
Scaling Empirical Game-Theoretic Analysis

by

Ben-Alexander Cassell

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2014

Doctoral Committee:

Professor Michael P. Wellman, Chair
Professor John E. Laird
Professor Jeffrey K. MacKie-Mason
Professor Demosthenis Teneketzis

©Ben-Alexander Cassell

2014

To Dad, Mom, Mary Rose, and Josh.

ii

Acknowledgments

I would first like to extend my deepest thanks to my advisor, Michael Wellman. Michael
always seemed to know exactly when I needed encouragement, and when I needed to be
pushed, to bring out the best in me. He gave me the flexibility to pursue the topics that I
found most interesting while providing invaluable guidance. I would also like to thank my
dissertation committee, John Laird, Jeffrey MacKie-Mason, and Demosthenis Teneketzis,
without whom this work would not be possible. I consider each member of my committee
to be extraordinary scientists, teachers, and friends. I also owe a large amount of gratitude
to Carey Bagdassarian at the College of William and Mary, my first research mentor, for
encouraging me to aim high with my ambitions.

I am deeply thankful to the administrative staff of the Computer Science and Engi-
neering department. In particular, I must thank Dawn Freysinger, Rita Rendell, and Cindy
Watts, who always greeted me with a smile and a determination to resolve my administra-
tive challenges. I would also like to thank DCO, and especially Laura Fink, for helping me
manage the servers that have been instrumental to my research.

The rigors of the PhD program would have been more daunting were it not for a group
of amazing friends and colleagues. I would like to especially thank the friends who put up
with living with me over the years, and who are the source of some of my fondest graduate
school memories: Daniel Fabbri, Jamie Kidwell, Erin Payne, Quang Duong, David Meis-
ner, Steven Pelley, and Michael Chow. I am deeply indebted to my lab-mate Patrick Jordan,
who set a sterling example of hard work and dedication, and demonstrates an unwavering
belief in my ability, even when I question it myself. I would also like to thank Andrea Jor-
dan, who has always treated me like family. I would like to thank my friends/collaborators,
Timur Alperovich and Bryce Wiedenbeck, for always stimulating my brain with interesting
discussion. I would be remiss if I did not acknowledge the past and present members of
the Strategic Reasoning Group for their camaraderie and support. I must also thank my
longtime friends from my hometown, St. Louis: Tony Flesor, Dan Pritt, Brandon Walsh,
and Sarah Brandt. I would not have gotten this far without their love.

I must thank my parents, Stu Cassell, Mary Rose Cassell, and Carol Rutherford, for
always supporting me in my educational endeavors. The pride they have in me is conta-
gious, bolstering me when I am low and sharing in the joy when I succeed. Finally, I wish
to thank my brother and best friend, Josh.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

Chapter

1 Introduction . 1

1.1 Empirical Game-Theoretic Framework 2
1.1.1 Strategic Games . 2
1.1.2 Empirical Game Models . 3
1.1.3 Solution Concepts . 4
1.1.4 Scaling EGTA . 4

1.2 Overview of Contributions . 7
1.2.1 Application: Wireless Access Point Selection 8
1.2.2 EGTAOnline: Software Infrastructure for Experiment Management 8
1.2.3 Efficient Analysis of Large Game Data Sets 8
1.2.4 Bootstrap Methods for Sequential Estimation of Nash Equilibria . 9
1.2.5 Application: Equity Premium Estimation in Asset Pricing 9

1.3 Guide to Reading this Thesis . 10

2 Application: Wireless Access Point Selection 11

2.1 Related Work . 12
2.2 Game Description . 13

2.2.1 Multiple AP Selection . 13
2.2.2 Information Models . 14

2.3 Strategies . 15
2.3.1 Association Policies . 15
2.3.2 Probing Policies . 17

2.4 Experiments . 18
2.5 Results . 19

2.5.1 Bulletin Board Model . 19
2.5.2 Probing Model . 20
2.5.3 Social Welfare . 22

2.6 Summary: AP Selection Game . 23

iv

2.7 Scaling Lessons . 23

3 EGTAOnline: Software Infrastructure for Experiment Management 25

3.1 Related Work . 26
3.2 Role Symmetry . 27
3.3 Data Compatibility . 28
3.4 Architecture . 29

3.4.1 Simulators . 29
3.4.2 Observations . 30
3.4.3 Schedulers . 31
3.4.4 Simulations . 33
3.4.5 Profiles . 34
3.4.6 Games . 34

3.5 Data Reuse . 34
3.6 Automated Refinement of Game Models 37

3.6.1 Exploration of Profile Space . 38
3.6.2 Sequential Estimation of Empirical Games 39

3.7 In Production . 41

4 Efficient Analysis of Large Game Data Sets . 42

4.1 Background: Database Management . 43
4.2 Representing Games in a Database . 44
4.3 Game-Theoretic Primitives . 46
4.4 Identifying PSNE . 48
4.5 PSNE-Finding Performance . 51

4.5.1 Comparison of SQL Algorithms 51
4.5.2 Comparison to Gambit . 52

4.6 Incremental Analysis . 56
4.6.1 Incremental Regret Maintenance 57
4.6.2 Identifying Maximal Complete Subgames 57

4.7 Discussion . 60

5 Bootstrap Methods for Sequential Estimation of Nash Equilibria 62

5.1 The Bootstrap . 64
5.2 Using the Bootstrap in Sample Control 66
5.3 Experimental Data Sets . 68
5.4 Sequential Classification of Profiles as Nash Equilibria 69
5.5 Sequential Search for δ-Equilibria . 72
5.6 Discussion . 76

6 Application: Equity Premium Estimation in Asset Pricing 79

6.1 Background: Agent Modeling . 80
6.2 Ambiguity Aversion and the Equity Premium Puzzle 82
6.3 Empirical Game Model of Asset Pricing 83

6.3.1 Market and Asset Models . 83
6.3.2 Agent Strategy Composition . 84

v

6.3.3 Estimating the Empirical Game 85
6.4 Simulation of Asset Pricing under Ambiguous Information 87

6.4.1 Market Conditions . 87
6.4.2 News . 88
6.4.3 Traders . 88

6.5 Experiments . 90
6.5.1 Equilibrium Analysis . 91
6.5.2 Equity Premium Estimation . 93

6.6 Discussion . 96

7 Conclusion . 100

7.1 Contributions . 100
7.1.1 Software Systems and Methods 100
7.1.2 Applications . 103

7.2 Future Work . 104
7.3 Final Remarks . 105

Bibliography . 106

vi

LIST OF FIGURES

1.1 Iterative, search-based approach to empirical game-theoretic analysis. 6

2.1 Lowest expected delay among found Nash equilibria for different rates of work
clearing. 22

3.1 Supporting the EGTA process with EGTAOnline. 30
3.2 Fraction of unreduced-game profile space for an n-player reduction that is

covered by smaller reductions, shown for varying size of strategy set, M 37
3.3 Implementing a sequential estimation procedure with EGTAOnline. 40

4.1 Schema for empirical games. 45
4.2 Data dependence graph for calculating regret of profiles in an example game. . 49
4.3 Finding best responses in the symmetric aggregations table. 51
4.4 Performance of two SQL methods for identifying all PSNE. 52
4.5 Comparing performance of PSNE finding methods under two cache scenarios. 55

6.1 Workflow diagram for using EGTA to estimate a non-payoff variables V 84
6.2 Abstract view of market simulation. 87

7.1 Idealized automated empirical game-theoretic analysis. 101

vii

LIST OF TABLES

2.1 Equilibrium analysis of the bulletin board model. 19
2.2 Equilibrium analysis of the probing model. 21

5.1 Sequential classification performance. 71
5.2 Stopping rule performance. 75

6.1 Base market configuration for experiments. 91
6.2 Variant market configurations tested. 92
6.3 Symmetric mixed equilibria found in each of the market configurations. 92
6.4 Equity premium statistics for each market configuration. 95
6.5 Equity premium measurements for each market configuration when a single

ambiguity-averse pricing strategy is played. 97

viii

CHAPTER 1

Introduction

From the interplay of traders in financial markets to the interplay of armies at war, large-
scale strategic interactions have a significant impact on our daily lives. To analyze strate-
gic interaction, such scenarios are often cast as games, where the participants are players
seeking to optimize their payoffs through the selection of a strategy in anticipation of the
strategic decisions of other players. For complex games, such as those that might capture
incentives of a financial market or a war, analytical models of the scenario may ignore
significant features of the system in the name of tractability. When our modeling needs
are too complex to address analytically, empirical game models (Wellman, 2006), where
observations or simulated play are used to estimate the utility functions of agents, can be
employed to facilitate game-theoretic analysis. The set of methods for building and ana-
lyzing empirical game models is known collectively as empirical game-theoretic analysis

(EGTA).
Employing EGTA is not without its own limitations, as increasing the complexity of the

model may require observing a greater number of outcomes, taking larger samples of these
outcomes, and increasing the computational cost of analysis. As such, though EGTA af-
fords more complex models than analytical approaches, there remains a frontier of compu-
tational feasibility. This frontier constrains the number of players, variety of strategies, and
environment sophistication of empirical game models, reducing the fidelity of the model,
and potentially hampering its ability to predict or describe real-world outcomes.

This thesis addresses the challenge of extending the boundaries of the EGTA frame-
work to model and analyze large games. To this end, I present algorithms and software
architectures that facilitate efficient construction, management, and analysis of large game
models. In contrast to previous research into scaling EGTA, I place particular emphasis on
managing the copious data generated by this methodology. Prior to providing an overview
of the contents of this thesis, I present necessary definitions and background for the EGTA
methodology.

1

1.1 Empirical Game-Theoretic Framework

1.1.1 Strategic Games

A game describes a strategic decision scenario and is commonly represented in normal

form, Γ = 〈I, {Si}, {ui}〉, where I is the set of players, Si is the non-empty set of strate-
gies available to i, and ui is a utility function that maps from s ∈ ×i∈ISi, a joint strategy
or pure-strategy profile, to the utility that i receives when s is played. Where convenient,
N = |I| is used to express the number of players in a game and M = |S| to indicate the
size of the strategy set. I focus exclusively on non-cooperative games: games in which
players are rational, self-interested agents that cannot make binding agreements to coop-
erate. A normal-form game can be equivalently expressed as an N -dimensional payoff

matrix, where each dimension corresponds to the strategic choice of one player and each
entry in the matrix corresponds to the vector of payoffs, (u1(s), ..., uN(s)), that players
receive when playing the profile s = (s1, . . . , sN) that indexes that entry. A subgame of
the game Γ, ΓX = 〈I, {S ′i ⊆ Si}, {ui}〉, where X = ×i∈IS ′i, refers to a game obtained by
restricting the strategy sets of Γ, while retaining the players and projecting utility functions
to the smaller profile space.

In game-theoretic analysis it is often useful to reason about the set of profiles that can
be reached from profile s by a single player changing its strategy: the unilateral deviation

set. Let si denote the strategy played by i in profile s and s−i denote the joint strategy
of all players other than i. The deviation set for player i from the profile s is given by
Di(s) = {(ŝi, s−i) : ŝi ∈ Si \ {si}}. The deviation set of the profile s is given by D(s) =⋃
i∈I Di(s), and the deviation set of a set of profiles X is D(X) =

⋃
s∈X D(s).

Player i may also play a mixed strategy, σi, a probability mixture over its set of strate-
gies, with the space of such mixtures denoted ∆i. The set of strategies played with non-zero
probability in σi is known as the support of σi, which I denote by S(σi). When one or more
players play a mixed strategy, the joint strategy is referred to as a mixed-strategy profile and
denoted σ. Just as a mixed strategy specifies the probability that a player will play one of
its pure strategies, a mixed-strategy profile specifies the probability that each pure-strategy
profile will be played. The support of σ, S(σ) = ×i∈IS(σi), is the space of pure-strategy
profiles that are realized with non-zero probability when σ is played. The (von Neumann-
Morgenstern) utility to i for playing its assignment in σ is given by the expected utility over
the pure-strategy profiles that can be realized under the joint-strategy mixture,

ui(σ) =
∑
s∈S(σ)

Pr(s | σ)ui(s),

2

where Pr(s | σ) is the probability that s is realized when σ is played:

Pr(s | σ) =
∏
si∈s

Pr(si | σ)

As with pure-strategy profiles, we can define deviation sets for mixed-strategy profiles.
It is sufficient for my purposes to restrict attention to deviations to pure strategies. Let σi
denote the mixed-strategy played by i in the mixed-strategy profile σ, and σ−i denote the
joint strategy of players other than i. Then, Di(σ) = {(ŝi, σ−i) : ŝi ∈ Si \ S(σi)} and
D(σ) =

⋃
i∈I Di(σ).

1.1.2 Empirical Game Models

Empirical game models are built upon an underlying simulator or other model for gener-
ating observations. Simulators allow us to sample the outcome of agent play, providing
a noisy estimate of each agent’s utility when playing the observed joint strategy. Though
the full space of possible strategies may be very large or infinite, we usually confine our
attention to a small set of heuristic strategies. This set of strategies induces a space of pro-
files that is at best exponential in the smaller of the number of players and the number of
strategies. As such, when an empirical game model features a large number of players and
strategies, sampling the full space of profiles may be infeasible.

I focus on building game models by gathering observation data from simulators. Each
observation corresponds to a single simulation, and records the vector of payoffs achieved
by agents in that run of the simulator. An observation may also record other statistics of
interest such as realizations of random variables or features of the simulation that arise
through agent interaction, such as the winning bid in a simulated auction. I represent a
set of observations by Θ = {θ}, where each observation θ specifies the profile played, the
payoff vector observed, and any statistics recorded.

Models of the true or underlying game, terms which I use interchangeably to refer to the
game being simulated, may be constructed from a set of compatible observations. I discuss
in detail what it means for observations to be compatible in Chapter 3. Jordan and Wellman
(2009) cover model selection extensively, providing a framework for evaluating goodness-
of-fit of a game model to observation data. I primarily focus on a simple transformation
of observation data into a payoff matrix: for every profile s for which we have at least one
observation, ui(s) = ūi(s), the average payoff that player i received in our observations
of s. This payoff matrix is not strictly equivalent to a normal-form game, since utility
functions will be undefined for unobserved profiles.

3

1.1.3 Solution Concepts

We construct models of agent utilities from observation data in order to predict agent be-
havior in the system being simulated. Such predictions are generated by a solution con-

cept, a rule for predicting game play. The solution concept that is predominantly adopted
in game-theoretic analysis is the Nash equilibrium. A Nash equilibrium is a (potentially
mixed-strategy) profile such that no player can improve their payoff through unilaterally
switching to a different strategy.

We often wish to identify the set of strategies that allow a player to best respond—
achieve its highest possible payoff given the strategic choices of the other players. This set
is identified by the best-response correspondence. Though in principle the strategies in a
player’s best-response correspondence can be mixed strategies, I limit attention to the pure-
strategy best-response correspondence. For any profile σ and player i, the pure-strategy
best-response correspondence is given by:

Bi(σ−i) = arg max
ŝi∈Si

ui(ŝi, σ−i).

We can also define the best-response correspondence of a profile as B(σ) = ×i∈IBi(σ−i).
A Nash equilibrium is a profile σ such that ∀iS(σi) ⊆ Bi(σ−i).

It is often helpful to identify profiles that are good approximations to Nash equilibrium
in terms of player payoffs. To describe how well a profile σ approximates a Nash equilib-
rium, I use a measure called regret, notated ε(σ). Regret is the maximum payoff benefit that
any single player can achieve through changing their strategy, while holding other players’
strategies constant. Regret is given by:

ε(σ) = max
i∈I

max
si∈Si

ui(si, σ−i)− ui(σ).

A profile σ is a Nash equilibrium if and only if it has regret equal to zero. More gener-
ally, we say that a profile σ is a δ-approximation of Nash equilibrium, or simply a δ-Nash
equilibrium, if ε(σ) ≤ δ.

1.1.4 Scaling EGTA

While EGTA provides a framework capable of analyzing the incentive structure of almost
any strategic scenario that we can simulate, we are limited by the time spent in simulation
and analysis. If we wish to understand a market with 100 participants and more than a
few strategies for each participant, we cannot hope to do so by enumerating all the Nash

4

equilibria of the 100-player game. Assuming each player has 3 strategies, and the game
has no useful underlying structure, estimating payoffs for all pure-strategy profiles of this
game would require sampling the outcome of play from 3100 ≈ 5× 1047 profiles. Further-
more, for each profile that we sample, we may need to take a large number of observations
to ensure that our payoff estimates are accurate. Not only would this take an insurmount-
able simulation effort, finding all the equilibria of this game would also take considerable
time, as Daskalakis et al. (2009) demonstrated that the problem of finding a mixed-strategy
Nash equilibrium is PPAD-complete, and remarked that no known algorithm for finding
equilibria has been proven to be polynomial.

To identify all (δ-)Nash equilibria of a game model, we must have payoff estimates
for every pure-strategy profile. Any pure-strategy profile for which we do not have payoff
estimates has the potential to be an equilibrium, and some unobserved profiles have the
potential to refute candidate equilibria. It is often possible, however, to confirm a single
equilibrium without sampling the full profile space. Since calculating ε(σ) requires evalu-
ating player utilities for σ and single-player deviations from σ, we can confirm or reject σ
as an equilibrium after sufficiently sampling all s in S(σ) ∪ (

⋃
σ̂∈D(σ) S(σ̂)). To see how

this set differs from the full profile space, consider the profile from the previously described
100-player game in which all players play their first strategy with probability 1. In this spe-
cial case, σ is equivalent to a pure-strategy profile, so S(σ) = {σ} and S(σ̂) = {σ̂} for
σ̂ ∈ D(σ). Since |D(σ)| = 200, as each of the 100 players can deviate to one of their
two other strategies, |S(σ) ∪ (

⋃
σ̂∈D(σ) S(σ̂))| = 201, considerably fewer profiles than the

5× 1047 profiles in the full space.
As many games of interest are too large to fully sample, and some games may take

considerable time to gather a single observation,1 much work conducted under the EGTA
methodology focuses on confirming one or more δ-Nash equilibria, rather than identify-
ing all Nash equilibria, concluding sampling after achieving this goal. This desire to be
economical in sampling led Jordan et al. (2008) to formulate the problem of identifying ap-
proximate Nash equilibria as a search through profile space, yielding an iterative approach
to sampling and game model construction, presented in Figure 1.1. In each iteration of this
procedure a pure-strategy profile is selected for sampling, leading to an updated observa-
tion matrix. With this new observation matrix we can conduct game-theoretic or statistical
analysis to determine whether further refinement of our game model is required. This re-
finement can take the form of sampling unobserved profiles, increasing the size of profile
space by adding strategies, or through further sampling of previously sampled profiles to

1For example, the game simulator studied by Jordan et al. (2007) requires over 7 CPU hours to gather a
single observation.

5

Refine?
No

End

More samples

More strategies

Select

Strategy Sets

{Si}

Profile Space

S1 ⇥ . . .⇥ SN

Analysis

Observation Matrix

Simulator

O
Observation

✓

⇥

Profile

s

Figure 1.1: Iterative, search-based approach to empirical game-theoretic analysis.

reduce uncertainty in payoff estimates.
Often the space of profiles to sample can be reduced by leveraging symmetries in payoff

structure. Symmetric games are games in which all players share a single strategy set and
utility function that depends upon only the player’s strategy and the counts of strategies
played by others. For symmetric games, we can express the normal form representation
as 〈N,S, u(·)〉. In such games, the space of profiles that are unique with respect to player
symmetry is much smaller than that of the non-symmetric representation (Cheng et al.,
2004). Assuming the 100-player market game introduced above could be cast as a sym-
metric game, the number of profiles in the game shrinks to a much more manageable size:(

100+3−1
100

)
= 5151. Reeves et al. (2005) found that game solvers incorporating symmetry

could solve symmetric games much faster than solvers oblivious of symmetry. I develop
a more general symmetric representation that I term role symmetry, presented in detail in
Chapter 3

Another way to reduce the space of profiles to be sampled is through reasoning about
large games with abstractions. Wellman et al. (2005) proposed the hierarchical reduction,
a game abstraction for analyzing symmetric games in which groups of multiple agents are
controlled by a single player. Under the hierarchical reduction we may choose to model a
simulation with 100 agents as a 10-player game in which each player chooses the strategy
to played by 10 agents. When payoffs vary smoothly as agents change strategies, solutions

6

to a hierarchically-reduced game can be good approximations to the solutions of the unre-
duced game. However, since a single player chooses the strategy played by several agents,
a deviation by a player in the reduced game corresponds to multiple players deviating to
the same strategy in the unreduced game. Accordingly, single-player deviation incentives,
which form the basis of Nash equilibrium, may not be accurately represented in the reduced
game. To address this concern, Wiedenbeck and Wellman (2012) proposed the deviation-

preserving reduction. In the deviation-preserving reduction, each player views themselves
as an individual, but view their opponents as an aggregate represented by some small num-
ber of players. Wiedenbeck and Wellman find this reduction superior, in terms of regret of
solutions to the reduced game when played in the full game, to hierarchical reduction and
the similar twins reduction (Ficici et al., 2008) for several classes of games. Both hierarchi-
cal reduction and deviation-preserving reduction require exponentially fewer profiles than
the unreduced game, and thus reductions are commonly used for analyzing large empirical
games.

1.2 Overview of Contributions

Although previous work has focused on reducing the space of profiles that must be sam-
pled, the challenge of scale continues to limit which scenarios can be effectively explored.
Prior to my development of software infrastructure specifically to address large games (see
Chapter 3), the largest games routinely studied with EGTA were the various scenarios of
the Trading Agent Competition (TAC), an academic trading agent design challenge, which
range in size from six to eight players. Even when examining a game with only six play-
ers, analysis conducted on the TAC Supply Chain Management game required exploiting
symmetry, utilizing hierarchical reduction, and considering only small sets of heuristic
strategies to keep the simulation requirements manageable (Jordan et al., 2007). Improve-
ments in our ability to efficiently explore large games through simulation not only let us
analyze strategic scenarios with a large number of participants, but also let us consider a
larger space of strategies, and can reduce the time spent waiting on data acquisition. To
improve the ability of EGTA to scale to large games, I present algorithms and software
infrastructure to manage the efficient acquisition of profile observations from a simulator
such that δ-Nash equilibria of the derived game model can be identified and confirmed, to
some specified level of statistical confidence. The remainder of this chapter introduces the
content of my thesis, including three avenues for scaling EGTA and two applications.

7

1.2.1 Application: Wireless Access Point Selection

I begin with an application that predates the development of my scaling methods to in-
troduce the reader to applying EGTA to real-world challenges. This application considers
the problem of selecting a public wireless access point when multiple access points are
available. Agents interact by virtue of their traffic congesting the available access points,
leading to latency. My simulation model extends the traditional load-balancing game ap-
proach by having players engage in a dynamic game where work persists over time, as
well as by modeling two emerging wireless technologies: the ability to use multiple access
points simultaneously, and the use of probes to determine the level of congestion at access
points.

1.2.2 EGTAOnline: Software Infrastructure for Experiment Manage-
ment

As the size of the game grows, so does the volume of simulation required. At large scales,
coordinating the required simulation and organizing the resulting data is too unwieldy to
be carried out manually. To alleviate the cost to researchers of managing game simula-
tion, I developed EGTAOnline, software infrastructure that automates significant portions
of the process of constructing games from simulation. EGTAOnline can also dramatically
improve throughput by distributing simulation to be run in parallel on a compute cluster.
Users of EGTAOnline are spared from learning the orthogonal skill of writing scheduling
scripts for the cluster, and instead can express complex scheduling requirements through a
simple web interface. EGTAOnline also makes it easy for users to analyze subgames of in-
terest, rather than downloading all of the available data, reducing the time spent in analysis.
Further reducing simulation time and storage space requirements, through EGTAOnline I
promote and support a compact representation of games that generalizes symmetry—role
symmetry.

1.2.3 Efficient Analysis of Large Game Data Sets

With EGTAOnline, I have pushed the EGTA methodology toward storing game data in a
flexible database. It is still common, however, to use analysis tools for which an appropri-
ate file representation of the data is required as input. I explore the potential for conducting
game-theoretic analysis in the database to save the cost of translating the data between
representations, as well as to leverage the query optimization and memory management ca-
pabilities of the database. Casting the problem in terms of operations that are efficient for

8

data primarily stored on disk suggests a way of organizing the data that enables efficiently
finding pure-strategy Nash equilibria of games with arbitrary role-symmetric representa-
tions. Furthermore, when storing game data that is acquired sequentially in a database, we
have the potential to conduct interim analysis that may be useful for guiding further sam-
pling, or to amortize the cost of certain analytic operations over the time spent gathering
observations. In this vein I discuss tracking which profiles are pure-strategy Nash equilib-
ria, and determining maximal subgames for which we have observations of all profiles.

1.2.4 Bootstrap Methods for Sequential Estimation of Nash Equilibria

Historically, EGTA studies present equilibrium analysis without expressions of statistical
confidence. Practitioners employ rules of thumb to determine whether they have acquired
enough observations to have confidence in their analysis. This approach not only leaves
open the question of whether the analysis should be trusted, as sampling may have termi-
nated with insufficient data to justify the conclusions, but it can also be wasteful, as an ad
hoc rule may demand more observations than are required for statistical confidence in the
conclusions. A statistical method known as the bootstrap has been proposed for conducting
statistical analysis on empirical games (Wiedenbeck et al., 2014), and I verify experimen-
tally that this approach remains valid even when data is gathered sequentially. Using the
bootstrap to generate confidence intervals, I evaluate the capability of two sampling rules
of thumb to return equilibria with low estimated regret confidence bounds. I further pro-
pose and evaluate algorithms that use bootstrap-derived confidence intervals as a stopping
criterion for sampling sequentially. I find that using that using the bootstrap in this man-
ner enables one to identify δ-Nash equilibria with high confidence, often requiring fewer
samples than the rules of thumb.

1.2.5 Application: Equity Premium Estimation in Asset Pricing

One game setting that is inherently large and complex is that of financial markets. In
financial research, it is common to model entire markets as one entity that aggregates the
preferences and behaviors of the many traders that participate in the market; however, such
aggregation removes the impact of specific market microstructure (that is, the details of the
environment in which traders interact), and limits the degree to which agent heterogeneity
can be included in the model. In contrast, a simulation-based approach can encode arbitrary
market microstructure and agent heterogeneity, but can be computationally expensive. As
a case study of employing EGTA scaling techniques, I build an empirical game model with
a relatively large number of traders to evaluate claims of an analytical pricing model in

9

simulation. In particular, I examine whether a model of ambiguity aversion can resolve the
equity premium puzzle (Mehra and Prescott, 1985), the surprising underpricing of equity as
compared to risk-free alternatives. I find that the proposed pricing model is not played in
Nash equilibria when a natural alternative is available, and that the premium on equity in
simulation is low, suggesting that the model does not resolve the puzzle.

1.3 Guide to Reading this Thesis

Some chapters in this thesis assume that the reader has first read earlier chapters. Chapter 2,
as an application that predates the development of the scaling methods that are the focus of
this work, serves primarily as a motivating example. Readers familiar with EGTA and not
especially interested in wireless networking may skip this chapter. Chapter 3 introduces the
EGTAOnline experiment management system, which is referenced throughout the rest of
the thesis. Chapter 4, in which studying large games in a relational database is considered,
builds on the data organization introduced in Chapter 3, but is unrelated to the chapters that
follow it. Chapter 5 presents bootstrap algorithms for statistical analysis under iterative
EGTA, and is independent of previous chapters, though implementing automated game
refinement of this form is discussed in Chapter 3. The equity premium study presented in
Chapter 6 was conducted using EGTAOnline (Chapter 3) and includes statistical analysis
based on the methods in Chapter 5. The thesis is concluded with Chapter 7, in which I
summarize the contributions of the thesis and discuss future avenues for improving the
scaling of EGTA.

10

CHAPTER 2

Application: Wireless Access Point Selection

Consider sitting down at a local coffee shop to do some work on your laptop or tablet. The
wireless networking software on your computer informs you that you can connect to the
coffee shop’s network, the network of the bookstore next door, or perhaps to the public wifi
provided by the city. How should you choose which network to use to check your email
and browse the web?

Mobile users typically encounter many accessible wireless networks throughout the
day, each comprising of one or multiple access points (APs). Each user must decide on
the specific set of APs to send traffic to, as emerging technologies support association with
multiple APs (Chandra et al., 2004; Shakkottai et al., 2007) simultaneously. To make an
informed decision, each user must have some notion of the expected throughput for each
AP; however, the most readily available metrics of throughput—signal strength and the
network name—may be poor indicators of access point performance, as Nicholson et al.
(2006) show. While a user may be able to infer the performance of networks they are
using, to obtain performance information about other networks they must resort to probing.
These probes—being workloads themselves—impose additional load on the AP, reducing
its performance for the incumbent users (Croce et al., 2011). This multi-agent interaction,
whereby information gathering behavior impinges on social welfare, suggests modeling the
decision of which APs to use as a game.

I construct and analyze empirical game models that capture two emerging wireless tech-
nologies: simultaneous association with multiple APs, and using active probing to measure
AP performance. Whereas Shakkottai et al. (2007) address the problem of selecting the
set of APs to utilize, I focus on modeling AP information gathering, and understanding the
impact of probing on the system.1 To investigate these issues, I consider two models of in-
formation gathering: the bulletin board model (Kleinberg et al., 2009) in which all players

1To the best of my knowledge, this work, originally presented at NetEcon 2011 (Cassell et al., 2011), is
the first to investigate the strategic and social welfare implications of active probing on networks.

11

are periodically alerted of the traffic at all APs, and a model where delay information is
distributed only through using or probing an AP.

This investigation is motivated by the question of proposing a protocol for AP selec-
tion that can be universally adopted; as such, I model the game as (ex ante) symmetric,
and concern myself chiefly with Nash equilibria where all players use the same (possibly
mixed) strategy. As such, equilibria correspond to protocols that can be adopted by all
clients without incentive to unilaterally deviate to some other strategy. I focus on average
delay to users as my measure of solution quality, though there may be other relevant utility
attributes.

2.1 Related Work

In the past decade, game-theoretic approaches to the AP selection problem have garnered
increased attention. Much of the prior literature has focused on analytical results obtained
from modeling AP selection as a load balancing game. Though not expressly addressing AP
selection, Suri et al. (2004) proved tight bounds for the price of anarchy—the worst-case
ratio between the outcomes of selfish play and socially optimal play—in a load balancing
game with atomic jobs. Koutsoupias et al. (2007) present similar analysis for the variant
where players have only partial knowledge about the delay at a particular AP. I do not
expressly address price of anarchy, as calculating the expected delay from equilibrium play
in my more complicated, dynamic setting seems intractable, and I cannot even guarantee
that I have identified the worst-case equilibrium with the richer strategy space afforded by
my model.

Computer scientists have extended load balancing games to more accurately model
unique attributes of the AP selection problem. Mittal et al. (2008) consider the ability of
wireless users to move physically closer to a less crowded AP to improve signal strength.
Cesana et al. (2008) model network selection as a non-cooperative game between users and
network service providers. Shakkottai et al. (2007) have explored modeling the problem
of multiple simultaneous AP selection as a population game, and examine the costs of
running a network under their model. There have even been attempts (Xu et al., 2010) to
empirically evaluate strategic AP selection protocols in deployed systems. I focus on the
impact of probing on delay incurred by all users, and use EGTA to identify promising AP
selection protocols.

12

2.2 Game Description

I model AP selection as a dynamic load-balancing game with atomic work. The simplest
game variant considered has N symmetric players and N identical resources, with each
player choosing one AP to process one job, a unit of work of size w, in each period. For
consistency with prior literature, I use w = 1

N
for all simulations. In contrast to one-shot

or repeated game models of network congestion, work assigned to an AP in one stage
can persist to later stages. Since the link from client to AP is generally of much higher
bandwidth than the link from AP to network, the client can send additional requests to
the AP before receiving responses to earlier requests. For simplicity, I describe the work
processed by an AP per period, k, in terms of jobs.

Players choosing resource a are charged a delay, da, equal to the total load on that
resource in the current period. Load at an AP can arise from one of three sources: new jobs
assigned to the AP in the current period, st, jobs assigned to the AP in prior periods that
have not been processed by period t, ut, or probes sent to the AP in the current period, qt.
The delay at AP a in period t, da,t, is then:

da,t = (st + ut)w + pqt,

where p is the size of a probe. I first examine a simulation version of the game described
by Kleinberg et al. (2009). Players are required to select one resource to send one job to
in each period, with information revealed according to the bulletin board model (described
in detail below). I then further depart from prior work by explicitly modeling information
gathering through probing. For both information settings, I also consider the problem of
assigning multiple atomic jobs when APs can be used simultaneously.

2.2.1 Multiple AP Selection

In this variant, in each period, clients have j jobs, where j > 1, to assign to available
APs. They may choose to use more than one AP, but for each AP beyond the first they
are assessed a cost δ for the added complexity of managing connections to multiple APs.
If a client uses more than one AP in a period, it is charged the maximum of the delays
over these APs. Define πc,t to be client c’s assignment of its j jobs to available APs in
period t, and Ac,t the set of APs that are assigned work according to πc,t. Let π−c,t be the
assignments made by all other clients in the current period. Client c’s objective is then to

13

minimize its total delay, Dc, over all periods t ∈ T in the dynamic game:

Dc =
∑
t∈T

[
(|Ac,t| − 1)δ + arg max

a∈Ac,t
da(πc,t, π−c,t)

]
.

This cost structure defines the benefit of latency hiding provided by switching APs after a
request has been sent in order to launch a new request. This capability also carries some
risk, as increasing the set of APs that are used increases the likelihood of using an AP with
extreme delay.

2.2.2 Information Models

I examine AP selection under two models of information revelation. I begin with the bul-
letin board model, an information model for load balancing first described by Mitzen-
macher (1997). In this model, agents are informed of the delay of each resource at the end
of each round. In contrast to the complete information setting, agents are not given the
means to perfectly predict how different choices on their part would have affected these
delays. This degradation in available information is justified by the difficulties experienced
in the real world by clients that attempt to model AP performance. Without knowledge of
the number of users of a given AP, distributions of user workloads, and the time it takes
for the client’s message to be processed at the destination, among other causes of delay,
discerning the base capabilities of an AP may be impossible. If the base capabilities are
unknown, the client will not be able to predict with any certainty how long its work would
have been delayed had they made different choices.

The other information model I consider is one in which a client receives delay infor-
mation for a particular AP only if the client either sent work to that AP, or sent a probe to
the AP to gather this information. Probes have a fixed cost, p, that is incurred by both the
probing client and the users of the AP that was probed. Clients are not required to wait for
their probes to return, and can still learn some information from ignoring a long-delayed
probe. Even without receiving the probe result, the client confirms that the delay at the
AP is at least as great as the longest delayed AP that they used in the current period. This
probing cost structure exhibits an externality, in that probers are partially insulated from
the costs of their probes. If a probed AP has a longer delay than the client’s current work
assignment, it learns this information at the cost p. The imposed cost to social welfare,
however, may be as large as Np. That is, when client c probes a, it adds delay p at a to
every user (at most N) of that AP. The additional cost realized by another user i of a may
be less than p, if a was not already the most heavily loaded AP in use by i.

14

2.3 Strategies

Clients adopt strategies that combine a policy for determining an assignment of jobs to
APs, and a policy for determining which APs to probe to gather information. To construct
the strategy pool, I take the cartesian product of the two policy sets. The following sections
detail the base policies for association and probing that I tested, and any variations to them
that were necessary to adjust to the different game settings I examined.

2.3.1 Association Policies

2.3.1.1 Random

Perhaps the most obvious strategy for AP selection is to select an AP randomly. If the
set of possible actions is selecting a single AP, then for N clients and N identical APs,
having all clients randomize over this set of actions is a Nash equilibrium. This equilibrium
was identified as the worst case by Koutsoupias and Papadimitriou (2009), as the expected
average delay from playing this equilibrium is the furthest from social optimal for the stated
action set. When clients have more than one job to schedule per stage, there are two natural
extensions of this strategy: choosing one AP at random and sending all jobs to that AP
(labeled R1), or choosing an AP at random for each job (RJ).

2.3.1.2 Hedge Algorithm

The Hedge algorithm is a no-regret online learning algorithm for congestion games. The
base Hedge strategy is the bulletin board variant proposed by Kleinberg et al. (2009). The
probability of Hedge selecting AP a in some period t is given by:

Pr(a, t) ∝ exp

(
−ε

t−1∑
`=1

da,`

)
,

where ε is some small number that governs exploration versus exploitation. For my sim-
ulations, ε = 1

v3
√
t
, where v represents the client’s belief about the number of users in the

system. Though Kleinberg et al.’s analysis requires v ≥ n, where n is the true number
of players, I found that simulation outcomes were not strongly affected by agents over- or
underestimating the number of other agents in the system, and present results for the case
where v = n.

For the multi-job variant of the game, I consider two forms of the Hedge algorithm.
H1 selects a single AP in each period, and sends that AP all its jobs. HJ first selects an

15

AP to send one job according to the Hedge probabilities. All remaining jobs are assigned
sequentially according to the following probabilities:

Pr(a, t) ∝ exp

(
−ε
[
1−aδ + saw +

t−1∑
`=1

da,`

])
,

where the indicator 1−a is one if the client has not yet assigned a job to AP a in the current
period and zero otherwise, and sa is the number of jobs that the client has thus far assigned
to AP a in the current period. In this way, HJ accounts for the added cost of utilizing
more than one AP, as well as the potential benefits of spreading its work over multiple APs.
For the probing variant of the game, both forms of Hedge fill in gaps in knowledge about
AP delays by assuming an unobserved AP carries delay equal to that of the most recent
observation of that AP. Since each client observes a different subset of the APs, differ-
ences in selection probabilities can arise in this information model, potentially disrupting
convergence to a stable distribution of jobs.

2.3.1.3 Decision-Theoretic Optimization

Given beliefs about the distribution of traffic expected at each AP, clients can optimize their
assignment of work while ignoring the choices of other agents. In the single-job setting,
this strategy simply chooses the AP that the client believes is least congested prior to the
current stage. When the client has to assign multiple jobs per round, there are again two
variants: D1 and DJ. D1 sends all jobs to the AP believed to be least congested. In the
case of a tie for minimal predicted delay, D1 chooses randomly among the tied APs. DJ
sequentially assigns jobs to the AP that has the lowest expected cost, where expected cost
of using AP a, ca, is calculated by:

ca = d̄a + 1−aδ + saw,

where d̄a is the average observed delay at AP a, and 1−a indicates whether or not the client
has already assigned work to a in the current period. In cases where multiple APs have
minimal expected cost, DJ chooses randomly among these APs. For the probing variant of
the game, D1 and DJ fill gaps in their knowledge in the same manner as H1 and HJ.

16

2.3.2 Probing Policies

2.3.2.1 Naive Approaches

I consider two naive approaches to probing: probe nothing (P0) and probe everything (PE).
P0 never sends probes to any APs, and functions under the assumption that whatever in-
formation is needed for successful decision making can be obtained through trial and error.
PE is the other extreme in naive probing; it sends a probe to every AP that the client is not
currently using. PE thus replicates the information setting from the bulletin board model,
though at significant added cost to the client and to other players.

2.3.2.2 Freshness-Based Probing

If a client’s first observation of an AP carries a large delay, the client may never attempt to
use that AP, since gaps in knowledge are filled by the most recent observation. To combat
this phenomenon, freshness-based probing strategies track how stale are the observations of
each AP. PS probes the AP that has been observed the least recently, and chooses randomly
among ties. If the selected AP corresponds with an AP to which the client is assigning work
in the current period, no probes are sent.

2.3.2.3 Variance-Based Probing

If a client’s estimate of delay at a particular AP has significantly higher sample variance
than other APs, use of that AP carries particular risk, given that client’s cost is defined by
the maximum among utilized APs. If an AP a carries lower delay than the client expected,
the benefit in excess of expectations is bounded by arg max d̄a

a∈Ac
− arg max da

a∈Ac\a
, where Ac is

the set of APs that the client utilized. In other words, the client realizes this excess benefit
from lower than expected delay only if a was expected to carry the highest delay, and this
benefit is limited to the difference between the expected delay at a and the actual delay at
the most trafficked AP in Ac. In contrast, if the actual delay at a is higher than expected,
the added cost is bounded only by constraints of the system such as the number of jobs
that have been assigned thus far, and the rate limitations of the APs. Thus clients may
be incentivized to take more observations of APs with high sample variance. PV probes
the AP for which the client’s estimate of delay at the AP has the highest sample variance,
breaking ties randomly, and ignoring selections that coincide with an AP to which the client
is sending traffic.

17

2.4 Experiments

For each information model, number of jobs for each player to assign in each period j,
and AP work clearing rate k, I build an empirical game model through simulation. For all
experiments, I use six identical APs and six symmetric players. In each period in simula-
tion, each player is given j constant-size jobs for assignment. I consider two settings for
j: j = 1 and j = 5. Each AP processes k jobs in each stage, with k ∈ {0, 1, 2, 3, 4, 5, 6}.
After each stage, players receive information about AP delays according to one of the in-
formation models described in Section 2.2.2. For the probing model, the cost of a probe
was set to be slightly smaller than a job, at 0.125.

Under the bulletin board model, where agents do not need to probe for information,
for j = 1, the set of strategies considered is {D1, H1, R1}, and for j = 5, this set is
expanded to include DJ, HJ, and RJ. For the probing model, the set of strategies is given
by {D1, H1, R1}×{P0, PE, PS, PV} for j = 1, and {D1, DJ, H1, HJ}×{P0, PE, PS, PV}
for j = 5. R1 and RJ were removed from the association policy set for j = 5 as R1 was
dominated for all values of k under the probing model with j = 1; this reduces the number
of profiles to sample from 475,020 to 54,264. For j = 5, where agents can use more than
one AP at a time, the switching cost δ was set to 0.01—an order of magnitude smaller than
the delay of a single job on an empty AP. This difference in magnitude is consistent with
state-of-the-art switching implementations (Giustiniano et al., 2009).

To build the empirical game models I constructed payoff estimates by taking the av-
erage negative total delay for each strategy in each profile, over 100 observations of the
simulation. Each observation consisted of 50 periods of work assignment. To find equilib-
ria of these games, I first performed iterative elimination of dominated strategies to reduce
the size of the payoff matrix before solving. After removing dominated strategies, I found
approximate symmetric Nash equilibria through replicator dynamics (Schuster and Sig-
mund, 1983), an iterative algorithm that uses the expected payoff of playing pure strategies
against a candidate strategy mixture to update the weighting of strategies in the mixture
in each step. Friedman (1991) demonstrated that fixed points of this iterative process cor-
respond to symmetric mixed-strategy Nash equilibria with respect to the function used to
evaluate strategy performance. Since finite symmetric games are guaranteed to have at
least one such equilibrium (Cheng et al., 2004; Nash, 1951), replicator dynamics provides
an applicable and straightforward search method. As the outcome of applying replicator
dynamics depends upon where the search is started, I seed replicator dynamics with several
initial distributions, namely a uniform distribution over the nondominated strategies, and
distributions that were weighted heavily towards each one of the nondominated strategies.

18

j k Eq∗ Sdominated
1 0 H1: 0.71, D1: 0.29 R1
1 1 H1: 0.73, D1: 0.23, R1: 0.04
1 2 H1: 0.97, D1: 0.02, R1: 0.01
1 3-6 H1: 1.00 D1, R1
5 0 H1: 0.66, DJ: 0.31, D1: 0.03 HJ, RJ
5 1-3 H1: ≈ 0.65, DJ: ≈ 0.35 HJ, RJ
5 4 H1: 0.67, DJ: 0.32, R1: 0.01 HJ, RJ
5 5 H1: 0.75, DJ: 0.24
5 6 H1: 0.83, DJ: 0.12,

D1: 0.03, R1: 0.02

Table 2.1: Equilibrium analysis of the bulletin board model.

2.5 Results

With these experiments I address two primary questions:

• What portion of the explored strategy space could form the basis of a widely adopted
AP selection protocol?

• How do the new technologies that I model affect social welfare in equilibrium?

I address the first question separately for each information model before tackling the im-
plications of the two models for the second question.

2.5.1 Bulletin Board Model

Table 2.1 summarizes the results of equilibrium analysis of the bulletin board model. In
this table, “Eq∗” refers to the equilibrium that has the lowest expected delay among the
equilibria found through replicator dynamics, and “Sdominated” are the strategies that did
not survive iterated elimination of dominated strategies. Under the bulletin board model,
when players have only one job to schedule in each round and k ∈ {0, 3, 4, 5, 6}, R1 is a
dominated strategy. This contrasts with previously examined load balancing games, where
having all players choose uniformly at random is a Nash equilibrium. R1 is not dominated
for j = 5, but RJ is dominated for j = 5 for most values of k, possibly because it incurs
switching costs without explicitly exploiting latency hiding.

Consistent with the work of Kleinberg et al. (2009), I found the Hedge algorithm to be
a reasonable strategy for games where players schedule one job each period, even when
resources are rate-limited. For k ∈ {3, 4, 5, 6}, H1 is actually a pure-strategy Nash equilib-
rium. The improved performance of Hedge relative to selecting APs uniformly at random

19

can be attributed to at least two factors. First, in the formulations of Koutsoupias and
Papadimitriou (2009) and Kleinberg et al. (2009), the pure strategies comprise the basic
actions of assigning work to a particular AP. In my setup, the choice of deviation to a pure
strategy is not restricted to picking a single AP to use and committing to it for all rounds,
which provides no benefit if all other players are selecting randomly; instead, players have
the option of playing strategies that respond to the changing distribution of congestion.
Second, players will not want to deviate to selecting an AP uniformly at random from other
available strategies when other players are choosing according to a different distribution
and the APs are rate-limited. Under this scenario, APs are no longer identical, and thus a
strategy that accounts for these changing delays, such as Hedge, can outperform uniformly
random selection. Interesting, while H1 performs well, HJ is a dominated strategy for
many settings considered. HJ incurs switching costs, yet may not find work assignments
that substantially improve on those found with H1.

Decision-theoretic optimization can also be a reasonable approach for these games,
provided it is played by a minority of players. In the bulletin board model, all agents have
the same information about delays at APs. Agents playing D1 or DJ eventually agree on
which AP is expected to have lowest delay and proceed to send their work there. When
all agents do so in tandem, the result is the maximum possible delay. These results are
similar to the findings of Mitzenmacher (1997) for load balancing in a non-competitive
setting when there are significant delays between information updates. Also of note is that
the proportion of agents that play D1 or DJ in equilibrium decreases as the clearing rate
increases. This is likely because the benefit of playing D1 or DJ over a Hedge strategy is
gained by being more thoroughly exploitive of the changing distribution of work in each
period, and high clearing rates limit the degree to which APs will differ at the start of each
round.

2.5.2 Probing Model

Table 2.2 summarizes the results of equilibrium analysis of the probing model.2 In contrast
to the bulletin board model, most equilibria under the probing model are comprised entirely
of decision-theoretic optimization strategies. When j = 1, for all but one value of k,
D1-P0 is played with probability greater than 99%.3 Surprisingly, for k = 1 D1-P0 is
actually dominated, and its place in equilibrium is taken by D1-PS. When APs accumulate

2Under the probing model, all strategies that employed either R1 for AP selection or PE for probing were
dominated in all experiments, and so are excluded from the table for clarity. HJ is similarly excluded; though
undominated in one setting (j = 5, k = 6), it is not present in any equilibria.

3For j = 1 and k = 2 or 3, H1-P0 is a PSNE, though its expected delay is approximately 30% higher than
that of the Eq∗ PSNE, D1-P0.

20

j k Eq∗ Sdominated
1 0 D1-P0: 0.99, H1-P0: 0.01 D1-PS, D1-PV,

H1-PS, H1-PV
1 1 D1-PS: 0.88, H1-P0: 0.12 D1-P0, D1-PV,

H1-PS, H1-PV
1 2-6 D1-P0: 1.0 D1-PS, D1-PV,

H1-PS, H1-PV
5 0 D1-PS: 0.54, D1-P0: 0.46 D1-PV, H1-P0,

H1-PS, H1-PV,
DJ-P0, DJ-PV

5 1-2 DJ-PS: ≈ 0.99, D1-PV, H1-P0,
D1-PS: ≈ 0.01 H1-PS, H1-PV,

DJ-P0, DJ-PV
5 3-4 DJ-PS: 1.0 D1-P0, D1-PV,

H1-P0, H1-PS,
H1-PV, DJ-P0,

DJ-PV
5 5 DJ-PS: 1.0 D1-P0, D1-PS,

D1-PV, H1-P0,
H1-PS, H1-PV,
DJ-P0, DJ-PV

5 6 DJ-PS: 0.94, H1-P0: 0.06 H1-PS, H1-PV

Table 2.2: Equilibrium analysis of the probing model.

a significant backlog, it can be worthwhile to probe based on freshness to reduce the risk
of players ignoring an AP that has cleared its traffic after previously having been measured
as highly congested.

When j = 5, for all but one value of k, DJ-PS is played with probability greater than
or equal to 94%, including several settings for which DJ-PS is a PSNE. H1 on the other
hand, is only found in Eq∗ when 6 jobs are cleared from each AP in each period. Thus,
whereas Hedge seems to be the most appropriate strategy to use as a protocol under the bul-
letin board model, decision-theoretic optimization holds that distinction under the probing
model. D1 and DJ have dramatically improved performance relative to Hedge strategies
under this model, since player beliefs are differentiated by which APs they have observed,
and when the observations took place. While this differentiation prevents D1 and DJ agents
from making identical assignments, and thus leads to a more even distribution of jobs, it
can also prevent Hedge from converging, due to the less predictable landscape.

21

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6

A
v
e

ra
g

e
 d

e
la

y

Clearing rate (jobs/round)

bulletin board
probing

(a) j = 1

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

0 1 2 3 4 5 6

A
v
e

ra
g

e
 d

e
la

y

Clearing rate (jobs/round)

bulletin board
probing

(b) j = 5

Figure 2.1: Lowest expected delay among found Nash equilibria for different rates of work
clearing.

2.5.3 Social Welfare

To address my second question, I compare the lowest expected delays found in equilibrium
for each setting considered. This metric is justified particularly in cases where one can
designate a focal equilibrium to be implemented, as is the case with a widely adopted
protocol. Figure 2.1 compares the two information models under this metric.

One might expect a priori that reducing the amount of freely available information and
incurring the externality of probing congestion would dramatically increase expected delay.
I find, however, that generally the opposite is true. With exception of j = 1, k = 0, players
are better off at equilibrium under the probing model than under the bulletin board model.
This is because the reduced information actually makes it possible for decision-theoretic
optimization to converge to near-optimal assignments. Under the bulletin board model,
all players share the same beliefs about the congestion at access points; accordingly, all
agents that play the same deterministic strategy will make the same assignment of work,
leading to heavy congestion on the access point that was the least congested in the previous
period. As such, a randomizing strategy such as Hedge can improves outcomes, though
the potential remains to randomly assign work to a heavily congested AP. In contrast, the
probing model makes it possible for agents to hold varied beliefs about which access point
is the least congested, and this difference in belief leads to more even distributions of
work for deterministic association policies. For example, when j = 5 and k = 3, delay
experienced under the optimal assignment of work to APs is 450; playing the PSNE of DJ-
PS in this setting results in only a 6% increase, to 477.32, in expected delay. These results
suggest that the benefits obtained from probing for information, as opposed to having APs

22

broadcast their congestion, may outweigh the added social cost that probing imposes.

2.6 Summary: AP Selection Game

Using a recent analytical model as my starting point, I simulated and analyzed three exten-
sions of the load balancing game, for the purpose of modeling the AP selection problem.
First, I transformed the load balancing game from a repeated game to a dynamic game, in
which work can persist at resources between periods, in order to more accurately capture
the overlapping decision making that occurs in AP job assignment. This transformation,
combined with the addition of a decision-theoretic policy to the strategy pool, lead to the
domination of the uniformly random strategy in most settings. This result contrasts with
previous work on the load balancing game, where uniformly random resource selection has
been shown to be a Nash equilibrium.

I pursued two further extensions to incorporate the emerging technologies of multiple
simultaneous AP use and probing. I found continued support for use of the Hedge algorithm
under the bulletin board model; however, under the probing model, Hedge was generally
outperformed by decision-theoretic optimization. In the probing model, surprisingly, the
reduction in free information, and the significant social cost of gathering additional infor-
mation through probing, did not result in longer delays in expectation. This result stems
from breaking player symmetry within games, mirroring the findings of Mitzenmacher
(1997) for non-competitive load balancing. That these results contrast with established
game models suggests that we should revisit, and possibly revise, established models when
considering the impact of new technologies to strategic decision making.

2.7 Scaling Lessons

The EGTA study presented in this chapter is meant to act as a time capsule and motivating
example for the rest of my thesis. Because of the simplicity of the simulation involved,
the AP selection game did not necessarily require a huge distributed simulation effort, or
major data management system; however, modeling choices for this study were neverthe-
less influenced by the fact that my simulations were run on a single computer without any
significant simulation management tools. The real world scenario that I’m modeling would
typically not have symmetric APs, nor would players have identical workloads. Introduc-
ing these features, however, would likely increase the variance in observed payoffs, and
as I had not yet developed sequential bootstrap sampling methods (Chapter 5), this would
have meant taking many more observations to reduce uncertainty in payoff estimates.

23

At the time this study was originally conducted, I had not yet developed EGTAOnline
(Chapter 3), nor did I have any other convenient software tools for searching through pro-
file space in a principled way. Instead, I constrained the strategy space as necessary and
gathered observations for complete subgames. As such, I could not afford to examine any
parameterizations to the strategies in depth, such as whether to probe more than one stale
AP, or to calculate the probabilities for Hedge using a different value for ε. In order to re-
duce the number of simulations to run for the probing model, I removed some association
policies from consideration entirely. Were I to conduct this study today, I would verify that
the excluded strategies were not beneficial deviations using one of EGTAOnline’s deviation
schedulers.

While conducting the study presented here, I also developed the simulator for the equity
premium study presented in Chapter 6. It was clear that if I wanted to study a financial
market in any significant fidelity I would need a more complex, and thus computationally
expensive, simulation model with a greater number of agents than the 6 used for the AP
selection game. My desktop computer would not be up to the task this time. Running
my simulations in parallel on the university cluster was the next logical step, but would
require me learning an esoteric scheduling language, and either writing a large number
of scheduling scripts or writing a script to generate scheduling scripts. Recognizing that
these challenges were not unique to my simulator, I began work on an automated system
for scheduling game simulations to the cluster, culminating in the experiment management
system presented in the next chapter, EGTAOnline.

24

CHAPTER 3

EGTAOnline: Software Infrastructure for
Experiment Management

EGTA studies require observing a large space of profiles in simulation, demanding sig-
nificant computation time. The most direct way to reduce the time required to assem-
ble observation data is to improve sampling throughput by parallelizing simulation. From
university-operated clusters to Amazon EC2,1 researchers increasingly have access to large
pools of machines to aid in computational experimentation. Distributed computing is in-
creasingly inexpensive in terms of computation time and monetary cost. Yet human capital
costs remain quite high. Researchers wishing to utilize these computational resources typ-
ically must learn the technologies for distributing and scheduling the computation, as well
as tools for managing the copious amounts of data being created (Sheutz and Harris, 2012).
Learning how to leverage distributed computing is often orthogonal to one’s research goals,
leading to a tradeoff between convenience and limitations on problem scale.

It is hard to quantify how these human capital costs impinge on research production.
We can see only what research was produced, not what research might have been con-
ducted had convenient tools been available. Experimenters may unduly limit the scope of
studies, for example by capping problem instances at the size tractable for their desktop
computers. Such restrictions may detract from the real-world relevance of computational
investigations, or otherwise diminish the value of published studies.

The application of EGTA is one form of computational study where restrictions on
scale imposed by the use of a single computer may strongly diminish the strength of con-
clusions. Even when a game is fully symmetric, its profile space stills grows exponentially
in the smaller of the number of players and number of strategies. As such the construction
of games of even moderate complexity is often beyond the reach of a typical desktop com-
puter. EGTA also carries with it data management concerns due to the substantial amount

1The Amazon Elastic Compute Cloud, or EC2, is a service that provides on demand, resizable computa-
tion in the cloud. For more information, see http://aws.amazon.com/ec2.

25

http://aws.amazon.com/ec2

of observation data required. As such, some mechanism for distributing game simulations
and retrieving and managing the resulting data is needed.

In my own work, I observed the necessity for such a system when I began the eq-
uity premium study presented in Chapter 6. I found myself artificially restricting strategy
spaces, and modeling the game with a very coarse-grained hierarchical reduction, in order
to construct payoff matrices utilizing only my desktop computer. To alleviate the limita-
tions inherent in using my personal computer for these studies, I created EGTAOnline, an
experiment management system designed to make studying large games derived from sim-
ulation more convenient through accessible distributed computing and data management.
EGTAOnline strives to make the most common aspects of employing the EGTA method-
ology available through simple web forms, while supporting more complex functionality
through a JSON2 API. Much of the material in this chapter was presented at the AAMAS-
12 workshop on Multi-Agent-Based Simulation (Cassell and Wellman, 2013).

Following a review of related efforts, I describe two concepts implemented in EGTAOn-
line that improve the ability to compactly represent and organize simulation-based game
data: role symmetry and data compatibility. I then detail the EGTAOnline architecture and
describe how it supports the application of the EGTA methodology. I also discuss how
EGTAOnline supports iterative experimentation through data reuse, and automated refine-
ment of game models through a scheduling API. I conclude this chapter by describing the
usage of the system to date.

3.1 Related Work

Many previous efforts have aimed to take advantage of distributed computing for agent-
based simulation. One thread of discussion centers on agent-level parallelism and how to
efficiently distribute a multi-agent based simulation (MABS) over multiple compute nodes.
Riley and Riley (2003) present a system for distributed execution of MABS that limits the
effect of varying network and system loads on simulation by ensuring that agents are always
given sufficient time to think, extending the causal ordering constraints of an earlier parallel
and distributed discrete event simulation environment. Mengistu et al. (2008) identify sev-
eral architectural issues in designing MABS for Grid computing, including threading and
communication overhead, and present middleware to address some of these challenges.
Alberts et al. (2012) demonstrate that the parallelism afforded by modern graphics cards
can be useful for simulations with millions of agents, as may be necessary when simulat-

2JSON stands for the Javascript Object Notation, and is a common file interchange format akin to XML.
For more information, see http://www.json.org.

26

http://www.json.org

ing biological systems. In contrast, simulation-level parallelism, as employed for example
by Bononi et al. (2005), distributes simulation runs, possibly with differing run-time pa-
rameters, across multiple compute nodes. EGTAOnline likewise applies parallelism at the
simulation level, and exploits the flexibility of specifying different run-time parameters to
simulate multiple strategy profiles in parallel. Game simulation is particularly amenable
to the exploitation of simulation-level parallelism, as observations of different profiles are
independent and the number of profiles to observe is tremendous.

EGTAOnline builds on a tradition of tool-building in the computational game theory
community. McKelvey et al. (2006) describe Gambit, a collection of game-specification
tools and analysis algorithms. GAMUT (Nudelman et al., 2004) offers functions for gener-
ating random instances from an extensive set of game classes. Both of these toolkits support
analytically specified games, whereas EGTAOnline is built to address the construction of
games from simulation data. EGTAOnline was also inspired by two existing systems, de-
veloped by Jordan et al. (2007) and Collins et al. (2009) respectively, which provided web
interfaces for scheduling simulations of the TAC Supply Chain Management game (TAC
SCM).

3.2 Role Symmetry

As discussed in Chapter 1, when games are fully symmetric, they can be represented more
compactly since the payoff for playing a particular strategy in a profile depends only on the
number of players playing each strategy. Some games of interest are not fully symmetric
in this way, yet the players can be partitioned into groups such that players are symmetric
within the group. Consider, for example, a market in which buyers are symmetric and sell-
ers are symmetric, but the strategies and payoff functions for the two groups are different.
In such cases, we may still exploit this symmetry within roles through a role-symmetric

representation of the game.
A role-symmetric representation partitions the set of players in a game into some num-

ber of disjoint sets that I term roles, within which players share a strategy set and are
symmetric with respect to payoffs. Furthermore, the payoff to players outside of role r
may depend only on the counts of strategies assigned to players in r, not on the identity of
players playing a particular strategy. A role-symmetric representation of a game is given by
Γ = 〈{Ir}, {Sr}, u(·)〉, where {Ir} is a partition of players into roles, and Sr is the strategy
set of players in role r. The utility function u(·) is restricted such that if two players in
the same role swap strategies, their entries in the payoff vector are swapped, and all other
payoffs remain unchanged. For the forthcoming discussion, let R = {r} be the index set

27

of roles, Nr = |Ir| be the number of players in role r, and Mr = |Sr| be the size of the
strategy set available to players in r.

In a role-symmetric representation, the set of distinct assignments for players in a single
role is the same as for a fully symmetric game with number of players equal to the size of
the role and strategy set equal to the role’s strategy set: for the role r with size Nr and
strategy set of size Mr, there are

(
Nr+Mr−1

Nr

)
distinct assignments of strategies to players

in the role. We can think of assigning the strategy counts to a particular role as analogous
to the choice of strategy for a single player in a fully non-symmetric game. As such, the
number of distinct assignments in the full game is given by

∏
r∈R

(
Nr +Mr − 1

Nr

)
.

This representation generalizes fully symmetric (games with a single role) and fully
non-symmetric games (games in which each player has its own role). Game data in
EGTAOnline uses this representation due to its generality and compactness. By supporting
symmetry by roles in EGTAOnline, users of EGTAOnline are now able to conduct sim-
ulation studies that exploit an intermediate degree of symmetry where appropriate. For
example, Wah and Wellman (2014) examine the impact of a market maker on background
traders, treating the two classifications of traders as separate roles. Prior to EGTAOnline,
such a study would typically have the strategy of one of the roles specified exogenously,
or treat all players as symmetric and suffer from a model that did not match the underlying
game.

3.3 Data Compatibility

EGTAOnline allows one to construct games from a database of simulation results. Follow-
ing Vorobeychik and Wellman (2009)’s description of simulation-based games, EGTAOn-
line expects a simulator to act as an oracleO for some underlying game with utility function
u(·), returning sample payoff observations such that, for any profile s, E [O(s)] = u(s).
In other words, a simulator can function as an oracle for some underlying game if the ex-
pected payoffs to each player in simulation are consistent with the utility function for the
game being simulated.

Where I extend this description of game simulation in EGTAOnline is through a more
explicit description of what makes data compatible—able to be considered together as an
empirical game for game-theoretic analysis. This extension is needed since EGTAOnline
stores data for multiple experiments in a single database. In particular, several different

28

experiments may be conducted with the same simulator program, yielding data that is col-
lectively incompatible for the purposes of game-theoretic analysis. The oracle model in
EGTAOnline parameterizes the simulator program O with a run-time configuration c, re-
sulting in a simulator instance Oc. Two pieces of data are compatible only if they were
generated by the same simulator instance. Furthermore, since role membership is not a
strategic parameter for players, for data of two profiles to be compatible they must have the
same partition of players into roles. As such, a formal description of a game in EGTAOn-
line can be given by

Γ = 〈{Ir}, {Sr},Oc,Θ〉 ,

where Θ is the set of observations of Oc for the profile space induced by {Ir} and {Sr}.

3.4 Architecture

EGTAOnline provides empirical game analysts with distributed simulation scheduling and
a robust data storage solution. Users of EGTAOnline can take advantage of the parallel and
distributed computation afforded by a large cluster without having to learn the details of
scheduling jobs onto the cluster. Users also benefit from a database management system
for storing observation data without having to learn a database query language. As such,
barriers to constructing large simulation-based games are dramatically reduced.

Figure 3.1 illustrates the role of EGTAOnline in the iterative EGTA process. The fol-
lowing subsections present the primary conceptual entities of EGTAOnline and explain
how they support the construction of empirical games.

3.4.1 Simulators

To use EGTAOnline, users must write a simulator program, which takes as input a run-
time configuration c and a pure-strategy profile s to sample, and outputs an observation
θ. The exchange of simulator input and output is conducted through a simple, file-based
protocol, accommodating simulators developed with any programming language or simu-
lation platform. As noted in Section 3.3, multiple simulator instances can be derived from
a single simulator program through the specification of run-time parameters. As such, a
user can upload a single simulator program and perform multiple independent experiments
by specifying different configurations of run-time parameters, as well as varying the num-
ber of players and partitions of players into roles, in the scheduler interface, described in
Section 3.4.3.

29

Strategy Sets

Profile Space

Select

DatabaseAnalysis

Refine?
No

End
More samples

More strategies

Subgame Scheduler

Download
representation

Profile4
Associate with

ObservationSimulator
Program

Request n observations
Profile4

Configure

Profile3
Associate with

ObservationSimulator
Program

Request n observations
Profile3

Configure

Profile2
Associate with

ObservationSimulator
Program

Request n observations
Profile2

Configure

Profile1
Associate with

ObservationSimulator
Program

Request n observations
Profile1

c
Configure

Computer Cluster

c

c

c

Figure 3.1: Supporting the EGTA process with EGTAOnline.

3.4.2 Observations

An observation object includes the vector of payoffs observed in simulation and, option-
ally, additional statistics about the simulation. These optional simulation statistics can be
used in variance reduction techniques (L’Ecuyer, 1994) to improve payoff estimates. One
form of variance reduction that is explicitly supported in EGTAOnline is the method of
control variates (Lavenberg and Welch, 1981). This method is based upon reducing vari-
ance in simulation outcomes by exploiting knowledge of how outcomes covary with the
realization of random variables known as control variables. Having recorded realizations
of their chosen control variables during simulation, users of EGTAOnline may specify ad-
justment coefficients for applying control variate adjustments to payoff estimates through
a web form. Of note is that, since payoffs for different roles may differ greatly in scale,
and may covary differently with the control variables, users must specify their adjustment
coefficients on a per-role basis. Additionally, users have the flexibility to specify control
variables at the level of individual players, such as players’ private values, and to use dif-
ferent sets of player control variables for different roles.

Secondary simulation statistics may also record the outcome of variables tied to agent
interaction, enabling analysis of the impact of strategic choices on non-payoff variables. I
exploit this capability to reason about pricing behavior at strategic equilibrium in Chapter 6.

30

3.4.3 Schedulers

Once a simulator has been registered with EGTAOnline, the experimenter may create one
or more schedulers for that simulator. Schedulers provide a convenient way for users to
specify a large quantity of simulations to run on a cluster. Specifically, schedulers take as
input:

• running requirements, such as memory and time, that the simulator needs to take an
observation,

• sampling information, such as maximum number of observations to gather per pro-
file, and number of observations to gather in a single job on the cluster,3

• the configuration c of run-time parameters to use with the simulator program, and

• {s}, the collection of profiles to sample.

It is generally inconvenient to specify the set of profiles to sample through direct enumera-
tion. EGTAOnline therefore provides facilities to define combinations of profiles generated
according to a specified pattern. The current implementation supports schedulers based on
three particularly useful patterns.

The first, subgame, generates profiles defining a subgame by specifying a partition
of players into roles {Ir}, and restricted strategy sets S ′r ⊆ Sr for each role r. Sub-
game schedulers construct the profile space associated with {Ir} and {S ′r} as described
in Section 3.2. For example, consider a subgame scheduler with I = {{i, j} , {k}} and
S ′ = {{s1} , {s2, s3}}. To create the space of profiles to sample, the scheduler first
computes the set of possible assignments to each role, respecting symmetry, resulting in
{{s1, s1}} and {{s2} , {s3}}. The scheduler then takes the cross product of these sets to
generate the set of profile strategy assignments, {({s1, s1} , {s2}) , ({s1, s1} , {s3})}. This
scheduler would thus sample for the two profiles with assignments ({s1, s1} , {s2}) and
({s1, s1} , {s3}).

The deviation pattern expands on a base set of profiles generated by a subgame sched-
uler by considering single-player deviations to alternative strategies. Users specify a par-
tition of players into roles, and for each role r, two disjoint, restricted strategy sets: the
base set S ′r and deviation set S ′′r . The deviation scheduler uses the base sets {S ′r} to gen-
erate profiles defining the full subgame over these strategies, as described above. To the
subgame induced by {Ir} and {S ′r} are added any profiles that can be reached through

3Breaking the requested observations across multiple jobs on the cluster allows users to get some data
for every profile early in the process, enabling game-theoretic analysis before all requested observations have
been taken.

31

one player switching to a strategy in its role’s deviating strategy set, S ′′r . Consider our
example from before, with I = {{i, j} , {k}} and S ′ = {{s1} , {s2, s3}}, but instead of
a subgame scheduler we use a deviation scheduler and specify S ′′ = {{s4} , {s5}}. In
addition to the profiles in the subgame, {({s1, s1} , {s2}) , ({s1, s1} , {s3})}, this scheduler
would also sample from {({s1, s4} , {s2}) , ({s1, s4} , {s3}) , ({s1, s1} , {s5})}. The devia-
tion scheduler supports incrementally searching for payoff-improving strategy deviations,
without constructing the exponentially larger subgame induced by adding these strategies
to the base strategy sets, enabling iterative strategy exploration (Jordan et al., 2010).

The final scheduling pattern, reduction, generates profiles defining subgames (and op-
tionally, deviations) for approximations based on reducing the effective number of play-
ers in the game. EGTAOnline supports both types of reduction mentioned in Chapter 1:
hierarchical reduction and deviation-preserving reduction. Though profiles for either re-
duction scheduler are selected from a game with a reduced number of players, the profile
objects that are stored in the database represent the assignment of strategies to agents in
the unreduced game. For example, when a 2-player hierarchical reduction of a 4-player
symmetric game requires a profile where one player, controlling two agents, plays strategy
s1 and the other player, also controlling two agents, plays strategy s2, the profile object that
is requested of the simulator and stored in the database is (s1, s1, s2, s2). Consequently,
observations gathered under a hierarchical reduction scheduler may also be used in more
fine-grained reduced game models, as well as in an unreduced game model. This feature is
discussed in greater depth in Section 3.5.

When constructing a reduction for games with multiple roles, different roles may re-
duce the number of players in different proportions. This feature can be useful when the
strategy choices of players in a specific role have a greater impact on outcomes than the
choices of players in other roles. If we were modeling the mortgage market, for example,
we may assume that changes in lending strategy by banks have a greater impact on out-
comes than changes in the borrowing strategy adopted by individual home buyers, and thus
want to approximate the banks’ strategic choices more precisely than those of borrowers.
Furthermore, any number of full-game players can be abstracted to any smaller number of
reduced-game players by scheduling profiles for which the desired ratio between full-game
players and reduced-game players holds approximately. For example, scheduling for a
symmetric game with a hierarchical reduction from 5 players to 2 players may simulate the
requested profile (s1, s2) as (s1, s1, s1, s2, s2), as the desired ratio of 2.5 full-game players
for every reduced game player can only be met approximately.

To enable arbitrary profile sampling behavior, EGTAOnline allows users to specify
generic schedulers. Profiles to sample, and the number of observations requested, are

32

passed to these schedulers through a JSON API. Users can write scripts with complex
logic determining which profiles to sample, sending requests to EGTAOnline to update
the scheduler accordingly. This feature, combined with the ability to download games via
the JSON API, provides the flexibility necessary to support automated refinement of game
models, discussed further in Section 3.6.

3.4.4 Simulations

A simulation object in EGTAOnline summarizes the state of a simulation job that has been
scheduled on the cluster. A simulation job requests observations be taken for a single profile
using a specified simulator instance, typically bundling together more than one observation
so as to amortize the overhead of scheduling on the cluster. Simulation objects record the
status of a job and any associated error messages, with access to this information provided
through the EGTAOnline web page. The status of a job may be any of the following:

pending the job has not yet been scheduled to the cluster

queued the job is in a job queue on the cluster and is scheduled to run when resources
become available

running the job is running on the cluster

processing the job has finished running on the cluster and its data is being processed by
EGTAOnline

failed the job has reached an error state and is no longer running on the cluster

Errors can be caused by system problems, such as loss of network connectivity, failures
in running the simulator, or any programmer-defined error. When a simulation returns with
an error, the data gathered for that simulation is marked as invalid. Simulator programmers
are encouraged to supply an informative error message whenever a state is reached that
invalidates the observation data. This allows the user to detect and address error states that
might be too rare to show up in preliminary testing, but manifest themselves when many
observations are gathered. Diagnosing error states is important as consistent errors can lead
to sample bias. For example, if certain realizations of random variables always crash the
simulator, then the data set that you are able to collect will not accurately correspond with
the specified distribution of random variables.

33

3.4.5 Profiles

An EGTAOnline profile object associates a collection of observation objects with the pure-
strategy profile and simulator instance Oc that generated those observations. As discussed
in Section 3.3, distinguishing profile objects by simulator instance enables consistent stor-
age and use of observation data from many experiments, which may have overlapping
profile spaces. When a profile object already exists for a given simulator instance and strat-
egy assignment, any new data gathered is associated with that profile object. Thus, profile
objects can be in the profile set of multiple schedulers, and associated with multiple game
objects, allowing observational data to be included in all relevant analysis contexts—a topic
I revisit in Section 3.5.

3.4.6 Games

A game object provides filtered views onto the available data, corresponding with a spec-
ified game. A game object defines a collection of compatible data based on a simulator
instance, partition of players into roles, and a strategy set for each role. When users request
a representation of the game object, profile objects that match the specified criteria are col-
lected and rendered for the user at one of three available levels of detail. The available
levels of detail are:

summary contains the sample mean and standard deviation of observed payoffs for each
distinct strategy in each profile.

observations includes the observations of each profile, with simulation-level feature in-
formation and players summarized according to symmetry, giving the sample mean
and standard deviation of payoffs within the observation for each set of players that
played the same strategy.

full includes observations of each profile in full detail, with simulation-level feature infor-
mation and distinct payoff and feature information for every player.

3.5 Data Reuse

Gathering simulation data is a costly enterprise, particularly when many thousand differ-
ent scenarios must be simulated as in the construction of some empirical games. As such,
we would like to maximize the value of previously gathered data through extensive reuse.
Data reuse is a natural consequence of the iterative EGTA process (Figures 1.1 and 3.1),

34

as game analysis and refinement decisions are made on an ever-expanding set of obser-
vations. This aspect of EGTA contrasts with many other applications of MABS. MABS
studies typically observe fixed, but potentially adaptive, agent behavior in a particular sim-
ulated scenario. Although such studies may examine several different scenarios through
a parameter sweep, the data from different scenarios are not analyzed together. Game-
theoretic analysis, however, is based on comparing the outcomes of scenarios that differ by
agent strategy selection.

Through the use of game objects, EGTAOnline makes it easy to compare observations
in multiple relevant game-theoretic contexts. Consider two game objects differing only in
their strategy sets. By the definition provided in Section 3.3, the data for both games are
mutually compatible. Thus, if both game objects specify a single role with a strategy set that
includes strategyA, then observations of the profile where all players playAwill be present
in both game objects. Similarly, if we create a third game object that has as its strategy set
the union of the strategies present in the first two game objects, its representation will have
all of the observations present in the other two game objects. Even though this larger game
object subsumes the data from the other two, it is not always the preferred view of the
data. For example, in Wah and Wellman (2014)’s market maker study, they observe how
traders behave in equilibrium without a market maker by restricting the market maker to
a “no-op” strategy.4 In this example, restricting the strategy set of the market maker in
this way leads to a qualitatively different game. Furthermore, since most game analysis
is super-linear in the number of profiles, constructing the game corresponding to only the
profiles currently under consideration allows EGTAOnline to spend less time rendering the
game’s representation, and users to spend less time downloading and analyzing it.

As EGTAOnline provides a persistent data store, it is also easy to reexamine experi-
ments long after they were originally conducted. If a new strategy is proposed for a par-
ticular scenario, testing whether it disrupts previous findings leverages all the previously
gathered observations. Using a deviation scheduler, we can select profiles that correspond
to unilateral deviations to the new strategy and measure whether such deviations lead to
regret in previous equilibrium candidates. If the new strategy is a beneficial deviation, sub-
sequent exploration still benefits from previously gathered observations as the profile space
induced by adding this strategy to players’ strategy sets contains the space of previously
sampled profiles.

Two procedures that I cover in the equity premium study in Chapter 6 benefit directly
from the data reuse supported by EGTAOnline. In Chapter 6, I describe how to estimate the

4The way in which Wah and Wellman build games without a market maker is not described in their text.
This information comes from conversations with the authors.

35

expectation of non-payoff variables by weighting observations according to the probability
that their associated profile is played in equilibrium. More generally, any solution concept
can be used to calculate a conditional expectation estimate. EGTA typically employs Nash
equilibrium as its primary solution concept, but we may be interested in how a variable
behaves if, for example, we assume all players play a single strategy, or players’ choices
of strategy are correlated. As with the addition of a new strategy, if a new solution concept
is proposed we can use all of our previously gathered observations in constructing the new
estimate.

The second procedure that benefits from data reuse is the Hierarchical-Reduction-Based
Search (HRBS), an equilibrium search method based upon hierarchical reductions of in-
creasing granularity, detailed more extensively in Chapter 6. As mentioned above, when
employing a reduction scheduler observations are associated with profiles over the unre-
duced set of players. To analyze a reduced-game model, the user renders a representa-
tion of a game object with the unreduced player set and transforms the resulting obser-
vation matrix as specified by the reduction. For a 2-player reduction of a 4-player sym-
metric game with the strategy set {A,B}, for example, this means selecting the profiles
{(A,A,A,A), (A,A,B,B), (B,B,B,B)} and treating them as though they were the pro-
files {(A,A), (A,B), (B,B)}. A consequence of this selection procedure is that hierarchi-
cal reductions of different sizes may select overlapping sets of unreduced profiles. In the
HRBS, more fine-grained reduction schedulers often reuse many observations taken under
coarse-grained reductions as the overlap in unreduced profile space can be significant.

Using a stylized version of HRBS, I can demonstrate how significant this data reuse
can be. Assume a fully symmetric game and the following scheduling procedure: for each
divisor n of N , the number of players in the unreduced game, in increasing order, we
sample the space of profiles specified by the n-player reduction with strategy set of size M .
The number of previously unobserved profiles specified by the n-player reduction step is
thus given by the recursive relation:

f(n,M) =

(
n+M − 1

n

)
−
∑
n′|n

f(n′,M).

This relation follows from recognizing that when n′ divides n, every profile in the n′-
player reduction corresponds to a profile in the n-player reduction. Figure 3.2 demon-
strates the fraction of profiles that are covered by smaller reductions under this procedure,∑

n′|n f(n′,M)/
(
n+M−1

n

)
, for selected values of n and M . We can see that this fraction de-

pends on the number of strategies as well as the divisors of n, but not explicitly on N , the
number of players in the unreduced game. If we restrict our attention to n that are prime,

36

M = 2 M = 3 M = 5 M = 10

Fr
ac

tio
n

of
 P

ro
fil

e
Sp

ac
e

0

0.2

0.4

0.6

0.8

Number of Players in Reduction (n)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.2: Fraction of unreduced-game profile space for an n-player reduction that is
covered by smaller reductions, shown for varying size of strategy set, M .

this value decreases as larger n are selected, whereas the relationship is non-monotonic for
composite values of n. For small values of M , the prospect of performing an additional
iteration of the equilibrium search is much less daunting, since 40–60% of the space may
have been explored in earlier steps. This level of data reuse between steps increases the
likelihood that the equilibrium candidates that we identify in each step are close to those
identified in previous steps, though it is unclear whether this property is beneficial; when
the candidates are not approximate equilibria, we may proceed through several iterations
of the search before sufficient evidence is uncovered to refute them as candidates.

3.6 Automated Refinement of Game Models

Typically, the game refinement step of the EGTA methodology requires human interven-
tion. An empirical game analyst defines an experiment, performs the required simulation,
and analyzes the resulting game model. At this point, they either report findings or set up
another experiment, repeating the previous steps. These decisions could be made algorith-
mically, especially when future experiments are uniquely determined by the outcome of
analysis. Practically though, interacting with EGTAOnline through submitting web forms
is not optimized for computer-to-computer interaction.

37

To make automating the game refinement step simpler, EGTAOnline provides API ac-
cess to its basic control functions. This API allows users to construct complex scripts that
interact with EGTAOnline directly, bypassing the web interface. I describe two applica-
tions of automated game refinement, including the sequential estimation of Nash equilibria
(discussed in detail in Chapter 5), and how they can be implemented with EGTAOnline.

3.6.1 Exploration of Profile Space

Jordan et al. (2008) examined several algorithms to tackle the problem of exploring a
game’s profile space to quickly identify a Nash equilibrium. The authors treat identify-
ing a Nash equilibrium as a search problem where each step identifies the next profile to
sample. These algorithms are designed to sample profiles sequentially, focusing on iden-
tifying the single best profile to sample at any point in time. With EGTAOnline, several
profiles may be sampled in parallel with little added cost. As such, extra information can
be gathered in every step, and individual profile selection may be suboptimal.

One profile selection algorithm proposed by Jordan et al. is Minimum-Regret-First
Search (MRFS), which uses estimates of regret to guide search. The key concept behind
MRFS is that for every profile s, at any step in the search, there is an estimated lower bound
on the regret of s, ε̂(s), defined to be the maximum payoff improvement thus far observed
from evaluating profiles in D(s), the deviation set of s. Once all profiles in D(s) have been
evaluated, the value of ε (s) is confirmed. If the confirmed regret of a profile is zero, it is a
Nash equilibrium.

At each step, MRFS chooses to sample a previously unobserved deviation from the
profile s with the lowest unconfirmed regret bound. The profile to sample, s̄, is chosen
with the function SELECT-DEVIATION, which attempts to predict which profile is likely to
provide the greatest benefit to the deviating player. After s̄ has been sampled, the regret
bounds of s̄ and all profiles in D(s̄) are updated to reflect this new data.

Algorithm 3.1 presents a modification of MRFS to take advantage of parallel profile
sampling. The Minimum-Regret-First Search with Parallel Sampling (MRFSPS) schedules
k profiles to be sampled in every step. It achieves this by replacing SELECT-DEVIATION

with SELECT-MULTI-DEVIATIONS. When the profile s has more than k unobserved devi-
ating profiles, the k deviating profiles most likely to increase ε̂(s) are chosen for sampling.
If the target profile s has no more than k unobserved deviating profiles, all deviating pro-
files are selected, and the profile with the next lowest unconfirmed regret is considered.
The algorithm continues in this manner until k profiles have been selected for sampling,
scheduling them to be sampled in parallel.

38

Algorithm 3.1 Minimum-Regret-First Search with Parallel Sampling
Select first profile to sample at random, and add this profile to Queue
while Queue is not empty do

`← ∅
P ← ∅
while |P| < k and ` does not contain all profiles in Queue do

Select from Queue the lowest ε̂(s) profile s not already in `
if s is confirmed then

Remove s from Queue
ε(s)← ε̂(s)

else
`← ` ∪ {s}
P ← P ∪ SELECT-MULTI-DEVIATIONS(s,k − |P|)

end if
end while
Sample all s̄ ∈ P in parallel
for s̄ ∈ P do

Insert s̄ into Queue if previously unevaluated
Update ε̂(ŝ) for ŝ ∈ {s̄} ∪ D(s̄) in Queue

end for
end while

This algorithm is just one of several possible modifications to MRFS to take advan-
tage of parallel sampling. Other algorithms discussed by Jordan et al. (2008), can also
be modified to benefit from this capability. Recently, Wellman et al. (2013) presented an
algorithm, implemented as a control script for EGTAOnline using the JSON API, that au-
tomates strategy exploration. Though their algorithm does not reason about parallelism
explicitly, it benefits from parallelism by requesting a large number of profiles at once,
either to complete a subgame or to evaluate potential deviation strategies.

3.6.2 Sequential Estimation of Empirical Games

Analyzing simulation-based games presents an added challenge over analytically speci-
fied games. Given the stochastic nature of simulation, how does one ensure that equilibria
identified for an empirical game model are good approximations of equilibria of the game
described by the simulator? In Chapter 5, I address this question by presenting algorithms
for sequentially sampling until δ-Nash equilibria are identified with statistical confidence.
In my experiments, however, I do not sample from a simulator directly, but instead use
either simple, randomly generated games, or draw from an existing set of simulation ob-
servations. One may wonder how difficult it is to implement these algorithms for practical

39

Game!
Data

Analysis

Adjust set of equilibrium
candidates

Passes !
Statistical!

Test?

Yes?
End

No?

Scheduling
Script EGTAOnline

Request observations for
profiles through JSON API

Scheduler

Update scheduler Gather observations

Scheduling
Script EGTAOnline

Poll for completion!
of sampling, download!
game on completion

Scheduling
Script

Figure 3.3: Implementing a sequential estimation procedure with EGTAOnline.

use.
Figure 3.3 demonstrates how to conduct such sequential sampling procedures using

EGTAOnline.5 The procedure begins by requesting an initial set of profiles and number of
observations to gather for each profile. The algorithms described in Chapter 5 request the
same number of observations for each profile, but EGTAOnline provides the flexibility to
request different numbers of observations for each profile. Periodically the procedure must
poll EGTAOnline to determine if the requested observations have been gathered. Once the
procedure observes that the current batch of sampling is complete, it renders a representa-
tion of the game from EGTAOnline. Next the procedure analyzes the game to determine
if some stopping criteria have been met. In the case of the algorithms described in Chap-
ter 5, this involves first computing equilibria of the current game model, then evaluating the
available statistical evidence. The procedure continues in this fashion, requesting further
observations until the stopping criteria is met.

5Not shown on this diagram is the work to start the cycle, but this is not particularly onerous. The
empirical game analyst first registers a generic scheduler for the simulator instance of interest. The analyst
then supplies their scheduling script with the scheduler’s identifier and their authentication information for
connecting to EGTAOnline, as well any other parameters required by their scheduling algorithm.

40

3.7 In Production

I developed EGTAOnline to address a perceived need for robust sampling infrastructure
to support the EGTA methodology. One way to assess if I have achieved this goal is to
observe how the system is used by practitioners of the methodology, and how heavily they
use the system. Over the last three years of use, approximately 27 million observations
were recorded for 560, 000 profiles, totaling over one billion payoff values. Many of these
observations were generated for experiments detailed by Wellman et al. (2012), Dandekar
et al. (2012), Wellman et al. (2013), and Wah and Wellman (2014), as well as the equity
premium study presented in Chapter 6. Each of these studies can be said to focus on a large
game, as the smallest of these games has a full profile space of nearly 600, 000 profiles.

Our database currently has 14 distinct simulators registered, with multiple versions
of some of these. Schedulers (297) and games (129) significantly outnumber registered
simulators (34), and have been used for exploring different simulator configurations and
different profile spaces. Users regularly modify or delete schedulers and game objects,
as doing so does not affect stored observations, making these numbers significant under-
estimates of the number of the experiments that have been carried out thus far. There is
considerable variety among the experiments conducted so far, ranging from explorations
of TAC SCM, where the simulation requires the parallel cooperation of multiple nodes,
to an introduction-based routing protocol (IBRP) (Wellman et al., 2013), where role sym-
metry and reduction are exploited. The IBRP study also used the JSON API to automate
exploration of a space of parameterizeable strategies. Thus far EGTAOnline has received
considerable use in our research lab, use which should become even more efficient, and
thus enable even more extensive use, with the implementation of the techniques discussed
in the next two chapters.

41

CHAPTER 4

Efficient Analysis of Large Game Data Sets

With EGTAOnline, we can build games from vast amounts of simulation data. Although
there has been considerable work on algorithmic issues in game theory (Nisan et al., 2007),
little research effort has focused on scaling the data-centric elements of game-theoretic
modeling. The way in which game data sets are stored and accessed may have a marked
impact on the costs of analysis. A payoff matrix, for example, must be reduced from
N dimensions to 1 when stored on disk or in main memory. This removes the locality
of deviation sets found in the payoff matrix, where deviations for a particular player are
reached by traversing a single dimension. If algorithms are not designed with the computer
representation of a game in mind, they may access the data in a way that leads to increased
costs from moving data back and forth between cache and memory, and memory and disk.

Another concern in analyzing large game data sets is the cost of translating the stored
game representation into a model suitable for computation. Gambit (McKelvey et al.,
2006), a prominent software toolkit for game-theoretic analysis, for example, takes as input
a file representation of a game and builds an in-memory object representation on which it
conducts analysis. The cost of building an object representation of a game at best grows
linearly with the size of the file representation, and may grow superlinearly if building the
object representation requires any non-trivial processing, such as maintaining a specific or-
dering of the data. As I show in this chapter, this translation step can be the dominant cost
for some analysis tasks, regardless of the size of the input.

In this chapter I discuss the storage and analysis of games within a relational database
system. By moving analysis closer to the data, I aim to reduce translation costs, as well
as reduce costs associated with poor data-access patterns. After presenting some back-
ground and terminology, I introduce a novel schema for storing game data that exploits the
role-symmetric representation of games to store games compactly, and construct SQL im-
plementations for primitive operations common to game-theoretic analysis.1 I compare the

1This material was presented in a preliminary report at the SIGMOD-14 Data Science for Macro-
Modeling workshop (Cassell and Wellman, 2014).

42

performance of a SQL query for the set of pure-strategy Nash equilibria (PSNE) in a game
to two PSNE enumeration algorithms implemented in Gambit. I also present algorithms
for identifying maximal complete subgames—maximal strategy sets for which all profiles
have been observed—by updating completeness information as observations are added to
the database.

4.1 Background: Database Management

In this chapter I focus on implementing game-theoretic concepts within a relational

database management system (RDBMS). In a relational database, data is stored in ta-
bles with a fixed layout, or schema, with each table corresponding to a different type of
entity in the system, and each row in a table providing data for a single entity. A relation
is a combination of data from one or more tables according to some specified rules (Codd,
1970). The relational model allows for storing related entities in separate tables so as to
limit data dependencies among entities of different types, while still allowing their data to
be combined as part of a relation. Entities in separate tables are commonly related through
a foreign key—an attribute of a record indicating where to find its related record. Tables
of related entities can be combined through a join, which creates a new temporary table
where each record corresponds to a combination of records from the original tables, joined
together by a specified pattern for matching the records.

Most RDBMSs implement SQL, a special-purpose language for manipulating data held
in such systems. SQL is declarative, describing conditions on the relation rather than sup-
plying procedural code that computes the outcome. As such, it is up to the RDBMS to
produce an optimized plan to execute a query or other operation (Kifer et al., 2005a). The
SQL query language is typically supplemented with vendor-specific extensions to the lan-
guage. One common feature of RDBMSs not covered by SQL is the management of in-

dexes—auxiliary data structures for speeding up queries. An index may take the form of a
B-tree or hash table that maps a function of an attribute of a record to the location of that
record (Kifer et al., 2005b). With an index a query may jump right to the necessary record,
rather than scanning the table sequentially until the record is found.

Since the 1970s, the relational model has been the dominant database paradigm, as
an RDBMS can provide very strong guarantees about the consistency and durability of
data. In recent years, however, there has been renewed interest in non-relational databases,
eschewing the guarantees of an RDBMS in favor of performance or flexibility of data rep-
resentation (Stonebraker, 2010). One non-relational model that I considered for use in
EGTAOnline is the document-oriented model. A document-oriented database stores data

43

as a collection of documents, each of which may have arbitrary key-value pairs. Since
there are few restrictions on the types used as values, a document-oriented database allows
one to hierarchically nest data. In contrast to the fixed schema of the relational model,
a document-oriented database also makes it easy to add unstructured, or semi-structured
data. Other popular non-relational database models include graph databases, simple key-
value stores, and columnar databases, in which data corresponding to a single column are
arranged sequentially on disk. As I argue in the next section, game data is a good fit for the
relational model, but other database models may be useful for game-theoretic applications.

4.2 Representing Games in a Database

In EGTA, analysis is typically conducted on a (potentially sparse) payoff matrix. The
payoff matrix representation suggests a hierarchical structure to data in which a Game is
composed of Profiles, which in turn have a mapping from each player’s strategy choice
to the payoff that player achieves. Accordingly, I originally tried storing the game data
for EGTAOnline in a document-oriented database in which data were embedded similar
to the structure of the payoff matrix. One problem with this approach, however, is that
such a hierarchical structure impinges on the ability to conduct common analysis tasks. In
particular, it is rare that a pure-strategy profile is considered in isolation when conduct-
ing game-theoretic analysis. Identifying Nash equilibria, for example, requires comparing
payoffs that a player can achieve in the target profile to those they can achieve through
unilateral deviation of strategy. As mentioned above, the ability for a profile to be reached
through a single-player deviation is a relationship that a payoff matrix encodes spatially, by
having each dimension correspond to the strategy choice of one player. The reality of stor-
ing a payoff matrix with greater than two players on disk or in memory requires encoding
this relationship in some other way, and organizing payoff data into profiles may not be the
most useful for a one- or two-dimensional storage medium, such as modern RAM or hard
drives.

In Chapter 3 I discuss the role-symmetric representation of games, and how such a
representation allows compactly storing a game. In addition to reducing the storage re-
quirements of a game, using a compact representation can also reduce the cost of analysis,
provided there is no significant overhead to working in the compact representation, as oper-
ations that scan the data set have less data to scan. By virtue of generalizing fully symmetric
and fully non-symmetric games, using a role-symmetric representation also allows one to
fix a schema for games, regardless of degree of symmetry.

To encode role-symmetric game representations, I designed the schema shown in Fig-

44

symmetric_aggs

profile_id
strategy_id

o_agents_profile_id
num_players

payoff

profiles

profile_id
role_partition_id
environment_id

assignment
num_strategies

roles

role_id
role_name

strategies

strategy_id
role_id

strategy_name

o_agents_profiles

o_agents_profile_id
o_agents_profile

role_partitions

role_partition_id
role_partition

environments

environment_id
details

Figure 4.1: Schema for empirical games.

ure 4.1. In this diagram, an arrow indicates a one-to-many relationship: a relationship in
which a single record in the source table can be referenced by many records in the tar-
get table. These relationships are encoded by foreign keys named according to the pattern
“X id”, where “X id” indicates that the related record can be found in table “X”, and will
have a matching value for the attribute “X id”.

The primary entities for conducting game-theoretic analysis in the database are the ag-
gregates of players within profiles that share a strategy and payoff, which I term symmetric

aggregations.2 A symmetric aggregation is uniquely identified by a profile and a strat-
egy, and has a “num players” field, which denotes how many players play the specified
strategy in the associated profile. Each profile has one symmetric aggregation for each
distinct strategy in its strategy assignment. The count of symmetric aggregations associ-
ated with each profile is stored in the “num strategies” field, to simplify several queries.
A symmetric aggregation is also associated with an other-agents profile—an assignment
of strategy that matches the profile, but holds out one player represented by the symmetric
aggregation. Symmetric aggregations that share an other-agents profile s−i store the pos-
sible payoffs to the held out player i for the deviation set Di(s), where s is any profile in
{(ŝi, s−i) : ŝi ∈ Si}. Identifying the symmetric aggregation with highest payoff among
those that share s−i is equivalent to finding i’s pure-strategy best response correspondence
to s−i, Bi(s−i).

Notably absent from this schema is a table for games. Although the payoff matrix view
implies that a profile belongs to a single game, I treat games as views onto the data that
enable game-theoretic analysis, as in EGTAOnline. In addition to the benefits espoused
in Chapter 3, this approach enables expressing the many-to-many relationship between
games and profiles without a junction table to explicitly manage the membership of profiles

2In EGTAOnline, the payoff field of a symmetric aggregation is the sample mean for payoffs observed for
players playing the associated strategy and profile. In this chapter I do not discuss observations or players as
part of the proposed schema as such tables are specific to EGTAOnline’s implementation, and are not required
for the tasks described in this chapter.

45

in games. Not storing a junction table is particularly important because games can have
huge numbers of profiles, and the membership in a game can change rapidly as the analyst
examines different subgames in the course of analysis. As such, using a junction table
would require considerable storage and have significant churn.

To implement games as views onto the data, this schema implements several concepts
introduced by EGTAOnline. The environments table stores data necessary to determine if
the data of two profiles are compatible.3 For simulation-based EGTA, the “details” field
stores the information required to distinguish simulator instances, namely the simulator
program and run-time configuration. If instead we are using data from observations of
real play, the environment table may store features of the interaction that are needed to
classify similar scenarios. For example, in a sponsored-search bidding scenario (Borgers
et al., 2013), we may record details about the auction mechanism as well as the associated
keyword, since the behavior observed across different keywords may not be comparable.

Another novel concept is that of the role partition, which maps each role to the number
of players in that role. This is equivalent to a partition of players into roles under the
role-symmetric representation, {Ir}, as the identity of players does not matter when they
are symmetric. As I demonstrate in Section 4.3, the combination of environment, role
partition, and set of allowed strategies enable querying for subgames of compatible data,
the core of game rendering in EGTAOnline.

4.3 Game-Theoretic Primitives

In this section I define SQL queries that correspond to primitive game-theoretic operations.
Perhaps the most fundamental operation is assembling subgames required for analysis. To
show that a (potentially mixed-strategy) profile is a Nash equilibrium, we need consider
only profiles in either the support or the deviation set of the profile. For a pure-strategy
profile, the set of profiles in support is simply the profile itself. For a mixed-strategy pro-
file, the set of profiles in support is the subgame with strategies restricted to those played
with nonzero probability by at least one player. Listing 4.1 provides an SQL query for
profiles matching the subgame specified by the environment id “:env id”, role partition id
“:rp id”, and strategies restricted to those with strategy id in the set “:allowed strats”.4 The

3To simplify exposition, I do not describe what form the data takes for the “details”, “assignment”,
“role partition”, or “o agents profile” fields on their respective tables. They may be implemented as human-
readable descriptions of their respective entities, as the values of these attributes are not required by any
queries that I present in this chapter. The “details” data, however, could be used for clustering profiles based
on the similarity of environmental conditions, necessitating a structured representation.

4For other SQL listings I omit the environment id and role partition id conditions to simplify presentation.
Note also that these conditions can safely be omitted if data gathered for different simulator instances are

46

SELECT profile_id
FROM symmetric_aggs
LEFT JOIN profiles USING (profile_id)
WHERE strategy_id = ANY(:allowed_strats)
AND environment_id = :env_id
AND role_partition_id = :rp_id
GROUP BY profile_id, num_strategies
HAVING COUNT(*) = num_strategies

Listing 4.1: Query for subgame

essential idea employed here is that symmetric aggregations encode the strategy assignment
of a profile, in that a profile matches the requested subgame only if all of its symmetric ag-
gregations match strategies of the subgame. If a profile’s assignment includes a strategy
that is not part of the desired subgame, then one or more symmetric aggregations will be
filtered out by this query since they do not match any of the allowed strategies. The query
then counts the number of symmetric aggregations that remain for each profile, and if this
count does not match the “num strategies” field of that profile, the profile is excluded from
the result.

Prior to hitting on symmetric aggregations as a key organizing unit, I tried matching
a regular expression of the roles and their allowed strategies to string representations of
the profiles’ assignments. Although this earlier approach worked (in conjunction with a
role partition and environment as in Listing 4.1) insofar as it returned the correct set of
profiles, it could not be efficiently indexed, and building the correct regular expression
was complicated and error prone. In EGTAOnline, I found switching to the method in
Listing 4.1 yielded two orders of magnitude improvement over using regular expressions,
though no serious attempt was made to optimize either method.

Listing 4.2 gives a SQL query for the deviation set of a pure-strategy profile, specified
by “:prof id”. Since an other-agents profile encodes the strategy choices of all but a single
player, the deviation set is the union of all profiles that share an other-agents profile with
the target profile. This set is obtained by filtering the symmetric aggregations table by the
set of o agents profile ids found in the symmetric aggregations of the target profile. The
result of this query differs slightly from the description of deviation set given in Chapter 1
in that it includes the profile specified by “:prof id”. Using this approach one may also
calculate regret, as in Listing 4.3. When payoff data is missing for profiles in a deviation
set, the result of this query is a lower bound on regret, as the missing profile may provide
an even greater benefit to deviation.

stored in separate databases.

47

SELECT DISTINCT profile_id
FROM (SELECT o_agents_profile_id

FROM symmetric_groups
WHERE profile_id = :prof_id) other_agents

LEFT JOIN symmetric_aggs
USING (o_agents_profile_id)

Listing 4.2: Query for the deviation set of a pure-strategy profile

SELECT MAX(symmetric_aggs.payoff-other_agents.payoff)
FROM (

SELECT o_agents_profile_id, payoff
FROM symmetric_aggs
WHERE profile_id = :prof_id) other_agents

INNER JOIN symmetric_aggs
USING (o_agents_profile_id)

Listing 4.3: Query for regret of a pure-strategy profile

We can similarly query for the deviation set of a mixed-strategy profile by finding the
deviation set of each pure-strategy profile in support of the mixed-strategy, as in Listing 4.4.
Here, the support is computed using a user-defined function labeled “subgame”, which
implements Listing 4.1, passing in the set of strategies in support of the mixed strategy,
“:strats in support”, as the set of allowed strategies. As in Listing 4.2, this method returns
the union of the support and the deviation set. Calculating regret of a mixed-strategy profile
is also possible in SQL, but is significantly more involved. Calculating deviation payoffs
requires computing the expected payoff of deviating to each pure strategy, weighting the
payoff of each symmetric aggregation that matches that strategy by the probability that
its other-agents profile is played by the non-deviating players. Since it is impractical to
specify the probability of each other-agents profile being played directly, implementing
this calculation could involve computing these probabilities from the probabilities of each
strategy being played in the mixed-strategy profile, and storing the results in a temporary
table.

4.4 Identifying PSNE

Using the query for regret of a pure-strategy profile (Listing 4.3), one can define an al-
gorithm that identifies all pure-strategy Nash equilibria of a game. This algorithm (here
after referred to as IsNash) computes the regret of each profile, and returns those for which

48

SELECT DISTINCT profile_id
FROM (SELECT o_agents_profile_id

FROM subgame(:strats_in_support)
JOIN symmetric_aggs
USING(profile_id)) other_agents

LEFT JOIN symmetric_aggs
USING (o_agents_profile_id)

Listing 4.4: Query for the deviation set of a mixed-strategy profile

T, L T, M T, R

B, L B, M B, R

Figure 4.2: Data dependence graph for calculating regret of profiles in an example game.

regret is zero. This is similar to the method of enumerating PSNE found in the most recent
version of Gambit (McKelvey et al.); however, IsNash is suboptimal for two reasons. First,
it repeats payoff comparisons, failing to exploit the fact that testing whether profile sA is
a beneficial deviation from sB also tells us whether sB is a beneficial deviation from sA.
Furthermore, it ignores knowledge that is implied by transitivity, as for a given player and
other-agents profile there is a fixed payoff ordering on strategies. Second, this approach
leads to non-sequential data access patterns, which can cause poor performance when there
is more data than can fit in main memory. As stated previously, the regret of a profile is
a function of payoffs for the target profile and all profiles in its deviation set. In other
words, computing the regret of a profile depends on payoff data associated with O(NM)

other profiles. Figure 4.2 depicts the profile data dependencies for calculating the regret
in a two player game where the strategy sets are {T,B} and {L,M,R}. In this graph, an
arrow indicates that calculating the regret of the source profile requires payoff information
from the target profile. As calculating the regret of each profile in this example depends on
data from three other profiles, there is no way to order profiles on disk to enable IsNash to
compute the answer by reading the data sequentially, without duplicating the data.

To address these limitations, I present the procedure of Listing 4.5 (hereafter BestRe-
sponses). This approach relies on the characterization of Nash equilibrium profiles in terms

49

WITH best_response_payoffs AS (
SELECT o_agents_profile_id,

MAX(payoff) AS payoff
FROM symmetric_aggs
GROUP BY o_agents_profile_id)

SELECT profile_id
FROM best_response_payoffs
INNER JOIN symmetric_aggs

USING (o_agents_profile_id, payoff)
INNER JOIN profiles USING (profile_id)
WHERE strategy_id = ANY(:allowed_strats)
GROUP BY profile_id, num_strategies
HAVING COUNT(*) = num_strategies

Listing 4.5: Query for pure-strategy Nash equilibria through identifying best responses
(BestResponses)

of mutual best response. In a mutual best response, the strategy that the profile assigns to
each player maximizes that player’s payoff, conditional on the other players playing the
strategy assigned to them by the profile. We can thus find all PSNE by finding the sym-
metric aggregations with a strategy and other-agents profile such that the symmetric ag-
gregation’s strategy is a best response to its other-agents profile, and label as equilibria the
profiles for which all of their symmetric aggregations meet this condition.

The common table expression, “best response payoffs”, returns a mapping from other-
agents profiles to the maximum payoff that the held-out player can achieve. Matching
symmetric aggregations against this expression returns the set of strategies that are best
responses to each other-agents profile, allowing for ties. Allowing ties means that the re-
turned set may include profiles where agents are indifferent between playing their strategy
in the profile and another of their strategies. Such profiles are known as weak Nash equilib-

ria. To return the set of strict Nash equilibria—profiles in which payoff is strictly decreased
through deviation—we can filter out entries in “best response payoffs” that have more than
one matching symmetric aggregation.

By organizing comparisons around identifying best responses, duplication of compar-
isons is eliminated; the set of payoffs corresponding to an other-agents profile is searched
only once to identify the best-response to that other-agents profile. Whereas IsNash per-
forms O(NM) work for each of MN profiles, BestResponses performs O(M) work for
each of NMN−1 other-agents profiles, reducing worst case complexity by a factor of M
for non-symmetric games.5 BestResponses also allows data to be organized such that it can

5For arbitrary role symmetry, the number of payoff comparisons conducted by IsNash

50

profile_id strategy_id o_agents_profile_id payoff

… … 456 25.64

… … 456 21.23

… … 456 19.23

… … 567 29.54

… … 567 29.54

…

{MAX
{MAX

Figure 4.3: Finding best responses in the symmetric aggregations table.

be accessed sequentially, performing all payoff comparisons in a single pass, as demon-
strated in Figure 4.3. For this diagram, imagine the data on disk, one record after an-
other. Since symmetric aggregations can be grouped together by o agents profile id, in
one sequential pass over the data, the symmetric aggregations that are best responses to
their o agents profile id can be identified, and their profile ids recorded. Not all relational
database management systems explicitly support maintaining an order to the data on disk;
in such cases the data may still be processed in a single pass by using a hash table to record
the highest payoff seen thus far for each other-agents profile. In contrast, determining if
each profile is a Nash equilibrium in profile order requires gathering payoff data from var-
ious parts of the table, regardless of how the payoff data is ordered. I/O performance may
be improved over the profile-oriented approach, particularly when games are too large to
fit in main memory.

4.5 PSNE-Finding Performance

4.5.1 Comparison of SQL Algorithms

Figure 4.4 presents a run-time comparison of IsNash and BestResponses implemented in
PostgreSQL 9.3.2, a popular open source RDBMS. For IsNash, processing each profile
references only a small portion of the total data, and thus indexes were added to speed
up finding symmetric aggregations that correspond to the deviation set of a profile. Since

is
(∑

r∈R Mr

) (∏
r∈R

(
Nr+Mr−1

Nr

))
and the number of comparisons for BestResponses is∑

r∈R

(
Mr

(
Nr+Mr−2

Nr−1
)∏

r′∈R,r′ 6=r

(
Nr′+Mr′−1

Nr′

))
. For a fully symmetric game with N players and

M strategies, these expressions simplify to M
(
N+M−1

N

)
and M

(
N+M−2

N−1
)

respectively, meaning that IsNash
performs more comparisons in this setting by a factor of 1 + M−1

N .

51

Figure 4.4: Performance of two SQL methods for identifying all PSNE.

BestResponses performs a constant number of full table scans, rather than random accesses,
I did not find any indexes to be beneficial.6

For this experiment7 I examined uniformly random games with 2–6 players and three
different levels of symmetry—fully symmetric, fully non-symmetric, and splitting the play-
ers into two (approximately) equal roles—with each role having 10 strategies to play. This
produced a spectrum of game sizes, from 55 to a million profiles. Each point in the graph
corresponds to the mean performance over 30 game instances, with both algorithms operat-
ing on the same data. From this graph we observe that BestResponses outperforms IsNash
over a spectrum of game sizes and degrees of symmetry.

4.5.2 Comparison to Gambit

To assess the benefits of conducting analysis in the database, I compare the performance
of BestResponses to Gambit. Gambit’s PSNE enumeration algorithm is given by Algo-
rithm 4.1 (hereafter GambitPSNE). In contrast to IsNash, GambitPSNE avoids some com-
parisons by progressing to the next profile as soon as a beneficial deviation from the pre-

6When more than one game is stored in the database, as in EGTAOnline, an index for finding symmetric
aggregations that match a set of profiles could improve query performance.

7This experiment was conducted on a 2.7 GHz Intel quad-core processor with 12 GBs of RAM and a
7200 RPM hard drive, using a mildly optimized PostgreSQL configuration.

52

vious profile is found. As discussed above, this algorithm may be improved upon by com-
puting best responses to other-agents profiles, as in Algorithm 4.2 (hereafter GambitBR).
GambitBR differs from BestResponses in that it, like GambitPSNE, may avoid some pay-
off comparisons. In the case of GambitBR, as it iterates through players it removes a profile
from its candidate set if the profile is not a best response for the current player, potentially
leading to fewer payoff comparisons in each step. To assess the performance of the two
algorithms, and compare both against BestResponses, I implemented GambitBR within the
Gambit codebase.

Algorithm 4.1 Gambit PSNE Enumeration (GambitPSNE)
Require: Γ, the game to search
E ← {}
for s ∈ Γ do

if IsPSNE(s) then
E ← E ∪ {s}

end if
end for
return E

procedure ISPSNE(s)
for i ∈ I do

for ŝi ∈ Si do
if ui(ŝi, s−i) > ui(s) then

return false
end if

end for
end for
return true

end procedure

I compared the performance of the three algorithms under two scenarios: a “warm
cache” scenario intended to capture performance under optimal conditions, and a “cold
cache” scenario capturing less than optimal, but still common conditions. For the warm
cache scenario, all algorithms were run once prior to the measured run, so as to have useful
data already resident in main memory. For the database implementation, this is obviously
beneficial, as most modern databases hold recently accessed data in main memory to speed
up subsequent queries on the same data. When the size of the database does not exceed the
available memory, it is not uncommon for all of the available data to be present in RAM
at the time of querying. Gambit on the other hand has no equivalent capabilities, though
it is possible to conduct many different analyses on the same data by using Gambit as a
library. For the warm cache scenario, I measured only the time spent inside the algorithm

53

Algorithm 4.2 Gambit Mutual Best Response Enumeration (GambitBR)
Require: Γ, the game to search
E ← {}
j ← an element of I . First find the set of profiles where j plays a best response.
for s−j ∈ Γ do

for sj ∈ Bj(s−j) do
E ← E ∪ {(sj, s−j)}

end for
end for
for i ∈ I, i 6= j do

for s ∈ E do
if not IsBestResponse(i, s) then

E ← E \ {s}
end if

end for
end for
return E

procedure ISBESTRESPONSE(i, s)
for ŝi ∈ Si do

if ui(ŝi, s−i) > ui(s) then
return false

end if
end for
return true

end procedure

54

3.0 3.5 4.0 4.5 5.0 5.5 6.0

log10(number of profiles)

4

3

2

1

0

1

2

lo
g

1
0(

ti
m

e
in

se
co

n
d
s)

BestResponses, warm
GambitPSNE, warm
GambitBR, warm
BestResponses, cold
GambitPSNE, cold
GambitBR, cold

Figure 4.5: Comparing performance of PSNE finding methods under two cache scenarios.

for GambitPSNE and GambitBR, and not any time spent building the game representation.
For the cold cache scenario, before each run I dropped all system caches to ensure that
no useful data was already present in memory prior to measuring performance. For this
scenario, I measured the total time spent by GambitPSNE and GambitBR when invoked
from the command line. This mirrors one of the most typical use cases for Gambit, in
which a particular analytical method is invoked through a command line interface, passing
in the location of a file representation of a game.

For each scenario, I tested the performance of these algorithms on fully non-symmetric
games with 4–6 players, with 6, 8, 10, or 12 strategies for the 4- and 5- player games,
and 6, 8, or 10 strategies for the 6-player games.8 This produces a spectrum of game sizes
between 1296 and one million profiles. Although BestResponses can operate on games with
arbitrary degrees of role symmetry, Gambit does not exploit role symmetry, and thus I limit
my test set to non-symmetric games. As in the previous experiment, for each game setting,
30 uniformly random game instances are constructed, all algorithms operate on the same
set of data, and I use mean performance as my metric. The results of these experiments are
presented in Figure 4.5.

For the warm cache setting (graphed in solid lines), both Gambit variants outperform

8These experiments were conducted on a 3.5 GHz Intel quad core CPU, with 32 GB of RAM and a
solid-state drive, using a mildly optimized PostgreSQL configuration.

55

the database algorithm, BestResponses. This is not surprising as Gambit is implemented
in a performant language (C++), and does not have the overhead of providing all the func-
tionality of a database. Of minor note is that GambitBR, my implementation of the mutual
best response algorithm in Gambit, outperforms the stock Gambit algorithm, GambitP-
SNE. Although this may have been predicted from examining the worst-case complexity
of each algorithm, given that the number of comparisons required by both algorithms is
heavily test-case dependent, this outcome was not guaranteed by algorithmic analysis. As
a consequence of their ability to avoid unnecessary comparisons, neither Gambit algorithm
demonstrated as strong a correlation with the number of strategies as BestResponses: the
two big dips in the curve for BestResponses occur when transitioning to a larger number of
players and smaller number of strategies.

In the cold cache setting (graphed in dotted lines), the database algorithm, BestRe-
sponses, outperformed the Gambit algorithms for all but the smallest games considered.
By comparing the two settings, we can see that this reversal in outcomes is due to a differ-
ence in costs for making data usable by the algorithms. While the database approach had
a shrinking overhead to loading data relative to the size of the game, Gambit’s time spent
building an in-memory representation exhibits approximately the same order growth as the
time spent in the algorithm. Furthermore, this representation-building overhead in Gambit
is the dominant cost for this analysis task: for the 6-player, 10-strategy games, GambitP-
SNE spends just over a second finding all PSNEs of the game, but spends more than 25

seconds building its in-memory representation. For more expensive analysis, such as com-
puting mixed-strategy Nash equilibria, this overhead may be less significant. For very
data-intensive tasks such as control variate adjustment or bootstrap computation, however,
it is worth bearing such costs in mind.

4.6 Incremental Analysis

By using a database as a storage mechanism, it is possible to automatically conduct simple
analysis as data becomes available and store the results alongside the data. This capabil-
ity enables two valuable outcomes: the interim analysis may provide useful feedback to
the analyst for use in sample control, and the cost of conducting analysis may be partially
amortized over the time spent gathering data. In this section I discuss two tasks which ben-
efit from this capability: computing the regret of profiles, and tracking the set of maximal
complete subgames.

56

4.6.1 Incremental Regret Maintenance

Rather than finding the set of pure-strategy Nash equilibria as a query that touches all of the
data, we can add a “regret” field to profiles that we update as observations update our payoff
estimates. To maintain up-to-date regret values, on any change to the payoffs of profile s,
we must update the regret value for profile s, and check for required changes to the regret
values of each profile in the deviation set of s. Although this could require updating many
more rows on each observation, it would enable roughly constant-time querying for the
set of pure-strategy Nash equilibria by indexing on regret. Additionally, incrementally
maintaining regret in this way would enable a user to query for the set of pure-strategy
profiles that are δ-Nash equilibria, for a specified δ, in logarithmic time.

As discussed in the previous chapter, when the analyst has control over what data is
to be gathered, it is often advantageous to condition the selection of profiles to observe on
knowledge of the observations taken thus far. One algorithm discussed in Section 3.6.1,
Minimum-Regret-First Search (MRFS) (Jordan et al., 2008), is particularly apt for sequen-
tially updated regret estimates. MRFS attempts to increase the regret lower bound of the
profile that currently has the minimal lower bound on regret in each step by evaluating a
profile in its deviation set that has not yet been observed. As mentioned in Section 4.3, the
lower bound on regret is precisely the value returned by my proposed regret query when the
database is missing payoff information for profiles in the deviation set. Sequential sampling
algorithms that target statistical measures—the topic of the next chapter—as well as profile
exploration algorithms that rely on other payoff statistics, may be similarly supported by
storing the appropriate statistics and triggering their recalculation on the arrival of data.

4.6.2 Identifying Maximal Complete Subgames

In order to compute an mixed-strategy Nash equilibrium (MSNE) of a game (or subgame),
one must be able to estimate the utility to all players for every pure-strategy profile. In the
EGTA methodology, this generally means that an MSNE can only be computed on complete

subgames: subgames for which all profiles have been observed. A common preprocessing
step for computing MSNEs on empirical game data sets is to identify the set of subgames
that meet this condition, and are maximal in the sense that adding another strategy would
include a profile in the subgame that has not been observed. Such subgames are sometimes
also referred to as maximal cliques (Wellman et al., 2005).

Identifying the set of maximal complete subgames for a game is computationally ex-
pensive, as the set of possible subgames is given by the power set of the set of strategies,
and every profile must be checked to see if it has been observed. As replicator dynamics,

57

a common search method for finding symmetric Nash equilibria, can often converge quite
quickly, I have observed that the major cost of analysis can be identifying the subgames
to search, rather than the search itself. Fortunately, the set of maximal complete subgames
can be maintained and updated incrementally, as each time a previously unobserved profile
is observed, we can update our knowledge of which subgames are complete. To address
this task, I have specified the Incremental Maximal Complete Subgame Update (IMCSU),
presented in Algorithm 4.3.

Algorithm 4.3 Incremental Maximal Complete Subgame Update
Require: s, the previously unobserved profile
Require: τ , the subgames database table
ζ ← the ordered set of distinct strategies in s
if a subgame with strategies = ζ is not present in τ then

Insert (ζ, |SUBGAME(ζ)|, REQUIRED COUNT(ζ)) into τ
end if
for q in τ such that qstrategies ⊃ ζ do

qobserved ← qobserved + 1
if qobserved = qrequired then

for p in τ such that pstrategies ⊂ qstrategies do
Delete p from τ

end for
end if

end for

IMCSU maintains information about subgame completeness in a table τ . Each entry in
τ corresponds to a subgame and has the following fields:

strategies The set of strategies associated with the subgame

observed The number of profiles in the subgame that have been observed

required The number of profiles required for the subgame to be complete

IMCSU is to be invoked whenever the first observation is taken of a profile, and creates a
entry in τ matching the strategy set of the profile if one does not yet exist. The “observed”
field is set using the subgame query from Listing 4.1 to count the number of existing profiles
that form part of the subgame, and “required” is set to REQUIRED COUNT(ζ), the number
of profiles in the profile space defined by the strategy set ζ .9 Next, every subgame in the

9To simplify presentation, Algorithm 4.3 is presented under the assumption that all the data in the database
is compatible, as defined in the previous chapter. In general, the subgame table would also require “environ-
ment id” and “role partition id” fields to track data incompatibilities; both pieces of information would also
be necessary for computing the number of profiles that match a subgame, and the REQUIRED COUNT function
would require a role partition as an additional argument.

58

table that the profile matches (those which have strategy sets that are strict supersets of ζ)
has its “observed” field incremented. If “observed” and “required” are equal for an entry in
τ , we know that it is complete subgame. To enforce that the only complete subgames in the
table are also maximal, once a subgame q becomes complete, all entries in the table with
strategy sets that are strict subsets of qstrategies are removed. Since the size of the profile and
symmetric aggregations tables must be greater than the subgame table (as a subgame record
cannot be constructed without first observing a new profile, and not all profiles require a
new subgame record to be constructed), the most expensive operation in this algorithm is
querying for the number of profiles the match the subgame, which has cost linear in the
size of the (admittedly large) symmetric aggregations table.

Querying τ for subgames that have their “observed” value equal to their “required”
value returns the set of maximal complete subgames. With proper indexing, this set can
be returned in roughly constant time. Querying for the set of maximal complete subgames
with strategies from some restricted set, however, is less straightforward. Such an operation
may be desired if the analyst wishes to find MSNEs in a specially restricted subgame, as
in the case of the market maker example in Section 3.5. To gather the set of maximal
complete subgames in this situation, the Maximal Complete Subgames with Restricted
Strategies (MCSRS) algorithm, presented in Algorithm 4.4, may be employed.

Algorithm 4.4 Maximal Complete Subgames with Restricted Strategies
Require: S ′, the restricted set of strategies
Require: τ , the subgames database table
Z ← P(S ′)
Q← {}
while Z 6= {} do

ζ ← the largest element of Z
if there exists q in τ such that qstrategies ⊇ ζ and qobserved = qrequired then

Z ← Z \ P(ζ)
Q← Q ∪ {ζ}

else
Z ← Z \ {ζ}

end if
end while
return Q

MCSRS iterates through the set of possible subgames (given by the power set of the re-
stricted strategy set S ′), in order from largest to smallest, querying the database for maximal
complete subgames that subsume the current subgame. Due to the maximality condition,
when such a subgame is identified, all subgames that it subsumes are removed from con-
sideration, and the current subgame is added to Q, the set of maximal complete subgames

59

for the restricted strategy space. Since MCSRS must iterate through the power set of the
restricted strategy set, the cost of MCSRS grows exponentially in the size of the restricted
strategy set. Though exponential, this approach still benefits from the cost amortization of
IMCSU as the cost of MCSRS does not depend on the size of the game data set.

4.7 Discussion

This chapter constitutes a first attempt at mapping game-theoretic analysis to the database.
By moving analysis closer to the data we may reduce the cost spent in translating between
different representations. As I demonstrated in this chapter, for Gambit, a common game-
theoretic analysis software package, this translation cost can be quite significant. A further
benefit of this approach is that it supports using analysis as feedback for the sampling
process, rather than simply an end product. Additionally, since gathering data often occurs
over a long period of time, having analysis in the database can enrich the data automatically,
amortizing the cost of some analysis. In this vein, I proposed an algorithm for maintaining
information about maximal complete subgames as observations are taken, reducing the cost
of this operation at analysis time.

I designed a novel schema supporting game-theoretic analysis. The constraints of work-
ing in the database drove me toward new entities as the guiding organization of the data:
symmetric aggregations and other-agents profiles. Though these entities are always im-
plicitly present in game descriptions, in the database they come to the fore, as they enable
quickly determining a profile’s membership in a game, a support, or a deviation set. With
my schema I was able to develop SQL implementations for important game-theoretic oper-
ations, such as calculating regret and identifying PSNEs. When implemented in a common
RDBMS, my PSNE-identifying algorithm was sufficiently performant that I observed sig-
nificant time saving relative to using the Gambit command line interface for the same task.
Furthermore, this algorithm is generic with respect to role symmetry, providing further
performance benefits for games with symmetry over conversion to the non-symmetric rep-
resentation of Gambit.

Of great interest for future work is the ability to find mixed-strategy Nash equilibria of
large games. Existing algorithms for this task do not map well to SQL, as they typically
require iteration or solving mathematical programs; however, a hybrid approach, in which
the database is used to efficiently query for the data needed in each step of analysis, as
in the MADlib Analytics Library (Hellerstein et al., 2012), could be beneficial. Further-
more, other data technologies, such as MapReduce, may be employed to take advantage
of opportunities for parallelism in these algorithms (Widger and Grosu, 2008). Although

60

few algorithms are designed to accommodate role-symmetric representation of games, the
required modifications may be limited as methods exist for games that are fully symmetric
(Cheng et al., 2004).

It would also be interesting to explore alternative database paradigms, and compare
performance to the relational model. As mentioned, I had previously attempted to model
games in a document-oriented database with little success, but a columnar database may
further improve I/O performance for analytic tasks. A graph database could also yield
benefits, as the “reachable through single player deviation” relationship can be encoded as
a graph. For some games, such as those that can be more compactly encoded as an action-
graph game (Jiang et al., 2011), there are specialized algorithms that can solve the game
faster by operating on its graph.

61

CHAPTER 5

Bootstrap Methods for Sequential Estimation of
Nash Equilibria

Since EGTA builds game models by estimating utility functions from noisy observations,
solutions to these models carry uncertainty. In many EGTA studies, however, approximate
solutions are presented without any quantification of statistical confidence. Furthermore,
the exact method used for sampling profiles is rarely specified, and raw observation data
is rarely provided. Even if such information were provided, there are no agreed-upon
methods for evaluating the statistical evidence acquired through EGTA. When publishing
equilibrium analysis, we would like to provide readers with an assessment of the likelihood
that the equilibria presented are close approximations of Nash equilibrium when played in
the true game.

Statistical quantification of EGTA claims may have been lacking in the past due to
difficulty in accurately evaluating the complex hypotheses that arise in this methodology. In
particular, classical parametric statistical methods are ill-suited for evaluating the primary
statistic of interest, regret. In order to use a parametric method, the distribution family for
the statistic must be known, and most methods are only designed to work on well-known
distributions such as the Gaussian distribution. The sampling distribution of regret—the
distribution of regret measured in an empirical game constructed from a finite sample—
however, has no closed form, as regret in an empirical game is typically computed by
taking the maximum of sample means from independent, non-identical distributions. Many
statistical methods also rely on the size of the sample being fixed, as they were developed
during a time when a statistician was typically not the same person that gathered the data
(Ghosh and Sen, 1991). As such, EGTA’s iterative approach to model construction further
complicates statistical evaluation, as the number of observations allocated to each profile
is generally not fixed, and the data set may be evaluated many times before sampling is
terminated.

Difficulties in evaluating the available statistical evidence may lead researchers to con-

62

clude sampling when equilibrium candidates pass an “eye test”—the candidates do not
appear to have beneficial deviations when comparing payoff sample means, and the pay-
off sample variances are not so high as to cause concern. Alternatively, one may continue
sampling until the set of equilibrium candidates, and the probability distributions therein,
undergoes minimal change with the addition of further observations. These ad hoc stop-
ping rules have two significant flaws. First, they do not allow us to express statistical
confidence that the points identified are (δ-)Nash equilibria of the true game, and this may
cause concern about the repeatability of results from simulation. Secondly, these stopping
rules can lead to insufficient or excess sampling. Since statistical confidence is never cal-
culated under these stopping rules, they may report an equilibrium candidate for which
there is insufficient evidence to claim that the candidate is a (δ-)Nash equilibrium of the
true game, or may continue sampling long after accruing sufficient evidence to establish
such a claim statistically. When a stopping rule is overly conservative, time and computa-
tion are spent gathering observations that do not significantly change the conclusions of the
study; such resources could more profitably be allocated toward exploring more strategies
or conducting additional experiments.

A further potential concern is that, even if we could evaluate the outcome of these
stopping rules statistically, we could be biased in favor of identifying selected profiles as
(δ-)Nash equilibria due to sequential sampling (Whitehead, 1986). The concern here is
that, when sampling until some criteria are met, the decision to stop is influenced by the
order in which one observes the data. Consider for example two sequences of observations,
A = (0, 0, 0, 0, 0) and B = (1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0), observed by a stopping rule that
samples sequentially until it is either confident that the mean of the generating process is
less than 0.5 or when it has made 12 observations. In both sequences, five 0s are observed
consecutively, but for sequence A, this run of 0s leads the stopping rule to conclude sam-
pling early, accepting a hypothesis that sequence B, with the benefit of more data, does
not support. Not all sequential sampling procedures introduce such bias, but it is impor-
tant to verify the accuracy of statistical analysis conducted on observations gathered with a
sequential stopping rule.

Recently my colleagues developed a method for estimating statistical confidence in
regret for empirical games by using a non-parametric statistical method known as the boot-

strap.1 Using this method, I construct algorithms for two tasks:

1. sequentially sampling to determine if a given equilibrium candidate is a δ-Nash equi-
librium at a specified level of statistical confidence, and

1The introduction of the bootstrap for use with empirical game statistics, as well as much of the material
from this chapter, was published at AAMAS 2014 (Wiedenbeck et al., 2014).

63

2. sequentially sampling until a profile is identified that is a δ-Nash equilibrium at a
specified confidence level.

The first task can be thought of as a labeling task, where the algorithm samples until it
is confident in the appropriate label (as δ-Nash equilibrium or not) for the equilibrium
candidate. The second task is a search task, where observations are taken until the algorithm
can find a profile for which we have sufficient evidence to declare it a δ-Nash equilibrium
with high confidence. To address the potential for bias described above, I experimentally
validate that these algorithms are accurate with respect to their stated level of confidence
on several synthetic and simulation-based game data sets. I similarly test the accuracy
of using the bootstrap to construct confidence intervals when using two common rules of
thumb; these experiments help establish whether it is valid to use the bootstrap to estimate
confidence in the conclusions of earlier studies that employed ad hoc sampling approaches.
Finally, I experimentally compare the performance of the bootstrap-based stopping rule to
the two rules of thumb at the task of finding δ-Nash equilibria of the true game.

5.1 The Bootstrap

The bootstrap is a computational method for estimating the sampling distribution of sum-
mary statistics (Davison and Hinkley, 1997). Sampling distribution refers to a distribution
of a statistic when computed on a finite sample of a given size. Unlike many classical sta-
tistical methods, the bootstrap is non-parametric, not relying on any assumptions about the
shape of the underlying distribution. As mentioned above, this feature is critical for game
statistics as the primary statistic of interest, regret, does not match a known distribution.

The bootstrap is based upon treating a sample Θ as representative of the true popula-
tion. From this sample, resamples are constructed by drawing with replacement |Θ| times
from Θ, simulating the process of taking many independent samples from the true popula-
tion. For each resample Θ̂, we can compute the statistic of interest, producing an empirical
estimate of the sampling distribution of the statistic by repeating this process many times.
From quantiles of this estimated sampling distribution we can construct confidence inter-
vals for the statistic.

In applying the bootstrap to empirical game statistics, one must choose how to define
a sample Θ and its elements, θ ∈ Θ. In constructing a game, observations of different
profiles typically belong to different, independent samples, yet are analyzed in concert in
EGTA. The bootstrap procedure for EGTA estimates the sampling distribution of a game
statistic through computing the statistic on a large number of bootstrap games which may
be constructed in any of the following ways:

64

I For each profile s and player i, define Θsi to be the set of payoff observations for
player i in profile s. For each Θsi , draw with replacement from Θsi to construct Θ̂si .
Construct a bootstrap game by setting the payoff to player i for profile s by the sample
mean of Θ̂si for all i and s.

II For each profile s, define Θs to be set of payoff vectors observed for profile s. For
each Θs, draw with replacement from Θs to construct Θ̂s. Construct a bootstrap game
by setting the payoff to player i for profile s by the sample mean of the payoff to i in
Θ̂s for all i and s.

III For each profile s, index the observed payoff vectors sequentially. For each index j,
define a sample game Γj to be a payoff matrix with payoff vector for each profile given
by the payoff vector of that profile having index j. Define Θ = {Γj} to be the set of
sample games. Draw with replacement from Θ to create a new set of sample games
Θ̂. Construct a bootstrap game for Θ̂ by setting the payoff to player i in profile s to the
sample mean of the payoff to i in s across the samples games in Θ̂ for all i and s.

Drawing with scheme II is most similar to the way game data is generated by a simulator,
as it preserves correlation among payoffs within a single observation of a profile. Such cor-
relation exists as all players in a profile interact in the same simulation environment, and
thus are all affected by the realization of random variables that govern the simulation. This
contrasts with scheme I, where payoffs within the same profile are drawn independently,
and scheme III, which induces otherwise non-existent correlation between the observations
of different profiles, as all observations sharing an index are drawn together during re-
sampling. The number of redraws under scheme II grows with the number of profiles, as
a resample must be conducted for every Θs. Scheme III, in contrast, performs the same
number of redraws regardless of the number of profiles in the game, as the only set that is
resampled is the set of sample games. Scheme III does, however, require having the same
number of observations for every profile.

In as yet unpublished experiments, my colleagues found that the correlations induced
under scheme III do not impinge on the accuracy of the methods; in the name of expediency,
I use scheme III throughout, except where explicitly mentioned. The explicit procedure for
calculating confidence intervals for regret that I use is as follows:

1. Given a set of observations for each profile, create the set of sample games Θ = {Γj}.

2. Redraw from Θ to produce Θ̂ as in scheme III.

3. Create a bootstrap gameM from Θ̂ by computing the payoff vectors for each profile
through averaging their observations.

65

4. Calculate the regret of the profiles of interest under the modelM.

5. Repeat steps 2–4 many times to compute sampling distribution estimates of regret
for the profiles of interest.

6. From these distributions, one-sided confidence intervals of level γ ∈ [0, 1] can be
constructed by taking the 100γ percentile of the distribution as the right side, setting
the left side to zero. Two-sided confidence intervals are similarly constructed for the
level γ by taking the 100(1−γ

2
) and 100(1+γ

2
) percentiles.

Wiedenbeck et al. (2014) experimentally demonstrated that this procedure pro-
vides accurate confidence intervals for regret on a variety of synthetic and simu-
lated game datasets. In the subsequent text, ONE-SIDED-REGRET-CI(σ,Θseq, γ) and
TWO-SIDED-REGRET-CI(σ,Θseq, γ) compute the one-sided and two-sided bootstrap con-
fidence intervals of level γ for regret of σ, using the observation data Θseq.

5.2 Using the Bootstrap in Sample Control

By computing bootstrap confidence intervals on regret for candidate equilibria we can pro-
vide a measure of the statistical likelihood that the profiles closely approximate Nash equi-
librium. For a fixed number of observations, we cannot be guaranteed to have any profiles
for which we have statistical confidence that their regret is below a pre-specified threshold
δ. In particular, when a confidence interval for a candidate includes the threshold δ, we are
unable to distinguish whether the candidate is or is not a δ-Nash equilibrium. Rather than
report that we are uncertain whether or not a profile is a δ-equilibrium, we would often
prefer to continue sampling until we have sufficient confidence to make a determination.
To address this issue, I developed the Confidence-Interval-Based Stopping Rule (CIBSR)
presented in Algorithm 5.1.

CIBSR is similar to the repeated confidence interval approach to terminating clinical
trials proposed by Jennison and Turnbull (1984), but utilizes the bootstrap to construct
confidence intervals in place of parametric assumptions. CIBSR takes as arguments a can-
didate profile σ, and any observations taken thus far Θinit, and samples sequentially until
there is sufficient evidence to decide whether or not the candidate profile is a δ-equilibrium
of the true game. CIBSR is parameterized by the acceptable regret threshold δ, the confi-
dence interval level γ, and the number of observations x to gather of each relevant profile in
each step. CIBSR decides if a candidate is an δ-equilibrium by comparing the boundaries
of a two-sided confidence interval to δ, accepting the hypothesis that σ is an δ-equilibrium

66

Algorithm 5.1 Confidence-Interval-Based Stopping Rule
Require: σ, the profile to evaluate
Require: Θinit , the observations used to identify σ as an equilibrium candidate
Require: δ, the acceptable approximation threshold
Require: γ, the desired confidence level
Require: x, the number of observations to take of each profile in each step

Θseq ← Θinit

[δleft , δright]← TWO-SIDED-REGRET-CI(σ,Θseq , γ)
while δleft < δ and δright > δ do

Gather and append x new observations of each s ∈ S(σ) ∪
(⋃

σ̂∈D(σ) S(σ̂)
)

to Θseq

[δleft , δright]← TWO-SIDED-REGRET-CI(σ,Θseq , γ)
end while
return δright ≤ δ

when the interval falls entirely within [0, δ], rejecting it when the interval falls entirely
within (δ,∞), and otherwise requesting further observations. Sampling under CIBSR is
restricted to profiles that can affect the estimated regret distribution of the candidate. These
profiles belong to the support of either σ, S(σ), or the deviation set of σ,

⋃
σ̂∈D(σ) S(σ̂).

Practitioners may begin with no specific candidates, but wish to sample sequentially
from a simulator with the purpose of finding one or more equilibria of the true game. For
this use-case, I incorporate bootstrap confidence intervals into a sequential equilibrium
finding procedure, Confidence-Interval-Based Equilibrium Finding (CIBEF), presented in
Algorithm 5.2.

Algorithm 5.2 Confidence-Interval-Based Equilibrium Finding
Require: δ, the acceptable approximation threshold
Require: γ, the desired confidence level
Require: x, the number of observations to take of each profile in each step

Θseq ← {}
E ← {}
while E = {} do

Gather and append x new observations of each profile to Θseq

for σ ∈ EQUILIBRIA(Θseq) do
if ONE-SIDED-REGRET-CI(σ,Θseq , γ) ≤ δ then

Append σ to E
end if

end for
end while
return E

At each step, CIBEF requests x additional observations of each profile and finds equilib-

67

ria of the updated empirical game. For all experiments in this chapter, EQUILIBRIA(Θseq)

uses replicator dynamics to find symmetric mixed-strategy Nash equilibria of a game con-
structed from Θseq. For each equilibrium of the empirical game, a one-sided regret confi-
dence interval at the γ-level is constructed, and if the right-hand side of this interval is not
greater than δ, the profile is appended to the set of equilibria. When one or more equilibria
of the empirical game meet this criterion, sampling is terminated and the set of candidates
meeting the criterion is returned.

5.3 Experimental Data Sets

To evaluate these algorithms, I use two synthetic data sets—randomly generated uniform
symmetric games (uSym) and congestion games (Cgst)—and one data set from an exist-
ing simulation-based game, the credit network (CredNet) formation scenario described by
Dandekar et al. (2012). For each trial from a synthetic data set I first generate a random
uniform symmetric or congestion game to act as the true game. When a sampling rule
requests observations from a game, these observations are generated by taking the pay-
offs from the true game and adding zero-mean Gaussian noise to them, with noise drawn
independently for each player. To generate a true game from the uSym class, I draw a
value from the distribution U [0, 100] for each unique payoff in a symmetric game with
4 players and 4 strategies. To generate a true game from the Cgst class, I use 5 players
and 3 strategies; each strategy corresponds to selecting one of three resources with a base
value vb(s) ∼ U [0, 3], a congestion cost that is linear in the number of players using the
resource vl(s) ∼ U [0, 1], and a congestion cost that is quadratic in the number of players,
vq(s) ∼ [0, 1]. The payoff to a player from using resource s is a function of the total number
n(s) of players choosing that resource: u(s) = vb(s)− vl(s)n(s)− vq(s)(n(s))2. For each
experiment using synthetic data, I tested adding zero-mean Gaussian noise with standard
deviation σ ∈ {0.1, 1, 10, 100}.2

For CredNet experiments, my colleagues and I initially generated a CredNet game with
6 players, 6 strategies, and 2644 observations of each payoff, but found that it had partic-
ularly high variance; therefore we also generated a second data set with the same players
and strategies called CredNet agg., where each of 1000 observations comes from 20 pre-
aggregated runs of the simulator. The true game in my CredNet experiments is always the
empirical game constructed using the full set of samples. Algorithms observe the data of
this game by drawing randomly without replacement from the set of available observations.

2My co-authors examined other settings for game size and noise models for the fixed-sample setting and
found little variation in the performance of the bootstrap.

68

To facilitate comparison of regret values across classes, I applied an affine transformation
to rescale each uSym and Cgst payoff matrix to match the range [0, 100], which closely
matches the payoff range of the CredNet true game.

5.4 Sequential Classification of Profiles as Nash Equilib-
ria

To test the efficacy of CIBSR at labeling profiles as either δ-Nash equilibria (hereafter
referred to as Eq) or not (hereafter referred to as Not-Eq), I measure the frequencies at
which the algorithm correctly labels candidate profiles from synthetic or simulated game
data. For each game type considered, 1000 trials were run, each trial consisting of labeling
a single candidate profile, which may be either Eq or Not-Eq with respect to the true game.
For synthetic games, each trial corresponds to a different randomly generated game, while a
trial with simulation game data corresponds to a different random ordering of observations
of a fixed data set. This means that for the simulated game trials, the set of approximate
equilibria of the true game remains fixed across trials.

Selecting profiles randomly for evaluation may be an insufficiently stringent test of
the algorithm, since Not-Eq profiles with high regret can be labeled with confidence with
very few observations. Furthermore, such profiles would not merit application of statistical
tools in practice, as a mixed-strategy profile is typically only of interest if it is believed to
be a close approximation of equilibrium. I construct candidate profiles by taking a small
number of observations of each profile and computing an equilibrium of the corresponding
empirical game. These observations are then passed to the algorithm as Θinit. With this
procedure I am able to generate candidate profiles that belong to either class, and Not-Eq
instances will frequently be low regret, making correct labeling appropriately difficult.

For the synthetic games, candidates are selected after taking 5 observations of each
profile. On each trial the algorithm is parameterized with a regret threshold δ = 0.05 and
step size of x = 5 observations. Each trial also has an observation cap of 1000 observations
per profile, at which point, if the algorithm has not terminated, it labels the point as Eq if the
median of the bootstrap distribution is below δ. For the credit network simulator, I tested
both the unaggregated and aggregated data sets described in the previous section. Due to
relatively high level of noise in the credit network data, candidates were chosen after 100

observations for the unaggregated data, and after 5 observations for the aggregated data.3

3Since each aggregated observation averages 20 observations, the candidate profiles for both experiments
are constructed after the same number of simulations.

69

Similarly, the algorithm is parameterized with x = 100 for the unaggregated data and
x = 5 for the aggregated data, with observation caps set at the size of the full data set: 2644

and 1000 respectively. Experiments on these games were conducted for δ ∈ 0.05, 0.2, 0.5,
as different settings of δ lead to a different distribution of Eq and Not-Eq instances, and
potentially change the difficulty of correct labeling. For all experiments presented here, the
algorithm is parameterized with γ = 0.95. As the algorithm uses a two-sided γ-confidence
interval and the final decision depends on only one of the boundaries of the interval, the
algorithm terminates with a stated confidence level of 0.975.

Table 5.1 presents the findings from these experiments. “Ground Truth” specifies
whether the row refers to instances where the ground truth is Eq or Not-Eq. “#” speci-
fies the number of instances out of the 1000 trials that had the specified ground truth, while
“Und.#” gives the number of trials for that setting of ground truth where the algorithm was
undecided after reaching the observation cap imposed in the experiment. “Accuracy” lists
first the fraction of labelings that were correct for the trials where the algorithm terminated
with a confident decision, and second the fraction correct when the algorithm was forced
to decide at the observation cap. “Agg. Accuracy” specifies the fraction of labelings that
were correct across all 1000 trials, including both Eq and Not-Eq instances. “Observations /
Median” and “Observations / Mean” specify the median and mean number of observations
taken before the algorithm terminated. In this table, 1.00 signifies that the value is greater
than 0.995, while 1 indicates 100% accuracy.

Despite choosing instances so as to increase the difficulty of correct labeling, CIBSR
using the bootstrap method to construct confidence intervals delivered high levels of ac-
curacy across all game classes and parameter settings, with the lowest accuracy observed
over a full set of trials being 0.922. On synthetic data, CIBSR delivered aggregate accu-
racy of at least 0.97 across all games and instance types. Note that while CIBSR delivered
greater accuracy than the specified 0.975 confidence on the Cgst data, this is because the
median number of observations taken prior to terminating for each Cgst setting is 5, with
the exception of σ = 100 where it is 10. In other words, Cgst trials are so easy for the
algorithm that it often does not require a second sample. Also of note, on synthetic data
Eq instances tended to require fewer observations to make a determination than Not-Eq,
with the exception of the highest noise settings. The credit network data proved more dif-
ficult, and despite overall high levels of accuracy, accuracy varied considerably between
experiments and instance types. In particular, low regret thresholds made the algorithm
less likely to label candidates as equilibria; this is reflected in the high accuracy for Not-Eq
instances, low accuracy for Eq instances, and higher incidence of inconclusive results for
Eq instances. This effect was muted for the CredNet agg. data set, being observed only

70

Game δ Ground # Und. Accuracy Agg. Observations
Truth # Accuracy Median Mean

uSym 0.05 Eq 973 0 0.99, N/A 0.989 5 6.27
σ = 0.1 Not 27 0 0.63, N/A 5 116.11
uSym 0.05 Eq 624 22 0.99, 0.77 0.978 5 144.41
σ = 1 Not 376 21 0.98, 0.76 47.5 226.66
uSym 0.05 Eq 413 19 0.98, 0.47 0.972 5 113.86
σ = 10 Not 587 18 1.00, 0.22 15 110.25
uSym 0.05 Eq 240 7 0.97, 1 0.972 30 181.35
σ = 100 Not 760 11 0.98 0.36 10 68.34

Cgst 0.05 Eq 998 0 1, N/A 1 5 5.23
σ = 0.1 Not 2 0 1, N/A 397.5 397.5

Cgst 0.05 Eq 911 6 1, 0.67 0.995 5 28.92
σ = 1 Not 89 1 0.98, 1 50 172.08
Cgst 0.05 Eq 862 0 1.00, N/A 0.996 5 5.99
σ = 10 Not 138 2 0.99, 0 10 55.07

Cgst 0.05 Eq 610 4 0.99, 0.25 0.984 15 49.11
σ = 100 Not 390 6 0.98, 0.83 10 53.68
CredNet 0.05 Eq 96 84 0, 0.83 0.974 2644 2347.88

Not 904 250 1, 1 300 986.43
CredNet 0.2 Eq 642 558 0.75, 0.90 0.922 2644 2485.18

Not 358 152 1, 0.99 1600 1614.61
CredNet 0.5 Eq 910 512 0.99, 0.99 0.985 2644 2080.81

Not 90 56 0.91, 1 2644 1976.27
CredNet, 0.05 Eq 428 122 0.86, 0.98 0.953 30 370.26

agg. Not 572 64 0.99, 1 60 224.38
CredNet, 0.2 Eq 774 156 0.96, 0.95 0.965 85 323.91

agg. Not 226 18 0.98, 1 280 386.97
CredNet, 0.5 Eq 997 128 0.98, 1 0.983 35 206.98

agg. Not 3 1 1, 1 130 405

Table 5.1: Sequential classification performance.

71

for the lowest regret setting. That observing the entire data set for the credit network game
was frequently insufficient to have high confidence in declaring that a candidate profile was
an δ-equilibrium demonstrates how noisy game simulation can be, necessitating statistical
expressions of confidence.

5.5 Sequential Search for δ-Equilibria

The previous experiment demonstrates that the bootstrap method of constructing confi-
dence intervals can successfully be used as a terminating condition for a sequential sta-
tistical experiment without drastically biasing inferences drawn at the conclusion of the
experiment. Unresolved, however, is whether the bootstrap method can accurately evaluate
the outcome of sampling when existing rules of thumbs are employed to guide the sampling
process. In this section I present an experiment to evaluate the accuracy of the bootstrap
method applied to the conclusion of sampling using two common rules of thumb, as well
as CIBEF. I also compare the performance of these rules in terms of average regret and
number of observations requested.

The first rule of thumb is to cease sampling when all relevant payoff estimates demon-
strate low variability; specifically, the stopping rule labeled SEM will request x further
observations be made of each profile in each step until the standard error in mean of each
payoff, estimated using the sample variance, is below a specified threshold ξ. The intu-
ition behind this stopping rule is that reliable estimates of payoffs should lead to reliable
inferences about the true game. The second rule ceases sampling when the set of equilibria
of the empirical game does not change with additional observations. This stopping rule,
labeled EQC (for equilibrium comparison), will request x further observations be made for
each profile until the sets of empirical game equilibria found in successive steps are equiva-
lent. Distributions used in mixed-strategy equilibria are considered to be equivalent if their
Euclidean distance is below some threshold ∆. Both rules of thumb prescribe a stopping
point at which equilibria of the empirical game are considered approximate equilibria of
the true game, but provide no direct evidence that the profiles they identify are δ-equilibria
for any particular δ.

In this experiment, a trial consists of the specified algorithm requesting observations
from a synthetic or simulation-based game model until its stopping condition is triggered
or an observation cap is reached, at which point it returns one or more equilibrium candi-
dates. If the observation cap is reached, CIBEF returns the equilibrium of the empirical
game with the lowest right-hand one-sided confidence bound, while SEM and EQC return
all equilibria of the empirical game. For each candidate profile, I record its regret when

72

played in the true game, as well as the number of observations taken of each profile prior
to terminating the sampling procedure.4 For each game model and algorithm, I ran 1000

trials, with each trial corresponding to a new random game for the synthetic game data, and
a new random reordering of the data for the simulated game data. In addition to metrics
about the number of observations and regret of the selected profiles, I measure the average
fraction of regret of the true games captured by the 95th-percentiles of bootstrapped regret
distributions calculated at the termination of each trial. This measure gives an indication of
the accuracy of using the bootstrap approach to give a confidence interval at the termination
of sampling, when sampling is guided by these sample control algorithms.

EGTA studies often do not allocate the same number of observations to each profile. As
a consequence, the precision of payoff estimates may vary across profiles in an empirical
game. This varying precision could potentially disrupt the accuracy of statistical conclu-
sions drawn from bootstrapping regret, as regret compares payoffs from multiple profiles.
I assess the impact of non-uniform sampling on the accuracy of the stopping rules on the
CredNet agg. data set, by using the following sampling method in each step:

1. Let X equal the total number of observations taken in each step, x multiplied by the
number of profiles in the game.

2. If this is the first sampling step, assign one observation to each profile and reduce X
by the number of profiles in the game.5

3. Assign X observations uniformly at random to the profiles of the game.

Since this sampling paradigm will produce varying numbers of observations for each pro-
file, I employ scheme II, which redraws from each profile independently, for bootstrap
resampling.

Table 5.2 shows results from the equilibrium search experiments. “Mean Obs.” refers
to the average number of observations taken of each profile when the algorithm terminated.
All trials were conducted with the same step sizes and observation caps as in Section 5.4.
Trials labeled “CredNet, agg.; random sampling” employ the sampling approach described
in the preceding paragraph, while all others assign x observations to each profile in each
step. For the SEM stopping rule, the threshold ξ was set to 1.0, while for the EQC rule, a
distance less than ∆ = 0.01 was considered sufficient to call two equilibrium candidates
identical. For all experiments conducted with the CIBEF stopping rule, δ was set to 0.5 and

4 All algorithms considered here sample evenly from all profiles in a game’s profile space, so “10 obser-
vations” refers to 10 observations taken of every value in the payoff matrix.

5Each profile is assigned at least one observation so that a mixed-strategy Nash equilibrium can always
be found in the empirical game.

73

γ was set to 0.95. These settings are not particularly optimized for the games considered,
but were chosen with reference to the range of payoffs ([0, 100]). For EQC, ∆ was chosen
so as to approximate the ability of a human analyst to distinguish between distributions
without computational aid.

These results demonstrate that the bootstrap method of generating confidence inter-
vals for regret may be applied successfully to sequential sampling experiments. The only
experiments that resulted in substantial overconfidence on average, that is experiments in
which the fraction of true game regrets captured by 95th percentile of the bootstrap regret
distribution is less than 95%, were those settings in which sampling typically halted at the
first opportunity. For very small numbers of observations, in this case 5, the bootstrap
method may suffer from a sample not being representative of the underlying population.
For some combinations of game models and stopping rules, the bootstrap generated overly
large confidence intervals, with greater than 95% of true game regrets being captured by
the confidence interval method. In such cases, requiring bootstrap confidence intervals
to be below δ to confirm an equilibrium candidate may rule out more candidates than is
warranted by the expressed confidence level; however, when using CIBEF, in contrast to
existing methods, an equilibrium meeting the confidence requirements will eventually be
found.

In comparing the equilibrium-finding characteristics of the three stopping rules, my
experiments show that CIBEF is typically comparable to and often an improvement over
existing rules of thumb. For every game model considered, the median regret of the pro-
files returned by CIBEF was considerably below the approximation threshold of δ = 0.5.
Similarly, the mean regret was below the threshold for all but the uniform symmetric game
model with the highest variance. This data suggests that in most scenarios when CIBEF
misidentifies a profile as an approximate Nash equilibrium it is still likely to have regret
close to the threshold, but for high noise settings, profiles that are incorrectly returned may
have significant regret. EQC nearly always yielded higher regret profiles than CIBEF, and
performed particularly poorly in the synthetic game models with high variance. SEM fre-
quently performed at the same level or better than CIBEF in terms of regret, but may require
careful tuning of the ξ parameter in practice, as the algorithm never took a second sample
for low noise trials and always took the maximum number of samples for the highest noise
trials. In terms of the number of observations taken prior to stopping, CIBEF was simi-
lar to SEM for low noise settings, but required many fewer observations for higher noise
settings. In contrast, CIBEF required fewer observations than EQC in low noise settings,
in part due to EQC requiring two sampling steps prior to terminating, but required slightly
more samples in noisier settings.

74

Game Rule Mean Mean Median .95
Obs. Regret Regret Frac.

uSym EQC 17.04 0.0482 0.0011 0.93
σ = 0.1 SEM 5 0.0073 0.0014 0.89

CIBEF 5.08 0.0081 0.0018 0.90
uSym EQC 17.07 0.0807 0.0107 0.94
σ = 1 SEM 5.02 0.0730 0.0126 0.90

CIBEF 5.08 0.0666 0.0101 0.90
uSym EQC 25.87 0.3771 0.0795 0.95
σ = 10 SEM 117.32 0.1453 0.0281 0.95

CIBEF 62.50 0.0716 5.32e–7 0.92
uSym EQC 78.66 2.641 0.6669 0.96
σ = 100 SEM 1000.0 0.5176 0.1168 0.96

CIBEF 94.10 0.9257 1.98e–6 0.90
Cgst EQC 10.01 0.0006 1.12e–7 0.93

σ = 0.1 SEM 5 0.0008 2.20e–7 0.90
CIBEF 5 0.0008 2.19e–7 0.89

Cgst EQC 10.04 0.0063 1.15e–7 0.92
σ = 1 SEM 5.01 0.0090 2.26e–7 0.89

CIBEF 5.01 0.0084 2.31e–7 0.90
Cgst EQC 10.83 0.0553 1.64e–7 0.91
σ = 10 SEM 113.14 0.0174 3.32e–7 0.96

CIBEF 15.85 0.0172 2.76e–7 0.88
Cgst EQC 20.06 0.8963 1.44e–6 0.98

σ = 100 SEM 1000.00 0.0771 2.71e–6 0.94
CIBEF 26.94 0.1703 1.58e–6 0.97

CredNet, EQC 66.71 0.0468 1.03e–7 0.98
agg. SEM 116.05 0.0386 1.96e–7 0.95

CIBEF 11.10 0.0295 1.70e–7 0.99
CredNet, EQC 72.44 0.0451 8.61e–8 0.97

agg.; SEM 119.63 0.0349 1.82e–7 0.96
random sampling CIBEF 11.34 0.0370 1.84e–6 0.98

Table 5.2: Stopping rule performance.

75

CIBEF outperformed EQC and SEM in terms of mean regret of returned candidates
and the average number of observations taken prior to stopping on the aggregated credit
network data when uniform sampling was employed. All rules performed excellently in
terms of median regret, meaning that either CIBEF returned fewer non-equilibrium candi-
dates or that the non-equilibrium candidates that it returned were closer approximations to
equilibrium than the other two stopping rules. Here, CIBEF may benefit by restricting its
output to only candidates that are highly likely to be equilibria, rather than returning mul-
tiple candidates that may vary greatly in how well they approximate equilibria, as in EQC
or SEM. As such, CIBEF can deliver significant savings in terms of sampling costs when
finding only one equilibrium is acceptable. I was unable to gather results for the credit
network game with unaggregated data, as this experiment proved very costly, particularly
for CIBEF, as it must find equilibria and calculate confidence intervals for them in every
sampling step. Though a potential detriment to CIBEF, in real applications of EGTA the
cost of sampling will typically outweigh the cost of calculating confidence intervals, thus
making the overhead of using CIBEF over EQC negligible.

When using the random sampling paradigm on the credit network data, performance
for all algorithms differed only slightly from uniform sampling. All algorithms required
slightly more observations to conclude under random sampling. While these additional
observations seem to have marginally improved the performance of SEM and EQ in terms
of regret, CIBEF performed slightly worse under random sampling. This outcome may
be due to the relatively small number of observations that CIBEF takes prior to stopping;
with a little over 11 observations of each profile taken on average, random assignment of
observations to profiles makes it likely that some profiles have too few observations to pro-
vide reliable payoff estimates. The similarity of the outcomes of these trials to the CredNet
trials with uniform sampling provides evidence that the accuracy of bootstrap estimates of
regret does not hinge strongly on all profiles having the same number of observations, nor
on which resampling scheme is employed in the bootstrap.

5.6 Discussion

In this chapter I provide experimental evidence that using the bootstrap is both valid and
useful for statistical analysis of empirical games, even when data is gathered and analyzed
sequentially.6 In contrast with classical parametric approaches, the bootstrap enables one

6A caveat must be provided: while the techniques I discuss in this chapter performed well in a variety
of game settings, there may exist games that I have not tested for which the bootstrap techniques performs
poorly.

76

to make statistical claims without prior knowledge about payoff distributions, overcoming
one of the natural challenges of working with data generated through complex simulation.
In particular, using the bootstrap to generate confidence intervals for regret allows us to pro-
vide evidence as to the likelihood that equilibria identified by sampling from a simulator
are indeed equilibria of the true game. Publishing this information alongside equilibrium
analysis will provide readers with a better assessment of the evidence supporting the con-
clusions drawn using EGTA than has been available historically.

I proposed using the bootstrap as part of a stopping rule for two sequential sampling
tasks and evaluated the performance of these stopping rules. In the labeling experiment, I
found levels of accuracy approximately consistent with stated confidence intervals despite
specifically constructing a challenging set of trials. These experiments demonstrated some
interesting asymmetries in accuracy at labeling instances of the two classes that may war-
rant further study. Also of note is that labeling accuracy was slightly lower on the CredNet
data set, though this may be due to having to terminate many trials at the observation cap.
Further experiments on simulation-based game data would help determine which features
of the CredNet data set make labeling with confidence so challenging.

In the equilibrium search experiment, I found evidence that my new algorithm, CIBEF,
improves on existing iterative EGTA designs. Not only does the algorithm find equilibrium
candidates for which the data suggests high statistical confidence, but often these candidates
are found more quickly than with existing rules of thumb. One likely explanation is that
CIBEF focuses on identifying the best candidate, and as soon as one profile meets the
condition it terminates. Consequently, profiles returned by CIBEF have much lower regret
in the true game than those returned by other methods, as fringe candidates are unlikely to
be identified early in the process. EQC, the method based on waiting for the set of equilibria
to converge, in contrast, may request more sampling simply to eliminate fringe candidates
from the set of equilibria, or may cease sampling with such candidates still in the set; either
outcome hurts the performance of EQC in the metrics measured here. This explanation
also accounts for the relatively weaker performance (in terms of number of observations
requested) of the bootstrap at the labeling task. Because regret is a maximum, in order for
the expectation of the sampling distribution of regret of a profile to be close to zero it has
to be low probability for draws from any deviating distribution to have a higher payoff.
As such, profiles with true regret very close to zero should have confidence intervals that
converge faster than those with even slightly higher regret.

In the next chapter I revisit an EGTA study that was originally conducted before the
development of bootstrap methods for game-theoretic analysis. I apply the bootstrap to
calculate confidence intervals on the regret of profiles previously reported as equilibrium. I

77

also demonstrate how the bootstrap can be applied to estimates of other simulation statistics
in the context of an EGTA study.

78

CHAPTER 6

Application: Equity Premium Estimation in
Asset Pricing

Despite the increased availability of economic data, understanding and predicting the be-
havior of markets remains an intriguing open question. As the recent financial crisis has
demonstrated, many economic models rely on assumptions made in the name of tractability
that may not be borne out by real world actors (Colander et al., 2009). With computational
models, we have the flexibility to relax some of these assumptions, but with greater model
complexity comes greater computational costs. Furthermore, such models may be diffi-
cult to interpret, limiting potential adoption in mainstream economic and finance research
(Leombruni and Richiardi, 2005). EGTA provides a framework for interpreting strategic
outcomes from agent-based simulation (also referred to as agent-based modeling, or ABM),
addressing this concern, but can have substantially greater costs, as a typical agent-based
simulation corresponds to observing a single profile.

In this chapter, I explore the implications of an analytical pricing model in a large,
simulated financial market. I conduct EGTA to evaluate whether a prominent analytical
pricing model can resolve the famous equity premium puzzle (Mehra and Prescott, 1985)—
the apparent underpricing of stocks (equity) relative to their expected return as compared
to risk-free alternatives. In order to evaluate whether a pricing model resolves this puzzle,
I first determine whether or not the pricing model reflects equilibrium play. This is done
by implementing the pricing model and logical alternatives as strategies that traders can
adopt in a stock market simulator, and finding Nash equilibria of the resulting empirical
game. Next, I estimate equity premium at Nash equilibrium. In order for an EGTA study
to provide evidence that a pricing model resolves the equity premium puzzle, not only
must the corresponding pricing strategy be played in equilibria, but also the magnitude of
estimated equity premium should be similar to measurements of equity premium from the
real world.

After providing background on agent modeling in finance and the equity premium puz-

79

zle, I describe my market simulator and how it relates to the analytical model under inves-
tigation. In order to conduct EGTA while simulating a large number of traders, I employ
hierarchical reduction to build game models, and use the method of control variates (Laven-
berg and Welch, 1981) to reduce variance in my payoff and equity premium estimates. I
also present a method of employing hierarchical reductions of varying sizes (alluded to in
Chapter 3) to reduce simulation expenditure by finding productive portions of profile space
with a coarse-grained reduction before committing to more simulation with a finer-grained
reduction.

In this chapter I demonstrate one of the key benefits of EGTAOnline: the ability to
revisit earlier EGTA studies after the introduction of new methods. The experiments that
form the basis of this chapter were originally presented in an issue of the Journal of Compu-

tational and Mathematical Organization Theory (Cassell and Wellman, 2012). As the data
is conveniently stored in EGTAOnline (Chapter 3), I re-examine the published conclusions
with the bootstrap methods from Chapter 5. I use the bootstrap to construct regret confi-
dence intervals for the previously identified equilibria. I also present a bootstrap method
for computing confidence intervals for equity premium estimates.

6.1 Background: Agent Modeling

Despite a burgeoning literature in agent-based simulation for financial modeling, it remains
almost de rigueur in mainstream academic finance research to model aggregate behavior in
financial markets analytically with a single representative agent. Such agents represent the
aggregated preferences and beliefs of all agents in the market, and generally are assumed
to hold all of the assets in a market in equilibrium. From these abstractions, pricing and
other behavior is derived. Chapman and Polkovnichenko (2009) demonstrated that the lack
of agent heterogeneity inherent in the representative agent approach may have important
implications, particularly when the agent is not an expected utility maximizer. Specifically,
the authors show that adding even one more agent to a market model can qualitatively
change the conclusions of an asset pricing study.

Although a two-agent model suffices to demonstrate the weakness of a representative
agent model, it may still fail to support the agent heterogeneity required to explain market
behavior. Consider a two-agent model, where one agent opts not to trade in equilibrium.
Any estimations of macroeconomic variables under this model would then correspond to
half of the pool of traders not participating in that market. This level of granularity may
inaccurately estimate such variables since no trades are conducted and only half of the
market participates in price formation. Additionally, if a two-agent model corresponds to

80

two different pricing strategies it may not be reasonable to assume that the representative
agent opting out in equilibrium implies that no agents of that strategy would participate in
the market being modeled.

Because a single representative agent sets prices directly, such models need not con-
sider how prices are actually determined by agent interaction through market mechanisms;
however, this can lead to aggregate pricing that is inconsistent with real-world market op-
eration. Consider the agent that has the lowest value among agents trading units of a risky
asset through a continuous double auction (CDA) (Friedman and Rust, 1993)—an auction
in which both buyers and sellers submit prices which are matched continuously. If the mar-
ket has a large number of orders outstanding then this agent’s bids are never seen by the
market. His buy price is too low to reach the top of the order book and his sell orders match
at the higher market bid. The converse is also true, as an agent who believes the asset is
very valuable will ask too much for its sale, but will be able to purchase from other sellers
at the lower market ask price. We can thus see that in a thick market, the prices of agents
with extreme values for an asset should not factor into calculations of equity premium,
since their prices are never seen by the market. With as few as three agents, market mi-
crostructure can also affect the allocation of assets, which in turn can affect market pricing,
efficiency, and other outcomes.

It might seem the way forward is to construct analytical models with greater numbers
of agents; however, as the number of agents increases so does the complexity of analysis.
Additionally, the incorporation of market microstructure can cause the complexity of the
environment description to increase along with population granularity. Beyond a point, the
only feasible computational approach is bottom-up simulation of agent behavior.

Despite limited recognition by mainstream economic journals, ABM approaches have
been employed extensively in the social sciences, including finance. LeBaron (2006) sur-
veys the agent-based finance literature, and discusses the motivations and limitations of the
approach. ABM has increasingly been employed to explore the impact of public policy
decisions on the behavior of market actors. Raberto et al. (2008) use ABM to examine
the effects of tight monetary policy with heterogeneous agents. Thurner (2011) conducted
an ABM investigation of the relationship between leverage and financial crises, and how
the market may respond to some proposed regulations. Gerst et al. (2013) developed an
extensive ABM system to study the reaction of domestic actors to changes in international
climate policy. It is in a similar vein that I use ABM and EGTA to critically examine an
analytical model which may form the basis for policy decisions.

81

6.2 Ambiguity Aversion and the Equity Premium Puzzle

In standard models of asset pricing, investors demand a higher rate of return as the risk of
an asset increases. This is a direct consequence of risk-averse utility: given a choice among
two assets with the same expected value, the one with lower risk provides greater expected
utility. There are many ways to measure the relative risk of a proposition (Rothschild and
Stiglitz, 1970); in my setting below, risk is characterized by the uncertainty in estimating
the expected return on the basis of an ambiguous stream of information. An increased
rate of return on risky assets as compared to risk-free alternatives is known as the equity
premium, as it is a premium demanded by traders for holding equity. The equity premium
puzzle refers to the apparent disparity between the observed equity premium and what
would be predicted based on standard models of investor risk preferences. If investors were
not risk averse, classical economic theory would suggest that the price of stocks would rise
until the point where expected return on stock was exactly equal to the expected return on
risk-free assets. Since investing in stock has inherent risk, and traders are not in general risk
neutral, stock prices should be lower than this point; however, even when accounting for
risk aversion, the average return on stock is significantly higher than the return on risk-free
treasury bills. Since this phenomenon was identified by Mehra and Prescott (1985), it has
received a great deal of attention in finance research literature. There are many proposals
for resolving the puzzle, as well as controversies about whether there is a puzzle at all.
For example, Weitzman (2007) shows that the puzzle can be explained if the investors’
subjective distributions of returns possess heavy tails. DeLong and Magin (2009) provide
a survey characterizing the state of knowledge and debate surrounding the U.S. equity
premium.

One path taken by economists to explain the equity premium puzzle is to posit forms of
non-standard preferences or decision rules. One example is ambiguity aversion, a cogni-
tive phenomenon famously identified by Ellsberg, wherein decision makers prefer actions
where the chance elements are objectively clear, even at significant sacrifice of expected
utility (Halevy, 2007). Epstein and Schneider (2008) (ES) argue that this aversion can be
justified in a dynamic context, when information quality is taken into account. The quality
of information revealed under an ambiguous prospect may be less useful, in proportion to
the degree of ambiguity. To incorporate this ambiguity, ES extend the work of Gilboa and
Schmeidler (1989) who demonstrate that a preference for known risks can be captured by
worst-case reasoning over a set of non-unique priors. ES show that this worst-case reason-
ing amounts to an asymmetric response to information depending on its content, since the
worst case when receiving positive news is that it is not informative about future dividend

82

movement, whereas the worst case when receiving negative news is that it is highly infor-
mative about future dividend movement. With this rationalization they develop a model of
asset pricing with an ambiguity-averse representative agent, and demonstrate that this can
explain why even a market of well-diversified investors may still demand compensation
for the idiosyncratic risk associated with each asset they hold, since diversification does
not reduce ambiguity in the same way that it mitigates risk. This in turn could explain an
equity premium, even among savvy investors, and other phenomena of interest.

6.3 Empirical Game Model of Asset Pricing

Taking the ES model as a starting point, I seek to address two questions. First, given
the possibility of multiple strategies, is the ambiguity-averse strategy actually present in
equilibrium? If traders gain no benefit from being averse to ambiguity, we would expect
traders who are averse to ambiguity to be displaced by those who are not, calling into
question the validity of modeling the whole market as a single ambiguity-averse trader.
Second, in a model with agent heterogeneity and an active market mechanism, does pricing
according to the ES model generate significant equity premium?

To answer these questions, I construct an ABM for asset pricing, and perform empirical
game-theoretic analysis to evaluate strategy candidates. The full model includes elements
that specify the market mechanism, asset definition, and agent strategies, detailed in the
following subsections. Figure 6.1 diagrams how the ABM simulator is used to estimate
equity premium. In order to estimate the expected value of some target variable V (in
this case equity premium), I adopt Nash equilibrium as my solution concept, and weight
observations of the variables according to the probability that the pure-strategy profile with
which they are associated is played in equilibrium. For a mixed-strategy equilibrium σ∗,
this estimate is given by:

E[Vσ∗] =
∑
s∈S

V̄s Pr(s | σ∗),

where S is the set of pure-strategy profiles in the game, and V̄s denotes the sample mean of
the target variable V when players play s.

6.3.1 Market and Asset Models

Many representative agent models, including ES, give little consideration to market mi-
crostructure. Within their analytical framework this seems reasonable, since one agent
holds the entire market in equilibrium. This agent would have no one to buy from or sell

83

Select profiles
to sample

Simulator
EGTAOnline

Database

Payoff observations

Target variable
observations

Solution
Concept

Further sampling
suggested by

analysis
Profile probabilities

Target
Variable
Estimate

Profile
Space

EGTA
Variable Est.

Payoff matrix

Target variable
sample averages

S

V̂

{V̄s}

�⇤

Figure 6.1: Workflow diagram for using EGTA to estimate a non-payoff variables V .

to, so the question of how transactions would occur does not apply. When analyzing price
formation via ABM, however, it becomes necessary to specify a mechanism by which the
market operates. In many stock markets, agent interaction is mediated through a CDA,
which I adopt as the market mechanism for this investigation. Following ES, the model I
examine consists of two types of assets, one that is risk-free, offering a fixed return, and
one that is risky, offering a variable return. Agents are able to exchange these two assets
through the CDA by specifying how much of the risk-free asset they are willing to offer or
accept for a share of the risky asset.

6.3.2 Agent Strategy Composition

Given a market mechanism, we must also specify how agents will act within the mechanism
to determine prices. The equilibrium bidding strategy for a CDA (or any dynamic market
mechanism) in this context is unknown, thus I evaluate a space of candidates to determine
an appropriate composition of agent strategies in the model.

My set of strategy candidates starts with the representative agent employed in the ES
model. This strategy calculates an asset price using the ES formulation of ambiguity aver-
sion (AA), given its own private information. The strategy bids in a straightforward manner
based on that price. To this I add a second strategy candidate, based on a standard Bayesian
(B) pricing model, that likewise bids straightforwardly given its price calculation. For the
AA strategy to be tenable, it should at minimum be competitive with the natural alternative,
B. I also introduce variations on both AA and B that ignore their own risk aversion when
calculating prices. This allows me to separately evaluate the advantage or disadvantage
to an individual trader of taking risk aversion into account in a similar way to how I have
chosen to evaluate the benefits of ambiguity aversion. This set of four strategies is further
parameterized by variations to the number of units of the risky asset requested in each or-

84

der, whether beliefs about the asset’s liquidation price are derived from the current market
state or the asset’s expected value, and a shading parameter that specifies a percentage ad-
justment that the agents apply to their valuations in order to generate prices. I ultimately
explored 20 strategies, curtailing exploration of further parameterizations when it became
clear that they offered no strategic advantage.

6.3.3 Estimating the Empirical Game

My market simulation incorporates N = 60 symmetric players. With the pool of 20 possi-
ble strategies, there are

(
79
60

)
≈ 8.8 × 1017 distinct profiles, taking symmetry into account.

Sampling from all of these profiles would be unmanageable; therefore, to contain the pro-
file space further, I employ the aforementioned hierarchical reduction. I start by analyzing
a four-player version of the game, where each player selects a strategy to be played by 15
trading agents. Although I have restricted the strategic degrees of freedom (thus sacrificing
some fidelity) in the game model, I retain agent heterogeneity in terms of beliefs and pref-
erences at the full granularity of 60 agents. With this reduction, there are only

(
23
4

)
= 8855

distinct strategy profiles to sample.
In this profile space, I further reduce my sampling requirements to identify Nash equi-

libria by use of a guided search that avoids unproductive regions of the game, similar to
algorithm introduced by Wellman and Wiedenbeck (2012):

1. Sample the subgame induced by some initial strategy sets.

2. Compute a symmetric mixed-strategy Nash equilibrium (SMSNE) σ of the resulting
subgame.

3. Sample from the deviation set of σ in the full game to test for beneficial deviations.

4. If no beneficial deviations are found, return σ; else repeat steps 2− 4 by considering
the subgame with strategy sets given by

⋃
i∈I S(σi), with the addition of a beneficial

deviation strategy to the appropriate player’s strategy set.

I amend this approach for use with hierarchical reductions of varying granularity, resulting
in the Hierarchical-Reduction-Based Search presented as Algorithm 6.1. This search aims
to find productive regions of profile space in a coarse-grained reduction, where complete
subgames are small relative to the full game. Once productive regions are identified by
way of identifying Nash equilibria in the reduced game, the search is refined through using
increasingly fine-grained reductions. When payoffs vary smoothly with strategy counts,
and approximate SMSNE with small support exist in the true game, this approach can

85

quickly find equilibria strategy supports and the remaining simulation budget can be spent
refining the estimated strategy distributions of equilibrium candidates.

Algorithm 6.1 Hierarchical-Reduction-Based Search
Require: S, the set of all strategies
Require: η, an increasing sequence of divisors of N
Scurr ← a set initially containing an arbitrarily selected strategy from S
Sold ← ∅
for n ∈ η do

while Scurr 6= Sold do
Sample all profiles in Γn,Scurr , the reduced game of size n with strategies Scurr
Find an SMSNE σ of the resulting game model
Sold ← SS(σ)
Sample all profiles from

⋃
σ̂∈D(σ) S(σ̂)

Scurr ← Sold ∪ Bi(σ−i)
end while

end for

To build the game models, payoff estimates are generated by averaging many observa-
tions for each profile. Prior to averaging payoff observations, I apply the method of control
variates to reduce variance in payoff estimates. I employ replicator dynamics to find SM-
SNE of the empirical game, initializing the search from multiple starting points including
uniform distributions and distributions weighted towards one strategy. In the experiments
I present here, I employ the Hierarchical-Reduction-Based Search with η = (4, 6). As
discussed in Chapter 3, a considerable fraction of observations gathered for n = 4 can be
reused for n = 6. The six-player game, where each player controls 10 agents in simulation,
is what I ultimately employ as the basis of equilibrium and equity premium estimates.

I examine markets where agents are risk averse to varying degrees. Following Mehra
and Prescott (1985), I assume that agents’ utility for wealth is characterized by constant

relative risk aversion (CRRA),

u(w) =
w1−α − 1

1− α .

For α = 0 this utility function collapses to w − 1, and for α = 1 utility is defined by
limα→1 u(w) = log(w). Regardless of whether agents incorporate risk aversion into their
pricing strategy, their actual payoffs are calculated with respect to this CRRA utility form.
This allows me to examine whether risk-averse pricing is found in equilibrium when agents
can strategically ignore their aversion when determining price, and measure the effect that
risk aversion has on equity premium.

86

Figure 6.2: Abstract view of market simulation.

6.4 Simulation of Asset Pricing under Ambiguous Infor-
mation

Figure 6.2 provides an abstract overview of the simulation. In my simulations, in each
trading period, the agents—traders—are given a piece of news that is partially informative
about future dividend payments. Traders use these signals to update their belief about the
current value of the risky asset. With updated beliefs, the traders submit some constant
number of single-unit limit orders to the order book, where trades are matched using a
CDA. Unmatched orders remain on the order book until they either match an incoming
order or are replaced by the trader that submitted them. Traders are selected to submit
orders to the order book randomly in each period. At the end of each quarter, q, traders
receive dividend payments on the risky asset they own, and interest payments on their
holdings in the risk-free asset. Each quarter is defined to be some constant number of
trading periods. The remainder of this section provides further detail and describes the
important assumptions of the simulation model.

6.4.1 Market Conditions

The market consists of two types of assets. A risk-free asset (cash) yields quarterly interest
payments at a fixed rate, r. A risky asset (stock) yields quarterly dividend payments dq,

87

which fluctuate according to the mean-reverting process used by ES:

dq = κd̄+ (1− κ)dq−1 + δq,

where δq is a shock to the dividend value at quarter q, δq ∼ Normal(0, σ2
δ), and κ ∈ (0, 1)

is the degree of reversion toward the mean dividend value, d̄. If the dividend value drops
below zero, traders are paid no dividend, though future dividend movement continues from
the subzero value.

6.4.2 News

News is sent to all traders in every trading period, and every trader receives the same piece
of news. A piece of news consists of a signal, st, representing intangible information
available about the risky asset, and the most recent dividend payment, dq. The signal is
partially informative about the next dividend payment, as

st = δq+1 + εt,

where δq+1 is the shock in the dividend that will be observed at the next dividend payment,
and εt is the noise in the signal, εt ∼ Normal(0, σ2

ε), σ2
ε ∈ [σ2

ε , σ̄
2
ε]. For my experiments,

[σ2
ε , σ̄

2
ε] constrain the space of possible beliefs about the news-generating process. Per ES,

traders are assumed to be unable to learn the true news-generating process but can use news
to improve their estimates of δq+1 and to update their prices.

6.4.3 Traders

Trader i is given two private values, σ2
ε,i and σ̄2

ε,i, representing its beliefs about the possible
range of variance in the noise added to signals. For trader i, two values are drawn uniformly
from [σ2

ε , σ̄
2
ε], taking the smaller value as its lower bound, σ2

ε,i, and the greater value as its
upper bound, σ̄2

ε,i. Note that the actual noise parameter may lie outside a trader’s belief
bounds. Each agent is also assigned a coefficient of risk aversion, αi, with respect to which
it seeks to optimize its CRRA utility. Traders incorporate these private values into their
valuation of the risky asset, leading to a market that is heterogeneous in price even when
all traders price according to a single strategy.

All pricing strategies considered calculate approximations of a certainty equivalent

price (CEP), that is, the price at which the trader is indifferent to acquiring an additional

88

share of the risky asset. To calculate the CEP, traders find the price, p∆ such that

EU(hc, hs) = EU(hc − p∆, hs+1), (6.1)

where hc and hs are the trader’s current holdings in cash and shares respectively.
EU(hc, hs) is the expected utility function for the trader, given by

Fδq+1

(
−ḋ
)(

hc +
hsp

∗

1 + r

)
+

∫ ∞
−ḋ

[
u

(
hc +

hs
1 + r

(
p∗ + ḋ+ x

))]
dFδq+1 (x) ,

where ḋ = κd̄ + (1 − κ)dt, the deterministic portion of the dividend, Fδq+1(x) is the
cumulative distribution function for dividend shock, and p∗ is an estimate of next period’s
price for the risky asset. The terms outside of the integral account for the portion of the
expected value where the paid dividend is zero.

Since δq+1 is Gaussian, there is no closed-form solution to (6.1), necessitating numer-
ical integration. I replace the upper bound with the mean of δq+1 plus six standard devia-
tions. This upper bound was chosen because preliminary testing showed that it provided
approximation errors that were smaller than $0.005. The source of p∗ is one of the strate-
gic parameterizations, with agents either using the traditional Capital Asset Pricing Model
(CAPM) price, d̄

r
, or the current midpoint of the bid-ask spread. This distinction is roughly

analogous to that of fundamental and technical traders. Finally, p∆ is calculated through
a fixed-point iteration. A similar approach is used to calculate sell prices, replacing hs+1

with hs−1. The next two subsections describe how the two families of pricing strategies
apply trader-specific private values to modify their CEP estimate.

6.4.3.1 Ambiguity-Averse Pricing

AA traders believe that any variance in the noise in the range [σ2
ε,i, σ̄

2
ε,i] could describe

the true news generating process. Therefore, AA traders maintain a set of priors over this
distribution. When ambiguity-averse traders receive a piece of news, they update their
beliefs of the distribution of next period dividend shock, Fδq+1 , using Bayesian updating
over their set of priors. Thus trader i’s set of posterior beliefs about δq+1 after receiving st
are summarized as follows:

{δq+1 | st ∼ Normal(µ(σ2
ε), σ

2(σ2
ε)) : σ2

ε ∈ [
¯
σ2
ε,i, σ̄

2
ε,i]}

µ(σ2
ε) = [1− γ(σ2

ε)]µt−1 + γ(σ2
ε)st

σ2(σ2
ε) = [1− γ(σ2

ε)]
2σ2

t−1 + [γ(σ2
ε)]

2σ2
ε

89

where γ(σ2
ε) = cov(s,δ)

var(s)
=

σ2
δ

σ2
δ+σ2

ε
, and µt−1 and σ2

t−1 are the posterior mean and variance
of δq+1 | st−1 respectively. After updating their beliefs, AA traders price according to the
posterior distribution that minimizes the expected value of their holdings.

6.4.3.2 Bayesian Pricing

B traders treat all news as equally informative and thus respond symmetrically to news
regardless of its content. For my experiments, B trader i is assigned σ̄2

ε,i and σ2
ε,i, but

uses the average of these values to form σ2
ε,i, upon which their prior belief is based. Thus

B traders hold only a single prior for performing Bayesian updating, as compared to the
range of priors maintained by AA.

6.5 Experiments

I conducted EGTA and estimated equity premium for several market configurations. Since
the space of market parameterizations is continuous in multiple dimensions, such an in-
vestigation cannot hope to be exhaustive. Instead I consider a small set of reasonable and
representative settings of market parameters.

Some guidance for parameter setting can be taken from the literature. For example,
Exley et al. (2004) cover various measures of mean reversion in finance fairly comprehen-
sively. The distribution for α, the coefficient of risk aversion, was chosen to be consistent
with the survey of behavioral studies presented by Mehra and Prescott (1985). The range of
possible ambiguity in news, however, may be impossible to estimate from a finite sample,
and thus there is little guidance available for setting this parameter. This difficulty in de-
termining the news generating process is one of the underpinnings of the ES model, so the
lack of established parameter settings is not surprising. In the absence of authoritative pre-
scriptions, I chose parameters to create potentially interesting scenarios. Table 6.1 presents
the base market configuration considered, labeled as BASE throughout. For BASE, I chose
an environment in which the variance of the dividend movement and the added noise were
equal. In this scenario, the probability of a large change in the next-period dividend pay-
ment is small, but, for any single piece of news, it is difficult for agents to interpret how
much of the news signal is noise.

Table 6.2 summarizes other configurations I examined, specified in terms of their de-
viation from BASE. Configuration HNV (higher noise variance) increases the ambiguity
in the signal stream by increasing the variance in the noise and simultaneously increasing
the range from which players’ priors can be drawn. As this range increases, AA and B

90

Parameter Setting

Q 40
κ 0.05
[σ2
ε , σ̄

2
ε] [0.0, 0.01]

σ2
ε 0.0025
σ2
δ 0.0025
d̄ 2.0
r 0.01
cash endowment 10000
stock endowment 50
trading periods per quarter 10
α ∼ Normal(2.0, 0.5)

Table 6.1: Base market configuration for experiments.

pricing strategies diverge, since AA traders can now have greater asymmetry in their re-
sponse to news based on its content. Additionally, dividend movement may be difficult
to predict accurately in HNV as the variance in the noise is much larger than the vari-
ance in dividend movement. Configuration HDV (higher dividend variance) increases the
variance in the dividend movement, implicitly making signals more informative while si-
multaneously making the asset riskier. Configuration HDVHK (higher dividend variance,
higher kappa) is designed to produce spiky movement in dividend payments that neverthe-
less reverts quickly to the mean. This could make predicting the next period’s dividend
payment difficult, but makes the risky asset’s value more predictable over longer horizons,
to the peril of agents that overreact to dividend movement. The ILLIQUID configuration
attempts to model a market with infrequent news and trades occurring, as agents only have
one trading period before dividends are paid. This scenario seems in some sense contrived,
but may be analogous to markets that are very thin. For such markets, trades occur in-
frequently, and the news coverage of assets in these markets may be less than for popular
stocks. Longstaff (2006) argues that many important classes of assets are illiquid in this
sense.

6.5.1 Equilibrium Analysis

The first test of a representative agent pricing model is whether or not we would expect any
agents to adopt that strategy in equilibrium. Table 6.3 presents the approximate symmetric

91

Name Modifications from BASE

HNV σ2
ε = 0.01, [σ2

ε , σ̄
2
ε] = [0.0, 0.04]

HDV σ2
δ = 0.04

HDVHK σ2
δ = 0.04, κ = 0.2

ILLIQUID trading periods per quarter = 1

Table 6.2: Variant market configurations tested.

Configuration Equilibrium 95% Regret

BASE BNF2-0: 0.67, BRT1-0: 0.19, 106.93
BNT1-2: 0.09, BRF1-0: 0.06

HNV BNF1-0: 0.74, BRF1-0: 0.15, ARF1-0: 0.06, 200.64
BRT1-2: 0.03, BRT1-0: 0.01

HDV BRF1-0: 1.0 1075.99

HDVHK BNF1-0: 0.56, BNT1-0: 0.23, ANF1-0: 0.09, 98.28
BRT1-2: 0.08, ARF1-0: 0.04

ILLIQUID BNF1-0: 0.63, BRT1-0: 0.37 178.87

Table 6.3: Symmetric mixed equilibria found in each of the market configurations.

Nash equilibrium identified through replicator dynamics for each market configuration1

under the six-player reduction, as found by the original study. In the table, an equilibrium
is specified by a map from strategies in support to their probability of play. Each strategy
in the table is abbreviated with the pattern [A = AA, B = B][R = priced with risk aversion,
N = priced without][T = estimated p∗ with CAPM, F = estimated p∗ based on current
price][number of shares requested per order]-[percent bid shaded down by buyers and up
by sellers]. The column headed “95% Regret” gives the right-hand bound of a one-sided
95% bootstrap confidence interval on regret for the equilibrium candidate, computed as
described in Section 5.1. Note that while the equilibrium candidates were identified in
the games constructed using the method of control variates to reduce variance, the regret
confidence intervals were computed using the raw data.

None of the equilibria identified featured AA strategies played with probability greater
than 0.13. There does not appear any particular pattern regarding whether or not to in-
corporate risk aversion into pricing, despite the fact that payoff calculations at the end of

1Strategies where the agents submitted orders for more than one share were examined only under the
BASE configuration, as inspection of payoffs in this game suggested that such a simple change to order
quantity did not meaningfully affect outcomes.

92

simulation explicitly include risk aversion. For all equilibria, using the current price as a
proxy for the liquidation price of an asset is played with significantly higher probability
than using the CAPM price as the estimate, though both parameterizations are found in all
equilibria other than HDV. Though shading is played in three of the equilibria, it is never
played with probability greater than 0.09, and the highest level of shading tested (5%) is not
played in any equilibrium. One possible explanation for the lack of shading in equilibrium
is that with a market that is thick around the median price, traders engaging in aggressive
shading never find matching prices, since their prices deviate significantly from the median
price. Such strategies are thus unable to take advantage of mutually beneficial trades that
arise due to agents optimizing for differing risk preferences. Overall, I found considerable
heterogeneity and variation in equilibrium composition across environments. This in and
of itself argues against the a priori imposition of representative agent strategies for models
of asset pricing in environments similar to those studied here.

When evaluating the statistical evidence for these equilibrium candidates in the raw
data, I find relatively low estimates for the 95th percentile of regret for most candidates.
Payoffs in these games are all in the range $27, 000–$33, 000, and as such, a regret of 100

corresponds to approximately 0.33% of the available payoff. For the HDV setting, however,
the estimated 95th percentile for regret is an order of magnitude higher, and given the range
of payoffs, cannot be considered a good approximation of equilibrium. For this setting,
the conclusions derived using control variates disagree with those of the bootstrap. One
possible explanation for this is that the data may contain one or more extreme outliers;
while applying control variates could adjust these outliers closer to the expected value,
the bootstrap approach incorporates those outliers into its estimate. If the data set does
contain such outliers, further sampling could bring the bootstrap results into accord with
those derived using control variates. It is also possible that applying control variates in this
case led me to halt the original study with insufficient data to support my conclusions, and
that further sampling would provide further evidence that the equilibrium candidate was a
poor approximation to Nash equilibrium.

6.5.2 Equity Premium Estimation

For each market configuration I constructed equity premium estimates by weighting
control-variate-adjusted observations from simulation by how likely their profile is to oc-
cur in equilibrium. Within a simulation instance the market microstructure serves as the
method of price aggregation, with p̄q equal to average price at which transactions occurred
in quarter q. Equity premium within a quarter, Pq, then, is calculated as the difference

93

between the return on the risky asset and the return on the risk-free asset over the quarter,

Pq =
p̄q + dq
p̄q−1

− (1 + r).

This measure compares the return on $1 invested in the risky asset to $1 invested in the
risk-free asset over the period. In the rare event that no trades take place in a given quarter,
no observations are made of equity premium.

In addition to the previously published equity premium estimates, I also devised the
following bootstrap method and used it to construct confidence intervals for equity premia:

1. Let b be the total number of equity premium observations over all pure-strategy pro-
files in S(σ) for a candidate equilibrium σ.

2. Construct a resample of equity premium observations Θ̂ of size b, with each obser-
vation chosen in the following way:

(a) Randomly select a pure-strategy profile s to sample with probability distributed
according to σ.

(b) Draw an equity premium observation uniformly at random with replacement
from the set of observations associated with s.

3. Calculate the mean of Θ̂

4. Repeat steps 2 and 3 1000 times to construct the estimated sampling distribution of
equity premium for σ.

5. Take the 95% confidence interval to be the 2.5% and 97.5% quantiles of this distri-
bution.

This method estimates the sampling distribution for mean equity premium by weighting
the likelihood of drawing a particular observation according to the probability that the ob-
servation’s pure-strategy profile is realized under a target strategy mixture, here a Nash
equilibrium. In contrast to the bootstrap methods from Chapter 5, this method does not
build a bootstrap game from the full data set, but instead constructs equity premium resam-
ple populations directly. The estimates constructed with this method also differ in meaning
from those constructed using the method described in Section 6.3. The sampling distri-
bution estimated by this method corresponds to drawing b observations of σ, where each
observation corresponds to the realization of a pure-strategy profile, and computing the

94

Configuration Reported Equity Premium Std. Dev. 95% Bootstrap CI

BASE 1.52e–4 9.813–4 [1.19e–4, 2.10e–4]

HNV −3.69e–5 0.00106 [−2.28e–5, 3.87e–5]

HDV 0.00381 0.00963 [0.00232, 0.00641]

HDVHK 3.11e–4 0.00146 [2.80e–4, 3.49e–4]

ILLIQUID 4.67e–6 6.92e–4 [−3.47e–5, 1.20e–4]

Table 6.4: Equity premium statistics for each market configuration.

mean of this observation set. As such, it combines many sample populations into an esti-
mated distribution. The method introduced in Section 6.3, in contrast, is a weighted mean
of means, a combination of point estimates into another point estimate.

Table 6.4 presents the equity premia calculations for the discovered equilibria. In this
table, “Reported Equity Premium” is the equity premium estimates presented in the previ-
ous publication, computed using control-variate-adjusted observations. “Std. Dev.” refers
to the sample standard deviation in the raw data, and “95% Bootstrap CI” is the two-sided
confidence interval for equity premium constructed using the bootstrap on the raw data.
As with the equilibrium analysis, the bootstrap confidence intervals were constructed us-
ing the raw observation data. The highest equity premium estimate for any equilibrium
composition was less than 0.4%, with this value being observed for HDV, the setting for
which the quality of equilibrium approximation was called into question by the bootstrap
statistics. Comparing my estimates to the equity premium estimates from U.S. stock mar-
ket data presented by Fama and French (2002), between 2.55 and 7.43%, we see that none
of these constitute a significant equity premium, even if one uses the right-hand side of the
95% confidence interval as the point of comparison.

For the most part, the equity premium estimates derived using the weighted mean with
control-variate adjusted observations are consistent with the bootstrap confidence intervals
generated from the raw data. One notable exception is for the HNV setting, where the
original equity premium estimate is below the lower bound of the confidence interval. As
with the equilibrium analysis, it is possible for outliers to be incorporated into bootstrap
resamples that would be smoothed away by applying control variates; however, given that
the control variate estimate is more negative than the bootstrap estimate, this explanation
would only make sense if the sample population was skewed right. Computing the skew of
this sample distribution does show a small skew right of 0.028. It is also possible that this
discrepancy arises from differences in the way the two equity premia estimation methods
incorporate data. The weighted mean of means approach treats observations from two

95

different profiles with the same weight as equally likely, even when there are a different
number of observations taken for each. In contrast, the bootstrap method gives a higher
probability of drawing a particular observation from a smaller set of observations than
from a larger set, all else being equal. Consequently, if an outlier is associated with a
profile with small number of observations, this observation will contribute more to the
bootstrap estimates than to the weighted mean of means. In this data set, some profiles
have up to twice as many observations as other profiles, and so this distinction between the
two methods may be meaningful.

To assess whether the absence of ambiguity-averse pricing (or presence in low num-
bers) in equilibrium is responsible for the relative paucity of equity premium, I measured
the equity premia in pure-strategy profiles where a single ambiguity-averse pricing strategy
was played by all agents. These results are presented in Table 6.5. No combination of
market configuration and pricing strategy demonstrated equity premium above 0.003. In
concert with equilibrium equity premium estimates above, two factors seem to be strongly
correlated with equity premium. In both result sets, the highest equity premia were ob-
served in market settings with increased variance in the dividend, HDV and HDVHK. This
effect may be the result of orders remaining in the order book until they are matched or
replaced. When the dividend moves upward, some stale sell orders may be exploited to get
the risky asset at a discount, increasing the equity premium measured in the next period.
When the dividend moves downward, the equity premium measured in the current period
can be slightly inflated, as the mean price measured in the period may include trades with
stale buy orders. The other factor correlated with equity premium is whether traders price
using CAPM price or the current price as their estimate of the liquidation price of the risky
asset. For HDV, HDVHK, and ILLIQUID, strategies incorporating the current price (de-
noted F in the strategy label) lead to higher equity premia than those using CAPM. In the
equilibrium equity premium estimates above, the two highest equity premia are associated
with equilibria in which 100% (HDV) and 69% (HDVHK) of traders use the current price
as part of their pricing strategy. Though the ultimate cause of equity premium is still unre-
solved, these results suggest that other factors play a greater role than ambiguity aversion.

6.6 Discussion

Estimation of market variables derived through agent interaction is fraught with complex-
ity. Heterogeneous beliefs and pricing strategies combine through a market mechanism
to determine trade outcomes, in a manner generally not amenable to closed-form charac-
terization. Although details of strategies and market microstructure can potentially shape

96

Configuration Strategy Mean Equity Premium 95% Bootstrap CI

BASE ANF1-0 −1.47e–4 [−4.31e–4, 1.45e–4]
ANT1-0 −1.54e–4 [−3.82e–4, 9.71e–5]
ARF1-0 −4.22e–5 [−1.38e–4, 4.66e–5]
ART1-0 −1.13e–5 [−2.02e–4, 1.94e–4]

HDV ANF1-0 0.00208 [0.00113, 0.00308]
ANT1-0 9.12e–4 [3.84e–5, 0.00179]
ARF1-0 0.00247 [9.79e–4, 0.00412]
ART1-0 3.06e–4 [−3.73e–4, 9.55e–4]

HNV ANF1-0 −4.08e–4 [−8.71e–4,−2.56e–6]
ANT1-0 2.42e–4 [6.26e–5, 4.13e–4]
ARF1-0 −1.54e–4 [−6.57e–4, 3.97e–4]
ART1-0 2.67e–4 [1.03e–4, 4.24e–4]

HDVHK ANF1-0 0.00103 [3.83e–4, 0.00165]
ANT1-0 −1.32e–4 [−3.41e–4, 7.47e–5]
ARF1-0 8.62e–4 [1.70e–5, 0.00168]
ART1-0 −1.64e–4 [−3.78e–4, 5.90e–5]

ILLIQUID ANF1-0 1.96e–4 [−9.27e–5, 4.60e–4]
ANT1-0 −3.36e–6 [−2.23e–4, 2.10e–4]
ARF1-0 1.18e–4 [−1.92e–4, 3.97e–4]
ART1-0 −1.51e–4 [−3.39e–4, 5.26e–5]

Table 6.5: Equity premium measurements for each market configuration when a single
ambiguity-averse pricing strategy is played.

97

results, these aspects of real-world market interactions are often ignored by modelers in
favor of analytical tractability. Representative agent models in particular can often yield
strong conclusions, by identifying a single agent with an equilibrium outcome. Whether
this abstraction is reasonable, however, depends on how much heterogeneity and market
microstructure actually drive the particular environment under study.

In this chapter I presented an EGTA study of simulated stock pricing behavior, employ-
ing scaling techniques discussed in this thesis and elsewhere to analyze a simulated market
with 60 traders. In doing so, I demonstrated how EGTA can be used for investigating mar-
ket dynamics with greater fidelity than is afforded through traditional analytical means.
For abstract model results to be convincing as a reflection of the real world, arguably they
should first be verifiable in worlds intermediate in complexity between the abstract model
and reality. The agent-based modeling framework is particularly suitable for introducing
agent heterogeneity and capturing detailed interaction mechanisms, and through EGTA,
I am able to reason about outcomes at strategic equilibria. In this chapter, I presented
two methods for estimating market variables under a mixed-strategy Nash equilibrium, us-
ing equilibrium probabilities to weight variable observations made while simulating pure-
strategy profiles. The bootstrap approach has the further benefit of estimating a sampling
distribution, rather than a single point estimate, making possible the construction of confi-
dence intervals for these variables. I also proposed a new sample control algorithm for use
with hierarchical reductions that employs increasingly fine-grained reductions to allocate
fewer observations to unproductive regions of profile space.

The EGTA application in this chapter investigated a model of ambiguity aversion pre-
sented by Epstein and Schneider. My game-theoretic analysis suggests that the ES model
of ambiguity-averse pricing can play a role in equilibrium strategy for certain market con-
figurations, but it is not in general a sufficient representation of trader behavior in my
simulated markets. Neither ambiguity-averse pricing nor moderate levels of risk aversion
were found to generate significant equity premia in expectation for markets at strategic
equilibrium. The greatest equity premium I computed was considerably less than even
conservative estimates of the equity premium in the U.S. stock market over the period from
1951–2000. These experiments lend further support to the argument presented by Chapman
and Polkovnichenko (2009), that heterogeneity and market microstructure can produce re-
sults at substantial variance from representative agent models. This is not particular to the
AA pricing strategy, as indeed even a standard Bayesian risk-averse representative agent
would have predicted different outcomes than what I observed, as price aggregation with a
market mechanism such as a CDA differs from that of a representative agent model. How-
ever, the possibility remains open that an expanded model could exhibit different pricing

98

behavior. For example, it might be relevant to allow for the possibility of the issuer of the
risky asset going bankrupt, and thus make the asset permanently worthless, or account for
the fact that traders generally have different horizons that shape their expectations about
liquidation price. Whether such variants or others would entail qualitatively different pric-
ing strategies or support significant equity premia remain questions for future work.

99

CHAPTER 7

Conclusion

In this thesis, I presented new software systems and methods for conducting empirical
game-theoretic analysis on large, finite games. In so doing, my aim is to alleviate size and
complexity restrictions that have in the past dominated the design of EGTA studies. The
design of simulators and experiments under the EGTA framework should be guided not
by what can be accomplished on a single computer, but instead through consideration of
what features of the strategic scenario are important to include in the model. Though con-
ducting EGTA studies remains computationally expensive, the size and variety of EGTA
studies conducted by my lab in the last several years is considerable, thanks in part to work
described in this thesis. In this concluding chapter, I summarize my contributions, discuss
future avenues for scaling the EGTA methodology, and conclude with a few final remarks.

7.1 Contributions

7.1.1 Software Systems and Methods

One insight I gained during the early stages of my graduate career is that a major hurdle
to designing high quality simulation-based experiments is how much tedious, non-research
work is involved. Modeling can be very fun and rewarding, but moving data between
machines, figuring out how to schedule work on a compute cluster, and ensuring that you
are gathering all of the data that you require are not tasks that many people relish. Making
matters worse, the larger the game, the more of this non-research work there is to do.
My approach to scaling is to develop systems that can do such work automatically and
efficiently.

Figure 7.1 is an idealized view of how the systems and methods I presented could
be combined to automate the non-modeling aspects of EGTA (discussed in further detail
below). In Chapter 3, I introduce EGTAOnline, software infrastructure for managing dis-
tributed game simulation. EGTAOnline enables users to take advantage of simulation-level

100

Modeler

Oc, {Ir}, {Sr}
EGTAOnline 3

Sampling
Algorithm

5Analysis 4

? = Chapter #

Variable
Estimation

6

65
{�, ✏95%}

V, �

E[V |�], [V �
2.5%, V �

97.5%]

Distributed!
Computation

Figure 7.1: Idealized automated empirical game-theoretic analysis.

parallelism without having to learn how to schedule simulation to run on the university
compute cluster. I had previously observed that many studies, my own included, had es-
chewed using such resources, because using the cluster was reputed to have a steep learning
curve. EGTAOnline also manages the tremendous volume of data that large EGTA studies
generate, and makes this data accessible primarily through game representations that are
suitable for analysis. Data that is incompatible for game-theoretic analysis cannot acciden-
tally be combined into a single game, simplifying the process of conducting multiple ex-
periments simultaneously. EGTAOnline also encourages the study of large games through
extensive support for role-symmetric game representations, enabling modelers to include
exactly as much symmetry in their model as their scenario actually calls for, and by making
it easy to schedule simulation for game reductions—abstractions that reduce the space of
profiles to sample.

The most common way of scheduling simulation with EGTAOnline today is through
selecting a supported scheduling pattern in the web interface and supplying it with details to
fill out the space of profiles to sample. As EGTA is often conducted iteratively, changing the
profile space to be scheduled on the basis of interim analysis is common, and is most often
done manually. The functionality exists in EGTAOnline for users to automate this process
with a scheduling script, and this functionality was exploited by Wellman et al. (2013);
however, most users of EGTAOnline do not use scheduling scripts currently, preferring the
comfort of interacting with EGTAOnline’s web interface. One way to alleviate this pain
point is by incorporating more sophisticated sampling algorithms into EGTAOnline.

A consequence of automating the sampling process within EGTAOnline is that we have
the opportunity to encourage best practices without putting any additional burden on the
user. For example, most publications on EGTA studies, including the two applications that
I cover in this thesis, have presented results without statistical quantification of confidence.
Instead, analysts use ad hoc methods to establish to themselves that the results are trustwor-

101

thy, such as employing control variates to reduce variance in payoff estimates, or sampling
until the set of equilibria of the empirical game does not change with the addition of more
observations. With the introduction of the bootstrap to the EGTA toolbox (Wiedenbeck
et al., 2014), we can now make statements of confidence about the true-game regret of a
profile on the basis of empirical observations. Using this technique, in Chapter 5 I present
new algorithms for sampling sequentially to either determine whether a given profile is
a δ-Nash equilibrium, or to identify a profile for which we have high confidence that its
regret is below a pre-specified δ. I demonstrate that using the bootstrap in this way, we
can not only statistically quantify the likelihood of a profile being a δ-Nash equilibrium,
but can often reach high levels of confidence with fewer observations than with ad hoc
methods. Incorporating such algorithms into EGTAOnline as another scheduling pattern
that users can select in the web interface would likely increase the prevalence of statistical
confidence information in EGTA studies, as well as reduce excess sampling.

The bootstrap algorithms I introduced always request a fixed number of observations
of all profiles in a set of interest in each sampling step. Other sequential sampling algo-
rithms, such as the profile exploration algorithms examined by Jordan et al. (2008), select
profiles for observation on the basis of interim game-theoretic analysis. To implement such
algorithms within EGTAOnline, the system should be able to supply this analysis in an effi-
cient and automated way. In Chapter 4 I discuss conducting game-theoretic analysis in the
database as a step in this direction. I present a schema, compatible with the role-symmetric
representation of EGTAOnline, for storing game data in a relational database. With this
schema, I construct SQL implementations of common game-theoretic operations. This
work is motivated by observing unnecessary costs associated with using existing game-
theoretic analysis software. In particular, I find that the cost of building an in-memory
object representation of a game in Gambit, a prominent analysis package, significantly out-
weighs the cost of identifying pure-strategy Nash equilibria. The measurements I present in
Chapter 4 actually underestimate the cost of using Gambit, as first users must coerce their
game data into the Gambit file format. By moving analysis to the database, the costs asso-
ciated with moving between representations are eliminated, and I find that this provides a
net performance benefit despite the overhead of orchestrating analysis through a database
management system.

In Figure 7.1 I diagram how, by combining these elements, the modeler’s contribution
becomes primarily research tasks, such as defining the model of interest, and choosing
what form of analysis they wish to conduct. In this idealized the system, the modeler
would supply EGTAOnline with a simulator instance Oc, partition of players into roles
{Ir}, and a set of strategies available to each role {Sr}, and indicate that they want to iden-

102

tify mixed-strategy Nash equilibria of the true game. From this point, EGTAOnline would
choose a sampling algorithm to schedule simulation to a compute cluster or other form
of distributed computation. In conjunction with the analysis module, which would conduct
game-theoretic and statistical analysis, EGTAOnline could synthesize the results of simula-
tion into a set of equilibrium candidates and their associated 95% regret confidence levels,
and return this set to the user. Another use case is that the modeler may wish the estimate
a variable V that results from agent interaction, such as the clearing price of a simulated
market, given that strategy adoption is distributed according to some mixed-strategy pro-
file σ. In this case, EGTAOnline could use the bootstrap estimation approach discussed in
Chapter 6, and return to the user not only an estimate of V , but also a confidence interval
for V , under the supplied distribution. In contrast to the tedious and complex simulation
and data management of the past, here the modeler is focused almost exclusively on core
research tasks. Given the relative expense of human labor as compared to computer labor,
this shift in workload from modeler to computer could net significant savings and lead to
increased research productivity.

7.1.2 Applications

I bookend this thesis with two EGTA applications. The first, presented in Chapter 2, is an
example of an EGTA study conducted without the benefit of scaling techniques. I explore
the question of choosing a wireless network to connect to when faced with multiple options
in a game setting, incorporating two emerging wireless technologies: the ability to connect
to more than one access point simultaneously, and the ability to probe access points to
assess their congestion. In this study, my game model consisted of a dynamic game in
which six symmetric players choose among six initially identical access points to use, with
congestion on each access point persisting between rounds. I find that the Hedge algorithm
(Kleinberg et al., 2009), which assigns work randomly weighted according to estimates
of congestion at each access point, is played with high probability in equilibrium when
players are informed of the congestion at each access point at the start of each round.
When instead agents can gather information only through probing or using an access point,
the decision-theoretic strategy, in which agents choose the access point that appears to them
to be the least congested, becomes the majority component of equilibrium. Interestingly,
reducing the information that is freely available to agents actually improved outcomes in
this study, as agents were able to find better assignments of work without the risk of random
assignment through the decision-theoretic strategy.

In contrast to the small access point selection study, the equity premium study in Chap-

103

ter 6 exploits scaling techniques proposed in this thesis, as well as existing scaling tech-
niques, to analyze a simulated market with 60 traders. In this study, I examine the ability
of a prominent analytical pricing model to resolve the equity premium puzzle—the appar-
ent underpricing of stocks relative to risk-free alternatives, even when accounting for risk
aversion. I conducted EGTA to analyze this problem by implementing the pricing model
as a strategy for agents to adopt in simulation, and adding to the strategy set the logical
alternative to this pricing model, as well parameterizations of both base pricing strategies.
I find that in equilibrium, the original pricing model is not played with high probability, and
that there is little equity premium enforced at equilibrium. Despite the fact that these exper-
iments were originally conducted several years ago, I was able to reexamine the data when
writing Chapter 6 as it is stored in the EGTAOnline database. To the original analysis I
added bootstrap confidence intervals for the regret of previously reported equilibria. In do-
ing so, I found one setting where the published equilibrium had a 95% confidence interval
significantly exceeding what would reasonably be classified as an approximate equilibrium.
This finding underscores the challenge of interpreting analysis when data has been gathered
in an ad hoc manner and confidence information is not supplied. I also computed bootstrap
confidence intervals for estimated equity premia, with results that were largely in line with
my previously reported estimates.

7.2 Future Work

In each chapter I point out areas that merit additional attention, but some ideas for future
work are not strongly associated with any particular chapter. The most immediate future
work suggested by this thesis is actually combining the elements herein, as suggested in
Figure 7.1. At present, EGTAOnline does not automate any analysis, and accordingly, can-
not automatically adjust schedulers on the basis of this analysis. Additionally, no profile
exploration algorithms have yet been proposed that incorporate the statistical information
derived from the bootstrap; it remains an open question as to the optimal sequential sam-
pling algorithm for searching a large profile space and identifying δ-Nash equilibria with
high statistical confidence. Such an algorithm would also ideally account for the availabil-
ity of parallel computation, and, since computation is a finite resource, prioritize sampling
across several experiments running on EGTAOnline concurrently. It is unclear whether a
small set of sampling algorithms can hope to address the needs of all EGTA practitioners.

One approach to scaling EGTA that I have discussed very little is using a small set of
profiles to approximate a larger game. The hierarchical and deviation-preserving reduction
are two methods for this, wherein a simulator with a large number of agents is mapped to

104

a smaller game on which analysis is conducted. Another avenue, however, is using ma-
chine learning to estimate utility functions from data. Vorobeychik et al. (2007) presented
methods for learning utility functions in infinite games, but it is not clear that these meth-
ods generalize, particularly to arbitrary finite games. Such methods have the promise of
dramatically reducing the fraction of the profile space that must be observed to analyze
games.

7.3 Final Remarks

EGTA provides a framework for analyzing incentive properties of complex social systems
through agent-based simulation. This analysis typically focuses on comparing outcomes
from a large number of strategy configurations, in contrast to a single specification of (po-
tentially adaptive) behavior found in other agent-based modeling methodologies. Conse-
quently, EGTA can be more computationally expensive than other agent-based modeling
methodologies. As an additional layer on top of agent-based simulation, it is also more
complicated to conduct EGTA studies well, as many of the pitfalls and sources of error
from ABM are still present, along with new concerns arising from comparing the outcomes
of many simulations. These hurdles are worth overcoming, as EGTA enables the applica-
tion of widely accepted tools from game theory to ABM, supporting strategic analysis with
greater fidelity than is tractable for games defined analytically. Furthermore, improving the
ability to scale EGTA increases the capability to build more sophisticated models, better
approximating the strategic environments being studied. Through building an intelligent
software system to support this methodology, incorporating best practices for sampling,
statistics, and analysis, the learning curve and the cost of employing EGTA at scale can be
improved. The benefit of this approach is difficult to measure, but can be seen in the variety
and scope of EGTA studies conducted using EGTAOnline to date.

105

BIBLIOGRAPHY

Samuel Alberts, Michael K. Keenan, and Roshan M. D’Souza. Data-parallel techniques
for simulating a mega-scale agent-based model of systemic inflammatory response syn-
drome on graphics processing units. Simulation, 88(8):895–907, 2012.

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Donatiello. Concur-
rent replication of parallel and distributed simulations. In 19th Workshop on Principles
of Advanced and Distributed Simulation, pages 234–243, Monterey, California, 2005.

Tilman Borgers, Ingemar Cox, Martin Pesendorfer, and Vaclav Petricek. Equilibrium bids
in sponsored search auctions: Theory and evidence. American Economic Journal: Mi-
croeconomics, 5(4):163–187, 2013.

Ben-Alexander Cassell and Michael P. Wellman. Asset pricing under ambiguous informa-
tion: An empirical game-theoretic analysis. Computational and Mathematical Organi-
zation Theory, 18(4):445–462, 2012.

Ben-Alexander Cassell and Michael P. Wellman. EGTAOnline: An experiment manager
for simulation-based game studies. In Multi-Agent-Based Simulation VIII, volume 7838
of Lecture Notes in Computer Science, pages 85–100. Springer Berlin Heidelberg, 2013.

Ben-Alexander Cassell and Michael P. Wellman. Database modeling of empirical games.
In 1st Workshop on Data Science for Macro-Modeling with Financial and Economic
Datasets, Snowbird, UT, 2014.

Ben-Alexander Cassell, Timur Alperovich, Michael P. Wellman, and Brian Noble. Ac-
cess point selection under emerging wireless technologies. In Sixth Workshop on the
Economics of Networks, Systems, and Computation, San Jose, California, 2011.

Matteo Cesana, Ilaria Malanchini, and Antonio Capone. Modelling network selection and
resource allocation in wireless access networks with non-cooperative games. In 5th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pages 404–409,
Atlanta, GA, 2008.

Ranveer Chandra, Paramvir Bahl, and Pradeep Bahl. MultiNet: Connecting to multiple
IEEE 802.11 networks using a single wireless card. In Twenty-Third Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pages 882–893, Hong
Kong, 2004.

106

David A. Chapman and Valery Polkovnichenko. First-order risk aversion, heterogeneity,
and asset market outcomes. Journal of Finance, 64(4):1863–1887, 2009.

Shih-Fen Cheng, Daniel M Reeves, Yegeniy Vorobeychik, and Michael P. Wellman. Notes
on equilibria in symmetric games. In AAMAS-04 Workshop on Game Theoretic and
Decision Theoretic Agents, 2004.

E. F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970.

David Colander, Michael Goldberg, Armin Haas, Katarina Juselius, Alan Kirman, Thomas
Lux, and Brigitte Sloth. The financial crisis and the systemic failure of the economics
profession. Critical Review: A Journal of Politics and Society, 21(2-3):249–267, 2009.

John Collins, Wolfgang Ketter, and Anuraag Pakanati. An experiment management frame-
work for TAC SCM agent evaluation. In IJCAI-09 Workshop on Trading Agent Design
and Analysis, pages 9–13, Pasadena, California, 2009.

Daniele Croce, Emilio Leonardi, and Marco Mellia. Large-scale available bandwidth mea-
surements: Interference in current techniques. IEEE Transactions on Network and Ser-
vice Management, 8(4):361–374, 2011.

Pranav Dandekar, Ashish Goel, Michael P. Wellman, and Bryce Wiedenbeck. Strategic
formation of credit networks. In 21st International Conference on World Wide Web,
pages 559–568, Lyon, France, 2012.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papdimitriou. The complexity
of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge
University Press, 1997.

J. Bradford DeLong and Konstantin Magin. The U.S. equity return premium: Past, present,
and future. Journal of Economic Perspectives, 23(1):193–208, 2009.

Larry G. Epstein and Martin Schneider. Ambiguity, information quality, and asset pricing.
Journal of Finance, 63(1):197–228, 2008.

Jon Exley, Shyam Mehta, and Andrew Smith. Mean reversion. In Finance and Investment
Conference, Brussels, Belgium, 2004.

Eugene F. Fama and Kenneth R. French. The equity premium. Journal of Finance, 57:
637–659, 2002.

Sevan Ficici, David C. Parkes, and Avi J. Pfeffer. Learning and solving many-player games
through a cluster-based representation. In Twenty-fourth Conference on Uncertainty in
Artificial Intelligence, pages 187–195, Helsinki, Finland, 2008.

Daniel Friedman. Evolutionary games in economics. Econometrica, 59(3):637–666, 1991.

107

Daniel Friedman and John Rust, editors. The Double Auction Market: Institutions, Theo-
ries, and Evidence. Addison-Wesley, 1993.

M. D. Gerst, P. Wang, A. Roventini, G. Fagiolo, G. Dosi, R. B. Howarth, and M. E. Borsuk.
Agent-based modeling of climate policy: An introduction to the ENGAGE multi-level
model framework. Environmental Modelling & Software, 44:62–75, 2013.

B. K. Ghosh and P. K. Sen, editors. Handbook of Sequential Analysis, chapter 1: A Brief
History of Sequential Analysis. Marcel Dekker, 1991.

Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique prior. Jour-
nal of Mathematical Economics, 18(2):141–153, 1989.

Domenico Giustiniano, Eduard Goma, Alberto Lopez Toledo, and Pablo Rodriguez.
WiSwitcher: An efficient client for managing multiple APs. In Second ACM SIGCOMM
Workshop on Programmable Routers for Extensible Services of Tomorrow, pages 43–48,
2009.

Yoram Halevy. Ellsberg revisited: An experimental study. Econometrica, 75:503–536,
2007.

Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. The MADlib analytics library: or MAD skills, the SQL. Proceedings of
the VLDB Endowment, 5(12):1700–1711, August 2012.

Christoper Jennison and Bruce W. Turnbull. Repeated confidence intervals for group se-
quential clinical trials. Controlled Clinical Trials, 5(1):33–45, 1984.

Albert Xin Jiang, Kevin Leyton-Brown, and Navin A. R. Bhat. Action-graph games. Games
and Economic Behavior, 71:141–173, 2011.

Patrick R. Jordan and Michael P. Wellman. Generalization risk minimization in empirical
game models. In Eighth International Conference on Autonomous Agents and Multi-
Agent Systems, pages 553–560, Budapest, Hungary, 2009.

Patrick R. Jordan, Christopher Kiekintveld, and Michael P. Wellman. Empirical game-
theoretic analysis of the TAC supply chain game. In Sixth International Joint Conference
on Automomous Agents and Multi-Agent Systems, pages 1188–1195, Honolulu, Hawaii,
2007.

Patrick R. Jordan, Yevgeniy Vorobeychik, and Michael P. Wellman. Searching for approxi-
mate equilibria in empirical games. In Seventh International Conference on Autonomous
Agents and Multi-Agent Systems, pages 1063–1070, Estoril, Portugal, 2008.

Patrick R. Jordan, L. Julian Schvartzman, and Michael P. Wellman. Strategy exploration in
empirical games. In Ninth International Conference on Autonomous Agents and Multia-
gent Systems, pages 1131–1138, Toronto, Canada, 2010.

108

Michael Kifer, Arthur Bernstein, and Philip M. Lewis. Database Systems: an application-
oriented approach, chapter 11: An Overview of Query Optimization. Pearson Education,
2nd edition, 2005a.

Michael Kifer, Arthur Bernstein, and Philip M. Lewis. Database Systems: an application-
oriented approach, chapter 9: Physical Data Organization and Indexing. Pearson Edu-
cation, 2nd edition, 2005b.

Robert Kleinberg, Georgios Piliouras, and Eva Tardos. Load balancing without regret
in the bulletin board model. In Twenty-Eighth ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 56–62, Calgary, Canada, 2009.

Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009.

Elias Koutsoupias, Panagiota N. Panagopoulou, and Paul G. Spirakis. Selfish load bal-
ancing under partial knowledge. In Mathematical Foundations of Computer Science,
volume 4708 of Lecture Notes in Computer Science, pages 609–620. Springer Berlin
Heidelberg, 2007.

S. S. Lavenberg and P. D. Welch. A perspective on the use of control variables to increase
the efficiency of Monte Carlo simulations. Management Science, 27(3):322–335, 1981.

Blake LeBaron. Agent-based computational finance. In Leigh Tesfatsion and Kenneth L.
Judd, editors, Handbook of Agent-Based Computational Economics. Elsevier, 2006.

Pierre L’Ecuyer. Efficiency improvement and variance reduction. In Twenty-Sixth Winter
Simulation Conference, pages 122–132, Orlando, FL, 1994.

Roberto Leombruni and Matteo Richiardi. Why are economists sceptical about agent-based
simulations? Physica A: Statistical Mechanics and its Applications, 355(1):103–109,
2005.

Francis A. Longstaff. Asset pricing in markets with illiquid assets. In American Finance
Association 2006 Boston Meetings, 2006.

Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit: Software
tools for game theory, version 14.0.1. http://www.gambit-project.org/.

Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit: Software
tools for game theory. Technical report, Version 0.2006.01.20, 2006. URL http:
//econweb.tamu.edu/gambit/.

Rajnish Mehra and Edward C. Prescott. The equity premium: A puzzle. Journal of Mone-
tary Economics, 15(2):145–161, 1985.

Dawit Mengistu, Paul Davidsson, and Lars Lundberg. Middleware support for performance
improvement of MABS applications in the grid environment. In Multi-Agent-Based Sim-
ulation VIII, volume 5003 of Lecture Notes in Computer Science, pages 20–35. Springer
Berlin / Heidelberg, 2008.

109

http://www.gambit-project.org/
http://econweb.tamu.edu/gambit/
http://econweb.tamu.edu/gambit/

Kimaya Mittal, Elizabeth M Belding, and Subhash Suri. A game-theoretic analysis of
wireless access point selection by mobile users. Computer Communications, 31:2049–
2062, 2008.

Michael Mitzenmacher. How useful is old information? In 16th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 83–91, Santa Barbara, 1997.

John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

A. J. Nicholson, Y. Chawathe, M. Y. Chen, B. D. Noble, and D. Wetherall. Improved access
point selection. In 4th International Conference on Mobile Systems, Applications, and
Services, pages 233–245, Uppsala, Sweden, 2006.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007.

Eugene Nudelman, Jennifer Wortman, Yoav Shoham, and Kevin Leyton-Brown. Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms. In Third
International Joint Conference on Autonomous Agents and Multiagent Systems, pages
880–887, New York, New York, 2004.

Marco Raberto, Andrea Teglio, and Silvano Cincotti. Integrating real and financial markets
in an agent-based economic model: An application to monetary policy design. Compu-
tational Economics, 32:147–162, 2008.

Daniel M. Reeves, Michael P. Wellman, Jeffrey K. MacKie-Mason, and Anna Osepa-
yshvili. Exploring bidding strategies for market-based scheduling. Decision Support
Systems, 39(1):67–85, 2005.

Patrick F. Riley and George F. Riley. Spades: A distributed agent simulation environment
with software-in-the-loop execution. In 35th Winter Simulation Conference, pages 817–
825, New Orleans, LA, 2003.

Michael Rothschild and Joseph E. Stiglitz. Increasing risk: I. A definition. Journal of
Economic Theory, 2:225–243, 1970.

Peter Schuster and Karl Sigmund. Replicator dynamics. Journal of Theoretical Biology,
101:19–38, 1983.

Srinivas Shakkottai, Eitan Altman, and Anurag Kumar. Multihoming of users to access
points in WLANs: A population game perspective. IEEE Journal on Selected Areas in
Communications, 25:1207–1215, 2007.

Matthias Sheutz and Jack J. Harris. An overview of the SimWorld agent-based grid exper-
imentation system. In Large-Scale Computing Techniques for Complex System Simula-
tions. John Wiley & Sons, 2012.

Michael Stonebraker. SQL databases v. NoSQL databases. Communications of the ACM,
53(4):10–11, 2010.

110

Subhash Suri, Csaba D. Toth, and Yunhong Zhou. Selfish load balancing and atomic con-
gestion games. In Sixteenth ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pages 188–195, Barcelona, Spain, 2004.

Stefan Thurner. Systemic financial risk: Agent based models to understand the leverage
cycle on national scales and its consequences. Technical Report IFP/WKP/FGS(2011)1,
Organisation for Economic Co-operation and Development (OECD), 2011.

Yegeniy Vorobeychik and Michael P. Wellman. Strategic analysis with simulation-based
games. In 41st Winter Simulation Conference, pages 359–372, 2009.

Yevgeniy Vorobeychik, Michael P. Wellman, and Satinder Singh. Learning payoff func-
tions in infinite games. Machine Learning, 67:145–168, 2007.

Elaine Wah and Michael P. Wellman. Welfare effects of market making in continuous
double auctions (preliminary report). In 16th International Workshop on Agent-Mediated
Electronic Commerce and Trading Agents Design and Analysis (AMEC/TADA), Paris,
France, 2014.

Martin L. Weitzman. Subjective expectations and asset-return puzzles. American Economic
Review, 97:1102–1130, 2007.

Michael P. Wellman. Methods for empirical game-theoretic analysis. In 21st National
Conference on Artificial Intelligence, pages 1552–1555, Boston, MA, 2006.

Michael P. Wellman and Bryce Wiedenbeck. An empirical game-theoretic analysis of credit
network formation. In Fiftieth Annual Allerton Conference on Communication, Control,
and Computing, Urbana, Il, 2012.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng, and Rahul
Suri. Approximate strategic reasoning through hierarchical reduction of large symmetric
games. In Twentieth National Conference on Artificial Intelligence, pages 502–508,
Pittsburgh, PA, 2005.

Michael P. Wellman, Eric Sodomka, and Amy Greenwald. Self-confirming price prediction
strategies for simultaneous one-shot auctions. In 28th Conference on Uncertainty in
Artificial Intelligence, pages 893–902, Catalina Island, CA, 2012.

Michael P. Wellman, Tae Hyung Kim, and Quang Duong. Analyzing incentives for protocol
compliance in complex domains: A case study of introduction-based routing. In 12th
Workshop on the Economics of Information Security, Washington, D.C., 2013.

John Whitehead. On the bias of maximum likelihood estimation following a sequential
test. Biometrika, 73(3):573–581, 1986.

Jonathan Widger and Daniel Grosu. Computing equilibria in bimatrix games by parallel
support enumeration. In Seventh International Symposium on Parallel and Distributed
Computing, pages 250–256, Krakow, Poland, 2008.

111

Bryce Wiedenbeck and Michael P. Wellman. Scaling simulation-based game analysis
through deviation-preserving reduction. In Eleventh International Conference on Au-
tonomous Agents and Multiagent Systems, pages 931–938, Valencia, Spain, 2012.

Bryce Wiedenbeck, Ben-Alexander Cassell, and Michael P. Wellman. Bootstrap statis-
tics for empirical games. In 13th International Conference on Autonomous Agents and
Multiagent Systems, pages 597–604, Paris, France, 2014.

Fengyuan Xu, Chiu C Tan, Qun Li, Guanhua Yan, and Jie Wu. Designing a practical access
point association protocol. In 29th IEEE Conference on Computer Communcations, San
Diego, CA, 2010.

112

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Empirical Game-Theoretic Framework
	Strategic Games
	Empirical Game Models
	Solution Concepts
	Scaling EGTA

	Overview of Contributions
	Application: Wireless Access Point Selection
	EGTAOnline: Software Infrastructure for Experiment Management
	Efficient Analysis of Large Game Data Sets
	Bootstrap Methods for Sequential Estimation of Nash Equilibria
	Application: Equity Premium Estimation in Asset Pricing

	Guide to Reading this Thesis

	Application: Wireless Access Point Selection
	Related Work
	Game Description
	Multiple AP Selection
	Information Models

	Strategies
	Association Policies
	Random
	Hedge Algorithm
	Decision-Theoretic Optimization

	Probing Policies
	Naive Approaches
	Freshness-Based Probing
	Variance-Based Probing

	Experiments
	Results
	Bulletin Board Model
	Probing Model
	Social Welfare

	Summary: AP Selection Game
	Scaling Lessons

	EGTAOnline: Software Infrastructure for Experiment Management
	Related Work
	Role Symmetry
	Data Compatibility
	Architecture
	Simulators
	Observations
	Schedulers
	Simulations
	Profiles
	Games

	Data Reuse
	Automated Refinement of Game Models
	Exploration of Profile Space
	Sequential Estimation of Empirical Games

	In Production

	Efficient Analysis of Large Game Data Sets
	Background: Database Management
	Representing Games in a Database
	Game-Theoretic Primitives
	Identifying PSNE
	PSNE-Finding Performance
	Comparison of SQL Algorithms
	Comparison to Gambit

	Incremental Analysis
	Incremental Regret Maintenance
	Identifying Maximal Complete Subgames

	Discussion

	Bootstrap Methods for Sequential Estimation of Nash Equilibria
	The Bootstrap
	Using the Bootstrap in Sample Control
	Experimental Data Sets
	Sequential Classification of Profiles as Nash Equilibria
	Sequential Search for -Equilibria
	Discussion

	Application: Equity Premium Estimation in Asset Pricing
	Background: Agent Modeling
	Ambiguity Aversion and the Equity Premium Puzzle
	Empirical Game Model of Asset Pricing
	Market and Asset Models
	Agent Strategy Composition
	Estimating the Empirical Game

	Simulation of Asset Pricing under Ambiguous Information
	Market Conditions
	News
	Traders
	Ambiguity-Averse Pricing
	Bayesian Pricing

	Experiments
	Equilibrium Analysis
	Equity Premium Estimation

	Discussion

	Conclusion
	Contributions
	Software Systems and Methods
	Applications

	Future Work
	Final Remarks

	Bibliography

