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ABSTRACT

There is an increasing demand to efficiently process emerging types of queries, such as progres-

sive queries (PQ), on large scale databases from numerous contemporary applications including

telematics, e-commerce, and social media. Unlike a conventional query, a PQ consists of a set of

interrelated step-queries (SQ). A user formulates a new SQ on the fly based on the result(s) from the

previously executed SQ(s). Processing PQs raises a number of new challenges. Existing database

management systems were not designed to efficiently process such queries. In this dissertation,

we propose a suite of novel materialized-view based techniques to efficiently process PQs. First,

we propose a dynamic materialized-view based approach to efficiently processing a special type of

PQs, called monotonic linear PQs. We introduce a so-called superior relationship graph to capture

superior relationships among SQs of such a PQ and suggest a method to estimate the benefit of

keeping the result of an SQ as a materialized view using the graph. To efficiently construct the

superior relationship graph, we propose two algorithms: generating-based and pruning-based. To

improve the view searching efficiency and quality, we design an algorithm with a special storage

structure to store and manage the materialized views. Second, to handle generic PQs, we define

a so-called multiple query dependency graph to capture the data source dependency relationships

that exist among SQs and external tables of a generic PQ. Using the graph, a mathematical benefit

estimation model, which takes both the impact and the effectiveness of materialization into con-

sideration, is derived. A greedy method and a dynamic programming method to solve the view

maintenance problem are proposed. Third, to efficiently find usable materialized views from the

view space/set for answering a given SQ, we suggest a dynamic materialized view index method.

A special index tree structure with nodes ordered by a two-level priority rule that facilitates ef-

x



ficient locating of different types of nodes is designed. Bitmaps encoded with special methods

are also used to refine the pruning of unusable views during a search. Fourth, to support PQs in

a big data environment like Hadoop, we propose an index based technique for performing a new

column family join operation on Hbase tables. To efficiently process such a join operation, we

suggest a multiple freedom family index. A parallel MapReduce algorithm to construct the index

is developed. To perform a column family join on two Hbase tables using the indexes, we present

two partitioning methods to balance the workload among map nodes in a MapReduce algorithm.

The introduced column family join operation and its relevant processing technique can ensure the

closure property that is essential to the processing of PQs. To examine the performance of the pro-

posed techniques, we performed extensive empirical and theoretical analyses. Our studies show

that the proposed techniques are quite promising in efficiently processing PQs. To our knowl-

edge, our work is the first to apply the materialized-view based approach to efficiently processing

progressive queries on large databases.
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CHAPTER 1

Introduction

In this dissertation, we investigate the issues and methods for optimizing a new type of queries,

called progressive queries, via materialized views for large scale databases.

1.1 New query type emerged in data intensive applications

In recent years, we have witnessed the emergence of many contemporary database applications,

such as telematics, e-commerce, social networks, bioinformatics, business intelligence, and deci-

sion support, that have a high demand on processing/analyzing a huge amount of data. Many new

challenges for managing and processing large databases for such data intensive applications have

been raised. One of these challenges is how to efficiently process new types of queries on large

databases [36, 84, 86, 107, 134]. The progressive queries studied recently by Zhu et al. in [134]

represent one type of such new queries. Zhu et al. observed that a user often formulated a query

progressively in a sequence of steps in many data intensive applications such as those mentioned

above.

Let us consider an example. Assume that a traveler wants to select a set of songs from a

worldwide song database containing millions of songs and lyrics to burn CDs to be played on her

next trip. She first issues a query on the database to list all the songs released in the last three

years. She finds that there are too many such songs in the database. She then narrows down the

list by adding a condition on the genre. However, she finds that the list is still too long. Thus she

further narrows down the list by adding another condition to restrict songs to those sung by several

1



her favorite singers and with a length less than 4 minutes. Finally, she finds a reasonable (not too

large) set of songs she liked to enjoy for her trip.

Planning a sightseeing trip by a traveler is another example. Assume that the traveler is planning

for a trip to see the scenes of some historic sites in China. In the first step, she first issues a search

on a large travelling database to list all the historic sites along with their relevant information in

China. After the result is returned, the traveler realizes that the result set is too large, and she

does not want to go through each returned entry to determine if she is interested in visiting the

corresponding site. Thus, in the second step, she adds a further condition on the time period

(e.g., 1644 - 1912 for the Qing Dynasty) when the historic sites were established. However, the

result set is still too large. Therefore, in the third step, she further narrows down the result by

restricting the historic sites to be in/nearby several chosen cities (e.g., Xi’an, Nanjing) in China.

Assume that the traveler does not find enough interesting sites from the chosen cities, she may

add or change the desired cities and reuse the result from the second step. After several steps, a

satisfied list of historic sites is finally determined. The traveler may then want to search for some

other information related to the selected cities and some stories/articles about the selected sites in

the following step(s), which cannot be found not in the results of previous steps — implying the

necessity to bring additional data sources into the searches.

A product searching at the Amazon web site represents a similar example. Assume that a user

desires to buy a suitable laptop. In the first step, she issues a search to list all the laptop sales at

the web site (database). After the result is returned, the user may realize that the result set is too

large, and she does not want to scan all the returned sales by following several screens. Thus, in

the second step, the user adds a further condition on the brand name to restrict the laptop sales,

say from Dell. However, the result set may still be too large. Therefore, in the third step, the

user further narrows down the result set by adding another condition for the price limit. Assume

2



that the user does not find any laptops under the given price limit condition, she may change the

desired brand name of a laptop to HP or Lenovo and reuse the result for the first step. After several

steps, a satisfied laptop is found. Then the user may search for some other information related

to the selected laptop, e.g., the central processor frequency, the hard disk capacity, the production

location, the users’ comments and rankings, and so on.

Other examples of this type of queries include a biologist identifies an unknown DNA sequence

via a sequence of tasks (e.g., alignment, validation, and comparison), a geo-scientist accesses mas-

sive volumes of earth science data via a number of complex multi-step queries, a decision maker

explores and analyzes the relevant information from multiple data sets and in multiple steps, and a

homeland security officer identifies a potential terrorist via analyzing and linking various pieces of

information in many stages. It is not difficult to see that there are numerous application scenarios

in which progressive queries play an important role in fulfilling users’ application requirements.

1.2 Research problem

Unlike a conventional query, a progressive query (PQ) is defined as a query that is formulated in

more than one step (progressively), where each step is called a step-query (SQ) [134]. To be more

specific, let us assume that the underlying database is a relational one. A user submits her first

SQ sq1 on one or more external (existing) tables/relations in the database. Based on the result

(table) R1 of sq1, the user submits a second SQ sq2 using R1 and/or additional external tables as

its input. In general, an SQ may use the result(s) of its previous SQ(s) and/or external tables as its

input. After the last SQ is submitted, a PQ is completed. Hence, the user gradually approaches her

desired result by issuing a number of related SQs to the database. The following characteristics of

progressive queries can be observed:

Characteristic 1: PQs are typically executed on large databases. This is due to the fact that the

3



applications like bioinformatics, social media networks, and e-commerce in which PQs are applied

typically demand to perform analysis on a huge amount of data. For example, as of April 2014,

the size of the well-known GenBank sequence database has reached about 159 GB bases [85];

the popular social media Facebook has over 3 billion pieces of content being generated on every

day [24]; and FICO’s falcon credit card fraud detection system manages over 2.1 billion valid

accounts around the world [24].

Characteristic 2: SQs of a PQ cannot be known beforehand. Each SQ, which can be a full-

fledged query on its own, is formulated on the fly by the user. The user needs to know the result(s)

of the previous SQs to determine the next SQ. Thus, a PQ can never be fully known until its last

SQ is completed.

Characteristic 3: SQs of a PQ are interrelated. In a PQ, each SQ is formulated based on the

results of the previous SQs. Thus, the SQs in a PQ are not independent. Some relationships among

the SQs exist. For example, the fifth SQ may use the results of the first and third SQs in a particular

PQ.

These characteristics raise a number of challenges for processing/optimizing PQs efficiently

in a database management system (DBMS). Characteristic 1 implies that the results of SQs of a

PQ usually cannot fit in main memory and are typically saved as temporary tables on the disk.

However, no access structures such as indexes exist for such temporary tables. Creating indexes

from scratch for the results of SQs would incur much overhead. How to establish effective access

methods for the results of SQs to facilitate the efficient processing of subsequent SQs presents a

new challenge for query processing, which is called the access inefficiency challenge in our discus-

sion. Characteristic 2 indicates that a PQ cannot be fully determined before its processing starts.

This is totally different from the traditional query processing in which a query has to be given first

so that its optimization/processing strategies can be decided by examining its requirements. This

4



phenomenon leads to a so-called the query unpredictability challenge in our discussion. Charac-

teristic 3 together with Characteristic 2 entail that the results of previous SQs of a PQ have to be

kept in the system so that a subsequent SQ can utilize them for its evaluation without re-executing

the referenced SQs. On the other hand, Characteristic 1 imposes a requirement on managing the

results of SQs effectively in the system to mitigate the high space demand. These requirements

present another so-called the result management challenge in our discussion. A traditional DBMS

was not designed to efficiently process PQs. To properly tackle these challenges, a new techniques

are required.

To address the access inefficiency challenge, Zhu et al. proposed a so-called collective index

method in [134], which can efficiently transform the indexes on the input table(s) of an SQ into the

ones on the result table of the SQ without building them from scratch. The transformed indexes can

be used to improve the processing efficiency of the new SQs on the result table. However, no work

has been reported in the literature to tackle the query unpredictability and the result management

challenges for PQs, which will be addressed in this work.

It is well known that utilizing materialized views to efficiently process queries is one of the

important optimization techniques for conventional queries. The main idea of such a technique is

to precompute (i.e., materialize) some user-defined views in advance so that queries using these

views can be processed more efficiently without computing the views on the fly during query

processing. We notice that PQs exhibit some properties that match well the working principle

of a materialized-view based query optimization technique. For example, since a subsequent SQ

of a PQ uses the result(s) of the previous SQ(s), the results of previous SQs can be naturally

considered as materialized views. However, PQs also possess some properties that do not fall in

the scope of a traditional materialized-view based approach. First, the results of all SQs of an

in-process PQ have to be materialized, while, for a conventional materialized-view based method,
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only a small subset of the views are usually selected to be materialized. Hence, materialized

view management and searching become crucial for a materialized view method for PQs. Second,

many results of SQs of a PQ are typically no longer needed after the PQ is completed. This

implies that the lifetimes of many materialized views for PQs are shorter than those of traditional

materialized views. A mechanism for effectively selecting useful materialized views/SQs and

efficiently removing useless materialized views/SQs for completed PQs is desired. Third, the

SQs of PQs are unpredictable, while the definitions of traditional views are typically given in

advance for a traditional materialized-view based method. This implies that a dynamic feature is

expected for a materialized-view based method for PQs. Fourth, the SQs of a PQ are related to

each other, while traditional views do not necessarily possess any inter-relationships. Such (inter-)

relationships should be taken into consideration for a materialized-view based method for PQs.

In this work, we explore a number of new materialized-view based query optimization tech-

niques for PQs that utilize the special properties of such queries to tackle the query unpredictability

and result management challenges. Most of our techniques are developed for a relational database

environment, while some of our techniques are targeted for a non-relational big data environment.

1.3 Our approaches

First of all, we notice that a special type of PQs, called monotonic linear PQs, are frequently used

in many database applications. In such a monotonic linear PQ, each SQ sq only uses the result

of its (immediate) preceding SQ unless sq is the initial SQ of the PQ, which uses one or more

external tables in the latter case. The first goal of our work is to develop a materialized-view based

technique to efficiently process this type of PQs.

As mentioned earlier, due to the query unpredictability, the result of every executed SQ of an

in-process PQ has to be kept (materialized) in the system until the PQ is completed. We can call
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this type of materialization a trivial materialization. We notice that some SQs of a completed

(historical) PQ may be useful for evaluating future SQs of other PQs. We need to identify such

beneficial SQs and keep (materialize) their results in the system to facilitate efficient processing of

other PQs. We can call this type of materialization a non-trivial one since not every SQ is selected

for materialization. To determine which SQs are beneficial to other SQs, we introduce a so-called

superior relationship graph to capture the superior (or inferior) relationships among the SQs of

historical (monotonic linear) PQs. Using this graph, we can estimate the benefit of materializing

an SQ in the graph. To efficiently construct such a graph, we adopt some heuristic rules to develop

a generating-based algorithm and a pruning-based algorithm. The former is more efficient for a

dense graph, while the latter is more efficient for a sparse graph. A method using this graph to

dynamically select SQs for materialization is suggested.

As one can imagine, the number of such materialized views in the system can be very large.

Hence, we design a special storage structure, called the relationship linked structure, to store and

manage the materialized views to improve the view searching efficiency and quality. Specifically,

we divide the set of materialized views into four groups. We then utilize the transitive property of

the superior/inferior relationships among views to intelligently construct the storage structure and

use it to efficiently find a high quality materialized view when answering a given SQ.

The materialized view set maintenance issue is solved by applying a replacement strategy based

on the sizes and ages of materialized views when the space for keeping the materialized views over-

flows. A DBMS architecture incorporating the above technique to process PQs is suggested. Ex-

tensive experiments were carefully designed and conducted to evaluate the performance of adopted

strategies and the impact of various parameters.

Although the above technique can efficiently process monotonic linear PQs, it cannot be applied

to process a generic PQ since the required superior/inferior relationships among SQs may not
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exist for a generic PQ. However, we notice that there exists a type of data source dependency

relationships among SQs and external tables. We introduce a so-called multiple query dependency

graph to capture such relationships. This graph allows us to estimate the impact of materializing

an SQ on its child nodes as well as the effectiveness of such a materialization. A mathematical

benefit estimation model taking both the impact and the effectiveness into consideration is derived.

A number of impacting factors including the distance, the node type and the number of inputs are

incorporated in the model.

When a PQ is completed, we use the mathematical model to estimate the benefit of keeping

the result of each SQ of the PQ as a materialized view. The results of those SQs of the PQ with

significant estimated benefits are selected as so-called critical (materialized) views and kept in a

critical view space. The processing of a new SQ of a PQ can utilize the results of previous SQs

not only from the same PQ but also from other in-process PQs as well as the critical views from

completed (historical) PQs in the critical view space. To maintain the multiple query dependency

graph, an algorithm is developed to remove non-critical SQs/nodes of a completed PQ from the

graph and transfer the corresponding dependency relationships to the relevant surviving nodes in

the graph.

To maintain the critical view space, we first introduce a greedy algorithm to replace some old

critical views with the new ones when the space limit is reached. Although the greedy algorithm

is efficient, it seeks a locally optimal solution. We notice that the problem of maximizing the total

benefit of the critical views in the critical view space is similar to the classic knapsack problem. To

improve the quality of critical views in the critical view space, we develop a dynamic programming

based approach to solving the replacement problem for the critical view space by converting it to a

knapsack problem. To mitigate the high worst-case complexity issue for a dynamic programming

procedure, we adopt a greedy strategy to reduce the size of the input set of candidate critical views.
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After promising materialized views are selected and saved in the view space (set), how to ef-

ficiently find usable views from the view space for answering an SQ is another important issue.

To overcome the high overhead problem with the straightforward sequential search method, we

develop a dynamic materialized view index method to efficiently find the views that are poten-

tially usable for answering a given SQ. This index allows a user to search for usable critical views

as well as usable temporary views (i.e., the results of SQs of in-process PQs) in the view space

when answering a given SQ. It uses the input tables of an SQ as its search key. It also adopts

specially encoded bitmaps to further prune unusable views during a search. Since the materialized

views in the view space are dynamically generated during of the processing of PQs, our index

is dynamically updated to incorporate new views. On the other hand, since temporary views are

frequently expired (i.e., when the corresponding PQs are completed), our index can efficiently

transform selected temporary views into critical views and remove unselected ones. A two-level

priority rule is adopted to order the nodes (input tables) of the index tree in such a way that views

for search/insertion/deletion can be quickly located. Efficient algorithms for index construction,

maintenance, and search are developed.

The above techniques are developed for a relational database environment. We also conduct

a preliminary study on supporting PQs in a popular big data environment, i.e., the Hadoop envi-

ronment. A Hadoop supported database is called Hbase, which may contain one or more Hbase

tables. An Hbase table consists of a set of rows with values for one or more column families. A

column family can have a dynamic number of columns. In a relational environment, each SQ of a

PQ operates on one or more relational tables and return a new relational table as the result. This

closure property is a basic requirement to perform a PQ since the result of a previous SQ can be

used as an input table for a subsequent SQ. However, most existing query techniques for Hbase

tables lack of this closure property; namely, a query result is typically exported in the form of a
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relational table and returned to the requesting application, rather than saved as a new Hbase table

in the system for further querying. On the other hand, existing techniques perform query oper-

ations (e.g., join) at the column level rather than the column family level. We notice that many

applications demand operations for Hbase tables at the column family level. We, hence, introduce

tree column family level operations and focus on discussing efficient processing of the most dif-

ficult operation, i.e., the column family join. In fact, we define four types of column family joins

according to different matching freedoms in the join condition. To efficiently process a column

family join, we introduce a multiple freedom family index, which itself is realized via an Hbase

table so that some Hbase table features such as the built-in ordering of row ids can be utilized. A

parallel MapReduce algorithm is developed for constructing the index. To join two Hbase tables

via the indexes on the joining column families, we examine two partitioning methods in order to

achieve a balanced work load among map nodes. A MapReduce algorithm for a column family

join using the indexes is suggested.

For each technique proposed in this dissertation, we conduct extensive experiments to evaluate

its efficiency and/or effectiveness in various cases. Our experimental results demonstrate that our

techniques are promising in efficiently processing PQs.

1.4 Dissertation organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses the related work.

We classify the related work into four categories in our discussion; namely, the work related to

PQs, the work related to materialized views, the work related to indexes, and the work related to

big data environment. Chapter 3 presents a dynamic materialized-view based approach to effi-

ciently process a special type of PQs, called monotonic linear PQs. We first discuss various types

of PQs. We then introduce a superior relationship graph for a set of monotonic linear PQs, discuss
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the main properties of monotonic linear PQs and suggest a framework to process such PQs. Various

algorithms for constructing a superior relationship graph, selecting promising views for material-

ization, and managing materialized views are presented. Chapter 4 proposes a materialized-view

based approach to efficiently process generic PQs. A special graph to capture the data source

dependency relationships among SQs and external tables is defined, and a mathematical model

to select critical materialized views is presented. Different strategies for maintaining the mate-

rialized view set are also discussed. Chapter 5 suggests an approach to efficiently select usable

materialized views from a view set for answering SQs. A new index technique for indexing mate-

rialized views, including the index structure, construction algorithm, and maintenance strategies,

is described. A search algorithm using the index is presented. Chapter 6 presents our preliminary

study on supporting PQs in a big data environment. Four column family join operations based on

different matching freedoms for Hbase tables are defined, and a multiple freedom family index to

support efficient processing of a column family join for Hbase tables in the Hadoop environment is

introduced. MapReduce algorithms for constructing the index and using it to efficiently process a

column family join are discussed. Chapter 7 summarizes the dissertation and discusses the future

work.
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CHAPTER 2

Related Work

In this chapter, we discuss the work related to our study in this dissertation. We review some query

processing techniques which are kind of progressive in Section 2.1. We discuss the work related to

materialized views in three categories, i.e., view selection, view matching, and view maintenance,

in Section 2.2. We overview the work related to indexes in Section 2.3 and discuss the work related

to the big data environment in Section 2.4.

2.1 Work related to PQs

The work that is most related to progressive queries in the literature includes query processing

for continuous queries [3, 11, 70, 83], adaptive (dynamic) query optimization [7, 12, 55, 75, 76],

and ETL (Extraction-Transformation-Loading) processing [53,103,113,114]. Continuous queries

require the repeated execution of a query over a continuous stream of data [11]. The main differ-

ence between continuous queries and progressive queries is that a continuous query is formulated

at once (although data is dynamic) while a PQ is formulated in several steps. The main idea of

adaptive query optimization is to exploit information that becomes available at query runtime and

adapt the query plan to changing environments during execution. While the adaptive query opti-

mization problem may be seen as “progressive” (performed at compile-time and run-time), queries

are however formulated at once (“non-progressive”). Extraction-Transformation-Loading (ETL)

processes are used to extract data from multiple sources, cleanse them, integrate them, and propa-

gate them to a data warehouse incrementally. In an ETL workflow, activities/operators are chained
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together. One operator uses the results of previous operators. However, all the activities/operators

in an ETL workflow are programmed in advance, which is different from a PQ, although new data

are incrementally added to a data warehouse. In addition, an operator in an ETL workflow tends

to be much simpler than an SQ in a PQ. The latter can be a full-fledged query on its own.

Other work related to progressive queries in the literature is discussed as follows. Tiakas et al.

proposed an algorithm for processing a top-k dominating query to progressively report k items with

the highest domination scores [112]. Raghavan et al. presented a progressive evaluation framework

ProgXe to progressively generate query results early and often for mulit-criteria decision support

queries [95]. Jang et al. designed a methodology of progressive filtering (PF) for multimedia

information retrieval, whose applications are called the melody recognition [49]. Kache et al.

proposed a progressive optimization technique for federated queries, which are regular relational

queries accessing data on one or more remote relational or non-relational data sources, possibly

combining them with tables stored in the federated DBMS server [56]. Papadias et al. designed

a progressive algorithm for the skyline queries, which was called the BBS (branch-and-bound

skyline). The BBS can quickly return the first skyline points without having to read the entire data

file [90]. Tan et al. proposed a technique to handle nested queries with aggregates by providing

users with (approximate) answers progressively. While the above techniques can be considered as

“progressive”, queries of those techniques are however formulated at once (non-progressive).

The only previous work that directly studied efficient processing of progressive queries is the

collective index technique proposed by Zhu, et al. in [134]. The main idea is to construct a

special index structure that allows a collection of member indexes on an input relation of an SQ

to be efficiently transformed into indexes on the result relation, which can be used to speed up

the subsequent SQs. In this work, we explore another approach to efficiently processing PQs, i.e.,

studying the materialized view based techniques and the relevant issues.
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2.2 Work related to materialized views

Applying materialized views to speed-up query processing has been well studied in the literature

[4,14,20,30,33,34,38,43,66,80,82,96,127]. Different types of database systems were considered,

including relational databases [43,66,135], object-oriented databases [5], data warehouses [16,91,

93, 121], distributed database [51], XML databases [10, 15, 51, 74, 109, 118], and others [54, 96].

Various issues were studied, including materialized view selection, materialized view matching

[25,67–69,82], materialized view maintenance [39,40,126], materialized view concurrency control

[78, 79], and materialized view indexing [18, 99]. Since the view concurrency control is rarely

studied and the index related work is discussed in the next subsection, we are mainly focus on

discussing three issues, i.e., the materialized view selection, the materialized view matching, and

the materialized view maintenance in this subsection.

Most of the view selection techniques follow the paradigm of static view selection introduced

by Theodoratos and Sellis [111], which selects views from a given input view set under storage or

maintenance constraints. This line of work is good for cases where the materialized views are not

changed over time.

Baralis et al. developed a technique to select proper materialized views for the multidimensional

datasets by considering only the relevant elements of the multidimensional lattice [16]. Agrawal

et al. described an industry-strength tool for automated selection of materialized views for SQL

workloads [4]. Liang et al. introduced heuristic-based algorithms to solve the view selection prob-

lem under the maintenance time constraint for data warehouses [69]. Lee et al. suggested a genetic

algorithm to compute a near-optimal set of views to minimize the total query response time over

all queries [68]. Ezeife proposed a method for selecting and materializing views, which selects

and horizontally fragments a view, recomputes the size of the stored partitioned view while decid-

ing further views to select [29]. Gupta et al. presented polynomial-time heuristics for selection
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of views using an AND view graph, an OR view graph or an AND-OR view graph for different

scenarios [37]. Chirkova et al. presented techniques for finding a minimum-size view set for a

single query without self-joins by using the shape of the query and its constraints [25]. Aouiche et

al. proposed a framework to exploit a clustering technique to solve the materialized view selection

problem [8]. Hung et al. derived a cost model and efficient view selection algorithms that effec-

tively exploit the gain and loss metrics [47]. Tang at al. developed a heuristic method to identify a

minimal view set for a given XPath query [109]. Yang, Jiang, et al. proposed different approaches

to select proper views so as to achieve the best combination of good query performance and low

view maintenance [51, 96, 121].

Another line of work is influenced by multiple query optimization techniques, with the aim of

finding reusable sub-queries. Theodoratos and Sellis modeled the problem as a state space search

problem. Each state is a multiple-query graph specifying Select-Join queries [111]. Mistry et al.

presented algorithms that can be used to efficiently select materialized views to speed up workloads

by exploiting common subexpressions and indices [82].

Although much work on materialized view selection has been done in the past, no technique

designed to select materialized views for processing PQs, as we report in this study, has been found

in the literature.

The materialized view matching issue is also considered as part of the problem of answering

queries using views. In query optimization, rewriting a query using a set of materialized views

may yield a more efficient query execution plan. Yang et al. presented a query transformation

approach for answering PSJ-queries by using derived tables (materialized views) in [119], which

was one of the earliest work we found in the literature for materialized view matching. Srivastava

et al. extended the work to address aggregation queries in [106]. Park et al. proposed a method for

rewriting a given OLAP query using various kinds of materialized aggregate views [91]. Goldstein
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et al. designed a fast and scalable algorithm for determining whether part or all of a query can be

computed from materialized views and described how it could be incorporated in transformation-

based optimizers [33]. Tang, Balmin, Xu, et al. developed different techniques for rewriting

XPATH queries using materialized views [10, 15, 109, 118]. Liu et al. presented techniques for

answering keyword queries using a minimal number of materialized views [74]. Since the view

matching process for SQs of PQs is the same as that for conventional queries, to answer an SQ

using views, any commonly used view matching technique can be applied.

The materialized view maintenance issue is important because of the changes to the database.

Blakeley, Folkert, Gupta, et al. presented different materialized view updating methods consid-

ering the changes to the external tables in the database [14, 30, 38]. Zhou, Luo, et al. presented

flexible materialization strategies which selectively materialize only a subset of rows of a table

to reduce storage space and view maintenance costs [80, 127]. A conventional materialized view

maintenance technique can be utilized for PQs. We will not consider the materialized view main-

tenance in this work. However, we consider another maintenance issue, i.e., how to maintain a set

of materialized views in a view space under a given space limit, which is not considered before in

the literature.

2.3 Work related to indexs

We also adopt several index techniques in our work. Many index techniques, which are used to

efficiently access data objects in a database, are reported in the literature. The most well-known

index structure is the B-tree, introduced by Bayer et al. in [17]. Its extended versions such as the

B+-tree and the B∗-tree are also widely used in many different areas.

Robinson presented a dynamic index, called the K-D-B tree, to retrieve multi-key records via

range queries [98]. Guttman et al. described a dynamic index structure, called the R-tree, to
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efficiently handle multidimensional spatial data [42]. Berchtold, Katayama, Chakrabarti, Sakurai,

et al. proposed index structures to access high dimensional data sets [19, 21, 57, 100]. Kuo et

al. proposed methodologies to control the access of B-tree-indexed data in a batch and real-time

fashion [63]. Chan et al. presented the RE-tree, which is an index structure for large databases of

Regular Expressions (RE) specifications [22]. Wang, Jiang, et al. proposed index structures for

searching XML documents [52, 115, 116]. He et al. introduced an index structure, called Closure-

tree, to support subgraph queries and similarity queries [44]. Zhang et al. proposed the Bed tree,

a B+-tree based index structure, for string similarity searches [125]. Although how to efficiently

access data objects in different types of databases was well studied in the literature, no index was

designed to find usable materialized views for answering SQs as we consider in this study.

In our work, a bitmap index is utilized. A bitmap index is a special type of index that uses

bitmaps and answers queries by performing bitwise logical operations on these bitmaps. A tra-

ditional table index associates with each index key value a list of row identifiers or primary keys

for rows that have that value. It is well known that the list of rows associated with a given index

key value can be represented by a bitmap or bit vector. In a bitmap representation, each row in a

table is associated with a bit in a long string, an N-bit string if there are N rows in the table, and

the bit is set to 1 in the bitmap if the associated row is contained in the list represented; otherwise

the bit is set to 0. A bitmap technique works well if the number of possible key values in the

index is small, while there are a large number of rows. When a large number of values exist in an

index, each of the bitmaps is likely to be rather sparse, i.e., very few bits will be 1 in the bitmaps,

resulting in heavy storage requirements for storing a lot of zeros. To tackle this challenge, Patrick

et al. presented a bitmap compression approach by changing representation from bitmap to row

identifier list and back [92].

Many different bitmap indexes based techniques have been proposed in the literature [23, 31,
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45, 87, 104, 105, 117, 122]. Chan et al. presented a general framework to study the design space

of bitmap indexes for selection queries and examine the disk-space and time characteristics that

the various alternative index choices offer [23]. Nitsos et al. reported a hybrid-indexing scheme

(Bitmap-Tree) that integrates the advantages of bitmap indexing and file inversion to improve the

query processing efficiency and reduce the storage overhead [87]. Yoon et al. proposed a bitmap-

indexing scheme for speeding up the access control to the XML documents [122]. Sinha et al.

introduced adaptive bitmap indexes, which conform to space limits while dynamically adapting to

the query load and offering excellent performance [104]. Sinha et al. proposed a multi-resolution,

parallelizable bitmap index, which supports a fine-grained trade-off between storage requirements

and query performance [105]. He et al. developed a bitmap pruning strategy for processing the

iceberg query, which is a special type of aggregation query that computes aggregate values above

a user-provided threshold [45]. Fusco et al. proposed a compressed bitmap index approach that

significantly reduces both CPU load and disk consumption [31]. The difference between the con-

ventional bitmap indexes and our bitmap based technique is that a conventional bitmap index is

applied to answer queries, while our bitmap based approach is used to filtering undesirable views.

There is a substantial body of work exploring the index techniques and the view materialization

techniques together. Gupta et al. extended the framework [111] we mentioned in Section 2.2 to

accommodate index selection while the workload allows both aggregation and selection queries

[111]. An index is selected only after the view it is defined over is selected. A greedy algorithm

is applied to choose either a view or an index at each step to maximize the benefit per unit space.

Roussopoulos presented a method to select a set of views and maintain an index for each of them

to support efficient query processing [99]. The index of each view contains pointers to the tuples

of the base tables used to construct the view. Kimura et al. adopted a form of Integer Linear

Programming (ILP) to select the best set of materialized views and indexes for a given workload
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under given database size constraints, taking into consideration of the effect of correlated attributes

[60]. Bellatreche et al. introduced a technique to select optimal or near optimal join indexes for

a given set of OLAP queries, where the indexes can be built on materialized views as well as

dimension and fact base tables [18]. Talebi et al. examined the exact and inexact methods for

selecting materialized views and indexes to efficiently process OLAP queries [108]. Aouiche and

Darmont applied a data mining process to select candidate materialized views and indexes in data

warehouse environments [9]. Graefe and Zwilling studied techniques for transaction support for

indexed summary views [35]. Kuno and Graefe proposed a deferred technique to maintain indexes

and materialized views [62]. Phan et al. presented a dynamic Materialized Query Tables (MQT)

management scheme that materialized views and created indexes in an on-demand fashion as a

workload executed and managed them with an LRU cache [93].

However, all the above work considered indexes that were built on base tables and/or material-

ized views to accelerate the processing of queries on the database in conjunction with materialized

views. In contrast, the index technique we introduce in this work directly uses materialized views,

instead of the underlying data, as indexed objects, with a goal of removing as many undesirable

views as possible from consideration for view matching during query processing based on materi-

alized views.

2.4 Work related to big data environment

Since we develop methods for performing an operation, i.e., the family join, on big data using

Hadoop and MapReduce to achieve the data parallelization, we also discuss the related work on

Hadoop and MapReduce here. The MapReduce framework has been well studied [26, 101]. Shim

et al. introduced the MapReduce framework based on Hadoop, and discussed how to design effi-

cient MapReduce algorithms [101]. Condie et al. described a modified MapReduce architecture
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that allows data to be pipelined between operators and demonstrated a modified version of the

Hadoop MapReduce framework that supported online aggregation [26].

In the literature, MapReduce related techniques can be divided into three categories. The first

category includes all the techniques for completing the functionalities and/or improving the per-

formance of MapReduce and/or Hadoop [27, 28, 65, 71, 110, 120]. Yang et al. added a Merge

phase to MapReduce that could efficiently merge data already partitioned and sorted by map and

reduce modules [120]. Tao et al. presented the notion of minimal algorithm, i.e., an algorithm

that guaranteed the best parallelization in multiple aspects at the same time [110]. Elghandour et

al. demonstrated a technique which managed storage and reused the intermediate results of the

MapReduce workflows executed in the Pig data analysis system [28]. Lim em et al. introduced an

execution plan space for MapReduce workflows generated by popular workflow generators [71].

Laptev et al. proposed a non-parametric extension of Hadoop which allowed the incremental com-

putation of early results for arbitrary work-flows [65]. Dittrich et al. discussed different data

management techniques used in MapReduce [27].

In the second category, the performance analysis issues of MapReduce are of interest [48, 50,

58, 94]. Quiane-Ruiz et al. proposed a family of Recovery Algorithms for Fast-Tracking (RAFT)

MapReduce [94]. Jahani et al. proposed a technique, which automatically analyzed MapReduce

programs and applied appropriate data aware optimizations [48]. Khoussainova et al. presented a

system that enabled users to ask questions about the relative performances of pairs of MapReduce

jobs [58]. Jiang et al. conducted a performance study of MapReduce (Hadoop) on a 100-node

cluster of Amazon EC2 with various levels of parallelism [50].

The third category contains all the techniques for applying MapReduce to accomplish new tasks

or solve new problems on Hadoop. Our proposed technique for PQs belongs to this category. Liu

et al. demonstrated a new dimensional Extract-Transform-Load (ETL) programming framework
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that used MapReduce to achieve scalability [73]. Aly et al. developed a prototype implementation

of the MapReduce framework for answering continuous queries over streams of data [6]. Ghoting

et al. proposed SystemML in which machine learning algorithms were expressed in a higher-

level language and were compiled and executed in a MapReduce environment [32]. Pansare et al.

reported the methods of including online aggregation into a MapReduce system for large-scale data

processing [89]. Lam et al. described a framework like MapReduce, but specifically developed for

fast data [64]. He et al. presented a big data placement structure called RCFile (Record Columnar

File) and its implementation in the Hadoop system [46]. Bahmani et al. designed a fast MapReduce

algorithm for Monte Carlo approximation of personalized PageRank vectors of all the nodes in a

graph [13]. Kolb et al. proposed and evaluated approaches for skew handling and load balancing

in MapReduce [61].

In addition, in the third category, strategies for processing different types of joins using MapRe-

duce were also well studied [1, 2, 41, 59, 77, 81, 88, 97, 102, 123, 124]. Afrati et al. examined

strategies for joining several relations in the map-reduce environment [2]. Gupta et al. suggested

an approach for processing multi-way spatial joins on map-reduce platform [41]. Okcan et al.

proposed a join model for mapping arbitrary join conditions to Map and Reduce functions [88].

Vernica et al. proposed an approach for end-to-end set-similarity joins [97]. Silva et al. presented

a multi-round MapReduce based algorithm, which was called MRSimJoin, to efficiently solve the

Similarity Join problem [102]. Afrati et al. proposed several algorithms for finding all pairs of

elements from an input set that meet a similarity threshold [1]. Kim et al. designed algorithms for

top-k similarity join using the MapReduce framework [59]. Metwally et al. proposed a so-called

V-SMART-Join, a scalable MapReduce based framework for discovering all pairs of similar en-

tities [81]. Lu, Zhang, et al. introduced techniques for performing kNN join on large data using

MapReduce [77, 123]. Zhang et al. studied how to process multi-way Theta-join queries using
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MapReduce from a cost-effective perspective [124]. However, none of the above techniques were

designed for family joins in Hbase tables that are introduced in this work. Furthermore, our work

is in the context of PQs, where the closure property ensures that the join result is also an Hbase

table. To our knowledge, our work is the first to efficiently process family joins on Hbase tables

using MapRedue.
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CHAPTER 3

Dynamic Materialized-view Based Approach For Monotonic

Linear PQs

In this chapter, we introduce a dynamic materialized-view based approach to efficiently process

monotonic linear PQs. Some background knowledge is discussed first. Different types of pro-

gressive queries is introduced in Section 3.1. A superior relationship graph that is used in our

technique for processing monotonic linear PQs is defined in Section 3.2. The main properties of

the monotonic linear progressive query are discussed in Section 3.3. After that, the main processing

procedure is shown in Section 3.4. Efficient strategies to create and update a superior relationship

graph are discussed in Section 3.5. The algorithm to decide whether to materialize a view is dis-

cussed in Section 3.6. The storage structure and algorithms to manage the set of materialized views

(SMV) are given in Section 3.7. The view search algorithms are described in Section 3.8, and the

experimental results are discussed in Section 3.9

3.1 Types of progressive queries

A progressive query (PQ) is formulated in several steps. Each step, referred to as a step-query

(SQ), is executed over one or more tables/relations and returns one table as a result. Result(SQ)

and Domain(SQ) represent the result table of the SQ and the set of tables on which the SQ is

executed, respectively. A SQ can be executed on either the result table(s) returned by the previous

SQs and/or other external base table(s). In [134], Zhu et al. classified the progressive queries into
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the following three types:

Type 1: single-input linear PQs. A single-input linear PQ has the following characteristics.

Each SQ in such a PQ uses a single table as its input. If the SQ is the initial (first) SQ, then the

input is an external table. Otherwise, the input is the result table returned by its previous SQ. The

relationship among the SQs of such a PQ demonstrates a linear structure.

Type 2: multiple-input linear PQs. A multiple-input linear PQ has the following characteristics.

At least one SQ takes more than one table as its input. If this SQ is the initial SQ, its domain

includes multiple external tables. Otherwise, its domain includes at least one external table. Each

step uses the result returned by its previous SQ. Hence, the relationship among SQs is also linear.

Type 3: non-linear PQs. A non-linear PQ has the following characteristic: at least one SQ has

the results returned by more than two other SQs (and possibly external tables as well) as inputs.

Thus the relationship among SQs demonstrates a non-linear structure.

In this work, we consider an extended type of single-input linear PQ that allows the initial SQ

to have multiple external tables. Since the result size of each SQ is monotonically decreasing as

the processing of the query progresses, we call this type of PQ as the monotonic linear PQ.

3.2 Superior/inferior relationship and Superior relationship graph

In our dynamic materialized view technique for monotonic linear PQ, we utilize a so-called su-

perior relationship graph (SRG) to determine if the result of a SQ under consideration should be

materialized as a view. A superior relationship graph captures the superior (or inferior) relation-

ships among the SQs for historical progressive queries.

Let sq1 and sq2 be two (distinct) SQs belonging to the same or different historical PQs. The

superior relationship from sq1 to sq2 is defined as follows. For every tuple t2 in Result(sq2), if

there exists tuple t1 in Result(sq1) such that t2 can be completely derived from t1, we say there is
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a superior relationship from sq1 to sq2, where sq1 is called a superior of sq2 and sq2 is called an

inferior of sq1 .

Consider the following example. Let Result(sq1)={< a1, a2, a3>, <b1, b2, b3>, <c1, c2, c3>},

Result(sq2)={< a1, a3>, <b1, b3>}, and Result(sq3)={<a1, a4>}. Since every t2 in Result(sq2)

can be derived from a tuple in Result(sq1), sq1 is a superior of sq2 (i.e., sq2 is an inferior of sq1).

However, a4 of <a1, a4> in Result(sq3) cannot be derived from any tuple in Result(sq1). Hence,

there is no superior or inferior relationship between sq1 and sq3.

Intuitively, a superior relationship indicates that, if we select the superior SQ as a materialized

view, its inferior SQ can be evaluated by utilizing this materialized view. Hence each superior

relationship represents a benefit case for the superior SQ to be materialized. However, there is

an exception. When two SQs with a superior relationship belong to the same PQ, the inferior SQ

usually does not directly use the result of its superior SQ unless the latter is its immediate previous

step. The superior relationship graph (SRG) captures those useful superior relationships among

SQs for the historical PQs.

An SRG is defined as a digraph with three components G = (V,E,B), where V is a set of

nodes representing the set of SQs in the given historical PQs; E is a set of directed edges <sq′,

sq′′> representing the superior relationships from SQ sq′ to SQ sq′′ with the constraint that either

sq′ and sq′′ do not belong to the same PQ or sq′ is the immediate previous step of sq′′; B is a set

of pairs < n, id > indicating the identifier id of the PQ to which the SQ represented by node n

belongs. Note that the benefit of materializing the result of an SQ represented by a node in an SRG

can be measured by the number w of out-going edges that n has. We call w the weight of n, which

can be calculated for a given SRG.

Example 1. Given the following four tables:

PAPER(P#, Title, FirstAuthor, PublishYear),
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AUTHOR(A#, A_Fname, A_Lname, Area),

EDITOR(E#, E_Fname, E_Lname, Area),

REVIEW(E#, P#, Date),

assume that every paper has been reviewed by an editor. Let us consider the following three PQs.

Progressive Query 1 (pq1):

sq1: πTitle, PublishY ear, A_Lname(PAPER
./

FirstAuthor=Aid AUTHOR),

sq2: πTitle, A_Lname(σPublishY ear=2009(Result(sq1))),

sq3: πTitle(σA_Lname=′Smith′(Result(sq2))).

Progressive Query 2 (pq2):

sq4: πE_Lname, Title, PublishY ear(PAPER
./

PAPER.P#=REV IEW.P#

(REV IEW
./

REV IEW.E#=EDITOR.E# EDITOR)),

sq5: σPublishY ear>2008((Result(sq4)),

sq6: πTitle(σPublishY ear=2009(Result(sq5))).

Progressive Query 3 (pq3):

sq7: πTitle, PublishY ear(σPublishY ear>2008(PAPER)),

sq8: πTitle(σPublishY ear=2009(Result(sq7))).

Fig. 3.1 shows the superior relationship graph for these three PQs. From the figure, we can see

that four SQs would benefit from materializing the result of sq1. The number of out-going edges

for a node v is the weight of v, which is not shown in the figure. Clearly, the weights of the nodes

in an SRG can be calculated once the graph is given.
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Figure 3.1: Superior relationship graph of Example 1

3.3 Main properties of monotonic linear PQs

As we will see, the following two properties of the monotonic linear progressive queries are useful

in developing an efficient processing technique.

Property 1: Result(sqi)w Result(sqj) if i<j and sqi, sqj are two SQs belonging to the same PQ,

where w indicates that the right operand can be completely derived from the left one.

According to the definition, the current SQ only uses the result table returned by the previous SQ.

Hence, if sqj is one of the subsequent SQs of sqi, every tuple in Result(sqj) must be derivable from

Result(sqi).

Property 2: Weight(sqi) ≥ Weight(sqj) if i<j and sqi, sqj are two SQs belonging to the same

PQ.

As defined earlier, the weight of an SQ is the number of out-going edges in the SRG, which

represents the benefit of materializing the result of the SQ. Based on Property 1, sqi must be

a superior of sqj . As mentioned before, we do not consider the superior relationships between
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Figure 3.2: PQ processing procedure based on dynamic materialized views

two non-consecutive SQs within the same PQ when we construct the SRG. All the other superior

relationships (out-going edges) for sqj must also be valid for sqi.

3.4 PQ processing procedure

The view materialization techniques have been popular in query optimization, as mentioned in

Chapters 1 and 2. The decision for view materialization is typically based on statistic information

such as access frequency. However, unlike a conventional query, a PQ is formulated as a number

of inter-related SQs. Each SQ cannot be known beforehand. No one can predict what the next SQ

could be. Hence, there is no prior knowledge about future user (step) queries when deciding view

materialization. This situation raises a challenge (query unpredictability) to apply a materialized

view based technique to efficiently process PQs.
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To tackle this challenge, we introduce a dynamic materialized-view based approach for process-

ing monotonic linear PQs. Fig.3.2 depicts the processing procedure (system architecture). There

are several components involved in the procedure. The user submits one SQ at each step for the

current PQ (CPQ). The current SQ (CSQ) is the one that is currently being processed in the sys-

tem. The underlying database management system (DBMS) coordinates the PQ processing based

on the dynamic materialized-view approach. This DBMS has all the typical modules such as the

parser, catalog, query optimizer and concurrency control that a conventional DBMS has. However,

these modules are enhanced to handle a PQ based on dynamically materialized views as follows.

A superior relationship graph (SRG) is dynamically constructed by the system. Initially, the SRG

is empty. When more and more completed PQs are dynamically added to it, it grows larger and

larger. This graph is used to determine if materializing the result of the CSQ is beneficial. If so,

the CSQ is materialized as a view to be used for future SQs. If an SQ of the CPQ is chosen to be

materialized, the CPQ is put into a set of used PQs (SUPQ) rather than added into the SRG when

it is completed. The reason for this is that, if one of the SQs of a PQ has been materialized, the

SQs of this PQ should not be used in the SRG to estimate the benefits of materializing another SQ.

Otherwise, the benefits of a materialized SQ may be double counted. A PQ in the SUPQ can be

added to the SRG later on when its materialized SQ is removed from the set of the materialized

views because of the space limitation. The result of the previous SQ (RPSQ) is always saved for

the possible use of evaluating the CSQ. The CSQ is evaluated either on a materialized view (if

beneficial) or on the base table(s) in the database (for the first SQ) or on the RPSQ. The set of the

materialized views (SMV) is managed. Each materialized view mv is associated with its corre-

sponding SQ mv.sq as well as its access frequency mv.freq (note that mv itself represents the

materialized view).

The details of the PQ processing procedure are given in the following algorithm.
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ALGORITHM 3.4.1 : Dynamic materialized-view based PQ processing procedure (DMVPQ)
Input: (1) current SQ (csq); (2) current PQ (cpq); (3) set of materialized views (smv); (4) result of previous SQ
(rpsq); (5) set of used progressive queries (supq); (6) superior relationship graph (srg).
Output: (1) the result of csq; (2) a revised srg; (3) a revised cpq; (4) a revised smv; (5) a revised supq.
Method:

1. if the domain of csq consists of a base table(s) then
/* csq is the 1st SQ, i.e., user starts a new PQ */

2. if cpq is not empty then /* cpq contains a completed previous PQ */
3. for each SQ sqi of cpq from 2nd to the last do
4. merge sqi and sqi−1, and replace sqi by merged query;
5. end for
6. if any SQ sqi in cpq is found as mv.sq for some view mv in smv then
7. add cpq into supq;
8. else AddtoSRG(cpq, srg) end if
9. end if

10. set cpq as a new PQ with csq as the 1st SQ;
11. mv=SearchView(csq, smv, size of Domain(csq) );
12. if mv is not null then
13. evaluate csq on mv;
14. mv.fc++;
15. else
16. evaluate csq on base table(s) in the database;
17. end if
18. let mcsq = csq;
19. else /* csq is not the 1st SQ and cpq is ongoing */
20. add csq to cpq;
21. merge csq with all its previous SQs in cpq and save the merged query in mcsq;
22. mv=SearchView(mcsq, smv, size of rpsq );
23. if mv is not null then
24. evaluate mcsq on mv;
25. mv.fc++;
26. else
27. evaluate csq on rpsq;
28. end if
29. end if
30. if (CheckWeight(srg,mcsq)) then
31. create a materailzed view mv for mcsq;
32. AddtoSMV (mv, smv, srg, supq);
33. end if.

There are two phases in Algorithm 3.4.1. The first phase (lines 1 - 29) evaluates the current SQ

and updates the SRG. The second phase (lines 30 - 33) decides whether the result of the current

SQ should be materialized for the future use and updates the set of materialized views.

In the first phase, the algorithm first checks whether the given SQ (csq) is the first (initial) SQ

(line 1) of a new PQ. If so, the user is actually starting a new PQ and the previous PQ (i.e., the one

saved in cpq if any) is completed. In this case, the previous PQ in cpq needs to be added into either

the superior relationship graph srg or the set supq of used progressive queries (lines 2 - 9). Lines

3 - 5 convert each SQ in cpq into one that is operated directly on the base table(s) in the database,

which can be then compared with the (step-)queries for the materialized views. If one of SQs in cpq
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is found to have been materialized, cpq is put into supq (lines 6 - 7). Otherwise, cpq is added into

srg by algorithmAddtoSRG() (line 8). After having processed the previous PQ in cpq, cpq is reset

to a new PQ with csq as the first (initial) SQ (line 10). If a materialized view whose associated SQ

is a superior of csq and whose size is smaller than the size of the table(s)1 in Domain(csq) is found

from the materialized view set smv by algorithm SearchV iew(), we evaluate csq on the found

materialized view instead of its (base) operand table(s) (lines 11 - 14). Otherwise, we evaluate csq

on its base operand table(s) in the database directly (lines 15 - 16). If csq is not the first SQ, cpq

holds the previous SQs of the current/ongoing PQ. In this case, csq is added to cpq (line 20). To

check if csq can be evaluated on a materialized view, it needs to be converted into a SQ, mcsq,

on the base table(s) in the database (line 21). If there exists a materialized view whose associated

SQ is a superior of mcsq and whose size is smaller than the size of the result of the SQ directly

preceding csq, we evaluate csq on the materialized view (lines 22 - 25). Otherwise, we evaluate

csq on the result of its previous SQ (rpsq) (lines 26 - 28).

Note that mcsq and csq have the same result. However, the former is specified on the base

table(s), while the latter is specified on the (temporary) result of the previous SQ (if not the first

SQ). For example, when merging SQs sq1 and sq2 from pq1 in Example 1, we have the following

merged SQ:

msq2 : πTitle, A_Lname(σPublishY ear=2009(PAPER
./

FirstAuthor=Aid AUTHOR))

on base tables PAPER and ATHOUR, which has the same result as sq2.

In the second phrase, the algorithm checks to see whether saving the result of the current SQ

mcsq (i.e., csq) as a materialized view is beneficial by invoking algorithm Checkweight() (line

30). If so, it creates an entry for the relevant information (e.g., result, query expression, and access

1The Cartesian product is considered if there is more than one table.
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frequency) on the materialized view for mcsq and invokes an algorithm AddtoSMV () to add the

entry into smv (lines 31 - 33).

The invoked algorithms: AddtoSRG(), SearchV iew(), CheckWeight() and Addto SMV ()

are to be discussed in the following sections.

3.5 Superior relationship graph construction

The superior relationship graph is a key component for our dynamic materialized-view based

monotonic linear PQ processing technique. It allows us to dynamically accumulate information

about executed PQs and effectively use it to select materialized views for efficient execution of

future PQs. To efficiently construct such a graph, we apply several heuristic rules derived from the

properties of the monotonic linear PQs that were discussed in Section 3.3.

We present two constructing algorithms: generating-based and pruning-based. The former au-

tomatically generates as many other superior (inferior) relationships as possible once one is found,

while the latter prunes as many other impossible cases as possible once a superior (inferior) re-

lationship is not found between two nodes. Both can significantly reduce the cost for testing the

existence of superior (inferior) relationships among nodes.

An SRG starts from an empty one and is constructed in an incremental way as more and more

PQs are added into the graph gradually. An isolated new PQ npq can be represented by a set of

nodes (one for each SQ in npq), a set of edges (connecting interrelated SQs in npq) and a set of

node-identifier pairs (one for each SQ in npq). To add npq into the SRG, the above nodes, edges

and node-identifier pairs are inserted first. The system then finds the set of edges representing the

superior or inferior relationships between the (new) SQs in npq and the (old) SQs in the current

SRG. This can be done in two stages: the superior stage and the inferior stage. In the superior

stage, all the superior relationships from the new SQs to the old SQs are identified. In the inferior
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stage, all the inferior relationships from the new SQs to the old SQs are identified. The edges

representing these relationships are added into the SRG. The aforementioned two algorithms apply

heuristic rules in the above two stages to improve the constructing performance.

The generating-based algorithm applies the follow two heuristic rules:

Heuristic Rule 1: If there exists an edge from sqi to sqj (sqi, sqj are two SQs /∈ the same PQ)

in the SRG, then there exist edges from sqi to all sqk’s if sqk satisfies the following conditions: (1)

k > j; (2)sqk, sqj ∈ the same PQ.

Proof: we know that sqi is superior to sqj . Assume that there exists an SQ sqk satisfying the

following conditions: k is larger than j; sqj and sqk are in the same monotonic linear PQ; sqi is

not superior to sqk. Since sqj and sqk are in the same PQ pq1 and k is larger than j, according to

the Property 1 of monotonic linear PQs we mentioned derived from Section 3.3, sqj is superior to

sqk, which means the result of sqk is contained in the result of sqj . In addition, sqi is superior to

sqj , which means the result of sqj is contained in the result of sqi. In this case, we can easily see

that the result of sqk can be derived from the result of sqi. In other words, sqi is superior to sqk,

which is contradictory to our assumption. Hence, such sqk does not exist.

Heuristic Rule 2: If there exists an edge from sqi to sqj (sqi, sqj are two SQs /∈ the same PQ),

then there exist edges from all sqk’s to sqj if sqk satisfies the following conditions: (1) k < i; (2)

sqk, sqi ∈ the same PQ.

Proof: we known that sqi is superior to sqj . Assume that there exists an SQ sqk satisfying the

following conditions: k is smaller than i; sqi and sqk are in the same monotonic linear PQ; sqk is

not superior to sqj . Since sqi and sqk are in the same PQ pq1 and k is smaller than j, according

to Property 1 of monotonic linear PQs, sqk is superior to sqi, which means the result of sqi can

be derived from the result of sqk. In addition, sqi is superior to sqj , which means the result of sqj

can be derived from the result of sqi. In this case, we can find that the result of sqj can also be

33



derived from the result of sqk. In other words, sqk is superior to sqj , which is contradictory to our

assumption. Hence, such sqk does not exist.

The details of the algorithm are specified as follows.

ALGORITHM 3.5.1 : Generating-Based AddtoSRG1(npg, srg)
Input: (1) new PQ (npg); (2) superior relationship graph (srg).
Output: revised superior relationship graph (srg).
Method:

1. if srg is empty then startempty = true;
2. else startempty = false end if

/* Adding an isolated PQ npq into srg */
3. add the node and the node-identifier pair for each SQ of npq into sets V and B of srg, respectively;
4. add an edge from each SQ of npq to its immediate subsequent SQ (if any) of npq into edge set E of srg;
5. if not startempty then

/* Stage 1: finding external superior relationships */
6. for each PQ opq (other than npq) in srg do
7. for each SQ nsq of npq from the last to the first do
8. for each SQ osq of opq from the first to the last do
9. if there exists an edge from nsq to osq then

10. break;
11. else if there exists a superior relationship from nsq to osq then
12. add an edge from nsq to osq into edge set E of srg;
13. for each subsequent SQ osq′ in opq do
14. if edge from nsq to osq′ does not exist then;
15. add an edge from nsq to osq′ into edge set E of srg;
16. end if
17. end for
18. for each previous SQ nsq′ in npq do
19. if edge from nsq′ to osq does not exist then;
20. add an edge from nsq′ to osq into edge set E of srg;
21. for each subsequent SQ osq′ in opq do
22. if edge from nsq′ to osq′ does not exist then;
23. add an edge from nsq′ to osq′ into edge set E of srg;
24. end if
25. end for
26. end if
27. end for
28. break;
29. end if
30. end for
31. end for
32. end for

/* Stage 2: finding external inferior relationships */
33. for each PQ opq (other than npq) in srg do
34. exchange the roles of opq and npq in lines 7 - 31 to find the superior relationships from an SQ in opq

to an SQ in npq;
/* i.e., finding the inferior relationships from an SQ in npq to an SQ in opq */

35. end for
36. end if.

In this algorithm, lines 1 and 2 set a flag to indicate whether the given SRG is empty or not. If

it is empty, neither stage 1 nor stage 2 needs to be considered. Lines 4 - 5 add the nodes, node-

identifier pairs and internal edges for the SQs from the given PQ into the SRG. The edges between
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Figure 3.3: Superior relationships automatically generated in Stage 1 of AddtoSRG1()

a node for the PQ and an external node that has already existed in the given SRG are added in two

stages. Stage 1 adds the edges for the superior relationships (lines 6 - 32), while stage 2 adds the

edges for the inferior relationships (lines 33 - 35).

In stage 1, the algorithm considers one old (existing) PQ in the SRG at a time (line 6). It

then scans the SQs of the new PQ backwards and the SQs of the old PQ under consideration

forwards and examines each pair of SQs from the two PQs (lines 7 - 8). If there exists a superior

relationship between the pair, an edge connecting the corresponding nodes are added into the SRG

(lines 11 - 12). The algorithm then automatically generates more superior relationships based on

Heuristic Rule 1 (lines 13 - 17 and 21 - 25) and Heuristic Rule 2 (lines 18 - 20). The relevant edges

representing these superior relationships are added into the SRG (see Fig. 3.3). Because of the

above automatic generation, it is possible that a relevant edge has already been added when a pair

of SQs from the two PQs under consideration is examined. Such situations are considered by the

algorithm to avoid duplicate additions (lines 9, 14, 19 and 22).
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In stage 2, the new PQ and the old PQ under consideration play the opposite roles, compar-

ing to stage 1, because an inferior relationship is opposite to its superior counterpart. With this

observation in mind, the algorithm behaves in a similar way.

In contrast to Algorithm 3.5.1, the pruning-based SRG construction algorithm applies the fol-

lowing two heuristic rules to eliminate the pairs of SQs that cannot have superior or inferior rela-

tionships, i.e., considering impossible cases rather than possible cases.

Heuristic Rule 3: If there exists no edge from sqi to sqj (sqi, sqj are two SQs /∈ the same PQ),

then there exists no edge from sqi to any sqk if sqk satisfies the following conditions: (1) k < j;

(2) sqk, sqj ∈ the same PQ.

Proof: Assume that there exists an SQ sqk satisfies the following conditions: k is smaller than

j; sqk and sqj are in the same monotonic linear PQ; sqi is superior to sqk. Since k is smaller than j,

and sqk and sqj are in the same monotonic linear PQ, based on the Property 1 of monotonic linear

PQs, sqk is superior to sqj , which means that the result of sqj can be derived from the result of sqk.

On the other hand, since we assume that sqi is superior to sqk, the result of sqk can be derived from

the result of sqi. Hence, the result of sqj can be derived from sqi, which is contractor to the given

condition that there exists no edge from sqi to sqj . Therefore, such sqk in the assumption does not

exist.

Heuristic Rule 4: If there exists no edge from sqi to sqj(sqi, sqj are two SQs /∈ the same PQ),

then there exists no edge from any sqk to sqj if sqk satisfies the following conditions: (1) k > i ;

(2)sqk,sqi ∈ the same PQ.

Proof: Assume that there exists an SQ sqk satisfies the following conditions: k is larger than i;

sqk and sqi are in the same monotonic linear PQ; sqk is superior to sqj . Since k is larger than i, and

sqk and sqi are in the same monotonic linear PQ, based on the Property 1 of monotonic linear PQs,

sqi is superior to sqk. In the conditions, sqi is not superior to sqj , which means that the result of
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sqk can be derived from the result of sqi. On the other hand, since we assume that sqk is superior to

sqj , the result of sqj can be derived from the result of sqk. Hence, the result of sqj can be derived

from the result of sqi, which is contradictory to the given condition that there exists no edge from

sqi to sqj . Hence, such sqk in the assumption does not exist.

The details of the algorithm are given below.

ALGORITHM 3.5.2 : Pruning-Based AddtoSRG2(npg, srg)
Input: (1) new PQ (npg); (2) superior relationship graph (srg).
Output: revised superior relationship graph (srg).
Method:

1. if srg is empty then startempty = true;
2. else startempty = false end if;

/* Adding an isolated PQ npq into srg */
3. add the node and the node-identifier pair for each SQ of npq into sets V and B of srg, respectively;
4. add an edge from each SQ of npq to its immediate subsequent SQ (if any) of npq into edge set E of srg;
5. if not startempty then

/* Stage 1: finding external superior relationships */
6. for each PQ opq in srg do
7. let m = 1;
8. for each SQ nsq of npq from the first to the last do
9. for each SQ osq of opq from the last to the m-th do

10. if there exists a superior relationship from nsq to osq then
11. add an edge from nsq to osq into edge set E of srg;
12. else
13. let m = index number of osq in opq + 1;
14. break;
15. end if
16. end for
17. end for
18. end for

/* Stage 2: finding external inferior relationships */
19. for each PQ opq in srg do
20. exchange the roles of opq and npq in lines 7 - 17 to find the superior relationships from an SQ in opq

to an SQ in npq;
/* i.e., finding the inferior relationships from an SQ in npq to an SQ in opq */

21. end for
22. end if.

Lines 1 - 4 are the same as those in Algorithm 3.5.1. There are also two stages in this algorithm.

In stage 1, the algorithm considers one old (existing) PQ in the SRG at a time (line 6). It then scans

the SQs of the new PQ forwards and the SQs of the old PQ under consideration backwards and

examines each pair of SQs from the two PQs (lines 8 - 9). If there exists a superior relationship

between the pair, an edge connecting the corresponding nodes are added into the SRG (lines 10 -

11). Otherwise, the algorithm prunes the remaining SQs of opq (Heuristic Rule 3) and resets the
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Figure 3.4: Impossible superior relationships automatically pruned in Stage 1 of AddtoSRG2()

scan boundary of the SQs in the old PQ under consideration (Heuristic Rule 4). Fig. 3.4 illustrates

the ideas of pruning in this stage. In stage 2, the algorithm behaves similarly except that the new

PQ and the old PQ under consideration play the opposite roles.

As an illustration, let us consider the example in Fig. 3.1. Assume that we already have pq1

(containing sq1, sq2 and sq3) and pq2 (containing sq4, sq5 and sq6) in the SRG. Our goal is to add

pq3 (containing sq7 and sq8) into the graph. Both algorithms first add the nodes,node-identifier

pairs and internal edges for pq3 into the graph. In the superior stage, the algorithms find all the

out-going edges (representing superior relationships) from sq7 or sq8 to other nodes. In the inferior

stage, the algorithms find all the incoming edges (representing inferior relationships) from other

nodes to sq7 or sq8.

For Algorithm 3.5.1, in the first iteration, we pick up pq1 from the graph and consider its SQs

in the ascending order (from sq1 to sq3) while we consider SQs from pq3 in the descending order.

For the first pair [sq8, sq1], we find that there is no superior relationship from sq8 to sq1. We then
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move to consider pair [sq8, sq2]. There exists no superior relationship either. Now we consider

pair [sq8, sq3]. In this case, we find a superior relationship here. We add an edge from sq8 to sq3.

According to Heuristic Rule 1, another edge from sq7 to sq3 is automatically added. In such a way,

we continue to process remaining nodes pairs: [sq7, sq1], [sq7, sq2], [sq7, sq3], but find no edges

for the first two pairs and find an edge already existed for the third pair. In the second iteration,

we handle pq2 in the same way and find the edges from sq7 to sq6 and sq8 to sq6. In the inferior

stage, we add the incoming edges for sq7 or sq8 into the SRG. The details are omitted here due to

the space limitation.

For Algorithm 3.5.2, in the first iteration, we pick up pq1 from the graph and consider its SQs

in the descending order (from sq3 to sq1) while we consider SQs from pq3 in the ascending order.

For the first pair [sq7, sq3], there is a superior relationship from sq7 to sq3. So we add an edge

from sq7 to sq3 and move to consider pair [sq7, sq2]. There is no superior relationship in this

case. According to Heuristic Rule 3, we remove [sq7, sq1] from consideration, and according to

Heuristic Rule 4, we remove [sq8, sq2] and [sq8, sq1] from consideration. We then directly move

to consider pair [sq8, sq3] and add an edge from sq8 to sq3 since such a superior relationship exists.

In the second iteration, we handle pq2 in the same way. We find edges from sq7 to sq6 and sq8 to

sq6. In the inferior stage, we add the incoming edges for sq7 or sq8 into the SRG. The details are

omitted here.

Assume that an SRG is composed of N PQs and each PQ is formulated by m SQs. When

applying either the generating-based algorithm or the pruning-based algorithm to construct the

SRG, the worst-case time complexity (i.e., the number of pair-wise SQ comparisons) is O(N ∗

(N − 1) ∗m2) = O(N2 ∗m2), and the best-case time complexity is O(N ∗ (N − 1)) = O(N2).

In general, the time complexity of constructing the SRG by applying either algorithm is between

these two complexities. Since the complexities are polynomial, the algorithms are efficient.
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To compare the two algorithms, let us consider two different situations, i.e., the given SRG is

a dense graph or a sparse graph. In the dense graph case, Algorithm 3.5.1 could automatically

generate many edges by applying Heuristic Rules 1 and 2. In this case, Algorithm 3.5.1 is more

efficient. In the sparse graph case, Algorithm 3.5.2 efficiently prunes many useless pairs without

checking them individually. In this case, Algorithm 3.5.2 is better. As a result, two algorithms

can be used in different situations. This observation is validated through experiments reported in

Section 3.9.

3.6 Weight checking

As mentioned before, the candidates for materialized views in this technique are those executed

SQs from user PQs. After the current SQ for a given PQ is executed, we need to decide if its result

should be saved as a materialized view. The following strategy is adopted in our technique for this

decision. The SRG provides the necessary information.

For a given SQ x, a node y in the SRG that satisfies the following conditions is searched:

(1) The query represented by node y is an inferior of x.

(2) Node y has a sufficient weight (i.e., greater than a given threshold).

If such a node exists, x (its result) is selected as a materialized view.

As we know, the weight of a node in the SRG represents the benefit of materializing this node

(i.e., how many SQs from historical PQs can be evaluated by using the result of the node). The

above condition (1) ensures that any query that can benefit from node y can also benefit from x.

Condition (2) guarantees a sufficient benefit.

The algorithm to search for node y can also utilize Heuristic Rule 3 to improve the search

performance. It runs as follows:
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ALGORITHM 3.6.1 : Checkweight(srg, csq)
Input: (1) superior relationship graph srg; (2) current SQ csq.
Output: true or false.
Method:

1. if srg is empty then
2. return false;
3. else
4. for each PQ pq in srg do
5. for each SQ sq of pq from the last to the first do
6. if sq is an inferior of csq then
7. weight = number of out-going edges of sq;
8. if weight exceeds a given threshold then
9. return true;

10. end if
11. else break end if
12. end for
13. end for
14. return false
15. end if.

In the algorithm, if it is found that no information is available in the SRG yet, the given SQ

is not selected for materialization (lines 1 - 2). Otherwise, it checks each SQ in every PQ in the

given SRG to see if any of them satisfies Conditions (1) and (2) discussed above (lines 4 - 14).

If so, return true (line 9). Otherwise, return false (line 14). Heuristic Rule 3 is applied to prune

impossible cases (line 11).

3.7 Storage structure and management of materialized view set

As mentioned earlier, the materialized views and their relevant information (e.g., associated SQs

and access frequencies) are kept in a set of materialized views (SMV). However, how to efficiently

manage and search the SMV becomes an important issue.

3.7.1 Storage structure

A straightforward way to implement the SMV is to store materialized views in a linear queue. A

new materialized view is always added to the end of the queue. Thus, when an SQ to be evaluated

arrives, the system has to scan the view set sequentially to search an appropriate view to use for

the SQ. Clearly, if the number of views in the SMV is large, the process to find a usable view

can be slow, yielding a low system performance. On the other hand, the views in the SMV may
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have superior/inferior relationships among themselves, the linear structure cannot guarantee that

the first usable view found is the best one for the given SQ. For example, assume that A and B

are materialized views in the SMV, A’s associated query is superior to B’s associated query, and

B’s query is superior to the given SQ. If A contains 10000 tuples and B contains 100 tuples, B

is clearly a better view to use for the SQ than A. However, in the linear structure, if A is placed

before B, the sequential scanning method may return A as a chosen view unless the entire queue

is examined.

To overcome the limitations of the linear storage structure, we introduce a new storage structure,

called the Relationship Linked Structure (RLS), to store and manage the materialized views in

order to improve the view searching performance and quality.

In our new storage structure RLS, we classify views into four types2:

Type 1: top-view. A top-view satisfies the following conditions: (1) there exists no other view

in the SMV which is superior to this view, and (2) there exists at least one other view in the SMV

which is inferior to this view.

Type 2: middle-view. A middle-view satisfies the following conditions: (1) there exists at least

one other view in the SMV which is superior to this view, and (2) there exists at least one other

view in the SMV which is inferior to this view.

Type 3: bottom-view. A bottom-view satisfies the following conditions: (1) there exists at least

one other view in the SMV which is superior to this view, and (2) there exists no other view in the

SMV which is inferior to this view.

Type 4: independent-view. An independent-view satisfies the following condition: there exists

no other view in the SMV which is superior or inferior to this view.

As a result, four view sets (i.e., the top-view, middle-view, bottom-view and independent-view

2In the remaining discussion, we say a view is superior/inferior to another view if their associated queries have the
corresponding superior/inferior relationship.
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Figure 3.5: An example of the storage structure RLS of the SMV

sets) are maintained within the SMV. Each view set is represented by a linked list.

For the storage structure RLS of the SMV, we also use the following concepts3. Node A is

called a direct parent node of node B if the following conditions are satisfied: (1) A is superior to

B, and (2) there exists no node C which is superior to B and inferior to A. A direct child node A

of node B can be defined in a similar way. Node A is called an ancestor node of node B if A is

superior to B (allow transitive superior relationships). Node A is called a descendant node of node

B if A is inferior to B (allow transitive inferior relationships). Two nodes A and B are equivalent

if A is both superior and inferior to B. Note that we only need to keep one view/node among its

equivalents in the SMV.

Fig. 3.5 shows an example of the storage structure RLS of the SMV. In the figure, each node

3In our discussion, we use terms ‘view’ and ‘node’ (in the SMV) interchangeably.
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represents a view, which belongs to one of the four view sets. Nodes are connected by three

types of links. Dotted links are used to connect views in the same view set. Dash links are used to

represent direct (parent) superior relationships, while solid links are used to represent direct (child)

inferior relationships. In other words, if node A is a direct parent of node B, then a solid link from

A to B is assigned and, at the same time, a dashed link from B to A is also assigned.

In the RLS of the SMV, each node (view) has a special data structure (see Fig. 3.6) to keep

the relevant information, which includes the node id (ID) to identify the node, the associated SQ

expression (SQ) for the represented view, the next view pointer (NV) to point to the next node in

the same (top, middle, bottom, or independent) set, the direct parent pointer set (PPS) to store the

addresses/pointers of all the direct parent nodes of this node, the direct child pointer set (CPS) to

store the addresses/pointers of all the direct child nodes of this node, a frequency counter (FC) to

indicate the use frequency of the represented view, a superior/inferior relationship testing record

(STR) to keep the previously discovered relationships, and the address/pointer of the view (DataP)

to point to the materialized view data.

When a new view/node N (corresponding to the current SQ) is to be added to the SMV, it

is compared with existing views/nodes in the SMV to discover its superior/inferior relationships

with them. To improve the processing performance, as done before, we apply heuristic rules to

automatically derive new relationships with more nodes in the SMV once a relationship with one

node is discovered. We also try to avoid a duplicate comparison if the relationship of N with an

existing node has already been discovered or derived previously.

STR is a temporary storage for an existing node N ′ to record the previously discovered or

heuristic-derived superior/inferior relationships with a new node being inserted. STR consists of

a node id (ID) and an indicator (REL). The node id identifies the node M (i.e., N or a previously

inserted node) with which the relationship(s) has been discovered/derived previously. The indicator
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N ′.STR.REL value meaning
00 N ′ has no relationship with M
01 N ′ is superior (but not inferior) to M
10 N ′ is inferior (but not superior) to M
11 N ′ is equivalent (both superior and inferior) to M

Table 3.1: Discovered Superior/Inferior Relationship Indicator

NV PPS CPS DataPFC STRSQID

Figure 3.6: The data structure of each node in the SMV

is a two-bit binary value, where the lower bit indicates the existence of an inferior relationship from

N ′ to M and the higher bit indicates the existence of a superior relationship from N ′ to M . The

possible values of REL and their meanings are summarized in Table 3.1.

3.7.2 RLS storage structure construction

The following heuristic rules are applied by the algorithm to construct the SMV with the RLS

structure:

Heuristic Rule 5: If new node (view)N is superior to a nodeN ′ in the SMV, thenN is superior

to all descendant nodes of N ′. If N is not superior to a node N ′ in the SMV, then N cannot be

superior to any ancestor node of N ′.

Heuristic Rule 6: If new node (view) N is inferior to a node N ′ in the SMV, then N is inferior

to all ancestor nodes of N ′. If N is not inferior to a node N ′ in the SMV, then N cannot be inferior

to any descendant nodes of N ′.

Heuristic Rule 5 is similar to Heuristic Rules 1 and 3, while Heuristic Rule 6 is similar to
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Heuristic Rules 2 and 4. The only difference is that the ancestor and descendant nodes of a given

node from the SMV in Heuristic Rules 5 and 6 may not belong to the same PQ.

Now let us discuss how to construct the SMV with the aforementioned RLS storage structure. In

brief, we need to consider how to insert a new view/node N into an appropriate view set, discover

all the direct child nodes of N in the SMV, and find all the direct parent nodes of N in the SMV.

The insertion process can be done in three stages. In the first stage, all the direct child nodes of

N in the bottom-view set, the middle-view set and the top-view set are discovered. In the second

stage, all the direct parent nodes ofN in the bottom-view set, the middle-view set and the top-view

set are found. In the third stage, all the direct parent nodes or the direct child nodes of N in the

independent-view set are discovered, and N is inserted into an appropriate view set based on its

discovered relationships with existing nodes in the SMV.

During the above process, we use a status flag (status_flag) to indicate the status of determin-

ing the view set to which the new node N belongs to. The flag is initially set to -1. The values

of this status flag and their meanings are summarized in Table 3.2. Values 0 - 3 indicate that the

view set to which N belongs to has been determined; while values 4 - 5 indicate that only partial

information, which is insufficient to determine the view set membership of N , is obtained. In

fact, when the flag value is 4, there are three cases. First, N has a direct child node M in the

independent-view set. In this case, N belongs to the top-view set. Note that N cannot have a direct

parent node in any view set in this case. Otherwise, M could not belong to the independent-view

set in the first place due to the relationship transitivity. Second, N has a direct parent node in a

(any) view set. In this case, N belongs to the bottom-view set. Note that N cannot have a direct

child M in the independent-view set in this case. Otherwise, it violates the fact that M belongs to

the independent-view set due to the transitivity. Third, N has no relationship with any view in the

current SMV. In this case, N belongs to the independent-view set. When the flag value equals to
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status_flag value determined status
-1 nothing determined yet
0 N belongs to the independent-view set
1 N belongs to the bottom-view set
2 N belongs to the middle-view set
3 N belongs to the top-view set
4 N has no direct child in the top-view, middle-view or bottom-view set
5 N has at least one direct child found
6 N has an equivalent view found in the current SMV

Table 3.2: Status Flag Values and Their Indicated Status

5, there are two cases. First, N has a direct parent node in a (any) view set. In this case, N is a

middle-view node since it also has a direct child. Second, N has no direct parent node in any view

set. In this case, N belongs to the top-view set. When the flag value equals to 6, there is no need

to insert N into the SMV since it has already been represented by an existing node in the SMV.

The construction algorithm that incorporates a new view/node into the RLS storage structure of

the SMV runs as follows:

ALGORITHM 3.7.1 : InsertViewIntoSMV (N, smv)
Input: (1) new materialized view node N ; (2) set of materialized views (smv) with the RLS structure.
Output: updated smv.
Method:

1. initialize status_flag to -1 and the fields of N to NULL or ∅;
/*Stage 1: find direct child nodes of N in the bottom-view, middle-view and top-view sets */

2. if the bottom-view set is not empty then
3. for each node S in the bottom-view set do

/* find direct child nodes of N that lie on each upward path of S and try to
determine the view set membership of N from bottom up */

4. status_flag=AddFromBottom(N,S, smv, status_flag);
5. if status_flag == 6 then /* N already has an equivalent in smv */
6. return; /* no need to insert N */
7. end if
8. end for
9. if status_flag == -1 then

/* no direct child node was found for N in the bottom-view, middle-view or top-view set */
10. set status_flag=4; /* record partial information */
11. end if
12. end if

/*Stage 2: find direct parent nodes of N in the bottom-view, middle-view and top-view sets */
13. if status_flag 6= 3 then

/* N has not been determined to be in the top-view set */
14. if the top-view set is not empty then
15. for each node T in the top-view set do
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/* find direct parent nodes of N that lie on each downward path of T and try to
determine the view set membership of N from top down */

16. status_flag=AddFromTop(N,T, smv, status_flag);
17. if status_flag == 6 then /* N already has an equivalent in smv */
18. return; /* no need to insert N */
19. end if
20. end for
21. if N is not inferior to any node T in top-view set then
22. if status_flag==5 then /* N is known to have at least one child */

/* undetermined situation can be determined now */
23. set status_flag = 3; /* N is determined to be in the top-view set */
24. end if
25. end if
26. end if
27. end if

/*Stage 3: find direct child or parent nodes of N in
independent-view set, and place N in a proper view set * /

28. if status_flag 6= 2 then
/* N is not in the middle-view set */

29. if the independent-view set is not empty then
30. for each node W in the independent-view set do
31. find the relationship between N and W and record the information in W.STR;

/* i.e., set W.STR.REL to 00, 01, 10 or 11 accordingly and W.STR.ID = N.ID
32. if N and W are equivalent then /* i.e., W.STR.REL = 11 */
33. return; /* no need to insert N */
34. else if N is superior to W then /* W.STR.REL == 10 */
35. set status_flag = 3; /* i.e., N is determined to be in the top-view set */
36. move W from the independent-view set to the bottom-view set;
37. link W and N together with a direct child/parent relationship;

/* i.e., update W.PPS and N.CPS to indicate W is a direct child of N */
38. else if N is inferior to W then /* W.STR.REL == 01 */
39. set status_flag = 1; /* i.e., N is determined to be in the bottom-view set */
40. move W from the independent-view set to the top-view set;
41. link N and W together with a direct child/parent relationship;

/* i.e., update N.PPS and W.CPS to indicate N is a direct child of W */
42. end if
43. end for
44. end if
45. if status_flag == 4 or status_flag == -1 then

/* N has no relationship with any existing view node or smv is empty */
46. set status_flag = 0; /* N is determined to be in the independent-view set */
47. end if.
48. end if
49. if status_flag == 0 then
50. put N into the independent-view set and return;
51. else if status_flag == 1 then
52. put N into the bottom-view set and return;
53. else if status_flag == 2 then
54. put N into the middle-view set and return;
55. else /* status_flag == 3 */
56. put N into the top-view set and return;
57. end if.

In Algorithm 3.7.1, before the first stage, the relevant fields for new node N are initialized to

be ready for the node data structure in smv, and flag status_flag is initialized to -1 (line 1).

In the first stage, if the bottom-view set B is not empty, this algorithm invokes a recursive
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function AddFromBottom() to discover all the direct child nodes of N in smv by following the

ancestor (upward) paths of each node in B. The goal is to find the largest (highest) direct child of

N along each upward path. Depending on how high the algorithm can climb up along the paths,

the information about the view set membership of N may be obtained. For example, if the top

node of a path is found to be a direct child of N , then N is determined to be in the top-view set.

The details of AddFromBottom() will be discussed later on. It is possible that N is found to be

equivalent to a node in smv during the procedure (line 5). In such a case, there is no need to add

N into smv and the algorithm returns (line 6). If N is found not to be superior to any node in the

bottom-view set, status_flag is set to be 4 (lines 9 - 11). At the end of the first stage, the possible

values of status_flag are 3, 4, 5, 6 (algorithm exits) and -1 (only if the bottom-view set is empty).

At the beginning of the second stage, the algorithm first checks if N has been determined to

be a top-view (line 13). If it is true (i.e., status_flag = 3), the second stage is skipped since N

has no direct parent node in such a case. Otherwise, if the top-view set D is not empty (line 14),

the algorithm invokes a recursive function AddFromTop() to discover all the direct parent nodes

of N in smv by following the descendant (downward) paths of each node in D. The goal is to

find the smallest (lowest) direct parent of N along each downward path. Depending on how low

the algorithm can go down along the paths, the information about the view set membership of N

may be obtained. For example, if the lowest node of a path is found to be a direct parent of N ,

then N is determined to be in the bottom-view set. In conjunction with some partial information

obtained from the first stage, there are more cases in which the view set membership of N can

be determined. The details of AddFromTop() will be discussed later on. It is possible that N is

found to be equivalent to a node in smv during the procedure (line 17). In such a case, there is

no need to add N into smv and the algorithm returns (line 18). If N is found not to be inferior to

any node in the top-view set and known to have at least one direct child (from the first stage), N
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is determined to be in the top-view set (lines 21 - 25). At the end of the second stage, the possible

values of status_flag are 1, 2, 3, 4, 6 (program exits) and -1 (the bottom-view set — hence, the

middle-view and top-view sets as well are empty).

At the beginning of the third stage, the algorithm first checks if N has already been determined

to be in the middle-view set (line 28). If it is true (i.e., status_flag = 2), the third stage is skipped

since N cannot have a superior or inferior relationship with any independent-view node in such

a case due to the property of an independent-view. Otherwise, if the independent-view set is not

empty (line 29), the algorithm comparesN with each nodeW in the independent-view set (lines 30

- 43). The relationship betweenN andW can be discovered only on site (lines 31) since no derived

relationships exist for an independent-view. If N is equivalent to any node W in the independent-

view set, the algorithm returns (lines 32 - 33) since there is no need to add N into smv. Note

that, in such a case, N must have not been linked to any node in smv (otherwise, W would not

have belonged to the independent-view set). Hence, no clean-up work is needed before the return.

If N is superior to any node W in the independent-view set, N is determined to be a top-view

node (lines 34 - 37). This is because N cannot be inferior to any node in the bottom-view set, the

middle-view set or the top-view set in this case. Otherwise, W would not have belonged to the

independent-view set. Similarly, if N is inferior to any node W , N is determined to be a bottom-

view node (lines 38 - 42). After N is compared with every independent-view, if status_flag

= 4, it implies that N has no direct child node found in the first stage (so status_flag was set

to 4), N has no direct parent node found in the second stage (so status_flag was unchanged),

and N is not superior or inferior to any independent-view node in the third stage (so status_flag

remains the same). In this case, N must be an independent-view node (line 46). If status_flag =

-1 at line 45, it implies that all the top-view set, the middle-view set, the bottom-view set and the

independent-view set are empty. N is clearly an independent-view node in this case (line 46). At
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the end of stage 3, N is inserted into a proper view set in smv according to the value of determined

status_flag.

Two invoked functions AddFromBottom() and AddFromTop() are shown as follows:

ALGORITHM 3.7.2 : AddFromBottom(N , S, smv, status_flag)
Input: (1) new materialized view node (N ); (2) a compared node (S); (3) set of materialized views (smv) with the
RLS structure; (4) a status flag for the view set membership determination (status_flag).
Output: (1) updated status_flag; (2) updated smv.
Method:

1. superior_relationship = false;
2. if relationship between N and S was found before then /* i.e., S.STR.ID == N.ID */
3. if N is superior to S then /* i.e., S.STR.REL==10 */
4. superior_relationship = true;
5. end if
6. else /* relationship between N and S has never been explored before */
7. find the relationship between N and S and record the information in S.STR;

/* i.e., set S.STR.REL to 00, 01, 10 or 11 accordingly and S.STR.ID = N.ID */
8. if N and S are equivalent then /* i.e., S.STR.REL = 11 */
9. set status_flag = 6;

10. clean N from smv if N was linked in smv via a direct child/parent relationship previously;
11. return status_flag; /* no need to insert N */
12. else if N is superior to S then /* i.e., S.STR.REL == 10 */
13. superior_relationship=true;
14. propagate the superior relationship to each descendant of S;

/* i.e., set X.STR.ID = N.ID and X.STR.REL = 10 for each (unset) descendant X of S */
15. else if N is inferior to S then /* i.e., S.STR.REL == 01 */
16. propagate the inferior relationship to each ancestor of S;

/* i.e., set X.STR.ID = N.ID and X.STR.REL = 01 for each (unset) ancestor X of S;
17. end if
18. end if
19. if superior_relationship = true then /* N is superior to S */
20. if S is a top-view then
21. set status_flag = 3; /* N is determined to be in the top-view set */
22. move S from the top-view set to the middle-view set;
23. link S and N together with a direct child/parent relationship;

/* i.e., update S.PPS and N.CPS to indicate S is a direct child of N */
24. else /* S is a middle-view or a bottom-view */
25. for each direct parent node K in S.PPS do

/* find direct child nodes of N on each upward path from S recursively and
try to determine the view set membership for N from bottom up */

26. status_flag=AddFromBottom(N,K, smv, status_flag);
27. if status_flag == 6 then /* N already has an equivalent in smv */
28. return status_flag; / * no need to insert N */
29. end if
30. end for
31. if N is not superior to any direct parent node of S then
32. if status_flag == -1 then
33. set status_flag = 5; /* N has at least S as a direct child node */
34. end if
35. link S and N together with a direct child/parent relationship;

/* i.e., update S.PPS and N.CPS to indicate S is a direct child of N */
36. end if
37. end if
38. end if
39. return status_flag.

Algorithm 3.7.2 is used to find the direct child nodes of N in the bottom-view set, the middle-
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view set and the top-view set that lie on the upward paths from S and determine the membership of

a view set forN from bottom up if possible. It traverses up from S in smv by recursively following

the parent links of S (lines 25 - 26). The algorithm first identifies the relationship between N and

S, which could be found previously (lines 2 - 5) or is discovered in the current invocation (lines 6

- 18). If N and S is found to be equivalent, there is no need to insert N into smv (lines 8 - 11 and

27 - 29). Note that, when such an equivalence is found (line 8), the algorithm has to clean up the

possible direct child/parent links added for N from its direct child nodes discovered so far before

it returns. If N is found to be superior or inferior to S for the first time, such a relationship needs

to be propagated to the descendants or ancestors of S based on Heuristic Rule 5 or 6, respectively

(lines 12 - 18). If N is superior to S, there are two cases in which S becomes a direct child of N .

The first case is when S was in the top-view set before N is added (lines 20 - 23), i.e., S had at

least one child but no parent. After N is added, N becomes the only (direct) parent of S. In this

case, it is determined that N belongs to the top-view set (line 21), and S has to be moved to the

middle-view set (line 22). The second case is when N is found to be not superior to any direct

parent of S (lines 31 - 36). Since it is unknown if N has its own direct parent in this case, the view

set membership for N cannot be determined (line 33). When the algorithm returns, status_flag

has one of the following values: 3, 5, 6 and -1 (no direct child so far).

ALGORITHM 3.7.3 : AddFromTop(N , T , smv, status_flag)
Input: (1) new materialized view node (N ); (2) a compared node (T ); (3) set of materialized views (smv) with the
RLS structure; (4) a status flag for the view set membership determination (status_flag).
Output: (1) updated status_flag; (2) updated smv.
Method:

1. inferior_relationship = false;
2. if relationship between N and T was found before then /* i.e., T.STR.ID == N.ID */
3. if N is inferior to T then /* i.e., T.STR.REL==01 */
4. inferior_relationship = true;
5. end if
6. else /* relationship between N and T has never been explored before */
7. find the relationship between N and T and record the information in T.STR;

/* i.e., set T.STR.REL to 00, 01, or 11 accordingly and T.STR.ID = N.ID */
8. if N and T are equivalent then /* i.e., T.STR.REL = 11 */
9. set status_flag = 6;

10. clean N from smv if N was linked in smv via a direct child/parent relationship previously;
11. return status_flag; /* no need to insert N */
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12. else if N is inferior to T then /* T.STR.REL == 01 */
13. propagate the inferior relationship to each ancestor of T ;

/* i.e., set X.STR.ID = N.ID and X.STR.REL = 01 for each (unset) ancestor X of T ;
14. end if
15. end if
16. if inferior_relationship = true then
17. if T is a bottom-view then
18. if status_flag != 1 then
19. status_flag = 1; /* N is determined to be in the bottom-view set */
20. end if
21. move T from the bottom-view set to the middle-view set;
22. link T and N together with a direct parent/child relationship;

/* i.e., update T.CPS and N.PPS to indicate T is a direct parent of N */
23. else /* T is a middle-view or top-view */
24. for each direct child node K in T.CPS do

/* find direct parent nodes of N on each downward path from T recursively and
determine the view set membership for N from top down */

25. status_flag=AddFromTop(N,K, smv, status_flag);
26. if status_flag == 6 then /* N already has an equivalent in smv */
27. return status_flag; /* no need to insert N */
28. end if
29. end for
30. if N is not inferior to any direct child node of T then
31. if status_flag ==4 then /* N is known to have no direct child */
32. set status_flag = 1; /* N is determined to be in the bottom-view set */
33. else /* status_flag = 5; i.e., N has at least one direct child */
34. set status_flag = 2; /* N is determined to be in the middle-view set */
35. end if
36. link T and N together with a direct parent/child relationship;

/* i.e., update T.CPS and N.PPS to indicate T is a direct parent of N */
37. end if
38. end if
39. end if
40. return status_flag.

Algorithm 3.7.3 is used to find the direct parent nodes of N in the bottom-view set, the middle-

view set and the top-view set that lie on the downward paths from T and determine the membership

of a view set for N from top down if possible. It is similar to Algorithm 3.7.2, except that it

traverses down (instead of up) from T in smv by recursively following the direct child links of

T (lines 24 - 25). The algorithm first identifies the relationship between N and T , which could

be found previously (lines 2 - 5) or is discovered in the current invocation (lines 6 - 15). If N

and T is found to be equivalent, there is no need to add N into smv (lines 8 - 11 and 26 - 28).

If N is found to be inferior to T for the first time, such a relationship needs to be propagated to

the ancestors of T based on Heuristic Rule 6 (lines 12 - 14). Note that it is impossible for a new

superior relationship from N to T (i.e., T.STR.REL = 10) to be discovered at this time since all
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possible superior relationships from N to an existing node in smv have been discovered in the first

stage. If N is inferior to T , there are two cases in which T becomes a direct parent of N . The first

case is when T was in the bottom-view set before N is added (lines 17 - 22), i.e., T had at least

one parent but no child. After N is added, N becomes the only (direct) child of T . In this case,

it is determined that N belongs to the bottom-view set (lines 18 - 20), and T has to be moved to

the middle-view set (line 21). The second case is when N is found to be not inferior to any direct

child of T (lines 30 - 37). In this case, N is determined to be in the bottom-view set (lines 31 - 32)

or the middle-view set (lines 33 - 34), depending on whether a direct child of N has been found in

the first stage or not. Note that status_flag cannot be -1 at line 33 since, when this algorithm is

invoked at line 16 in Algorithm 3.7.1, the top-view set must not be empty, which implies that the

bottom-view set cannot be empty. As mentioned earlier, status_flag = -1 at the end of the first

stage only if the bottom-view set is empty. When the algorithm returns, status_flag may have

one of the following values: 1, 2, 4, 5 and 6.

3.7.3 Examples

Now let us use some insertion examples to illustrate how the SMV construction algorithm works

in different scenarios. Assume that we have a partially constructed SMV as shown in Fig. 3.7.

In Fig. 3.7, the nodes from n1 to n5 are the top-views, the nodes from n6 to n11 are the middle-

views, the nodes from n12 to n16 are the bottom-views, and the nodes from n17 to n20 are the

independent views. We use a pair (N , M ) to denote that node N is superior to node M . All the

superior relationships in Fig. 3.7 are shown as follows: (n1, n9), (n9, n12), (n2, n13), (n3, n6),

(n6, n10), (n10, n14), (n3, n7), (n7, n11), (n11, n14), (n4, n7), (n5, n8), (n8, n11), (n11, n16).

Suppose we want to add the results of five SQs sq1, sq2, sq3, sq4 and sq5 as new (materialized)

views into the SMV. Assume that the superior (inferior) or equivalent relationships between the

new views and the existing nodes in the SMV are as follows:
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Figure 3.7: A partially constructed SMV

sq1: (n3, sq1), (sq1, n10), (sq1, n14);

sq2: (sq2, n2), (sq2, n13);

sq3: (n12, sq3), (n9, sq3), (n1, sq3);

sq4: (n20, sq4);

sq5: (sq5, n14), sq5 is equivalent to n11 (i.e., (s5, n11) and (n11, s5)).

To add sq1 into the SMV, the bottom-view set is checked first. The algorithm wants to find those

nodes to which sq1 is superior in the SMV. Nodes n12 and n13 are passed because sq1 is superior

to neither of them. When the algorithm finds that sq1 is superior to n14, it traverses up through the

direct parent node links of n14 to visit n10 and n11. Again, the algorithm finds that sq1 is superior

to n10. Therefore, the algorithm continues to traverse up through the direct parent node link of n10
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to visit n6. Since node sq1 is not superior to n6, the algorithm stops traversing up and links sq1

directly above (superior to) n10 (status_flag=5; lines 31 - 35 in AddFromBottom()). Since sq1

has no relationship with n11, the algorithm does not pursue further along that path. The algorithm

then goes back to check the rest of bottom-view nodes n15 and n16. No superior relationship is

found. After the bottom-view nodes have been checked, all the top-view nodes are examined one

by one. The algorithm wants to find those nodes which are superior to sq1 in the SMV. Nodes n1

and n2 are passed because they are not superior to sq1. Since n3 is superior to sq1, the algorithm

traverses down though the direct child node links of n3 to visit n6 and n7. However, neither n6

nor n7 is superior to sq1. Thus, the algorithm stops traversing down and links sq1 directly below

(inferior to) n3 (status_flag=2; lines 33 - 35 in AddFromTop()). The algorithm also goes back to

check the rest of top-view nodes n4 and n5, but no superior relationship is found. Finally, sq1 is

added into the middle-view set and the insertion process ends.

To add sq2 into the SMV, the same algorithm is applied. First, the bottom-view set is checked

and n13 to which s2 is superior is found. The algorithm then traverses up through the direct parent

link of n13 to visit n2 and finds that sq2 is also superior to n2. Since n2 is a top-view node,

sq2 must be a top-view node. Hence, the algorithm moves n2 to the middle-view set and links

sq2 directly above (superior to) n2 (status_flag=3; lines 20 - 23 in AddFrombottom()). The

algorithm then goes back to check the rest of bottom-view nodes n14, n15 and n16 and finds that

sq2 is not superior to any of them. Hence, the algorithm determines that sq2 is a top-view node

since no node in the SMV is superior to it. As a result, the second stage is skipped. The algorithm

directly checks the independent-view nodes to see if sq2 is superior to any of them and finds none.

Finally, sq2 is inserted into the top-view set and the insertion process ends.

To add sq3 into the SMV, the algorithm checks the bottom-view set first as before. It is found

that sq3 is not superior to any bottom-view node. The top-view set is then checked. It is found that
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n1 is superior to sq3. Hence, the algorithm traverses down through the direct child node link of

n1 to visit n9. It is found that n9 is also superior to sq3. Thus, the algorithm continues to traverse

down through the direct child node link of n9 to visit n12. Node n12 is still superior to sq3. Since

n12 is a bottom-view node, the algorithm determines that sq3 is a bottom-view node. Therefore,

it moves n12 to the middle-view set and links sq3 directly below n12 (status_flag = 1; lines 17

- 22 in AddFromTop()). The algorithm then goes back to check the rest of top-view nodes n2, ...,

n5 and finds no superiors. After that, the independent-view set is also checked to see if there exists

any independent-view node which is superior to sq3 and none is found. Finally, sq3 is put into the

bottom-view set and the insertion process ends.

To add sq4 into the SMV, a similar work is done. First, the bottom-view set is checked. But

sq4 is not superior to any bottom-view node. Second, the top-view set is checked. However, no

top-view node is superior to sq4. Third, the independent-view set is checked. It is found that n20

is superior to sq4. Hence, n20 is moved to the top-view set and sq4 is linked directly below n20

(status_flag = 1; lines 38 - 41 in InsertViewIntoSMV()). Finally, the algorithm puts sq4 into the

bottom-view set and the insertion process ends.

To add sq5 into the SMV, the bottom-view set is checked first as before. The algorithm finds

that sq5 is superior to n14. It then traverses up through the direct parent node links of n14 to

visit n10 and n11. Node n10 is passed, but n11 is found to be equivalent to sq5 (status_flag=6;

lines 8 - 11 in AddFromBottom()). In this case, no need to add sq5 into the SMV. Therefore, the

algorithm stops the insertion process and makes no change for the SMV. Fig. 3.8 shows the SMV

after inserting the nodes sq1, sq2, sq3 and sq4 (sq5 is not added).

Now let us consider another insertion example to illustrate how the information in the su-

perior/inferior relationship testing record (STR) helps the algorithm improve its efficiency. As

mentioned before, STR is a temporary storage for an existing node N in the SMV to record the
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Figure 3.8: The modified SMV after inserting the nodes from sq1 to sq5

previously-discovered or heuristic-derived superior/inferior relationships with a new node being

inserted. The algorithm can make use of the STRs of the existing nodes to avoid some duplicate or

unnecessary comparison work.

In this example, we still consider the SMV shown in Fig. 3.7. Assume that the new node sq6

has the following superior relationships with the existing nodes in the SMV: (sq6, n14), (n10,

sq6), (n6, sq6), (n3, sq6). To add sq6 into the SMV, in the first stage, the bottom-view set is

checked. Nodes n12 and n13 are passed since they have no relationship with sq6. After it is found

that sq6 is superior to n14, the algorithm traverses up to check n10 and n11. After two pair-wise

comparisons, it is found that sq6 is superior to neither n10 nor n11. However, another relationship

( i.e., n10 is superior to sq6) which is supposed to be found in the second stage is discovered (line

15 in AddFromBottom()). This information is saved in the STR of n10. Based on Heuristic 6,

we also can derive (without pair-wise comparisons) the superior relationship from each ancestor
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node of n10 to sq6, i.e.,the STRs of n6 and n3 are also updated (line 16 in AddFromBottom()).

After that, the algorithm links sq6 directly above (superior to) n14 (status_flag = 5; lines 31 - 35

in AddFromBottom()) and goes back to check the other bottom-view nodes. In the second stage,

the top-view set is checked. Nodes n1 and n2 are passed since they have no relationship with

sq6. From the STR of n3, it is found that n3 is superior to sq6 (the actual pair-wise comparison

is avoided) and the algorithm directly traverses down to visit n6 and n7. Again, from the STR of

n6, it is found that n6 is superior to sq6. Hence, the algorithm keeps traversing down through n10

until n14 is reached (lines 2 - 5 and 24 - 25 in AddFromTop()), then sq6 is linked directly below

(inferior to) n10 (status_flag = 2; lines 33 - 36 in AddFromTop()). The third stage is skipped

since sq6 has already been determined to be in the middle-view set and no relationship with an

independent view is possible (otherwise, the independent view could not be independent since it

would have relationships with existing top-view(s) and bottom-view(s)). Finally, the algorithm

inserts sq6 into the SMV. From this example, we can see that, using the STR, many duplicate

(previously compared) and/or unnecessary (derived) pair-wise comparisons can be avoided.

3.7.4 Materialized View Set Maintenance

Algorithm 3.7.1 can be used to insert a view into the SMV. However, the number of views that

can be saved in the SMV is not unlimited. There is a space constraint for the SMV. We assume

that (1) there is a space limit (SL) for the SMV and (2) the SL is large enough to hold the largest

materialized view. When the SMV overflows (i.e., its size exceeds the SL), we need to delete some

materialized views from it to create enough free space for accommodating a new materialized view.

The algorithm RemoveViewFromSMV(M , smv) to delete a given materialized view (node)

M from the SMV smv is relatively straightforward. The main idea is to remove the relevant

child/parent links for M from its direct child/parent nodes, adjust the view set memberships (after

deletion) for the direct child/ parent nodes when necessary, transfer the relationships of M with its
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direct child/parent nodes to other relevant nodes in smv when necessary, and remove M from the

corresponding top/bottom/independent-view set in smv. The details of this algorithm are omitted

due to the space limitation.

To decide which materialized views in the SMV should be replaced when space is not enough to

accommodate a new materialized view, we utilize the access frequencies of materialized views in

the SMV. The replacement policy is to simply remove the materialized view with the least access

frequency one at a time until sufficient free space becomes available for the new materialized view.

One way to efficiently find the materialized view with the least access frequency is employ an

auxiliary sorted list of the nodes in the SMV in the ascending order of their access frequencies.

Note that, when a materialized view v is removed from the SMV, the corresponding PQ for the SQ

associated with v (i.e., v.sq) needs to be checked to see if none of its SQs is used for materialized

views. If so, this PQ is removed from the set of used PQs (SUPQ) and added into the SRG. The

following algorithm integrates all the previous algorithms to maintain the SMV, the SUPQ and the

SRG while inserting a new materialized view into the SMV.

ALGORITHM 3.7.4 : InsertViewWithMaintenance(N , smv, srg, supq)
Input: (1) new materialized view node (N ) to be inserted; (2) set of materialized views (smv) with the RLS structure;
(3) superior relationship graph (srg); (4) set of used PQs (supq).
Output: (1) updated smv with N added; (2) revised srg; (3) revised supq.
Method:
1. while smv does not have enough space to accommodate N do
2. find a view M to be removed from smv according to the access frequencies;
3. RemoveViewFromSMV(M , smv);
4. if the corresponding PQ x containing M.sq has no SQ represented in smv then
5. remove x from supq;
6. AddtoSRG(x, srg);
7. end if
8. end while;
9. InsertViewIntoSMV(N , smv).

Note that the above replacement strategy could be extended to take more factors such as the

sizes and ages of materialized views in smv into consideration. Such a discussion is beyond the

scope of this paper.
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3.8 View search

With our RLS structure for the SMV, when a new SQ sq arrives, the process to search for a ma-

terialized view that can be used to evaluate sq is efficient and effective. This is because only a

small part of the SMV is usually examined and some optimization (i.e., minimizing the material-

ized view size) for improving the searched result is performed. For example, once a top-view v is

found to be superior to sq, i.e., v is usable, an improved (smaller) usable view may be found by

recursively following its direct child links until a descendant node is no longer superior to sq. On

the other hand, if a top-view is found not superior to sq, all its descendants can be pruned.

3.9 Experiments

To evaluate the performance of the dynamic materialize view based monotonic linear PQ pro-

cessing approach, we conducted extensive simulation experiments. Experiment programs were

implemented in Matlab 2007 on a PC with Intel R© dual core (1.5 GHz) CPU and 2 GB mem-

ory running on the Windows R© Vista operating system. The experimental data set consisted of 10

external tables of randomly generated data with sizes ranging from 0 to 1000 disk blocks. 100

random progressive queries were used for each experiment. Each PQ was composed of two or

more SQs, where the number of steps was randomly chosen between 2 and 5. The result size of

each SQ also ranged from 0 to 1000 disk blocks. The experiments were grouped into three sets.

Their typical experimental results are reported in the following sections, respectively.

3.9.1 Performance of Dynamic Materialized-View Based Approach

The first set of experiments was conducted to evaluate the efficiency of our dynamic materialized-

view based monotonic linear PQ processing approach (DMVPQ). The superior relationship graph

(SRG) and the set of materialized views (SMV) using the RLS structure were initially set to empty.
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In experiments, we compared the performance between the (conventional) consecutive sequential

scan based PQ processing technique (CSSPQ) and our DMVPQ technique. Progressive queries

were processed one by one. When the execution of a PQ is completed, if no SQ in the PQ was

selected as a materialized view, the PQ was added into the SRG. We maintained two parameters

IPR and WPR for each node in the SRG. IPR denotes the probability with which a node has

an inferior relationship with a SQ under consideration. WPR denotes the probability with which

a node satisfies a weight threshold for the result of an SQ to be selected as a materialized view.

Both parameters were considered together to decide whether to materialize an SQ or not. If an

SQ under consideration is estimated to be beneficial, it is materialized and added into the set of

materialized views. Two parameters SPR and SIZE are maintained for each materialized view

in the set. SPR denotes the probability with which the view has a superior relationship with an SQ

under consideration. SIZE denotes the size of the materialized view. Each of IPR, WPR and

SPR was randomly chosen between 0 and an upper bound, without violating the definition and

properties of a monotonic linear PQ. SIZE was directly acquired from the corresponding PQ. In

the experiments, the pruning-based SRG construction algorithm was adopted. Since the objective

of our experiments was to evaluate the performance of the DMVPQ technique, the space constraint

was not considered.

In the first experiment, the upper bounds for IPR, WPR and SPR were set to 0.1, 0.5 and 0.1,

respectively. Fig. 3.9 shows the performance comparisons between the CSSPQ and the DMVPQ

techniques.The x-axis represents the total number of SQs executed in the system, and the y-axis

represents the I/O cost (i.e., the number of disk block accesses). From the figure, we can see that

the two performance curves are very close to each other when the number of SQs processed is

small. The performance of DMVPQ is increasingly better than that of CSSPQ when the number

of SQs increases. The reason for this is as follows. At the beginning, both SRG and SMV are
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Figure 3.9: Performance comparison between DMVPQ and CSSPQ

empty — no view could be utilized to improve the query performance. As more and more pro-

gressive queries are executed, the SRG and MVC grow larger and larger. In other words, more and

more materialized views become available for improving the query performance. As a result, the

performance of DMVPQ is significantly improved.

In the second experiment, we increased the upper bound for parameter IPR to 0.3 and kept the

other parameters unchanged. The experimental results are shown in Fig. 3.10. From the figure,

we can see that the performance of DMVPQ is significantly improved. The reason for this is that

IPR plays an important role in deciding whether to materialize the result of an SQ. A larger upper

bound for IPR implies that an SQ has a higher chance to be materialized. Hence, the SMV grows

faster, and the subsequent queries have more views to utilize to improve their performance.

Another crucial factor to affect the query performance is parameter SPR. In the third exper-

iment, we changed the upper bound for SPR to 0.3 and kept the other parameters unchanged.

Experimental results are shown in Fig. 3.11. A significant performance increase for DMVPQ is
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Figure 3.10: Performance comparison between DMVPQ and CSSPQ with IPR being changed to
0.3
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Figure 3.11: Performance comparison between DMVPQ and CSSPQ with SPR being changed to
0.3
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Figure 3.12: Performance change with different IPRs for DMVPQ

also observed. The reason for this improvement is that SPR is the factor to determine whether a

materialized view would be usable for an SQ under consideration. A larger upper bound for SPR

implies a materialized view has a better chance to be usable for a given SQ. In other words, an SQ

has more available views to utilize to improve its performance.

In the next experiment, we considered various upper bounds for IPR ranging from 0.1 to 0.9

and kept other parameters unchanged. The performance curve is shown in Fig. 3.12. From the

figure, we can clearly see that the performance is improved as IPR increases.

We also conducted another experiment for various upper bounds for SPR ranging from 0.1 to

0.9 and kept other parameters unchanged. The experimental results are shown in Fig. 3.13. A

similar performance pattern is also observed.

The results of the first set of the experiments demonstrate that our DMVPQ technique is quite

promising in improving the performance for processing monotonic linear PQs.
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Figure 3.13: Performance change with different SPRs for DMVPQ

3.9.2 Performance of SRG Construction Methods

The second set of experiments was conducted to compare the performance behaviors of the generating-

based method and the pruning-based method for constructing a superior relationship graph (SRG).

The SRG was initially set to empty. The progressive queries were processed one by one. When

a new SQ was added into the SRG, we needed to find all the superior or inferior relationships

between the new SQ and the SQs in the SRG. As mentioned before, a straightforward way to con-

struct an SGR is to perform the pair-wise comparisons between the new SQ to be added and each

existing SQ in the SRG. But the cost of this way is usually very high, which led us to develop the

generating-based method and the pruning-based method to avoid some unnecessary comparisons.

In the experiments, we wanted to compare the performance of these two methods so as to identify

the scenarios where one method could be better than the other. The performance was measured

in terms of the cost (pair-wise comparisons) saved over the straightforward pair-wise comparison
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Figure 3.14: Comparison of saved costs between the generating-based method and the pruning-
based method with IPR = 0.7

method. We also maintained the IPR for each node in the SRG, which represents the probability

with which this node is inferior to a new SQ to be added.

In the first experiment, we set the upper bound of IPR to a relatively high value 0.7, which

led to a high chance for the existing nodes in the SRG to have a (inferior) relationship with a new

SQ to be added. Hence the resulting SRG was a dense (in terms of edges) graph. Fig. 3.14 shows

the comparison of the saved costs between the generating-based method and the pruning-based

method. From the figure, we can observe that the former method outperforms the latter method

to construct the SRG in such a case. This is because the generating-based method has a better

chance to automatically derive/generate more relationships (edges) in a dense graph to save many

(pair-wise) comparisons. The larger the SRG, the more savings the generating-based method could

achieve.

In the second experiment, we set the upper bound of IPR to a relatively low value 0.3. The
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Figure 3.15: Comparison of saved costs between the generating-based method and the pruning-
based method with IPR = 0.3

resulting SRG was a sparse graph. Fig. 3.15 shows the comparison of the saved costs between the

generating-based method and the pruning-based method. We can see that the pruning based method

performed better than the generating based method in this case. This is because the pruning-based

method has a better chance to automatically eliminate/prune impossible relationships (edges) in a

sparse graph to save many comparisons. The larger the SRG, the more savings the pruning-based

method could obtain.

The previous two experiments demonstrate that both the generating-based method and the

pruning-based method can save an increasing amount of cost as the SRG grows. The generating-

based method is better for a dense graph, while the pruning-based method is better for a sparse

graph, as we predicted in Section 3.5.
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3.9.3 Performance of View Search Using New SMV Storage Structure

The third set of experiments was conducted to examine the view search performance for the set

of materialized views (SMV) using our new storage structure RLS. The SMV was initially set to

empty. Four different materialized view sets (top-view set, middle-view set, bottom-view set and

independent-view set) were maintained. Progressive queries were processed one by one. For each

SQ of the current PQ, the SMV was searched to find a usable view that could be used to answer

the SQ. After an SQ was executed, its result had a chance to be kept as a (materialized) view and

stored in the SMV. The new storage structure RLS for the MVS was built by using Algorithm

3.7.1. We maintained three parameters UPR, SCPR and WPR for each SQ. UPR denotes the

probability for a view in the top-view set to be a usable view for the given SQ; SCPR denotes

the probability for a direct child node to be a usable view replacing its direct parent node for

the given SQ; WPR denotes the probability for an SQ result to be kept as a materialized view.

Two additional parameters SUPR and INPR were also maintained in our experiments. SUPR

denotes the probability for a view to be superior to another view in the SMV, and INPR denotes

the probability for a view to be inferior to another view in the SMV. UPR, SCPR, WPR, SUPR

and INPRwere randomly chosen between 0 and their respective upper bound. In the experiments,

the upper bounds for UPR, SCPR, WPR, SUPR and INPR were set to 0.3, 0.9, 0.3, 0.3 and

0.3, respectively.

To search a usable view in the SMV for a given SQ, we examined two searching strategies: the

fastest time strategy (FTS) and the best result strategy (BRS). The FTS returns the first usable view

found in the SMV for the given SQ, while the BRS returns the best usable view (i.e., the smallest

one) in the SMV for the given SQ. We compared the performance between the (conventional)

sequential search method with the MVS organized as a linear queue (SSMVS) and the superior

(inferior) relationship based search method with the SMV organized using our new RLS structure
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Figure 3.16: Comparison of view quality between SSMVS and SRMVS based on FTS

(SRMVS). Various scenarios were considered.

In the first experiment, we used the fastest time strategy for both the SSMVS and the SRMVS.

For the SSMVS, the search returned the first usable view (if any) in the linear queue. For the

SRMVS, the search first found the first usable view (if any) in the top-view set and then recursively

followed the direct child (inferior) link of the found view to see if a better (smaller) usable view

could be obtained. Hence the SRMVS returned an improved usable view (if possible) over the first

usable view found in the top-view set. Note that neither the SRMVS nor the SSMVS based on the

FTS can guarantee that the best usable view in the SMV is found. Fig. 3.16 shows the comparison

of view quality (in terms of view size) between the SSMVS and the SRMVS based on the FTS. The

x-axis represents the total number of SQs processed in the system. For each SQ, a usable view may

be returned from the SMV to answer the query. The y-axis represents the total size of the returned

views. The smaller the total size is, the higher the view quality is achieved. From the figure, we can

see that two curves are very close at the beginning. The view quality obtained from the SRMVS
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Figure 3.17: Comparison of view searching costs between SSMVS and SRMVS based on FTS

is increasingly better than that from the SSMVS as the number of SQs increases. The reason for

this is as follows. At the beginning, the SMVs were empty for both the SSMVS and the SRMVS.

Thus, for the first several SQs, no view could be used to answer them and the total view size was 0

for both the SSMVS and the SRMVS. As the number of SQs increased, more and more SQ results

were saved as materialized views in the SMVs, which could be used to answer the following SQs

and the total view size started to increase. As the SMV grew, the SRMVS had a better chance

to return an improved usable view (via the maintained supper/inferior relationships) over the first

usable view found in the top-view set. Therefore, the view quality curve of the SRMVS becomes

better and better, compared to that of the SSMVS.

Fig. 3.17 shows the comparison of view searching costs between the SSMVS and the SRMVS

based on the FTS. The x-axis still represents the number of SQs processed. The y-axis represents

the total number of views searched. From the figure, we can see that the searching cost of the

SRMVS is always smaller than the one of the SSMVS. The reason for this is as follows. The
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Figure 3.18: Comparison of view quality between SSMVS based on FTS and SRMVS based on
BRS

SRMVS based on the FTS typically can save some searching cost by pruning the middle-views

and bottom-views that are descendants of a non-usable top-view, while the SSMVS based on the

FTS has to search all the views in the SMV in the worst case.

In the second experiment, we applied the FTS for the SSMVS and the BRS for the SRMVS. We

still compared both the view quality and the searching costs between the SSMVS and the SRMVS.

Fig. 3.18 shows the comparison of view quality between the SSMVS based on the FTS and the

SRMVS based on the BRS. From the figure, we can see that the view quality from the SRMVS

is dramatically improved by using the BRS instead of the FTS. The reason for this is as follows.

Using the SSMVS based on the FTS, once a usable view is found in the SMV, the view is returned,

which does not guarantee the quality. On the other hand, the SRMVS based on the BRS examines

every usable top-view and its descendants as well as every usable independent-view until the best

(smallest) usable view is found. Hence, it guarantees that the best usable view in the SMV is

72



0 20 40 60 80 100
0

50

100

150

200

250

300

Number of step−queries

N
um

be
r 

of
 v

ie
w

s 
se

ar
ch

ed

 

 

SRMVS
SSMVS

Figure 3.19: Comparison of view searching costs between SSMVS based on FTS and SRMVS
based on BRS

returned for the given SQs.

Fig. 3.19 shows the comparison of view searching costs between the SSMVS based on the FTS

and the SRMVS based on the BRS. From the figure, we can find that the searching cost for the

SRMVS based on the BRS is a little bit higher than that of the SSMVS based on the FTS. This is

because the SRMVS based on the BRS has to check all the usable views in the top-view set and

their descendants as well as the usable views in the independent-view set. On the other hand, the

SSMVS based on the FTS only needs to return the first usable view found in the linear queue of the

SMV. If there are many usable views in the SMV, the SSMVS does not incur much cost. Hence,

the searching cost of the SRMVS based on the BRS is usually higher than that of the SSMVS

based on the FTS. However, due to the capability of the SRMVS for pruning the descendants of

non-usable views, the cost difference between the two methods is small.

In the third experiment, both the SRMVS and the SSMVS adopted the BRS. In this case, both
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Figure 3.20: Comparison of view searching costs between SSMVS and SRMVS based on BRS

methods had the same view quality since they both guaranteed that the best usable view for a

given SQ was returned. Hence, we compared only their view searching costs. Fig. 3.20 shows

the comparison of searching costs between the SSMVS and the SRMVS based on the BRS. We

observed that the searching cost for the SSMVS based on the BRS was much higher than the one

of the SRMVS based on the BRS. This is because the former method has to check all the views to

find the best usable view for a given SQ. On the other hand, the descendants of non-usable views

are removed (pruned) from consideration by the SRMVS based on the BRS.

Our experiments demonstrate that the SRMVS based on either the FTS or the BRS is quite

promising in efficiently searching for quality usable views for given SQs, compared to the SSMVS.

The results of our research in this chapter were reported in [128, 130].
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CHAPTER 4
A Materialized-view Based Approach for Efficiently Processing

Generic PQs

The technique presented in the last chapter was designed to process the special monotonic linear

PQs. It cannot be used to handle generic PQs since the required superior relationships may not exist

among the SQs of generic PQs. We notice that another type of relationships, called the data source

dependency relationships, always exist among SQs and external tables of generic PQs. Utilizing

such relationships, we develop another materialized-view based approach for optimizing generic

PQs in this chapter. A multiple query dependency graph (MQDG) that is used in our technique for

processing generic PQs is defined in Section 4.1. Some basic terms of the MQDG are described

in Section 4.2. A view storage (VS), which stores result tables associated with two types of nodes

in the MQDG, is discussed in Section 4.3. After that, the main processing procedure is introduced

in Section 4.4. A mathematical benefit estimation model using the MQDG to identify the critical

nodes from completed PQs for view materialization is discussed in Section 4.5. The policy to

remove non-critical nodes from the MQDG is presented in Section 4.6. The strategies to insert

critical nodes into the critical node view space considering the space limit is discussed in Section

4.7.

4.1 Multiple Query Dependency Graph

In our dynamic materialized view technique for generic PQs, the domain of an SQ sq1, denoted

by Domain(SQ), is defined as the set of input tables of sq1. As mentioned earlier, due to the

query unpredictability property, the result tables for executed SQs of in-process PQs have to be

made available (not discarded) since they may be used by future SQs. In general, multiple PQs
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are simultaneously processed in a DBMS. We consider the executed SQs of in-process PQs as

temporary SQs and keep their result tables (as temporary materialized views) in the system. Con-

ceptually, an SQ only utilizes the result tables for previous SQs of the same PQ. In this work, we

also allow users to utilize the result tables for SQs of other in-process PQs rather than the same PQ

if a better performance can be achieved. Usually, the result tables for SQs of completed (historical)

PQs are no longer kept in the system. However, some historical SQs are very popular and their

results are frequently utilized. Thus, the results for such SQs are still kept in the system even after

their corresponding PQs are completed. Such SQs are named critical SQs.

The main idea of our dynamic materialized view technique for generic PQs is as follows. A mul-

tiple query dependency graph (MQDG), which captures the data source dependency relationships

among external tables, SQs of in-process PQs and critical SQs of completed PQs, is created. A

mathematical model is developed to estimate the potential benefit of SQs of completed PQs based

on the MQDG. The SQs with significant benefits are selected as critical ones and their results are

kept as materialized views in a so-called the critical node view space (CNS). Different strategies

for better utilization of the CNS under a space limit are incorporated. Using the MQDG, users can

specify new SQs by using not only the results for SQs from the same PQ but also the results for

SQs from other in-process PQs since they are all available in the system without additional cost.

Furthermore, the results for some popular (critical) SQs can also be utilized by users to optimize

their future SQs. Since a user has more options in specifying his/her SQs, with the assistance (e.g.,

cost estimation) from the system, it is expected that an improved performance of his/her PQ can

be achieved.

In the remaining of this section, let us define the multiple query dependency graph (MQDG).

Let SPQ be the set of the in-process PQs. The multiple query dependency graph for SPQ is

defined as a directed graph MQDG(SPQ) = (V,E, P, S, FP , FS), where V is a set of nodes, E
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is a set of edges, P is a set of labels representing the id’s for PQs in SPQ, S is a set of numbers

representing the result table sizes for SQs of PQs in SPQ, FP is a function that maps a node in V

to a label in P , and FS is another function that maps a node in V to a number in S.

Let SSQ be the set of SQs of in-process PQs and critical SQs of completed PQs. Each node

in V represents either an external table used by an SQ in SSQ or directly an SQ in SSQ. The

former is called a table node, while the latter is called a temporary node (a temporary SQ) or a

critical node (a critical SQ). If a node v2 representing an SQ uses as input the external table or the

result table associated with node v1, we say v2 depends on v1, which is represented by a directed

edge e =< v1, v2 > from v1 to v2 in E. In this case, we also say that there exists a dependency

relationship from v1 to v2. The set P in MQDG(SPQ) consists of unique identifiers for all the

PQs in SPQ. Function FP in MQDG(SPQ) maps (labels) each temporary node representing an

SQ of a PQ in SPQ to the id in P for the corresponding PQ to which the SQ belongs. Function

FS in MQDG(SPQ) maps each node in V representing an SQ(critical SQs or temporary SQs) or

an external table to its result size or table size in S. An MQDG dynamically grows as more SQs of

current PQs or new PQs are issued. Fig.4.1 shows an example of the MQDG.

Several properties of an MQDG can be observed. First of all, there exists no directed circle in

the graph. A directed edge from a node v1 to a node v2 in the graph represents that v2 is depended

on v1. In other words, v2 is generated later than v1. On the other hand, all the outgoing paths from

v2 are to connect the nodes which are generated later than v2. Therefore, it is impossible to form a

recursive cycle in the graph. Secondly, isolated sub-graphs may exist in an MQDG. The result for

an SQ of a PQ q may never be used by any subsequent SQs of q. Similarly, the SQs from different

PQs may be connected together in the graph.

Other properties of an MQDG include that each table node has no incoming edge and there is a

single sink (final) node for each PQ that returns the final result for the PQ. Note that a dependency
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Figure 4.1: An example of the multiple query dependency graph (MQDG)

graph (DG) for a given PQ was defined in [134]. There are several differences between a DG and

an MQDG. First of all, a DG is for a single PQ, while an MQDG is for multiple PQs. Secondly,

a DG is used to illustrate the definition of a (complete) PG, while an MQDG is used to optimize

multiple in-process PQs that are incomplete and growing. Finally, a DG does not include nodes

for external tables, while an MQDG does.

4.2 Basic terms for MQDG

Next, let us introduce some basic terms for the MQDG, which will be used in the following dis-

cussion.

Direct parent node: if there exists an edge from a node m to a node n in an MQDG, then m is

called a direct parent node of n in the MQDG.
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Direct child node: if there exists an edge from a node m to a node n in an MQDG, then n is

called a direct child node of m in the MQDG.

Indirect child node: if there exists a (directed) path p from a node m to a node n and p consists

of more than one edge in an MQDG, then n is called an indirect child node of m in the MQDG.

Note that a node n in an MQDG can be both a direct child node and an indirect child node of

node m. See the example in Figure 4.4, there exists a direct path from sq1 to sq6 which contains

only one edge, and there also exists an indirect path from sq1 to sq6 which consists two edges

{< sq1, sq2 >, < sq2, sq6 >}. Consequently, sq6 is both a direct child node and an indirect child

node of sq1.

Internal node: if there exists a (directed) path from node m to node n and the PQ id’s of both n

and m are the same, then n is called an internal node of m.

External node: if there exists a (directed) path from node m to node n, and the PQ id of m is

different from that of n, then n is called an external node of m.

4.3 View Storage

As mentioned earlier, result tables associated with temporary nodes and critical nodes are kept in

the system as materialized views. Thus, an empty space, which is called the view storage (VS) is

allocated to save those materialized views. The VS is divided into two subspaces: the temporary

node view space (TNS) and the critical node view space (CNS). The TNS is to store a set of

result tables (view) for temporary nodes, while the CNS is to keep a set of result tables (view) for

critical nodes. Note that the related information of a view, e.g., PQ id, the size of the view, query

expression, is also saved in the VS. Fig. 4.2 shows the structure of the view storage. The result

tables for temporary nodes are also called temporary materialized views(TMVs) while the result

tables for critical nodes are also called critical materialized views(CMVs).
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Figure 4.2: The structure of the view storage

If a space limit is given, it is observed that the size of the TNS determines how many in-process

PQs are executed in parallel, while the size of the CNS determines how many beneficial critical

SQ results can be retained. In this work, we make an assumption that the size of the TNS is large

enough to hold the result tables for all the issued SQs of in-process PQs. We only take the size

of the CNS into consideration for our technique. This may be a reasonable assumption given that

temporary results for the reasonably small set of currently executing queries might generally be

needed to complete the queries although intermediate results could be pipelined without hitting the

disk and as such need not be materialized.

4.4 Main processing procedure

Since we have finished the approach for processing monotonic linear PQs, next, we consider that

what we can do if the generic PQs are issued. It is totally the different situation since the query

is more complicated and no monotonic properties can be used. To process a generic PQ, as we
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mentioned in Section 4.1, the result tables for the SQs of in-process PQs as well as the result tables

for critical SQs are kept as materialized views to help users specify future SQs. Users may use the

cost estimates provided by the system to decide whether to utilize the materialized views or not for

their next SQs.

Since the result tables for all SQs of in-process PQs are automatically stored in the TNS and

available to users, no further issue needs to be considered. However, it is clear that it is impossible

to keep the result tables for SQs of all completed PQs. Hence a key issue that needs to be studied

is how to properly choose the critical SQs from completed PQs and retain their results for future

use. A technique to address this and other relevant issues are presented in this Chapter.

Specifically, our technique address the following four issues: (1) how to construct an MQDG;

(2) how to use the MQDG to find the critical nodes from completed PQs; (3) how to remove the

non-critical nodes of a completed PQ from the MQDG; and (4) how to address the maintenance

issue for the CNS under a certain space limit.

The high-level flowchart of the main procedure is shown in Figure 4.3. It starts with a new SQ

nsq being issued to the system. nsq can take advantage of all available critical nodes from the CNS

to optimize its query processing. The result table of nsq is saved in TNS. If nsq is an initial SQ of

a new PQ pq, the id of pq is saved in the MQDG. nsq and the domain tables of nsq are added into

the MQDG. Next, the system checks if PQ pq is completed. If so, an algorithm is applied to look

for critical nodes from pq by using the MQDG (the algorithm is shown as Process 1 in Figure 4.3).

After that, all non-critical nodes of pq are removed. Finally, the newly searched critical nodes are

inserted into the CNS. Since the CNS may overflow, we designed two different strategies (greedy

strategy and dynamic programming strategy) to address the CNS overflowing problem which are

shown as Process 2 in Figure 4.3. The detailed description of the main procedure is given by the

following algorithm.
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Figure 4.3: the flowchart of the main procedure
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ALGORITHM 4.4.1 : Selection of Materialized Views via Dependency Analysis
Input: (1) newly arrived step-query (nsq); (2) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (3)
view storage (vs) including temporary node view space (tns) and critical node view space (cns); (4) current maximum
impact (cmi); (5) current maximum effectiveness (cme).
Output: (1) revised mqdg; (2) revised vs.
Method:
1. execute nsq and save its result table in tr;
2. add tr and relevant information into vs.tns;

/* revise mqdg to include nsq */
3. if nsq is an initial SQ for a new PQ then
4. add the id of PQ into mqdg.P ;
5. end if
6. create a temporary node tn labeled with the corresponding PQ id for nsq in mqdg.V , add the result

table size rs of nsq in mqdg.S, and map tn to rs in mqdg.S ;
7. for each table r in Domain(nsq) do
8. if r is an external table then
9. if r does not have a node in mqdg.V then

10. create a table node m for r in mqdg.V , add the size of r in mqdg.S, and mapping m to the
corresponding size in mqdg.S;

11. else
12. find the table node m representing r in mqdg.V ;
13. end if
14. else
15. find the corresponding node m for r in mqdg.V ;
16. end if
17. generate an edge < m, tn > from m to tn in mqdg.E;
18. end for

/* find critical nodes in a completed PQ */
19. if the corresponding PQ pq in mqdg is completed then
20. (cnset, BenefitList, cmi, cme) = FindCriticalNode(mqdg, pq, cmi, cme);

/* remove non-critical nodes for a completed PQ */
21. for each non-critical node ncn in pq do
22. RemoveAndTransfer(mqdg, ncn);
23. end for

/* insert critical nodes into the CNS */
24. CriticalNodesInsertion(mqdg, cnset, vs, BenefitList, cmi, cme);
25. end if.

There are two phases in Algorithm 4.4.1. The first phase (lines 1 - 18) executes the newly

arrived SQ and revises MQDG and VS to include this SQ. The second phase (lines 19 - 25) finds

the critical nodes of a completed PQ, removes non-critical nodes of the PQ, updates the MQDG,

and inserts the discovered critical nodes into the VS. The second phase is done by invoking several

external functions.

In the first phase, lines 1 and 2 execute the given SQ and save its result table and relevant

information in the VS. If the given SQ is an initial (first) SQ of a new PG, the algorithm adds the

PQ’s id into the MQDG (lines 3 - 5). It then adds relevant nodes and edges into the MQDG to

include the given SQ (lines 6 - 18).

83



In the second phase, the algorithm first invokes function FindCriticalNode() to estimate the

benefit of each SQ of a completed PQ to identify and return a set of critical nodes (lines 19 -

20). After all critical nodes are identified from a PQ, the non-critical nodes are removed from

the MQDG by invoking function RemoveAndTransfer() (lines 21 - 23) and the result tables of all

critical nodes are inserted into the CNS by invoking function CriticalNodesInsertion() (line 24).

The invoked functions in this algorithm are to be discussed in the following subsections.

4.5 Estimation model for critical nodes

The main purpose of constructing an MQDG is to estimate the potential benefits for SQs of a

completed PQ to identify critical nodes. As mentioned earlier, how to find the critical nodes from a

completed PQ is a crucial issue in this work. In this subsection, we discuss this issue and introduce

a model for estimating the potential benefits of SQs by using the MQDG.

The main idea to estimate the potential benefit for an SQ sq1 is to consider that how the result

table of sq1 has been efficiently and effectively used to answer other nodes (SQs) in the MQDG.

We developed an estimation model to quantitatively capture the benefit of an SQ (i.e., a temporary

node) by using an MQDG. Before introducing the model, two affecting factors are defined first.

(1) Impact: if a node n in an MQDG can be directly or indirectly computed from the result table

of an SQ sq ( i.e., n is a direct or indirect child node of sq), we say sq has an impact on n. We have

derived a formula to quantitatively estimate the impact of sq on n. We consider the impact of sq

is the accumulated impact of sq on all its direct and indirect child nodes in the MQDG. The larger

the value for the impact of sq is, the more nodes in the MQDG can be directly or indirectly derived

from the result table of sq. Therefore, the value for the impact of sq represents whether the result

table of sq is frequently used by other SQs in the MQDG.

(2) Effectiveness: it represents the storage effectiveness. We consider that the value v for effec-
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tiveness of sq implies that how many tuples on average can be directly computed from a single unit

of data in the result table of sq (we assume that the smallest unit in the table is a tuple). Keeping

the result table of an SQ sq with a larger v can improve the utilization of the limited CNS. If the

size of the result table of sq is fixed, the larger v represents more tuples can be directly derived.

Hence, the value for the effectiveness of sq represents that how the result table of sq is effectively

used by other SQs in the MQDG.

In the estimation model, the impact and effectiveness of an SQ are combined. The reason for

that is as follows: either the impact or the effectiveness of an SQ sq can only partially reflect the

potential benefit of sq. Let us consider two different scenarios.

(a) Assume that the impact of an SQ sq is very large, but the result table size of sq is also very

large, which leads to a very small effectiveness for sq. In this case, if we only use the impact of sq

to represent the potential benefit of sq, the benefit is very large. However, although the result table

of sq is frequently used by other nodes (SQs) in the MQDG, the space overhead is very high. In

other words, sq is not effectively used by other nodes in the MQDG although it is heavily used.

(b) Assume that the impact of an SQ sq is very small, but the size of sq is also very small,

which leads to a very large effectiveness for sq. In this case, if we only use the effectiveness of sq

to represent the potential benefit of sq, the benefit is very large. But actually sq is not frequently

used to compute other nodes. Therefore, sq is not a good candidate for a critical node.

Now let us introduce the details of our benefit estimation model. Assume that we want to

estimate the potential benefit for keeping the result of an SQ sq. Let Imp(sq) be the impact of

sq, Impmax be the current maximum impact of all compared SQs in the MQDG, Eff(sq) be the

effectiveness of sq, and Effmax be the current maximum effectiveness of all compared SQs in the

MQDG. The model is shown as follows:

Benefit(sq) = (
Imp(sq)

Impmax
)α ∗ (Eff(sq)

Effmax
)β (4.1)
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where α and β are parameters representing the importance of the impact and the effectiveness of

sq in the model, respectively. α and β range from 0 to ∞. For example, typically α = β = 1

(which will be used in our remaining discussion).

The model computes a value representing how an SQ sq has been efficiently and effectively used

by other nodes (SQs) in an MQDG. We consider this value as the potential benefit for keeping the

result of sq. The components Imp(sq)/Impmax and Eff(sq)/Effmax represents the normalized

impact and effectiveness of sq, respectively.

With the above model, we can quantitatively compute the potential benefit for any temporary

SQ sq in the MQDG and decide whether select sq as a critical node. Next, we discuss how to

quantitatively calculate the impact and effectiveness of an SQ in detail.

Let us first discuss the details about how to compute the impact of an SQ sq1 by using the

MQDG. The main idea is to compute how much impact sq1 has already brought to every its di-

rect/indirect child node sq2 by using the MQDG. The following affecting factors are considered.

(i) The distance: it is the number of edges in a path from the node sq1 to node sq2. The larger

the distance is, the smaller the impact that sq1 could make to sq2. As an illustration, we consider

the following two scenarios: 1) sq2 is a direct child node of sq1. In this case, sq2 could directly

make use of the result of sq1. 2) sq2 is an indirect child node of sq1 and there is an path from sq1

to sq2. In this case, sq2 could not directly take advantage of the result of sq1. It is clear that sq1

could make more contribution to executing sq2 in the first scenario than in the second scenario. In

other words, sq1 has more impact on sq2 if the distance from sq1 to sq2 along the path that is under

consideration is shorter. Note that, if there are multiple paths from sq1 to sq2, the impact gained by

sq2 through them are accumulated.

(ii) The node type (internal or external): it also makes a significant difference whether sq2 is an

internal node or an external node of sq1. Obviously, the SQs of a PQ have a much higher chance
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to use the results of previous SQs from the same PQ. However, after the PQ is completed, most

internal nodes may never be used by other queries. Thus, a PQ may have many internal nodes, but

they may not bring any benefit for future queries. On the other hand, future SQs can be considered

as external nodes of sq1 if they make use of the result of sq1. Therefore, external nodes are more

relevant than internal nodes to represent future SQs. In other words, it is reasonable to assign sq1

a higher impact value if sq2 is an external node.

(iii) The number of inputs: it represents the number of incoming edges of sq2, assuming sq2 is a

direct child node of sq1. The reason why this factor matters is that an SQ may only make a partial

contribution to the evaluation of its direct child nodes. The larger the number of inputs that sq2

has, the less the impact that sq1 could make to sq2. Consider the following two different scenarios.

The first scenario is that sq2 has only one incoming edge, which is from sq1. In this case, sq2 is

evaluated totally based on the result table of sq1. The second scenario is that sq2 has n (n > 1)

incoming edges, one of which is from sq1. In this case, several tables (result tables for SQs or

external tables) make contribution on evaluating sq2. It is obvious that sq1 has more impact on sq2

in the first scenario.

Therefore, if an SQ sq has only one input, its input table makes a total contribution in evaluating

sq. However, if sq has more than one input, it is required to decide how much contribution each

input of sq can make. Assume that an SQ sqi has three inputs: sq1, sq2 and sq3. Result(sq1)

has three attributes: A, B and C. Result(sq2) has three attributes: A, D and E. Result(sq3) has

two attribute: A and F . Attribute A is the key attribute. To execute sqi, three tables are joined

and the Cartesian product T (A,B,C,D,E, F ) is computed. We observed that each tuple in T

is coming partially from Result(sq1) (A,B,C), partially from Result(sq2) (D,E), and partially

from Result(sq3) (F ). Regardless the filter conditions in the query expression of sqi, we consider

that each input of sqi (sq1, sq2 or sq3) makes one third contribution to evaluate sqi.
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If sq2 is an indirect child node of sq1, the case becomes more complicated since many interme-

diate SQs on the path from sq1 to sq2 also have more than one incoming edge. Thus, sq1 makes

even less contribution to sq2 and the incoming edges of all the intermediate nodes also need to be

considered.

To compute the impact of a temporary node (SQ) sq in an MQDG, we use the accumulated

impact that sq has brought to all its direct and indirect child nodes along all possible paths. Let

ChdS(sq) be the set of direct and indirect child nodes of sq, PthS(sq, c) be the set of paths from

sq to its child node c, NdeS(p) be the set of child nodes (including c) of sq on the path p from

sq to c, |p| denotes the length of path p, NE(x) is the number of incoming edges that node x has,

Ex(sq, c) is a function having value 1 if c is an external node of sq and having value 0 if c is an

internal node of sq, and In(sq, c) = 1−Ex(sq, c). Assume that, if sq′ is a direct child node of sq,

sq′ has only one incoming edge (from sq), and sq′ and sq belong to the same PQ, then sq brings 1

unit of impact to sq′. The following model/formula is derived to compute the impact of sq:

Imp(sq) =
∑

c ∈ ChdS(sq)

∑
p ∈ PthS(sq,c)

(Wd)
|p|−1 ∗ [WE ∗ Ex(sq, c) +WI ∗ In(sq, c)]∏

x ∈ NdeS(p)NE(x)
, (4.2)

where Wd ∈ (0, 1), WE > 0 and WI > 0 are real number constant coefficients.

The formula essentially calculates the total impact that sq has brought to all its direct and in-

direct child nodes along all possible paths. Wd represents the impact reducing rate as the distance

increases. For example, for a typical value Wd = 0.5 (it will be used in our remaining discussion),

the relevant impact contribution (Wd)
|p|−1 becomes 1.0, 0.5, 0.25, 0.125 ... for distance 1, 2, 3,

4, ..., respectively. We can see that the larger the distance is, the smaller the impact is. WE and

EI are the constant coefficients to differentiate the impact from an external node or an internal

node. For example, we can set WE = 2 and WI = 1 (they will be used in our remaining discus-
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Figure 4.4: The MQDG for the example

sion), which implies that an external node is twice as important as an internal node. The factor

1/
∏

x ∈ NdeS(p)NE(x) represents how the impact for node c from sq is affected by the number of

incoming edges for all the child nodes of sq along path p from sq to c.

Let us consider the example in Figure 4.4. Assume that we want to calculate the impact that sq1

has brought to sq6. First, all possible paths from sq1 to sq6 are listed:

(1) p1 = {< sq1, sq6 >};

(2) p2 = {< sq1, sq2 >, < sq2, sq6 >};

(3) p3 = {< sq1, sq2 >, < sq2, sq3 >, < sq3, sq5 >, < sq5, sq6 >}.
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Clearly, Ex(sq1, sq6) = 0, In(sq1, sq6) = 1.

For path p1, |p1| = 1, NE(sq6) = 3. Thus, the impact that sq1 has brought to sq6 through p1 is:

Imp(sq6) on p1 = (0.5)0∗1
3

= 1
3
.

For path p2, |p2| = 2, NE(sq2) = 1, NE(sq6) = 3. Thus, the impact that sq1 has brought to

sq6 through p2 is:

Imp(sq6) on p2 = (0.5)1∗1
1∗3 = 1

6
.

For path p3, |p3| = 4, NE(sq2) = 1, NE(sq3) = 1, NE(sq5) = 2 and NE(sq6) = 3. Thus,

the impact that sq1 has brought to sq6 via p3 is:

Imp(sq6) on p3 = (0.5)3∗1
1∗1∗2∗3 = 1

48
.

Therefore, the total impact that sq1 has brought to sq6 is to add the above three impact values

together, i.e., Imp(sq6) ≈ 0.52.

Let us provide an algorithm to estimate the impact of a temporary node in an MQDG using the

above formula. The main idea of the algorithm is to traverse all the paths from the given node in

a deep-first fashion to accumulate the impact values that the node has brought to each of its direct

and indirect child nodes.

ALGORITHM 4.5.1 : CalculateImpact(mqdg, t)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) temporary node (t).
Output: impact value of t.
Method:
1. it = 0;
2. for each direct child node n of t do
3. N = number of incoming edges of n;
4. if n.pqid = t.pqid then

/* n is an internal node */
5. in = WI /N;
6. else

/* n is an external node */
7. in = WE /N;
8. end if
9. it = it+in;

10. it = RecursiveAcc(mqdg, t, n, it, in);
11. end for
12. return it.

In Algorithm 4.5.1, in denotes the impact that t has brought to its current individual direct child
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node n along one path. For each direct child node n of t, in is calculated differently based on the

node type of n (internal or external node of t) (lines 4 - 8). A function RecursiveAcc() is called to

recursively calculate the impact that t has brought to the indirect child nodes of t along the current

path (line 10). Finally, the total impact that t has brought to all its direct and indirect child nodes

is returned (line 12).

ALGORITHM 4.5.2 : RecursiveAcc(mqdg, t, n, it, in)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) temporary node (t); (3) child node of
t (n); (4) current accumulative impact value of t (it) ; (5) current individual impact value in that t has brought to n
(in).
Output: impact value of t.
Method:
1. for each direct child node m of n do
2. N = number of incoming links of m;
/* n and m are both internal nodes or both external nodes*/

3. if (n.pqid = t.pqid and n.pqid = m.pqid) or (n.pqid! = t.pqid and m.pqid != t.pqid) then
4. im = Wd * in * (1/N);

/* n is an internal node and m is an external node*/
5. else if n.pqid = t.pqid and n.pqid != m.pqid then
6. im = Wd * in * (1/N)* WE /WI ;

/* n is an external node and m is an internal node*/
7. else if n.pqid != t.pqid and m.pqid =t.pqid then
8. im = Wd * in * (1/N) * WI /WE ;
9. end if

10. it = it + im;
11. it = RecursiveAcc (dg, t,m, it, im);
12. end for
13. return it.

Algorithm 4.5.2 is a recursive function to traverse all the (direct and indirect) child nodes of

an input node n in the depth-first fashion. The impact in that t has brought to n along a traversed

path is known as an input. The impact im that t has brought to each direct child node m of n is

computed based on in (lines 4, 6, 8) and the total impact it of t is accumulated (line 10). If the

node type (internal or external) ofm is the same as that of n (line 3), the relevant coefficient (WI or

WE) used in the impact calculation for im does not change (line 4). If the node type changes from

internal to external (line 5), the relevant coefficient used in the impact calculation for im needs to

change from WI to WE (line 6). If the node type changes from external to internal (line 7), the

relevant coefficient used in the impact calculation for im needs to change from WE to WI (line 8).
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Using function CalculateImpact(), the value for the impact of an SQ can be easily computed.

Next let us consider how to compute the value for the effectiveness of an SQ by using the MQDG.

The main idea is to calculate how many tuples on average can be computed from a unit (assume

that a unit in the result table is a tuple) of the result table for sq.

For each direct child node n of sq, the average number av of tuples of n, which can be derived

from keeping a tuple (unit) from the result of sq, is computed. This number av is considered as the

effectiveness of sq for n. To calculate such effectiveness, let us consider the following two cases.

Assume that the result sizes of sq and n are s1 and s2, respectively. The number of input tables for

n is num. In the first case, num equals to 1. It implies that the result tuples for n are totally derived

from the result of sq. Thus, the effectiveness of sq for n is computed by s2/s1. In the second case,

num is greater than 1, say num equals to 2. Assume that the size of another input table of n is s3.

The effectiveness of sq for n is calculated by s2/(s1+s3) since only part of the result for n is derived

from the result for sq. After the effectiveness of sq for all its direct child nodes are computed, the

accumulated value is considered as the total effectiveness of sq. Note that the effectiveness of a

node sq is about the storage utilization for producing the results of the (direct) child nodes of sq.

Since the results of the indirect child nodes of sq are produced from their direct parent nodes, the

storage of sq has little effect on its indirect child nodes. Hence, the indirect child nodes of sq are

not considered in calculating the effectiveness of sq.

Let DchdS(sq) be the set of direct child nodes of sq, DpadS(c) be the set of direct parent

nodes of a direct child node c of sq. The following formula is derived to calculate the effectiveness

of sq.

Eff(sq) =
∑

c ∈ DchdS(sq)

Size(Result(c))∑
t ∈ DpadS(c) Size(Result(t))

(4.3)
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The formula essentially computes the value for the total effectiveness of sq. Size(Result(c))

denotes the result size of each direct child node c of sq. Size(Result(t)) denotes the result size of

each direct parent node t of c. From the formula, we can see that, if c has only one input (direct

parent node), the effectiveness of sq for c is Size(Result(c))/Size(Result(sq)). Otherwise, the

effectiveness of sq for c is Size(Result(c))/(
∑

t ∈ DpadS(c) Size(Result(t))).

Let us consider the example in Figure 4.4. Assume that we want to calculate the effective-

ness of sq1. sq1 has three direct child nodes: sq2, sq6, and sq7. Size(Result(sq1)) is 100,

Size(Result(sq2)) is 50, Size(Result(sq6)) is 100, and Size(Result(sq7)) is 50.

The effectiveness of sq1 for its first direct child node sq2 is:

Eff(sq1) for sq2 =Size(Result(sq2))
Size(Result(sq1))

= 50
100

= 1
2
.

The effectiveness of sq1 for its second direct node sq6 is:

Eff(sq1) for sq6 = Size(Result(sq6))
Size(Result(sq1))+Size(Result(sq2))

= 100
100+50

= 2
3
.

Note that sq1 and sq2 are input tables of sq6.

The effectiveness of sq1 for its third direct node sq7 is:

Eff(sq1) for sq7 =Size(Result(sq7))
Size(Result(sq1))

= 50
100

= 1
2
.

Therefore, the accumulated effectiveness of sq1 is to add the above three effectiveness values

together, i.e., Eff(sq1) ≈ 1.67. In other words, every tuple of Result(sq1) has produced a little

more than 1.5 tuples for other SQs in the MQDG.

The following algorithm computes the effectiveness of a temporary node in the MQDG by using

the above formula.

ALGORITHM 4.5.3 : CalculateEffectiveness(mqdg, t)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) temporary node (t).
Output: effectiveness value of t.
Method:
1. et = 0;
2. for each direct child node n of t do
3. sizen = the size of the result table of n;
4. sizepn = 0;
5. for each direct parent node p of n do
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6. sizep = the size of the result table of p;
7. sizepn = sizepn + sizep;
8. end for
9. en = sizen / sizepn;

10. et = et+en;
11. end for
12. return et.

In Algorithm 4.5.3, et denotes the total effectiveness that t has brought for all its direct child

nodes. en represents the effectiveness that t has brought for its current individual direct child node

n. en is computed differently for a different child based on the number of inputs of n (lines 5 - 9)

and et is accumulated (line 10).

Now, we go back to discuss our benefit estimation model (1). Let us show an example for

estimating the benefit of an SQ in a completed PQ by using the model. Assume that a completed

PQ pq1 is composed of four SQs: sq1, sq2, sq3, and sq4. The impact values for sq1, sq2, sq3,

and sq4 are: 0.5, 0.9, 0.6, and 0.8, respectively. The effectiveness values for sq1, sq2, sq3, and

sq4 are: 2, 2.5, 1.5, and 1, respectively. The impact and the effectiveness in the model are of the

same importance, i.e., α = β =1. The current maximum impact is 1.0 and the current maximum

effectiveness is 3. The benefit of sq1 is desired. In this example, Imp(sq1) = 0.5. Eff(sq1) = 2.

Hence,

Benefit(sq1) = ( Imp(sq1)
Impmax

)α ∗ (Eff(sq1)
Effmax

)β = (0.5
1.0

)1 ∗ (2
3
)1 ≈ 0.33 .

Now we apply the model to compute the benefits for all SQs of a completed PQ in the MQDG to

identify critical nodes. This process is described as Process 1 in Figure 4.3. The detailed algorithm

is shown as follows:

ALGORITHM 4.5.4 : FindCriticalNode(mqdg, fpq, cmi, cme)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) a completed PQ (fpq); (3) current
maximum impact (cmi); (4) current maximum effectiveness (cme).
Output: a set of critical nodes for fpg, a set of value pairs (id, benefit), current maximum impact, and current maxi-
mum effectiveness.
Method:
1. Initialize cnset, BenefitList, TempimpList, TempeffList to empty;
2. for each SQ fsq in fpq do
3. impact = CalculateImpact(mqdg, fsq);
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4. save impact and id of fsq into TempimpList;
5. effectiveness = CalculateEffectiveness(mqdg, fsq);
6. save effectiveness and id of fsq into TempeffList;
7. end for
8. impmax = max{cmi, maximum value of impact in TempimpList};
9. effmax = max{cme, maximum value of effectiveness in TempeffList};

10. for each SQ fsq in fpq do
11. impact = impact of fsq in TempimpList;
12. effectiveness = effectiveness of fsq in TempeffList;
13. benefit = (impact/impactmax) ∗ (effectiveness/effmax);
14. if benefit > THRESHOLDB then
15. add fsq into cnset;
16. add id and benefit of fsq into BenefitList;
17. end if
18. end for
19. return cnset, BenefitList, impmax, and effmax.

Algorithm 4.5.4 first calculates the impact and effectiveness values for each SQ fsq of the

completed PQ fpq (lines 2 - 7). Next, the current maximum impact and the current maximum

effectiveness, which are used for normalization in the model, are updated (lines 8 - 9). After that,

the benefit estimation model is applied to calculate the benefit value for each SQ fsq of fpq (lines

10 - 13). If a benefit value is larger than a predefined threshold, the corresponding SQ is considered

as a critical node (lines 14 - 15).

4.6 Non-critical node removal

After critical SQs (nodes) are identified from a completed PQ, all non-critical nodes have to be re-

moved from the MQDG. However, after a node n is removed, how to deal with the edges associated

with n becomes an issue. Edges in an MQDG represent the dependency relationships on which our

benefit calculation relies. We have to maintain the dependency relationships among the remaining

nodes in the MQDG after the removal, including those went through the removed node n. Hence

non-critical nodes should be removed carefully and the relevant dependency relationships should

be transferred to the remaining nodes.

The following algorithm removes the non-critical nodes and transfers the dependency relation-

ships properly.
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ALGORITHM 4.6.1 : RemoveAndTransfer(mqdg, n)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) a node that needs to be removed(n).
Output: a revised mqdg.
Method:
1. let r be the result table of n;
2. let q be the query expression of n;
3. for each direct child node m of n do
4. replace r in the query expression of m by q;
5. for each direct parent node t of n do
6. create a directed edge from t to m in mqdg;
7. end for
8. end for
9. remove all the incoming and outgoing edges for n from mqdg;

10. remove n and relevant information from mqdg;
11. return mqdg.

In Algorithm 4.6.1, the given node n is safely removed and all dependency relationships are

transferred in four steps. In the first step, the query expressions for all the direct child nodes of

n are changed (lines 3 - 4). We know that the result table r for n is used by each of its direct

child node. Since n is to be removed, r will no longer exist. Hence, we replace r in the query

expression of each direct child node of n by the query expression of n. As a result, r is removed

from the domain of each direct child SQ (node). For example, consider sq1: σc1=v1 (R1); sq2:

σc2=v2 (Result(sq1)); where σ is the selection operation in the relational algebra. When sq1 is

removed, the query expression of sq2 is rewritten: σc2=v2 (σc1=v1 (R1)). In the second step, new

directed edges are generated from each direct parent node t of n to each of its direct child node

(lines 5 - 7). Essentially, the tables represented by the direct parent nodes of n are added to the

domain of each of its direct child nodes. In the third step, all the edges associated with n are safely

removed (line 9). In the last step, n and its relevant information are finally removed (line 10).

Let us use an example to illustrate how to remove a node and transfer all its dependency rela-

tionships in an MQDG using Algorithm 4.6.1. Assume that we are given an MQDG as shown in

Figure 4.4. The set of SQs in the figure includes:

1. sq1: πc1,c2,c3(σc1=v1(R1 ./ R2 ./ R3)),
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2. sq2: σc2=v2(R(sq1)),

3. sq3: σc3=v3(R(sq2)),

4. sq5: σc5=v5(R(sq3) ./ R(sq4)),

5. sq6: σc6=v6(R(sq1) ./ R(sq2) ./ R(sq5)),

6. sq7: σc2=v7(R(sq1)),

7. sq8: σc7=v8(R(sq6) ./ R(sq7)),

where R(sqi) denotes the result table of sqi.

Let us try to remove sq6 from the graph. In the first step, the query expressions of the nodes

that use the result table of sq6 are rewritten. In this example, sq8 is changed and rewritten: sq8:

σc7=v8((σc6=v6(R(sq1) ./ R(sq2) ./ R(sq5))) ./ R(sq7)).

Next, directed edges are generated from each direct parent node of sq6 to each direct child node

of sq6. In this example, the edges are generated from sq1 to sq8, sq2 to sq8 and sq5 to sq8. After

that all edges associated with sq6 are removed and finally, sq6 is removed. The resulting MQDG is

shown in Figure 4.5.

4.7 Critical node view space maintenance

The next issue we want to discuss in this Chapter is how to insert identified critical nodes into the

critical node view space (CNS). As we mentioned in Section 4.3, the CNS stores all the material-

ized views for the critical nodes. The size of the CNS is constrained. Therefore, when the CNS

overflows, we have to make a decision to remove some views to free space for accommodating

new critical nodes (views).

A straight-forward way is to apply a greedy strategy. The main idea is as follows: we first sort

all the new critical nodes, which are ready to be inserted into the CNS, according to their benefit

values. Next, we add as many critical nodes with the largest benefits as possible until the next
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Figure 4.5: An example of MQDG after sq6 is removed
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Figure 4.6: An example of the greedy strategy

critical node cannot be accommodated in the CNS. After that, the benefit of the node c whose

benefit is the largest among the remaining new critical nodes and the benefit of the node v whose

benefit is the smallest in the CNS are compared. If the benefit of c is greater than that of v, v is

replaced by c if possible. This process continues until no node in the CNS can be replaced. Let

us consider the example in Figure 4.6. The candidate critical nodes after sorting are c1, c2, c3, and

c4. c1 and c2 are firstly added into the CNS. The remaining space cannot accommodate c3. Thus,

the benefit of c3 is compared with that of v4 in the CNS. As a result, c3 is more beneficial and v4 is

replaced. Next, c4 is considered. Since the benefit of c4 is too small to replace any existing node

in the CNS, the insertion procedure stops, and c4 is discarded.

Note that the benefit of a new critical node nc and the benefit of an existing critical node ec in

the CNS are estimated at different time and based on different MQDGs. The nodes and edges in

an MQDG are updated quite often. Therefore, to adopt the greedy strategy, we have to re-estimate

the benefit of each ec based on the current MQDG.

In addition, we have to address a replacement failure problem. Let us consider the following

scenario. When the CNS has no space to save the next new critical node nc, the benefit of nc
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and that of the existing critical node ec1 whose benefit is the smallest in the CNS are compared.

Assume that the benefit of nc is larger. Using the above greedy strategy, ec1 should be replaced

by nc. But the replacement process may fail. The reason for that is as follows: after removing

ec1, the available space in the CNS is still not enough to accommodate nc. In this case, we adopt

a revised replacement strategy. Before actually replacing the nodes, we examine whether the re-

placing process can be done successfully. If so, ec1 is replaced by nc. Otherwise, the next existing

critical node ec2 whose benefit is the second smallest in the CNS is checked. The benefit of nc

and the total benefit of ec1 and ec2 are compared. If the latter is not smaller than the former, the

insertion process stops. Otherwise, we examine whether replacing both ec1 and ec2 by nc can be

done successfully. If so, ec1 and ec2 are replaced by nc. Otherwise, we check to see if replacing

three existing critical nodes by nc can be done, and so on.

The high-level flowchart of the above critical nodes insertion process is described as Process

2 and Process 2.1(greedy strategy) in Figure 4.3. The detailed algorithm, which is invoked in

Algorithm 4.4.1, is shown as follows:

ALGORITHM 4.7.1 : CriticalNodesInsertion (mqdg, cnset, vs,BenefitList, cmi, cme)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) a set of new critical node (cnset); (3)
view storage (vs) including temporary node view space (tns) and critical node view space (cns); (4) a set of value
pairs (id, benefit) for new critical nodes (BenefitList); (5) current maximum impact (cmi); (6) current maximum
effectiveness (cme).
Output: (1) revised vs; (2) revised mqdg.
Method:

/* the remaining space in the CNS is enough and insert all the new critical nodes into the CNS*/
1. if the total size of nodes in cnset ≤ the remaining space of cns then;
2. for each node n in cnset do
3. move n (i.e., its result table and related information) from tns to cns;
4. end for
/* the remaining space in the CNS is not enough*/

5. else
/* update the benefits for the existing critical nodes in the CNS*/

6. ecBenefitList = UpdateBenefit(mqdg, cns, cmi, cme);
7. ncBenefitList = BenefitList;
8. sort ncBenefitList in descending order and ecBenefitList in ascending order;
9. for each node(id) n in ncBenefitList do

/*the CNS can accommodate the node*/
10. if size(n) ≤ the remaining space in CNS then
11. move n (i.e., its result table and related information) from tns to cns;
12. remove n(including id and benefit) from ncBenefitList;

/*the CNS cannot accommodate the node*/
13. else
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14. benefitn = benefit of n from ncBenefitList;
15. m = the first node(id) from ecBenefitList;
16. benefitm = benefit of m from ecBenefitList;
17. initialize NodeList and add m into NodeList;

/*replace one or more existing critical nodes in the CNS by a new critical node. */
18. (flag, ecBenefitList) = RecursiveInsertion(n,NodeList, vs, benefitn, benefitm, ecBenefitList,mqdg);
19. if flag == true then
20. remove n(including id and benefit) from ncBenefitList;
21. else
22. break;
23. end if
24. end if
25. end for

/*clear the new critical nodes which are not accommodated in the CNS.*/
26. for each node(id) m in ncBenefitList do
27. RemoveAndTransfer(mqdg, m);
28. end for
29. end if.

Algorithm 4.7.1 inserts a set of new critical nodes into the CNS. It first checks that if the

remaining space in the CNS is large enough to accommodate all the new critical nodes (line 1).

If so, all the new critical nodes are inserted directed (lines 2 - 4). Otherwise, the remaining work

of the algorithm can be done in three phases. The first phase is called the preprocessing phase.

The benefit values for all existing critical nodes are updated using the current MQDG by invoking

a function UpdateBenefit() (line 6). Next, according to the benefit values, the new critical nodes

are sorted in the descending order and existing critical nodes are sorted in the ascending order

(line 8). The second phase is called the insertion phase. The algorithm inserts as many new

critical nodes as possible until not enough space left (lines 10 - 12). Next, a recursive function

RecursiveInsertion() is called to decide whether to insert a new critical node to replace one or

more existing critical node in the CNS (lines 13 - 24). The third phase is called the cleaning phase.

For all the remaining new critical nodes which are not inserted into the CNS, the algorithm calls

another function RemoveAndTransfer() to safely remove them from the MQDG (lines 26 - 28).

The invoked functions UpdateBenefit() and RecursiveInsertion() are given as follows:

ALGORITHM 4.7.2 : UpdateBenefit (mqdg, cns, cmi, cme)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) critical node view space (cns); (3)
current maximum impact (cmi); (4) current maximum effectiveness (cme).
Output: a set of value pairs (id, benefit) for existing critical nodes.
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Method:
1. initialize BenefitList to empty;
2. for each critical node n in cns do
3. impact = CaculateImpact(mqdg, n);
4. effectiveness = CaculateEffectiveness(mqdg, n);
5. benefit = (impact/cmi)α ∗ (effectiveness/cme)β ;
6. save (id of n, benefit) into BenefitList;
7. end for
8. return BenefitList.

Algorithm 4.7.2 is a function to update the benefits for all the existing critical nodes in the CNS

using the given MQDG. It first updates the impact and the effectiveness for each existing critical

node n in the CNS (lines 3 - 4). Next, it applies the benefit estimation model to calculate the

potential benefit for each n and save (node id, benefit) value pairs into a benefit list (lines 5 - 6).

Finally, the benefit list is returned (line 8).

ALGORITHM 4.7.3 : RecursiveInsertion(n, nodelist, vs, benefitn, benefitt, ecBenefitList,mqdg)
Input: (1) a new critical node (n); (2) an existing critical node (m); (3) a list of existing critical nodes (NodeList);
(4) view space (vs) including temporary node view space (tns) and critical node view space (cns); (5) the benefit of
node n (benefitn); (6) the total benefit of nodes in NodeList (benefitt); (6) a set of value pairs (id, benefit) for the
existing critical nodes (ecBenefitList); (7) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ).
Output: a boolean value, a set of value pairs (id, benefit).
Method:
1. sizen = size of n;
2. sizet = total size of all the nodes in NodeList;
3. freespace = remaining space in cns;
4. flag = false;

/*the benefit of the new critical node n is larger than that of one or more existing critical node*/
5. if benefitn > benefitt then

/* node n cannot be accommodated in the CNS after removing one or more existing critical node */
6. if sizen > sizet + freespace
7. let m = last node in NodeList;
8. find the next node t following m in ecBenefitList;
9. add t into NodeList;

10. benefitt = benefitt + benefit of t from ecBenefitList;
11. return RecursiveInsertion(n,NodeList, vs, benefitn, benefitt, ecBenefitList,mqdg);

/* replace n with one or more existing critical nodes*/
12. else
13. for each node p in NodeList do
14. RemoveAndTransfer(mqdg, p)
15. remove p (i.e., the result table and related information of p) from cns;
16. remove the value pair (id, benefit) for p in ecBenefitList;
17. end for
18. move n (i.e., the result table and related information of n) from tns to cns;
19. flag = true;
20. return flag and ecBenefitList;
21. end if
22. else
23. return flag and ecBenefitList;
24. end if
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Algorithm 4.7.3 is a recursive function to decide whether replacing a set of existing critical

node in the CNS by a new critical node. A node list NodeList, which contains the identifiers of a

list of existing critical nodes, is one of the inputs of this function. If the benefit of the new critical

node n is larger than the total benefit of nodes in NodeList (line 5), the size of n and the size

of the available space in the CNS (including the size of the remaining space in the CNS and the

total size of nodes in NodeList) are compared. If the size of n is larger, it implies that the new

critical node cannot be accommodated into the CNS even if some existing critical nodes (the nodes

in NodeList) in the CNS are removed. Therefore, another existing critical node is added into

NodeList and the function calls itself to decide whether replacing a new set of existing critical

nodes (NodeList) in the CNS by n (lines 6 - 11). If the size of the available space in the CNS is

larger, it means that n can be inserted successfully. Thus, the insertion process is done as follows:

first, the nodes in NodeList are removed from the MQDG and the CNS (lines 14 - 15). Next, n is

inserted into the CNS and the insertion success flag is set and returned (lines 18 - 20). Otherwise,

the benefit of n is equal or smaller than the total benefit of nodes in NodeList, it means that the

insertion process cannot be done successfully. Hence, an insertion failure flag is returned (lines 22

- 23).

Note that the greedy strategy we discussed above seeks a locally optimal solution. There may

be a solution that is better than the one found. Let us consider the following example. Assume

that size(CNS) is 10. There are three views in the CNS: v1, v2, and v3. size(v1), size(v2), and

size(v3) are 2, 4, and 3, respectively. benefit(v1), benefit(v2), and benefit(v3) are 4, 3, and 2,

respectively. Three new critical nodes c1, c2, and c3 are ready to be inserted. size(c1), size(c2),

and size(c3) are 3, 2, 2, respectively. benefit(c1), benefit(c2), and benefit(c3) are 3, 2.5, and 2,

respectively. Using the greedy strategy, c1 is considered to be inserted first since its benefit is the

largest among the three. However, the remaining space in the CNS is not enough to accommodate
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c1. Thus, benefit(c1) is compared with benefit(v3) (v3 has the smallest benefit in the CNS) and

v3 is replaced. After that, the insertion process stops. The total benefit of the nodes in the CNS is:

4+3+3=10. However, there exists a better solution, i.e., replacing v3 by c2 and c3 instead of c1. In

this case, the total benefit is: 4+3+2.5+2=11.5.

We notice that the problem of maximizing the total benefit of the critical nodes in the CNS is

similar to the classic knapsack problem, i.e., we have a set of items (existing critical nodes and new

critical nodes) which are ready to be added into a bag (CNS). Each item has a value (benefit) and a

weight (size). The total weight of items (total size) is larger than the weight of the bag (size of the

CNS). The target is to find a subset of items which can be accommodated in the bag and the total

value is maximized. The most popular solution for the knapsack problem is to apply a dynamic

programming (DP) algorithm. Therefore, in our work, we propose another insertion method based

on the DP technique.

The only difference between our problem and the knapsack problem is that, in our problem,

most items (existing critical nodes) are in the bag (CNS) before the algorithm starts while in the

knapsack problem, all the items are not in the bag at the beginning. Hence, to solve the knapsack

problem, we find an optimal subset solution based on all the items and only insert the items in the

subset into the bag. However, in our problem, we do not need to consider all the items (existing

nodes and new nodes). Some popular items which are in the bag (popular existing critical nodes)

may never be moved out (replaced by the new critical nodes). In this case, we only consider those

unpopular existing critical nodes (c1) and all the new critical nodes (c2), and apply the DP based

method on c1 and c2 to find an optimal subset solution. In this way, the problem size could be

reduced, which makes the DP algorithm to exhibit a reasonable performance even in the worst

case.

The main idea is to identify the set uec of unpopular existing critical nodes from the CNS and
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Figure 4.7: An example of the DP based insertion method

apply the DP based algorithm on uec and all the new critical nodes to find an optimal inserting

solution. Assume that the total benefit of the new critical nodes is smaller than that of the existing

critical nodes in the CNS. First, all the existing critical nodes in the CNS and all the new critical

nodes are sorted in the descending order by their benefit values, respectively. Next, the CNS is

divided into two subspaces cns1 and cns2 with the same size: s1 and s2. s1 and s2 can be adjusted

slightly to make two subspaces to accommodate an integer number of nodes. Since the nodes in

the CNS have an order, after dividing, the nodes with relatively large benefits are in cns1. Hence,

we consider the nodes in cns1 as the popular existing critical nodes. Next, we determine whether

the existing critical nodes in cns2 are popular. Let us use an illustrative example in Figure 4.7 to

show how to determine whether the nodes in cns2 are popular. In the example, the total benefit

and the total size of the existing critical nodes in cns2 are denoted by b3 and s3, respectively. We

estimate how many new critical nodes can be accommodated in the remaining space of the CNS.

Assume that two new critical nodes can be inserted directly, their total size and total benefit are

denoted by s5 and b5, respectively. After that, for the remaining of the new critical nodes, we
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consider how many of them can replace the existing nodes in cns2. Assume that two critical nodes

are considered. Their total size and total benefit are s6 and b6, respectively. If b3 is smaller than b6,

it means that replacing the existing nodes in cns2 by the new critical nodes can bring benefit. In

this case, we consider the existing nodes in cns2 as unpopular nodes. Next, the DP based approach

is applied based on the unpopular nodes in the cns2 and all the new critical nodes. Otherwise, if b3

is not smaller than b6, it means some nodes in cns2 can be considered as popular existing critical

nodes. In this case, cns2 will be divided in two subspaces cns21 and cns22, and repeat the same

analysis on subspace cns22.

In general, let v1, v2, ..., vk (k ≥ 0) be the existing critical nodes1 in the (current) CNS cns,

listed in the descending order of their benefit values; let c1, c2, ..., ct (t ≥ 1) be the new critical

nodes, listed in the descending order of their benefit values. Clearly, the free space size for cns is:

size(free cns) = size(cns)−
k∑
j=1

size(vj). (4.4)

Let s be the largest integer2 in [0, t], satisfying:
s∑
i=1

size(ci) ≤ size(free cns). (4.5)

If s = t, all the new critical nodes can fit in the free space of cns. In such a case, no DP based

algorithm is needed – the problem has been solved. If s < t and the following condition holds:

∑
ci∈X

benefit(ci) <
k∑
j=1

benefit(vj), (4.6)

where3

1If k = 0, there is no existing critical node in cns. Assume
∑0
j=1(...) = 0 in such a case.

2If s = 0, the leading new critical node cannot fit in the free space. Condition (4.5) is trivially true.
3Informally, X contains the first m new critical nodes ci1 , ci2 , ..., cim from list cs+1, cs+2, ..., cs that can fit in the

remaining space of cns (after removing the space taken by c1, ..., cs) to the maximum capacity.
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X = {cin | s+ 1 ≤ in ≤ t AND 1 ≤ n ≤ m AND iu < iw(for any u < w) AND

im is the 1st integer in [s+ 1, t] such that
m∑
n=1

size(cin) ≤ [size(cns)−

s∑
i=1

size(ci)] AND
m∑
n

size(cin) + size(cj) > [size(cns)−
s∑
i=1

size(ci)]

for any j ∈ [im + 1, t] } (4.7)

we split cns into two subspaces cns1 and cns2 with sizes:

size(cns1) =
r∑
j=1

size(vj) (4.8)

where r is an integer in [1, k] such that
∑r−1

j=1 size(vj) < size(cns)/2 and
∑r

j=1 size(vj) ≥

size(cns)/2; and

size(cns2) = size(cns)− size(cns1). (4.9)

When Condition (4.6) is true, we recursively use subspace cns2 (in place of cns) as the current

space to perform the above analysis until Condition 4.6 does not hold for the current space. When

Condition (4.6) does not hold, we apply the DP based algorithm on all the new critical nodes4 and

the unpopular existing critical nodes in the current space to find an optimal subset of (new and/or

existing) critical nodes to be inserted into the current space.

The high-level flowchart of the DP based critical nodes insertion process is described as Process

2 and Process 2.1(dynamic programming strategy) in Figure 4.3. The detailed algorithm is shown

as follows:

ALGORITHM 4.7.4 : CriticalNodesInsertion (mqdg, cnset, vs,BenefitList, cmi, cme)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) a set of new critical node (cnset); (3)
view storage (vs) including temporary node view space (tns) and critical node view space (cns); (4) a set of value

4Assume that any critical node that cannot fit in the current space has been removed from consideration.
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pairs (id, benefit) for new critical nodes (BenefitList); (5) the current maximum impact (cmi); (6) the current maxi-
mum effectiveness (cme).
Output: (1) revised vs; (2) revised mqdg.
Method:

/* the remaining space in the CNS is enough and insert all the new critical nodes into the CNS*/
1. if the total size of nodes in cnset ≤ the remaining space of cns then;
2. for each node n in cnset do
3. move n (i.e., its result table and related information) from tns to cns;
4. end for
/* the remaining space in the CNS is not enough*/

5. else
/* update the benefits for the existing critical nodes in the CNS*/

6. ecBenefitList = UpdateBenefit(mqdg, cns, cmi, cme);
7. ncBenefitList = BenefitList;
8. sort ecBenefitList and ncBenefitList in descending order;

/* invoke DP based function to insert new critical nodes.*/
9. DivideAndInsertion (mqdg, cns, tns, ncBenefitList, ecBenefitList);

10. end if

Algorithm 4.7.4 inserts a set of new critical nodes into the CNS. If the remaining space of

the CNS is large enough to accommodate all the new critical nodes, the new nodes are directly

inserted (lines 1 - 4). Otherwise, we sort all existing critical nodes in the CNS and new critical

nodes in the descending order by the benefit values, respectively (line 8) and invoke a function

DivideAndInsertion() to recursively determine the unpopular critical nodes in the CNS, apply a

DP based method to find an optimal subset of insertion nodes, and complete the insertion process

(line 9). The invoked function DivideAndInsertion() is given as follows.

ALGORITHM 4.7.5 : DivideAndInsertion (mqdg, cns, tns, ncBenefitList, ecBenefitList)
Input: (1) multiple query dependency graph mqdg = (V,E, P, S, FS , FP ); (2) the current critical node view space
(cns); (3) the temporary node view space (tns); (4) a set of value pairs (id, benefit) for new critical nodes (ncBenefitList);
(5) a set of value pairs (id, benefit) for existing critical nodes in cns (ecBenefitList).
Output: updated cns, tns and mqdg.
Method:
1. ncBenefitList1 = ncBenefitList, ecBenefitList1 = ecBenefitList;
2. freespace = sizecns − total size of existing (critical) nodes in cns;
3. b1 = total benefit of existing critical nodes in cns;
4. s1 = total size of existing critical nodes in cns;

/*some new critical nodes may fit in the free space of cns (see Condition (4.5))*/
5. n = the first node in ncNodeList1;
6. FitInSize1 = 0;
7. while FitInSize1 + sizen ≤ freespace do
8. FitInSize1 = FitInSize1 + sizen;
9. remove n from ncNodeList1;

10. n = the first node in ncNodeList;
11. end while;

/*estimate the total benefit (b2) of nodes which can replace the
existing nodes in cns from the remaining new critical nodes.*/

12. FitInSize2 = 0, b2 = 0, s1 = s1 + (freespace− FitInSize1);
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13. for each node m in ncNodeList1 do
14. if FitInSize2 + sizem ≤ s1 then
15. b2 = b2 + benefitm;
16. FitInSize2 = FitInSize2 + sizem;
17. end if;
18. end while;

/*compare b1 and b2 to determine whether the existing nodes in cns are popular.*/
19. if b1 ≤ b2 then /*the nodes in cns are unpopular */

/* combine the unpopular critical nodes and new critical nodes together.*/
20. combine ncBenefitList and ecBenefitList into a unified combinedBenefitList;
21. remove each node t with sizet > sizecns from combinedBenefitList;
22. extract all nodes, benefits, and sizes from combinedBenefitList into

three lists: NodeList, BenefitList, and SizeList, respectively;
/*invoke DP algorithm with the space limit of sizecns*/

23. cnList = DPChecking(NodeList, BenefitList, SizeList, sizecns);
/*inserting desirable new critical nodes and removing undesirable existing critical nodes.*/

24. for each node t in (cns-cnList) do
25. remove t (i.e., the result table and related information) from cns;
26. RemoveAndTransfer(mqdg, t);
27. end for
28. for each node t in (cnList-cns) do
29. move t (i.e., the result table and related information) from tns to cns;
30. end for
31. for each node t in (ncNodelist-cnList) do
32. RemoveAndTransfer(mqdg, t);
33. end for
34. else /*some existing nodes in cns are still popular */
35. actualsizecns1 = 0;
36. while actualsizecns1 < sizecns/2 do
37. n = the first node in ecNodeList1;
38. remove n from ecNodeList1;
39. actualsizecns1 = actualsizecns1 + sizen ;
40. end while
41. let cns2 be the subspace of cns that keeps critical nodes in ecNodeList1;
42. DivideAndInsertion (mqdg, cns2, tns, ncBenefitList, ecBenefitList1);
43. end if

Algorithm 4.7.5 recursively determines a set of unpopular existing critical nodes in cns and

adopts a DP based approach to search an optimal subset of new and unpopular critical nodes to

store in the CNS. Lines 1 - 4 initialize some variables and obtain necessary information about

cns. Lines 5 - 11 check to see which leading new critical nodes in ncNodeList can fit in the free

space of cns (i.e., applying Condition (4.5)). Lines 12 - 18 check to see which remaining new

critical nodes can substitute the existing critical nodes in cns (i.e., using Equation (4.7)). Lines 19

- 33 handle the case in which Condition (4.6) does not hold. In this case, the algorithm combines

the lists of new and unpopular critical nodes into one (lines 20 - 22) and applies a DP method

to find the optimal subset solution (line 23). To reduce the input size for the DP problem, the
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algorithm removes those critical nodes which cannot fit in the current critical space (line 21). The

algorithm then removes the unselected existing critical nodes from the CNS (lines 24 - 27), moves

the selected new critical nodes from the TNS to the CNS (lines 28 - 30), and discards the unselected

new critical nodes (lines 31 - 33). Lines 34 - 43 handle the case in which Condition (4.6) holds.

In such a case, the algorithm divides the current cns into two subspaces cns1 and cns2 based on

Equations (4.8) and (4.9) (lines 35 - 41). The algorithm then recursively invokes itself for subspace

cns2 (line 42).

The invoked function DPChecking() is given as follows.

ALGORITHM 4.7.6 : DPChecking(NodeList, BenefitList, SizeList, SpaceLimit)
Input: (1) a list of canidate critical nodes (NodeList); (2) the list of benefits for all nodes in NodeList (BenefitList);
(3) the list of sizes for all nodes in NodeList (SizeList); (4) a space limit (SpaceSize).
Output: a set of critical nodes.
Method:
1. Initialize B, TraceBack and cnList;
2. for m = 0 to SpaceLimit do
3. B[0,m] = 0;
4. end for
5. num = the number of nodes in NodeList;
6. for i = 0 to num do
7. for m = 0 to SpaceLimit do
8. if ((SizeList[i] < m) and (BenefitList[i] +B[i− 1,m− SizeList[i]] > B[i− 1,m])) then
9. B[i,m] = BenefitList[i] +B[i− 1,m− SizeList[i]];

10. TraceBack[i,m] = 1;
11. else
12. B[i,m] = B[i− 1,m];
13. end if
14. end for
15. end for
16. K = SpaceLimit;
17. for i = n downto 1 do
18. if TraceBack[i,K] ==1 then
19. n = NodeList[i];
20. add n to cnList;
21. K = K - SizeList[i];
22. end if
23. end for
24. return cnList;

Algorithm 4.7.6 is a DP based function which determines a subset of candidate critical nodes

in the given input list to make the total benefit of nodes in the subset to be maximized under the

given input space limit. At the beginning, two arrays B and TraceBack are constructed (line 1).
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B is used to store the maximum benefit (combined) of any subset of critical nodes of different size

limits. TarceBack is used to find each critical node after the optimal benefit was reached. First,

a nested loop is applied and the optimal benefit under the input space limit is computed (lines 5 -

15). After that, we use TraceBack to find each critical node which was used to reach the optimal

benefit (lines 16 - 23). Finally, the optimal subset of critical nodes is returned (line 24).

Note that, given a set of candidate critical nodes and a space limit, the above DP based function

can guarantee to find a subset of the given critical nodes that maximizes the total benefit under the

given space limit. However, the worst-case complexity of such a DP method is exponential with

respect to the input problem size (i.e., the number of given candidate critical nodes in our case).

The greedy strategies adopted in Algorithm 4.7.5 help reduce the input problem size. Hence, our

second method using Algorithms 4.7.4 - 4.7.6 is essentially a hybrid DP and greedy approach for

maintaining the CNS. For simplicity, we still refer to this method as the DP based approach in this

paper to distinguish it from the first purely greedy one using Algorithms 4.7.1 and 4.7.3.

4.8 Experiments

To evaluate the performance of this technique, we conducted simulation experiments. The typical

experimental results are reported in this section.

4.8.1 Experiments setup

Experiment programs were implemented in Matlab 2007 on a PC with Intel R© dual core (1.5 GHz)

CPU and 4 GB memory running the Windows R© 7 operating system.

100 random generic progressive queries (PQ) and 10 external tables with uniformly distributed

data were used in our experiments. The sizes for external tables ranged from 1 to 1000 disk blocks

and each disk block contained 4096 bytes. Each PQ was composed of one or more step-queries

(SQ), where the number of steps was randomly chosen between 2 and 10. Each SQ could have one

111



or more input tables (external tables or previous SQ result tables) and the number of inputs was also

randomly generated between 1 and 5. The result table size of an SQ was calculated by multiplying

the product of all the input table sizes with a selectivity. The I/O cost was approximated by the

product of the input table sizes of the SQ.

In addition, each input table of an SQ could be either an external table or a result table for

an executed SQ (temporary SQ or critical SQ). The probabilities to choose an external table or a

result table for an SQ were not kept the same in our experiments. It was assumed that users had a

higher preference to choose the result tables for SQs over external tables for their new SQs since a

user tends to utilize their previous results in their new SQs. Hence, the result tables for SQs were

assigned a larger probability to be chosen.

To build the relevant multiple query dependency graph (MQDG), we recorded the starting and

ending times for each PQ and the execution time for each SQ. The maximum number of PQs

allowed to be executed simultaneously in the system was set to 10. The MQDG and the critical

node view space (CNS) were initially set to empty. When the processing of a new PQ started,

its executed SQs were added into the MQDG gradually. Each SQ not only had a chance to use

the results of previous SQs from the same or other in-process PQs in the MQDG but also had a

chance to use the results of critical SQs in the CNS. When a PQ pqi was completed, we applied the

model/formula introduced in Section 4.5 to estimate the potential benefit of each SQ in pqi. After

the benefits of all the SQs in pqi were estimated, we choose those SQs which could bring sufficient

potential benefits as critical SQs (nodes) and the critical nodes were saved in the CNS if possible.

In the following experiments, the default setting is as follows: Wd was set to 0.5, WE was set to 2,

WI was set to 1, α and β were set to 1, the space limit of the CNS was set to 25000 disk blocks,

and the DP based approach was adopted to address the CNS maintenance issue. We conducted the

following experiments according to different purposes.
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Figure 4.8: Performance of different PQ processing approaches

4.8.2 Performance of the critical nodes based PQ processing approach

The first experiment was conducted to evaluate the efficiency of our critical node based PQ pro-

cessing approach. The experiment compared the performance among the no-critical node based

PQ (NCPQ) processing approach, the randomly picked critical nodes based PQ (RCPQ) process-

ing approach, and the estimated critical nodes based PQ (ECPQ) processing approach. The NCPQ

uses only temporary nodes (results of SQs of in-process PQs) in the MQDG for processing SQs,

while the RCPQ and the ECPQ can utilize both temporary nodes and critical nodes in the MQDG

as their inputs. The difference between the RCPQ and the ECPQ is that for the RCPQ, the crit-

ical nodes are randomly picked from the completed PQs, while, for the ECPQ, the critical nodes

are selected from the completed PQs based on our benefit estimation model. The performance

comparison is shown in Figure 4.8.

The X-axis represents the total number of SQs executed in the test, and the Y-axis represents
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the I/O cost (i.e., the number of disk block accesses). The main trend of the figure is that the ECPQ

approach is performed better than the RCPQ approach, and the RCPQ approach is performed better

than the NCPQ approach. The reason for that is as follows: compared to the ECPQ and the RCPQ,

the NCPQ has fewer materialized views (nodes) to utilize from the MQDG. Hence, the NCPQ has

less chance to improve the performance of the SQs. As a result, the performance of the NCPQ is

the worst among the three. For the ECPQ and the RCPQ, the numbers of views they can utilize to

optimize the SQs from the MQDG are the same while the quality of the views are different. The

critical nodes (views) discovered by using the ECPQ represent the results for popular SQs in the

past, while the critical nodes found by using the RCPQ represent the results for randomly chosen

SQs. Therefore, the ECPQ can better optimize the SQs and reach a higher performance. From the

figure, we can see that at the beginning, the performance difference among the three curves is not

very significant, as more and more PQs were executed, more and more critical nodes were selected

to optimize the future SQs. As a result, at the right end of the figure, a significant performance

improvement can be observed.

4.8.3 Performance of benefit estimation model with different parameters

The following two experiments were conducted to evaluate how the factors in the benefit estimation

model affect the performance of our ECPQ based processing approach. Recall that, for the benefit

estimation model we introduced in Section 4.5, α and β represent the importance of the impact

and the effectiveness in the model, respectively, and Wd denotes the impact reducing rate as the

distance increases.

In the second experiment, three value pairs (α, β) were set: (0.5, 1), (1, 1), and (1, 0.5), while

other parameters remained the same. Figure 4.9 shows the performance comparisons by using

the ECPQ among different value pairs for α and β. As we mentioned before, α and β represent

the importance of the impact and the effectiveness in the benefit estimation model, respectively.
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Figure 4.9: Performance of ECPQ with different α and β

The smaller the value is, the larger the corresponding importance is. From the figure, we can see

that the ECPQ with α of 0.5 and β of 1 has the best performance. It indicates that giving more

importance to the impact than the effectiveness in the model can achieve a better performance.

From this experiment, we can see that actually, the importance of the impact is higher than that of

the effectiveness in the benefit estimation model.

In the third experiment, Wd was set to different values: 0.1, 0.5, and 1, while other parameters

remained the same. Figure 4.10 shows the performance comparisons by using the ECPQ among

different values for Wd. From the figure, we can see that the performance of the ECPQ with Wd

of 0.5 is the best among the three. The reason for that is as follows. Wd affects the impact of an

SQ sq1. It determines that how much impact the indirect child nodes of sq1 can receive. If Wd

is too small, e.g., Wd = 0.1, it means the indirect child nodes of sq1 can contribute little to the

impact of sq1. Therefore, the estimation model has a trend to select nodes which have many direct

child nodes but few indirect child nodes as critical nodes. In this case, the model may not be able
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Figure 4.10: Performance of ECPQ with different Wd

to differentiate the following two nodes: n1 and n2, which have the same number of direct child

nodes, but n1 has many indirect child nodes while n2 has no indirect child node. It is clear that

n1 is better than n2. On the other hand, if Wd is too large, e.g., Wd = 1, it means that the indirect

child nodes of sq1 can contribute the same as the direct child nodes of sq1 to the impact of sq1.

Therefore, the estimation model has a trend to select nodes which have many indirect child nodes

as critical nodes. In this case, the model cannot differentiate the following two nodes, n1 and n2,

which have the same number of child nodes (including direct and indirect), but all the child nodes

of n1 are direct child nodes, while nearly all the child nodes of n2 are indirect child nodes. It is

also clear that n1 is better than n2. Hence, Wd is an important affecting factor in the model and it

needs to be set to a proper value, e.g., 0.5.
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Figure 4.11: Performance of CNS Maintenance Methods

4.8.4 Performance of different CNS Maintaining Strategies

The fourth experiment was conducted to compare the performance behaviors between the DP based

approach and the greedy based approach for maintaining the CNS. The CNS was allocated and

assigned with a certain space limit (25000 disk blocks). It was initially set to empty. As more and

more PQs were processed, the CNS was expanded larger and larger. Finally, the space limit was

reached. Hence, a mechanism is required to decide whether the new critical nodes which were

identified from a completed PQ can replace some existing nodes in the CNS. As we mentioned

before, two different strategies (greedy based approach and DP based approach) are adopted.

Figure 4.11 shows the performance comparisons between the DP based approach and the greedy

based approach. From the figure, we can see that the DP based approach outperforms the greedy

based approach as we thought. At the beginning, two curves are coincided together because the

CNS was not full and the space maintaining methods were not applied. After the CNS overflowed,
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both methods started to work. The DP based approach usually keeps a set of critical nodes with

a higher overall quality in the CNS. Hence, the critical nodes kept in the CNS by using the DP

based approach have a better chance to improve future SQs. As a result, an improvement can be

observed towards the right of the figure.

The next experiment was conducted to compare the computing cost between the DP based

approach and the greedy approach. The experiment data was the same as the previous one. The

total computing time was 0.041 second by using the DP based approach and 0.0029 second by

applying the greedy approach. The total execution time for the 100 tested PQs in both cases was

1.8 second (average in 10 runs). From the experiment, we can see that the computing time by

using the DP based approach is much higher than that by applying the greedy approach. However,

compared to the total query execution time, the cost for the dynamic programming based method

is still acceptable.

4.8.5 Performance of different space limits of CNS

We varied the space limit for the CNS in this experiment and wanted to see how it would affect

the performance of the ECPQ. For a given space limit, when the CNS overflowed, the DP based

approach was used to maintain the CNS. The motivation for doing this experiment was as follows.

This study would help us find an appropriate solution to balance the time complexity and the space

complexity. In this experiment, the space limit for the CNS was varied between 0 and 100000 disk

blocks. The performance behavior was shown in Figure 4.12. From the figure, we can see that,

the general trend of the performance curve is that, as the space limit for the CNS increases, the

performance becomes increasingly better. Furthermore, we noted that, at the beginning, the cost

decreases sharply. It means that increasing a small space limit could bring a dynamically improved

performance. However, as the space limit continues increasing, the performance curve becomes

more and more flat. It is observed that a balanced solution for our experiment case is about 35000
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Figure 4.12: Performance behavior for different space limit of CNS

disk blocks.

The results of our research in this chapter were reported in [129, 133].
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CHAPTER 5
A Dynamic Materialized View Index

When we discussed a materialized view based approach for processing generic PQs in Chapter 4,

our focus was on how to select promising critical nodes. After we have got critical nodes, how to

efficiently use them is also an important issue, which has not been discussed. In this chapter, we

study how to efficiently find usable views from the VS (view space) for answering SQs. We present

a so-called dynamic materialized view index (DMVI). The structure of the DMVI is introduced in

Section 5.1. A bitmap matching technique, which is considered as part of the DMVI technique,

is presented in Section 5.2. The DMVI construction issue is discussed in Section 5.3. The view

search by using the DMVI is described in Section 5.4, and the view maintenance issue for the

DMVI is discussed in Section 5.5.

5.1 Index structure

We want to develop an efficient method to search for potential usable views (TMVs or CMVs)

from the VS to answer given SQs. A straightforward way to do this is to apply a sequential scan

on the VS. Each view in the VS is checked to see if it is a usable view for answering the given SQ.

However, the overhead of this approach is usually high, especially when the number of views is

large. Note that, in general, matching a view with a given query (i.e., checking if the former can

be used to answer the latter) is computationally expensive. Hence, developing an efficient view

access method to rapidly identify usable views for answering SQs is crucial in achieving efficient

optimization for PQs.

In this chapter, we develop a dynamic materialized view index (DMVI) to efficiently find the

views that are potentially usable for answering the SQs. However, the special characteristics of
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the materialized views for PQs raise some new challenges. The first challenge is that all the ma-

terialized views are dynamically generated while PQs are processed. Therefore, the DMVI has

to be dynamically updated to access new views. The second challenge is the high complexity of

maintaining the VS since the TMVs are created and removed with a high frequency. Furthermore,

all of the CMVs in the VS are transformed/selected from the TMVs. Therefore, the DMVI has to

be efficiently maintained in accordance with the VS.

The main idea of the DMVI is to dynamically build an index for all the materialized views in

the VS. For each view v in the VS, its corresponding query expression contains the input tables of

v. Unlike a conventional index on a table, which uses the attribute values as search keys to find

the satisfied rows of the table, the DMVI uses the identifiers of the view input tables as the search

keys to find the usable views. We call the set of all the input tables of an SQ (view) the domain of

the SQ (view). Hence, we also call an input table a domain table. The criterion used to search the

DMVI is that the domain of a usable view is the same as that of the given SQ. Note that, although

a view may also be usable if its domain is a superset of the domain of the given SQ, such a view

usually does not match the given SQ as closely as a view whose domain equals to that of the SQ.

To reduce the number of views returned from the index search, we do not consider the superset

criterion. On the other hand, it is not guaranteed that the views returned from the equal-domain

criterion are always usable for answering the given SQ. Hence, a refined checking (bitmap based

method) on the usability of the returned views is required. Therefore, the DMVI is an approximate

index with an objective to return a set S of materialized views for a given SQ such that (1) the

views in S match the given SQ as closely as possible; (2) the size of S is as small as possible. The

views in S are then examined to see if they can be used to efficiently process the given SQ.

The data structure of the DMVI is an ordered tree in which there is an order among the children

of a node. Each leaf node of the tree represents one or multiple materialized views which share the
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Figure 5.1: An example of the DMVI

same search path in the DMVI. Each internal node n (except the root) represents a domain table

t. In other words, n is associated with the identifier of the domain table t. For any view v in a

leaf node whose search path contains n, its domain must contain t. The root node of the tree is the

starting point for a search. The domain tables labeled on the path between the root and a leaf node

for a materialized view v are all the domain (input) tables for v. Note that, for simplicity, we will

use a domain table and a domain table identifier interchangeably in our discussion. Fig. 5.1 shows

an example of the dynamic materialized view index, where four materialized views v1, v2, v3 and

v4 are indexed and four domain tables t1, t2, t3 and t4 are used by the views. The domains of v1

and v2, for example, are {t1, t2} and {t1, t3}, respectively. t1 and t2 are used as a search key for v1

in the DMVI.

As mentioned earlier, the first challenge in creating an index for the views in PQ processing
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is that all the materialized views are dynamically generated. To tackle this challenge, the DMVI

must support how to dynamically incorporate new views. In the previous example, assume that

we have another materialized view v5 whose domain tables are: t1 and t4. v5 can be indexed in

the tree in two alternative ways: (1) create an internal node n12 labeled with t4 and connect n12

to n2 as a child, then create a leaf node n13 for v5 and connect n13 to n12 as a child; (2) create an

internal node n14 labeled with t1 and connect n14 to n4 as a child, then create a leaf node n15 for

v5 and connect n15 to n14 as a child. To avoid ambiguity, we need a priority order for the nodes for

insertions in the DMVI.

Our priority order is given as follows: for two internal nodes n and m in the DMVI that share

the same direct parent node, if n is on the left to m in the DMVI, n is assigned with a higher

priority than m for building search paths for views. If the domain of a view v contains two tables

labeled by n and m, and n has a higher priority than m, then, n rather than m is selected as the

next node on the search path of v.

More specifically, suppose we want to index a new materialized view v in the DMVI. Assume

that node ni is either the root or the current chosen internal node for building the search path of v

in the DMVI, and ni has m ordered (from the left to the right) children (internal nodes): n1, n2,

..., nm. The domain tables represented by these internal nodes are t1, t2, ..., tm, respectively. The

criterion to decide the next internal node for building the search path for v is given as following:

Case 1: n1 is chosen to be the next node on the search path for v if the domain of v contains

table t1.

Case 2: n2 is chosen to be the next node on the search path of v if the domain of v contains t2

but not t1.

......

Case m: nm is chosen to be the next node on the search path of v if the domain of v contains
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tm but not t1, t2, ..., or tm−1.

If none of node nj (1 ≤ j ≤ m) has its labeled table contained in the domain of v and the

domain of v still has tables that have not been labeled on the search path of v, one of unlabeled

domain table(s) t is selected and a new internal node representing t is created as a child node of ni.

If all domain tables of v have been labeled on the search path of v, a leaf node is created/chosen

(if already exists) at the end of the path.

In the previous example, two candidate nodes considered are n2 and n4. n2 is on the left to n4.

Hence, n2 rather than n4 is chosen to build the search path of v5. n3 is excluded because table t2

represented by n3 is not in the domain of v5.

From the rule, we can observe two properties of the DMVI.

(1) At the first level of the tree (i.e., the level just below the root), if the leftmost internal node n

is labeled with a domain table t, then all the indexed views whose domains contain t can be found

in the subtree rooted at n.

(2) At the first level of the tree, if an internal node n that is not the leftmost node is labeled with

a domain table t, then all the indexed views whose domains contain t can be found in the subtree

rooted at n or the subtrees rooted at the nodes on the left to n. Note that the internal node with t as

a label must be at a higher level in the latter case.

In general, given an internal node n[m] labeled with a domain table t at the m-th level of the

tree, if an indexed view v is under the subtree rooted at n[m], t must be the m-th domain table of

v; if v is under a subtree rooted at a node on the left to n[m], the node with t as a label can only be

found at a level higher (>) than m; if v is under a subtree rooted at a node on the right to n[m], the

node with t can only be found at a level lower (<) than m.

The second challenge of creating an index for views in the VS is the high complexity of the

view maintenance in the VS, As mentioned earlier, the DMVI has to be efficiently maintained in
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accordance with the VS.

On one hand, the DMVI should support a logical level transformation from a TMV to a CMV

(not physically move the view). As mentioned earlier, each leaf node of the DMVI stores infor-

mation of one or more views. The information of a view includes the view name, a view type

indicator to differentiate the view types (TMV or CMV), etc. We will discuss the details of the

view information structure in Section 5.3. When a view transformation occurs, the view itself and

all its related information are kept unchanged except the view type indicator.

On the other hand, it is required to safely and efficiently remove the search paths in the DMVI

which are associated with invalid TMVs or CMVs. Furthermore, since in general, an SQ can be

formulated using as inputs the external (base) tables, the result tables of the previous SQs of in-

process PQs (i.e., TMVs) and the result tables of the SQs of historical PQs (i.e., CMVs), the TMVs

and CMVs can also be the domain tables of an SQ besides the external tables. This implies that

CMVs and TMVs can appear in the search keys for the views indexed in the DMVI. Therefore,

how to adapt search paths in the DMVI that contain invalid TMVs or CMVs is also an important

issue. We will discuss the details of the DMVI maintenance in Section 5.5.

5.2 View bitmap-based matching in the DMVI

The main purpose of introducing the DMVI is to efficiently find usable views for answering the

SQs. Using the structure of the DMVI introduced in Section 5.1, the system filters out unusable

views in the VS and only returns the views that share the same domain as the SQ to be processed.

However, as mentioned earlier, the returned views are not guaranteed to be usable for answering

the SQ. To reduce the number of cases in which we have to directly examine a returned view for its

usability, which is computationally expensive, we adopt an efficient refined filtering mechanism,

which is called the bitmap-based matching.
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The query expression of a view is encoded as several bitmaps in a special way. The bitmaps

are saved in the DMVI. As mentioned before, each leaf node of the DMVI stores the information

of a view. The information includes: the view name/identifier, the view type (indicator), the query

expression of the view, the view bitmaps, and the view location. Hence, the view bitmaps can be

accessed in the leaf nodes of the tree. As we will see, the bitmap encoding method depends on the

domain of a query expression (for a view or an SQ). In other words, the bitmap encoding method

is the same for those query expressions that share the same domain. When an SQ sq arrives, the

system creates the bitmaps for the query expression of sq using a certain bitmap encoding method.

Next, the index discussed in Section 5.1 is searched to find all the leaf nodes whose associated

views share the same domain with sq. For each view in the returned set, its bitmaps are compared

with those for sq. If the bitmaps for a view do not match with that for sq, the view is filtered out.

Note that our bitmap matching is different from a conventional view matching. As we will see,

even if a view passes the bitmap matching, it still may not be usable for answering sq. A final

direct view matching examination is needed. However, using the bitmap matching technique, the

number of candidate views for the direct view matching examination is further reduced.

Like most related work in the literature, we consider the common select-project-join query

expressions (for SQs and views) and assume that the (qualification) conditions for the select and

join operations are in the conjunctive normal form (CNF) in the following discussion.

To encode a query expression (for an SQ or view), a bitmap encoding method is required. As

mentioned above, our encoding method depends on the domain of the query expression. Specif-

ically, the bitmap encoding method creates three bitmaps: one for each operation (i.e., project,

select and join) of the query expression. Given a domain T (consisting of input tables), its encod-

ing method is described as follows:

(1) The project bitmap: the bitmap for the project operation (π) of the query expression.
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For each domain table t in T , the project bitmap assigns a bit for each attribute a of t. If a

appears in the target attribute list of the project operation, the bit for a in the bitmap is set

to 1. Otherwise, the bit for a is set to 0. Let us consider a simple example. Assume that

T contains only one domain table t. t has four attributes: a1, a2, a3, and a4. The encoding

method allocates a bit for each of a1, a2, a3 and a4. If the given query expression is: πa1,a2
(t),

then the bits for a1 and a2 are set to 1 and the bits for a3 and a4 are set to 0. Hence, the project

bitmap for this query is 1100.

(2) The select bitmap: the bitmap for the select operation (σ) of the query expression.

For each domain table t in T , each attribute of t is analyzed and its value range is divided into

n subranges. n can be 1 if the range of a is difficult to divide. For example, it is difficult to

divide the range of an attribute a1 representing the paper title in a paper table. A bit segment

that contains n bits is assigned for a, one bit for each subrange of a.

If the range of a is restricted by one or more clauses in the CNF of the condition of the select

operation, the bits in the bit segment for a are set accordingly. Let us consider a simple

example. Assume that attribute a1 represents the age of a person and its range is from 0 to

150. The bitmap encoding method divides the range of a1 into 5 subranges: (0, 30], (30,

60], (61, 90], (91, 120] and (120, 150]. Then the encoding method assigns a bit segment

which contains 5 bits for a1. Assume that the given query expression is: σa1>70(t). In the bit

segment for a1, the bits for the subranges with at least one value satisfying the condition are

set to 1, and the other bits are set to 0. Note that, although only some (not all) values in the

subrange [61, 90] satisfy the query condition, its corresponding bit in the bit segment is set

to 1. Hence, the bit segment for a1 in this example is 00111.

If the range of a is not restricted by any clause in the CNF of the condition of the select op-
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eration, all the bits of the bit segment of a are set to 1. In other words, we take a conservative

approach by keeping all the subranges. The select bitmap consists of all the bit segments for

the attributes of the domain tables in T .

(3) The join bitmap. the bitmap for the join operation (./) of the query expression.

To generate a bitmap for a join operation, all the possible attribute pairs that can be used for

a join operation are discovered from the domain tables in T first. Such an attribute pair is

called a join pair. For each join pair, it is assigned with a bit in the bitmap. If a join pair

appears in the join condition of the query expression (with any comparison such as =, <,

>), then its bit in the bitmap is set to 1. Otherwise, the bit is set to 0.

Now let us discuss how to use the bitmaps to compare a given SQ sq with a view v. As we

mentioned earlier, the main purpose of the bitmap matching is to filter out unusable views that are

returned by the searching on the DMVI tree. The key idea is to prune some views which have no

containment relationship with the SQ, namely, the views do not contain the result of the SQ.

Assume that the query expressions of v and sq are encoded using the same bitmap encoding

method (i.e., v and sq have the same domain). The process of the bitmap matching can be done in

three stages.

In the first stage, the project bitmap pbm1 for v and the project bitmap pbm2 for sq are compared.

The bit value of 1 represents that its corresponding attribute appears in the result of the relevant

query. Therefore, if the bit for an attribute a in pbm1 is 0 but in bpbm2 is 1, it means that a is in

the result of sq but not in v. Hence, the system can conclude that v cannot contain the result of

sq. To compare pbm1 and pbm2, the system performs a bitwise complement on pbm2 first and then

a bitwise OR on pbm1 and pbm2. If the result contains 0, it means v cannot contain the result of

sq. For example, if pbm1 is 00111, pbm2 is 10011. First, a bitwise complement is performed on
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pbm2 to get 01100. Then, a bitwise OR is applied on pbm1 and pbm2, resulting in 01111. Since

the result contains 0, v cannot contain the result of sq. Hence, v is filtered out.

In the second stage, the select bitmap sbm1 for v that has passed the first stage test and the select

bitmap sbm2 for sq are compared. If the bit segment for an attribute a in sbm1 indicates a narrower

range (i.e., missing some 1’s) than the bit segment for a in sbm2, it implies that v restricts the range

of a in its select operation more, i.e., the select operation filters out more rows than sq. Hence,

there may exist some rows in the result of sq but not in v. In other words, v cannot contain the

result of sq. In this case, v should be filtered out. Similar to the first stage, a bitwise complement is

performed on sbm2 first, then a bitwise OR is applied on sbm1 and sbm2. If the result contains 0,

it implies v cannot contain the result of sq. For example, assume that each of the two bitmaps for

v and sq consists of only one bit segment, say, sbm1 is 00011 and sbm2 is 00001. First, a bitwise

complement is performed on sbm2, resulting in 11110. Then, a bitwise OR is applied on sbm1 and

sbm2, resulting in 11111. Thus, the containment relationship between v and the result of sq is still

unknown. v needs to be further examined.

In the third stage, the join bitmap jbm1 for v that has passed the second stage test and the join

bitmap jbm2 for sq are compared. Each bit in the join bitmap indicates the occurrence of a pair of

join attributes in the condition of the join operation for a given query. If the join bitmaps of v and

sq are different, it is very difficult to determine if the containment relationship between v and sq

holds, which makes the view matching examination difficult. To reduce the view matching cost,

we exclude such views from consideration. Hence, we require jbm1 and jbm2 to be the exactly

same. Otherwise, v is filtered out.

From the above discussion, we can see that our complete DMVI consists of the tree structure

discussed in Section 5.1 and the bitmaps presented in this section. The objective of the DMVI is

to efficiently filter out those views that are clearly unusable for answering the given SQ or very
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difficult to perform view matching, resulting in a small set of candidate views. The candidate

views are then further examined (i.e., perform view comparison) to see if they are indeed usable

for answering the given SQ.

Let us consider the following example: assume that there are two tables T1 (t1_id, name, age)

and T2 (t2_id, annual_salary). The bitmap encoding method for the domain {T1, T2} is defined

as follows: the project bitmap contains five bits corresponding to five attributes in T1 and T2:

t1_id, name, age, t2_id, and annual_salary. Since only the ranges of age and annual_salary

can be easily divided, the range of age is divided into five subranges: (0, 30], (30, 60], (60, 90], (90,

120], (120, 150], and the range of annual_salary is also divided into five subranges: (0, 50000],

(50000, 100000], (100000, 500000], (500000, 1000000], (1000000,∞). Hence, the select bitmap

contains thirteen bits: five for age, five for annual_salary, and three for other attributes (i.e., one

for each). The join bitmap contains only one bit corresponding to the join pair (t1_id, t2_id).

Assume that we want to check if a view v can match an SQ sq. The query expressions of sq

and v are shown as follows:

sq: πname(σage>60 and annual_salary>5000(T1
./

t1_id=t2_id T2));

v: πname, age(σage>30(T1
./

t1_id=t2_id T2));

First of all, the query expressions of both sq and v are encoded and six bitmaps are gener-

ated: ProjectBitmapsq is: 01000; SelectBitmapsq is: 0011101111111; JoinBitmapsq is:1;

ProjectBitmapv is: 01100; SelectBitmapv is: 0111111111111; JoinBitmapv is:1.

Next, the system performs a bitwise complement on ProjectBitmapsq (10111) first and then a

bitwise OR on ProjectBitmapsq and ProjectBitmapv. The result is 11111. No 0 is contained.

After that, the system applies a bitwise complement again on SelectBitmapsq (1100010000000)

and a bitwise OR on SelectBitmapsq and SelectBitmapv. The result is also straight 1. Finally,

JoinBitmapsq and JoinBitmapv are compared and they are exactly the same. Therefore, v is
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considered to match sq and is returned.

5.3 The DMVI construction

In this section, we discuss the details of the DMVI construction. The DMVI is dynamically created.

If no view is indexed, the DMVI contains only a root node. When the result table of an SQ becomes

a materialized view v, it is added into the VS and indexed in the DMVI. The main idea is to build

a search path p for v in the DMVI using the domain tables of v as the elements of the search key.

Each internal node in p represents a domain table (i.e., a search key element) of v. The leaf node

which is at the end of p stores the information of v.

In Section 5.1, we defined a priority order for the existing internal nodes of the index tree to

determine the unique search paths of new views. In this section, we discuss how to construct

the DMVI as an ordered tree. We need two orderings for the domain tables, i.e., the order of the

domain tables of new view v and the order of the domain tables for the entire workload. The former

determines which domain table (internal node) of v is inserted (created) first. The latter determines

where to insert a domain table of v in the tree in relation to other domain tables in the DMVI. Let

us consider the following example. Assume that a domain table t is selected and the internal node

in representing t is to be inserted into the DMVI as a child node of n. n has one existing child

node cn. How to insert in is ambiguous because in can appear on the left or the right to cn. In this

case, the order of the domain tables for the entire workload is required. The policy we use is that

the domain table with a higher priority appears on the left.

To solve the above two ordering issues, we assign different priorities to different domain tables.

A two-level priority rule is used to order the domain tables. At the first level, the domain tables

are recognized only by their types (TMVs, CMVs, or external tables). The priority order for these

three domain table types from high to low are: TMVs, CMVs, and the external tables. At the
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second level, within each table type, an older (i.e., created earlier) domain table is given a higher

priority. With the two-level priority rule, the order of the domain tables of v and the order of the

domain tables in the entire workload can be determined.

Let us consider an example: given a set of domain tables: T = {cmv1, et2, et1, tmv2, tmv1},

where cmv1 is a CMV; tmv1 and tmv2 are TMVs; et1 and et2 are external tables. Assume that an

older table has a smaller subscript index. To determine the order of the tables in T , the tables are

first sorted by the table types: tmv2, tmv1, cmv1, et2, et1. After that, the tables are further sorted

by their time order within each type. The ordered list is: tmv1, tmv2, cmv1, et1, et2.

Now let us discuss how to index a new view v in the DMVI. The basic process is described as

follows. All the domain tables of v are sorted by the two-level priority rule. The domain tables in

the entire workload are also sorted by the rule and saved in a workload list. The domain tables of v

are picked up one at a time in the given order. For the first picked domain table t1, each child node

of the root at the first level of the tree is checked. If there exists an internal node n1 labeled with t1,

then n1 is picked as the first node element on the search path for v. Otherwise, a new internal node

n2 representing t1 is created. In this case, we need to decide where to insert n2 in relation to other

existing first level nodes. Clearly, n2 must be a child node of the root. In the DMVI, if a node has

multiple child nodes, the order (from the left to the right) of these child nodes is determined by the

order of their labeled domain tables in the workload list. Thus, the labeled domain table of each

child node of the root is compared with that of n2 one by one from the left to the right according

to the order in the workload list. In this way, the system can find a unique place to insert n2 in

relation to other first level nodes. Next, the insertion process is recursively applied to incorporate

other domain tables of v into the search path of v. After all the domain tables of v are labeled on

the search path, a leaf node is created/chosen (if already exists) to save the information of v.

The following recursive algorithm describes the procedure for inserting (indexing) a new view
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(v) into the DMVI (dmvi). At the beginning, the algorithm is invoked using the root node of

the DMVI (for cnode) and the complete list of domain tables of the view (for cdomainlist). It

assumes that the input lists of the domain tables for both the view (cdomainlist) and the workload

(workloadlist) have been sorted using the two-level priority rule.

ALGORITHM 5.3.1 : ViewInsertion(v, dmvi, cnode, cdomainlist, workloadlist)
Input: (1) the new view v for indexing; (2) the DMVI dmvi; (3) the node cnode in the DMVI that leads the remain-
ing search path of the view; (4) the list cdomainlist of current (unprocessed) domain tables of the view; (5) the list
workloadlist of domain tables in the workload.
Output: the revised DMVI.
Method:
1. if cdomainlist is empty then
2. if a child node lnode of cnode is a leaf node then
3. save view info for v in lnode;
4. else
5. create a leaf node lnode with view info for v;
6. link lnode to cnode as the rightmost child;
7. end if
8. return;
9. else

10. let ftable be the first domain table in cdomainlist;
11. remove ftable from cdomainlist;
12. if there exists a child node dnode of cnode in dmvi associated/labeled with ftable then
13. ViewInsertion(v, dmvi, dnode, cdomainlist, workloadlist);
14. else
15. create an internal node inode for ftable;
16. if cnode has no child node then
17. link inode to cnode as the only child;
18. ViewInsertion(v, dmvi, inode, cdomainlist, workloadlist);
19. else
20. find the right position for inode among the ordered children of cnode based on the order

given in workloadlist;
21. link inode to cnode as a child at the right position;
22. ViewInsertion(v, dmvi, inode, cdomainlist, workloadlist);
23. end if
24. end if
25. end if.

The algorithm recursively builds the search path for a new view v in the DMVI. If all domain

tables of v have been picked out to build the search path of v (line 1), a leaf node is used (if exist)

or created (if not exist) at the end of the path to save the information of v (lines 2 - 7). Otherwise, a

domain table ftable from the domain table list of v is picked up, an internal node inode that labels

ftable is used (if exist) or created (if not exist), and inode is added into the search path of v (lines
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12, 14 - 17, 19 - 21). After that, the function calls itself to insert remaining domain tables of v into

the search path (lines 13, 18, 22). Using the above algorithm, we can build the DMVI dynamically

by inserting every new view when it becomes available.

Assume that the number of materialized views isN and the maximum number of domain tables

for each view is M . Usually, M << N . The worst-case time complexity to construct a DMVI for

N materialized views is O(MN +N(N + 1)/2) = O(N2).

5.4 View searching using the DMVI

Let us describe how to apply the DMVI to find the usable views in the VS for the view matching.

When an SQ sq is issued, the set T of domain tables of sq is extracted and sorted using the two-

level priority rule. According to T , a proper bitmap encoding method is applied to generate the

bitmaps for sq. The ordered tables in T are used as the search key to find the leaf node ln. For

each view v in ln, the bitmaps are extracted and compared with those of sq. If the view is not

filtered out by the three-stage bitmap matching, the view is returned. Using the DMVI, as we will

see in Section 5.6, the number of the candidate views that are used to perform the final direct view

comparison for an SQ is significantly reduced. The details of the view searching algorithm are

specified as follows:

ALGORITHM 5.4.1 : SeachViews(sq,dmvi)
Input: (1) a new SQ sq; (2) the DMVI dmvi.
Output: a set of matched views.
Method:
1. domainsq = Domain of sq;
2. sort domain tables in domainsq using the two level priority rule;
3. encode the query expression of sq using the bitmap encoding method for domainsq;
4. ProjectBitmapsq = the project bitmap of sq;
5. SelectBitmapsq = the select bitmap of sq;
6. JoinBitmapsq = the join bitmap of sq;
7. search dmvi using domainsq as the search key;
8. if no leaf node found then
9. return ∅;/*return empty*/
/*some views which share the same domain with sq are found.*/

10. else
11. n = the reached leaf node;
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12. for each view v in n do
13. ProjectBitmapv = the project bitmap of v;
14. SelectBitmapv = the select bitmap of v;
15. JoinBitmapv = the join bitmap of v;
16. if (-ProjectBitmapsq) | (ProjectBitmapv) contains 0 then

/*‘|′ represents the bitwise OR; ‘-′ represents the bitwise complement */
17. continue;
18. else if (-SelectBitmapsq) | (SelectBitmapv) contains 0 then;
19. continue;
20. else if JoinBitmapsq == JoinBitmapv then
21. continue;
22. else
23. add v into V iewList;
24. end if
25. end for
26. return V iewList;
27. end if.

In this algorithm, lines 1 - 3 extract the domain of the given SQ sq, sort its domain by using the

two-level priority rule, and encode the query expression of sq by using the corresponding bitmap

encoding method. Three bitmaps for sq are made available for later view comparison (lines 4 - 6).

Line 7 searches the DMVI by using the domain of sq as the search key. If no leaf node is reached,

then the empty view set is returned (lines 8 - 9). Otherwise, each view v in the discovered leaf

node is checked (lines 11 - 12). Three bitmaps for v are also made available (lines 13 - 15). If all

bitmaps for sq are matched with those for v, then v is added into the found view set (lines 16 - 24).

Finally, the view set that contains all the matched views is returned (line 26).

Assume that the number of materialized views is N and the number of leaf nodes of a DMVI

is M . To search a usable view using the DMVI, the worst-case time complexity (number of views

searched) is O(N) (all the views are in one leaf node), which is the same as that of the view

sequential search. However, the average time complexity of searching a view using the DMVI

is O(N/M), which is usually much better than that O((1 + N)/2) of the view sequential search

since M is usually much greater than 2. When the bitmap matching is applied, the actual number

of view comparisons can be further reduced.
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5.5 The DMVI maintenance issues

The next issue we want to discuss in this Chapter is how to maintain the DMVI when a view v

(TMV or CMV) is removed from the VS. The work can be done in two stages. In the first stage,

we focus on how to update the search path for invalid view v in the DMVI. The main idea is shown

as follows. The domain of v is used as the search key to find its representing leaf node n. If n

contains some other views besides v, it means that, although v is removed, its search path is still

used by other views. Thus, the search path of v remains unchanged, and only the view information

of v in n is removed. Otherwise, the search path of v is directly removed (remove n and some

useless internal nodes). The algorithm runs as follows:

ALGORITHM 5.5.1 : PathRemove(v,dmvi)
Input: (1) the view v to be removed; (2) the DMVI dmvi.
Output: the revised DMVI.
Method:
1. domainv = Domain of v;
2. sort domain tables in domainv using the two-level priority rule;
3. search dmvi using domainv as the search key;
4. if no leaf node found then
5. return;
/*The leaf node which contains v is found.*/
6. else
7. n = the reached leaf node;

/*The search path of v is shared by other views in the DMVI.*/
8. if n contains multiple views then
9. remove the information of v in n and return;

/*The search path of v becomes invalid.*/
10. else

/*Remove the search path of v in the DMVI.*/
11. RecursiveRemove(n,dmvi);
12. end if
13. end if.

In this algorithm, lines 1 and 2 extract the domain of the removed view v and sort that domain

using the two-level priority rule. Line 3 searches the DMVI by using the domain of v as the search

key. If no leaf node is found, it means that the view is not indexed in the DMVI, thus, no further

work needs to be done (lines 4 - 5). Otherwise, the discovered leaf node is checked. If the leaf
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node contains other views except v, then only the information of v is n is removed (lines 8 - 9). If

the leaf node contains only v, then function RecursiveRemove() is called to recursively move the

search path of v in the DMVI (lines 11).

The following function recursively removes the search path of an invalid view in the DMVI.

The input of the function is a node n which is either a leaf node or an internal node in the DMVI.

Line 1 finds the direct parent node m of n, and line 2 safely removes n and its associated links. If

m still has direct child nodes, it means that m is shared by the search paths of other views, then the

function stops here and the search path removing work is completed (lines 3 - 4). Otherwise, the

function calls itself to recursively remove m (lines 5 - 6).

ALGORITHM 5.5.2 : RecursiveRemove(n,dmvi)
Input: (1) a node n in the DMVI; (2) the DMVI dmvi.
Output: the revised DMVI.
Method:
1. m = the direct parent node of n in dmvi;
2. remove n and its associated links;
3. if m is the root or has other direct child nodes then
4. return;
5. else
6. RecursiveRemove(m,dmvi);
7. end if.

However, only updating the search path of v in the DMVI is not sufficient. Let us consider an

example. After an SQ of a PQ is executed, its result table is saved as a TMV v1 and indexed in the

DMVI. Assume that v1 is used by some other SQs. When the PQ is completed, the SQ needs to

be discarded or transformed into a CMV. In the former case, view v1 should be removed from the

VS. As a result, the search keys (i.e., the search paths) of all the views whose domains include v1

become invalid. Therefore, in the second stage, for all the views whose domains contain v, their

search paths need to be rebuilt.

First, we have to find all the views whose domains contain v. A straightforward way to do this

is to traverse the DMVI. However, we can make use of the properties of the DMVI to improve such
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a search. According to the first property of the DMVI mentioned in Section 4.2, at the first level

of the tree, if an internal node n is the leftmost child node of the root and its labeled domain table

t becomes invalid, all the views whose domains contain t can be found in the subtree rooted at n.

Furthermore, according to the second property of the DMVI, at the first level of the tree, no matter

where node n whose domain table t becomes invalid is, all the views whose domains contain t can

be found in the subtree rooted at n or the subtrees rooted at the nodes on the left to n. Therefore,

there is no need to search the nodes on the right to n.

Since TMVs need to be removed and transformed frequently while CMVs and external tables

are relatively stable, the search paths that involve TMVs have a high chance to become invalid.

Furthermore, the search paths that contain elder views also have a high chance to become invalid.

By using the two-level priority rule, the TMVs or elder views which are used as search keys in the

DMVI are picked first and inserted into more left branches than its brother nodes which represent

CMVs/external tables or newer views. Therefore, it is easier to search views whose domains

contain invalid TMVs or elder views. As a result, the overall DMVI maintenance performance

is improved. This is one of the reasons why the priority order (two-level priority rule) for node

insertions was defined as such.

Let us consider the following example. Assume that, in a given DMVI, four TMVs tmv1 ∼

tmv4 and one CMV cmv1 are indexed; four external tables et1 ∼ et4 are used as domain tables;

tmv1, tmv2, and cmv1 are also used as domain tables. The DMVI is shown in Figure 5.2.

In the figure, we can see that tmv1 and tmv2 are labeled by the first level nodes n2 and n3 in

the DMVI. If tmv1 becomes invalid, to find all the views whose domains contain tmv1, only the

subtree rooted at n2 needs to be searched. If tmv2 becomes invalid, to find all the views whose

domains contain tmv2, only the subtrees rooted at n2 and n3 need to be searched.

After all the views v′s whose domains contain the invalid view v are discovered, the search path
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Figure 5.2: An example of the DMVI with views as domain tables

for each v′ is rebuilt. The main idea to rebuild the search path for v′ is shown as follows. The old

search path for v′ is removed first. The removing process is similar to that of deleting the search

path of a removed view in the DMVI, as described before. Next, the query expression qe of v′

is rewritten by merging it with the query expression of v after the occurrence(s) of v is removed,

and the domain T of v′ is updated by replacing v in T with the domain tables of v. After that,

the domain tables in T are sorted using the two-level priority rule, and v′ with the updated T is

inserted back to the DMVI.

Let us consider the following example. Assume that the domain T1 of a view v1 is: {ec1,

ec2}; the query expression of v1 is: πec1.a1
(ec1

./
ec1.a1=ec2.a2 ec2); the domain T2 of a view v2 is:

{ec3, v1}; the query expression of v2 is: πec3.a3
(v1

./
v1.a1=ec3.a3 ec3). In this example, the domain

of v2 contains v1. Hence, if v1 is removed, the search path for v2 in the DMVI becomes invalid
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and has to be rebuilt. The old search path for v2 is removed first. Based on T1 and the query

expression of v1, T2 is changed to {ec1, ec2, ec3} and the query expression of v2 is rewritten as:

πec3.a3
((πec1.a1

(ec1
./

ec1.a1=ec2.a2 ec2))
./

ec1.a1=ec3.a3 ec3). After that, the new query expression is saved

and the domain tables in T2 are sorted and used to build a new search path for v2.

The algorithm to rebuild search paths for all the views whose domains include the invalid views

is summarized as follows:

ALGORITHM 5.5.3 : RebuildPath(v,dmvi,workloadlist)
Input: (1) a removed view v; (2) the DMVI dmvi; (3) the list workloadlist of domain tables in the workload.
Output: the revised DMVI.
Method:

/*find all the views whose domains contain v.*/
1. initialize firstlevelnode and leafnode;

/*find all the first level nodes in the DMVI.*/
2. firstlevelnode = the direct child nodes of the root in dmvi from left to right;

/*v is labeling a first level node in the DMVI and some unnecessary branches are pruned.*/
3. if v is labeling a node n in firstlevelnode then
4. traverse the sub-tree rooted at n and add the reached leaf nodes into leafnode;
5. remove n and right brothers of n in firstlevelnode;
6. for each node t in firstlevelnode do
7. for each path p rooted at t do
8. if v is labeling a node in p then
9. find the leaf node of p and add into leafnode;

10. end if
11. end for
12. end for

/*v is not labeling any first level node in the DMVI and the whole tree is traversed.*/
13. else
14. for each path p in dmvi do
15. if v is labeling a node in p then
16. find the leaf node of p and add into leafnode;
17. end if
18. end for
19. end if

/*rebuild the search path for each view whose domain contains v */
20. for each node n in leafnode do
21. for each view v′ in n do
22. domainv′ = Domain of v′;
23. domainv = Domain of v;
24. replace v in domainv′ by domainv;
25. rewrite the query expression of v′;
26. sort domain tables in domainv′ using the two level priority rule;
27. root = root node of dmvi;
28. ViewInsertion(v′,dmvi,root,domainv′ ,workloadlist);
29. end for
30. end for

/*remove the search path for each view whose domain contains v.*/
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31. for each node n in leafnode do
32. if n exists in dmvi then
33. m = direct parent node of n;
34. while m is labeled by v do
35. m = direct parent node of m;
36. end while
37. remove the subtree rooted at m;
38. RecursiveRemove(m,dmvi);
39. end if
40. end for

In this algorithm, the work is done in two phases. In the first phase, given the invalid view v,

all the views whose domains contain v are discovered (lines 1 - 19). In the second phase, for each

view discovered from the first phase, its search path is rebuilt (lines 20 - 40).

In the first phase, based on the properties of the DMVI, some unnecessary searches are pruned.

If v is represented by a first level node n in the DMVI (line 3), then the properties of the DMVI

can be used and only the subtree of n and the subtrees of the left brothers of n are checked. First,

the subtree of n is traversed and the reached leaf nodes are directly added into a leaf node set (line

4). Next, the subtree of each left brother of n is traversed. If a search path p contains a node

representing v, then the leaf node in p is added into the leaf node set (lines 6 - 12). Otherwise, v

does not appear as a first level node in the DMVI. Then the whole tree is traversed and leaf nodes

whose search paths contain nodes representing v are added into the leaf node set (lines 13 - 19).

In the second phase, for each view v′ in the discovered leaf nodes from the first phase, its search

path is rebuilt. Since v becomes invalid and the domain of v is still available, to make the search

path of v′ usable, the algorithm updates the domain of v′ by replacing v with the domain of v (lines

23 - 24). After that, the query expression of v′ is rewritten (line 25), the updated domain of v′ is

sorted (line 26) using the two-level priority rule, and a new search path is built for v′ in the DMVI

by using the ordered domain of v′ as the search key (lines 27 - 28). Next, all the search paths that

contain v are removed from the DMVI (lines 31 - 40).
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Assume that the number of views indexed in the DMVI is N and the maximum number of

domain tables for each view is M (M << N ). To delete a view from the DMVI, the worst-case

time complexity is O(4MN − 2M + (N − 1)(N − 2)/2) = O(N2).

5.6 Experiments

In this section, we report the results of our experiments to demonstrate the efficiency of the DMVI

based technique.

5.6.1 Experiments setup

The experiment programs were implemented using Matlab 2010 on a PC with Intel R© dual core

(1.5 GHz) CPU and 4 GB memory running the Windows R© 7 operating system. The underlying

DBMS used to run the SQs of a PQ was MySQL.

In our experiments, 100 random progressive queries and 50 random external tables with uni-

formly distributed data were generated. The number of SQs in each PQ was randomly chosen

between 2 and 20. The sizes for external tables ranged from 1 to 1000 disk blocks with each disk

block containing 4096 bytes. The experiments were begun by running (the SQs of) the first PQ

and ended after having completed all (100) PQs on MySQL. The timestamps were used to record

the starting and ending times for SQs of PQs. Multiple PQs were executed simultaneously. The

maximum number of PQs that could be run at the same time was set to 10. A DMVI was dynami-

cally constructed to index the materialized views which were generated by the system. The DMVI

was also used to efficiently search usable views for answering the SQs.

Each SQ sq was generated in two steps. First, the domain of sq was determined. The domain

of sq contains one or more domain tables, where the domain size is randomly chosen between 1

and 5. Each domain table of sq could be either an external table or a materialized view (TMV or
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CMV). The probabilities for choosing an external table and a materialized view were set differently

in our experiments. We assumed that users preferred to choose previous SQ results (i.e., TMVs

and CMVs) over external tables for their new SQs if possible. Hence, CMVs and TMVs were

assigned a larger probability (i.e., 0.75) of being chosen than that for external tables (i.e., 0.25).

Second, the query expression of sq was built. According to the domain T of sq, attributes were

randomly chosen from the domain tables in T to determine the project operations (target attributes),

select operations (attributes whose ranges were restricted), and join operations (pairs of joining

attributes).

In addition, to construct the VS and the DMVI, some parameters were set. The VS had two

subspaces: CNS (for CMVs) and TVS (for TMVs). Since the number of simultaneously executing

PQs was constrained (≤ 10), which implies the maximum number of TMVs in the TVS was

restricted (only the results of SQs of in-process PQs were saved in the TVS as TMVs), we did not

set a space limit for TVS. But, for the CNS, the space limit was set to 25000 disk blocks. The

main idea for the CNS maintenance is that when the CNS overflows, its CMVs are re-estimated

and sorted by using their potential benefits. The CMVs with the smallest benefit is removed first.

This process continues until the CNS can accommodate the new CMV. The DMVI construction

started with a single root node. When a materialized view v (TMV or CMV) was saved in the VS,

its domain tables were sorted by the two-level priority rule, and a search path was created for v in

the DMVI. The bitmaps of v were generated and saved at the end of the path, i.e., in a leaf node.

Before each SQ sq was executed, the DMVI was searched and the usable views were returned.

When a view (CMV or TMV) v was removed, its corresponding search path in the DMVI was also

removed and the search paths of all the views whose domains included v were rebuilt.
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Figure 5.3: The I/O cost comparison of running 100 progressive queries between the SST and the
DMVIT

5.6.2 Performance of the DMVI based view searching technique

The first set of experiments were conducted to evaluate the efficiency of our DMVI based view

searching technique (DMVIT). To make a comparison, we used the straightforward technique,

called the sequential scan based view searching technique (SST), was used. The main idea of the

SST is as follows. To find a usable view from the VS for answering the given SQ sq, views are

checked one by one from the VS sequentially. If the view v contains the result of sq, then v is

considered to be a candidate view. After examining all the views in the VS, the best (smallest)

view is chosen from the candidate views to answer sq. In contrast to the SST, our technique first

uses the DMVI to filter out the views that do not share the same domain with the given SQ sq.

Next, it prunes the views whose bitmaps do not match with those for sq. After that, the discovered

views are processed in the same way as the SST, i.e., examining each view against sq to find the

best view for answering sq.
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Figure 5.4: The time cost comparison of running 100 progressive queries between the SST and the
DMVIT

In this set of experiments, the I/O costs for processing PQs using the two view searching tech-

niques were first compared. Fig. 5.3 shows the comparison of the total I/O cost of running 100

progressive queries between using the SST and the DMVIT. From the figure, we can see that two

performance curves are very close, which indicates that two view searching techniques have little

different effect on the total I/O cost. Since the I/O cost reflects the quality of views used in the PQ

processing, the two techniques are comparable in term of the quality of views found.

To capture both I/O and view matching costs, Fig. 5.4 shows the comparison of execution time

of running 100 progressive queries between using the SST and the DMVIT. During the processing

of PQs, the materialized views were dynamically generated and indexed into the DMVI. Hence,

the DMVI was constructed in parallel with the processing of PQs. The execution time for the

DMVI construction was also included in the cost of executing PQs. From the figure, we can

see that two curves are very close at the beginning. However, as the total number of SQs being
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Figure 5.5: The performance of the DMVIT with different CNS space limits

executed increases, the performance of the DMVIT becomes increasingly better. The reason for

this is explained as follows. As more and more SQs being executed, more and more SQ results

are materialized and kept in the VS. The cost for view searching by the SST (i.e., examining each

view in the VS) increases sharply, but the cost for view searching by the DMVIT (i.e., examining

only the views discovered by the DMVI) is relatively stable. As a result, the total PQ execution

time of the DMVIT is significantly better than that of the SST. Note that, compared to the SST, the

DMVIT utilizes an index to significantly reduce the view matching cost..

5.6.3 Scalability of the DMVI based view searching technique

The second set of experiments were conducted to examine the scalability of the DMVIT. The

performances of using the DMVIT and the SST with different CNS space limits were compared.

Since the maximum number of simultaneously executing PQs was fixed, the size of the TVS was

controlled within a certain range. Thus, the size of the VS is dominated by the size of the CNS. The
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Figure 5.6: The performance of the SST with different CNS space limits

numbers of view comparisons (examining cost) for the DMVIT with different CNS space limits

are shown in Fig. 5.5, and the numbers of view comparisons for the SSTs are shown in Fig. 5.6.

From Fig. 5.5, we observe that the three performance curves are quite close to each other, which

implies that the view matching costs by using the DMVIT with various CNS space limits (thus

VS sizes) are relatively stable. However, from Fig. 5.6, we can observe significant differences

among the three performance curves. On the other hand, from Section 5.6.2, we know that the

PQ performance improves as more materialized views are available. In other words, as more

materialized views are available, the DMVIT gains more performance and incurs less searching

overhead, comparing to the SST. Hence, the scalability of the DMVIT is better than that of the

SST.
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Figure 5.7: The performance of the DMVIT with or without the bitmap matching

5.6.4 Performance of the bitmap matching

The third set of experiments were to examine the importance of the bitmap matching in the DMVI.

Fig. 6.5.5 shows the performance of the DMVIT with or without the bitmap matching. It is obvious

that much unnecessary direct view comparison cost is saved by using the bitmap matching.

5.6.5 Performance of maintaining the DMVI with different DMVI construc-
tion techniques

In this set of experiments, the DMVI maintenance cost for the two-level priority ordering based

DMVI constructing technique (TPDMVI) and the DMVI maintenance cost for the non-priority

ordering DMVI constructing technique (NPDMVI) were compared. The main idea of the TPDMVI

is as follows. When a view v is ready to index in the DMVI, the domain tables of v are sorted

by using the two-level priority rule. Next, each domain table of v is picked in the order and

inserted into the DMVI. Furthermore, if a node has multiple child nodes, the order of its child
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nodes is also determined by the two-level priority order of the domain tables in the workload. The

NPDMVI, on the other hand, assigns no priority to any domain table, which causes the DMVI to

employ a random order. The purpose of employing the two-level priority order rule is to improve

the efficiency of discovering invalid search paths related to a deleted view, which is the major

component of work for deleting a view from the DMVI (i.e., maintaining the DMVI). When a

view v is to be deleted, the system has to discover all the other views whose domains contain v

(i.e., having invalid search paths). If an internal node n representing v appears at the first level

of the DMVI (child of the root), only the subtree of n and the subtrees of the left siblings of n

(if any) are searched by using the TPDMVI, while the whole tree has to be traversed by using

the NPDMVI. The performance of searching the views with invalid search paths by using the

TPDMVI and the NPDMVI is compared in Fig. 5.8, where X-axis represents the total number of

SQs in the test and Y-axis represents the total number of nodes visited in the DMVI during the

search. From the figure, we can see that compared to the NPDMVI, the TPDMVI can save much

cost for discovering views with invalid search paths during the DMVI maintenance.

5.6.6 Effectiveness of the DMVI based view searching technique

In the last set of experiments, the effectiveness of the DMVIT was compared with that of the SST.

As mentioned earlier, the DMVIT filters out the views whose domains are different from that of the

given SQ. However, some views that are filtered out by the DMVIT may be usable for answering

the given SQ. For example, a view v1 that has a different domain from a given SQ sq is filtered

out by the DMVIT when searching usable views for sq. Assume that a view v2 is returned by the

DMVIT. However, it is possible that v1 can be used for answering sq and the size of v1 is smaller

than v2. In other words, v1 is more suitable than v2 for answering sq. In this case, we consider

that the most usable view is missed by the DMVIT. We define a hitting rate for the DMVIT as the
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Figure 5.8: The performance of the view searching with invalid search paths between the TPDMVI
and the NPDMVI

percentage of the most usable views that can be discovered by it. In this set of experiments, we

utilized a commonly used view matching mechanism in a commercial DBMS and calculated the

hitting rates of the most usable views discovered by the DMVIT and the SST for the tested cases,

respectively. Our results are described as follows. The hitting rates of the SST and the DMVIT

were 100% and 83%, respectively; while the numbers of views checked/compared by the SST and

the DMVIT during the search were 163546 and 14648, respectively. From the experiments, we can

see that, comparing to the SST, the DMVIT can dramatically reduce the number of checked views

(by 91%) while keep a high hitting rate (at 83%) when discovering usable views. These results

are consistent with the conclusion observed from Figures 5.3 and 5.4. Hence, our proposed DMVI

technique is quite effective.

The results of our research in this chapter were reported in [131, 132].
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CHAPTER 6
Supporting PQs in Big Data Environment

In the previous chapters, we have presented several materialized view based techniques for opti-

mizing PQs in a relational database environment. Now let us consider how we can handle PQs

in a popular big data environment like Hadoop. As mentioned, the SQs of a PQ are issued based

on the results of their previous SQs, and some SQs may join the results of the previous SQs with

external tables. Therefore, the results of SQs and the external tables must be interoperable in a

PQ. This closure property requirement is guaranteed for a relational database since the result of

a query on relational tables is still a relational table. However, for a big dataset (database), e.g.,

an Hbase database on Hadoop, no technique provides such support. In this chapter, as an initial

work to support PQs in a big data environment, we define some operations on one or more Hbase

tables, which return a new Hbase table as the result. We will focus on discussing the most chal-

lenging but very useful operation, i.e., the column family join, in this chapter. Three column family

level operations for Hbase tables are introduced in Section 6.1. A direct approach for processing

the (column) family join is presented in Section 6.2. A new index structure, called the multiple

freedom family index (MFFI), to support efficient family joins is presented in Section 6.3, and an

MFFI based family join processing method is discussed in Section 6.4.

6.1 Column family level operations

In a big data environment, the MapReduce programming model and its default implementation

Hadoop are frequently used for parallelizing the big data processing. A Hadoop supported database

is called Hbase, which is a scalable, distributed database consisting of one or more Hbase tables for

storing big data. The query languages for Hbase such as Hive and Pig Latin provide some abilities
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for retrieving data from Hbase tables. However, the data results returned by such queries are rarely

kept in Hbase tables. In other words, the closure property is not preserved.

The specific reason is as follows. The structure of an Hbase table is quite different from that

of a relational table. An Hbase table (instance) consists of one or more ordered rows (vertical

expansion) which are identified by their row ids, and its schema consists of one or more so called

column families (horizontal expansion). Each column family may contain one or more columns,

which are not specified in the table schema. Furthermore, each column may contain a list of values

with different versions (e.g., time-stamps). Fig. 6.1 shows the structure of an example Hbase table.

Let us see another concrete example of an Hbase table EmpRelative about employed relative

names which contains four column families: spouse, parents, children, others. Each column

family consists of one or more columns, e.g., the column family parents has two columns: father

and mother, and the column family children has two columns: son and daughter. Each column

may contain multiple values. For example, the column son may contain multiple values if the

employee has more than one son.

Most Hbase query languages map columns from an Hbase table to relational table columns and

perform desired operations on them. As a result, the results of those query operations can easily fit

into relational tables (i.e., a set of columns without column families) rather than Hbase tables. We

observe that, if a query operation could be performed at the column family level (e.g., a projection

on a column family of an Hbase table), the results can be easily saved as an Hbase table. Therefore,

some new column family level (query) operations on one or more Hbase tables are desired.

In this work, we present three column family level operations: the column family selection,

the column family projection, and the column family join, corresponding to three basic relational

algebra operations: selection, projection, and join. The difference between a column family level

operation and a basic (relational algebra) operation is as follows: a basic operation is performed
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Row key 

Column-family1 Column-family2 Column-family3 

Column1 Column1 Column2 Column1 Column2 Column3 

key1 t1:val1 
t2:val2 

t2:val18 
t3:val19 

t1:val7 t2:val11 
t3:val12 

key2 t1:val3 
t3:val4 

t1:val8 
t2:val9 

t1:val10 t1:val13 

key3 t2:val5 
t3:val6 

t2:val14 
t3:val15 

t2:val16 
t3:val17 

…… …… …… …… …… ….. …… 

Version/Timestamp Cell value 

Figure 6.1: An example of an Hbase table

on columns (one value per row) of one or more relational tables while a column family level

operation is performed on column families (multiple values per row) of one or more Hbase tables.

For example, the set of values for column family EmpRelative. children in a row corresponding

employee ”James” may be {son:1:John, son:2:Steven, daughter:1:Jenifer}.

Let us consider the column family join first. The column family join, which can be simply

called the family join, is used to integrate matched rows from two Hbase tables into combined

rows. Assume that the schemas of two Hbase table are: T (trid, tcf1, tcf2, . . ., tcfn), S(srid, scf1,

scf2, . . ., scfm), where trid and srid represent the row ids of T and S, respectively; tcfi(1≤i≤n)

is a column family of T and scfi(1≤i≤m) is a column family of S. In general, the family join

is denoted by: T ./ fJC S, where ./ f denotes the family join operator, and JC is a Boolean

expression which consists of one or more join predicates. Each join predicate is of the form <

T .tcfi > θ < S.scfj >, where θ ∈ { ⊂, ⊆, ⊃, ⊇, =, .= }. Note that we define a new comparison

operator .
= as: return true if any value from the left (T .tcfi) has a matched value from the right
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(S.scfj). Join predicates are connected by the Boolean operators and, or, and not to form a JC.

The column family selection and the column family projection can be defined in a similar way

by keeping in mind that a column family may contain a set of values. Since these two operations

are performed on only one Hbase table and can be easily processed, we will not discuss them in

detail in this work. On the other hand, the column family join is performed on two Hbase tables.

If it is not properly processed, the join cost may be unacceptable. Thus, in the remaining of this

chapter, we will focus on discussing how to properly perform and optimize the column family join.

Let us consider an example of the family join. Assume that we have two Hbase tables T1 and

T2. T1 is a table about users and T2 is a table about employees. Both T1 and T2 contain two

column families: the ids and the phone numbers. The phone number column family contains three

columns: the home phone number, the cell phone number, and the optional phone number. Each

column may also contain a set of phone numbers with different versions (timestamps). We want to

know the relationships among users and employees. Therefore, a family join operation is desired

between T1 and T2, with the column families about phone numbers from two tables being used as

the join keys. If a value (e.g., a home phone number) of a user is equal to a value (e.g., a cell phone

number) of an employee, the user is considered to have a close relationship with the employee,

e.g., they may be in the same family, or they may be close friends.

In the above example, we observe that the new operator .
= is used in the join condition to

find any-to-any matched phone numbers. Actually, this type of family joins (using .
= in the join

condition) has a wide range of applications in real life. Thus, as the first work, we chose this type

of family joins to consider, and develop some methods to efficiently process them. In the following

sections, the term family join will represent a special type of the family join where the only join

condition allowed is of the form T1.cfi
.
= T2.cfj .

In fact, such a family join can be done with different types of freedoms. Assume that a family
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join is performed on an Hbase table T1 and an Hbase table T2 with a join condition: T1.cf1=T2.cf2.

As mentioned earlier, a column family consists of a set of columns, and each column is composed

of a set of values with possibly different versions (timestamps). Thus, each value v1 in a column

family can be represented as: column quantifier (id): version number: v1. In other words, each

value has two prefixes: the column id and the version number. Given a value in cf1, to find a

matched value in cf2, first, we need to know the matching criterion. Two bits representing two

prefixes of values (column id and version number) are used for recognizing the matching criterion.

00 indicates that we only care about the value itself, i.e., given value v1 in cf1, the matching

criterion is to find the same value in cf2 without considering its two prefixes. We call the family

join using this matching criterion the free family join (FFJ), denoted by ./f (00). 10 indicates

that we are also interested in the column (column id) to which the value belongs, i.e., the matching

criterion is to find a matched value with the matched column id in cf2. We call the family join using

this matching criterion the column-oriented family join(COFJ), denoted by ./f (10). Similarly, 01

indicates that we are concerned about the version of the value instead of its column id, i.e., the

matching criterion is to find a matched value with the matched version number in cf2. We call

the family join using this matching criterion the version-oriented family join(VOFJ), denoted by

./f (01). Finally, 11 indicates that both the column id and the version number are our interest, i.e.,

the matching criterion is to find a matched value with both matched prefixes. We call the family

join using this matching criterion the strict family join(SFJ), denoted by ./f (11). We observe that

the freedom of the FFJ is the highest among others since only the value itself is considered while

the freedom of the SFJ is the lowest since the value and its two prefixes are all considered.

Let us go back to consider the previous example. If the user only cares about the phone numbers,

i.e., do not care about the type of the phone numbers (e.g., a home phone number or a cell phone

number) or whether if the phone number is current or not, the FFJ is useful. If the user wants to
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find the home phone number matches, the COFJ is suitable. If the user wants to match the current

(i.e., the newest version) phone numbers, the VOFJ is favorable. If the user requires to match the

newest cell phone numbers, the SFJ should be used.

From the previous example, we can see that the four types of family joins (i.e., FFJ, COFJ,

VOFJ, and SFJ) are all useful. Hence, we develop techniques to process a family join with different

freedoms.

6.2 A direct family join processing method

How to efficiently process a family join requires a further study, especially when the parallelization

is considered. In the rest of the chapter, we discuss two methods to process such a join.

A straightforward method for processing a family join is called the direct family join method

(DFJM) in our discussion. Assume that two Hbase tables T1 and T2 are family joined on T1.cf1 and

T2.cf2. The DFJM adopts a two nested loop comparison procedure. At the first level, cf1 of each

row r1 of T1 and cf2 of each row r2 of T2 are paired. This is realized by adopting a nested-loop at

this level. At the second level, for each pair (cf1, cf2), each value v1 of cf1 is compared with every

value v2 of cf2. This is realized by adopting another nested loop at this level. If v1 matches v2, r1

and r2 are extracted from original tables and joined together. Note that different family join types

adopt different value matching criteria. An example of the DFJM for ./f (11) is shown in Fig. 6.2.

The DFJM can also be implemented with parallelization using MapReduce. The main process

is described as follows. All rows from T1 and T2 are processed and a list of key/value pairs ((rowid,

tableid), cf ) are produced where (rowid, tableid) is the key, cf is the value, tableid is the original

table id (i.e., T1 or T2). cf represents the join key (family column cf1 or cf2) of the row with an

id of rowid. The key/value pairs are assigned to various map nodes to achieve the parallelization.

For each map node, the input is a list of key/value pairs. The pairs with the same tableid are

156



Figure 6.2: An example of the DFJM for ./f (11)

grouped (to get two groups) and their tableids are removed, e.g., from((rid1, t1), cf1)) to (rid1,

cf1). Next, each key/value pair of a group is paired with each key/value pair of the other group,

e.g., ((rid1,cf1),(rid2,cf2)).

After that, a nest-loop comparison is applied on each value v1 of cf1 and each value v2 of

cf2. If v1 matches v2 (the matching criteria are different according to various family join types), a

key/value pair (rid1, rid2) is generated as an output of the map function. The reduce function uses

a list of key/value pairs (rowid, rowid) produced from the map function as its input. Actually, no

summarizing job is needed. Hence, the only task for the reduce function is to extract matched rows

from original tables and join them together. For each key/value pair (rid1, rid2), rid1 and rid2

are used as key values to search their corresponding rows (r1 and r2) from T1 and T2, respectively.

After that, r1 and r2 are extracted and joined together. It is worth to mention that a new row id has
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Tid1 Tid2

R3_t2

Map node

((R1_t1,Tid1),cf1)
((R1_t2,Tid2),cf2)
((R2_t1,Tid1),cf1)

(R1_t1,cf1)
(R2_t1,cf1)

(R1_t2,cf2)

((R1_t1,cf1),(R1_t2,cf2))
((R2_t1,cf1),(R1_t2,cf2))

Reduce node

((R1_t1,cf1), (R1_t2,cf2))

Compare each value of cf1 
with each value of cf2.

A matched value v1 is found.

(R1_t1,R_1_t2) is returned.

((R2_t1,cf1), (R1_t2,cf2))

Compare each value of cf1 
with each value of cf2.

No matched value is found.

(R1_t1,R_1_t2) is discarded.

Figure 6.3: An example of the DFJM using MapReduce

to be created for the join result. It can be automatically generated by the system or created by the

user. One simple approach is to simply concatenate rid1 and rid2 together as the new id. Finally,

the join result is produced and returned by the reduce function. An example of the DFJM using

MapReduce is shown in Fig. 6.3.

6.3 A multiple freedom family index (MFFI)

Since the DFJM is simple and straightforward, the strategy of using the two nested-loop compar-

ison procedure leads to a high computational cost even if the parallelism is employed. Therefore,

we propose an index based method for efficiently processing the family joins. In this section, we

introduce a new index first.
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6.3.1 Index Structure

The idea of the index is to keep the information on a possible join key (column family) cf1 of

an Hbase table T1 in a special index structure. Each value v1 in cf1 is exacted and used as a key

value of the index. Since v1 can be represented as: rid(row id):cid(column id):vnumber(version

number):v1, three prefixes of v1 (row id, column id, version number) in cf1 are saved as the content

associated with v1. Since v1 may appear multiple times in cf1 (in the same row or different rows)

and v1 should not be duplicated when it is used as a key value in the index, we collect the prefixes

of all the occurrences of v1 from cf1, organize them in a nested structure, and associate them with

v1 (v1 as the key value). We name such an index the Multiple Freedom Family Index (MFFI).

Let us illustrate the data structure of the MFFI. The MFFI consists of a number of records(in

vertical view), one for each distinct value v1, where v1 is a value in a join key cf1 of an Hbase table

T1. v1 has three prefixes: row id (to which row v1 belongs in T1), column id (to which column v1

belongs in T1), and version number (how recent v1 is). As we mentioned, v1 may appear multiple

times. Thus the prefixes of different occurrences of v1 have to be kept and organized in a reasonable

way. Assume that r1 is the record in the MFFI for v1. v1 is saved as the key value. The remaining of

r1 has a three-level nested structure. At the first level, the space is divided into several subspaces,

one for each distinct version number. At the second level, each version subspace is divided into

one or more column subspaces, one for each distinct column id. At the third level, each column

subspace contains one or more row ids, one for each row containing an occurrence of v1. Using

this structure, we can see that row ids of different occurrences of v1 with the same column id and

version id are placed in one column subspace. Similarly, the row ids of different v1s with the same

version id are gathered in one version subspace. The data structure of the MFFI is shown in Fig.

6.4.

The purpose of creating an MFFI is to efficiently perform family joins. In our approach, one

159



Figure 6.4: The structure of the MFFI

of the important steps is to search row ids of different occurrences of a given value under some

search condition. From Fig. 6.4, we can see that different occurrences of a value are organized

in the three-level nested structure. Let us illustrate how to search row ids of different occurrences

of a value v1. If the search condition is to satisfy a given version number and a given column id,

i.e., 11, at the first level, version subspaces are sequentially searched. The version subspace V S

which contains the given version number is accessed. At the second level, the column subspaces

contained in V S are searched similarly. After that, the column subspace which contains the given

column number is accessed and its contained row ids are returned. If the search condition is to

satisfy a given version number, i.e., 01, the second level search is not needed and all the row ids

contained in the satisfied version subspace are returned. If the search condition is to satisfy a given

column id, i.e., 10, at the first level, all version subspaces are accessed. At the second level, the

column subspaces contained in each version subspace are searched and those column subspaces

which contain the given column id are accessed and their contained row ids are returned. If no
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search condition is issued, i.e., 00, all row ids contained in the record of v1 are returned.

We can see that with our nested structure, most searches can be efficiently processed, especially

for version number specialized searches (only sequential search at the first level). However, our

structure is not very good at dealing with column id specialized searches. Thus, if we know that

many column id specialized searches will be performed, we can adjust the structure of an MFFI

when we create it. We can change the structure to make the column subspaces at the first level

and the version subspace at the second level. In this way, the column id specialized searches can

be efficiently processed. By default, we choose the version subspaces at the first level. This is

because the number of versions is typically less than the number of columns. If one version does

not satisfy a search condition, a larger (column) subspace can be pruned.

One of the benefits of such an MFFI is that we can easily save the MFFI itself into an Hbase

table without creating a special storage structure. Let us show an example to save a record r1 of an

MFFI into a row r2 in the Hbase table implementing the MFFI. First, the key value v1 of r1 is also

saved as the row id of r2. Next, each version subspace of r1 is considered as a column family of

r2, the corresponding version id is used as the column family id. Similarly, each column subspace

of a version subspace is considered as a column of a column family in r2 and a set of row ids in a

column subspace is considered as a set of different version numbers in a column of r2.

6.3.2 Creating an MFFI

The next issue is how to create an MFFI mffi1 for a column family cf1 of an Hbase table T1.

As we mentioned, an MFFI itself is implemented as an Hbase table. Thus, the process of cre-

ating mffi1 is also a process to create an Hbase table. We will also use mffi1 to represent its

implementing Hbase table in the following discussion. First, mffi1 (Hbase table) is initialized.

The schema of mffi1 includes a row key and several column families, corresponding to possible
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versions of values, which is expected to be not large. For each row of T1, the corresponding cf1 is

scanned. For each value v1 in cf1, v1 and its three prefixes (i.e., the version number, the column id

and the row id) are extracted. Assume that the version number of v1 is vnumber1, the column id

of v1 is cid1, and the row id of v1 is rid1. If v1 is not indexed in mffi1, a new row r1 is created in

mffi1 with v1 as its search key value (row id). The column family mcf1 of mffi1 which corre-

sponds to vnumber1 is accessed. A column is created in mcf1 with cid1 as its column id and rid1

as its value. Otherwise, if there exists a row r1 with v1 as its row id, vnumber1, cid1, and rid1 are

directly inserted, namely, inserting cid1 and rid1 into the column family mcf1 which corresponds

to vnumber1. More specifically, if there exists a column with the column id of cid1 in mcf1, rid1

is directly inserted. Otherwise, a column is created in mcf1 with cid1 as its column id and rid1 as

its value.

Let us consider a simple example. Assume that we want to create an MFFI mffi1 for a column

family cf1 of an Hbase table T1. T1 contains only two rows. In the first row, cf1 has two columns

c1 and c2; c1 has two values v1 and v2, with the version numbers of vnumber1 and vnumber2,

respectively; c2 has one value v1, with the version number of vnumber2. In the second row, cf1

contains one column c2; c2 has two values v1 and v3, with the same version number of vnumber1.

Using the creating procedure we just described, mffi1 is created and shown in Fig. 6.5.

Since the parallelization of the join processing is desirable for large-scale datasets, in this work,

we also provide an approach to creating mffi1 using MapReduce. The main idea is as follows.

The MFFI creation can be done in four stages. The first stage is called the preprocessing stage.

For each row of T1, its row id and cf1 are extracted and a key/value pair (rid, cf1) is generated.

The second stage is called the map stage. The key/value pairs produced from the first stage are

assigned to multiple map nodes to achieve the parallelization. For each map node, the input is a list

of key/value pairs (rid, cf1). The map function is to extract the values and their prefixes (version
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vnumber1: c1: row1, c2:row2
vnumber2: c2: row1 
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Timestamp=vnumber1

row2
Column=c2, Value=v3, 
Timestamp=vnumber1

Figure 6.5: An example of the MFFI creation

number, column id) from cf1. For each value v1 in cf1 of row rid, its version number vnumber1

and column id cid1 are extracted, and a key/value pair (v1, (vnumber1, cid1, rid1)) is returned as an

output of the function. The third stage is called the aggregate stage. The key/value pairs produced

from the map stage are aggregated together. The key/value pairs with the same key value are

gathered and combined. For example, if there are two key/value pairs (v1, (vnumber1, cid1, rid1))

and (v1, (vnumber1, cid2, rid3)), the result of the aggregation is: (v1, (vnumber1, cid1, rid1),

(vnumber1, cid2, rid3)). The last stage is called the reduce stage. The mffi1 is created in this

stage. The input of the reduce function is the result produced from the aggregate stage. Let us use

the previous example to illustrate how the reduce function works. The input is: (v1, (vnumber1,

cid1, rid1), (vnumber1, cid2, rid3)). Assume that mffi1 has already been initialized. A row r1 is

created in mffi1 with the row key value of v1. Next, each prefix record (version number, column

id, row id) of v1 is sequentially scanned and inserted into r1. The insertion process has already been

discussed previously. As a result, mffi1 can be created in parallel and the creation performance is

improved significantly when T1 is very large. An example of the MFFI creation using MapReduce
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Figure 6.6: An example of the MFFI creation using MapReduce

is shown in Fig. 6.6.

6.4 An MFFI based family join approach

After introducing the MFFI, we now discuss how to use the MFFI to efficiently perform a family

join. We propose a so-called MFFI based family join approach (MFJA) for processing the family

joins. For the parallelization purpose, the MFJA is developed using MapReduce. In the following

discussion, we use SFJ as our default family join type. Let us use the same assumption as before,

i.e., T1 and T2 are family joined on T1.cf1 and T2.cf2. Two MFFIs mffi1 and mffi2 are created

for cf1 and cf2, respectively. Since the family join is to compare cf1 of a row r1 in T1 with cf2 of a

row r2 in T2. If there exists a value v1 (including its two prefixes: column id and version number)

in both cf1 and cf2, r1 and r2 are considered to be matched and r1 and r2 are joined together. Thus,
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the main work of the family join is to find matched row pairs (e.g., r1 and r2) from T1 and T2. As

mentioned, an MFFI extracts all the useful information of a column family cf of an Hbase table,

where distinct values (e.g., v1) of cf are saved as the key values of the MFFI, and the row identifiers

(row id) which represent rows containing different occurrences of value v1 are saved as values of

key value v1. Each row id can be represented as: vnumber (version number): cid (column id): rid

(row id). Thus, each row id has two prefixes: version number and column id. Having mffi1 and

mffi2, we can use them to easily find matched row pairs from T1 and T2. The main idea of the

MFJA is to perform the join directly on the key values of mffi1 and mffi2. Note that an MFFI is

an Hbase table and all the rows are automatically ordered by their key values. Hence, a merge join

is performed on mffi1 and mffi2. If a key value of a row mr1 in mffi1 matches a key value of a

row mr2 in mffi2, we consider a value r1 in mr1 to be matched with a value r2 in mr2 if the two

prefixes of r1 and the two prefixes of r2 are matched, respectively. In this case, a row in T1 with id

of r1 and a row in T2 with id of r2 are considered as a row pair and joined together.

More specifically, the MFJA performs a join in five stages. The first stage is called the partition-

ing stage. In this stage, mffi1 and mffi2 are divided into the same number of partitions. Each

partition of mffi1 has a matched partition in mffi2. Two matched partitions are assigned to the

same map node. The reason for this is as follows. As we mentioned, mffi1 and mffi2 are merge

joined on their keys. To perform the merge join on multiple nodes, mffi1 and mffi2 have to be

partitioned in a special way to provide support for the parallelized merge join.

We have considered two strategies for partitioning the MFFIs. A direct method is to partition

mffi1 first. mffi1 is equally divided into N partitions (i.e., each partition contains the same

number of rows). For each partition of mffi1, the key value of its last row is kept. Next, mffi2

is divided based on each partition of mffi1. For example, assume that p1 is the first partition of

mffi1 and the key value of its last row is v1 (i.e., the maximum row key value). Based on v1,
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the key values of mffi2 are checked starting from the first row. All the rows with key values not

larger than v1 are included in the first partition p2 of mffi2. p2 is considered to be the matched

partition for p1 and they are assigned to the same node. The remaining part of mffi2 is similarly

partitioned. Note that if p2 contains no rows, it means p1 has no matched partition in mffi2. In

other words, no row in mffi2 can be merge joined with a row in p1. In this case, p1 and p2 are not

assigned to any node.

However, using the direct partitioning method, the work load for each map node may not be

balanced. For instance, partition p2 in the previous example may be so large that it contains the

whole mffi2. Actually, as we will see, the main work of a map node is to process row ids of

original tables. Hence, we use the number of row ids being processed to represent the workload of

a map node. To balance the workload, an improved partitioning method is suggested below.

The improved partitioning method is called the Counting Index Based Partitioning Method

(CIPM). First, a new auxiliary index structure, called the Counting Index (CI), is introduced. A

CI ci1 is created for a specific MFFI mffi1 and saved in another Hbase table. The schema of ci1

only contains two column families (with a sole column in each), one for keeping every key value

v1 of mffi1, and the other for keeping the accumulated counting number of original table row

ids from the first row of mffi1 to the row the key value v1 in mffi1, e.g., (v1, 2000) may be an

example of a row in ci1. ci can be easily created while mffi1 is being constructed. When a row

r1 is inserted into mffi1, a row r2 is also inserted into ci1, accordingly. The key value of r1 is

saved into the first column of r2 and the number n1 of original table row ids in r1 is counted. If r1

is the first row of mffi1, it means that the accumulated counting number of row ids is n1 and n1

is saved in the second column of r2 in this case, i.e., the resulting row r2=(v1, n1). Otherwise, the

accumulated counting number n2 of the previous row of ci1 is extracted, and the new accumulated

counting number n1+n2 is saved in the second column of r2, i.e., the resulting row r2=(v1, n1+n2).
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Figure 6.7: An example of the CI

An example of CI is shown in Fig. 6.7.

The CIPM partitions mffi1 and mffi2 in three steps. In the first step, mffi1 and mffi2 are

preprocessed and some rows which cannot contribute to the join result are removed from consider-

ation. The main idea is to eliminate unusable rows at the beginning and end of each of mffi1 and

mffi2. We know that the key values of mffi1 and mffi2 are in the ascending order since they

are used as row ids of the corresponding Hbase tables. First, the key values of mffi1 and mffi2

are scanned from the top to the bottom. Assume that v1 and v2 are the key values of the first rows of

mffi1 and mffi2, respectively. If v1 is smaller than v2, it means that v1 has no matched (exactly

the same) key value in mffi2 and the first row of mffi1 is considered as an unusable row. Next,

the key values of mffi1 are checked starting from the second row, this process continues until a

row r1 with the key value which is not smaller than v2 is found in mffi1. After that, all rows

before r1 in mffi1 are marked as unusable rows and will be removed from consideration in the

following partitioning work. Similarly, if v1 is larger than v2, the unusable rows at the beginning

of mffi2 are removed from consideration in the same way. Second, the key values of mffi1 and
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Figure 6.8: An example of the first step of the CIPM

mffi2 are checked from the bottom to the top. Assume that v3 and v4 are the key values of the last

rows of mffi1 and mffi2, respectively. If v3 is larger than v4, it indicates that v3 cannot match

any key value of mffi2 (Reason: v4 is the largest key value in mffi2, v3 is larger than v4. Thus,

there exists no key value in mffi2 which is equal to v3). In this case, the key values of mffi1 are

scanned in the reverse order starting from the penultimate row. Once a row r2 with the key value

which is not larger than v4 is found, the rows after r2 in mffi1 are marked as unusable rows and

removed from consideration. Similarly, if v3 is smaller than v4, the unusable rows at the end of

mffi2 are removed from consideration in the same way. An example of the first step of the CIPM

is shown in Fig. 6.8.

The second step of the CIPM is similar to the direct method. After the preprocessing work, two

MFFIs without unusable starting and ending rows are available: mffi3 (revised from mffi1) and
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mffi4 (revised from mffi2). mffi3 and mffi4 are divided into the same number of partitions

using the direct partitioning strategy, i.e., mffi3 is partitioned first, based on each partition of

mffi3, mffi4 is partitioned accordingly. However, the number of partitions here is set to a proper

number m which is much larger than the number of partitions for the direct partitioning method.

In other words, mffi3 and mffi4 are divided into finer partitions here.

As mentioned earlier, each partition p in mffi3 has a matched partition q in mffi4. p and

q are called a pair of matched partitions. Since the second step may yield too many pairs of

small partitions (i.e., using too many map nodes), the third step is to combine some pairs of small

partitions into a pair of large partitions. Each pair of large partitions will be assigned to a map node

for the merge join. Our goal is to control the total size of each pair of large partitions to balance

the workload among the map nodes. The procedure starts from the first pair of small partitions:

p1 (from mffi3) and p2 (from mffi4). Assume that the maximum capacity of a map node is N

(i.e., the maximum number of original table row ids that can be processed). Two CIs ci1 and ci2

are created for mffi3 (from mffi1) and mffi4 (from mffi2), respectively. Assume that v1 and

v2 are the key values of the last rows of p1 and p2, respectively. ci1 and ci2 are searched by using

v1 and v2, respectively, and the accumulated counting numbers of row ids n1 (for v1) and n2 (for

v2) are found.

If n1+n2 < N, which means that the total number of row ids in p1 and p2 is smaller than the

capacity of a map node can process, the second pair of small partitions p3 (from mffi3) and

p4 (from mffi4) are checked. The accumulated counting numbers of row ids n3 (for p3) and

n4 (for p4) are found by searching ci1 and ci2. Note that the accumulated counting number is

computed from the first row of an MFFI, the actual number of row ids in p3 and p4 are n3-n1

and n4-n2, respectively. If n1+n2+(n3-n1)+(n4-n2) > N, i.e., n3+n4 > N, it means that, if the

second pair of partitions is combined with the first pair, the maximum capacity of a map node is
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exceeded. Thus, the first pair of partitions cannot be combined with other pairs. The first pair

of partitions is assigned to a map node in this case. Otherwise, if n3+n4 < N, which means a

map node can handle at least two pairs of small partitions, we form a new pair of partitions by

combining p1 and p3 and combining p2 and p4, and check to see if the next pair of small partitions

can be combined. This process continues until the maximum capacity of a map node is reached

or exceeded. The combined pair of large partitions is assigned to a map node. For example, two

pairs of small partitions are: (p1, p2) and (p3, p4). After the combination, a new (combined) pair of

large partitions is p5 (contains p1 and p3) and p6 (contains p2 and p4). In this way, remaining pairs

of small partitions are also combined into pairs of large partitions.

In case n1+n2 > N (larger than the maximum capacity of a map node), since mffi3 is equally

divided into m partitions and each partition is relatively small (i.e., n1 is small), it means that

n2 is too large. In this case, p2 is equally divided into two partitions: p21 and p22 with sizes

n21=n22=(1/2)*n2. Based on p21 and p22, p1 is also divided into two partitions: p11 and p12 with

sizes n11+n12=n1. If n11+n21<N , which means that p11 and p12 can be processed in a map node,

no further action is needed. Otherwise, p11 and p12 are repeatedly divided into smaller partitions

until the new created two small partitions can be fit into a map node. The pair of partitions p12

and p22 is processed in the same way. Clearly, if n1+n2=N , no further combination or division is

needed. The main procedure of the CIPM is summarized in the following algorithm.

ALGORITHM 6.4.1 : The counting index based partitioning method (CIPM).
Input: (1) two Hbase tables (T1 and T2); (2) two column families (cf1 in T1 and cf2 in T2); (3) two multiple freedom
family indexes for cf1 (mffi1) and cf2 (mffi2), respectively; (4) the number of partitions (m); (5) the maximum
workload(processing capability) of a node (N );
Output: partitioned mffi1 and mffi2;
Method:
/* The first step: mark unusable rows at the beginning and end of mffi1 and mffi2 */
1. v1 = first key value of mffi1; v2 = first key value of mffi2;
2. v3 = last key value of mffi1; v4 = last key value of mffi2;
3. flag = true;
4. if v1 < v2 then
5 find the nth row in mffi1 whose the key value is no longer smaller than v2;
6 mark the first n− 1 rows starting from the first row in mffi1 as unusable;
7. else if v1 > v2 then
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8. find the nth row in mffi2 whose the key value is no longer smaller than v1
9. mark the first n− 1 rows starting from the first row in mffi2 as unusable;

10. end if
11. if v3 > v4 then
12. find the nth countdown row in mffi1 whose the key value is no longer larger than v4;
13. mark the first n− 1 countdown rows starting from the last row in mffi1 as unusable;
14. else if v3 < v4 then
15. find the nth countdown row in mffi2 which the key value is no larger than v3;
16. mark the n− 1 countdown rows start from the last row in mffi2 as unusable;
17. end if
18. if all the rows of mffi1 or mffi2 are marked as unusable then
19. return;
20. end if
/*The second step: divide mffi1 and mffi2 into small partitions*/

21. remove unusable rows from mffi1 and mffi2
22. create counting indexes ci1 for mffi1 and ci2 for mffi2, respectively;
23. initialize four partition lists partition1, partition2, partitionresult1, partitionresult2;
24. evenly partition mffi1 into m partitions;
25. save the boundary of each partition in partitionlist1;
26. partition mffi2 based on each partition of mffi1;
27. save the boundary of each partition in partitionlist2;
/*The third step: combine small partitions to large partitions for mffi1 and mffi2 */

28. for each small pair of partitions p1 and p2 do
29. n1 = the accumulated number of original row ids in mffi1 before p1;
30. n2 = the accumulated number of original row ids in mffi2 before p2;
31. if p1 and p2 cannot be processed in one map node then
32. m = m-1;
33. p1 and p2 are removed from partitionlist1 and partitionlist2, respectively;
34. (partitionresult1, partitionresult2, ci1, ci2) = DividePartition(partitionresult1, partitionresult2,

ci1, ci2, p1, p2, n1, n2);
35. end if
36. end for
37. n = 0; c1 = c2 = 0;
38. while n ≤m-1 do
39. c3 = c4 =0;
40. initialize templist1 and templist2;

/* call a function to recursively combine small pairs of partitions */
41. (p1, p2, n, c1, c2, flag) = CombinePartition(partitionlist1, partitionlist2, ci1, ci2, n,

N , c1, c2, c3, c4, templist1, templist2);
/* the workload of a node cannot accommodate a pair of small partitions */

42. add p1 to partitionresult1 and add p2 to partitionresult2;
43. end while
44. return partitionresult1 and partitionresult2;

In this algorithm, lines 1 to 20 shows the first step of the CIPM, i.e., preprocessing the two

MFFIs and marking unusable rows. The second step of the CIPM is described in lines 21 - 27.

Marked unusable rows of mffi1 and mffi2 are removed from the partitioning work (line 21).

Two counting index are created for mffi1 and mffi2, respectively (line 22). mffi1 is evenly

divided into small partitions and the boundary of each partition is saved in a list for the later use

(lines 24 - 25). According to each partition of mffi1, mffi2 is partitioned accordingly and the
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boundary of each partition is also saved in a list (lines 26 - 27).

The last step of the CIPM is done in lines 28 - 43. As mentioned earlier, a partition in mffi1

and its matched partition in mffi2 are called a pair of matched partitions. In fact, some small

pairs of partitions may not actually be small, This happens when a small partition in mffi1 has a

very large corresponding partition in mffi2. In this case, such a pair (p1, p2) of partitions cannot

fit into a map node. These pairs are processed first. In Algorithm 6.4.2, a recursive function

DividePartition() is called to divide p1 and p2 into smaller partitions until the new created pairs

of partitions can fit into a map node (line 34). All other pairs of small partitions are sequentially

processed (lines 38 - 43). A recursive function CombinePartition() is called to combine some

pairs of small partitions into a pair of large partitions (line 41). For each pair (p1, p2) of large

partitions produced from the function, p1 (from mffi1) and p2 (from mffi2) are saved into two

result partition lists, respectively (line 42). Finally, two result partition lists are returned (line 44).

The recursive functions DividePartition() and CombinePartition() are shown as follows:

ALGORITHM 6.4.2 : DividePartition
Input: (1) two lists of partitions (partitionresult1 and partitionresult2); (2) two counting indexes for mffi1 (ci1)
and mffi2 (ci2), respectively; (3) two partitions p1 and p2 from mffi1 and mffi2, respectively; (4) two counting
variables n1 and n2 for the accumulated numbers of rows before p1 and p2 in mffi1 and mffi2, respectively;
Output: two updated lists of partitions (partitionresult1 and partitionresult2); two updated counting indexes (ci1
and ci2)
Method:
1. p2 is equally divided into two partitions p21 and p22; p1 is divided into p11 and p12, accordingly ;
2. update ci1 and ci2 accordingly;
3. vkj = the key value of the last row of pkj (k=1,2; j=1,2);
4. nkj = the accumulated number of original row ids for vkj from cik (k=1,2; j=1,2);
5. if (n11-n1)+(n21-n2) > N then
6. (partitionresult1, partitionresult2, ci1, ci2) = DividePartition(partitionresult1, partitionresult2, ci1,

ci2, p11, p21, n1, n2);
7. else if (n11-n1)+(n21-n2) ≤ N then
8. add p11 into partitionresult1 and add p21 into partitionresult2;
9. end if

10. if(n12-n11-n1)+(n22-n21-n2) > N then
11. (partitionresult1, partitionresult2, ci1, ci2) = DividePartition(partitionresult1, partitionresult2, ci1,

ci2, p21, p22, n11+n1, n21+n2);
12. else if (n12-n11-n1)+(n22-n21-n2) ≤ N then
13. add p11 into partitionresult1 and add p21 into partitionresult2;
14. end if
15. return partitionresult1, partitionresult2, ci1 and ci2;

This function divides a pair of partitions (p1, p2) into smaller pairs of partitions which can be fit
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into a map node. p2 is equally divided into two partitions: p21 and p22. Based on p21 and p22, p1 is

divided into p11 and p12, accordingly (line 1). Since p1 and p2 are divided into smaller partitions,

ci1 and ci2 are updated accordingly (line 2). The key value of the last row of each new partition

(i.e., p11, p12, p21, and p22) is extracted (line 3). Next, the accumulated number of original row

ids for each new partition is searched on updated ci1 or ci2 by using the key value of its last row

(line 4). If p11 plus p21 exceed the maximum capacity of a map node, the function recursively call

itself to divide (p11, p21) into two smaller pairs of partitions (lines 5, 6). Otherwise, if p11 and p21

can be fit into a map node (line 7), p11 and p21 are directly added into two result partition lists,

respectively (line 8). Similarly, p12 and p22 are processed in the same way (lines 10 - 14). Finally,

two result partition lists are returned (line 15).

ALGORITHM 6.4.3 : CombinePartition
Input: (1) two lists of partitions (partitionlist1 and partitionlist2); (2) two counting indexes for mffi1 (ci1) and
mffi2 (ci2), respectively; (3) the maximum workload capacity of a node (N ); (4) the number of processed pairs of
partitions (n); (5) four counting variables (c1 and c2 for the numbers of rows which have been successfully partitioned
and combined in mffi1 and mffi2, respectively; c3 and c4 for the numbers of rows for partitions in templist1 and
templist2, respectively); (6) two temporary lists of partitions (templist1 and templist2).
Output: two combined larger partitions of mffi1 and mffi2, three updated counting variables (n for the number of
processed pair of partitions, c1 and c2 for the numbers of rows which have been successfully partitioned and combined
in mffi1 and mffi2, respectively), a flag to show the combining work is successful or not.
Method:

/* get a pair of small partitions: p1 and p2 */
1. p1 = the (n+1)-th partition in partitionlist1; p2 = the (n+1)-th partition in partitionlist2;
2. v1 = the key value of the last row of p1; v2 = the key value of the last row of p2;

/* compute the number of ids in p1 and p2 */
3. c5 = the accumulated number of original row ids for the key value v1 from ci1;
4. c6 = the accumulated number of original row ids for the key value v2 from ci2;
5. c5 = c5 - c1, c6 = c6 - c2;
6. flag = true;

/* the maximum workload of a node is exceeded */
7. if c5 + c6 + c3 + c4 > N then
8. return (null, null, n, c1, c2, false);

/* the maximum workload of a node is not exceeded */
9. else

10. n = n +1;
11. c3 = c3 + c5, c4 = c4 + c6;
12. c1 = c5+c1, c2 = c6+c2;
13. add p1 into templist1 and p2 into templist2;

/*call itself to accommodating another pair of small partitions (if any) */
14. if there are still unprocessed partitions in partitionlist1 and partitionlist2 then
15. (p3, p4, n, c1, c2, flag) = CombinePartition(partitionlist1, partitionlist2, ci1, ci2,

m, workload, c1, c2, c3, c4, templist1, templist2);
16. end if
17. if flag == false then
18. p3 = combine partitions in templist1;
19. p4 = combine partitions in templist2;
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20. flag = true;
21. return (p3, p4, n, c1, c2, flag);
22. else
23. return (p3, p4, n, c1, c2, flag);
24. end if
25. end if

The function finds the next pair of small partitions (p1, p2) (lines 1 - 2). The actual numbers c5

and c6 of original row ids in p1 and p2 are computed, respectively (lines 3 - 5). If the summation of

the numbers of original row ids in p1 and p2 and the numbers of row ids in all the partitions in the

two temporary partition lists is smaller than or equal to the maximum capacity of a map node (line

9), it means that a map node can process p1 and p2 together with all the partitions in temporary

partition lists. Thus, p1 is added into the temporary partition list templist1 for mffi1 and p2 is

added into the partition list templist2 formffi2 (line 13). After that, the function recursively calls

itself to check another pair of small partitions (if any) to see if it can be included in the same node

(lines 14 - 16). If the newly checked pair of partitions cannot be accommodated, the partitions in

current templist1 and templist2 are combined, respectively (lines 18 - 19) and the result partitions

are returned (line 21). Otherwise, if the summation of the numbers of row ids in p1 and p2 and the

numbers of row ids in all the partitions in two temporary partition lists is larger than the maximum

capacity of a map node, p1 and p2 cannot be added into the temporary partition lists. No combined

partition is returned in this case (lines 7 - 8).

Let us consider an illustrative example in Fig. 6.9. Two MFFIs mffi1 and mffi2 are parti-

tioned using the CIPM. In the first step, the first and second rows ofmffi1 are marked as unusable

rows and do not participate in the remaining partitioning work. In the second step, mffi1 is

equally divided into four partitions: p1, p3, p5, and p7. Each partition contains two rows. Next,

mffi2 is partitioned accordingly. Since the key value of the last row of p1 is 6, all the rows with

the key values no larger than 6 in mffi2, i.e., the first four rows of mffi2, constitute the first

partition p2 of mffi2. Similarly, the remaining part of mffi2 are divided into three partitions: p4,
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Figure 6.9: An example of the CIPM
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p6, and p8. In the third step, assume that the accumulated (counting) numbers of ids n1 (for p1),

n2 (for p2), n3 (for p3), n4 (for p4), n5 (for p5), n6 (for p6), n7 (for p7), n8 (for p8) from the ci1 and

ci2 are: 5, 10, 20, 15, 25, 20, 35, 30, respectively. The maximum workload of a node is 40. First,

the first pair of small partitions (p1, p2) is checked. The total number of row ids is 5+10 =15. The

maximum workload is not exceeded. Thus, the second pair (p3, p4) is checked. The total number

of row ids for the two pairs of partitions is: 5+10+(20-5)+(15-10)=35 (still smaller than 40). Next,

the third pair (p3, p4) is checked. The total id numbers is: 5+10+(20-5)+(15-10)+(25-20)+(20-

15)=45 (larger than 40). Hence, the third pair of partitions is not included and the first two pairs of

partitions are combined into a pair of large partitions. The remaining pairs of small partitions are

combined similarly. The final partitioning result is also shown in Fig. 6.9. Note that this example

does not show a case in which a pair of partitions from the second step is too large. In such a case,

we can split the partitions as described in the algorithm.

The second stage of the MFJA is called the preprocessing stage. Since mffi2 is partitioned

based on the given partitions of mffi1 (the second step of the CIPM), some partitions of mffi2

may not contain any row. After combining small partitions to large partitions (the third step of the

CIPM), some partitions of mffi2 may still be empty (empty partitions are combined together). In

this case, we need to avoid sending those pairs of partitions, which contain an empty partition, to a

map node. In addition, before actually sending a pair of partitions to a map node, some necessary

preprocessing work is needed. For example, the MFFI identifiers are added in each row of two

partitions and a list of key/value pairs ((row id, MFFI identifier), · · · ) are generated.

The third stage of the MFJA is the map stage. The input is a list of key/value pairs that are

produced from the previous stage. In this stage, a merge join is applied. First, according to the

MFFI identifiers, the list of key/value pairs are regrouped according to original partitions p1 and

p2. Next, a merge join is applied on the key values of p1 and p2. If the key value v1 of a row r1 in p1
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is equal to the key value v2 of a row r2 in p2, rows r1 and r2 are matched and joined together. After

that, we utilize the structure of the MFFI to efficiently discover matched original table row ids

from r1 and r2. We use the SFJ as an example to illustrate the processing ideas. The other types of

family join operations can be processed similarly. To process the SFJ, r1 and r2 are extracted from

the two respective MFFIs, each of which has a three-level structure. At the first level, the version

number vnumber1 of each version subspace in r1 is compared with the version number vnumber2

of each version subspace in r2. If vnumber1 is not equal to vnumber2, no further process is needed

for the two corresponding version subspaces. Otherwise, the version subspaces for vnumber1 and

vnumber2 are accessed. At the second level, the column id cid1 of each column subspace in the

version subspace for vnumber1 is compared with the column id cid2 of each column subspace

in the version subspace for vnumber2. If cid1 is not equal to cid2, the two corresponding column

subspaces are pruned. Otherwise, the column subspaces for cid1 and cid2 are accessed. At the third

level, each original table row id rid1 in the column subspace for cid1 is paired with each original

table row id rid2 in the column subspace for cid2 and returned as a matched key pair (rid1, rid2)

in the map output. This output is used as the input key/value pair list for the next reduce stage. We

can see that, using MFFIs, much unnecessary comparison work could be pruned in the map stage.

The map function for the SFJ is given as follows.

ALGORITHM 6.4.4 : The map function
Input: (1) a list of key/value pairs ((rowkey, mffiid), · · · ); (2) given partition pair (p1, p2);
Output: a list of matched key pairs ((rowid, rowid), · · · );
Method:
1. regroup the input key/value pairs according to partitions p1 and p2;
2. a = b = 1; resultlist = ∅;

/* a merge join is applied. */
3. while a ≤ row number in p1 and b ≤ row number in p2 do
4. r1 = ath row in p1; r2 = bth row in p2;
5. v1 = key value of r1; v2 = key value of r2;
6. if v1 == v2 then
7. for version number vnumber1 of each version subspace in r1 do
8. for version number vnumber2 of each version subspace in r2 do
9. if vnumber1 == vnumber2 then
10. for column id cid1 of each column subspace in version subspace for vnumber1 do
11. for column id cid2 of each column subspace in version subspace for vnumber2 do
12. if cid1 == cid2 then
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13. for each original table row id rid1 in column subspace for cid1 do
14. for each original table row id rid2 in column subspace for cid2 do
15. add a key pair (rid1, rid2)into resultlist;
16. end for
17. end for
18. end if
19. end for
20. end for
21. end if
22. end for
23. end for
24. a = a + 1; b = b + 1;
25. else if v1 < v2 then
26. a = a + 1;
27. else
28. b = b + 1;
29. end if
30. end while
31. return resultlist;

In the algorithm, according to the table (MFFI) identifiers, the input key/value pairs are re-

grouped according to two partitions p1 and p2 (line 1). Next, a merge join is applied on the key

values of rows in p1 and p2 (lines 3 - 30). More specifically, a key value v1 of a row r1 in p1 is

compared with a key value v2 of a row r2 in p2 (lines 4 - 6). If v1 is equal to v2, three nested-loop

comparisons are applied to discover matched original table row id pairs from r1 and r2 (lines 7 -

23). After that, the key values of the next pair of rows r1 and r2 are compared. If v1 < v2, the key

value of the next row of r1 is extracted and compared with v2 (lines 25 - 26). Otherwise (i.e., v1 >

v2), the key value of the next row of r2 is extracted and compared with v1 (lines 27 - 28).

The fourth stage of the MFJA is called the duplication removal stage. All (MapRedure) key/value

pairs (i.e., matched key pairs) produced from the third stage are assembled and sorted. The dupli-

cated key/value pairs are removed. After that, the distinct key/value pairs are assigned to multiple

reduce nodes.

The last stage of the MFJA is the reduce stage. The similar reduce function that is used in the

DFJM is applied. The input is a list of (MapReduce) key/value pairs that are generated from the

previous stage. For each key/value pair (rid1, rid2), rid1 and rid2 are used as key values to search

the corresponding rows row1 and row2 in original tables, and row1 and row2 are extracted and
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joined together.

Assume that the total numbers of values of cf1 in T1, and cf2 in T2 are N1 and N2, respectively.

The total distinct numbers of values of cf1 in T1, and cf2 in T2 are D1 and D2, respectively.

The unit comparison cost is C (C is different for various family join types). The worst-case time

complexity to apply the DFJM is: O (N1*N2*C) (each value of cf1 is compared with each value

of cf2). Assume that we create two MFFIs mffi1 and mffi2 for cf1 and cf2, respectively. D1

and D2 represent the numbers of rows in mffi1 and mffi2, respectively. N1 / D1 indicates the

average number of original row ids in a row of mffi1 while N2 / D2 indicates the average number

of original row ids in a row of mffi2. Thus, (N1*N2*C) / (D1*D2) represents the cost to compare

each original row id in a row of mffi1 with each original row id in a row of mffi2. We denote

it as RowComparisonCost. Since mffi1 and mffi2 are merge joined on their row keys, the

total merge join cost is: Minimum(D1, D2)* RowComparisonCost. Hence, the worst-case time

complexity of the MFJA is: O ((N1*N2*C)/D1) or O ((N1*N2*C)/D2). Since D1 and D2 are

usually larger than one, the MFJA is more efficient than the DFJM for processing the family joins.

6.5 Experiments

In this section, we report the results of our experiments to show the performance of our techniques.

6.5.1 Experiments setup

To evaluate the performance of our techniques, we conducted experiments on a six-node cluster

with one node served as the master node. The cluster runs Hadoop 0.20.2. Every node in the

cluster has an Intel(R) dual Core CPU with 4GB DDR-3 memory and 2TB HD attached.

We tested the join performance using two datasets, where the first one is a relatively small set

of real world data, and the second one is a relatively large set of synthetic data. The real world

dataset we used contains approximately 63 million distinct IP addresses and more than 100 million
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different cookies. An IP address may have multiple cookies, while a cookie may be shared by

multiple IP addresses. Each row of a file (Hbase table) contains an IP address as the row key and

several cookies which constitute a column family (one cookie for each column).

The second dataset consists of synthetic data which was created using an Hbase table generator.

The data contains the information about users and their phone numbers. The schema of the Hbase

table contains a row key (user id) and a column family. The column family consists three columns,

representing a home phone number, a cell phone number, and an optional phone number. A column

may contain several versions of phone numbers. The dataset contains more than 500 million phone

numbers from 200 million of different users.

We performed family joins on both real data and synthetic data. The real data is saved in several

Hbase tables (with the same schema). These Hbase tables are grouped. Each group contains two

Hbase tables with the same size (e.g., 1G). For each group, two Hbase tables are family joined on

their cookie column families. Similarly, the synthetic data is preprocessed in a similar way. Two

synthetic Hbase tables are family joined on their phone number column families.

We implemented the DFJM and the MFJA using MapReduce on Hadoop. The MFFIs were

created for the column families of Hbase tables on which the family join was performed. While

an MFFI was being generated, a corresponding CI was also created. The DFJM directly processed

the family joins on the original tables. The task was accomplished in parallel using MapReduce.

Finally, the join result was assembled and saved. On the another hand, the MFJA processed the

family joins using two MFFIs instead. The MFFIs were partitioned by using the CIPM (the count-

ing index base partitioning method) and sent to different map nodes for computation. After that, the

reduce nodes fetched rows from the original tables and finished the join task. In the experiments,

each family join was performed 10 times and the average performance was measured.
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Figure 6.10: Performance comparisons between DFJA and MFJA using SFJ

6.5.2 Performance of the DFJM and the MFJA

The first experiment was conducted to evaluate the efficiency of our MFFI based family join ap-

proach. As mentioned earlier, we had several groups (different sizes) of Hbase tables which con-

tained real data. For each group, two Hbase tables were joined on their cookie column families

by using both the DFJM and the MFJA. Fig.6.10 shows the performance comparisons between the

DFJM and the MFJA on the real data. Note that we use the SFJ as our default family join type. The

x-axis represents the total size of two joined Hbase tables, and y-axis represents the total execution

time of the join work. From the figure, we observe that the MFJA always outperforms the DFJM

for different Hbase table sizes.

6.5.3 Performance of the MFJA for different family join types

The second experiment was conducted to evaluate the performance of the MFJA for different

types of family joins. We mentioned that the family joins could be done with different freedoms.
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Figure 6.11: Saved percentage of execution time by using the MFJA on the real world data for
different types of family joins

According to different matching criterions, there were four types of family joins: the free family

join (FFJ), the column-oriented family join (COFJ), the version-oriented family join (VOFJ), and

the strict family join (SFJ). Since the MFJA performs always better than the DFJA, we want to

know that for different types of family joins, using the MFJA, how much percentage of execution

time can be saved compared to that by using the DFJA. Fig. 6.11 shows the saved percentage of

execution time by using the MFJA on the real world data for different types of family joins and

different sizes of Hbase tables. From the figure, we can see that the SFJ always saved much more

percentage of execution time than others. The VOFJ performs better than the COFJ and the FFJ

saved least percentage of execution time. The reason for that is as follows. As we mentioned

earlier, the MFFI has a three-level structure in each row. The first level is the version level and the

second level is the column level. For the SFJ, the version level and the column level work together

to maximally prune unnecessary comparisons. For the VOFJ, only the version level help to prune
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Figure 6.12: Saved percentage of execution time by using the MFJA on the synthetic data for
different types of family joins

unusable comparisons while for the COFJ, only the column level contribute to prune unnecessary

comparisons. Thus, the VOFJ and the COFJ performs less than the SFJ. Since in our design, the

column level is below the version level and the version numbers is usually smaller than the column

numbers, which means that there is more chance for using the version level to prune more unusable

comparisons. As a result, the VOFJ saved more percentage of execution time than that saved by

the COFJ. For the FFJ, the three-level structure is not used to prune comparisons. Hence, the saved

percentage of execution time by the FFJ is less than others. Fig. 6.12 shows the saved percentage

of execution time by using the MFJA on the synthetic data for different types of family joins and

different sizes of Hbase tables. The similar results can be observed.

183



6.5.4 Performance of the MFJA with different partitioning methods

The third experiment was conducted to examine the performance of the MFJA with different par-

titioning methods. As we mentioned, the MFFIs have to be partitioned in a reasonable way for the

parallelization purpose. A straightforward partitioning method (SPM) and a counting index based

partitioning method (CIPM) were discussed in section 6.4. The actual workload (i.e., the number

of rows) assigned for each map node is compared between the CIPM and the SPM in Fig. 6.13.

We observe that a more balanced workload distribution is achieved by the CIPM. Fig. 6.14 shows

the performance between the MFJA with the CIPM and the one with the SPM. Note that the SFJ

is used as our default family join type. From the figure, we can see that, as the total size of two

joined Hbase tables increases, the CIPM performs increasingly better. The reason for that is as

follows. If the total size of two joined Hbase tables is small, although the CIPM can better balance

the workload for each map node, the performance improvement is not obvious. But if total size of

two joined tables is larger, using the SPM, a map node may be assigned with all of the work while

the work is evenly divided among all map nodes by using the CIPM. As a result, the performance

of the CIPM is increasingly improved.

6.5.5 Effect of the duplication rates

The last experiment was to evaluate the effect of a parameter of the dataset, which is called the

duplication rate (dr), on both the DFJM and the MFJA. The duplication rate is defined as: the

number of distinct values / the number of all values. In the synthetic dataset, we can control the

distinct values of the dataset by setting the dr before generating the data. A larger dr implies a

larger number of distinct values in the dataset. Fig. 6.15 shows the performance of the DFJM and

the MFJA on the same maximum workload capacity in the system (20G) with different duplication

rates. From the figure, we observe that, as the duplication rate increases, the performance of the
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Figure 6.13: Performance comparisons of the CIPM and the SPM

Figure 6.14: Node balance comparisons between the CIPM and the SPM
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Figure 6.15: Performance comparisons between the MFJA and the DFJM with different drs

MFJA becomes increasingly better, while the performance of the DFJM is relatively stable. The

reason for that is as follows: as we mentioned in section 6.4, the worst-case time complexity for the

MFJA is O ((N1*N2*C)/D1) or O ((N1*N2*C)/D2). Thus, as the dr increases, D1 andD2 become

larger, and the worst-case time complexity of the MFJA is reduced. As a result, the performance

of the MFJA is improved.

Our experiments demonstrate that implementing various types of family joins in a big data

environment is feasible and utilizing proper strategies such as indexing and intelligent partitioning

can improve the performance of a family join.
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CHAPTER 7
Conclusion

There is an increasing demand for progressive queries (PQ) from numerous application domains.

How to efficiently process PQs raises new challenges, such as the access inefficiency, the query

unpredictability, and the result management challenge. Existing DBMSs were not designed to

efficiently process such queries. To tackle some of the challenges, we have investigated the issues

and methods for efficiently processing PQs via materialized views in this work. A suite of new

techniques have been proposed after carefully analyzing the relevant problems.

The main contributions of this dissertation are summarized as follows:

• We have developed a novel dynamic materialized-view based approach for efficiently pro-

cessing the monotonic linear PQs. A so-call superior relationship graph to capture the supe-

rior relationships among SQs of historical (monotonic linear) PQs was defined. A method

for using the graph to estimate the benefit of keeping the result of an SQ as a materialized

view to improve the processing efficiency of future SQs was suggested. Based on the prop-

erties of monotonic linear PQs, a generating-based algorithm (which is more efficient for

a dense graph) and a pruning-based algorithm (which is more suitable for a sparse graph)

were proposed to efficiently construct a superior relationship graph. A special structure and

its relevant algorithms to effectively manage the materialized views so as to improve the

view searching efficiency and quality were also presented. A system architecture to incor-

porate the proposed technique to process PQs was discussed. Extensive experiments were

conducted to evaluate the performance of the adopted strategies with various parameters.

Our theoretical and empirical studies have demonstrated that the proposed technique is quite

promising in efficiently processing monotonic linear PQs.
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• We have proposed a new materialized-view based approach for efficiently processing generic

PQs. A so-called multiple query dependency graph (MQDG) was constructed to capture the

data source dependency relationships among the SQs and external tables of generic PQs. A

mathematical model using this graph to estimate the potential benefit of selecting an SQ of

a completed PQ for view materialization was derived. Various factors affecting the impact

and effectiveness of view materialization were considered. A method to select material-

ized views via dependency analysis was suggested. An algorithm for dynamically removing

useless nodes and transferring dependency relationships for the MQDG during the query

processing was introduced. To maintain the materialized view space, we studied both a di-

rect greedy method and a dynamic programming method. The former is more efficient, while

the latter guarantees a better solution. To mitigate the high worst-case complexity issue for

the dynamic programming procedure, we suggested a greedy strategy to reduce the prob-

lem input size. Our extensive experimental results demonstrated that the proposed technique

significantly improves the processing efficiency for generic PQs.

• We have introduced a new dynamic materialized view index method to efficiently discover

usable materialized views from a given view space/set for answering SQs of generic PQs.

A special index tree structure was designed to cope with the highly dynamic nature of the

materialized view space for PQs. In particular, a two-level priority rule was adopted to order

the tree nodes so that different types of views can be quickly located in the tree. Furthermore,

a bitmap encoding and matching mechanism was applied to refine the pruning power of

unusable views during a search. The algorithms and strategies for the index tree construction,

search, and maintenance were presented. Our experimental results showed that the proposed

index method and relevant strategies are effective in searching usable views for answering

SQs.
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• We have developed an index based technique for performing a new column family join op-

eration on Hbase tables in a popular big data environment. The useful column family join

operation with four freedom variations was introduced. Two family join approaches (a direct

method and an index based method) were discussed. To efficiently process a column family

join, we suggested using a so-called multiple freedom family index (MFFI). An MFFI uses

the cell values from the indexed column family in the underlying Hbase table as the main

search key values, and the space for each key value was further divided into a number of

subspaces based on the version numbers and the column ids of the underlying Hbase table.

An MFFI itself was implemented as an Hbase table in order take advantages of the supported

features for Hbase in the Hadoop. A parallel MapReduce algorithm for building the MFFI

was presented. An MFFI based parallel MapReduce algorithm for processing a column fam-

ily join was proposed. In particular, an auxiliary counting index was used in the algorithm to

achieve a balanced workload among the map nodes. Our experiments demonstrated that the

suggested technique for processing column family joins was efficient. This technique enable

the big data environment to possess the closure property for query processing, which is an

essential requirement for supporting PQs.

The work reported in this dissertation only represents the beginning of research effort in ad-

dressing the relevant issues. In particular, our research on supporting PQs in a big data environment

is quite preliminary. More research needs to be done in order to completely solve this problem.

Our future work includes: extend our techniques to handle more types of SQs (e.g., those involv-

ing aggregate functions); study how to process approximate PQs; investigate methods to deal with

spatio-temporal PQs; develop more efficient access methods (e.g., hash based) to support PQs;

explore issues for incorporating our techniques in a real DBMS; build a materialized view mech-

anism for supporting PQs in the Hadoop environment; develop techniques to efficiently process
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PQs via materialized views in the Hadoop environment; and study methods to handle PQs in other

types of databases such as XML.

In summary, the problem of efficiently processing PQs is challenging; the materialized-view

based techniques proposed in this dissertation are promising; and many interesting research issues

remain to be resolved in the future.
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