
High-Dimensional Variable Selection for
Multivariate and Survival Data with Applications
to Brain Imaging and Genetic Association Studies

by

Yanming Li

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2014

Doctoral Committee:

Professor Bin Nan, Chair
Professor Timothy D. Johnson
Assistant Professor Xiaoquan William Wen
Professor Ji Zhu



c⃝ Yanming Li 2014

All Rights Reserved



To my parants

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my deepest

gratitude to my advisor Dr. Bin Nan, who supervised me during my Ph.D. study.

My appreciation also goes to Dr. Ji Zhu, who together with Dr. Nan provided

invaluable advice and guidance. Without their enormous support, patience and

enlightening suggestions, this work could not be completed. I benefited so much

from their knowledge and insights in statistics and conducting scientific research.

I also appreciate them for providing me enough freedom in doing research and for

their constant encouragement.

I would also like to give my sincere thanks to Dr. Timothy D. Johnson and

Dr. Xiaoquan William Wen for being my committee members, providing insightful

comments on my dissertation work and sharing their expertise. Their encouragement

and assistance have been invaluable for me.

In addition to my dissertation committee, I am also deeply indebted to Dr. Ker-

by Shedden and Dr. Brenda Gillespie, who have been great mentors and supervisors

when I worked as a graduate student consultant at the Center for Statistical Con-

sultation and Research (CSCAR) at the University of Michigan. I would also like to

thank all my CSCAR colleagues and friends for everything I have learnt from them

and for the good time and memories they shared with me.

I would like to thank Dr. Goncalo Abecasis and Dr. Michael Boehnke for

providing supervision when I worked as a graduate student research assistant at the

Center for Statistical Genetics at the University of Michigan, and for introducing

me into the world of statistical genetics.

My special gratitude also goes to Dr. Yi Li, Dr. Zhi Kevin He and Dr. Min

iii



Zhang for their advice on pursuing an academic career.

Finally, I am especially grateful to my parents. Their boundless love and uncon-

ditional support have always been with me through the time.

To all of those who have helped, I extend my heartfelt thanks.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Multivariate sparse group lasso for the multivariate multiple
linear regression with an arbitrary group structure . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multivariate linear model with arbitrary grouping . . . . . . . 10
2.3 The regularization method and its properties . . . . . . . . . 11

2.3.1 The multivariate sparse group lasso . . . . . . . . . 11
2.3.2 Oracle inequalities . . . . . . . . . . . . . . . . . . . 14

2.4 The mixed coordinate descent algorithm . . . . . . . . . . . . 16
2.5 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Yeast eQTL data analysis . . . . . . . . . . . . . . . 21

III. A structured brain-wide and genome-wide association study
via multivariate sparse group lasso using ADNI PET images 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 ADNI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 PET images and ROI’s . . . . . . . . . . . . . . . . 38
3.2.2 Genotypes . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Models and methods . . . . . . . . . . . . . . . . . . . . . . . 40

v



3.3.1 First selection stage: region-wise-gene-based map-
ping using the multivariate sparse group lasso . . . 41

3.3.2 Second selection stage: voxel-wise-SNP-based fine
mapping on the selected region-gene pairs using the
multivariate lasso . . . . . . . . . . . . . . . . . . . 44

3.3.3 Stability selection and control for false discoveries . 46
3.3.4 Estimation stage: post-selection inference on the

selected signals . . . . . . . . . . . . . . . . . . . . . 47
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV. A cure model for analyzing longitudinal brain PET images
and MCI conversions . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 ADNI longitudinal PET imaging data . . . . . . . . . . . . . 65
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Mixture cure-rate models . . . . . . . . . . . . . . . 67
4.3.2 Discrete-time survival models . . . . . . . . . . . . . 67
4.3.3 Variable selection for discrete-time cure-rate sur-

vival models using the full likehood . . . . . . . . . 69
4.4 Computational algorithms . . . . . . . . . . . . . . . . . . . . 76
4.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Analyzing ADNI data . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



LIST OF FIGURES

Figure

2.1 B∗ group structures. Important groups are shaded. (a) X group
structure, (b) XY group structure, (c) X+XY group structure
(nesting group structure) and (d) overlapping group structure. . . . 19

2.2 Simulation results, large p small n, “not all in all out” cases with
n = 100, p = q = 200 and ρ = 0.5. SGL: the multivariate sparse
group lasso; G: the multivariate group lasso. . . . . . . . . . . . . . 22

2.3 Heatmaps of coefficient matrices, selection effects. (a)-(h): “Not all
in all out” X+XY nonoverlapping group structure with n = 100,
p = 200, q = 200, and ρ = 0.5. (a) B∗; (b) B̂L; (c) B̂LX ; (d) B̂LXY ;
(e) B̂LXXY ; (f) B̂GX ; (g) B̂GXY ; (h) B̂GXXY . (i)-(l): “Not all in all
out” overlapping group structure with n = 100, p = 200, q = 200,
and ρ = 0.5. (i) B∗; (j) B̂L; (k) B̂SGL; (l) B̂G. . . . . . . . . . . . . 23

2.4 Heatmaps of coefficient matrices. (a) True B∗; (b) The multiple
univariate lasso; (c) The multiple univariate sparse group lasso (d)
The multivariate lasso; (e) The multivariate sparse group lasso;
The true B∗ has a “not all in all out” and X+XY group structure
with p = q = 200, n = 100, ρ = 0.5. . . . . . . . . . . . . . . . . . . 24

2.5 Comparison between multiple-univariate and multivariate approach-
es from 100 simulated data sets. “uni L” – the multiple univariate
lasso; “uni SGL” – the multiple univariate group lasso; “multi L” –
the multivariate lasso; “multi SGL” – the multivariate sparse group
lasso with an XY group structure on the coefficient matrix. . . . . . 24

2.6 Network constructed from the multivariate sparse group lasso method.
Network structure is between gene expressions grouped in mitogen-
activated protein kinases (MAPK), cell cycle, cancer, ribosome path-
ways and markers grouped in 45 gene groups. Gray lines connect
expression-marker pairs with non-zero β̂jk. Dark lines are for the
top 10 associations in each pathways. The strength of these top as-
sociations are indicated by the width of the dark lines. The dotted
circles indicate the overlapping pathway group structure. . . . . . . 29

2.7 More simulation results, “not all in all out” cases with n = 150,
p = q = 200 and ρ = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 More simulation results, “not all in all out” cases with n = 150,
p = q = 200 and ρ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 More simulation results, “all in all out” cases with n = 150, p =
q = 200 and ρ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



2.10 More simulation results, “all in all out” cases with n = 150, p =
q = 100 and ρ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Heatmaps of coefficient matrices, selection effects. “Not all in all
out” XY group structure with n = 100, p = 200, q = 200, and
ρ = 0.5. (a) B∗; (b) B̂L; (c) B̂LX ; (d) B̂LXY ; (e) B̂LXXY ; (f) B̂GX ;
(g) B̂GXY ; (h) B̂GXXY . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Illustration of mapping Brodmann atlas of ROI’s onto segmented
PET images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Percent of variation explained by region or gene PCs. . . . . . . . . 44
3.3 Example Manhattan plots of region-gene select frequencies for each

example region across the genome. . . . . . . . . . . . . . . . . . . . 45
3.4 Gene effect on regions for signals with top SNP’s p-value less than

10−6 in Table 3.1 and the signals in Table 3.2. . . . . . . . . . . . . 51
3.5 Illustration of robustness to the tuning parameters of stability se-

lection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Comparison between the MSGLasso and the simple linear regression. 53
3.7 The most significant SNPs’ effects, their− log10(p−values) on voxels

across the associated region, and their selective frequency pattern
on the region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Discrete KaplanMeier estimated survival curve (solid line) and its
95% confidence interval (dotted lines). . . . . . . . . . . . . . . . . . 68

4.2 Selected collapsed voxels associated with non-cure survival. Viewed
on the axial axis. Warm color for positive effects and cold color for
negative effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Selected collapsed voxels associated with cure rate. Viewed on the
axial axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Frequencies of difference between predicted and observed event times
for ADNI data. Total number of observed cases is 109. . . . . . . . 84

A.1 Illustration of coordinate updates by the cyclical coordinate descent
and the mixed coordinate descent algorithms on a contour surface
of a two-dimensional objective function. . . . . . . . . . . . . . . . . 102

A.2 Decreasing of the objective function with the mixed coordinate de-
scent (MCD) algorithm and the coordinate descent (CD) algorithm
with inner iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



LIST OF TABLES

Table

2.1 Comparison of prediction errors between different methods . . . . . 26
2.2 Top selected expression-marker associations . . . . . . . . . . . . . . 27
2.3 Top selected pathway-gene associations (with 100% selection fre-

quency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Top selected genes, their associated regions and within them the

top SNPs those are with p-values more significant than 10−6 and
selection frequencies more than 80% . . . . . . . . . . . . . . . . . . 57

3.2 Some other gene×AD and gene×MCI interaction effects of top SNPs
with p-values more significant than 10−5 and selection frequencies
more than 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Follow up status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Variable selection results out of 100 replicated data sets . . . . . . . 78
4.3 Prediction results on individual non-cure status . . . . . . . . . . . 80
4.4 Distribution of difference between predicted and observed event times 85

ix



LIST OF APPENDICES

Appendix

A. Appendix for Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . 89

B. Appendix for Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



ABSTRACT

High-Dimensional Variable Selection for Multivariate and Survival Data with
Applications to Brain Imaging and Genetic Association Studies

by

Yanming Li

Chair: Bin Nan

In this dissertation, we aim to solve important high-dimensional variable selection

problems with either structured multivariate or discrete survival outcomes, with

applications to brain imaging and genetic association studies.

In the first project, we introduce the multivariate sparse group lasso for vari-

able selection in multivariate multiple regressions with both grouped covariates and

responses. We propose an efficient mixed coordinate descent algorithm for the penal-

ized least square estimation. The method is able to effectively remove unimportant

groups and unimportant individual coefficients within important groups, particu-

larly for large p small n problems. It is flexible in handling various complex group

structures such as overlapping, nested, or multilevel hierarchical structures. The fi-

nite sample oracle properties of the proposed method are established and the method

is applied to an eQTL association study.

In the second project, we propose a multi-stage method for conducting structured

brain-wide-genome-wide association studies via the multivariate sparse group lasso.

Compared to conventional single-voxel-to-single-SNP approaches, our multi-stage

approach is more efficient in selecting the important signals and can avoid large

number of multiple comparisons while effectively control the false discoveries by

xi



using the stability selection. We apply the proposed method to a brain-wide GWAS

using ADNI PET imaging and genotype data. Our method can handle the ultra-

high dimensionalities of both 3D images and genetic markers, while considering the

anatomic brain structure and the gene structure in the human genome. We confirm

several previously reported and also find some novel genes that are either associated

with brain glucose metabolism or with their associations significantly modified by

Alzheimer’s disease status.

In the third project, we propose a full-likelihood based variable selection method

for a discrete-time and cure-rate survival model with high-dimensional time-varying

predictors. The method is motivated by the ADNI longitudinal brain imaging study

to predict conversions from mild-cognitive-impairment (MCI) to Alzheimers-disease

(AD). The conversion time was only observed on discrete time intervals and the stud-

ied sample consists of a mixture of a non-cure group and a cure group. The proposed

method uses the full likelihood to jointly model the cure rate and the survival prob-

abilities of the non-cure subjects. Both models involve high-dimensional predictors.

Variable selection is carried out using the elastic net penalties. The method can

efficiently and effectively select the important predictors in both models. And it can

be applied to many biomedical studies for analyzing grouped failure time data with

a cure portion and high-dimensional predictors. We evaluate the method through

extensive simulations and apply it to the ADNI PET brain imaging data to predict

MCI-to-AD conversions.
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CHAPTER I

Introduction

Statistical methods for analyzing high-dimensional data have attracted much

attention in recent years. The word “high-dimension” refers to the case when the

number of unknown parameters p is larger than the sample size n. Accompanied

by the arrival of the “big data” era, it comes the need for more reliable and feasible

variable selection methods, from either theoretical or computational perspective,

in high-dimensional settings. Traditional variable selection procedures, such as the

best-subset selection are known to be unstable (Breiman, 1996) and have poor pre-

diction accuracy. They are also computationally prohibitive when the number of

variables is large. To overcome such drawbacks, many modern variable-selection

techniques have been proposed, such as shrinkage estimation together with stabili-

ty selection (Meinshausen and Bühlmann, 2010) or sure independent screening (Fan

and Lv, 2008). Followed by the the lasso method introduced by R. Tibshirani (1996),

various other penalization methods have been introduced and widely studied, such

as the adaptive lasso (Zou, 2006), the elastic net (Zou and Hastie, 2005), the group

lasso (Yuan and Lin, 2006) and the smoothly clipped absolute deviation (SCAD)

(Fan and Li, 2001), just to name a few.

Many efficient algorithms were developed for solving the lasso and its variation-

s such as the least angle regressions (LARs) (Efron et al., 2004), the “shooting”

algorithm and the coordinate descent algorithms (Fu, 1998; Friedman et al., 2007;

Wu and Lange, 2008; Tseng, 2001). In the high-dimensional cases, especially the

ultrahigh-dimensional cases where the number of parameters is of exponential order
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of the sample size, an efficient algorithm is rather crucial. A comprehensive coverage

of algorithms for penalization (constrained) optimization can be found in Boyd and

Vandenberghe (2004); Lange (2004) and Sra et al. (2012).

Oftentimes, the high-dimensional predictors are correlated or having group struc-

tures. Elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009) can be used to select

both independent and highly correlated variables simultaneously without requiring

prior knowledge of grouping structures. When the grouping structure is known, the

group lasso (Yuan and Lin, 2006) is a popular tool on selecting important group-

s. It does not, however, encourage sparsity within a group. More interests have

been focused on simultaneously selecting important groups and important individu-

al variables within a group, given the group structure. Simon et al. (2013) proposed

using a mixture of l1 and l2 penalties to achieve this goal. Some other most recent

developments can be found in Wang et al. (2009); Huang et al. (2009); Zhou and

Zhu (2010); Bunea et al. (2011) and some of the references therein.

Despite their popularity, most of the group-and-within-group variable selection

methods have been only focusing on univariate outcome cases. In the first part of

this dissertation, we develop the multivariate sparse group lasso to handle the case

where both the responses and the predictors are of high dimensions and both have

known grouping structures. For the case that responses are of high-dimensional, the

number of parameters are of much higher order than that in the univariate cases.

Therefore it required a algorithm with much faster speed. Similar to Simon et al.

(2013), our method employed both l1 and l2 penalties. In the presence of the l2

component, the penalty term is no longer separable (Tseng, 2001) and therefore

the coordinate descent algorithm does not have a closed form solution for each

coordinate in each step. We propose a mixed coordinate descent algorithm which

avoids solving for the fixed point solution in each iteration but still converges to the

global optimizer. Our proposed algorithm fasten the convergence speed by at least

thousand of times. We also show that the multivariate sparse group lasso enjoy the

finite sample oracle properties.
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The proposed multivariate sparse group lasso is motivated by real-world appli-

cations. Remarkable technologies nowadays such as microarrays, high-throughput

sequencing, high-resolution imaging scan techniques have provided not only high-

dimensional predictor data, but also high-dimensional phenotypic data. One prima-

ry motivation for this dissertation is to find associations between the human genome

and the human brain and to understand how their associations are affected by, for

example, the Alzheimer’s disease (AD) status. AD is the most common type of de-

mentia, It accounts for 60%-80% of dementia cases and affects more than 35 million

people worldwide, with the number expected to be more than tripled by the year

of 2050 (Alzheimer’s Association, 2013). Both the association between the human

genome and AD (http://www.alzgene.org) and the association between the human

brain and AD (Kukull et al., 1996; Biffi et al., 2010) have been widely studied.

Genetic markers such as apolipoprotein E gene and many brain regions have been

identified to be associated with AD. But association studies between the human

brain and the human genome have just become feasible recently(Stein et al., 2010a;

Hibar et al., 2011). However, most of the current brain-wide and genome-wide as-

sociation studies are still using pairwise approaches by looking at one pair of voxel

and genetic marker at a time (Stein et al., 2010a). This kind of approaches have

the limitation of controlling for the false discoveries from a huge number of multiple

comparisons. Given the number of the imaging voxels in a human brain and the

number of the genetic markers in the human genome, the true signals, if there were

any, are not much likely to survive from any multiple comparison adjustment cri-

terion. Therefore the power of such approaches is limited. The multivariate sparse

group lasso provides a remedy.

In the second part of this dissertation, we introduce a multi-stage method for

conducting structured brain-wide-genome-wide association studies (brain-GWAS)

via the multivariate sparse group lasso. The data used in our brain-GWAS are

Fluorine-fluorodeoxiglucose positron emission tomography (PDG-PET) brain im-

ages and DNA genotypes obtained from the Alzheimer’s Disease Neuroimaging Ini-

3



tiative (ADNI) database. Compared to the pairwise approaches, our multi-stage

approach has several advantages. First, it takes advantage of intrinsic biological

structures of the brain and the genome and therefore is more efficient for selecting

important signals by first ruling out unimportant group-level (brain-region-to-gene)

signals and only focusing on the selected groups of signals in the subsequent stages.

Thus it avoids the large number of multiple comparisons. Secondly, our method

can effectively control for the number of false positive discoveries (FD) by employ-

ing the stability selection (Meinshausen and Bühlmann, 2010). Thirdly, it handles

the within-group correlation or multicollinearity by imposing group level penalties

and therefore increases the power for detecting true signals. We also consider in-

teractions between the genotypes the AD status. From our brain-GWAS, we are

able to confirm several previously reported genes and also find some novel genes

that are either associated with brain glucose metabolism or with their associations

significantly modified by Alzheimer’s disease status.

The PDG-PET images used in our brain-GWAS were scanned at baseline during

the first phase of ADNI study launched in 2003. There were 236 subjects diagnosed

as mild cognitive impairment (MCI) patients at their baseline visits. Through the

three phases of ADNI study, the 236 MCI patients were followed at 6th, 12th,

18th, 24th, 36th, 48th, 60th and 72th month after their first visits. Their disease

status and PET image scans were recorded at each follow-up visit. Some of those

MCI patients converted to AD during the follow-up. We are interested in seeing

which parts of the brain are associated with the MCI-to-AD conversion and which

can predict conversion probability based on patients historical brain scans. This is

a variable selection problem for survival data with high-dimensional time-varying

imaging predictors, with the event of interest being MCI-to-AD conversion.

Regularization methods have also been widely used for survival data (Tibshirabi,

1997; Yang and Zou, 2013; Engler and Li, 2009; Hastie and Tibshirabi, 1990). Tib-

shirabi (1997) first proposed the lasso for the Cox PH model. Fan and Li (2002) used

SCAD for variable selections in the Cox PH models. Wang et al. (2008) consider a

4



doubly penalized Buckley-James method for accelerate-failure-time (AFT) models.

Engler and Li (2009) proposed a Cox PH based and an AFT based adaptations

of the elastic net. For a literature review on model selections for high-dimensional

survival data, see Nan (2010) and Meijer and Goeman (2014). However, most of

variable selection methods for survival models have focused on continuous survival

time. While in our longitudinal PET imaging and MCI-to-AD conversion study,

the events of interest were only observed within a few discrete time intervals. In

such a case the partial likelihood is not applicable. Moreover, some MCI patients

will never convert to AD from a clinical point of view, therefore a latent cure pop-

ulation (Boag, 1949; Berkson and Gage, 1952) may exist. To achieve the goal for

predicting MCI-to-AD conversion while taking consideration of the above issues, we

propose a full-likelihood (in difference to the partial likelihood) based variable selec-

tion method for a discrete-time and cure-rate survival model with high-dimensional

time-varying predictors. The model integrates the mixture cure models and discrete-

time survival models in a high-dimensional variable selection setting. It also utilizes

computational algorithms such as quadratic approximation and majorization opti-

mization to speedup the variable selection process. Use the proposed model, we are

able to select several brain regions associated with the MCI-to-AD conversion which

were confirmed by the existing AD literature and also some novel signals.

The rest of this dissertation consists of four chapters. In Chapter II, we introduce

the multivariate sparse group lasso (MSGLasso) for a multivariate multiple linear

regression with an arbitrary group structure. We propose a fast mixed coordinate

descent algorithm for solving the MSGlasso. Its finite sample oracle properties are

established and its performance under various settings are evaluated by extensive

simulations. The results show that the MSGLasso can effectively remove unimpor-

tant groups and select important variables within the important groups. It has a

better prediction performance than other competing shrinkage methods. Chapter

III concerns a real-world application of the MSGLasso. In this chapter, we conduct

a brain-wide and genome-wide association study modified by the AD status via the

5



MSGLasso. We are able to detect several genes who are either associated with the

brain metabolic functions or with their associations significantly modified by the

AD status. Chapter IV aims to use longitudinal PET images to predict MCI-to-AD

conversions. We build a cure-rate and discrete time survival model for selecting the

predictive imaging voxels for either the cure rate or the non-cure survival. We are

able to select some important predictive brain regions supported by existing clinical

studies. Finally, Chapter V contains a few concluding remarks and several potential

directions for future work.
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CHAPTER II

Multivariate sparse group lasso for the

multivariate multiple linear regression with an

arbitrary group structure

2.1 Introduction

Genomic association studies with a single phenotype have been widely studied.

Such association studies often encounter high dimensional predictors with sparsity,

i.e., only a small number of predictors are associated with the response variable. To

select truly associated predictors, it is necessary to use regularization penalties to

shrink the coefficients of irrelevant predictors to exactly zero. Popular penalties for

regression models with a univariate response include the lasso (Tibshirani, 1996), the

adaptive lasso (Zou, 2006), the elastic net (Zou and Hastie, 2005) and the smoothly

clipped absolute deviation (Fan and Li, 2001), among many others.

An important characteristic of high-dimensional genomic predictors is the intrin-

sic group structures. For example, the DNA marker predictors, also known as single

nucleotide polymorphisms (SNPs), can often be grouped into genes, and genes can

be grouped into biological pathways. Such grouping strategies have been applied

successfully to genomic studies in rare variant detection (Zhou et al., 2010; Biswas

and Lin, 2012). For group variable selection, Yuan and Lin (2006) proposed the

group lasso method for the univariate response case. It penalizes the L2 norm of

each predictor group and selects important groups in an “all-in-all-out” fashion.

7



That is, all the predictors in a group must be included or excluded simultaneously.

However, in real applications, this is rarely the case. Oftentimes, not all the vari-

ables in an important group are important. For example, a gene associated with a

certain complex trait does not mean that all the variants within the gene are causal,

and a pathway that regulates certain gene expressions does not necessarily indicate

that all its components have regulatory effects. Recent efforts have been made to

select both important groups and important within-group signals simultaneously.

Huang et al. (2009) and Zhou and Zhu (2010) adopted a Lγ, 0 < γ < 1, penalty to

select important groups while removing unimportant variables within them; Zhou

et al. (2010) used a penalized logistic regression with a mixed L1/L2 penalty to se-

lect both common and rare variants in a genome-wide association study; and Simon

et al. (2013) proposed the sparse group lasso for selecting both important groups

and within group predictors. However, all the above methods concern a univariate

response.

Many other genomic data analyses focus on investigating the associations be-

tween high dimensional response variables and high-dimensional covariates, such as

gene-gene associations (Park and Hastie, 2008; Zhang et al., 2010), protein-DNA

associations (Zamdborg and Ma, 2009) and brain fMRI-DNA (or gene) associations

(Stein et al., 2010a). Oftentimes pairwise associations are calculated in such stud-

ies. For example, many multivariate genome-wide association studies nowadays still

look for one association at a time between a single marker and a single trait, and

then correct for multiple hypothesis testing (Dudoit et al., 2003; Stein et al., 2010a).

However, when both responses and predictors are of high dimensions, most of the

family-wise type I error controlling procedures are usually too conservative and yield

poor performance (Stein et al., 2010a), and oftentimes adjusted analysis considering

multiple variables simultaneously is more appropriate.

High dimensional responses also have natural group structures very often, for

example, pathway group structures for gene expression responses and brain func-

tional regions for fMRI intensity responses. For multivariate responses, Peng et al.
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(2010) adopted the mixed L1/L2 penalty in an orthonormal setting for identifying

hub covariates in a gene regulation network; Obozinski et al. (2011) and Bunea et al.

(2011) studied joint support union and joint rank selections; Lounici et al. (2011)

proved oracle inequalities for multitask learning. Despite all the efforts, little focus,

to our knowledge, has been put on the cases where the responses also have a group

structure, whereas such cases are commonly encountered in biological studies. A

possible strategy for multivariate-response analysis is to perform covariate selection

for one response variable at a time. In such analysis the predictor group structure

can be considered but the response group structure is overlooked.

In this article, we propose a regularization method for making a good use of the

intrinsic biological group structures on both covariates and responses to facilitate

a better variable selection on multivariate-response and multiple-predictor data by

effectively removing unimportant blocks of regression coefficients. Both the pre-

dictor and response group structures, or more generally, the block structures of

the regression coefficient matrix, are assumed known. Information of many bio-

logically confirmed group structures can be achieved from publicly available repos-

itories, for example, RefSeq gene files from NCBI Reference Sequence Database

(http://www.ncbi.nlm.nih.gov/refseq/), KEGG pathway maps from Kyoto Encyclo-

pedia of Genes and Genomes (http://www.genome.jp/kegg/), and Brodmann brain

anatomic region atlas from https://surfer.nmr.mgh.harvard.edu/fswiki/. The pro-

posed method can handle cases where the number of variables in either responses or

predictors is much greater than the sample size, and complex group structures such

as overlapping groups where a variable belongs to multiple groups. The estimators

enjoy finite sample oracle bounds for the prediction error, the estimation error, and

the estimated sparsity of the regression coefficient matrix. Extensive simulations

show that the proposed method outperforms competitive regularization methods.

We applied the proposed method to a yeast gene expression quantitative loci (e-

QTL) study, where the numbers of gene expression responses and genetic marker

predictors are both much larger than the sample size. The gene expression respons-
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es are grouped into biological pathways and the genetic markers are grouped into

genes. We demonstrate by considering both group structures that the proposed

method generates a much more interpretable and predictive eQTL network between

the gene expressions and genetic markers, comparing with several other commonly

used regularized approaches.

2.2 Multivariate linear model with arbitrary grouping

We consider the multivariate linear model

Y = XB +W, (2.1)

where Y = (y1, · · · , yq) ∈ Rn×q is the response matrix of n samples and q variables,

X = (x1, · · · , xp) ∈ Rn×p is the covariate matrix of n samples and p variables,

B = (βjk)p×q ∈ Rp×q is the coefficient matrix and W = (w1, · · · , wq) ∈ Rn×q is the

matrix of error terms with each wk ∼ N(0, σ2
kIn×n), k = 1, · · · , q. Assume Y and X

are centered so that there is no intercept in B. We adopt the notational convention

that the column vectors of X are indexed by j, the column vectors of Y and W are

indexed by k, and the samples are indexed by i.

AssumeB containsG groups, and each group, denoted asBg where g ∈ {1, · · · , G},

is a subset of two or more elements in B. We denote the group structure by

G = {B1, · · · , BG}. We use B or Bg to denote either the set of all their elements or

the numerical values of all their elements, depending on the context, which should

not cause any confusion. Note that the union of all the groups in G does not need

to contain all the elements of B, in other words, some βjk may not belong to any

group. We say Bg1 is nested in Bg2 if Bg1 ⊂ Bg2 ; Bg1 and Bg2 are overlapping if

Bg1 ∩ Bg2 is not empty. Obviously, nested groups are a special case of overlapping.

A group structure with overlapping groups is common in biological studies. For

example, when grouping genetic variants according to genes or pathways, different

genes or pathways can overlap with each other.
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Though the proposed method works for an arbitrary group structure G on B,

in real applications, a biologically meaningful group structure on B is usually in-

troduced from the group structures of both predictors and responses. Specifically,

suppose X has m1 column groups and Y has m2 column groups, then they yield

m1 ×m2 intersection block groups on B. We denote this intersection block group

structure by GXY , the row block group structure only determined by the predictor

groups by GX , and the nested group structure containing all groups in GXY and GX

by GXY ∪GX . In the eQTL association study, a nonzero group in GXY indicates that

the corresponding gene group has SNPs associated with expressions in the corre-

sponding pathway group. A nonzero group in GX indicates that the corresponding

gene group has an effect on some or all of the expressions.

For an arbitrary group structure G with G groups, let
∑G

g=1 ∥Bg∥2 be the total

sum of L2 norms of every group in G, where ∥Bg∥22 =
∑

βjk∈Bg
β2
jk. The group L2

norm reduces to the Frobenius norm ∥A∥2 = {tr(ATA)}1/2 for a matrix group A and

to the vector L2 norm ∥a∥2 = {aTa}1/2 for a vector group a.

2.3 The regularization method and its properties

2.3.1 The multivariate sparse group lasso

For an arbitrary group structure G on B, to simplify the notation, we denote

{g : Bg ∈ G} by {g ∈ G} as long as it does not cause any confusion. For j = 1, . . . , p

and k = 1, . . . , q, let λjk ≥ 0 be the adaptive lasso tuning parameter for βjk, with

λjk = 0 if βjk is not penalized. Let λg ≥ 0 be the adaptive tuning parameter for

group Bg ∈ G, with λg = 0 if group Bg is not penalized. We consider the following

penalized optimization problem for a general regularized multivariate multiple linear

regression:

argmin
B

1

2n
∥Y −XB∥22 +

∑
1≤j≤p,1≤k≤q

λjk|βjk|+
∑
g∈G

λg∥Bg∥2, (2.2)
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where the L2 penalty term aims to shrink unimportant groups to zero and the L1

penalty term aims to shrink unimportant entries within an important group to zero.

We call it the multivariate sparse group lasso (MSGLasso). We exclude the trivial

case that λg = 0 for all g ∈ G and λjk = 0 for all j, k. To better understand the

solution to (2.2), we develop the following theorem for βjk when all other elements

in B are fixed.

Theorem II.1. For an arbitrary group structure G on B, let B̂ be the solution

to (2.2) and β̂jk be its jk-th element. If for some group Bg0 ∈ G with a tuning

parameter λg0, √ ∑
{jk: βjk∈Bg0}

(|Sjk|/n− λjk)
2
+ ≤ λg0, (2.3)

then β̂jk = 0 for every βjk ∈ Bg0. Otherwise, β̂jk satisfies

β̂jk =
sgn(Sjk) (|Sjk| − nλjk)+

∥xj∥22 + n
∑

{g∈G: βjk∈Bg} λg/∥B̂g∥2
, (2.4)

where Sjk = xT
j (Y −XB̂(−j))·k with B̂(−j) being the j-th row of B̂ replaced by zeros,

the subscript ·k refers to the k-th column of a matrix, and a+ = a if a > 0 and 0

otherwise.

Note that Theorem II.1 is a general solution form and applies to arbitrary group

structures. If there is no group structure assigned on B, then G becomes an empty

set and (2.4) reduces to the lasso solution; If λjk = 0 for all j, k, then (2.4) and (2.3)

provide the group lasso solution. It is of interest to consider certain special group

structures that are intuitive and commonly used in many applications. Specifically,

we consider model (2.2) with the following four group structures: (I) G = ∅, no group

structure assigned on B; (II) GX ; (III) GXY ; (IV) GXY ∪ GX . The corresponding
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optimization problems become

argmin
B

1

2n
∥Y −XB∥22 + λ|B|1, (2.5)

argmin
B

1

2n
∥Y −XB∥22 + λ|B|1 + λ1

∑
g1∈GX

ω1/2
g1

∥Bg1∥2, (2.6)

argmin
B

1

2n
∥Y −XB∥22 + λ|B|1 + λ2

∑
g2∈GXY

ω1/2
g2

∥Bg2∥2, (2.7)

argmin
B

1

2n
∥Y −XB∥22 + λ|B|1 + λ1

∑
g1∈GX

ω1/2
g1

∥Bg1∥2 (2.8)

+λ2
∑

g2∈GXY

ω1/2
g2

∥Bg2∥2, (2.9)

where |B|1 =
∑

jk |βjk| is the L1 norm of B, and ωg1 and ωg2 are some weights, in

particular, the group sizes. The tuning parameter λjk = λ for all lasso penalties,

λg = λ1ω
1/2
g1 if g ∈ GX , and λg = λ2ω

1/2
g2 if g ∈ GXY .

In the remaining of this article, we call (2.5) the Lasso model, (2.6) the Lasso+X

model, (2.7) the Lasso+XY model, and (2.8) the Lasso+X+XY model.

Let B̂L, B̂LX , B̂LXY and B̂LXXY be the solutions to (2.5), (2.6), (2.7) and (2.8),

respectively. Their corresponding expressions from Theorem II.1 further reduce to

some interesting simpler forms under the othornormal design, in particular, B̂LX

and B̂LXY are just further shrinkages of B̂L, and B̂LXXY is a further shrinkage of

either B̂LX or B̂LXY . We are also interested in the group lasso cases where λ = 0

in (2.6), (2.7) and (2.8), with their solutions denoted by B̂GX , B̂GXY and B̂GXXY ,

respectively. Then the main theorems in Yuan and Lin (2006) and Peng et al. (2010)

become special cases.

In the eQTL example that we will analyze later, method (2.5) does not take

the advantage of knowing the group structure. Method (2.6) only concerns the

predictor group structure, therefore can select important gene groups. However, it

ignores which pathways those genes are associated with. Method (2.7) considers

both predictor and response group structures, therefore can select gene-to-pathway

association blocks. Method (2.8) pertains advantages of both (2.6) and (2.7) and is

more robust to misspecified group structures.
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2.3.2 Oracle inequalities

The lasso method has been shown to achieve the oracle bounds for both pre-

diction and estimation in the multiple linear regression model, which are the error

bounds one would obtain if the true model were given, see for example, Bickel et al.

(2009). Similar bounds also hold for a total of pq regression coefficients in the mul-

tivariate multiple linear regression model with a multivariate mixed L1/L2 penalty.

For notational simplicity, we consider the following special case of (2.2) with λjk = λ

for all j, k:

argmin
B

1

2n
∥Y −XB∥22 + λ|B|1 +

∑
g∈G

λg∥Bg∥2. (2.10)

We follow the method of Bickel et al. (2009). Let J1(B) = {jk : |βjk| ̸= 0} be

the index set of nonzero elements in B, and J2(B) = {g ∈ G, ∥Bg∥2 ̸= 0} be the

index set of nonzero groups in G. Define M1(B) =
∑

jk I(βjk ̸= 0) = |J1(B)| and

M2(B) =
∑

g∈G I(∥Bg∥2 ̸= 0) = |J2(B)|. For any matrix ∆ ∈ Rp×q and any given

index set J1 ⊆ {jk : 1 ≤ j ≤ p, 1 ≤ k ≤ q}, denote ∆J1 the projection of ∆ on

the index set J1, that is the matrix with the same elements of ∆ on coordinates

J1 and zeros on the complementary coordinates J c
1 . Also for any group index set

J2 ⊆ {1, · · · , |G|}, denote ∆J2 the set of projection of ∆ on each of {Bg : g ∈ J2},

that is ∆J2 = {∆Bg : g ∈ J2}. Denote M1(B) = r and M2(B) = s. We then impose

a restricted eigenvalue assumption for the multivariate linear regression model with

a multivariate mixed L1/L2 penalty, which leads to the desirable oracle inequalities.

Assumption II.2. Let J1 ⊆ {jk : 1 ≤ j ≤ p, 1 ≤ k ≤ q} and J2 ⊆ {1, · · · , |G|} be

any index sets that satisfy |J1| ≤ r and |J2| ≤ s. Let ρ̃ = {ρg : g ∈ G} be a set of

positive numbers. Then for any nontrivial matrix ∆ ∈ Rp×q that satisfies

|∆Jc
1
|1 + 2

∑
g∈Jc

2

ρg∥∆Bg∥2 ≤ 3|∆J1 |1 + 2
∑
g∈J2

ρg∥∆Bg∥2,
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the following minimums exist and are positive:

κ1(r, s, ρ̃) = min
J1,J2,∆ ̸=0

∥X∆∥2
n1/2∥∆J1∥2

> 0, κ2(r, s, ρ̃) = min
J1,J2,∆ ̸=0

∥X∆∥2
n1/2∥∆J2∥2

> 0.

Theorem II.3. Consider model (2.10). Let B∗ be the true coefficient matrix. As-

sume each column of the error matrix, wk, follows a multivariate normal distribution

N(0, σkIn), and all the diagonal elements of the matrix XTX/n are equal to 1. Sup-

pose M1(B
∗) = r and M2(B

∗) = s. Let ψmax be the largest eigenvalue of XTX/n,

σ = max{σ1, · · · , σq}, λg = ρgλ for g ∈ G, ρ = min{1, ρg; g ∈ G}, c be the maximum

number of duplicates of a coefficient in overlapping groups in G, and

λ = 2σA{log (pq)/n}1/2

for some constant A > 21/2. Furthermore, assume Assumption II.2 holds with κ1 =

κ1(r, s, ρ̃) and κ2 = κ2(r, s, ρ̃). Then with probability at least 1− (pq)1−A2/2, we have

the following oracle bounds for the prediction error, the estimation error and the

order of sparsity:

1

n
∥X(B̂ −B∗)∥22 ≤ 16λ2

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

,

|B̂ −B∗|1 ≤
32(c+ 2)σA

1 + ρ

(
log(pq)

n

)1/2

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

,

M1(B̂) ≤ 64ψmax

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

.

The mean square prediction error is bounded by a factor of order λ2 ∼ log(pq)/n,

the l1 norm of the estimation error is bounded by a factor of order
√
log(pq)/n, and

the estimated order of sparsity is bounded by a constant related to Assumption II.2.

These results are similar to those in Bickel et al. (2009). Note that Theorem II.3
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will still hold for flexible λjk in (2.2), as long as λjk > 0 for all j, k.

2.4 The mixed coordinate descent algorithm

Based on Theorem II.1, the zero groups can be determined according to (2.3)

and the entries in a nonzero group can be determined by solving for the fixed point

solution of (2.4) using a coordinate descent algorithm. The coordinate algorithm

updates each coefficient coordinate βjk at a step while fixing all the other coefficients

at their current values. Theoretically, the coordinate descent algorithm would work

if one can solve (2.4) for β̂jk exactly. Practically, since β̂jk also appears in the

term
∑

{g∈G: βjk∈Bg , ∥B̂g∥2>0} λg/∥B̂g∥2 on the right hand side of (2.4), unlike lasso, a

closed form solution is usually not available and numerically solving for β̂jk requires

iteratively updating (2.4), which can be time consuming. Here we propose a mixed

coordinate descent algorithm, which only updates β̂jk once from β̂
(m−1)
jk to β̂

(m)
jk

according to (2.4) without iteratively solving (2.4). In particular, the algorithm

updates β̂jk according to the following.

(I) If any of the groups Bg ∈ G containing βjk satisfies (2.3), then the entire

group is estimated at zero. Otherwise β̂jk will be updated according to one of the

following situations (II)-(IV):

(II) If all the groups containing βjk satisfy ∥B̂(m−1)
g−(jk)∥2 = 0 at the current step,

where B̂
(m−1)
g−(jk) is B̂

(m−1)
g with its jkth element replaced by zero, then β̂jk is updated

by

β̂
(m)
jk =

sgn(S
(m−1)
jk )

(
|S(m−1)

jk | − n
∑

{g∈G: βjk∈Bg , ∥B̂(m−1)
g−(jk)

∥2=0} λg − nλjk

)
+

∥xj∥22
.

Notice that in this case, (2.4) becomes a closed form lasso solution.

(III) If all the groups containing βjk satisfy ∥B̂(m−1)
g−(jk)∥2 > 0 at the current step
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and λjk = 0, then β̂
(m−1)
jk is updated by the group lasso formulation

β̂
(m)
jk =

S
(m−1)
jk

∥xj∥22 + n
∑

{g∈G: βjk∈Bg , ∥B̂(m−1)
g−(jk)

∥2>0} λg/∥B̂
(m−1)
g ∥2

.

Notice in this case, all the entries in Bg with ∥B̂g−(jk)∥2 > 0 will enter as nonzero

entries, or in other words, the whole group Bg will be selected as an important

group.

(IV) If some but not all groups containing βjk satisfy ∥B̂g−(jk)∥2 = 0 at the

current step, then β̂
(m−1)
jk belongs to a mixture of the lasso case (for groups with

∥B̂(m−1)
g−(jk)∥2 = 0) and the group lasso case (for groups with ∥B̂(m−1)

g−(jk)∥2 > 0), and it is

updated as if by a mixture of the lasso and the group lasso through

β̂
(m)
jk =

sgn(S
(m−1)
jk )

(
|S(m−1)

jk | − n
∑

{g∈G: βjk∈Bg , ∥B̂(m−1)
g−(jk)

∥2=0} λg − nλjk

)
+

∥xj∥22 + n
∑

{g∈G: βjk∈Bg ∥B̂(m−1)
g−(jk)

∥2>0} λg/∥B̂
(m−1)
g ∥2

.

Specifically, the algorithm is given in the following for a fixed set of values of all

the tuning parameters.

Step 1. Standardize the data such that

n∑
i=1

yik = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2ij = 1, for all j ∈ {1, · · · , p}, k ∈ {1, · · · , q}.

In our numerical examples, we also standardize yk such that
∑n

i=1 y
2
ik = 1 to mini-

mize the impact of different scales of variations across yk on the regression coefficients

for all k ∈ {1, · · · q}.

Step 2. Set initial values for all β̂jk and the iteration index m = 1. We use initial

values β̂
(0)
jk = 0 in our numerical examples.

Step 3. For a given pair (j, k), fix βj′k′ at β̂
(m−1)
j′k′ for all j′ ̸= j or k′ ̸= k. Then

update β̂
(m−1)
jk to β̂

(m)
jk by (I) to (IV) accordingly.

Step 4. Repeat Step 3 for all j ∈ {1, · · · , p} and k ∈ {1, · · · , q}, and iterate until

∥B̂(m) − B̂(m−1)∥ reaches a prespecified precision level for some norm ∥ · ∥. We use
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infinity norm in our numerical examples.

Convergence of different types of coordinate descent algorithms have been stud-

ied in the literature. Tseng (2001) provided conditions for convergence of cyclic

coordinate descent algorithm with general separable objective functions. Wu and

Lange (2008) proved the convergence of greedy coordinate descent algorithm with

a L2 loss and the lasso penalty. Based on Wu and Lange (2008), we show the con-

vergence of our mixed coordinate descent algorithm which is given in the following

proposition. Details are provided in the supplemental materials, where we also il-

lustrate that the speed of convergence of our mixed coordinate descent algorithm

is much faster than the coordinate descent algorithm that solves the fixed point

solution to (2.4) with inner iterations.

Proposition II.4. A sequence of coordinate estimates iteratively updated by the

mixed coordinate descent algorithm converge to a global minimizer of the objective

function.

We implemented the MSGLasso and the mixed coordinate descent algorithm

with C/C++ language and wrapped into an R package. It is available upon request

and will soon be upload to CRAN repository.

2.5 Numerical studies

2.5.1 Simulations

In this section, we first investigate the numerical performances of Lasso, Las-

so+X, Lasso+XY, Lasso+X+XY methods and their group lasso counterparts when

the true coefficient matrix B∗ takes a group structure of either GX , GXY or GXY ∪GX .

We also compare the proposed MSGLasso method with lasso and group lasso for an

overlapping group structure.

All the true group structures considered in our simulations are given in Fig.2.1

(a)-(d). For each group structure, we consider two scenarios: (i) “all-in-all-out”,
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where all the coefficients in an important group are important, and (ii) “not-all-in-

all-out”, where only a subset of coefficients in an important group are important.

Specifically, we generate B∗ by setting β∗
jk = 0 if it is from an unimportant group,

and drawing its value from a uniform distribution on [−5,−1] ∪ [1, 5] and fixing it

for the simulations if it is from an important group. The sparsity of an important

group in the “not all in all out” setting is randomly set between 1/4 and 1/6.

          

          

          

          

          

          

          

          

          

          

 

          

          

          

          

          

          

          

          

          

          

 

          

          

          

          

          

          

          

          

          

          

 

    

            

            

            

            

            

            

            

            

            

            

            

            

 

Figure 2.1: B∗ group structures. Important groups are shaded. (a) X group struc-
ture, (b) XY group structure, (c) X+XY group structure (nesting group structure)
and (d) overlapping group structure.

Each B∗ is of dimension 200 × 200. For a nonoverlapping group structure,

each X row group is of dimension 20 × 200; each XY block group is of dimen-

sion 20 × 20. For the overlapping group structure, the groups start on coordinates

(1, 21, 41, 61, 101, 121, 141, 181) and end on coordinates (20, 40, 70, 100, 120, 150, 180,

200), for both X and Y variables.

Covariates XT
i· , i = 1, · · · , n, are generated from a multivariate normal distribu-

tion Np(0,ΣX), where ΣX = diag(Σg1 , · · · ,Σg10) is block diagonal and each block

corresponds to each group of X which has the first order autoregressive structure.

Specifically, Σgi(j, k) = ρ|j−k| for any j, k pair from the same group, i = 1, · · · , 10.

The error terms wik are generated from a normal distribution N(0, σ2), where σ2

is to yield a signal to noise ratio of 2. Finally, the responses are generated from

Y = XB∗ +W .

The optimal values of tuning parameters may be selected by different criteria.

Since the degrees of freedom are difficult to determine for a penalty with multiple

tuning parameters, we search for the optimal tuning parameter values using a 5-fold
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cross-validation over a wide range of candidate values. The searching process starts

with the largest candidate tuning parameter values with each by itself shrinking

all the coefficients to zero. The converged estimates B̂ obtained from the previous

searching step are used as the initial values for B in the next searching step with

a new set of tuning parameter values. We find it is very effective in reducing the

computational cost.

For each simulation setup, we run a hundred replications and calculate the av-

erages of the following quantities:

false positives = |{ij pairs : β̂ij ̸= 0 and β∗
ij = 0}|,

false negatives = |{ij pairs : β̂ij = 0 and β∗
ij ̸= 0}|,

sensitivity =
|{ij pairs : β̂ij ̸= 0 and β∗

ij ̸= 0}|
|{ij pairs : β∗

ij ̸= 0}|
,

specificity =
|{ij pairs : β̂ij = 0 and β∗

ij = 0}|
|{ij pairs : β∗

ij = 0}|
,

prediction error = ∥Ytest −XtestB̂∥22 ,

where | · | is the number of elements in a set and (Ytest, Xtest) is an independently

generated testing set of 100 samples.

Figure 2.2 summarizes these quantities for simulation setups with “not all in and

all out” for all the group structures in Fig.2.1 at p = q = 200, n = 150, and ρ = 0.5.

The proposed method using Lasso+X+XY for the nonoverlapping group structures

GX , GXY and GXY ∪GX as well as for the overlapping group structure are highlighted

in black. The methods for the correctly specified group structures are highlighted

in grey except in Fig.2.2 and Fig.2.2, where the implemented group structures are

by themselves the correctly specified group structures. From Fig.2.2 we see that

correctly incorporating group structure improves both variable selection and predic-

tion, and our proposed method Lasso+X+XY, or the MSGLasso, performs at least

the same as, if not better than, the methods for the correct group structures and

yields the lowest prediction errors.

Figure 2.3 illustrates fitted results for a data set randomly chosen from one hun-
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dred replications, where B∗ has a “not all in all out” either GXY ∪GX or overlapping

group structure with p = 200, q = 200 and ρ = 0.5. It clearly shows that the

MSGLasso results for correctly specified group structure, both in Fig.2.11 and in

Fig.2.3, yield the most desirable estimates. Methods without lasso penalty yield

too many false positives inside the important groups for the “not all in all out”

case even when the groups are correctly specified, while methods with lasso penalty

but incorrectly specified groups yield too many false positives outside the important

groups.

Figures 2.4 and 2.5 illustrate the comparisons between univariate approaches and

multivariate approaches. The true regression coefficient matrix takes a GXY ∪ GX

group structure. It can be seen that when different response variables have a similar

sparsity to the predictors, the multiple univariate lasso (using different λ values for

different response variables) and the multivariate lasso (using the same λ value for

all response variables) have similar performance on variable selection. The multi-

ple univariate sparse group lasso approach has a slightly better variable selection

performance than the multiple univariate lasso. The proposed multivariate sparse

group lasso yields the best variable selection result by borrowing information from

other response variables within the same group. It also has the smallest prediction

error.

Figures 2.7 to 2.11 at the end of this chapter show the variable selection and

prediction effects in some other simulation settings, such as with different autocor-

relation coefficient values or with a true “all-in-all-out” group structure.

2.5.2 Yeast eQTL data analysis

In this section, we demonstrate our method by analyzing a yeast eQTL data

set generated by Brem and Kruglyak (2005), see also Yin and Li (2011), where

gene expressions are grouped into, possibly overlapping, pathways and the genetic

markers are grouped into genes.

The data set contains 6216 yeast genes assayed for 112 individual segregant.
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Figure 2.2: Simulation results, large p small n, “not all in all out” cases with n = 100,
p = q = 200 and ρ = 0.5. SGL: the multivariate sparse group lasso; G: the
multivariate group lasso.

Genotypes of these 112 segregant at 2956 marker positions were also collected using

GeneChip Yeast Genome S98 microarrays. The 6216 expressed genes are grouped
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Figure 2.3: Heatmaps of coefficient matrices, selection effects. (a)-(h): “Not all in
all out” X+XY nonoverlapping group structure with n = 100, p = 200, q = 200,
and ρ = 0.5. (a) B∗; (b) B̂L; (c) B̂LX ; (d) B̂LXY ; (e) B̂LXXY ; (f) B̂GX ; (g) B̂GXY ;
(h) B̂GXXY . (i)-(l): “Not all in all out” overlapping group structure with n = 100,
p = 200, q = 200, and ρ = 0.5. (i) B∗; (j) B̂L; (k) B̂SGL; (l) B̂G.

by Kyoto Encyclopedia of Genes and Genomes pathways and the 2956 markers are

grouped by genes, taking isoform genes as the same gene. To illustrate the method,

in the reported analysis we only include genes from the following four pathways:

the mitogen-activated protein kinases (MAPK) pathway containing 54 genes, the

cell cycle pathway containing 116 genes, the cancer pathway containing 20 genes and

the ribosome pathway containing 137 genes. There are in total 315 distinct expressed
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Figure 2.4: Heatmaps of coefficient matrices. (a) True B∗; (b) The multiple uni-
variate lasso; (c) The multiple univariate sparse group lasso (d) The multivariate
lasso; (e) The multivariate sparse group lasso; The true B∗ has a “not all in all
out” and X+XY group structure with p = q = 200, n = 100, ρ = 0.5.
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Figure 2.5: Comparison between multiple-univariate and multivariate approaches
from 100 simulated data sets. “uni L” – the multiple univariate lasso; “uni SGL” –
the multiple univariate group lasso; “multi L” – the multivariate lasso; “multi SGL”
– the multivariate sparse group lasso with an XY group structure on the coefficient
matrix.

genes in these pathways, with 5 genes overlapping between MAPK and cell cycle,

5 genes overlapping between MAPK and cancer, 3 genes overlapping between cell

cycle and cancer, and 1 gene overlapping between MAPK, cell cycle and cancer.

24



Ribosome does not contain overlapping genes with the other three pathways.

We follow a similar procedure of Yin and Li (2011) for prescreening genotype

markers by performing univariate linear regressions across all the 315 gene expres-

sions and 2956 markers, and include the 395 markers with p-value of 0.01 or smaller

into the final analysis. These 395 markers are embedded in 45 distinct genes.

Since some marker within a gene is associated with some gene expression in

a pathway does not necessarily imply the gene must be associated with all four

pathways, we exclude the GX group structure and only apply an overlapping GXY

group structure in the data analysis. We cross-validate the performance of the

multivariate sparse group lasso, the multivariate lasso, the multivariate group lasso

and the univariate lasso. In particular, we randomly divide the 112 samples into

five approximately equal sized subsets, set one subset aside as the test set, and

use the remaining four subsets as the training set. Then for each model, we run

5-fold cross-validation on the training set to estimate the coefficient matrix, and use

the estimated model to compute the prediction error on the test set. We repeat

the above procedures until each of the five subsets has been used as the test set

once. The overall cross-validated prediction errors, the sum of squares, are reported

in Table 2.1. The univariate lasso is conducted by first selecting variables on the

training set using 315 separate lasso regressions, each for a single gene expression

variable, and then implementing multivariate linear regression on only the selected

set of covariates to obtain B̂. Our proposed method has the best performance. The

univariate lasso gives the highest prediction error, this is expected as the relations

among responses are totaly overlooked. And this leads to high variability and over-

fitting (Peng et al., 2010). The proposed method shows roughly a 10% decrease of

the cross-validated prediction error over the multivariate lasso method, the second

best approach among all four compared methods.

We then apply the multivariate sparse group lasso to the entire data set with 315

gene expressions and 395 markers. The final tuning parameters are λ = 7 × 10−2

and λ1 = 2× 10−4 determined by a 5-fold cross-validation. We also investigate the
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Table 2.1: Comparison of prediction errors between different methods

Method MSG lasso M lasso MG lasso lasso
Prediction error 3094.5 3396.8 3557.4 3683.3

MSG lasso = multivariate sparse group lasso, M lasso = multivariate lasso,
MG lasso = multivariate group lasso, lasso = univariate lassos.

selection stability following Meinshausen and Bühlmann (2010) by calculating the

selection frequencies of the top selected associations using one hundred bootstrap

datasets. The top associations in terms of size, with selection frequency no less

than 95%, are given in Table 2.2. The p-values in the last column are obtained

from marginal simple linear regressions. Overall there are 1422 nonzero elements in

the estimated coefficient matrix, which gives an overall estimated sparsity of about

1%. There are 235 markers with nonzero coefficients related to genes in the MAPK

pathway, 135 markers related to genes in the cell cycle pathway, 65 markers related

to genes in the cancer pathway, and 65 markers related to genes in the ribosome

pathway. Among those, 34 markers are related to genes in the overlap of MAPK

and cell cycle pathways, 23 markers are related to genes in the overlap of MAPK

and cancer pathways, and 5 markers is related to a gene in the overlap of MAPK,

cell cycle and cancer pathways.

Table 2.3 lists the top pathway-gene groupwise associations in terms of the group

L2 norms with a 100% group-wise selection frequency. Out of 180 block groups, 89

groups contain nonzero coefficients. Several top selected genes have been reported

in the literature. For example, one of the isoforms of YCR gene, YCR073C/SSK22

is MAPK cascade involved in osmosensory signaling pathway. Gene groups YJL

and YGR in the Scr homology 3 domains are interacting with gene Pbs2 in one of

the three kinase components in the MAPK pathway (Zarrinpar et al., 2003). The

top association signals detected between the gene expressions in the joint of MAPK,

cell cycle and cansor pathways and markers in NHR gene group also confirm the

regulation effects of NHR genes on cell cycle pathway and other autophagy-related

genes (Nicole, 2011).
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It worth noting that none of the association p-values from marginal simple linear

regressions between gene YJL and pathway MAPK survives the Bonferroni cor-

rection for multiple comparisons. For example, the 14th signal in Table 2.2 has a

univariate marginal p-value of 0.044, therefore it is very unlikely to be picked up by

the pairwise analysis. However, the MSGLasso successfully selected this signal in

an adjusted analysis with high individual and group selection frequencies given in

Tables 2.2 and 2.3. This finding is supported by Zarrinpar et al. (2003). It demon-

strates that besides the advantage of dimension reduction, the MSGLasso can also

pick out important signals that would be missed by the pairwise method.

Figure 2.6 shows the eQTL network between the gene expressions and the genetic

markers constructed from the multivariate sparse group lasso method.

The stability selection results show that the first 40 selected top signals do not

contain zero within their 2.5%-97.5% bootstrap percentile band, and the bootstrap

Q1-Q3 band of the top 100 selected signals do not contain zero, indicating that

the top selected signals using proposed method have high selection frequencies from

bootstrap samples.

Table 2.2: Top selected expression-marker associations

Id β̂jk Sel. Expr.** Expr. Marker Marker p-value
Freq.* name pathways Chr:BP*** gene

1 -1.481 100 YKL178C MAPK 3:201166 YCR041W 2.4e-51
2 1.465 100 YFL026W MAPK 3:201166 YCR041W 2.8e-55
3 -1.264 100 YPL187W MAPK 3:201166 YCR041W 7.1e-45
4 1.061 100 YNL145W MAPK 3:201166 YCR041W 5.5e-39
5 -0.735 100 YGL089C MAPK 3:201166 YCR041W 8.5e-20
6 0.650 100 YFL026W MAPK 3:201167 YCR041W 2.8e-55
7 -0.649 100 YKL178C MAPK 3:201167 YCR041W 2.4e-51
8 -0.554 98 YPL187W MAPK 3:201167 YCR041W 7.1e-45
9 0.452 100 YDR461W MAPK 3:201166 YCR041W 8.4e-14
10 -0.385 98 YPL187W MAPK 3:177850 gCR02 1.7e-33
11 0.352 100 YGR088W MAPK 15:170945 gOL02 1.5e-10
12 0.346 100 YGR088W MAPK 15:174364 gOL02 1.5e-10
13 -0.318 97 YKL178C MAPK 3:177850 gCR02 2.4e-37
14 0.257 98 YGR088W MAPK 10:51003 YJL204C 0.044
15 -0.175 95 YGL089C MAPK 2:681361 YML056C 0.66

* Sel. Freq. = Selection Frequency in %. ** expr. = gene expression. *** Marker is denoted by its physical
position in the format of “chromosome:basepair”.
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Table 2.3: Top selected pathway-gene associations (with 100% selection frequency)

Id Pathway Gene ∥B̂g∥2 ∥B̂g∥*
0 Top expr.** Top marker*** Top β̂jk

in pathway in gene in group
1 MAPK YCR 3.06 23 YKL178C 3:201166 -1.48
2 MAPK gOL 0.508 10 YGR088W 15:170945 0.35
3 MAPK gCR 0.499 3 YPL187W 3:177850 -0.39
4 MAPK YJL 0.424 23 YGR088W 10:51003 0.26
5 MAPK NHR 0.420 49 YCL027W 8:111686 -0.18
6 MAPK NBR 0.382 15 YGL089C 2:681361 0.21
7 MAPK YBR 0.372 81 YGR088W 2:368060 0.17
8 ribosome YER 0.342 119 YER102W 5:350744 -0.06
9 cancer YLR 0.286 14 YJR048W 12:674651 0.16
10 MAPK YGR 0.275 3 YGL089C 7:916471 -0.17
11 MAPK YPL 0.274 18 YGR088W 12:428612 0.24
12 MAPK YLR 0.252 62 YCL027W 12:957108 0.09
13 MAPK YER 0.229 23 YPL187W 7:321714 0.14
14 MAPK YML 0.214 23 YGL098C 13:164026 -0.18
15 MAPK YHL 0.205 15 YKL178C 8:98513 -0.13
16 MAPK YNL 0.183 23 YGL089C 14:418269 -0.08
17 MAPK YCL 0.176 27 YCL027W 3:64311 0.14

MAPK;
18

cell cycle
NHR 0.175 44 YJL157C 8:111686 -0.061

19 MAPK gJL 0.131 9 YFL026W 10:259991 0.098
20 MAPK YOL 0.125 26 YPL187W 15:193911 0.084

MAPK;
21 cell cycle; NHR 0.098 5 YBL016W 8:111686 -0.044

cancer
22 cell cycle YCR 0.067 5 YLR288C 3:201166 0.046
23 cell cycle YCL 0.063 16 YDL003W 3:64311 -0.035
24 cell cycle YLR 0.029 37 YBR093C 12:674651 0.012

* ∥B̂g∥0 = number of nonzero β̂jk in group. ** expr. = gene expression. *** Top marker in gene is denoted
by its physical position in the format of “chromosome:basepair”.
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Figure 2.6: Network constructed from the multivariate sparse group lasso method.
Network structure is between gene expressions grouped in mitogen-activated protein
kinases (MAPK), cell cycle, cancer, ribosome pathways and markers grouped in 45
gene groups. Gray lines connect expression-marker pairs with non-zero β̂jk. Dark
lines are for the top 10 associations in each pathways. The strength of these top
associations are indicated by the width of the dark lines. The dotted circles indicate
the overlapping pathway group structure.
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Figure 2.7: More simulation results, “not all in all out” cases with n = 150, p = q =
200 and ρ = 0.2.
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Figure 2.8: More simulation results, “not all in all out” cases with n = 150, p = q =
200 and ρ = 0.8.
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Figure 2.9: More simulation results, “all in all out” cases with n = 150, p = q = 200
and ρ = 0.5.
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Figure 2.10: More simulation results, “all in all out” cases with n = 150, p = q = 100
and ρ = 0.5.
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Figure 2.11: Heatmaps of coefficient matrices, selection effects. “Not all in all out”
XY group structure with n = 100, p = 200, q = 200, and ρ = 0.5. (a) B∗; (b) B̂L;
(c) B̂LX ; (d) B̂LXY ; (e) B̂LXXY ; (f) B̂GX ; (g) B̂GXY ; (h) B̂GXXY .
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CHAPTER III

A structured brain-wide and genome-wide

association study via multivariate sparse group

lasso using ADNI PET images

3.1 Introduction

Human brain structures are highly heritable (Braber et al., 2013; Peper et al.,

2007). The modern technologies of neuroimage scans and next generation sequencing

of human genomes have both provided powerful phenotypic and explanatory reso-

lutions to detect associations between common genetic variants and human brain

structures. However, given the enormous numbers of variables in both the imaging

data and genotype data, it is an extremely huge computational burden to joint-

ly analyze the brain-wide and the genome-wide data. It is well recognized that

single-response-to-single-predictor type of approaches, followed by multiple compar-

ison adjustment, have limited power to detect true signals, especially in ultrahigh-

dimensional settings or when both responses and predictors have complicated struc-

tures. Many of the current brain-wide genome-wide association studies (GWAS’s)

analyze one single-voxel to single-genetic variant at a time and ignore the intrinsic

grouping (or functional correlation) structures embedded in either the human brain

or the genome (Stein et al., 2010a).

As pointed out, such approaches are especially powerless to detect signals from

ultrahigh dimensional data, due to the fact that they usually need to correct for huge
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numbers of multiple comparisons, as the number of either the imaging variables or

the genetic variables can easily exceed hundreds of thousands while the sample sizes

are usually of hundreds to thousands. Some other approaches, including shrinkage

estimators in multiple regressions with high dimensional predictors (Kohannim et al.,

2012) or gene based regressions (Hibar et al., 2011), have been implemented for a

single response variable. However, to the best of our knowledge, there is no current

method that can jointly analyze the entire human brain and the genome, and take

into consideration of both the brain and genome functional structures at the same

time.

In this chapter, we propose a multi-stage method for selecting and estimat-

ing important association signals from ultra-high dimensional multivariate multiple

structured data. We analyze brain-wide and genome-wide-association-study (G-

WAS) data with Fluorine-uorodeoxiglucose positron emission tomography (PDG-

PET) images and DNA genotypes from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database. PDG-PET images measure brain glucose metabolism, and

can reflect changes of glucose metabolism as diagnostics of disease progresses, such as

the Alzheimer’s disease (AD) (Mosconi, 2005). The proposed method can efficiently

select important associations between brain image and genetic variants. It advances

the univariate approaches in at least two aspects. First, it is a joint multivariate

multiple regression approach that avoids the huge number of multiple comparison-

s of the univariate approach. Secondly, it is a structured approach, which takes

into consideration the intrinsic functional grouping structures in both the brains

and the genomes, specifically, the anatomical brain functional regions and gene or

pathway structures in the genome. Taking such group structures into consideration

will implicitly increase the strength of modeling the correlation and multicollinear-

ity among the responses and predictors, and therefore reduces the number of false

discoveries at either the group level or within group level (Li et al., 2013).

In the considered brain wide GWAS, each response image consists of 349, 182

voxels and each genome consists of about 560, 000 single nucleotide polymorphisms
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(SNPs). Both the image and the genotype data are available for 373 subjects in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

The proposed brain wide GWAS method consists of two selection stages and one

estimation stage. The first selection stage aims to select the important brain-region-

to-gene association signals. To reduce the ultra-high dimensions in both the image

data and genetic data, we summarize the voxel level measures within each brain

region and genotypes within each gene respectively using major principal compo-

nents, then apply the multivariate sparse group lasso (MSGLasso) (Li et al., 2013)

to select important brain region to gene associations. Then in the second selection

stage, the multivariate lasso is applied to the original (normalized) voxel level image

measures and genotypes in each selected brain region and gene pair. The stabil-

ity selection (Meinshausen and Bühlmann, 2010) is used in both selection stages.

In the final stage, we estimate the effects of selected SNPs (from the second stage

selection) on each selected voxel and infer their significance by the standard mul-

tiple linear regressions. We regress only the relevant predictor SNPs selected from

the selection stages on each selected voxel. Compared to the conventional single-

voxel-to-single-SNP approaches with about 349, 182 × 560, 000 multiple hypothesis

tests, our approach significantly reduces the number of hypothesis tests by only

making inference on the selected voxel-to-SNP signals. Since the proposed method

is a joint multivariate -response-multiple-predictor approach and it also incorporates

the intrinsic grouping structures in both responses and predictors, such as biological

anatomic brain and genetic grouping structures, it has more power to detect the

true association signals compared to the univariate-response-multiple-predictor or

univariate-response-single-predictor approaches (Li et al., 2013). It worth pointing

out here that despite their prevalence, the post-selection estimation and inference

could potentially provide biased estimation or invalid inference results (Berk et al.,

2013).

Computationally, the proposed method is in general more efficient compared to

the single-voxel-single-SNP approaches (Stein et al., 2010a). The major computa-
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tional cost saving comes from the dimension reduction in the first selection stage

and the fact that we only make inference on the selected signals.

3.2 ADNI data

The data set used in the brain-GWAS analysis contains two parts: the imaging

data and the genetic data, both from the ADNI database. Samples with both

imaging and genotype data are included in the analysis, which result in a data set

with 373 samples including 86 Alzheimer’s disease (AD) patients, 188 mild cognitive

impairment (MCI) patients and 99 normal controls (NC).

3.2.1 PET images and ROI’s

Images used in our analysis are FDG-PET images, which have been widely used

in neuroimage studies for over 20 years. FDG-PET images measure cerebral glucose

metabolic activity. Since year 2003, ADNI has acquired in total 403 FDG-PET

scans at approximately 50 different participating sites, including 95 subjects with

AD, 206 subjects with MCI and 102 NC subjects. Due to missing genetic informa-

tion, only 373 individuals are included in our study. Each image used in our study

contains 349, 182 voxels embedded in a 160× 160× 96 3D array. Those images were

preprocessed to produce a uniform isotropic resolution.

In many brain image analyses, the voxel level data can be grouped into region-

of-interests (ROI) based on brain anatomic structures. PET images used in our

analysis were segmented by Brodmann atlas (Brodmann, 2010). As a result, the

voxels in each image were grouped into 106 Brodmann ROI areas, which constitutes

the brain anatomic group structure. Figure 3.1 illustrates these regions of interest

and their positions in brain. The voxels not indexed by the Brodmann atlas are

not used in the analysis. The regions on the left hemisphere brain are symmetric

mirror reflection of the ones on the right hemisphere. In the following context, we

use “(L)” to denote the regions on the left brain hemisphere and “(R)” to denote the

regions on the right brain hemisphere. For example, “Temporal cortex BA20(L)”
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refers the temporal cortex region “BA20” on the left hemisphere and “Temporal

cortex BA20(R)” refers the corresponding symmetric region on the right hemisphere.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Illustration of mapping Brodmann atlas of ROI’s onto segmented PET
images. ROI’s are highlighted with colors. The upper panel are images for a normal
sample, the lower panel are the same images overlapped with Brodmann atlas ROI’s.
(a,d) Sagittal slice at midline. (b,e) Coronal slice at midline. (c,f) Axial slice at
midline.

3.2.2 Genotypes

The ADNI DNA data were genotyped using Illumina 610 Quad array with more

than 620, 000 tag SNPs. Genotyping was performed by Polymorphic DNA Tech-

nologies. We grouped SNP genotypes into genes using the UCSC known genes list

of NCBI36 assembly (http://genome.ucsc.edu), with each gene containing the SNPs

within its physical range plus a flanking region of 100 KB up- and down- streams.

This resulted in total of 29, 458 genes in the 22 autosomes. For isoform genes, we

took the join regions of all the isoforms to be the same gene.

The raw genotypes were screened by a series of quality control procedures. SNPs

with missing rates greater than 1%, hetrozygous haploid and markers with Hardy-
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Weinberg equilibrium p-value less than 10−6 were removed, which left in total of

564, 636 SNPs in the analysis. The missing genotypes with missing rate under 1%

were imputed by the average genotype scores from the nearby markers.

3.3 Models and methods

The proposed method consists of two selection stages and a post-selection esti-

mation stage. The ultimate goal is to efficiently and jointly select and estimate the

important associations between ultra-high dimensional responses and predictors.

Within each selection stage, we use the following multivariate linear regression

to model the associations between responses and predictors.

Y = β0 +XBX + Iadβ
t
ad + Imciβ

t
mci + (X × Iad)BXad + (X × Imci)BXmci + ε, (3.1)

where Y is the response matrix, X is the matrix of genetic predictors, Iad and Imci

are indicators for AD and MCI subjects, X × Iad and X × Imci are the interaction

terms between the genetic predictors and the disease status, B, βad, βmci, BXad and

BXmci are the regression coefficient vectors or matrices with respect to corresponding

predictor terms, β0 is the grand intercept and ε is the matrix of noise terms.

When variables in X and Y are centralized, β0 is zero and model (3.1) reduces

to

Y = XB+ ε (3.2)

with X = (X,X × Iad, X × Imci, Iad, Imci) and B = (Bt
X , B

t
Xad, B

t
Xmci,βad,βmci)

t.

Here we assume that the association signals are sparse, i.e., each voxel is only

associated with few number of SNPs compared to the sample size. To select the

sparse signals, we aim to solve for the regularized solution of (3.2). Regularization

methods are widely used in regression settings when the number of predictors is

much greater than the sample size, the so-called large-p-small-n problems.

For our brain-GWAS data, both responses and predictors are of ultrahigh di-

mensions and both of them have intrinsic biological meaningful group structures.
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In order to efficiently select the important association signals by taking into con-

sideration the group structures, we propose to use the multivariate sparse group

lasso (MSGLasso) introduced by Li et al. (2013) in the first selection stage to select

the important brain-region-to-gene association groups. The MSGLasso solves the

penalized least square estimators of the regression coefficients in model (3.2) and

is capable in particular of handling the ultrahigh dimensionalities and the complex

group structures in both responses and predictors.

Then in the second selection stage, we use the multivariate lasso to further select

the important voxel-to-SNP associations within the selected group signals from the

first stage. With group level sparsity, many unimportant region-to-gene groups are

shrunken to zero in the first selection stage and therefore are ruled out from the

following analysis. Similarly, with individual level sparsity, the number of variables

passing into the estimation stage are further reduced in the second stage selection.

At last, in the estimation stage, we only focus on estimating the effects of the selected

SNPs on each selected voxel. Hence, with this hierarchical selection and estimation

procedure, we efficiently remove the unimportant voxel-to-SNP association pairs and

avoid huge number of multiple comparisons.

3.3.1 First selection stage: region-wise-gene-based mapping using the

multivariate sparse group lasso

Li et al. (2013) introduced the multivariate sparse group lasso (MSGLasso) for

high dimensional variable selections in multivariate-multiple settings when both re-

sponses and predictors have some known group structures. The MSGLasso is an

appropriate tool for the association signal selection in the brain-wide GWAS set-

ting. The MSGLasso minimizes the following objective function

argmin
B

1

2n
∥Y − XB∥22 + λ

∑
β∈B

|β|1 + λ1
∑
g∈G2

ω1/2
g ∥Bg∥2, (3.3)

where the lasso penalty is to encourage the within group voxel-to-SNP level sparsity

and the group lasso penalty aims to shrink the unimportant region-to-gene groups to
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zero. Here G2 denotes the set of region-to-gene interaction blocks on the regression

coefficient matrix B, Bg denotes one such group block, and ωg is adaptive weight

assigned to g’th group block. In our brain-wide GWAS, we use ωg =
√
v × s, the

square root of the group block size (Yuan and Lin, 2006; Silver et al., 2012), where

v is the number of voxels in the corresponding region and s is the number of SNPs

in the corresponding gene.

Li et al. (2013) proposed a mixed coordinate descent (MCD) algorithm for it-

eratively solving for the global minimizer of (3.3). They proved that the MCD

algorithm converges to the global minimizer. Even though we can benefit from the

computational efficiency of the MCD algorithm, the performance of the MSGLasso

is governed by a factor of order
√
PQ/n (Li et al. (2013)), where P is the number

of predictors, Q is the number of responses and n is the sample size, which is a huge

number given the fact that P ≈ 560, 000 and a Q ≈ 350, 000, but n = 373. We need

to effectively control the complexity to achieve a satisfactory selection performance.

So to reduce the scale of the problem, we use a few major principle components

(PCs) of each brain region and of each gene, respectively, in MSGLasso instead of

using the raw voxel level scores and SNP genotypes. We interpret the selected PCs

as the evidence of associations between their representative brain regions and genes.

The advantage of using the principle components analysis (PCA) is two-fold. First,

it helps reduce the dimensions and improve the efficiency of group selection. We

emphasize that the first stage group selection serves only as a screening procedure. It

aims to rule out the unimportant region-to-gene group signals. Secondly, the major

PCs explain the largest variations across the sample, so they catch the essential

information contained in the data. Also since PCs are orthogonal (independent) to

each other, they avoid the complications from collinearity in the model.

We use the first five PCs for each brain region and up to the first twenty PCs for

each gene in the first selection stage. Figure 3.2 (a) shows the percentage of total

variation explained by the first five PCs in each brain region. Most of the regions

have more than 70% of their variations explained by their first five PCs. As an
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illustration, Figure 3.2 (b) shows the percentage of variation explained by up to the

first 20 PCs in each gene on chromosome 20. Most of the genes have more than

80% of variations explained by their first up to 20 PCs. Seven out of 800 genes on

chromosome 20 have less than 60% of variations explained by their first 20 PCs.

For those genes, we still only include their first 20 PCs in the analysis, to keep the

total number of gene PCs on each chromosome in a handleable scale. It could limit

the power of detecting the effects of such genes and further separate investigation

focusing only on those genes might be needed.

We then run the MSGLasso using the major PCs to select the important region-

to-gene associations. To avoid the complexity and reduce the computational burden

from cross validation in selecting the optimal tuning parameters, we instead use the

method of stability selection (Meinshausen and Bühlmann, 2010) from 100 boot-

strapped data sets. Meinshausen and Bühlmann (2010) suggested to use a fixed set

of tuning parameter values on re-randomized data sets. As long as the proposed

tuning parameter values are from a reasonable range, the variable selection results

are quite stable. We select those region-to-gene pairs with at least 75% stability

selection frequency in the second stage analysis.

Figure 3.3 shows stability selection frequencies for several brain regions across

the whole genome. For example, (a) is for the gene PC effect selection frequency

for region CERHEM(L), where gene RIN2 has two independent PCs with selection

frequencies more than 75% and is therefore selected into the second stage analysis for

within voxel-to-SNP level selection, among a few others. In (b) and (c), gene×AD

interaction effect selection frequency on regions BA39(L) and BA39 is plotted. where

genes MED1 and COL9A3 are selected, among a few others. In (d), gene×MCI

interaction effect on region BA17 is plotted and gene PRDM15 is selected into the

second stage.
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(a)

(b)

Figure 3.2: (a): percent of variation explained by the first 5 region PCs for the
106 regions. (b): percent of variation explained by up to the first 20 gene PCs for
chromosome 20.

3.3.2 Second selection stage: voxel-wise-SNP-based fine mapping on the

selected region-gene pairs using the multivariate lasso

In the second stage, for each region-gene pairs selected from the first stage, we

further zoom in to look at the associations at voxle-SNP level. For each such region-

gene pair, we fit a multivariate multiple linear regression model regularized with only

the lasso penalty, where the response variables are the original voxel intensity scores
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(a) Region: CERHEM(L)

(b) Region: Superior parietal cortex BA39(L)

(c) Region: Superior parietal cortex BA39

(d) Region: Occipital cortex BA17

Figure 3.3: Example Manhattan plots of region-gene select frequencies for each
example region across the genome. (a) gene PC effects. (b) and (c) gene PC×AD
interaction effect. (d) gene PC×MCI interaction effect.

and predictors are the union of SNP genotypes of all the selected genes (w.r.t. the

selected region) on a single chromosome. The objective function of the multivariate

lasso is simply that of the MSGLasso without the group lasso penalty:

argmin
B

1

2n
∥Y − XB∥22 + λ

∑
β∈B

|β|1. (3.4)

To run the multivariate lasso using MSGLasso, just set the whole regression coeffi-

cient matrix as one single group and set the group lasso tuning parameter for that

group to be zero.
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Figure 3.4 shows some gene effects on the selected regions. The effect types are

represented in color: blue for gene effect, green for gene-to-AD interaction effect

and yellow for gene-to-MCI interaction effect. Voxels with more than 80% selection

frequency on the most significant SNP (with the most significant p-value obtained

from the later estimation stage) are highlighted in red, so to indicate the top SNP’s

effect regime on the region.

3.3.3 Stability selection and control for false discoveries

Stability selection was used in both selection stages. The reason that we adopt

the stability selection is two fold. First, it reduces computing cost in choosing

tuning parameters for such large data sets. Secondly, stability selection provides a

quantitative way to govern the number of false discoveries (NFD).

Illustrated in Figure 3.5, stability selection is very robust against different tuning

parameter values in terms of consistently selecting the important variables. In the

figure, we plot the selection path of region CERHEM(L) and region occipital cortex

BA19(R) on chromosome 20 in the first stage selection. The vertical axis is the

select frequency out of 100 bootstrap data sets and the horizontal axis is for the

different settings of the tuning parameters. We fixed the ratio of the individual

level tuning parameter to the group level tuning parameter at 10. The highlighted

selection paths are for the top regression coefficients with the largest absolute values

using the proposed tuning parameter values in the actual analysis. It can be seen

that as long as the proposed tuning parameters are not ridiculously off, i.e., neither

too large which shrink almost everything to zeros or too small which barely shrink

anything, the top signals are consistently selected from the bootstrap data sets. The

stability selection can be easily implemented parallelly on a multi-core computing

cluster, therefore saves more computation time.

Meinshausen and Bühlmann (2010) showed that the expected number V of falsely
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selected variables is bounded from above by

E(V ) ≤ 1

2πthr − 1

q2

P
, (3.5)

where πthr is the thresholding frequency used for the selection, which in our case is

75% for the first stage selection and 80% for the second stage selection, and q is the

average number of selected variables. In our study, the typical numbers of selected

variables are from tens to hundreds out of tens of thousands of variables in total,

which yield q2/P < 1. Therefore the error number per chromosome is controlled by

< 1/(2 × 0.75 − 1) = 2, i.e., in the first stage selection, for each brain region PET

PC, we will select at most 1 falsely discovered gene PC per chromosome on average.

3.3.4 Estimation stage: post-selection inference on the selected signals

Using stability selection in the above second selection stage, for each voxel we

assign its important predictors to be the SNPs with selection frequency greater than

80%. Then we apply a multiple linear regression for each voxel with its important

predictor SNPs. If for some voxel, the number of selected important SNPs exceeded

the sample size, a more stringent selection frequency threshold could be applied. In

fact, the numbers of important SNPs for all selected voxels are much smaller than

the sample size in our brain-GWAS, so only ordinary multiple linear regressions are

used for post-selection inference, and we obtain the usual p-values for each selected

voxel-to-SNP pair. Table 3.1 reports all the voxel-to-SNP level signals that satisfy

both the criteria of having more significant p-values than 10−6 and greater selection

frequencies than 80%. Since there is no any SNP-MCI interaction effect satisfying

both criteria, we provide a list of a few top MCI interactions in Table 3.2. Figure

3.7 gives the most significant SNP’s p-value(s) and its selection frequency pattern

on the selected region for each of those signals in Table 3.1 and Table 3.2.

Compared to the conventional single-voxel-to-single-SNP approaches with multi-

ple comparisons, our two-stage selection approach is less conservative. We illustrate

this advantage in Figure 3.6 with an example signal between BIN2 gene (with 90
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SNPs) and region CERHEM(L) (with more than 5000 voxels). The single-voxel-to-

single-SNP approach is carried out by simple linear regressions on each voxel-to-SNP

pair along with Bonferroni criterion for multiple comparison corrections. None of

the signals survives the multiple comparison justification. In contrast, our two-

stage-MSGLasso-plus-stability-selection is much less conservative since the number

of hypothesis tests in the post-selection inference is significantly reduced.

3.4 Results

Table 3.1 provides a list of top signals that meet both criteria of p-value≤ 10−6

and selection frequency≥ 80%. Table 3.2 provides some other top gene-to-AD and

gene-to-MCI interaction signals that meet both criteria of p-value≤ 10−5 and selec-

tion frequency ≥ 80%. The selected brain regions and strength of the gene effects

listed in Table 3.1 and 3.2 are also illustrated in Figure 3.4 and 3.7, respectively.

Our brain-wide GWA study identifies some brain regions that have either signifi-

cant gene effects or gene-AD interaction effects. For example, many regions, such as

BA40(L), BA39(R), BA39(L), BA7(R) and BA7(L), in superior parietal cortex are

found associated with some genes or have their associations significantly modified

by the AD status. Mills et al. (2013) reported associations between lipid metabolism

in superior parietal cortex and alternatively spliced isoforms in RNA transcriptome.

Other identified regions include BA18(R), BA18(L), BA19(R), BA19(L) in occipital

cortex (Braskie et al., 2011) and BA20(R), BA20(L), BA21(R), BA21(L), BA22(R)

and BA22(L) in temporal cortex (Stein et al., 2010b; Risacher et al., 2009; Braskie

et al., 2011).

We also confirm some of the genetic findings in the literature. For example,

Wang et al. (2013) found that inhibiting IL8RB (CXCR2 ) can turn down anyloid-β

production and protect neural cells. Nakamura et al. (2006) found a similar effect of

COLEC12 (SRCL) gene in AD samples. Other direct supports on AD interactions

include Burns et al. (2011) with SAKCA (KCNMA1 ) gene, Xie et al. (2010) with

PRIMA gene, Nakamura et al. (2006) with COLEC12 gene and Broer et al. (2011)
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with HSPA13 gene.

Some gene-to-AD interaction effects are found in the literature to be associated

with other cognitive-related disease phenotypes such as autism and hearing impair-

ment. Such cases include AK096399 gene in Cannon et al. (2010), GJB2 gene

in Lingala et al. (2009), SNX29 gene in Teasdale and Collins (2012), MED1 gene

in Giordano and Macaluso (2011) and Wong et al. (2013), and COL9A3 gene in

Solovieva et al. (2006) and Asamura et al. (2005).

We also confirm some gene effects on brain metabolizing. For example, CD-

C42EP3 gene encodes certain family of guanosine triphosphate metabolizing pro-

teins and the gene is weakly expressed in brain (provided by RefSeq, Jul 2012); PAC-

S2 plays a role in membrane traffic with tumour-necrosis-factor-related apoptosis-

inducing-ligand (TRAIL) induced apophasis (Aslan et al., 2009), which in turn can

cause human brain cell death (Nitsch et al., 2000).

The other interesting findings are about indirect effects of genes on certain chem-

ical compound or protein translocation, which are in turn associated with AD. For

example, Dai et al. (2013), Sakamoto and Holman (2008) demonstrate that TBC1D4

plays an role in regulation of GluT4 traffic, which, on the other hand is associated

with AD (Talbot et al. (2012), Yang et al. (2013)). Nolte et al. (2006), Lu et al.

(2007) together give a chain of relationships of HOXD4 gene to Pax6 protein to

AD. Heikaus et al. (2002) states that Raloxifene results in increased expression of

GJB2 (CX26 ) mRNA and Yaffe et al. (2005) talked about the prevention effect of

Raloxifene on cognitive impairment.

There are also some novel signals for those we didn’t find trace of evidence

support in the literature, such as associations between BC007399 gene and BA39(R)

in the superior parietal cortex, between GALNT4 gene and BA19(L) in occipital

cortex and between RIN2 gene and CERHEM(L).
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3.5 Discussion

Most of the previous brain-wide GWAS’s (Stein et al., 2010a; Hibar et al., 2011)

focus on fMRI images. Since PET image measures brain metabolism, our study

features on different perspective of human brain than those conveyed from fMRI

images. To the best of our knowledge, this is the first structured brain-wide GWAS

using PET images.

The overall computational cost of our two-stage approach is lower than most

voxel-to-SNP approaches (Stein et al., 2010a) on a similar data scale, because our

approach rules out the unimportant region-to-gene signals in its first stage and only

focus on the selected region-to-gene pairs in the later analysis. The most computa-

tional burden of our approach comes from the stability selections performed on large

amount of bootstrap samples and from running MSGLasso on either vary large re-

gions (with tens of thousands of voxels) or very large genes (with hundreds or more

SNPs). To save the total computational time, we parallelized the computational

jobs on multi-core UNIX clusters.

It is well known that some genes are associated with AD status (Kukull et al.,

1996; Biffi et al., 2010). The genes associated with AD are not necessarily associated

with brain metabolism. In our analysis, we did not find that any top AD-associated

genes reported on http://www.alzgene.org has direct effects on brain metabolism.

50



IL8RB
rs6436025

CDC42EP3
rs11692666

AK096399
rs1425765

TM7SF4
rs3793357

SAKCA
rs16934331

GALNT4
rs12426089

AK091766
rs17676517

BC007399
rs734148

GJB2
rs4769088

PACS2
rs1008628

PRIMA1
rs4900194

AK310041
rs11635997

SNX29
rs10500383

AK096982
rs257868

MED1
rs4611492

COLEC12
rs559709

COL9A3
rs856945

RIN2
rs2255255

PRDM15
rs9978626

HSPA13
rs2822613

HOXD4
rs2072590

AK096399
rs10106137

TBC1D4
rs1864726

GPR108
rs2250656

BTG3
rs2849896

Figure 3.4: Gene effect on regions for signals with top SNP’s p-value less than 10−6

in Table 3.1 and the signals in Table 3.2. The red highlighted voxels in each region
are voxels with at least 80% stability selection frequencies on the listed SNP within
the listed gene, the darker the red color the higher the stability select frequency.
Regions are highlighted in the colors: (i) blue - the gene effects; (ii) green - the
gene-to-AD interaction effects; (iii) yellow - the gene-to-MCI interaction effects.
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(a) (b)

(c)

Figure 3.5: Illustration of robustness to the tuning parameters of stability selection
(a) Gene effect of region CERHEM(L) PCs on chr20 gene PCs. (b) Gene AD
interaction effect of region occipital cortex BA19(R) PCs on chr20 gene PCs. (c)
Gene MCI interaction effect of region occipital cortex BA19(R) PCs on chr20 gene
PCs. Each curve is for the selection path of a regression coefficient. The red curves
are election paths for the top regression coefficients with the largest absolute values
using the proposed tuning parameter values in the actual analysis.
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Figure 3.6: Comparing the MSGLasso to the conventional approach of looking at
each voxel-to-SNP pair at a time. The upper panel is the selection and estimation
results (− log10 p-values) from our two stage approach, focusing on region CER-
HEM(L) and gene RIN2. The lower panel is the result (− log10 p-values) from sim-
ple linear regressions on each voxel-to-SNP pair on the same region and gene. The
triangles on the left side indicating the correlation pattern across the 85 SNPs in
gene RIN2.
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Figure 3.7: The most significant SNPs’ effects, their − log10(p−values) on voxels
across the associated region, and their selective frequency pattern on the region.
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rü
gg
em

ei
er

(2
00
4)

B
T
G
3

2
1

2
6

9
9
.5
%

rs
2
8
4
9
8
9
6

6
.3
e-
0
6

P
re
-m

o
to
r
co

rt
ex

B
A
6
(L

)
G
×
M
C
I

C
ar
so
n
(2
00
7)

62



CHAPTER IV

A cure model for analyzing longitudinal brain

PET images and MCI conversions

4.1 Introduction

This chapter is motivated by the ADNI longitudinal positron emission tomogra-

phy (PET) brain imaging study on mild cognitive impairment (MCI) patients. MCI

is a brain function syndrome that involves cognitive impairments (Petersen et al.,

1999). MCI patients may not meet neuropathologic criteria for Alzheimer’s disease

(AD), but they may be in a transitional stage of evolving AD. The MCI disease

diagnostics and high-resolutional 3D PET brain imaging scans for each of the 236

MCI subjects were recorded at registration time (baseline) and then were followed

up at month 6, 12, 18, 24, 36, 48, 60 or 72 thereafter. During the followup, some

of the MCI patients converted to AD patients. Some subjects had missed certain

follow-up visits and some were censored at certain follow-up time point. According

to the AD clinical literature, it is believed that part of the MCI population will

never convert to AD (Petersen et al., 2009). Therefore, it is natural to assume that

the MCI population consists of a mixture of a non-cure portion with people who,

given long enough follow-up, will eventually (but may not be observed in the study

period) convert from MCI to AD, and a cure portion with people who will never

experience the conversion. The cure portion has also been addressed as long-term

survival portion, or immune portion in survival literature. Hereafter non-cure refers

to AD conversion and cure refers to MCI without AD conversion ever.
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The goals of the study were: (1) to select and estimate important imaging pre-

dictor voxels associated with AD conversion status, (2) to select and estimate the

effect sizes of the important imaging predictors whose longitudinal profile patterns

are associated with the time to AD from MCI diagnosis in non-cure group, and (3)

to predict whether a new MCI subject will eventually convert to AD and when if

it were to happen based on patient’s PET scans. To accomplish these goals, we

introduce in this chapter a variable selection method for a cure-rate discrete-time

survival model in high-dimensional settings.

The studies of cure-rate survival models can be traced back to 60 years ago.

Boag (1949) and Berkson and Gage (1952) introduced mixture cure rate models.

Yakovlev et al. (1993) developed the so-called bounded cumulative hazard (BCH)

model, which models the latent number of metastasis competent tumor cells that

were left active after the initial treatment for a cancer patient using the Poisson

distribution. Parametric and semi-parametric versions of both types of models had

been widely studied (Mendenhall and Hader, 1958; Farewell, 1982; Hougaard, 1986;

Kuk and Chen, 1992; Laska and Meisner, 1992; Taylor, 1995; Yakovlev and Tsodikov,

1996; Maller and Zhou, 1990; Ibrahim et al., 2001; Law et al., 2002). Some effort

has also been focused on variable selection for cure-rate models (Liu et al., 2012).

However, very little attention has been paid to variable selection for cure-rate models

in high-dimensional settings. In our study, both the cure status and the non-cure

survival can depend on high-dimensional imaging predictors. We adopt a mixture-

model approach, which allows either one of the components or both to be high-

dimensional. We use a logistic link function for the cure rate component, which is

one of the most commonly used link functions in mixture cure-rate model (Taylor,

1995; Ibrahim et al., 2001).

In our study, the AD conversion status were observed only in a set of fixed discrete

time intervals determined by the study design. Therefore the commonly used partial

likelihood (Cox, 1975) approach for the proportional hazards model is not applicable

as it was developed for the continuous survival times. This requires building a
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discrete time survival model for grouped interval-censored survival data. A brief

literature review of the discrete-time survival models can be found in, for example,

Kalbfleisch and Prentice (2002); Allison (1982) and Singer and Willett (1993). We

use a discrete time Cox proportional hazards (PH) model, and use the full likelihood

for the non-cure discrete survival time based on multinomial distributions (Prentice

and Gloeckler, 1978; Li et al., 2008).

At the end, the logistic model for cure-rate and the PH model for non-cure AD

conversion probability in each time interval are integrated into building a complete

likelihood, given the latent non-cure indicator variable. Thus, an EM algorithm

can be employed to search for the penalized maximum-likelihood estimator (MLE).

Variable selection for either the cure-rate or the non-cure survival is carried out via

imposing the elastic net penalty that shrinks the effects of unimportant predictors

to zero, and meanwhile takes into account the spatial correlations. Coordinate

descent and majorization minimization algorithms are integrated to speedup the

optimization procedure.

4.2 ADNI longitudinal PET imaging data

Uorodeoxyglucose (FDG) PET imaging data used in this study were obtained

from the ADNI database (adni.loni.ucla.edu). When the ADNI project was first

launched in 2003, one of the primary goals was to test whether serial magnetic res-

onance imaging (MRI) or PET images, together with other clinical and neuropsy-

chological assessments can be used to help diagnose and measure the progression of

MCI to AD.

Through the three phases of ADNI study, FDG PET scans and clinical diagnosis

were collected longitudinally for each participant. Subjects were classified into three

groups: AD, MCI and NC based on their disease status diagnosed at their initial

visits. During the first phase of ADNI study from year 2003 to 2010, image scans

and diagnosis were performed at months 6, 12, 18, 24, 36 for MCI subjects. With

additional funding, the ADNI study moved into the second phase, the ADNI GO
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study, in year 2010 for an additional 2-year period. Moreover, while the ADNI

GO project continues, ADNI launched its third phase in 2011, known as ADNI 2, to

further investigate MCI-to-AD conversions. As a result, the MCI subjects continued

to receive follow-up at months 48, 60 and 72 till March 2013, when our analytical

data were acquired. Among the 236 individuals who were diagnosed as MCI at their

baseline visits, 106 converted to AD at certain point during their follow up.

Table 4.1 lists the number at risk and the number of MCI-to-AD conversions

diagnosed at each followup time point. The followup image scans of six individuals

who belong to the converter group according to their clinical diagnosis were all

missing, thus these individuals are excluded from the analysis.

At each visit of a subject in the study, a FDG dose of 5.0 ± 0.5 mCi was first

injected, and then a subsequent of post-injection PET scans were performed from 30

to 60 minutes acquiring 6 five minute frames. The PET scans were preprocessed by

being co-registered to the first frame image file and the six co-registered frames were

averaged to create one single 30 minute PET image, then the averaged PET scan

was reoriented into a standard 160 by 160 by 96 voxel image grid with 1.5 mm cubic

voxels. In our analysis, we further re-scaled the voxels in each image by dividing the

average values in “Pons” and “Cerebellar vermis” so to achieve a desirable contrast

between the AD and MCI images.

Table 4.1: Follow up status

Time (month) baseline 6 12 18 24 36 48 60 72
# at risk 236 229 206 188 165 145 134 128 127
# of converters 0 7 23 18 23 20 11 6 1

Total # of subjects: 236
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4.3 Methods

4.3.1 Mixture cure-rate models

As suggested by the AD clinical literature, we assume that the study sample

contains two sub-samples, one with people who will eventually experience the event

given long enough followup time (none-cure portion) and one with people who n-

ever experience the event (cure portion). This assumption is also suggested by the

estimated survival curve (Figure 4.1). Samples from the none-cure population can

either experience the event or be censored. Samples from the cure population are

all censored. The none-cure proportion π is a population parameter to be inferred

from data, which can depend on baseline covariates Z and hence is denoted as π(Z).

The population survival function then can be written as

Spop(t|X,Z) = π(Z)S(t|X) + 1− π(Z),

where X are longitudinal imaging predictors. We assume a logit model π(Z) =

exp(γ′Z)/(1+exp(γ′Z)) for the non-cure rate, which is commonly used in the mixture

cure-rate models along with other popular link functions such as loglog and probit

links (Cai et al., 2012; Peng, 2009). Here the regression coefficient vector γ contains

an intercept for the average cure rate when all baseline covariates are valued at zaro.

Mixture cure models have the advantage that the cure portion and the none-cure

portion survival can be modeled separately as we will demonstrate in details shortly.

4.3.2 Discrete-time survival models

For the non-cure portion, suppose the event is observed in one of J fixed discrete

time intervals: (tj−1, tj], j = 1, · · · , J . Assume that t0 = 0 and tJ = +∞. Let

S(r) = P (T > tr) be the survival probability beyond the rth time interval. Set

S(tJ) = S(+∞) = 0. Let X(t) be the generic notation for time varying covariate

process.
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Figure 4.1: Discrete KaplanMeier estimated survival curve (solid line) and its 95%
confidence interval (dotted lines).

We assume a Cox proportional hazards model in each time interval, i.e.

λ(t|X(t)) = λ0(t) exp{β′X(t)} for tj−1 < t ≤ tj, j = 1, · · · , J,

where β is the regression coefficient vector also with an intercept. Further assume

that the time varying covaraites are predictable process with constant values in

each time interval, X(t) = X(tr−1) for tr−1 ≤ t < tr. Then the cumulative hazard

function at tr given the covariate history up to time tr, X̄(tr), is

Λ(r|X̄(t)) =

tr∫
0

λ0(u) exp{β′X(u)}du

=
r∑

j=1

tj∫
tj−1

λ0(u) exp{β′X(u)}du =
r∑

j=1

tj∫
tj−1

λ0(u) exp{β′X(tj−1)}du

=
r∑

j=1

exp{β′X(tj−1)}DΛ0j =
r∑

j=1

exp{λj + β′X(tj−1)},
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for r = 1, · · · , J , where DΛ0j = Λ0(tj) − Λ0(tj−1) =
∫ tj
tj−1

λ0(u)du is the change

of baseline cumulative hazard function in the jth interval for j = 1, · · · , J − 1,

DΛ0J = +∞, and λj = log(DΛ0j). The survival function at tr is

S(r|X̄(tr)) = exp{−Λ(r|X̄(tr))} = exp

{
−

r∑
j=1

exp{λj + β′X(tj−1)}

}
. (4.1)

Let Γi indicate the time interval that either event or censoring happens for sub-

ject i, and ∆i indicates whether subject i experienced the event (∆i = 1) or was

censored (∆i = 0) in the interval Γi. Assume the censoring mechanism is indepen-

dent of the converting time. Then given Γi, ∆i and Xi(t), the non-cure likelihood

function for subject i can be written as

Li(θ; Γi = ri,∆i = δi,Xi(t)) = {P (tri−1 < Ti ≤ tri)}
δi {P (Ti > tri)}

1−δi

= {S(ri − 1)− S(ri)}δi {S(ri)}1−δi

=

{
1− S(ri)

S(ri − 1)

}δi { S(ri)

S(ri − 1)

}1−δi

{S(ri − 1)}

= (1− exp{− exp{λri + β′Xi(tri−1)}})δi (exp{− exp{λri + β′Xi(tri−1)}})1−δi

× exp

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}

}
,

with θ = (λ1, · · · , λJ−1, β
′)′ being the vector of parameters.

4.3.3 Variable selection for discrete-time cure-rate survival models using

the full likehood

Let Y = (Y1, · · · , Yn) be a vector of latent non-cure indicator variables with Yi

indicating whether the ith individual is in the non-cure portion (Yi = 1) or in the

cure portion (Yi = 0). Then given values of Y = (y1, · · · , yn) and the observed data

Obs = (Z,X(t),Γ,∆), the complete likelihood can be written as

LC(λ, β, γ|Obs, y) =
n∏

i=1

(1− π(Zi))
1−yi π(Zi)

yi {Li(θ; Γi = ri,∆i = δi,Xi(t))}yi ,

(4.2)
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and the observed likelihood given Obs is

LO(λ, β, γ|Obs) =
n∏

i=1

[{
π(Zi)Li(θ; Γi = ri,∆i = 1,Xi(t))

}δi

×
{
1− π(Zi) + π(Zi)Li(θ; Γi = ri,∆i = 0,Xi(t))

}(1−δi)
]

=
n∏

i=1

[{
π(Zi)

(
1− exp{− exp{λri + β′Xi(tri−1)}}

)
× exp

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}
}}δi

×
{
1− π(Zi) + π(Zi)

{
(exp{− exp{λri + β′Xi(tri−1)}})

× exp{−
ri−1∑
j=1

exp{λj + β′Xi(tj−1)}}
}}(1−δi)

]
. (4.3)

The derivation of (4.3) is given in detail in the appendix. EM algorithm can

be conveniently employed to find the penalized MLE, the maximizer of (4.3) with

an additional penalty term. It involves maximizing the penalized expected com-

plete likelihood (4.2) conditioning on estimated yi in each iteration of EM steps. A

nice property of the M step is that it can be undertaken with respect to γ and β

separately, thus simplifies the maximization steps in the EM. The logarithm of the

expected complete likelihood can be written as l = l1 + l2, with

l1 =
n∑

i=1

ŷi log[π(Zi)] + (1− ŷi) log[1− π(Zi)], (4.4)

l2 =
n∑

i=1

ŷiδi log (1− exp {− exp {λri + β′Xi(tri−1)}}) (4.5)

+
n∑

i=1

ŷi(1− δi) {− exp {λri + β′Xi(tri−1)}}

+
n∑

i=1

ŷi

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}

}
,

where parameters γ’s are only involved in l1 and β’s are only involved in l2, and ŷi

is conditional expectation of Yi.

For the case that both predictors for the cure rate and the non-cure survival are

70



of high-dimensional, penalized maximization is applied in M-steps for the purpose

of variable selection. We provide the details of each EM step in the following.

1. E-steps.

Given the observations O = (r, δ,X,Z) and parameter estimates from the kth

step Θ(m) = (β, γ;λ) with λ = (λ1, · · · , λJ−1), the conditional expectations of the

latent variables Yi, i = 1, · · · , n, are

ŷ
(m)
i = E(Yi|O,Θ(m))

= δi + (1− δi)
π(Zi)S(ri|Yi = 1, X̄i(tri))

1− π(Zi) + π(Zi)S(ri|Yi = 1, X̄i(tri))
(4.6)

with S(ri|Yi = 1,Xi(t)) as given in (4.1) (Cai et al., 2012).

2a. M-steps: updating the nuisance parameters.

When fix β, the estimates of the nuisance parameters λ1, · · · , λJ−1 in each EM

step can be profiled out and need to satisfy the score equations:

∂l2/∂λs = 0, s = 1, · · · , J − 1.

The Newton-Raphson method can be used to solve the estimating equations.

The first order partial derivative of l2 with respect to each λs, s = 1, · · · , J − 1, is:

∂l2
∂λs

=
n∑

i=1

ŷiδi
exp{−his}his
1− exp{−his}

I(s = ri)−
n∑

i=1

ŷi(1−δi)hisI(s = ri)−
n∑

i=1

ŷihisI(s < ri),

where his = exp{λs + β′Xi(ts−1)}. Let

bis =
his exp{−his}
1− exp{−his}

(
1− his

1− exp{−his}

)
, 1 ≤ i ≤ n, 1 ≤ s ≤ J − 1.

Then the second partial derivatives are

∂2l2
∂λ2s

=
n∑

i=1

ŷiδibisI(s = ri)− ŷi(1− δi)hisI(s = ri)− ŷihisI(s < ri) (4.7)

∂2l2
∂λs∂λt

= 0, s ̸= t.
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Let Iλ be the (J − 1) × (J − 1) matrix of −∂2l2/∂λs∂λt, 1 ≤ s, t ≤ J − 1, then

at each M-step, the nuisance parameters λ = (λ1, · · · , λJ−1) can be updated by the

Newton-Raphson method till convergence through

(λ
(k)
1 , · · · , λ(k)J−1))

′ = (λ
(k−1)
1 , · · · , λ(k−1)

J−1 ))′ +

{
I−1
λ

∂l2
∂λ

}∣∣∣∣
λ=λ(k−1)

. (4.8)

In real applications, even in the low-dimensional cases, time intervals that con-

tains very few observations could yield very biased estimates. We suggest congre-

gating adjacent such intervals into one bigger interval in such cases.

2b. M-steps: updating γ and β.

In the maximization steps, the following expectations are maximized, plus elastic-

net penalty terms given later, with respect to γ and β, respectively,

l1(γ) =
n∑

i=1

ŷi log[π(Zi)] + (1− ŷi) log[1− π(Zi)], (4.9)

=
n∑

i=1

ŷi(γ
′Zi)− log(1 + exp(γ′Zi)),

l2(β) =
n∑

i=1

ŷiδi log
(
1− exp

{
− exp

{
λ̂ri + β′Xi(tri−1)

}})
(4.10)

+ŷi(1− δi)
{
− exp

{
λ̂ri + β′Xi(tri−1)

}}
+ŷi

{
−

ri−1∑
j=1

exp{λ̂j + β′Xi(tj−1)}

}
.

The first and the second order partial derivatives of l1 with respect to γ are

respectively:

∂l1
∂γj

=
n∑

i=1

ŷiZij −
Zij exp{γ′Zi}
1 + exp{γ′Zi}

,

∂2l1
∂γj∂γj′

=
n∑

i=1

ZijZij′

[
− exp{γ′Zi}
1 + exp{γ′Zi}

+

(
exp{γ′Zi}

1 + exp{γ′Zi}

)2
]
,

with 1 ≤ j, j′ ≤ q, q is the number of variables in Z. And the first and the second

order partial derivatives of l2 with repsect to β are respectively:
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∂l2
∂βk

=
n∑

i=1

[
ŷiδi

exp{−ĥiri}ĥiriXik(tri−1)

1− exp{−ĥiri}
− ŷi(1− δi)ĥiriXik(tri−1)

−
ri−1∑
j=1

ŷiĥijXik(tj−1)

]
,

∂2l2
∂βk∂βk′

=
n∑

i=1

[
ŷiδib̂iriXik(tri−1)Xik′(tri−1)− ŷi(1− δi)ĥiriXik(tri−1)Xik′(tri−1)

−
ri−1∑
j=1

ŷiĥijXik(tj−1)Xik′(tj−1)

]
, (4.11)

with ĥij = exp{λ̂ri+β′Xi(tj−1)}, b̂ij = bij(ĥij) and 1 ≤ j ≤ J−1. And 1 ≤ k, k′ ≤ p,

p is the number of variables in X.

We propose an elastic-net (Zou and Hastie, 2005; Zou and Zhang, 2009) penalized

maximization procedure for the purpose of variable selection, which takes care of

the spatial correlations of the voxel measures. For β, the penalty takes the form

(Yang and Zou, 2013; Zou and Hastie, 2005):

Pen(β) =
∑
k

{
αvk|βk|+

1

2
(1− α)β2

k

}
, 0 < α ≤ 1.

Here vk are adaptive weights and α is a tuning parameter for a balance between the

lasso and ridge penalties. The lasso penalty tends to select independent variables

while the ridge penalty tends to select correlated variables together. The same form

of penalty applies to γ. Specifically, in the high-dimensional setting, we aim to

minimize the following objective functions in the M-steps:

F obj
1 (γ) = − 1

n
l1(γ) + λγ

∑
j

{
αvj|γj|+

1

2
(1− α)γ2j

}
, and (4.12)

F obj
2 (β) = − 1

n
l2(β) + λβ

∑
k

{
αvk|βk|+

1

2
(1− α)β2

k

}
. (4.13)

Minimizing F obj
1 (γ) and F obj

2 (β) are equivalent to optimization problems of max-

imizing l1(γ) subject to (1−a1)∥v∗γ∥1+a1∥γ∥22 ≤ R1 and maximizing l2(β) subject
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to (1 − a2)∥v ∗ β∥1 + a2∥β∥22 ≤ R2 with a1 = a2 = 1−α
1+α

and some positive real

numbers R1 and R2 (Zou and Hastie, 2005; Yang and Zou, 2013), where ∗ denotes

component-wise multiplication of two vectors.

The following theorem states that the expectations −l1(γ) and −l2(β) in the

above equations are both smooth convex functions. This, together with the fact

that the Elastic-net penalty function is convex and separable in terms of either γ or

β, suggests the use of coordinate descent algorithm in optimizing (4.12) and (4.13).

Theorem IV.1. The expectation functions l1(γ) and l2(β) in equations (4.9) and

(4.10) are concave functions with respect to γ and β respectively. Further more, the

conditional expectation of the complete likelihood function (4.2) is a joint concave

function with respect to (γ, β).

The following theorem IV.2 states that the second partial derivatives of −l1(γ)

with respect to each γj are uniformly bounded from above. With this property,

(4.12) can be minimized using the majorization-minimization coordinate descent

algorithm (Yang and Zou, 2013), which does not require inner iterations to solve for

the fixed point solution to the Karush-Kuhn-Tucker score equation in each step of

the coordinate descent and therefore much faster than the conventional coordinate

descent algorithm.

Theorem IV.2. The second partial derivative terms −∂2l1(γ)/∂γ2j are uniformly

bounded from above for all γ ∈ Rq.

We will briefly summarize majorization-minimization coordinate descent algo-

rithm in the following. Suppose at the mth step, we need to update the jth coordi-

nate by minimizing the following objective function with the other coordinates fixed

at their values obtained in the (m− 1)th step:

g(γj) = − 1

n
l1(γj|γ−j = γ̂

(m−1)
−j ) + λγ

{
αvj|γj|+

1

2
(1− α)γ2j

}
.
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1. Set the majorization function to be

q(γj|γ̂(m−1)) = − 1

n
l1(γ̂

(m−1))− 1

n
∂jl1(γ̂

(m−1))(γj − γ̂
(m−1)
j ) +

Dj

2n
(γj − γ̂

(m−1)
j )2

+λγ

{
αvj|γj|+

1

2
(1− α)γ2j

}
,

where |∂2El1(γ)/∂γ2j | ≤ Dj is the uniform bound of the second partial derivative

with respect to jth coordinate.

2. At each updating step, we optimize the majorization function by

γ̂
(m)
j =

S
[
Dj γ̂

(m−1) + ∂jl1(γ̂
(m−1)), nλγαvj

]
Dj + nλγ(1− α)

, (4.14)

where S[·, ⋄] = (| · | − ⋄)+sgn(·) is the soft-thresholding function.

3. Then from the majorization and minimization, we have

g(γ̂
(m)
j ) ≤ q(γ̂

(m)
j |γ(m−1)) ≤ q(γ̂

(m−1)
j |γ(m−1)) = g(γ̂

(m−1)
j ).

However −l2 does not have the property of bounded second derivatives. We use

a quadratic programming approach (Tibshirabi, 1997; Engler and Li, 2009; Hastie

and Tibshirabi, 1990) to optimize (4.13). Specifically, let η = β′X, µ = ∂l2/∂η,

A = −∂2l2/∂η∂η′ and z = η + A−1µ. Notice that λ and η always show together in

the exponential terms in l2, similar to the calculation of ∂2l2/∂λ∂λ
′ in (4.7), it is

easy to see that A is a diagonal matrix. The first order Taylor series expansion of −l2

can then be expressed as (z−η)′A(z−η). Minimizing F obj
2 (β) can be approximated

by solving the penalized weighted least square problem

argmin
β

1

n
(z − η)′A(z − η) + λβ

∑
k

{
αvk|βk|+

1

2
(1− α)β2

k

}
. (4.15)

Set Q = A1/2 and let z̃ = Qz, X̃ = QX. Then (4.15) can be replaced by the

75



unweighted elastic net least square problem

argmin
β

1

n
(z̃ − β′X̃)′(z̃ − β′X̃) + λβ

∑
k

{
αvk|βk|+

1

2
(1− α)β2

k

}
,

which yields

β̂k =
S
[
(z̃ − β′

−kX̃)′X̃.k, nλβαvk

]
∥X̃.k∥2 + nλβ(1− α)

, (4.16)

where S[·, ⋄] = (| · | − ⋄)+sgn(·) is the soft-thresholding function and β′
−k is β with

its kth entry replaced by zero.

Notice that A, and therefore z̃ and X̃, also depend on β, so an inner loop of

iteration is needed for solving the fixed point solution of (4.16) when updating the

kth entry. Empirically, we found it still converges to the global minimizer without

the inner loops. Similar to the idea of the mixed coordinate descent algorithm (Li

et al., 2013), update of β̂ in one step without inner loop decreases the objective

function. Even though the amount of decrease is less than that from the fixed point

solution update with the inner iteration, but overall, updating (4.16) without inner

loops converges to the same global minimizer and it saves the computational time

significantly.

4.4 Computational algorithms

When both Z and X are of high-dimensional, the algorithm for variable selection

goes as: (i) Initialize β̂, γ̂, λ̂, y. We use zeros as initial values in our numerical

studies. (ii) In the E-step, update the conditional expectation of y by (4.6). (iii) In

the M-step, update λ̂ by iterating (4.8), update β̂ by iterating (4.16) and update γ̂

by iterating (4.14). Recall the algorithms used for those three updates are Newton-

Rhapson, quadratic programming and majorization-minimization. (iv) Repeat (ii)

and (iii) until β̂, γ̂ and λ̂ all converge.

In the high-dimensional settings, we use 5-fold cross validation to select the

tunning parameters λβ and λγ based on predicted observed log likelihood values. For

comparison, we also tried variable selection via the stability selection (Meinshausen
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and Bühlmann, 2010), which gives similar results on variable selection. Since the

stability selection does not provide estimation of the regression coefficients, which

are needed for prediction, therefore its results are not reported here. The value of

α should be determined based on how strong the image voxels are correlated. In

our numerical studies, we used a fixed α value in each setting according to the prior

knowledge on cross-predictor correlations (Zhou et al., 2010).

The above algorithm for high-dimensional and together with algorithms for cases

when either or both of Z and X are of low-dimensional using Newton-Raphson

algorithm are programmed into an R package “SeCuredSurv” (SElection for CURE-

rate Discrete-time SURVival models), and will be uploaded on CRAN.

4.5 Simulation studies

In this section, we investigate the performance of the proposed method on simu-

lated data sets mimicking the structure of the longitudinal PET imaging data. We

assume that the cure rate only depends on baseline image. Also we assume that α

value to be the same for (4.12) and (4.13) since the cross-voxel correlation level for

images at different time points would likely be similar for the same individual.

Three high-dimensional simulation settings are studied, one with independent

imaging predictors and the other two with spatially correlated predictors with an

AR(1) correlation coefficient ρ = 0.5 and ρ = 0.9 respectively. Images are also

longitudinally autocorrelated following an AR(1) model with a serial correlation

coefficient ρ = 0.3. Each data set contains 500 subjects observed or censored on 6

discrete time intervals. There are 1000 voxels in each image, with the true parameter

values β1 = · · · = β20 = 2, β21 = · · · = β40 = −2, β41 = · · · = β1000 = 0; γ1 = · · · =

γ100 = 0, γ101 = · · · = γ120 = 2, γ121 = · · · = γ140 = −2, γ141 = · · · = γ1000 = 0;

(λ1, · · · , λ5) = (−2,−1, 0, 0, 0). The non-cure indicator variable yi for subject i was

randomly drawn from a Bernoulli distribution with probabilities of success π(Zi).

For a non-cured subject, the probability of conversion being observed in each time

interval is calculated from (4.1), then the event time interval is randomly drawn from
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Table 4.2: Variable selection results out of 100 replicated data sets

FN FP SE(%) SP(%)
Independent variables:

γ 13.18(3.13) 62.60(7.91) 67.05(7.82) 93.48(0.82)
β 12.08(3.40) 89.60(9.24) 69.80(8.50) 90.67(0.96)

Correlated variables(ρ = 0.5):

γ 6.46(3.52) 1.91(1.79) 83.85(8.79) 99.80(0.19)
β 7.96(2.40) 73.66(10.82) 80.10(6.00) 92.34(1.13)

Correlated variables(ρ = 0.9):

γ 0.00(0.00) 0.66(0.94) 100.00(0.00) 99.93(0.10)
β 0.01(0.10) 3.09(2.12) 99.98(0.25) 99.68(0.22)

• FN=false negative, FP=false positive, SE(%)=sensitivity in percentage,
SP(%)=specificity in percentage.
• Numbers in parentheses are stand errors of the estimates.

a multinomial distribution with six cells. Censoring time intervals are generated from

a discrete uniform subdistribution at the first J − 1 time intervals combined with a

truncation at the last time interval, which yield a censoring rate about 15%− 20%.

For each setting, we generate 100 replicated data sets. Model fitting is conducted

on each replicated data set with the optimal tuning parameters selected by a 5-fold

cross validation to give the largest observed likelihood value. We simply use a fixed α

value in each setting. For the independent settings, we set α = 0.9, i.e., assign more

weight to the lasso penalty over the ridge penalty, and for the correlated settings, we

set α = 0.5 and 0.9 for the cases ρ = 0.5 and 0.9 respectively. Analysis results are

summarized over the 100 replicates in each setting. Table 4.2 shows the selection

results. Averages for false positive number, false negative number, sensitivity (in

percentage) and specificity (in percentage) for variable selection are reported. In the

correlated data cases, since we put more weight on the ridge penalty, the correlated

important variables tend to be selected together. As a result, there are much less

false negatives compared to the independent case.
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We then investigate the prediction performance of the proposed model by look-

ing at its predictive power on a separate test data set independently generated with

1000 subjects. We specifically looked at two types of quantities: the individual

level predicted non-cure rate calculated by π̌i = exp(γ̂′Zi)/(1 + exp(γ̂′Zi)) and the

individual level predicted probabilities P̌ ri(r) = Š(r|X(t)) − Š(r − 1|X(t)) with

Š(r|X(t)) calculated by (4.1). We applied model fitting results from 100 indepen-

dently generated training sets to the separate test set. Table 4.3 gives the prediction

results on the individual-level non-cure indicators. The predicted non-cure indicator

y̌i for subject i is set to be 1 if π̌i ≥ 0.5 and 0 otherwise. The receiver operating

characteristic (ROC) curve for each case was achieved by varying the cut-off point

of the predicted π̌i’s. Area under the ROC curve (AUC) and the oracle AUC are

also reported. The oracle AUC are calculated from prediction with β̂ and γ̂ esti-

mated by Newton-Raphson algorithm given the knowledge of what coefficients are

nonzero. Table 4.4 reflects the prediction results of the survival probabilities. We

set the predicted event time interval for a subject to be the interval with the largest

predicted interval probability. Table 4.4 lists the frequency distribution of the differ-

ence between the predicted and observed event time intervals for converted subjects

in the separate test set.

4.6 Analyzing ADNI data

First, we group the survival time into (0, 6], (6, 12], (12, 18], (18, 24], (24, 36],

(36, 48], (48, 60] and (60,+∞] (in month) eight disjoint discrete time intervals. As-

suming that the cure rate is only relevant to the early stage brain imaging, we set

Z to be the baseline image for everyone. If an image at the starting point of certain

time interval is missing, then the image values in that time interval are assigned to

be the same as the image in the previous interval. To be able to compute with the

imaging data, we reduce the resolution of each image to 40× 40× 24 in Brodman-

n functional regions (Brodmann, 2010), i.e., each voxel in the new image contains

4 × 4 × 4 nearby voxels in the original image. The image value of a new voxel is
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Table 4.3: Prediction results on individual non-cure status

FN FP SE(%) SP(%) AUC Oracle
AUC

• Independent variables:
mean 162.08 148.95 68.89 68.90 0.753 0.962
(s.e.) (15.71) (13.09) (3.12) (2.64) (0.032) (0.006)

• Correlated variables(ρ = 0.5):
mean 45.47 38.02 90.89 92.41 0.948 0.966
(s.e.) (13.64) (15.04) (2.73) (3.00) (0.021) (0.010)

• Correlated variables(ρ = 0.9):
mean 23.84 21.81 95.39 95.48 0.967 0.968
(s.e.) (25.35) (23.61) (4.90) (4.89) (0.032) (0.012)

• s.e.=standard error.
• There are 479, 501 and 483 non-cure subjects in the separate testing sets for the independent,
correlated with ρ = 0.5 and correlated with ρ = 0.9 cases, respectively.

the average of the original 4× 4× 4 voxel values. As a result, each image contains

6582 congregated voxels. We standardized each image by subtracting its mean and

dividing by its standard deviation. We also include patient baseline age and gender

as covariates and intercept terms for both γ and β in the model.

We then run 5-fold cross-validation to select the optimal λγ and λβ. We fixed α

value at 0.5 to achieve a relative balance between the lasso and the ridge penalties.

The selected voxels for non-cure survival and the cure rate with their regression

coefficients are depicted in Figure 4.2 and 4.3 respectively. There are 43 selected

nonzero β regression coefficients that are associated with non-cure survival and 12

selected nonzero γ regression coefficients that are associated with cure rate. Some

findings are consistent with the current literature on early stage AD progression. For

examples, voxels in region BA31 in posterior cingulate (highlighted at frontal-center

position in the slide at −10mm in Figure 4.2) are identified to be associated with the

non-cure survival (β̂ = −6.92 × 10−2). Huang et al. (2002) reported that reduced

relative blood flow of the posterior cingulate gyrus were found about two years

before the MCI-to-AD conversion. Association effect of posterior cingulate with AD

was also reported in Jacobs et al. (2012). The strongest signal is in the thamalus

region with β̂ = 2.06× 10−1 (highlighted in the slide at +2mm in Figure 4.2). The
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association effect of thamalus with AD is supported by Moretti et al. (2012) and

Vogt (2009). Other regions associated with non-cure survival, along with their top

voxel’s effect sizes and literature supports, include region BA7 in superior parietal

cortex and BA18 (Okello et al. (2009)) in occipital cortex both with β̂ = −1.23×10−1

(negative effect voxels highlighted in the slides at −16mm and −10mm in Figure

4.2); region BA32 in anterior cingulate cortex with β̂ = −1.10×10−1 (negative effect

voxels highlighted in the lower half of slide at −10mm and −4mm in Figure 4.2, Ye

et al. (2012); Jones et al. (2006) and Fennema-Notestine et al. (2009)); region BA10

in medial frontal cortex with β̂ = −1.10 × 10−1 (negative effect voxels highlighted

in the lower half of slide at −4mm in Figure 4.2, Sun et al. (2013)); region BA4

in primary motor cortex with β̂ = 1.10 × 10−1 (voxels highlighted in the right half

of slide at −28mm in Figure 4.2, Suva et al. (1999)); region BA6 in pre-motor

cortex with β̂ = 9.40× 10−2 (voxels highlighted in the right half of slide at −28mm

in Figure 4.2, Annweiler et al. (2013)); and region BA20 in temporal cortex with

β̂ = −7.70×10−2 (Risacher et al. (2009)). Almost all the selected signals associated

with cure rate are in either region BA18 or BA31, both of which are found to be

associated with the non-cure survival as well. Neither baseline age nor gender is

selected for either non-cure survival or cure rate.

Figure 4.4 gives the cross-validated frequency of the difference between predicted

and observed event time intervals for the observed cases. In particular, we split the

data randomly into five groups of about equal sizes, then take one of them as the test

set and the other four combined as the training set at a time. We use the training

set to fit the model and then apply the estimated values of selected parameters to

the test set to predict cure rate and event time for each individual as what we did

in the simulations. We then take a different group as the test set and repeat the

above steps till all the five groups have been taken as the test set. More than 75%

of the time, the predicted event time interval is within two adjacent time intervals

of the observed one. Since the true non-cure statuses are unknown, we can not

calculate the non-cure prediction error here as we did in the simulations. However,
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Figure 4.2: Selected collapsed voxels associated with non-cure survival. Viewed on
the axial axis. Warm color for positive effects and cold color for negative effects.

the average of individual level predicted non-cure rate is 0.491± 0.07, which can be

used as an estimate for the population level non-cure rate, and it is consistent with

what suggested by the discrete Kaplan-Meier estimated survival curve in Figure 4.1.
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Figure 4.3: Selected collapsed voxels associated with cure rate. Viewed on the axial
axis.

4.7 Discussion

It is known that the cure models sometimes face the identifiability issues (Farewell,

1982), which means it is impossible to distinguish a censored non-cured subject from
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Figure 4.4: Frequencies of difference between predicted and observed event times
for ADNI data. Total number of observed cases is 109.

a cured subject. Lia et al. (2001) showed that for the mixed cure model with a logis-

tic linked cure rate and PH non-cure survival, the model is identifiable. The main

theorem in Lia et al. (2001) can be applied to our discrete time survival model with

some minor modification.
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CHAPTER V

Future work

In this dissertation, we have developed high-dimensional variable selection method-

ologies for either structured multivariate or discrete time survival settings. We have

applied the methodologies to a yeast gene network eQTL study, a brain-wide and

genome-wide association study and a longitudinal brain imaging study for predicting

MCI-to-AD conversions.

For multivariate data, oftentimes, the group structure for the responses is un-

known. Structure learning techniques, such as cluster analysis or factor analysis,

can be applied to explore the response grouping structure first before applying the

MSGLasso. Since the MSGLasso requires the group structure to be pre-determined,

it is not immune to the mis-specification of the group structure. Some interests

have been shown on learning the response group structure and selecting the impor-

tant variables simultaneously. Yin and Li (2011) proposed a conditional Guassian

graphical model to select nonzero entries in the precision matrix conditioning on

simultaneously selected predictors. It is still of interest to see how one can select

important predictors via the MSGlasso based on a simultaneously learned response

group structure.

Grouping techniques had also been widely used in genetics to detect rare vari-

ants (Li and Leal, 2008). Zhou et al. (2010) used a sparse-group lasso penalized

logistic regression to jointly select common and rare genetic variants that are asso-

ciated with the risk of familial breast cancer. Biswas and Lin (2012) used a logistic

Bayesian lasso method to detect common and rare haplotypes in association with
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age-related macular degeneration (AMD). In practice, the MSGLasso can be used

to simultaneously detect rare and common variants associated to the human brain

functions in brain-wide GWA studies.

In our brain-wide GWA study, the quality of the post-selection estimation and

inference on the selected voxel-to-SNP set depends on the performance of the s-

election stages. In recent years, many studies have been focusing on improving

the performance of post-selection inference (Berk et al., 2013; Taylor et al., 2014).

Theoretical properties of the post-selection inference remain challenging for the MS-

Glasso, especially in ultra-high dimensional cases.

Besides the fact that the variable selection for discrete time survival models has

a wide range of applications, its theoretical finite sample properties are also very

interesting. Kong and Nan (2013) and Huang et al. (2013) considered the non-

asymptotic oracle properties for the Cox PH model with the lasso penalty. The

oracle properties for survival models with grouped interval censored data are worth

further investigation.
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APPENDIX A

Appendix for Chapter II

Proofs of technical results

Some matrix algebra

Lemma A.1. Let

L0(B) =
1

2
∥Y −XB∥22 =

1

2
tr(Y −XB)T(Y −XB) =

1

2

n∑
i=1

q∑
k=1

(yik −
p∑

j=1

xijβjk)
2.

Then

∂L0(B)/∂βjk = −xT

j (Y −XB)·k = −Sjk + ∥xj∥22βjk,

where Sjk = xT
j (Y −XB(−j))·k.

Proof of Theorem 3.1

Following Lemma A.1,

L(B) =
1

2n
∥Y −XB∥22 +

|G|∑
g=1

λg∥Bg∥2

=
1

n
L0(B) +

∑
g∈G1

λg|βg|+
∑
g∈G2

λg∥Bg∥2.
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For a coordinate βjk in B, denote G1
jk = {g : βjk ∈ Bg ∈ G1} and G2

jk = {g : βjk ∈

Bg ∈ G2}, then

∂L(B)

∂βjk
= −Sjk/n+ ∥xj∥22βjk/n+

∑
G1
jk

λgsign(βjk) +
∑
G2
jk

λgβjk/∥Bg∥2.

If βjk > 0, we have

∂L(B)

∂βjk
= −Sjk/n+ ∥xj∥22βjk/n+

∑
G1
jk

λg +
∑
G2
jk

λgβjk/∥Bg∥2.

Notice that ∂L(B)/∂βjk ≥ 0 if and only if

βjk ≥
Sjk − n

∑
G1
jk
λg

∥xj∥22 + n
∑

G2
jk
λg/∥Bg∥2

△
= β̃+

jk,

and ∂L(B)/∂βjk < 0 if and only if βjk < β̃+
jk. So fixing all other coordinates of B, if

βjk > 0, then L(B) is monotone increasing with respect to βjk when βjk > β̃+
jk and

decreasing when βjk < β̃+
jk. Therefore, if β̂

+
jk,min minimizes L(B) with respect to βjk

when βjk > 0, then

β̂+
jk,min =


Sjk−n

∑
G1
jk

λg

∥xj∥22+n
∑

G2
jk

λg/∥B̂g∥2
, if Sjk > n

∑
G1
jk
λg

0, otherwise.

(A.1)

Similarly, if βjk ≤ 0, ∂L(B)/∂βjk ≥ 0 if and only if

βjk ≥
Sjk + n

∑
G1
jk
λg

∥xj∥22 + n
∑

G2
jk
λg/∥Bg∥2

△
= β̃−

jk,

and ∂L(B)/∂βjk < 0 if and only if βjk < β̃−
jk. So fixing all other coordinates of B,

if β̂−
jk,min minimizes L(B) with respect to βjk when βjk ≤ 0, then

β̂−
jk,min =


Sjk+n

∑
G1
jk

λg

∥xj∥22+n
∑

G2
jk

λg/∥B̂g∥2
, if Sjk < −n

∑
G1
jk
λg

0, otherwise.

(A.2)
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Let β̂jk be the minimizer of L(B) with respect to βjk with all other coordinates

fixed at B̂. Then from (A.1) and (A.2), we have

β̂jk =
sgn(Sjk)

(
|Sjk| − n

∑
G1
jk
λg

)
+

∥xj∥22 + n
∑

G2
jk
λg/∥B̂g∥2

.

�

Proof of Theorem 3.4

Lemma A.2. Under the assumptions in Theorem 2, for any B ∈ Rp×q, with prob-

ability at least 1− (pq)1−A2/2,

1

n
∥X(B∗ − B̂)∥22 + λ|B̂ −B|1 + 2

∑
g∈G2

λg∥B̂g −Bg∥2 (A.3)

≤ 1

n
∥X(B∗ −B)∥22 + 4λ

∑
jk∈J1(B)

|β̂jk − βjk|+ 4
∑

g∈J2(B)

λg∥B̂g −Bg∥2,

M(B̂) ≤ 4

λ2n2

∑
jk∈J1(B̂)

|[XTX(B̂ −B∗)]jk|2 ≤
4

λ2n2
∥XTX(B̂ −B∗)∥22. (A.4)

Proof of Lemma A.2.

For any B ∈ Rp×q, we have

1

n
∥Y −XB̂∥22 + 2λ|B̂|1 +

∑
g∈G2

2λg∥B̂g∥2 ≤
1

n
∥Y −XB∥22 + 2λ|B|1 +

∑
g∈G2

2λg∥Bg∥2.

Plugging Y = XB∗ +W into the above inequality, we obtain

1

n
∥X(B∗ − B̂)∥22 ≤ 1

n
∥X(B∗ −B)∥22 +

2

n

n∑
i=1

q∑
k=1

[X(B̂ −B)]ikωik

+2λ(|B|1 − |B̂|1) +
∑
g∈G2

2λg(∥Bg∥2 − ∥B̂g∥2),

where [X(B̂ −B)]ik denotes the ikth element of the product matrix X(B̂ −B) and
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ωik is the ikth element of W . Notice that

n∑
i=1

q∑
k=1

[X(B̂ −B)]ikωik =
n∑

i=1

{
q∑

k=1

[
p∑

j=1

xij(β̂jk − βjk)

]
ωik

}

≤ max
1≤k≤q,1≤j≤p

∣∣∣∣∣
n∑

i=1

xijωik

∣∣∣∣∣
q∑

k=1

p∑
j=1

|β̂jk − βjk| = |XTW |∞|B̂ −B|1

where |XTW |∞ = max1≤k≤q,1≤j≤p |
∑n

i=1 xijωik| is the maximum absolute value of

entries of XTW .

Let Vjk = xT
j · wk, 1 ≤ j ≤ p, 1 ≤ k ≤ q. Since wk ∼ N(0, σ2

kIq) for 1 ≤ q ≤ Q,

then var(Vjk) = xT
pcov(wq)xp = nσ2

q . Therefore (nσ2
q )

−1/2Vjk are standard normal

random variables. Consider the random event

A =

{
2

n
|XTW |∞ ≤ λ

}
.

It is easy to see that the complement of A can be expressed as

Ac =

{
At least one |Vjk| >

λn

2
, 1 ≤ j ≤ p, 1 ≤ k ≤ q

}
.

Denote B(0, λn/2) to be a 1-dimensional ball centered at 0 and with radius λn/2,

then

Pr{Ac} ≤
p∑

j=1

q∑
k=1

Pr

{
Vjk /∈ B

(
0,
λn

2

)}

= p

q∑
k=1

Pr

{
(nσ2

k)
−1/2Vjk /∈ B

(
0,
λn1/2

2σk

)}
≤ pq × Pr

{
|Z| ≥ λn1/2

2σ

}
≤ pq exp

(
−λ2n
8σ2

)
= (pq)1−A2/2,

where Z is a standard noraml random variable, and the last inequality is obtained
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by Pr{|Z| > a} ≤ exp (−a2/2). But on event A, we have

1

n
∥X(B∗ − B̂)∥22 + λ|B̂ −B|1 + 2

∑
g∈G2

λg∥B̂g −Bg∥2

≤ 1

n
∥X(B∗ −B)∥22 + 2λ(|B̂ −B|1 + |B|1 − |B̂|1)

+2
∑
g∈G2

λg(∥B̂g −Bg∥2 + ∥Bg∥2 − ∥B̂g∥2)

≤ 1

n
∥X(B∗ −B)∥22 + 4λ

∑
jk∈J1(B)

|β̂jk − βjk|+ 4
∑

g∈J2(B)

λg(∥B̂g −Bg∥2.

This completes the proof of the first inequality in Lemma A.2.

To prove the second inequality, we use the KKT conditions and obtain

 (1/n)[XT(Y −XB̂)]jk = 2λsgn(β̂jk) + 2
∑

g∈G2 λgβ̂jk/∥B̂g∥2, β̂jk ̸= 0;

(1/n)|[XT(Y −XB̂)]jk| ≤ 2λ+ 2
∑

g∈G2 λg, β̂jk = 0.

From the first condition we can see that ∀β̂jk ̸= 0,

λ ≤ 1

n
|[XT(Y −XB̂)]jk|.

On the other hand, we have on A

1

n
|[XT(Y −XB̂)]jk| ≤ 1

n
|[XTX(B∗ − B̂)]jk + [XTW ]jk|

≤ 1

n
|[XTX(B∗ − B̂)]jk|+

1

n
|XTW |∞

≤ 1

n
|[XTX(B∗ − B̂)]jk|+

λ

2
.

Then combine the above two inequalities, we have

λ

2
≤ 1

n
|[XTX(B̂ −B∗)]jk|.
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Therefore

M(B̂) = |J1(B̂)| ≤ 4

λ2n2

∑
jk∈J1(B̂)

|[XTX(B̂ −B∗)]jk|2 ≤
4

λ2n2
∥XTX(B̂ −B∗)∥22.

This completes the proof of Lemma A.2. �

Proof of Theorem 3.4.

By setting B = B∗ in (A.3) in Lemma A.2, we have that on event A,

1

n
∥X(B̂ −B∗)∥22 ≤ 4λ

∑
jk∈J1(B∗)

|β̂jk − β∗
jk|+ 4

∑
g∈J2(B∗)

λg∥B̂g −B∗
g∥2 (A.5)

≤ 4λr1/2∥(B̂ −B∗)J1(B∗)∥2

+4

 ∑
g∈J2(B∗)

λ2g

1/2

∥(B̂ −B∗)J2(B∗)∥2.

The last inequality is by Cauchy-Schwarz. Specifically, we have

 ∑
jk∈J1(B∗)

|β̂jk − β∗
jk|

2

=

 ∑
jk∈J1(B∗)

1× |β̂jk − β∗
jk|

2

≤

 ∑
jk∈J1(B∗)

12

 ∑
jk∈J1(B∗)

|β̂jk − β∗
jk|2


= r∥(B̂ −B∗)J1(B∗)∥22,

and

 ∑
g∈J2(B∗)

λg∥B̂g −B∗
g∥2

2

≤

 ∑
g∈J2(B∗)

λ2g

 ∑
g∈J2(B∗)

∥B̂g −B∗
g∥22

 .

Also by inequality (A.3), on event A, we have

λ|B̂ −B∗|1 + 2
∑
g∈G2

λg∥B̂g −B∗
g∥2 (A.6)

≤ 4λ
∑

jk∈J1(B∗)

|β̂jk − β∗
jk|+ 4

∑
g∈J2(B∗)

λg∥B̂g −B∗
g∥2.
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This is equivalent to

λ
∑

jk∈Jc
1(B

∗)

|β̂jk − β∗
jk|+ 2

∑
g∈Jc

2(B
∗)

λg∥B̂g −B∗
g∥2

≤ 3λ
∑

jk∈J1(B∗)

|β̂jk − β∗
jk|+ 2

∑
g∈J2(B∗)

λg∥B̂g −B∗
g∥2.

Thus the condition in Assumption 1 holds with ∆ = B̂ − B∗ and ρg = λg/λ.

Therefore,

∥(B̂ −B∗)J1(B∗)∥2 ≤
∥X(B̂ −B∗)∥2

κ1n1/2
, ∥(B̂ −B∗)J2(B∗)∥2 ≤

∥X(B̂ −B∗)∥2
κ2n1/2

.

Plugging the above two inequalities into (A.5), we have

1

n
∥X(B̂ −B∗)∥22 ≤

4λr1/2

κ1n1/2
+

4
(∑

g∈J2(B∗) λ
2
g

)1/2
κ2n1/2

 ∥X(B̂ −B∗)∥2

=

4λr1/2

κ1n1/2
+

4λ
(∑

g∈J2(B∗) ρ
2
g

)1/2
κ2
√
n

 ∥X(B̂ −B∗)∥2,

which gives

1

n
∥X(B̂ −B∗)∥22 ≤ 16λ2

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

.

Define ∥A∥2,1 =
∑

g∈G2∪G1 ∥A∥2, where each coefficient in G1 = GL forms a group.

Hence

∥B̂ −B∗∥2,1 = |B̂ −B∗|1 +
∑
g∈G2

∥B̂g −B∗
g∥2 (A.7)

≤ (c+ 1)|B̂ −B∗|1. (A.8)
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Then we have

(λ+ ρλ)∥B̂ −B∗∥2,1 = λ∥B̂ −B∗∥2,1 + ρλ∥B̂ −B∗∥2,1

≤ (c+ 1)λ|B̂ −B∗|1 + ρλ∥B̂ −B∗∥2,1 by (A.8)

= (c+ 1)λ|B̂ −B∗|1 + ρλ|B̂ −B∗|1 +
∑
g∈G2

ρλ∥B̂g −B∗
g∥2

≤ (c+ 2)λ|B̂ −B∗|1 +
∑
g∈G2

λg∥B̂g −B∗
g∥2

≤ (c+ 2)λ|B̂ −B∗|1 + 2
∑
g∈G2

λg∥B̂g −B∗
g∥2

≤ (c+ 2)

λ|B̂ −B∗|1 + 2
∑
g∈G2

λg∥B̂g −B∗
g∥2

 .
By (A.6) and the last inequality in (A.5) we obtain

1 + ρ

c+ 2
λ∥B̂ −B∗∥2,1

≤ λ|B̂ −B∗|1 + 2
∑
g∈G2

λg∥B̂g −B∗
g∥2

≤ 4λ
∑

jk∈J1(B∗)

|β̂jk − β∗
jk|+ 4

∑
g∈J2(B∗)

λg∥B̂g −B∗
g∥2

≤ 4λr1/2∥(B̂ −B∗)J1(B∗)∥2 + 4

 ∑
g∈J2(B∗)

λ2g

1/2

∥(B̂ −B∗)J2(B∗)∥2

≤

4λr1/2

κ1n1/2
+

4
(∑

g∈J2(B∗) λ
2
g

)1/2
κ2n1/2

 ∥X(B̂ −B∗)∥2

≤

4λr1/2

κ1n1/2
+

4λ
(∑

g∈J2(B∗) ρ
2
g

)1/2
κ2n1/2

 4n1/2λ

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2



= 16λ2

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

.
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Therefore,

∥B̂ −B∗∥2,1 ≤ 16(c+ 2)λ

1 + ρ

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

=
32(c+ 2)σA

1 + ρ

(
log(pq)

n

)1/2

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

.

It is trivial that |B̂ −B∗|1 ≤ ∥B̂ −B∗∥2,1.

From (A.4) in Lemma A.2, we obtain

M(B̂) ≤ 4

λ2n2
∥XTX(B̂ −B∗)∥22 ≤

4ψmax
λ2n

∥X(B̂ −B∗)∥22,

where the second inequality is from

∥[XTX(B̂ −B∗)]·k∥22 = (B̂ −B∗)T·kX
T(XXT)X(B̂ −B∗)·k

≤ nψmax∥X(B̂ −B∗)·k∥22

for each 1 ≤ k ≤ q. By the upper bound of ∥X(B̂ −B∗)∥22 we have

M(B̂) ≤ 64ψmax

r1/2
κ1

+

(∑
g∈J2(B∗) ρ

2
g

)1/2
κ2


2

.

�

Proof of Proposition 4.1

To prove Proposition 4.1, we first show the following lemma.

Lemma A.3. A sequence of coordinate estimates by iteratively solving the exact
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solution of

β̂jk =
sgn(Sjk)

(
|Sjk| − n

∑
{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/(∥B̂g−(jk)∥22 + |β̂jk|2)1/2
, (T9)

converge to a minimum point of the objective function.

First, it is easy to see that the exact solution of (T9) exists. If ∥B̂g−(jk)∥2 = 0,

the close form solution of (T9) is just the lasso solution. If ∥B̂g−(jk)∥2 ̸= 0, then the

right hand side of (T9) is a continuous function of β̂jk, which is monotonic when

β̂jk > 0 or β̂jk < 0, bounded away from zero when β̂jk = 0, and bounded away from

±∞ when β̂jk goes to ±∞, therefore must intersect with either y = β̂jk or y = −β̂jk.

Therefore an exact solution of (T9) must exist.

Wu and Lange (2008) proved the convergence to a minimal point of the lasso

objective function for the greedy coordinate descent algorithm. In a similar way,

we can extend the proof to our sparse group lasso objective function. For the

completeness of the context, we elaborate the proof of Lemma A.3 as following.

Proof of Lemma A.3.

From proof of Theorem 3.1, one can see that the algorithm the multivariate

sparse group lasso objective function decreases at each iteration step of solving

(T9). Since the objective function is convex and bounded from below, so a global

minimum exists.

Next, we show that the mixed coordinate descent algorithm converges to a sta-

tionary point. A stationary point is a point such that any directional derivative of

the objective function at this point is nonnegative. Based on convexity, a stationary

point is also a global minimizer.

Define

h(B) = min
jk

min

{
∂L(B)

∂βjk
,
∂L(B)

∂(−βjk)

}
as the minimum directional derivative magnitude along each coordinate direction

and the opposite direction. Similar to Wu and Lange (2008), one can show that h is

upper semi-continuous, which by definition means that lim supm→∞ h(Bm) ≤ h(B)
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given that Bm converges to B. In fact, ∥Y −XB∥22/(2n) and
∑

{g∈G2:∥Bg∥2 ̸=0} λg∥Bg∥2

are differentiable parts of L(B) and hence having continuous directional derivatives.

The non-differentiable parts
∑

{g∈G1} λg|β| and
∑

{g∈G2:∥Bg∥2=0} λg∥Bg∥2 both have

directional derivative of each of their summands w.r.t. βjk equals to sgn(βjk)λg

and w.r.t. −βjk equals to −sgn(βjk)λg, hence both have directional derivatives as

finite sum of constants. Therefore, h(B) is upper semi-continuous since upper semi-

continuous functions includes continuous functions and is closed under operations

of finite sum and minima.

Now suppose that there is a sequence of B(m) generated by iteratively solving

(T9) has a subsequence B(ml) that converges to a none-stationary point B∗, then

h(B(ml)) ≤ h(B∗) < 0.

Considering the current updating coordinate βjk. Without causing confusion,

denote L(β) as a function of jk’th coordinate with all other coordinates’ value

fixed. Let β
(ml)
jk be the solution to (T9) from m’th iteration and β∗

jk be the jk’th

coordinate of B∗. Using Taylor expansion we have

L(β) = L(β
(ml)
jk ) + L

′
(β

(ml)
jk )(β − β

(ml)
jk ) +

1

2
L

′′
(β̃)(β − β

(ml)
jk )2 (A.9)

for some β̃ lying between β and β
(ml)
jk . Notice that

L
′′
(β) =

∥xj∥22
n

+
∑

{g∈G2:∥Bg∥2 ̸=0}

λgω
1/2
g

(
1− β∗

jk

∥B∗
g∥2

)

is a finite sum of finite numbers and hence is bounded away from ±∞. Assume it

pertains an upper bound c, then (A.9)

≤ L(β
(ml)
jk ) + L

′
(β

(ml)
jk )(β − β

(ml)
jk ) +

c

2
(β − β

(ml)
jk )2.

The right hand side of the above equation is a quadratic majorization function

of the objective function L(β). The majorization function is minimized at point
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ω = β
(ml)
jk − L

′
(β

(ml)
jk )/c with a minimum value L(β

(ml)
jk )− L

′
(β

(ml)
jk )2/(2c).

Then the minimizer of L(β) at them’th iteration, also the solution to (9), β
(ml+1)
jk

satisfies

L(β
(ml+1)
jk ) ≤ L(ω) = L(β

(ml)
jk )−

L
′
(β

(ml)
jk )2

2c
≤ L(β

(ml)
jk )− h(B∗)2

2c
.

And the above inequality will be satisfied by all subsequent ml, therefore will

force L(β
(ml)
jk ) going to −∞, which contradicts the fact that L(β) is bounded from

below by zero. Therefore, any sequences B(m) generated by iteratively solving (T9)

converge to a stationary point and also a minimizer. �

Proof of Proposition 4.1.

Denote β̂
(m)
jk a sequence of estimates of jk’th coordinate by iteratively solving

(T9). Starting from B̂(m−1), denote β̂
MCD(m−1)
jk the next step update of the jk’th

coordinate by the mixed coordinate descent algorithm. We prove in the following

that

|β̂(m)
jk | ≤ |β̂MCD(m)

jk | ≤ |β̂(m−1)
jk | (A1)

with equalities hold only when |β̂(m)
jk | = |β̂(m−1)

jk |.

(i) If

β̂
(m−1)
jk < β̂

(m)
jk =

−
(
|Sjk| − n

∑
{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/(∥B̂
(m−1)
g−(jk)∥22 + |β̂(m)

jk |2)1/2
< 0,

then

β̂
MCD(m)
jk =

−
(
|Sjk| − n

∑
{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/(∥B̂
(m−1)
g−(jk)∥22 + |β̂(m−1)

jk |2)1/2
< β̂

(m)
jk .

From the proof of Theorem 3.1, β̂
(m−1)
jk < β̂

(m)
jk if and only if

∂L(B)

∂βjk

∣∣∣∣
β̂
(m−1)
jk

= −Sjk/n+ ∥xj∥22β̂
(m−1)
jk /n−

∑
G1
jk

λg +
∑
G2
jk

λgβ̂
(m−1)
jk /∥B̂(m−1)

g ∥2 < 0.
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Notice that above is also partial derivative of Lnet(B) w.r.t. βjk taking value at

β̂
(m−1)
jk , with Lnet(B) the elastic net objective function

Lnet(B) =
1

2n
∥Y −XB∥22 +

∑
g∈G1

λg|Bg|1 +
∑
g∈G2

λg∥Bg∥22/(2∥B̂(m−1)
g ∥2)

holding ∥B̂(m−1)
g ∥2 as constants and constraining that βjk < 0.

Following exactly the same argument as in the proof of Theorem 3.1, we can

prove that ∂Lnet(B)
∂βjk

∣∣∣
β̂
(m−1)
jk

< 0 if and only if β̂
(m−1)
jk is less than the solution of

∂L(B)/∂βjk = 0 with constrain βjk < 0. And that is the solution of

−Sjk/n+ ∥xj∥22βjk/n−
∑
G1
jk

λg +
∑
G2
jk

λgβjk/∥B̂(m−1)
g ∥2 = 0

constraining on βjk < 0, which, using the same calculation as in the proof of Theroem

3.1, is

−
(
|Sjk| − n

∑
{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/∥B̂(m−1)∥2
= β̂

MCD(m)
jk .

Therefore, we have

β̂
(m−1)
jk < β̂

MCD(m)
jk < β̂

(m)
jk < 0.

(ii) If

β̂
(m−1)
jk > β̂

(m)
jk =

(
|Sjk| − n

∑
{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/(∥B̂
(m−1)
g−(jk)∥22 + |β̂(m)

jk |2)1/2
≥ 0,

with similar argument, we have that

β̂
(m−1)
jk > β̂

MCD(m)
jk > β̂

(m)
jk ≥ 0.

(iii) If β̂
(m−1)
jk = β̂

(m)
jk , the mixed coordinate descent algorithm will be exact

update and we will have

β̂
(m−1)
jk = β̂

MCD(m)
jk = β̂

(m)
jk .
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In summary, we have (A1).
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Figure A.1: Illustration of coordinate updates by the cyclical coordinate descent and
the mixed coordinate descent algorithms on a contour surface of a two-dimensional
objective function.

Lemma A.3 shows that the sequence of estimates of jk’th coordinate {β̂(m)
jk }

iteratively updated from solving (T9) converges to a minimizer regardless the value

of the starting point. And since the objective function is convex, it is easy to

show that the minimum point is unique. For each term in the sequence {β̂MCD(l)
jk },

suppose one can construct a sequence of {β̂(m)
jk } starting from β̂

MCD(l)
jk , then those

sequences all converge to minimizers (if the minimizer is not unique, e.g. for not

strictly convex objective function) giving the same minimum value. By (A1), those

sequences will gauge {β̂MCD(l)
jk } converge to a minimizer that also gives the minimum

point. Therefore {β̂MCD(l)
jk } converges to a global minimizer of the objective function.

�
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Figure A.2: Decreasing of the objective function. Dark gray line for using the mixed
coordinate descent (MCD) algorithm with out inner iterations of updating (T9) and
black line using the coordinate descent (CD) algorithm with inner iterations.

In Figure A.1, β̂
(m)
jk ’s are the exact solutions of (T9) at each step of iteration.

Such exact solutions can be achieved by adding an inner loop of iterating

β̂
(ml)
jk =

sgn(S
(m−1)
jk )

(
|S(m−1)

jk | − n
∑

{g∈G1: βjk∈Bg} λg

)
+

∥xj∥22 + n
∑

{g∈G2: βjk∈Bg} λg/(∥B̂
(m−1)
g−(jk)∥22 + |β̂(ml−1)

jk |2)1/2

till convergence and take the convergent point as β̂
(m)
jk .

The computational cost of coordinate descent algorithm with inner iterations is

much more than our mixed coordinate descent algorithm. Figure A.2 shows speed

comparison between the coordinate descent algorithm with inner iterations and the

mixed coordinate descent algorithm. The group structure of the regression coefficient

matrix used is set to be (b) in Figure 1 in the main text. In Figure A.2, the mixed
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coordinate descent algorithm converges to a minimizer after 500 iterations while the

coordinate descent with inner iterations converges after 150000 iteration steps.
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APPENDIX B

Appendix for Chapter IV

Proofs of Theorems

Proof of Theorem IV.1

The concavity of the logistic likelihood function l1(γ) has been established in the

literature (Pratt, 1981; Meier et al., 2008).

To show that l2(β) is a concave function of β, it suffices to show that the p× p

matrix D = [∂2l2/∂β
2
k∂β

2
k′ ]1≥k≤p,1≥k′≤p is negative definite. From (4.11) It is easy to

see that for any vector v = (v1, · · · , vp)′ ∈ Rp,

v′Dv =
n∑

i=1

ŷiδib̂iri

(
p∑

k=1

vkXik(tri−1)

)2

− ŷi(1− δi)ĥiri

(
p∑

k=1

vkXik(tri−1)

)2

−
ri−1∑
j=1

ŷiĥij

(
p∑

k=1

vkXik(tj−1)

)2

.

Notice that ĥij ≥ 0, ŷi ≥ 0 and 1 − δi ≥ 0, so the second and third term

in each summand of v′Dv are less than or equal to zero. To show that the first

term is also less than or equal to zero, it suffices to show b̂ij ≤ 0. Notice that

b̂ij =
ĥij exp{−ĥij}
1−exp{−ĥij}

(1− ĥij

1−exp{−ĥij}
) and

ĥij exp{−ĥij}
1−exp{−ĥij}

≥ 0, so we only need to show that

(1 − ĥij/(1 − exp{−ĥij)) ≤ 0. Or equivalently f(hij) := 1 − exp{−hij} − hij ≤ 0

for all hij ≥ 0. The fact f ′(hij) ≤ 0 gives that f(hij) is non-increasing w.r.p. to hij

105



when hij ≥ 0. Notice that f(0) = 0, therefore f(hij) ≤ 0 when hij ≥ 0. Therefore

v′Dv ≤ 0.

And since the conditional expectation of the complete likelihood function can be

written as a separable sum of functions l1(γ) and l2(β), the last statement of the

theorem follows.

Proof of Theorem IV.2

−∂
2E(l1)

∂γ2j
=

n∑
i=1

[
Z2

ij exp{γ′Zi}
1 + exp{γ′Zi}

−
(
Zij exp{γ′Zi}
1 + exp{γ′Zi}

)2
]

(B.1)

≤ n

(
max
1≤i≤n

Zij − min
1≤i≤n

Zij

)2

/4.

The last inequality holds because that (B.1) can be treated as n times the variance

of a discrete random variable Z with distribution P (Z = Zij) = exp{γ′Zi}/(1 +

exp{γ′Zi}). The variance is maximized when Z has a two-point distribution on

max1≤i≤n Zij and min1≤i≤n Zij (Yang and Zou, 2013).

Derivation of the observed likelihood (4.3)

The observed likelihood (4.3) is obtained by integrating out the latent variable Yi

on each term in the complete likelihood (4.2) under the constrain that when δi = 1,

yi has to be 1. Therefore when δi = 1,

l
(i)
C (λ, β, γ|Zi,Xi(t),Γi, δi = 1; yi = 1)

= π(Zi) {Li(θ; Γi = ri,∆i = 1,Xi(t))}

= π(Zi) (1− exp{− exp{λri + β′Xi(tri−1)}}) exp

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}

}
.
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When δi = 0,

l
(i)
C (λ, β, γ|Zi,Xi(t),Γi, δi = 0; yi)

= (1− π(Zi))
1−yi π(Zi)

yi {Li(θ; Γi = ri,∆i = 0,Xi(t))}yi

= (1− π(Zi))
1−yi π(Zi)

yi (exp{− exp{λri + β′Xi(tri−1)}})yi

× exp

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}

}yi

.

Then corresponding term in the observed likelihood is

l
(i)
O (λ, β, γ|Zi,Xi(t),Γi, δi = 0)

=
∑
yi

l
(i)
C (λ, β, γ|Zi,Xi(t),Γi, δi = 1, yi)

= 1− π(Zi) + π(Zi)

×

{(
exp

{
− exp{λri + β′Xi(tri−1)}

})
exp

{
−

ri−1∑
j=1

exp{λj + β′Xi(tj−1)}

}}
.

Then

LO(λ, β, γ|Obs) =

n∏
i=1

l
(i)
O (λ, β, γ|Zi,Xi(t),Γi, δi = 1)δil

(i)
O (λ, β, γ|Zi,Xi(t),Γi, δi = 0)(1−δi)

gives the observed likelihood.
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