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Abstract 
This thesis is organized into two chapters, which will be submitted separately for publication.  The 

abstracts for each chapter are given below. 

Chapter 1: 
Many state-level Renewable Portfolio Standards (RPS) include preferences for solar generation, 

with goals of increasing the diversity of new renewable generation, driving down solar costs, and 

encouraging the development of local solar industries.  Depending on their policy design, these 

preferences can impact the RPS program costs and emissions reduction.  This study introduces a 

method to evaluate the impact of these policies on costs and emissions, coupling an economic 

dispatch model with optimized renewable site selection.  Three policy designs of an increased RPS 

in Michigan are investigated: 1) 20% Solar Carve-Out, 2) 5% Distributed Generation Solar Carve-Out, 

and 3) 3x Solar Multiplier.  The 20% Solar Carve-Out scenario was found to increase RPS costs 28%, 

while the 5% Distributed Generation Solar Carve-Out increased costs by 34%.  Both of these solar 

preferences had minimal impact on total emissions.  The 3x Solar Multiplier decreases total RPS 

program costs by 39%, but adds less than half of the total renewable generation of the other cases, 

significantly increasing emissions of CO2, NOx, and SO2 relative to an RPS without the solar credit 

multiplier.  Sensitivity analysis of the installed cost of solar and the natural gas price finds small 

changes in the results of the Carve-Out cases, with a larger impact on the 3x Solar Multiplier.  

Setting the correct level for a solar multiplier to achieve one’s goals may prove difficult in light of 

changing costs associated with multiple technologies.  The effective use of a credit multiplier can 

undermine objectives to increase renewable generation and decrease emissions, but do allow 

market forces to determine the level of solar development relative to other qualified renewable 

options.  The Solar Carve-Out scenarios have a smaller impact on other non-solar related 

objectives, but may compel the development of high-cost solar, increasing the cost of 

implementing an RPS.   

Chapter 2: 
The variability of wind power introduces new challenges for the operation of the power system, 

including increased system ramping requirements.  One method to reduce wind variability is to 

diversify the wind power resource by interconnecting diverse wind resources across a larger 

geography.  This study uses a modified version of mean-variance portfolio optimization (MVP) to 

assess the potential for diverse wind to reduce the impacts of wind variability.  To understand the 

value of the reduced variability to the power system, different portfolios of wind power are 

assessed using a unit commitment and economic dispatch model.  Using MVP, diverse wind 

portfolios are shown to significantly reduce wind power variability, at the cost of increased installed 

wind capacity to meet the same level of wind generation of less diverse wind portfolios.  However, 

the value of the reduced variability is complicated by complexities of the power system, including 

transmission constraints and the time of day of ramping need.     
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Preface 
This thesis is organized into two chapters.  The first investigates the impacts on emissions and costs 

of adding solar policy preferences into a Renewable Portfolio Standards (RPS).  A variety of solar 

policy preferences exist, including credit multipliers and generation carve-outs, but are often 

implemented without a full understanding on their impacts on RPS implementation.  This chapter 

will be submitted for publication in the near future.   

The second chapter investigates the value of wind resource diversity to decrease some of the 

negative system impacts of integrating renewables into the grid.  Wind diversity is shown to 

decrease wind power variability, however decreasing the variability does not always translate into 

reduced negative impact given some of the complexities introduced in a real power system.  This 

chapter will also be submitted for publication in the near future.   

The connection between the two chapters is the use of a unit commitment and economic dispatch 

model to analysis the change in power system behavior when variable renewables are added to the 

grid.  The model is a full representation of the U.S. Eastern Interconnection, which spans from the 

Dakotas to Florida.  A map of the EIC and the zonal boundaries defined in the model is shown 

below.   

 

 

 

MAPP US

MISO W

SPP N

SPP S

MISO 
MOIL

PJM Rest 
of RTO

VACARTVA

Rest of 
MAAC

NE

ENT
SOCO

W
U

M
S

MISO 
MI

SWMAAC

EMAAC

NYA

NYD

NYB

NYC

NYF

NYE

NYG-I
NYJ NYK

ME

VT

NH

CMA/NEMA/BOS

RI/SEMA

WMA
CT

Non-
RTO



 

1 
 

Chapter 1: The Environmental and Cost Implications of Solar Energy 

Preferences in Renewable Portfolio Standards 
 

1.1 Introduction 
Renewable Portfolio Standards (RPS) are a common policy tool used by state law makers to 

encourage the development of renewable energy generation.  While each state’s RPS varies in 

design and scope, most require that electric load serving entities, such as investor owned utilities 

and electric cooperatives, meet a set percentage of their demand with eligible renewable energy.  

RPS typically set a target year for the required amount of renewable energy to be met, with interim 

goals along the way.  As of November 2014, 29 states have some form of a binding RPS in place .   

A variety of motivations exist for implementing a RPS.  Many see it as a tool to reduce emissions 

from the power sector, which, in 2012, accounted for about 38% of the CO2 emissions in the United 

States (U.S. Environmental Protection Agency 2014a).  The power sector also accounts for about 

70% of SO2 and 13% NOx emissions (U.S. Environmental Protection Agency 2014b).  Increasing the 

amount of local energy generation and manufacturing can be another reason for implementing a 

RPS, although these tend not to be a driving force to implement a RPS as found by Lyon and Yin 

(2010).  

Beyond the target goals for renewable energy generation, there are many variations in RPS 

program designs.  Eligibility requirements for renewable energy technologies can vary, including or 

excluding generation based vintage, size, and, for biomass generation, the fuel feedstock.  Many 

policies incentivize specific technologies, with 14 states offering incentivizes or mandating 

contributions from solar within their RPS (Wiser, Barbose et al. 2011).   

Policy makers see the benefits of solar development within their states in encouraging resource 

diversification within the renewables built to comply with the RPS and its potential to develop a 

local solar industry (Gaul and Carley 2012).  Even though the installed cost of solar has decreased 

dramatically over the last decade, it is still often not the lowest cost renewable option as evidenced 

by its low contribution of capacity additions towards RPS compliance in the U.S., only 1.5%, 

compared to wind’s 94% share (Wiser, Barbose et al. 2011).  RPS mandates are met with the least 

cost technology and any policy variation incentivizing a more costly technology, such as solar, are 

methods for the RPS to indirectly subsidize the costly technology (Buckman 2011).  Solar incentives 

within an RPS fall into two main categories: carve-outs and multipliers.  A solar carve-out requires a 

certain percentage of the overall RPS be met with solar generation.  New Mexico, for example, 

requires 20% of the renewable generation required by the RPS come from solar generation (Heeter, 

Barbose et al. 2014).  A solar multiplier gives additional credit toward RPS compliance for every unit 

of energy from solar.  Michigan has a 3x multiplier for solar, allowing every megawatt-hour 

generated from solar to count as three megawatt-hours towards RPS compliance (Quackenbush, 

White et al. 2014).    
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Some RPS policies provide incentives or mandates for distributed generation (DG) or customer-

sited systems, with limitations on the size of the generators.  While DG incentives are not typically 

limited to solar, it is expected that solar will be the primary benefactor (Gaul and Carley 2012).  DG 

incentives take the form of both carve-outs and multipliers: Massachusetts requires 456 GWh of 

customer-sited solar PV, while Washington gives a 2x  multiplier for DG (Wiser, Barbose et al. 

2011).   

Technology-specific multipliers and carve-outs can impact the costs and emissions reduction 

potential of the RPS.  Carve-outs may add binding constraints to compliance if the required 

technology displaces more cost effective renewable options.  On the other hand, credit multipliers 

may cause the actual renewable generation to be less than the required amount in the RPS, as 

incentive credits that do not represent actual generation can be used towards compliance.   

This study proposes an approach to quantifying the impacts of RPS solar policy preferences on 

emissions and program costs.  A solar energy multiplier, a solar energy carve-out, and a distributed 

generation solar carve-out are all compared to a “pure” RPS (i.e., an RPS without any specific 

technology incentives or mandates).  Renewable energy projects are chosen to minimize the cost of 

RPS compliance subject to any constraints imposed by the solar preference.  An economic dispatch 

model is used to measure the impacts on the power system from the introduction of new, typically 

variable, renewables on to the system.  The economic benefits, including the offset production 

costs of conventional generation and displaced capacity requirements, can be compared to the 

costs of building the renewables projects to determine the net cost of the RPS to rate payers within 

the state/region.  The environmental benefits arise from the reduction in the emissions from the 

combustion of fossil fuels, such as CO2, NOx, and SO2.   

This methodology to assessing the environmental and cost impacts of solar preferences in a RPS is 

tested on future potential designs for Michigan’s RPS.  Currently Michigan has a 10% by 2015 RPS, 

which is expected to be met (Quackenbush, White et al. 2014).  At this point, no expansion of the 

RPS beyond 2015 has been put in place, although discussion of increasing the RPS is ongoing.   

The results of this study demonstrate the value and applicability of this method to assess the 

impact of RPS policy design on costs and emissions.  While the quantitative results will vary by 

region, the methods proposed by this study could be applied to any state.   

Several studies have employed economic and power systems models to analyze the impacts of RPS 

policies, ranging from detailed and complex models to simple grid averages.  Johnson (2014) uses 

an analysis of renewable generation price elasticity to calculate the cost of carbon emissions 

reductions in the U.S. Northeast through RPS policies.  To capture CO2 mitigation potential, the 

analysis tests different assumptions for the type of fuel the RPS will displace.  Considine and 

Manderson (2014) develop an econometric forecast to determine the impact of California’s RPS on 

cost and emissions, in the light of efficiency efforts and varying natural gas prices.  This study is 

limited by assuming fixed operating hours for generators, with imports serving the role as the 
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“swing fuel.”  A recent comprehensive report by the National Renewable Energy Laboratory (NREL) 

and Lawrence Berkeley National Laboratory (LBNL) measured the retrospective costs and benefits 

of existing RPS policies throughout the U.S. (Heeter, Barbose et al. 2014).   

Other analyses of RPS include robust power systems representations to understand the generator 

responses to the introduction of renewable generation.   Multiple studies (Sullivan, Logan et al. 

2009; Bird, Chapman et al. 2011; Palmer, Paul et al. 2011) from NREL deploy the Regional Energy 

Deployment System (ReEDS) model, a capacity and transmission expansion model, to understand 

the impact of RPS and other policies aimed at introducing renewables to the grid.  Bird, Chapman et 

al. (2011) analyzed a federal cap and trade policy and RPS policies, in isolation and in tandem. 

Palmer, Paul et al. (2011) also relies on the ReEDS to examine various renewable energy policies, 

including a federal RPS.  While both of these studies provide a rigorous examination of the impacts 

of RPS policies, neither focus on the specific impacts associated with solar preferences within an 

RPS.   

Johnson and Novacheck (2015) coupled an economic dispatch model with a method to optimize 

renewable site selection to determine least cost RPS compliance and emissions reductions.  The 

study presented in this article builds off of this previous work by quantifying the environmental and 

cost impacts of solar policy preferences in an RPS.  This study presents new methods to more fully 

capture the impacts of RPS policy variations.   

1.2 Methods 
To analyze the cost and environmental impact of an increased RPS in Michigan, two models are 

used iteratively: an economic dispatch model to simulate the behavior of dispatchable generators 

and a renewable site selection model to select the renewable projects that meet the RPS targets.  

The economic dispatch model captures generators’ responses to the introduction of renewables 

and determines the energy costs displaced by the introduction of various renewable projects.  The 

renewable site selection model takes the market energy prices produced by the economic dispatch 

model and determines renewable projects that meet the RPS target at least cost to rate payers.  

The generation profile of the selected renewable projects are then added to the power system 

representation used by the economic dispatch model.  The two models are run iteratively in five 

year increments from 2015 to 2035 to fully capture the impact of adding renewables to the grid.  

The introduction of a renewable project with low variable costs (e.g., wind and solar) will put 

downward pressure on the market energy prices in hours when that renewable project is 

generating.  This will impact the economic competitiveness of future projects and the least cost 

renewable build plan to comply with the RPS.  The methodology presented in this study builds off 

of previous work to optimize renewable site selection in the context of varying RPS targets 

(Johnson and Novacheck 2015), expanding the approach to capture the impacts of technology 

preferences in the RPS design.   
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1.2.1 Renewable Site Selection  

The renewable site selection model determines the renewable build plan that complies with the 

RPS mandate, as identified by four factors:  (1) the cost of the renewable power purchase 

agreement (PPA), (2) the avoided variable costs of conventional generators including fuel costs, (3) 

the avoided costs of firm capacity to maintain the peak reserve margin, and (4) the change in the 

net electricity import costs (i.e., increased export revenue and decreased import costs).  The system 

of equations that determine the selection of renewable projects under different solar policy 

variations are detailed in Equations 1-10.   

The renewable PPA costs equal the revenue requirement that renewable projects need to be 

financially viable.  The revenue requirement is calculated using the method described in Johnson, 

De Kleine et al. (2014), but expanded to other renewable projects in addition to wind.  The costs 

included in the revenue requirement for renewable project 𝑖, denoted as 𝐶𝑃𝑃𝐴,𝑖 in the below 

equations, are the installed cost of the project and the associated financing, fixed operations and 

maintenance costs, taxes, and any fuel costs (for biomass, municipal solid waste, and landfill gas 

projects) (Johnson, De Kleine et al. 2014).  This study did not assume any extension of the 

investment tax credit (ITC) or production tax credit (PTC), but if relevant tax incentives existed they 

would be accounted for in the revenue requirement as well.   

The offset variable costs of conventional generators and the change in the net import cost caused 

by a renewable project are estimated by determining the energy market revenue a project expects 

to receive.  The calculation of energy market revenue, 𝐶𝑒,𝑖, for renewable project 𝑖 is shown in 

Equation 1,  

𝐶𝑒,𝑖 =  
∑ (𝑃𝑖,𝑡 × 𝐸𝑡)8,760

𝑡=1

𝑃𝑖
   (𝑒𝑞. 1) 

where 𝑃𝑖 is the annual generation for project 𝑖,  𝑃𝑖,𝑡 is the power output at hour 𝑡 of site 𝑖, and 𝐸𝑡 is 

the market energy price at hour 𝑡.  Multiplying the energy market price by the associated 

generation from the renewable project and summing the products over time determines the 

avoided energy costs that reflect the time-of-day value of the renewable generation.  The 

introduction of wind and solar, which are assumed to have $0/MWh dispatch cost, are assumed to 

displace the most expensive conventional generators that are operating at that time.  Biomass, 

municipal solid waste, and landfill gas have non-zero dispatch costs because of fuel and other 

variable costs associated with their operation.  However, they will operate when the market energy 

price is above its dispatch cost, at which point it will displace the most expensive conventional 

generators that would have operated in the absence of the biomass generation. The energy market 

revenue expected by a renewable project can therefore be used to estimate the amount variable 

costs of conventional generators and net import costs will decrease if that renewable project is 

integrated into the grid.     

In addition to avoiding energy costs, the introduction of renewables also displaces the need for 

some firm capacity.  NERC, in cooperation with state public utility commissions and independent 
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system operators (ISO), develops targets for the amount of firm capacity above the peak load in the 

region a balancing area (BA) must have in place (North American Electric Reliability Corporation 

2013).  MISO’s target, for example, is to have 14.2% more capacity than the peak load throughout 

the region (North American Electric Reliability Corporation 2013).  Variable renewables, even 

though they cannot be called on to increase their generation, do receive some capacity credit to be 

used towards meeting the reserve margin.  The capacity value of project 𝑖, 𝐶𝑐𝑎𝑝,𝑖 ($/MWh), is based 

on the capacity credit, 𝛾, which is a percentage of the installed capacity and a fixed value for firm 

capacity, 𝐶𝑁𝐸 ($/kW-yr).  As shown in Equation 2, the product of 𝛾 and 𝐶𝑁𝐸 is divided by the 

project’s capacity factor, 𝐶𝐹𝑖, which normalizes the capacity credit to the total generation of the 

project. The value of 𝛾 is typically based on analysis to determine the probability a type of variable 

generation will be available on peak.  Wind and solar capacity credits are determined separately.  In 

this study, 𝛾 is assumed to be 14.1% for wind (Midcontinent Independent System Operator 2013), 

38% for solar (PJM 2014), and 80% for biomass to reflect its value as a dispatchable resource.  The 

total capacity value the renewable projects provide an estimate of the cost of the displaced firm 

capacity that would have needed to be built to meet the reserve margin requirements for the BA 

had the renewable projects not been built.  

𝐶𝑐𝑎𝑝,𝑖 =  
𝐶𝑁𝐸 ∗  𝛾𝑖 ∗ 103 𝑘𝑊

𝑀𝑊
𝐶𝐹𝑖 ∗ 8760ℎ𝑟/𝑦𝑟

     (𝑒𝑞. 2) 

The list of projects and the size of the projects are selected to minimize the above market cost, 𝛽, 

which represents the net cost impact of a renewable project, the sum of which represents the total  

RPS program cost.  Equations 3 through 6 determine the renewable project selection. 

𝑀𝑖𝑛 𝛽 =  ∑ [(𝐶𝑃𝑃𝐴,𝑖 − 𝐶𝑒,𝑖 − 𝐶𝑐𝑎𝑝,𝑖) ∗ 𝑃𝑖]𝑛
𝑖=1       (𝑒𝑞. 3) 

𝑠. 𝑡., ∑ 𝑃𝑖

𝑛

𝑖=1

≥  𝜑    (𝑒𝑞. 4) 

𝑃𝑖  ≤  𝐶𝐹𝑖 ∗ 𝐶𝑎𝑝𝑚𝑎𝑥,𝑖 ∗ 8760
ℎ𝑟𝑠

𝑦𝑒𝑎𝑟
        (𝑒𝑞. 5) 

𝑃𝑖  ≥ 0         (𝑒𝑞. 6) 

 

The decision variables in the linear optimization problem are the amount of renewable generation, 

𝑃𝑖, to be provided by site 𝑖 to comply with the RPS mandate.  Equation 4 requires the sum of all the 

decision variables be at least the incremental addition of renewable generation, 𝜑, required by the 

RPS.  Equation 5 sets the upper bound for generation from each site, set by the assumed capacity 

limit for each site.  The optimization is run each year of the study to determine the set of projects 

to be built in that year.   

The RPS solar policy variations add or alter constraints.  First, the decision variables that represent 

solar generation must be distinguished from the other variables.  Equation 7 shows how the 

decision variables are broken into three subsets of all of the possible projects.  𝑃𝑛𝑠 are the non-solar 
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decision variables, 𝑃𝑈𝑠 are the utility scale solar decision variables, and 𝑃𝐷𝐺𝑠 are DG solar decision 

variables.   

𝑃𝑛𝑠, 𝑃𝑈𝑠, 𝑃𝐷𝐺𝑠  ⊂  𝑃    (𝑒𝑞. 7) 

In the case of the 20% Solar Carve-Out and the 5% DG Solar Carve-Out, a constraint is added to 

require the addition of the appropriate type of solar.  In the Solar Carve-Out, Equation 8 is added in 

order to require that all of the generation from solar is some proportion, 𝜔𝑈𝑠+𝐷𝐺𝑠, of the total 

incremental renewable generation required by the RPS.  In the case of the DG Solar Carve-Out, 

Equation 9 replaces Equation 8 to require some proportion, 𝜔𝐷𝐺𝑠,  of the total incremental 

renewable generation to come from DG solar.    

∑ 𝑃𝑈𝑠,𝑗

𝑛𝑈𝑠

𝑗=1

+ ∑ 𝑃𝐷𝐺𝑠,𝑘

𝑛𝐷𝐺𝑠

𝑘=1

≥ 𝜔𝑈𝑠+𝐷𝐺𝑠 ∗ 𝜑     (𝑒𝑞. 8) 

∑ 𝑃𝐷𝐺𝑠,𝑘

𝑛𝐷𝐺𝑠

𝑘=1

≥ 𝜔𝐷𝐺𝑠 ∗ 𝜑     (𝑒𝑞. 9) 

The solar multiplier does not add any constraints, rather it modifies the constraint in Equation 4.  

Any solar generation is multiplied by 𝛼, as can be seen in Equation 10, allowing it to count extra 

towards meeting the incremental renewable generation constraint relative to non-solar generation. 

∑ 𝑃𝑙 +  𝛼

𝑛𝑙

𝑙=1

[∑ 𝑃𝑈𝑠,𝑗

𝑛𝑈𝑠

𝑗=1

+ ∑ 𝑃𝐷𝐺𝑠,𝑘

𝑛𝐷𝐺𝑠

𝑘=1

] ≥  𝜑    (𝑒𝑞. 10) 

1.2.2 Economic Dispatch Model 

Renewable generation will displace certain conventional generation based on cost and operational 

constraints.   Due to the variable nature of both wind and solar, conventional generators will also 

incur more start-ups and shut-downs in order to balance the supply and demand of power.  The 

unit commitment and economic dispatch model captures these changes in generator behavior and 

their impacts on costs and emissions of the power system. 

Plexos for Power Systems by Energy Exemplar is the unit commitment and economic dispatch 

model used in this study.  Plexos employs linear programing to determine the least cost operations 

for the entire system.  The optimization problem is solved using an interior algorithm with mixed 

integer programming used to determine unit commitment.  The problem is solved chronologically 

in hourly intervals.  The economic dispatch model minimizes the cost of generation over time, as 

influenced by generator operating conditions and the fuel price.  These include generator heat rate 

curves (efficiency of fuel use), cost of variable operations and maintenance, start costs, and the 

level of generation.  Constraints to the optimization include, matching supply and demand in real 

time (unless over constrained), generator output range (minimum/maximum load), generator 
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availability (impacted by forced outage rate), generator ramp rate (rate at which a generator can 

change load point), and transmission limits between zones.  

This model begins as a full representation of the synchronous U.S. Eastern Interconnection (EIC), 

segmented into 35 zones.  Major inputs to this model include transmission constraints between 

zones, load profiles, generators reflective of their operational constraints, and zonal fuel prices.  

Key assumptions used in the test case are provided in Section 2.4, as well as the Supporting 

Information. 

1.2.3 Michigan Test Case 

The methods described in this study can be applied to any state and the system characteristics of 

the examined area will determine the emissions and costs impacts of solar preferences in an RPS.  

This study presents a case study, using Michigan as a demonstration of the use of the methods to 

analyze the impact of RPS policy variation.  The majority of Michigan is part of the Midcontinent 

Independent System Operator’s (MISO) footprint, with a small portion of the southwest corner of 

the state belonging to PJM.  Michigan and MISO as a whole is heavily dependent on coal for power 

generation.  In 2013 coal accounted for 54% of all generation in Michigan (U.S. Energy Information 

Agency 2013a).   

Michigan’s current RPS calls for 10% renewables by 2015.  This study assumes that the RPS target is 

increased to 25% by 2025 and maintained thereafter.  The four scenarios assessed include: a Pure 

RPS (no solar policy variation), a 20% Solar Carve-Out (20% of the new renewable generation must 

be solar, 𝜔𝑈𝑠+𝐷𝐺𝑠 = 0.2 in Equation 8), a 5% DG Solar Carve-Out (5% of new renewable generation 

must be DG solar, 𝜔𝐷𝐺  = 0.05 in Equation 9), and a 3x Solar Multiplier (solar receives 3 times the 

credit towards RPS compliance, α = 3 in Equation 10).  The changes in costs and emissions are 

determined by comparing the scenarios to a scenario with no expansion of the RPS, details of which 

are provided in (Johnson and Novacheck 2015). Sensitivity of the results to natural gas price and 

the installed cost of solar are considered.  

The full Eastern Interconnection model is run in 2015.  The geography is then reduced for 

subsequent years reduce modeling time.  The reduced geography includes the northern portion of 

MISO and the Western portion of PJM, which borders Michigan directly.  Using the power flow 

results from full 2015 run, imports and exports into and out of reduced geography (MISO and 

Western PJM) are held constant for all subsequent runs to capture the influence of the rest of the 

Eastern Interconnection on the reduced geography, while still allowing flows into and out of 

Michigan to be optimized throughout the study period.   

Qualified renewable technologies considered in this study include wind, utility scale solar, DG scale 

solar, biomass (six feedstock options), municipal solid waste (MSW), and landfill gas (LFG).  The 

renewable project location, size, and generation profile are specific to Michigan.  Wind data are 

from NREL’s Eastern Wind Dataset, solar data from seven sites using TMY2 weather data and 

NREL’s System Advisory Model (National Renewable Energy Lab 2014) to determine generation 
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profiles.  Single axis tracking systems are assumed for utility-scale projects, while DG projects are 

fixed axis.  The resource assumptions for biomass and MSW are from “A Geographic Perspective on 

Current Biomass Resource Availability in the United States” (Milbrant 2005) while landfill gas data 

are from the EPA’s Landfill Methane Outreach Program (U.S. Environmental Protection Agency 

2014cc).   

The installed cost of renewables may also change over the study horizon, particularly the cost of 

solar.  Assumptions for the costs of renewables are shown in Table 1.  The installed cost of wind, 

biomass, MSW, and LFG generators are assumed to remain constant (in terms of real dollars) over 

the study period.  According to data from quarterly reports published by the Solar Energy Industries 

Association (Solar Energy Industries Association 2014), utility scale solar has shown a 15.1% year 

over year decrease in the installed cost of projects since 2012 (using quarterly weighted averages).  

DG PV has seen a 9% decrease over the same time period.  This study assumes this rate of decline 

will continue until it hits a floor of $1/W-AC for utility scale solar and $1.5/W-AC for distributed 

solar, is consistent with the DOE SunShot target.  Under our assumptions, utility scale solar reaches 

this target in 2021, while DG scale projects reach their target in 2027.    

Table 1: 2014 Renewable Assumptions 

Technology Wind Utility Solar DG Solar Biomass Landfill Gas 

Installed cost 
($/kW) 

1,940a 2,453b 4,734b 4,505c 1,816d 

Annual change in 
installed cost (real 
$)  

0% 15%b 9%b 0% 0% 

Fixed O&M ($/kW-
yr) 

25c 23c 20c 106c 174d  

Variable O&M 
($/MWh) 

- - - 5c 5c 

Fuel cost 
($/MMBtu) 

- - - 1.90 – 4.12 2.20 

Sources: a) Wiser and Bolinger (2013), b) Solar Energy Industries Association (2014), c) U.S. Energy 

Information Agency (2013b), d) U.S. Environmental Protection Agency (2012) 

The base zonal fuel prices were calculated using the EIA 923 database based on the generation 

weighted average of the fuel costs reported by all generators within the same zone.  The method 

captures geographic diversity of fuel costs seen in the real power system.  The fossil fuel price 

forecast used in the economic dispatch model comes from the EIA’s 2014 Annual Energy Outlook 

(AEO).  The AEO assumes a 1.0% growth rate in the price of coal, and a 3.1% growth rate in the 

price of natural gas between 2012 and 2040.  

Sensitivity analysis is performed on the assumed floor for the installed cost of solar and the price of 

natural gas.  For the installed cost of solar, the low sensitivity sets the floor prices at $0.5/W-AC and 

$0.75/W-AC for utility and DG scales respectively.  The high floor is assumed to be $1.25/W-AC and 
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$2/W-AC.  For the natural gas price sensitivity, the low gas scenario assumes prices will be 50% 

lower than the forecasted value, while the high scenario assumes prices will be 50% higher.   

Coal retirements were assumed to include announced retirements (1.2 GW) and units for which 

compliance with Mercury and Air Toxics Standard would exceed the cost of a new natural gas 

combined cycle (750 MW).   

1.3 Results 
The economic dispatch model and renewable site selection model were executed iteratively to 

determine the generation mix, costs, and emissions with each scenario over the 20 year study 

horizon (i.e., 2015 to 2035).  The results show the impact of three solar policy variations on an 

assumed expansion of Michigan’s RPS:  20% Solar Carve-Out, 5% DG Solar Carve-Out, and 3x Solar 

Multiplier.  Each policy variation is compared to a Pure RPS case with no incentives or preferences 

for any technology.  In Section 3.1, the impacts of RPS solar preferences on the generation mix are 

presented; Section 3.2 details changes in emissions; Section 3.3 presents the impact on the cost of 

the RPS.  In Section 3.4, we present the results of the sensitivity analysis, in which we test the 

importance of assumptions for the installed cost of solar (high and low) and natural gas price (high 

and low).    

1.3.1 Generation Mix 

Figure 1 shows the changing generation profile over the 20 year study period for the three solar 

policy preferences and the Pure RPS case.  Note that all scenarios experience an increase in total 

generation, due partly to load growth within Michigan and partly to an increase in net exports.  By 

adding low variable cost renewable generation, Michigan increases its electricity exports to 

neighbor states.  Therefore, renewables added to meet Michigan’s RPS displace conventional 

generation within the state, as well as generation in neighboring states including Indiana, Ohio, and 

Wisconsin. 
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a)

 

b)

 
c)

 

d)

 

 
Figure 1 Generation mix by fuel type for each RPS policy variation: (a) Pure RPS; (b) 20% Solar 

Carve-Out; (c) 5% DG Solar Carve-Out; (d) 3x Solar Multiplier 

Even under an expanded RPS, Michigan’s power sector remains dominated by coal.  In the Pure RPS 

case, coal accounts for nearly half of all generation throughout the study period.  Without any extra 

incentive or mandate for solar in this case, nearly all new renewable generation comes from wind, 

making up 98% of all new renewable generation in the final year of the study. Solar is only added 

after 2030 to maintain the RPS target as load grows between 2025 and 2035.  The total renewable 

generation over the study period, and the share of generation for the different renewable 

technologies are shown in Figure 2.   
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Figure 2 Total renewable generation between 2015 and 2035, by type. Without solar preferences 

embedded in the RPS, wind dominates new renewable generation. 

In the 20% Solar Carve-Out and the 5% DG Solar Carve-Out cases, the amount of solar generation 

meets the solar requirement stated in the RPS, but nothing more, until the study year 2030 when 

new solar becomes preferable to new wind.  The 3x Solar Multiplier case yields the highest solar 

penetration, both in terms of the share of new renewable generation and absolute generation.  

Over the study period, 49% of all new renewable generation comes from solar in the 3x Solar 

Multiplier case compared to only 20% in the 20% Solar Carve-out.  By 2035, solar contributes 4.8 

TWh annually, representing over 4% of Michigan’s load.    

While the solar multiplier proved to be most effective in increasing the amount of solar generation 

on the system, it comes at the expense of wind generation and the total penetration of renewables. 

By incentivizing solar through a credit multiplier, every megawatt-hour of solar generation is 

counted as three megawatt-hours towards RPS compliance.  With this multiplier, solar becomes 

competitive with wind by 2018 and after this date only solar is built to comply with the RPS.  Each 

of the other three scenarios (i.e., Pure RPS, 20% Solar Carve-Out, 5% DG Solar Carve-Out) reach the 

target penetration of renewables, which is 24.3% of load.  (n.b., Renewable penetration does not 

hit 25% due to historical workforce incentives in Michigan’s original 10% by 2015 RPS, which were 

assumed to be grandfathered in across all cases.)  The 3x Solar Multiplier case, however, only 

achieves a renewable penetration of 15.9% of load, adding 52% less new renewable generation 

relative to the other three scenarios.   

Due to the reduction in total renewable generation under the 3x Solar Multiplier, there is a 

significant increase in coal generation over the Pure RPS: 15.9% more coal generation in 2025 and 

10.6% more in 2035.  The 20% Solar Carve-Out also increases coal generation, but has a smaller 

impact relative to the 3x Solar Multiplier.  In the Carve-Out cases, solar projects take the place of 

wind.  This swap increases coal generation because solar generates on peak and is more likely to 

displace natural gas, while wind may generate at any hour of the day, increasing the likelihood of 

displacing coal in off peak hours. Compared to the Pure RPS case, coal generation is 2.7% greater 
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for the 20% Solar Carve-Out in 2025, decreasing to 0.8% greater in 2035.  The 5% DG Solar Carve-

Out mandates less solar, allowing more wind on the system, leading to a similar amount of coal 

generation to the Pure RPS.   

1.3.2 Emissions 

Adding solar preferences to an RPS changes the type of renewable capacity added to the power 

system.  Different renewable generation profiles for as available generators such as wind and solar 

impact the type of generation that is displaced by the renewables, and in turn the reduction in 

emissions of pollutants such as CO2, SO2, and NOx.   

In a previous study using a comparable methodology, we determined that, without an expanded 

RPS, Michigan’s CO2 emissions rate increases from 0.60 lbs/MWh in 2015 to 0.70 lbs/MWh in 2035, 

due to an increase in the capacity factor of coal plants within the state to meet load growth 

(Johnson and Novacheck 2015).  By increasing Michigan’s RPS to 25% by 2025 (a 15% increase over 

the current 10% mandate), the Pure RPS case decreases the CO2 emission intensity to 0.52 

lbs/MWh in 2025 and 0.57 lbs/MWh in 2035 relative to no RPS expansion.  Renewable capacity is 

only built between 2025 and 2035 to maintain the RPS target under load growth, which is 

insufficient to prevent an increase in coal generation, accounting for the increase in the CO2 

emissions rate.  The Pure RPS also decreases the emissions rate of SO2 and NOx by 19.5% and 17.4% 

relative to no RPS expansion, respectively, in 2035.   

a)

 

b)

 
c) 

 
Figure 3: Impact of RPS solar 
preferences on emissions rates 
of total generation within 
Michigan. (a) CO2 emission 
rate; (b) NOx emissions rate; 
(c) SO2 emissions rate 
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Figure 3 shows the relative emissions rate impact of adding a solar policy preference to the Pure 

RPS within Michigan for CO2, SO2, and NOx.  In general, the 3x Solar Multiplier case increases the 

emissions rate because less renewable capacity is added, requiring more fossil generation.  The 

20% Solar Carve-Out increases the CO2, NOx, SO2 emissions rate slightly as there is more coal 

generation relative to the Pure RPS.  The 5% DG Solar Carve-Out shows very little change from the 

Pure RPS.   

Figure 4 shows the cumulative change in CO2 over the 20 year study period between the solar 

policy variations and the Pure RPS.  The CO2 emissions in this figure reflect region-wide emissions, 

not just Michigan, since some of Michigan’s added renewables displace out of state generation.  

The 3x Solar Multiplier increases CO2 emissions dramatically over the study period, while the two 

Solar Carve-Out scenarios have little impact on total emissions reductions.   

 

Figure 4 Change in CO2 emissions over the study period due to solar policy preferences. 

1.3.3 RPS Program Cost 

We have characterized four cost categories that are attributable to the implementation of an RPS.  

The four categories are: 

1) New renewable power purchase agreements:  We assume new generation is achieved 

through renewable power purchase agreements (PPAs), with contract terms that meet the 

project’s revenue requirement discussed in the methods section.     

2) Displaced variable cost of conventional generation: These PPA costs can be offset by 

displacing dipatchable generation.  By turning down (or off) coal and gas units, the 

production costs associated with generation decrease.   

3) Reduced need for capacity: By awarding some fractional credit for the value of renewable 

capacity, the need to expand conventional capacity to maintain the peak load reserve 

margin decreases, further reducing costs to rate payers.   
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4) Change in net imports:  New renewable generation can increase exports out of the state 

and decrease imports into it.  This decreases electricity import expenses, while increasing 

electricity export revenue to in-state rate payers.   

Adding solar preferences to the RPS impacts all four of these cost categories, as well as the total 

program cost.  Figure 5 displays how each of these components change relative to the Pure RPS for 

each solar policy variation over the 20 year time horizon.  Using a discount rate of 7%, the net 

present value (NPV) of the RPS program costs of the Pure RPS is $3.6 billion over the 20 year study 

period.  The 20% Solar Carve-Out and the 5% DG Solar Carve-Out policy scenarios increase the NPV 

by $1.0 billion (+28%) and $1.2 billion (+34%) respectively.  The 3x Solar Multiplier case decreases 

total NPV by $1.4 billion (-39%), due to less renewable generation being added in this scenario.   

Driven by our assumptions on installed costs for each technology, solar does not become a lower 

cost alternative to wind in Michigan until after 2030 under the base case assumptions.  Therefore, 

the two solar carve outs mandate a more expensive technology be built, increasing the total 

renewable PPA portion of the RPS program cost.  Over the 20 year study period, the Pure RPS adds 

$8.5 billion in NPV PPA costs.  Incorporating a 20% Solar Carve-Out increases the renewable NPV 

PPA cost of the RPS by 16.0%, while the 5% DG Solar Carve-Out increases the NPV PPA cost by 

15.5%.  Even though less solar capacity is added in the 5% DG Solar Carve-Out, the increase in the 

PPA cost is similar because DG solar projects are more expensive than utility scale projects, which 

are exclusively chosen in the 20% Solar Carve-Out case.  The Solar Carve-Out cases also decrease 

the cost of capacity expansion to maintain the reserve margin relative to the Pure RPS.  Because 

solar operates on peak, it is given a larger credit towards meeting the reserve margin.  However, 

capacity expansion accounts for the smallest portion of the four components of the RPS program 

cost, as can be seen in Figure 3. 
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a)

c)

 

b)

d)

 
e) 

 
Figure 5 Change in the four 
cost components of the total 
RPS program cost due to solar 
policy preferences.  Four 
components include: (a) new 
renewable power purchase 
agreements; (b) displaced 
variable cost of conventional 
generation; (c) reduced need 
for capacity; (d) change in net 
import costs; (e) total net cost 
 
The 3x Solar Multiplier case shows a larger change in three of the four cost components.  Even 

though the most solar is built in the solar multiplier case, the total renewable PPA cost is less than 

that of the Pure RPS because less renewable capacity is built overall (i.e., there is far less wind in 

this case).  The smaller contribution of renewables causes both the variable cost of conventional 

generation and the net import costs to increase in the 3x Solar Multiplier case.  

1.3.4 Sensitivity 

In light of the uncertainties in key assumptions, over the 20 year study period, sensitivity of results 

to natural gas prices and solar installed costs were tested. For the installed cost of solar, the low 

sensitivity sets the floor prices at $0.5/W-AC and $0.75/W-AC for utility and DG scales, respectively.  
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The high floor is assumed to be $1.25/W-AC and $2/W-AC, respectively.   The sensitivity of the 

natural gas fuel price forecast sets the low gas prices 50% lower than the forecasted value, while 

the high scenario assumes prices will be 50% higher.  The program cost, CO2 emissions rate, and 

coal generation sensitivity to the base assumptions are considered.  The sensitivity results are only 

discussed for the year 2025. 

a)

 

b)

 
c) 

Figure 6: Assumption sensitivity on results of CO2 emissions, coal generation, and solar generation.  The percent 

difference is shown for CO2 and coal, while the absolute difference for solar due to the low amount of solar added in 

the Pure RPS with base assumptions. 

Figure 6 shows how CO2 emissions rate, coal generation, and solar generation change under 

different assumptions for the natural gas fuel price and the floor installed cost for solar in 2025, 

while Figure 7 shows the different components of the total RPS program cost change.  In both 

figures, the solar policy variations are compared to the Pure RPS under the same sensitivity 

assumption.  For example, for the high gas sensitivity, the solar policy variations, and the Pure RPS 

scenarios used the high gas sensitivity assumption.  The only impact of the higher floor cost of solar 

is an increase in total PPA costs.  In the two Solar Carve-out base cases, the carve-out constraint 

(Equations 8 and 9) remains binding until 2030 (no additional solar is built beyond what is required 

by the carve-out).   A higher floor for the installed cost of solar only increases the costs to meet the 

carve-out constraint, without impacting the renewable build plan.  The renewable build plan also 

does not change in the 3x Solar Multiplier case, as the higher floor for the installed cost of solar 
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does not change the year when solar, with the multiplier, becomes competitive with wind.  The 

only difference being solar is more expensive.  Because the renewable build plan is not impacted by 

the high floor for the installed cost of solar, there is no impact on emissions, coal generation, or 

solar generation relative to the base assumptions.   

a)

 

b)

 
c)  

Figure 7: Sensitivity analysis on the cost of solar preferences in RPS, relative to Pure RPS case.  The percent difference 

in the net total cost for each sensitivity is also shown.   

The low solar cost, on the other hand, does impact the renewable build plan.  With a lower floor for 

the installed cost of solar, the carve-out constraint in the 20% Solar Carve-Out case becomes non-

binding after 2021, and utility scale solar replaces wind to meet the RPS target after that date in all 

cases (Pure RPS and solar policy variations). The solar preference impact on renewable PPA costs 

decrease relative to the base assumptions in all scenarios except the DG Carve-Out.  PPA costs 

increase slightly as the DG solar constraint remains binding even as utility scale solar becomes 

competitive with wind.  The location of the utility scale solar changes in the Carve-Outs compared 

to the Pure RPS.  The location of the utility scale projects in the Carve-Out scenarios tends to export 

the solar generation out of Michigan rather than displacing generation in the state.  This results in 

an increase in the variable cost of generation for the Carve-Outs, while the net imports decrease.  

Low solar cost decreases the impact has on CO2 emissions, while increasing the emissions rate 

impact in the Carve-Outs.  This is again due to where the solar is located in the Carve-Out scenarios.  

This is due to the emissions rate increasing in the Pure RPS under low solar conditions.  Coal 

generation also increases in the low solar case in the Pure RPS scenario, decreasing the impact the 
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solar policy variations have on coal generation.  For cost, solar and coal generation, and CO2 

emissions, the decreased impact of the solar policy variations in the low solar sensitivity is primarily 

due to increased solar generation in the Pure RPS.  The increased solar generation in the Pure RPS 

in effect, nullifies the need of the solar preferences to achieve the objectives they were put in place 

to address.   

High natural gas fuel price has a similar impact to the low solar installed cost floor.  Natural gas is 

used primarily during peak hours, therefore a higher natural gas price increases the energy market 

price differential between peak times and off-peak times.  Since solar only generates on peak, it will 

displace higher cost conventional generation than wind.  Therefore, after 2021 the above market 

cost (𝛽 in equation 3) is minimized by choosing utility scale solar in all cases.  Again, the carve-out 

constraint in the 20% Solar Carve-Out scenario becomes non-binding.  Both the 20% Solar Carve-

Out and the 3x Solar Multiplier decrease the RPS program cost impact of solar policy variations.  

However, the 5% DG Solar Carve-Out case is most expensive under high natural gas prices.  The DG 

solar added to the system is both small and expensive relative to the utility scale solar leading to 

little benefit of a 5% DG Solar Carve-Out in the presence of high gas prices.  The impact of high 

natural gas prices on CO2 emissions, solar generation, and coal generation is similar to the low solar 

installed cost floor due to large amounts of solar generation added in the Pure RPS case under high 

natural gas prices.   

Low natural gas prices make solar less attractive, as the differential between peak and off-peak 

energy market prices decrease.  For all solar policy variations, the low natural gas prices case look 

similar to the base case assumptions, but slightly more expensive as the low natural gas price 

removes some of the value of solar to displace expensive on-peak generation in the base case.    

In general, the sensitivity of the RPS program cost results on the floor for the installed cost and the 

natural gas fuel price forecast is low.  In the 20% Solar Carve-out case, the percent increase in the 

RPS program cost over the Pure RPS range from 0.7% increase to 3.0% increase, with a 2.1% 

increase found in with the base assumptions.  The range is small for the 5% DG Solar Carve-Out as 

well, spanning a 3.0% to 4.7% increase in program cost.  The 3x Solar Multiplier ranges from a 3.6% 

to a 5.7% decrease in total cost.   

1.4 Discussion 
RPS policies have been touted to meet a variety of objectives, including reducing local air pollution 

and greenhouse gas emissions, as well as increasing employment through “green jobs.”  Without 

any specific technology incentives, the RPS drives the market to meet the mandate for renewables 

with the least cost generation technology available (Buckman 2011).  In Michigan’s case, and in 

many other states in the US, the dominant technology used for RPS compliance is wind (Gaul and 

Carley 2012).  Increasingly, states are broadening the objectives of RPS policy to include resource 

diversification and encouragement of new local industries, such as the solar industry (Gaul and 

Carley 2012).  This has led states to include solar policy preferences in the form of credit multipliers 

and carve outs.  However, due to the higher cost of solar, these solar policy variations do not offer 
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the lowest short term cost of RPS compliance.  This study introduces a method for evaluating the 

impacts of such solar preferences on three key outcomes: the generation mix, emissions, and RPS 

program costs.  When testing this method on the potential expansions to Michigan’s RPS, the 

effectiveness and impacts of the solar policy preferences at achieving the various RPS objectives 

can be examined.   

The most direct objective of all RPS is to add renewable energy generation to the grid.  Not 

surprisingly, the most cost effective policy to add renewables to the grid is the Pure RPS with no 

solar preferences, as shown in Table 2.  Of the solar policy variations, the solar multiplier has lowest 

cost per addition of new renewable generation.  However, this metric can be misleading because 

the solar multiplier adds 52% fewer renewables than the Pure RPS and the two solar carve-out 

cases.  Because the best resources are chosen first, every incremental renewable project will be 

more expensive than the earlier projects.   

 
RPS Cost Metrics (NPV Discount Rate = 7%) 

HHI Index Generation 
Diversity Index 

Renewable 
Energy ($/MWh 
of New 
Renewables) 

Solar Energy 
(Solar 
PPA$/MWh of 
New Solar) 

CO2 Mitigation 
($/ton of CO2 
Reduction) 

All 
Generation 

Within All 
Renewable 
Generation 

Pure RPS 31.0 NA 29.6 3,312 6,732 

20% Solar 
Carve-Out 

39.7 117 38.5 3,234 5,032 

3x Solar 
Multiplier 

36.7 106 38.5 3,751 3,161 

5% DG Solar 
Carve-Out 

41.5 367 39.3 3,253 6,301 

Table 1: Impacts of solar preferences on RPS outcomes 

A key objective of an RPS with solar preferences is to increase the amount of solar generation.  

Solar generates on-peak, helping to reduce the most expensive conventional generation and 

reducing the required capacity to maintain the peak load reserve margin more than wind.   

Of the three solar policy variations, the solar multiplier adds the most solar at the lowest RPS 

program cost.   In this case, there is no mandate to build solar.  For that reason, solar is only chosen 

once the three times multiplier makes it cost competitive with wind, which in this case is 2018.  The 

20% Solar Carve-Out is second most cost effective option to increase solar generation.  The 5% DG 

Solar Carve-Out is the most expensive of the solar preferences.  Even with the smaller carve out 

mandate, DG solar is more expensive than utility scale.  However, the 5% DG Solar Carve-Out is the 

only scenario where distributed generation is chosen over utility scale solar.  If increasing the 

decentralized nature of the power system is one of the objectives of the RPS, then the 5% DG Solar 

Carve-Out is the only RPS solar policy option to achieve this goal. 
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It is important to note the only reason the 3x Solar Multiplier is the most cost effective option to 

add solar is because the multiplier makes solar more completive to wind during the study period.  

Michigan’s current RPS (10% by 2015) has a 3x Solar Multiplier in the policy.  However, only 28 MW 

have been approved in the state (Quackenbush, White et al. 2014) because the multiplier has not 

made solar competitive with wind to this point.  Therefore, the multiplier in the current RPS is not a 

cost effective method if the objective to add solar, while a carve-out would have mandated solar be 

built regardless of the cost.   

Additionally, a multiplier for solar is inherently “under-designed” (i.e., encourages no solar 

development) in the years before it makes solar competitive, but “over-designed” (i.e., only 

encourages solar development) after solar with the multiplier is chosen over any other renewable 

project.  Before it becomes competitive, the multiplier is essentially useless as no solar is added.  

After it makes solar competitive, it dramatically reduces the amount of total renewables added to 

the system as there is no incentive to build any renewable project besides solar with the multiplier 

benefit.     

Another reason adding solar generation is an objective of recent RPS designs is to increase 

generation source diversity. The Herfindahl Index (HHI) is used to quantify competiveness of a 

market by accounting for market share among the different players in the market.  HHI has also 

been deployed outside of economic markets, including to measure power capacity diversity within 

a region (Wang, Shahidehpour et al.). In this analysis, we deployed it to assess the RPS’s ability to 

introduce diversity to the generation mix.  The equation for HHI is given in Equation 11, 

𝐻𝐻𝐼 =  
∑ 𝑔𝑖

2𝑛
𝑖=1

(∑ 𝑔𝑖
𝑛
𝑖=1 )

2 ∗ 1002         (𝑒𝑞. 11) 

where 𝑔𝑖 is the annual generation from generation type 𝑖 (i.e., coal, wind, solar, etc.).  A lower 

index indicates more a more diverse generation mix.  Table 2 shows the HHI results for generation 

diversity in Michigan.  In the context of markets, an HHI <1000 is considered a competitive market, 

while higher values indicate large portions of the market are dominated by a small number of 

players.  

When considering all of Michigan’s generation, the two solar carve-outs slightly decrease the index 

slightly relative to the Pure RPS because they add solar generation not present in the Pure RPS.  The 

solar multiplier actual increases the index by 13.2% because, even though the most solar is 

introduced in this case, new renewable generation is less than half of what is added in the Pure 

RPS.  From this perspective, adding more renewables, even if they are predominately from one 

source, has the largest impact on increasing generation diversity given Michigan’s heavy reliance on 

coal. 

When considering the diversity within all renewable generation, the solar policy preferences do 

have a large impact on the HHI.  All three solar policy variations decrease the index, with the 
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multiplier decreasing the index the most (-53% from the Pure RPS).  Again, much less renewable 

generation is added in this scenario and in particular much less wind generation is added.  The 20% 

Solar Carve-Out also significantly reduces the HHI (-25.3%), while adding the same amount of total 

renewable generation as the Pure RPS.   

Finally, one of the primary objectives of many RPS is to reduce the carbon emissions from the 

power sector.  The three solar policy variations all increase mitigation costs in roughly comparable 

amounts, increasing the cost per unit of CO2 reduction between 30 – 33%.  Each of the carve-out 

policies minimally impact CO2 emissions relative to the Pure RPS, but both increase the RPS 

program cost, reducing the cost effectiveness of CO2 mitigation.   The 3x Solar Multiplier scenario is 

the least expensive program to implement, but also adds the least renewable generation and 

therefore mitigates significantly less carbon.  If the region of interest was relied predominately on 

natural gas instead of coal, solar policy preferences may prove to reduce the cost of carbon 

mitigation of an RPS.  In this case, solar would most likely displace the least efficient natural gas 

generators, as they would be the most expensive generators and would only be called on to 

generate on peak.  Wind would also displace off peak generation, which in a natural gas system 

would most likely be efficient combined cycle generators, and therefore wind’s CO2 emission 

reduction potential would be reduced relative to solar. 

1.5 Conclusions and Policy Implications 
The number of objectives imbedded in an RPS are numerous and growing.  Introducing solar policy 

variations has been one method to broaden an RPS’s impact on a variety of objectives, including 

increasing renewable resource diversity and spurring local solar industry development.  However, 

these solar policies impact the cost of the RPS and two of the primary objectives of RPS: increase 

renewable generation and reduce emissions from the power sector.  The tradeoff from introducing 

solar policy preferences must be considered carefully; this study proposes a method to analyze 

these impacts in order to better inform RPS policy design.   

Because the solar carve-outs mandate a certain amount of solar be added to the system no matter 

the cost, the RPS program cost can only increase with these designs, although, total renewable 

generation remains the same as the RPS with no solar preferences, assuming that no alternative 

compliance payments are triggered.  The 5% DG Solar-Carve-Out, even though adding less solar 

generation, is more expensive than the 20% Solar Carve-Out because of the significant increase in 

cost when going from utility scale solar to DG solar.  In both solar carve-out scenarios, emissions 

increase slightly due to Michigan’s reliance on coal generation.  In systems more reliant on natural 

gas, the solar carve-outs would have a smaller impact on emissions and may even decrease 

emissions compared to an RPS with no solar preferences.   

The introduction of a 3x Solar Multiplier significantly changed the results of increasing the RPS in 

Michigan.  By the third year of the study, solar was consistently chosen over wind, leading to solar 

providing over half of all new renewable generation.  This also meant the 3x Solar Multiplier case 
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added less than half of the total renewables than the other scenarios, which reduce the total RPS 

program costs at the expense of increased coal generation and increased emissions.   

The changing cost of solar makes the multiplier a difficult policy tool to use.  It ensures the 

technology will not be built until the cost decreases sufficiently, unlike carve-outs, making it a more 

cost effective method to introduce solar in an RPS.  However, once the cost decreases enough for 

the multiplier to make solar the least cost option, a multiplier dramatically changes the results of 

the RPS, inhibiting its ability to increase renewable generation in general and its emissions 

reduction potential.   

An ideal solar policy preference in an RPS would encourage solar development, but not until costs 

have reduced sufficiently, while ensuring the primary objectives are not undermined by the “under-

design” of a multiplier.  One policy option to achieve these objectives could be to constrain the 

amount of solar that is eligible to receive the multiplier credit.  For example, solar generation up to 

20% of all new renewable generation is eligible for multiplier credits, while any additional 

generation does not receive any multiplier credits.  Another possible design could have a 

decreasing multiplier, setting its value as a function of total solar generation on the system.  As 

solar generation increases, the multiplier for the next incremental solar generation receives fewer 

incentive credits.  This would limit the number of incentive credits awarded, while still incentivizing 

solar development. 

An explicit recognition of objectives when introducing or modifying an RPS would assist in the 

assessment of the tradeoffs associated with a solar policy preference.  Given the potential impacts 

on program costs and emissions reductions, the introduction of a solar policy preference should be 

carefully considered.   
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Chapter 2: Value of Wind Diversity to Decrease Variability Induced 

Ramping in the Presence of Transmission Constraints 
 

2.1 Introduction 
Wind power variability is one of the pressing challenges of integrating large quantities of wind 

power into the grid. The fast ramping up or down of wind power can have negative consequences 

on grid operations, including increased costs, inefficient operation of conventional generators, and 

the need for additional ancillary services (Kirby and Milligan 2006; Milligan and Kirby 2008; 

Katzenstein, Fertig et al. 2010).  One method to deal with the variability of power output from 

individual wind farms is to develop and interconnect other wind farms that are subject to different 

wind patterns, essentially diversifying the wind power portfolio.  If proper wind power portfolios 

are chosen, the cumulative power output of the portfolio will be smoother relative to the output 

from individual wind farms.  However, reduced variability through wind portfolio diversification 

may require the development of lower quality wind sites, resulting in a tradeoff between output 

variability and the average power output of the entire portfolio.  Wind diversification will also 

spread the wind farms out geographically, potentially reducing the need for extensive transmission 

capacity expansion in the regions of highest quality wind (high capacity factors).  However, 

transmission congestion across the region spanned by the wind farms will reduce the ability of the 

wind farms to counteract each other’s variability.  The goal of this research is to further investigate 

optimization techniques used to examine diversified wind power systems and offer new 

understanding on the impact that transmission constraints have on the value of diverse wind in 

reducing wind power variability and its negative system impacts.   

To evaluate the impact of wind diversity, a modified version of the multi-objective optimization 

method called Mean-Variance Portfolio optimization (MVP) is implemented.  The two objectives of 

the optimization are to minimize the ramp rate variability of the wind power output and to 

maximize the average power output of the cumulative wind farms, where ramp rate variability is 

defined as the change of the cumulative wind power output from time step to time step.  MVP has 

been used before to analyze wind power diversity.  Hansen (2005) investigated its use to provide 

additional capacity credit for interconnected wind farms.  Using three wind farms, Hansen (2005) 

demonstrates how using MVP can guide strategies to allow for more economical wind power 

development.  The study minimizes the deviation from average output given the objective of 

increased capacity credit, rather than decreased wind power variability.   

Degeilh and Singh (2011) also laid out an approach to optimize the siting of wind farms using MVP.  

Similar to Hansen (2005), the study minimized the deviation from the mean output, rather than 

minimizing ramping amplitude from one time step to the next.  Using power output data from the 

National Renewable Energy Laboratory (NREL) wind dataset from their interconnection studies 
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(National Renewable Energy Laboratory 2013), the optimal portfolios are evaluated using loss of 

load probability (LOLP) to determine the capacity credit of a wind portfolio that is less variable.  

Roques, Hiroux et al. (2010) applies MVP theory to find optimal wind power portfolios in Europe 

using wind power data from Spain, France, Germany, Denmark, and Austria.  They used two 

methods: one that minimized wind ramping variability and another that minimized variance from 

average output during peak hours.  In all cases, the study found that the current wind power 

portfolio and projected portfolios could achieve significant reductions in variability at the same 

power output by using MVP to better plan wind projects.  While the authors went through multiple 

iterations of the optimization to add additional realism to the results (including adding cross border 

transmission constraints and inter-country wind resource potential), the assumption that all wind 

power within a country was perfectly correlated failed to put value on diversified wind resources 

within an individual country.  In addition, their treatment of transmission constraints does not 

account for power from other sources also using the transmission lines to deliver power from one 

country to the next.    

Rombauts, Delarue et al. (2011) further explored the issue of transmission capacity constraints 

when using MVP to determine the efficient wind farm build out.  While they tackled the issue of 

transmission in greater depth than Roques, Hiroux et al. (2010), the optimization model still relies 

on the assumption that the use of the transmission capacity will be limited to wind, which is not 

representative of many wind integration designs.  Unlike the earlier studies, Rombauts, Delarue et 

al. (2011) chooses wind sites to minimize ramp rate variability rather than the deviation from the 

average.    

Liu, Jian et al. (2013) expanded the work done with MVP to develop a robust optimization of 

diverse wind power given MVP’s sensitivity to the covariance matrix and average power output.  

The optimization technique is primarily constructed to ensure the wind portfolio’s output remains 

above a particular threshold rather than dealing with wind power variability.   

Other studies have also investigated wind power diversity without the use of MVP.  Katzenstein, 

Fertig et al. (2010) used wind speed data from weather stations and existing wind farms throughout 

the Midwest and examined how the interconnection of multiple wind farms impacted the overall 

variability of power output.  They found that the majority of reductions in power output variability 

(ramping up or down) were achieved by connecting only a few of the closest wind farms, and only 

small gains were achieved by connecting more sites from farther away.  Katzenstein and Apt (2012) 

investigated a method to account for the cost of sub-hourly ramping of wind farms, both individual 

and interconnected.  The method includes an optimization technique that minimizes the services 

required by the wind power output.  The study found that higher capacity factor sites and 

interconnected sites reduced the cost of wind power variability.  Reichenberg, Johnsson et al. 

(2014) used sequential optimization to investigate optimized placement of wind power to decrease 

variability.  However, the study only discussed decreases in variability and not the impact on the 

rest of the power system.  Schmidt, Lehecka et al. (2013) demonstrated how a premium based 
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feed-in tariff incentivize wind diversification and therefore decreases wind power variability of the 

system.   

This study is novel because it uses a power systems model to assess the value of wind diversity, 

focuses on minimizing the wind power portfolio’s ramp rate variance rather than minimize its 

deviation from the average, and restructures the MVP framework to meet particular wind 

penetration levels.  After using MVP to create different wind power portfolios, ranging in level of 

diversity, this study directly measures the ramping impacts the different portfolios induce on the 

power system.  Using a unit commitment and economic dispatch model, the change in behavior of 

the power system to different portfolios can be quantified.  Multiple studies have used power 

system models to quantify impacts of integrating variable renewables into the grid.  Some of these 

studies used such models to better understand the impact and efficacy of renewable energy 

policies (Sullivan, Logan et al. 2009; Bird, Chapman et al. 2011; Palmer, Paul et al. 2011), while 

others focused on operational changes and the emissions implications of the general integration of 

wind power (Valentino, Valenzuela et al. 2012; Oates and Jaramillo 2013; Turconi, O'Dwyer et al. 

2014).  However, none of these studies have attempted to model the impacts of resource 

diversification on power system behavior, as this study proposes.   

MVP does not capture transmission constraints, when the transmission is not only used for wind, 

failing to capture much of the complexity of the power system operation when considering wind 

power portfolios.  This study will also focus on the how transmission constraints impact the ability 

of a diverse wind power portfolio to decrease the impacts of system ramping.  Diverse wind tends 

to spread out the wind resources geographically, reducing the potential for wind power curtailment 

induced by transmission congestion.  Also, MVP assumes the variability of one wind farm can be 

cancelled by any combination of wind farms that have equal variability in the opposite direction.  

However, if the transmission within the region is congested either from wind power or other 

sources, the variability will be offset.    

Similar to Rombauts, Delarue et al. (2011), this study minimizes ramp rate variability of the overall 

portfolio rather than the deviation from the average power output as most past studies using MVP 

have done. To reduce system ramping requirements, it is important to decrease the magnitude and 

frequency of large ramps (up or down) in the wind power output.  This will generally minimize the 

negative system level impacts of wind power variability, which is not necessarily true when the 

deviation from the portfolio’s average output is reduced.  Minimizing the deviation from the 

average also penalizes solutions with periods of high power output.  Typical average power output 

from wind farms ranges from 35-40% (National Renewable Energy Laboratory 2013).  Therefore, in 

hours when the portfolio operates close to 100% of its capacity, the power output variance 

increases, thereby penalizing the portfolio.  By minimizing the ramp rate variance instead, the 

portfolio is not penalized for operating well above its average power output, as long as the change 

in output was gradual to reach the high output.   
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Finally, to assess the impact of diversification in the power system, this study creates portfolios 

using MVP that have constant wind generation, unlike other MVP studies which maintain constant 

wind power capacity.  Therefore, the system of equations presented in past work is modified.  The 

decision variables have units of installed capacity, rather than the share of capacity a wind farm 

contributes to the overall portfolio.  The modification allows for better comparison of results from 

the unit commitment and economic dispatch model and is analogous to Renewable Portfolio 

Standards (RPS) policies in place in many states in the US, which require that electric utilities meet a 

particular percentage of their retail sales (load) from renewable energy, such as wind energy.    

2.2 Methods 
This study employs MVP and power systems modeling to analyze the value of diverse wind to 

reduce wind power variability and the negative system impacts that the variability causes.  MVP is 

first used to develop a set of wind power portfolios, ranging from heavily concentrated in regions 

with high quality wind to widely spread across the geography considered.  The different wind 

power portfolios are then evaluated using a unit commitment and economic dispatch model to 

measure the system’s response to the integration of the different wind power portfolios.  This 

power systems model is first run assuming no transmission constraints (i.e., “copper sheet”), and 

then again with inter-zonal transmission constraints.  This isolates the impact of MVP’s inability to 

capture transmission constraints and help elucidate the ability of wind diversity to decrease the 

system impacts of wind variability in a real system.    

2.2.1 Optimizing Diverse Wind Portfolios 

The two objectives of this application for MVP are: 1. Minimize the installed capacity of wind 

power, and 2. Minimize the ramp rate variability from time step to time step.  The first objective is 

simply the sum of the installed capacity at each site, as shown below, 

𝑀𝑖𝑛 ∑ 𝑥𝑖
𝑛
𝑖=1       (1) 

where 𝑥𝑖 is the installed capacity in MW at site 𝑖 and 𝑛 is the number of wind sites in the system 

being considered for wind power development.  Equation 1 is analogous to maximizing the average 

power output used in most MVP frameworks.  To minimize installed capacity while meeting the 

wind penetration constraint (described later) requires the highest average power output sites be 

developed first.   

The second objective is more complex and involves minimizing the entire portfolio’s ramp rate 

variance.  The variance is a statistical measure (square of the standard deviation) and quantifies the 

spread in the ramp rates.  By minimizing the ramp rate variance of the interconnected wind farms, 

the frequency and magnitude of large ramps up and down in cumulative wind power output will 

decrease.  The ramp rate variance of a portfolio P is given by, 

𝜎𝑃
2 =  ∑ 𝑥𝑖

2𝑛
𝑖=1 𝜎𝑖

2 +  2 ∑ 𝑥𝑖
𝑛
𝑖<𝑗 𝑥𝑗𝜎𝑖𝑗    (2) 
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where 𝜎𝑖
2 is the variance in the ramp rate of site i, and 𝜎𝑖𝑗 is the ramp rate covariance between 

sites i and j.  The ramp rate variance is a quadratic equation that can be can be simplified into 

matrix form.   

𝑀𝑖𝑛 𝒙𝑇𝚷𝒙       (3) 

where x is vector of all 𝑥𝑖 , and 𝚷 is the covariance matrix. The covariance matrix is a symmetric 

matrix where each entry is the covariance in the ramp rate from one site to another site.  The 

matrix is shown below, 

𝚷 =  [
𝜎1

2 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎𝑛1 ⋯ 𝜎𝑛

2
].      (4) 

where 𝜎𝑖𝑗 is the covariance between the ramp rate of site 𝑖 and site 𝑗.  The variances in the ramp 

rates at each individual site are along the diagonal of the covariance matrix. Each covariance is 

calculated by comparing the ramp rates of wind sites within the study region.  The Hessian of the 

ramp rate variance is simply 2 ∗ 𝚷.  The covariance matrix is by definition positive semi-definite, 

and therefore the ramp rate variance is convex (Degeilh and Singh 2011).   

The first constraint in the optimization is the requirement that a minimum amount wind energy be 

delivered from the portfolio’s wind farms over one year,   

(8766 
ℎ𝑟𝑠

𝑦𝑒𝑎𝑟
) ∗ ∑ 𝑥𝑖 𝐶𝐹𝑖  ≥ 𝛼 ∗ 𝐸𝐿𝑜𝑎𝑑  [𝑀𝑊ℎ/𝑦𝑒𝑎𝑟]    (5) 

where 𝐶𝐹𝑖 is the capacity factor (average power output as a percentage of total installed capacity) 

of site 𝑖, 𝐸𝑙𝑜𝑎𝑑 is the region’s annual electricity demand, and 𝛼 is the percentage of the demand 

that must be met by wind.  The left hand side is multiplied by 8766, the average number of hours in 

a year accounting for leap years.  In this study, the optimization is solved with two different values 

for 𝛼 (10% and 20%) to test the impact of wind diversity under different wind energy penetrations.   

Another constraint deals with the individual size constraints of each wind farm in the portfolio, 

0 ≤ 𝑥𝑖 ≤  𝑥𝑖,𝑚𝑎𝑥      (6) 

where 𝑥𝑖,𝑚𝑎𝑥 is the maximum installed capacity allowed at site 𝑖.  The decision variables in this 

system are the installed capacity at each wind farm site 𝑥𝑖.  The wind sites data is from the NREL 

Eastern Wind Dataset (National Renewable Energy Laboratory 2013), which defines wind power 

outputs for each site in ten-minute time intervals for three representative years, as well as the 

maximum installed capacity.  

The chosen geography to investigate is the Midcontinent Independent System Operator (MISO) and 

MAPP US (the non-MISO areas of North and South Dakota).  The recently added southern portion 

of MISO’s service territory is excluded from the system geography.  As the system operator of the 
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region, MISO must manage the system in a manner that effectively deals with wind power 

variability.  Given this responsibility, we consider this entire interconnected geography for wind 

power diversification.  Within the region there are 572 wind farm sites in the NREL database, 

yielding 572 decision variables in the optimization problem.  

The results of the optimization will produce a Pareto frontier for each minimum energy constraint.  

The Pareto frontier represents changing the importance of each objective from 100% weight on 

minimizing the installed capacity (least diverse portfolio) to 100% weight on minimizing the ramp 

rate variance of the portfolio (most diverse).  The optimization is solved using Matlab’s linear 

programming functionality to solve the minimum installed capacity objective, while quadratic 

programming algorithms are used to solve the minimum for the ramp rate variance.  To develop 

the Pareto frontier between the optimal points for each objective, the minimum installed capacity 

objective is changed to a constraint, setting a limit to the total installed wind power capacity.  The 

optimization problem is then solved with the single objective of minimizing ramp rate variance.  

The maximum value of the capacity constraint is changed in equal increments and the optimization 

resolved such that the Pareto frontier is defined by twenty points including the optimal points at 

either end of the frontier.   

2.2.2 Power Systems Model 

A power systems model is then used to analyze the impact of diverse wind portfolios on grid 

operations.  Plexos for Power Systems by Energy Exemplar is used to solve the unit commitment 

and economic dispatch problem by finding the least cost method for generation to meet demand.  

The model determines which generators should run and how much power each should be 

producing at every time step.  The cost of generation is determined by fuel prices, efficiency of 

power generation (heat rate curves), variable operations and maintenance costs, and generator 

start-up costs.  In addition, the model must meet a set of system constraints, including generator 

min/max output, generator forced outages, generator ramp rates (speed at which generator can 

change output), and transmission limits between zones.  To investigate the impact of wind power 

variability, the model is solved in 10-minute intervals.   

As mentioned earlier, the geography in this study is the northern MISO region and MAPP US, which 

are part of the synchronous U.S. Eastern Interconnection (EIC).  To quantify expected 

imports/exports into and out of the MISO region to the rest of the EIC, the model first considers a 

representation of the entire EIC.  The model splits the EIC into 35 zones.  Each zone has a unique 

assumption of hourly load profile and maximum import/export transmission capacity between 

neighbor zones.  The transmission capacity between zones was determined from data presented in 

the Eastern Interconnection Planning Collaborative (EIPC) and other studies done by various 

Independent System Operators (ISOs) in the EIC (ISO-NE ; MISO ; NYISO).  Fuel prices are defined 

uniquely for each zone and were calculated using fuel receipts information from the 2013 EIA 923 

database (U.S. Energy Information Agency 2013a).  The size of the model is then reduced to only 

the northern MISO zones and MAPP US to reduce modeling time.  Imports/exports to and MISO 

and the rest of the EIC, that were calculated using the full EIC model, are held constant in the 
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reduced geography.  Existing wind capacity was removed from the model to test the impact of wind 

power diversity.   

Particularly important model assumptions for quantifying impacts of wind diversity include the 

ramp rates of conventional generators (how quickly can the generator change power output), 

generator start costs, and transmission expansion methodology.  The ramp rate assumptions are 

given in table 1 (Black & Veatch 2012).  The ramp rates are given in terms of percent of capacity 

available to ramp per minute.  Combustion turbines, typically natural gas fired, have the most 

ramping flexibility, able to react quickly to changes in load or wind power output, while coal steam 

generators have the least ramping flexibility.  It was assumed nuclear generators do not ramp, only 

operating at full capacity when operational.    

Table 1: Ramp Rate Assumptions 

Generator Type Ramp Rate (% of Capacity / 
Minute) 

Coal/Other Steam 2.0% 

Combustion Turbine 8.3% 

Combined Cycle 5.0% 

  

The cost to start a generator also impacts the how the power system reacts to variable wind 

generation.  Kumar, Besuner et al. (2012), a report by Intertek APTECH for NREL and the Western 

Electricity Coordinating Council, studied the true costs of generator starts as a function of the time 

the generator has been turned off, with costs tending to increase as time increases.  However, 

Oates and Jaramillo (2013) found these start costs were significantly higher than those actually bid 

in to the market generators.  Therefore, start costs bids from PJM’s market were used in the model 

to allow realistic dispatch.   

Finally, under some circumstances transmission in the model was expanded to accommodate wind 

development in remote locations with low load and little transmission capacity to export wind.  If a 

zone’s export transmission capacity was less than the maximum difference between a zone’s wind 

generation and the zone’s load at any given time, then transmission capacity was added to the 

model to allow the excess wind to be delivered outside of the zone.  However, the transmission 

expansion did not include a full system transmission optimization.   

The four different wind power portfolios, ranging from no emphasis on wind diversity to all 

emphasis on diversity, are assessed in the unit commitment and economic dispatch model for each 

of the wind penetration levels (10% of load and 20% of load).  Additionally, each portfolio is 

considered under a “copper sheet” (no transmission constraints) assumption and with the 

transmission constraints intact.  The four wind power portfolios are chosen from the Pareto 

frontiers.  Both of the optimal solutions (minimum installed capacity and minimum ramp rate 
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variance) are tested along with the portfolio one step away from minimum installed capacity and 

the portfolio that increases the minimum ramp rate variance by only 10%.    

2.3 Results 
The results are provided in two sections.  First, the results from the multi-objective optimization are 

presented.  Points along the Pareto frontier define wind power portfolios, of which a subset is used 

as input into the power systems model.  Then, the power system modeling results are shown to 

illustrate the value of wind power diversity to decrease the system impact of wind power variability 

in the presence of transmission constraints.   

2.3.1 Optimization Results 

Figure 1 shows the Pareto frontiers for the two different minimum wind energy penetrations, 

normalized to the minimum installed capacity portfolio for each Pareto frontier.  The normalized 

view reveals the difference between the 10% and 20% wind generation targets.  With increased 

wind penetrations, decreasing the ramp rate variance of the minimum installed capacity case 

requires more incremental capacity.  To halve the variance, the 20% case requires a 4% increase in 

capacity, while the 10% only requires a 2% increase in capacity.  Under higher wind penetrations, 

more wind farm sites are needed to meet the wind generation target, due to the maximum 

capacity constraints at the highest quality wind sites.  The increase in number of wind farms used to 

minimize the installed capacity adds some “natural” diversity to the minimum installed capacity.       

 
Figure 1 Pareto frontiers normalized to the wind power portfolio with the smallest installed capacity 

 

The slope at different points can be interpreted as the tradeoff between the two objectives.  On the 

far left end of the Pareto frontier, the largest reductions in ramp rate variance come with only a 

minimal increase in the installed capacity.  The Pareto frontiers quickly flatten out.  Therefore, to 

achieve the last feasible reductions in the ramp rate variance requires significant increases in the 

installed capacity.   
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The values for the decision variables (installed capacity at each wind farm) change significantly 

across the Pareto frontier.  Figure 2 shows how they change for both of the minimum energy 

requirements.  Each horizontal line represents one of the wind farm decision variables.  The 

decision variables are sorted with the highest capacity factor sites (highest wind power potential) 

on top and the lowest capacity factor sites on the bottom.  Moving from left to right on the x-axis 

represents moving along the Pareto frontier from minimum installed capacity to minimum ramp 

rate variance.  The darker the line, the larger the share of that wind farm’s contribution to the total 

wind installed capacity.  These figures show there is a gradual dispersal of the installed capacity 

across decision variables as ramp rate variance is reduced.  The darkest region of the plot, in the 

upper left-hand corner, demonstrates the importance of building at the high capacity factor sites 

when the primary objective is to minimize the total installed capacity.   
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Figure 2 Change in the decision variable values along the Pareto frontier as a percentage of each variable’s contribution 

to the total.  The first profile only builds at the highest capacity factor sites, which are constrained by a maximum 

installed capacity each site can accommodate.  (a) Wind penetration equivalent to 10% region load; (b) Wind 

penetration equivalent to 10% region load.   

The figures also show that there are sites that consistently make up relatively large portions of the 

total installed capacity along the Pareto frontier.  There are two types or sites that are favored 

along the Pareto frontier: sites with high capacity factors, and sites with low ramp rate covariance 

relative to the rest of the portfolio.  Sites with consistently dark lines can be considered the most 

important decision variables towards one or both objectives.   

The primary motivation to minimize the ramp rate variance of a cumulative wind power portfolio is 

to reduce the frequency and magnitude of large ramping events, in either direction.  Figure 3 

assesses how well-diversified wind achieves this objective.  For both wind penetrations, figure 3 

shows the cumulative frequency of the absolute ramp rates (ramp up and down combined) of four 

wind power portfolios along the Pareto frontiers.  Both extremes of the Pareto frontier are shown, 

along with two portfolios in between the optimal points.  One of the portfolios is one step from the 

from the minimum installed capacity point (Portfolio 2), this represents the largest decrease in 

ramp rate variance between points on the Pareto frontier.  The other portfolio has a 10% higher 
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ramp rate variance than the minimum variance (Portfolio 10).  As the ramp rate variance of a 

portfolio decreases, the cumulative frequency in Figure 3 shifts closer to the y-axis.   

a) 

 

b) 

 
Figure 3 Cumulative frequency distribution of the absolute ramp rate for different points along the Pareto frontier for 

(a) 10% wind; (b) 20% wind. 

Figure 3 shows that minimizing the ramp rate variance decreases the frequency and magnitude of 

large ramping events relative to the Minimum Installed Capacity portfolio.  In the 10% wind case, 

ramps of 250 MW or more in a period of 10 minutes is expected about 10% of the time for the 

minimum installed capacity portfolio.  Portfolio 10 and the Minimum Ramp Rate Variance portfolio 

nearly eliminate ramps that magnitude or greater.  Ramps of 250 MW or more are expected more 

often in the 20% wind cases.  However, the Minimum Ramp Rate Variance portfolio of the 20% 

wind case reduces the frequency of such ramps significantly, nearly matching the frequency of 250 

MW or greater ramps in 10% wind Minimum Installed Capacity portfolio.  In both wind penetration 

levels, reducing the ramp rate variance of the wind power portfolio to within 10% of the minimum 

achievable variance has nearly an identical impact on the reduction of large ramping events.  Unless 

all possible improvement in ramp rate proves to be valuable, the cumulative frequency distribution 

suggests it is not worth the doubling of wind power capacity required to reduce the ramp rate 

variance between Portfolio 10 and the Minimum Variance portfolio.  

2.3.2 Power Systems Modeling Results 

The optimization results demonstrate that wind portfolio diversification can reduce the cumulative 

wind power output’s variability.  To understand the system impacts of the reduced wind power 

variability, four different wind power portfolios along the Pareto frontier were assessed using a unit 

commitment and economic dispatch model.  The portfolios included, the minimum installed 

capacity (“Portfolio 1”), the portfolio one step along the Pareto frontier from the minimum capacity 

(“Portfolio 2”), the portfolio with a ramp rate variance 10% greater than the minimum variance 

(“Portfolio 10”), and the portfolio with minimum ramp rate variance (“Portfolio 20”).  For each 

portfolio, the model is run without transmission constraints (“Copper Sheet”), and with 

transmission constraints (“Tx Constrained”) to capture the impact of transmission on the ability of 
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wind diversity to reduce variability impacts.  Finally, a case without wind is assessed in both a 

Copper Sheet and Tx Constrained model to differentiate between ramping caused by wind 

variability and ramping caused by other parts of the power system.   

 
Figure 4 Percent of wind generation curtailed relative to the expected wind generation.  Curtailment results are only 

shown from the Tx Constrained models as curtailment is insignificant in the Copper Sheet models. 
 

Figure 4 shows how wind diversity changes wind power curtailment in the Tx Constrained models.  

At 10% and 20% wind, curtailment nearly exclusively occurs due to transmission congestion and not 

because of other factors.  Wind is not curtailed due to wind generation being greater than system 

wide load of or turn down constraints of conventional generators.  Therefore, there is nearly no 

curtailment in the Copper Sheet models.    

In the less diverse portfolios, wind is added in locations with limited transmission capacity 

availability to deliver wind to other regions.  To realistically represent transmission expansion 

associated with the development of remote wind resources, transmission capacity was added when 

zonal export capacity was too small to deliver excess wind to the rest of the system (as discussed in 

Section 2.2).  Therefore, curtailment in the 20% case is caused by transmission congestion 

throughout the system, and is not due to an inability for the wind to be delivered outside of its 

zone.  In Portfolio 1, more than 5% of the expected wind generation must be curtailed.  As the wind 

capacity is spread out across the model geography, the system wide transmission congestion is 

reduced, steadily decreasing the amount of curtailed wind generation.  Portfolio 10 decreases wind 

power curtailment to less than 1% and Portfolio 20 eliminates nearly all curtailment.  The 10% wind 

cases show approximately constant curtailment.  The total wind generation added in these cases is 

insufficient to cause enough system wide transmission congestion to curtail wind.  Wind is only 

curtailed in situations where conventional generators are unable to turn down generation 

sufficiently to accommodate wind generation.  



34 

 

 

Wind that is not curtailed forces the rest of the system to react to its variability.  To quantify the 

wind induced ramping requirements we define a “Ramping Ratio”.  The Ramping Ratio takes the 

total energy devoted to ramping and divides it by the sum of all the conventional generation. The 

ramping energy is based on time interval used (10 minutes for this study) and the change in the 

power output over the time interval.  The Ramping Ratio therefore represents the share of total 

conventional generation over the year used for ramping purposes.  Figure 5 shows the increase in 

the Ramping Ratio of the wind portfolios over the system without wind, isolating variable wind’s 

impact on ramping.  Note that the Copper Sheet results with wind are subtracted from the Copper 

Sheet results without wind, and Tx Constrained results with wind are subtracted from the Tx 

Constrained results without wind.    

System Wide Ramping Induced by Wind Power Variability 
a) 

 

b) 

 
Figure 5 The increase of the Ramping Ratio by adding variable wind generation to the system relative to the associated 

no wind model.  The Ramping Ratio is defined as the proportion of conventional generation used for ramping up or 

down throughout the year.  The units of the figure are MWh of ramping energy per GWh of total conventional 

generation.  Figure 5a) shows the results for the Copper Sheet and Tx Constrained models for 10% wind, and figure 5b) 

shows the results for 20% wind. 

With the exception of the 20% Wind Tx Constrained cases, the results show the general reduction 

in wind variability induced ramping as the wind portfolio is diversified, the intent of the MVP 

optimization.  However, in these cases, the Ramping Ratio increases slightly between Portfolio 10 

and Portfolio 20.  As was shown in the cumulative frequency distributions in figure 3, the intensity 

of the wind variability is nearly identical between the Portfolio 10 and Portfolio 20, with only a 

slight improvement from complete diversification in Portfolio 20.  Even so, a decrease in the 

Ramping Ratio would be expected between Portfolios 10 and 20.  This demonstrates how MVP 

does not capture all of the factors impacting ramping in the real system.  These factors will be 

discussed more in the next section.   

The gap between the Copper Sheet and the Tx Constrained lines in Figure 5 shows how 

transmission constraints impact the amount of system ramping caused by wind variability and how 

that impact changes based on the diversity of the wind portfolio.  For 10% wind, transmission 
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constraints increases the proportion of generation used for ramping to deal with wind power 

variability of Portfolio 1 by 17%.  As the portfolio becomes more diverse, the gap between the lines 

shrinks, reaching a minimum increase of 2% in the Ramping Ratio caused by wind variability at 

Portfolio 10.  This demonstrates wind diversity’s ability to reduce transmission congestion, allowing 

the system to operate more often as a copper sheet.   

On the other hand, at 20% wind, Portfolio 1 decreases the wind power variability’s contribution to 

the Ramping Ratio in the presence of transmission constraints, while Portfolio 2 only increases the 

ratio by 1.3%.   The contradictory results relative to 10% wind is due to increased frequency of wind 

curtailment at the 20% wind penetration level.  Curtailing the wind removes variability from the 

system, decreasing the system wind ramping relative to the Copper Sheet, which experiences no 

curtailment.  As the Portfolios become more diverse, curtailment decreases and therefore increases 

wind power variability and the system ramping needed to react to the variability.  Diversity 

therefore lowers the Ramp Ratio after considering curtailment. 

 
Figure 6 Difference between the Ramping Ratio of the Tx Constrained model and the Copper Sheet model.  In all cases, 
including when no wind is added to the system, the introduction of transmission constraints increases ramping.  Wind 

variability’s contribution to the increased Ramping Ratio is the difference between the height of the bar and the 
dashed line (height of green bar). 

 

The full impact of transmission constraints on system ramping is shown in figure 6.  The figure 

compares the difference in the entire Ramping Ratio of portfolios in the Tx Constrained and Copper 

Sheet model (i.e., the difference between Portfolio 1 in the Tx Constrained model and Portfolio 1 in 

the Copper Sheet model).  In all cases, transmission constraints increase ramping requirements as 

congestion limits the ability to share ramping flexibility.  The dashed line represents the increase in 

the Ramping Ratio by adding transmission constraints to the no wind case.  The difference between 

the height of the wind portfolio bars and the dashed line account for the segment of the increase 

linked to wind variability.   
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The figure shows that the increase in ramping associated with wind variability when transmission 

constraints are introduced is only a small portion of the total increase in the ratio.  The share of the 

increase in the Ramping Ratio caused by wind variability is largest for Portfolio 1 with 10% wind and 

Portfolio 10 for 20% wind, both responsible for about a quarter of the increase.  In the absence of 

curtailment, diversity decreases the portion of the increased Ramping Ratio induced by wind 

variability, as can be seen in the 10% wind portfolios.  Portfolio 1 for 20% wind actual decreases 

Ramping Ratio relative to the No Wind case with the introduction of transmission constraints.  This 

is again due to the increased frequency of wind curtailment in the 20% cases. 

2.4 Discussion 
In the optimization results section, MVP demonstrates how wind diversity can significantly 

decrease wind power variability.  Figure 3 shows the reduction in both frequency and magnitudes 

of large changes in the cumulative wind power output.  However, as shown in figure 5, complexities 

of power system operations can impact system wind ramping trends, leading to unintuitive results 

as less variable portfolios are integrated into the system.  This demonstrates MVP’s inability to 

capture all of the factors impacting ramping in the real system.  The most important factors 

impacting MVP’s ability to reduce system wide ramping are the system’s transmission constraints 

and the time of day of the wind power variability.   

Transmission congestion can lead to wind power curtailment, as shown in figure 4, with curtailment 

being more likely when wind capacity is concentrated in a small area with limited transmission 

capacity.  Even though transmission capacity was expanded in the model to allow excess zonal wind 

generation (generation not consumed by internal zonal load) to be exported, transmission 

congestion in neighboring zones forced curtailment.  This impact of transmission increases wind 

diversity’s value, even though it is not directly related to decreased system ramping.  MVP 

dispersed the location of wind capacity, decreasing congestion and therefore curtailment.  

Additionally, by spreading the share of wind capacity across the different zones, less transmission 

expansion was needed to export excess wind from individual zones, decreasing costs of 

transmission expansion.    

Even when curtailment is not an issue, the value of wind diversity can also be increased by reducing 

transmission congestion relative to less diverse portfolios.  Since less diverse portfolios are more 

likely to cause transmission congestion in parts of the system, they limit how much wind from 

different zones can counter-act each other’s variability.  A diverse wind portfolio tends to be less 

likely to cause transmission congestion, allowing the system to act more like a copper sheet and 

wind to counter-act its own variability.  Therefore wind diversity can be of even more value in a 

transmission constrained system relative to the copper sheet as can be seen from 10% wind results 

in figure 5.  Portfolio 10 reduces the Ramping Ratio caused by wind variability by 25% in the 

presence of transmission constraints, while only achieving a 14% decrease without them, compared 

to Portfolio 1.  In this case, even though MVP does not account for transmission constraints, there 

is added benefit to diversifying the wind capacity.   
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Another power system complication not considered by MVP is the time of day of wind power 

variability, which can impact the system’s ability to provide the appropriate ramping response.  

During peak times, more generation will be online and operating at maximum capacity in order to 

meet load.  This may reduce the number of generators with ramping flexibility, especially if wind 

power output decreases rapidly requiring an increase in generation from the rest of the system.  

Also, transmission is more likely to be congested during on-peak hours, forcing individual zones to 

deal with wind power variability without the benefit of using neighboring regions flexibility.  Off-

peak hours may also have limited ramping flexibility if much of the generation capacity is offline, 

leaving mostly baseload plants to provide ramping.  Baseload plants tend to be the most 

constrained in their ramping ability, causing more total ramping to be needed in the face of 

significant wind variability, particularly if the baseload plants are forced to ramp down to deal with 

increasing wind power output.   

Time of day’s impact can be seen in figure 5 and figure 6.  In both cases, Portfolio 20 for both 10% 

wind models and the 20% Copper Sheet model increases wind variability’s share of the Ramping 

Ratio relative to the less diverse Portfolio 10.  The two portfolios have very similar ramp rate 

variances according to the MVP optimization, although Portfolio 20 is the minimum achievable 

ramp rate variance portfolio.  But contradictory to the MVP results, Portfolio 20 increases the share 

of wind variability’s contribution to the Ramping Ratio relative to Portfolio 10.  Portfolio 20 changes 

the time of day of wind generation, requiring ramping at times with low ramping flexibility more 

often than Portfolio 10.  Additionally, adding transmission constraints to the 10% wind case 

increases the Ramping Ratio between Portfolio 10 and Portfolio 20 more than the Copper Sheet, 

suggesting transmission congestion also plays a role in reducing Portfolio 20’s value to decrease 

wind variability’s system impacts.   

Table 2: Impacts of Wind Diversification.  All values are from Tx Constrained results relative to Portfolio 1. 

 10% Wind 20% Wind 

Portfolio 
2 

Portfolio 
10 

Portfolio 
20 

Portfolio 
2 

Portfolio 
10 

Portfolio 
20 

Transmission Capacity 
Expansion (MW) 

-1,893 -4,674 -5,114 -2,306 -6,598 -7,609 

Installed Wind Capacity 
(MW) 

84 751 1,587 154 1,392 2,939 

Production Cost ($000) 95,801 18,495 -182,511 -40,402 -225,771 -293,217 

CO2 Emissions (106 tons) -2.24 -3.56 0.67 -3.4 -10.4 -11.7 

 
The complications introduced by transmission constraints and time of day of generation make 

valuing wind diversity challenging.  Table 2 summarizes some of the main impacts from wind power 

diversification for the Tx Constrained models.  The reported values are relative to Portfolio 1 (the 

most variable wind portfolio).  The transmission expansion and installed wind capacity follow 

intuitive trends.  As the wind is diversified, the share of the capacity located in remote zones with 
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little transmission capacity decreases, reducing the need for major upgrades in transmission 

capacity.  However, this also comes at the cost of increasing the total wind capacity to meet the 

required wind energy levels.   

The trends in production costs (cost to operate the power system) and CO2 emissions associated 

with power generation are not as clear.  Due to complications of time of day of generation and 

transmission constraints, a less variable portfolio with less required ramping does not necessarily 

result in production cost savings.  The contribution of Portfolio 10’s wind variability to the Ramping 

Ratio in the 10% wind case is the smallest of all 10% wind portfolios.  However, the total annual 

production costs increase by $18.5 million compared to Portfolio 1.  Portfolio 20 on the other hand, 

increased the Ramping Ratio relative to Portfolio 10, but the system is over $200 million less 

expensive to operate.  CO2 emissions follow the opposite trend; Portfolio 10 decreases emissions 

while Portfolio 20 increases emission relative to Portfolio 1.  The two trends emphasize the 

importance of considering the time of day of wind variability.  The results suggest Portfolio 20 was 

more variable during off-peak hours, requiring ramping constrained baseload generators to react to 

its variability.  Even though ramping ability is limited during these hours, it is also the cheapest 

given the low cost of baseload generation.  But coal accounts for most of the baseload generation 

in MISO.  Therefore ramping during off-peak hours is the most CO2 intensive ramping in the 

geography considered in this study.  Conversely, Portfolio 10 is more variable at intermediate or on-

peak times.  During these times natural gas fired generators are more likely to ramp in response to 

variable wind, which are more costly to operate but are less CO2 intensive than coal generators.   

The 20% wind results shows a more obvious trend of decreasing production costs and CO2 

emissions with more diverse wind portfolios.  This is due to the reduction in wind power 

curtailment in the diverse portfolios, allowing wind to reduce the amount of conventional 

generation.  Displacing conventional generation with wind power decreases costs to run the system 

and the associated emissions.   

2.5 Conclusion 
MVP optimization or some modification to it has been used by multiple studies to investigate wind 

power diversity (Hansen 2005; Roques, Hiroux et al. 2010; Degeilh and Singh 2011; Rombauts, 

Delarue et al. 2011).  This study combines MVP with a power systems model to investigate the 

value of wind power diversity to decrease system wide ramping.  The results of the power systems 

model demonstrate how the complications of the real power system can unpredictably impact 

expected results when using MVP to diversify wind power portfolios.  Transmission constraints can 

cause wind power curtailment, and transmission congestion can limit a portfolio’s ability to counter 

act its own variability by interconnecting wind from different locations.  Wind diversification can 

significantly reduce wind curtailment and transmission congestion, increasing diversification’s value 

above what was predicted from the MVP results.  However, the time of day of wind variability can 

also impact the value of diversification.  Even in diverse wind power portfolio, variability at times of 

low ramping flexibility (on-peak and off-peak times) can cause increased system ramping not 

predicted from the MVP results.    
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Appendix 
 

Supplemental Info 

This section gives more detail to the unit commitment and economic dispatch model used in the 

two papers. 

Zonal Definition 

The below figure shows the zonal boundaries used in the model.  Zonal boundaries were primarily 

defined to be consistent with by ISO definitions.   

 

Figure 1: Geographic boundaries of model zones 

 

Existing Generator Heat Rate 

Max load heat rates were calculated using hourly data from the EPA’s CEMS database (U.S. 

Environmental Protection Agency 2013a).  When unavailable, average heat rate from EPA’s eGrid 

dataset was used (U.S. Environmental Protection Agency 2013b).  When both were unavailable, the 

median heat rate (or 75th percentile heat rate if generator was observed to be an “inefficient” and 

infrequently used generator) from similar generator types was used.  Table 2 gives the average full 

load heat rate for different generator types.   
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Table 2: Average full load heat rates by generator type 

Generator Type 
Average Full Load 

Heat Rate 
(Btu/kWh) 

Bituminous Coal 11213 

Subbituminous Coal 10872 

Lignite Coal 11081 

Natural Gas Combustion Turbine 14639 

Natural Gas Combined Cycle 8069 

Municipal Solid Waste 21098 

Landfill Gas Internal Combustion 
Engine 16057 

 

Partial load heat rate is also captured in the model.  The generators are assumed to operate most 

efficiently at 100% output, with their heat rate increasing as their output drops.  Figure 2 shows the 

heat rate as a function of generator output.   

 

Figure 2: Heat rate penalty of partial load operation by generator type 
 

Variable O&M  
Assumptions for variable O&M change by generator type and region (U.S. Energy Information 
Agency 2013b). 
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Table 3: Variable O&M costs by generator type 
(U.S. Energy Information Agency 2013b) 

Generator Type Variable O&M  
Range ($/MWh) 

Coal Steam 3.89 – 6.62 

Nuclear 1.87 – 3.18 

Natural Gas GT 4.74 – 13.02 

Natural Gas CC 1.49 – 4.10 

Biomass Steam 4.58 – 7.79 
 

Fuel Price 
Base fuel costs were obtained from using a fuel weighted average of fuel receipts reported in EIA 
923 database (U.S. Energy Information Agency 2013a) for all generators within each zone. For 
Chapter 1 fuel prices were then escalated based on EIA AEO fuel forecasts.  Chapter 2 only uses on 
2013 fuel prices.  Table 4 shows the calculated base fuel price for the entire EIC.   
 
 

Fuel 
Bituminous 

Coal 
Subbituminous 

Coal 
Lignite 

Coal 
Distillate 
Fuel Oil 

Natural 
Gas 

Residual 
Fuel Oil 

Price 
($/MMBTU) 

2.804 1.983 1.996 23.533 4.502 19.029 

Table 4: Base EIC Fuel Cost in 2013 (U.S. Energy Information Agency 2013a) 
 

Emissions 
Emissions rates for CO2 and SO2 are shown in table 5.  NOx is shown separately in table 6 as it is 
expressed in terms of electricity generation rather than fuel use, given NOx emissions are more 
influenced on generator operation than the others. 
 

Table 5: CO2 and SO2 emissions 

Fuel Type CO2 
(lb/MMBtu) 

Average Post 
Control SO2 
(lb/MMBtu) 

Coal 
    Bituminous 
    Subbituminous 
    Lignite 

 
205.9 
212.9 
215.2 

 
1.11 
0.54 
0.46 

Natural Gas 117.1 0 

Diesel 161.4 0 

MSW 91.9 0.35 
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Table 6: NOx emissions rate (U.S. Environmental Protection Agency 2013b) 

Generator Type Median NOx 
Rate (lb/MWh) 

Coal Steam   
    Bituminous 
    Subbituminous 

 
3.53 
2.60 

Natural Gas Turbine 1.03 

Natural Gas Combined Cycle 0.20 

Natural Gas Steam 2.48 

DFO IC 25 

DFO Gas Turbine 4.80 
 


