a 

decrease in the 340 nm absorbance band is observed as films are soaked in PBS and the 

cumulative NO release based on that absorbance decrease is shown in Figure 2.6B.  The 

films display an initial burst of NO during the first day of soaking (Figure 2.3), which 

corresponds to the thermal decomposition as well as diffusion of SNAP out of the film.  

Films soaked at room temperature have the lowest flux of NO release.  However, films 

incubated at 37 ºC in the dark or under ambient light exhibit a higher NO release than the 

films at room temperature.  This is due to the increased thermal decomposition of SNAP.  

The films that are exposed to ambient light yield essentially the same NO release profiles 

as the films that are soaked in the dark.  Nitric oxide release from the SNAP/E2As films 

that are continuously irradiated with the 100W floodlight at 37 ºC only release NO for 3 d 

due to their higher NO fluxes that rapidly deplete the SNAP reservoir.  These films can 

provide NO release via both a thermal and photoinitiated decomposition of SNAP.   
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Figure 2.6.  (A) UV-Vis spectra of a 10 wt% SNAP/E2As film, 1.0 mM SNAP, and E2As dissolved in 

N,N-dimethylacetamide (DMAc).  (B) Cumulative NO release from 10 wt% SNAP/E2As films 

incubated in PBS under various conditions: room temperature (22 ºC) with ambient light, 37 ºC in the 

dark, 37 ºC under ambient light, and 37 ºC under the 100W floodlight.  Data are the mean ± SEM (n=3). 
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In order to better understand the NO release mechanism of the SNAP/E2As 

coating, the SNAP diffusion into PBS was monitored over a 20 d period.  As shown in 

Figure 2.7A, the films containing 10 wt% SNAP at 37 ºC exhibit an initial burst of 

SNAP leaching on the first day.  After this initial burst, small amounts of SNAP continue 

 

Figure 2.7.  (A) Diffusion of SNAP from 10 wt% SNAP-doped E2As films soaking in 1 mL PBS in 

the dark, as monitored at 340 nm, at room temperature (RT, 22 ºC) or 37 ºC.  (B) Comparison of the 

cumulative SNAP leaching and cumulative NO release (based on NOA-based or SNAP-based NO 

release data) from the 10 wt% SNAP-doped E2As films soaking in PBS at 37 ºC in the dark.  Nitric 

oxide release from SNAP-doped E2As films can occur from thermal and/or photochemical 

decomposition of SNAP within the polymer phase, or from SNAP that leached into the aqueous 

phase.  For the SNAP-doped E2As films, approximately 27% of the total NO release is attributed to 

the SNAP leaching. 
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to slowly diffuse from the E2As until the SNAP reservoir is nearly depleted (with still 

measurable amounts of SNAP leaching on day 20).  The total moles of SNAP that leach 

from the film accounts for ca. 27% of the total NO released (as detected by NOA 

measurements) during the 20 d period (see Figure 2.7B), and thus the majority of the NO 

release can be attributed to the SNAP stored within the E2As film.  Additionally, the 

effect of the number of polymer top coats on loss of SNAP was also evaluated.  SNAP-

doped E2As films without any top coat exhibit higher levels of SNAP diffusion into the 

buffer than films with at least 2 topcoats (see Figure 2.8).  The thickness of the top coat 

allows control of the diffusion rate of SNAP from the polymer reservoir. 

 

Upon loss of NO as a result of photolysis or thermal effects, SNAP decomposes 

into NO and an organic radical that subsequently forms the disulfide dimer of N-

acetylpenicillamine (NAP).  NAP is a well-known heavy metal chelator that is used 

clinically in the treatment of methyl-mercury and copper poisoning.
59-61

  Indeed, NAP has 

been used for almost half a century.
62-65

  Its medical uses have been widely taught in 

Medical Pharmacology courses as part of heavy metal poisoning treatments
60, 61

 and it has 

also been used to protect against free radical induced organ injuries.
66

  Hence, some slight 

 

Figure 2.8.  Diffusion of SNAP from 10 wt% SNAP in E2As films with 0, 2, or 4 top coats of E2As as 

monitored at 340 nm by UV-Vis.  Films were soaked in 10 mM PBS containing 100 µM EDTA, which was 

replaced daily after the UV-Vis measurement, at 37ºC in the dark.  Data are the mean ± SEM (n=3). 
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loss of NAP or the disulfide of NAP from the E2As polymer coatings would not likely 

create any toxicity issues if the proposed materials were ultimately employed for clinical 

applications.   

 

2.3.3  Stability Study of the SNAP/E2As Films 

The stability of SNAP doped in the E2As polymer during dry storage was also 

evaluated in order to ascertain the potential shelf-life of this material, as well any thermal 

control requirements for storage and shipping.  SNAP incorporated in E2As can 

potentially undergo thermal or photochemical decomposition during storage, thus 

limiting the available NO release capacity at the time of use.  Therefore, SNAP/E2As 

films were stored dry in the dark with desiccant at room temperature and 37 ºC.  These 

stability studies were conducted in a similar manner as the cumulative NO release 

experiments, where films were dissolved in DMAc to determine the amount of SNAP 

remaining in the polymer at various time points (see Figure 2.9).  Results indicate that 

SNAP is stable within the E2As polymer matrix after 4 months when stored at room 

temperature or at 37 ºC.  The 10 wt% SNAP films stored in the freezer (-20 ºC) in the 

dark for 2 months maintain 96% of the initial SNAP species, compared to 89% for room 

 

Figure 2.9.  Stability of 10 wt% SNAP in E2As films stored dry with desiccant under various 

temperature and light conditions.  Films were dissolved in DMAc to rapidly determine the amount of 

SNAP remaining at various times (compared to the initial level) as monitored at 340 nm by UV-Vis.  

Data are the mean ± SEM (n=3). 
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temperature and 82% for films stored at 37 ºC.  Additionally, SNAP films stored at 50 ºC 

retained 99% of the initial SNAP after 1 d storage, indicating that the SNAP within these 

films will likely withstand the slightly elevated temperatures used during ethylene oxide 

sterilization (~12 h) that are required for clinical device applications.  Tertiary RSNOs, 

such as SNAP, are known to have greater stability than primary RSNOs due to steric 

hindrance surrounding the sulfur atom.
24, 58, 67

  The increased thermal stability of SNAP 

in combination with the stabilization effect of the E2As polymer allows provides 

excellent storage stability of the SNAP/E2As material. 

Stability of RSNOs has been reported previously for viscous polymer matrices 

containing such NO donors, including poly(ethylene glycol), Pluronic F127 hydrogel, 

and poly(vinyl alcohol) and poly(vinyl pyrroloidone).
22, 23, 39, 40

  RSNOs decompose 

according to the following sequence of reactions:  

RSNO → RS˙ + NO˙       (1) 

RS˙ + RSNO → RSSR + NO˙    (2) 

With the overall reaction:  2RSNO → RSSR + 2NO˙  (3) 

The viscosity of the polymer matrix provides a cage effect on the bond cleavage and 

radical pair recombination.
23

  In addition, a viscous polymer matrix also limits the 

diffusion of the radical species, favoring geminate recombination to reform RSNO.  

Thus, the E2As polymer not only limits the diffusion of SNAP into the PBS, but it also 

appears to provide an additional stabilization effect to reduce the rate of SNAP 

decomposition. 

 

2.3.4  SNAP/E2As Coated ECC Loops and Effects on Rabbit Hemodynamics 

 In order to ascertain the potential benefits of the SNAP/E2As as a 

thromboresistant coating, a short-term ECC study was conducted to observe the effects of 

NO release from this new coating on platelets and thrombus area during 4 h blood flow.  

The active ECC loops coated with 5 wt% SNAP in E2As (Figure 2.10) and control loops 

coated with E2As only were prepared.  Five wt% SNAP was used in these tests due to the 

short duration of the ECC experiment.  As described above, the SNAP/E2As coating has 

an initial burst of SNAP diffusing into solution during the first day of soaking.  To reduce 

the effects of this burst during the short-term ECC experiments, all loops were first 
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soaked overnight in saline and the soaking solution was discarded prior to the ECC 

experiments.  Nitric oxide released from samples of the coated ECC loops were measured 

with the NOA for NO release before blood exposure (after overnight soaking in saline).  

The NO release of the SNAP/E2As coated loops maintain an average flux of 

approximately 2 x 10
-10

 mol cm
-2

 min
-1 

for 4 h (at 37 ºC with ambient light).  After 4 h of 

exposure to flowing blood, the ECC loops still exhibit a NO flux of at least 1.5 x 10
-10

 

mol cm
-2

 min
-1 

for at an additional 1 h period (see Figure 2.11). 

 The hemodynamic effects of the SNAP/E2As coated ECC circuits were also 

monitored over the 4 h of blood exposure in the rabbit ECC model.  The mean arterial 

pressure (MAP) dropped significantly for both SNAP/E2As and control loops within the 

first hour, dropping to 35±2 and 46±2 mmHg, respectively.  The MAP was maintained at 

these levels for the 4 h by continuous IV fluid maintenance.  The ECC blood flow 

dropped and remained at 64±5 mL/min for SNAP/E2As ECC, but maintained at baseline 

levels over the 4 h (76±6 mL/min) for controls.  The MAP drop and slower blood flow 

for the SNAP/E2As circuits is likely due to the vasodilatory effects of SNAP diffusing 

from the coating into the blood.  The heart rate is maintained over the 4 h and no 

significant difference was noted between the SNAP/E2As and control ECC loops, 

averaging 205±2 beats/min.  The activated clotting time increased over the 4 h period for 

both SNAP/E2As and control circuits, likely due to the increase in intravascular fluids 

(the hemodilution effect).  Similar effects on MAP and flow rate were observed with 

SNAP infusion.
20

 

 

Figure 2.10.  Diagram of the extracorporeal circuit (ECC) tubing coated with 5 wt% SNAP/E2As 

followed by a top coat of E2As. 
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Figure 2.11.  Representative NO surface flux profile from a section of ECC tubing coated with 5 wt% 

SNAP in E2As before (A) and after (B) blood exposure.  NO release measured via chemiluminescence 

at 37 ºC under ambient light. 
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2.3.5  Effects of SNAP/E2As Coatings on Rabbit Platelet Function and Thrombus 

Formation 

 

 Platelet activation and function throughout the 4 h ECC was assessed by 

recording the platelet count (Figure 2.12), which was corrected for hemodilution due to 

the added IV fluids, as well as % platelet aggregation.  The baseline platelet counts (x10
8
 

platelets/mL) were 3.5±0.6 and 4.8±0.5 for the SNAP/E2As and E2As control circuits, 

respectively.  For the SNAP/E2As circuits, the platelet count initially rose slightly and 

was maintained at 100±7% of baseline levels at the end of 4 h on ECC.  The platelet 

count for control circuits exhibited a time-dependent loss in platelets, dropping to 60±6% 

of baseline after 4 h.  The percent of platelet functional aggregation was determined by ex 

vivo collagen stimulation of PRP and measured by optical turbidity.  The platelets from 

blood taken from circulation through the SNAP/E2As and control circuits showed similar 

response to collagen-stimulated platelet aggregation during the 4 h blood exposure, both 

maintaining 56±12% (with baseline values at 68±6%).   

 Plasma fibrinogen levels were maintained at baseline levels for the control 

circuits (Figure 2.13A).  For the SNAP/E2As circuits, the plasma fibrinogen levels 

during the first hour of ECC dropped to 83% of baseline levels and remained at that level 

 

Figure 2.12.  Time-dependent effects of the 5 wt% SNAP/E2As coating on platelet count (e.g. 

consumption) during the 4 h blood exposure in the rabbit thrombogenicity model.  Data are the mean ± 

SEM (n=4). 
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for the 4 h ECC.  This decrease in plasma fibrinogen levels can be attributed to 

fibrinogen binding to the surfaces, as shown by the in vitro fibrinogen assay (Figure 

2.13B).  Surprisingly, even with the enhanced adsorption of fibrinogen on the 

 

Figure 2.13.  (A) Time-dependent effects of the 5 wt% SNAP/E2As coating on plasma fibrinogen 

during the 4 h blood exposure in the rabbit thrombogenicity model.  Data are the mean ± SEM (n=4).  

(B) In vitro fibrinogen adsorption assay on the 5 wt% SNAP/E2As and E2As control coatings.  

Fluorescence assay in a 96-well plate that used goat anti-human fibrinogen-FITC conjugated antibody 

to measure the level of adsorbed human fibrinogen (3 mg/mL) on the coatings.  Data are the mean ± 

SEM (n=24). 
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SNAP/E2As coatings, these materials still exhibited significantly less platelet loss than 

controls, suggesting that the levels of NO produced overcome the enhanced fibrinogen 

adsorption that would normally enhance activation of platelets.  To determine the 

differential formation of thrombus in the thrombogenicity chamber of the ECC circuit 

(i.e., the 3/8 inch ID Tygon
TM

 tubing, 8 cm in length within the ECC loop), 2-

dimensional (2D) image analysis was performed after 4 h of blood exposure.  The 

thrombus area was analyzed by using Image J software and represents the 2D area of 

thrombus formation (cm
2
) in each thrombogenicity chamber.  The thrombus area was 

quantitated and data are shown in Figure 2.14.  The thrombus area is significantly 

reduced for the SNAP/E2As circuits when compared to controls, although the E2As 

controls also had relatively low thrombus area, likely resulting from the enhanced 

intrinsic biocompatibility of the E2As polymer.
54, 55

 

 

 One of the effects of the new SNAP/E2As coating is the hypotension caused by 

the diffusion of SNAP into the blood stream, although the co-administration of 

intravenous fluids was able to counteract this.  The ECC loops used in this study had 1 

 

Figure 2.14.  Two-dimensional representation of thrombus formation on the SNAP/E2As and control 

ECCs after 4 h blood exposure in the rabbit thrombogenicity model, as quantified using Image J 

software from NIH.  Data are the mean ± SEM (n=4). 
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top-coat layer; however additional top coat layers could be added (see Figure 2.8) to 

limit SNAP leaching and further reduce the observed hypotensive effect.  Use of a thin 

outer layer of a highly cross-linked polymer could also be employed to further retard the 

leaching of SNAP from the E2As polymer.  Applications of SNAP have been reported to 

cause hypotension,
68, 69

 hyperglycemia and impaired insulin secretion,
69

 and decreased 

cell viability.
70-72

  Endogenous thiols and superoxide dismutase will reduce many of these 

adverse effects.  The parent thiol, N-acetyl-DL-penicillamine (NAP), however, has been 

used clinically to treat mercury poisoning
63

 and cystinuria
59

 with minimal side effects.  

Although the SNAP/E2As coatings studied here do exhibit a hypotension effect, the daily 

levels of SNAP delivered by the coating are well below the reported levels causing the 

other adverse side effects described above.  Future coatings should employ the use of 

more lipophilic RSNOs or combine the SNAP/E2As coating with an immobilized 

catalyst on the inner surface of the ECC tubing to decompose the RSNO before they can 

enter the flowing blood, creating a fully localized delivery of the NO. 

 

2.4  Conclusions 

 In this study it has been shown that the Elast-eon E2As polymer is an excellent 

matrix to act as reservoir for SNAP, and the resulting films can be used for the controlled 

release of NO and SNAP.  SNAP slowly diffuses from the polymer film, and NO release 

from the film/coating can be initiated by light and/or thermal decomposition when blood 

flows through an ECC loop.  Light (in the form of surgical lights, LEDs, fiber optics, 

etc.) could potentially be employed to administer higher doses of NO in a clinical setting.  

A stability study demonstrates that SNAP is quite stable within the E2As matrix, even 

during storage at 37 ºC for up to 4 months, demonstrating the enhanced shelf-life and 

potential for shipping devices made with this material without need for thermal control.  

Further, our finding that SNAP in the E2As also survives 50 ºC for at least one day, 

indicates that ethylene oxide sterilization of medical devices that utilize the SNAP/E2As 

coating should be possible.  While the E2As polymer has excellent innate biocompatible 

properties on its own, incorporating SNAP into the E2As polymer matrix provides 

controlled delivery of NO/SNAP to further improve polymer hemocompatibility.  The 

SNAP/E2As coated ECC loops significantly preserved platelet count and function during 
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4 h of ECC blood flow, while also reducing the clot area when compared to 

corresponding E2As coated control loops.  Incorporating SNAP within Elast-eon E2As 

polymer films/coatings provides a simple way to locally deliver NO/SNAP, and has 

potential for improving the hemocompatibility of a wide variety of blood-contacting 

medical devices, without risk of eluting any toxic precursor, given the use of NAP 

already as an approved therapeutic agent. 
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CHAPTER 3 

 

S-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon Catheters Reduce 

Thrombosis and Bacterial Adhesion in a Long-Term Animal Model 

 

 

 

3.1  Introduction 

 Blood-material interaction is critical to the success of implanted medical devices 

such as intravascular catheters, vascular grafts, stents, and extracorporeal life support 

circuits.
1, 2

  Two common factors that can cause complications with blood-contacting 

devices are thrombosis and infection.  As soon as blood comes in contact with these 

foreign surfaces, platelets adhere and become activated, forming thrombus within hours.  

Clinical use of catheters range from acute catheters placed in operating rooms, 

emergency rooms, and intensive care units (ICUs) (typically for up to 7 d), to permanent 

catheters for long-term nutrition and pacemaker leads (months to years).  Complications 

due to thrombosis and infection can result in extended hospital stay, increased healthcare 

costs, and even patient death.  Thrombus formation on catheters decreases their patency 

and functional lifetime.  Venous thrombosis has been detected by Doppler imaging in 

33% of intensive care unit patients.
3
  Infection is another significant problem, where there 

are 1.7 million Healthcare Associated Infections that result in 99,000 deaths per year in 

the United States.
4
  In addition, up to 40% of all indwelling catheters become infected.

5
  

An estimate 80,000 catheter-related bloodstream infections occur in patients within ICUs, 

resulting in as many as 28,000 deaths per year.
6
   

 Over the last 50 years, much has been learned about surface-induced thrombosis 

and many different strategies to create hemocompatible materials have been also been 

reported.
1, 7-9

  Some of the surface modifications to improve hemocompatibility include 
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hydrophilic or hydrophobic surfaces, zwitterionic polymers, and immobilized heparin (as 

discussed in Chapter 1).  However, in a clinical setting many devices still require the use 

of systemic anticoagulation (e.g., heparin) to avoid device failure due to thrombosis.
10

  

Long-term use of systemic anticoagulation is not desirable because it can have adverse 

side effects such as hemorrhage, thrombocytopenia, and thrombosis.
11

  Catheters with 

antimicrobial coatings (e.g., containing silver compounds or antibiotics) are available, but 

are not completely effective at preventing infection and biofilm formation and also do not 

address complications associated with activation of platelets.
5, 12

  A recent study reported 

that catheters coated with a silver alloy had a similar infection rate as control catheters.
13

  

Antibiotic resistant bacterial strains are becoming more common in the hospital setting.
14, 

15
  Further, bacteria have the ability to form biofilms (communities of bacterial encased in 

a self-synthesized extracellular matrix) that protect the bacteria from antiseptics, 

antibiotics, and the host’s defense system.
16-19

  Biofilm formation decreases the 

effectiveness of many antibiotics because they cannot penetrate the biofilm matrix, 

making the infections difficult to eradicate.
20

   

Nitric oxide (NO)-releasing polymers are one approach that has a great potential 

to improve the hemocompatibility of blood-contacting devices such as catheters.  

Radomski et al. first described NO as a potent vasodilator secreted by the normal 

endothelium that has the ability to inhibit platelet adhesion and aggregation to the blood 

vessel wall.
21, 22

  Nitric oxide is a natural inhibitor of platelet activation that is release 

from healthy endothelial cells at a flux into the blood stream of 0.5 -4.0 x 10
-10

 mol cm
-2

 

min
-1

.
23

  In addition, NO that is released within the sinus cavities and by 

neutrophils/macrophages functions as a potent natural antimicrobial agent.
24, 25

  Nitric 

oxide is known to have broad-spectrum antibacterial properties, where both gram-

positive and gram-negative bacteria can be killed.
26

  Therefore, NO-releasing polymers 

have the advantage that they could be used to create dual-functioning catheters that 

would possess both antithrombotic and antiseptic properties.  

A wide variety of nitric oxide (NO)-releasing polymers have been reported and 

investigated for their potential biomedical applications.
24, 27-29

  NO-releasing polymers 

have preserved platelet count and reduced thrombus formation when tested in a rabbit 

model of extracorporeal circulation (ECC) thrombogenicity.
30-34

  S-nitrosothiol-modified 
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xerogels significantly reduced adhesion of platelets and bacteria (Pseudomonas 

aeruginosa) when tested in vitro.
35, 36

  Diazeniomdiolate-doped poly(lactic-co-glycolic 

acid)-based films exhibited antibiofilm properties against both gram-positive 

(Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria when tested using 

a drip-flow bioreactor over a 7 d period.
37

  Despite the promising results reported in the 

literature, many of these NO-releasing polymers have not been clinically applied due to 

instability of the S-NO group during storage or sterilization, significant leaching of 

unbound NO donors, or difficult methods to covalently bind the NO donor to the 

polymer.
30, 38

  For example, S-nitrosothiol-modified polyesters were effective at reducing 

platelet adhesion/activation and had antimicrobial effect against Staphylococcus aureus 

and the multi-drug resistant Pseudomonas aeruginosa strains, but the NO release 

capability was significantly influenced by ethylene oxide sterilization.
39, 40

  In addition, 

most of the NO-releasing materials reported to date have been tested in vitro or in short-

term animal models for their hemocompatibility properties, so testing these materials in 

long-term animal models would be beneficial to evaluate more clinically relevant 

situations.   

 As described in Chapter 2, the new SNAP-doped Elast-eon E2As polymer 

formulation has encouraging properties, in terms of its long-term NO release, enhanced 

shelf-life stability, and its ability to preserve platelets and reduce thrombus during the 4 h 

extracorporeal circulation, that could make clinical applications feasible.
30

  In this study, 

catheters were fabricated with the SNAP/E2As polymer using a dip coating method.  The 

NO release from these catheters was monitored over a 20 d period under physiological 

conditions (37 ºC, dark).  Another key hurdle for potential clinical applications is the 

ability of the NO-releasing materials to withstand sterilization.  The effect of ethylene 

oxide (EO) sterilization on the SNAP/E2As catheters was also evaluated.  Finally, the 

SNAP/E2As catheters were assessed for their ability to reduce thrombosis and bacterial 

adhesion after 7 d intravascular implantation in sheep.  
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3.2  Materials and Methods 

 

3.2.1  Materials 

N-Acetyl-DL-penicillamine (NAP), sodium chloride, potassium chloride, sodium 

phosphate dibasic, potassium phosphate monobasic, ethylenediaminetetraacetic acid 

(EDTA), tetrahydrofuran (THF), sulfuric acid and N,N-dimethylacetamide (DMAc) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Methanol, hydrochloric acid and 

sulfuric acid were obtained from Fisher Scientific (Pittsburgh, PA).  Elast-eon
TM

 E2As 

was obtained from AorTech International, plc (Scoresby, Victoria, Australia).  All 

aqueous solutions were prepared with 18.2 MΩ deionized water using a Milli-Q filter 

(Millipore Corp., Billerica, MA).  Phosphate buffered saline (PBS), pH 7.4, containing 

138 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate, 100 µM EDTA was used for all 

in vitro experiments. 

 

3.2.3  SNAP Synthesis Protocol 

SNAP was synthesized using a modified version of a previously reported method.  

Briefly an equimolar ratio of NAP and sodium nitrite was added to a 1:1 mixture of water 

and methanol containing 2 M HCl and 2 M H2SO4.  After 30 min of stirring, the reaction 

vessel was cooled in an ice bath to precipitate the green SNAP crystals.  The crystals 

were collected by filtration, washed with water, and allowed to air dry.  The reaction 

mixture and resulting crystals were protected from light at all times. 

 

3.2.3  Preparation of Intravascular Catheters 

 Catheters were prepared by dip coating polymer solutions on 18 cm long stainless 

steel mandrels of 2.0 mm diameter (purchased from McMaster Carr).  The E2As control 

catheter solution consisted of E2As dissolved in THF (150 mg/mL).  Thirty-five coats of 

the E2As solution was applied on the mandrel by dip coating at an interval of 2 min 

between each coat.  The SNAP-doped E2As catheters had a trilayer configuration, E2As 

top/base coats and a SNAP-containing active layer.  The top/base coat solution consisted 

of E2As dissolved in THF (150 mg/mL).  The active solution was made up of 10 wt% 

SNAP and 90 wt% E2As dissolved in THF with overall total concentration of 150 
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mg/mL.  Trilayer catheters were prepared by dip coating 5 base coats of E2As solution, 

25 coats of active solution, and 5 top coats of E2As solution.  All catheters were allowed 

to dry overnight under ambient conditions, protected from light.  Cured catheters were 

removed from the mandrels and dried under vacuum for 48 h.  Catheters had an i.d. of 

2.08 ± 0.06 mm and o.d. of 3.30 ± 0.12 mm, as measured with a Mitutoyo digital 

micrometer.   

 

3.2.4  NO Release Measurements 

Nitric oxide released from the catheters was measured using a Sievers 

chemiluminescence Nitric Oxide Analyzer (NOA), model 280 (Boulder, CO).  A sample 

was placed in 4 mL PBS buffer at 37 ºC.  Nitric oxide liberated from the sample was 

continuously swept from the headspace of the sample cell and purged from the buffer 

with a nitrogen sweep gas and bubbler into the chemiluminescence detection chamber.  

The flow rate was set to 200 mL/min with a chamber pressure of 5.4 Torr and an oxygen 

pressure of 6.0 psi.  Catheters were incubated in 4 mL of PBS buffer, pH 7.4, at 37 ºC 

and tested for NO release at various time points.  Buffer was replaced every day.  After 

the 7 d chronic animal study, a section of the implanted NO release catheters were tested 

for NO release post-blood exposure.  For dry vs. humidity experiments, a catheter sample 

was placed in a dry NOA sample cell incubated at 55 ºC.  Humidity was introduced by 

injecting PBS buffer into the cell, with the catheter sample suspended in the air above the 

buffer.  The relative humidity in the sample cell was measured using a Fieldpiece PRH2 

psychrometer.   

 

3.2.5  Effect of Ethylene Oxide (EO) Sterilization 

 The SNAP-doped E2As catheters were sterilized by ethylene oxide (EO) at the 

University of Michigan Hospital sterilization facility.  Briefly, the EO sterilization 

procedure consists of the following steps, all at 54 ºC:  humidity and conditioning (1 h, 

40-80% humidity); EO gas exposure (2-3 h, 40-80% humidity); and exhaust/aeration (14 

h).  Catheters were tested for the wt% SNAP content before and after EO sterilization by 

UV-Vis analysis.  Catheter pieces were weighed and dissolved in N,N-dimethylacetamide 

(DMAc) for rapid determination of SNAP by UV-Vis (absorbance at 340 nm).  UV-Vis 
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spectra were recorded in the wavelength range of 200-700 nm using a UV-Vis 

spectrophotometer (Lambda 35, Perkin-Elmer, MA) at room temperature.  The molar 

absorption coefficient for SNAP in DMAc at 340 nm was determined to be: εSNAP=1025 

M
-1

 cm
-1.

 

 

3.2.6  Catheter Implantation in Sheep Model 

Sheep catheter implantation protocol:  All animals received care compliant with 

the “Principles of Laboratory Animal Care” formulated by the National Society for 

Medical Research and the “Guideline for the Care of Use of Laboratory Animals” 

prepared by the National Academy of Sciences and published by the NIH.  This study 

was approved by the University of Michigan Committee on Use and Care of Animals.  

Five adult sheep (Valley View Farms, Dexter, MI) were utilized in the large animal 

model.  All experiments were performed under sterile conditions.  Sheep experiments 

were performed under general anesthetic.  Propofol (APP Pharmaceuticals LLC, 

Schaumburg, IL) (1 mg/kg) was used for induction followed by isoflurane (Peramal 

Health Car Limited, Andhra Pradesh, India) (0.1-4%) anesthetic for maintenance.  A 

small 2-3 cm incision was created overlying the jugular vein.  The right and left jugular 

veins were then isolated and either control (E2As) or experimental (SNAP/E2As) 

cannulas were placed under direct visualization.  Small 1-2 cm vertical and transverse 

incisions were created over the right and left jugular veins. Cannulas were then placed 

using a modified Seldinger technique with one cannula either control (E2As) or 

experimental (SNAP/E2As) placed in either the right or left jugular vein.  The skin was 

then re-approximated using skin staples. 

Post-operative recovery protocol:  Sheep were recovered from anesthesia after the 

catheter placements and returned to animal housing.  The sheep remained in animal 

housing throughout the remainder of the experiment.  Necropsy was performed on day 7.  

Sheep were anesthetized using the same anesthetic protocol described above.  The right 

and left jugular veins were dissected along their length and isolated.  Sheep were 

heparinized using approximately 100-150 IU/kg bolus dose and activated clotting time of 

>200 s was confirmed.  The jugular veins were then ligated and opened longitudinally.  

Catheters were removed and placed in sterile saline for further analysis.  
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Catheter evaluation:  After explanting, the catheters were rinsed in sterile saline 

solution.  Pictures were taken of the exterior of the whole catheter using a Nikon L24 

digital camera.  Catheter sections (1 cm) were cut for NO release testing and bacterial 

adhesion measurements.  To quantitate the viable bacteria on the surfaces of the 

catheters, a 1 cm piece was cut longitudinally and was homogenized in 1 mL sterile PBS 

buffer.  The resulting homogenate was serially diluted in sterile PBS.  Triplicate aliquots 

of each dilution (10 µL) of each dilution were plated on LB agar plates.  The agar plates 

were incubated at 37 ºC for 24 h followed by calculation of colony forming units per 

catheter surface area (CFU/cm
2
). 

 

3.3  Results and Discussion 

 

3.3.1  In Vitro NO Release from Catheters and Effects of Ethylene Oxide Sterilization 

 As discussed in Chapter 2, the SNAP-doped E2As polymer has many properties 

that make it desirable for various biomedical applications, including long-term NO 

release, stability during storage, and ability to preserve platelets during short-term 

extracorporeal circulation.
30

  In this study, catheters were prepared with the SNAP-doped 

E2As polymer using a dip coating method and a trilayer configuration shown in Figure 

3.1.  The top and base coats of E2As were employed to reduce any initial burst of NO

 

 
Figure 3.1.  Schematic of SNAP-doped E2As catheters with a trilayer configuration. 
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from the leaching of SNAP.  There is little concern regarding the low levels of SNAP 

leaching typically observed from the SNAP/E2As polymer, since the parent thiol (NAP) 

is clinically used to treat heavy metal poisoning.
41-44

  Hence, the small amounts of SNAP, 

NAP, or NAP disulfide that could diffuse from the catheter into the blood would not 

likely create any toxicity issues.  The NO release from SNAP/E2As catheters was 

monitored using the NOA over a 20 d period (Figure 3.2).  The catheters exhibited a 

higher level of NO release upon first exposure to physiological conditions (soaked in 

PBS at 37 ºC) on Day 0.  The initial water uptake of the polymer and leaching of SNAP 

on the outer surface of the catheters contributes to the higher level of NO release 

observed during this initial test period.  However, as shown, the SNAP/E2As catheters 

continue to release physiological levels of NO (> 0.5 x 10
-10

 mol cm
-2

 min
-1

) for up to 20 

d.  The NO release from the catheters approaches the lower end of the normal  

endothelium range, which may still prove beneficial to reduce thrombosis and bacterial 

adhesion.  

 

 

Figure 3.2.  NO release from SNAP/E2As catheters under physiological conditions (soaking in PBS 

buffer at 37 ºC in the dark).  Data represents the mean ± SEM (n=5). 
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 In order for medical devices, such as the SNAP/E2As catheters, to be used 

clinically they must be able to withstand sterilization and still retain their NO-releasing 

properties.  Ethylene oxide (EO) sterilization is one common method used to sterilize 

medical devices.  This method is recommended for heat-sensitive devices over other 

sterilization techniques (e.g., autoclave).  The SNAP/E2As were also evaluated for their 

ability to withstand the EO sterilization process.  One cm sections of the SNAP/E2As 

catheter were EO sterilized by the University of Michigan Hospital sterilization facility.  

Precautions were taken to minimize any excessive exposure to light, so that only the 

effects of the EO sterilization process were observed.  The SNAP/E2As catheters (before 

and after EO) were dissolved in DMAc to quantitate the wt% SNAP by UV-Vis.  The 

catheters that had been EO sterilized had 89% of the original SNAP, as shown in Figure 

3.3, and the NO release profile was not significantly affected.  During the EO sterilization 

process, the SNAP/E2As catheters were not only exposed to the EO gas, but also were

 

 

Figure 3.3.  The SNAP content (mg SNAP/mg catheter) of catheters before and after ethylene oxide 

(EO) sterilization.  Data represents the mean ± SEM (n=4). 
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exposed to elevated temperatures (54 ºC) and humidity (40-80 %RH).  The NO release 

from catheter sections was observed with the NOA under dry and humid conditions at 55 

ºC.  As shown in Figure. 3.4, the NO release from the catheters is low under dry 

conditions, but dramatically increased upon exposure to humidity (~ 50% RH).  This 

demonstrates that the NO loss observed during EO sterilization may, in part, be caused by 

the humidity exposure.  This loss of SNAP could be significantly reduced if sterilized 

under dry conditions.   

 

 

3.4  Evaluation of Thrombus Formation and Bacterial Adhesion on Catheters in 7 d 

Sheep Model 

The catheters were implanted for 7 d in the jugular veins of sheep (1 SNAP/E2As 

catheter and 1 E2As control catheter per animal).  Following catheter implantation, sheep 

were monitored closely for changes in behavior, weight, appearance, and activity level.  

All the sheep recovered rapidly from the surgical procedure and returned to normal 

activity level.  At the time of catheter explantation, precautions were taken to remove the 

catheter from the vessel without disrupting the catheter surface.  The vessel was cut 

longitudinally to carefully remove the whole catheter.  The catheter was briefly rinsed in 

 
Figure 3.4.  Representative NO release from SNAP/E2As catheters under various conditions:  dry and 

room temperature (25 ºC); dry and 55 ºC; and humid (~50 %RH) and 55 ºC. 
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sterile saline solution.  Any residual thrombus on the catheter was photographed.  

Explanted catheters were systematically cut into 1 cm sections starting at the distal tip for 

post-implantation NO release measurements and bacterial adhesion testing.  

Surface thrombi on the explanted catheters were photographed and the degree of 

thrombus area was quantitated using Image J imaging software from National Institutes 

of Health (Bethesda, MD).  Figure 3.5A, shows representative images of the clot 

 

 
Figure 3.5.  Representative images of SNAP/E2As and E2As control catheters after 7 d implantation 

in sheep veins (A).  Two-dimensional representation of thrombus formation on the SNAP/E2As and 

E2As control catheters after 7 d implantation in sheep veins (B).  Data represents the mean ± SEM 

(n=5).  * = p < 0.05, SNAP/E2As vs. E2As control. 
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formation on the exterior of SNAP/E2As and control catheters.  These thrombi area 

measurements were quantitated and, as shown in Figure 3.5B, the thrombus area of the 

SNAP/E2As catheters was significantly reduced compared to the control catheters, 1.56 ± 

0.34 and 5.06 ± 0.64 cm
2
, respectively. 

One cm catheter section in 1 mL sterile PBS was homogenized to detach the 

bacteria from the inner and outer catheter surfaces and cultured as described in 

experimental section above.  The bacterial colonies were counted the following day and 

are represented as CFU/cm
2 

in Figure 3.6.  A 1.0 log reduction (90% reduction) in 

bacterial adhesion was observed for SNAP/E2As catheters as compared to the controls.  

Post-implanted catheters had a NO flux of 0.6 ± 0.1 x 10
-10

 mol cm
-2

 min
-1

 on the day of 

explantation, which is at the lower end of the normal range of NO from the 

endothelium.
23

  This data is consistent with previously reported animal data, where it was 

shown that NO release is not compromised due to blood exposure.
31, 33

  The 

hemocompatibility of these catheters likely could be further improved by exploring 

methods to increase the NO flux from the SNAP/E2As polymer. 

 

 

Figure 3.6.  Bacterial adhesion on SNAP/E2As and E2As control catheters after 7 d implantation in 

sheep veins.  Data represents the mean ± SEM (n=5).  * = p < 0.05, SNAP/E2As vs. E2As control. 
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3.4  Conclusions 

 Nitric oxide-releasing materials have many potential biomedical applications.  In 

this study, the SNAP-doped E2As polymer was used to fabricate catheters and evaluated 

for its hemocompatibility properties in a sheep model.  The SNAP-doped E2As catheters 

release physiological levels of NO (> 0.5 x 10
-10

 mol cm
-2

 min
-1

) for up to 20 d.  The 

ability of the SNAP/E2As polymer to withstand ethylene oxide sterilization, maintaining 

ca. 89% of the original SNAP, was observed.  The SNAP/E2As catheter significantly 

reduces the amount of thrombus and bacterial adhesion, in comparison to control 

catheters, after 7 d of intravascular implantation in sheep.  This study demonstrates the 

potential of the SNAP/E2As polymer in clinical applications to improve the 

hemocompatibility and antimicrobial properties of catheters and other medical devices, 

even for longer-term implantation periods.   
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CHAPTER 4 

 

Improving Diazeniumdiolate-Based Nitric Oxide (NO) Delivery with Poly(lactic-co-

glycolic acid) (PLGA) Additives for Blood-Contacting Device Applications 

 

 

 

4.1.  Introduction 

The hemocompatibility of blood-contacting medical devices (e.g., extracorporeal 

circuits, catheters, stents, grafts, etc.) is still a challenge, despite decades of research.
1-3

  

Thrombosis is one of the primary problems associated with clinical application of blood 

contacting materials.  For example, extracorporeal circulation (ECC) includes a wide 

variety of devices, from short-term hemodialysis and cardiopulmonary bypass (several 

hours), to extracorporeal life support (ECLS) (days to weeks).
4
  The most common 

complications with ECLS devices are bleeding (7-34%) and thrombosis (8-17%).
5
  In a 

clinical setting, these extracorporeal devices require the use of systematic anticoagulation 

(e.g., heparin) to avoid device failure.
6
  Systemic infusion of anticoagulants, such as 

heparin, is known to be the cause of hemorrhage and thrombocytopenia.
7
  Despite these 

complications, heparin is still used as the standard in anticoagulation therapy for patients 

on ECC.   

Biomaterial related thrombosis is a complex process, where the initial biological 

response when blood comes in contact with a foreign surface is protein adsorption, which 

is followed by platelet adhesion and activation, leading to thrombus formation.  Over the 

last 50 years much has been learned about foreign surface-induced thrombosis and 

attempts to prevent it with systemic anticoagulation and surface modifications.  Surface 

modifications have included using pure, very smooth silicone rubber
8
 or polyurethane,

9
 

pre-exposure of the surfaces to albumin
10

 or other coating proteins,
11

 and surface binding 
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of heparin in an ionic
12

 as well as a covalent fashion.
13

  Despite a thorough understanding 

of the mechanisms of blood–surface interactions and decades of bioengineering research 

effort, the ideal non-thrombogenic prosthetic surface remains an unsolved problem.
14

   

One approach to improve the hemocompatibility of a surface is to prevent platelet 

adhesion and activation, which is desirable for improving clinical outcomes.  In 1993 

Radomski and Moncada
15

 described nitric oxide (NO) as one of two potent vasodilators 

secreted by normal endothelium that has the ability to inhibit platelet adhesion and 

aggregation to the blood vessel wall.  The amount of NO released from normal and 

stimulated endothelium has been estimated to between 0.5-4.0 x10
-10

 mol cm
-2

 min
-1

.
16

  

Nitric oxide has been extensively studied for its inhibitory effects on circulating platelet 

and monocyte activation that leads to aggregation and ultimately initiation of 

thrombosis.
17-20

  Hence, one potential strategy to decrease the level or completely avoid 

systemic heparinization is to develop coatings that mimic the endothelium with respect to 

NO release at physiological levels.  A wide range of NO donors such as S-nitrosothiols,
21, 

22
 N-hydroxy-N-nitrosoamines,

23
 N-diazeniumdiolates

24, 25
 and nitrosyl metal 

complexes
26

 have also been studied over the past decade, as a means to release NO either 

by systemic infusion
27

 or locally released from a polymer surface (to mimic the NO 

release from normal endothelium).
28

  Despite the promising potential of NO-releasing 

materials, their development has been hindered due to challenges in prolonging the NO 

release beyond a few days. 

Diazeniumdiolates (also called NONOates) have been one of the most widely 

studied NO donors, that release NO through proton
29

 or thermal
30

 driven mechanisms.  

Prior work has shown that NO can be emitted from the NO donor compound, 

diazeniumdiolated dibutylhexanediamine (DBHD/N2O2), when this species is 

incorporated into hydrophobic polymer films.
28, 31

  While DBHD/N2O2 is an excellent 

donor for incorporation into polymers to create NO release coatings, the loss of NO from 

this molecule creates free lipophilic amine species within the polymer that react with 

water, thereby increasing the pH within the organic polymer phase which effectively 

turns off the NO production before a significant fraction of the total NO payload has been 

released.
31

  In earlier work, tetrakis-(p-chlorophenyl)-borate was employed as an additive 

to maintain a low enough pH within the organic polymer phase and to promote a 
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sustained NO flux.
28, 31

  However, this additive did not enable the release of the entire 

payload of NO from the polymer coatings and was also found to be cytotoxic towards 

endothelial and smooth muscle.
32

 

The work presented herein focuses on a new approach to address this pH control 

problem, and hence greatly prolong the NO release from DBHD/N2O2-doped polymers.  

This novel method involves the use of poly(lactide-co-glycolide) (PLGA) species as 

additives to help stabilize the pH within the organic phase polymeric coatings (Figure 

4.1).  The addition of PLGA can be used to control the flux of NO emitted from polymers 

 

containing diazeniumdiolate species by helping to control the pH within the polymer 

phase.
33, 34

  PLGA is a biodegradable and biocompatible polymer
35-37

 that can be used as 

an additive to sustain the NO flux for a prolonged period by the slow formation of lactic 

and glycolic acid within the base polymer layer of the coating.  Ester linkages of the 

PLGA are slowly hydrolyzed as small amounts of water penetrate the polymer from the 

surrounding aqueous environment to generate lactic and glycolic acid within the polymer 

matrix.
38, 39

  The presence of this continuous acid production reaction compensates for the 

increase in pH from generation of organo-ammonium hydroxide (reaction of liberated 

free amines from DBHD with water in the polymer film) from the NO release reaction, 

thereby maintaining a greater rate of NO release for longer periods of time. 

 

Figure 4.1.  Reactions of diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-

glycolic acid) (PLGA). 
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In the literature there are reports of two main strategies that utilize PLGA to 

deliver NO from diazeniumdiolate species.  The first strategy is dispersing the NO donor 

compound within the PLGA matrix, creating a completely biodegradable NO release 

material.  Yoo et al. employed PLGA microparticles with an NO donor 

(diethylenetriamine diazeniumdiolate (DETA NONOate), a low molecular weight 

diazeniumdiolate) within to deliver NO for a very short 6 h period.
40

  In another study, 

Cai et al. studied in vitro effects of NO-releasing PLGA films on biofilm formation.
41

  In 

this study the authors dispersed the NO donor compound in a completely hydrolysable 

PLGA matrix; however, due to the toxicity concerns of the product amine, leaching is a 

potential limitation of these films.  In the second strategy, Zhou and Meyerhoff have 

shown that PLGA has the potential to act as a proton donor to enhance the release of NO 

from a polymer material that had covalently linked diazeniumdiolate groups for a 

relatively short 20 h period.
33

  Although these approaches have had some limited success, 

prolonging the NO release still remains one of the great challenges preventing use of NO-

releasing materials in clinical application. 

In this study, various PLGAs are investigated for their potential to be used as an 

additive in poly(vinyl chloride)/dioctyl sebacate (PVC/DOS) and Elast-econ E2As 

polymers to control NO release from a lipophilic diazeniumdiolate (DBHD/N2O2) species 

added to the organic phase of the coating.  The effects of the PLGA end group chemistry 

(either free carboxylic acid or ester end group) and hydrolysis rate on the NO release 

profiles are compared.  The hydrolysis rate of the PLGA is primarily determined by the 

copolymer ratio, the nature of the end group (e.g., free acid or ester), and molecular 

weight.  Further, incorporation of pH indicators in the coatings provides a means to 

correlate the NO release with the observed pH changes within the PVC/DOS matrix.   

In addition, preservation of platelets and reduced thrombus area in a rabbit model 

of ECC with NO release coatings using DBHD/N2O2 doped poly(vinyl chloride)/dioctyl 

sebacate (PVC/DOS) as the base polymer has been reported.
28, 42

  However, the inherent 

hemocompatiblity properties of the base polymers used in combination with NO release 

can have a direct effect on the ultimate efficacy in preventing thrombus formation.  In 

this study, the degree of platelet consumption and thrombus formation is also compared 

for two biomedical grade polymers PVC/DOS and E2As in a rabbit thrombogenicity 
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model using an arterio-venous (A-V) shunt.  Further, the PVC/DOS- and E2As-based 

NOrel polymers are coated on ECC circuits and evaluated in the rabbit model.  These 

new PLGA-doped NOrel coatings could provide a breakthrough for achieving sustained 

preservation of circulating platelets, an important goal for longer-term ECC situations, 

such as ECMO, or other blood-contacting devices (e.g., catheters, vascular grafts, etc.).  

 

4.2  Materials and Methods 

 

4.2.1  Materials 

 Tygon
TM

 poly(vinyl chloride) (PVC) tubing was purchased from Fisher 

Healthcare (Houston, TX).  Tecoflex SG-80A was obtained from Lubrizol Advanced 

Materials Inc. (Cleveland, OH).  Elast-Eon
TM

 E2As was a product of AorTech 

International, plc (Scoresby, Victoria, Australia).  High molecular weight poly(vinyl 

chloride) (PVC), dioctyl sebacate (DOS), anhydrous tetrahydrofuran (THF), anhydrous 

acetonitrile, bromothymol blue, bromocresol green, sodium chloride, potassium chloride, 

sodium phosphate dibasic, and potassium phosphate monobasic were purchased from 

Sigma-Aldrich Chemical Company (St. Louis, MO).  Various poly(D,L-lactide-co-

glycolide) materials, including 5050DLG1A, 5050DLG7E, and 6536DLG7E, were 

obtained from SurModics Pharmaceuticals Inc. (Birmingham, AL).  N,N’-Dibutyl-1,6-

hexanediamine (DBHD) was purchased from Alfa Aesar (Ward Hill, MA).  DBHD/N2O2 

was synthesized by treating DBHD with 80 psi NO gas purchased from Cryogenic Gases 

(Detroit, MI) at room temperature for 48 h, as previously described.
31

  Phosphate 

buffered saline (PBS), pH 7.4, containing 138 mM NaCl, 2.7 mM KCl, 10 mM sodium 

phosphate, was used for all in vitro experiments. 

 

4.2.2  Preparation of NOrel Films for NO Release and pH Studies 

As mentioned earlier, the main focus of this work is to use PLGA as an additive 

in the PVC/DOS and E2As polymer matrices to prolong the NO release from a lipophilic 

DBHD/N2O2 species (Figure 4.1).  In this study, 5050DLG1A (1-2 wk hydrolysis rate), 

5050DLG7E (1-2 mo hydrolysis rate), and 6535DLG7E (3-4 mo hydrolysis rate) PLGAs 

were used.  These product names identify polymer mole ratio, polymer type, inherent 
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viscosity and the end group designation (ester or acid).  For example, 5050DLG7E stands 

for: 50 mole% DL-lactide, 50 mole% glycolide, 0.7dL/g and ‘E’ for an ester end group 

(Table 1).  The hydrolysis rate of the PLGA is primarily determined by the copolymer 

ratio, end group, and molecular weight (as determined from the inherent viscosity).   

A variety of NO-releasing (NOrel) film formulations were prepared using the 

solvent evaporation method in order to optimize the NO release duration.  The NOrel 

films were prepared with either the 2:1 PVC/DOS or E2As as the base polymer.  The 

amount of DBHD/N2O2 was kept at a constant 25 wt% of the active layer for all the films.  

A variety of NO-releasing films with a total weight of 800 mg in 5 mL THF, and were 

cast in Teflon rings (d = 2.5 cm).  For example, 10 wt% PLGA + 25 wt% DBHD/N2O2 in 

2:1 PVC/DOS were prepared with 80 mg PLGA, 200 mg DBHD/N2O2, 173 mg DOS and 

347 mg PVC in 5 mL THF.  The NO-releasing films were cast and cured for 2 d under 

nitrogen.  Disks (d = 0.9 cm) were cut from the parent NO-releasing film and a topcoat of 

the respective polymer was added.  Top coats were employed for three main reasons: 1) 

to prevent leaching of DBHD/N2O2; 2) to neutralize the surface charge; and 3) to yield a 

smoother finish to the surface.  The PVC/DOS-based films were dip coated 8 times using 

the top coating solution (375 mg DOS, 750 mg PVC in 15 mL THF) in 10 min intervals.  

The E2As-based films were dip coated 4 times using the top coating solution (550 mg 

E2As in 7.5 mL THF).  Top coated films were dried under nitrogen conditions for 1 d to 

minimize the loss of NO due to ambient moisture.  Similarly, control films were also 

prepared using solvent evaporation followed by top coating as described above.  The 10 

wt% PLGA control film solution consisted of 80 mg PLGA, 240 mg DOS and 480 mg 

PVC in 5 mL THF.  The 25 wt% DBHD/N2O2 control film (without PLGA) consisted of 

200 mg DBHD/N2O2, 200 mg DOS, and 400 mg PVC in 5 mL THF.  The final films had 

a total thickness of ~1000 µm including a topcoat of ~200 µm, which were measured 

using a Mitutoyo digital micrometer (Metron Precision Inc.). 

For the pH studies, the films were prepared as described above with the exception 

of adding given pH indicators to the active layer solution.  The pH indicators, 

bromocresol green (BG5) or bromothymol blue (BB7), were present in the active layer 

casting solution at 0.025 wt%.  Photos of the pH films were taken each day with Nikon 
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L24 digital camera to monitor the change in pH as indicated by the color of the 

incorporated pH indicators.   

 

4.2.3  Acid Content of PLGA 

 The acid number, which is a measure of the initial acid content of the PLGA and 

is directly related to the free carboxylic acid functionalities, was determined by a 

previously reported titration method.
43

  Briefly, approximately 50 mg of PLGA was 

dissolved in 10 mL of a 1:1 mixture of acetone and THF.  This solution was immediately 

titrated with 0.01 N KOH in methanol to a stable pink endpoint.  Phenolphthalein in 

methanol (0.1 wt%) was used as the indicator for the titration.  Titrations were performed 

in triplicate. 

 

4.2.4  Preparation of NOrel Coated ECC loops 

The ECC configuration employed in the in vivo rabbit study was previously 

described.
28, 42, 44, 45

  Briefly, the ECC consisted of a 16-gauge and 14-gauge IV 

polyurethane angiocatheters (Kendall Monoject Tyco Healthcare Mansfield, MA), two 16 

cm in length ¼ inch inner diameter (ID) Tygon™ tubing and an 8 cm length of 3/8 inch 

ID Tygon™ tubing that created a thrombogenicity chamber where thrombus could form 

more easily due to more turbulent blood flow. 

Base polymer coated control ECCs:  Polymer control loops were coated with 

E2As or 2:1 PVC/DOS solutions.  All the control loops contained 2 coats of the 

polymer/THF solution (2500 mg in 15 mL).   

NOrel coated ECCs:  NOrel loops were prepared with E2As or PVC/DOS coating 

containing 25 wt% DBHD/N2O2 as the NO donor, and 10 wt% 5050DLG7E PLGA 

additive.  The PVC/DOS-based NOrel solution consisted of 770 mg PVC, 385 mg DOS, 

180 mg PLGA and 450 mg DBHD/N2O2 in 10 mL THF to obtain a slightly cloudy 

dispersion of the diazeniumdiolate in the solution.  The PVC/DOS top coat solution was 

prepared using 181 mg PVC, 362 mg DOS plasticizer and 10 mL THF.  The E2As-based 

NOrel solution was prepared by dissolving 1600 mg E2As and 250 mg PLGA in 15 mL 

THF.  DBHD/N2O2 (625 mg) was then dispersed within the polymer cocktail by 

sonication for 30 min to obtain a slightly cloudy dispersion of the diazeniumdiolate in the 
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solution.  The E2As top coat solution consisted of 2500 mg E2As dissolved in 15 mL 

THF.   

The Tygon tubing was first coated with 2 layers of the NOrel solution, followed 

by 1 coat of the top coat solution.  The circuitry was filled with each solution, which was 

then removed.  All ECC circuitry were allowed to air dry for 1 h between each coat.  The 

completely coated ECC was assembled together using THF, starting with the 16-gauge 

angiocatheter, one 15 cm length ¼ inch ID tubing, the 8 cm length thrombogenicity 

chamber, the second 15 cm length ¼ inch ID tubing and finally the 14-gauge 

angiocatheter (Figure 4.2).  The angiocatheters were interfaced with tubing using two 

luer-lock PVC connectors.  The assembled ECC loops were dried for 20 min under 

ambient conditions and then under vacuum for 48 h, to minimize the negative effects of 

ambient moisture on the coating.  The configuration for both NO-releasing and control 

ECCs had a total thickness of approximately 150–200 μm., much thinner than the free 

standing multilayer films described above.   

 

4.2.5  NO Release Measurements 

 Nitric oxide released from the films was measured using a Sievers 

chemiluminescence Nitric Oxide Analyzer (NOA), model 280 (Boulder, CO).  The 

chemiluminiscence nitric oxide analyzer (NOA) is considered the gold standard for 

detecting NO and is widely used to measure NO release from materials.
28, 31, 41, 46, 47

  The 

 

Figure 4.2.  Schematic of the assembled extracorporeal circulation (ECC) loop, depicting the blood 

flow direction and thrombogenicity chamber. 
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major advantage of using the NOA is that the most troublesome interferents such as 

nitrites and nitrates are not transferred from the sample vessel to the reaction cell; thus, 

NO selectivity is enhanced.
48, 49

  A sample of the film was placed in 4 mL PBS buffer at 

37 ºC.  Nitric oxide liberated from the film was continuously swept from the headspace 

of the sample cell and purged from the buffer with a nitrogen sweep gas and bubbler into 

the chemiluminescence detection chamber.  The flow rate was set to 200 mL/min with a 

chamber pressure of 5.4 Torr and an oxygen pressure of 6.0 psi.  Films were incubated in 

4 mL of PBS buffer at 37 ºC for a 2 week period and tested for NO release at various 

time points.  Buffer was replaced every day to prevent saturation of NO.  In addition, a 

uniform segment was cut from the coated ECC loop and was tested for 4 h in vitro for 

NO release in PBS buffer prior to blood exposure.  After the surgery, a section of the 

ECC loop was tested for NO release in PBS buffer post blood exposure. 

 

4.2.6  The Rabbit Thrombogenicity Model 

Rabbit thrombogenicity model protocol:  The animal handling and surgical 

procedures were approved by the University Committee on the Use and Care of Animals 

in accordance with university and federal regulations.  A total of 28 New Zealand white 

rabbits (Myrtle’s Rabbitry, Thompson’s Station, TN) were used in this study.  All rabbits 

(2.5-3.5 kg) were initially anesthetized with intramuscular injections of 5 mg/kg xylazine 

injectable (AnaSed
®

 Lloyd Laboratories Shenandoah, Iowa) and 30 mg/kg ketamine 

hydrochloride (Hospira, Inc. Lake Forest, IL).   

Maintenance anesthesia was administered via isoflurane gas inhalation at a rate of 

1.5-3% via mechanical ventilation which was done via a tracheotomy and using an 

A.D.S. 2000 Ventilator (Engler Engineering Corp. Hialeah, FL).  Peek inspiratory 

pressure was set to 15 cm of H2O and the ventilator flow rate set to 8 L/min.  In order to 

aid in maintenance of blood pressure stability, IV fluids of Lactated Ringer’s were given 

at a rate of 10 mL/kg/h.  For monitoring blood pressure and collecting blood samples, the 

rabbits’ right carotid artery was cannulated using a 16-gauge IV angiocatheter (Jelco
®
, 

Johnson & Johnson, Cincinnati, OH).  Blood pressure and derived heart rate were 

monitored with a Series 7000 Monitor (Marquette Electronics Milwaukee, WI).  Body 

temperature was monitored with a rectal probe and maintained at 37 ºC using a water-
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jacketed heating blanket.  Prior to placement of the arteriovenous (AV) custom-built 

extracorporeal circuits, the rabbit left carotid artery and right external jugular vein were 

isolated and baseline hemodynamics as well as arterial blood pH, pCO2, pO2, and total 

hemoglobin were measured using an ABL 825 blood-gas analyzer.  In addition, baseline 

blood samples were collected for platelet and total white blood cell (WBC) counts which 

were measured on a Coulter Counter Z1 (Coulter Electronics Hialeah, FL).  Activated 

clotting times (ACT) were monitored using a Hemochron Blood Coagulation System 

Model 801 (International Technidyne Corp. Edison, NJ). 

 After baseline blood measurements, the custom-built ECC was placed into 

position by cannulating the left carotid artery for ECC inflow and the right external 

jugular vein for ECC outflow.  The flow through the ECC was initiated by unclamping 

the arterial and venous sides of ECC and blood flow in circuit was monitored with an 

ultrasonic flow probe and flow meter (Transonic HT207 Ithaca, NY).  Animals were not 

systemically anticoagulated during the experiments. 

 Blood sampling:  Rabbit whole blood samples were collected in non-

anticoagulated 1 mL syringes for ACT, 3.2% sodium citrate vacutainers (Becton, 

Dickinson. Franklin Lakes, NJ) in 3 mL volumes for cell counts and 1 mL syringes 

containing 40 U/mL of sodium heparin (APP Pharmaceuticals, LLC Schaumburg, IL) for 

blood-gas analysis.  Following the initiation of ECC blood flow, blood samples were 

collected every hour for 4 h for ex vivo measurements.  Samples were used within 2 h of 

collection to avoid any activation of platelets, monocytes, or plasma fibrinogen. 

 Determination of thrombus area:  After 4 h on ECC, the circuits were clamped, 

removed from animal, rinsed with 60 mL of saline, and drained.  Any residual thrombus 

in the larger tubing of ECC (i.e., thrombogenicity chamber) was photographed and the 

degree of thrombus image was quantitated using Image J imaging software from National 

Institutes of Health (Bethesda, MD).  Prior to euthanasia, all animals were given a dose of 

400 U/kg sodium heparin to prevent necrotic thrombosis.  The animals were euthanized 

using a dose of Fatal Plus (130 mg/kg sodium pentobarbital) (Vortech Pharmaceuticals 

Dearborn, MI).  All animals underwent gross necropsy after being euthanized, including 

examination of the lungs, heart, liver and spleen for any signs of thromboembolic events. 
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4.2.7  Statistical Analysis 

Data are expressed as mean  SEM (standard error of the mean).  Comparison of 

ECC results between the various NOrel and control polymer groups were analyzed by a 

one-way ANOVA with a multiple comparison of means using Student’s t-test.  Values of 

p<0.05 were considered statistically significant for all tests. 

 

4.3  Results and Discussion 

 

4.3.1  In Vitro NO Release from PVC/DOS- or E2As-Based Films Containing 

DBHD/N2O2 in with Various PLGA Additives 

The diazeniumdiolate species investigated here, DBHD/N2O2, decomposes to 

generate NO primarily by a proton-driven mechanism.
31

  A tetrakis-(p-chlorophenyl)-

borate derivative was used previously as a lipophilic additive counteranion to stabilize the 

pH within NO-releasing polymers prepared with DBHD/N2O2.
31

  However, the borate 

derivative is not an ideal additive because of its toxicity.
32

  In this study, PLGA additives 

with varying hydrolysis rates were used as a replacement of the borate derivative to act as 

a proton donor source to control the NO release from DBHD/N2O2-doped PVC and Elast-

eon E2As coatings.  It is well known that, in the presence of water, the ester bonds in 

PLGA hydrolyze to yield lactic and glycolic acids, and that PLGA is a widely used 

biodegradable/biocompatible polymer that has been approved by FDA for numerous 

products.
50

 

The films used in this study had a two layer configuration: an active coat 

(containing the NO donor, DBHD/N2O2, and PLGA additive) and a top coat.  The active 

coat consisted of the base polymer (PVC/DOS or E2As) doped with 25 wt% 

DBHD/N2O2 and various amounts of the PLGA additive.  The top coat consisted of the 

base polymer, either PVC/DOS in 2:1 ratio or E2As, without any additives.  The 2:1 ratio 

of PVC/DOS was selected because, as demonstrated by Reynolds et al.,
31

 PVC films 

containing DBHD/N2O2 with a 2:1 ratio of PVC/DOS had a more prolonged NO release 

when compared to 1:1 or 1:2 ratio of PVC/DOS.  Increasing the DOS content of the 

polymer increases the water uptake, resulting in a higher initial burst of NO release.  The 

top coats of the base polymer were employed for three main reasons indicated above in 
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the Materials and Methods Section.  In this study, PLGAs with various hydrolysis rates 

were compared for their effects on NO release:  5050DLG1A (1-2 week hydrolysis rate), 

5050DLG7E (1-2 month hydrolysis rate), and 6535DLG7E (3-4 month hydrolysis rate).   

It has been previously reported that DBHD/N2O2 within PVC films without an 

additive releases NO, producing the corresponding diamine, DBHD, that raises the pH 

within the polymer film slowing and eventually stopping the NO release in 1-2 d.
31

  Use 

of a PLGA additive promotes a more sustained NO release.  As shown in Figure 4.3A, 

DBHD/N2O2 in PVC/DOS with 5050DLG1A as the additive had an initial burst of NO 

due to high proton activity, but the NO release quickly diminished over a 10 d period.  In 

contrast, the PVC films prepared with the 5050DLG7E additive had a more consistent 

NO flux with no initial burst of NO, and this enabled the NO release to be prolonged for 

a 14 d period.  Not only does the 5050DLG1A hydrolyze and produce acid monomers 

more quickly than the 5050DLG7E, but it has a higher initial acid content (compared to 

the ester-capped PLGA) (Table 4.1).  The higher acid content and faster hydrolysis rate 

of the 5050DLG1A directly correlates to the high initial burst and greater initial NO 

fluxes which quickly depletes the DBHD/N2O2 reservoir.   

 

From Figure 4.3A it is apparent that the 5050DLG7E additive films exhibit little 

or no initial burst of NO and release the NO for a prolonged time period.  In order to 

optimize the film formulation containing 5050DLG7E, the amount of PLGA was varied.  

In Figure 4.3B, the amount of DBHD/N2O2 is kept constant at 25 wt%, while the 

5050DLG7E PLGA amount is varied from 5-30 wt%.  The 5 wt% 5050DLG7E films are 

 

Table 4.1.  Analytical information for the 5050DLG1A, 5050DLG7E, and 6535DLG7E PLGA 

additives. 
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Figure 4.3.  NO release profiles of PVC/DOS films doped with 25 wt% DBHD/N2O2 and no PLGA 

(control), 10 wt% 5050DLG1A, or 10 wt% 5050DLG7E additives (A).  NO release profiles of 

PVC/DOS films doped with 25 wt% DBHD/N2O2 and 5, 10, or 30 wt% 5050DLG7E (B).  The data are 

means ± SEM (n=4). 
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shown to release NO for 14 d; however, the fluxes were quite low for the first few days 

of soaking.  These low fluxes indicate that the 5 wt% PLGA is not adequate to 

compensate for the pH increase due to production of free DBHD diamine within the film.  

Increasing the 5050DLG7E to 30 wt% yields films that exhibit high fluxes from days 7- 

10 due to the increased amount of acid monomers being produced, resulting in complete 

depletion of the NO reservoir before day 14.  The ideal NO release coating has a 

consistent NO release, with little variation in the NO flux from day-to-day under 

physiological conditions.  The films with 10 wt% 5050DLG7E had little variation in the 

NO flux until days 10-14, while the 5 wt% and 30 wt% films gave fluxes that were either 

low or very high.  From this data one can conclude that using 10 wt% 5050DLG7E 

PLGA gives the more constant and sustained NO release profile.  Based on our 

calculations, approximately 85% of the theoretical NO is recovered from PVC/DOS films 

doped with 10 wt% 5050DLG7E and 25 wt% DBHD/N2O2.  The 15% of the theoretical 

NO that is lost during coating preparation and curing is likely due to the residual acid 

monomers present in the PLGA and thermal NO release at room temperature.  This loss 

of NO is difficult to avoid during the coating and curing processes. 

As shown in Figure 4.4, similar NO release profiles and trends are observed for 

the E2As-based films doped with 25 wt% DBHD/N2O2 and various PLGA additives.  

The PLGA additives can prolong the NO release from the E2As-based films, in 

comparison to films without any PLGA additive (Figure 4.4A).  The high residual acid 

content of the 5050DLG1A is responsible for the initial burst and short release of NO, 

while the ester-capped PLGA (5050DLG7E) prolongs the NO release for up to 14 d (with 

smaller day-to-day variations in the NO flux).  The E2As-based films were further 

evaluated for their NO release with two different ester-capped PLGAs (5050DLG7E and 

6535DLG7E).  As shown in Figure 4.4B, the 5 wt% 5050DLG7E and 6535DLG7E films 

are shown to release NO for 14 d; however, the fluxes were quite low indicating that the 

5 wt% PLGA is not adequate to compensate for the pH increase due to production of 

DBHD diamine within the film.  Increasing the PLGAs to 25 wt% yield films that exhibit 

high fluxes on days 1-3 due to the increased amount of acid monomers being produced, 

resulting in complete depletion of the NO reservoir by day 14.  No significant difference 

between the films containing the 10wt% of the 5050DLG7E and 6535DLG7E PLGA 
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additives is observed.  This similarity can be attributed to the fact that films are only 

tested for the initial 2 week period, whereas these PLGAs have much longer hydrolysis 

 

 

Figure 4.4.  NO release profiles of E2As films doped with 25 wt% DBHD/N2O2 and no PLGA 

(control), 10 wt% 5050DLG1A, or 10 wt% 5050DLG7E PLGA additives (A).  NO release profiles of 

E2As doped 25 wt% DBHD/N2O2 and 5, 10, or 25 wt% 5050DLG7E or 6535DLG7E PLGA additives 

(B).  The data are means ± SEM (n=4). 
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timeframes.  In addition, these PLGAs are being doped into hydrophobic polymers (with 

water uptake < 8%), which likely slows the hydrolysis rates even further.  These results 

demonstrate the ability to fine-tune the NO release profile with various PLGA additives, 

to match with the NO release needed for particular applications.  

 

4.3.2  Correlating NO Release and pH Change in the Films 

At 37 ºC, incubation of DBHD/N2O2 films in PBS enables NO to be released 

through a proton driven mechanism and the diamine DBHD product formed increases the 

pH within the PVC film.  The pH increase causes the NO release rate to decrease and 

eventually cease completely, without delivering the entire NO payload.  In contrast, using 

PLGA as an additive in appropriate proportion helps ensure that the DBHD/N2O2 is the 

limiting reagent and the entire NO payload is eventually released.  PLGA continues to 

hydrolyze creating a more acidic environment essential for NO release.  Hydrolysis of 

PLGA takes place simultaneously with NO release, balancing the pH of the film in a pH 

range that favors NO release.  However, the key to optimizing the NO release from these 

formulations is balancing the rates of PLGA hydrolysis with the rate of DBHD amine 

production.  

It is challenging to measure the rate constant of diazeniumdiolate decomposition 

and PLGA hydrolysis, since one reaction directly effects the other.  That is, the formation 

of the diamine causes the coating to become basic, which will further catalyze (increase 

rate of) the PLGA hydrolysis.  Therefore, the rate constants for the two reactions will 

change over time, and be somewhat dependent on another.  Hence, it is not possible to 

assess the kinetics of each independently.  Studying the pH changes within the polymer 

matrix, via the addition of pH indicator dyes, allows for qualitative correlation between 

the pH changes and NO release profile.  Studying the pH changes within the polymer 

matrix as a function of time provides a means to further support the hypothesis that the 

addition of PLGA to the PVC films derives its benefit via control of the polymer phase 

pH.  In previous work, Chromoionophore II (9-dimethylamino-5-[4-(16-butyl-2,14-

dioxo-3,15-dioxaeicosyl)phenylimino]benzo[a]phenoxazine) was doped into a PVC/DOS 

film with DBHD/N2O2.  However, this pH indicator only demonstrated the mechanism 

whereby this matrix becomes more basic over time without any detailed correlation to the 
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observed NO release rate.
31

  The pH within pure PLGA matrices has been studied 

previously using confocal microscopy with an acidic pH sensitive probe Lysosensor 

yellow/blue.
38

  In the present study, doping the films with simple pH indicator dyes 

allows a convenient and inexpensive way to visualize the pH changes that occur 

throughout the 14 d incubation period.  The amount of dye added to the films is crucial, 

as too little dye will prevent visual interpretation, while too much dye will compete with 

the DBHD/N2O2 reaction.  As shown in Figure 4.5, bromothymol blue (BB7) has a pH 

transition range of 6-7 and bromocresol green (BG5) of 4-5, where yellow is acidic and 

blue indicates basic conditions. 

 

The PVC/DOS-based films containing DBHD/N2O2 (without PLGA additive) and 

the pH indicator dyes initially have a basic environment (see Figure 4.6A).  This basic 

environment is maintained throughout the incubation time period.  This demonstrates that 

without an additive, the pH in the DBHD/N2O2 only films remains basic (from free 

 

Figure 4.5.  Comparison of color changes of bromocresol green (BG5) and bromothymol blue (BB7) in 

PBS buffer at various pH values.  

 

Figure 4.6.  Comparison of color changes of BG5 and BB7 doped with 25 wt% DBHD/N2O2 in 

PVC/DOS (A).  Comparison of color changes of BG5 and BB7 doped with 10 wt% of 5050DLG7E 

PLGA in PVC/DOS matrix (B).  All films were incubated at 37 ºC for 14 d in PBS buffer. 
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DBHD within the DBHD/N2O2 preparation) and prevents any further NO release.  The 

dyes were also added to the PVC/DOS films doped with PLGA (without any 

DBHD/N2O2), and all showed an acidic environment (see Figure 4.6).  Similar results are 

observed for the corresponding E2As-based control films. 

In contrast, the films doped with 10 wt% 5050DLG1A and 25 wt% DBHD/N2O2 

release NO for 10 d, but exhibit a burst of NO on the first day of soaking.  As shown in 

Figure 4.7A, the pH indicators in these 5050DLG1A-doped films indicate an initial 

acidic environment (pH ~5-6).  This initial acidic environment correlates to the observed 

large NO burst on day 1, caused by the high residual acid content in the 5050DLG1A 

(Table 4.1).  After 1 d of soaking, the PVC/DOS film doped with 5050DLG1A and BB7 

dye indicates an increase in pH (color change from yellow to green).  This increase of pH 

is due to the high flux of NO that occurs (Figure 4.3A) thereby producing significant 

amounts of the free DBHD amine within the film during a short period of time.  By days 

7-10, the NO flux diminishes significantly, during which time both dyes gradually 

 

Figure 4.7.  Comparison of color changes of BG5 and BB7 doped with 25 wt% DBHD/N2O2 and 10 

wt% of 5050DLG1A PLGA in PVC/DOS polymer matrix (A).  Comparison of color changes of BG5 

and BB7 doped with 25 wt% DBHD/N2O2 and 10 wt% of 5050DLG7E PLGA in PVC/DOS polymer 

matrix (B).  All films were incubated at 37 ºC for 14 d in PBS buffer. 
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indicate a decrease in film pH (films turned green and then yellow), an indication that the 

DBHD/N2O2 reservoir has been depleted as the PLGA continues to hydrolyze, recreating 

an acidic environment.  

Additionally, as reported above, NO release profiles of the PVC/DOS-based films 

doped with ester-capped PLGA (5050DLG7E) films yield the best balance between the 

hydrolysis rate of PLGA and NO release from DBHD/N2O2, providing a prolonged NO 

release profile.  The pH indicators show (Figure 4.7B) that these films also are initially 

acidic, but less acidic than the 5050DLG1A films.  In fact, the 5050DLG7E polymer 

possesses a much lower acid content and therefore slower hydrolysis rate in comparison 

to the films containing the 5050DLG1A polymer additive (Table 4.1); therefore, no 

initial burst of NO is observed.  This lower initial acid content is crucial to prolonging the 

NO release from these films.  The films containing ester-capped PLGAs (5050DLG7E 

PLGA and 6535DLG7E) exhibit little color change until days 10-14, when they begin to 

become more acidic.  This demonstrates that the acid production rate (from the PLGA 

hydrolysis) and DBHD amine production rate is closely balanced within these films, 

explaining the consistency of the pH and NO release from day-to-day.  These films also 

turned yellow by day 14, indicating the depletion of the NO reservoir.   

Similar trends in pH changes are observed for the E2As-based films (Figure 4.8).  

As shown in Figure 4.8A, the E2As films doped with 5050DLG1A have a more acidic 

pH, corresponding to the high initial burst of NO on the first day of soaking.  Films 

become more basic (green) as the NO is released and the diamine forms.  As the NO 

reservoir becomes depleted, the films become acidic (yellow) as the PLGA continues to 

hydrolyze.  In contrast, the E2As films doped with the ester-capped PLGA (5050DLG7E) 

have less significant changes in the organic phase pH until days 10-14 when the NO 

reservoir is depleted (Figure 4.8B).  This more steady organic phase pH results in the 

more consistent day-to-day NO release observed (Figure 4.4A).   

Although a direct comparison in the colors cannot be made between the 

PVC/DOS- and E2As-based films (due to the pKa values of the pH indicator dyes 

varying in different polymer matrices), the general trends in pH changes can be observed 

and correlated with the NO release profile.  In short, the use of pH indicators within the 

films provides further evidence that the ester-capped PLGAs, especially the 5050DLG7E 
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PLGA, exhibits a hydrolysis rate that balances the decomposition rate of the 

DBHD/N2O2, producing the optimum pH and concomitant prolonged NO release/flux 

profile. 

 

 

4.3.3  Comparison of Hemodynamic Effects of PVC/DOS and E2As Control Polymers in 

ECC Rabbit Model 

The hemocompatibility of PVC/DOS and E2As polymer coatings was compared 

using the 4 h rabbit thrombogenicity model.  The goal of this comparison was to choose 

the polymer with the best hemocompatible properties to be combined with the NO release 

chemistry for optimizing NOrel coatings for extracorporeal circulation testing in rabbits.  

Polymers were coated on the ECC tubings as described in Section 4.2.4 (Figure 4.9).  

Platelet preservation during exposure of the coated ECC surfaces to flowing blood was 

assessed by measuring the platelet count every hour.  Platelet count was used as one of 

the parameters to assess the hemocompatibility of the surface because the decrease in the 

 

Figure 4.8.  Comparison of color changes of BG5 and BB7 doped with 25 wt% DBHD/N2O2 and 10 

wt% of 5050DLG1A PLGA in E2As polymer films (A).  Comparison of color changes of BG5 and 

BB7 doped with 25 wt% DBHD/N2O2 and 10 wt% of 5050DLG7E PLGA in E2As polymer films (B).  

All films were incubated at 37 ºC for 14 d in PBS buffer. 
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platelet count over time indicates the activation of platelets on the tubing surface.
28, 42, 51

  

Platelet count was corrected for any hemodilution due to any IV infusion of fluids into 

the rabbits.  Only 1 out of 5 loops coated with E2As clotted before the end of the 4 h 

experiment, whereas, of 3 out 4 PVC/DOS loops clotted.  As shown in Figure 4.10A, at 

the end of 4 h, both polymer coatings exhibited a time dependent loss in platelets, 

however, 58 ± 3% of platelets were preserved for E2As ECCs whereas, animals tested 

with PVC/DOS exhibited a more significant loss in platelets count (46 ± 3%).   

To ascertain the differential of the thrombus in the thrombogenicity chambers 

(i.e., the 3/8” Tygon 8 cm in length within the ECC loop) of the coated ECCs, a two 

dimensional analysis was performed after 4 h of blood exposure.  NIH Image J imaging 

software was used to calculate the representative 2-D thrombus area (cm
2
) in each tubing 

chamber.
28, 42, 44, 45

  As shown in Figure 4.10B, the thrombus area of the E2As polymer 

coated ECC was significantly lower than the PVC/DOS (5.2 ± 0.3 and 6.7 ± 0.3, 

respectively).  Based on the platelet count and clot area, the E2As polymer was found to 

have enhanced intrinsic hemocompatible properties compared to the PVC/DOS.  The 

preservation of platelet count and reduced clot area can be attributed to the fact that the 

E2As polymer binds to albumin more strongly than fibrinogen, which likely aids in 

passivating the surface.
52

  It is widely accepted fact that protein adsorption is the first 

event that occurs upon surface-blood contact.
53

  Fibrinogen is a key protein in the 

coagulation cascade that rapidly adsorbs to foreign surfaces and binds to activated 

platelets.  Fibrinogen contains multiple binding sites for platelet integrin αIIbβ3 

(GPIIbIIIa).
54, 55

  These fibrinogen-αIIbβ3 interactions play a significant role in platelet 

 

Figure 4.9.  Diagram of the extracorporeal circuit (ECC) tubing coated with the base polymers 

(PVC/DOS or E2As). 
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adhesion, activation and aggregation that ultimately leads to a clot formation.
55

  Platelets 

can bind to both albumin and fibrinogen, however albumin can significantly reduce the 

platelet adhesion in comparison to fibrinogen coated surfaces.
56

  The fact that E2As 

 

Figure 4.10.  (A) Comparison of time-dependent effects of base polymer coated ECC loops on platelet 

consumption.  (B) Quantitation of thrombus area as calculated with NIH Image J software using a 2D 

representation of thrombus.  The data are means ± SEM.  * = p < 0.05, PVC/DOS vs. E2As. 
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 polymer adsorbs albumin more strongly than fibrinogen indicates its potential in 

passivating the blood contacting surfaces though this mechanism.
52

  Our hypothesis is 

that by combining the E2As polymer (with excellent intrinsic hemocompatibility 

properties) with NO release will further improve the overall hemocompatibility of such 

coatings than can be achieved by use of either approach alone.  

 

4.3.4  Nitric Oxide Release from PVC/DOS- and E2As-Based NOrel Coatings in ECC 

and Effects on Rabbit Hemodynamics, Platelet Function, and Thrombus Formation 

 

 ECC circuits coated (Figure 4.11) on the inner walls with the PVC/DOS- and 

E2As-based polymers containing the 10 wt% 5050DLG7E PLGA and 25 wt% 

DBHD/N2O2 were tested for NO release flux, pre- and post-4 h rabbit blood exposure.  

These optimized coating materials continuously releases NO under physiological 

conditions at levels that exceeds the physiological NO release from endothelial cells (0.5-

4 x 10
-10

 mol cm
-2

 min
-1

).
57

  The NOrel coated ECCs exhibited a slight burst of NO upon 

initial exposure to the PBS and 37 ºC that lasted ~ 30 min.  Therefore, the ECC loops 

were first soaked with PBS for 30 min prior to the rabbit experiments in order to reduce 

the effects of this burst.  The NO release from the PVC/DOS- and E2As-based NOrel 

ECC circuits show a sustained NO flux of approximately 11 x 10
-10

 mol cm
-2

 min
-1 

and 6 

x 10
-10

 mol cm
-2

 min
-1

, respectively, for 4 h, as measured using the chemiluminescence 

NO analyzer (Figure 4.12).  After 4 h of blood flow, the NO flux was found to be 10 x 

10
-10

 mol cm
-2

 min
-1 

(PVC/DOS) and 5 x 10
-10

 mol cm
-2

 min
-1 

(E2As) post-blood 

 

Figure 4.11.  Diagram of the extracorporeal circuit (ECC) tubing coated with the PVC/DOS- or E2As-

based NO-releasing polymer containing 25 wt% DBHD/N2O2 and 10 wt% 5050DLG7E PLGA. 
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Figure 4.12.  Representative NO release profile of PVC/DOS-based (A) and E2As-based (B) ECC 

coatings doped with 25 wt% DBHD/N2O2 and 10 wt% 5050DLG7E as measured in PBS using 

chemiluminescence. 
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exposure.  The fact that the blood environment does not alter the kinetics of the NO 

release from the coating agrees well with the previously reported data for various NO 

release circuits.
28

  Further, given the prolonged NO release capability of the new coatings 

being tested, applications in much longer-term extracorporeal or other biomedical 

applications would be possible.   

 No significant difference in the mean arterial pressure (MAP) of the animals on 

the NOrel vs. control circuits was noted, with pressures averaging 45±5 mm Hg for both 

types of circuits.  Heart rates for the NOrel and control ECC groups were unchanged over 

the 4 h time period.  The ECC blood flow was maintained at approximately 110 mL/min 

for the NOrel circuits over the 4 h animal test period.  However, for the control circuits, 

the blood flow dropped from the initial 110 mL/min to approximately 75 mL/min in the 

first one hour for the control circuits, and then further dropped to 60 mL/min over the 

next 3 h period.  Intravascular fluids were maintained at 10 mL/kg/min to maintain the 

blood flow in both NOrel and control circuits.  The NOrel and control ECC loops have 

the same inner diameter (which remains static due to the rigidity of the tubing) and 

therefore maintains the integrity of the coating, hence having no effect on the blood flow 

rates.  Monitoring the flow rate is a means to measure the time at which the ECC circuits 

has completely clotted.  Since the control ECC loops often clotted, this blocked the blood 

flow through the tubing, thus the flow rates decreased.  The activation clotting time for 

blood obtained from the test animals increases over the 4 h period for both NOrel and 

control coated circuits.  As noted in previous studies,
28

 this behavior can be attributed to 

the increase in intravascular fluids and concomitant hemodilution effect. 

 

4.3.5  Effects of PVC/DOS- and E2As-Based NOrel Coatings on Platelet Consumption 

and Thrombus Formation in the Rabbit Model 

The short-term 4 h rabbit ECC model was used to observe the effects of the NOrel 

coating on platelet count and clotting.  Platelet consumption throughout the 4 h ECC was 

assessed by recording the platelet count, which was corrected for hemodilution due to the 

added IV fluids.  For the PVC/DOS-based ECC circuits, 4 out of 7 control circuits clotted 

within 3 h, whereas all the 7 NOrel coated circuits remained patent after 4 h.  All 5 of the 

E2As-based NOrel circuits survived the 4 h experiment, whereas for the E2As controls 
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only 1 out of 5 loops clotted during the 4 h ECC run.  The animals tested with the 

PVC/DOS-based NOrel polymer coated ECCs showed 79 ± 11% preservation of the 

platelet count over the course of the 4 h blood contact period, whereas animals tested 

with the PVC/DOS control polymer ECCs exhibited a time-dependent loss in platelet 

count (54 ± 6 %).  For the E2As-based NOrel circuits, the platelet count rose slightly 

above the baseline value during the first hour, likely due to the release of reserve platelets 

from the spleen.  The platelet count returned to the baseline level during the second hour 

and was maintained at an average of 97 ± 10% of baseline levels at the end of the 4 h 

experiments.  The platelet count for E2As control circuits showed a time-dependent loss 

in platelets dropping to 58 ± 3% of baseline after 4 h (Figure 4.13).   

 

As previously described, Image J software was used to calculate the 2D 

representative thrombus area (cm
2
) in each thrombogenicity chamber after 4 h of blood 

exposure.  Figures 4.14A and B, show representative images of the control and NOrel 

circuits, respectively, after 4 h blood flow in the rabbit ECC model.  The thrombi area 

measurements were quantitated and, as shown in Figure 4.14C, the thrombus area of the 

 

Figure 4.13.  Time-dependent effects of PVC/DOS control, PVC/DOS-based NOrel, E2As control, and 

E2As-based NOrel coatings on rabbit platelet count.  The data are means ± SEM.   
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PVC/DOS-NOrel polymer ECC was significantly reduced compared to the PVC/DOS 

control polymer ECCs (1.5 ± 0.5 and 6.5 ± 0.4 cm
2
, respectively).  A similar trend is 

observed for the E2As-based control and NOrel circuits, with clot areas of 5.2 ± 0.3 cm
2 

and 0.9 ± 0.3 cm
2
, respectively.  For an A-V shunt procedure, the lungs are the first main 

filter for the blood.  After the 4 h experimental period, the lungs were evaluated for 

accumulated thromboemboli.  The control ECCs rabbit lungs appeared to have more 

emboli accumulated in the lower lobes of both lungs then any of the NOrel ECC rabbit 

lungs.   

 

Using the DBHD/N2O2 chemistry in PVC/DOS polymer an NO flux of 

approximately 10 – 15 x 10
-10

 mol cm
-2

 min
-1 

is needed to prevent clotting and maintain 

~80% of baseline platelet count in extracorporeal circulation.
28, 42, 44

  However, with the 

appropriate polymer, such as E2As, an NO flux of only 6 x 10
-10

 mol cm
-2

 min
-1 

is 

 

Figure 4.14.  Evaluation of thrombus area on PVC/DOS- and E2As-based Control and NOrel coated 

ECC loops after 4 h blood exposure in rabbit thrombogenicity model.  The 2D representation of 

thrombus quantitated using NIH Image J software.  The data are means ± SEM.  * = p < 0.05, 

PVC/DOS-based NOrel vs. E2As-based NOrel. 
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sufficient to prevent platelet activation, reduce clot area, and is able to maintain 97% of 

baseline platelet count at the end of 4 h.  

 

4.4  Conclusions 

This study demonstrates that PLGA polymers can be used as an additive within 

polymer matrices (PVC/DOS and E2As) containing lipophilic diazeniumdiolate species.  

The high residual acid content and fast hydrolysis rates of acid-capped PLGA additives 

results in high initial bursts of NO.  The NO release from DBHD/N2O2-doped PVC and 

E2As was extended to 14 d by using ester-capped PLGAs.  By using various pH 

indicators it is shown that the hydrolysis rates of specific PLGA species employed can 

control the NO release properties by influencing the steady-state pH within the polymer 

films.  The inherent hemocompatibility properties of the base polymers (Elast-Eon E2As 

and PVC/DOS) was also compared in the ECC model, and E2As was found to be 

superior in prevention of preservation of platelets and reduced thrombus formation.  

Further, it was demonstrated that nitric oxide release from E2As and PVC/DOS coatings 

containing a diazeniumdioloate NO donor and PLGA additive on the inner walls of the 

ECC circuits was able to further attenuate the activation of the platelets, while 

maintaining their functionality, and reduce clot area (vs. control ECC circuits without NO 

release) in a 4 h ECC rabbit model.  The E2As-based NOrel circuits preserved platelets at 

a higher level than PVC-based NOrel circuits (97% and 80% of baseline, respectively).  

After 4 h of blood flow, the E2As-based NOrel circuits also had a significantly lower 

thrombus area than the PVC-based NOrel circuits.  This study demonstrated that the 

inherent hemocompatibility properties of the base polymer can also influence the 

efficiency of the NO release coatings.  These encouraging results demonstrate that E2As-

based NOrel materials have great potential to improve the hemocompatibility of both 

short- and potentially long-term blood contacting devices such as catheters, vascular 

grafts, stents and other extracorporeal life support devices, such as long-term ECMO.
58

 

 

  



 

117 

 

4.5  References 

1. B. D. Ratner, Biomaterials, 2007, 28, 5144-5147. 

2. D. C. Sin, H. L. Kei and X. Miao, Expert Rev Med Devices, 2009, 6, 51-60. 

3. M. Ranucci, A. Balduini, A. Ditta, A. Boncilli and S. Brozzi, Ann Thorac Surg, 

2009, 87, 1311-1319. 

4. M. M. Reynolds and G. M. Annich, Organogenesis, 2011, 7, 42-49. 

5. Extracorporeal Life Support Organization (ELSO) Extracorporeal Life Support 

(ECLS) registry report international summary, 2010. 

6. A. M. Gaffney, S. M. Wildhirt, M. J. Griffin, G. M. Annich and M. W. Radomski, 

BMJ, 2010, 341. 

7. T. M. Robinson, T. S. Kickler, L. K. Walker, P. Ness and W. Bell, Crit Care Med, 

1993, 21, 1029-1034. 

8. T. Kolobow, E. W. Stool, P. K. Weathersby, J. Pierce, F. Hayano and J. 

Suaudeau, Trans Am Soc Artif Intern Organs, 1974, 20A, 269-276. 

9. M. Szycher, J Biomater Appl, 1988, 3, 297-402. 

10. L. H. Edmunds, Jr., ASAIO J, 1995, 41, 824-830. 

11. P. Didisheim, ASAIO J, 1994, 40, 230-237. 

12. W. S. Kim and H. Jacobs, Blood Purificat, 1996, 14, 357-372. 

13. O. Larm, R. Larsson and P. Olsson, Biomater Med Devices Artif Organs, 1983, 

11, 161-173. 

14. B. D. Ratner, J Biomater Sci Polym Ed, 2000, 11, 1107-1119. 

15. M. W. Radomski and S. Moncada, Adv Exp Med Biol, 1993, 344, 251-264. 

16. M. W. Vaughn, L. Kuo and J. C. Liao, Am J Physiol, 1998, 274, H2163-H2176. 

17. J. S. Isenberg, M. J. Romeo, C. Yu, C. K. Yu, K. Nghiem, J. Monsale, M. E. Rick, 

D. A. Wink, W. A. Frazier and D. D. Roberts, Blood, 2008, 111, 613-623. 



 

118 

 

18. B. L. Nguyen, M. Saitoh and J. A. Ware, Am J Physiol - Heart C, 1991, 261, 

H1043-H1052. 

19. Y. Sato, Y. Hiramatsu, S. Homma, M. Sato, S. Sato, S. Endo and Y. Sohara, J 

Thorac Cardiovasc Surg, 2005, 130, 346-350. 

20. A. K. Zimmermann, H. Aebert, A. Reiz, M. Freitag, M. Husseini, G. Ziemer and 

H. P. Wendel, ASAIO J, 2004, 50, 193-199. 

21. G. F. P. de Souza, J. K. U. Yokoyama-Yasunaka, A. B. Seabra, D. C. Miguel, M. 

G. de Oliveira and S. R. B. Uliana, Nitric Oxide, 2006, 15, 209-216. 

22. A. B. Seabra, G. F. P. de Souza, L. L. da Rocha, M. N. Eberlin and M. G. de 

Oliveira, Nitric Oxide, 2004, 11, 263-272. 

23. T. A. Alston, D. J. Porter and H. J. Bright, J Biol Chem, 1985, 260, 4069-4074. 

24. G. M. Annich, J. P. Meinhardt, K. A. Mowery, B. A. Ashton, S. I. Merz, R. B. 

Hirschl, M. E. Meyerhoff and R. H. Bartlett, Crit Care Med, 2000, 28, 915-920. 

25. M. H. Schoenfisch, K. A. Mowery, M. V. Rader, N. Baliga, J. A. Wahr and M. E. 

Meyerhoff, Anal Chem, 2000, 72, 1119-1126. 

26. G. B. Richter-Addo and P. Legzdins, Oxford, University Press: New York, 1992. 

27. W. J. Paulus, P. J. Vantrimpont and A. M. Shah, Circulation, 1994, 89, 2070-

2078. 

28. T. C. Major, D. O. Brant, M. M. Reynolds, R. H. Bartlett, M. E. Meyerhoff, H. 

Handa and G. M. Annich, Biomaterials, 2010, 31, 2736-2745. 

29. K. M. Davies, D. A. Wink, J. E. Saavedra and L. K. Keefer, J Am Chem Soc, 

2001, 123, 5473-5481. 

30. H. Zhang, G. M. Annich, J. Miskulin, K. Osterholzer, S. I. Merz, R. H. Bartlett 

and M. E. Meyerhoff, Biomaterials, 2002, 23, 1485-1494. 

31. M. M. Batchelor, S. L. Reoma, P. S. Fleser, V. K. Nuthakki, R. E. Callahan, C. J. 

Shanley, J. K. Politis, J. Elmore, S. I. Merz and M. E. Meyerhoff, J Med Chem, 

2003, 46, 5153-5161. 

32. B. Wu, PhD Dissertation, University of Michigan, Ann Arbor, 2009. 



 

119 

 

33. Z. Zhou and M. E. Meyerhoff, Biomacromolecules, 2005, 6, 780-789. 

34. S. Kaul, B. Cercek, J. Rengstrom, X.-P. Xu, M. D. Molloy, P. Dimayuga, A. K. 

Parikh, M. C. Fishbein, J. Nilsson, T. B. Rajavashisth and P. K. Shah, J Am Coll 

Cardiol, 2000, 35, 493-501. 

35. C. E. Holy, S. M. Dang, J. E. Davies and M. S. Shoichet, Biomaterials, 1999, 20, 

1177-1185. 

36. L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, 

J. P. Vacanti, R. Langer and A. G. Mikos, Biomaterials, 2000, 21, 1837-1845. 

37. S. J. Siegel, J. B. Kahn, K. Metzger, K. I. Winey, K. Werner and N. Dan, Eur J 

Pharm Biopharm, 2006, 64, 287-293. 

38. A. Ding and S. Schwendeman, Pharm Res, 2008, 25, 2041-2052. 

39. A. Shenderova, A. G. Ding and S. P. Schwendeman, Macromolecules, 2004, 37, 

10052-10058. 

40. J. W. Yoo, J. S. Lee and C. H. Lee, J Biomed Mater Res A, 2010, 92A, 1233-

1243. 

41. W. Cai, J. Wu, C. Xi and M. E. Meyerhoff, Biomaterials, 2012. 

42. E. J. Brisbois, H. Handa, T. C. Major, R. H. Bartlett and M. E. Meyerhoff, 

Biomaterials, 2013, 34, 6957-6966. 

43. D. H. Na and P. P. DeLuca, Pharm Res, 2005, 22, 736-742. 

44. H. Handa, T. C. Major, E. J. Brisbois, K. A. Amoako, M. E. Meyerhoff and R. H. 

Bartlett, J Mater Chem B Mater Biol Med, 2014, 2, 1059-1067. 

45. H. Handa, E. J. Brisbois, T. C. Major, L. Refahiyat, K. A. Amoako, G. M. 

Annich, R. H. Bartlett and M. E. Meyerhoff, Journal of Materials Chemistry B, 

2013, 1, 3578-3587. 

46. S. M. Lantvit, B. J. Barrett and M. M. Reynolds, J Biomed Mater Res A, 2013. 

47. K. M. Miranda, T. Katori, C. L. Torres de Holding, L. Thomas, L. A. Ridnour, W. 

J. McLendon, S. M. Cologna, A. S. Dutton, H. C. Champion, D. Mancardi, C. G. 



 

120 

 

Tocchetti, J. E. Saavedra, L. K. Keefer, K. N. Houk, J. M. Fukuto, D. A. Kass, N. 

Paolocci and D. A. Wink, J Med Chem, 2005, 48, 8220-8228. 

48. E. M. Hetrick and M. H. Schoenfisch, in Annual Review of Analytical Chemistry, 

2009, pp. 409-433. 

49. P. N. Coneski and M. H. Schoenfisch, Chem Soc Rev, 2012, 41, 3753-3758. 

50. S. P. Schwendeman, Crit Rev Ther Drug, 2002, 19, 73-98. 

51. E. J. Brisbois, H. Handa, T. C. Major, R. H. Bartlett and M. E. Meyerhoff, 

Biomaterials, 2013. 

52. D. Cozzens, A. Luk, U. Ojha, M. Ruths and R. Faust, Langmuir, 2011, 27, 14160-

14168. 

53. L.-C. Xu and C. A. Siedlecki, Langmuir, 2009, 25, 3675-3681. 

54. A. Agnihotri, P. Soman and C. A. Siedlecki, Colloids Surf B Biointerfaces, 2009, 

71, 138-147. 

55. M. A. Hussain, A. Agnihotri and C. A. Siedlecki, Langmuir, 2005, 21, 6979-

6986. 

56. B. Sivaraman and R. A. Latour, Biomaterials, 2011, 32, 5365-5370. 

57. M. W. Vaughn, L. Kuo and J. C. Liao, Am J Physiol - Heart C, 1998, 274, 

H2163-H2176. 

58. W. C. Oliver, Semin Cardiothorac Vasc Anesth, 2009, 13, 154-175. 

 

 



121 
 

 

CHAPTER 5 

 

Optimized Polymeric Film-Based Nitric Oxide Delivery Inhibits Bacterial Growth 

in a Mouse Burn Wound Model 

 

 

 

5.1  Introduction 

Bacterial infection and biofilm formation is a significant problem with a variety of 

biomedical devices that can lead to complications, increased medical costs, and increased 

morbidity.
1
  Indwelling medical devices are responsible for more than one million 

hospital acquired infections, resulting in 99,000 deaths per year in the United States.
2, 3

  

Another significant area of infection is in wounds.  More than one million burn injuries 

are reported annually in the US,
4
 resulting in 3,500 deaths per year.

5
  Complications of 

wound infection are also significant and include delayed wound healing, tissue necrosis, 

spread of infection to the bloodstream and other organs, and transmission of wound-

associated bacteria to other patients in hospitals.
6
  Treatment of these infections often 

includes antibiotics and other antimicrobial agents, such as silver.
7
  However, these 

materials often fail to prevent the infection and there is a growing concern for their use 

due to the emergence of bacterial resistance to antibiotics and antimicrobial agents.
7-9

  

Recent findings have also suggested that silver delays the wound-healing process and 

may have serious cytotoxic effects.
10

  Acinetobacter baumannii is one such bacterial 

strain that has developed extensive antimicrobial resistance, and it also forms biofilms 

that are resistant to host defenses and antimicrobial treatment.
11

  A. baumannii has been 

named a “new enemy”
12

 due to large outbreaks in intensive care units
13-17

 and also is a 

dominant organism isolated from wound infections (e.g., troops injured in Afghanistan 

and Iraq).
11, 18, 19
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Among its many biological roles, nitric oxide (NO) is known as a potent 

antimicrobial agent and an accelerant to the wound healing process.
1
  Nitric oxide is 

endogenously synthesized by nitric oxide synthase enzymes (NOS): endothelial (eNOS), 

neuronal (nNOS), and inducible (iNOS).  The iNOS is capable of producing high levels 

of NO
20

 and micromolar concentrations of NO are known to have cytotoxic effects.
21-23

  

Reactive oxygen species (such as superoxide (O2
-
), hydrogen peroxide (H2O2), and 

hydroxyl radical (OH)) and reactive nitrogen species (such as NO, N2O3, and 

peroxynitrite (OONO
-
)) are generated by the iNOS and phagocyte oxidase pathways and 

are responsible for the antimicrobial effects observed due to their interactions with thiols, 

proteins, DNA, and lipids.
20

  The broad-spectrum antibacterial properties of NO against a 

wide range of microbes have been demonstrated, showing that both gram-positive and 

gram-negative bacteria can be killed.
24

  In addition, bacteria have the ability to form 

biofilms (communities of bacteria encased in a self-synthesized extracellular matrix), 

which is one of the mechanisms that bacteria use to survive in adverse environments.
25-28

  

Indeed, formation of biofilms protects bacteria from antiseptics, antibiotics, and host 

defenses, making the infections difficult to eradicate.
29

  Evidence suggests that biofilms 

also play a role in wound infections, which may explain the chronic nature of many 

wounds infections and their resistance to antimicrobial therapy.
30

  Low nM 

concentrations of NO have been shown to be efficient at dispersing biofilms of various 

bacterial strains.
31-34

  Therefore, NO-releasing materials have great potential in 

biomedical applications, especially to reduce the risk of infection, promote wound 

healing, and improve biocompatibility of implantable medical devices.
34-37

   

 Due to the potential benefits of NO release, a wide variety of NO-releasing 

polymers have been reported in the literature, and many of these are summarized in a 

recent review by Carpenter and Schoenfisch.
38

  Materials with short durations of NO 

release may have potential wound healing applications due to the ease of replacing the 

material periodically throughout the wound healing process.  The NO released from these 

materials may also decrease the risks of infected wounds, thereby reducing the wound 

healing time and repair chronic wounds.
39

  Gaseous nitric oxide treatments and NO-

releasing materials have been used topically and shown to increase dermal blood flow, 

increase reepithelialization and angiogenesis, and accelerate wound repair; however, 
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some of these studies have been conducted with uninfected wounds.
40-44

  Previous studies 

have shown NO can be released from polymer films doped with diazeniumdiolate 

dibutylhexanediamine (DBHD/N2O2), which releases NO through proton or thermal 

driven mechanisms.
45-48

  However, the loss of NO from DBHD/N2O2 creates free 

lipophilic amine species within the polymer that react with water, thereby increasing the 

pH within the polymer phase and effectively turning off the NO release.  In Chapter 4, 

poly(lactic-co-glycolic) acid was used as an additive to promote and prolong the NO 

release from poly(vinyl chloride) films doped with DBHD/N2O2.
48, 49

  The ester linkages 

of the PLGA will hydrolyze in the presence of water, producing lactic and glycolic acids 

that can act as proton sources to promote the NO release from DBHD/N2O2-doped 

polymers.  PLGAs can have varying hydrolysis rates, which is primarily determined by 

the copolymer ratio, the end group chemistry (either a free carboxylic acid or ester end 

group), and molecular weight.  Lactate has been shown to enhance angiogenesis and 

accelerate wound healing,
50

 so any lactic acid monomers that leach from the NO-

releasing patches may also prove beneficial.  Previous work with DBHD/N2O2-based 

films have primarily utilized hydrophobic polymers (e.g., PVC) as the base polymer.
45, 48

  

In this study, we compared the effects of the base polymer, in terms of their water uptake 

property, on the NO release from polymer films doped with DBHD/N2O2 and PLGA.  

The optimal formulation was then utilized to create NO-releasing patches (and 

corresponding controls) that were applied to partial thickness scald burn wounds in a 

mouse model that were infected with A. baumannii to observe effects of such NO release 

patches on bacterial growth and TGF-β levels in the wounds after 24 h. 

 

5.2  Materials and Methods 

 

5.2.1  Materials 

 Tecoflex SG-80A and Tecophilic SP-60D-20 were purchased from Lubrizol 

Advanced Materials Inc. (Cleveland, OH).  Anhydrous tetrahydrofuran (THF), anhydrous 

acetonitrile, sodium chloride, potassium chloride, sodium phosphate dibasic, and 

potassium phosphate monobasic were products of Sigma-Aldrich Chemical Company (St. 

Louis, MO).  Poly(D,L-lactide-co-glycolide) 5050DLG1A (1-2 week hydrolysis rate), 



124 
 

5050DLG7E (1-2 month hydrolysis rate), and 6535DLG7E (3-4 month hydrolysis rate) 

were obtained from SurModics Pharmaceuticals Inc. (Birmingham, AL).  N,N’-Dibutyl-

1,6-hexanediamine (DBHD) was purchased from Alfa Aesar (Ward Hill, MA).  

DBHD/N2O2 was synthesized by treating DBHD with 80 psi NO gas purchased from 

Cryogenic Gases (Detroit, MI) at room temperature for 48 h, as previously described.
45

  

Phosphate buffered saline (PBS), pH 7.4, containing 138 mM NaCl, 2.7 mM KCl, and 10 

mM sodium phosphate was used for all in vitro experiments. 

 

5.2.2  Preparation of NO-Releasing Films and Patches 

 The focus of this study was to compare the effects of polymer water uptake on the 

NO release properties from DBHD/N2O2 and PLGA-doped within these base polymers 

(SG-80A or SP-60D-20).  The PLGA additives used were 5050DLG1A (1-2 week 

hydrolysis rate), 5050DLG7E (1-2 month hydrolysis rate), and 6535DLG7E (3-4 month 

hydrolysis rate).  The product names identify the copolymer ratio, inherent viscosity 

(used to determine the molecular weight), and the end group type (acid or ester), which 

are the main factors that determine the hydrolysis rate of the PLGA.  For example, the 

5050DLG7E is a PLGA with 50 mol% DL-lactide, 50 mol% glycolide, an inherent 

viscosity of 0.7 dLg
-1

, and has an ester end group (‘E’).  A variety of NO-releasing films 

were prepared via a solvent evaporation method using either SG-80A or SP-60D-20 

polyurethanes as the base polymer, while keeping the amount of DBHD/N2O2 and PLGA 

constant at 25 wt% and 10 wt%, respectively.  NO-releasing films consisting of 25 wt% 

DBHD/N2O2, 10 wt% PLGA, and 65 wt% polyurethane were prepared by dissolving 80 

mg PLGA, 200 mg DBHD/N2O2, and 520 mg polyurethane in 5 mL THF.  This solution 

was cast in Teflon rings (dia. = 2.5 cm) and cured under ambient conditions for 2 d.  

Disks (dia. = 0.9 cm) were cut from the parent films and dip-coated 4 times in a top-coat 

solution (550 mg of the respective polyurethane in 7.5 mL THF). 

The patches for the in vivo studies were prepared in a similar manner and 

consisted of SG-80A doped with 25 wt% DBHD/N2O2 and 10 wt% 5050DLG1A.  The 

active layer of the NO-releasing patches were prepared by dissolving 1300 mg SG-80A, 

200 mg 5050DLG1A, and 500 mg DBHD/N2O2 in 20 mL THF.  This solution was cast in 

a Teflon mold (5 cm x 6 cm) and dried under ambient conditions overnight.  The control 
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patches were prepared in a similar manner with 5050DLG1A and DBHD amine (non-

diazeniumdiolate) in the active layer.  The control active layer consisted of 1410 mg SG-

80A, 200 mg 5050DLG1A, and 390 mg DBHD amine dissolved in 20 mL THF.  The 

patches were dip coated 4 times using the corresponding top-coating solution (750 mg 

SG-80A in 20 mL THF).   

All films and patches were dried under ambient conditions overnight after the top-

coating, followed by vacuum drying for 48 h.  The final films and patches had a total 

thickness of ~1000 µm (~600 µm active layer and ~200 µm top-coat), as measured using 

a Mitutoyo digital micrometer (Metron Precision, Inc.). 

 

5.2.3  Polymer Water Uptake 

 SG-80A and SP-60D-20 polymer films were prepared by the solvent casting 

method.  Polymer solutions consisting of 200 mg polymer dissolved in 5 mL THF were 

cast in Teflon rings (d = 2.5 cm).  Disks (d = 0.9 cm) were cut from the parent films, 

weighed, and immersed in PBS buffer for 48 h at 37 ºC.  The wet films were wiped dry 

and weighed again.  The water uptake of the polymer films are reported in weight percent 

as follows:  water uptake (wt%) = ((Wwet –Wdry)/Wdry) x 100, where Wwet and Wdry are 

the weights of the wet and dry films, respectively. 

 

5.2.4  NO Release Measurements 

 Nitric oxide released from the NO release patches was measured using a Sievers 

chemiluminescence Nitric Oxide Analyzer (NOA) 280 (Boulder, CO).  Films were 

placed in the sample vessel immersed in PBS (pH 7.4).  Nitric oxide was continuously 

purged from the sample vessel and swept from the headspace using a N2 sweep gas into 

the chemiluminescence detection chamber.  Patches for the in vivo studies were wrapped 

in a moist Kim wipe and Tegaderm dressing (which was replaced daily to mimic the 

moist environment of the wound) and tested for in vitro NO release at 37 ºC. 

 

5.2.5  In Vitro Zone Inhibition Test 

Overnight LB (Luria Bertani) broth grown A. baumannii ATCC 17978 culture 

was washed with 1 × PBS buffer three times by centrifugation, and was then resuspended 
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in 1 × PBS buffer to make a final cell concentration of approximately 10
5 

CFU/mL.  For 

the zone of inhibition, 50 µL of the 10
5 

CFU/mL solution was plated onto LB agar plates.  

NO-releasing and control patches (1 cm x 1 cm square) were placed on the agar plates 

and incubated at 37C for 24 h.  The zone of inhibition was made by estimating the 

inhibition zone as circles and measuring the distance from the edge of the sample to the 

nearest bacterial colony.  All the experiments were conducted in triplicate. 

 

5.2.6  Partial Thickness Scald Burn Model in Mice 

Mouse burn model:  The animal handling and surgical procedures used in this 

study were approved by the University Committee on the Use and Care of Animals 

(UCUCA) in accordance with university and federal regulations.  A total of 9 female 

pathogen-free C57BL/6 mice (Harlan, Indianapolis, IN), 9-10 weeks old, weighing ~17-

23 grams each were used in this study.  Mice were housed in standard cages at the 

University’s Unit for Laboratory Animal Medicine Facility and were allowed to 

acclimate for 7 d after delivery prior to the experiment.  The animals were kept on a 12 h 

light cycle and were provided with rodent chow (LabDiet 5001, PMI Int’l., Richmond, 

IN) and water ad libitum throughout the study.  Pentobarbital (Nembutal, Ovation 

Pharmaceuticals,Inc., Deerfield, IL, manufactured by Hospira, Lake Forest, IL) was 

administered intraperatonially (50 mg/kg IP) for anesthesia.  The eyes of the animals 

were covered with sterile Altalube (Altaire Pharmaceuticals, Aquebogue, NY).  During 

the study, all mice were singly housed and all received 0.1 mg/kg buprenorphine 

(Buprenex; Reckitt Benckiser Pharmaceuticals Inc., Richmond, VA) subcutaneously 

(SQ) twice daily for post-burn pain control.   

The skin over the lumbrosacral and back region of the mice was clipped using a 

35-W model 5-55E electrical clipper (Oyster-Golden A-S, Head no.80, blade size 50).  

To create the burn, anesthetized mice were placed in an insulated, custom-made mold 

that exposes only the lumbrosacral and back region that is approximately 30% of the total 

body area (calculated using Meeh’s formula
51

).  Partial thickness burns were achieved by 

exposure of the skin to 60 ºC water for 18 s.  The burn was then wiped with sterile gauze.  

The burn sites were immediately inoculated with A. baumannii bacteria (200 µL of 10
6
 

CFU/mL) and covered with Tegaderm dressing (3M, Minneapolis, MN).  The mice were 
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returned to cages in a 37 ºC incubator until fully ambulatory.  Each mouse was given a 1 

mL injection of 5% Dextrose and Lactated Ringer’s Injection (Baxter) IP and another 500 

µl injection SQ on the back of its hind leg.   

Application of NO release and control patches:  The A. baumannii infection was 

allowed to grow in the wounds for a 24 h period prior to the application of the patches.  

The mice were divided into 3 groups receiving the following treatments:  control (DBHD 

+ PLGA patch), NO-releasing patch, and control (no patch).  NO release and control 

patches were soaked in sterile saline for approximately 15 min before attachment.  The 

Tegaderm dressing was removed, patches were applied to the wounds, and fresh 

Tegaderm was used to cover and hold the patch in place on the wound.  The Tegaderm 

was removed and replaced for mice that did not receive the patch treatment.   

Tissue collection:  At the time-point for tissue harvest (24 h after NO release and 

control patch application) the mice were given IP injections of pentobarbital (100 mg/kg) 

and exsanguinated followed by a bilateral pneumothorax.  Skin samples were collected 

for bacterial counts, slides/staining, and mRNA isolation for TGF-β PCR.  For the 

bacterial counts, skin tissue samples were excised and weighed, homogenized in 2 mL of 

PBS for 30 s, and cultured to determine the number of living A. baumannii 

microorganisms.  Plate counting was conducted with LB agar plates.  

The relative TGF-β mRNA levels were determined using TGF-β1 and GAPDH 

primers previously reported.
52, 53

  The skin samples were immediately frozen in liquid 

nitrogen and stored overnight at -80 ºC.  Samples were thawed briefly and homogenized 

in TRizol (Invitrogen, Carlsbad, CA) and RNA was extracted according to the 

manufacturer’s instructions.  RNA (2 µg) was utilized to make cDNA using the ABI 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA).  

Two hundred ng of cDNA was used to perform PCR with iQ SYBRGreen Supermix 

(Bio-Rad, Hercules, CA) on an Eppendorf Mastercycler epgradient S realplex 4 

thermocycler (Eppendorf North America, Hauppauge, NY).  After an initial denaturation 

for 2 min at 95 ºC, samples were subjected to 50 cycles of 95 ºC for 20 s, annealing at 60 

ºC for 30 s, and extension at 72 ºC for 20 s.   
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5.3  Results and Discussion 

 

5.3.1  In Vitro NO Release Measurements from Films and Patches 

Diazeniumdiolates are a group of widely studied NO donor molecules that release 

NO through proton or thermal driven mechanisms.
46-48

  Previous studies have shown NO 

can be released from polymer films doped with DBHD/N2O2.
45, 48

  Poly(lactic-co-

glycolic) acid additives have been shown recently help promote and prolong the NO 

release from poly(vinyl chloride) films doped with DBHD/N2O2.
48

  The ester linkages of 

the PLGA will hydrolyze in the presence of water, producing lactic and glycolic acids 

that can act as a proton source to sustain the NO release from DBHD/N2O2-doped 

polymers (see Chapter 4).  Previous work with DBHD/N2O2 films have primarily utilized 

hydrophobic polymers (e.g., PVC) as the base polymer;
45, 48

 however, in this study we 

compared the effects of the base polymer, in terms of its water uptake property, on the 

NO release from combined DBHD/N2O2 and PLGA-doped films.  In order to measure the 

water uptake of the two base polymers used in this study, films of the polymers were cast 

without any additives.  The water uptake was then determined by the weight difference of 

the polymer film before and after soaking in PBS at 37 ºC for 48 h.  As shown in Table 

5.1, the Tecoflex SG-80A polymer is more hydrophobic and has a significantly lower 

water uptake than the Tecophillic SP-60D-20.   

 

The NO-releasing films and patches used in this study were prepared using a two 

layer configuration, top-coat and active coat, as shown in Figure 5.1.  The active coat 

was doped with 25 wt% DBHD/N2O2 and 10 wt% PLGA (either 5050DLG1A, 

Table 5.1.  The water uptake of SG-80A and SP-60D-20 polyurethanes.  Polymer films were weighed 

before and after soaking in PBS for 48 h at 37 ºC.  The water uptake of the polymer films are reported in 

weight percent as follows: water uptake (wt%) = (Wwet –Wdry)/Wdry x 100, where Wwet and Wdry are the 

weights of the wet and dry films, respectively.prior to immersing in PBS for 48 h at 37 ºC.  The wet 

films were wiped dry and weighed again.   
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5050DLG7E, or 6535DLG7E).  The NO release from these films was measured using a 

chemiluminescene NO analyzer at 37 ºC while immersed in PBS buffer.  The films doped 

with 5050DLG1A have a significant burst of NO during the first day of soaking (see 

Figure 5.2).  This high initial burst can be attributed to the higher residual acid content 

 

 

Figure 5.1.  Diagram of the polyurethane (SG-80Aor SP-60D-20) based films/patches consisting of an 

active layer, doped with a lipophilic DBHD/N2O2 and PLGA additive, and a top coat of the 

corresponding polyurethane. 

 

Figure 5.2.  NO surface flux from SG-80A and SP-60D-20 films doped with 25 wt% DBHD/N2O2 and 

10 wt% 5050DLG1A (1-2 week hydrolysis rate) PLGA additives.  Films were incubated in PBS buffer 

at 37 ºC during the testing period.  The data are means ± SEM (n=3). 
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(from the carboxylic end groups and residual monomers).  The NO release rapidly 

decreases by day 3 for the SG-80A films, due to the low water uptake of this polymer, 

which slows the PLGA hydrolysis rate.  The films made with SP-60D-20 continue to 

release higher levels of NO for up to 16 d.  SP-60D-20 has a higher water uptake, which 

continues to allow water to diffuse into the film and promote PLGA hydrolysis and NO 

release.  In contrast, the films doped with the ester-capped PLGAs (either 5050DLG7E or 

6535DLG7E) do not exhibit an initial burst during the first day (Figures 5.3 and 5.4).  

The SP-60D-20 based films have higher NO release that has a longer duration than the 

corresponding SG-80A based films.  This trend is most noticeable in the films doped with 

PLGAs that have lower hydrolysis rates (5050DLG1A and 5050DLG7E).  The higher 

water uptake of the SP-60D-20 polymer facilitates the PLGA hydrolysis, which then 

continues to promote NO release.   

 

 

Figure 5.3.  NO surface flux from SG-80A and SP-60D-20 films doped with 25 wt% DBHD/N2O2 and 

10 wt% 5050DLG7E (1-2 month hydrolysis rate) PLGA additives.  Films were incubated in PBS buffer 

at 37 ºC during the testing period.  The data are means ± SEM (n=3). 
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Although these NO-releasing polymers have a wide variety of potential 

biomedical applications requiring various levels and duration of NO release,
38

 in this 

study we examined their potential use to reduce infection in burn wounds.  For wound 

healing applications, the NO release from patches can have short durations because new 

patches could be applied daily.  To choose the appropriate polymer composition for the in 

vivo studies, patches were prepared with Tecoflex SG-80A as the base polymer (due to 

the lower initial burst observed on the first day of soaking) and doped with 25 wt% 

DBHD/N2O2 and 10 wt% PLGA (either 5050DLG1A or 5050DLG7E).  In order to 

mimic the moist environment of the wounds, NO-releasing patches were wrapped with a 

moist Kim wipe and Tegaderm dressing, and tested at 37 ºC for their NO release.  The 

patches doped with 5050DLG1A maintained a NO flux of approximately 13 x 10
-10

 mol 

cm
-2 

min
-1

 for the first 24 h under physiological conditions (Figure 5.5).  In contrast, the 

patches doped with the 5050DLG7E exhibit a significantly lower flux of ~3 x 10
-10

 mol 

cm
-2

 min
-1

 under the same moist conditions and this flux is also sustained for the first 24 

h.  The NO release from both patches begins to diminish on the third day due to the 

 

Figure 5.4.  NO surface flux from SG-80A and SP-60D-20 films doped with 25 wt% DBHD/N2O2 and 

10 wt% 6535DLG7E (3-4 month hydrolysis rate) PLGA additives.  Films were incubated in PBS buffer 

at 37 ºC during the testing period.  The data are means ± SEM (n=3). 
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accumulation DBHD amine and the concomitant slower hydrolysis of the PLGA additive 

(from the reduced amount of water that diffuses into the polymer).  For the in vivo 

studies, the SG-80A patch type doped with 25 wt% DBHD/N2O2 and 10 wt% 

5050DLG1A was selected due to its higher NO release.   

 

5.3.2  Effects of NO and Control Patches on Zone Inhibition 

 The NO-releasing (SG-80A doped with 25 wt% DBHD/N2O2 and 10 wt% 

5050DLG1A) and control (SG-80A doped with 20 wt% DBHD amine and 10 wt% 

5050DLG1A) used for the in vitro zone inhibition test and in vivo studies were prepared 

as described in Section 2.2.  The control patches were prepared with equal moles of the 

DBHD amine, where the additional weight from the mass of the diaziniumdiolate NONO 

group was compensated by additional SG-80A, in order to observe the effects of the NO 

release vs. control.  Prior to the in vivo experiments, the NO-releasing and control patches 

were tested in vitro for their zone of inhibition.  A. baumanii was spread on agar plates 

and the patches (1 cm x 1 cm square) were placed in the center of the plate.  After a 24 h 

 

Figure 5.5.  NO release from SG-80A patched doped with 25 wt% DBHD/N2O2 and 10 wt% of either 

5050DLG1A (1-2 week hydrolysis rate) or 5050DLG7E (1-2 month hydrolysis rate) PLGA additives.  

Films were wrapped in moist Kim wipes and Tegederm dressing at 37 ºC during the testing period.  The 

data are means ± SEM (n=3). 



133 
 

incubation at 37 ºC, the NO release patch created a zone of inhibition that had a diameter 

of ca. 4.3 ± 0.9 cm.  The control patch showed no zone of inhibition, where only the 

bacteria underneath the patch were slightly suppressed.  This zone of inhibition test 

mimics the nutrient environment of the wound and demonstrates that the NO released 

from patches has the potential to diffuse in and around the wound site, and ultimately 

reduce the bacteria and infection.  

 

5.3.3  Effects of NO and Control Patches on Bacteria Counts and TGF-β mRNA in Mouse 

Burn Model 

A mouse burn model was used to observe the effects of the NO-releasing patch on 

an infected wound.  Partial thickness scald burn wounds on mice were inoculated with A. 

baumannii and covered with Tegaderm dressing.  The bacteria were allowed to grow in 

the wound for 24 h prior to the application of NO release patches, control patches, or 

control (no patch).  After 24 h of patch or control treatment, skin tissue was harvested, 

homogenized in PBS, and grown on agar plates to assess the effects of NO on bacterial 

growth in the wounds.  As shown in Figure 5.6, the NO-releasing patches significantly 

reduced the amount of A. baumannii bacteria present in the wounds after 24 h application  

(~ 4 log reduction) in comparison to the control patches (which did not have NO release).  

The wounds that receive the control treatment of no patch (only Tegaderm dressing 

covering the wound) had similar bacteria counts as the other control patch group (data not 

shown).  Part of the reduced bacteria counts can be attributed to neutrophil infiltration, 

which happens in the case of all treatment groups in this study.  However, the additional 

NO that is supplied by the NO-releasing patches has the potential to improve the overall 

healing of the wound by reducing the infection and bacterial growth. 
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Burn wounds have been shown to have increased TGF-β mRNA levels, which 

contributes to immunosuppression,
54

 impairs humoral immunity (antibody generation),
55

 

and contributes to scar formation.
56

  In this study, the harvested skin tissue was also 

assessed for the expression of TGF-β mRNA levels using RT-PCR.  The wounds with the 

NO-releasing patches created a significant reduction in TGF-β levels in comparison to the 

control patches (Figure 5.7).  This reduction may be due to the inhibition of T cell 

proliferation by NO.
57

  Further, it has been reported that NO regulates TGF-β expression 

transcriptionally, where inducible nitric oxide synthase (iNOS) expression is inversely 

proportional to TGF-β expression.
58

  NO release from iNOS or NO donors (e.g., SNAP, 

GSNO) is known to downregulate TGF-β mRNA.  Reduction of TGF-β has been shown 

to enhance reepithelialization, decrease post-burn scarring, and reduce trans-epithelial 

migration of bacteria.
59, 60

  In addition to the promising bacteria and TGF-β results, the 

UM pathology report indicated that the NO-releasing patches did not worsen the injury 

and indicated that there was less overall damage in the wounds in comparison to the 

controls.  Nitric oxide has many biological roles, including reducing bacterial infection 

 

Figure 5.6.  Plate counting of A. baumannii cells on the wounded skin of mice after 24 h application of 

SG-80A based NO-releasing and control patches.  NO-releasing and control patches were applied to 

wounds 24 h after inoculation with A. baumannii.  After 24 h, skin tissue was harvested, homogenized, 

serially diluted, and grown on agar plates.  The data are means ± SEM (n=3).  * = p < 0.05. 
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and decreasing TGF-β mRNA levels as addressed here, and both processes can be quite 

beneficial to the wound healing process.
38

  The nitric oxide releasing patches used in this 

study could be replaced daily, in order to maintain consistent NO delivery to the wound 

site. 

 

 

5.4  Conclusions 

In summary, this study demonstrates that the water uptake properties of the base 

polymer can be used to further control the NO release rates from polymeric films/patches 

doped with DBHD/N2O2 and PLGA.  Films prepared with a more hydrophobic 

polyurethane (SG-80A) exhibit NO release that is lower and shorter in duration than the 

polyurethane with 20% water uptake (SP-60D-20).  The more hydrophilic base polymer 

increases the rate of hydrolysis of the PLGA additive, supplying more protons locally 

within the polymeric phase that thereby increase the NO release rate.   These new 

DBHD/N2O2 and PLGA-doped SG-80A patches demonstrate the potential to improve the 

 

Figure 5.7.  Expression of TGF-β mRNA after application of the SG-80A based NO-releasing and 

control patches.  RNA was extracted from the homogenized skin tissue and the expression of TGF-β 

was determined using RT-PCR and expressed as the ratio to that of untreated mice.  The data are means 

± SEM (n=3).  * = p < 0.05. 
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healing of burn wounds by reducing the bacterial infection.  Indeed, the NO released 

from the patches is clearly shown to be able to significantly reduce the A. baumannii 

infection (~4 log reduction) after 24 h application to scald burn wounds.  The NO release 

patches are also shown to be able to reduce the TGF-β levels, in comparison to controls, 

and this species has been reported to enhance reepithelialization, decrease scarring, and 

reduce migration of bacteria.  The novel NO-releasing patches developed here could be 

replaced frequently throughout the duration of the wound healing process in order to 

further promote and expedite the healthy wound healing process by maintaining exposure 

of the wound to a higher flux rate of NO.   
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CHAPTER 6 

 

Conclusions and Future Directions 

 

 

 

6.1  Conclusions 

 This dissertation research has focused on novel methods to achieve long-term 

nitric oxide (NO) release from polymers and their potential biomedical applications.  

These studied also attempted to overcome some of the challenges regarding clinical 

application of NO-releasing materials, including:  1) short durations of NO release (from 

a few hours to a few days); 2) the need for toxic additives to prolong the NO release; 3) 

prohibitive costs of the NO donor molecules; and 4) instability of the NO donor during 

storage and/or sterilization.  Various NO-releasing polymers have been reported in the 

literature (representative examples listed in Table 6.1); however none have yet been 

clinically applied despite their potential benefits. 

In Chapters 2 and 3, the S-nitroso-N-acetypenicillamine (SNAP)-doped polymers 

were studied for hemocompatibility applications.  Polymers with low water uptake 

(silicone rubber, CarboSil, and Elast-eon E2As) were found to exhibit relatively low 

levels of SNAP leaching during the first 24 h soaking in buffer.  The films were further 

studied for their long-term NO release and shelf-life stability.  The SNAP-doped E2As 

creates an inexpensive homogeneous polymer that can locally deliver physiologically 

relevant levels of NO (via thermal and photochemical reactions) for up to 20 d.  It was 

found that the SNAP is surprisingly stable in the E2As polymer, retaining 78% of the 

initial SNAP after 4 months storage at 37 ºC.  The SNAP/E2As polymer was coated on 

the inner walls of extracorporeal circulation (ECC) circuits and exposed to 4 h blood flow 

in a rabbit model.  The SNAP-doped E2As polymer preserved the blood platelet count at 
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Table 6.1.  Examples of recently reported S-nitrosothiol (RSNO)- and diazeniumdiolate-based NO 

releasing polymers, the duration of NO release, and additional noted properties (e.g., stability in terms of 

% loss of the NO donor after dry storage, leaching of NO donor molecules, etc.). 

NO-Releasing Polymer 
NO 

Release 
(at 37 ºC) 

Other Properties (e.g., stability, 
leaching) 

Ref. 

RSNO-modified xerogels 14 d 
~30-50% loss after 30 d at room 
temperature 

1, 2
 

RSNO-modified polyester/poly(methyl 
methacrylate) 

25 h Initial burst of NO 3
 

GSNO-doped poly(vinyl alcohol)/poly(vinyl 
pyrrolidone) 

12 h 
~33% loss after 30 d at 25 ºC 
Leaching of GSNO 

4, 5
 

GSNO-doped poly(ethylene glycol) 16 h ~87% loss after 65 d at 8 ºC 7
 

RSNO-modified polyurethanes 1-3 d Initial burst and low flux of NO 8
 

RSNO-modified poly(sulfhydrylated 
polyester) and poly(methyl methacrylate) 

1-3 d 60% loss during EO sterilization 9
 

SNAP covalently bound to 
polydimethylsiloxane 

1 d 50% loss after 57 d at 4 ºC 10
 

SNAP-doped Elast-eon E2As 20 d ~20% loss after 4 mo at 37 ºC 13
 

DMHD/N2O2 and LPEI/N2O2-doped PU and 
PVC 

3-4 d Leaching of NO donors 14
 

DBHD/N2O2-doped PVC/DOS  with borate 
additive 

1-3 d Initial burst of NO 6
 

DACA/N2O2-modified silicone rubber 20 d >50% loss after 45 d at 23 ºC 17
 

RSNO- and Diazeniumdiolate-modified 
silica particles dispersed within 
polyurethane or SR 

1-2 d 
Initial burst of NO; leaching of 
particles 

18-20
 

Diazeniumdiolate-modified sol-gels 1-6 d 
99% loss during autoclaving 10% 
loss after UV sterilization 

16, 21
 

DBHD/N2O2-doped polyurethanes  with 
PLGA additive 

14-24 d 
NO release profile tailored with 
PLGA additive 

22, 23
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 100 ± 7% of baseline (compared to 60 ± 6% for E2As control circuits) and also reduced 

the thrombus area.   

In Chapter 3, the SNAP/E2As polymer was used to fabricate NO-releasing 

intravascular catheters.  These catheters were found to release NO (> 0.5 x 10
-10

 mol cm
-2

 

min
-1

) for up to 20 d under physiological conditions.  In addition, the new SNAP/E2As 

catheters were able to retain 89% of the SNAP after ethylene oxide sterilization.  

SNAP/E2As and E2As control catheters were implanted in sheep veins for 7 d.  The 

SNAP/E2As catheters were able to significantly reduce the amount of thrombus and 

bacterial adhesion after 7 d implantation compared to the controls.  These in vivo studies 

demonstrate the great potential of the SNAP/E2As polymer to improve the 

hemocompatibility and bactericidal activity of catheters and other blood-contacting 

devices for short- and long-term applications (vascular grafts, stents, extracorporeal 

circuits, etc.). 

In Chapters 4 and 5, the NO release properties from diazeniumdiolated 

dibutylhexanediamine (DBHD/N2O2)-doped polymers was significantly improved using 

various poly(lactic-co-glycolic acid) (PLGA) additives.  The PLGA additives are a safer 

alternative to the toxic tetraphenylborate species that was previously used
6
 and 

significantly improve the durations of the NO release.  High initial bursts of NO release 

were observed when using acid-capped PLGAs as an additive, due to the higher residual 

acid content and faster hydrolysis rate of such PLGAs.  The NO release from 

DBHD/N2O2-doped PVC and E2As was extended to 14 d by using ester-capped PLGAs.  

The pH changes corresponding to the NO release profiles from these films were 

visualized by doping films with appropriate pH indicator dyes.  The hemocompatibility 

of biomedical grade base polymers (plasticized PVC and Elast-eon E2As) was compared 

in the rabbit thrombogenicity model.  The Elast-eon E2As was found to have superior 

hemocompatibility properties, in terms of platelet preservation and reduced thrombus 

area, as compared to the other polymers.  NO-releasing (NOrel) circuits were prepared 

using the plasticized PVC and E2As as the base polymers and tested in the rabbit model.  

The E2As-based NOrel circuits preserved platelets at a higher level than PVC-based 

NOrel circuits (97% and 80% of baseline, respectively).  After 4 h of blood flow, the 

E2As-based NOrel circuits also had a significantly lower thrombus area than the PVC-
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based NOrel circuits.  This study demonstrated that the inherent hemocompatibility 

properties of the base polymer can also influence the efficiency of the NO release 

coatings. 

In Chapter 5, the DBHD/N2O2 and PLGA-doped polymers were optimized using 

two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2 ± 0.7 wt %) and 

Tecophillic SP-60D-20 (22.5 ± 1.1 wt%)).  Films prepared with the polymer that has the 

higher water uptake (SP-60D-20) were found to have higher NO release and for a longer 

duration than the polyurethane with lower water uptake (SG-80A).  The more hydrophilic 

polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more 

acidic environment that increases the rate of NO release from the NO donor.  The optimal 

SG-80A-based NO-releasing and control polymer patches were applied to scald burn 

wounds in mice infected with Acinetobacter baumannii.  The NO released from these 

patches applied to the wounds is shown to significantly reduce the degree of A. 

baumannii infection after 24 h (~4 log reduction).  The NO release patches are also able 

to reduce the TGF-β levels, in comparison to controls, which can enhance 

reepithelialization, decrease scarring, and reduce migration of bacteria.  The combined 

DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically 

throughout the wound healing process, demonstrate the potential to reduce risk of 

bacterial infection and promote the overall wound healing process. 

 In this dissertation work two novel strategies to achieving long-term NO-release 

from polymers, SNAP-doped and DBHD/N2O2-doped polymers, were examined for their 

potential to improve hemocompatibility and reduce infection.  For example, NO released 

from Elast-eon E2As polymer (which was found to have superior intrinsic 

hemocompatibility properties) is effective at preserving platelets and reducing thrombus 

when tested in the ECC model.  The inner surfaces of ECC loops coated with E2As 

doped with DBHD/N2O2-doped E2As had higher NO release than loops coated with 

SNAP-doped E2As, which was able to preserve platelets and reduce thrombus to a 

greater extent.  The SNAP-doped E2As polymer is advantageous for potential clinical 

applications due to the inexpensive costs of SNAP, low toxicity concerns (NAP is already 

a clinically used drug), excellent stability of SNAP during shelf storage and sterilization, 

and long-term NO release (up to 20 d).  However, the SNAP-doped E2As polymer used 
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in these studies had NO fluxes that mimicked the lower range of the endothelium, so 

strategies to increase the NO flux are needed to further improve the biocompatibility 

properties of this new material (see Section 6.2).  The DBHD/N2O2-based polymers have 

the advantage that the NO release profile can be well controlled, using various PLGA 

additives and the water uptake properties of the base polymer, allowing the NO release to 

be tailored for specific biomedical applications (up to 24 d NO release).  Some 

disadvantages of the DBHD/N2O2 molecule that could hinder potential clinical 

applications might be the expensive synthesis costs, potential toxicity concerns 

(nitrosamine formation), and heat/moisture sensitivity.  Strategies for improving both the 

SNAP- and DBHD/N2O2-based polymers systems are described below (Section 6.2).   

 

6.2  Future Directions 

 

6.2.1  SNAP-Based Polymers 

 Although SNAP-doped E2As polymer has very encouraging properties, as 

reported thus far in this thesis work, there are several directions that could potentially 

improve the SNAP-doping approach.  The SNAP-doped E2As films leach ~10% of the 

SNAP during the first day of soaking.  This leaching can be attributed to the initial water 

uptake of the polymer as well as any residual SNAP that is on the outermost polymer 

surface.  Leaching of the NO donor species is not ideal (even though SNAP and its 

byproducts have low toxicity concerns) because the NO release can occur downstream, 

rather than being localized at the polymer/blood or polymer/tissue interface.  One 

approach to reduce or eliminate this leaching could be adding a thin top-coat of a cross-

linked polymer (e.g., silicone rubber or cross-linked polyurethanes).  SNAP-doped 

silicone rubber and CarboSil (which were also found to have low levels of SNAP 

leaching) could also be further characterized for their NO release and stability, and 

evaluated for potential biomedical applications. 

Synthesizing derivatives of SNAP that are more lipophilic may reduce the 

leaching of the NO donor, since these molecules should have a greater preference for 

remaining in the polymer phase.  Lipophilic derivatives of SNAP have been studied and 

are also reported to have increased stability in comparison to SNAP.
11, 12

  The 
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SNAP/E2As films and catheters had NO release 0.5 ~1 x 10
-10

 mol cm
-2

 min
-1

 (after the 

first day) that mimics the lower end of the endothelial release.  One simple method to 

increase the NO flux from SNAP-doped E2As is to shine light on the polymer 

(corresponding to the wavelengths responsible for RSNO decomposition:  340 or 590 

nm).  Various intensities of light could be used to tailor the NO release to specific flux 

levels (as shown in Figure 6.1, where the light intensity corresponds to the distance 

between the light and SNAP/E2As).  This method could be easily applied for 

extracorporeal circulation 

situations (e.g., dialysis treatments or open heart surgery), but would not work as well for 

indwelling devices.  Another method to increase NO release from SNAP/E2As might 

include adding hydrophilic polymers to the SNAP-doped layer, which will help draw 

water into the innermost regions of the polymer to initiate NO release.  New polymer 

compositions with NO fluxes between 2~4 x 10
-10

 mol cm
-2

 min
-1

 may further improve 

the hemocompatibility properties of the SNAP/E2As polymer. 

 

Figure 6.1.  Effect of light intensity (in terms of distance between 100W light and polymer) on the NO 

release from SNAP-doped E2As. 
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Further studies to better understand the mechanisms of NO release and enhanced 

stability of the SNAP/E2A polymer are also important.  One observation in this thesis 

work is that increasing the thickness of the SNAP/E2As (thin films studies in Chapter 2 

vs. the thick walls of the catheters in Chapter 3) does not significantly increase the NO 

flux.  One explanation for this is that the SNAP molecules need to diffuse to the outer 

water-rich regions in the polymer matrix (closest to the water/polymer interface) in order 

to initiate NO release.  Studies to correlate the diffusion of SNAP through E2As, or other 

polymers, with the rate of NO release should be conducted.  Further, in this thesis work, 

the shelf-life stability study demonstrates that SNAP is stable in the E2As polymer matrix 

(in dry state), even during storage at elevated temperatures.  However, exposure to 

humidity initiates NO release (as shown in Chapter 3).  One potential theory to explain 

these phenomena is the formation of a hydrogen bonding network (between SNAP and 

the E2As polymer, as well as between SNAP molecules) that stabilizes SNAP in the dry 

state.  Upon exposure to humidity, this hydrogen bonding network could be disrupted, 

resulting in the NO release that is observed.  It has been previously reported that 

intramolecular hydrogen bonding occurs in SNAP, which results in a stabilization effect 

on the S—NO bond.
15, 16

  Therefore a similar stabilization effect can occur if 

intermolecular hydrogen bonds form between SNAP and the polymer backbone, or 

neighboring SNAP molecules (examples shown in Figure 6.2).  Further studies, using 

techniques such as FTIR or solid state NMR, are critical to fully understand the role of 

 

 

Figure 6.2.  Proposed hydrogen bonding between urethane groups of the E2As backbone and SNAP. 
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hydrogen bonding on the stability of SNAP in E2As and other polymers.  These studies 

may provide valuable information that will help improve and design other NO-releasing 

materials using the SNAP-doping approach. 

 The SNAP-doped E2As may also face challenges in potential clinical applications 

(e.g., catheter applications) because the thermal stability of SNAP may not be able to 

withstand the high temperatures used during conventional extrusion and manufacturing 

processes.  One approach to overcome this issue might be a solvent 

swelling/impregnation method that could load existing commercial catheters with SNAP.  

This solvent swelling/impregnation method has been previously used to load ionophores 

into catheters for sensor applications,
24

 but a similar methodology could be applied for 

SNAP loading.  In this method, existing catheters or biomedical grade tubing could be 

swelled in an organic solvent containing SNAP.  The degree of solvent swelling of the 

polymer tubing and the concentration of SNAP in the swelling solvent will directly affect 

the amount of SNAP loading that is achievable.  Another approach might be to dedicate 

one lumen of a multi-lumen catheter to the NO release chemistry (Figure 6.3).  Viscous

 

SNAP-doped polymer solutions could be used to fill one lumen of the commercial 

catheter, while the other lumen(s) would still be available for clinical use.  The residual 

solvent would evaporate and create a catheter that could release NO upon exposure to 

physiological conditions.  Nitric oxide has a greater solubility in silicone rubber than in 

aqueous phase,
16, 25

 so this should help reduce any asymmetry in the NO release 

distribution.  In all of these new directions, the properties (in terms of NO release 

 

Figure 6.3.  Example cross sections of dual lumen (A) and triple lumen (B) catheters, where one lumen 

could be dedicated to the NO-releasing polymer. 
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kinetics, leaching studies, stability, and potential biomedical applications) will need to be 

evaluated. 

 

6.2.2  Diazeniumdiolate-Based Polymers 

 One concern with diazeniumdiolates, such as DBHD/N2O2, is the formation and 

leaching of some potentially carcinogenic decomposition products (e.g., N-

nitrosamines).
14, 26

  Therefore further research should include toxicity studies and 

monitoring any leaching of the DBHD/N2O2 or diamine species, as well as nitrosamine 

formation.  Leaching of DBHD/N2O2 or the decomposition products should be minimal 

from the Elast-eon E2As polymer, due to its lipophilic nature and the low water uptake of 

E2As.  However, if leaching is a concern with the DBHD/N2O2–based materials, the 

PLGA additives could be used along with immobilized diazeniumdiolated species, such 

as diazeniumdiolated diaminoalkyltrimethoxysilane cross-linked to silicone rubber 

(DACA-SR).
17

  Other PLGAs with various hydrolysis rates could be used to further tune 

the NO release profiles.  The stability of these polymer formulations during storage 

and/or sterilization should be evaluated for potential clinical applications.  Long-term 

studies to further evaluate the hemocompatibility (e.g., catheters) and wound healing 

properties could then be conducted.  In this dissertation work, the NO-releasing patches 

were applied to the infected scald burn wounds for only 1 d to observe the initial effects 

of NO on the infection.  Further long-term studies with this burn wound model could be 

conducted to determine the effects of NO release on the entire wound healing process.  In 

vitro biofilm studies, using a CDC flow bioreactor,
27

 could also be conducted to observe 

the effects of NO on various bacteria strains over a 1-2 week period. 

 

Overall, there are many opportunities to explore with respect to using and 

optimizing the novel SNAP- and DBHD/N2O2-doped polymeric materials developed in 

this thesis research.  The NO release from these materials has the potential to improve the 

biocompatibility of a wide variety of biomedical devices by reducing thrombosis- and 

infection-related complications.  Clinical application of these NO-releasing materials will 

have a positive impact on patients, especially in terms of reducing medical costs and 

saving lives.  
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