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ABSTRACT 

 

MOLECULAR INTERACTIONS BETWEEN VARIOUS MODEL CELL MEMBRANES 

AND MEMBRANE ACTIVE PEPTIDES STUDIED BY SUM FREQUENCY 

GENERATION VIBRATIONAL SPECTROSCOPY 

by 

Lauren Soblosky 

Chair: Zhan Chen 

 

Since the use of native cell membranes for biophysical studies is difficult, membrane 

mimetics are often used.  For example, they are frequently used to study the interaction between 

membrane active peptides and cell membranes. However, if the model is too simple, it may not 

be able to provide physiologically meaningful information. As a result, it is important to move 

toward models that are more similar to native cell membranes in order to study interactions in an 

environment that is more relevant to the native state. In this thesis work, we utilized sum 

frequency generation vibrational spectroscopy (SFG) to study how peptides interact with three 

different model membranes representing the mammalian plasma cell membrane, the bacterial 

plasma cell membrane, and the Gram-negative bacterial outer cell membrane. 

The mammalian plasma cell membrane was modeled by using a solid supported lipid 

bilayer prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol 

(1:1) mixture. We compared how the antimicrobial peptide LL-37 interacted with this bilayer 
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and a pure POPC bilayer. It was found that the addition of cholesterol inhibited the ability of LL-

37 peptide to interact with the phospholipid bilayers as evidenced by the absence of SFG signal 

from bilayer associated peptide. This is possibly due to the cholesterol causing the fluid 

disordered bilayer to become more ordered which makes it more difficult for the peptide to 

interact through hydrophobic interactions with the lipid acyl chains. The hydrophobic 

interactions are important for this system because there would be little interaction between the 

cationic peptide and the zwitterionic lipid head groups. Similarly, for a POPC:POPG mixed lipid 

bilayer, the introduction of cholesterol also reduced the interactions between LL-37 and the lipid 

bilayer.  

Native bacterial plasma cell membrane was modeled by using bilayers of 1,2-

dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)-E. coli polar lipid extract. The 

interactions of selected peptides with these bilayers and those containing dDPPG-1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphoglycerol (POPG) were compared. These peptides include MSI-594, 

ovispirin-1 G18, magainin 2, melittin, and LL-37. It was found that while POPG lipids are able 

to model some aspects of the interaction, such as peptide association with the lipid bilayer, a 

more complex lipid mixture is able to provide information that is more similar to interactions 

with a native cell membrane. Additionally, the use of asymmetric lipid bilayers with these two 

systems was able to show that the more complicated interaction mechanisms, such as interaction 

kinetics observed by lipid bilayer leaflet signal changes after peptide addition, can be studied 

with the E. coli polar lipid extract but were not easily observed in the POPG lipid system. This is 

at least in part due to the difference in charge of the two different lipid systems; the POPG 

system is entirely anionic while the E. coli polar lipid bilayer is approximately one third the 

charge of a POPG bilayer. This difference in charge will cause the overall peptide-lipid bilayer 
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interaction to be different because the charge interactions may interfere with other interactions, 

such as hydrophobic-hydrophobic interactions, that are likely important after initial peptide 

association.  

The bacterial outer cell membrane was modeled using dDPPG-Kdo 2 Lipid A bilayer and 

dDPPE:dDPPG (3:1)-Lipid A from Salmonella minnesota R595 bilayer. We studied the 

interaction of isotope-labeled ovispirin-1 peptides with these membranes and compared them to 

their interaction with phospholipid bilayers composed of pure 1,2-dipalmitoyl-sn-glycero-3-

phosphoglycerol (DPPG) or of a 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

(DPPE)/DPPG mixture. It was found that these peptides interact similarly with both of these 

lipid membrane systems. Because the peptide interacted similarly in systems that primarily 

differed in the number of sugars extending past the head group region, it can be determined that 

there is no effect on peptide interaction at 50 µg/ml with a lipid A region with no extra sugars 

versus one with two sugars attached extending “outside” of the cell. Therefore, the higher 

resistance of Gram-negative bacteria cannot be explained by the presence of the inner core 

oligosaccharide region sugars. Additionally, we found through isotope labeling that the 

ovispirin-1 is lying down at the lipid head group-acyl chain interface, which is the same as its 

orientation when associated with DPPG bilayers, as observed in a previous study. From this data 

it was determined that the extra sugars did not change the orientation of the ovispirin-1 with the 

lipid bilayer. 

The studies presented here characterize peptide-lipid interactions at model lipid bilayers 

that are more physiologically relevant than relatively simple phospholipid environments. This 

demonstrates the importance of bilayer choice in studying antimicrobial peptide interactions and 

characterizing their bilayer disruption mechanisms. With the knowledge obtained about peptide 
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activity at these more realistic bilayers, future studies in other areas focusing on predicting 

antimicrobial effectiveness or designing new antimicrobial molecules will more accurate and 

progress more quickly compared to studies utilizing simple model bilayers. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Cell membranes are incredibly varied and complex biological structures. The idea of a 

“fluid mosaic model” was developed by S. J. Singer and says that these membranes can be 

thought of as fluid phospholipid matrices containing randomly distributed amphipathic globular 

integral proteins [1]. Basically, the cell membrane is regarded as a bilayer of phospholipids 

containing proteins and other structures that serve various functions. The overall function of the 

bilayer is to contain the internal portion of the cell while being selectively permeable and 

facilitating cell communication. The lipid composition varies depending on the organism and the 

cell type [2-5]. Proteins such as ion channels, cell recognition proteins, and receptor proteins are 

integrated into the lipid bilayer and allow the cell to function [3, 6-8]. Obviously, cell 

membranes are inherently complex. 

Antibiotic resistance is a well-documented problem that has appeared after years of 

utilizing antibiotics to combat infection. The resulting infections caused by antibiotic resistant 

strains are difficult and expensive to treat which has caused antibacterial resistance to be a 

concern for the healthcare industry and the general population. As a result, there has been an 

increased effort to find new and better alternatives to antibiotics.  
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In general, antibiotics target systems in the bacteria that are vital to their ability to 

function such as cell wall synthesis, protein synthesis, DNA replication, RNA synthesis and 

folate synthesis [9-12]. The drug targets in the cell that influence these systems include enzymes, 

ribosomes, RNA, and less often, bacterial cell membranes [13]. Over time, bacteria become 

resistant to antibacterial drugs through different mechanisms such as adapting to make it harder 

for a drug to enter the cell, gaining the ability to expel the molecule from the cell [14, 15], 

changing the target molecule such that the antibiotic molecule cannot interact with it [16, 17], or 

altering the antibiotic drug to render it inactive [9, 11, 18-20]. This adaption is often achieved 

through either passing on a gene for the resistance feature to daughter cells, or through the 

passing of the genes directly to other bacteria through horizontal gene transfer of plasmids [18, 

21, 22].  

One well known antibiotic is penicillin [23]. Penicillins are β-lactam antibiotics [13]. As 

an antibiotic in this family, it affects the cell wall synthesis mechanism. The β-lactam binds to 

transpeptidase (penicillin binding protein, PBP), an enzyme that crosslinks the peptidoglycan 

units of the cell wall [24-26]. With the enzyme bound, it cannot crosslink the peptidoglycan and 

the cell wall integrity suffers and the cell eventually lyses [27]. However, bacteria have 

developed resistances against β-lactam antibiotics. One mechanism of resistance is the 

hydrolyzation of amide bond in the β-lactam ring of the drug by β-lactamase enzymes, which 

causes the drug to become inactive [28, 29]. Another mechanism of resistance is altering the 

peptidoglycan enzyme target so that the PBP has a lower affinity for β-lactam or is less sensitive 

[27, 30-33]. Defects in porins contribute to the outer membrane becoming less permeable which 

leads to increased resistance [34, 35]. Also, for Gram-negative bacteria in particular, drug efflux 

pumps that transport drugs out of the cell increase resistance as well [36, 37]. Given that there 
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are several different ways that bacteria can develop antimicrobial resistance, it is important that 

we continue to try to design or discover new or alternative therapies that are less prone to 

opposition so we can continue to treat infections. 

One alternative is the use of antimicrobial peptides (AMPs). AMPs have been shown to 

target cell membranes, rather than particular proteins or other features of a bacterial cell. It is 

thought that cell membranes are much more difficult to change to develop resistance compared 

to those other features [38, 39]. Because they target a structure that is not as easy to modify, 

AMPs are an attractive alternative to traditional antibiotics and extensive research has been 

performed to develop antimicrobial peptide molecules with broad spectrum activities that are not 

toxic to human cells. As part of this process, it is important to understand the anti-microbial 

mechanism of these natural peptide molecules. These molecules will be interacting with complex 

bacterial cell membranes. However, it is difficult to study peptide-bilayer interaction in actual 

cells. Instead, model cell membranes are used to investigate the association, interaction and 

kinetics of peptide-bilayer interactions and this knowledge is then used to guide peptide 

development and help explain the interactions with real bacterial cells. Because we are using the 

interactions with these model membranes to learn about the potential interactions on actual 

membranes, we should work toward making the model membranes as realistic as possible. 

However, as more components are added, the system becomes more complex and potentially 

more difficult to study.  

Techniques such as nuclear magnetic resonance (NMR) spectroscopy and Fourier 

transform infrared spectroscopy (FTIR) have been used to study peptide-bilayer interactions. 

NMR is a powerful technique that can give us orientation information about the peptide as well 

as information about the bilayer’s order [40-47]. However, its sensitivity is low and relatively 
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large amounts of peptide are required for studies. As a result, it is sometimes difficult to study 

peptides at their physiological concentrations. FTIR is a vibrational spectroscopy and attenuated 

total reflectance (ATR-FTIR) can probe orientation information of membrane associated 

peptides and proteins [48-53]. Again, it has limited sensitivity for these applications and its 

“surface sensitivity” is attributed to the short penetration depth of the evanescent wave. 

However, ATR-FTIR actually probes deeper than just the surface (or lipid membrane/lipid 

bilayer). Also, because it probes more than just surfaces/interfaces, it generally has a large water 

background that must be subtracted during data processing. 

Sum frequency generation vibrational spectroscopy (SFG) is an inherently surface 

sensitive vibrational technique. SFG has microgram sensitivity and has very low or, in many 

cases, no bulk signal background contributions. It has been shown to be a powerful tool in 

elucidating peptide-bilayer interaction and orientation [54-63]. In this work, we used SFG to 

investigate several examples in which the model cell membrane was made more complex by the 

addition of certain components and compare the interaction of peptides with those models to the 

interaction with commonly used simpler models. We elucidated the molecular interactions 

between peptides and model cell membranes to help design and guide development of 

antimicrobial peptides with improved antimicrobial properties. 

1.2 Sum Frequency Generation Vibrational Spectroscopy 

1.2.1 Brief Overview 

Sum frequency generation vibrational spectroscopy (SFG) is based on a second order 

nonlinear optical process in which a fixed visible beam and a tunable infrared (IR) beam overlap 

in space and time, which results in a third beam produced at a frequency which is a sum of the 
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first two (vis+ IR = SF)  [64, 65]. The sum frequency process is actually a combination of IR 

absorption and anti-stokes Raman scattering. When the incident IR frequency, IR, matches a 

vibrational transition, the intensity of the sum frequency beam (SF) is enhanced. This 

enhancement is observed as a peak in the spectrum. The resulting data is shown as a function of 

incident IR, which is similar to an IR or Raman spectrum. 

SFG signal is generated by a second order nonlinear optical process. Therefore, it does 

not exist in materials with inversion symmetry under the electric dipole approximation due to the 

selection rule. Most bulk materials possess inversion symmetry, while surfaces and interfaces do 

not [64-68]. As a result, SFG is a very powerful technique that has been used to study surfaces 

and interfaces. Additionally, orientation information can be obtained by using certain input and 

output beam polarizations [63, 67, 68]. SFG has successfully been used to study the structure and 

orientation of a variety of polymers at different interfaces [69-77], lipid bilayer systems [78-80], 

and biological molecules such as proteins and peptides [54-62, 81-86]. 

1.2.2 Theory 

The polarization, also called dipole moment per unit volume, is the sum of the individual 

dipoles in a material and is proportional to the strength of the electric field, E. The relation is:                                                                                                                                                                                                                                                 

                                                                                                                            1.1 

Here, P is the polarization, )1(  is the first-order linear susceptibility of the material. 

However, when the electric field increases in intense light, the non-linear terms become larger 

and must be considered. The new polarization, under the dipole approximation, is now written: 

                                                                                                                            1.2 

EP )1(

...::... )3()2()1()3()2()1(  EEEEEEPPPP 
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Here, )2(  is the second order nonlinear optical susceptibly, a third rank tensor, and )3(  

is the third order nonlinear optical susceptibility, a fourth rank tensor [67, 68]. )2(  is associated 

with SFG, as well as difference frequency generation (DFG) and second harmonic generation 

(SHG). )3(  is a process that is associated with methods such as coherent anti-stokes Raman 

scattering (CARS), a four wave mixing process. We are interested in SFG and )2( . The second 

order nonlinear polarization for this process with two incident beams of frequencies  (visible) 

and 2 (IR) with amplitudes of E1 and E2 is [65]: 

)cos()cos(: 21

)2()2( tEtEP                                                                  1.3 

By applying trigonometric identities, equation 1.3 can be rearranged to: 

])cos()[cos(:
2
1

21221

)2()2( ttEEP                                          1.4 

Equation 1.4 shows that there are two oscillating dipoles generated at frequencies 

)( 2  and )( 2  , corresponding to the SFG and DFG processes [67, 68]. The intensity of 

this emitted SFG beam, I, is dependent on  
2

)2(P  and is related to: 

)()()( 21

2
)2(  III SF                                                                                  1.5 

Where ωSF = ω1 + ω2,
2

11)( EI  , and 
2

22 )( EI  . 

Since SFG is the focus of this work, the measurement of )2( , the second order nonlinear 

susceptibility, is important. One of the main advantages of SFG and measuring )2(  is the fact 

that this process is surface and interface selective and there is no signal generated in a 
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centrosymmetric environment. This surface/interface sensitivity results from )2(  being a third 

rank polar tensor. For a centrosymmetric environment, the inversion operator says that: 

)2()2(

kjiijk                                                                                                        1.6 

where i, j and k refer to the laboratory frame of reference. For a third rank polar tensor, 

the inversion changes the sign of the tensor [64, 87]: 

)2()2(

kjiijk                                                                                                     1.7 

For both of these to be true, )2(  must be zero; thus there is no SFG signal in materials 

with centrosymmetry. Most bulk materials have centrosymmetry and do not produce SFG signal. 

When the centrosymmetry is broken at an interface, SFG signal can be produced [68]. Thus SFG 

is an inherently surface/interface sensitive technique. 

In addition to the non centrosymmetric requirement, to generate sum frequency signal, 

there needs to be an overlap of the two incoming visible and IR beams in space and time. 

Conservation of momentum can help to calculate the angle of the generated SF beam: 

IRIRIRvisvisvisSFSFSF nnn  sinsinsin ,1,1,1                                           1.8 

IRIRIRvisvisvisSFSFSF knknkn  sinsinsin ,1,1,1                                             1.9 

Here, n is the refractive index for the material,  is the frequency of the light,   is the 

angle of the beam relative to the surface normal, and k is equal to  /c with c being the speed of 

light [67]. The positive sign is used in cases of the two input beams arriving in the same direction 
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(such as in Figure 1.1), while the negative sign is used when they are arriving from opposite x-

directions.  

 

Figure 1.1: Co-propagating visible (incident angle β1) and IR (incident angle β2) beams 

generate SF signal at an angle βSF versus the surface normal.   

The SFG signal intensity collected from the reflection during an experiment is [88]: 

)()(
)()()(

sec8
)( 2211

2
)2(

21111

3

2

23 



 II

nnnc
I eff

SF

SF

SF                                        1.10 

Where ni( ) is the refractive index of material i at frequency  , SF  is the angle of 

generated SF beam, I1 and I2 are the intensities of the input IR and visible beams. It is seen that: 

 
2

2

SFG eff IR visI I I
                                                                         1.11 

)2(

eff , the effective second order nonlinear optical susceptibility, is obtained 

experimentally and is composed of a resonant and non-resonant term: 

   2 2 q

eff NR

q IR q q

A

i
 

 
 

  


                                                                           1.12 
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)2(

NR is the non-resonant contribution from the sample, Aq is the signal amplitude, q is 

the frequency of the vibrational mode, and Гq is the linewidth. The resonant portion is used to fit 

the SFG peaks which can be obtained in different polarization combinations to calculate 

orientation information about the molecules. The relationship between 
)2(

eff  and )2( defined in 

the lab-fixed coordinate system is given by [88]: 

    )(ˆ)()(ˆ)(:)2()()(ˆ 2211

)2(  eLeLSFLSFeeff                            1.13 

In this equation, ê ( ) is the unit polarization vector and L( ) is the Fresnel factor at 

frequency  . Information about )2( can be obtained from the 
)2(

eff measured from experiments. 

)2( , being a rank three tensor, has 27 terms. However, if it is assumed that the interface (in the 

x,y plane) is azimuthally isotropic, there are only seven non-zero terms, four of which are 

unique. These are xxz = yyz , xzx = yzy , zxx = zyy , and zzz  [67]. The x,y,z terms refer to the 

fixed lab coordinate frame. Information about these susceptibility terms can be discerned by 

collecting SFG signals while utilizing different polarization combinations of the input and output 

laser beams. The polarizations used in SFG are ssp (s polarized SFG beam, s polarized visible 

beam, p polarized IR beam), sps, pps and ppp, although we only use ssp and ppp in the studies 

reported later. The following expressions relate the 
)2(

eff in these polarization combinations to 

non-zero )2(  terms [88]: 

     (2) (2)

, sineff ssp yy SF yy vis zz IR IR yyzL L L      
                                 1.14a 

     (2) (2)

, sineff sps yy SF zz vis yy IR vis yzyL L L      
                                          1.14b 
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     (2) (2)

, sineff pss zz SF yy vis yy IR SFG zyyL L L      
                                        1.14c 

     

     

     

(2) (2)

,

(2)

(2)

cos cos sin

             cos sin cos

             sin cos cos

             

eff ppp xx SF xx vis zz IR SFG vis IR xxz

xx SF zz vis xx IR SFG vis IR xzx

zz SF xx vis xx IR SFG vis IR zxx

zz

L L L

L L L

L L L

L

       

      

      



  

 

 

       (2)sin sin sinSF zz vis zz IR SFG vis IR zzzL L     

            1.14d 

Lii(i = x,y,z ) are the Fresnel factors which depend on the refractive index and input 

angles,   is the frequency for the IR or visible beam, θIR and θvis are input angles versus the 

surface normal and θSFG is the output angle versus the surface normal. The Fresnel factors are as 

follows: 

1

1 2

1

1 2

2

2 1

1 2

2 ( )cos
( ) ,

( ) cos ( )cos

2 ( )cos
( ) ,

( ) cos ( )cos

2 ( )cos ( )
( )

( )cos ( )cos '( )

xx

yy

zz

n
L

n n

n
L

n n

n n
L

n n n

 


   

 


   




   







  
  

  

                                                     1.15 

In these equations, n′() is the refractive index of the surface, θ is the incident beam input 

angle,  is the refracted angle such that 1 2( )sin ( )sinn n    .  

)2(  can be related to the molecular second order nonlinear polarizability (or 

hyperpolarizability), βijk
(2), through a coordinate transformation [89]: 

(2) (2)

, ,0

     , ,IJK Ii Jj Kk ijk

IJK x y z

N
R R R ijk a b c 

 

                                              1.16 
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In this equation, N is the number of surface molecules, 0  is the vacuum permittivity, R 

is a transformation matrix to change from the molecular frame to the laboratory frame. The 

macroscopic susceptibility is therefore an average of the molecular hyperpolarizability of all the 

molecules.  

If the IR frequency is near a vibrational resonance mode, the molecular 

hyperpolarizability can be written as: 

𝛽(2) = 𝛽 𝑁𝑅
(2)

+  ∑
𝛽𝑞

(2)

𝜔2−𝜔𝑞+𝑖Γ𝑞
𝑞                                                                               1.17 

A similar equation for the second order nonlinear susceptibility is also applicable, and 

was introduced in equation 1.12. βq is the resonant intensity, ωq is the resonant frequency and Гq 

is the resonant linewidth [67, 90]. Assuming the molecular hyperpolarizability of a functional 

group is known, one can use equation 1.12 to fit the spectrum and extract orientation information 

using )2(  ratios [67, 68, 90].  

Additionally, the resonant part of the molecular hyperpolarizability tensor can be 

expressed as: 

𝛽𝑖𝑗𝑘,𝑞 ∝  
𝜕𝛼𝑖𝑗

∗

𝜕𝑄𝑞

𝜕𝜇𝑘

𝜕𝑄𝑞
                                                                                                 1.18 

Here, 
𝜕𝛼𝑖𝑗

∗

𝜕𝑄𝑞
 and  

𝜕𝜇𝑘

𝜕𝑄𝑞
  are the IR transition dipole moment and Raman polarizability tensor 

derivatives for the qth vibrational mode in the molecular frame. This shows that for SFG signal, 

a molecule must be both IR and Raman active. 
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Figure 1.2: SFG energy diagram, shows IR absorption and anti-stokes Raman transition 

1.2.3 Experimental System 

The instrument used in this work to collect spectra is a SFG spectrometer from EKSPLA 

(Vilnius, Lithuania). It is comprised of four parts: picosecond Nd:YAG laser, harmonics unit, 

optical parametric generation/optical parametric amplification/difference frequency generation 

(OPG/OPA/DFG) unit, and the sample/detection system. Figure 1.3 shows a schematic of the 

laser system. 
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Figure 1.3: Schematic of the SFG system, including Nd:YAG, harmonics unit, 

OPG/OPA/DFG unit, sample and monochromator.[91] 

 

The fundamental 1064 nm (20 picosecond pulse width) beam is produced by Nd:YAG 

mode locked laser. The repetition rate is 20 Hz. The Nd:YAG crystal is pumped by flashlamps 

and the mode locking is achieved by using a dye as a saturable absorber. The fundamental beam 

then goes to the harmonics unit.  

The main purpose of the harmonics unit is to generate the second and third harmonics, 

532 nm and 355 nm, respectively. This is achieved by passing the fundamental 1064 nm beam 

through KD*P nonlinear crystals. The input must be at a particular angle to the crystal to satisfy 

the phase matching condition and obtain the most efficient conversion. Visible 532 nm light is 

sent from the harmonics unit to the sample stage. 355 nm light is sent from the harmonics unit, 

along with fundamental 1064 nm light, to the OPG/OPA/DFG unit. 
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The purpose of the OPG/OPA/DFG unit is to produce the frequency tunable IR beam. 

The 355 nm beam passes through a LBO nonlinear crystal and produces a signal (420 to 680 nm) 

beam and an idler (740 to 2300 nm) beam whose wavelengths are determined by the phase 

matching condition and can be changed depending on the orientation of the crystal. The signal 

beam is filtered out of the output beam. The idler is sent through a AgGaS2 nonlinear crystal with 

the fundamental and DFG produces the tunable IR beam which is sent to the sample. This mid IR 

is tunable from 1000 cm-1 to 4000 cm-1. 

At the sample, the visible 532 nm and the tunable IR beams overlap in space and time. 

The incident angles for the visible and IR are 60° and 54° versus the surface normal, respectively. 

The spot size of both beams is ~ 500 µm and the pulse energy for both beams is approximately 

100 µJ at the sample. The SFG signal passes through a monochromator and is collected by a 

photomultiplier tube. The power of both beams is collected onto two photodiodes and this power 

information is later used for data normalization.  

The sample geometry used in all of these studies is a near total internal reflection prism 

geometry. 

 

Figure 1.4: Near TIF prism geometry for SFG experiments 
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1.3 Presented Research 

While most of the work in our lab has been with peptides and proteins interacting at 

relatively simple lipid bilayers, the work presented investigates several antimicrobial peptides at 

more complicated lipid bilayers. SFG was used to compare peptide-bilayer interactions at the 

simple and the more complicated model bilayer systems. 

Chapter 2 investigates the effect of adding cholesterol (CHO) into 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) and mixed POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-(1'-rac-glycerol) (POPG) bilayers. The interaction between the antimicrobial peptide, 

LL-37, and these bilayers is compared to the interaction between LL-37 and bilayers without 

cholesterol. It was found that before the addition of cholesterol, LL-37 oriented on POPC to be 

parallel with the bilayer. There were enough peptides on the bilayer to see amide I range signal 

from the peptide CO groups. After the addition of cholesterol, results suggested that there were 

some peptides associated with the bilayer, but they were much fewer in number. A mixed 

POPC:POPG:CHO (0.7:0.3:1) was also tested. Before the addition of cholesterol, the LL-37 

molecules were inserted into the bilayer. However, LL-37 did not insert into the cholesterol-

containing mixed bilayer. The results suggest that there were more LL-37 molecules associated 

with the bilayer compared to the POPC:CHO case. However, we only detected very small amide 

I signal in the ppp polarization and none in the ssp polarization. From these studies, it was 

concluded that cholesterol attenuates LL-37’s ability to interact with POPC and mixed 

POPC/POPG bilayers. This could be due to the cholesterol molecules inducing a more 

condensed and ordered phase in the bilayer, resulting in a decrease in the hydrophobic-

hydrophobic interactions between the peptide and lipid bilayer.   
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Chapter 3 investigates the interaction of a variety of peptides including MSI-594, 

Ovispirin-1 G18, magainin 2, melittin and LL-37 with dDPPG-E. coli polar lipid extract and 

dDPPG-POPG lipid bilayers. MSI-594 interacted more quickly with POPG lipids over the E. coli 

extract lipids and results suggest that it greatly disrupted or destroyed both bilayers. The amide I 

signal for MSI-594 for both systems was similar, suggesting the number and orientation of the 

associated peptides did not vary significantly between the two systems. The quick peptide 

association is likely due to electrostatic interactions. It is possible that at the concentration used, 

that the maximum number of peptides were associated and we would see a higher association at 

the more negative POPG bilayer if the peptide was at a higher concentration. 

For ovispirin-1 G18, the peptide interacted more quickly with the POPG leaflet versus the 

E. coli extract leaflet. Additionally, the ovispirin-1 G18 severely disrupted or destroyed the 

dDPPG-POPG bilayer but could only slightly disrupt the dDPPG-E. coli extract bilayer. 

However, the amide I peptide signal was similar for both systems. These results suggest a similar 

amount and orientation of the ovispirin-1 G18 molecules on the two different systems. The 

dDPPG-E. coli extract bilayer might eventually be disrupted if left to interact for a long enough 

time. However, our observations at the current conditions showed that the ovispirin-1 G18 

association is similar in both cases, but its ability to disrupt the bilayer is significantly hindered 

when interacting with the E. coli lipids.  

Magainin 2 was studied at a low and a high concentration on the two systems. Magainin 

2 can disrupt the outer leaflet of the dDPPG-POPG system at both 800 nM and 2 µM. It can only 

slightly disrupt the outer leaflet of dDPPG-E. coli lipid extract at 2 µM. The amide I signal for 

the two systems suggest there are more peptides associating at the POPG leaflet versus the E. 
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coli lipid leaflet. The data suggests that the interactions are different and it could likely be at least 

partly due to electrostatic effects.  

Melittin was also studied at two concentrations for both systems. For both concentrations, 

both bilayer systems were roughly disrupted the same amount and the amide I peptide signal was 

not significantly different considering the difference in the bilayer charge. It was concluded that 

melittin interacts very similarly with the two systems, possibly related to the fact that it is not 

strictly selective for bacterial membranes like the other peptides in this study. 

We also studied LL-37 at the dDPPG-POPG and dDPPG-E. coli lipid extract bilayers. 

According to our data, the LL-37 did associate with the bilayer but did not disrupt it. The amide I 

spectrum intensities were different, probably because of the electrostatic effects resulting in more 

peptide at the POPG leaflet. However, other than the number of peptides associated at the 

bilayer, LL-37 interacts with both bilayers similarly at the studied concentration.  

Overall, after studying several peptides it seems that for these peptides POPG is an 

acceptable simple model for a bacterial membrane for many peptides because the main 

interactions between the peptides, represented by surface coverage and orientation, are similar 

for the two systems. However, some differences were observed in interaction time and in the 

ability to resist bilayer disruption/destruction between the two systems. We believe that the lipid 

bilayer containing the E. coli polar extract can better represent the real bacterial cell membrane. 

Chapter 4 investigates the interaction of ovispirin-1 G18 with dDPPG-Kdo2 lipid A and 

dDPPG:dDPPE (4:1) – Lipid A from Salmonella minnesota R595. These lipid bilayer systems 

are meant to mimic the outer cell walls of gram negative bacteria. Both of the lipid A variants we 

chose had no outer core polysaccharides or an O-antigen chain. We also used ovispirin-1 G8 and 
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I7 to determine what environment the peptide was in on the Kdo2 lipid A leaflet compared to 

DPPG. It was determined that the ovispirin-1 is in the same environment in the Kdo2 lipid A 

leaflet as it is on DPPG. We also believe that the ovispirin-1 G18 is interacting similarly with 

dDPPG:dDPPE (4:1) – Lipid A from Salmonella minnesota R595 compared to dDPPG:dDPPE 

(4:1)- dDPPG:dDPPE (4:1). From these results at the presented concentrations, we can conclude 

that when using ovispirin-1, a peptide that is suspected to act through the carpet mechanism, it 

interacts the same with lipid A leaflets as it does with phospholipid leaflets. 

Using more complex lipid bilayers in this thesis research, we elucidated molecular 

interactions between peptides and cell membranes in more detail. Our results showed the 

importance of using more complex lipid bilayers as model cell membranes. In the future, 

research regarding peptide-bilayer interaction and the design of new antimicrobial molecules will 

be aware of the potential drawbacks of using simple membrane models for initial mechanistic 

studies. Additionally, our studies showed a reliable method to monitor time dependent molecular 

interactions of antimicrobial peptides with asymmetric lipid bilayers. The time to interact is very 

important to consider when developing new molecules and our method can help evaluate newly 

designed molecules. 
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CHAPTER 2 

EFFECT OF CHOLESTEROL IN MODEL MEMBRANES ON 

MEMBRANE-PEPTIDE INTERACTION 

2.1 Introduction 

Over time, the rise of antibiotic resistance in bacteria has caused complications in treating 

bacterial infections. One solution to this problem is the development of antimicrobial peptides 

(AMPs) which generally target the cell membrane and are thus harder for bacteria to develop 

resistances against [1-5]. In addition to the required antibiotic properties, it is important for any 

successful AMP or therapy to not be toxic to eukaryotic cells as well. In order to develop a 

molecule with good selectivity, it is important to study its activity and mechanism in both 

bacterial and eukaryotic cell environments. For the bacterial model cell membrane, we often use 

lipid bilayers prepared using 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(POPG), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), or a mixture of POPG 

and a zwitterionic phospholipid [6-10]. For the eukaryotic model cell membrane, a lipid bilayer 

consisting of pure POPC or DPPC molecules is generally used [10-12]. However, there are many 

other components of a eukaryotic cell membrane. The outer leaflet contains PC lipids, 

glycosphingolipids and sphingolipids such as sphingomyelin, while the inner leaflet contains 

phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and other 

minor lipids [13, 14]. There is also cholesterol (CHO) and various membrane proteins [13, 15]. 
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The amount of cholesterol seems to vary depending on the cell type [16]. Human erythrocytes 

are reported to have approximately a CHO/phospholipid ratio of ~0.8 [17, 18]. Lange and 

coworkers [16] found that the ratio for erythrocytes was 0.82, but cited 0.36 for fibroblasts and 

0.084 for liver cells. Another study reported cholesterol to be ~54% of the total lipid in the 

erythrocyte ghost cell membranes [18]. However, there is controversy in these percentages due 

to the difficulty of the lipid extraction methods [14]. 

Even though a cell membrane or membrane mimic with all of the components would 

exhibit the most accurate membrane properties, using a complex model cell membrane with all 

of the components to study their interactions with AMPs would be extremely difficult. Although 

our goal is to form a more complex model membrane, we decided to start with a more simple 

system of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol to 

understand the effect of cholesterol on cell membrane-AMP interaction. Cholesterol is an 

amphipathic molecule composed of a four-ring structure with a hydrocarbon tail on one end and 

a hydroxyl group on the other (Figure 1). The ring structure is described as having two faces, the 

α planar face and the rougher β face [19, 20]. The hydroxyl group is hydrophilic and can form 

hydrogen bonds with neighboring lipids or proteins [19].  

Cholesterol is known to influence the lipid membrane phase. It has a tendency to make 

gel phase bilayers more fluid and fluid liquid disordered phase more ordered [21]. Several 

studies have shown that cholesterol causes a more condensed bilayer when interacting with 

phospholipids [22, 23], but actually interacts more favorably with sphingomyelin [24]. Although 

there is some discrepancy on their existence, size and structure, cholesterol is believed by many 

to form condensed phases called “lipid rafts” with sphingomyelin [25-28].  
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The interaction between bilayers containing cholesterol and membrane active peptides 

has been studied by many groups. Evidence from McGee and coworkers suggests that 

cholesterol helps H. pylori to be more resistant to the AMP LL-37 and certain antibiotics [29]. 

Another study reported that the incorporation of cholesterol caused increased lipid packing and 

decreased the ability of the α-helical peptide Modelin-5 to associate to the bilayer [30]. A study 

comparing normal erythrocytes and ones with a naturally occurring higher cholesterol content 

found that the higher cholesterol content decreased hemolysis due to Gramicidin-S [31]. These 

examples show that cholesterol is capable of increasing a membrane’s resistance to disruption. 

This chapter will apply sum frequency generation vibrational spectroscopy (SFG) to 

study the effect of cholesterol on the membrane–AMP interactions, using LL-37 as an example. 

LL-37 is a 37 amino acid α-helical human cathelicidin peptide [32, 33]. It is described as having 

a helix-break-helix motif and a dynamic N terminus region in dodecylphosphocholine (DPC) 

[34] and bent structure in sodium dodecyl sulfate (SDS) [35]. LL-37 has been shown to disrupt 

anionic DPPG, but not DPPE or DPPC lipids [36]. It has also been shown to induce leakage in 

vesicles containing POPG lipids, but not in pure POPC vesicles [37]. LL-37 has been suggested 

to act through the toroidal pore mechanism [38]. 

As stated in Chapter 1, SFG is a surface and interface sensitive technique [39-41]. It has 

been successfully used to study the membrane association and orientation of peptides and 

proteins [7, 8, 10, 42]. In this work, we use SFG to study the interaction of the α-helical peptide, 

LL-37, with model cell membranes containing cholesterol and compare them to bilayers without 

cholesterol. We find that cholesterol decreases the amount of peptide association on POPC:CHO 

(1:1) and POPC:POPG:CHO (0.7:0.3:1) bilayers compared to pure POPC and POPC:POPG (7:3) 

bilayers.  
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This chapter is an adaptation of Ding, B., et al. (2013). "Physiologically-Relevant Modes 

of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG 

Experiments." Scientific Reports 3: 8. Figures 2.1, 2.2, and 2.3 are from Ding, B., et al. Scientific 

Reports, 2013. 3: 8. The work shown in Figure 2.1 and Figure 2.3 (1-4) was done by Bei Ding. 

2.2 Experiment Methods 

2.2.1 Materials 

Phospholipids in this study, including 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-

rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were 

purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Cholesterol (CHO) (≥99%) was 

purchased from Sigma-Aldrich (St. Louis, MO). LL-37 was purchased from AnaSpec, Inc. 

(Fremont, CA).  

2.2.2 SFG Experimental Setup 

The SFG theory was reviewed in Chapter 1 and will not be repeated here. The symmetric 

bilayers were formed via the Langmuir Blodgett/Langmuir Schaefer method and were 

submerged in 1.6 mL water in a sample reservoir. Appropriate volumes of 0.5 mg/ml LL-37 

stock solution were injected into the subphase with a magnetic micro stir bar to ensure the most 

homogeneous mixing possible. During and for approximately 1.5 h after the injection, time 

dependent spectra at 1655 cm-1 and 2880 cm-1 were recorded to monitor the interaction progress. 

Amide I range spectra were taken in ssp and ppp polarizations after approximately 1.5 h and the 

time dependent spectra were stable.  
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2.3 Results and Discussion 

Figure 2.1 shows the results from the interaction of 0.46 µM and 1.6 µM LL-37 and 

symmetric bilayers of POPC, POPG, and mixed POPC/POPG. These results are important as 

they serve as a comparison for our POPC/CHO and POPC/POPG/CHO results. Figure 2.1a 

shows the SFG spectra collected in the amide I frequency region for a POPC/POPC lipid bilayer 

in contact with subphase with a LL-37 concentration of 0.46 µM (top) or 1.6 µM (bottom). There 

is a peak at approximately 1647 cm-1 in both ppp and ssp polarizations for each concentration. 

This suggests that LL-37 molecules are bilayer in an α-helical conformation when associated 

with the POPC/POPC bilayer. The spectral intensities and ppp/ssp signal intensity ratios for the 

two subphase LL-37 concentrations are similar, showing that the associated LL-37 number and 

orientation with the POPC/POPC bilayer are independent of the subphase LL-37 concentration. 

It was determined from the fitting that the LL-37 was approximately lying down on the bilayer 

surface for both cases, which agrees with NMR literature [33, 38].  

Figure 2.1b (top) shows the SFG spectra collected in the 3000-3600 cm-1 range before 

and after LL-37 addition to the subphase in contact with a POPC/POPC bilayer. POPC lipids 

have a zwitterionic head group and thus water molecules are not well ordered at the bilayer 

surface. Because SFG signal is dependent on molecular ordering, there is no water signal evident 

before peptide injection into the subphase. However, after peptide injection, a strong and broad 

signal with peaks approximately at 3200 cm-1 and 3500 cm-1 is detected. This signal is most 

likely due to the water O-H stretch at ~3200 cm-1 and 3500 cm-1 as well as the N-H stretch of 

LL-37 at ~3280 cm-1. LL-37 is positively charged and its association with the bilayer likely 

causes the previously unordered interfacial water molecules to assume an ordered orientation, 
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resulting in strong SFG signal. This confirms that LL-37 molecules are associated with the 

POPC/POPC bilayer.  

For a pure POPG bilayer (Figure 1b (bottom) and Figure 1c), the amide I signal detected 

from the LL-37 associated with the bilayer in contact with the 0.46 µM LL-37 solution is similar 

to the amide I signal in both of our POPC/POPC bilayer cases. The SFG amide I signal of LL-37 

in contact with a subphase with 1.6 µM LL-37 is higher than that associated with the 

POPC/POPC bilayer at the same LL-37 subphase concentration. It was shown from amide I 

region spectral fitting that LL-37 inserts into the bilayer at the low subphase concentration and is 

lying parallel to the bilayer surface at the higher concentration. There is some difference in the 

3000-3600 cm-1 region spectrum for a bilayer that incorporates anionic POPG lipids. PG is a 

negatively charged head group which allows the associated water molecules to become ordered 

which results in strong O-H stretch signal. However, after adding LL-37 to the subphase, this 

signal decreases significantly and there is only an N-H stretch peak at approximately 3300 cm-1. 

This signal decrease is expected as the positively charged peptide associates with the negatively 

charged bilayer and neutralizes some of the surface charge. With the strong negative charge 

partially negated, the previously well-ordered water molecules may become less ordered which 

results in a decrease of water signal. 
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Figure 2.1: (a) Amide I spectra of LL-37 on POPC/POPC bilayer; (b) O-H/N-H stretching 

signals from the POPC (top) and POPG (bottom) bilayers in contact with LL-37 solution; 

(c) Amide I spectra of LL-37 on POPG/POPG bilayer, (d) Amide I spectra of LL-37 on 

POPC:POPG (3:7) (e) Amide I spectra of LL-37 on POPC:POPG (7:3) lipid bilayers. 

 

In addition to the pure POPC/POPC and POPG/POPG lipid bilayers, we also studied 

molecular interactions between LL-37 and mixed POPC:POPG bilayers. Figure 2.1 (d) and (e) 

show SFG amide I signals from LL-37 associated with POPC:POPG (3:7) bilayer and 

POPC:POPG (7:3) bilayer respectively. For the mixed lipid bilayer of POPC:POPG (7:3), the 

LL-37 interaction is concentration dependent (Figure 1e). At 0.46 µM, the peptide molecules lay 

down like they do on a pure POPC bilayer. At 1.6 µM, however, they insert at 0-15 degrees 
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versus the bilayer normal, like they do in the low concentration case on a pure POPG bilayer. At 

higher concentrations, they are lying down on the bilayer surface again. 

We then added CHO to POPC to investigate if the presence of CHO affected the 

interactions between LL-37 and lipid bilayers. Figure 2.2 shows the SFG spectra collected in the 

3000-3600 cm-1 region and amide I frequency region from the mixed POPC:CHO (1:1) bilayer 

before and after addition of LL-37 into the subphase. The 3000-3600 cm-1 spectrum in the top 

panel of Figure 2.2a shows that there is little water signal before peptide is injected, but the 

signal increases after the peptide addition to the subphase, although not as much as it did in the 

pure POPC case. This increase in O-H stretching signal is due to the water molecules becoming 

ordered because of the associated cationic peptide molecules. The lower water signal for the 

POPC:CHO bilayer case, compared to the pure POPC case, after LL-37 adsorption is due to 

fewer peptide molecules being adsorbed to the CHO containing bilayer. In addition to this, there 

is no peak apparent at 3300 cm-1 (N-H stretching from LL-37) in this CHO containing system. 

Furthermore, there is no amide I signal detected from the peptides associated with the 

POPC:CHO 1:1 lipid bilayer. From the above observations, we can conclude that there are 

peptides on the surface, but there are not enough to cause a large water signal, peptide N-H 

stretching signal at 3300 cm-1 peak, or peptide amide I signal. As a result, we could not 

determine the orientation of these peptides. Our above results show that the incorporation of 

CHO in the POPC lipid bilayer can resist LL-37 adsorption. 
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Figure 2.2: (a) SFG O-H/N-H stretching signals from the POPC:CHO (1:1) bilayer (top) 

and POPG:POPC:CHO (0.3:0.7:1) bilayer (bottom) bilayers in contact with subphase 

before and after addition of LL-37 to reach 1.6 µM. (b) SFG amide I spectra of LL-37 

associated with POPC:CHO (1:1) (top) and POPG:POPC:CHO (0.3:0.7:1) (bottom) 

bilayers in contact with 1.6 µM LL-37 solution. 

 

Figure 2.2 a and b (bottom) show the SFG spectra in the 3000-3600 cm-1 and amide I 

frequency regions for the POPG:POPC:CHO (0.3:0.7:1) bilayer. Because of the anionic PG 

lipids, there was some SFG signal from the O-H stretch before the LL-37 injection into the 

subphase. After the injection, the water O-H stretching signal decreased but there was not any 

signal for the N-H stretch at 3300 cm-1. Also the amide I region showed a small signal at ~1650 

cm-1 in the ppp polarization but nothing in the ssp polarization. The emergence of the ppp amide 

I signal means that there are more LL-37 molecules at the POPG:POPC:CHO bilayer, likely 

because of the addition of the anionic POPG head group. However, the amount of associated LL-
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37 is still lower than on the POPG:POPC (3:7) bilayer, which showed significantly higher amide 

I signal in both polarizations. Again, this suggests that the addition of CHO to the bilayer 

decreases the ability of LL-37 to associate with lipid bilayer. This is in agreement with literature 

[38, 43].  

In this work we showed the interaction of an α-helical peptide, LL-37, with cholesterol 

containing bilayers and compared those results to both pure and mixed phospholipid bilayers. 

We found that the addition of CHO to POPC bilayers results in lower LL-37 association, evident 

from the lower O-H stretching signal compared to pure POPC bilayers in contact with peptide 

solution of the same concentration as well as the absence of a peptide 3300 cm-1 N-H peak and 

amide I region signal. This is in agreement with literature. One study found that the best 

conditions for attenuating LL-37 and temporin L interaction with a SOPC bilayer is at Xsterol = 

0.5 with cholesterol, compared to other percentages and other sterols [44]. Another study found 

that H. pylori bacteria that incorporate host cholesterol into their membranes are more resistant 

to LL-37 than those without cholesterol [29]. Dennison et al.[30] found that the addition of 

cholesterol to a DMPC bilayer resulted in inhibition of the binding of the α-helical peptide 

Modelin-5. Another study saw 30% cholesterol in DPPC liposomes inhibits the binding and 

insertion of melittin [45]. 

There could be a few explanations as to why cholesterol has this inhibiting effect on 

peptide association/insertion. One is the condensation effect, in which cholesterol causes the 

increased order of acyl chains and the decrease in area per molecule [46, 47]. It is thought that 

the small polar OH head group is unable to cover its bulky hydrophobic region, so it orients such 

that the larger head groups of adjacent phospholipids shield those hydrophobic portions [46, 47]. 

The bulky hydrophobic portion of cholesterol is in the same region as the acyl chains of 
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phospholipids, which causes a “condensation” effect [47]. This is just one explanation for the 

condensation effect, however. There is also a condensed complex model and the superlattice 

model. The condensed complex model is a thermodynamic model that is based on the idea that 

the cholesterol and phospholipid form a different, reversible phase through a cooperative 

“chemical reaction” [48]. The superlattice model says that at certain concentrations, cholesterol 

is regularly distributed into hexagonal superlattices [49]. There is still debate on which model is 

the correct one [50]. It has been suggested that as the area/molecule decreases and the packing 

becomes tighter, the hydrophobic area becomes less accessible and thus the hydrophobic 

interactions weaken [45]. Hydrophobic interactions were mentioned earlier in this work as a 

possibility as to how LL-37 interacts with zwitterionic POPC bilayers. If the access to the 

hydrophobic region is inhibited, it is reasonable to expect the association of LL-37 to decrease, 

which is what we observed. 

Additionally, it has been observed that cholesterol interacts preferentially with saturated 

versus unsaturated phospholipids [51-53]. This interaction preference is often seen in 

cholesterol’s affinity for sphingomyelin (SM), which has saturated acyl chains [51, 53]. It is 

thought that this interaction facilitates the formation of “lipid rafts”, although this theory is still 

debatable [25, 27, 28]. Many groups are interested in investigating the other properties of 

sphingomyelin which may influence its interactions with cholesterol and other phospholipids 

[53-55]. It has even been shown that melittin interacts with a zwitterionic bilayer differently 

depending on the composition, POPC, POPC/SM, and POPC/SM/CHO [56].   
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Figure 2.3: Schematics showing interactions between LL-37 and different lipid bilayers. (1) 

POPC bilayer 0.46 µM  (left, 1a) and 1.6 µM (right, 1b); (2) POPG bilayer 0.46 µM (left, 

2a) and 1.6 µM (right, 2b); (3) POPC:POPG (3:7) lipid bilayer at 0.46 µM (left, 3a) 1.6 µM 

(right, 3b); (4) POPC:POPG (7:3) lipid bilayer at 0.46 µM  (left, 4a) and 1.6 µM (right, 4b) 

and 4.8 µM, 6.4 µM, 7.9 µM (bottom, 4c); (5) POPC:CHO (1:1) lipid bilayer at 1.6 µM; (6) 

POPG:POPC:CHO (0.3:0.7:1) lipid bilayer at 1.6 µM. 

2.4 Conclusions 

We have shown that the addition of cholesterol to POPC results in a decrease in the 

amount of LL-37 molecules associated with the lipid bilayer. Adding cholesterol to POPG:POPC 

bilayers results in more LL-37 associated than with POPC:CHO, but fewer than with 

POPG:POPC (3:7). This clearly shows that cholesterol disrupts LL-37’s ability to associate with 

lipid bilayers, even if anionic PG lipids are present. Figure 2.3 shows cartoons representing the 

different interactions between LL-37 and the studied lipid bilayers. Figure 2.3 part (5) and (6) 
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shows the cholesterol cases discussed in this work. Our results agree with previous studies that 

the presence or absence of CHO in cell membranes contribute to AMP selectivity [29-31]. This 

is likely because the addition of CHO causes the bilayer to become more gel-like. This gel-like 

phase could make it more energetically unfavorable for peptides to interact with the cholesterol 

containing bilayer compared to liquid-ordered bilayers without cholesterol. A similar effect was 

seen in a previous study with alamethicin where the peptide signal was significantly higher on 

fluid phase lipids compared to gel phase lipids with the same head group [57]. 

Cholesterol is known to preferentially interact with saturated acyl chains, such as those 

found on sphingomyelin. This offers an interesting possibility for further studies since it has been 

shown in literature that peptide interactions can be different depending on the presence or 

absence of sphingomyelin. 
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CHAPTER 3 

INTERACTION BETWEEN PEPTIDES AND LIPID BILAYERS 

PREPARED USING E. COLI POLAR LIPID EXTRACT 

3.1 Introduction

The emergence of antibiotic resistance is a well-known problem that has occurred due to 

the wide use of antibiotics. As a result, many bacterial infections that were relatively easy to treat 

in the past have become difficult and expensive to combat and cure. This problem can affect 

everyone from the patient to the family, school or workplace, resulting in loss of productivity 

due to extended time away and the potential to spread such an infection. Because of these issues, 

there has been an effort to find new and better alternatives to conventional antibiotics, including 

antimicrobial peptides [1].  

Many antimicrobial peptides (AMPs) have been shown to have broad spectrum 

effectiveness, often due to the fact that they target the cell membrane rather than specific 

receptors or membrane proteins. It is thought that it is much more difficult for the bacteria to 

change the fundamental bilayer lipid composition than to change these other targets [1-3]. 

Therefore, it is of great interest to study how AMPs interact with bacterial cell membranes and 

how they function so we can develop therapies based on their natural mode of action and 

effectiveness.  
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Studying the peptides interacting with live bacteria would be ideal for learning more 

about the interaction of AMPs with bacterial cell membranes. However, working with live 

bacteria for the purpose of investigating peptide interaction would be complex, and time 

consuming. As a result, using model membranes of various mixtures of lipids and other 

membrane constituents is considered an acceptable alternative. The complexity of these model 

bilayers can be customized based on the study. Many studies in the past have used the 

phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) or a mixture 

of POPG and a zwitterionic lipid such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) as a model for the 

bacterial lipid membrane. This is because the bacterial membrane is known to be composed of 

negatively charged and zwitterionic lipids, but eukaryotic outer membranes are generally 

zwitterionic.  

However, not all bacterial membranes are the same. For example, the cell walls in gram 

negative and gram positive bacteria have different compositions. E. coli membranes contain PE, 

PG and cardiolipin as the majority of their lipid composition and the removal of any of these 

could impact peptide-bilayer interaction. One study showed that a peptide, aurein 1.2, could 

heavily disrupt DMPC/DMPG bilayers but there was almost no association or disruption on 

DMPE/DMPG or E. coli lipid extract bilayers [4]. Another study showed evidence that a 

particular peptide interacted very similarly with DOPG and DOPE monolayers even though, 

between two bacterial strains with one having more PG lipids, it was less effective against the 

bacteria with more PG lipids [5]. This shows that one must use care when choosing the 

composition of some of the simple models, as subtle differences can lead to changes in how the 
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peptides interact with a membrane and may not be the best predictor of how these peptides might 

interact with an actual bacterial membrane. 

Our lab has used sum frequency generation vibrational spectroscopy (SFG) to study the 

interaction of various membrane active peptides with substrate supported model cell membranes. 

We have shown that SFG can help deduce  interaction mechanisms and, often, orientation [6]  

for peptides such as Tachyplesin [7], MSI-78 [8], magainin 2 [9], alamethicin [10], pep-1 [11], 

melittin [12, 13], and ovispirin-1 [14]. However, in almost all of these studies, the bilayer for 

modeling the bacterial cell membrane was composed of either POPG or DPPG, with one case of 

mixed POPG/POPC. This is mainly because using one type of lipid makes the sample 

preparation, data analysis, and data interpretation easier. Although important information can be 

obtained regarding the AMP-cell membrane interaction, based on the previous studies, it can be 

seen that using just PG lipids are not the most accurate way to determine peptide-bilayer 

interaction. 

In this study, we evaluated multiple well-studied peptides at solid supported model cell 

membranes, composed of either POPG or E. coli polar lipid extract in the outer leaflet, and 

determined whether POPG alone could be considered an appropriate model for a bacterial cell 

membrane. In theory, the cell membrane should be better modeled by the E. coli polar lipid 

extract containing bilayer. The peptides investigated include MSI-594, LL-37, ovispirin-1, 

magainin 2, and melittin. MSI-594 is a 24 amino acid peptide with a charge of +6 and the 

sequence: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES. It is a hybrid of MSI-78 

and melittin and acts through the carpet mechanism for both PC and PG lipids [15]. As discussed 

in the previous chapter, LL-37 is a human cathelicidin peptide with a charge of +6 and the 

sequence: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES. It is generally thought to be 
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more disruptive of anionic lipids rather than zwitterionic ones and acts through the toroidal pore 

mechanism [16-18], although there is some dispute over selectivity based on surface charge [19]. 

Ovispirin-1 is another α-helical peptide with a charge of +7 and the sequence: 

KNLRRIIRKIIHIIKKYG. It is known to generally lie parallel to the bilayer [20, 21]. Magainin 2 

is an α-helical peptide with broad spectrum activity with a charge of +4 and the sequence: 

GIGKFLHSAKKFGKAFVGEIMNS. Magainin 2 is well studied and is largely thought to act 

through the toroidal pore mechanism; being significantly more active towards anionic versus 

zwitterionic lipids [9, 22-24]. Melittin is a membrane active peptide that is thought to be non-cell 

specific, but some think it to be hemolytic. The N-terminus of melittin is hydrophobic and the C-

terminus is hydrophilic with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQX. It 

interacts preferentially with negatively charged lipids, potentially acting through the mechanism 

different mechanisms depending on the lipid [12, 25]. It is also known, however, that anionic 

charged lipids inhibit its lytic activity [26].  

3.2 Experiment Methods 

3.2.1 Materials 

All lipids in this study, including 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG), 1,2-dipalmitoyl-d62-sn-glycero-3-[phospho-rac-(1-glycerol)] (dDPPG), and 

E. coli polar lipid extract, were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). 

Ovispirin-1 (with the sequence H2N-KNLRRIIRKIIHIIKKYGCOOH) G18 was synthesized by 

Peptide 2.0, Inc. (Chantilly, VA). Magainin 2 was purchased from AnaSpec (Fremont, CA). 

Melittin was purchased from Sigma-Aldrich (Saint Louis, MO). LL-37 was purchased from 

Bachem (Bubendorf, Switzerland). 
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3.2.2 Bilayer Preparation 

Bilayers were deposited on CaF2 right angle prisms via the Langmuir-Blodgett and 

Langmuir-Schaefer (LB/LS) methods for the proximal and distal leaflets, respectively. SFG 

spectra of the C-H and C-D regions, including the 2880 cm-1 and 2070 cm-1 bands, were taken to 

ensure bilayer quality. 

3.2.3 SFG Experimental Setup 

In depth detail on the theory of SFG, the instrument set up, and data analysis methods 

have been covered extensively in previous publications and discussed in Chapter 1. Therefore, 

they will not be repeated here [9, 27-33]. During the experiment, a 532 nm visible beam and a 

frequency tunable (1300-4300 cm-1) IR beam are overlapped spatially and temporally on the 

bottom of the right angle CaF2 prism which is supporting the lipid bilayer. The experiments were 

carried out at room temperature (~ 20 °C). The inner leaflet for all experiments was dDPPG, 

which is in the gel phase at room temperature and was used to minimize the lipid bilayer flip-

flop and keep the bilayer asymmetrical. The outer leaflet was either POPG or E. coli polar 

extract. The bilayer is formed and constantly submerged in a 1.6 mL reservoir to which the 

peptide is added during the experiment. The peptide concentration in the reservoir was kept 

constant and homogeneous by using a magnetic micro-stirrer at 100 rpm.   

SFG spectra were collected in the C-D stretching frequency range (2000-2300 cm-1) to 

assess the deuterated inner leaflet and in the C-H/O-H stretching frequency range (2700-4000 

cm-1) to assess the hydrogenated outer leaflet before and after peptide addition to the subphase. 

Additionally, time dependent spectra in this region were taken to monitor the bilayer integrity 

during the experiment. SFG spectra were also taken in the amide I frequency range (1500-1800 
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cm-1) in the ppp (SFG, visible, IR) and/or ssp polarizations to help monitor the peptide while 

interacting with the bilayer. The optical set up was purged with nitrogen during amide I signal 

collection to reduce the dips in the spectrum resulting from a loss in IR intensity due to water 

vapor absorbing IR along the optical pathway. 

3.3 Results and Discussion 

3.3.1 MSI-594 

We used SFG spectra in different frequency ranges to monitor or examine different parts 

of the peptide-lipid bilayer interaction system. The 2000-2300 cm-1 frequency range has a peak 

of interest for the CD3 symmetric stretch (2070 cm-1) which is used to monitor the deuterated 

bilayer leaflet containing terminal CD3 groups on the acyl chains. The frequency range from 

2700-4000 cm-1 is the C-H/N-H/O-H stretching frequency region which has peaks of interest for 

the CH3 symmetric stretch (2880 cm-1), the N-H symmetric stretch (3300 cm-1), and water O-H 

stretches (3200 and 3400 cm-1). There are also peaks at 2940 cm-1 (CH3 Fermi resonance), 2850 

cm-1 (CH2 symmetric stretch), and 2920 cm-1 (CH2 asymmetric stretch) in this region. 
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Figure 3.1: SFG spectra collected before (black) and after (red) the addition of MSI-594 to 

the subphase of (a) dDPPG/POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG/E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG/ 

POPG in the C-H stretching frequency range; (d) dDPPG/E. coli polar extract bilayer in 

the C-H stretching frequency range.  

 

In Figure 3.1, for both bilayers, we can see that there is a significant decrease in the peaks 

at ~3200, ~2070 cm-1 and 2880 cm-1 after the addition of MSI-594 to the subphase to reach a 

concentration of 4000 nM. The peak at ~3200 cm-1 is due to ordered water O-H stretching at the 

bilayer surface. The peak at 2070 cm-1 is from the terminal CD3 groups of the acyl chain on the 

inner leaflet while the 2880 cm-1 peak is from the terminal CH3 on the acyl chains of the outer 

leaflet. The decrease of the ~3200 cm-1 peak is due to the charge neutralization at the bilayer 

interface. Before the addition of the peptides to the subphase, the negatively charged lipid 

bilayers (for both dDPPG/POPG and dDPPG/E. coli extract) induced order in the water 

molecules at the interface which generates strong O-H stretching signals. After the addition of 

peptides, the positively charged peptides adsorb to the bilayer and neutralize the charge. As a 

result, the interfacial water molecules become disordered and the O-H stretching signal 

decreases. The decreases at 2070 cm-1 and 2880 cm-1 suggest that there was significant bilayer 
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disruption caused by the addition of the peptide. Overall, although it is somewhat different for 

the two bilayers, the spectra in Figure 3.1 show that this aspect of the interaction is similar for 

the MSI-594 and the bilayers with POPG and E. coli outer leaflets. Both leaflets of the two 

bilayers were seriously disrupted. However, the interaction dynamics are quite different, as can 

be seen in Figures 3.2 and 3.3. 

 
Figure 3.2: Time-dependent SFG signal observed from the dDPPG-POPG bilayer (top) and 

the dDPPG-E. coli polar extract bilayer (bottom). The arrow in the insert shows the time 

when the MSI-594 was added to the lipid bilayer subphase. 

 

Figure 3.2 shows the time-dependent interactions of the MSI-594 with the dDPPG-POPG 

lipid bilayer (top) and dDPPG-E. coli polar extract lipid bilayer (bottom). These SFG spectra 

show that the time from injection, indicated by an arrow on the spectrum inset, to the time that 

both of the signals decrease is significantly different for the two different model bilayers. For the 
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dDPPG-POPG system, the 2880 cm-1 signal starts to decrease after about 100 s and then 

decreased very quickly. After the 2880 cm-1 signal for the outer leaflet begins to equilibrate, the 

2070 cm-1 signal starts to decrease at a much slower rate. This can be interpreted as the peptide 

quickly associating to the bilayer and disrupting the outer leaflet before moving to the inner 

leaflet and causing disruption. Since the SFG signals from the two leaflets exhibit different 

decreasing kinetics, we believe that the signal decrease is not due to lipid flip-flop. The final 

signal is sufficiently low that it can be considered bilayer destruction. We also see bilayer 

destruction for the dDPPG-E. coli polar lipid bilayer, but the time dependent interaction is 

different. The time from injection to a noticeable decrease in the 2880 cm-1 or 2070 cm-1 signal is 

in the range of 500-1000 s and is very gradual.  

A possible explanation for the difference in interaction kinetics is the overall net charge 

of the bilayer. POPG is a negatively charged lipid that is frequently used to model bacterial 

membranes because the PG head group is very common in bacterial cell membranes. However, 

the bilayer is composed only of PG while real cell membranes, like that of E. coli, are composed 

of other lipids as well. In particular, the E. coli polar lipid mixture is 67.0 wt/wt% PE, 23.2 

wt/wt% PG, and 9.8 wt/wt% cardiolipin, which means that the E. coli polar lipid leaflet is 

potentially only approximately 1/3 the charge of a POPG leaflet. Due to the discrepancy in the 

overall charge of the leaflet, we could expect to see a stronger interaction between the positively 

charged peptide MSI-594 with the POPG leaflet, evident in a quicker interaction and disruption 

time. However, this difference in charge did not protect the dDPPG-E. coli polar lipid bilayer 

from destruction. This is to be expected, since it has been shown that E. coli is susceptible to 

MSI-594, as well as other MSI peptides [15, 34-36]. It was reported by Ramamoorthy et al. that 

the MIC for MSI-594 against E. coli was ~2 µg/ml, which is ~817 nM [15]. They performed 
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leakage assays that showed at 1.4 µM, almost 90% of the dye had leaked out of POPC:POPG 

(3:1) vesicles by 5 min. There was significant interaction leading to lysis in a very short time 

after peptide addition which is similar in behavior to our case involving POPG outer leaflet 

experiment, but not the E. coli lipid extract. Our E. coli extract did eventually experience 

destruction, but it took closer to 20 min, rather than the 5 min stated in the paper. Additionally, it 

is not stated how much disruption had occurred in their case as the bilayer wouldn’t need to be 

destroyed to leak dye.  

It was reported from NMR experiments that on POPC lipids, MSI-594 likely acted 

through the “carpet mechanism” [15]. On POPG lipids at low concentrations, it was proposed 

that MSI-594 induced some acyl chain disorder, but that most of the lipids were aligned, as 

opposed to high concentrations where non-bilayer lipid structures were formed, such as 

hexagonal phases [15]. It is worth noting that the concentration used in our experiment was more 

than four times the MIC and almost three times the concentration of their dye leakage 

experiments.  

It is possible that the difference in interaction/disruption time is related to the mechanism 

that took place on the POPG bilayer, which was possibly the formation of non-bilayer lipid 

structures. These non-bilayer structures would have occurred quickly after the MSI-594 

interacted with the dDPPG/POPG bilayer. In contrast, the E. coli polar leaflet was lower in 

anionic charge and behaved more like a POPC leaflet would. It has been seen before with other 

peptides that a mixed bilayer could foster behavior in-between what was observed when in 

environments composed of only one of the two components [17]. This could be further 

investigated with other methods such as ATR-FTIR, which is a vibrational spectroscopy that can 

provide further insight to peptide-membrane interactions.  
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Furthermore, it has been shown that other MSI peptides have the ability to induce a 

“charge cluster mechanism” which causes the lipids in the membrane to rearrange such that 

defects could occur and potentially aid in cell lysis [35]. It is possible that MSI-594 could act 

through this mechanism as well, and the interaction could take a different amount of time to 

reorganize the lipids. This could cause the time dependent spectrum/activity to differ between E. 

coli polar lipid and pure POPG.  

MSI-594 has been reported as having a bend at the GIG region, causing a “kink” in the 

peptide in the presence of zwitterionic dodecylphosphocholine micelles, but a helical hairpin in 

an environment of lipopolysaccharide [37-39]. Both of the environments we use in this study are 

negatively charged, we assume that the peptide is in a hairpin for our experiments. However, we 

do not have structural data to confirm this. 

We can see further evidence of similar peptide adsorption to the dDPPG-POPG bilayer 

relative to the dDPPG-E. coli polar lipid bilayer by the intensity of the peak at ~1655 cm-1 in 

Figure 3.3. This peak is the peptide amide I peak and is indicative of the ordered peptide on the 

bilayer surface. The MSI-584 amide I peak intensities in the ssp and ppp polarized spectra are 

similar for both lipid bilayers. Furthermore, the ppp/ssp intensity ratios for the two cases are 

similar. SFG signal intensity is proportional to the square of the number of peptides and is 

related to the peptide orientation while the ppp/ssp signal intensity ratio is primarily related to 

the peptide orientation. For this reason, we believe that MSI-594 molecules associated with two 

types of lipid bilayers are similar in number and in structure.  

Figure 3.1a shows that the CD region spectrum has a small peak at 2070 cm-1 while 

Figure 3.1b shows no CD signal. This might be due to the two bilayers being disrupted different 
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amounts at the time of the spectrum collection. Figure 3.1a was collected after 5000 seconds 

where the signal looked to be almost equilibrated, while Figure 3.2 was detected after 8000 

seconds where it looked equilibrated. If given enough time, the 2070 cm-1 signal in Figure 3.1a 

may have decreased further, but at a very slow rate.  

In summary, we believe that MSI-594 can disrupt both dDPPG-POPG bilayer and 

dDPPG-E. coli polar extract bilayers. Given a long enough interaction time, both lipid bilayers 

can be completely disrupted. The amount of peptide associated and the peptide orientation are 

not significantly different between the two bilayers. However, the disruption kinetics for the 

dDPPG-POPG bilayer is much faster, perhaps due to the larger negative change of the bilayer 

compared to the dDPPG-E. coli polar extract bilayer. Other possibilities are two different 

disruption methods: lying down and causing disorder on zwitterionic lipids and leading to the 

formation of non-bilayer phases when associated with anionic lipids; or there is charge cluster 

mechanism interaction in which the peptide induces the lipid reorganization. Perhaps in the 

charge cluster mechanism case, the peptide does not start causing disorder in the bilayer until the 

clusters of anionic and zwitterionic lipids form, resulting in a slower interaction time. Therefore, 

the POPG lipid can be used as a model for bacterial cell membranes to understand a certain 

degree of interaction with MSI-594, such as peptide-bilayer association, bilayer order before and 

after peptide addition and peptide orientation. However, other aspects, such as kinetics, are not as 

well modeled.  
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Figure 3.3: SFG signal of Amide I signal from the MSI-594 associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. 

 

3.3.2 Ovispirin-1 G18 

Ovispirin-1 G18 is an alpha helical peptide with an isotope label 13C=O at G18. Figure 

3.4 shows SFG spectra collected from the CD and CH stretching frequency regions of dDPPG-

POPG and dDPPG-E .coli polar systems before and after addition of peptide stock solution to 

achieve 7.5 µM Ovispirin-1 G18. It can be seen that after the addition of peptide to the subphase, 

the inner and outer leaflets of the dDPPG-POPG system are significantly disrupted as evident 

from the decrease in the CD signal at 2070 cm-1 and the CH3 symmetric stretching signal at 2880 

cm-1. For the dDPPG-E. coli polar extract bilayer system, the 2880 cm-1 peak from the outer 

leaflet in contact with the peptide solution only slightly decreased, but the signal at 2070 cm-1 
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from the inner leaflet is nearly the same before and after peptide addition, which suggests that 

the peptide may only slightly disrupt the outer leaflet and does not interact with the inner leaflet 

of the bilayer. However, because of the decrease in the water signal at ~3200 cm-1, we can 

conclude that the peptide is present at the bilayer surface and the absence of change in the CH3 

and CD3 signals is not due to the peptide not interacting with the dDPPG-E. coli polar extract 

bilayer. 

 

Figure 3.4: SFG spectra collected before (black) and after (red) the addition of ovispirin-1 

G18 to the subphase of (a) dDPPG/POPG bilayer in the C-D stretching frequency range; 

(b) dDPPG/E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG/ 

POPG in the C-H stretching frequency range; (d) dDPPG/E. coli polar extract bilayer in 

the C-H stretching frequency range.  

 

From Figure 3.4 we can see that ovispirin-1 G18 does not have the same interaction with 

the dDPPG-POPG bilayer and the dDPPG-E. coli polar extract bilayers. As with the previous 

study on MSI-594, we also studied the interaction kinetics between the two lipid bilayers and the 
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peptide. Figure 3.5 shows the time-dependent SFG signal for the 2070 cm-1 and 2880 cm-1 

frequencies which monitor the signal change of the two lipid bilayers after the addition of 

ovispirin-1 G18 to the subphase.  We can see that the change in the time-dependent SFG signal is 

very different for the two bilayer systems. After the injection of ovispirin-1 to the subphase to 

reach a concentration of 7.5 µM for the dDPPG-POPG bilayer, the 2880 cm-1 signal of the POPG 

outer leaflet drops sharply after ~ 100 s, and then decreases more gradually. The 2070 cm-1 

signal starts dropping after the initial drop of 2880 cm-1 and decreases at a similar rate as the 

gradual rate of 2880 cm-1. This suggests that the peptide quickly associates with the bilayer, 

indicated by the quick drop of 2880 cm-1, followed by a gradual disruption of the bilayer. The 

rate of CH and CD signal decrease is not significantly different, but are not identical either, 

which suggests that this could be the bilayer disruption/destruction and possibly a degree of 

bilayer flip-flop activity. If the rate was the same, flip-flop would be suspected since lipids from 

both leaflets would be moving to the opposing leaflet causing both to become more symmetric as 

a result. This mechanism would show up during the time dependent monitoring as the signal 

dropping at the same rate for both leaflets. The possibility of flip-flop can be further investigated 

by doing experiments with AFR-FTIR, which is not sensitive to molecule order and would shed 

light on whether the lipids are still present or removed.  

The bilayer interaction of ovispirin-1 with the dDPPG-E. coli lipid system is different 

than with the dDPPG-POPG system. Although the peptide concentration is the same, there is no 

sharp drop in the 2880 cm-1 signal after the addition of the peptide to the subphase and the signal 

decreases very slowly over the course of hundreds of seconds. Both the 2880 cm-1 and 2070 cm-1 

signals drop so slowly, that after 1.5 h they are still similar to before peptide injection. Since the 

water signal shown in Figure 3.4 d decreased substantially, we believe that ovispirin-1 molecules 
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were associated with the dDPPG-E. coli polar extract bilayer, but they do so much more slowly 

than on dDPPG-POPG and do not cause bilayer disruption. Figure 3.4b shows the inner leaflet 

spectra are similar before and after peptide addition, but the time-dependent CD stretching 

signals shown in Figure 3.5b decrease. Perhaps this is because the peak center of the ~2070 cm-1 

signal shifted slightly, therefore the signal intensity observed at this wavenumber exhibits some 

time-dependent changes.  

 

Figure 3.5: SFG time-dependent signal detected from (a) dDPPG-POPG bilayer, inset is 

zoomed; (b) dDPPG-E. coli polar extract bilayer; (c) dDPPG-E. coli polar extract bilayer 

zoomed in before and after the injection of ovispirin-1 G18 to the subphase. Peptide 

injection is indicated by arrow.  

 

We also monitored the ovispirin-1 during interacting with the bilayers. Figure 3.6 shows 

the amide I peak at ~1655 cm-1 which is associated with the peptide backbone. The overall 

intensity of the amide I signals associated with the two lipid bilayers and the ppp/ssp intensity 

ratios are similar. This suggests that the number of peptides/peptide order is potentially similar in 
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both cases. This could mean that while the same number of peptides associated to both bilayers, 

the leaflet with fewer negative charges (E. coli polar extract) might require more ovispirin-1 

peptides to disrupt the bilayer quickly. 

 

Figure 3.6: SFG signal of Amide I signal from the ovispirin-1 associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. 

 

Ovispirin-1 is well known to be potent as an antimicrobial, but is also hemolytic and 

cytotoxic to the point that it is not able to be used for any therapeutics. Even with this being the 

case, the MIC for several bacteria is much lower than the concentration used for cell lysis [40, 

41]. Therefore, it seems as though ovispirin-1 still is more toxic to bacteria which contain a 

higher fraction of anionic lipids. From this information, it could be reasonable to suggest that 

even from that data, we would expect that ovispirin-1 would associate less with a more neutral 
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lipid bilayer. However, the MIC for several bacteria are very low (< 10 µg/ml) and given that our 

concentration used was 17 µg/ml, we had hoped to see more disruption activity at the E. coli 

polar extract leaflet. Additionally, my experimental conditions are not necessarily a true model 

of a bacterium in its environment and it is possible that we might have seen a different response 

if we had raised or lowered the concentration. There have been several molecular dynamics 

simulations projects studying ovispirin-1 that have more generally focused on zwitterionic 

systems with the goal of finding an analogue that would be suitable for therapeutic use [42-44]. 

Additionally, solution and solid state NMR experiments have elucidated the structure of 

ovisprin-1 in environments of trifluoroethanol (TFE) and POPC:POPG (3:1) lipids [21, 40], and 

with 2D IR  characterizing the structure and location of ovispirin-1 in a POPC:POPG (3:1) 

environment [20]. All agree that the peptide is alpha-helical, but other specifics of the structure 

seem to be dependent on the environment. In lipid environments, it is generally agreed on that 

the peptide is residing near the lipid head groups in the bilayer and lying down, parallel to the 

bilayer and perpendicular to the surface normal [20, 21].  

Yamaguchi and coworkers mention that ovispirin-1 also maintains an orientation parallel 

to the bilayer surface, even at high peptide/lipid ratios and does not exhibit a “two stage 

orientation” that is sometime seen in other peptides where they insert into the bilayer at high 

concentrations [17, 45]. Their result suggests that we probably would not see an increased 

disruption from the peptides inserting into the bilayer, but it is possible that they require more 

peptides to quickly disrupt the outer leaflet from a non-pore forming mechanism. Alternatively, 

it is possible that the peptide could have two different modes of action depending the lipid 

content, like in the case of the α-helical peptide VP1, which acts via the carpet model on 

membranes higher in cardiolipin and PG lipids while  entering the membrane at an oblique angle 
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and solubilizing/lysing the membrane on E. coli lipids [46]. They observed that fewer peptides 

associated to an E. coli membrane, but the membrane eventually lysed. However, in our case, the 

leaflet was at best slowly affected. If this concentration dependent interaction is what is 

happening in our system, maybe it is possible that it would take more peptide to eventually see a 

strong disruption effect.  

The amide I spectra suggest that there are possibly slightly more peptides on the E. coli 

leaflet vs. the POPG leaflet and we did see some decrease in the signal but it was not nearly as 

fast as the more charged POPG environment.  It is a possibility that a higher concentration would 

result in a faster interaction time.  

In summary, ovispirin-1 molecules associate with dDPPG-POPG and dDPPG-E. coli 

polar extract lipid bilayers. The number and orientation of the associated peptides for the two 

types of the bilayers are similar, showing that POPG can model this aspect of the interaction. 

However, ovispirin-1 disrupted both leaflets of the dDPPG-POPG bilayer quickly, but could not 

disrupt the dDPPG inner leaflet and only slightly disrupted the outer leaflet of the dDPPG-E. coli 

polar lipid extract bilayer. It is possible that the ovispirin-1 could disrupt the latter bilayer, but at 

a much slower speed. Based on these results, it is clear that the POPG can model some aspects of 

the ovispirin-1 interaction with E. coli lipids, but there are still important aspects of the 

interaction, such as the interaction kinetics, that cannot be accurately modeled with the simple 

system. This is probably at least partly due to the difference in the overall net charge of the 

bilayers. The maximum number of peptides might be associated with both bilayers at this 

concentration. However, at a bilayer with a lower net charge, a higher number of peptide 

molecules would be needed to induce disorder similar to the pure PG system. 
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3.3.3 Magainin 2 

Figure 3.7 shows the CD and CH stretching frequency ranges for 800 nM magainin 2 

interacting with the two bilayer systems. It is shown that at this concentration, the magainin 2 

clearly associates with both systems, evident by the drop in the water signal at ~3200 cm-1. As 

discussed above, the O-H water signal decrease is due to the charge neutralization. The 

positively charged bilayer associated peptides neutralize the negative charge on the PG lipids. 

However, the outer leaflet is only disrupted in the POPG case, as indicated by the decrease in the 

2880 cm-1 CH3 symmetric peak. For the E. coli case, there is no change in the 2880 cm-1 peak 

before and after peptide addition to the subphase, so we believe that there is no disruption of the 

outer leaflet by magainin 2. The inner leaflet was unaffected in both systems, evident by the 

unchanged 2070 cm-1 peak intensity. Since magainin 2 molecules are antimicrobial, they should 

also disrupt the inner leaflet when reaching a certain concentration. It is likely that the 

concentration is not high enough to disrupt the inner leaflet.  
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Figure 3.7: SFG spectra collected before (black) and after (red) the addition of magainin 2 

to the subphase of (a) dDPPG-POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG-E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG- 

POPG in the C-H stretching frequency range; (d) dDPPG-E. coli polar extract bilayer in 

the C-H stretching frequency range. The magainin subphase concentration is 800 nM. 

 

Figure 3.8 shows the time dependent SFG signals of the two lipid bilayer systems 

interacting with magainin 2. For the dDPPG-POPG bilayer case, the 2880 cm-1 signal increases 

quickly before a more slow decrease and eventual equilibration while the 2880 cm-1 signal for E. 

coli polar lipid extract seems to increase a small amount and then is equilibrates without a signal 

decrease. From this time-dependent observation and the data from the CD and CH spectra, it is 

possible that the initial increase in 2880 cm-1 signal is due to the peptide association with the 

bilayer. It could be that the peptides induce a sort of order in the outer leaflet before causing 

disruption. Figure 3.9 shows the amide I signal detected from magainin 2 when the bilayers were 

in contact with the 800 nM magainin 2 solution. The overall intensity of the ~1655 cm-1 peptide 
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signal on the dDPPG-POPG bilayer is approximately four times more intense than the signal of 

magainin 2 associated with the dDPPG-E. coli polar extract lipid leaflet containing system, 

suggesting that there are more peptides on the POPG bilayer. This agrees with the CH signal 

being lower for POPG vs E. coli polar since it was seen that the CH3 signal decreased, which 

could occur because a certain threshold was reached and allowed the peptide to disrupt the 

bilayer. Because fewer magainin 2 molecules were adsorbed onto the E. coli polar lipid extract 

leaflet, no disruption was observed. 

 

Figure 3.8: SFG time-dependent signal detected from (a) dDPPG-POPG bilayer, (b) 

dDPPG-POPG bilayer in the first 800 seconds, (c) dDPPG-E. coli polar extract bilayer; (c) 

d-DPPG-E. coli polar extract bilayer zoomed in the first 1000 seconds, before and after the 

injection of magainin 2 to the subphase to reach 800 nM. Peptide injection is indicated by 

arrow.  
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Figure 3.9: SFG signal of Amide I signal from the magainin 2 associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. The magainin 2 subphase 

concentration is 800 nM 

 

We then increased the magainin 2 concentration in the subphase in anticipation that a 

higher concentration would enable magainin 2 to disrupt both leaflets in the lipid bilayer. Figure 

3.10 shows the SFG signals detected in the CD and CH stretching frequency regions for dDPPG-

POPG and dDPPG-E. coli polar extract bilayers when in contact with 2 µM magainin 2. At this 

higher concentration, there is a similar amount of disruption for the POPG leaflet as was seen at 

800 nM. However, there is some minor disruption in the E. coli extract leaflet as well. The 

deuterated leaflet was still unaffected in both high concentration cases. This could be because a 

minimum concentration of peptide needs to be reached before disruption can begin. Since it 
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seems to be more difficult for magainin 2 to associate on dDPPG-E. coli polar extract bilayers, 

either due to electrostatic differences or because of a difference in other bilayer properties, the 

solution concentration may need to be higher before enough peptide is present on the surface to 

cause a disturbance. 

 

Figure 3.10: SFG spectra collected before (black) and after (red) the addition of magainin 2 

to the subphase of (a) dDPPG-POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG-E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG- 

POPG in the C-H stretching frequency range; (d) dDPPG-E. coli polar extract bilayer in 

the C-H stretching frequency range. The magainin subphase concentration is 2.0 µM. 

 

Figure 3.11 shows the time dependent injection spectra for 2 µM magainin 2. The 2880 

cm-1 signal for the dDPPG-POPG system looks very similar for 2 µM compared that of 800 nM, 

with the exception that the delay time before interaction seems to be much shorter, less than half 

the time as before. This is to be expected with a much higher concentration of peptide. The 2880 

cm-1 signal for the dDPPG-E. coli polar extract system appeared to take much longer to respond 
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to the peptide addition, but ultimately was not significantly different than the 800 nM case, 

although it did slightly decrease over time.  

 

Figure 3.11: SFG time-dependent signal detected from (a) dDPPG-POPG bilayer, (b) 

dDPPG-POPG bilayer in the first 600 seconds, (c) dDPPG-E. coli polar extract bilayer; (c) 

d-DPPG-E. coli polar extract bilayer zoomed in the first 800 seconds, before and after the 

injection of magainin 2 to the subphase to reach 2.0 µM. Peptide injection is indicated by 

arrow.  

The amide I region signal at ~1655 cm-1 for 2 µM on the POPG system was comparable 

to that on the 800 nM system (Figure 3.12). This is consistent with the similar looking CH, CD, 

and time dependent spectra between the two concentrations. For the E. coli polar extract case, the 

~1655 cm-1 signal was slightly higher at 2 µM than it was at 800 nM. This apparent slight 

increase in adsorbed peptide can be the cause of the slightly disrupted outer leaflet that was 

observed in Figure 3.8. Again, this effect could be due to the higher charged density on the 

POPG leaflet relative to the E. coli polar extract leaflet.  
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The fact that we do not see very much acyl chain disruption is not completely surprising. 

The MIC for magainin 2 against E. coli seems to vary with different strains; 55.5 µM for ATCC 

strain 8739, ~3 µM for ATCC 25922, and 20 µM for ATCC 25922 with F5W-magainin 2, an 

equipotent analogue of magainin 2 [22, 47, 48]. A previous study in our lab observed amide I 

signal on POPG/POPG bilayers using 800 nM magainin 2 and on POPC/POPC bilayer with 2 

µM magainin 2 and determined that the peptide was in a transmembrane orientation in POPG 

and generally laying down on POPC [9]. Because of this success, we started at a concentration of 

800 nM in our study. This relatively low concentration was used in the original study because the 

bilayer was a purely anionic POPG bilayer and peptides should have associated at a lower 

concentration compared to what was considered a toxic concentration to E. coli.  

We do see peptide association at 800 nM for both systems, which is lower than all of the 

listed MICs. We saw minimal disruption and the amide I  𝜒𝑝𝑝𝑝 𝜒𝑠𝑠𝑝⁄    ratios, which are 

orientation and polarization dependent measurements, were different from a previous study in 

our lab (indicating a different peptide orientation – perhaps related to the different inner leaflet – 

see the discussion below), so we increased the concentration. At 2 µM we saw the same case for 

the POPG system and slightly higher adsorption for the E. coli system, indicated by the amide I 

intensity. The 2 µM concentration is still approximately close to the lowest of the MIC values 

and it would be prudent to try higher magainin 2 concentrations for future work. 

We see some chain disruption on the POPG leaflet and on the E. coli leaflet at 2 µM.  We 

believe that this is reasonable since this peptide is thought by many to operate via associating 

with membranes until instability causes toroidal pores to form resulting in leakage and cell death 

[23, 49, 50]. However, there is some dispute about this mode of action being correct [24]. In 

these toroidal pores, there is not a large amount of acyl chain disruption. This agrees with most 
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of the previous studies, which cited that they saw very little acyl chain disruption and that the 

peptide had extensive interaction with the lipid head groups [47, 51, 52]. However, if there were 

pores forming we would expect to see some disturbance to both leaflets. Evidence that lipid flip 

flop was taking place and was facilitated by these pores would be observing the 2880 cm-1and 

2070 cm-1 signals decreasing at approximately the same rate [50]. However, we do not observe 

this for either system at either concentration. This suggests that we might not be seeing toroidal 

pores, but just association near the lipid head groups. This is likely due to the lower 

concentration of magainin 2 we used in the study. 

 

Figure 3.12: SFG signal of Amide I signal from the magainin 2 associated with (top) 

dDPPG-POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. The magainin 2 

subphase concentration is 2.0 µM. 
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Also of note is that most of the studies used POPC and POPG (transition temperature -2 

°C) or DMPC and DMPG (transition temperature 24 °C). Because 24 °C is very close to room 

temperature, the lipid might be in gel or fluid phase depending on the experimental conditions. 

The one study that used DPPG observed that the peptide did not insert into the bilayer and stayed 

associated with the head groups (this could be a misinterpretation since the toroidal pore theory 

was not yet known) [51]. Without more studies in the gel phase, it isn’t currently known if 

magainin 2  cannot insert into gel phase DPPG or if the lack of activity is due to low 

concentration or misinterpretation, but this phenomenon has been observed before [53]. 

However, the possibility exists that the fact that since we employ a gel phase inner leaflet which 

may stabilize the outer fluid phase’s leaflet, this could make it difficult for the peptide to enter 

and create a pore. Additionally, the E. coli lipid extract used for the outer leaflet contains ~60% 

PE lipids. It has been shown that the addition of PE lipids decreases the incidence of magainin 2 

induced pores in PG lipids [54]. This is explained by the PE causing negative curvature of the 

bilayer which opposes apparent positive curvature strain caused by the magainin 2 and results in 

a  possibly unfavorable environment for pore formation [54-56]. 

The low magainin 2 concentration and the lack of signal change in the 2070 cm-1 time 

dependent spectrum make toroidal pore formation a less likely possibility than the case where the 

peptide is inserting into the outer leaflet and participating in transient pore formation as stated in 

early papers. Increasing the concentration, however, might result in a more defined pore and 

stronger evidence of the toroidal pore mechanism. 

In summary, magainin 2 adsorbed to both lipid bilayer systems at both concentrations 

used in this study, but there was significantly more association on POPG containing bilayers. 

Magainin 2 can disrupt the outer leaflet of the dDPPG-POPG bilayers at both 800 nM and 2.0 
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µM, and can slightly disrupt the outer leaflet of the dDPPG-E.coli polar extract lipid bilayer at 

2.0 µM. The difference in interaction is likely partially due to the difference in bilayer surface 

charge and it has been observed that magainin 2 interacts differently with anionic and 

zwitterionic lipid bilayers. The lack of inner leaflet disruption for the POPG containing system 

might be due to the inner leaflet being gel phase and the bilayer thus being more resistant to flip 

flop and potentially toroidal pore formation. Additionally, the combination of lower surface 

charge and the PE lipids’ tendency to oppose positive curvature induced by magainin 2 could 

explain why the E. coli lipids were less disrupted compared to the POPG lipids. Therefore this 

study again demonstrated that POPG can serve as a simple model for bacteria cell membrane 

association, but the results are not comparable for the lipid dynamics/interactions and one should 

be aware of the potential differences in results when choosing a model cell membrane system.  

3.3.4 Melittin 

In addition to the AMPs we have discussed so far, we also studied melittin. As was 

discussed above, melittin can disrupt both bacterial and mammalian cell membranes. Figure 3.13 

shows the SFG signals detected from the C-H and C-D stretching signals of the dDPPG-POPG 

and dDPPG-E. coli polar extract bilayer systems before and after addition of melittin to the 

subphase to reach a concentration of 0.78 µM. At this concentration, both the inner and outer 

leaflets of the dDPPG-POPG system are disrupted, evident by the decrease in 2880 cm-1 and 

2070 cm-1 signal. The O-H stretching signal decrease also indicates the association of the 

melittin molecules with the dDPPG-POPG bilayer. There is also a negative peak at ~3300 cm-1, 

which is contributed by the N-H stretch from the peptide backbone, and indicates again that the 

peptide is at the bilayer surface. For the dDPPG-E. coli polar extract system, the SFG signal 

decrease in both C-H and C-D stretching frequency regions was observed. Interestingly, there 
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seemed to be a slightly larger decrease in the 2880 cm-1 and 2070 cm-1 peaks here compared to 

the POPG system. It is possible that there is more disruption of the inner and outer layers of the 

dDPPG-E. coli polar extract lipid bilayer.  

Figure 3.14 shows the time dependent SFG signal intensities observed at 2880 cm-1 and 

2070 cm-1 from both the dDPPG-POPG bilayer and the dDPPG-E. coli polar extract bilayer 

before and after the addition of melittin to the subphase to reach 0.78 µM. The overall features of 

the time dependent signal intensities are similar, showing a drop in the outer 2880 cm-1 signal 

and the inner 2070 cm-1 signal as a function of time. It is important to note that while the inner 

leaflets were disrupted in both bilayers, the time dependent shows that the inner leaflet of the E. 

coli containing bilayer was disrupted more than the POPG containing one. This shows that 

melittin can gradually disrupt both lipid bilayers. The signal decreases in the two leaflets of each 

bilayer are different, showing that the signal decrease is not due to the lipid flip-flop. 

Interestingly, there was first a signal increase on the POPG leaflet, perhaps due to the POPG 

lipid order change or CH signal that may have been contributed by melittin.  



68 

 

 

Figure 3.13: SFG spectra collected before (black) and after (red) the addition of melittin to 

the subphase of (a) dDPPG-POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG-E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG/ 

POPG in the C-H stretching frequency range; (d) dDPPG-E. coli polar extract bilayer in 

the C-H stretching frequency range. The melittin subphase concentration is 0.78 µM. 

 

Figure 3.15 shows the amide I signal detected from melittin associated with the two types 

of lipid bilayer at a sample concentration of 0.78 µM. The intensity of the 1655 cm-1 peak of 

melittin interacting with the POPG leaflet was slightly higher than that on E. coli polar extract 

leaflet, but they are relatively close, which is a little surprising since the disorder in the E. coli 

polar extract system was slightly higher. However, it is possible that the intensity discrepancy is 

due to peptide order, rather than peptide number. For example, even if there were more peptides 

in a system, the intensity could be lower if those peptides were not all sharing the same 

orientation.  
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Figure 3.14: SFG time-dependent signal detected from (a) dDPPG-POPG bilayer, (b) 

dDPPG-POPG bilayer in the first 700 seconds, (c) dDPPG-E. coli polar extract bilayer; (c) 

d-DPPG-E.coli polar extract bilayer zoomed in the first 600 seconds, before and after the 

injection of melittin to the subphase to reach 0.78 µM. Peptide injection is indicated by 

arrow.  

 

Figure 3.16 shows the CD and CH spectra detected from the dDPPG-POPG bilayer and 

the dDPPG-E. coli polar lipid extract bilayer before and after the addition of melittin to the 

subphase to reach 2 µM. Similar to the results obtained for the 0.78 µM melittin case, the 2880 

cm-1 and 2070 cm-1 signal intensities decreased for both the lipid bilayer systems. The POPG 

leaflet signal decreased slightly more at the 2.0 µM case compared to the 0.78 µM case, but the 

difference is not large. The peak for the E. coli system is approximately the same at both 

concentrations. Overall, the disruptions for the two bilayer systems are not significantly different 

at this higher concentration. Figure 3.17 shows the amide I signal from melittin interacting with 
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the two lipid bilayer systems after the addition of 2 µM melittin. Again we see lower 1655 cm-1 

signal for the peptide on E. coli extract compared to POPG.  

 

Figure 3.15: SFG signal of Amide I signal from the melittin associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. The melittin subphase 

concentration is 0.78 µM.  

 

Melittin has been shown to associate and adsorb more strongly to negatively charged 

bilayers vs. less charged or zwitterionic ones [57-61]. This is not unexpected. However, because 

of this strong association, melittin has generally been generally found to not insert into 

negatively charged bilayers [25, 61]. The most commonly proposed mode of action is a 

carpet/detergent-like interaction [25, 62]. Therefore, it makes sense that melittin associated with 

negatively charged lipids has a generally weaker SFG amide I signal (due to the lying down 
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orientation). However, it has been reported that melittin forms pores in PC membranes. While 

the pore theory is widely held, there is some discrepancy whether it is a barrel stave [25, 63], or 

the more popular toroidal pore which is correct [64-68]. In fact, one calcein leakage assay 

showed that adding PG lipids to PC LUVs inhibited melittin ability to lyse the vesicle [57]. 

Given this information, it is not necessarily surprising to see that at 0.78 µM melittin there is 

more disorder in the E. coli polar extract containing bilayer. It has less of a charge compared to 

the POPG containing bilayer and according to the above information, that charge difference 

likely allows the peptide to interact more with the hydrophobic bilayer core rather than being 

tightly associated with the PG headgroups.  

 

Figure 3.16: SFG spectra collected before (black) and after (red) the addition of melittin to 

the subphase of (a) dDPPG-POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG-E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG- 

POPG in the C-H stretching frequency range; (d) dDPPG-E. coli polar extract bilayer in 

the C-H stretching frequency range. The melittin subphase concentration is 2.0 µM. 
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Figure 3.17: SFG signal of Amide I signal from the melittin associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. The melittin subphase 

concentration is 2.0 µM.  

 

However, this could not explain why the amide I 1655 cm-1 signal is slightly higher for 

the POPG containing bilayer vs. the E. coli extract containing one, assuming the same number of 

peptides are associated with each lipid bilayer. The peptides associating on a POPG leaflet are 

likely oriented approximately parallel to the bilayer and held near the headgroups instead of 

being allowed to penetrate into the bilayer. This orientation should lead to weaker SFG amide I 

signal. However, if the number of peptides associating on the POPG containing bilayer is 

actually higher than on the E. coli polar lipid containing bilayer there could be signal differences. 

If there are many more peptides on the POPG containing bilayer (due to the strong electrostatic 
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interactions), the amide I signal intensity could be higher because of the higher number of 

peptide molecules. In this case, the E. coli containing bilayer would have fewer peptides 

associated, but they would be inserted into the bilayer to some degree, which would explain why 

the inner leaflet is more disordered for the E. coli containing bilayer system. This has been 

investigated using wavelength dependence fluorescence polarization and circular dichroism [26, 

59], dye leakage experiments [69], SPR biosensor experiments [62], and cryo-transmission 

electron microscopy [70]. Therefore, we believe the stronger signal for the POPG case is due to 

the fact that more melittin molecules are adsorbed to the dDPPG-POPG bilayer compared to the 

dDPPG-E. coli extract bilayer. 

After increasing the concentration to 2 µM, the CH3 and CD3 peaks for the POPG 

containing bilayer further decreased and those for the E. coli extract containing bilayer remained 

the same as the lower concentration. Additionally, the 1655 cm-1 peak was approximately twice 

as big for the POPG bilayer as compared to the E. coli polar lipid containing bilayer. This 

difference in peak intensity could be due to the increased concentration of peptide providing 

more peptide to associate at the bilayer which only happens for POPG because of its high 

negative charge density. According to this theory, the E. coli extract containing bilayer is not 

attracting much more peptide, opposed to the POPG one. This interpretation fits the observation 

that it takes a higher concentration of peptide to disrupt highly negative bilayers vs. a less 

negatively charged bilayer that has been reported previously [69].  

An interesting point about these interactions is that it has been found in several studies 

that the initial association and the disruption are two different processes [26, 61, 62, 64, 69, 71-

73]. It is generally accepted that the initial association is governed by electrostatic interactions 

while the disruption step is governed by several processes and depends on multiple factors 
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including the hydrophobic effects, lipid phase, head group charge, head group size and peptide 

properties [74, 75]. Also, it seems as though there is a critical peptide association concentration, 

P/L*, at which the peptide can switch from its associated orientation to pore formation [63, 66, 

67, 75]. These variables show that the interactions between peptides and model bilayers are not 

as easy and straightforward as simply considering the bilayer charge. 

Several of the studies mentioned previously reported that the PG membranes were 

eventually solubilized or destroyed through a carpet or detergent-like mechanism [25, 61, 62]. 

The detergent-like mechanism usually involves peptide covering the bilayer like a carpet and 

then peptide-lipid structures, like micelles, being removed from the bilayer [25]. We are unable 

to determine by SFG if the drop in the 2070 cm-1 and 2880 cm-1 signals is due to the loss of 

lipids because the signal can also decrease due to the peptide flip-flop or disorder. However, a 

method such as ATR-FTIR, which is order independent, can give us this information. According 

to our ATR-FTIR spectrum of the CH region of dDPPG-E. coli extract, there is no drop in lipid 

signal after the addition of melittin. Therefore, we do not believe that there is a loss of lipid 

material at this concentration. Because of this observation, we do not think that a normal 

detergent-like mode takes place on E. coli extract. A more likely mechanism to explain the signal 

decrease is disorder or flip-flop due to a disturbance in bilayer structure in the form of defects or 

possibly pores induced by melittin, as was mentioned as a possibility in Ladokhin et al., 2001 

[25].  

In summary, the interactions between melittin and two types of the lipid bilayers at two 

peptide concentrations are different. POPG can serve as a model system for the bacterial cell 

membrane for certain criteria, such as peptide-bilayer association. However, the time dependent 

interaction spectra and the lipid spectra which relate the interaction dynamics were not 
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effectively modeled by pure POPG. It was demonstrated that melittin exhibits more disruption on 

the dDPPG-E. coli polar extract bilayer than the dDPPG-POPG bilayer at 0.78 µM melittin. This 

might be due to the fact that melittin is known to disrupt both bacterial and mammalian cell 

membranes. In contrast to the MSI-594, ovispirin-1, and magainin-2, which only disrupts the PG 

and not PC bilayers, melittin interacts strongly with both PG and PC bilayers. Melittin likely 

becomes “trapped” in the anionic POPG headgroups which inhibits the peptide’s ability to 

disorder the inner bilayer leaflet. For E. coli lipid extract, there is less anionic charge on the 

bilayer surface so the peptide can engage in hydrophobic interactions with the acyl chain groups 

of the lipids which results in increased inner leaflet disorder.  At a higher concentration, the 

interactions of the peptide with the two bilayer systems are similar – showing that higher peptide 

concentrations are needed to achieve the same amount of disorder in anionic bilayers compared 

to those with a lower net charge.  Assuming we are only considering the surface charge 

interactions, this was well modeled with the POPG containing system. However, we again see 

that the simple system falls short in being able to model some significant peptide-lipid 

interactions. 

3.3.5 LL-37 

We then studied the interactions between another AMP, LL-37, with the two types of the 

lipid bilayers. Figure 3.18 shows the CD and CH stretching signals from the two lipid bilayer 

systems before and after the addition of LL-37 to the subphase of the dDPPG-POPG and 

dDPPG-E. coli polar extract model lipid bilayers to reach a concentration of 1.6 µM. In both 

cases, the decrease of the water signal ~3200 cm-1 indicates that the peptide interacts with the 

bilayer. In both cases, the C-D stretching signal does not change, showing that LL-37 does not 

disrupt the inner leaflet. It is difficult to see whether the C-H signal changed or not because the 
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O-H signal interferes with the C-H signal, and the O-H signal is very different before and after 

the addition of LL-37. This means that both the inner and outer leaflets for both systems are left 

undisrupted by the LL-37 even though the LL-37 molecules were associated with the both lipid 

bilayers.  

 

Figure 3.18: SFG spectra collected before (black) and after (red) the addition of LL-37 to 

the subphase of (a) dDPPG-POPG bilayer in the C-D stretching frequency range; (b) 

dDPPG-E. coli polar extract bilayer in the C-D stretching frequency range; (c) dDPPG- 

POPG in the C-H stretching frequency range; (d) dDPPG-E. coli polar extract bilayer in 

the C-H stretching frequency range. The LL-37 subphase concentration is 1.6 µM. 

 

Figure 3.19 shows the time dependent CD and CH stretching SFG signals of the two 

bilayer systems after injection of the peptide to the subphase. There is no change in the CD 

signal, but a slight decrease in the C-H signal may be due to the water signal change. The C-H 

signal does not change after the slight, sharp decrease. This decrease happened faster for the 
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POPG system after the addition of LL-37 to the subphase, which is likely due to the fact that it 

has a higher charge density compared to the E. coli extract leaflet.  

 

Figure 3.19: SFG time-dependent signal detected from (a) dDPPG-POPG bilayer, (b) 

dDPPG-POPG bilayer in the first 400 seconds, (c) dDPPG/-E. coli polar extract bilayer; (c) 

d-DPPG-E.coli polar extract bilayer zoomed in the first 500 seconds, before and after the 

injection of LL-37 to the subphase to reach 1.6 µM. Peptide injection is indicated by arrow.  

 

Figure 3.20 shows the amide I signal detected from LL-37 associated with both lipid 

bilayer systems. The amide I spectral features look very similar, indicating the formation of α-

helical conformation. The intensity of the 1655 cm-1 amide I peak is much stronger (~2000 vs. 

~450) on the POPG system vs. the E. coli extract system. Again, this is not unexpected since the 

higher charge density on POPG could cause more positively charged peptides to adsorb to the 

bilayer surface. 
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The presented data suggests that at this concentration, the LL-37 has associated with the 

bilayer surface in a manner that reflects the outer leaflet charge. However, for some reason, it is 

unable to either insert into the bilayer or bury far enough into the outer leaflet to induce enough 

chain disorder to cause the drop in the CH3 or CD3 signals. The amide I data presented is only in 

ssp polarization, and thus cannot give us orientation information. Unidentified spectral features 

made the ppp peaks unable to be fitted so just the ssp, which can still give us information about 

the population, is presented. However, SFG signal is also dependent on order so that could also 

be a factor in the intensity difference. Given the drastic difference in surface charge and the fact 

that it has been established that LL-37 associates more readily with anionic lipids, we feel that 

the difference in intensity is highly likely related to the number of peptides at the surface [17-19, 

76]. The concentration we used, 1.6 µM, is approximately 7 µg/ml which fits into the MIC for E. 

coli under most conditions [77]. Also, our group showed that LL-37 was laying down on 

POPG/POPG bilayers at the same concentration, but inserted into the bilayer at a lower 

concentration [17]. In this study, because no lipid bilayers were disrupted, we believe that for 

both lipid bilayers the associated LL-37 is generally oriented parallel to the bilayer.  

It has been shown that just a difference in lipid head groups can change the way LL-37 

interacts with membranes[19]. Sevcsik, et al. observed that adding LL-37 to DPPC/DPPG, 

DPPE/DPPG, and DPPS/DPPC resulted in different interactions even though the overall charge 

for each bilayer is the same and all have the same hydrophobic acyl chains. This is attributed to 

the fact that the head groups have different physical properties. For example, PC and PG are 

cylindrical in shape while the smaller head group of PE causes it to have an inverted cone shape, 

which can influence lipid packing [78]. The ability for PE to induce negative curvature and be 

more likely to produce non-bilayer phases such as hexagonal phases has been mentioned in other 
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literature as well [55, 75, 79]. Sevcsik, et al. reported that the packing density for PC/PG is lower 

than that for PE/PG and PC/PS which is likely due to the hydrogen bonding in the PE and PS 

head groups that is absent in PG. Additionally, they observed that for PC/PG the bilayers behave 

closer to pure PG and the PC/PS behave more like PC and mentioned that this could be because 

the hydrophobic effects are stronger than the electrostatic ones in that case.  

 

Figure 3.20: SFG signal of Amide I signal from the LL-37 associated with (top) dDPPG-

POPG bilayer and (bottom) dDPPG-E. coli polar extract bilayer. The LL-37 subphase 

concentration is 1.6 µM.  

 

In this work, our experiments showed that the interactions between LL-37 and 

dDPPG/POPG bilayers as well as a dDPPG-E. coli extract (PE, PG, CL) bilayers are similar. At 

the LL-37 concentration we investigated, both inner and outer leaflets were not disrupted. LL-37 



80 

 

molecules were associated with both lipid bilayers; however, there were more peptide molecules 

associated on the more negatively charged POPG containing bilayer. Although the previous 

discussion shows that different lipids interact with LL-37 in different ways, perhaps here the PG 

lipids in E. coli polar extract dominantly interact with LL-37.  

It was briefly discussed in Chapter 2 how LL-37 interacts differently with bilayers of 

different compositions, including mixtures of PC and PG. From the previous discussion, it was 

seen that LL-37 does interact with POPG lipids and we did not see that in these experiments. 

Because of this lack of interaction, it is difficult to decide whether POPG or E. coli lipids would 

be a better model. The gel phase of the inner leaflet should not pose a problem, as it might have 

with other peptides, because LL-37 has interacted with gel phase lipids in literature [76]. It is 

possible that we observe LL-37 lying down on the POPG containing bilayer surface at the 1.6 

µM concentration, similar to prior studies in our lab [17]. For the E. coli lipids, the effective 

negative charge is much lower compared to POPG lipids. A lower net negative bilayer charge 

resulted in peptide insertion in a mixed POPG:POPC bilayer in that study. However, it is 

possible that the inclusion of PE lipids in the E. coli extract induces negative curvature which 

opposed the positive curvature associated with toroidal pore formation. This effect was discussed 

earlier for magainin 2. As a result, we might be observing the LL-37 lying down on the E. coli 

extract containing bilayer due to the effect of PE lipid shape. 

Considering these possibilities, it is apparent that POPG is not a good model for bacterial 

membranes since the suspected explanations for the observed signals are different; even if the 

resulting lipid signals are similar. Using more complex lipid mixtures, such as E. coli polar 

extract lipids, should be a more accurate representation of a cell membrane and yield more 

relevant results.  
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3.4 Conclusions 

In this study we investigated the interactions between several membrane active peptides 

and bilayers consisting of dDPPG-POPG and dDPPG-E. coli polar lipid extract. Because E. coli 

lipids include ~60% PE as well as other components, there can be big differences in how a 

peptide might interact with a membrane of POPG or POPG/POPC vs. E. coli lipids [4, 46, 80]. 

Some of these concerns come from the fact that E. coli lipids contain PE, which has a small head 

group that is more rigid, more ordered, and is able to form a hydrogen bond, unlike the PC head 

group [78, 81-83]. Its size and packing geometry causes it to be cone shaped and it has a 

tendency to form non lamellar structures [78, 84]. As a result, some peptides can experience 

differences in potency when in an environment with PE lipids [19, 79, 85].  

Our studies indicate that the interaction between various peptides and the two model 

bilayer, dDPPG-POPG and dDPPG-E. coli polar lipid extract, are different. However, the degree 

to which the interactions are different and what aspects are different depend on the peptide. MSI-

594 can disrupt both types of the lipid bilayers, although not at the same rate, and the bilayer 

associated MSI-594 molecules have similar number and orientation. The peptide associates with 

the POPG containing bilayer much more quickly than with the E. coli lipid containing bilayer. 

This difference in interaction rate is important because one would want to ensure that a drug will 

be effective as quickly as possible and that time is influenced by the model system used.  

Ovispirin-1 associates with both types of lipid bilayers. The number and orientation of 

the bilayer-associated ovispirin-1 molecules on the two bilayer systems are also similar. 

However, ovispirin-1 disrupted both leaflets of the dDPPG-POPG system while it barely 

disrupted the outer leaflet of the dDPPG-E. coli polar extract system. It too has a much slower 
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interaction time with the dDPPG-E. coli polar lipid system. Magainin 2 molecules also 

associated with both types of the lipid bilayers. At a low concentration of 800 nM, magainin 2 

can disrupt the POPG leaflet, but cannot disrupt the E. coli polar extract leaflet. At 2.0 µM, 

magainin 2 can disrupt the outer leaflet for both POPG and E. coli polar lipid extract, but cannot 

disrupt the inner leaflet dDPPG for either bilayer. Melittin can disrupt both leaflets for both lipid 

bilayers but disrupted the dDPPG-E. coli extract bilayer slightly more. The difference in inner 

leaflet disruption suggests the possibility of a different orientation for the peptide on the two 

different systems. LL-37 did not disrupt either of the leaflets of the two types of the bilayers, 

even though more LL-37 associated with the dDPPG-POPG system over the dDPPG-E. coli 

polar extract system. 

All of the peptides in this study favored interacting with anionic PG lipids over 

zwitterionic ones. However, the spectra and interpreted interactions for the peptides on the two 

systems were not always similar. In fact, even the type of spectra that were the same between the 

two systems differed depending on the peptide. For example, both MSI-594 and ovispirin-1 

exhibited extremely fast interaction and disruption times on dDPPG-POPG but either interacted 

very slowly with or did not disrupt dDPPG-E. coli polar extract. The other peptides often 

interacted with POPG faster, but not to the same degree as those two peptides. Also, the inner 

leaflet was never disrupted for melittin, magainin 2 or LL-37 like it was for MSI-594 and 

ovispirin-1. Some potential reasons for this were discussed earlier, but one is that these peptides 

operate at least part of the time through toroidal pores while MSI-594 and ovispirin-1 operate 

through the carpet/detergent mode. The formation of toroidal pores does not destroy a bilayer, 

but it does induce disruption. The interaction time differences can possibly be described by a 

difference in peptide charge density. If one looks at the charge on all of the peptides, they do not 
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differ substantially (MSI-594 at +6, ovispirin-1 at +7, magainin 2 at +4, melittin at +5 and LL-37 

at +6). However, if we consider the charge to the number of residues, a larger difference is seen. 

The charge/residue for MSI-594 is 0.25/residue, ovispirin 1 is 0.39/residue, magainin 2 is 

0.17/residue, melittin is 0.19/residue and LL-37 is 0.16/residue. It can be seen that the two quick 

associating carpet/detergent peptides have relatively high charge/residue values. This is likely the 

cause of their quick association and it may also explain why they stay associated with the 

charged anionic headgroups rather than forming pores. Of the three remaining peptides, only 

magainin 2 seems to generally operate through a pore mechanism. Both melittin and LL-37 seem 

to depend on the charge of the environment to determine whether they insert or lay on the 

surface. Regardless, all of the peptides with any pore forming character have a lower 

charge/residue value. This lower charge density probably allows the peptide to more easily 

engage in hydrophobic interactions that are required for pore formation.  

  Through these studies, it has been seen that to more accurately examine peptide-

bacterial cell membrane interactions, including the electrostatic interactions and disruption 

mechanism, more complicated model lipid bilayers such as bilayers prepared using E. coli lipid 

extract are needed. These studies utilized SFG to monitor the bilayer integrity, peptide 

association and time dependent interaction of the peptide with the bilayer. This time dependent 

monitoring is a unique feature of the SFG method that allows us to study the kinetics of the 

interaction and proved to be vital in the determination that pure POPG is not sufficient to model 

cell membranes. This ability is especially valuable because the time to interact with a cell is an 

important quality to consider when designing new antibiotic molecules. Thus, in addition to 

showing that the proper model system is required to collect accurate interaction information, we 

displayed a SFG method that is able to easily show the interaction kinetic differences. Hopefully, 
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this information can be utilized in order to properly design environments in which to test future 

antibacterial therapies. 
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CHAPTER 4 

ANTIMICROBIAL PEPTIDE-OUTER CELL MEMBRANE 

STUDIES 

4.1 Introduction

Bacteria come in two classes, gram negative and gram positive. Gram positive bacteria 

have a plasma cell membrane and a cell wall consisting of a thick peptidoglycan layer which is 

composed of a repeating disaccharide, N-acetylmuramic acid-(β1-4)-N-acetylglucosamine, and 

other accessory proteins [1]. Gram negative bacteria, however, have a much thinner 

peptidoglycan layer and an outer membrane in addition to its plasma membrane [2]. The outer 

membrane is asymmetric with the inner leaflet containing phospholipids and resembling the 

plasma membrane and the outer leaflet is composed of mainly lipopolysaccharide (LPS), also 

known as endotoxin, but also proteins such as porins and lipoproteins [3]. LPS has been shown 

to induce immune responses such as sepsis and septic shock [4-6]. As a result, there has been a 

great deal of research into investigating peptides and other molecules that may be used to 

neutralize LPS [7-12]. 

LPS, which can be smooth or rough, has three main parts: lipid A, the core 

oligosaccharide (inner and outer core), and the variable O-antigen chain [13]. Lipid A is the 

hydrophobic anchor and is covalently linked to the core oligosaccharide. Lipid A is also the most 



89 

 

conserved portion of LPS in many bacteria and is composed of five or six fatty acids linked to 

diglucosamine phosphate [14-17]. The most general lipid A structure is  bisphosphorylated β-(1--

6)-linked glucosamine disaccharide substituted with fatty acids ester-linked at positions 3 and 3’ 

and amide-linked at positions 2 and 2’ [18]. There are other variations, though [18, 19]. 

Covalently attached to 6’ of lipid A is the inner core of the core oligosaccharide which contains 

3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and heptose [20]. The inner core and lipid A 

contain anionic groups, such as Kdo and phosphates [21]. The outer core is attached to Hep from 

the inner core and is an oligosaccharide that commonly contains Gal, Glc, or similar derivatives 

[18, 22]. The O-antigen chain is a variable chain of oligosaccharides that depends on the 

serotype of the bacteria [14, 18, 21, 22]. It is only found in smooth type LPS and is thought to 

contribute to bacterial resistance [23-25]. Rough mutant type LPS contain just lipid A and the 

core oligosaccharide regions. Additionally, the rough mutant type LPS can be categorized Ra, 

Rc, or Re depending on exactly where it terminates in the core region [26].  

 There have been a wide range of topics involving LPS that have been studied. LPS 

membrane dynamics have been studied by many groups [26-30]. The interactions between 

several membrane active peptides and LPS have been studied. For example, the anti-endotoxin 

abilities of LL-37 and BMAP-27 have been investigated [12, 31-33]. The insertion of LL-37, 

SMAP-29, and D2A22 into lipid A monolayers has been studied using surface X-ray scattering 

[34]. Melittin was shown to have a decreased effectiveness against LPS, similar to adding 

cholesterol to phospholipids [35]. It was also shown by NMR to be helical at the C terminus, 

while the N terminus is in an extended conformation [36]. Through NMR, MSI-594 was found to 

uniquely bind LPS micelles in a helical hairpin conformation [37, 38]. Protegrin-1 was shown to 

interact with lipid A, DPPC, and DPPG monolayers using grazing incidence X-ray diffraction 
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and X-ray reflectivity [39]. The structure of the LALF protein in LPS was determined by NMR 

[40]. A study involving magainin 2 interacting with LPS and LPS mutants determined that 

bacteriocidal activity was dependent on the O-polysaccharide length, while hydrophobic chain 

disruption was dependent on the LPS negative charge [41].  

LPS’s contribution to antimicrobial resistance is thought to come from several factors. 

The core region is thought to be responsible for hydrophilic molecule resistance [42]. 

Additionally, the membrane can also prevent small hydrophobic molecules from entering [3, 43]. 

Divalent cations, like Ca2+ and Mg2+ have been shown to bridge the negatively charged groups in 

neighboring LPS molecules, allowing for a more ordered lipid structure and increased resistance 

to permeability [43-49]. One X-ray reflectivity study determined that the presence of Ca2+ ions 

causes the O-polysaccharide chains to collapse onto the core oligosaccharide region and 

speculated that this is part of the AMP resistance mechanism [50]. 

As we discussed in the previous chapters, sum frequency generation vibrational 

spectroscopy (SFG) is a surface sensitive spectroscopy that has been successfully used to study 

several different surface active peptides and proteins including tachyplesin I [51], alamethicin 

[52, 53], MSI-78 [54], magainin 2 [55], LL-37 [56], Pep-1 [57], and melittin [58]. In particular, 

our lab has previously shown that SFG combined with isotope labeling an α-helical peptide, 

ovispirin-1, can reveal information about the membrane orientation of the peptide and the local 

environment the labeled residue is in [59]. Ovispirin-1 is a cytotoxic and hemolytic α-helical 

peptide that is generally found to act through the carpet mechanism regardless of the lipid bilayer 

environment [59-62]. 
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In this study we investigated the interaction between different ovispririn-1 isotope labeled 

peptides and supported lipid bilayers with outer leaflets of phospholipids, Kdo2 lipid A and lipid 

A from Salmonella minnesota R595 using SFG. We want to understand the molecular 

interactions between ovispirin-1 and the outer membrane. 

 

Figure 4.1: Phospholipids used in this study: (a) DPPG (b) DPPE (c) dDPPG (d) dDPPE 
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Figure 4.2: Outer cell membrane lipids used in this study: (a) Kdo2-Lipid A (b) Lipid A 

from Salmonella minnesota R595 [63, 64] 

 

Figure 4.3: Helical wheel diagram of ovispirin-1. Hydrophilic residues are blue, 

hydrophobic residues are yellow. I7 is in the hydrophobic region, G8 is in the hydrophilic 

region. [61] 
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4.2 Experimental  

4.2.1 Materials 

Isotope labeled ovispirin-1 samples (unlabeled sequence H2N-KNLRRIIRKIIHIIK 

KYGCOOH) were synthesized by Peptide 2.0, Inc. (Chantilly, VA). The 12C=O of I7 was 

isotope labeled to 13C=O. R8 and H12 were mutated into 13C=O isotope labeled G8 and G18. 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dipalmitoyl-d62-sn-glycero-3-

phosphoethanolamine (dDPPE),  1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(DPPG), 1,2-dipalmitoyl-d62-sn-glycero-3-[phospho-rac-(1-glycerol)] (dDPPG), Di[3-deoxy-D-

manno-octulosonyl]-lipid A (Kdo2-Lipid A), and Lipid A Detoxified (Salmonella minnesota 

R595) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). 

4.2.2 Lipid Bilayers 

Surface supported lipid bilayers were deposited on right angle CaF2 prisms via the 

Langmuir-Blodgett and Langmuir-Schaefer (LB/LS) methods for the proximal and distal leaflets, 

respectively. The bilayer is formed and submerged at the water-prism interface in a 1.6 mL 

reservoir. Appropriate volumes of 0.5 mg/ml ovispirin-1 were injected into the reservoir to reach 

the desired concentration. A magnetic micro stirring bar at 100 rpm was used to ensure that the 

concentration was homogeneous throughout the subphase. All water used for sample preparation 

and during the experiment was filtered through a Millipore system (EMD Millipore Corporation, 

Billerica, MA).  
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4.2.3 SFG 

Details on SFG theory, our instrument set up, and data analysis have been published 

previously and will not be repeated here. SFG was generally explained in Chapter 1 [65-72]. 

During the experiment, a 532 nm visible beam and a frequency tunable IR beam (1300-4300   

cm-1) are overlapped spatially and temporally on the bottom of the right angle CaF2 prism which 

is supporting the lipid bilayer. The experiments were carried out at room temperature (~ 20 °C). 

At this temperature, the lipids used are in the gel phase.  

SFG spectra were taken in the 2000-2300 cm-1 range to assess the deuterated inner leaflet 

and in the 2700-4000 cm-1 range to assess the hydrogenated outer leaflet before and after peptide 

addition to the lipid bilayer subphase. SFG spectra were collected in the amide I frequency range 

(1500-1800 cm-1) in the ppp (SFG, visible, IR) and ssp polarizations to help assess the peptide 

interaction with the bilayer. The optical set up was purged with nitrogen during amide I signal 

collection to reduce the dips in the spectrum resulting from a loss in IR intensity due to water 

vapor absorbing IR along the optical pathway. 

4.3 Results and Discussion 

4.3.1 dDPPG-DPPG and dDPPG-Kdo2 lipid A  

SFG spectra were collected from the supported bilayer of dDPPG-Kdo2 Lipid A, 

intended to mimic the outer membrane of the bacterial cell and compared to those detected at a 

dDPPG-DPPG bilayer, which is commonly used as a model for bacterial cell membrane/inner 

membrane. To our knowledge, nobody has made supported bilayers with an outer lipid A leaflet 

so it was important to ensure that the bilayer would be structurally sound. Figure 4.4 shows that 

SFG spectra detected in both CD and CH stretching frequency regions are similar for dDPPG-
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DPPG and dDPPG- lipid A bilayers, showing that both leaflets in the two bilayers are similar. 

Since it is well known that dDPPG-DPPG is a well ordered lipid bilayer, we therefore believe 

that the dDPPG-lipid A bilayer was well prepared and of good quality.  

It has been shown previously that ovispirin-1 and the isotope labeled mutants do interact 

with DPPG bilayers [Ding, B.; Wang, Z.; Ho, J.; Laaser, J.E.; Zanni, M.T.; Chen, Z. Unique 

Site-specific Structural Information of a Biomolecule at Model Membrane Interface by 

Incorporating Isotope-labeled Sum Frequency Generation Probes, to be published].  Ovispirin-1 

G18 is isotope labeled in a disordered area of the peptide and was used in that study. SFG spectra 

were collected from the two bilayers after addition of ovispirin-1 G18 to the bilayer subphase to 

reach a concentration of 50 µg/ml. Both C-H region spectra collected after the peptide addition 

have a negative peak at 3300 cm-1 which is more intense in the Kdo2 Lipid A case than for 

DPPG (Figure 4.5). This 3300 cm-1 peak is from the N-H stretching mode and its presence and 

intensity are likely an indicator of the relative amount of peptide associated to the bilayer. The 

higher intensity peak shows that there could be more peptide associating at the dDPPG-Kdo2 

lipid bilayer compared to the dDPPG-DPPG bilayer, which is not what we initially expected. The 

broad peak at approximately 3200 cm-1 is attributed to water and its decrease is indicative that 

the peptide has displaced water at the bilayer surface. The peak at 2880 cm-1 (CH3 symmetric 

stretch) is similar before and after peptide addition, and shows that the peptide did not destroy 

the bilayer. Therefore for both lipid bilayers, ovispirin-1 molecules are associated with the 

bilayers, but do not disrupt the bilayer. 



96 

 

 

Figure 4.4: SFG spectra collected from the lipid bilayers before the addition of peptide to 

the subphase: (a) CD range spectra for inner leaflet of dDPPG-DPPG, dDPPG-Kdo2 lipid 

A, and dDPPE:dDPPG (4:1)-Lipid A from Salmonella minnesota R595 (b) CH range 

spectra for the outer leaflet of dDPPG-DPPG, dDPPG-Kdo2 lipid A, and dDPPE:dDPPG 

(4:1)- Lipid A from Salmonella minnesota R595. 

 

Figure 4.5: SFG C-H and O-H stretching signals detected before (black) and after (red) the 

addition of ovispirin-1 to the subphase of the (a) dDPPG-DPPG bilayer (b) dDPPG-Kdo2 

Lipid A bilayer. 

 

SFG spectra in the amide I range were also collected to study the peptide structure while 

interacting with the two bilayer systems. SFG signals centered between 1650 and 1660 cm-1 were 

detected, confirming that ovispirin-1 peptides were associated with both bilayers and have α-

helical structure. In Figure 4.6, we can see that the amide I peak is considerably higher on the 

bilayer with a Kdo2 outer leaflet compared to the DPPG one. Figure 4.6 shows that the ppp/ssp 
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signal ratio for ovispirin-1 associated with the two lipid bilayers are similar, showing that the 

associated ovispirin-1 peptide molecules adopt a similar orientation on two bilayers. Therefore, 

the higher intensity suggests that there are more peptides on the surface of the Kdo2 containing 

bilayer. Results from the C-H, O-H and amide I regions, when considered together, confirm that 

the ovispririn-1 interacts with the model outer membrane, Kdo2 Lipid A, and that there is more 

interaction with that bilayer opposed to the dDPPG-DPPG bilayer.  Because this is not what we 

expected, we decided to do further experiments with isotope labeled ovispirin-1 to gain more 

orientation information to possibly explain this behavior. 

 

Figure 4.6: SFG spectra collected in the amide I region from ovispirin-1 associated with (a) 

dDPPG-DPPG bilayer (b) dDPPG-Kdo2 Lipid A bilayer  

 

4.3.2 dDPPE:dDPPG (3:2)-Lipid A from Salmonella minnesota R595  

We also used lipid A from Salmonella minnesota R595 as a model for outer lipid 

membranes. This lipid A is a somewhat different from the previously used Kdo2 lipid A in that it 

does not have the Kdo groups, only has five hydrocarbon tails, and only has one negative charge 

(vs. the four on Kdo2 lipid A).  Because the charge density per acyl chain is much smaller than 

for the previous system, we used a mix of DPPE and DPPG to achieve a charge of -0.2/chain so 
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as to match that of lipid A from Salmonella minnesota and thus avoid interaction differences due 

to lipid charge effects. Therefore, we compared the interactions between ovispirin-1 G18 and 

dDPPE:dDPPG (3:2)-DPPE:DPPG(3:2) bilayers as well as dDPPE:dDPPG (3:2)-Lipid A (from 

Salmonella minnesota R595) bilayers. These two bilayers have the same overall charge.  

SFG spectra were collected from both the lipid bilayer systems before and after the 

addition of 50 µg/ml ovispirin-1 G18 to the subphase. It can be seen in Figure 4.7 that the SFG 

C-H stretching signals are similar before and after the addition of ovispirin-1 G18 for both the 

mixed DPPE:DPPG and lipid A from Salmonella outer leaflet systems. This indicates that the 

bilayer, in both cases, is not being disrupted. However, the large water signals in the 3100-3200 

cm-1 and 3400 cm-1 ranges do decrease after peptide addition, indicating that there is peptide 

association. Unlike the previous case, we do not see a peak at 3300 cm-1 (N-H stretch).  

 

Figure 4.7: SFG spectra collected in the C-H and O-H stretching frequency region before 

(black) and after (ref) addition of ovispirin-1 G18 to the subphase (50 µg/ml) from the 

dDPPE:dDPPG (3:2)-DPPE:DPPG(3:2) bilayer (left) and the dDPPE:dDPPG (3:2)-Lipid A 

from Salmonella minnesota R595 bilayer (right). 

 

SFG spectra were also detected from ovispirin-1 associated with the two lipid bilayer 

systems (Figure 4.8). It can be seen that the signals are centered between 1500 and 1660 cm-1, 
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indicating the formation of α-helical structure. The SFG amide I peak intensities and ppp/ssp 

intensity ratios for ovispirin-1 associated with two lipid systems are similar. This can indicate 

that there is a comparable amount of peptide at the surface of both of the lipid bilayers with a 

similar orientation. The peak at approximately 1715 cm-1 in the amide I spectrum for lipid A 

from Salmonella minnesota is from the CO bond in the lipid headgroups, and can be ignored for 

this study. 

 

Figure 4.8: SFG signal detected in the amide I frequency region from ovispirin-1 associated 

with a dDPPE:dDPPG (3:2)-DPPE:DPPG(3:2) bilayer (left) and a dDPPE:dDPPG (3:2)-

Lipid A from Salmonella minnesota R595 bilayer (right). 

 

We successfully matched the charge density for lipid A from Salmonella minnesota with 

a mixture of DPPE:DPPG (3:2), and it was shown that the amide I region 1655 cm-1 signal as 

well as the outer leaflet C-H region spectra are relatively similar for the two systems at this 

concentration. Because of this, we think that the association we see is largely electrostatic.  

Additionally, we performed SFG experiments to study the interactions between ovispirin-

1 G18 with a dDPPE:dDPPG (4:1)-DPPE:DPPG (4:1) bilayer and a dDPPE:dDPPG (4:1)-lipid 

A bilayer. The SFG signal collected from the dDPPE:dDPPG (4:1)-lipid A bilayer in both the 
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CD and CH stretching frequency regions are similar to those of the dDPPG-DPPG bilayer, 

showing that the a dDPPE:dDPPG (4:1)-lipid A bilayer are ordered with quality (Figure 4.4). 

The SFG amide I signal at 1655 cm-1 (again indication of α-helical structure) was higher for the 

peptide on the lipid A containing bilayer versus on the DPPE:DPPG (4:1) bilayer (Figure 4.9). In 

this case, the charge for the PE:PG mixed system was -0.1/chain which is half of that for the 3:2 

ratio and for lipid A from Salmonella minnesota R595. Based on this evidence, we felt the 

argument of the electrostatic interaction dominating (as also proposed from the study discussed 

above) in the peptide-lipid bilayer interaction is logical.  

 

Figure 4.9: SFG signal detected in the amide I frequency region from ovispirin-1 associated 

with the dDPPE:dDPPG (4:1)-DPPE:DPPG(4:1) bilayer (left) and the dDPPE:dDPPG 

(4:1)-Lipid A from Salmonella minnesota R595 bilayer (right). 

 

This also agrees with literature studies on interactions between lipid A and various 

peptides. Neville and coworkers [39] showed with that for monolayers of DPPC, DPPG and lipid 

A, protegrin-1 disrupted the DPPG monolayer at 20 mN m-1 the most, and inserted more into 

lipid A than into DPPC. When they increased the surface pressure to 30 mN m-1, the peptide 

inserted less than at 20 mN m-1 into both DPPC and DPPG. They reported that the peptide 

interacted mainly with the head groups and that the anionic lipids had an extra adsorbed layer of 
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peptide in addition to that inserted into the monolayer, indicating the importance of 

electrostatics. Our above results showed increased peptide association at bilayers that are more 

negatively charged, which is supported by their results. We did not see a significant increase in 

leaflet disorder with DPPG compared to lipid A, but that could be because our surface pressure is 

closer to the 30 mN m-1 which they showed was able to decrease the amount of inserted peptide 

in the monolayers. Another study by Neville and coworkers [34] used lipid A monolayers and 

showed that as surface pressure is increased the ability for peptide to insert decreases and that 

peptides might rotate the lipid A molecules so that they can insert into the head group region, but 

did not cause extensive disorder to the monolayer. It is possible that with gel phase lipids that 

there could be head group interaction or insertion with little acyl tail disruption, but we would 

not be able to detect this. The CH3 signal we observed would be the same before and after, which 

similar to their results [34]. However, another study shows that protegrin-1 interacts with lipid A 

monolayers similarly to with DPPG at a low pressure of 20 mN m-1, but is able to disrupt a lipid 

A monolayer at 35 mN m-1 while the DPPG monolayer is not disrupted [73]. This study used the 

same concentration that Neville et al. [39] used, but they used a higher pressure with their lipid A 

(20 vs. 35 mN m-1) and similar ones for DPPG. This suggests that maybe lipid A does not 

respond the same way as DPPG at higher pressures. Another study showed that LL-37’s 

response to DPPG and lipid A at 30 mN m-1 were similar while the insertion/disruption in DPPC 

was minimal [74]. These peptides obviously rely on electrostatics for association and it appears 

as though lipid A is often very similar to DPPG in behavior, but the behavior depends on the 

peptide. Therefore, we think it is reasonable that we see similar response from DPPG and lipid A 

leaflets in our experiments, given that the charge of the leaflets are similar. 

Peptide Bilayer Polarization Peak 

center 

Amplitude Peakwidth 𝜒𝑒𝑓𝑓  𝜒𝑧𝑧𝑧

𝜒𝑥𝑥𝑧

 



102 

 

G18 

(50µg/ml) 

dDPPG-DPPG ppp 1661 (0.3) 1834.3 (34) 15.6 (0.3) 117.6 1.80 

  ssp 1659 (0.4) 1136.4 (24) 14.6 (0.4) 77.8 -- 

 dDPPG-Kdo2 

Lipid A 

ppp 1660 (0.5) 3265.5 (86) 16.7 (0.5) 195.5 1.85 

  ssp 1659 (0.5) 1646.3 (57) 13.1 (0.6) 125.7 -- 

 dPE:dPG(3:2)-

PE:PG(3:2) 

ppp 1661 (0.5) 1063.2 (29) 17.1 (0.5) 62.2 2.16 

  ssp 1659 (0.7) 588.2 (22) 17.2 (0.7) 34.2 -- 

 dPE:dPG(3:2)-

Lipid A from 

S. minnesota 

ppp 1660 (0.6) 912.2 (30) 16.1 (0.6) 56.7 2.38 

  ssp 1656 (0.6) 389.0 (15) 13.8 (0.7) 28.2 -- 

I7  

(50 µg/ml) 

dDPPG-Kdo2 

Lipid A 

ppp 1618 (2.4) 

 

69.3 (35) 6.2 (3.7) 

 
-- -- 

  ssp 1620 (2.2) 

 

36.3 (18) 

 

5.2 (3.2) 

 
-- -- 

  ppp 1660 (0.5) 

 

2696.0 (57) 

 

21.3 (0.5) 

 

126.6 1.54 

  ssp 1657 (0.4) 

 

1446.4 (27) 

 

17.6 (0.4) 

 

82.2 -- 

G8  

(50 µg/ml) 

dDPPG-Kdo2 

Lipid A 

ppp 1610 (4.2) 

 

78.4 (71) 

 

11.1 (9.5) 

 

-- -- 

  ssp -- -- -- -- -- 

  ppp 1662 (0.6) 

 

1812.6 (50) 

 

18.3 (0.6) 

 

99.1 1.67 

  ssp 1660 (0.7) 

 

873.2 (106) 

 

14.7 (0.6) 

 

59.4 -- 

I7  

(3 µg/ml) 

dDPPG-Kdo2 

Lipid A 

ppp 1618 (2.7) 

 

85.1 (49) 

 

8.0 (5.0) 

 

-- -- 

  ssp 1620 (2.3) 

 

27.2 (14) 

 

3.4 (2.3) 

 

-- -- 

  Ppp 1661 (0.5) 

 

2602.6 (61) 

 

19.5 (0.5) 

 

-- -- 

  ssp 1660 (0.4) 

 

1655 (36) 

 

18.0 (0.5) 

 

-- -- 

G8  

(3 µg/ml) 

dDPPG-Kdo2 

Lipid A 

ppp 1606 (2.7) 

 

50.8 (26) 

 

6.4 (4.1) 

 

--- -- 

  ssp -- -- -- -- -- 

  Ppp 1662 (0.5) 

 

1926.2 

(50) 

 

18.2 (0.5) 

 

105.8 1.72 

  ssp 1660 (0.4) 

 

963.5 (23) 

 

15.7 (0.5) 

 

61.4 -- 

Table 4.1: Fitting parameters of the SFG amide I spectra for ovispirin-1 isotope labeled 

peptides associated with dDPPG-DPPG, dDPPG-Kdo2 Lipid A, dDPPE:dDPPG (3:1)-

DPPE:DPPG(3:1), dDPPE:dDPPG (3:1)-Lipid A from Salmonella minnesota R595. Fitting 

error is in parenthesis.  
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4.3.3 Isotope Labeled Peptide Experiments 

4.3.3.1 dDPPG-Kdo2 Lipid A 

As stated previously, the results we observed showed that more ovispirin-1 G18 

associated on dDPPG-Kdo2 Lipid A bilayers compared to dDPPG-DPPG. Kdo2 Lipid A has a 

different structure compared to DPPG but the charge per acyl chain is similar. Kdo2 Lipid A 

contains the lipid A structure of E. coli and two 3-deoxy-a-D-mannooctulosonic acid (Kdo) 

groups. The lipid A is composed of a β-glucosamine-(1-6)-glucosamine-1-phosphate base 

[Aldrich] with four fatty acid chains attached through either ester or amide bonds. The base also 

contains two phosphoryl groups, carrying a negative charge each. The Kdo groups, which are 

part of a hydrophilic inner core, are free to interact with the peptide in solution and are one of the 

main differences between this lipid A and DPPG [14, 18].  

As seen in Figure 4.6, the amide I intensity detected from ovispirin-1 G18 was higher on 

Kdo2 lipid A, which was unexpected because of the presence of the Kdo2 groups. To explore the 

possible reason for this, we used I7 and G8 isotope labeled ovispirin-1. I7 is in the hydrophobic 

region of the peptide and G8 is in the hydrophilic region. It has been shown previously [Ding, B.; 

Wang, Z.; Ho, J.; Laaser, J.E.; Zanni, M.T.; Chen, Z. Unique Site-specific Structural Information 

of a Biomolecule at Model Membrane Interface by Incorporating Isotope-labeled Sum 

Frequency Generation Probes, to be published] that the peak center and peak width of the isotope 

labeled amide 13C=O stretching can be used to determine the local environments of the labeled 

units and the relative environment that a peptide is in. It was shown that ovispirin-1 I7 has a peak 

center: 1618 ± 2 cm-1 and peak width: 8 ± 3 cm-1 on DPPG. Similarly, the observed peak center 

and peak width for ovispirin-1 G8 were 1610 ± 2 cm-1 and 15 ± 5 cm-1, respectively. Figure 4.10 



104 

 

shows the SFG amide I spectra collected from ovisipirin-1 I7 and ovispirin-1 G8 associated with 

the dDPPG-Kdo2 lipid A bilayer. The spectral fitting information is in Table 4.1 and shows the 

fitted peak center and peak width comparison in DPPG and Kdo2 lipid A. It is clear from these 

results that the peptide is in the same environment as in DPPG, and that the difference in signal 

intensity is not due to the peptides being interfered with or being caught in the Kdo2 groups.  

Experiments were also done at 3 µg/ml and while the isotope labeled peaks were 

sometimes too small to be  well fitted, the 1660 cm-1 peaks were well resolved. Figure 4.11 

shows the 3 µg/ml amide I region. The I7 peak fit well and was determined to be similar to the 

DPPG case, so it is still in a hydrophobic environment. None of the G8 spectra were consistent at 

this concentration. This very low signal intensity could be due to the lower concentration, or it 

could be due to the peptide not being in a consistent environment. If the peptide had moved to a 

hydrophobic environment, we would expect its peak center to shift closer to 1618 cm-1 and its 

peak width to decrease (closer to 8 cm-1). The peak center had a tendency to shift to an even 

lower frequency than 1608 cm-1 and the peak width was often very small and in the range of the 

hydrophobic I7 peak width. However, since both values did not shift in the expected way and the 

I7 residue seems to still be in the same environment, we are not convinced that the G8 residue 

definitively resides  in another environment unless further studies are carried out.  
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Figure 4.10: (a) Amide I region, dDPPG-Kdo2 Lipid A, 50 µg/ml ovispirin-1 I7 (b) Amide I 

region, dDPPG-Kdo2 Lipid A, 50 µg/ml ovispirin-1 G8 

 

 I7 peak center (cm-1) I7 peak width (cm-1) G8 peak center (cm-1) G8 peak width (cm-1) 

DPPG (10 µg/ml)* 1618 ± 2 8 ± 3 1610 ± 2 15 ± 5 

Kdo2 lipid A  

(50 µg/ml) 

1618 6.24 1609 11 

Kdo2 lipid A  

(3 µg/ml) 

1618 9 -- -- 

Table 4.2: Peak width and peak centers for isotope labeled ovispirin-1 residues in DPPG 

and Kdo2 lipid A. *DPPG values were taken from Ding, B.; Wang, Z.; Ho, J.; Laaser, J.E.; 

Zanni, M.T.; Chen, Z. Unique Site-specific Structural Information of a Biomolecule at 

Model Membrane Interface by Incorporating Isotope-labeled Sum Frequency Generation 

Probes, to be published. 
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Figure 4.11: (a) 3 µg/ml ovispirin-1 I7 on dDPPG-Kdo2 lipid A (b) 3 µg/ml ovispririn-1 G8 

on dDPPG-Kdo2 lipid A 

 

Ovispirin-1 is well known to be a hemolytic and cytotoxic as well as possessing 

antimicrobial activity [60, 75]. Its MIC for many bacteria is well below the concentration used in 

this study and several are below 10 µg/ml. Cytotoxicity starts at approximately 25 µg/ml, 

depending on the cell type [60, 75]. Several studies mentioned earlier, using lipid A monolayers 

and a variety of peptides including LL-37 and protegrin-1, did see disruption in lipid A 

monolayers and DPPG at surface pressures similar to ours [39, 73, 74]. Because of these results 

in literature, we expected to see some activity in ovispirin-1’s MIC range. Many of the peptides 

studied, such as LL-37, are known to start in carpet mode then insert into the bilayer depending 

on the concentration and lipid bilayer [56, 76, 77]. However, ovispirin-1 is thought to act through 

the carpet mechanism and lies parallel to the bilayer in the lipid head groups [61, 62]. This 

difference could be why we don’t see substantial disruption of gel phase lipid bilayers by 

ovispirin-1. Strong interactions with the head groups, to the point where the acyl chains become 

disordered, may be required and it may be difficult to achieve this when interacting with well-

ordered gel phase lipids.  
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Despite this fact, the peptide association at the bilayer should not be as affected by well-

ordered acyl tails since association relies heavily on electrostatic effects. We did see that, in 

general, the amount of ovispririn-1 that associated at the bilayers of dDPPE:dDPPG-

DPPE:DPPG (4:1) compared to dDPPG:dDPPE (4:1)-Lipid A from Salmonella minnesota and 

dDPPG-DPPG compared to dDPPG-Kdo2 were likely similar. The compared bilayers had very 

similar charge densities, which should have allowed any differences to be attributed to acyl 

chain/hydrophobic effects or to the different head groups on lipid A. However, we saw very 

similar results. Many studies concluded that the key to lipid A’s resistance to permeability is due 

to the well-ordered and tightly packed acyl chains and head group [39, 45, 47, 48]. However, 

there are groups that attribute the resistance to the O-antigen chain or other parts of the 

polysaccharide core [23-25]. It is hard to say based on our results which of these cases are more 

likely since we saw no membrane disruption. It is possible that the mode of action and structure 

of the particular peptide determines which defense is more effective, and that is why there is a 

debate on which feature is more responsible. 

4.4 Conclusions 

In this study, we successfully showed that we can make supported lipid bilayer of gel 

phase inner leaflet and a gel phase lipid A outer leaflet. This new model is very promising as one 

to model outer cell membranes that include tightly packed lipid A molecules. We saw, through 

SFG experiments, that ovispirin-1 likely interacted through electrostatics on both Kdo2 lipid A 

and lipid A from Salmonella minnesota containing bilayers. This was demonstrated by the 

similar amide I peptide spectra intensities and ppp/ssp ratios on the phospholipid and lipid A 

outer leaflets when the net charges were approximately the same. When the charge is different, 

as we showed with the lipid A from Salmonella minnesota example, there is more peptide 
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association on the lipid A system because of a more anionic environment. We also used isotope 

labeling to investigate peptide orientation/environment and concluded that ovispirin-1 interaction 

with the Kdo2 lipid A containing bilayers was similar to the interaction with pure DPPG. By 

using the peak width and peak center results from the isotope labeled residue peak fitting, we 

determined that ovispirin-1 is probably in the same orientation in Kdo2 lipid A at 50 µg/ml as it 

is in DPPG at 10 µg/ml. Also, the data suggests that ovispirin-1 is still associated in this same 

orientation at 3 µg/ml on Kdo2 lipid A. This agrees with previous unpublished data that 

ovispirin-1 lies on the surface at all concentrations.  

Because it is difficult to determine if lipid A is able to deter peptide pore formation when 

we used a peptide that lies down, it would be interesting to study a peptide that is known to insert 

into the bilayer and see the results on lipid A vs. DPPG containing membranes. Also, once a 

peptide that causes disruption/destruction is found, it would be interesting to add Ca2+ ions to see 

if SFG can determine if there are any differences in peptide-bilayer interaction since it is thought 

that certain ions can help make the lipid A layer more resistant to permeabilization [44, 46, 47]. 

Also, the lipid A/LPS leaflet could be varied to see the difference in peptide-lipid interaction 

with longer vs. shorter O-antigen chains. Additionally, it would be interesting to see if those 

interactions are affected by both a difference in O-antigen chains and in lipid A packing, or if the 

peptide induced disruption is generally only affected by one of the structural features. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

 

Cell membranes are complex structures that serve as a barrier between the inner contents 

of a cell and the outside environment. The composition of these complex structures varies 

depending on the cell type and the organism. For example, the outer leaflet of mammalian 

membranes is largely composed of zwitterionic PC phospholipids, sphingomyelin and 

cholesterol, but also contains other lipids and membrane proteins. In contrast, the outer plasma 

membrane leaflet of bacterial membranes is largely composed of zwitterionic PE lipids and a 

smaller amount of anionic PG lipids and cardiolipin. This is important information to keep in 

mind when studying AMPs. AMPs are a potential alternative to traditional antibiotics and are 

attractive because they are generally thought to interact with and disrupt lipids in the cell 

membrane, rather than other constituents on cell membranes or inside the cell. The cell 

membrane is believed to be more difficult to alter, in an attempt to gain resistance, compared to 

other structures that are often targeted by antibiotics. If the goal is to further develop therapies 

based on these AMPs, it is important that we understand how and why AMPs work. Because cell 

membranes are so complicated, it is beneficial to study the AMPs interacting with cell membrane 

models to gain more information. In order to get the most accurate and relevant information, 
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models as close as possible to actual cell membranes should be used. Many past studies have 

used relatively simple model bilayers, and the goal of this thesis is to compare the peptide-

bilayer interactions of these simple model membranes to more complicated and hopefully more 

realistic models. 

In Chapter 2, we used SFG to investigate the interaction of an AMP, LL-37, with bilayers 

consisting of POPC and CHO. Cholesterol is thought to cause fluid bilayers, such as POPC, to be 

more gel-like which contributes to a higher resistance to disruption by membrane active peptides. 

In our experiments, we compared the interaction of LL-37 on POPC:CHO (1:1) to pure POPC 

and POPC:POPG:CHO (0.7:0.3:1) to POPC:POPG (7:3) bilayers. It was found that the addition 

of CHO to POPC bilayers attenuated LL-37’s ability to associate on the bilayer. We saw no 

peptide signal, but it was confirmed that some peptide molecules did interact with the cholesterol 

containing bilayer. After adding an anionic lipid, POPG, more LL-37 molecules were able to 

associate with the bilayer, which was indicated by a small peptide signal in the amide I range, 

but this amount was still much smaller than the amount associated on the POPC:POPG (7:3) 

bilayer. These results clearly show that the addition of cholesterol to zwitterionic POPC bilayers 

results in a reduced association of LL-37 peptides. The likely reason that cholesterol inhibits 

peptide association and disruption is because it causes the bilayer to become more rigid and well 

packed which makes it more difficult for interaction, possibly because it is more energetically 

difficult. A similar effect was seen in our lab when studying another AMP, alamethicin. 

Alamethicin had low peptide signal when associated with gel phase lipids and higher signal 

when associated with fluid phase lipids. 

In the future, it would be interesting to expand these studies. As was mentioned before, 

the composition of membranes depends on the cell type, and that also applies to the CHO 
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content. It would be interesting to conduct a study over a range of cholesterol percentages. 

Additionally, cholesterol is known to interact more favorably with sphingomyelin molecules. 

Together, cholesterol and sphingomyelin are believed by many to be the main components of 

“lipid rafts”. Including these structures has been shown in some studies to change the way that 

peptides interact with the bilayer compared to phospholipid-cholesterol bilayers. Therefore, it 

would be interesting to investigate this more complex system using SFG. 

In Chapter 3, we focused on more complex bacterial membranes instead of mammalian 

membranes. The most commonly used lipids for our peptide-bilayer studies for modeling 

bacterial membranes are POPG and POPC:POPG mixtures. Such bilayers have been widely used 

as cell membrane models in the literature. However, the overall surface charge of POPG is much 

higher than that found on an actual bacterial membrane and the lipid head group interactions 

between POPC and POPG are not the same as between the PE and PG head groups more 

commonly found in bacterial membranes. Therefore, we studied the differences in the 

interactions between several membranes active peptides with bilayers composed of dDPPG-

POPG and dDPPG-E. coli polar lipid extract. We presented an asymmetric bilayer setup to study 

the differences in interaction between the two model systems and the peptides MSI-594, 

ovispirin-1, magainin 2, melittin, and LL-37. It was found that the interaction results for each 

peptide were different and depended on the peptide’s charge/residue and interaction mechanism. 

In particular, we showed that the time dependent interaction of peptide and lipid bilayer is one of 

the large and most important differences between the two different lipid systems. 

Overall, it was shown that pure POPG is not a sufficient model of bacterial cell 

membranes for the purposes of investigating detailed peptide-lipid interaction mechanisms. For 

example, there were multiple cases where the pure POPG outer leaflet did not model the 
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interaction kinetics or the leaflet disruption in the same manner as the E. coli polar lipid extract. 

In order to determine the entire story of a peptide’s interaction in detail, we must take all of the 

data into consideration. If some of this data is not correct, either due to different electrostatic 

interactions, or possibly because of different lipid interactions (like the different interactions 

between PE with PG lipids compared to the interaction of PC with PG lipids), we might draw a 

different conclusion. Therefore, while it is suitable to use POPG as a simple model to test if a 

peptide will associate with anionic lipids, one should take into consideration the caveats related 

to using it as the only model. With this in mind, the use of a more complex bilayer, like the E. 

coli polar lipid extract, is likely a better option for modeling bacterial membranes. This is 

extremely important because the interaction kinetics should be of great interest when considering 

new antibiotic therapies. The work we presented will hopefully be generally interesting for 

designing better testing regimens for future antimicrobial compounds. 

Future work in this area for our group could entail comparing both POPG and E. coli 

polar lipid extracts to mixtures of PG/PE/cardiolipin lipids to determine if particular peptides 

interact more similarly with the POPG or the E. coli lipid mixture. These studies could determine 

whether it is possible to use a phospholipid mixture to model the bilayer and if so, one could then 

customize the composition depending on what bacteria they intended to model. 

Chapter 4 focused on studying model cell membranes that mimic bacterial outer cell 

membranes and their interaction with isotope labeled samples of the membrane active peptide, 

ovispirin-1. We established that we were able to make stable bilayers of dDPPG-Kdo2 Lipid A 

and dDPPE:dDPPG(3:1)-Lipid A from Salmonella minnesota R595. These bilayers are 

asymmetric like in the previous chapter and allow us to study the outer leaflet of interest. We 

then found that ovispirin-1 G18 disrupted the outer leaflet of both dDPPG-DPPG and dDPPG-
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Kdo2 Lipid A bilayers similarly. However, there were more peptides associated to the Kdo2 

Lipid A containing system. This difference was likely because of a slightly higher anionic charge 

on Kdo2 vs. DPPG. Using isotope labeled ovispirin-1 I7 and G8, we were able to determine that 

the isotope labeled residues were in generally the same environment on both dDPPG-DPPG and 

dDPPG-Kdo2 Lipid A bilayers. We studied ovispirin-1 G18 interacting with 

dDPPE:dDPPG(3:1)-DPPE:DPPG(3:1) and dDPPE:dDPPG (3:1)-Lipid A from Salmonella 

minnesota R595. It was observed that the amide I peptide signal was approximately the same on 

both bilayers when the charge of both outer leaflets was the same. When the charge of the lipid 

A leaflet was more negative than the phospholipid mixture, more peptides associated to the lipid 

A leaflet. This experiment suggests that the previous Kdo2 system’s higher peptide association is 

due to the charge difference. The similar peptide signals for lipid A from Salmonella minnesota 

R595 and the phospholipid mixture suggest that the peptides were similar in number on the 

bilayer surfaces and they had similar orientations. Overall, I showed that we can make 

asymmetric surface supported bilayers with lipid A molecules, and that isotope labeled ovispirin-

1 molecules, which lay down on the bilayer surface, interact similarly with lipid A containing 

bilayers and with the mixed phospholipid bilayers. To our knowledge, this is the first time that 

SFG has been used to study outer cell membrane models. 

Future studies in this area could include studying a peptide that is known to insert into the 

bilayer. Ovispirin-1 is generally thought to lay down on the bilayer and act through the carpet 

mechanism regardless of the bilayer composition. Therefore, if a peptide that acts through a pore 

forming mechanism is used, we might be able to discern if the more tightly packed lipid A acyl 

chains inhibit the peptide from causing disruption as easily as on phospholipid bilayers. Also, the 

lipid A molecules studied here contained only part of or none of the core oligosaccharide region 
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and no O-antigen chain. In future studies, it would be interesting to study more complete LPS 

molecules instead of just the lipid A portion, as there is still some discrepancy as to whether the 

tightly packed acyl chains or the O-antigen chain contribute to LPSs ability to protect gram 

negative bacteria from outside threats. 

In summary, we used SFG to study three different complex bilayer systems modeling 

mammalian membranes, bacterial plasma membranes, and bacterial outer cell membranes. The 

results obtained show that simple phospholipid models are not adequate for modeling 

mammalian membranes or bacterial membranes because some bilayer qualities that influence 

peptide interaction are not properly expressed. For example, the omission of cholesterol or other 

bilayer components can cause the peptide to interact differently with a bilayer, which in turn can 

cause one to draw incorrect conclusions about the toxicity of a drug in question. Also, using the 

incorrect lipids in a model bacterial membrane can cause similar problems as the simple model. 

POPG is highly anionic while actual membranes are less negatively charged  and also contain PE 

lipids that oppose positive curvature (though to be induced by toroidal pore forming AMPs). 

Additionally, some contain LPS which is thought to protect the cell from drugs crossing the outer 

membrane. Without considering these other components, it is unlikely that preliminary tests of 

future antimicrobial drugs will be accurate. Therefore, it is important to continue studying more 

complex lipid bilayers in order to develop the most useful models for studying bilayer and 

bilayer-molecule interactions. 

 

 

 


