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ABSTRACT 
 

The possible adverse effect of ambient air pollution on various birth outcomes 

(e.g., weight, length of gestation) is a global public health concern. However, 

understanding of prenatal exposure to air pollutants and the process of intrauterine 

growth is limited. This dissertation addressed research gaps in this area by evaluating 

maternal air pollution exposure and fetal growth using a novel methodological approach. 

Overall, the objective of this dissertation was to assess exposure to ozone (O3) and 

particulate matter less than 2.5 micrometers in aerodynamic diameter (PM2.5) during the 

first trimester and growth trajectories of four fetal anthropometric parameters [head 

circumference (HC), biparietal diameter (BPD), abdominal circumference (AC), and 

femur length (FL)], within a Mexico City cohort of pregnant women. First, a systematic 

review of the epidemiological literature on maternal exposures to air pollutants and fetal 

growth, as assessed with data from ultrasound examination of fetal anthropometric 

parameters, revealed scant and limited research exploring in utero assessment of fetal 

growth related to prenatal air pollution exposure. Secondly, uncertainty related to the use 

of repeated ultrasound measurements of fetal parameters performed by multiple clinicians 

(the inter-observer variability) was found to be minimal, with intraclass correlation 

coefficients (ICCs) ≥ 0.995. Lastly, we explored differences in fetal anthropometric 

growth trajectories, estimated with fractional polynomial mixed-effects prediction 

models, with increased maternal first trimester air pollution exposure, estimated by 
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spatial interpolation models of exposure assessment.  Increased maternal exposure to air 

pollution in the first trimester was negatively associated with the growth of fetal 

anthropometric parameters at various periods of gestation; point estimates of effect varied 

by air pollutant and fetal parameter. 

Reductions of fetal parameter growth trajectories associated with increased air 

pollution exposure lend support to the continued review and enforcement of existing air 

pollution standards, and efforts to reduce exposure to pollution, especially among 

vulnerable populations.
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CHAPTER I 

INTRODUCTION 
 

1.1 Intrauterine Growth Restriction 
Prevalence rates of intrauterine growth restriction (IUGR) widely differ across 

geographic populations, and often within national statistics, depending on the chosen 

definition of IUGR. Nonetheless, IUGR is the second leading cause of perinatal mortality 

and is estimated to occur in 5% of the general obstetric population ( Peleg et al.  1998). In 

developing countries, approximately 20 million babies are diagnosed as growth restricted 

infants (Imdad et al. 2011).  In some studies, excluding congenital anomalies, IUGR has 

been implicated as a causal factor in 50% of stillbirths (Figueras and Gardosi 2011). An 

estimated 72% of unexplained deaths have also been associated with fetal growth 

restriction (Mandruzzato et al. 2008).  

Statistics on fetal growth restriction are often nested in national and global rates 

of perinatal mortality and various adverse birth outcomes such as low birth weight, 

preterm and stillbirth. According to the World Health Organization (WHO), 2.6 million 

stillbirths occurred worldwide in 2009, a decrease of only 1.1% in comparison to the 3 

million reported in 1995. Just over 4% of these reported stillbirths could have been 

averted with the detection and management of fetal growth restriction (World Health 

Organization 2011).  The WHO analysis also highlighted that 98% of these occurrences 

happened in low and middle income countries. Similar statistics exist explaining the 
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contribution of IUGR to incidence of other adverse pregnancy outcomes such as 

premature delivery.  

In addition to contributing to neonatal death, morbidity risks may depend on the 

duration of growth restriction. Longer periods of slowed fetal growth in utero have been 

associated with increased perinatal morbidity (Illa et al. 2009). Recent reviews suggest 

that this same principle can be applied to the findings of a case control study that 

examined IUGR and cerebral palsy. Risk of cerebral palsy increased with growth 

restriction occurring closer to term but not with IUGR during early pregnancy (Figueras 

and Gardosi 2011). 

1.1.1 Distinction between Common Indicators of Fetal Growth Restriction in Population 

Studies  

 

Globally, the assessment of low birth weight (LBW), defined as weighing less 

than 2500 grams at birth, has become a widely accepted indicator of poor fetal health 

(Balcazar and Haas 1991; Kannan et al. 2006; Lee B.E. 2003; Kramer 1987).  Both 

preterm birth and IUGR are etiologies of LBW.  Preterm infants are those born before 37 

weeks of gestation and IUGR refers to any process that is capable of limiting intrinsic 

fetal growth potential in utero. Therefore it is important to note that being classified as 

IUGR is not the same as being preterm and vice versa (Balcazar and Haas 1991; Kannan 

et al. 2006; Gardosi et al. 2011; Haas et al. 1987; Semba and Bloem 2008).   

In clinical settings, IUGR is diagnosed with the use of the fetal biometry profile, 

that is, measurements of size and rate of growth for specific parameters: head 

circumference (HC),  abdominal circumference (AC), femur length (FL), and biparietal 
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diameter (BPD) (Carrera 2001), and is not commonly assessed in epidemiological 

studies. Distinctions should be made between these indicators of fetal growth when 

interpreting results of population studies. For example, in developing countries like 

Mexico, most cases of LBW infants are typically the result of growth restriction, rather 

than duration of gestation (preterm births) (Balcazar and Haas 1991; Kramer 1987; 

Semba and Bloem 2008; Carrera 2001).  

Similarly, previous epidemiological studies have classified an infant as having 

experienced IUGR based on observations made at birth. Infants have also been  identified 

as small for gestational age (SGA), defined as having a birth weight less than the 10th 

percentile based on sex and gestational age (World Health Organization 2008), which 

introduces a third common indicator of fetal growth that is often used synonymously with 

IUGR.  Based on this definition on fetal growth restriction, approximately 80-85% of 

diagnosed infants are actually constitutionally small, and 10-15% are pathologically 

small and intrauterine growth restricted (Saleem et al. 2011).  

In addition to distinguishing between growth indicators, understanding levels of 

each indicator is also of importance. Since the knowledge and understanding of LBW and 

small for gestational age (SGA) is more common in epidemiological studies than the 

clinical concept of IUGR, much of the focus of this dissertation will be placed on IUGR. 

Several methods have been suggested to classify types of IUGR on the basis of 

sonographic features.  These include examining trends in the curves of fetal parameters 

separately, as well as the use of fetal parameter ratios, (e.g., HC/AC ratio). In practice, 

IUGR is classified as proportionate (symmetrical) or disproportionate (asymmetrical) by 

calculating the ponderal index of Rohrer [(fetal weight / fetal length (crown-rump)3) x 
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100]. If the Rohrer Index (RI) is normal (≥ 2.20), IUGR is considered symmetrical; if it is 

abnormally low, IUGR is considered asymmetrical (Carrera, JM  2001). 

Although birth outcome literature is lacking for the Mexico City population, 

earlier studies examining fetal growth patterns in the Mexico City population found that 

in cases where growth restriction occurred, the type of growth restriction, proportionate 

or disproportionate, produced different birth outcomes. Results from an earlier Mexico 

City study reported that preterm and term infants diagnosed as having proportionate 

growth restriction exhibited 1.5 and 9.5 times the early neonatal mortality of preterm and 

term infants with disproportionate growth restriction, respectively (Balcazar and Haas 

1991).  Another analysis used birth and first 48 hours death records from 10,024 live born 

infants in Mexico City and 12,786 live born infants in Santa Cruz, Bolivia, to 

characterize early postnatal mortality rates by different types of IUGR and prematurity. 

The authors reported that proportionate growth restriction, according to the Rohrer’s 

Index, was found to carry a 1.4-2.01 elevation in risk of neonatal death, and 

disproportionate growth restriction carried a 2.9-5.7 elevated risk of neonatal death (Haas 

et al. 1987) . 

Knowing and understanding the health risks associated with being growth-

restricted is only possible once a working definition of growth-restriction has been 

established. A current limitation in epidemiological birth outcome literature is the 

inability to assess IUGR during gestation, resulting in the use of various indicators of the 

fetal growth process interchangeably, when clinically they differ to some degree. 

Classifying infants as intrauterine growth-restricted at birth may result in biased effect 

estimates as a result of misclassification for two major reasons. 1) Clinical literature 
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specifies that being growth-restricted and SGA are not synonymous. Intrauterine growth 

restriction is the assessment of actual changes in fetal parameter measurements collected 

during gestation, where SGA is a statistical concept that identifies overall growth 

restriction by comparing neonate birth measurements of weight to population percentiles 

of weight (Carrera, JM 2001; Kingdom and Baker 2000). Small for gestational  age has 

become a widely accepted proxy for the diagnosis of IUGR, mostly because previous 

studies were limited to the use of retrospective data, and therefore could only utilize 

national and population-specific growth curves to assess growth patterns (Semba and 

Bloem 2008);   2) The use of  birth weight as a proxy for fetal growth may not be the best 

endpoint since recent literature has shown that birth weight poorly reflects IUGR during 

the first two trimesters (Hemachandra et al. 2006).  The use of LBW as an endpoint for 

IUGR assessment ignores the possibility that injury to growth could occur during one 

time period, but the fetus could continue to grow and achieve population growth 

standards by birth (Woodruff et al. 2009; Hemachandra and Klebanoff 2006) This is also 

supported by an earlier clinical model that examined fetal growth occurring in early and 

late stages of pregnancy.  That model stated that early fetal growth is attributed to 

hyperplasia (cell proliferation), and later growth to hypertrophy (cell growth). The author 

then proposed that agents that damage the fetus during the first trimester may reduce the 

cell population, thereby causing a permanent hindrance to the growth potential, but that 

the damage caused later in gestation would reduce the cell size but the infant could 

potentially later catch-up to predicted growth (Winick, M  1974).  
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1.2 Air Pollution and Fetal Growth Restriction 

1.2.1 Criteria Air Pollutants  

Although there are several atmospheric toxicants that can negatively affect human 

health, the focus of this dissertation is on maternal exposures to air pollutants commonly 

studied in epidemiological assessments.  Atmospheric air pollution is a complex mixture 

of primary and secondary compounds in gaseous and solid physical states. The United 

States Environmental Protection Agency (US EPA) has identified six “criteria” pollutants 

of interest for environmental and human health research. These pollutants are particulate 

matter of two size fractions (less than 10 micrometers in aerodynamic diameter, PM10 and 

less than 2.5 micrometers, PM2.5), ozone (O3), nitrogen dioxide (NO2), carbon monoxide 

(CO), sulfur dioxide (SO2) and lead (Pb) (US EPA 2012) . The focus of this dissertation 

is on maternal exposures to PM2.5 and O3, as these are two major contributors of air 

pollution in Mexico City, Mexico that remain with annual concentrations that exceed the 

previously set health standards (National Institute of Ecology 2011). 

1.2.2 Particulate Matter 

The most visible form of air pollution, particulate matter (PM), can best be described as 

airborne particles of varying sizes in diameter. Particulate matter contributes to the 

atmospheric pollution by natural and anthropogenic sources of emission. The natural 

sources of particulate matter include dust, pollen, and ash, to name a few. However, the 

most harmful sources of particulate matter are a result of human activities (Girard 2010a). 

Anthropogenic sources of particulates include, but are not limited to coal-fired power 

plants, industrial processes, and transportation emissions. The emission source of PM and 

its atmospheric chemistry after emission determines the particle composition, which 
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ultimately is a measure of how harmful exposure to a specific type of PM may be. 

Depending on the source, particulates may consist of various classes of metals, oxides, 

and polycyclic hydrocarbons. Exposure to PM is also dependent on the size of the 

particles. Larger particles (diameters > 10 micrometers) do not travel as far and do not 

stay suspended in the atmosphere as long as medium-sized particles (diameters 1-10 

micrometers) and fine particles (diameters < 1 micrometer). These smaller particles not 

only stay in the air longer, but once ingested or inhaled they remain in the body longer 

also (Girard 2010a). In the general population PM exposures have been associated with 

respiratory, cardiovascular and cerebrovascular mortality (Anderson et al. 2012). 

However the focus of this dissertation is on fetal health outcomes, more specifically fetal 

growth restriction. According to a recent review, increases in particulate matter exposures 

in early pregnancy are associated with risk of being intrauterine growth restricted 

(according to the SGA definition of IUGR) (Glinianaia et al. 2004). 

1.2.3 Ozone 

 Existing in the stratosphere as a protectant from ultraviolet rays, ozone (O3) is a 

harmful, colorless, harsh smelling pollutant in the troposphere.  Ozone is a secondary 

aerosol formed as the result of chemical reactions between nitrogen oxides and volatile 

organic compounds. High temperatures on sunny days contribute to the production of 

unhealthy ozone levels (US EPA 2012) . Exposure may irritate the nasal passages and the 

eye among the general population, and low level exposures may exacerbate previous 

respiratory and cardiovascular diseases (Girard 2010b).  Specific to Mexico City, 

increased exposure to ozone was associated with increased mortality in the general 

population with higher increases among the elderly (O'Neill et al., 2004). Maternal 
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exposure to ozone has been associated with reduced birth rate and an increased risk of 

IUGR (Salam et al. 2005).  

1.2.4 Hypothesized biological mechanisms  

Although many of the biological mechanisms explaining the association between 

air pollution and birth outcomes are not completely understood, during gestation, 

physiological changes occur that may make the expecting woman more susceptible to air 

pollution exposures. First, compared to non-pregnant women, pregnant women 

experience an approximate 50% increase in their alveolar ventilation rate (Hackley et al. 

2007).   This could cause an increased uptake of inhaled pollutants, allowing for a 

potential increase in the amount of fine particulates that are inhaled. The PM2.5 contains a 

mixture of metals and harmful constituents that can be introduced into the blood stream 

(Hackley et al. 2007).  Another potential influence of maternal physiology on the possible 

link between air pollution and fetal health is the fact that 80% of women develop 

hemodilutional anemia during pregnancy (Hackley et al. 2007; www.Rxmed.com ). As a 

result of the anemia, the volume of blood increases, which means an increase in plasma, 

and a reduction in the concentration of red blood cells and hemoglobin. Since 

hemoglobin is the oxygen delivery system to the fetus, and it has a higher binding affinity 

to carbon monoxide than oxygen, combined with exposure to a pollutant such as carbon 

monoxide this poses a threat to the amount of oxygen delivered to the fetus, and poses a 

potential danger for fetal hypoxia (Kingdom and Baker 2000; Hackley et al. 2007; Shah 

and Balkhair 2011; Veras et al. 2008) . 

Recent reviews have highlighted potential biological mechanisms explaining air pollution 

and adverse fetal outcomes (Shah and Balkhair 2011; Veras et al. 2010).  Prenatal 
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exposure to NO2, SO2, and PM can lead to oxidative inflammation in the lungs and the 

placenta which leads to the systemic release of cytokines which can trigger preterm birth. 

Nitrogen dioxide has also been suspected to induce lipid peroxidation in the placenta, 

disrupting fetal development. Polycyclic aromatic hydrocarbons (PAHs) become harmful 

as a result of metabolic activation that converts the bulky compounds into electrophiles 

that react with DNA (Hecht, S 2008).  Polycyclic aromatic hydrocarbon exposure can 

lead to the formation of DNA adducts causing cell mutation or cellular death, and an 

increase in blood viscosity which reduces the amount of blood flow to the placenta and 

uterus (Shah and Balkhair 2011; Veras et al. 2010; Perera et al. 2005; Perera et al. 1998).  

Many of these hypothesized relationships have been explained in detail in a recent 

workshop report (Figure 1; duplicated from (Slama et al. 2008)). 

The patho-physiological mechanisms described in the literature have provided a 

foundation to properly identify and understand the mechanistic process responsible for 

the reported changes in fetal physiology at birth associated with air pollution.  However, 

evidence quantifying how fetal growth may be associated with exposure to specific 

pollutants during critical periods of gestation is needed to evaluate these hypothesized 

mechanisms.                                                                                           

1.3 Previous Assessment of Air Pollution and Birth Outcomes 

Previous epidemiological studies have reported associations between ambient and 

traffic related air pollution and birth outcomes, including LBW preterm delivery, SGA, 

and IUGR (Glinianaia et al. 2004; Perera et al. 2005; Perera Frederica P. 1998; Bell et al. 

2010; Parker et al. 2011; Ritz et al. 2007; Maisonet et al. 2004; Rich et al. 2009).  

Reviews of the literature have highlighted the heterogeneity between methodologies, 
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study populations, birth outcomes, and exposure periods of interest among research 

studies within the last decade (Glinianaia et al. 2004; Shah and Balkhair 2011; Maisonet 

et al. 2004). These differences could potentially explain the variation in reported 

associations between maternal exposure to air pollutants and reproductive outcomes. 

To briefly summarize by pollutant and exposure period, statistically significant 

associations have been determined to exist between third trimester 100 µg/m3 increments 

in total suspended particles (TSP), increases in first trimester interquartile range (IQR) 

TSP and term LBW (Maisonet et al. 2004). Increases in PM 10 exposure ≥ 40 µg/m3 and 

PM2.5 increases ≥ 37 µg/m3 in the first month of pregnancy have been significantly 

associated with SGA (Maisonet et al. 2004; Dejmek et al. 1999). Intrauterine growth 

restriction has also been associated with an increase in 10 ppb of NO2 during the first 

month of pregnancy (Shah and Balkhair 2011). Third trimester concentrations of O3 CO, 

SO2, and IUGR associations have also been reported in previous literature (Glinianaia et 

al. 2004; Shah and Balkhair 2011; Maisonet et al. 2004).  

Measurement metrics used in previous literature ranged from city-wide averages, 

nearest monitor, inverse distance weighting, and personal measures. The use of ambient 

air monitors compared to personal monitors is an issue that has been studied given 

potential for exposure misclassification (Shah and Balkhair 2011). In most cases, 

personal exposures are higher than outdoor exposures. However, depending on the 

pollutant and the sampling season, personal exposures may be significantly associated 

with ambient pollutant concentrations (Rojas-Bracho et al. 2000; Sarnat et al. 2005).  

Recent reviews have reported that few studies looking at reproductive outcomes chose to 

use direct measures of personal exposure to ambient air pollution (Glinianaia et al. 2004; 
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Shah and Balkhair 2011; Maisonet et al. 2004; Woodruff et al. 2009).  Perhaps this is 

attributed to the potential burden that may be added to the women’s condition by wearing 

the “light weight” backpack for a series of sampling days.  

1.4 Dissertation Overview 

1.4.1 Chapter Two: Clinical Assessments of IUGR for Epidemiological Studies 

Chapter two of this dissertation aims to address a current limitation in the previous 

literature that assessed maternal exposure to air pollutants and various birth outcomes. A 

report from a workshop held in 2007 to discuss methodological issues and the current 

status of epidemiological research pertaining to this topic agreed that a better 

understanding of the biological mechanisms explaining the reported associations between 

air pollution and adverse birth outcomes is needed. Currently the primary indicator of 

fetal health is birth weight and the authors of the review highlight the difficulty in 

distinguishing between reduced birth weight as a result of actual fetal growth restriction, 

preterm delivery, or a combination of both etiologies. (Woodruff et al., 2009).  The 

authors of the previous review identified a possible solution to this issue, which was first 

used by (Slama et al., 2006): ultrasound measurements of specific fetal parameters at 

birth. While this approach assists with confirmation that a neonate is growth restricted at 

birth, serial ultrasound measurements of fetal parameters should be used to accurately 

assess changes in growth patterns in utero, thereby accurately identifying growth 

restricted fetuses. To date, few studies have utilized fetal ultrasound data to analyze 

pregnancy outcomes associated with maternal exposure to air pollutants, and the 

literature that does exist also consists of varying methodological approaches. Therefore 

chapter two of the present dissertation aims to support the use of ultrasound 
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measurements as an alternative method for assessing fetal growth restriction in our study 

population by discussing the results of a literature review of epidemiological studies 

where ultrasound measurements were used to assess fetal health in response to air 

pollution exposures.   

 

1.4.2 Chapter Three: Interobserver Assessment of Ultrasound Measurements of Fetal 

Parameters 

The quality control/assurance of any methodology is a necessary assessment that 

adds to the understanding of method strengths and limitations.  While this dissertation 

proposes the use of serial ultrasound measurements in epidemiological studies of fetal 

growth because of the known strengths of this approach, discussed in detail in previous 

sections, uncertainty regarding the reliability of fetal anthropometric measurements 

captured by sonography remains a concern in both the clinical and epidemiological 

setting (Perni et al. 2004; Ritz et al. 2014).  A systematic review of the methodology used 

in studies whose purposes were to create fetal ultrasound reference charts found there to 

be substantial heterogeneity in fetal biometry methodologies, including the performance 

of quality assurance measures such as interobserver agreement assessments (Ioannou et 

al. 2012). Given that measurement error can be both systematic (e.g., related to clinician 

training, physical/mental state during exam) and random (e.g., biological variation in 

anthropometric parameters, mechanical variation in equipment), an assessment of 

measurement error reduces uncertainty pertaining to reliability of fetal biometry.  Chapter 

3 of this dissertation aims to quantitatively assess the reliability of the collected 

ultrasound data to be used in the subsequent dissertation analysis. 
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1.4.3 Chapter Four: First Trimester Exposure to Air Pollution and IUGR during Pregnancy  

The link between air pollution and birth outcomes has not been explored as it 

relates to the densely populated and heavily polluted Mexico City, Mexico (Smarr et al., 

2013).  Methodological studies (Woodruff et al., 2009) have proposed that the use of 

spatial and temporal models, proper adjustment for confounding, and the identification of 

‘critical windows of exposure’ may improve exposure assignments in birth outcome 

studies.  This idea lends support to the findings in (O'Neill et al., 2002) that suggest 

differences in methods used to estimate PM10 exposure in Mexico City may be important 

to consider when assessing related health effects. A more recent analysis (Brauer et al., 

2008) compared birth outcomes assessed using exposure metrics estimated by different 

methods. Specific to Mexico City, an analysis was conducted to explore the differences 

in odds of being born preterm associated with exposure to air pollutants evaluated by 

different exposure metrics in the ELEMENT cohort (Rivera-González 2012).  

Lastly, chapter five of this dissertation summarizes the overall hypothesis, 

objectives, and major findings of each research specific aim. Future directions and 

exploratory aims relevant to maternal exposure to air pollutants and fetal health are 

explained in this final section of the dissertation. 
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Figure I-1. Potential mechanisms explaining air pollution IUGR 
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CHAPTER II 

THE USE OF ULTRASOUND MEASUREMENTS IN 

ENVIRONMENTAL EPIDEMIOLOGICAL STUDIES OF AIR 

POLLUTION AND FETAL GROWTH 
  

 

2.1 Abstract 
Recently, several international research groups have suggested that studies about 

environmental contaminants and adverse pregnancy outcomes should be designed to 

elucidate potential underlying biological mechanisms.  The purpose of this review is to 

examine the epidemiological studies addressing maternal exposure to air pollutants and 

fetal growth during gestation as assessed by ultrasound measurements.  The six studies 

discussed in this review found that exposure to certain ambient air pollutants during 

pregnancy is negatively associated with the growth rates and average attained size of fetal 

parameters belonging to the growth profile.  Fetal parameters may respond to maternal air 

pollution exposures uniquely, and this response may vary by pollutant and timing of 

gestational exposure.  Current literature suggest that mean changes in head circumference 

(HC), abdominal circumference (AC), femur length (FL), and biparietal diameter (BPD) 

are negatively associated with early-pregnancy exposures to ambient and vehicle-related 

air pollution.  The use of more longitudinal studies, employing ultrasound measures to 
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assess fetal outcomes, may assist with the better understanding of mechanisms 

responsible for air pollution related pregnancy outcomes.  

2.2 Introduction   
Maternal exposures to environmental contaminants during pregnancy are a global 

public health concern. Previous literature has reviewed studies on the relationship 

between air pollutants and pregnancy outcomes including low birth weight, small for 

gestational age (SGA), and preterm birth. [1-4] These studies contribute to current 

understanding of the adverse effects of air pollution exposure during pregnancy.   

However, these studies commonly lack an assessment of how these exposures 

affect fetal growth over the course of the pregnancy, and whether certain times in 

gestation are particularly critical.  Fetal growth outcomes studied include weight and 

anthropometric measurements of abdominal circumference (AC) or head circumference 

(HC), collected at the time of birth. However, assessment of fetal health at birth does not 

fully capture the timing of changes to fetal growth and development during gestation. 

Birth weight is not an adequate single predictor of fetal health since birth weight varies 

by factors such as race and gender. [5-7] Also, low birth weight can result from both 

growth restriction and preterm birth, [8, 9] so determining if growth restriction, preterm 

birth or a combination played a role is difficult when weight and dimensions of the baby 

are assessed only at birth.  

2.3 Estimation of Maternal Exposure to Air Pollution during Pregnancy 
Air pollution is a heterogeneous mixture of particles and gases.   People can be 

exposed to air pollution inside their homes or other buildings (from indoor sources and/or 

infiltration of outdoor pollutants); in the workplace; outdoors; and commuting.  Effects of 
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air pollution exposure on respiratory and cardiovascular health, and more recently on 

birth outcomes, are well documented. [10-12*] Many studies obtain daily concentrations of 

air pollutants from outdoor monitors and match them to the dates of the pregnancy, 

creating overall pregnancy or trimester-specific exposure estimates.  Commonly 

measured outdoor pollutants include (ozone (O3), particulate matter less than 10 and 2.5 

micrometers in aerodynamic diameter (PM10 and PM2.5), carbon monoxide (CO), 

nitrogen dioxide (NO2), and sulfur dioxide (SO2)).  Other pollutants of concern include 

volatile organic compounds and specific components of particles (metals, organics).  As 

an alternative or supplement to pollutant concentrations from outdoor monitors, pollutant 

exposure during pregnancy can be estimated based on personal or indoor monitoring of 

the study participants. [13] Other studies evaluate ‘biomarkers’ of pollutant exposure, such 

as oxidative stress markers in urine or DNA adducts in blood.[14, 15]   

Mechanisms hypothesized for how air pollutant exposure may cause preterm birth 

or reduce fetal growth include oxidative stress, endocrine disruption, pulmonary and 

placental inflammation, blood viscosity and hemodynamic responses.[10, 16]  During 

gestation, physiological changes may make the expecting woman more susceptible to air 

pollution exposures.  Compared to a non-pregnant woman, pregnant women experience 

an approximate fifty percent increase in alveolar ventilation rate.[17]  This allows for 

increased uptake of inhaled pollutants, including fine particulates.  Some particulate 

matter constituents can enter the blood stream. Common gestational complications 

include development of hemodilutional anemia. This could result in decreased oxygen 

binding capacity. Since carbon monoxide (CO) is a common air pollutant, with higher 

binding affinity to hemoglobin than oxygen, an increase in CO exposures among 
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pregnant women could reduce the amount of oxygen delivered to the developing fetus. 

DNA damage and oxidative stress are other potential mechanisms. Polycyclic aromatic 

hydrocarbons (PAHs) are a class of compounds related to vehicle emissions that are 

known carcinogens and DNA damaging agents. Markers of PAH exposure (formation of 

PAH DNA-adducts in maternal and cord blood) have been studied in relation to adverse 

birth outcomes. [15, 18]  

2.4  Ultrasound Measures of Fetal Growth  

Previous epidemiology literature has relied on birth registry data to assess 

pregnancy outcomes associated with maternal exposure to air pollutants. [3, 4, 19] While 

this may be useful for evaluating birth weight and preterm birth, a late assessment of 

growth restriction could potentially introduce bias. Classifying infants as growth-

restricted at birth may result in biased effect estimates as a result of misclassification for 

two major reasons. 1) Clinical literature specifies that being growth-restricted and small 

for gestational age are not synonymous. [*20, 21]  2) Birth weight as a proxy for fetal 

growth may not be the best endpoint since recent literature has shown that birth weight 

poorly reflects IUGR during the first two trimesters and ignores the possibility that 

growth impairment affecting long-term health could occur during one time period, but the 

fetus could continue to grow and achieve population growth standards by birth.[5, 22] 

Recent reviews suggest that reducing the time between exposure and outcome 

assessment may result in more accurate classifications of growth restriction in utero. [5, 23]  

Ultrasound technology is a classic clinical methodology that can be used for assessment 

of fetal growth during pregnancy.  Ultrasonography is widely used in prenatal care to 

estimate gestational age, assess fetal growth, and determine physical abnormalities and 
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various other vital assessments. In clinical settings, IUGR can be diagnosed with the use 

of the fetal growth profile, that is, measurements of HC, AC, femur length (FL), and 

biparietal diameter (BPD) by ultrasound scans.[24Identifying growth restriction in utero 

could potentially elucidate specific mechanisms explaining growth restriction related to 

environmental exposures. 

2.5 Studies of Air Pollution and IUGR 
To identify epidemiology studies addressing the link between air pollution and 

IUGR, keyword and reference lists searches using PubMed were conducted using the key 

words “air pollution, fetal growth and ultrasound”  This search identified eight studies 

examining growth restrictions associated with maternal air pollution exposures during 

gestation.  Six studies, summarized in Table 1[25-30] covered two categories of outdoor air 

pollution; ambient and vehicle-related. Two other studies primarily focused on 

environmental tobacco smoke (ETS) [*31, 32] and are not discussed here.   

2.6 Ambient Air Pollution and IUGR 
The first published study to employ ultrasound scans to measure fetal growth in 

association with maternal exposure to ambient air pollution was set in France in the 

EDEN study of pre- and early postnatal determinants of the child’s development and 

health. [25] Maternal exposure to atmospheric nitrogen dioxide (NO2) was examined in 

relation to changes of in utero measurements of HC. Study participants were recruited 

from two French maternity hospitals at less than 24 weeks of gestation.  Individual NO2 

exposures were estimated from time of fertilization to the date of each ultrasound exam 

for 366 women residing within 2 kilometers from the nearest monitor. Adjusted linear 

and logistic regression models were used to determine HC reductions and odds of HC 
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reduction at various time periods. HC measurements decreased 3.8 mm and 3.1 mm 

between 30-34 weeks and at birth, respectively, comparing the highest tertile of NO2 

exposure (NO2 > 31.4 µg/m3) with the lowest.  

In another study in France, 271 nonsmoking pregnant women were recruited from 

two maternity hospitals at < 20 weeks of gestation to examine associations between 

IUGR and airborne benzene exposures.[27] The benzene exposures were estimated with 

measures from personal diffusive samplers worn for one week during the 27th gestational 

week. Fetal parameters measured during gestation and at birth included HC and BPD; 

BPD being the only parameter measured in each trimester. Adjusted linear regression 

models showed reductions in mean HC during each stage of pregnancy in association 

with elevated levels of log-transformed benzene exposures, with the greatest reported 

reduction of 1.9 mm at third trimester and at birth.  

In a Brisbane, Australia cohort, associations between fetal ultrasound 

measurements during mid–pregnancy and ambient air pollution exposure during the first 

trimester were evaluated. This retrospective study collected 15,623 ultrasound scans from 

14,734 Australian pregnancies.[26] The scans were originally collected to create a 

population specific growth curve, so eighty-four percent of the pregnancies had one scan, 

thirteen percent had two scans, and three percent had three ultrasound scans performed 

during pregnancy.  The final analysis included only the scans of women living within two 

kilometers of pollutant monitors and only scans captured during gestational weeks 13-26; 

resulting in a varying total of scans (120-510) depending on the pollutant model.  

Exposure during pregnancy was estimated using air pollution and meteorological data 

from the Air Services Unit, Queensland Environmental Protection Agency.  Utilizing 5 
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temperature monitors and 18 ambient air monitors, most within a 30 kilometer radius 

from Brisbane, hourly concentration readings were obtained for O3; NO2; SO2 and PM10.  

Daily averages were calculated for PM10, NO2, and SO2, while an 8-hour average was 

calculated for O3 and temperature. Ultrasound and air pollutant data were analyzed in a 

four stage regression model using generalized estimating equations (GEE). Reductions 

were reported for all parameters among exposed women, with AC being associated with 

most pollutants and reporting the highest decreases (-1.67 mm). Statistically significant 

reductions in HC, BPD, and AC associated with NO2 exposures were seen only in models 

restricted to women who spent ≥ 15 hours/day at home.  

2.7 Vehicle-Related Air Pollution and IUGR 
The INMA (Spanish Children’s Health and Environment) study in Sabadell, 

Spain performed a total of 1,692 ultrasound examinations measuring all four growth 

parameters for 562 pregnancies. The majority of the scans were one per woman; 

however, three percent of the women received 3-6 ultrasounds.[28]  This study measured 

NO2 and BTEX (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) as markers of 

motor vehicle exhaust.  Exposure metrics were calculated using geospatial information 

systems techniques and land regression modeling to account for intra-urban variations in 

air pollution. The 57 monitoring sites used passive samplers to take one-week 

measurements, in three campaigns for NO2 and four campaigns for BTEX.  Pollutant 

averages were calculated as a proxy for annual mean concentrations. Land cover, 

topography, population density, roads, and distance to local sources of pollution were 

used as predictor variables in models estimating outdoor air pollution levels associated 

with home addresses of the study participants.  The models were adjusted for the daily 
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variances in NO2 concentrations observed at the stationary monitors. Mixed-effect 

models were used to estimate five windows of fetal exposure: from last menstrual period 

(LMP) to weeks 12, 20 and 32 of gestation; and average exposures during weeks 12-20, 

and 20-32. With these windows of exposure and the exposure models, average 

cumulative exposures were calculated for each woman during pregnancy.  BTEX and 

NO2 exposures during weeks 1-12 were associated with unadjusted mean reduction in 

BPD growth between 20-32 weeks: -0.124mm/week and -0.075 mm/week respectively.  

Results were similar for attained fetal size at 32 weeks of gestation.  

The INMA study has several cohorts across Spain, including in Valencia. This 

cohort recruited 855 women; data from 785 were used examine the association between 

growth parameters and outdoor NO2 exposures.[30]  The study design was similar to the 

Sabadell cohort. However, linear-mixed models fit to the data revealed associations 

between higher NO2 exposures and reductions in fetal parameter attained size at 32 

weeks of 9% for all parameters except FL (6%). Length and HC at birth were reduced by 

6% among mothers exposed to NO2 levels above the median (38 µg/m3). 

The Generation R cohort in the Netherlands consisted of 8,880 pregnant mothers 

followed from years 2001 to 2005. The analysis sample consisted of 7,772 women with 

varying total ultrasound measurements.[29]   Fetal FL and HC were the only ultrasound 

parameters measured in the Netherlands Generation R study.  FL was a proxy for total 

body length and HC represented fetal development. Parameters were measured in each 

trimester. The number of scans per trimester differed because first trimester 

measurements were restricted to mothers with a normal (28 days) menstrual cycle and a 

known LMP.   This Dutch study assessed individual exposures to PM10 and NO2 at the 
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home addresses of expecting mothers, combining continuous monitoring data and 

dispersion modeling techniques. Continuous outdoor monitor data was collected using 

standard methods set by the Netherlands Ministry of Infrastructure and Environment. 

Multiple linear regression and mixed-effect models were used to assess the relationship 

between fetal parameters and pollution exposures, both cross-sectionally and 

longitudinally.  A statistically significant reduction of 1.74 mm in third trimester HC was 

associated with the highest quartile PM10 exposures. Risk of preterm birth and SGA were 

also reported.  

2.8 Conclusion 

Understanding potential mechanisms by which fetal growth parameters may be 

negatively associated with air pollutant exposures is critical.  The six existing studies 

estimated exposure to air pollution using data from personal and ambient monitors and 

other information. While some associations between maternal pollution exposure and 

restricted fetal growth were observed, features of these studies, including examination of 

different pollutants using different statistical models, hinder comparison of results.  

Furthermore, the number of studies is limited thus preventing general conclusions at this 

stage. We next make comments that may help guide design of future research. 

The approach for collection and analysis of ultrasound measurements in these 

epidemiological studies varied, as did the choice of fetal growth parameters examined.  

Ultrasound images, like most imaging methods, are prone to measurement error, 

especially when images taken by multiple ultrasound technicians are used without 

accounting for possible systematic differences in technique between individuals. 

Evaluating the potential magnitude and existence of such measurement error is possible 
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with statistical models and by correlation methods.  Intra- and inter- reliability 

assessments should be performed to produce intraclass correlations that measure the 

agreement of two or more observers measuring the same fetal growth parameters.[33-35]  

The use of mixed-effect models could also adjust for measurement error, by including an 

indicator variable for each technician, when reliability is unable to be assessed separately 

by different technicians measuring the same fetus at the same visit.  

A key feature of this research is the hypothesized critical windows of exposure, 

during which a given pollutant can affect target organs in the developing fetus.  Although 

some authors selected critical windows a priori, windows were often simply the periods 

of gestation where routine ultrasound scans were taken within that population. While this 

is a logical approach, current literature suggests other methods to statistically study 

windows of susceptibility based on timing of exposure and outcome variables.[36]   

Accurate assessment of fetal growth, i.e. growth rate versus fetal size, is 

important. When examining changes in fetal growth, repeated ultrasound measurements 

should be collected for each developing fetus. This may better indicate the rate of change 

in these parameters and could potentially identify critical windows of exposure. With 

advanced statistical models, the change in attained size of fetal parameters may also be 

evaluated at given periods of gestation, so fetal measures should ideally be taken during 

suspected time windows of particular developmental relevance.  The current studies 

utilizing ultrasound data had repeated measures for three percent or less of their 

population.  
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Statistical models used to test associations and which potential confounders were 

adjusted for varied by study. Common covariates across the studies in Table 1 included 

maternal age, smoking, pre-pregnancy weight or body mass index, socio-economic 

variables, gestational age and fetal sex. Some models included nutritional measures. [29, 30] 

Additional exposure variables included pesticides, paints, noise, temperature and 

seasonality. [26, 27, 29] 

While the studies reviewed here were unable to provide clear linkages between 

slowed growth in the parameters and specific mechanisms, clinical literature suggests that 

the reductions in the growth rates of fetal parameters are associated with increased risks 

of prenatal morbidity and mortality.[37] Further research using repeated ultrasound 

measures of fetal parameters is needed to assess changes in fetal growth in response to air 

pollutant exposures. 
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CHAPTER III 

INTEROBSERVER RELIABILITY OF FETAL ULTRASOUND 

MEASUREMENTS 
 

 

3.1. Abstract 
We aimed to determine the agreement of ultrasound measurements of fetal 

parameters captured by three sonographers and visually assess the reliability of the 

methodology used for making the measurements. In a double-blinded study, sixty-seven 

fetuses between 15.1 and 40.1 weeks of gestation received triplicate ultrasound 

examinations by three clinicians. Ultrasound measurements of head circumference (HC), 

biparietal diameter (BPD), abdominal circumference (AC) and femur length (FL) were 

collected. Gestational age and fetal weight were estimated for each fetus by the 

ultrasound equipment using an internal algorithm. Interclass correlation coefficient 

(ICCs), Cronbach’s Alpha coefficient, and coefficient of variation were calculated for 

each parameter. Bland Altman plots were used to visually detect bias in measurement 

methodology. Interobserver variability was small between the three clinicians. Reliability 

coefficients confirmed correlation among the clinicians’ measurements with high ICCs; 

HC= 0.985, BPD= 0.995, AC= 0.985, FL= 0.996, fetal weight=0.987 and gestational 

age= 0.965. Cronbach’s Alpha coefficients were consistent with the ICC values (HC= 

0.993, BPD= 0.996, AC= 0.985, FL=0.990, fetal weight=0.972 and gestational age= 
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0.983). Mean differences for the four fetal parameters were close to zero (-0.056 to 0.069 

cm).This analysis suggests that the ultrasound measurements made by different clinicians 

in a Mexico City clinic are comparable, and the reliability observed is quantitatively 

similar to that seen in other clinical settings in which such analyses were done. We 

conclude that technician bias will not play an important role in statistical analyses of fetal 

growth and development using these parameters. 

3.2 Introduction  
Fetal ultrasonography is commonly used by clinicians to determine gestational 

age, assess the growth of the developing fetus, and assist with diagnosing medical 

conditions (microcephaly, Down Syndrome, etc.) in utero (Perni et al. 2004; Yang et al. 

2010).  However, in spite of the extensive obstetric use of the ultrasounds, few studies 

have quantified the inter- and intra-observer reliability of sonographic data collected on 

fetal parameters for epidemiological studies (Sarris et al. 2012). A systematic review of 

the methodology used in studies whose purposes were to create fetal ultrasound reference 

charts found substantial heterogeneity in fetal biometry methodologies, including the 

performance of quality assurance measures such as interobserver agreement assessments 

(Ioannou et al. 2012). 

With ultrasound measurements being increasingly used in epidemiological studies 

to better understand the relationship between maternal exposures to environmental 

toxicants and fetal health, more studies assessing the inter- and intra-observer reliability 

of fetal measurements captured by ultrasound are needed (Smarr et al. 2013).  Ultrasound 

technology is naturally prone to measurement error and the use of this methodology in 

longitudinal studies would potentially entail repeated measurements of fetal 
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anthropometry by different people. This may introduce interobserver variability and 

measurement error, and require control for technician in statistical analyses for an 

epidemiological study, to improve statistical inference on associations of interest. 

The aim of the present study was to determine the agreement between fetal biometry data 

collected by multiple clinicians in Mexico City, for the purpose of ascertaining the 

reliability of the measurements for use in epidemiologic studies. 

 

3.3 Methods 

3.3.1 Interobserver Reliability Assessment 

We conducted a prospective, clinical study on women recruited as part of a study 

of air pollution and adverse birth outcomes in Mexico City (O'Neill et al. 2012). 

Inclusion criteria for the parent study were that the women be in the first trimester of 

pregnancy at the time of recruitment, 18 years of age or older, residents of Mexico City, 

non-smokers, and without pregnancy complications.  For this reliability assessment, 67 

women received ultrasound evaluations by three clinicians at the Hospital Materno 

Infantil Inguaran (Inguaran Maternal Infant Hospital).  Institutional Review Board (IRB) 

approval was received from all participating institutions (the University of Michigan, the 

Inguaran Hospital, and the Universidad Nacional Autonoma de Mexico (National 

Autonomous University of Mexico).  

Intraobserver reliability was previously assessed for the three participating 

clinicians as a part of standard training, following the guidelines in (Carrera 2001) and 

was not feasible to be assessed for measurements taken for this analysis. For each 

pregnant woman, we assessed interobserver reliability of measurements of four fetal 
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parameters: head circumference (HC), abdominal circumference (AC), biparietal 

diameter (BPD) and femur length (FL). Each woman received an examination by the 

three clinicians on the same day, who were assigned a number (1-3). Ultrasonography 

was performed using the Aloka SSD-1000, Hitachi Aloka Medical, Ltd.   

Fetal measurements were taken according to the guidelines of the American 

Institute of Ultrasound in Medicine (AIUM) (AIUM 2007). Clinicians were provided a 

procedural protocol that described the measurement guidelines to be followed when 

capturing each fetal parameter measurement.  BPD and HC were to be measured from 

axial images through the fetal brain at the level of the thalami. The BPD measurement 

was to be taken from the outer edge of the proximal skull to the inner edge of the distal 

skull, whereas HC measured the outer perimeter of the skull. The ellipsoid method was 

used to assess organ volume, using digital caliper placement instead of manual tracing.  

AC was measured on an axial plane at the level of the bifurcation of the main portal vein 

into the left and right branches and the stomach. This was to help reduce distortion of the 

circular shape of the abdomen; again manual tracing was avoided by using the calipers to 

designate measurement locations. Finally, FL was measured by including only the 

femoral diaphysis length.  

Fetal biometry was collected by each clinician in a private exam room.  After the 

first clinician’s measurements were recorded on the fetal ultrasound form, the ultrasound 

screen was cleared before the second clinician entered the room; the same procedure was 

followed for the third clinician.  No strict order of which clinician performed the exam 

was followed; in other words, clinician 1 did not always give the first exam and clinician 

3 the last. However, ultrasound exams were required to be performed on the same day. 
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3.3.2 Statistical Methods 

Since the study design was double-blinded, which reduces observer and analyst 

bias, biometry data were entered into a database with assigned identification numbers 

(ID’s) for each clinician. The database was provided to the project data manager, at 

which point it was verified that personal identifiers were not contained in the data, but 

only participant and clinician ID’s and dates of examinations. Univariate analyses were 

performed to obtain descriptive statistics for each fetal parameter. Dependent t-tests were 

used to compare the mean differences of fetal parameter measurements for each pair of 

clinicians. Significant differences would identify potential systematic, between-clinician, 

biases in fetal measurements.  

Reliability was assessed with the use of four methods. First, to assess the 

similarity among all three observers’ measurements, the inter-class correlation 

coefficients (ICCs) were calculated using mixed models. The ICC is defined as   𝜎  𝑏
2

𝜎  𝑏
2  +𝜎  𝑤 

2   

, where σ2
b is the between-clinician variability and σ2

w is the within-clinician (random) 

variability. In previously published agreement assessments, an ICC value greater than 

0.75 was adopted as reflecting reliable agreement.  A value in that range would indicate 

that at most, 25% of the variation in the ultrasound measures is due to differences 

between clinicians.  Cronbach’s Alpha coefficient, a measure of internal consistency, was 

used to assess the variance related to fetal differences compared with differences among 

the clinicians making the measurements on the same fetus (Lyons 1997). The coefficient 

of variation (CV) was calculated for each clinician’s set of four fetal parameter 

measurements to assess the dispersion within one clinician’s measurements of the same 
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parameter. The CV, expressed as a percentage, is the ratio of the standard deviation (SD) 

of the measurement error for the given parameter and the mean value of that parameter.   

The CV was calculated using linear regression models to produce the adjusted residual 

variance; smaller CV values mean less dispersion in a clinician’s measurements of a 

given parameter.  

Finally, visual assessment of ultrasound measurements agreement between each 

clinician pair was confirmed with the use of identity plots of unadjusted parameter 

measurements.  Bland-Altman plots were used to visually assess repeatability of the 

ultrasound measurements used to assess the fetal growth since the method should remain 

consistent for each mother being examined.  All variables were standardized to have 

mean 0 and SD 1. For each measurement, the differences and means were calculated 

between each combination of two clinicians.  Differences are plotted on the y-axis against 

measurement means on the x-axis.  Using the standardized measurements in the Bland-

Altman plots, a mean difference of 0 would mean perfect agreement between 

measurements taken by two clinicians. Positive difference values indicate that the second 

clinician’s measurement was smaller than that of the first clinician. Negative difference 

values indicate that the second clinician’s measurement was larger than that of the first 

clinician. This provides a visual assessment of measurement consistency and potential 

measurement bias.  Scatter plots of unadjusted parameter measurements made across 

gestation by each clinician on the same fetus, as well as the difference in standardized 

measurements between each clinician pair against gestational age, were also used to 

visually compare differences in parameter measurements collected by three clinicians on 
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the same fetus.   Statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, 

NC).    

3.3.3. Sensitivity Analyses 

Sensitivity analyses were performed to account for extraneous variation that could 

be introduced to between-clinician variation as a result of having a wide distribution of 

gestational ages at which ultrasound measurements were collected. Therefore all 

statistical analyses previously described were re-applied to data that had been grouped 

using two concepts. The first analysis was performed by grouping the data based on 

trimesters. Data collected between 15.1 and 26.9 weeks of gestation were grouped as 2nd 

trimester measurements and data collected between 27.0 and 40.1 weeks were grouped as 

3rd trimester measurements. The second method used to group ultrasound measurements 

was based on the distribution of gestational age. With the median gestational age being 

36.6 weeks, all measurements collected less than the median gestational age were 

grouped together, leaving all measurements collected at gestational ages greater than or 

equal to the median to be grouped together.  

 

3.4 Results 
The total number of measurements performed on each participant differed across 

fetal parameters and by clinician.  Table 1 offers summary statistics: the total number of 

ultrasound measurements collected by each clinician, and the mean, minimum and 

maximum values for each parameter, by clinician.  Fetal measurements were collected 

during gestational periods of 15.1 to 40.1 weeks. On average, fetal measurements made 

by the three clinicians were similar across the various parameters of interest. Mean HC 
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(cm) measurements for clinicians 1-3 were 31.18, 31.39, and 31.19, respectively; similar 

closeness in the magnitude of the mean biometry data across clinicians was observed for 

all fetal parameters.   

The mean differences between each clinician’s ultrasound measurements are 

presented in Table 2.  Mean differences between clinician pairs were not statistically 

significant for most parameters, with the exception of BPD. The mean difference of BPD 

measurements between clinicians 1 and 2 was 0.036 cm, p=0.003. Similar differences 

were observed for BPD measurements between clinicians 1 and 3 and clinicians 2 and 3: 

0.067 cm; p<0.001 and 0.037 cm; p=0.021, respectively. The coefficient of variation was 

not consistently lower for all measurements recorded by any one clinician (Table 2).  

Overall, clinician 1 had the smallest dispersion in HC and FL measurements (CVHC= 

3.600%, CVFL=6.503%), compared to measurements made by the other two clinicians.  

Clinician 2 has the smallest CV values for BPD and AC measurements (CVBPD= 4.212%, 

CVAC= 3.922%).  Variance in ultrasound measurements performed by a single clinician 

was similar in magnitude across all fetal parameters. However, measurements made by 

clinician 3 had more variation compared to the other two clinicians.  

As shown in Table 3, the values for ICC and Cronbach’s Alpha reliability 

coefficients were very high for all parameters.  The ICCs for parameter measurements 

across all gestational ages were: HC= 0.985, BPD= 0.995, AC= 0.985, FL= 0.996, fetal 

weight= 0.987 and gestational age= 0.965.  Cronbach’s Alpha coefficients of unadjusted 

values were consistent with the ICC values (HC= 0.993, BPD= 0.996, AC= 0.985, 

FL=0.990, fetal weight=0.972 and gestational age= 0.983).  
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Among those measurements captured during the second trimester (gestational age 

15.10-26.9 weeks), between clinician variation for each fetal anthropometric parameter 

was small, as assessed by ICCs: (HC= 1.000, BPD= 0.996, AC= 0.999, FL= 1.000, fetal 

weight= 0.997 and gestational age= 0.988). Alpha coefficient’s were all greater than the 

accepted value of 0.70 but were smaller than the values reported for all measurements; 

α’s: (HC= 0.906, BPD= 0.936, AC= 0.777, FL= 0.915, fetal weight= 0.899 and 

gestational age= 0.882). For measurements collected in the 3rd trimester, ICCs were 

smaller and Alphas were larger than values reported for measurements collected in the 

second trimester: (ICCs: HC= 0.946, BPD= 0.983, AC= 0.963, FL= 1.000, fetal weight= 

0.977 and gestational age= 0.895; α’s: HC= 0.990, BPD= 0.999, AC= 0.984, FL= 1.000, 

fetal weight= 0.986 and gestational age= 0.976 ). 

Measurements were also analyzed by those captured below and above the median 

gestational age (36.6 weeks). For the measurements made at less than 36.6 weeks, 

interobserver variation for each fetal anthropometric parameter was similar to the 

estimated variation of all measurements collected during gestation, as assessed by ICCs: 

(HC= 0.981, BPD= 0.997, AC= 0.986, FL= 0.995, fetal weight= 0.988 and gestational 

age= 0.996). Alpha coefficient’s of unadjusted values were also similar to values 

previously reported for all measurements; α’s: (HC= 0.999, BPD= 1.000, AC= 0.995, 

FL= 0.998, fetal weight= 0.985 and gestational age= 0.986). For those fetal 

measurements collected at 36.6 weeks or higher, ICCs and Alphas were smaller than 

values reported for measurements collected at earlier time periods: (ICCs: HC= 0.961, 

BPD= 0.954, AC= 0.975, FL= 0.991, fetal weight= 0.957 and gestational age= 0.842; 
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α’s: HC= 0.957, BPD= 0.918, AC= 0.979, FL= 1.000, fetal weight= 0.957 and 

gestational age= 0.941 ). 

Measurement agreement between all of the clinicians was visually confirmed for 

all fetal parameters as seen in figures 1-10. Unadjusted values show that with the 

exception of one or two measurements, the clinicians’ measurements were similar across 

all parameters on measurements performed on the same fetus.  The Bland Altman 

agreement plots show that most of the measurements made between any pair of clinicians 

were clustered around the mean difference. Mean differences were all close to zero, 

ranging from -0.056 to 0.069 cm for the four fetal parameters typically used in a growth 

profile (HC, BPD, AC, and FL). Bland-Altman plots showed that fetal measurements 

made by clinicians 1 and 2 tended to vary less.  Other graphs show that there is a lack of 

systematic bias between clinician measurements of fetal parameters. 

 

3.5 Discussion 
Fetal ultrasound measurements are clinically the gold standard for estimating 

gestational age and monitoring fetal health and development throughout pregnancy. 

Therefore it is important to know the agreement of measurements and repeatability of 

measurement methods when multiple persons are performing ultrasound examinations on 

a single mother-fetal pair. The objective of this study was to assess the reliability of fetal 

parameters used in the clinical growth profile (HC, AC, BPD, and FL), in addition to 

gestational age calculated with the use of the fetal parameter measurements. We found 

the fetal ultrasound measurements made by multiple clinicians using the same ultrasound 

equipment to be similar in terms of agreement and method repeatability.  
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For the most part, mean differences in parameter measurements were not 

statistically different between various combinations of clinician pairs. However, small, 

statistically significant differences were estimated for the measurement mean of BPD 

between all clinician pairs, ranging from 0.030 to 0.067 centimeters.  We calculated the 

standard measurement error associated with each fetal parameter and determined these 

differences in BPD measurements between clinicians to be within the allowable range of 

measurement error. Clinically, these differences are not generally regarding as 

substantive when using these fetal parameters to estimate gestational age or diagnose 

adverse fetal disorders.  Anatomical parameters as indicators of poor health, growth and 

development are observed for changes in measurement values that are ± 2 SD of the 

mean population value (Carrera 2001) or fall below the 10th percentile (Hughey 2005). 

Also, given that we had previously calculated between clinician variance of parameter 

measurements, we were able to estimate the amount of standard measurement error for 

each parameter. For BPD we found that measurement error should range be less than 0.08 

cm and this could explain the significant difference between parameter measurements.  

The fetal measurements in our analysis were captured at between 15.1 and 40.1 

weeks of gestation, a period almost identical to the 15 to 40 week range used by Perni 

and colleagues (Perni SC, Chervenak FA et al. 2004). This is consistent with the 

literature which suggests fetal growth parameters are best captured from 12 to 42 weeks. 

Other studies restricted their biometry data to early pregnancy (9-14 weeks) (Verburg et 

al., 2008)  or measurements prior to a fetus reaching full term status, i.e., 37 weeks (Yang 

et al., 2010). Another notable difference is that most previous reliability assessments only 
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included differences between two observers; we had three clinicians recording fetal 

measurements on the same 67 participants.  

We found that the variation in the anthropometric measurements resulting from 

between clinician differences ranged from 0.4 to 1.5 % for the four fetal parameters: HC 

(ICC = 0.985); AC (ICC = 0.985); BPD (ICC = 0.995); and FL (ICC = 0.996). These 

findings are consistent with other studies that reported high ICCs for sonographic 

measurements of these fetal parameters, as ( Perni et al., 2004) reported ICCs of 0.994, 

0.980, 0.995 and 0.990 for HC, AC, BPD and FL, respectively. The same similarities 

exist between the alpha coefficients reported by (Perni et al., 2004) and those estimated in 

our analysis. Measurement agreement for these parameters reported in (Yang et al, 2010)  

also showed low between clinician variability, but their study differed in ultrasound 

technology used to capture the measurements.  The analysis performed by Yang et al 

involved the use of two and three dimensional imaging tools.  

Given the broad range of gestational ages at which fetal parameter measurements 

were collected, compared to other similar studies, we also performed sensitivity analyses 

to evaluate whether ICCs varied in magnitude when calculated from measurements made 

at different time windows of gestational age, that is, in earlier or later pregnancy. 

However we still find ICCs to be greater than 0.90 for all parameters, with the exception 

of gestational age which was always greater than 0.80 in both sensitivity analyses that we 

performed.  It is also important to note that for one of the analyses, dividing 

measurements collected by trimester, the small number of measurements available for 

each of the parameters may decrease statistical power and therefore should be interpreted 

cautiously. We also emphasize that ICCs were still high when we divided the data into 
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two groups based on the median gestational age at which measurements were collected. 

However, we believe that the gestational age was in fact influential in the estimation of 

Alpha Coefficients. Compared to the values reported for all measurements made by each 

of the clinicians, not accounting for gestational age, Alphas were inflated and mostly 

driven by the measurements that were closer together and made before 36.6 weeks of 

gestation. Alphas estimated for parameters measured after this time period were still 

much higher than the 0.70 accepted value, but were smaller than the values reported for 

measurements collected at earlier time periods. A possible explanation for this difference 

could be explained by the linear growth of these parameters that usually occurs prior to 

36.6 weeks of gestation. Therefore, with less complex changes in these parameters at 

these time periods, measurements may be easier to measure for most clinicians.  

Intraclass correlation coefficients were not calculated to assess within-clinician 

variance in measurements as a result of time constraints that were placed on the 

availability of the ultrasound equipment at the clinic. However, the clinicians had been 

previously certified with regard to their intraclass correlation coefficients on fetal 

ultrasound, and all three were within the guidelines.   

The CVs, which account for each clinician’s measurement dispersion compared to 

the average parameter measurement, ranged from 3.60% – 7.98% across all four fetal 

parameters and 3 clinicians.  These percentages are similar to those reported by Verburg 

et al., who estimated CVs for all four parameters measured by two clinicians to range 

from 1.4% to 5.9%. One possible explanation for the slightly higher values of CV that we 

estimated is the fact that we were unable to account for possible differences in 

measurements as a result of fetal variability. CVs were not estimated on repeated 
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measures by the same clinician for the same fetus, but used all measurements of a 

specific parameter made by a clinician across the various fetuses.  

We did, however, use mixed effect models to calculate the interobserver ICCs, 

and the covariance parameters of those models account for random error as a result of 

fetal differences. Also, variation is expected to increase as parameter size increases, and 

we examined fetuses from 15-41 weeks of gestation, whereas the Verburg study chose an 

earlier time frame (9-14 weeks).  

Visually, the Bland Altman plots for BPD and FL measurements showed less bias 

than the other two parameters in terms of the dispersion of the data points around the 

mean difference line. This was comparable to the results of studies previously mentioned. 

These results are also consistent with clinical literature reporting that the variability in 

ultrasound measures of BPD and FL is much smaller than for the HC and AC parameters 

(Carrera 2001). Biologically, BPD and FL have slower growth rates during gestation 

when compared to HC and AC.  The fact that these parameters do not change in utero as 

drastically as the other parameters generally results in less associated measurement error.  

FL and BPD measurements are also easier to capture given their bony structures, 

compared to the measurement error that is associated with capturing the true shape of the 

AC and HC parameters.   

In summary, the reliability of the ultrasound measurements in our study is 

consistent with the reliability reported in previous studies. Given the lack of published 

growth curves or fetal reference data for the Mexico City population, the results of this 

analysis could serve as quality assurance tests for the future construction of biometry 
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reference literature for this population. These findings also lend support to the use of fetal 

ultrasound measurements in epidemiological research studies of fetal growth and 

development.  
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Table III- 1. The summary statistics for fetal parameters measured by ultrasound by three 
clinicians in Mexico City 

 

 

Table III- 2. Reliability measures and mean difference for the four fetal biometric 
parameters measured by three clinicians 

 

 

 

Fetal Parameter Clinician N Mean  ± SD Minimum Maximum 
Head Circumference (cm) 1 67 31.18 ± 4.31 11.20 35.00
Head Circumference (cm) 2 59 31.39 ± 4.33 11.30 40.00
Head Circumference (cm) 3 60 31.19 ± 4.43 11.20 35.40
Abdominal Circumference (cm) 1 67 30.77 ± 5.03 10.30 35.70
Abdominal Circumference (cm) 2 57 31.14 ± 4.91 10.40 36.00
Abdominal Circumference (cm) 3 60 30.82 ± 5.09 10.30 35.60
Femur Length (cm) 1 67 6.70 ± 1.14 1.67 7.72
Femur Length (cm) 2 62 6.77 ± 1.10 1.70 7.70
Femur Length (cm) 3 60 6.71 ± 1.14 1.65 7.60
Biparietal Diameter (cm) 1 67 8.44 ± 1.18 2.92 9.58
Biparietal Diameter (cm) 2 59 8.46 ± 1.15 2.80 9.50
Biparietal Diameter (cm) 3 60 8.39 ± 1.19 2.70 9.30
Gestational Age (weeks) 1 67 35.26 ± 4.98 15.10 40.10
Gestational Age (weeks) 2 59 35.37 ± 4.77 15.60 39.60
Gestational Age (weeks) 3 60 35.63 ± 4.76 16.00 40.00

Reliability Variables Fetal Growth Parameters
HC (cm) BPD (cm) AC (cm) FL (cm)

Interobserver ICC 0.985 0.995 0.985 0.996
Alpha Coefficient 0.995 0.999 0.995 0.999
Coefficent of Variation:
Clinician 1 3.600 4.287 4.149 6.503
Clinician 2 5.198 4.212 3.922 6.855
Clinician 3 5.174 5.726 6.729 7.983
Mean Difference Clinician 1 - Clinician2 -0.034 0.036* -0.007 0.002

Mean Difference Clinician 1 - Clinician3 0.013 0.067** -0.048 -0.004
Mean Difference Clinician 2 - Clinician3 0.069 0.0367* -0.056 0.008
*p<0.05 , ** p<.0001
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Figure III-1a. Identity plot of head circumference measurements for clinicians 1 and 2 
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Figure III-1b. Identity plot of head circumference measurements for clinicians 1 and 3 
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Figure III-1c. Identity plot of head circumference measurements for clinicians 2 and 3 
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Figure III-2a. Identity plot of abdominal circumference measurements for clinicians 1 and 2 
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Figure III-2b: Identity plot of abdominal circumference measurements for clinicians 1 and3 
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Figure III-2c: Identity plot of abdominal circumference measurements for clinicians 2 and 3 
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Figure III-3a: Identity plot of biparietal diameter measurements for clinicians 1 and 2 
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Figure III-3b: Identity plot of biparietal diameter measurements for clinicians 1 and 3 
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Figure III-3c: Identity plot of biparietal diameter measurements for clinicians 2 and 3 
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Figure III-4a: Identity plot of femur length measurements for clinicians 1 and 2 
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Figure III-4b: Identity plot of femur length measurements for clinicians 1 and 3 
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Figure III-4c: Identity plot of femur length measurements for clinicians 2 and 3 
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Figure III-5a: Bland Altman plots of head circumference measurements for clinicians 1 and 2 
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Figure III-5b: Bland Altman plots of head circumference measurements for clinicians 1 and 3 
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Figure III-5c: Bland Altman plots of head circumference measurements for clinicians 2 and 3 
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Figure III-6a:  Bland Altman plots of abdominal circumference measurements for clinicians 1 and 2 
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Figure III-6b: Bland Altman plots of abdominal circumference measurements for clinicians 1 and 3 
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Figure III-6c: Bland Altman plots of abdominal circumference measurements for clinicians 2 and 3 

 



 
 

70 
 

 

 

 

 

 

  

Figure III-7a: Bland Altman plots of biparietal diameter measurements for clinicians 1 and 2 



 
 

71 
 

 

 

 

 

 

  

Figure III-7b: Bland Altman plots of biparietal diameter measurements for clinicians 1 and 3  
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Figure III-7c: Bland Altman plots of biparietal diameter measurements for clinicians 2 and 3 
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Figure III-8a: Bland Altman plots of femur length measurements for clinicians 1 and 2 
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Figure III-8b: Bland Altman plots of femur length measurements for clinicians 1 and 3 

 



 
 

75 
 

 

 

 

 

  

Figure III-8c: Bland Altman plots of femur length measurements for clinicians 2 and 3 
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Figure III-9a: Head circumference measurements against gestational age, by clinician 
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Figure III-9b: Abdominal circumference measurements against gestational age, by clinician 
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Figure  III-9c: Femur length measurements against gestational age, by clinician 
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Figure III-9d: Biparietal diameter measurements against gestational age, by clinician 
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Figure III-10a: Differences in standardized head circumference measurements 
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Figure III-10b: Differences in standardized abdominal circumference measurements 
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Figure III-10c: Differences in standardized biparietal diameter measurements 
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Figure III-10d: Differences in standardized femur length measurements 
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CHAPTER IV 

AIR POLLUTION AND REPEATED ULTRASOUND MEASURES 

OF INTRAUTERINE GROWTH IN MEXICO CITY, MEXICO 
 
 

4.1 Abstract  
Maternal exposure to air pollutants during pregnancy has been linked with low 

birth weight, but few studies have examined this exposure and fetal growth in utero. We 

evaluated exposure to outdoor air pollutants in the first trimester and fetal growth over 

gestation using repeated fetal ultrasound measures from 625 mother-fetal pairs from a 

cohort in Mexico City.  Fetal head circumference (HC), abdominal circumference (AC), 

biparietal diameter (BPD) and femur length (FL) were measured by ultrasound.  First 

trimester exposures to ozone (O3) and particulate matter less than 2.5 micrometers in 

aerodynamic diameter (PM2.5) were estimated using ordinary kriging. Fractional 

polynomial, mixed-effects models were fit to calculate predicted trajectories of the four 

fetal parameters and then estimate differences in attained size during pregnancy by 

interquartile range (IQR) difference in first trimester ozone and PM2.5 exposure, 

controlling for maternal age and fetal sex. For one parameter, BPD, a consistent 

association was observed with increased maternal exposures to both PM2.5 (β’s = -0.067 

to -0.045 cm, p<0.05) during weeks 16-28 and O3 exposures (IQR 13.29ppb) (β’s = -

0.064 to -0.045 cm, p<0.05) during weeks 22-32 of gestation. Overall, with the exception 

of fetal AC, increased maternal pollutant exposure during first trimester was uniquely and 

significantly associated with decreased size of fetal anthropometric parameters during 
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gestation; parameter results varied by air pollutant. These findings support the need for 

further research examining air pollution-associated changes in fetal parameters, assessed 

in utero. 

4.2 Introduction 

Fetal growth is an important component of the survival and health of newborns, 

both at birth and later in life. In low-middle income countries, including Mexico, most 

cases of low birth weight (LBW) are growth restricted infants rather than preterm 

(Balcazar and Haas 1991; Kramer 1987; Semba and Bloem 2008; Carrera 2001).  In some studies, 

intrauterine growth restriction (IUGR), excluding congenital anomalies, has been 

implicated as a causal factor in 50% of still births (Figueras and Gardosi 2011). In 

addition to contributing to neonatal death, longer periods of slowed fetal growth in utero 

have been associated with increased perinatal morbidity (Illa et al. 2009).  The 

importance of timing of the growth restriction is illustrated by the findings of a case 

control study that examined IUGR and cerebral palsy. Risk of cerebral palsy increased 

with growth restriction occurring closer to term, but not with IUGR during early 

pregnancy (Figueras and Gardosi 2011).   

Several studies have reported on the relationship between air pollution and 

various pregnancy outcomes (Lee B.E. 2003; Shah and Balkhair 2011; Bell et al. 2010; 

Parker et al. 2011; Ritz et al. 2007; Maisonet et al. 2004; Rich et al. 2009; Ballester et al. 

2010; Choi et al. 2006; Estarlich et al. 2011; J-H Leem et al. 2006; Malmqvist et al. 

2011). Although the biological mechanisms that might explain observed associations 

between air pollution and birth outcomes are not completely understood,  Slama and 

colleagues efficiently summarized hypothesized mechanisms linked to IUGR and preterm 
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birth (Slama et al. 2008).  Many of the potential mechanisms, namely alterations in 

maternal-placental exchanges of nutrients and oxygen, endocrine disruption and oxidative 

stress, may be directly linked to IUGR. Others, like pollutant-induced inflammation, are 

linked to spontaneous preterm birth; these neonates are often growth restricted fetuses. In 

Mexico City, ozone (O3) and particulate matter less than 2.5 microns in aerodynamic 

diameter (PM2.5) are considered to be major components of air pollution (Molina et al. 

2009; Vallejo et al. 2004) .  PM2.5 contains a mixture of metals and harmful constituents 

that can be introduced into the blood stream and result in systemic inflammation 

(Hackley et al. 2007).  Exposure to polycyclic aromatic hydrocarbons (PAHs), a class of 

compounds that may also be constituents of particulate matter, can lead to the formation 

of DNA adducts, causing cell mutation or cellular death; this could result in an increase 

in blood viscosity which reduces the amount of blood flow to the placenta and uterus 

(Veras et al. 2008; Perera et al. 2003; Detmar et al. 2008) . Additionally, O3 has been 

directly linked to increased inflammatory responses as a result of lipid peroxidation, 

which could lead to alterations in placental function, resulting in fetal growth restriction 

(Salam et al. 2005). Whatever the mechanism, associations of air pollution exposure with 

fetal growth can be assessed if the attained size of the fetus at the time of birth or shortly 

before is known, or repeated ultrasound measures allow estimation of the trajectories of 

fetal growth over gestation. 

Some previous epidemiologic studies on air pollution and birth outcomes have 

used birth certificates and hospital discharge summaries to obtain fetal and maternal data.  

These data sources often have limited information on potential confounders of the air 

pollution and fetal growth association, e.g., nutritional status, since that information is not 
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readily available in administrative records (Woodruff et al. 2009; Ritz and Wilhelm 

2008). IUGR as an outcome is particularly difficult to assess with birth registries;  

although small for gestational age (SGA) has been used as an IUGR proxy, clinical 

literature specifies that being growth-restricted and small for gestational age (SGA) are 

not synonymous (Carrera 2001).  The use of birth weight as a proxy for fetal growth may 

not be the best endpoint since recent literature has shown that birth weight poorly reflects 

IUGR during the first two trimesters (Kingdom and Baker 2000).   

A limited number of studies have used fetal biometry to assess fetal growth in 

relation to air pollution exposure (Slama 2006; Ritz et al. 2014; Aguilera et al. 2010; 

Hansen et al. 2008; Slama et al. 2009; van den Hooven et al. 2011; Iniguez et al. 

2012a).The purpose of the present analysis was to evaluate the hypothesis that maternal 

exposure to air pollutants is independently associated with IUGR, as indicated by 

reduction in attained size and growth trajectories of fetal parameters, using repeated fetal 

biometry data and other covariates from pregnant women residing in Mexico City.  

4.3 Methods 

4.3.1 Study Location and Population 

Mexico City, the capitol of Mexico, is a mega-city densely settled with a 

population of  21.2 million in 2013, representing seventy-five percent of  Mexico’s total 

population (World Population Review2013).  Infants born in Mexico City were estimated 

to experience a frequency of IUGR of 12% in 2009 (Hernandez-Valencia et al. 2001). 

Within this population, IUGR is associated with 20% of fetal deaths (Fernández-

Carrocera et al. 2003). In addition to adverse birth statistics, Mexico City also has several 
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sources of environmental pollution, vehicle traffic, petroleum refineries, and dry cleaners, 

contributing to annual pollution that exceeds health and environmental standards, with 

much focus being placed on PAHs, O3 and PM2.5 (Marr et al. 2004). 

The current analysis was conducted with data from participants in a study of air 

pollution and adverse birth outcomes in Mexico City, described in detail elsewhere 

(O'Neill et al. 2012). Briefly, pregnant women residing in various regions across Mexico 

City were enrolled starting in 2009 and follow up continues; the total study population 

will number approximately 1,000 women. Inclusion criteria were: women 18 years of age 

or older, self-reported nonsmokers, having a singleton pregnancy, without the presence of 

medical complications, and recruited at 18 weeks of gestation or less according to last 

menstrual period (LMP) recall and confirmed by ultrasound (O'Neill et al. 2012). Once 

enrolled, women were invited to visit the clinic at the Hospital Materno Infantil Inguaran 

(Inguaran Maternal Infant Hospital), a public hospital funded by Mexico City’s 

government, on an approximately monthly basis during their pregnancies to have 

biological samples collected; to receive a clinical exam, including ultrasound; and to 

provide information on their health status, dietary intake, and activities relevant to air 

pollution exposure. A global positioning system device was used to record the latitude 

and longitude of participants’ home addresses for use in air pollution exposure 

assessment. 

4.3.2 Ultrasound Measurements 

Fetal parameters were measured by the study’s clinicians at the Inguaran Hospital.  

All clinicians were trained using widely accepted methodology according to the obstetric 

literature (The American Institute of Ultrasound in Medicine Medicine 2007).  



 
 

90 
 

Institutional Review Board (IRB) approval was received from all participating 

institutions: the University of Michigan, the Inguaran Hospital and the Universidad 

Nacional Autonoma de Mexico (National Autonomous University of Mexico).  

Ultrasound measurements of head circumference (HC), biparietal diameter 

(BPD), abdominal circumference (AC), and femur length (FL) were collected during 

each monthly clinical visit using the Aloka SSD-1000, Hitachi Aloka Medical, Ltd 

ultrasound equipment. Quality assurance, i.e., estimation of interobserver reliability, was 

performed to assess possible measurement and observer error, using previously published 

methodology (Perni et al 2004). Intraclass correlation coefficients of a subset of the fetal 

measurements made by study clinicians ranged between 0.985-0.996: HC= 0.985, BPD= 

0.995, AC= 0.985, FL= 0.996. Cronbach’s Alpha coefficients of agreement were 

consistent with the intraclass correlation coefficient values (HC= 0.995, BPD= 0.999, 

AC= 0.995, FL=0.999). Mean differences of clinician measurements for the four fetal 

parameters were close to zero (-0.056 to 0.069 cm), suggesting measurements were 

highly reliable (unpublished data). 

4.3.3 Assessment of Air Pollution Exposure 

Outdoor air pollution concentrations were obtained from the Mexico City air 

quality monitoring system, Sistema de Monitoreo Atmosférico (SIMAT, for its Spanish 

initials).  The monitoring system consisted of 37 stations, according to a 2011 publication 

(Instituto Nacional de Ecologia (2011)), reporting hourly concentrations  for the air 

pollutants O3 and particulate matter of two size fractions, PM10 (diameter ≤ 10 

micrometers in aerodynamic diameter ) and PM2.5.  The data collection and United States 

Environmental Protection Agency audits of the monitoring system have been described 
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previously. (Edgerton et al. 1999; Shanis Mark 2005)  Pollutant data were downloaded as 

hourly concentrations, then summarized to create the daily (24 hour) average for PM2.5 

and the 8 hour daily maximum for O3, to correspond to the health-based standards 

Exposures to air pollutants during pregnancy were assessed in two ways.  1) A 

daily citywide average from all reporting monitors was calculated, reflecting only 

temporal and not spatial contrasts in exposure for all the women.  2) A daily, woman-

specific exposure (encompassing pollutant concentration variation over time and place) 

was calculated at maternal place of residence, using ordinary kriging, a geo-spatial 

interpolation method.  Kriging is technique that estimates values at un-sampled locations, 

in this case, maternal place of residence,  by interpolating between pollutant 

concentrations sampled spatially (in this case, the network of monitors sited around 

Mexico City), to create a spatial surface and assign a unique concentration for the 

mother’s address (Rivera-González 2012).   Weekly and first trimester (estimated 

conception date until 12 completed weeks of gestation) individual-specific kriged 

estimates of exposure for each mother’s home address were derived in SAS version 9.3 

(SAS Institute Inc., Cary NC, USA). We assessed the correlations between first trimester 

air pollutant metrics of exposure (kriged and citywide average) for each pollutant.  

4.3.4 Covariates 

Information on maternal behaviors and medical history was collected for 

participants by questionnaires at the initial and sequential follow-up visits. We considered 

several covariates from these repeated visits  based on previously reported risk factors for 

IUGR (Carrera 2001) as well as covariates suggested for examination as potential 

confounders and effect modifiers of the relationship between air pollution and 
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reproductive outcomes (T.J. Woodruff et al. 2009). These included: maternal age, passive 

smoking status, parity, and pre-pregnancy body mass index (BMI) calculated from pre-

pregnancy weight and height, alcohol use and fetal sex. In addition, variables reflecting 

cooking style (wood or coal stove) were also selected as covariates as proxies for indoor 

air pollution (Estarlich et al. 2011) . Finally, air pollution concentrations can vary 

seasonally and season of birth and conception may also be associated with birth outcomes 

(Strand et al. 2011). Thus, based on the estimated period of conception, an indicator 

variable for season of conception was created. Primarily, Mexico City has three seasons; 

cool dry season (November to January), warm dry season February to April), and the wet 

season (May to October) (Molina et al. 2009; Marr et al. 2004).  

From this list, covariates were examined to identify potential confounders, effect 

modifiers, and mediators. Our goal was to exclude potential mediators, so as not to over-

adjust our models and potentially bias our results (Schisterman et al. 2009).   Potential 

confounding factors, identified through the use of directed acyclic graphs (DAGs), were 

automatically included in adjusted models of air pollution and fetal anthropometric 

parameters. The first potential confounder was maternal age, a known predictor of IUGR, 

which could also potentially be associated with systematically different outdoor pollution 

exposures. The amount of pollutant uptake varies by the physical activity being 

performed and a person’s energy expenditure and basal metabolic rate; all of these factors 

differ by age according to exposure assessment models like the Environmental Protection 

Agency’s Consolidated Human Activity Database (CHAD) (McCurdy T. 2000).  Also, 

we know that fetal growth assessed at birth differs by the baby’s sex (Ghosh et al. 2007) 

and that sex-specific differences have been found when examining fetal parameters 
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assessed in utero by ultrasound (Schwarzler et al. 2004).  However, there is a lack of 

strong support in the literature of the interaction between air pollution exposure and 

pregnancy outcomes, especially restricted growth, so we did not address effect 

modification but instead all models were also adjusted for fetal sex.  Maternal education 

(a socioeconomic status (SES) indicator) was also considered as a potential effect 

modifier , given that women with lower SES may live in more polluted neighborhoods 

and may have more physiological and psychological factors that could adversely affect 

maternal health (O'Neill et al. 2003). SES could explain differential misclassification of 

ambient exposures among Mexico City women. Women with lower SES may spend more 

time outdoors as a result of occupation or primary modes of transportation being walking 

or public transit (Calderon-Garciduenas and Torres-Jardon 2012). Also, it is important to 

consider that women with a lower SES may have to work more during pregnancy and 

may spend more time away from home. Finally, known risk factors of IUGR (parity, 

BMI, and alcohol consumption) were statistically examined to determine if they should 

be added to the models as precision variables, that is, variables that would also explain 

variance in model outcomes and improve statistical power, as described in detail later, 

after regression models are introduced.  

4.3.5 Fetal Growth and Growth Trajectories 

Since our goal was to evaluate the possible influence of air pollutant exposure on 

attained size of fetal parameters, we considered the shape of the four fetal parameters’ 

growth trajectories across gestation when choosing our data analysis strategy. The growth 

trajectory of head circumferences (for example) measured in 4,234 fetuses appeared, on 

average, linear between 15 and 25 weeks of gestation and then somewhat curvilinear and 
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beginning to flatten out after 25 weeks (Schwarzler et al. 2004). We thus did not want to 

assume that our population’s fetal parameters would exhibit a simple linear growth rate 

that is adequately characterized by a single slope throughout gestation, and potentially 

calculate spurious associations with air pollution by missing these variations in growth 

rate at different stages of gestation. Because we had repeated measures, an additional 

issue in our data was that the ultrasound measures were taken during clinic visits at 

various points in gestation, not always at the same point for each woman.  This is referred 

to as ‘unbalanced’ data and we wanted to apply methods that would accommodate this 

feature.    

 

4.3.6 Statistical Analysis 

To start, univariate analyses of pollutant exposure variables and covariates of 

interest were performed to examine variable distributions.  To assess potential 

multicollinearity, the correlations (Pearson or Spearman’s, depending on variable 

distribution) between the covariates were examined. Careful evaluation of the data 

to identify outliers (data entry errors and/or biologically implausible values) and extreme 

values (measurements that would not be an outlier at the population level, but would be 

implausible at the individual level) was performed prior to all analyses.  For each of the 

four fetal parameters, individual panel plots were created for all the women to ensure that 

parameter values were increasing with gestational age, taking into account potential 

measurement error using the intraclass correlation coefficients calculated in the 

previously described validation study.  Implausible values were checked for data entry 
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errors using the originally recorded clinic values, and assigned as missing if they could 

not be corrected. 

 

4.3.7 Model Selection: Fetal growth trajectories 

Univariate analysis was performed to check the normality of each fetal parameter 

distribution (HC, AC, FL, and BPD).  To characterize the growth trajectories of these 

parameters, we sought a modeling technique that would be flexible enough to 

accommodate the potential non-linearities in fetal growth mentioned previously. Based 

on the work of Wen et al (Wen et al. 2012),  we applied a fractional polynomial approach 

which can capture potential nonlinearity at different points in the growth curve to model 

fetal parameters as a function of gestational age in weeks.  We modified the SAS macro 

they provided (Wen et al. 2012) to allow us to fit 127 candidate models of varying 

polynomial degrees for each of the four fetal parameters.  The expected value of the fetal 

parameter, e.g., head circumference (HC) was modeled as  

                                              

                                              m 

Model A  E(HC) = b0 +∑ + bjGestational_Agepj, 

                              j=1  

where m is the degree of the model, j is the number of covariates that we are selecting 

powers for and powers pj are selected from a fixed set of seven candidate values, ranging 

from  -1 to 3.  Although the previously referenced paper selected 8 candidate values, we 

chose gestational age powers that best fit our data. First, the model covariance structure 

for the mean model was determined by using the most complex model (the one including 
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all seven candidate powers) to test several spatial covariance structures by comparing the 

model fit statistics (smallest Bayes Information Criterion (BIC)).  This was done because 

the data were from an unbalanced study design. The best covariance structure for our data 

was to assess the random effects only, which was left unstructured for all fetal outcome 

models. Then, using the selected covariance parameters, we again used the model fit 

statistic BIC to identify the best fitting degree of polynomial to capture the nonlinearities 

of fetal outcomes over time. As seen in (Schwarzler et al. 2004), the fetal parameters 

(HC, AC, BPD, and FL) have growth patterns that are unique from each other, and 

therefore polynomial models that best fit the data may differ by fetal parameter. To 

illustrate, a potential fetal parameter (HC) model in which a third degree polynomial was 

the best fit for our analysis:  

Model B  HCij=β0i+ β1 Gestational Ageij + β2 Gestational Age2
ij + β3 Log(Gestational Age)

ij +εij  

Here, i represents the ith fetus and j the jth measurement.   Because the ultrasound 

measures are repeated within a fetus, these models are mixed effect models to 

accommodate that structure. 

Once the best fitting mixed effects fractional polynomial model was identified for each of 

the four fetal parameters, fetal parameter growth trajectories were estimated at both the 

population and individual level, using the predicted values from the previously described 

model.  We could then plot the average fetal parameter growth curve over gestation in 

this population sample. The parameters of Model B can be used to estimate attained HC 

size at any given age (time in gestation). 
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4.3.8 Assessing Associations between Covariates and Fetal Growth 

Once the four trajectory models were chosen, the next step was to add covariates. As 

previously mentioned, all models were adjusted for maternal age and fetal sex.  

Additionally, select covariates (parity, BMI, and alcohol consumption) were singularly 

added to the unadjusted fractional polynomial models of each of the four fetal parameters 

(Model C), to examine whether they improved statistical power and should be included as 

precision variables in fully adjusted models.  

Model C   HCij=β0i+ β1 Gestational Ageij + β2 Gestational Age2
ij +  β3 Log(Gestational Age)ij   

                             + β4 Covariateij + β5 Gestational Age*covariateij+ β6 Gestational Age2*covariate ij  

                             + β7 Log(Gestational Age) *covariate ij +εij 

 

We used the likelihood ratio test to determine if each of the covariates was a significant 

predictor of fetal parameters. The null hypothesis was that the interaction between the 

covariate and the gestational age terms (which examine the relationship between the 

covariates and the fetal parameter outcomes as a function of time) is equal to zero (Ho: 

β4 through β7 = 0).  Therefore, if any of these terms did not equal to zero (p≤ 0.05), then 

we rejected the null hypothesis and included all the interaction terms. If all terms were 

equal to zero (p≥ 0.05), we then failed to reject the null and concluded that those 

predictors were not significantly adding information to the models. 

 Our main exposures of interest were maternal first-trimester exposures to O3 and 

PM2.5.  First, we added the air pollutant exposure variables (first trimester concentrations) 

as predictors to the fractional polynomial mixed-effect models (with random effects for 

the intercept and the linear gestational age term to account for the within person variance 
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of each fetal measurement) chosen as the best fitting model for each fetal anthropometric 

parameter. An interaction term between gestational age and the pollutant was used to 

assess the association between pollutant exposure and changes in fetal parameters over 

time. Models were fashioned like the example in Model C, with the substitution of 

pollution variables for covariate variables in the unadjusted pollutant models. 

Additionally, maternal age was added as a covariate for all these models.   

As noted, parameters of the mixed effect fractional polynomial model can be used 

to estimate attained size at any time in gestation.  We chose to look at estimates at 12, 26, 

and 37 weeks of gestation. These time periods correspond with attained sizes at the end 

of first trimester and second trimester and at term, respectively. With the pollutant 

covariates, trajectories of each fetal parameter can be plotted for different levels of 

exposure, e.g., an inter quartile range (IQR) difference in first trimester ozone 

concentration. Differences between estimated attained fetal parameter sizes at any given 

age can be calculated for mothers with first trimester exposures falling in the 75th 

percentile versus 25th percentile of pollutant concentrations. 

Finally, pollutant models adjusting for maternal age and fetal sex were further 

adjusted for selected precision covariates to enable estimation of fully adjusted air 

pollution associations with the four fetal parameters.  The pollutant predictors were 

modeled separately, in single pollutant models. All analyses were performed in SAS 9.3 

(SAS Institute Inc., Cary, NC, USA.) 

4.4 Results 
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Data was available for 705 mother-fetal pairs. Through the DAG analysis, we 

identified maternal age, education and fetal sex as potential confounders and/or effect 

modifiers. However, data for maternal educational attainment was missing for more than 

eighty percent of the participants, so this variable was not included in the main analysis. 

We excluded women missing information on potential confounders and effect modifiers; 

the final analysis dataset consisted of information from 625 mother-fetal pairs. The mean 

±standard deviation (SD) age of mothers was 24.84 ± 5.89 years. Table 1 shows 

demographic and clinical characteristics for the mother-fetal pairs.  

Mean first trimester kriged and city-wide average estimates of PM2.5 and O3 for 

all pregnancies were highly correlated (r=0.997 and r=0.979, p<0.001), respectively 

(Table 2). Correlations between PM2.5 and O3 first trimester averages were moderately 

correlated, for both exposure metrics, with all correlation coefficients being greater than 

0.47. However, changes in correlations as well as mean first trimester concentrations 

were evident when exposure was assessed based on season of conception. Rainy season 

had lowest mean concentrations of PM2.5 for both kriged and city-wide average estimates 

( 20.95µg/m3 and 21.21 µg/m3), respectively. Highest concentrations of O3 were 

observed in the warm dry season (66.40 ppb and 69.34 ppb). For all seasons, pollutant 

concentrations for both exposure metrics remained strong, but between pollutant 

correlations decreased between the rainy and both dry seasons (warm and cool). For all 

seasons, citywide average estimates of pollutant exposures were larger than kriged 

estimates. Therefore, kriged estimates of exposure were used in all of the trajectory 

models.   
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Fetal parameters were best fitted using 3rd (HC, BPD and FL) and 4th (AC) 

degree fractional polynomial, mixed-effects models of gestational age. Model details of 

fetal parameters as a function of time include:  log (gestational age), linear gestational 

age and gestational age squared for HC and BPD models. Models of FL were fit using the 

square root of gestational age, linear gestational age and gestational age squared. Finally, 

AC was modeled using 4 terms of gestational age: log (gestational age), linear gestational 

age, gestational age squared and gestational age cubed. Pollutant models were all 

adjusted for maternal age and fetal sex. Likelihood ratio tests did not support further 

adjustment of prediction models for potential precision variables. 

 

Fetal parameter measurements were collected at each visit; the median number of 

ultrasound scans per mother-fetal pair was five. Table 3 presents the detailed descriptives 

of ultrasound measurements by trimester. First trimester scans were limited, with the 

majority of scans occurring during second trimester exams, and third trimester scans were 

only slightly fewer than those occurring in the second trimester. In total, over 3,100 

ultrasound measurements were collected for 625 fetuses, for each anthropometric 

parameter. 

 

Comparisons of fetal curves of estimated attained size of fetal HC associated with 

kriged estimates of first trimester maternal exposure to PM2.5 and O3, adjusting for 

maternal age, are presented in Figure 1. Attained size of HC was estimated for mean 

exposures +/- one IQR at each week of gestation (data not shown in table form, but 

estimates are graphically presented in Figure 1). Figure 1 also displays the plots of the 
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estimated differences in HC size between two exposure quartiles. Having a one IQR (75th 

percentile minus the 25th percentile, that is, 8.97µg/m3) higher first trimester exposure to 

PM2.5 was associated with decrements in attained HC size at 12 to 14 weeks (β’s = -0.404 

to -0.204 cm, p<0.05) but was positively associated with HC growth from weeks 35-42 

(β’s = 0.113 to 0.360 cm, p<0.05). Estimates of association between attained size for the 

all four fetal parameters, at the end of first and second trimester and at term, and maternal 

first trimester exposure to PM2.5 are presented in Table 4. No evidence of an association 

was observed between increased exposure to PM2.5 and HC prior to model adjustment for 

maternal age and fetal sex, (β = -0.363 cm, 95% CI: -0.749, 0.024).  However, adjusting 

for potential confounders, an association was seen between maternal first trimester PM2.5 

exposure and attained fetal HC at gestational week 12(β = -0.404 cm, 95% CI: -0.789, -

0.020). Increased first trimester maternal exposure to PM2.5 was consistently associated 

with increased HC attainment at 37 weeks of gestation. Except for the small window of 

increased HC growth during weeks 35-42 (β’s = 0.113 to 0.360 cm, p<0.05), which can 

be seen in Figure 1, no association was observed between increased maternal O3 exposure 

in early pregnancy and HC growth. 

Growth trajectories at the 75th and 25th quartile exposure categories were more 

consistent between pollutants for fetal BPD growth curves (Figure 2). Increased maternal 

PM2.5 exposure, adjusting for maternal age and fetal sex, was inversely associated with 

estimated growth of BPD at 16 –28 weeks of gestation (β’s = -0.067 to -0.045 cm, 

p<0.05). Adjusting BPD prediction models for maternal age and fetal sex did not change 

the strength of association, as seen in Table 4. The crude estimated difference in HC at 26 

weeks for a one IQR difference in first trimester PM2.5 exposure (β = -0.055 cm, 95%CI: 
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-0.096, -0.014) was similar to the difference adjusting for maternal age and fetal sex (β = 

-0.051 cm, 95% CI: -0.091, -0.012).  Similarly, increased estimated maternal O3 exposure 

in first trimester was associated with reduced BPD growth from 22-32 weeks of gestation 

(β’s = -0.064 to -0.045 cm, p<0.05), adjusting for maternal age and fetal sex. The 

magnitude of effect estimates between pollutant types was within the same range. 

However, the time period of reduced growth during pregnancy associated with O3 

exposures occurred later in pregnancy compared to the observed association between 

increased estimated PM2.5 exposure and BPD growth. Estimates of difference in BPD size 

by IQR difference in maternal exposure to O3 at 12, 26, and 37 weeks of gestation (Table 

5) are similar to those reported for PM2.5 exposure (Table 4).  

Estimated differences in attained FL were not associated with increased first 

trimester exposure to PM2.5 (Figure 3). Although no evidence of association was seen 

between fetal FL growth and a one IQR difference in maternal exposure at the three 

selected time periods reported in Table 4, point estimates of effect from the unadjusted 

model (β = -0.001 cm, 95%CI: -0.035, 0.032) and adjusted model (β = -0.002 cm, 

95%CI: -0.035, 0.031) were slightly negative in magnitude for the 26 week point. 

However, reduced growth of FL during 16-29 weeks of gestation was associated with 

increased estimated maternal first trimester to O3 (β’s =-0.046 to -0.033 cm, p<0.05), 

Figure 3. Similar to the other anthropometric parameters, effect estimates of the 

unadjusted model at week 26 (β = -0.041 cm, 95%CI: -0.074, -0.008) did not differ after 

adjusting for maternal age and fetal sex (β = -0.042 cm, 95%CI: -0.075, -0.010), Table 5.  
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Finally, fetal AC was the only parameter that showed no significant association 

between IQR of increased maternal exposure to both O3 and PM2.5 during the first 

trimester and difference in estimated attained size (Figure 4). Although not significant, 

point estimates of the difference in attained size of HC by IQR increase of maternal PM2.5 

exposure were negative during weeks 16 to 20, as seen in Figure 4 . However, models of 

higher estimated maternal exposure to O3 during the first trimester had negative point 

estimates of difference in attained size from 12-34 weeks of gestation. The point 

estimates from 12, 26 and 37 weeks of gestation for both exposure pollutants (Tables 4 

and 5) show similar findings.  

 

4.5 Discussion 

Results from this prospective cohort study, beginning early in pregnancy, suggest 

that increased maternal exposure to air pollution in the first trimester is negatively 

associated with fetal growth at various periods of gestation for some pollutants and 

parameters. Heterogeneity in the results may depend on the air pollutant as well as fetal 

sex for some parameters.   

4.5.1 Repeated Measures of Fetal Outcomes and Predictors of Fetal Growth Restriction 

To date, few studies have examined the relationship between air pollution and 

fetal growth restriction with the use of ultrasound measurements to assess fetal growth. 

The methodology and results of these relevant studies have been discussed in detail in a 

recent review (M. M. Smarr et al. 2013). Briefly, previous studies varied in sample sizes 

ranging from 271 to 7,777 mother-fetal pairs, and only one study had repeated ultrasound 

scans, and only for ≤3 % of their population (Hansen et al. 2008). A more recent study 
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that was not included in the review (Ritz et al 2014) used data collected from 566 mother-

fetal pairs in Los Angeles, California. Ultrasounds were collected during a 2 week 

window at three time points 19, 28 and 37 weeks of gestation ( plus or minus one week )-

- with 84% of their study population completing three ultrasound examinations.   

The data collected from 625 mother-fetal pairs in the present analysis falls within 

the sample size range of previously published work and had more repeated ultrasound 

measures for all four fetal parameters, ranging from 1 to 9 scans, with the median of 5 

ultrasound scans per participant. The access to data collected at multiple time periods 

during pregnancy was a primary strength of this analysis. Repeated measures allowed for 

a longitudinal analysis of the association between fetal growth and maternal exposure to 

air pollution.   

The ability to assess changes in fetal parameters over time has several advantages.  

It may help to distinguish between the constitutionally small fetus and the growth 

restricted fetus (Woodruff et al. 2009), since variations in fetal size are a natural 

occurrence by the third trimester, and SGA estimates combines fetuses who are both 

pathologically and constitutionally small (Ananth and Vintzileos 2009). Also, the 

assessment of IUGR at birth ignores the possibility that injury to growth could occur 

during one time period, but the fetus could continue to grow and achieve population 

growth standards by birth (Hemachandra et al. 2006) . Further, a clinical model that 

examined fetal growth occurring in early and late stages of pregnancy attributed early 

fetal growth to hyperplasia (cell proliferation), and later growth to hypertrophy (cell 

growth) Winick 1974). The author proposed that agents that damage the fetus during the 

first trimester may reduce the cell population, thereby causing a permanent hindrance to 
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the growth potential, but that the damage caused later in gestation would reduce the cells’ 

size, but the infant could potentially later catch-up to predicted growth (Winick 1974). 

Having serial ultrasound measurements of fetal growth allows examination of changes 

occurring in utero and may help to distinguish between growth restriction resulting from 

extrinsic factors (pollution, alcohol, etc.) from intrinsic factors (genetics, malformations, 

etc.). 

Repeated clinical visits also provided data on maternal covariates (smoking, 

alcohol consumption, nutrition, etc.) during pregnancy. However, one limitation for the 

present analysis was the amount of missing information for some variables of interest, 

particularly maternal education, an indicator of SES for our study population. Thus, we 

were unable to adjust our main prediction models for maternal SES which is a risk factor 

for IUGR and could potentially explain differential misclassification of exposures.  In 

addition to education, we only had information on ETS exposure for fifty-five percent of 

the study population. Perhaps this could explain the lack of significance when testing this 

variable for inclusion the prediction models as a precision variable.  

4.5.2 Exposure Assessment of Air Pollutants 

Exposure to air pollutants was assessed using two methods 1) citywide averages 

and 2) ordinary kriging. While citywide average provides a spatially averaged estimate of 

exposure, kriging uses the geocoded residential address of the women to provide an 

interpolated estimate. We believed that the kriged metric would provide a more precise 

estimate of maternal exposure. However, we found the two methods to be highly 

correlated. This primary reason for the similarity in exposure estimates may be the lack 

of spatial variability in residence location of our study participants; many of the women 



 
 

106 
 

resided in the central region of Mexico City. It has been suggested that for accurate 

assessment of air pollutant variability on smaller scales (i.e. neighborhood level) the use 

of land use regression models (LUR) are more effective than basic interpolation methods 

(i.e. ordinary kriging) (Gilliland et al. 2005). Also, a simulated study of 1,000 women of 

air pollution and preterm birth in Mexico City (Rivera-González 2012) found pollutant 

estimates of citywide averages, ordinary kriging and inverse distance weighting (IDW) 

produced highly correlated results. These three methods all involve averaging of pollutant 

concentrations from stationary monitors to a certain degree. This lends support to the idea 

that any method that uses some degree of averaging of pollutant concentrations may not 

be as distinct from each other, compared to a metric that only uses data from a single 

monitor (i.e. nearest monitor). Additional planned analyses comparing effect estimates 

for birth outcomes, including fetal growth, can tell us whether the differences in the 

exposure metrics result in significantly different associations.  We selected first trimester 

averages of pollutant exposures for the present analysis; future work using other 

gestational time periods will allow examination of potential critical periods of exposure 

during gestation.  

 

One limitation is the lack of time activity data available for our study participants 

at the time of this analysis.  Having activity data would help with the weighting of air 

pollution exposures based on the amount of time that the women spend at home, since we 

are using their residential addresses to estimate exposure. Also, a more comprehensive 

assessment model would include geocoded addresses of the women’s occupation. This 

way, interpolation methods could be used but monitors assigning the participant’s 
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exposure would be a combination of the primary locations that she spends her time (home 

and work). Also, concentrations would be weighted based on where she spends the 

majority of her time between the two primary locations. Another possible consideration 

for future studies would be the use of time activity data to create more in-depth 

assessment models that can estimate uptake of pollutants based on energy expenditure 

during specific activities at the locations that concentrations are being estimated for.  

Overall, though, our exposure assessment approach is comparable to those employed in 

other similar studies, some of which lacked even residential location data. 

 

4.5.3 Air Pollution and Fetal Growth 

 Although time periods of fetal attained size reduction associated with early 

maternal exposures to air pollutants varied by a few weeks, these occurrences occurred in 

the second and early third trimester. For example, increased maternal exposure to O3 in 

early pregnancy was significantly, inversely associated with BPD and FL size in 

gestational weeks during second and early third trimester, and covariate adjustments did 

not significantly change the strength of associations. Reductions in fetal size in the 

second trimester of pregnancy are most often the focus of many epidemiological studies, 

as it is safer to associate these changes with alterations in maternal and fetal environment, 

compared to third trimester assessment of growth. Given that fetal growth in the late third 

trimester is expected to slow down, as a natural progression of pregnancy, it is important 

to note that the changes observed in early third trimester are still worth discussing, as 

they may contribute to the overall understanding of the effect of air pollution on normal 

fetal growth.  



 
 

108 
 

Hansen and colleagues restricted their analysis to scans collected in mid-gestation 

( 13-26 weeks), which makes it hard to compare the totality of our results, given that they 

were the only study to previously examine the effects of O3 on growth (Hansen et al. 

2008) While estimates of mean change in fetal parameters were negative for an IQR ( 

8ppb) increase in average monthly O3 exposure was observed for many of the four 

sampling periods, a significant reduction was only observed for fetal AC (1.42 mm) in 

the second trimester with increased during days 31-60. Although it is difficult to compare 

results between the two studies, AC was the only fetal parameter that we were unable to 

observe a significant association between reductions in attained size and a one IQR 

(13.28 ppb) increase in first trimester O3 exposure. It is also noted that estimated 

reductions in attained AC size at week 26 in our analysis was similar in magnitude (0.142 

cm). 

Mexico City does not have established fetal reference curves, so fetuses in our 

population serve as their own controls from visit to visit. This is different from the 

Hansen study, which examined fetal parameter measurements collected for the creation 

of population curves. The large difference in sample size between our analyses could 

explain similar effect estimates but lack of significance. We also performed a 

longitudinal analysis, whereas the previous study was cross-sectional; heterogeneity in 

methodology could explain the difference in magnitude of the results. None of the 

previously published studies examined PM2.5, so we are unable to compare our findings 

in that regard.  

We used single pollutant models in this analysis. Since air pollution is ubiquitous 

and is a mixture of various chemicals, a multi-pollutant model is more representative of 
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‘real life’ exposures. However, we aimed to obtain results which may help to better 

identify areas for further study in terms of understanding mechanisms for the relationship 

between air pollution and birth outcomes.  Furthermore, the literature in this area reports 

single pollutant effects, so our approach enhances comparability. We found consistent 

reduction of BPD growth in models of increased maternal exposure to air pollution, using 

IQR differences in kriged estimates of PM2.5 and O3. BPD was not associated with O3 

exposures in the Australian study, the only one to look at this pollutant (Hansen et al. 

2008) . In other studies (Ritz et al. 2014; Aguilera et al. 2010; Slama et al. 2009), BPD in 

second and third trimesters was negatively associated with increased exposures to 

nitrogen dioxide, markers of vehicle emission (BTEX compounds) and benzene, 

respectively. Although comparison of our findings with these studies is challenging, as 

several differences in exist in the methodologies and the pollutant types, the majority of 

the results seem to suggest that BPD growth is affected by maternal exposure to a 

pollutant mixture.  

We chose to model fetal parameters as a function of time with the use of 

fractional polynomial, mixed-effects models to capture the non-linearity of our four 

anthropometric parameters, instead of using splines. While splines are known to have 

more flexibility in modeling non-parametric relationships, fractional polynomial models 

are more straightforward in application. Also, a simulation study comparing the use of 

fractional polynomial, penalized and restricted cubic spline models (Binder et al. 2013) 

found fractional polynomial models to be better prediction models for simple functions. 

All of the gestational age terms for the trajectories we fit were ‘simple’ in nature, 

meaning that they are not extremely ‘wiggly’ with regards to the shape of the curves.  
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4.5.4 Clinical and Epidemiological Relevance 

Biological mechanisms explaining associations between maternal exposure to air 

pollution and pregnancy outcomes are not well defined. However, a potential strength of 

our analysis is the ability to examine fetal growth and potential growth restriction 

longitudinally. An important clinical indicator of growth restriction over time is the 

HC/AC ratio.  “Normal” HC at birth but reduced AC results in an inflated HC/AC ratio, 

which indicates asymmetric growth restriction.  While the nature of growth restriction as 

it relates to the timing of asymmetric growth restriction is debated, it is clearly 

understood that asymmetric growth restriction is associated with higher risks of neonatal 

morbidity and mortality(Dashe et al. 2000). An elevated HC/AC ratio in second trimester 

is believed to be the result of placental insufficiency resulting from external factors, while 

asymmetric growth restriction in the third trimester is attributed to aneuploidy (Riyami et 

al. 2011).   

The AC point estimates in the second trimester were negative in models of 

increased maternal exposure to O3 in the first trimester. If higher O3 exposure is in fact 

involved in reducing attained AC during the second trimester, placental insufficiency 

could be a mechanism explaining how this pollutant could be relevant to restricted fetal 

growth, perhaps by affecting vascular function and resulting in insufficient transport of 

key nutrients across the placental membrane.   

4.6 Conclusion 

Our results support the growing literature showing that maternal exposure to air 

pollutants in early pregnancy may alter fetal growth as reflected by attained size in the 

second trimester of gestation. We applied a modeling approach that was able to capture 
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differing growth trajectory shapes according to fetal parameter and enabled quantification 

of differences in attained size by pollutant at multiple weeks across gestation, adjusting 

for relevant covariates.  Future research focusing on changes in fetal growth rates of key 

anthropometric parameters and clinical indicators of fetal growth would help to improve 

our understanding of biological mechanisms that may underlie the observed links 

between environmental exposures and fetal and infant health.  
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Figure IV-1a. Predicted fetal HC trajectories and estimated differences in attained size 
per IQR increase in first trimester PM2.5 exposure 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure IV- 1a: Predicted fetal HC trajectories, adjusted for maternal age and fetal sex , per maternal 
first trimester exposure (mean, 25th and 75th percentile) to PM2.5 (left). Estimated differences in 
attained size of fetal HC per 1 IQR difference in exposure (right).  Reported p-value from likelihood 
ratio test of overall association between  PM2.5  exposure and estimated attained parameter size. 
 

p<.0001 
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Figure IV-1b. Predicted fetal HC trajectories and estimated differences in attained size 
per IQR increase in first trimester O3 exposure 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
  

Figure IV-1b: Predicted fetal HC trajectories, adjusted for maternal age and fetal sex , per maternal 
first trimester exposure (mean, 25th and 75th percentile) to O3 (left). Estimated differences in attained 
size of fetal HC per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio 
test of overall association between  O3 exposure and estimated attained parameter size. 
 

p<.0001 
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Figure IV-2a. Predicted fetal BPD trajectories and estimated differences in attained size 
per IQR increase in first trimester PM2.5 exposure 
 
 

 

 

 

 

 

 

 

 

 

 

 
  

  

Figure IV-2a: Predicted fetal BPD trajectories, adjusted for maternal age and fetal sex , per maternal first 
trimester exposure (mean, 25th and 75th percentile) to PM2.5 (left). Estimated differences in attained size of 
fetal BPD per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio test of overall 
association between  PM2.5  exposure and estimated attained parameter size. 
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Figure IV-2b. Predicted fetal BPD trajectories and estimated differences in attained size 
per IQR increase in first trimester O3 exposure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-2b: Predicted fetal BPD trajectories, adjusted for maternal age and fetal sex , per maternal first 
trimester exposure (mean, 25th and 75th percentile) to O3 (left). Estimated differences in attained size of 
fetal BPD per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio test of overall 
association between  O3 exposure and estimated attained parameter size. 
 

p<.0001 



 
 

116 
 

 

 

 

 

 

  

Figure IV-3a.Predicted fetal FL trajectories and estimated differences in attained size per IQR 
increase in first trimester PM2.5 exposure 

Figure IV-3a: Predicted fetal FL trajectories, adjusted for maternal age and fetal sex , per maternal 
first trimester exposure (mean, 25th and 75th percentile) to PM2.5 (left). Estimated differences in attained 
size of fetal FL per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio test of 
overall association between  PM2.5 exposure and estimated attained parameter size. 
 
 

p<.0001 
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Figure IV-3b.Predicted fetal FL trajectories and estimated differences in attained size per 
IQR increase in first trimester O3exposure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure IV-3b: Predicted fetal BPD trajectories, adjusted for maternal age and fetal sex , per maternal 
first trimester exposure (mean, 25th and 75th percentile) to O3 (left). Estimated differences in attained 
size of fetal BPD per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio test 
of overall association between  O3 exposure and estimated attained parameter size. 

 

p<.0001 
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Figure IV-4a. Predicted fetal AC trajectories and estimated differences in attained size 
per IQR increase in first trimester exposure to PM2.5 
 

 

 

 

 

 
 
   
 
 
 
 
 
  

Figure IV-4a: Predicted fetal AC trajectories, adjusted for maternal age and fetal sex , per maternal first 
trimester exposure (mean, 25th and 75th percentile) to PM2.5 (left). Estimated differences in attained size of 
fetal AC per 1 IQR difference in exposure (right).  Reported p-value from likelihood ratio test of overall 
association between  PM2.5 exposure and estimated attained parameter size. 
 
 

p<.0001 
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Figure IV-4b. Predicted fetal AC trajectories and estimated differences in attained size 
per IQR increase in first trimester exposure to O3 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure IV-4b: Predicted fetal AC trajectories, adjusted for maternal age and fetal sex , 
per maternal first trimester exposure (mean, 25th and 75th percentile) to O3 (left). 
Estimated differences in attained size of fetal AC per 1 IQR difference in exposure 
(right).  Reported p-value from likelihood ratio test of overall association between  O3 
exposure and estimated attained parameter size. 

 
 

p<.0001 
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Table IV- 1. Demographics of the 625 mother-fetal pairs 

 

 

  

Parameters n Mean±SD  Min-Max
Age (years) 625 24.84± 5.89 18.00-46.00
Body Mass Index (kg/m2) 553 26.03± 5.64 15.18-54.42
Years of education 99 3.23±1.99 0.00 -9.00
First Trimester Kriged PM2.5 (µg/m3) 625 24.68±5.44 13.28 - 36.02
First Trimester Kriged O3 (ppb) 625 55.92 ±8.58 38.82 - 77.17

Parity: 479
0 201 41.96
1 155 32.36
2 or more 123 25.68
Time spent with smoker inside the same room: 349
0 minutes 46 13.18
< 15 minutes 183 52.44
15-30 minutes 43 12.32
31 minutes - 1 hour 23 6.59
1 -1.5 hours 17 4.87
> 1.5 hours 37 10.60
Alcohol consumption: 560
yes 71 12.68
no 489 87.32
Use of coal stove: 553
yes 28 5.06
no 525 94.94
Use of wood stove: 550
yes 16 2.91
no 534 97.09
Fetal sex: 625
males 295 47.2
females 330 52.8

Frequencies; No. (%)



 
 

121 
 

 

Table IV- 2. Overall means and Pearson correlation coefficients for first trimester air 
pollutant metrics 

 
 
 
 
  

Exposure Metric Mean ±SD Range Kriged PM2.5 CWA PM2.5 CWAO3 Kriged O3

All Pregnancies (N=625)

First Trimester Kriged PM2.5 (µg/m3) 24.85±5.52 13.28 - 36.02 1.000

First Trimester Citywide Average PM2.5 (µg/m3) 24.96± 5.49 13.59 - 34.41 0.997 1.000
First Trimester Citywide Avergage  O3 (ppb) 55.86 ±8.66 38.15 - 79.06 0.501 0.531 1.000
First Trimester Kriged O3 (ppb) 57.74 ±8.86 41. 54 - 80.56 0.474 0.481 0.979 1.000
Rainy Season Conception (N=276)
First Trimester Kriged PM2.5 (µg/m3) 20.95±5.87 13.28 - 36.02 1.000

First Trimester Citywide Average PM2.5 (µg/m3) 21.21±5.47 13.59 - 34.17 0.998 1.000
First Trimester Citywide Avergage O3 (ppb) 51.20±5.62 38.15 - 61.72 0.744 0.734 1.000
First Trimester Kriged O3 (ppb) 52.65±5.32 41.54 - 64.78 0.755 0.763 0.981 1.000
Warm Dry Season Conception (N=173)
First Trimester Kriged PM2.5 (µg/m3) 26.65±3.57 18.45 - 32.90 1.000

First Trimester Citywide Average PM2.5 (µg/m3) 27.13±3.39 19.97 - 33.15 0.990 1.000
First Trimester Citywide Avergage O3 (ppb) 69.34±5.25 56.46 - 80.56 0.753 0.791 1.000
First Trimester Kriged O3 (ppb) 66.40±4.96 52.73 - 79.06 0.643 0.677 0.920 1.000
Cool Dry Season Conception ( N=176)
First Trimester Kriged PM2.5 (µg/m3) 27.54±3.95 18.70 - 33.69 1.000

First Trimester Citywide Average PM2.5 (µg/m3) 27.99±3.98 19.35 - 34.41 0.997 1.000
First Trimester Citywide Avergage O3 (ppb) 53.75±4.12 44.88 - 67.13 0.332 0.325 1.000
First Trimester Kriged O3 (ppb) 50.83±3.80 39.84 - 62.08 0.345 0.346 0.870 1.000

p<0.0001 for all correlations 



 
 

122 
 

 
 
Table IV- 3. Descriptives of ultrasound-measured anthropometric parameters for 625 
fetuses 

 

 

 

Table IV- 4. Estimated attained size of fetal parameters per mean maternal first trimester 
exposure and difference in predicted size per 1 IQR (8.97 µg/m3) difference in maternal 
PM2.5 exposure 

 
 
 

 

 

 

 

Fetal Characteristics (N=625) No. Scans Range No. Scans Mean ± SD No. Scans Mean± SD No. Scans Mean± SD
Head Circumference (cm) 3119 5.60-35.40 8 7.59  ± 1.43 1646 17.90 ± 4.73 1465 29.99  ± 2.52
Abdominal Circumference (cm) 3112 5.40-38.40 6 7.05 ± 1.31 1638 15.60 ± 4.35 1468 28.60 ± 3.46
Biparietal Diameter (cm) 3114 1.50-9.70 8 2.11 ± 0.38 1638 4.80 ± 1.25 1468 8.10 ± 0.74
Femur Length (cm) 3109 0.80-8.03 7 1.01 ± .18 1646 3.37 ± 1.11 1456 6.33 ± 0.72

Total 1st Trimester 2nd Trimester 3rd Trimester

Fetal Parameters
Head Circumference Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI
Attained size (cm) 7.278 (7.071, 7.492) 24.368 (24.457, 24.457) 32.612 (32.059, 32.692) 7.282 (7.071, 7.492) 24.373 (24.457, 24.457) 32.615 (32.693, 32.693)
Difference in attained size (cm) -0.363 (-0.749, 0.024) 0.037 (-0.095, 0.169) 0.145 (0.021, 0.268) -0.404 (-0.789, -0.020) 0.047 (-0.082, 0.177) 0.161 (0.039, 0.283)
Abdominal Circumference
Attained size (cm) 5.745 (5.402, 6.087) 21.668 (21.562, 21.774) 32.313 (32.195, 32.431) 5.764 (5.423, 6.104) 21.674 (21.570, 21.779) 32.319 (32.202, 32.435)
Difference in attained size (cm) -0.108 (-0.646, 0.430) 0.063 (-0.104, 0.229) 0.109 (-0.065, 0.283) -0.092 (-0.629, 0.445) 0.068 (-0.095, 0.231) 0.112 (-0.056, 0.281)
Biparietal Diameter
Attained size (cm) 2.049 (1.984, 2.113) 6.523 (6.496, 6.549) 8.869 (8.842, 8.896) 2.053 (1.989, 2.116) 6.523 (6.497, 6.549) 8.870 (8.843, 8.897)
Difference in attained size (cm) 0.028 (-0.069, 0.125) -0.055 (-0.096, -0.014) 0.002 (-0.041, 0.045) 0.029 (-0.067, 0.125) -0.051 (-0.091, -0.012) 0.005 (-0.037, 0.048)
Femur Length
Attained size (cm) 0.732 (0.682, 0.782) 4.872 (4.851, 4.893) 7.097 (7.075, 7.119) 0.734 (0.684, 0.784) 4.873 (4.852, 4.894) 7.098 (7.076, 7.120)
Difference in attained size (cm) 0.024 (-0.063, 0.112) -0.001 (-0.035, 0.032) 0.017 (-0.016, 0.050) 0.024 (-0.062, 0.110) -0.002 (-0.035, 0.031) 0.016 (-0.017, 0.048)
Models were adjusted for maternal age and fetal sex
* p<0.05

Unadjusted
12 weeks 26 weeks 37 weeks 12 weeks

Adjusted
26 weeks 37 weeks

* *

* *
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Fetal Parameters
Head Circumference Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI
Attained size (cm) 7.290 (7.070, 7.509) 24.366 (24.281, 24.452) 32.616 (32.536, 32.696) 7.296 (7.083, 7.510) 24.371 (24.287, 24.455) 32.619 (32.541, 32.698)
Difference in attained size (cm) -0.330 (-0.692, 0.032) -0.057 (-0.189, 0.076) 0.070 (-0.065, 0.205) -0.351 (-0.709, 0.008) -0.058 (-0.188, 0.072) 0.077 (-0.055, 0.209)
Abdominal Circumference
Attained size (cm) 5.785 (5.434, 6.137) 21.669 (21.564, 21.774) 32.314 (32.196, 32.431) 5.807 (5.458, 6.156) 21.676 (21.572, 21.780) 32.319 (32.204, 32.435)
Difference in attained size (cm) -0.059 (-0.591, 0.472) -0.140 (-0.302, 0.022) -0.026 (-0.217, 0.165) -0.046 (-0.579, 0.488) -0.142 (-0.301, 0.018) -0.030 (-0.217, 0.158)
Biparietal Diameter
Attained size (cm) 2.037 (1.974, 2.099) 6.523 (6.497, 6.550) 8.873 (8.846, 8.900) 2.041 (1.979, 2.104) 6.524 (6.498, 6.550) 8.873 (8.846, 8.900)
Difference in attained size (cm) -0.059 (-0.162, 0.044) -0.062 (-0.104, -0.020) 0.013 (-0.034, 0.059) -0.057 (-0.159, 0.045) -0.062 (-0.103, -0.021) 0.013 (-0.033, 0.059)
Femur Length
Attained size (cm) 0.731 (0.682, 0.781) 4.872 (4.850, 4.893) 7.098 (7.075, 7.120) 0.734 (0.684, 0.784) 4.873 (4.852, 4.894) 7.099 (7.077, 7.121)
Difference in attained size (cm) -0.014 (-0.091, 0.063) -0.041 (-0.074, -0.008) 0.015 (-0.025, 0.056) -0.014 (-0.090, 0.063) -0.042 (-0.075, -0.010) 0.015 (-0.025, 0.055)
Models were adjusted for maternal age and fetal sex
* p<0.05

26 weeks 37 weeks
AjdustedUnadjusted

12 weeks 26 weeks 37 weeks 12 weeks

*

*

*

*

Table IV- 5. Estimated attained size of fetal parameters per mean maternal first trimester exposure 
and difference in predicted size per 1 IQR (13.28 ppb) difference in maternal O3 exposure 
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CHAPTER V 

CONCLUSION 
 

5.1. Summary of Research Findings 
 

The objectives of this dissertation research were to 1) identify and establish the use 

of ultrasound measurements of fetal anthropometric parameters as a novel method to 

assess fetal growth in epidemiological studies; 2) perform a quality control and 

assessment (QA/QC) of the ultrasound measurements of four fetal parameters [head 

circumference (HC), abdominal circumference (AC), biparietal diameter (BPD) and 

femur length (FL)] collected by multiple clinicians; and 3) assess the relationship 

between maternal exposure to air pollution during the first trimester of pregnancy and 

fetal growth assessed by repeated ultrasound measurements. This chapter briefly 

summarizes the findings of each specific research aim including results, strengths and 

limitations, with emphasis being placed on public health relevance and implications and 

consideration of future research directions.  

In chapter two of this dissertation, a systematic review of the literature identified a 

small but increasing number of epidemiological studies that have used ultrasound 

measurements to assess potential relationships between fetal growth in utero and 

maternal exposures to air pollution. These findings are a preliminary response to a major 

gap in the literature; the need for methodology that allows for the distinction between the 
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overlapping etiologies that contribute to low birth weight (e.g., preterm birth, intrauterine 

growth restriction). While these studies offer insights that will help to elucidate the 

biological mechanisms explaining adverse pregnancy outcomes related to gestational 

exposures to air pollution, collectively they lack homogeneity in various areas.  A 

published review of methodological issues in studies of air pollution and reproductive 

health found that variability in study design and analysis was a key issue limiting 

comparisons and syntheses of these studies (T.J. Woodruff et al. 2009). To date, only 

seven studies address maternal exposure to air pollution and fetal growth with the use of 

ultrasound data collected during pregnancy. Even with this small number of studies, it 

was difficult to compare results between studies as a result of heterogeneity in the air 

pollutants examined, the time period of exposure and fetal growth assessment, and 

analytic methods.  However, two similarities in the findings were worth noting. First 

most of the studies identified early pregnancy exposures to be a potential window of 

special relevance, with several air pollutants in early pregnancy being negatively 

associated with the growth of fetal anthropometric parameters. The second similarity 

across the studies, with one exception (the Generation R study in the Netherlands), was 

the lack of quantification of measurement error associated with fetal parameter data.  

The results of chapter three addressed the latter concern, specific to our study 

population. The amount of measurement error associated with fetal anthropometric 

parameters collected by various clinicians, using the same ultrasound equipment on the 

same participants on the same day, was found to be minimal between clinicians. 

Statistical analyses accounted for differences in gestational age since measurement error 

increases as these parameters increase in size. This analysis also allowed for the 
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calculation of standard measurement error, which aided in the decision to use data 

collected on BPD by the various clinicians although the mean difference in measurements 

between each clinician pair was statistically significant. Overall, the results of the 

interobserver reliability assessment reduced concerns of measurement uncertainty that 

may have biased the results of effect estimates in the epidemiological analysis of air 

pollution and fetal growth.  

Finally, the results of the analysis in chapter four suggest that longitudinal 

assessment of the growth of fetal anthropometric parameters may help to further the 

understanding of the relationship between early gestational exposures to air pollutants 

and adverse birth outcomes. The use of single pollutant models showed that associations 

between intrauterine growth and air pollutant exposures not only vary by the fetal 

parameter or the timing period of growth assessment, but by the air pollutant of interest. 

The use of prediction models to assess alterations in fetal parameters’ growth across 

pregnancy also lent support to the concept that the effects of air pollution on fetal growth 

may be transient and that catchup growth may explain the lack of reduction in parameter 

size estimated at later periods in pregnancy.  In addition to the studies that have addressed 

air pollution and fetal growth (Aguilera et al. 2010; Hansen et al. 2008; Slama et al. 2009; 

Iniguez et al. 2012a; van den Hooven et al. 2012), this has also been seen in previous 

studies of tobacco smoke and fetal growth parameters (Lampl et al. 2003; Iniguez et al. 

2012b). Although active and passive smoking variables were not primary exposures of 

interest in this analysis, that literature is relevant given similar potential mechanisms and 

similar adverse health outcomes observed for both smoking and air pollution.  
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5.2.  Public Health Implications 

From a public health perspective, the accurate identification of a fetus who is 

growth restricted could help to reduce the risk of infant mortality and childhood 

morbidity associated with IUGR. Therefore, the use of serial ultrasound measurements 

may help to distinguish between the pathologically growth restricted and the 

constitutionally smaller fetuses.  Clinically, early identification of IUGR sets the course 

of management and treatment options for the at-risk fetus, and could potentially reduce 

the number of IUGR related stillbirths. From an epidemiological perspective, using a 

methodology to assess fetal growth prior to birth would help to reduce misclassification 

of smaller neonates as at-risk growth restricted neonates. This would ultimately help to 

improve estimations of both incidence and prevalence of IUGR.  

While the clinical relevance of changes in some of the fetal parameters and ratios 

of the fetal parameters may differ depending on the timing of restriction, the magnitude 

of the reduction, and if changes are on the individual or population level, parameter 

assessment in utero is still beneficial. Assessing changes in the size and growth rate of 

fetal anthropometric parameters that are associated with air pollution exposure could 

inform health educators who make maternal health recommendations, such as altering 

maternal behaviors in order to reduce risk of having a growth restricted fetus. For 

example, if the inhalation of pollutants containing reactive oxygen species is associated 

reduction of fetal AC, oxidative stress may be a hypothesized mechanism, and mothers 

who live in heavily polluted areas may be advised to increase their consumption of more 

foods that are rich in antioxidants as a preventative measure. Results of these studies 

could also provide a foundation for future toxicology studies with the use of fetal animal 
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models to further test hypotheses of biological mechanisms, since the physiology 

explaining the normal growth and development of specific anthropometric parameters 

may be previously understood and the effect of exposure to air pollutants can be explored 

in a more controlled setting.  

Finally, one of the principal motivations behind most research on air pollution and 

human health is the hope of effecting change at a policy level. Pollution abatement is a 

constant concern and the supporting policy is ever changing. Results of this research and 

previous literature of air pollution and fetal growth suggest that maternal exposure to air 

pollution may adversely affect fetal growth and development. Therefore, continued 

research of this nature may encourage future discussions of air quality as it pertains to 

environmental and human health standards.   

 

5.3. Future Directions 

The focus of this dissertation was placed on PM2.5 and O3, as these pollutants 

exceed health standards set by the Instituto Nacional de Ecologia in Mexico. One 

consideration for future explorations relevant to my dissertation research is to examine 

other ambient air pollutants and fetal growth in Mexico City.   

Carbon monoxide’s ability to cross the placenta by simple diffusion interferes 

with oxygen transport to the fetus and makes this a pollutant of interest. The affinity of 

hemoglobin is substantially greater for CO ( 210-300 times) than for oxygen, and the 

half-life of carbon monoxide hemoglobin (COHb) in fetal blood is three times that of 

maternal blood (Hackley et al. 2007).  As a result of NO2 exposure, inflammatory 
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reaction in lung may cause the release of cytokines that may trigger preterm birth 

(Devalia et al. 1993). Nitrogen dioxide exposure suppresses antioxidant defense systems, 

increased lipid peroxidation in humans and biomarkers of exposure are associated with 

poor birth outcomes (Tabacova et al. 1998). Others studies report that early exposure to 

NO2 is associated with adverse pregnancy outcomes (Maroziene and Grazuleviciene 

2002). Much like NO2, exposure to SO2 may result in aggravated symptoms of pre-

existing respiratory disease and may affect fetal health through similar hypothesized 

mechanisms. Adverse associations between maternal exposures to SO2 and various birth 

outcomes like low birth weight (Dugandzic et al. 2006) and preterm birth (JH Leem et al. 

2006) have been reported in previous literature.  Another class of environmental hazards 

that would be interesting to study within the scope of this research is polycyclic aromatic 

hydrocarbons (PAHs). PAHs are ubiquitous in the environment and are known 

carcinogenic, mutagenic and teratogenic compounds, often resulting from the incomplete 

combustion of coal, gas, and other materials  (US EPA 2001) . In Mexico City, exposure 

assessment of PAH concentrations have reported higher concentration of various PAHs 

during the dry season compared to the rainy season, and for many of these compounds 

trends were linear (Amador-Muñoz et al. 2013; Valle-Hernandez et al. 2010).  PAHs and 

birth outcomes have been studied employing various study designs (Choi et al. 2006; 

Jedrychowski W 2004).  Biomarkers of exposure, PAH DNA adducts, have been 

associated with adverse birth outcomes like reduced weight, HC, and length (Perera et al. 

2005; Perera Frederica P. 1998; Tang D 2006; Perera FP 2004). To date, PAH-adducts 

have not been reported for maternal and fetal pairs in Mexico City, however studies have 

shown that PAH-adducts are higher among those non-smoking adults in Mexico City 
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during the dry season compared to the rainy season. Therefore assessing maternal 

exposure to PAHs from various sources of exposure (air pollution, diet and tobacco 

smoke), by quantifying PAH-DNA adduct formation in maternal blood and umbilical 

cord blood samples, and fetal growth of anthropometric parameters during pregnancy 

with repeated ultrasound measurements would be novel in terms of study population and 

study design.  

Lastly, while it is important to have a better understanding of the relationship 

between the various air pollutants previously described and fetal growth in Mexico City, 

consideration should also be given to how these pollutants interact with each other. 

Therefore, the use of multi-pollutant models to assess changes in fetal growth in response 

to air pollution exposures should also be considered for future analyses. While the 

approach of this dissertation was to use single-pollutant models as an attempt to better 

understand the relationship between each pollutant and each fetal parameter, as it may be 

easier to hypothesize biological explanations in this manner, the  potential synergistic  

effect of air pollution should be furthered explored. In reality, ambient air pollution is a 

mixture of various gases and particulates, some of which are strongly correlated with 

each other. It is then suggested that models in future analyses explore maternal exposure 

to air pollution and pregnancy outcomes with the use of multi-pollutant models. The 

results of such models may lend support to increased discussion regarding air quality 

standards that are established to protect the environment and human health, especially 

among those belonging to susceptible sub-groups like the pregnant woman and her 

unborn fetus.  
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