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Abstract The last decade has seen a dramatic increase in the size of western Lake Erie cyanobacteria
blooms, renewing concerns over phosphorus loading, a common driver of freshwater productivity. How-
ever, there is considerable uncertainty in the phosphorus load-bloom relationship, because of other bio-
physical factors that influence bloom size, and because the observed bloom size is not necessarily the true
bloom size, owing to measurement error. In this study, we address these uncertainties by relating late-
summer bloom observations to spring phosphorus load within a Bayesian modeling framework. This flexible
framework allows us to evaluate three different forms of the load-bloom relationship, each with a particular
combination of statistical error distribution and response transformation. We find that a novel implementa-
tion of a gamma error distribution, along with an untransformed response, results in a model with relatively
high predictive skill and realistic uncertainty characterization, when compared to models based on more
common statistical formulations. Our results also underscore the benefits of a hierarchical approach that
enables assimilation of multiple sets of bloom observations within the calibration processes, allowing for
more thorough uncertainty quantification and explicit differentiation between measurement and model
error. Finally, in addition to phosphorus loading, the model includes a temporal trend component indicating
that Lake Erie has become increasingly susceptible to large cyanobacteria blooms over the study period
(2002–2013). Results suggest that current phosphorus loading targets will be insufficient for reducing the
intensity of cyanobacteria blooms to desired levels, so long as the lake remains in a heightened state of
bloom susceptibility.

1. Introduction

In response to excessive algal blooms, degraded water quality, and reduced hypolimnetic oxygen levels
(hypoxia) in Lake Erie in the 1960s and 1970s [Davis, 1964; Mortimer, 1987], the United States (U.S.) and Canada
initiated programs under the Great Lakes Water Quality Agreement [International Joint Community (IJC), 1978] to
lower point and nonpoint source loads of total phosphorus (TP), the limiting nutrient. Management actions
implemented through these programs contributed to reduced loads [Dolan, 1993], decreased water-column TP
concentrations [DePinto et al., 1986; Ludsin et al., 2001], smaller hypoxic areas [Makarewicz and Bertram, 1991;
Bertram, 1993; Charlton et al., 1993], and reduced phytoplankton biomass, especially cyanobacteria [Makarewicz
et al., 1989; Makarewicz, 1993]. Since the mid-1990s, however, these trends appear to have reversed [Scavia
et al., 2014] with significant increases, for example, in hypoxia [Burns et al., 2005; Hawley et al., 2006; Zhou et al.,
2013] and cyanobacteria blooms [Conroy et al., 2008; Bridgeman et al., 2012; Stumpf et al., 2012]. In fact, in 2011,
the lake-wide cyanobacteria bloom was the largest in recorded history, with a peak intensity over three times
greater than any previously observed bloom [Stumpf et al., 2012; Michalak et al., 2013].

Appropriate identification and quantification of the drivers behind the shifting trend in Lake Erie water qual-
ity has important implications for water resources management, and has been a continued area of limno-
logical and model forecast research. In a deconstruction of the 2011 bloom, for example, Michalak et al.
[2013] showed that agricultural practices coupled with intense spring storms led to record-breaking P loads,
and an extended period of weak lake circulation and warm quiescent conditions led to the development
and persistence of the extensive bloom. Through analysis of recent and projected climate scenarios, they
further suggested that all of these factors are consistent with expected future conditions, and without policy
intervention to mitigate these impacts, similar blooms are likely to recur more frequently (for additional
reading on Lake Erie’s changing hydrologic condition, see Gronewold and Stow [2014]).
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The Great Lakes Water Quality Agreement of 2012 included a call for minimizing the extent of hypoxic zones
in Lake Erie associated with excessive phosphorus loading and maintaining cyanobacteria biomass at levels
that do not produce concentrations of toxins that pose a threat to human or ecosystem health. As a key strat-
egy, the agreement calls for review and update of associated phosphorus loading targets. Rucinski et al. [2014]
developed response curves and loading targets for hypoxia. Scavia et al. [2014] compared those targets with
others developed for cyanobacteria blooms [Ohio EPA, 2013] and suggested that while the latter target may
help prevent cyanobacteria blooms, it may not be sufficient for reducing hypoxia significantly.

The cyanobacteria-related loading targets were based on exponential relationships between bloom size
and spring TP load from the Maumee River [Ohio EPA, 2013; IJC, 2014], that were adapted from a similar
exponential relationship between bloom size and spring Maumee River flow [Stumpf et al., 2012]. While
these relationships capture the general positive correlation between the log-transformed bloom size and
spring TP load (or flow), they do not address the uncertainty in these relationships explicitly. However, that
uncertainty is expected to be substantial due to multiple other factors affecting the interannual variability
in observed bloom size, including summer wind patterns, temperature, nitrogen colimitation, and cyano-
bacteria bloom measurement error [e.g., Michalak et al., 2013; Chaffin et al., 2013; Bridgeman et al., 2013].

Because there are currently only 12 years (2002–2013) of quantitative cyanobacteria bloom estimates for
western Lake Erie, attempting to explicitly represent all (or even a broad set of) factors affecting bloom size
within an empirical model would likely result in overparameterization and poor predictive performance
[Beck, 1987]. In such cases where historical data are limited (as with many water resources systems), a parsi-
monious approach with an explicit representation of uncertainty is more warranted. In this study, we con-
tinue to use phosphorus load as the primary bloom predictor, as it is the factor that can be most reasonably
addressed through watershed management. However, we redevelop the load-bloom relationship within a
statistical framework where uncertainty is represented quantitatively. Further, we consider three different
formulations of this relationship (using normal, lognormal, and gamma error distributions), and evaluate
them based on their predictive skill and how realistically they characterize predictive uncertainty.

Because of the complexity of the model formulations used in this study, conventional approaches for devel-
oping probabilistic model solutions are not adequate, and a more flexible Bayesian approach is used
instead. The efficacy of a Bayesian approach has been demonstrated in previous studies where empirical
and mechanistic models have been used to predict algal blooms and hypoxia [e.g., Qian et al., 2010; Malve
et al., 2007; Cha et al., 2014; Obenour et al., 2014]. In addition, this study uses a hierarchical approach [Gel-
man and Hill, 2007] to simultaneously calibrate the model to two sets of bloom estimates, one derived from
remote sensing imagery [Stumpf et al., 2012] and the other from in situ phytoplankton tows [Bridgeman
et al., 2013]. Hierarchical modeling is an effective tool for assessing multiple sources of uncertainty [Qian
et al., 2010], and here it allows us to rigorously account for variability due to measurement error, prediction
error, and parameter uncertainty [Cressie et al., 2009]. The utility of hierarchical modeling has been demon-
strated in studies modeling the spatiotemporal variability in climatological and hydrological data sets [e.g.,
Cooley and Sain, 2010; Najafi and Moradkhani, 2013]. While Bayesian hierarchical modeling is also an impor-
tant area of water quality modeling research [e.g., Gronewold and Borsuk, 2010; Robson, 2014], this is the first
harmful algal bloom study that we are aware of to demonstrate a gamma error distribution for representing
predictive uncertainty, and a hierarchical approach for assimilating multiple observation data sets.

2. Materials and Methods

2.1. Bloom Observations
This study uses two sets of cyanobacteria bloom measurements, hereafter referred to as the ‘‘observations.’’
The first set of observations was developed using satellite remote sensing [Wynne et al., 2010; Stumpf et al.,
2012]. For each year, the observed bloom was determined for the 30 day period with the highest mean cya-
nobacteria level, reported in units of ‘‘cyanobacteria index’’ (CI), where one CI corresponds to approximately
1.2 3 1020 cyanobacteria cells [Stumpf et al., 2012]. Because the average dry weight of Lake Erie Microcystis
is approximately 40 pg/cell [see Bridgeman et al., 2013, Figure 2], one CI is equivalent to approximately 4800
metric tons (MT) cyanobacteria dry weight. While these bloom estimates were developed for all of Lake
Erie, the blooms were largely confined to the lake’s western basin (nominally west of Pelee Island) in almost
all years [see Stumpf et al., 2012, Figure 3]. An exception was October 2011, when eastward currents moved
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the bloom into the central basin where it con-
tinued to expand [Michalak et al., 2013]. For
consistency, this study uses the September
2011 bloom estimate (24 August to 22 Sep-
tember), when the bloom was largely confined
to the western basin. This is also more tempo-
rally consistent, as the bloom peaked prior to
October in all other study years.

The second set of bloom observations was
developed from western basin phytoplankton
tows [Bridgeman et al., 2013]. Here the yearly
bloom observations are reported in units of
summer biovolume production (mL m22).
Because there is considerable uncertainty in
how to integrate these estimates over space
and time, we treat them as measurements of
relative bloom intensity, and scale them
directly to the Stumpf estimates so that the
means of the two data sets match, using a

conversion factor of 1.1 MT/1.0 mL m22. Thus, while the scaled Bridgeman observations do not provide
new information regarding absolute bloom size, they do provide an independent assessment of the year-
to-year variability in relative bloom size.

Based on the conversions provided above, the two sets of annual bloom estimates can be compared over
time (Figure 1). For brevity, the two sets are hereafter referred to as the ‘‘Stumpf’’ and ‘‘Bridgeman’’ observa-
tions. Whereas the Stumpf observations for 2002–2011 were obtained from Stumpf et al. [2012], the 2012
observation was provided directly from Stumpf (R. P. Stumpf, personal communication, 2014). Similarly, the
Bridgeman observations for 2002 through 2011 were obtained from Bridgeman et al. [2013], and the 2012 and
2013 observations were provided directly from Bridgeman (T. B. Bridgeman, personal communication, 2013).

2.2. Predictor Variables
Nutrient loads are determined from Maumee River nutrient concentration data collected by Heidelberg
University’s National Center for Water Quality Research (NCWQR, http://www.heidelberg.edu/academi-

clife/distinctive/ncwqr/data), and stream
flow data collected by the United States Geo-
logical Survey (USGS, http://www.usgs.gov/
water) at Waterville, Ohio (USGS Station
04193500). In this study, NCWQR mean daily
nutrient concentrations are multiplied by
USGS mean daily flows to determine daily
loads (MT/d). TP, dissolved reactive phospho-
rus (DRP), and nitrate loads were all consid-
ered as potential bloom predictors, but this
manuscript focuses primarily on TP, which
was found to be the most effective bloom
predictor.

TP concentration data were missing from
approximately 6% of days throughout the
study period. Each missing TP concentra-
tion was imputed using a linear regression
with flow, calibrated from the closest 20
days with nonmissing data (where 20 days
was determined optimal through cross vali-
dation, R2 5 65%). Because only a small

Figure 1. Annual western basin cyanobacteria bloom measurements
developed by Stumpf et al. [2012] and Bridgeman et al. [2013], converted
to units of mass (dry weight).

Figure 2. Deterministic relationship between bloom size and TP load
under the normal and gamma model formulations (blue) and the log-
normal model formulation (green).
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percentage of days had missing TP concentra-
tions, the uncertainty associated with missing TP
concentrations is considered negligible. DRP and
nitrate were imputed similarly, but because
these nutrient concentrations do not have a
strong relationship with flow, the imputation
was based simply on the mean of the closest 10
days with nonmissing data.

2.3. Candidate Models
Three candidate regression models are evaluated in
this study. All of the models take the basic form:

zi; j5 ẑ i1ci1 �i; j (1)

where (for a given year i and observation set j) zi; j is
a bloom observation, ẑ i is a deterministic bloom
prediction based on nutrient loading, ci is a year-
specific stochastic error term, and �i; j is an
observation-specific stochastic error term. The dis-

tinction between year-specific errors and observation-specific errors is important because there are multiple
bloom observations for each annual bloom, and the true bloom size (~z i5 ẑ i1ci) is unknown. From a hier-
archical modeling perspective, ci is a yearly ‘‘random effect’’ [Clark, 2007] representing deterministic model
error in predicting the true bloom size. Importantly, this approach addresses intraclass correlation [Gelman
et al., 2004] that exists because the Stumpf and Bridgeman observations for a given year are not independ-
ent (i.e., they are both imperfect measurements of the same bloom, and are thus assigned the same predic-
tive error component, ci).

The three candidate models are differentiated by their deterministic form (Figure 2) and by the probability
distributions used to represent the stochastic error terms (c and �). These differences give rise to different
predictions and predictive uncertainties (i.e., different widths of uncertainty bounds). The first bloom model,
hereafter referred to as the ‘‘normal model,’’ uses the common assumption of normally distributed measure-
ment errors and random effects:

zi; j � N
�

ẑ i1ci ; r
2
�

�
(2)

ẑ i5
bb1b01bw Wi1bt Ti

bb

for b01bw Wi1bt Ti > 0

for b01bw Wi1bt Ti < 0

8<
: (3)

ci � N 0; r2
c

� �
(4)

where the deterministic prediction, ẑ i , is a function of parameters bb, b0, bw , and bt and the weighted TP
load, Wi (described in section 2.4). For years of relatively little nutrient loading, such that
b01bw Wi1bt Ti < 0, the bloom size is determined to be at background level, bb, thereby preventing nega-
tive deterministic bloom predictions. The deterministic form of the model can be represented schematically
(Figure 2). As shown, bw defines the rate of change in bloom size per unit of phosphorus load (MT bloom)/
(MT/mo), and bb1b01btT is the y intercept that varies with time, T. Here bb1b0 is the intercept for 2007,
and T varies from 25 to 16 (2002–2013); by making b0 representative of the middle of the study period,
we reduce parameter correlation and make the calibration process more computationally efficient. Finally,
the parameter r� is the standard deviation associated with measurement error, and the parameter rc is the
standard deviation associated with the yearly random effects (i.e., model prediction error). Model structure
is illustrated in the form of a directed acrylic graph (DAG, Figure 3).

The second bloom model, hereafter referred to as the ‘‘gamma model,’’ is identical to the normal model in
deterministic form (Figure 2) and model structure (Figure 3), but it assumes measurement errors and ran-
dom effects are distributed according to gamma distributions:

Figure 3. DAG representation of bloom forecast model. Circles
represent the modeled variables and parameters, rectangles rep-
resent the input data, and arrows represent the conditional
dependencies. All symbols are described in sections 2.3 and 2.4;
subscripts S and B refer to the Stumpf and Bridgeman observa-
tions, respectively.
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zi; j � Gamma ẑ i1cið Þ2=r2
� ; ẑ i1cið Þ=r2

�

h i
(5)

ẑ i5
bb1b01bw Wi1bt Ti

bb

for b01bw Wi1bt Ti > 0

for b01bw Wi1bt Ti < 0

8<
: (6)

ci � Gamma ẑ i
2=r2

c ; ẑ i=r
2
c

� �
2ẑ i (7)

where zi;j is now modeled as a gamma distribution with shape (ga) and rate (gb) parameters (i.e., Gamma
(ga, gb)) such that the mean and variance are ga/gb and ga/gb

2, respectively. The random effects (equation
(7)) are modeled as a gamma distributions centered at zero by subtracting ẑ i . By zero centering the random
effects, the gamma model formulation is more comparable to the normal model formulation (equations
(2)–(4)), with the deterministic component (equation (6)) clearly distinguished from the random effect
component.

The third bloom model, hereafter referred to as the ‘‘log-normal model,’’ assumes measurement errors and
random effects are normally distributed when predicting a log-transformed response:

lnðzi; jÞ � N ẑ i;L1ci;L; r
2
�;L

� �
(8)

ẑ i;L5 b01bw Wi1bt Ti (9)

ci;L � N 0; r2
c;L

� �
(10)

where ẑ i;L is the deterministic bloom prediction on the log scale which can be back-transformed to the orig-
inal scale using ẑ i5eẑ i;L (as the median of the predictive distribution, Figure 2). Because the log transforma-
tion precludes negative predictions, there is no background bloom parameter bb, as it would be
indistinguishable from b0. The parameters r�;L and rc;L are the measurement error and random effect stand-
ard deviations, respectively, on the log scale. While model uncertainty is constant on the log scale, it is pro-
portional to bloom size (i.e., multiplicative) on the original scale.

2.4. Weighted Phosphorus Load
The optimal loading period for predicting bloom size is also assessed probabilistically in this study. All of
the candidate models use a weighted TP load, Wi , determined as follows:

Wi5
1X
wm

X6

m51

wi;mwm (11)

wm5

0

m112bw

1

for m � ðbw21Þ

for ðbw21Þ < m < bw

for m � bw

8>>>><
>>>>:

(12)

where wi;m is the TP load corresponding to month (m) and year (i), wm is the weighting value for month m,
as determined by bw, the weighting parameter. The months of January to June (m 5 1 to 6) are considered
in the model, and bw is thus constrained to the range [1, 6]. For example, if bw54:6, then loads for January–
March all receive weights of zero, April receives a weight of 0.4, and May and June both receive a weight of
one. Thus, bw can be thought of as a temporal threshold, prior to which loading does not contribute to the
late-summer algal bloom. Although more sophisticated methods could be used for developing the monthly
weights, this simple approach is advantageous for minimizing the number of model parameters. Adding
later months (i.e., July–August) was considered, but this did not improve model performance; and avoiding
later months allows for an earlier bloom forecast.

2.5. Bayesian Calibration
Model parameters were estimated using a Markov Chain Monte Carlo (MCMC) implementation of Bayes
Theorem. Specifically, MCMC sampling was performed using WinBUGS software [Lunn et al., 2000] called
from R [R Development Core Team, 2008] via R2WinBUGS [Sturtz et al., 2005; Gelman and Hill, 2007]. The
MCMC sampling was performed in three parallel ‘‘chains’’ of up to 200,000 samples each, and the first half
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of each chain was removed as a ‘‘burn-in period’’ [Gelman et al., 2004]. The remaining chain portions were
then thinned to 1000 samples each to reduce autocorrelation, and checked to ensure that they had con-
verged on equivalent posterior parameter distributions. Convergence was evaluated using the R̂ statistic,
which is the square root of the ratio of a parameter’s marginal posterior variance to its within-chain variance
[Brooks and Gelman, 1998]. When R̂ is close to one (i.e., R̂� 1.1) for all model parameters, convergence is
considered achieved.

The parameters for the three candidate models and their prior distributions are listed in Table 1. Here the
prior distributions represent probabilistic expectations of parameter values based on a priori system knowl-
edge. Because of the empirical nature of these models, vague zero-centered normal distributions, N(mean,
standard deviation), are used for most parameters. For the normal and gamma models, bb and bw are con-
strained to be positive, because the model calibration becomes insensitive to these parameters if they are
negative (and the solution is nonsensical), preventing posterior convergence. In addition, wide uniform dis-
tributions, U(lower bound, upper bound), are used for the error parameters r� and rc, as recommended by
Gelman [2006]; and an informative uniform distribution is used for bw to constrain it as described in section
2.4. Finally, sampling of the gamma distribution in equation (7) is censored such that ẑ i1cið Þ > 750 MT
because the MCMC algorithm fails when attempting to sample from a gamma distribution with a very small
mean (equation (5)). As the smallest bloom observation is well above 750 MT, this restriction does not
adversely affect model performance.

2.6. Model Assessment and Comparison
Models are assessed based on their predictive skill and how accurately they characterize predictive uncer-
tainty. Predictive skill is measured using the coefficient of determination (R2), which is the percent of the
variance in the observations that is resolved by the model predictions (i.e., the means of the predictive dis-
tributions) relative to a null (constant-only) model [Gelman and Hill, 2007]. We note that this is equivalent to
the definition of R2 proposed by Nash and Sutcliffe [1970], but it is different from the square of the Pearson’s
correlation coefficient (denoted r2 in this text). R2 is a common and intuitive measure of predictive skill, use-
ful for making comparisons across models with different distributional assumptions, because it uses only
the means of the predictive distributions. However, for this same reason, R2 is not useful for assessing
whether a model adequately characterizes predictive uncertainty. Posterior predictive p values can be used
to assess the appropriateness of the overall posterior distribution [Meng, 1994; Elmore, 2005]. A predictive p
value is determined for each observation based on the portion (i.e., cumulative probability) of the Bayesian
posterior predictive distribution that exceeds the observed value, as illustrated graphically by Gronewold
et al. [2009]. If the model accurately characterizes predictive uncertainty, then predictive p values should be
uniformly distributed between zero and one. For this study, histograms of predictive p values are developed
(using a bin size of 0.2) to visually assess their uniformity. However, because of the small number of obser-
vations available for this study (n 5 23), some deviation from uniformity is expected. To gage the severity of
this deviation, 93% confidence bands [H€ardle et al., 2004] for bin frequency are developed through
simulation-based approximation [Westfall and Henning, 2013]. Here 5000 histograms are generated from
random uniformly distributed data, and the maximum and minimum frequency (i.e., bin count) of each his-
togram is recorded. The 93% confidence bands are then determined as the extrema values that completely
contain all but 7% of the generated histograms. Thus, if a model properly characterizes uncertainty, its his-
togram of predictive p values has a 93% probability of falling completely within these bands. (The small n
and discrete nature of histogram bin frequencies precludes determination of a 95% confidence band.) For

Table 1. Prior Distributions for the Parameters of the Three Candidate Modelsa

Symbol Description Units Normal Model Gamma Model Log-Normal Model

b0 Bloom (relative) intercept z N(0,30) N(0,30) N(0,5)
bw Bloom production z/(1000 MT/mo) N(0,100) N(0,100) N(0,10)
bb Bloom baseline z N(0,10) N(0,10) n/a
bt Temporal trend z/yr N(0,4) N(0,4) N(0,1)
bw Load weighting U(1,6) U(1,6) U(1,6)
rc Random effect standard deviation z U(0,8) U(0,8) U(0,2)
r� Measurement standard deviation z U(0,8) U(0,8) U(0,2)

az is the bloom size with units of 1000 MT for the normal and gamma models and ln(1000 MT) for the log-normal model.
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reference, we also report the root mean square error (RMSE) and mean absolute error (MAE) of the different
models. Generally, the ‘‘best’’ model is determined to be the model that has the highest predictive perform-
ance (considering R2, RMSE, and MAE) while also providing realistic uncertainty quantification.

To test the robustness of each model, a leave-one-year-out cross validation (CV) is also performed. In CV,
the observations for each year are predicted after removing those observations from the calibration data
set and recalibrating the model to the reduced data set. The model’s CV performance is a better measure of
how well it will perform when predicting ‘‘out-of-sample’’ (i.e., future) conditions [Elsner and Schmertmann,
1994; Chatfield, 2006].

3. Results

3.1. Model Parameterization
The marginal posterior distribution for each model parameter can be illustrated graphically (Figure 4, for the
gamma model only, for brevity) and summarized by its mean and 95% credible interval (Table 2, for all models).
Based on a comparison of prior and posterior distributions, we observe that the prior distributions had minimal
influence on the posterior distributions. Together, these parameters quantify the deterministic relationship
between bloom size and TP load, as well as the uncertainty in this relationship, as discussed in more detail below.

The parameters of the normal and gamma models are readily comparable because both models have the
same deterministic form (Figure 2). The marginal posterior distributions for bb are well above zero for

Figure 4. Prior (dashed) and marginal posterior (solid) parameter distributions for the gamma model (parameter units and descriptions
same as Table 1).

Table 2. Posterior Parameter Means and 95% Credible Intervals for the Three Candidate Models (Parameter Units and Descriptions
Same as Table 1)

Symbol

Normal Model Gamma Model Lognormal Model

Mean 95% CI Mean 95% CI Mean 95% CI

b0 219.6 237.3–25.21 223.6 239.6–210.1 1.19 0.18–1.90
bw 81.9 52.7–112 84.3 56.7–113 3.98 1.54–7.23
bb 5.11 0.91–8.96 6.51 4.21–9.71 n/a n/a
bt 2.21 0.68–4.93 2.68 0.77–5.16 0.15 0.04–0.25
bw 2.82 1.65–3.93 2.61 1.61–3.69 3.59 1.49–5.63
rc 2.49 1.58–4.10 2.69 1.63–4.71 0.29 0.20–0.50
r� 3.33 0.77–6.56 2.63 0.15–5.78 0.49 0.23–0.97
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both the normal and gamma models, suggesting that there is a baseline bloom level that exists even
when the Maumee River nutrient loading is small. When the bloom exceeds the background level, it
increases at rate bw , which is indicated to be over 80 (MT bloom)/(MT/mo) for the normal and gamma
models. The loading required for the bloom to exceed the background level is ðb01bt TiÞ=2bw . Thus, for
2002 (Ti 5 25), the bloom exceeds background levels when Wi exceeds approximately 400 MT/mo, and
for 2013 (Ti 5 6), the bloom exceeds background levels when Wi exceeds approximately 100 MT/mo. (Fig-
ure 7 suggests these thresholds may be somewhat lower, reflecting the uncertainty in model parameters.)
The positive estimates of bt reflect an increase in the system’s propensity for bloom formation over time.
The normal and gamma model estimates of bw (2.8 and 2.6, respectively) generally indicate that March–
June TP load is the primary driver of cyanobacteria blooms, though February TP load contributes to a
lesser degree.

The deterministic parameters for the lognormal model are more difficult to interpret due to the log transfor-
mation of the response. There is no baseline bloom parameter for the lognormal model, and the median
bloom size corresponding to zero TP load is determined as e b01bt Tið Þ (Figure 2). Thus, the bloom size corre-
sponding to zero TP load is approximately 1600 and 8100 MT for 2002 and 2013, respectively, consistent
with increased sensitivity to load. The parameter bw can be used to determine the amount of TP load
required for the median bloom size to double (i.e., ln 2ð Þ=bw), which is approximately 170 MT/mo. The log-
normal model estimate for bw has a large standard deviation, indicating this parameter could not be well
resolved by the model and available data.

Stochastic parameters, r� and rc, are estimated to be of similar magnitude (2500–3300 MT) for the normal
and gamma models. For the lognormal model, the best estimate for rc;L was notably higher than r�;L,
though their credible intervals largely overlap (Table 2). The posterior correlation between r� and rc was
low for each type of model (r2< 0.15), indicating that the models provide a basis for differentiating mea-
surement error from model prediction error.

3.2. Model Skill and Uncertainty Characterization
Model skill is assessed by examining plots of observed versus predicted values, and by determining the per-
cent of the observation variance explained by the predictions (i.e., R2), as shown in Figure 5. In these plots,
the 95% predictive intervals account for measurement uncertainty, prediction uncertainty, and model

Figure 5. Full model performance: observed versus predicted bloom for the (a) normal model, (b) gamma model, and (c) lognormal model
with 95% predictive intervals; and predictive p value distributions for the (d) normal model, (e) gamma model, and (f) lognormal model
with 93% confidence bands (dashed).
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parameter uncertainty, such that they represent the likely range of bloom observations corresponding to
each model prediction. As shown, both the normal and gamma models perform similarly, with R2 values of
93.1% and 91.9%, respectively. The lognormal model performs less well with an R2 value of 68.8% on the
original scale. For the normal, gamma, and lognormal models, the RMSE was 2800, 3000, and 6500 MT,
respectively; and the MAE was 2200, 2500, and 4500 MT, respectively.

Model uncertainty characterization is assessed by plotting histograms of predictive p values (Figures 5d–
5f,). For all three models, histogram frequencies (bars) fall within the 93% confidence bands, suggesting
that uncertainty is reasonably characterized. There does, however, appear to be some clustering of p values
toward the centers of the histograms, indicating that the deviation between observations and predictions is
less than expected. This discrepancy is not surprising, given that the model is being used to predict obser-
vations included in the calibration data set. We also note that the 95% predictive intervals for the normal
model (Figure 5a) extend into negative space (beyond 24000 MT for some of the smaller bloom years).

3.3. Model Cross Validation
The three candidate models were also subject to cross validation (CV) to assess how well they perform
when predicting observations not included within the calibration data set. The R2 values for the normal,
gamma, and lognormal models in CV mode are 83.4%, 83.8%, and 2118%, respectively (Figure 6). As
expected, CV performance is lower than ‘‘full model’’ performance (i.e., the model calibrated to all observa-
tions, as described in section 3.2) for each of the three candidate models. This decrease in performance is
relatively modest for the normal and gamma models, and quite severe for the lognormal model. The predic-
tive p value frequencies for the three models appear approximately uniformly distributed and within the
93% confidence bands, suggesting uncertainty has been well characterized (Figures 6d–6f,). While the log-
normal model has substantially lower skill than the other models, the predictive distributions for the lognor-
mal model are congruently wider (especially for large bloom predictions, due to the multiplicative error
term), allowing for a reasonably uniform predictive p value distribution. For the normal, gamma, and lognor-
mal models, RMSE was 4300, 4200, and 18,000 MT, respectively; and MAE was 3600, 3700, and 11,000 MT,
respectively.

Overall, we found the gamma model, with its relatively high predictive skill and realistic uncertainty quanti-
fication, to be the preferred model. Its skill (R2) is similar to that of the normal model and higher than that

Figure 6. Model CV performance: observed versus predicted bloom for the (a) normal model, (b) gamma model, and (c) lognormal model
with 95% predictive intervals; and predictive p value distributions for the (d) normal model, (e) gamma model, and (f) lognormal model
with 93% confidence bands (dashed).
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of the lognormal model. Furthermore, we
found that the difference in skill between the
full model and CV results was smallest for the
gamma model, suggesting it is most robust.
All three models perform well in terms of
uncertainty characterization based on the pre-
dictive p value distributions. However, the
normal model includes predictive intervals
with lower bounds <0; an undesirable result
given that bloom size is a non-negative
quantity.

3.4. Response Curves
The preferred (gamma) model is used to
develop forecasting curves that relate the
magnitude of nutrient loading to the
expected range of cyanobacteria bloom
observations. However, because of the tem-
poral trend (bt), the response curves change
over time, and we illustrate the curves for
2002 and 2013 (Figure 7), representing the
beginning and ending of the study period,

respectively. Results suggest that a larger TP load is required to raise cyanobacteria levels beyond back-
ground levels during the early portion of the study period, while lower load is required at the end of the
study period. Response curves can also be developed to show the probability of the bloom exceeding
specified sizes (Figure 8).

4. Discussion

We have demonstrated an approach for quantifying uncertainty in regression-based models for harmful
algal blooms. Using a flexible Bayesian framework, we were able to develop probabilistic solutions for vari-
ous deterministic model forms and error distributions, allowing us to critically evaluate three alternative
model formulations (using normal, lognormal, and gamma error distributions). The lognormal model, which

is often an effective choice for modeling
water quality data [e.g., Ott, 1990; Gronewold
and Borsuk, 2010], did not perform well in this
study. This is not surprising, as bloom obser-
vations are essentially aggregations of
remotely sensed pixels [Stumpf et al., 2012] or
in situ measurements [Bridgeman et al., 2013],
and in accordance with the Central Limit The-
orem, sufficiently large aggregations of log-
normal samples are approximately normally
distributed. The normal model performed
well in terms of skill (R2 5 83.4% in CV), but its
predictive distributions did include unrealistic
negative values, especially when the pre-
dicted bloom size was small. The gamma
model (i.e., the model that uses gamma distri-
butions to represent stochastic error terms, c
and �) avoids negative predictive values and
its predictive distributions approach normality
as predicted bloom size increases [e.g., Thom,
1958]. While gamma models have been used
to characterize water quality sampling data

Figure 7. Relationship between observed bloom size and TP load for the
gamma model in 2002 (gray lines) and 2013 (black lines), with median
prediction (thick line), mean prediction (thin line), and 95% predictive
intervals (dashed). Bloom observations are shaded on a linear gradient
from white (2002) to black (2013).

Figure 8. Probability of exceeding 20,000 MT bloom (solid) and 40,000
MT bloom (dashed) for a range of loads under 2002 conditions (gray)
and 2013 conditions (black).
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[e.g., Gilliom and Helsel, 1986], this is the first study that we are aware of to use the gamma distribution for
characterizing predictive uncertainty in a water quality forecasting model. Because the gamma distribution
realistically characterized uncertainty, while also maintaining high predictive skill (R2 5 83.8% in CV), it was
found to be the most preferred model. In addition, the gamma (and normal) model is advantageous relative
to the lognormal model because it is primarily based on linear relationships that are interpreted more easily
than the nonlinear relationships imposed by the lognormal model formulation [Faraway, 2005]. The lognor-
mal model formulation necessitates that bloom size increases exponentially with TP load (Figure 2), which
is implausible outside of a limited range of TP loads, due to stoichiometric limitations on the amount of cya-
nobacteria that can be produced per unit load.

The Bayesian modeling approach also allowed us to represent multiple sources of stochasticity through a
hierarchical formulation. For comparison, the gamma model was also developed omitting the yearly ran-
dom effect term, c, such that all error was represented by �. In this case, all observations are treated as inde-
pendent (i.e., intraclass correlation is ignored), which is incorrect given that there are two related
observations for each year (see section 2.3). The predictive performance of this model (R2 5 92.3%,
RMSE 5 2900, and MAE 5 2400) is similar to that of the original gamma model. However, by omitting c, the
credible intervals for deterministic model parameters are reduced by 24%, on average, suggesting we have
more confidence in how the system functions than is really the case. This, in turn, results in a forecasting
curve with 13% narrower predictive intervals, on average.

Clearly, rather broad uncertainty bounds need to be incorporated in the simple empirical models currently
employed to relate large-scale hydrological and pollutant loading variables to bloom size [e.g., Stumpf et al.
2012; Ohio EPA, 2013; IJC, 2014]. Without uncertainty quantification, forecast users may not adequately pre-
pare for worst-case scenarios (i.e., when blooms are substantially larger than the forecasting model’s best
estimate), and prediction-observation discrepancies may lead to model skepticism and mismanagement of
the system. In the future, it may be reasonable to include additional predictor variables within the model to
reduce predictive uncertainty. This may be justified by a larger calibration data set, as additional bloom
observations become available, and by process-based studies that help quantify important factors control-
ling bloom size. Additional predictors can be readily incorporated into the probabilistic models developed
here, and their forecasting efficacy can be readily evaluated using the procedures outlined in this study.

Our model is based on certain assumptions which could potentially be modified in the future, as additional
and more refined bloom observations become available. In this study, we assume that both sets of observa-
tions provide equally uncertain representations of the true bloom size. As such, they are assigned the same
measurement error variance, r2

� , which is determined through model calibration. Assuming equal measure-
ment error variance is reasonable, given that both sets of observations are based on peer-reviewed studies,
and both have known limitations. For example, satellite remote sensing only measures cyanobacteria near
the water surface [Wynne et al., 2010; Stumpf et al., 2012]; and while phytoplankton tows sample throughout
the entire water column, they have relatively limited spatial and temporal resolution [Bridgeman et al.,
2013]. If, in the future, the measurement errors associated with these two data sets could be characterized
independently, then it would be possible to incorporate these uncertainties directly into the model, effec-
tively giving more weight to observations with lower measurement uncertainty. It should also be noted
that the two bloom data sets provide relative, rather than absolute, measures of bloom size. As described in
section 2.1, neither of the data sets could be converted to mass units without making multiple assumptions.
Thus, our modeling predictions are also largely relative in nature, and the additional uncertainty associated
with the conversion to mass units is not addressed explicitly in this study. If, in the future, independent
observations of bloom mass become available, then this information could be used to more rigorously char-
acterize the absolute bloom mass and its uncertainty.

This study implies a linkage between TP load and bloom size. For comparison, forecasting models were also
developed using DRP and nitrate (in place of TP) which explain 88.0% and 72.8% of the variability in bloom
size, respectively (compared to R2 5 91.9% for TP). These results suggest that TP is the most effective bloom
predictor, consistent with our expectation. Although nitrogen limitation may occur in some circumstances
[Chaffin et al., 2013], phosphorus is generally acknowledged to be the primary limiting nutrient in Lake Erie
[Guildford et al., 2005; Wilhelm et al., 2003; Steffen et al., 2014]. In addition, while DRP is often considered
highly bioavailable [e.g., Michalak et al., 2013], many non-DRP species of phosphorus are also known to be
bioavailable [Li and Brett, 2013]. Furthermore, the speciation of phosphorus measured in the Maumee River
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in spring may not be representative of phosphorus speciation in the lake during the late-summer bloom. As
such, TP load, rather than DRP load, may be the best surrogate for bioavailable phosphorus at the time of
the late-summer bloom.

Our results suggest that Lake Erie’s western basin has become increasingly susceptible to large cyanobacte-
ria blooms over the last 12 years, independent of the spring nutrient load. For all three candidate TP mod-
els, the temporal trend parameter, bt , was found to be significantly positive (i.e., the lower bound of each
95% credible interval was greater than zero, Table 2). The trend parameters were also significantly positive
for the alternative models using DRP and nitrate in place of TP. Based on the preferred TP model, the
threshold loading rate for the bloom to exceed background levels has dropped substantially between 2002
and 2013 (Figure 7). While the cause of this change cannot be determined from this empirical study, we
note that the increase in susceptibility is consistent with Michalak et al. [2013], who suggested that large
blooms may be increasingly common in the future due to changing meteorological conditions that pro-
mote cyanobacteria growth. However, late-summer Lake Erie water surface temperature has not increased
significantly over the study period (NOAA, http://coastwatch.glerl.noaa.gov/glsea/doc/), suggesting that
warming is not the primary cause of larger blooms. Future research could examine whether other climate
change factors, such as increasingly calm summer conditions [Michalak et al., 2012], may better explain this
increasing trend in bloom susceptibility. An increasing reservoir of Microcystis seed colonies within Lake
Erie’s benthos is another possible cause of increasing cyanobacteria blooms [Rinta-Kanto et al., 2009]. It may
also be that invasive species, such as dreissenid mussels, have promoted Microcystis dominance over time
through selectively feeding on competing phytoplankton species [Vanderploeg et al., 2001] and through
alteration of the phosphorus cycle [Steffen et al., 2014]. USGS Dreissena surveys for western Lake Erie sug-
gest a decrease in zebra mussel abundance, but an increase in quagga and total dreissenid mussel abun-
dance over the last decade [EC and U.S. EPA, 2014].

The relationships between bloom size and Maumee River TP load (Figures 7 and 8) can be used to inform
cyanobacteria bloom reduction plans. In the model, the weighted average TP load is a function of bw, as
described in section 2.4. For the gamma model, bw is approximately 2.6, which implies that March through
June loads receive full weight, February loads receive partial weight, and January loads receive negligible
weight. For the study period, weighted spring TP loads varied from 98 to 554 MT/mo, with a mean of 270
MT/mo. This is largely consistent with Stumpf et al. [2012], who found that March–June TP loads (averaging
272 MT/mo over the study period) were an effective predictor of bloom size. Task force reports by Ohio EPA
[2013] and the International Joint Commission [IJC, 2014] both recommend spring (March through June)
load targets of 200 MT/mo. According to the IJC report, this loading target would reduce the average bloom
size to 1.0 unit of CI (i.e., 4800 MT, per section 2.1). However, based on this study (Figure 7), a target load of
200 MT/mo is expected to result in a mean bloom of approximately 16,200 (95% credible interval: 8500–
23,000) MT under current 2013 conditions, due to the lake’s apparent increasing susceptibility to blooms.
Under earlier 2002 conditions, the target load would be expected to produce an average bloom size of
approximately 6600 (95% credible interval: 4200–9700) MT, more similar to the IJC prediction.

It is currently unknown whether Lake Erie’s susceptibility to cyanobacteria blooms will continue to increase
over time, and this uncertainty complicates our ability to develop scenarios for the effects of loads in future
years. However, we note that the temporal trend has been gradual, such that the year-to-year change in
bloom susceptibility is not likely to be great. Thus, we suggest making following year predictions using the
2013 load-bloom relationships (Figures 7 and 8), and updating the analysis with additional bloom observa-
tions as they become available.

5. Summary

This study demonstrates the efficacy of a Bayesian hierarchical framework for empirical modeling and fore-
casting of cyanobacteria blooms. The flexibility of this framework allows us to represent predictive and mea-
surement errors as gamma probability distributions, and the resulting model is found to have relatively
high predictive skill and realistic uncertainty quantification. An otherwise equivalent model using a normal
error distribution is found to perform similarly, but it includes unrealistic negative bloom values within its
predictive distribution, especially when the predicted bloom size is small. A model using a log-transformed
response (and lognormal error distribution) is shown to have relatively poor predictive skill, perhaps in part
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because an exponential relationship between bloom size and TP load defies stoichiometric limitations on
bloom production. In addition, the study demonstrates how hierarchical modeling can be used to explicitly
represent both model and measurement error, when there are multiple (imperfect) measurements of each
bloom. This, in turn, prevents underestimation of model parameter uncertainty, relative to treating all
bloom measurements as statistically independent. While this study focuses on western Lake Erie cyanobac-
teria blooms, the approaches developed here should be readily transferable to other freshwater and coastal
systems where pollutant loads produce measurable large-scale impacts.

From a management perspective, this study supports the proposition that spring TP load is an effective (i.e.,
significant) predictor of Lake Erie cyanobacteria bloom size [Stumpf et al., 2012; Ohio EPA, 2013; IJC, 2014].
However, there is substantial uncertainty in the TP load-bloom relationship, and this uncertainty should be
communicated when preparing bloom forecasts and setting management goals. Results also suggest that
Lake Erie has become increasingly susceptible to large cyanobacteria blooms over the study period (2002–
2013), potentially complicating management efforts to reduce the bloom size to target levels.
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