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Abstract

The sensitivity of surface chlorophyll (Chl) and bottom water dissolved oxygen (DO) to total nitrogen (TN)
load was investigated using a Bayesian-based process model fit to data from a range of estuaries. The model was
used to test if the sensitivity of DO depletion to TN loads is dependent only on factors controlling the sensitivity
of surface Chl, or if additional factors are important. Results indicate that separate processes control Chl and DO
sensitivity, and that these sensitivities vary among estuaries. Analysis of fitted parameters across estuaries showed
that Chl sensitivity to TN loading was positively correlated with water residence time, and DO sensitivity to Chl
was positively correlated with relative mixing depth.

Ecosystem sensitivity to external stressors and the
biophysical control of this sensitivity have long been of
interest to ecologists. Recent work has focused on the
combined effects of multiple stressors and on the relative
sensitivity of ecosystem functions (Blake and Duffy 2010;
Wiley et al. 2010). Many open questions remain in both of
these areas. In this study, we explored factors controlling
the relative sensitivity of chlorophyll (Chl) concentration
and bottom water dissolved oxygen (DO) depletion to
nutrient stress across estuaries.

Because of a convergence of freshwater and saltwater
habitats, their association with high human population
densities, and their semi-enclosed nature, estuaries are
highly sensitive to loads of nutrients, sediment, and toxins
and are excellent study systems for exploring questions of
sensitivity. Nutrient overfertilization has led to significant
eutrophication in many systems (Bricker et al. 2007), and
that is the subject of this study.

Nutrient fertilization of coastal waters causes both
primary and secondary symptoms of eutrophication.
Primary symptoms include increases in Chl and primary
production, changes in nutrient ratios, increased sedimen-
tation of organic carbon, and changes in phytoplankton
species composition. These changes can cascade into
secondary symptoms, including changes in water transpar-
ency, decreases in bottom water DO, animal mortality or
displacement, shading or toxic inhibition of submerged
aquatic vegetation, and many others (Cloern 2001). Here
we focus on two key symptoms, increased Chl concentra-
tion and decreased bottom water DO, because of their
ecological importance and management attention.

Increases in phytoplankton biomass, often represented
as Chl concentration, are the most commonly reported
symptoms of eutrophication in estuaries and are a key
precursor to many of the secondary symptoms (Cloern
2001). Sinking and decomposition of phytoplankton
biomass are major drivers of DO depletion. DO depletion

can lead to widespread ecosystem changes, including fish
kills (Diaz and Rosenberg 2008), decreased or displaced
fish production (Rabalais and Turner 2001), altered
biogeochemical cycles (Turner et al. 2008), and decreased
societal value through reduced recreational opportunities
and fisheries harvest losses (Renaud 1986). The issue has
become widespread worldwide (Diaz and Rosenberg 2008;
Zhang et al. 2010).

Clear links exist between nutrient loads, especially total
nitrogen (TN), and bottom water DO, for example, in the
Gulf of Mexico (Turner et al. 2008; Greene et al. 2009) and
in Chesapeake Bay (Kemp et al. 2005; Liu and Scavia
2010). However, the sensitivity of bottom water DO to TN
loading has also been shown to vary through time (Liu and
Scavia 2010; Liu et al. 2010; Scully 2010) and among
estuaries (Zhang et al. 2010). Here, we expand on these
analyses to explore the relative simultaneous sensitivity of
Chl concentration and DO depletion to TN loading in a
cross-estuary context.

Estuarine eutrophication sensitivity to TN loading is
modulated through ecological filters, system-specific pro-
cesses that modulate responses to enrichment (Cloern
2001). These filters include the degree of tidal flushing
and turbulent mixing that can dilute TN loads and reduce
eutrophication symptoms (Monbet 1992; Cloern 2001); the
degree of freshwater flushing and residence time, which
determine the time during which nutrients are available for
estuary processing (Swaney et al. 2008; Steward and Lowe
2010); and biological factors such as top-down control of
phytoplankton biomass (Cloern 2001).

As part of a toolbox for eutrophication filter evaluation,
a mechanistic estuarine model of TN-driven surface-layer
Chl concentration has been tested and is available (Scavia
and Liu 2009). We expand that model to a two-layer
version that includes surface Chl and bottom-layer organic
carbon and DO. The model was constructed and fit using
Bayesian inference based on seasonally and spatially
averaged, satellite-derived Chl estimates used in Scavia
and Liu (2009) and summer average, bottom water DO
data from the National Estuarine Eutrophication Assess-
ment (NEEA; Bricker et al. 1999, 2007). We used the model
to test if the sensitivity of DO depletion to TN loads is
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dependent only on factors that control the sensitivity of
surface Chl concentration, or if additional factors control
sensitivity of DO to Chl.

Methods

Data sources—Data on estuary depth, volume, water
residence time, TN load, summer surface Chl concentra-
tion, freshwater discharge, precipitation and evaporation at
the estuary surface, estuary and ocean boundary salinity,
and ocean boundary nitrogen concentration were obtained
and used as described in Scavia and Liu (2009) from the
NEEA Estuaries Database (http://ian.umces.edu/neea;
Bricker et al. 2007), Sea-viewing Wide Field-of-View
Sensor (SeaWiFS) imagery (http://geoportal.kgs.ku.edu/
estuary/; Hooker and Firestone 2003), and the U.S.
Geological Survey spatially referenced regressions on
watershed attributes (SPARROW) model (Alexander et al.
2008; R. Alexander pers. comm.). SPARROW loads are
annual averages that incorporate weather conditions for
10 yr periods centered on agricultural census years; we used
the SPARROW loads for the agricultural census year 1992.
Of the 75 U.S. estuaries for which Chl was modeled in Scavia
and Liu (2009), we used the 17 (Table 1) that stratify
seasonally or longer and for which DO data are available to
test the current model. These include 2 lagoons, 2 coastal
embayments, 3 fjords, and 10 river-dominated estuaries,
with broad ranges of maximum depth (8–149 m), volume
(2.1–244.0 3 108 m3), freshwater inflow (4.2–723.0 3
105 m3 d21), water residence time (5–468 d), average water
temperature (7.2–20.7uC), TN loading (5.5–684.0 3
105 kg yr21), average summer Chl (2.6–24.0 mg L21), and
average bottom water DO (0.9–9.5 mg O2 L21).

Average summer bottom-layer DO concentration, as
well as average estuary and ocean boundary temperatures
were obtained from the NEEA Estuaries Database (http://
ian.umces.edu/neea; Bricker et al. 2007). This database was
compiled through local expert elicitation for each system,
asking experts to provide estimates of average summer
bottom-layer DO concentration along with their level of

confidence in this estimate. We used only systems where the
respondents reported ‘‘high confidence’’ in the DO values;
however, given the nature of the survey, there are likely
some inconsistencies among estuaries in the data collection
and ‘‘averaging’’ methods. Estuary surface layer and ocean
boundary DO concentrations were assumed to be saturated
and were calculated from the temperature and salinity of
each water body using the following formula, which is
applicable over the range 21uC to 40uC and 0 to 40 g kg21

salinity (Weiss 1970; Hull et al. 2008):

Oi~14:62{0:37Tiz0:0045T2
i

{0:097Siz0:00205TiSiz0:0002739S2
i

ð1Þ

where i 5 1 for the estuary surface layer and o for the ocean
boundary; Oi 5 concentration of DO at saturation (mg
L21), Ti 5 temperature (uC), and Si 5 salinity (g kg21).

Model development—Modeled estuaries were assumed to
be horizontally well mixed and vertically stratified in two
layers due to salinity–density differences. Phytoplankton,
detritus, and oxygen (PDO) were modeled for each layer
based on a mass balance with river and ocean import,
ocean export, and nutrient-driven production (Fig. 1).
Ocean import and export were based on water balances
and concentrations in the source water. The following
equations were used for all lagoons, coastal embayments,
and river-dominated estuaries. For fjords, the input terms
were modified such that oceanic inputs were into the upper
rather than the lower layer.

Surface-layer phytoplankton biomass (B), TN-driven
biomass production, grazing, sinking, thickness, and
volume of each estuary layer, and estuary water residence
time (WRT) were all modeled as in Scavia and Liu (2009).
Primary production was estimated by converting TN load
to organic carbon production based on Redfield ratios
(Scavia et al. 2006). Planktonic N fixation was not included
because it is generally not observed in estuaries with
salinities more than 10 to 12, even when they are strongly N
limited (Howarth and Marino 2006). The surface-layer

Table 1. Estuary names and locations.

U.S. estuaries Longitude (uW) Latitude (uN)

Buzzards Bay, MA 70.84053 41.59181
Willapa Bay, WA 123.96941 46.55985
Choctawhatchee Bay, FL 86.3161 30.4474
Pensacola Bay, FL 86.96511 30.46379
Patuxent River, MD 76.51213 38.38493
Potomac River, MD/VA 77.09428 38.39602
Central San Francisco Bay, CA 121.96481 38.18366
Neuse River, NC 76.57693 35.03501
Winyah Bay, SC 79.25778 33.39368
Charleston Harbor, SC 79.95033 32.90534
St. Helena Sound, SC 80.39301 32.53613
Broad River, SC 80.71693 32.39863
Savannah River, GA 80.93814 32.1364
St. Marys River and Cumberland Sound, GA/FL 81.4844 30.75114
Blue Hill Bay, ME 68.45747 44.34721
Penobscot Bay, ME 68.86359 44.40772
Casco Bay, ME 70.07362 43.75061
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biomass model included an estuary-specific term (a) that is
proportional to the estuary’s efficiency at converting TN
loads to phytoplankton biomass. Scavia and Liu (2009)
showed that this term can be used as an indicator of estuary
Chl sensitivity to TN load.

Detritus in the surface layer (mg C L21) was modeled as a
function of grazing inefficiency (biomass consumed but not
respired by grazers), decomposition in the surface layer, loss
to the ocean, upwelling from the lower layer, and sinking.
Grazing was modeled as a quadratic term of phytoplankton
biomass assuming zooplankton biomass is proportional to
phytoplankton biomass (Scavia and Liu 2009).

dD1

dt
~LB2a{kmD1{

QoutD1

V1
z

QinD2

V1
{v

0

s1D1 ð2Þ

where D1 is detritus in the surface layer (mg L21); L is the
rate of loss to grazing by zooplankton (d21); B is
phytoplankton biomass (mg L21); a is the fraction of
zooplankton grazing converted to detritus; km is the
mineralization rate (d21); Qout is the outflow to the ocean
(m3 d21); V is the estuary volume (m3) with V1 for the surface
and V2 for the bottom layer (V 5 V1 + V2); Qin is the oceanic
inflow (m3 d21), representing upwelled bottom water into
the surface layer; D2 is detritus in the bottom layer (mg L21),

v
0

s1 5 vs/z1 is the sinking rate of phytoplankton from the
surface layer (d21), calculated as the sinking speed (vs, m
d21) over layer depth; and z1 is the estuary average depth (m)
of the surface layer. Total estuary average depth z (m) 5 z1 +
z2, where z2 is the depth of the bottom layer.

Detritus in the lower layer (D2, mg C L21) was modeled
as a function of sinking of detritus and biomass from the
surface layer, inflow from the ocean, decomposition, and
upwelling losses to the surface layer.

dD2

dt
~

v
0

s1V1

V2
(D1zB)z

QinBo

V2
{kmD2{

QinD2

V2
{v

0

s2D2 ð3Þ

where Bo is the concentration of organic matter in the

ocean (mg C L21), and v
0

s2~vs=z2 is the sinking rate of

phytoplankton from the bottom layer (d21), calculated as
the sinking speed (vs, m d21) over layer depth.

Oxygen in the lower layer (mg L21) was modeled as a
function of mixing from the surface layer, upwelling loss to
the surface layer, gain from the ocean, decomposition, and
sediment respiration.

dO2

dt
~kd(O1{O2){

QinO2

V2
z

QinOo

V2
{kmD2kr{v

0

s2krD2 ð4Þ

where O2 is the oxygen concentration in the lower layer
(mg L21); kr is the respiratory quotient (3.49 g O2

consumed per g C respired, including both CRCO2 and
NH4RNO3 pathways; Chapra 1997); kd is the exchange
coefficient between the two layers (d21); and the final term
(v
0

s2krD2) is the areal rate of sediment oxygen demand
(SOD, g O2 m22 d21). This final term assumed that the
sediments are in equilibrium with respect to carbon flux,
and thus SOD was approximated by carbon deposition to
the sediment surface.

Analytical steady-state solutions—We used steady-state
solutions for the previous differential equations because
temporally varying TN load and DO data were not
available for most of the estuaries we modeled. While this
is a significant simplifying assumption, it is supported by
the fact that variability among systems is higher than
within systems and that there are relatively small temporal
trends in chlorophyll or TN loads for these systems. Thus,
the steady-state approximation was reasonable for drawing
distinctions among estuaries (Dettmann 2001; Fennel and
Boss 2003; Swaney et al. 2008).

The steady-state solutions for surface-layer biomass
(from Scavia and Liu 2009) are

B~
{(QoutzV1v

0

s1)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(QoutzV1v

0
s1)2z4InLV 2

1

q

2LV1
ð5Þ

Fig. 1. Diagram of model state variables and processes for a stratified, non-fjord estuary. In
fjords, the sea inflow is switched to the upper layer.
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and

In~a
TNRzTNO

V1
ð6Þ

where In is primary production, a is a scaling coefficient
including the Redfield C : N ratio and estuary efficiency,
and TNR and TNO are total nitrogen inputs from river and
ocean sources, respectively.

The steady-state solutions for the detritus and oxygen
equations (Eqs. 2–4) are:

D1~
BoQ2

inzBV1fv
0

s1QinzaBL½QinzV2(kmzv
0

s2)�g
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0
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Finally, we defined a parameter fz as the ratio of surface-
layer to total volume (unitless):

fz~
z1

zmax
~

V1

V
ð10Þ

Parameter estimation—The model was simultaneously fit
to NEEA summer average bottom water oxygen concen-
tration estimates and 7 yr (1998–2004) of summer average
surface-layer Chl concentrations using a constant carbon to
Chl ratio (ca) to convert phytoplankton biomass (B) to
units of Chl (Scavia and Liu 2009). For some tests, we
treated a and fz as variable among estuaries (full model),
using a hierarchical structure for a, as described in the
following. We compared these results to estimations with
each parameter fit as constant across estuaries. Estuary-
specific calibration parameters serve as an index of estuary
sensitivity of Chl (a) and DO (fz) to TN load.

Model estimation was done through Markov chain
Monte Carlo (MCMC) with Gibbs sampling methods for
Bayesian inference in WinBUGS (version 1.4.3; Lunn et al.
2000) called from R (version 2.6.0; R2WinBUGS, version
2.1–8; Gelman and Hill 2007). Model code for both R and
WinBUGS is available from the authors. All parameters
were fit as distributions with variability propagated by
the MCMC process. Fitting to observed values was done
to minimize variance (s2

Chl and s2
DO) in the following

distributions:

Chl(obs)i*N(B|ca,s2
Chl) ð11Þ

where i 5 1, …, 7 for the 7 yr of Chl data, and

DO(obs)*N(O2,s2
DO) ð12Þ

where N indicates a normal distribution, and the values in
parentheses are average and variance.

MCMC algorithms were run for 10,000 iterations (first
5000 discarded) using four chains, or parallel runs using
different random seeds, to test for model convergence.
Model convergence was tested using the ratio between :
within chain variance, R̂. At convergence, R̂ < 1 (Gelman
and Hill 2007), and model runs with R̂ . 1.2 were not used
for analysis. Marginal distributions for each parameter
were drawn from 1000 MCMC samples for each parameter
after thinning to reduce serial correlation (Qian et al. 2003;
Malve and Qian 2006). The following uninformative priors
were used: (1) in calibrations with a varying by estuary
(n 5 1 through 17) with a hierarchical structure an ,
N(a*,1000)I(0.00001,200) and a* , Uni(0.0001,200); (2) in
calibrations with a constant across estuaries, the same prior
as an; (3) in calibrations with fz varying by estuary (n 5 1
through 17) fzn , Uni(0.05,0.95); and (4) in calibrations
with fz constant across estuaries, the same prior as fzn.
Here, N indicates a normal distribution, and Uni indicates
a uniform distribution, the values in the first parentheses
are average and variance (s2) (normal distribution) or
upper and lower bounds (uniform distribution), and I(#,#)
denotes truncation to remove values outside the range
specified. Uninformative truncation at values far outside
the expected range (i.e., 0.00001,200) was conducted to
speed conversion and give sensible results. When a was
allowed to vary by estuary, it was given a hierarchical
structure with the universal mean value (a*), and an and fzn

were drawn independently for each estuary.
Values for the remaining parameters were estimated from

the literature, or otherwise reasonable values, as described
next. The mineralization rate km was set to 0.8 d21, the
carbon to Chl ratio (ca) was set to 50 g C : 1 g Chl (Riemann
et al. 1989), zooplankton grazing rate (L) was set to 0.2 d21,
the fraction of zooplankton grazing converted to detritus (a)
was set to 0.2, sinking rate (vs) was set to 1 m d21 (Lucas et
al. 1998), the exchange coefficient between the two layers
(kd) was set to 0.2 d21, and the concentration of organic
matter in the ocean (Bo) was set to 0.3 mg L21. The initial
test, using a range of parameter values, showed that the
model was relatively insensitive within these ranges, with the
exception of kd. Parameters were perturbed, one by one, by
up to 620%, and in all cases, model fit (deviance) changed
by a much smaller percent than the parameter change. The
value for kd can vary by more than an order of magnitude in
observations and model studies (Borsuk et al. 2001; Liu et al.
2010), so we tested this parameter over a larger range than
the others. Our analysis indicated that model fit deteriorates
at the lower end of the observed range (values less than 0.1),
so we selected a kd value within the range where model fit
was less sensitive to this parameter.

Model fit was determined by comparing observations
with the model 95% credible intervals (CI) and by
regressions of model results (average of the distribution)
vs. observed values (Scavia and Liu 2009). Posterior P-
values were calculated for each Chl and DO prediction, and
P-value histograms were used to compare model fit
(Gelman et al. 1996; Gronewold et al. 2009).

Tests of DO depletion sensitivity to TN load—We used
the model to test if the sensitivity of DO depletion to TN
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loads is dependent only on factors that control the
sensitivity of surface Chl concentrations, or if additional
factors are important. Models fit with either a or fz, as an
estuary-specific calibration (the other estimated as constant
across estuaries), were compared to models that allowed
both parameters to vary by estuary. In all cases, a was
tested in the range 0.0001 to 200, and fz was tested in the

range 0.05 to 0.95. If the sensitivity of DO to TN loads is
strictly dependent on factors controlling the sensitivity of
surface Chl concentrations, then a single calibration
parameter should be sufficient to fit most of the variation
in both Chl and DO. However, if additional factors are
important, then allowing both parameters to differ among
estuaries should be necessary to achieve an adequate fit.
The Deviance Information Criterion (DIC) was used to test
model fit (Spiegelhalter et al. 2002). Models with the lowest
DIC were selected as having better fit, with DIC differences
of more than 3 units assumed to indicate strong support for
the model with the lower DIC (Spiegelhalter et al. 2002). In
addition, we employed a heuristic criterion, asking if one of
the simpler models provided an adequate fit, as further
discussed in the results. We further tested the independence
of the controls on sensitivity of Chl and DO to TN loading
by checking for cross-estuary correlations between the
fitting parameters a and fz.

Results

Allowing both a and fz to differ among estuaries was
necessary to achieve an adequate fit to the data; however,
this method tended to overfit the DO observations. When
calibrated in this way, the model provided an excellent fit
(R2 . 0.99, slope , 1, and all observations were within the
model 95% CI) to both the average Chl data (Fig. 2A) and
the DO data (Fig. 2B), and there was no significant
correlation between a and fz (R2 5 0.06; Fig. 3). Posterior
P-value histograms show a slight overfitting of Chl and
DO. Total DIC was 79.17. When only a was allowed to
differ among estuaries, model fit was reduced (Fig. 4; R2 5
0.67 for Chl and 0.81 for DO). More critically, the model
was not able to reproduce the observed range of Chl values
(slope of observed vs. modeled regression 5 0.45), and
many observations were outside the 95% (Fig. 4). Posterior
P-values indicate that the model severely underfit the DO
observations. Total DIC was 241.806, indicating that the
model allowing only a to differ among estuaries was a
much poorer fit despite the difference in number of
parameters. When only fz was allowed to differ among
estuaries, fitting procedures failed to converge on a
solution. From this, we conclude that separate processes
likely control the dominant sensitivity of Chl concentration
and DO depletion to TN loading. Therefore, all remaining
analysis examined the model fit allowing both a and fz to
differ among estuaries.

The parameter for Chl conversion efficiency (a), and its
variation among estuaries, was similar to that found by Liu
and Scavia (2010), despite the model changes made to
incorporate DO (Fig. 5; slope 5 1.2, intercept 5 0.09, R2 5
0.92), suggesting a robust modeling framework.

Before conducting our exploration of the role of the
physical filters in controlling estuarine sensitivity, we
compared modeled process rates to empirical estimates,
when available, because it is possible to match observed
state variables with erroneous but compensating process
rates. Observed rates of vertical DO flux for Chesapeake Bay
(0.1–0.3 g m23 d21; Kemp et al. 1997; Scavia et al. 2006) fell
at the lower end of our modeled means (0.12–1.7 g m23 d21),

Fig. 2. Model fit for (A) Chl and (B) DO with 95% CI error
bars for model predictions and Chl measurements, and parame-
ters a and fz allowed to vary by estuary (fitted and predicted using
1992 SPARROW loads). Regressions of predicted vs. observed
are given to summarize model fit; these were calculated using the
mean values for each estuary.
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and the Hopkins River, an Australian estuary, (0.1–
1.4 g m23 d21; Sharples et al. 2003) spans most of the range
of modeled fluxes; however, vertical DO flux in Mobile Bay
(4.1–4.6 g m23 d21; Park et al. 2007) exceeded model estimates.

In general, our modeled respiration rates fell within, but
at the low end of, expected ranges. Respiration rates (g
m23 d21) for Pensacola Bay (0.32) and Patuxent River
Estuary (0.25–0.50; Murrell et al. 2009) overlapped or
spanned the modeled 95% CI (0.23–0.32). In addition,
measured rates for Chesapeake Bay (0.5–0.7; Kemp et al.
1997; Scavia et al. 2006) span modeled rates (0.21–0.63) for
its tributary estuaries, and rates for South San Francisco
Bay (0.00–0.9; Caffrey et al. 1998) span modeled rates for
Central San Francisco Bay (0.14–0.21). Higher respiration
rates have also been observed in Mobile Bay (0–3.7; Park
et al. 2007), Hopkins River Estuary (mean 6.5; Sharples
et al. 2003), and the Swan River Estuary (mean 2.9;
Atkinson et al. 1987).

Comparison of our estimated relative mixing depth (fz)
to observations is more complicated because the model
assumes estuaries with flat bottoms, and thus relative
mixing depth and relative mixing volume in the model are
the same. However, we can test our estimates of relative
mixing depth because relative mixing volumes should fall
between depths calculated from average and maximum
depths. Indeed, for most of the estuaries for which we could
find mixing depth data, modeled values fell between these
boundaries. Modeled relative mixing depth (fz) was also
found to be positively correlated with DO sensitivity to TN
loading (Fig. 6), as would be expected, because increasing
relative mixing depth increases the volume for surface
production and decreases the volume of the lower layer,
where decomposition consumes oxygen.

Discussion

We used model fitting and parameter analysis to explore
the role of estuary eutrophication filters (Cloern 2001) by
analyzing a two-layer box model, fit to average estuary Chl
and DO concentrations, to test if the sensitivity of DO
depletion to TN loads is dependent only on the same

Fig. 4. Model fit for (A) Chl and (B) DO with 95% CI error
bars for model predictions and Chl measurements, and parameter
a allowed to vary by estuary (fitted and predicted using 1992
SPARROW loads). Regressions of predicted vs. observed are
given to summarize model fit; these were calculated using the
mean values for each estuary.

Fig. 3. Calibration parameters for estuary TN to Chl
conversion efficiency (a) and relative mixing depth (fz). Dots are
mean values, and error bars are 95% CI.
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factors controlling surface Chl or if additional factors are
important.

Our calibrations using a single estuary-specific parame-
ter (a, a measure of estuary TN to Chl conversion
efficiency, or fz, relative mixing depth) did not adequately
fit the observations. However, allowing both parameters to
differ among estuaries worked well, having lower total DIC
and fitting both surface Chl and bottom water DO
observations; however, this model also tended to overfit
the observations, indicating that some statistical noise is
also influencing parameter values.

Parameter analysis also showed that DO sensitivity to
TN loading was positively correlated with relative mixing
depth, suggesting that relative mixing depth acts as a filter
on this eutrophication symptom. Our a estimates are
similar to those from Scavia and Liu (2009), who also
showed that estuary flushing time acts as a filter on Chl
concentration.

Sensitivity to TN loading differed among estuaries (i.e.,
values of a and fz varied among estuaries). Nutrient loading
interacts with other stressors, such as fisheries harvest
(Breitburg et al. 2009), to affect various symptoms of
eutrophication. Climate variation among estuaries and for
a given estuary over time (Duarte et al. 2009) affects water
circulation and sensitivity to TN loading. Legacies of past
exploitation and nutrient additions can shape estuary
response (Duarte et al. 2009). Changes in the ocean-estuary
coupling and trophic cascades of San Francisco Bay have
increased the efficiency of that system for converting
nutrients into algal biomass (Cloern et al. 2007). Water
residence time was found to be a primary filter of nutrient
effects and a primary predictor of acceptable nutrient
loads, defined as the maximum allowable load that would
not produce water-quality degregration, in Florida estuaries

(Steward and Lowe 2010). Our work adds to these findings
for individual systems by expanding the geographic and
morphological range of systems tested and by including
multiple symptoms of eutrophication.

Furthermore, this model and that of Scavia and Liu
(2009) show that flushing time and relative mixing depth
can be used to estimate the sensitivity of Chl and DO
concentrations to TN loading and target potentially
sensitive estuaries for further analysis and management.

Flushing time was found to be an indicator of the
sensitivity of Chl concentration to TN loads in this model
and its predecessor (Scavia and Liu 2009), consistent with
other studies (Monbet 1992; Cloern 2001; Steward and
Lowe 2010). The effects of biomass removal through
flushing are included explicitly in both this and the Scavia
and Liu (2009) models; however, additional correlation of
flushing time and sensitivity to TN loading, especially in
rapidly flushing estuaries, seems to be caused additionally
by flushing of nutrients between the spring pulse and
summer growth.

Relative mixing depth was found to be an indicator of
the sensitivity of DO to TN loading, suggesting that
relative mixing depth could be used to classify estuary DO
sensitivity. This result is obvious at the extremes. That is,
both shallow, well-mixed systems (fz , 1) and deep but
periodically mixed systems are not prone to seasonal DO
depletion. At the other extreme, systems with thick sub-
pycnocline regions but extremely limited mixing, for
instance, chemically stratified meromictic lakes and fjords,
can become hypoxic, but only after years or decades of
stratification. However, our analysis suggests that even
within a narrower range of relative mixing depths,
sensitivity of DO depletion is positively related to relative

Fig. 5. Comparison of estuary-specific a values as fit in the
Chl model of Scavia and Liu (2009) and as fit using the combined
Chl and DO model allowing a and fz to vary by estuary.

Fig. 6. DO sensitivity to Chl vs. fz. Sensitivity of DO
drawdown to biomass is defined as (saturated DO 2 observed
DO)/observed Chl.
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mixing depth. Thus, outside of this model calibration,
WRT and relative mixing depth can be applied as
indicators of estuary sensitivity to target potentially
sensitive estuaries for further analysis and management.

Finally, we developed response curves of Chl and DO as
a function of TN loads for each of the estuaries included in
this study. Examples are shown for a subset that covers the
full range of Chl and DO sensitivity to TN loading (Fig. 7).
Generating response curves for additional estuaries would
require recalibration of this model; however the required
data for this (estuary volume, depth, WRT, TN load, river
discharge, precipitation and evaporation at the estuary
surface, estuary and ocean salinity, and summer surface
Chl and bottom water DO) are not difficult to obtain.

Though we focused only on two symptoms of estuary
eutrophication, Chl and bottom water DO, these are

important candidates for initial assessments of estuary
sensitivity because they are central indicators of other
aspects of eutrophication. For example, high Chl is an
indicator of high phytoplankton biomass, which can cause
decreased light penetration and decreased benthic produc-
tion and sea grass loss, and low bottom water DO is a
driver of fish and shellfish mortality or habitat shifts
(Cloern 2001; Rabalais and Turner 2001).

Quantification of the role of physical filters on the
sensitivity of estuarine eutrophication to nutrient loading is
critical for management in the face of increasing human
pressure in coastal areas. Both the comparative informa-
tion on estuary sensitivity provided by the model and the
estuary-specific response curves (e.g., Fig. 7) provide
insight into sensitivity of Chl and DO for individual
estuaries. Extensive ecological data and more complex

Fig. 7. Forecasting curves for effects of TN loading changes on (A) Chl and (B) DO (mean
and 95% CI) for selected estuaries demonstrating the full range of sensitivity to relative TN
loading. The x-axis shows river TN load relative to the 1992 SPARROW TN load for each
estuary. In the figure legend, R 5 river, B 5 bay, and S 5 sound.
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models are available for some U.S. and European estuaries;
however, for many hypoxic areas in the developing world
(Diaz and Rosenberg 2008), data and models are more
limited. Our relatively simple model is well suited to initial
screening of such systems.
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