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ABSTRACT

Study of Reactive and Non-Reactive Chemical Processes in Condensed Phase

by

Surma Talapatra

Chair: Prof. Eitan Geva

Chemical dynamics in condensed phase environments is dictated by an intricate

interplay between reactive and competing non-reactive processes. This dissertation

is aimed at the molecular level understanding of both types of processes in liquid

solution environments within the framework of nonequilibrium statistical mechanics

and using advanced molecular dynamics simulation techniques.

The first part of this thesis is focused on understanding quantum effects on the

rates of non-reactive vibrational energy relaxation processes in several experimentally

relevant systems. The systems studied include neat liquid HCl and DCl and CN−

isotopomers dissolved in H2O and D2O. The vibrational energy relaxation rates con-

stants for those systems were calculated within the framework of the Landau-Teller

formula. Accounting for quantum effects was achieved by calculating the vibrational

energy relaxation rate constants via the linearized semiclassical method. The rate

constants calculated via the linearized semiclassical method for both systems are in

excellent agreement with the experimentally measured rate constants. Furthermore,

comparison to the corresponding classical results suggest that quantum effects are

xv



strongly pathway dependent and that failure to account for them can lead to misin-

terpretation of the molecular mechanism underlying vibrational energy relaxation in

liquid solution.

The second part of this thesis is focused on understanding solvent effects on single-

bond cZt-tZt isomerization rate constant of 1,3,5-cis-hexatriene dissolved in a series

of explicit alkane (cyclohexane, n-heptane and cycloheptane) and alcohol (methanol,

ethanol and n-propanol) solvents. The isomerization rate constants are calculated

within the framework of reactive flux theory and transition state theory, at different

temperatures (275-325K), via classical molecular dynamics simulations. Our results

reproduce the experimentally observed trend of slower isomerization rate constants

in alcohol solvents in comparison to alkane solvents. Further analysis also reveals

that the experimentally observed solvent dependence may be traced back to the fun-

damentally different structure of the solvation shell in alcohol and alkane solvents.

More specifically, whereas in alcohol solvents, hexatriene fits inside a rigid cavity

formed by the hydrogen-bonded network, which is relatively insensitive to conforma-

tional dynamics, alkane solvents form a cavity around hexatriene that adjusts to the

conformational state of hexatriene, thereby increasing the entropy of transition state

configurations relative to reactant configurations and giving rise to faster isomeriza-

tion.

xvi



CHAPTER I

Introduction

Chemistry is a study of how molecules interact with each other. One way to

understand these interactions is through the study of how energy gets transferred or

exchanged between molecules. Chemical processes where the energy transfer between

molecules lead to the breaking and/or making of chemical bonds that eventually result

in a chemical reaction are called reactive processes. On the other hand, chemical

processes that involve transfer or exchange of energy between molecules, but do not

necessarily lead to chemical reactions are called nonreactive processes. Chemical

dynamics is all about the interplay between energy flowing into these two competing

fundamental pathways leading to reactive and/or nonreactive processes.

Another fundamental classification of chemical processes is based on quantum

effects. Depending on the amount of energy exchanged between molecules, the dy-

namics of the energy transfer can be described within the framework of classical

mechanics or quantum mechanics. This categorization can be demonstrated by using

the ~ scale (refer figure 1.1.) according to which, if the energy transfer is large, such

that ~ω � kBT , the involved dynamics is dictated by quantum mechanics. On the

other hand, if the energy transfer is such that ~ω � kBT , the involved dynamics need

to be described by classical mechanics.

In my dissertation research, I have attempted to study the above mentioned fun-
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Figure 1.1: Schematic Representation of the Fundamental Classifications of Chemical
Dynamics and the Chemical Processes that have been studied in this
Dissertation Research.
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damental aspects of condensed phase chemistry using molecular dynamics simulation

methods. To this end, we have done a fully classical molecular dynamics study of the

conformational isomerization between cis-1,3,5-hexatriene and trans-1,3,5-hexatriene

where we have focused on understanding solvent effects on the rate and mechanism of

the isomerization reaction. We have also studied a nonreactive process called vibra-

tional energy relaxation, where we have focused on understanding quantum effects on

the rate and pathway of the relaxation dynamics in two liquid systems, neat liquid

HCl and DCl, and CN− isotopomers solvated in water and D2O. The schematic dia-

gram given in figure 1.1 demonstrates these systems with respect to the fundamental

classification of chemical dynamics.

A major part of this research has been centered around studying vibrational en-

ergy relaxation in condensed phase systems. Vibrational energy relaxation (VER) is

the process where an excited vibrational mode equilibrates by transferring its excess

energy into other intramolecular and/or intermolecular degrees of freedom (DOF).

Understanding the time scale and mechanism of VER in condensed phase systems at

the molecular level is of key importance to the understanding of chemical reactivity in

solution(36; 37; 38; 39; 40; 41; 42; 43; 44; 45). Over the last several decades, VER has

been studied extensively in a variety of condensed phase systems, using experimental

(46; 159; 48; 49; 50; 51; 52; 53) and computational(54; 55; 56; 57; 58; 59; 60; 61; 62; 63;

64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78) techniques. These studies have

demonstrated that VER can occur over a wide range of time scales, extending from

subpicoseconds to minutes, via different mechanisms, depending on the frequency of

the relaxing and accepting modes and the nature of the interaction between them.

Recent theoretical and computational studies of VER have been mostly based on the

Landau-Teller (LT) formula,(40; 155) which gives the VER rate constant in terms of

the Fourier transform (FT), at the vibrational transition frequency, of the quantum-

mechanical autocorrelation function of the fluctuating force (FFCF) exerted on the

3



relaxing mode by the other DOF, i.e. the bath. In systems where the energy mis-

match between the relaxing and accepting modes is low, such that ~ω/kBT ≤ 1, the

VER rate constant can be calculated by replacing the quantum-mechanical FFCF

with its classical counterpart(66; 82; 83; 81; 80). However, many of the vibrational

transitions of interest do not fall under this category. In systems with high-energy

vibrations, such that the energy mismatch between the relaxing and accepting is very

high (~ω/kBT � 1), classical description of the relaxing mode and the accepting

modes is no longer suitable, and a quantum treatment of the involved dynamics is

necessary.

An exact calculation of the quantum-mechanical FFCF in a condensed phase

system is beyond the scope of present day computational resources due to exponen-

tial scaling of computational cost with the number of DOF. To this end, we have

explored the application of semiclassical methods in the calculation of VER rate con-

stants in high-frequency vibrational modes in condensed phase. In particular, we

have applied the semiclassical method based on the linearized semiclassical (LSC)

approximation(87; 62; 86; 76; 54; 56), that has been developed in the Geva group in

the past several years. In our research, we have carried out the first ever implementa-

tion of the LSC approximation in the calculations of VER rate constant in case of a

polar liquid system (neat liquid HCl and DCl)(78), Chapter IV, and an ionic system

in polar solvent (cyanide ion in aqueous solution)(125), Chapter III. In addition, an

extensive study of the VER rates and mechanisms in cyanide ion solvated in aque-

ous solution using classical molecular dynamics simulations and quantum correction

factors has also been carried out(126) and reported in Chapter II. In the present

chapter, in section 1.1, the theoretical background of the LSC method is outlined,

while in Chapter II, III and IV, the various applications of the method are discussed

in detail.

The other major part of the dissertation research consists of an investigation of

4



solvent effects on the rates of chemical reactions. Solvents can influence chemical

reactions in many different ways. For example, through equilibrium properties like

solvation energies and free energy surfaces, or dynamical properties such as dynam-

ical cage effects, by solvent induced friction affecting the recrossing over the bar-

rier top, or by affecting the diffusion of reactants towards each other(1). Molecular

dynamics (MD) simulations have been frequently implemented to the study of con-

densed phase reactions in a number of molecular systems(213; 214; 215; 216; 217;

218; 219; 220; 221; 222; 223; 224; 225; 226), including several polyene isomerization

reactions. To this end, in collaboration with the experimental research group of

Prof. R. J. Sension, we have investigated the solvent effects in the single bond cZt-

tZt isomerization reaction of 1,3,5-cis-hexatriene in alkane and alcohol solvents using

classical MD simulations(126). The ultrafast photoinduced ring opening reaction of

1,3-cyclohexadiene (CHD) derives importance from various areas of research and has

been extensively studied by experimental and theoretical methods over the last sev-

eral decade(182; 183; 184; 185; 186; 187; 188; 189; 190; 191; 192; 193; 194; 195; 196;

197; 198; 199; 200; 201; 202; 203; 204; 205). Being a simple polyene molecule, CHD

and its derivatives serve as a prototype for studying the different aspects of polyene

reaction dynamics which have attracted considerable amount of attention over the

past few decades due to their presence in various important biochemical processes.

The multistep photochemical ring opening reaction of CHD displays an interesting

spectrum of intramolecular and intermolecular energy exchange between the different

polyene derivatives formed during the cascade of reactions that follow UV excitation of

CHD. In addition, CHD also derives importance from the fact that the multistep ring

opening reaction of CHD is similar to the photoreaction of 7-dehydrocholesterol re-

sulting in vitamin D formation(206; 207; 208; 209; 193). Moreover, the photoinduced

ring opening reaction of 1,3-cyclohexadiene (CHD) provides an excellent platform for

studying several aspects of condensed phase dynamics, including the influence of sol-
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vent on the thermalization of excited photoproducts and energy redistribution among

the resulting ground state rotational isomers.

In the calculation of the rate constant for the single bond cZt-tZt isomeriza-

tion reaction of 1,3,5-cis-hexatriene, we have implemented the reactive flux theory

(RFT)(228; 229; 230; 231; 232; 233) and the transition state theory (TST)(235) using

classical MD simulations. RFT provides a route for calculating the exact isomeriza-

tion rate constant from MD simulations (provided of course that the dynamics can

be described by classical mechanics and that the force fields are accurate). More

specifically, the only assumption underlying RFT is that the rate of barrier crossing

is slower than the rates of all other dynamical processes that take place in the re-

actant and product wells, so that the reaction dynamics can be described by a rate

constant. RFT also allows the calculation of the rate constant by using trajectories

that start at the barrier top, thereby bypassing convergence problems associated with

rare event statistics(234). The popular TST can be obtained from RFT in the limit

where barrier recrossing events are negligible. A detailed mathematical derivation of

the RFT and TST is provided in section 1.2, while the detailed discussion of the single

bond cZt-tZt isomerization reaction of 1,3,5-cis-hexatriene is discussed in chapter V.

1.1 Quantum Dynamics in Condensed Phase : Vibrational

Energy Relaxation

Over the last few decades there have been substantial progress in the develope-

ment and application of experimental and theoretical methods in the prediction and

analysis of VER rates and pathways in condensed phases. The energy relaxation of

an excited vibrational mode, VER, is followed by the transfer of the excess energy to

intramolecular and/or intermolecular modes available in the solute and the solvent

molecules. The rates and mechanisms of VER in condensed phases has the potential
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to provide a direct probe of the energy exchange dynamics which is crucial to the

molecular level understanding of chemical reactions in solution.

With the advancement of ultrafast laser spectroscopy, many important experi-

mental studies have been made in the field of ultrafast vibrational dynamics in nu-

merous molecular systems. Among the various experimental methods, IR pump-

probe spectroscopy, ultrafast IR-Raman spectroscopy, 2D-IR spectroscopy, IR pho-

ton echo method have been extensively used to study fundamental chemical phe-

nomena like intramolecular and intermolecular vibrational energy and population

relaxation, along with vibrational dephasing and vibrational coupling dynamics in a

range of molecular systems including small molecules and ionic species in condensed

phases(46; 159; 48; 49; 50; 51; 52; 53), metal carbonyl complexes(2; 3; 4; 5; 6; 7; 8)

and biological systems(9; 10; 11; 69; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22) among many

others.

Along with the experimental studies numerous theoretical and computational

methods have been employed for the investigation of VER at a molecular level. The-

oretical description of VER rate constant in condensed phase is usually given by the

LT formula, according to which, the rate constant for VER is given in terms of the

FT, at the vibrational transition frequency, of a quantum mechanical autocorrelation

function of the fluctuating force (FFCF) exerted by the bath DOF on the relaxing

mode. In systems where the vibrational modes involved can be described by classical

dynamics, the calculation of VER rate constant is particularly simplified since the

quantum-mechanical FFCF can be replaced by the corresponding classical correla-

tion function(66; 82; 83; 81; 80). However, there are a multitude of systems, where

the vibrational transition frequency is comparatively large, such that ~ω/kBT � 1.

In such cases, the relaxing mode and the relevant accepting modes need to be de-

scribed quantum-mechanically and a classical treatment is no longer appropriate.

However, the exact calculation of the quantum-mechanical FFCF is extremely diffi-
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Figure 1.2: Schematic Representation of Vibrational Energy Relaxation
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cult for systems with more than a few DOF. To this end, for the last few decades,

there have been a huge advancement in the development of theoretical methods that

can capture the quantum effects, with rigorous approximation, in the calculation of

dynamical properties in significantly large systems. Some of the key examples include

mixed quantum-classical methods, centroid molecular dynamics and methods based

on semiclassical approximations(23; 24). These methods have been applied to a wide

spectrum of important systems and, in many cases, have been successful in capturing

quantum dynamical properties.

In a series of recent publications,(87; 62; 86; 76; 54; 56) Geva and co-workers have

pursued a rigorous approach for calculating VER rate constants which can account

for quantum effects within the framework of the LSC approximation. This approxi-

mation amounts to linearizing the forward-backward action in the exact path-integral

expression for the quantum-mechanical FFCF with respect to the difference between

the forward and backward paths(122). In the following subsections a detailed theo-

retical background of the LSC approximation and its application to the calculation

of VER rate constant for high-frequency vibrational modes in condensed phase is

discussed in detail. The application of the LSC approximation to various condensed

phase systems are discussed in chapters II, III and IV.

1.1.1 Theoretical Background

In this subsection the linearized semiclassical (LSC) approximation is introduced.

The LSC approximation is one of the rigorous approaches that are employed for the

calculation of dynamical quantities in the framework of quantum mechanics in con-

densed phase systems. The LSC approximation can be derived by linearizing the

forward-backward action in the path-integral expression for the quantum-mechanical

correlation function with respect to the difference between the forward and back-

ward trajectories(122). The resulting LSC approximation for a real time correlation
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function has the following form:

Tr(e−βĤeiĤt/~B̂e−iĤt/~Â) ≈ 1

(2π~)f

∫
dq0

∫
dp0×

(Âe−βĤ)W (q0, p0)BW (qt
(Cl),pt

(Cl))

(1.1)

Here, f is the number of DOF, q0 = (q
(1)
0 , ..., q

(f)
0 ) and p0 = (p

(1)
0 , ..., p

(f)
0 ) are the

corresponding coordinates and momenta

AW (q0,p0) =

∫
d∆e−ip0∆/~

〈
q0 + ∆/2|Â|q0 −∆/2

〉
(1.2)

is the Wigner transform of Â [with ∆ = (∆(1), ...,∆(f))], and qt
(Cl) = qt

(Cl)(q0, p0)

and pt
(Cl) = pt

(Cl)(q0, p0) are propagated classically with the initial conditions q0

and p0.

In the following subsections the theoretical derivation of the LSC approximation

and its application to the calculation of VER rate constant is outlined in detail. To

this end, in subsection 1.1.2 the theoretical basis for path integral technique is out-

lined which is essential for the understanding of the LSC approximation, followed by

the theoretical derivation of the LSC approximation for a real-time quantum-

mechanical correlation function starting from its exact path-integral expression,

outlined in section 1.1.3. The application of the LSC approximation in the

calculation of VER rate constant is outlined step by step in subsections, 1.1.4,

1.1.5, 1.1.6. The general calculation of VER rate constant using the LT formula is

discussed in subsection 1.1.4, followed by the application of the LSC approximation

in the calculation of the VER rate constant using the LT formula, discussed in sub-

section 1.1.5. Finally, in subsection 1.1.6, an advanced version of the application of

the LSC approximation in the calculation of systems with higher levels of complexity

is discussed.
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1.1.2 Path Integral Technique

The path integral formulation of quantum mechanics was introduced by R. P.

Feynman in 1948(25). The two main formulations of path integration, imaginary

time path integration and real-time path integration are introduced and discussed in

the following two subsections.

• Imaginary Time Path Integrals

The imaginary time path integral technique is an elegant and efficient method

of calculating statistical mechanical properties of a many-body quantum me-

chanical system. In the following, we establish an exact mathematical relation

between the partition function of a many-body quantum mechanical system and

a corresponding fictitious classical system using path integral technique.

To this end, let us consider a quantum system with a single particle with mass

m, momentum p, and coordinate x, moving in a one dimensional potential V (x),

the partition function for this system is given as:

Q = Tr(e−βH) =

∫
dx1

〈
x1|e−βH |x1

〉
=

∫
dx1

∫
dx2...

∫
dxP

〈
x1|e−εH |x2

〉 〈
x2|e−εH |x3

〉
...
〈
xP |e−εH |x1

〉
=

∫
dx1

∫
dx2...

∫
dxP

P∏
i=1

〈
xi|e−εH |xi+1

〉 (1.3)

where, xP+1 = x1. It should be noted that in eq 1.3, the term e−βH has been

divided into P terms in the following way

e−βH =
[
e
β
P
H
]P

=
[
eεH
]P

(1.4)

where, β/P = ε, followed by inserting P − 1 closures. In the next step, the
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Hamiltonian for the system H is expanded into the kinetic and potential energy

components, such that, for the ith term:

〈
xi|e−εH |xi+1

〉
=

〈
xi|e−

ε
2
V (x)e−

εp2

2m e−
ε
2
V (x)|xi+1

〉
= e−

ε
2
V (xi)

〈
xi|e−

εp2

2m |xi+1

〉
e−

ε
2
V (xi+1)

(1.5)

which leads to the following:

e−
ε
2

[V (xi)+V (xi+1)]

〈
xi|e−

εp2

2m |xi+1

〉
(1.6)

Further expansion of the term
〈
xi|e−

εp2

2m |xi+1

〉
in eq 1.6 leads to the following:

〈
xi|e−

εp2

2m |xi+1

〉
=

∞∫
−∞

dp

〈
xi|e−

εp2

2m |p
〉
〈p|xi+1〉

=

∞∫
−∞

dpe−
εp2

2m 〈xi|p〉 〈p|xi+1〉 =
1

2π~

∞∫
−∞

dpe−
εp2

2m e
i
~pxie−

i
~pxi+1

(1.7)

It should be noted that the identity, F (p̂)|p >= F (p)|p > is used to obtain the

desired result in eq 1.7. Further simplification of eq 1.7 leads to the following

expressions:

〈
xi|e−

εp2

2m |xi+1

〉
=

1

2π~

∞∫
−∞

dpe−
εp2

2m e
i
~p(xi−xi+1) =

1

2π~

∞∫
−∞

dpe−
ε

2m(p2− i
~p(xi−xi+1) 2m

−ε )

=
1

2π~
e−

ε
2m

1
~2 (xi−xi+1)2m

2

ε2

√
2mπ

ε
=

√
m

2πε~2
e−

m(xi−xi+1)
2

2ε~2 =

√
mβω2

P

2π
e−

mβω2P
2

(xi−xi+1)2

(1.8)
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It should be noted that the last step in eq 1.8 is obtained by considering ω2
P =

P/(β~)2 and β/P = ε. Substituting eq 1.8 back into eq 1.3, we obtain the

final result for the path integral representation of partition function for a one

dimensional quantum system,

Q =

(
mβω2

P

2π

)P/2 ∫
dx1

∫
dx2...

∫
dxP e

−β
[∑P

i=1

mω2P
2

(xi−xi+1)2+
V (xi)

P

]
(1.9)

Generalizing eq 1.9 to a three dimensional system, we obtain the following form

for the partition function:

Q =

(
mβω2

P

2π

)3P/2 ∫
d−→r1

∫
d−→r2 ...

∫
d−→rP e

−β
[∑P

i=1

mω2P
2

(−→ri−−→r i+1)2+
V (−→ri)
P

]
(1.10)

Generalizing eq 1.10 to a many-body system, where the positions and momenta

for the N number of particles are repressnted as
−→
R = (−→r (1),−→r (2), ...,−→r (N)) and

−→
P = (−→p (1),−→p (2), ...,−→p (N)), respectively, we obtain,

Q =

{
N∏
j=1

(
m(j)βω2

P

2π

)3P/2
}∫

d
−→
R1

∫
d
−→
R2...

∫
d
−→
RP

exp

[
− β
P

(
V (
−→
R1) + ...+ V (

−→
RP )

)
−

P∑
i=1

m(j)ω2
P

2

(−→ri (j) −−→r (j)
i+1

)2
] (1.11)

The quantum partition function in eq 1.11 is isomorphic to the configurational

partition function for a fictitious classical system, where every quantum particle

is represented by a necklace of P beads, where each bead is linked to other

beads in the necklace with a harmonic potential with frequency ωP , and every

13



Figure 1.3: Schematic Representation of the Imaginary Time Path Integral Tech-
nique. The system in the left side of arrow corresponds to the quantum-
mechanical system, and the system in the right side of arrow corresponds
to the fictitious classical system. The classical system results from the
path integral formulation applied to the quantum system and has a par-
tition function that is isomorphic with the quantum system.
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ith bead in a necklace feels an external potential, V (x), from the ith bead

(where, 1 < i < P ) of every other necklace.

The importance of the path integral technique comes from the fact that, because

of the isomorphism between the configurational partition functions of the quan-

tum and the fictitious classical systems, the exact calculation of the quantum

partition function and any thermodynamic property that is derivable from the

partition function is now possible to be calculated using classical simulations.

A pictorial representation of the path integral technique is given in figure 1.3.

• Real Time Path Integrals

The real time path integral formulation of quantum mechanics aims at de-

scribing dynamical quantities of many-body quantum mechanical systems. The

underlying idea is to represent the quantum propagator as a sum over all possi-

ble paths between the initial and final time points. Since, in this research, real

time path integral method has been employed to the calculation of two time

quantum mechanical correlation functions, the real time path integral formula-

tion of a quantum mechanical two-time correlation function is outlined in this

subsection. To this end, consider a quantum mechanical two time correlation

function:

CAB(t) = Tr
(
AeiHt/~Be−iHt/~

)
=

∫
dx+

0

〈
x+

0 |AeiHt/~Be−iHt/~|x+
0

〉
=

∫
dx+

0

∫
dx−0

∫
dx+

N

∫
dx−N

〈
x+

0 |A|x−0
〉 〈
x−0 |eiHt/~|x−N

〉 〈
x−N |B|x

+
N

〉 〈
x+
N |e
−iHt/~|x+

0

〉
(1.12)

It should be noted that, in eq 1.12 four closure relations are insterted. In

the next step, we derive expressions for the propagators
〈
x−0 |eiHt/~|x−N

〉
, and〈

x+
N |e−iHt/~|x

+
0

〉
. Assuming λ = it/~, we get e−iHt/~ =

(
e−λH/N

)N
, such that,
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〈
x+
N |e
−iHt/~|x+

0

〉
=
〈
x+
N |
(
e−λH/N

)N |x+
0

〉
=

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1〈
x+
N |e
−λH/N |x+

N−1

〉 〈
x+
N−1|e

−λH/N |x+
N−2

〉
...
〈
x+

1 |e−λH/N |x+
0

〉
=

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

N−1∏
i=0

〈
x+
i+1|e−λH/N |x+

i

〉 (1.13)

In this step, the integral
∫
dx+

N−1

∫
dx+

N−2...
∫
dx+

1 represents the sum over all

paths from x+
0 to x+

N−1. Essentially, every continuous time-path has been ap-

proximated by broken-line path assuming the intervals (λ/N) are infinitesimally

small. In the next step, we consider the term
〈
x+
i+1|e−λH/N |x+

i

〉
in eq 1.13,

〈
x+
i+1|e−λH/N |x+

i

〉
=

〈
x+
i+1|e−

λ
N
V (x)

2 e−
λ
N

p2

2m e−
λ
N
V (x)

2 |x+
i

〉
= e−

λ
N

1
2

[V (xi+1)+V (xi)]

〈
x+
i+1|e−

λ
N

p2

2m |x+
i

〉 (1.14)

Considering the term
〈
x+
i+1|e−

λ
N

p2

2m |x+
i

〉
in eq 1.14,

〈
x+
i+1|e−

λ
N

p2

2m |x+
i

〉
=

∞∫
−∞

dp

〈
x+
i+1|e−

λ
N

p2

2m |p
〉〈

p|x+
i

〉
=

∞∫
−∞

dpe−
λ
N

p2

2m

〈
x+
i+1|p

〉 〈
p|x+

i

〉

=
1

2π~

∞∫
−∞

dpe−
λ
N

p2

2m e−
i
~pxie

i
~pxi+1 =

1

2π~

∞∫
−∞

dpe−
λ
N

p2

2m e
i
~p(xi+1−xi)

=

√
mN

2π~2λ
e−

mN
2λ~2 (xi+1−xi)2

(1.15)

Substituting eq 1.15 back to eq 1.13, we obtain the following expression,
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〈
x+
N |e
− i

~Ht|x+
0

〉
=

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

N−1∏
i=0

〈
x+
i+1|e−

λ
N
H |x+

i

〉
=

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

N−1∏
i=0

√
mN

2π~2λ
e−

λ
N

1
2

[V (xi+1)+V (xi)]e−
mN
2λ~2 (xi+1−xi)2

(1.16)

Further simplification of eq 1.16 using the identity λ/N = it/~N = iε/~ we

obtain the following expression:

〈
x+
N |e
− i

~Ht|x+
0

〉
=

(
mN

2π~2λ

)N
2
∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

e−
∑N−1
i=0 [ λN

1
2

[V (xi+1)+V (xi)]+
mN
2λ~2 (xi+1−xi)2]

=
( m

2πi~ε

)N
2

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

e−
∑N−1
i=0 [ i~

ε
2

[V (xi+1)+V (xi)]+
m

2i~ε (xi+1−xi)2]

=
( m

2πi~ε

)N
2

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1

e
i
~ ε
∑N−1
i=0

[
m
2

(
xi+1−xi

ε

)2
−V (xi+1)+V (xi)

2

]

(1.17)

In the next step, we define the forward action as follows:

S
(
x+

0 , ..., x
+
N

)
= ε

N−1∑
i=0

[
m

2

(
xi+1 − xi

ε

)2

− V (xi+1) + V (xi)

2

]

= ε
N−1∑
i=0

[
m

2

(
xi+1 − xi

ε

)2
]
−
[

1

2
V (x+

0 ) + V (x+
1 ) + ...+ V (x+

N−1) +
1

2
V (x+

N)

]
= Skin + Spot

(1.18)
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Figure 1.4: Schematic Representation of Real Time Path Integration Method. The
line paths represent the time evolution for the quantum propagator〈
x+
N |e−iHt/~|x

+
0

〉
divided in N parts, where ε = t/N .
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Substituting eq 1.18 back to eq 1.17 we obtain

〈
x+
N |e
− i

~Ht|x+
0

〉
=
( m

2πi~ε

)N
2

∫
dx+

N−1

∫
dx+

N−2...

∫
dx+

1 e
i
~S(x+0 ,...,x

+
N ) (1.19)

Going over the same derivation for the other propagator in eq 1.12,
〈
x−0 |eiHt/~|x−N

〉
,

we obtain a similar equation as eq 1.19:

〈
x−0 |e

i
~Ht|x−N

〉
=

(
im

2π~ε

)N
2
∫
dx−N−1

∫
dx−N−2...

∫
dx−1 e

− i
~S(x−0 ,...,x

−
N ) (1.20)

In the final step, the time propagators, eq 1.19 and eq 1.20, are substituted

back to the expression for the correlation function in eq 1.12,

CAB(t) =
( m

2π~ε

)N ∫
dx+

0 ...

∫
dx+

N

∫
dx−0 ...

∫
dx−N〈

x+
0 |A|x−0

〉 〈
x−N |B|x

+
N

〉
e
i
~ [S(x+0 ,...,x

+
N )−S(x−0 ,...,x

−
N )].

(1.21)

Eq 1.21 is the final form of the real time path integral representation of the

two-time quantum-mechanical correlation function. The essence of the real-

time path integral technique is to divide the time evolution of the quantum

propagater over all possible paths (the number of possible paths is infinity, such

that, the exact quantum-mechanical correlation function is obtained at the limit

of N →∞ ).

The underlying idea is the quantum mechanical rule for combining amplitudes,

according to which, if the time evolution of the propagators can occur in a

number of possible ways, the amplitudes for each of the possible paths can be
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added. As a result, in real time path integral method, the time propagation

through all possible paths is considered and the corresponding amplitudes are

integrated over all possible intermediate positions. The method is, in concept,

similar to Young’s double slit experiment, where the amplitudes for passing

through the slits interfere constructively and destructively. Figure 1.4 shows a

schematic representation of the real time path integral method, where the line

paths represent the time evolution for the quantum propagator
〈
x+
N |e−iHt/~|x

+
0

〉
divided in N parts.

• Path Integral Molecular Dynamics

Using AMBER software package imaginary time path integral molecular dy-

namics (PIMD) simulations can be performed for many-body systems. There

are two versions of PIMD available in AMBER,

– Primitive approximation (PRIMPIMD) -In this approach, the PIMD is

performed following eq 1.11, where using the potential and kinetic terms

as components of the Hamiltonian, classical molecular dynamics (MD)

simulations are performed for the fictitious classical system with P beads

where the fictitious mass of each bead is chosen as µi = m/P , where m is

the particle mass.

– Normal mode PIMD (NMPIMD) - In this implementation, the normal

mode transformation is used to uncouple the harmonic term in eq 1.11,

prior to using the potential and kinetic terms as components of the Hamil-

tonian, following which classical molecular dynamics (MD) simulations are

performed for the fictitious classical system with P beads where the ficti-

tious mass of each bead is chosen as µi = m/P , where m is the particle

mass.
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1.1.3 Linearized Semiclassical Approximation-Inital Value Representa-

tion

In this subsection, the derivation of the LSC approximation for a real-time quantum-

mechanical two-time correlation function from its exact path integral expression(122)

is outlined.

We begin by considering a general quantum-mechanical two-time correlation func-

tion

CAB(t) = Tr(ÂeiĤt/~B̂e−iĤt/~) (1.22)

CAB(t) can also be expressed in terms of a real-time path integral given below in

terms of the discrete time, 0, ε, 2ε, ..., N, ε = t, (refer to eq 1.12 and eq 1.21)

CAB(t) =

∫
dx+

0

∫
dx−0

∫
dx+

N

∫
dx−N < x+

0 |Â|x−0 >

× < x−0 |eiĤt/~|x−N >< x−N |B̂|x
+
N >< x+

N |e
−iĤt/~|x+

0 >

=
( m

2π~ε

)N ∫
dx+

0 ...

∫
dx+

N ...

∫
dx−0 ...

×
∫
dx−N < x+

0 |Â|x−0 >< x−N |B̂|x
+
N > ei(S

+
N−S

−
N )/~

(1.23)

The forward and backward actions are given by

S±N =
N−1∑
j=0

ε

1

2
m

(
x±j+1 − x±j

ε

)2

− V (x±j )

 , (1.24)

where ε = t/N . The evaluation of eq 1.23 is difficult to converge due to sign

problem resulting from the presence of the oscillatory terms in the integral . One of

the methods to overcome this issue is the linearization approximation, which amounts

to the expansion of the forward-backward action, S+
N − S−N , to first order in the

difference between the forward and backward trajectories, z0 − zN , such that,
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yj =
1

2
(x+

j + x−j ), zj = x+
j − x−j . (1.25)

This yields:

S+
N − S

−
N ≈ ε

N−1∑
j=0

[m
ε2

(yj+1 − yj)(zj+1 − zj)− V ′(yj)zj
]

= ε

N−1∑
j=1

zj

[m
ε2

(2yj − yj−1 − yj+1)− V ′(yj)
]

+εz0

[
−m
ε2

(y1 − y0)− V ′(y0)
]

+εzN
m

ε2
(yN − yN−1)

(1.26)

The physical interpretation of the linearization approximation can be understood

by considering that the forward-backward trajectory pairs that are farther in the

phase space have smaller contribution towards the integral due to cancellation of

the highly oscillatory terms. As a result, only the trajectory pairs closer to each

other have major contribution towards the integral. Following the linearization, the

integration over the difference variables, z1, ..., zN−1, can be performed explicitely,

using the following identity:

∫
dzje

(−i/~)ε[m/ε2(yj+1−2yj+yj−1)+V ′(yj)]zj

=
2π~
ε
δ
[m
ε2

(yj+1 − 2yj + yj−1)
] (1.27)

It should also be noted that in the limit N →∞(ε→ 0),
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εz0

[
−m
ε2

(y1 − y0)− V ′(y0)
]
→ −z0p0,

εzN
m

ε2
(yN − yN−1)→ zNpN ,

(1.28)

where p0/m =limε→0(y1 − y0)/ε and pN/m =limε→0(yN − yN−1)/ε. Changing the

integration variables y1, ..., yN−1 into f1, ..., fN−1, such that

fj =
m

ε2
(yj+1 − 2yj + yj−1) + V ′(yj), (1.29)

and explicitely integrating over f1, ..., fN−1, then leads to the following approxi-

mation:

CAB(t) ≈ 1

2π~

∫
dy0

∫
dyt

∫
dz0

∫
dzt

∣∣∣∣∂p0

∂yt

∣∣∣∣
×
〈
y0 + z0/2

∣∣∣Â∣∣∣ y0 − z0/2
〉
×
〈
yt + zt/2

∣∣∣B̂∣∣∣ yt − zt/2〉 e−ip0z0/~eiptzt/~ (1.30)

It should be noted that in arriving to eq 1.30, we have explicitely incorporated

the limit N → ∞ (ε → 0), such that yN → yt and zN → zt, and made use of the

following identity

lim
N→∞

1

ε

(m
ε2

)N−1
∣∣∣∣∂y∂f

∣∣∣∣ =
1

m

∣∣∣∣∂p0

∂yt

∣∣∣∣ (1.31)

(|∂y/∂f | is the determinant of the (N−1)×(N−1) matrix whose (i, j)th element

is ∂yi/∂fi). It should also be noted that yt = yt(y0, p0) in eq 1.30 follows a classical

trajectory [cf. eq 1.27]:
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fj =
m

ε2
(yj+1 − 2yj + yj−1) + V ′(yj) = 0

N→∞−−−→ m
d2

dt2
y(t) = −V ′ [y(t)]

(1.32)

Finally, changing the integration variable yt into p0, which amounts to a trans-

formation to the initial value representation, and using the Wigner transform given

below:

AW (x, p) =

∫
d∆e−ip∆/~

〈
x+ ∆/2

∣∣∣Â∣∣∣x−∆/2
〉
, (1.33)

The resulting LSC approximation for the correlation function CAB(t) is given as:

CAB(t) ≈ (2π~)−1

∫
dy0

∫
dp0AW (y0, p0)BW (yt, pt), (1.34)

where yt = yt(y0, p0) and pt = pt(y0, p0) follow classical trajectory.

Some of the key points that should be noted about the LSC approximation are

listed below:

1. The LSC approximation can also be derived by linearizing the forward-backward

action in the semiclassical initial-value representation expression for a real-time

quantum-mechanical correlation function, with respect to the difference between

the forward and backward trajectories(124; 23; 28; 29; 30; 31; 32; 33; 34; 35).

However, the LSC approximation presented here, as derived by Geva and co-

workers(87; 62; 86; 76; 54; 56), is obtained by linearizing the forward-backward

action in the exact real time path integral expression for a quantum-mechanical

correlation function, without explicitly invoking the semiclassical stationary

phase approximation(23). However, conceptually a semiclassical method is one

that strives to connect the purely classical and exact quantum mechanical de-

scription for a particular quantity or process of interest. It should also be noted
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that, classically the time evolution of the correlation function is dictated by

the path with the minimum action, while the exact quantum-mechanical de-

scription corresponds to summing over the amplitudes of an infinite number of

paths. The LSC approximation minimizes the number of paths by applying the

linearization approximation (refer eq 1.25) resulting in a semiclassical method

that is feasible for complex systems such as molecular liquids.

2. Apart from the elegant and straightforward derivation, the LSC approximation

is exact (1) at initial time, (2) at the classical limit, and (3) for harmonic

systems.

3. The main disadvantage of the LSC approximation is that it can only capture

quantum dynamical effects that arise from the short time interferences between

the various trajectories. However, in case of high-frequency VER in condensed

phase, the relaxation is primarily dominated by short-time dynamics of the

correlation functions.

4. Although, one of the major advantages of the LSC approximation is the com-

putational feasibility in calculating the quantum dynamical properties in many-

body anharmonic systems, the computation of the Wigner transform in such

cases is non-trivial. However, various computational schemes have been devised

by Geva and co-workers for successful implementation of the LSC approximation

for systems with many DOF, these are discussed in the following subsections.

In the following subsections, the application of the LSC approximation in the calcula-

tion of VER rate constant is discussed, followed by the various computational schemes

devised for the implementation of the approximation in a variety of condensed phase

systems.
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1.1.4 Landau Teller Formula

In this subsection the Landau Teller (LT) formula for the calculation of VER is

outlined. The derivation of the LT formula is based on a perturbative approach and

is aimed at the calculation of VER rate constant in high-frequency vibrational modes.

We begin by considering a general quantum mechanical Hamiltonian with a harmonic

vibrational mode coupled to a bath of accepting modes:

Ĥ = Ĥs + Ĥb + Ĥbs ≡ Ĥ0 + Ĥbs (1.35)

where

Ĥs =
p̂2

2µ
+

1

2
µω2q̂2 (1.36)

is the Hamiltonian of the vibrational mode being probed (q̂, p̂, µ, and ω are the cor-

responding coordinate, momentum, reduced mass and frequency, respectively)

Ĥb =
N∑
i=1

(
P̂ (i)

)2

2M (i)
+ V̂

(
Q̂(1), ..., Q̂(N)

)
=

N∑
i=1

(
P̂ (i)

)2

2M (i)
+ V̂

(
Q̂
)

(1.37)

is the Hamiltonian of the bath, which consists of the other intermolecular and in-

tramolecular DOF. Q̂ =
(
Q̂(1), ..., Q̂(N)

)
, P̂ =

(
P̂ (1), ..., P̂ (N)

)
, {M (i)}, and V̂

(
Q̂
)

=(
Q̂(1), ..., Q̂(N)

)
are the corresponding coordinates, momenta, masses, and potential

energy, respectively, and

Ĥbs = −q̂F̂
(
Q̂(1), ..., Q̂(N)

)
= −q̂F̂

(
Q̂
)

(1.38)

is the system-bath coupling term that is assumed to be linearized in the vibrational

coordinate, q̂, such that VER takes place via the emission of one vibrational quantum.
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It is also assumed that the force on the vibrational mode, F̂
(
Q̂
)

, is only dependent

on the bath coordinates and does not depend on momentum terms. The underlying

idea is to expand V̂
(
Q̂, q̂

)
to first order in q̂ around equilibrium vibrational mode

coordinate, q̂0, such that,

V̂
(
Q̂, q̂

)
= V̂ |q̂=0

(
Q̂
)

+

[
∂V̂

∂q̂

]
q̂=0

q̂ = V̂
(
Q̂
)

+ q̂F̂
(
Q̂
)

(1.39)

It is a reasonable approximation in case of weak system bath coupling where the

displacement of the vibrational mode relative to the equilibrium configuration is as-

sumed to be small so as to cause negligible perturbation on the environment.

Given the general Hamiltonian above, the LT formula is based on the Redfield

theory limit of the generalized quantum master equation. To this end, along with

the weak system-bath coupling, two more fundamental assumptions are considered:

(1) separation of time scales, the VER lifetime is assumed to be much longer than

the correlation time of the bath-induced force; (2) the rotating wave approximation,

resulting in the removal of highly oscillating terms and decoupling of population

relaxation and phase relaxation. Under these conditions, the following equation for

the vibrational populations can be obtained(87):

d

dt
Pn = kn←n+1Pn+1 + kn←n−1Pn−1 − (kn+1←n + kn−1←n)Pn (1.40)

Where,

kn←n+1 = eβ~ωkn+1←n =
n+ 1

β~ω
β

2µ
C̃(ω) (1.41)

Here, β = (kBT )−1, and

C̃(ω) =

∞∫
−∞

dteiωtC(t) (1.42)
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is the Fourier transform (FT) of the force-force correlation function (FFCF) of

the force induced by the bath on the vibrational mode.

C(t) = 〈δF̂0(t)δF̂ 〉0 (1.43)

where 〈Â0 = Tr[e−βĤbÂ]/Zb, Zb = Tr[e−βĤb ], δF̂ = F̂ − 〈F̂ 〉0 and

δF̂0 = eiĤbt/~δF̂ e−iĤbt/~ (1.44)

The population dynamics in eq 1.40 results in an exponential decay in the vibra-

tional energy, such that:

d

dt
〈δĤs〉 =

∞∑
n=0

(n+ 1/2)~ω
d

dt
Pn = − 1

T1

〈δĤs〉 (1.45)

Here δĤs = Ĥs − 〈Ĥs〉0, and 〈Ĥs〉0 = ~ω/2 + ~ω/(eβ~ω − 1) is the vibrational

energy at thermal equilibrium. The VER rate constant, given as 1/T1 in eq 1.45 is

given by the LT formula:

1

T1

=
1− e−β~ω

β~ω
β

2µ
C̃(ω) (1.46)

For a more detailed discussion on the LT formula, the reader is directed to ref (87).

When considering only 0← 1 vibrational relaxation, the rate constant for population

relaxation is to the same effect as the rate constant for energy relaxation. Considering

the equation for rate constant given in eq 1.41 for the 0 ← 1 vibrational relaxation,

we get

k10 =
1

2µ~ω10

C̃ (ω10) (1.47)

As mentioned in the earlier section, calculation of the exact quantum-mechanical

correlation function, C̃(ω), for a vibrational mode with high vibrational transition
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frequency, (β~ω � 1), in condensed phase is extremely difficult. There exists a

number of theoretical schemes based on semicalssical and mixed-quantum classical

methods, that are devised for the approximate calculations of the quantum mechanical

correlation functions in many-body anharmonic systems. However, a highly popular

simplification of the VER rate constant calculation using the LT formula is the use

of a quantum correction factor (QCF)(90; 99; 39; 60; 100; 67; 101; 102; 103; 104; 105;

106; 107; 108; 88; 109; 110) multiplied to the classical limit of the LT formula

k10 = Q (ω10)
1

2µ~ω10

C̃Cl (ω10) (1.48)

where, Q (ω10) is the QCF evaluated at the vibrational transition frequency of the

excited vibrational mode. In general, QCFs are obtained by imposing certain features

of the quatum-mechanical correlation functions. Although, there are numerous sys-

tems for which the VER rate constant calculations have been performed using QCFs

resulting in VER rate constants with reasonable experimental agreement, the use of

QCFs for the calculation of VER rate constant for a high energy vibrational mode,

where β~ω � 1, is in general ad hoc and often a fair amount of experimentation

needs to be employed in order to find the suitable QCF for the relaxation mechanism

exhibited by the system of interest.

1.1.5 Vibrational Energy Relaxation Rate Constant using LSC Approxi-

mation

In this subsection, the application of the LSC approximation in the calculation of

VER rate constant in condensed phase using the LT formula (discussed in subsection

1.1.4) is outlined.(87) To this end, we consider the LSC approximation, given in eq

1.1, of the quantum-mechanical FFCF, given in eq 1.43, which assumes the following

form:

29



C(t) ≈ 1

Zb

1

(2π~)N

∫
dQ0

∫
dP 0[δF̂ e−βĤb ]W (Q0,P 0)δFW (Q

(Cl)
t ,P

(Cl)
t ) (1.49)

Here

δFW (Q
(Cl)
t ,P

(Cl)
t ) = δFW (Q

(Cl)
t ) (1.50)

and

[δF̂ e−βĤb ]W (Q0,P 0) =

∫
d∆e−iP0∆/~×〈

Q0 + ∆/2|e−βĤb|Q0 −∆/2
〉
δF (Q0 + ∆/2)

(1.51)

The oscillatory phase factor, e−iP0∆/~, in the integrand in eq 1.51 makes the di-

rect calculation of the correlation function in eq 1.49 extremely difficult due to sign

problem. In order to overcome this problem, a local harmonic approximation (LHA)

is applied that allows the integrand in eq 1.51 to be solved analytically. The LHA is

employed by considering the quadratic expansion of the potential energy of the bath,

V (Q), around an arbitrary point Q = Q0:

V (Q) ≈ V (Q0) +
N∑
k=1

∂V

∂Q(k)
|Q=Q0

[Q(k) −Q(k)
0 ]+

1

2

N∑
k=1

N∑
l=1

∂2V

∂Q(k)∂Q(l)
|Q=Q0

[Q(k) −Q(k)
0 ][Q(l) −Q(l)

0 ]

(1.52)

The quadratic term in eq. 1.52 is next written in terms of mass-weighted coordi-

nates, {
√
M (k)[Q(k) −Q(k)

0 ]}, and Hessian matrix elements
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Hk,l =
1√

M (k)M (l)

∂2V

∂Q(k)∂Q(l)
|Q=Q0

(1.53)

followed by a transformation to the normal mode representation:

1

2

N∑
k=1

N∑
l=1

∂2V

∂Q(k)∂Q(l)
|Q=Q0

[Q(k) −Q(k)
0 ][Q(l) −Q(l)

0 ] =

1

2

N∑
k=1

N∑
l=1

Hk,l

(√
M (k)[Q(k) −Q(k)

0 ]
√
M (l)[Q(l) −Q(l)

0 ]
)

=

1

2

N∑
k=1

(Ω(k))2[Q(k)
n ]2

(1.54)

In eq 1.54

Q(k)
n =

N∑
k=1

Tl,k
√
M (l)[Q(l) −Q(l)

0 ] (1.55)

are the mass-weighted normal mode coordinates and {(Ω(k))2} are the eigenvalues

of the Hessian matrix, Hk,l. Employing the LHA amounts to rewriting the linear term

in eq 1.52 and the kinetic energy of the bath in terms of the normal mode coordinates

and momenta. The resulting equation gives the LHA of the quantum-mechanical

bath Hamiltonian around Q−Q0:

Ĥb ≈
N∑
k=1

1

2
(P̂ (k)

n )2 + V (Q0) +
N∑
k=1

G(k)
n Q̂(k)

n +
N∑
k=1

(Ω(k))2[Q̂(k)
n ]2 (1.56)

Here

P̂ (k)
n (Q0) =

N∑
l=1

Tl,k(M
(l))−1/2P̂ (l) (1.57)

and
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G(k)
n (Q0) =

N∑
l=1

Tl,k(M
(l))−1/2 ∂V

∂Q(l)
|Q=Q0

(1.58)

In the next step, eq 1.51 is rewritten in the following way:

[δF̂ e−βĤb ]W (Q0,P 0) =
〈
Q0|e−βĤb |Q0

〉∫
d∆e−iP0∆/~×〈

Q0 + ∆/2|e−βĤb|Q0 −∆/2
〉

〈
Q0|e−βĤb|Q0

〉 δF (Q0 + ∆/2)

(1.59)

The LHA given in eq 1.56 is then applied to the ratio,〈
Q0 + ∆/2|e−βĤb|Q0 −∆/2

〉
/
〈
Q0|e−βĤb|Q0

〉
. This results in an analytical so-

lution for the integrand in eq. 1.49 by using the following simplication:

〈
Q0 + ∆/2|e−βĤb|Q0 −∆/2

〉
〈
Q0|e−βĤb |Q0

〉 ≈ exp[−
N∑
j=1

α(j)(∆(j)
n /2)2] (1.60)

where

∆(j)
n =

N∑
k=1

Tk,j
√
M (k)∆(k) (1.61)

and

α(j) =
Ω(j)

~
coth[β~Ω(j)/2] (1.62)

In order to simplify the ∆−dependence of the force in eq. 1.59, δF (Q0 + ∆/2) is

approximated by its quadratic expansion, in terms of ∆/2, around Q = Q0:
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δF (Q0 + ∆/2) ≈ δF (Q0) +
N∑
k=1

F ′k
∆(k)

2
+

1

2

N∑
k=1

N∑
l=1

F ′′k,l
∆(k)

2

∆(l)

2

= δF (Q0) +
N∑
k=1

F̃ ′k
∆

(k)
n

2
+

1

2

N∑
k=1

N∑
l=1

F̃”k,l
∆

(k)
n

2

∆
(l)
n

2

(1.63)

Here

F ′k =
∂F

∂Q(k)
|Q=Q0

;F ′′k,l =
∂2F

∂Q(k)∂Q(l)
|Q=Q0

(1.64)

and

F̃ ′k =
N∑
l=1

(M (l))−1/2Tl,kF
′
l; F̃

′′
k,l =

N∑
i=1

N∑
j=1

(M (i)M (j))−1/2Ti,lTj,kF
′′
i,j (1.65)

In the next step, the approximations in eq 1.60 and eq 1.63 are substituted into

eq 1.51, followed by changing the integration variables from {∆(k)} to {∆(k)
n }, and

performing the Gaussian integral over {∆(k)
n } analytically. This results in the follow-

ing:

[δF̂ e−βĤb ]W =
〈
Q0|e−βĤb|Q0

〉 N∏
j=1

(
4π

M (j)α(j)

)1/2

exp

[
−

(P
(j)
n,0)2

p2α(j)

]
×

[δF (Q0) +D(Q0,P n,0)]

(1.66)

Here

D(Q0,P n,0) = −i
N∑
k=1

F̃ ′kP
(k)
n,0

~α(k)
+

N∑
k=1

F̃ ′′k,k
4α(k)

−
N∑

k,l=1

F̃ ′′k,lP
(k)
n,0P

(l)
n,0

2~2α(k)α(l)
(1.67)

In the final step, eq. 1.66 is substituted back into eq. 1.49 followed by changing the
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integration variables from {P (k)
0 } to {P (k)

n,0} resulting in the final form of the LHA-LSC

approximation of the quantum-mechanical FFCF:

C(t) ≈
∫
dQ0

〈
Q0|e−βĤb|Q0

〉
Zb

∫
dP n,0

N∏
j=1

(
1

α(j)π~2

)1/2

×

exp

[
−

(P
(j)
n,0)2

~2α(j)

]
[δF (Q0) +D(Q0,P n,0)]δF (Q

(Cl)
t )

(1.68)

The LHA-LSC approximation, eq 1.68, has been successfully applied to the cal-

culation of VER rate constant in many systems, discussed in chapters II, III and IV.

Some of the prominent features of the method, that should be noted are listed below:

1. The LHA-LSC approximation, given in eq 1.68, is exact at time t = 0. This

can be proved by considering that the integral over D(Q0,Pn,0) with respect to

Pn,0 vanishes at t = 0. The only term left is [δF (Q0)]2, which upon integration

over Q0 yields the exact result:

1

Zb

∫
dQ0

〈
Q0|e−βĤb|Q0

〉
[δF (Q0)]2 =

1

Zb

∫
dQ0

〈
Q0|e−βĤb [δF̂ ]2|Q0

〉
=
Tr(e−βĤb [δF̂ ]2)

Tr(e−βĤb)

(1.69)

2. The classical limit of the LHA-LSC approximation, eq 1.68, coincides with the

exact classical correlation function. This can be proved by considering that, in

the classical limit:

(a)
〈
Q0|e−βĤb|Q0

〉
/Zb → e−V (Q0)/

∫
dQ0e

−V (Q0)

(b) α(j) → 2/β~2 since β~Ω(j) � 1, such that
∑N

j=1(P
(j)
n,0)2/~2α(j) → β

∑N
j=1(P

(j)
n,0)2/2→
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β
∑N

j=1(P
(j)
0 )2/2M (j), and

(c) D(Q0,P n,0), eq 1.67, vanishes as ~→ 0, so eq 1.68 reduces to the averaging

over the time correlation of the classical forces, δF (Q0)δF (Q
(Cl)
t ).

3. There are three main ways by which the quantum effects are taken into account

in the LHA-LSC approximation:

(a) The initial positions are sampled based on the exact quantum probability

density

Prob(Q0) =

〈
Q0|e−βĤb|Q0

〉
Zb

=

〈
Q0|e−βĤb|Q0

〉
∫
dQ0

〈
Q0|e−βĤb |Q0

〉 (1.70)

(b) The initial (normal-mode) momenta are sampled based on a nonclassical

probability density

Prob(P n,0) =
N∏
j=1

(
1

α(j)π~2

)1/2

exp

[
−

(P
(j)
n,0)2

~2α(j)

]
(1.71)

Here, α(j) and therefore Prob(P n,0) depend parametrically on Q0.

(c) The term D(Q0,P n,0), eq 1.67, represents a purely quantum-mechanical

effect originating from the fact that F̂ does not commute with Ĥb, such

that (F̂ eβĤb)W 6= (F̂ )W (e−βĤb)W and has no classical analogue.

4. It should be noted that the above-mentioned quantum effects include ~ to all

orders. This should be contrasted with QCFs that are obtained by expanding

the quantum-mechanical FFCF in powers of ~, to the first nonvanishing order.

5. It is important to note that the LHA-LSC FFCF in eq 1.68, is complex since

D(Q0,P n,0), given in eq. 1.67 is complex. The LHA-LSC FFCF also satisfies

the fundamental quantum-mechanical identity C(−t) = C∗(t), implying that its
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FT, C̃(ω), is real. At the same time, it does not rigorously satisfy the quantum-

mechanical identity C̃(−ω) = e−β~ωC̃(ω). The reader is encouraged to ref (122)

for a more detailed discussion of the various possible approximations arising

from this result.

6. Lastly, it is important to note that, the LHA in eq 1.56 is used to specifically

calculate the ratio of the off-diagonal and diagonal elements of the Boltzmann

operator,〈
Q0 + ∆/2|e−βĤb|Q0 −∆/2

〉
/
〈
Q0|e−βĤb|Q0

〉
(cf. eq 1.60). This is important

to implement in order to yield the correct classical limit and coincide with the

exact result at t = 0. It is important to note that the LHA involves a quadratic

expansion only in terms of ∆, while any anharmonicity in terms of Q0 remains

fully accounted for.

The LHA-LSC method has been successfully implemented in the calculation of

the VER rate constant in several systems (87; 62; 86; 76; 54; 56). However, one of the

major disadvantages of the method lies in the fact that, the calculation of the first

and second derivatives of the bath-induced force with respect to the bath coordinates

that are required as input for calculating the D(Q0,P n,0) term, given in eq 1.67, gets

more and more computationally expensive with the increase in the complexity of the

force fields. An alternate scheme of the LHA-LSC method, based on implementing

the linearization approximation on the symmetrized FFCF, instead of the standard

FFCF, has been devised by Geva and co-workers followed by successful applications

to systems with various levels of complexities(78). This LHA-LSC scheme is described

in the next subsection and the applications are discussed in chapters II, III and IV.
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1.1.6 Vibrational Energy Relaxation Rate Constant using LSC Approxi-

mation without Force Derivatives

The force derivatives free LHA-LSC approximation, FDF-LHA-LSC,(63) is based

on applying the linearized semiclassical approximation to the symmetrized FFCF,

rather than the standard FFCF, as was done in the previous scheme (LHA-LSC

method, discussed in subsection 1.1.5). In this subsection the derivation of the

FDF-LHA-LSC method is outlined, primarily focusing on the differences of the new

scheme(FDF-LHA-LSC method) with the last scheme(LHA-LSC method). To this

end, considering the VER rate constant, in eq 1.47, based on the standard FFCF,

given in eq 1.43, in the new scheme the VER rate constant is written in terms of

symmetrized FFCF that has the following form:

Cs(t) =
1

Z
Tr[e−βĤ/2δF̂ e−βĤ/2eiĤt/~δF̂ e−iĤt/~] (1.72)

The population relaxation rate constant in terms of Cs(t) is of the following form:

k10 =
1

2µ~ω10

eβ~ω10/2C̃s(ω10) (1.73)

where,

C̃(ω10) = eβ~ω10/2C̃s(ω10) (1.74)

The LHA-LSC approximation of the symmetrized quantum-mechanical FFCF has

the following form:

CLSC
s (t) =

1

(2π~)N

∫
dQ0

∫
dP 0[e−βĤ/2δF̂ e−βĤ/2]W (Q0,P 0)δF (Q

(Cl)
t ) (1.75)

Evaluating the Wigner transform in eq 1.75 in case of a many-body anharmonic
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system is extremely challenging:

[e−βĤ/2δF̂ e−βĤ/2]W (Q0P 0) =

∫
d∆e−iP 0∆/~×〈

Q0 +
∆

2
|e−βĤ/2δF̂ e−βĤ/2|Q0 −

∆

2

〉 (1.76)

In the next step, the closure relation
∫
dQ′|Q′ 〉〈Q′| = 1̂ is used to rewrite the

matrix element in the integrand in the following form:

〈
Q0 +

∆

2
|e−βĤ/2δF̂ e−βĤ/2|Q0 −

∆

2

〉
=

∫
dQδF (Q′)

〈
Q0 +

∆

2
|e−βĤ/2|Q′

〉〈
Q′|e−βĤ/2|Q0 −

∆

2

〉
=

∫
dQδF (Q′)

〈
Q0|e−βĤ/2|Q′

〉〈
Q′|e−βĤ/2|Q0

〉
〈
Q0 + ∆

2
|e−βĤ/2|Q′

〉〈
Q′|e−βĤ/2|Q0 − ∆

2

〉
〈
Q0|e−βĤ/2|Q′

〉〈
Q′|e−βĤ/2|Q0

〉
(1.77)

The LHA around Q = Q∗ is then applied to the ratio in the integrand in eq 1.77,

and the LHA-LSC approximation of Cs(t) is finally obtained by analytically solving

the resulting Gaussian integral over ∆:

CLHA−LSC
s (t) =

∫
dQ0

∫
dQ′

〈
Q0|e−βĤ/2|Q′

〉〈
Q′|e−βĤ/2|Q0

〉
Z∫

dP n

N∏
j=1

(
1

α(j)π~2

)1/2

exp

[
(P

(j)
n )2

~2α(j)

]
δF (Q′)δF (Q

(Cl)
t [Q0,P 0])

(1.78)

Here, P n = P n(Q∗) = (P
(1)
n (Q∗), ..., P

(N)
n (Q∗)) are the normal mode momenta

that emergee from diagonalizing the Hessian matrix underlying the quadratic expan-

sion of the bath potential energy around Q = Q∗ and {α(j)} are given in eq. 1.62,
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where {(Ω(k))2} are the eigenvalues of the Hessian matrix.

Eq 1.78 represents that FDF-LHA-LSC approximation of the quantum-mechanical

FFCF. The computational feasibility and the accuracy of the method has been tested

in several applications, for example, calculation of VER rate constant in neat liquid

HCl and in cyanide ion in aqueous solution. Before delving into the applications, we

discuss the prominent features of the FDF-LHA-LSC method:

1. One of the advantages of using the FDF-LHA-LSC method is the fact that,

calculation of eq 1.78 does not require force derivatives as input, as was the

case in the last scheme, eq 1.68. One consequence of this is that the term

D(Q0,P n,0), given in eq 1.67, vanishes in the new scheme. As a result, the

nonclassical behavior of the symmetrized FFCF is accounted for by the following

attributes:

(a) Nonclassical sampling of the bath coordinates and momenta.

(b) The initial force is not calculated at the initial position used to generate

the classical trajectory leading to the force at a later time t.

(c) The factor eβ~ω10/2, in eq 1.73, which coincides with the Schofield QCF.

2. It should also be noted that the correlation function given in eq 1.78 is in fact

less approximate than the correlation function using the previous scheme, given

in eq 1.68, on account of the fact that, in deriving eq. 1.78 it was not needed to

perform the expansion of δF (Q′) to second order around any point, including

Q0, as was done in the previous scheme, (cf. eq 1.63).

3. The correlation function in eq 1.78 reduces to the classical FFCF in the classical

limit, similar to the previous scheme, eq 1.68. However, it should be noted that

the high frequency FT of the standard and symmetryzed FFCFs are expected

to be highly nonclassical and hence may differ from each other significantly.
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4. Lastly, it should be noted that the point Q∗ around which the LHA is performed

can be chosen to be either Q0, corresponding to the initial configuration for

the classical trajectory that generates the force at time t, δF (Q
(Cl)
t ), or, Q′,

corresponding to the configuration used to calculate the initial force, δF (Q′),

or a combination of the two. In the applications of the FDF-LHA-LSC method,

the LHA is usually performed around Q′, to obtain a better comparison with

experiment, and to get results close to those obtained using eq 1.68.

This subsection concludes the section 1.1, where the theoretical background in

the study of VER is outlined. The applications based on the theory given in section

1.1 are discussed in chapters II, III, IV. In the next section, the theoretical back-

ground for studying barrier crossing processes using classical dynamics is outlined,

the application based on which is discussed in chapter V.

1.2 Classical Dynamics in Condensed Phase: Barrier Cross-

ing Processes

Among the conventional reactive rate theories, transition state theory(235), re-

active flux theory(228; 229; 230; 231; 232; 233) and Kramers’ theory(211; 212) have

been predominantly implemented for the analysis of barrier crossing processes in con-

densed phases for the last few decades. Reactive flux theory (RFT) provides a route

for calculating the exact isomerization rate constant from MD simulations (provided

of course that the dynamics can be described by classical mechanics and that the force

fields are accurate). More specifically, the only assumption underlying RFT is that

the rate of barrier crossing is slower than the rates of all other dynamical processes

that take place in the reactant and product wells, so that the reaction dynamics can

be described by a rate constant. RFT also allows the calculation of the rate constant

by using trajectories that start at the barrier top, thereby bypassing convergence
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problems associated with rare event statistics.(234) The popular transition-state the-

ory (TST) can be obtained from RFT in the limit where barrier recrossing events

are negligible. Finally, it should be noted that Kramers’ theory, which is often in-

voked to describe solvent effects on reaction rate constants, is based on describing

the underlying dynamics in terms of a Langevin equation. The latter avoids a molec-

ularly detailed description of the solvent and accounts for solvent effects in terms of

the dependence of the rate of recrossing on the solvent viscosity. A detailed math-

ematical derivation of the RFT and TST is provided in subsections 1.2.3 and 1.2.4,

respectively.

1.2.1 Free Energy Calculations

An important part of studying barrier crossing processes using MD simulations

is the molecular level understanding of the free energy profile of the process. During

the investigation of solvent effects in the single bond cZt-tZt isomerization reaction of

1,3,5-cis-hexatriene using MD simulations, the free energy calculations proved to be

a primary tool for the understanding of the isomerization reaction. In this subsection

the theoretical detail of free energy calculations is outlined, and the application to

the single bond cZt-tZt isomerization reaction of 1,3,5-cis-hexatriene is discussed in

chapter V.

• Umbrella Sampling

Umbrella sampling is one of the methods to study free energy changes associated

with barrier crossing processes like chemical reactions and/or phase changes.

The underlying idea behind umbrella sampling is that, in order to estimate

the free energy difference between two states of a system, one needs to sample

the configuration space accessible to both the states. In a single simulation,

sampling configuration space spanning all the states of the system is prevented

by the difficulty of sampling configurations at and near the local and/or global
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maxima. In umbrella sampling, this is achieved by modifying the Markov chain

that governs the sampling of configuration space which in turn is attained by

replacing the Boltzmann factor of the system by a nonnegative weight function,

or bias(26). To this end, consider two N-particle systems, 0 and 1, with partition

functions Q0 and Q1. The free energy difference between the systems, ∆F =

F1 − F0, can be expressed as:

∆F = −kBT ln
Q1

Q0

= −kBT ln

(∫
drNe−βU1(rN )∫
drNe−βU0(rN )

)
(1.79)

where, U0(rN) and U1(rN) represent the potential energy of N -dimensional

systems 0 and 1, with coordinates represented by r. As a result of replacing

the Boltzmann factor of the system by a nonnegative weight function (or bias)

π(rN)(26), the expression for
〈
e−β∆U

〉
0

becomes the following:

〈
e−β∆U

〉
0

=

∫
drNπ(rN)e−βU1(rN )/π(rN)∫
drNπ(rN)e−βU0(rN )/π(rN)

(1.80)

In the next step, the notation 〈...〉π is introduced to denote an average over

probability distribution proportional to π(rN), such that, eq 1.80 can be written

as following:

〈
e−β∆U

〉
0

=

〈
e−βU1/π

〉
π

〈e−βU0/π〉π
(1.81)

In order for the numerator and the denominator in eq 1.81 to be non-zero, there

needs to be enough overlap in π(rN) between the regions of configuration space

sampled by system 0 and system 1. In general, a number of MD simulations

with the bias π(rN), referred to as umbrella sampling runs, are carried out
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in windows of configuration space with slight overlap among each other. Af-

ter enough umbrella sampling runs have been carried out, such that the whole

configuration space has been sampled, the potential energy sampled for all the

windows are combined and the bias is removed, to obtain the potential of mean

force. Weighted Histogram Analysis Method (WHAM)(27) is one of the meth-

ods employed in order to combine the umbrella sampling windows and obtaining

the potential of mean force.

1.2.2 Preliminaries for quantitative study of barrier crossing processes

In this subsection, RFT for an isomerization reaction is formulated, as well as its

TST limit, with emphasis on the underlying assumptions and the conditions for their

validity. To this end, we restrict ourselves to the case of a unimolecular reaction,

which is appropriate for the isomerization reaction under study here.

Consider a classical system with the following generic Hamiltonian:

H
(
s, ṡ,Q, Q̇

)
= T

(
ṡ, Q̇

)
+ V (s,Q) . (1.82)

Here, s and ṡ are the reaction coordinate and corresponding velocity, respectively;

Q = (Q1, Q2, . . .) and Q̇ =
(
Q̇1, Q̇2, . . .

)
are the non-reactive coordinates and corre-

sponding velocities, respectively; T
(
ṡ, Q̇

)
is the overall kinetic energy and V (s,Q)

is the overall potential energy.

Next, let s = s‡ define the transition state (TS), such that s < s‡ and s > s‡

correspond to reactant and product, respectively. The heaviside function is defined

as,

h(s) =

 1 s > s‡(product)

0 s ≤ s‡(reactant)
, (1.83)
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so that the product mole fraction at time t is given by:

xP (t) =

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρ

(
s, ṡ,Q, Q̇; t

)
h(s) ≡ 〈h(s)〉t . (1.84)

Here, ρ
(
s, ṡ,Q, Q̇; t

)
is the (nonequilibrium) phase-space density at time t. It should

be noted that the reactant mole fraction at time t is given by:

xR(t) = 1− xP (t) =

∫
ds

∫
dṡ

∫
dQ

∫
dρ
(
s, p,Q, Ṗ; t

)
[1− h(s)] ≡ 1− 〈h(s)〉t .

(1.85)

In the absence of external perturbation,

ρ
(
s, ṡ,Q, Q̇; t

)
t→∞−→ ρeq

(
s, ṡ,Q, Q̇

)
≡

exp
[
−H

(
s, ṡ,Q, Q̇

)
/kBT

]
∫
ds
∫
dṡ
∫

dQ
∫

dQ̇ exp
[
−H

(
s, ṡ,Q, Q̇

)
/kBT

] ,
(1.86)

such that

xP (t)
t→∞−→ xP,eq ≡

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρeq

(
s, ṡ,Q, Q̇

)
h(s) ≡ 〈h(s)〉eq

xR(t)
t→∞−→ xR,eq ≡

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρeq

(
s, ṡ,Q, Q̇

)
[1− h(s)](1.87)

≡ 1− 〈h(s)〉eq . (1.88)

The concept of the reaction rate constant is based on assuming that the reaction

dynamics can be described by a simple kinetic rate equation of the following form:

ẋP (t) = −ẋR(t) = −kRPxP (t) + kPRxR(t) , (1.89)

where kPR and kRP are reactant-to-product and product-to-reactant reaction rate

constants, respectively. Equivalently,

δẋi(t) = −kδxi(t) . (1.90)
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Here i = P or R, k = kPR + kRP , δxi(t) = xi(t)− xeqi , xeqP = kPR/k and xeqR = kRP/k.

It should be noted that relaxation processes are generally characterized by many

relaxation times, not one. In order for reaction kinetics to be described by a single

rate constant as in eq 1.90, the activation energy has to be much higher than kBT ,

which results in the reaction rate constant being much slower on the time scale of

all remaining nonreactive processes.(236; 237; 233) Under these circumstances, the

reaction dynamics can be described by eq 1.90 (after a short transient time during

which the reaction does not make significant progress)(233; 238).

Eq 1.90 can be easily solved to give δxi(t) = δxi(0) exp (−kt). Thus, the actual

reaction rate constant can be obtained from the following expression:

k = lim
t→tp

k(t) = − lim
t→tp

δẋi(t)/δxi(0) (1.91)

Here, k(t) is explicitly time-dependent during an initial transient period, 0 < t <

tp(� 1/k), following which it will reach the “plateau region”, where it acquires a

fixed value (provided that t � 1/k). (233; 238) This fixed value corresponds to the

reaction rate constant, k.

1.2.3 The reaction rate constant from linear response theory

Since activated processes follow rare-event statistics, direct evaluation of the re-

action rate constant from eq 1.91 would typically require prohibitively long non-

equilibrium MD simulations. Linear response theory (LRT)(228; 239) provides an

alternative route for calculating reaction rate constants that can bypass this obsta-

cle. To this end, one needs to take advantage of the fact that since the reaction rate

constant is independent of the choice of initial condition, one is free to choose an

initial state which is in the close vicinity of thermal equilibrium.(228; 240) It is this

assumption that makes it possible to calculate the reaction rate constant via LRT.
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The derivation of an expression for the reaction rate constant from LRT starts out

by considering a classical system with the total Hamiltonian H
(
R, Ṙ

)
+ fA (R) at

t < 0 and H
(
R, Ṙ

)
at t ≥ 0 (R ≡ (s,Q) in the context of the current derivation).

Here, f is a scalar coefficient, and A (R) is any perturbation that can shift the system

from its unperturbed thermal equilibrium phase-space density

ρeq

(
R, Ṙ

)
=

e−H[R,Ṙ]/kBT∫
dR

∫
dṘe−H[R,Ṙ]/kBT

. (1.92)

At t = 0, the system is assumed to be in thermal equilibrium with respect to the

perturbed Hamiltonian, so that its initial phase-space density is given by:

ρ(R, Ṙ; t = 0) =
e−[H(R,Ṙ)+fA(R)]/kBT∫

dR
∫

dṘe−[H(R,Ṙ)+fA(R)]/kBT
. (1.93)

Thus, the ensemble-averaged value of a dynamical variable B(R) at time t ≥ 0 is

given by

〈B〉eq(t) =

∫
dR0

∫
dṘ0e

−[H(R0,Ṙ0)+fA(R0)]/kBTB(Rt)∫
dR0

∫
dṘ0e−[H(R0,Ṙ0)+fA(R0)]/kBT

. (1.94)

Here Rt is obtained by solving the classical equation of motion under the Hamiltonian

H(R, Ṙ), with the initial conditions
{

R0, Ṙ0

}
, to obtain

{
Rt, Ṙt

}
at time t.

Assuming that the initial phase-space density is close enough to the unperturbed

equilibrium phase-space density, ρeq

(
s, ṡ,Q, Q̇

)
, for the linear response limit, f � 1,

to be valid, one may replace eq 1.94 by its expansion to first order in powers of f .

This then results in the following expression for 〈δB〉eq(t) in terms of an equilibrium

two-time correlation function:

〈δB〉eq(t) =
f

kBT
〈δA(R0)δB(Rt)〉eq , (1.95)

where δA(R) = A(R)− 〈A〉eq and δB(R) = B(R)− 〈B〉eq.

46



Now, assuming that A = B = h(s), eq 1.95 reduces to:

〈δh〉eq(t) ≡ δxP (t) =
f

kBT
〈δh(s0)δh(st)〉eq . (1.96)

Substituting eq 1.96 into eq 1.91 then yields:

k = − lim
t→tp

〈δh(s0)δḣ(st)〉eq
〈[δh(s0)]2〉eq

= lim
t→tp

〈δḣ(s0)δh(st)〉eq
xR,eqxP,eq

. (1.97)

Noting that δḣ = ḣ = δ
[
s− s‡

]
ṡ is the reactive flux, we obtain the following expres-

sion for the reaction rate constant:

k = lim
t→tp

1

xR,eqxP,eq
〈δ
[
s0 − s‡

]
ṡ0h(st)〉eq . (1.98)

It should be noted that kPR = kxP,eq and kRP = kxR,eq. eq 1.98 is the RFT expression

for the reaction rate constant. Importantly, it represents an exact expression for

the rate constant, provided that classical mechanics is valid and the force fields are

accurate.

1.2.4 Transition state theory

TST can be obtained from eq 1.98 by replacing h [st] by h [ṡ0]. This assumption

is equivalent to neglecting barrier recrossing, that is assuming that starting at a TS

configuration with a positive velocity along the reaction coordinate (ṡ > 0) guarantees

barrier crossing, that is h(st) = 1. This then leads to the following expression for the

reaction rate constant:

kTST =
1

xR,eqxP,eq
〈δ
(
s− s‡

)
ṡh(ṡ)〉eq = 〈ṡh(ṡ)〉eq〈δ

(
s− s‡

)
〉eq . (1.99)

Importantly, the TST reaction rate constant is given in terms of an equilibrium ensem-
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ble average, as opposed to an equilibrium two-time correlation function within RFT.

As a result the ṡ-dependent and s-dependent factors can be averaged separately.

The s-dependent factor in eq 1.99 can be put in the Arrhenius form:

1

xR,eq
〈δ
(
s− s‡

)
〉eq

=

∫
dQ exp

[
−V (Q, s‡/kBT

]∫
dQ

∫
s≤s‡ ds exp [−V (Q, s)/kBT ]

= exp
[
−∆G‡/kBT

]
= exp

[
∆S‡/kB

]
exp

[
−∆H‡/kBT

]
. (1.100)

Here, ∆G‡ = G‡−GR, ∆S‡ = S‡−SR and ∆H‡ = H‡−HR are the Gibbs free energy,

entropy and enthalpy difference between the TS and the reactant state (assuming

that the reaction takes place under constant temperature and pressure). Thus, the

reactant-to-product rate reaction rate constant is given by:

kTSTPR = A exp
[
−∆H‡/kBT

]
, (1.101)

with

A = 〈ṡh(ṡ)〉eq exp
[
∆S‡/kB

]
(1.102)

Finally, comparison to eq 1.98 reveals that

kPR = κkTSTPR , (1.103)

where κ is the so-called transmission coefficient, which is explicitly given by:

κ = lim
t→tp

〈ṡ0δ
[
s0 − s‡

]
h(st)〉eq

〈ṡh(ṡ)〉eq
. (1.104)

It should be noted that κ < 1 due to recrossing and that as a result, kTST corresponds

to an upper bound on the actual rate constant, k ≤ kTST .

48



This subsection concludes the section 1.2, where the theoretical background of

studying barrier crossing processes using classical dynamics is outlined, the applica-

tion based on the theory discussed in this section is detailed in chapter V.
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CHAPTER II

Vibrational Lifetimes of Cyanide Ion in Aqueous

Solution From Molecular Dynamics Simulations:

Intermolecular vs. Intramolecular Accepting

Modes

2.1 Introduction

Understanding the time scale and mechanism of vibrational energy relaxation

(VER) in condensed phase systems at the molecular level is key for understanding

chemical reactivity.(36; 37; 38; 39; 40; 41; 42; 43; 44; 45) Over the last several decades,

VER has been studied extensively in variety of condensed phase systems, using ex-

perimental (46; 159; 48; 48; 49; 50; 51; 52; 53) and computational (54; 55; 56; 57;

58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78) tech-

niques. Those studies have demonstrated that VER can occur over a wide range of

time scales and via different mechanisms, depending on the frequency of the relaxing

and accepting modes and the nature of the interaction between them.

The majority of computational studies of VER were based on the Landau-Teller

(LT) formula.(40; 155) The latter is based on assuming weak coupling between the

relaxing mode (the system) and the remaining degrees of freedom (the bath), and
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leads to a description of VER in terms of rate kinetics. The rate constant for VER

from the first excited to the ground vibrational state of the relaxing mode, whose

inverse corresponds to the first excited state VER lifetime, is given in terms of the

Fourier transform (FT), at the vibrational transition frequency, of the free-bath two-

time autocorrelation function of the force exerted on the relaxing mode by the bath.

When the frequency mismatch between the relaxing and accepting modes is smaller

than kBT/~, where T is the temperature and kB is the Boltzmann constant, one

expects the classical force-force correlation function (FFCF) to yield a reasonable

approximation to the quantum FFCF.(80; 81; 66; 82; 83; 84; 85) However, quantum

effects must be accounted for when this condition is not met. Since exact quantum

molecular dynamics simulations are not feasible for most many-body anharmonic

condensed phase systems of practical interest, such as molecular liquid solutions,

accounting for quantum effects is usually done via approximate methods that range

from using rigorous, yet computationally costly, semiclassical approximations(62; 86;

87; 56; 54; 76; 78) to employing heuristic quantum correction factors (QCFs).(64; 53;

67; 60; 88; 67; 60; 64; 59; 55; 89)

The cyanide ion in aqueous solution has been established over the last two decades

as an important model system for understanding VER in polar liquid solutions. As

such, it has been extensively studied using experimental and computational methods.(65;

58; 68; 70; 59; 72; 66; 75; 61; 46; 52; 71; 73). In particular, Hamm et al.(52) reported

measuring VER lifetimes of different isotopomers of CN− in liquid H2O and D2O

via IR-pump-IR-probe spectroscopy. The experimental VER lifetimes for all the iso-

topomers range between 20 ps to 130 ps, depending on the isotopomer combination.

Two interesting trends that emerged from the experimental measurement are:

• The VER lifetimes are considerably shorter in H2O in comparison to D2O.

• While the VER lifetime is insensitive to the C−N stretch frequency in the case

of H2O, there is a pronounced decrease in the VER lifetime with increasing
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frequency of the C−N stretch in the case of D2O.

Several previous computational studies attempted to reproduce the experimen-

tally observed VER lifetimes and shed light on the molecular mechanism underlying

them.(65; 58; 68; 70; 59; 72; 66; 75; 61; 46; 71; 73) An early paper by Rey and

Hynes (59) reported a calculation of the VER lifetime of one isotopomer combina-

tion, 12C14N−/H2O, based on the LT formula, using a classical force autocorrelation

function and the standard QCF.(67; 60; 90) The FFCF was obtained from classical

MD simulations that employed the rigid TIP4P water model and a four site charge

model for CN−,(91) where the site charges were modified in order to obtain better

agreement with the experimental VER lifetime. This resulted in a calculated VER

lifetime of 58 ps, which is in reasonable agreement with the experimental value of

28±7 ps.(52) The calculations also suggested that electrostatic forces, as opposed to

Lennard-Jones (LJ) forces, dominate VER in this system. However, the sensitivity

of these results to the choice of site charges was later pointed out in Ref. (66) that

reported a lifetime of 138 ps based on a calculation that employed the original site

charges for CN− from Ref. (91) and the same rigid TIP4P water model.

Okazaki and co-workers (66; 82; 68) later reported a series of calculations of the

VER lifetime for the same isotopomer combination (12C14N−/H2O) via their mean-

field mixed quantum classical method (MF/MQC) and a fully quantum-mechanical

treatment based on a combination of instantaneous normal mode analysis of the

solvent with either the Feynmann path integral influence functional (PI/IF) or Fermi’s

golden rule (PI/FGR). The MF/MQC method, which was based on treating the

C−N stretch quantum-mechanically and the remaining degrees of freedom (DOF)

classically, and employed a rigid TIP4P water model, yielded a VER lifetime of 110

ps. The PI/FGR method yielded a VER lifetime of 200 ps.(82) Those authors then

repeated the calculations with a flexible SPC/E(92) water model, to obtain VER

lifetimes of 24 ps and 30 ps(68) using MF/MQC and PI/FGR, respectively. Based
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on those results, the authors concluded that the accepting modes in this system

are intramolecular. However, it should be noted that their mixed quantum-classical

approach treats the accepting modes as classical and as such may not be able to

properly account for quantum effects.(39)

In another computational study that focused on the quantum effects in the same

system, Bastida et al.(71; 73) have used the Ehrenfest method with quantum correc-

tions to calculate the VER lifetime in the same isotopomer combination, (12C14N−/H2O).

Their calculations yielded a lifetime of 150 ps when using the CN− model used by Rey

and Hynes (59) and 55 ps when using the CN− model used by Okazaki,(82) (both

with the rigid TIP4P water model). Further studies by the same authors focused

on treating the CN− stretch and the water vibrational modes quantum mechanically

within their quantum-corrected Ehrenfest method(73) and yielded a bi-exponential

VER that was attributed to the two types of accepting modes. The faster relaxation

(20 ps lifetime) was assigned to bending water modes as accepting modes and ac-

counted for 82% of the VER. A slower relaxation (180 ps lifetime) was assigned to

translational and rotational solvent modes as accepting modes.

Jang et al. (61) have used centroid molecular dynamics(93; 94) (CMD) to study

the VER in 12C14N−/H2O. With this method, and using the flexible SPC/F2(95)

water model, they obtained a VER lifetime of 15 ps. However, the nature of the

accepting modes was not reported in this study.

More recently, Lee et al.(75) used a classical nonequilibrium simulation of 12C14N−

dissolved in H2O, D2O and T2O described by the rigid TIP3P water model(96) and

the flexible KKY water model(97). The electrostatic interactions in this case were

described by state-of-the-art distributed multiple moments obtained from ab-initio

calculations. Within this framework, and using the flexible water model, calculated

VER lifetimes of 19 and 34 ps were obtained in H2O and D2O, respectively (the

corresponding experimental values of are (28±7)ps and (71±3)ps). Those authors
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also showed that the agreement with experiment can be improved by modifying the

van der Waals parameters by ∼20%.

The above mentioned previous studies suggest that at least two types of accepting

modes can play a role in the VER of cyanide ion in aqueous solutions, namely:(73; 66)

• Intermolecular accepting modes that involve translational and rotational DOF

of water.

• Intramolecular accepting modes that involve intramolecular vibrational DOF of

water;

While most studies seem to point to the intramolecular accepting modes as being

dominant, this conclusion has been reached based on assuming that the solvent can

be treated as classical. Furthermore, the lifetimes are observed to be highly sensitive

to the model parameters, which in some cases needed to be adjusted in order to obtain

agreement with experiment. In addition, while those previous computational studies

shed light on the molecular picture underlying VER of cyanide in aqueous solution,

several important aspects of this system have not yet been addressed:

• Most previous studies have focused on 12C14N−/H2O and did not address the

aforementioned experimentally observed considerable variation of VER lifetime

with respect to the cyanide and water isotopomers.(52)

• While quantum effects have been considered, their relative importance when

the accepting modes are either intermolecular or intramolecular have not been

addressed. It should be noted that since the frequency mismatch between the

relaxing and accepting modes is larger when the accepting modes are inter-

molecular, one expects quantum effects to be more important relative to the

case where the accepting modes are intramolecular.

• The fact that the cyanide ion is electron rich suggest that it should be described
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by a polarizable force field. However, most previous studies have been based on

site charge models.

• All previous computational studies have assumed that the system is at infi-

nite dilution with one cyanide ion in the simulation box, which correspond to

concentrations lower than the experimental ones. Furthermore, it was usually

assumed that the effect of counter ions need not be taken into account. It is

therefore desirable to perform the simulations at concentrations that are con-

sistent with experiment in order to incorporate the effect of interactions with

neighboring cyanide ions and their counter ions.

Our objective in this research is to address the above mentioned aspects

of the cyanide ion in aqueous solution system. We have attempted this in the

following way:

• We present results for four different isotopomer combinations: 12C14N−/H2O,

12C14N−/D2O, 13C15N−/H2O and 13C15N−/D2O.

• We account for quantum effects via QCFs that depend on the type of accepting

modes.

• We describe the cyanide ion in terms of a polrizable force field.

• We base the calculations on MD simulations performed at concentrations com-

parable to the ones used in the experimental measurements in Ref. (52) and

with explicit counter ions.

The remainder of this chapter is organized as follows. The theory underlying VER

lifetime calculations within the framework of LT formula with classical FFCF and

QCFs is outlined in Sec. 2.2. Computational techniques and force field parameters

are discussed in Sec. 2.3. The results are presented and discussed in Sec. 2.4. A

summary of the main results and outlook are provided in Sec. 2.5.
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2.2 Theory

Consider a vibrational mode linearly coupled to a bath, so that the overall fully

quantum-mechanical Hamiltonian is given by

Ĥtot =
p̂2

2µ
+ v(q̂) +

N∑
j=1

(P̂ (j))2

2M (j)
+ V (Q̂)− q̂F (Q̂) . (2.1)

Here, q̂, p̂, µ and v(q̂) are the relaxing mode coordinate, momentum, reduced mass,

and bath-free vibrational potential, respectively; Q̂ =
(
Q̂1, Q̂2, . . . Q̂N

)
, P̂ =

(
P̂1, P̂2, . . . P̂N

)
,

M (1), ...,M (N), and V (Q̂) are the coordinates, momenta, masses, and potential energy

of the bath DOF; F (Q̂) is the force exerted by the bath on the relaxing mode when

the relaxing mode is frozen at its equilibrium configuration.

The rate constant for population relaxation from the first-excited to the ground

vibrational states is given by the fully-quantum mechanical LT formula:(40; 155)

k01 =
1

2µ~ω10

C̃(ω10) . (2.2)

Here,

C̃(ω) =

∞∫
−∞

dteiωtC(t) (2.3)

is the FT of the free-bath quantum-mechanical FFCF,

C(t) = 〈δF̂ (t)δF̂ 〉 , (2.4)

where 〈Â〉 = Tr[e−βĤbÂ]/Zb, Zb = Tr[e−βĤb ], δF̂ = F̂ − 〈F̂ 〉, β = (kBT )−1,

δF̂ (t) = eiĤbt/~δF̂ e−iĤbt/~ (2.5)
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and

Ĥb =
N∑
j=1

(P̂ (j))2

2M (j)
+ V (Q̂) . (2.6)

One fundamental difficulty encountered in practical applications of Eq. (2.2) is

associated with the fact that the required input consists of the quantum-mechanical

FFCF, rather than the classical FFCF. Unfortunately, the exact calculation of real-

time quantum-mechanical correlation functions for general many-body anharmonic

systems remains far beyond the reach of currently available computer resources, due

to the exponential scaling of the computational effort with the number of DOF.(98)

The most popular approach for dealing with this difficulty in the context of VER

is to first evaluate the FT of the classical FFCF, and then multiply the result by a

frequency-dependent QCF, Q(ω): (90; 99; 39; 60; 100; 67; 101; 102; 103; 104; 105;

106; 107; 108; 88; 109; 110)

C̃(ω) ≈ Q(ω)C̃Cl(ω) . (2.7)

Here, C̃Cl(ω) =
∫∞
−∞ dte

iωtCCl(t), where CCl(t) = 〈δF (t)δF 〉Cl is the classical FFCF

(〈· · · 〉Cl corresponds to averaging over the classical Boltzmann phase-space distribu-

tion and the time evolution of δF (t) is governed by classical mechanics). Importantly,

CCl(t) can be evaluated with relative ease from classical MD simulations.

The QCF, Q(ω), is obtained based on the general properties of quantum correla-

tion functions (e.g., detailed balance) and/or the knowledge of what Q(ω) looks like

in the very few cases where it can be obtained explicitly.(64; 53; 67; 60; 88) In the

case of rigid water, we follow the prescription proposed by Skinner and co-workers for

choosing the QCF based on the nature of the accepting modes.(67; 60) More specifi-

cally, since in this case the accepting modes are intermolecular (i.e. solute vibration
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to solvent translation/rotation VER) we employed the harmonic/Schofield QCF

QHS (ω) = eβ~ω/4
(

β~ω
1− e−β~ω

)1/2

. (2.8)

The nature of the accepting modes in the case of flexible water is less well defined

due to significant coupling between the intramolecular and intermolecular DOF, which

leads to broadening of resonances associated with intramolecular vibrational modes

of water by hundreds of cm−1 (see Sec. 2.4). Thus, in the lack of a clear choice of

QCF in this case, we opt for what one may argue is the simplest choice, namely the

standard QCF,(67; 60; 90)

Qst (ω) =
2

1 + e−β~ω
. (2.9)

As we will see in Sec. 2.4, this choice also happens to be consistent with the ex-

perimental vibrational lifetimes, whereas other choices, like the harmonic QCF or

mixtures of the harmonic QCF and the harmonic/Schofield QCF (67) lead to vibra-

tional lifetimes which are significantly shorter than the experimental ones.

It should be noted that Qst (ω) ∼ 2 when β~ω � 1, which is the case for the C−N

stretch at 300K, and therefore much smaller than the harmonic/Schofield QCF (QHS

38.53 and 34.25 for C−N stretch at 300K in 12C14N− and 13C15N−, respectively).

Thus, the quantum enhancement of VER into intermolecular accepting modes is

significantly larger than that of VER into intramolecular accepting modes, which

is to be expected in light of the larger frequency mismatch between relaxing and

accepting modes in the case of intermolecular relative to intramolecular accepting

modes.

2.3 Computational Methods

The interaction between cyanide and water were modeled in terms of the AM-

BER polarizable force field ff02.(111) Importantly, the force field parameters were
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used as given rather than as adjustable parameters whose values are set so as to

obtain agreement with experiment. The partial charges for CN− were assigned using

the restrained electrostatic potential (RESP)(112; 243; 242) method where the elec-

trostatic potential is generated via Gaussian 09, at the HF/6-31G* level. The partial

charges for C and N thus obtained are δC=-0.216698 and δN=-0.783302, respectively.

The atomic polarizabilities for the C, N and K atoms were set as 0.36 Å3, 0.53 Å3,

and 1.06 Å3 respectively. The SHAKE algorithm(247) was used to constrain the C−N

bond length to its equilibrium value (1.177Å). Results obtained with the following

two different water force fields were compared:

• The SPC/E force field(116) for modeling rigid water intermolecular accepting

modes, where the rigidity was imposed by the SHAKE algorithm(247)

• The SPC/Fw force field(117) for modeling flexible water intramolecular accept-

ing modes.

MD simulations were performed using the AMBER 10 software package for four

different isotopomer combinations: 12C14N−/H2O, 13C15N−/H2O, 12C14N−/D2O, 13C15N−/D2O.

For each isotopomer combination, separate simulations were performed with either

the rigid SPC/E or flexible SPC/Fw water force fields (8 independent simulated

systems overall).

Simulations were performed using a cubical simulation box with periodic boundary

conditions, containing 9 CN− anions and 9 K+ cations dissolved in either 605 rigid

SPC/E water molecules or 753 flexible SPC/Fw water molecules, at a temperature

of 300K and pressure of 1.0atm. Equilibration was carried out via the Andersen

temperature coupling scheme.(246) In the case of rigid SPC/E water, the systems

were equilibrated for 150 ps at constant pressure with a time step of 1.5 fs, resulting

in a solution with 0.802M KCN concentration. In the case of flexible SPC/Fw water,

the systems were equilibrated for 500 ps at constant pressure with a time step of
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1.0 fs, resulting with 0.658M KCN concentration. It should be noted that these

concentrations are comparable to the experimental concentrations (0.22-0.90M).(52)

All the reported VER rate constants were calculated from the corresponding

FFCFs, obtained by averaging over 3.2×105 trajectories.

The statistical error associated with the VER lifetimes was given as the stan-

dard deviation calculated after dividing the trajectories in 10 blocks, with 3.9×104

trajectories per block, each of length 3.15 ps, for rigid SPC/E water, and 3.2×104

trajectories per block, each of length 2.1 ps, for flexible SPC/Fw water, respectively.

2.4 Results

2.4.1 Rigid SPC/E water

C̃Cl (ω) for the aforementioned four isotopomer combinations, is shown in Fig. 2.1

for rigid SPC/E water. The corresponding VER lifetimes as obtained with and with-

out the harmonic/Schofield QCF are compared with the corresponding experimental

lifetimes(52) in Table 2.1. In the case of rigid SPC/E water, C̃Cl (ω) is observed

to be monotonically decreasing at high frequencies. Such behavior is characteristic

of VER into intermolecular accepting modes (i.e. vibration to rotation/translation

energy transfer). The VER lifetimes calculated with rigid SPC/E water are seen to

be in good quantitative agreement with the experimental values for both H2O and

D2O when the harmonic/Schofield QCF is used. In contrast, the lifetimes calculated

with rigid SPC/E water for both H2O and D2O are seen to be an order of magnitude

longer than the corresponding experimental values when no QCF is used (i.e. when

the QCF is set to unity). Those results are consistent with previous studies showing

that quantum effects can significantly enhance VER rates in the case of intermolecular

accepting modes.(103; 62; 86; 76; 54; 56; 78)

One interesting experimentally observed trend is that the VER lifetimes in H2O are
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Table 2.1: VER lifetimes calculated at 300K using rigid SPC/E water model.
Solvent Frequency τ10 /ps τ10 /ps τ10 /ps

(cm−1) Classical harmonic/Schofield QCF Experiment
13C15N− in D2O 2004 4275± 1968 125± 57 120± 6
12C14N− in D2O 2079 3723± 1714 97± 45 71± 3
13C15N− in H2O 2004 876± 403 26± 12 31± 7
12C14N− in H2O 2079 1054± 485 27± 12 28± 7

considerably shorter than in D2O. This trend is reproduced by our rigid SPC/E water

simulation results. Since, for a given cyanide isotopomer, the QCF is independent of

the water isotopomer, the origin of this trend must be classical. This trend also cannot

be attributed to the difference in the frequencies of the intramolecular modes of H2O

and D2O(75) since the water molecules are treated as rigid. Although an explanation

of the underlying mechanism will require a more detailed analysis, the difference is

likely related to faster rotational and/or librational motions of H2O compared to D2O

due to the lighter hydrogen isotope, which may give rise to larger values of C̃Cl (ω)

at the same C−N stretch frequency.

Another interesting experimental trend is the relative insensitivity of the VER

lifetime to the cyanide isotopomer in the case of H2O, in contrast to the pronounced

decrease in the lifetime with increasing frequency of the C−N stretch in the case

of D2O. Our calculated lifetimes seem to reproduce this trend. However, the fact

that the accompanying error bars are larger than the difference in lifetimes between

12C14N−/D2O and 13C15N−/D2O make the difference statistically insignificant. Fur-

thermore, it should be noted that since C̃Cl (ω) is a monotonically decreasing function

of frequency in the case of rigid SPC/E water, the origin of this effect cannot be clas-

sical and can therefore only be attributed to the QCF, which does indeed increase

between the lower and higher C−N stretch frequencies by a factor of ∼1.2.

In order to gain insight into the role played by electrostatic forces in determin-

ing the VER lifetime in the case of rigid SPC/E water, we decomposed the force

into its LJ and electrostatic contributions and considered the contributions of LJ-
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Figure 2.1: A semilog plot of C̃Cl (ω) for rigid SPC/E water at 300K for all sys-
tems. (a) 12C14N−/H2O, (b) 13C15N−/H2O, (c) 12C14N−/D2O, (d)
13C15N−/D2O. The range of the frequency axis is between 0 and the cor-
responding C−N stretch frequency.
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LJ, electrostatic-electrostatic, and LJ-electrostatic cross terms (see Fig. 2.2). At

low frequencies, C̃Cl (ω) is seen to be dominated by the LJ-LJ contributions for

all isotopomer combinations. However, at high frequencies, the contributions of

electrostatic-electrostatic and LJ-electrostatic cross terms increase and become either

larger than (for H2O) or comparable to (for D2O) the LJ-LJ contributions.

The contribution of LJ forces is often attributed to electrostriction, which are

often found to dominate VER in polar solution.(119) In this case, the attractive

electrostatic forces play an indirect role of bringing the solute and solvent closer

together, thereby amplifying the effect of LJ short-range repulsive forces to enhance

the VER rate constant. While electrostriction does seem to dominate VER at low

frequencies for the cyanide/water system, this is no longer true at high frequencies.

Since this trend is observed for a purely classical quantity, C̃Cl (ω), its origin must

be classical as well. The relatively large contribution of the electrostatic-electrostatic

terms is likely due to the stronger electrostatic forces in ionic solutions in comparison

to polar solvents.

2.4.2 Flexible SPC/Fw water

We next turn to the case of flexible SPC/Fw water. C̃Cl (ω) for the two cyanide

isotopomers (12C14N− and 13C15N−) in D2O and H2O are shown in Figs. 2.3 and

2.4, respectively. The corresponding VER lifetimes as obtained with and without

the standard QCF are compared with the corresponding experimental lifetimes(52)

in Table 2.2.

As expected, C̃Cl (ω) is non-monotonic even at high frequencies in the case of

flexible SPC/Fw water. The resonances in C̃Cl (ω) correspond to the existence of

intramolecular bending, and symmetrical and anti-symmetrical stretching modes of

water that can serve as accepting modes. The intramolecular origin of those modes

is also consistent with the fact that the frequencies of those resonances are lower in
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Figure 2.2: A semilog plot of the contributions of the electrostatic-electrostatic, LJ-
LJ and LJ-electrostatic cross terms to C̃Cl (ω) for rigid SPC/E water
at 300K. (a) 12C14N−/H2O, (b) 13C15N−/H2O, (c) 12C14N−/D2O, (d)
13C15N−/D2O. The range of the frequency axis is between 0 and the cor-
responding C−N stretch frequency.
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Table 2.2: VER lifetimes calculated at 300K using flexible SPC/Fw water model.
Solvent Frequency τ10 /ps τ10 /ps τ10 /ps

(cm−1) Classical Standard QCF Experiment
13C15N− in D2O 2004 291± 134 146± 67 120± 6
12C14N− in D2O 2079 177± 82 88± 41 71± 3
13C15N− in H2O 2004 116± 43 58± 21 31± 7
12C14N− in H2O 2079 112± 44 56± 22 28± 7

D2O than in H2O. Importantly, these resonances are hundreds of cm−1 broad which

is indicative of the strong coupling between the intramolecular and intermolecular

DOF of water. This extensive broadening also implies that these resonances can still

affect the VER of the relaxing mode even when its frequency does not coincide with

the central frequency of the intramolecular accepting mode.

The VER lifetimes calculated with flexible SPC/Fw water are seen to be in good

quantitative agreement with the experimental values in the case of D2O when the

standard QCF is used. It should be noted that the standard QCF is significantly

smaller than the Harmonic/Schofield QCF, and that as a result quantum effects play

a relatively small role in comparison to the case where the accepting modes are in-

tramolecular. It should also be noted that in the case of D2O, VER of the C−N

stretch is seen to be most strongly influenced by the resonances associated with the

water stretching modes, whose low frequency wings overlap with the C−N stretch

frequency (see insert in Fig. 2.3). The larger overlap with these resonances with

increasing C−N stretch frequency is also consistent with the corresponding experi-

mental trend in D2O.

The VER lifetimes calculated for flexible SPC/Fw water with the standard QCF

are also in reasonable quantitative agreement with the corresponding experimental

values in the case of H2O. However, it should be noted that, in the case of H2O,

VER of the C−N stretch is seen to be most strongly influenced by the resonance

associated with the water bending mode, whose high frequency wing overlaps with

the C−N stretch frequency (see insert in Fig. 2.4). However, the water bending mode
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resonance appears to be not as broad as the water stretching modes resonances. This

is consistent with the experimentally observed insensitivity of the lifetime to the

cyanide isotopomer in the case of H2O as well as with the fact that the agreement

between the calculated and experimental lifetimes is not as good as in the case of

D2O (the experimental lifetimes are observed to be shorter than the calculated ones

by a factor of ∼2). More specifically, the lower overlap with the bending resonance

implies that the standard QCF may not be able to fully account for the quantum

enhancement of the VER rate, thereby leading to longer VER lifetimes. However, it

should also be noted that using the the harmonic/Schofield QCF leads to lifetimes

which are an order of magnitude shorter than the corresponding experimental values

and therefore clearly overestimate those quantum effects.

The experimental trend according to which VER lifetimes are considerably shorter

in H2O in comparison to D2O is also reproduced with flexible SPC/Fw water. How-

ever, its likely origin in this case is the higher efficiency of the water bending mode as

an accepting mode in comparison to that of the water stretching modes as accepting

modes. This is consistent with the fact that the stretching modes are higher in energy

than the C−N stretch, and would therefore require an uphill energy transfer. The

latter is less likely than the downhill energy transfer associated with VER into the

water bending mode whose frequency is lower than that of the C−N stretch.

2.5 Summary

The cyanide ion in aqueous solution has been established over the last two decades

as an important model system for understanding liquid phase VER. Previous compu-

tational studies considered either intermolecular or intramolecular accepting modes.

Based on treating the solvent classically, most of those studies pointed to VER into

intramolecular accepting modes as the dominant pathway. However, the fact that the

importance of quantum effects is expected to become larger with increasing frequency
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Figure 2.3: A semilog plot of C̃Cl (ω) for flexible SPC/Fw D2O at 300K. (a)
12C14N−/D2O, (b) 13C15N−/D2O. The range of the frequency axis is be-
tween 0 and the corresponding C−N stretch frequency. The inserts show
semilog plots of C̃Cl (ω) on a wider frequency range (the vertical dashed
lines correspond to the C−N stretch frequency).
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mismatch between the relaxing and accepting modes suggests that these effects should

be larger in the case of intermolecular accepting modes. Since such quantum effects

typically enhance the rate of VER, accounting for them is expected to increase the

efficiency of the intermolecular accepting modes relative to that of the intramolecular

ones, thereby making their relative efficiencies more comparable. The results reported

in this chapter suggest that this is indeed the case.

More specifically, in our research we have shown that whereas a purely classical

treatment yields negligibly slow VER rates in the case of a rigid SPC/E water model,

accounting for quantum effects via the harmonic/Schofield QCF leads to VER rate

constants that are in good agreement with experiment. In addition, we also addressed

other aspects of this problem that were either not or partially addressed by previ-

ous studies, namely the variation in the VER rate constants with cyanide and water

isotopomers, the description of the cyanide ion by a polarizable force field and per-

forming the simulations at concentrations that are comparable to the experimental

ones.

It should be noted that our results do not suggest that intramolecular water modes

do not play the role of accepting modes, but rather that the intermolecular modes

are as likely to play the role of accepting modes. In other words, the picture that

emerges is that rather than having one type of accepting modes dominate the other,

both types of accepting modes are at play simultaneously. This is particularly relevant

for the interpretation of the experimental observation that the VER lifetime becomes

shorter when the C−N stretch frequency is increased by changing from 13C15N− to

12C14N− in D2O. This observation may indeed be explained by invoking the water

intramolecular stretches as accepting modes. However, it is enough to have only part

of the VER directed to intramolecular accepting modes for this observation to emerge.

Our results suggest that intermolecular accepting modes may be as likely.

It should be noted that previous calculations of the VER lifetime of cyanide in
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Figure 2.4: A semilog plot of C̃Cl (ω) for flexible SPC/Fw H2O at 300K. (a)
12C14N−/H2O, (b) 13C15N−/H2O, The range of the frequency axis is be-
tween 0 and the corresponding C−N stretch frequency. The inserts show
semilog plots of C̃Cl (ω) on a wider frequency range (the vertical dashed
lines correspond to the C−N stretch frequency).
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aqueous solution relied on the standard QCF, regardless of whether rigid or flexible

water models have been used.(59; 71; 73; 68; 66) Furthermore, in cases where rigid

water models have been used with the standard QCF, the force fields were often

modified in order to achieve agreement with experiment. In contrast, our research

shows that the choice of QCF may play an important role in determining the VER

lifetime than previously appreciated. More specifically, the quantitative agreement

with the experimental values in the present research relies on employing the har-

monic/Schofield QCF in the case of intermolecular accepting modes (rigid SPC/E

water) and the standard QCF in the case of intramolecular accepting modes (flexi-

ble SPC/Fw water). Importantly, the harmonic/Schofield QCF is significantly larger

than the standard QCF at the C−N stretch frequency. Thus, whereas a pure classical

calculation would suggest that the intramolecular accepting modes are significantly

more efficient than the intermolecular accepting modes, the larger QCF associated

with the intermolecular accepting modes compensates for the difference, thereby mak-

ing the intermolecular accepting modes essentially as efficient as the intramolecular

ones.

Interestingly, a similar observation can be made for other examples of VER in

aqueous solution. For example, the 160 ps VER lifetime of the amide I mode of

deuterated N -methylacetamide (NMAD) in D2O, calculated based on a rigid water

model and the standard QCF,(120) is significantly longer than the corresponding ex-

perimental 5.1 ps lifetime.(121) This result led the authors to conclude that VER

occurs via intramolecular vibrational redistribution(120). However, replacing the

standard QCF with the harmonic/Schofield QCF reduces the VER lifetime via the

intermolecular pathway from 160 ps to 7.63 ps, which is comparable to the experi-

mental value.

The main shortcoming of the present analysis has to do with the fact that ac-

counting for quantum effects by using QCFs is somewhat ad hoc. It would therefore
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be desirable to confirm the results of our research by employing a more rigorous ap-

proach that can account for such quantum effects. Our linearized semiclassical (LSC)

method for calculating VER rate constants in condensed phase systems provides such

an approach.(122; 86; 62; 56; 54; 76; 78) Preliminary calculations of the VER rate

constants for cyanide in water via the LSC method confirm the results based on the

harmonic/Schofield QCF presented herein. A complete account of those results are

reported in chapter III.
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CHAPTER III

Vibrational Energy Relaxation of The Cyanide Ion

in Aqueous Solution via the Linearized

Semiclassical Method

3.1 Introduction

The cyanide ion in aqueous solution has been established over the last two decades

as an important model system(52; 65; 58; 68; 70; 59; 72; 66; 75; 61; 46; 71; 73) for

understanding vibrational energy relaxation (VER) in liquid solution.(36; 37; 38; 39;

40; 41; 42; 43; 44; 45; 46; 159; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62;

63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78) Previous studies suggest

that at least two types of accepting modes can play a role in this system, namely:

(1) Intermolecular accepting modes, involving translational and rotational degrees of

freedom (DOF) of water; (2) Intramolecular accepting modes, involving intramolecu-

lar vibrational (bending and stretching) DOF of water. While most studies point to

the intramolecular accepting modes as being dominant, this conclusion was reached

based on assuming that the solvent can be treated as classical. However, quantum

effects are expected to increase in importance with increasing frequency mismatch be-

tween the relaxing and accepting modes, thereby suggesting that these effects should

be larger in the case of intermolecular accepting modes. Since such quantum effects
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typically enhance the rate of VER, accounting for them is expected to increase the

efficiency of the intermolecular accepting modes relative to that of the intramolecular

ones, thereby potentially making the intermolecular VER pathway into a more viable

alternative to the intramolecular one.

In the previous chapter (chapter II, also reported in (123)), we showed that ac-

counting for quantum effects in the case of a rigid SPC/E water model(116) via the

harmonic/Schofield quantum-correction factor (QCF)(67; 60) leads to VER lifetimes

that are in quantitative agreement with experiment(52) for different cyanide/water

isotopomer combinations. It should be noted that the results reported in Ref. (123)

do not imply that intramolecular water modes cannot play the role of accepting modes.

In fact, we also found that the experimental lifetimes can be reproduced equally well

by combining a flexible SPC/Fw water model with the standard QCF(123). How-

ever, the smaller mismatch between the relaxing and accepting modes in the case

of intramolecular accepting modes implies smaller quantum enhancement of VER

rates, which is manifested by choice of the standard QCF for intramolecular accept-

ing modes and the harmonic/Schofield QCF for intermolecular accepting modes. In

other words, quantum effects are expected to have a much weaker impact on VER

rates associated with intramolecular accepting modes in comparison to its effect on

VER rates associated with intermolecular accepting modes. Thus, when it comes for

understanding quantum effects on VER in this system, one expects the largest impact

to be on the intermolecular accepting modes.

The main shortcoming of the analysis in Ref. (123) (or chapter II) has to do

with the fact that accounting for quantum effects by using the harmonic/Schofield

QCF is somewhat ad hoc. Therefore, our objective in this research is to con-

firm the results of Ref. (123) (also chapter II) in the case of a rigid water

model, where quantum effects are expected to be the strongest, via a more

rigorous method for estimating quantum effects. In a series of recent papers
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(87; 62; 86; 76; 54; 56; 63; 78), Geva and co-workers have pursued a rigorous approach

for calculating VER rate constants which can account for quantum effects within the

framework of the linearized semiclassical (LSC) approximation. This approximation

amounts to linearizing the forward-backward action in the exact path-integral expres-

sion for the quantum-mechanical force-force correlation function (FFCF) with respect

to the difference between the forward and backward paths.(122; 87; 63) The result-

ing expression for the VER rate constant within the LSC approximation involves

a Wigner transform(156) which we proposed can be calculated in a liquid solution

by employing a local harmonic approximation (LHA),(122; 63) which amounts to

calculating the Fourier transform (FT) underlying the Wigner transform within the

instantaneous normal mode approximation.

In this chapter, the results obtained by calculating the lifetimes of the first-excited

vibrational state of the cyanide ion isotopomers 12C14N− and 13C15N−, dissolved in

H2O or D2O,within the framework of the Landau-Teller (LT) formula, via the LSC

method, are presented. The LSC-based lifetimes are found to be in excellent agree-

ment with the experimental lifetimes for all cyanide/water isotopomer combinations,

thereby providing strong support to the view that intermolecular accepting modes do

in fact play an important role in the VER of the cyanide ion in water.

The remainder of this chapter is organized as follows. The theory underlying

VER lifetime calculations within the framework of LT formula via the LSC method

is outlined in Sec. 3.2. Computational techniques and force field parameters are

discussed in Sec. 3.3. The results are presented and discussed in Sec. 3.4. A

summary of the main results and outlook are provided in Sec. 3.5.

3.2 Theory

In this section a brief outline of the LSC method for calculating VER rate con-

stants (a more detailed discussion is provided in Ref. (63)) is presented. We consider
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the following general quantum-mechanical Hamiltonian of a vibrational mode linearly

coupled to a bath:

Ĥtot =
p̂2

2µ
+ v(q̂) +

N∑
j=1

(P̂ (j))2

2M (j)
+ V (Q̂)− q̂F (Q̂) . (3.1)

Here, q̂, p̂, µ, and v(q̂) are the relaxing mode coordinate, momentum, reduced

mass, and bath-free vibrational potential; Q̂ =
(
Q̂1, ..., Q̂N

)
, P̂ =

(
P̂1, ..., P̂N

)
,

M (1), ...,M (N), and V (Q̂) are the coordinates, momenta, masses, and potential en-

ergy of the bath DOF; and F (Q̂) is the force exerted by the bath on the relaxing

mode (quantum operators are designated by )̂.

The rate constant for population relaxation from the first-excited vibrational state

of the relaxing mode to its ground vibrational state, k01, is assumed to be given by

the fully quantum-mechanical LT formula.(40; 155) When cast in terms of the fully

quantum-mechanical symmetrized FFCF,

Cs (t) =
1

Z
Tr
[
e−βĤ/2δF̂ e−βĤ/2eiĤt/}δF̂ e−iĤt/}

]
, (3.2)

the above mentioned population relaxation rate constant is given by

k01 =
1

2µ}ω10

eβ}ω10/2C̃s(ω10) . (3.3)

Here, Ĥ =
∑N

j=1

[
(p̂(j))2/2M (j)

]
+V (Q̂) is the free bath Hamiltonian, Z = Tr

(
e−βĤ

)
,

δF̂ = F̂ − Tr
[
e−βĤF̂

]
/Z, ω10 is the transition frequency (i.e. energy gap between

the ground and first-excited states divided by ~) and

C̃s(ω) =

∞∫
−∞

dteiωtCs(t) (3.4)

is the FT of the symmetrized FFCF.
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We also note that in the classical limit, eβ}ω10/2C̃s (ω10) reduces into the FT of the

classical FFCF, C̃Cl (ω10), so that Eq. (3.3) reduces into

kCl01 =
1

2µ}ω10

C̃Cl(ω10) . (3.5)

Here, C̃Cl(ω) =
∫∞
−∞ dte

iωtCCl(t), where

CCl(t) =
1

Zcl

∫ ∫
dQ0dP0 exp [−βH(Q0,P0)] δF (Q0)δF (Qt) (3.6)

is the classical FFCF, with Zcl =
∫ ∫

dQ0dP0 exp [−βH(Q0,P0)] and Qt is obtained

by classical dynamics starting at (Q0,P0).

A popular approach for accounting for quantum effects is by multiplying the FT

of the classical FFCF, by a frequency-dependent quantum correction factor (QCF),

Q(ω) (90; 99; 39; 60; 100; 67; 101; 102; 103; 104; 105; 106; 107; 108; 88; 109; 110):

C̃(ω) ≈ Q(ω)C̃Cl(ω) . (3.7)

Here, C̃(ω) is the FT of the regular (i.e. non-symmetrized) fully quantum-mechanical

FFCF:

C (t) =
1

Z
Tr
[
e−βĤδF̂ eiĤt/}δF̂ e−iĤt/}

]
. (3.8)

It should be noted that C̃(ω) = eβ}ω/2C̃s(ω).

Following a prescription proposed by Skinner and co-workers for choosing the

QCF based on the nature of the accepting modes,(67; 60) we previously employed

the harmonic/Schofield QCF when using a rigid water model for which the accepting

modes are intermolecular (i.e. solvent translation/rotation DOF) (123):

QHS (ω) = eβ~ω/4
(

β~ω
1− e−β~ω

)1/2

. (3.9)
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The LSC approximation for Cs (t) is given by(78)

CLSC
s (t) =

1

(2π})N
1

Z

∫
dQ0

∫
dP 0

[
e−βĤ/2δF̂ e−βĤ/2

]
W

(Q0,P 0) δF
(
QCl
t

)
.

(3.10)

Here,

AW (Q,P) =

∫
d∆e−iP∆/~〈Q + ∆/2|Â|Q−∆/2〉 (3.11)

is the Wigner transform of the operator Â,(156) and Q
(Cl)
t = Q

(Cl)
t (Q0,P0) and

P
(Cl)
t = P

(Cl)
t (Q0,P0) are propagated classically with the initial conditions Q0 and

P0.

The LSC approximation is known to be exact at t = 0, at the classical limit, and

for harmonic systems. At the same time, it also provides a convenient starting point

for introducing computationally feasible schemes to calculate quantum-mechanical

time correlation functions. The main disadvantage of the LSC approximation is that

it can only capture quantum effects at short times.(124) However, it should be noted

that in condensed phase systems in general, and in the case of high-frequency VER in

particular, the quantities of interest are often dominated by the behavior of correlation

functions at relatively short times.

The main challenge in calculating CLSC
s (t) lies in the evaluating the following

Wigner transform:

[
e−βĤ/2δF̂ e−βĤ/2

]
W

(Q0,P 0) =

∫
d∆e−iP0∆/}

〈
Q0 +

∆

2

∣∣∣e−βĤ/2δF̂ e−βĤ/2∣∣∣Q0 −
∆

2

〉
(3.12)

Evaluating the latter within the LHA as shown in Ref. (63) leads to the following
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LHA-LSC working expression for Cs (t):

CLHA−LSC
s (t) =

∫
dQ0

∫
dQ

′

〈
Q0 | e−βĤ/2 | Q

′
〉〈

Q
′ | e−βĤ/2 | Q0

〉
Z∫

dP n

N∏
j=1

(
1

α(j)π~2

)1/2

exp

−
(
P

(j)
n

)2

}2α(j)

× δF (Q′) δF (QCl
t [Q0,P 0]

)
(3.13)

Here, Pn = Pn
(
Q
′)

are the normal mode momenta that emerge from diagonalizing

the Hessian matrix underlying the quadratic expansion of the free bath potential

energy around Q = Q
′

and

α(j) = α(j)
(
Q
′
)

=
Ω(j)

(
Q
′)

}
coth

[
β}Ω(j)

(
Q
′)

2

]
, (3.14)

where (Ω(k))2(Q
′
) are the eigenvalues of the Hessian matrix.

It should also be noted that quantum effects are accounted for in several ways

within the LHA-LSC method:

1. Nonclassical sampling of bath coordinates and momenta.

2. The initial force, δF (Q′), is not calculated at the initial position, Q0, used to

generate the classical trajectory leading to the force at a later time t, δF (QCl
t [Q0,P0]).

3. The factor eβ~ω10/2 (see Eq. (3.3)), which actually coincides with the so-called

Schofield QCF.(88)

3.3 Computational Methods

MD simulations were performed using the AMBER 10 software package for four

different isotopomer combinations: 12C14N−/H2O, 13C15N−/H2O, 12C14N−/D2O, 13C15N−/D2O.

Simulations were performed using a cubical simulation box with periodic boundary
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conditions, containing 9 CN− anions and 9 K+ cations dissolved in 605 rigid water

molecules, at a temperature of 300K and pressure of 1.0atm. The time step was

set to 1.0fs. It should be noted that these concentrations are comparable to the

experimental concentrations (0.22-0.90M) (52).

The force fields used were the same as those employed in Ref. (123), where

the classical and harmonic/Schofield QCF results for the same model systems were

reported. Briefly, the interaction between cyanide and water were modeled in terms

of the AMBER polarizable force field ff02.(111) The partial charges for CN− were

assigned using the restrained electrostatic potential (RESP)(112; 243; 242) method

where the electrostatic potential is generated via Gaussian 09, at the HF/6-31G*

level. The partial charges for C and N thus obtained are qC=-0.216698 and qN=-

0.783302, respectively. The atomic polarizabilities for the C, N and K atoms were

set as 0.36 A3, 0.53 A3, and 1.06 A3 respectively. The SPC/E force field(116) was

employed for modeling rigid water intermolecular accepting modes, where the rigidity

was imposed by the SHAKE algorithm.(247)

The calculation of CLHA−LSC
s (t), Eq. (3.13), starts out by performing an imaginary-

time path integral molecular-dynamics (PIMD) simulation(157; 158) in order to sam-

ple the initial configuration, Q0, and the configuration at which the initial force is

calculated, Q
′
. It should be noted that within the context of a PIMD simulation, each

atom is represented by a ring polymer that consists of P beads labeled 0, 1, 2, ..., P−1.

Assuming that P is even, Q0 is identified with the configuration of the beads labeled

0, while Q
′

is identified with the configuration of the beads labeled P/2 (i.e. half

a ring away). In the next step, a local harmonic expansion is performed around

Q
′
, to obtain the normal-mode frequencies, Ω(k), and α(k), required for sampling the

initial (normal-mode) momenta, P
(k)
n . Once the initial positions and momenta are

determined, QCl
t is calculated via a classical MD simulation for each sampled initial

configuration Q0 and normal mode momenta P n,0. Finally, the LHA-LSC FFCF is
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obtained by correlating δF (QCl
t ) with δF (Q

′
). PIMD simulations were performed

with 32 beads per degree of freedom. Each FFCF is averaged over ∼ 400, 000 trajec-

tories of 4 ps length each.

In the absence of resonance with other vibrations, one expects C̃LHA−LSC
s (ω) to

follow an exponential gap law, i.e. decay asymptotically with frequency in an expo-

nential manner. As a result, it is not computationally feasible to average out the sta-

tistical noise in order to calculate the increasingly small value of C̃LHA−LSC
s (ω) at the

actual frequency of the C-N stretch. We therefore resort to estimating C̃LHA−LSC
s (ω)

at high frequencies by extrapolation of the exponential gap law that emerges at lower

frequencies.(172; 173)

The total number of trajectories over which the rate constant was averaged varies

from 384,600 to 705,100 (each trajectory being 4 ps long). The error associated with

the rate constant was calculated by dividing the total number of trajectories into 6

to 11 equal blocks, and calculating the standard deviation associated with the data.

3.4 Results

C̃LHA−LSC
s (ω) for the aforementioned four isotopomer combinations, are shown

in Fig. 3.1. The corresponding VER lifetimes obtained either purely classical (Eq.

(3.5)),(123) with harmonic/Schofield QCF (Eqs. (3.7)(123) and (3.9)) and via LSC

(Eqs. (3.3) and (3.13)) are compared with the corresponding experimental lifetimes(52)

in Table 3.1.
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Table 3.1:
VER lifetimes calculated at 300K using rigid SPC/E water model. Clas-
sical and harmonic/Schofield QCF results are adopted from Ref. (123).
Experimental results are taken from Ref. (52).

Solute/ Frequency τ10 /ps τ10 /ps τ10 /ps τ10 /ps
Solvent (cm−1) Classical harmonic/ LHA- Expe-

Schofield LSC riment
QCF

13C15N−/D2O 2004 4275± 1968 125± 57 110± 13 120± 6
12C14N−/D2O 2079 3723± 1714 97± 45 67± 9 71± 3
13C15N−/H2O 2004 876± 403 26± 12 29± 3 31± 7
12C14N−/H2O 2079 1054± 485 27± 12 28± 3 28± 7

The VER lifetimes calculated via LHA-LSC are seen to be in very good quan-

titative agreement with the experimental values for both H2O and D2O. The LHA-

LSC-based VER lifetimes are also seen to be in good agreement with the lifetimes

obtained by using the harmonic/Schofield QCF. This should be contrasted with the

corresponding classical lifetimes, which are seen to be an order of magnitude longer

than the corresponding experimental values. Those results are consistent with previ-

ous studies and support the view that quantum effects can significantly enhance VER

rates in the case of intermolecular accepting modes.(103; 62; 86; 76; 54; 56; 78)

One interesting experimentally observed trend is that the VER lifetimes in H2O are

considerably shorter than in D2O. This trend is reproduced by the LHA-LSC-based

lifetimes, and can be traced back to the fact that C̃LHA−LSC
s (ω) in D2O is smaller

than that in H2O. It should also be noted that the fact that the fully classical result

show the same trend and the harmonic/Schofield or Schofield QCFs are insensitive to

whether the solvent is H2O or D2O, it is likely that the origin of this trend is classical.
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Figure 3.1: A semilog plot of C̃LHA−LSC
s (ω) for rigid SPC/E water at 300K. (a)

12C14N−/H2O, (b) 13C15N−/H2O, (c) 12C14N−/D2O, (d) 13C15N−/D2O.
The range of the frequency axis is between 0 and the corresponding C−N
stretch frequency. Solid lines correspond to simulation data and dotted
lines to extrapolations. The star indicate the experimental corresponding
value.
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Another interesting experimental trend is the relative insensitivity of the VER

lifetime to the cyanide isotopomer in the case of H2O, in contrast to the pronounced

decrease in the lifetime with increasing frequency of the C−N stretch in the case of

D2O. The LHA-LSC-based lifetimes reproduce this trend rather well. The origin of

this trend in the calculated lifetimes can be traced back to the exp (β~ω/2) factor

(see Eq. (3.3)), which increase between the lower and higher C−N stretch frequencies

by a factor of ∼1.2.

In order to gain insight into the role played by electrostatic forces in determining

the VER lifetime, we decomposed the force into its LJ and electrostatic contribu-

tions and considered the contributions of LJ-LJ, electrostatic-electrostatic, and LJ-

electrostatic cross terms (see Fig. 3.2). At low frequencies, C̃LHA−LSC
s (ω) is seen to

be dominated by the LJ-LJ contributions for all isotopomer combinations. However,

while the LJ-electrostatic cross terms drops until its becomes negligibly small at high

frequencies, the contributions of electrostatic-electrostatic terms increase and become

more comparable to the LJ-LJ contributions.

83



Figure 3.2: A semilog plot of the contributions of the electrostatic-electrostatic, LJ-LJ
and LJ-electrostatic cross terms to C̃LHA−LSC

s (ω) for rigid SPC/E water
at 300K for all systems studied. (a) 12C14N−/H2O, (b) 13C15N−/H2O,
(c) 12C14N−/D2O, (d) 13C15N−/D2O. The range of the frequency axis
is between 0 and the corresponding C−N stretch frequency. Solid lines
correspond to simulation data and dotted lines to extrapolations. The
star indicate the experimental corresponding value.
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The contribution of LJ forces is often attributed to electrostriction, which are

often found to dominate VER in polar solution.(119) In this case, the attractive

electrostatic forces play an indirect role of bringing the solute and solvent closer

together, thereby amplifying the effect of LJ short-range repulsive forces to enhance

the VER rate constant. While electrostriction dominate VER at low frequencies

for the cyanide/water system under consideration here, this appears to be no longer

the case at high frequencies. Since this trend is also observed for a purely classical

quantity, C̃Cl (ω), its likely origin is classical and due to the stronger electrostatic

forces in ionic solutions in comparison to polar solvents.

3.5 Summary

The cyanide ion in aqueous solution has been established over the last two decades

as an important model system for understanding liquid phase VER. In a previous

paper(123) (also discussed in chapter II) we showed that whereas a purely classi-

cal treatment yields negligibly slow VER rates in the case of a rigid SPC/E water

model, accounting for quantum effects via the harmonic/Schofield QCF led to VER

rate constants that are in good agreement with experiment. However, the fact that

accounting for quantum effects by using QCFs is somewhat ad hoc made it desirable

to confirm the results of Ref. (123) via a more rigorous approach which is capable of

accounting for quantum effects. In this study we have used our LHA-LSC to this end.

Our results show that the LSC-LHA-based VER lifetimes are consistent with those

based on using harmonic/Schofield QCF, and that both reproduce the experimental

lifetimes as well as their dependence on the cyanide and water isotopomers.

It should be noted that while the the point charge model for cyanide and the

nonpolarizable water model used in this study and in Ref. (123) may be some-

what oversimplified, the quantum enhancement of VER lifetimes appears to have a

bigger effect on the VER lifetimes than a variation of force fields would typically
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have. Thus, our main result that accounting for quantum effects, either via QCFs

or LSC-LHA, significantly shortens the VER lifetimes associated with intermolecular

accepting modes, can be considered to be independent of the choice of force fields.

Nevertheless, a natural next step would be to combine the LHA-LSC method with an

electrostatic model of the kind described in Ref. (75) and a polarizable water model

in order to obtain further insight into VER in this system.
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CHAPTER IV

Vibrational energy relaxation in liquid HCl and

DCl via the linearized semiclassical method:

Electrostriction vs. quantum delocalization

4.1 Introduction

Virtually all chemical phenomena involve vibrational energy relaxation (VER)

processes. As a result, the measurement and calculation of VER rates have received

much attention over the last few decades.(127; 128; 90; 129; 130; 131; 132; 36; 37; 133;

134; 135; 43; 40; 38; 136; 137; 138; 46; 139; 49; 140; 141; 50; 142; 143; 144; 145; 146;

147; 41; 42; 148; 149; 150; 151; 152; 153; 69; 52; 64; 44; 45; 154) Recent theoretical

and computational studies of VER have been mostly based on the Landau-Teller

(LT) formula,(40; 155) which gives the VER rate constant in terms of the Fourier

transform (FT), at the vibrational transition frequency, of the quantum-mechanical

autocorrelation function of the fluctuating force exerted on the relaxing mode by the

other degrees of freedom (DOF), i.e. the bath.

Importantly, replacing the quantum-mechanical force-force correlation function

(FFCF) by its classical counterpart can only be justified in cases where the vibra-

tional transition frequency is significantly smaller than kBT/~. (66; 82; 83; 81; 80) In

a series of recent papers,(87; 62; 86; 76; 54; 56) we have pursued a rigorous approach
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for calculating VER rate constants which can account for quantum effects within the

framework of the linearized semiclassical (LSC) approximation. This approximation

amounts to linearizing the forward-backward action in the exact path-integral expres-

sion for the quantum-mechanical FFCF with respect to the difference between the

forward and backward paths.(122) The resulting expression for the VER rate con-

stant within the LSC approximation involves a Wigner transform(156) of the form(
exp[−βĤ]F̂

)
W

(Q,P), where β = 1/kBT , Ĥ is the bath Hamiltonian operator, F̂ is

the bath-induced force operator and (Q,P) are the classical-like bath positions and

momenta. The calculation of this Wigner transform is highly challenging in the case

of a many-body anharmonic system like a molecular liquid. Thus, in practice, we have

calculated it by employing a local harmonic approximation (LHA), which amounted

to calculating the FT underlying the Wigner transform within the instantaneous nor-

mal mode approximation. Importantly, our implementation of the LHA only affects

the sampling of bath initial momenta while the sampling of bath initial positions is

still done in a quantum-mechanically exact manner via imaginary-time path-integral

simulations(157; 158) which are based on the exact anharmonic force-fields.

The applicability and reliability of the resulting LHA-LSC method have been

previously demonstrated on a variety of nonpolar systems, including liquid O2(62; 86),

liquid N2,(62; 86) O2/Ar liquid mixtures,(86) H2 dissolved in liquid Ar(56) and CX2

(X=O,S,Se) dissolved on liquid Ar and Ne.(76; 54) However, extending the range

of applicability to more complex systems has proven cumbersome due to the fact

that calculating the standard FFCF within LHA-LSC requires force derivatives as

input. In an effort to overcome this obstacle, we have recently introduced a new

force-derivative-free computational scheme for calculating VER rate constants within

LHA-LSC.(63) The new scheme is based on applying the LSC approximation to the

symmetrized FFCF. Unlike the previous scheme(122) which was based on applying

LSC to the standard FFCF, the new scheme does not involve a power expansion
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of the initial force in terms of the Wigner transform integration variable ∆ and as

a result is more accurate and does not require force derivatives as input (for more

details see Sec. 4.2).(63) In Ref. (63), we have tested the new scheme by using it to

calculate VER rates in the case of liquid O2 and liquid N2 and comparing them to the

experimental rates as well as the rates obtained within the original scheme. Avoiding

the calculation of force derivatives would be particularly advantageous in applications

to more complex systems governed by various types of force fields. In our research,

we take a first step in this direction by presenting the first ever application of the

LHA-LSC method to a polar liquid.

VER rates in polar solutions have received much attention over the last several

decades. The central role played by electrostatic interactions in enhancing VER rates

has already been demonstrated in early measurements performed on neat heteronu-

clear diatomic liquids.(48; 159) For example, the VER life-time for neat liquid HCl,

which is a few nanoseconds long,(48) becomes as long as 1.3µs when HCl is diluted

in a nonpolar solvent like Xenon.(142) A related class of systems that received much

attention corresponds to molecular ions in polar solvents. For example, the VER

life-time of CN− infinitely diluted in aqueous solutionwas found to be as short as

∼ 30ps.(46; 52)

The wealth of detailed experimental information on VER in polar liquid solu-

tions has motivated many theoretical studies that attempted to provide a molecular

interpretation of the VER rate enhancement.(64; 154; 160; 161; 84; 162; 85; 163;

55; 53; 164; 165; 59; 166; 167; 168) However, most of those theoretical studies were

based on classical molecular dynamics (MD) simulations, although a few have also

attempted to account for quantum-mechanical effects by using quantum corrections

factors (QCFs).(64; 67; 53) The first computational study of VER in a polar solution

was carried out by Whitnell et al. on CH3Cl (treated as an effective diatom with a

frequency of ∼ 680cm−1) in water.(160; 161) The calculated VER life-time of 5ps, as
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obtained from either nonequilibrium classical MD simulations or via the LT formula,

is similar to the experimentally observed VER rates in polar solutions. It was also

found that the calculated VER rate decreased by at least one order of magnitude

in the absence of electrostatic interactions, which is consistent with the view that

strong electrostatic interactions can significantly enhance the VER rate. Similar clas-

sical calculations of VER rates were performed on many other systems, including I−2

in water and ethanol(84), a hydrogen bonded complex (A-H · · · B) in an aprotic dipo-

lar liquid,(162) HgI in ethanol,(85) OClO in water,(163) HOD in D2O,(55; 64; 53),

CN− in water(59), azide in water,(164; 165) neat liquid chloroform,(154) neat liquid

methanol,(166; 167) and HF in water.(168)

Several different arguments have been invoked for explaining the enhancement of

VER rates in polar solutions. For example, in the case of aqueous solutions, it appears

that the VER rate acceleration is at least partially due to the high density of states

in the (700-800) cm−1 frequency range, which is attributed to collective librational

modes. This leads to rapid VER in cases where the frequency of the relaxing mode

overlaps this range (e.g. in the case of CH3Cl)(160; 161). At the same time, the

enhanced VER rate in the case of I−2 in water is believed to be due to the significantly

lower vibrational frequency of I−2 (in comparison to I2), rather than the stronger

solute-solvent interactions.(84; 169; 170)

However, such arguments cannot explain the relatively rapid VER rates in a sys-

tem like liquid HCl where VER presumably occurs by energy exchange between a

high-frequency H-Cl stretch (2783cm−1) and a multitude of low frequency rotational

and translational accepting modes. Ladanyi and Stratt have argued, based on classi-

cal MD simulations involving a dipolar solute in aprotic polar solvents, that the en-

hancement of the VER rate by electrostatic forces in such cases can be attributed to a

phenomenon they referred to as electrostriction.(119) More specifically, the attractive

Coulombic forces bring the solute and solvent closer together, thereby amplifying the
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effect of non-Coulombic short-range repulsive forces. The fact that these repulsive

forces are sharply varying can then lead to a rather dramatic enhancement of the

VER rate.

As mentioned above, treating VER within the framework of classical mechanics

is reasonable in cases like I−2 and HgI, where β~ω ≤ 1. Indeed, the VER life-time of

1.3ps measured for I−2 in water(143) compares relatively well with the 0.6ps life-time

predicted from classical simulations.(84) The same is true in the case of HgI in ethanol

where the experimental VER life-time of 3ps(145) compares well with the classical

prediction of 2ps.(85) However, for the intermediate frequency molecule ClO− (∼

700 cm−1), one starts observing significant deviations between the measured VER

life-time of (1 − 7)ps(171) and the classical predictions of (0.2 − 0.6)ps(171; 169)

The reliability of the classical treatment becomes even more questionable in cases

such as HCl and CN−, where β~ω � 1. Furthermore, our previous work has shown

that a major contribution to the quantum enhancement of the VER rate in nonpolar

solutions comes from the fact that quantum delocalization allows the system to sample

regions of configuration space where the repulsive forces are stronger.(87; 62; 86) At

the same time, classical MD simulations suggests that the enhancement of the VER

rate by electrostatic forces results from electrostriction, which also leads to enhanced

sampling in regions of configuration space where non-electrostatic repulsive forces are

stronger.(169; 119)

Thus, our goal in this research is to elucidate the intriguing interplay

between quantum delocalization and electrostriction in the case of liquid

HCl, which has been chosen because of its high frequency (2783 cm−1) and

the fact that experimental VER rates are available for it(48).

The remainder of this chapter is organized as follows. The force-derivative-free

LHA-LSC method is briefly outlined in Sec. 4.2. The model for liquid HCl and

simulation techniques are outlined in Sec. 4.3. The results are reported and discussed
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in Sec. 4.4. The main conclusions are summarized in Sec. 4.5.

4.2 The force-derivative-free LHA-LSC method

In this section we provide a brief outline of the force-derivative-free LHA-LSC

method (see Ref. (63) for a more detailed discussion). To this end, we consider the

following general quantum-mechanical Hamiltonian of a vibrational mode linearly

coupled to a bath:

Ĥtot =
p̂2

2µ
+ v (q̂) +

N∑
j=1

(P̂ (j))2

2M (j)
+ V

(
Q̂
)
− q̂F

(
Q̂
)
. (4.1)

Here, q̂, p̂, µ and v (q̂) are the relaxing mode coordinate, momentum, reduced mass

and bath-free vibrational potential; Q̂, P̂,
{
M (1), ...,M (N)

}
and V

(
Q̂
)

are the coor-

dinates, momenta, masses and potential energy of the bath DOF and F
(
Q̂
)

is the

potential force exerted by the bath on the relaxing mode.

The LT formula for the population relaxation rate constant between the first-

excited and ground vibrational states can then be given by the following expression:(63)

k10 =
1

2µ~ω10

eβ~ω10/2C̃s(ω10) . (4.2)

Here, ω10 is the transition frequency and

C̃s(ω) =

∞∫
−∞

dteiωtCs(t) (4.3)

is the FT of the symmetrized quantum-mechanical FFCF

Cs(t) =
1

Z
Tr
[
e−βĤ/2δF̂ e−βĤ/2eiĤt/~δF̂ e−iĤt/~

]
, (4.4)
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where Ĥ =
∑N

j=1
(P̂ (j))2

2M(j) + V
(
Q̂
)

is the bath Hamiltonian, Z = Tr
(
e−βĤ

)
is the

canonical bath partition function and δF̂ = F̂ −Tr
[
e−βĤF̂

]
/Z. We also note that in

the classical limit, eβ~ω10/2C̃s(ω10) reduces into the FT of the classical FFCF, C̃Cl(ω10),

so that Eq. (4.2) reduces into:

kCl10 =
1

2µ~ω10

C̃Cl(ω10) g. (4.5)

The LSC approximation for Cs(t) is given by:(87; 63)

CLSC
s (t) =

1

(2π~)N
1

Z

∫
dQ0

∫
dP0

[
e−βĤ/2δF̂ e−βĤ/2

]
W

(Q0,P0) δF
(
QCl
t

)
, (4.6)

where QCl
t is obtained by classical dynamics with Q0 and P0 as the initial conditions.

It should be noted that the LSC approximation only accounts for quantum effects

in the initial sampling and not the subsequent dynamics. The accuracy of the LSC

approximation, despite its inability to account for the quantum nature of the under-

lying dynamics, is attributed to the fact that the high frequency FT of the FFCF is

dominated by the short time behavior of the correlation function, which is in turn

dominated by the initial sampling.

The main challenge in calculating CLSC
s (t) lies in evaluating the following Wigner

transform:

[
e−βĤ/2δF̂ e−βĤ/2

]
W

(Q0,P0)

=

∫
d∆e−iP0∆/~

〈
Q0 +

∆

2

∣∣∣∣ e−βĤ/2δF̂ e−βĤ/2 ∣∣∣∣Q0 −
∆

2

〉
. (4.7)

Evaluating the latter within the LHA as shown in Ref. (63) leads to the following

LHA-LSC approximation for Cs(t):
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CLHA−LSC
s (t) =

∫
dQ0

∫
dQ′
〈Q0| e−βĤ/2 |Q′〉 〈Q′| e−βĤ/2 |Q0〉

Z∫
dPn

N∏
j=1

(
1

α(j)π~2

)1/2

exp

[
−(P

(j)
n )2

~2α(j)

]
×

δF (Q′)δF (QCl
t [Q0,P0]) (4.8)

Here, Pn = Pn(Q′) are the normal mode momenta that emerge from diagonalizing

the Hessian matrix underlying the quadratic expansion of the bath potential energy

around Q = Q′ and

α(j) = α(j)(Q′) =
Ω(j)(Q′)

~
coth

[
β~Ω(j)(Q′)

2

]
, (4.9)

where {(Ω(k))2(Q′)} are the eigenvalues of the Hessian matrix.

It should be noted that unlike the original LHA-LSC scheme for calculating the

FFCF,(62) calculating Eq. (4.8) does not require force derivatives as input. It should

also be noted that Eq. (4.8) reduces to the classical FFCF in the classical limit and

that nonclassical behavior of the symmetrized FFCF is accounted for in several ways:

1. Nonclassical sampling of bath coordinates and momenta.

2. The initial force, δF (Q′), is not calculated at the initial position, Q0, used to

generate the classical trajectory leading to the force at a later time t, δF (QCl
t [Q0,P0]).

3. The factor eβ~ω10/2, which actually coincides with the so-called Schofield QCF.(88)

4.3 Model parameters and simulation techniques

The calculations of CLHA−LSC
s (t) reported below were based on Eq. (4.8) and

carried out following the algorithm outlined below:
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1. Perform an imaginary-time path integral molecular-dynamics (PIMD) simula-

tion (157; 158) in order to sample the initial configuration, Q0, and the con-

figuration at which the initial force is calculated, Q′. To this end, it should be

noted that within the context of a PIMD simulation, each DOF is represented

by a cyclic polymer of P beads labeled 0, 1, 2, ..., P − 1. Assuming that P is

even, Q0 is identified with the configuration of the beads labeled 0, while Q′ is

identified with the configuration of the beads labeled P/2.

2. Perform a LHA around Q′, find the normal mode frequencies, {Ω(k)}, and cor-

responding transformation matrix, {Tl,k}, and use it to calculate {α(k)} and

sample the initial (normal-mode) momenta, {P (k)
n }.

3. Calculate QCl
t via a classical MD simulation for each sampled initial configu-

ration Q0 and normal mode momenta Pn,0, and time correlate δF (QCl
t ) with

δF (Q′).

4. Repeat steps 1-3 and average over the results until reaching the desired conver-

gence.

Simulations were performed on a liquid consisting of rigid HCl molecules. En-

ergy relaxation via resonant vibrational energy transfer between HCl molecules, as

opposed to nonresonant energy relaxation via transfer of vibrational energy into non-

vibrational DOF (i.e. translations and rotations), is not considered because it does

not affect the ensemble-averaged vibrational energy. More specifically, if one HCl

molecule transfers in excess vibrational energy to another HCl molecule the over-

all ensemble-averaged vibrational energy does not change, whereas transferring it

to non-vibrational DOF clearly decrease the ensemble-averaged vibrational energy.

Intermolecular interactions were modeled in terms of Lennard-Jones (LJ) and elec-

trostatic site-site pair interactions. Lennard-Jones parameters were adopted from

the general AMBER force field (GAFF)(241), and partial charges were assigned
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using a HF/6-31G* restrained electrostatic potential (RESP) and were given by

δH = −δCl = 0.171593e.The quantum mechanical calculations were done using Gaus-

sian 03. Calculations were preformed using the AMBER molecular dynamics software

package on a liquid at 188 K, with a density of 19.671 nm−3, for which the experi-

mental VER rate constant is available.(48) All calculations were preformed with 500

molecules contained in a cubic cell with periodic boundary conditions. PIMD simula-

tions were preformed with 32 beads per atom. Each FFCF was averaged over 180,000

trajectories, each of length 4 ps.

In the absence of resonance with other vibrations, C̃s(ω) was observed to decay

asymptotically with frequency in an exponential manner. As a result, it becomes

increasingly more difficult to average out the statistical noise accompanying any real-

life simulation which is needed in order to calculate the increasingly small value of

C̃s(ω) at high frequencies. The results reported below were obtained by following

the common practice of obtaining C̃s(ω) at high frequencies by extrapolating the

exponential gap law, that emerged at significantly lower frequencies.(172; 173; 101)

It should be noted that strictly speaking, the exponential gap law has only been

rigorously derived in the case of exponential repulsion interaction.(173) However, it

was observed to be valid for the system under discussion in our research.

4.4 Results and discussion

In Fig. 4.1 we compare eβ~ω/2C̃LHA−LSC
s (ω) and C̃LHA−LSC

s (ω), as obtained via

Eq. (4.8), with the corresponding classical C̃Cl(ω) and eβ~ω/2C̃Cl(ω). The correspond-

ing predictions for the VER rate constants are shown in Table 4.1. The VER rate

constant obtained from LHA-LSC via Eq. (4.8) is in excellent agreement with the

experimental result. At the same time, the corresponding classical VER rate is two

orders of magnitude slower than the experimental result, which is consistent with the

expectation of strong quantum effects in a system that involves a transition frequency
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which is about 20 times larger than kBT/~.

k0←1(HCl)/ns−1 k0←1(DCl)/ns−1 k0←1(HCl)/k0←1(DCl)
Experiment 1.3 - -
LHA-LSC 1.3± 0.9 0.7± 0.3 2± 1
Classical 0.055± 0.009 0.06± 0.01 0.9± 0.2

Schofield QCF (14± 4)× 10 8± 1 17± 6

Table 4.1: k10/ns
−1 for neat liquid HCl and DCl at 188K. The experimental result

for HCl was adopted from Ref. (48).

It should also be noted that C̃LHA−LSC
s (ω) < C̃Cl(ω) throughout the entire range

of frequencies. Thus, the combined effect of nonclassical initial sampling and the fact

that the initial force is calculated at Q′, rather than at Q0, is to diminish the value

of C̃LHA−LSC
s (ω) relative to its classical counterpart. However, it should be remem-

bered that a more meaningful comparison is between C̃Cl(ω) and eβ~ω/2C̃LHA−LSC
s (ω).

Indeed, eβ~ω/2C̃LHA−LSC
s (ω) is significantly larger than C̃Cl(ω), and more so with in-

creasing frequency. Finally, it should also be noted that applying the Schofield QCF

to the classical result, i.e. eβ~ω/2C̃Cl(ω), leads to an overestimation of the VER rate

constant by a factor of ∼ 50 (see Fig. 4.1).

In order to gain insight into the role played by electrostatic forces in determining

the VER rate in this system, we decomposed the force into its LJ and electrostatic con-

tributions and considered the LJ-LJ, electrostatic-electrostatic, and LJ-electrostatic

cross terms contributions to the FFCF. In Fig. 4.2, we compare these individual

contributions in the classical case. The results clearly show that C̃Cl(ω) is completely

dominated by the nonpolar LJ-LJ contribution, which is consistent with the view that

the electrostatic forces only play an indirect role through electrostriction, by allowing

the liquid to access otherwise forbidden regions higher on the LJ repulsive walls.

In Fig. 4.3, we compare the LJ-LJ, electrostatic-electrostatic, and LJ-electrostatic

cross terms contributions to eβ~ω/2C̃LSC−LHA
s (ω). Similarly to the classical case, we

find that the LJ and electrostatic forces are uncorrelated and that as a result the
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Figure 4.1: A semilog plot of eβ~ω/2C̃LHA−LSC
s (ω), C̃LHA−LSC

s (ω), C̃Cl(ω) and
eβ~ω/2C̃Cl(ω) (Schofield QCF) for neat liquid HCl (T=188K, ρ =19.671
nm−3). Solid lines were obtained from calculations and dashed lines corre-
spond to extrapolations. The star corresponds to the experimental value
at the transition frequency.

cross terms do not contribute significantly to the VER rate. However, in contrast

to the classical case, the electrostatic-electrostatic term is seen to make a significant

contribution to the VER rate so that the LHA-LSC VER rate constant is no longer

dominated by the LJ-LJ term. In fact, by extrapolation, it appears that the rel-

ative contribution of the electrostatic-electrostatic term becomes increasingly more

dominant with increasing frequency.

This result is surprising in light of the fact that the classical treatment points to

electrostriction as the mechanism underlying VER in this system. Instead, we find

that at least within the LHA-LSC treatment, the FT of the electrostatic-electrostatic

FFCF decays more slowly with frequency, thereby making its contribution to the
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Figure 4.2: A semilog plot of the electrostatic-electrostatic, LJ-LJ and electrostatic-
LJ cross term contributions to C̃Cl(ω) for neat HCl (T=188K, ρ =19.671
nm−3).

VER rate constant more important with increasing frequency. The origin for this

qualitatively different behavior may be traced back to the fact that quantum delocal-

ization allows the system to access nonclassical regions of configuration space where

the electrostatic repulsive forces between the hydrogens are larger than in the classical

case. Thus, instead of electrostriction where the attractive Coulombic forces bring

the solute and solvent closer together, thereby amplifying the effect of non-Coulombic

short-range repulsive forces, quantum delocalization brings the hydrogens closer than

they would have been classically, thereby amplifying the contribution of repulsive

Coulombic forces to the VER rate.

Further support for this interpretation comes from a similar calculation of the

VER rate constant in the case of DCl (see Table 4.1 and Figs. 4.4 - 4.6). The

substitution of the hydrogen by the heavier deuterium is seen to manifest itself by a
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Figure 4.3: A semilog plot of the electrostatic-electrostatic, LJ-LJ and electrostatic-
LJ cross term contributions to eβ~ω/2C̃LSC−LHA

s (ω) for neat HCl
(T=188K, ρ =19.671 nm−3).

dramatically smaller quantum enhancement (by less than a factor of four as opposed

to two orders of magnitude). This results in trend reversal in the dependence of the

VER rate constant on isotope substitution. More specifically, whereas the classical

VER rate constant of DCl is faster than that of HCl by a factor of ∼ 3, the LHA-

LSC-based VER rate constant of DCl is slower than that of HCl by a factor of ∼ 5.

Furthermore, the VER rate constant of DCl is seen to be completely dominated by the

LJ forces within either classical and LHA-LSC treatments. This should be contrasted

with the VER rate constant of HCl which is dominated by the LJ forces only within

the classical treatment, This suggests that VER in HCl and DCl occurs via a different

mechanism, namely electrostriction in DCl and quantum delocalization in HCl.

It is interesting to note that a similar argument was recently invoked to explain

the isotope effect in the case of H2/D2 in liquid Ar.(56) In this case, the experimental
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Figure 4.4: A semilog plot of eβ~ω/2C̃LHA−LSC
s (ω), C̃LHA−LSC

s (ω), C̃Cl(ω) and
eβ~ω/2C̃Cl(ω) (Schofield QCF) for neat liquid DCl (T=188K, ρ =19.671
nm−3). Solid lines were obtained from calculations and dashed lines cor-
respond to extrapolations.

VER rate constant of H2 is about an order of magnitude larger than that of D2 despite

the fact that ω10(H2) is larger than ω10 (D2) by a factor of
√

2. Here too, a classical

treatment was unable to account for this trend. However, the LHA-LSC method was

able to capture the isotope effect quantitatively, thereby suggesting that its origin is

purely quantum-mechanical. More specifically, the smaller mass of H2 allowed it to

penetrate more deeply into classically-forbidden regions, thereby sampling stronger

repulsive forces which lead to the enhancement of the VER rate of H2 relative to

that of D2. The key difference between H2/D2 in liquid Ar and liquid HCl/DCl being

that the former is a nonpolar system while the latter is polar. Thus, in the case of

HCl/DCl, the fact that the Coulombic repulsive wall is actually not as steep as the

LJ repulsive wall allows the hydrogen to sample deeper into the region of classically-

101



Figure 4.5: A semilog plot of the electrostatic-electrostatic, LJ-LJ and electrostatic-
LJ cross term contributions to C̃Cl(ω) for neat DCl (T=188K, ρ =19.671
nm−3).

forbidden electrostatic forces, thereby enhancing their contribution relative to that of

the LJ forces.

4.5 Summary

In our research, we have reported the first ever application of the LHA-LSC

method to calculating the VER rate constant in a polar liquid. Carrying out this

calculation was made easier by the introduction of the force-derivative-free LHA-

LSC.(63) The choice of liquid HCl was motivated by the expectation of large quan-

tum effects and the availability of experimental VER rates to compare with. The

results indeed confirmed that a classical treatment can be misleading in systems of

this type, both quantitatively and qualitatively. From the quantitative point of view,
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Figure 4.6: A semilog plot of the electrostatic-electrostatic, LJ-LJ and electrostatic-
LJ cross term contributions to eβ~ω/2C̃LSC−LHA

s (ω) for neat DCl
(T=188K, ρ =19.671 nm−3).

we find that the classical VER rate constant of HCl is two orders of magnitude slower

than the experimental result. At the same time, the VER rate constant predicted

via LHA-LSC was found to be in excellent agreement with experiment. From the

qualitative point of view, we found that while nonpolar forces dominate the classi-

cal FFCF, electrostatic forces make a sizable contribution to the FFCF in the case

of LHA-LSC. We also found a trend reversal with respect to the effect of isotope

substitution on the VER rate constant and underlying mechanism. These results

suggest that a classical treatment of VER may not be reliable in predicting VER

rates as well as the mechanism underlying them in the case of hydrogen stretches

in polar solutions. Further studies on other systems such as CN−/H2O(46; 52) and

HOD/D2O,(151; 174; 175; 176; 177; 178; 179; 180; 181) where similar effects can be

expected and high quality experimental data are available will be necessary in order

103



to establish how general these trends are.

104



CHAPTER V

The Entropic Origin of Solvent Effects on The

Single Bond cZt-tZt Isomerization Rate Constant

of 1,3,5-cis-Hexatriene in Alkane and Alcohol

Solvents: A Molecular Dynamics Study

5.1 Introduction

The ultrafast photoinduced ring opening reaction of 1,3-cyclohexadiene (CHD) has

received much experimental and theoretical attention over the last several decades(182;

183; 184; 185; 186; 187; 188; 189; 190; 191; 192; 193; 194; 195; 196; 197; 198; 199; 200;

201; 202; 203; 204; 205). One reason for this attention is the similarity to the pho-

toreaction of 7-dehydrocholesterol resulting in vitamin D formation(206; 207; 208;

209; 193). Another is the fact that the photoinduced ring opening reaction of 1,3-

cyclohexadiene (CHD) provides an excellent model system for understanding solvent

effects on isomerization rates, as well as the rates of related non-reactive relaxation

processes such as cooling of a vibrationally hot state following electronic relaxation

from a photoexcited electronic state to the ground electronic state.

Experimental studies have shown that CHD undergoes an electrocyclic ring open-

ing reaction upon UV excitation to produce vibrationally hot cis-1,3,5-hexatriene
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Figure 5.1: A schematic view of the cZt-HT (left) → tZt-HT (right) isomerization
reaction. The atoms associated with the dihedral angle, φ, that serve as
the reaction coordinate are labeled.

(Z-HT) with 40% quantum yield(210; 193; 187; 194; 192; 191). This is followed by

vibrational cooling of Z-HT, on a picosecond timescale, resulting in a mixture of three

rotational isomers, or rotatomers, that differ with respect to the degree of rotation

around the single bond, namely , cZc-HT, cZt-HT and tZt-HT.

A small nonequilibrium subpopulation of the cZt-HT rotatomer is trapped at

the end of this vibrational cooling step. (194; 193; 191; 190; 187; 192) Since the

trapped subpopulation of cZt-HT is larger than its chemical equilibrium value, the

subsequent equilibration involves the net reaction cZt-HT→tZt-HT, which occurs

on a nanosecond timescale.(187) Monitoring the subpopulations of cZt-HT and tZt-

HT in real time via time-resolved optical spectroscopy can then be used to measure

the cZt-HT→tZt-HT reaction rate constant as well as its temperature and solvent

dependence. Such measurements have been reported by Sension and coworkers in

the temperature range of ∼(280-320)K and on a series of alkane (cyclohexane, n-

hexadecane) and alcohol (ethanol, methanol and n-propanol) solvents(191; 190; 193;

194; 187; 192).

The main observations that emerged from these measurements can be summarized

as follows:

• The measured rate constants are relatively insensitive to the specific alcohol or

alkane, and in particular to variations in shear viscosity among alcohols and
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alkanes.

• The measured rate constants are in general faster in alkane solvents than in

alcohol solvents.

• The temperature dependence of the rate constants suggests that both activation

energy and preexponential factor are solvent-dependent, with the preexponen-

tial factor in alkanes larger by an order of magnitude than that in alcohols,

while the activation energy is larger in alkanes than that in alcohols.

It is important to note that the above mentioned differences between alcohol and

alkane solvents cannot be explained based on Kramers theory,(211; 212) according

to which the prefactor, and hence rate constant, should decrease with increasing

viscosity.

Molecular dynamics (MD) simulations provide a useful way of shedding light on

such questions.(213; 214; 215; 216; 217; 218; 219; 220; 221; 222; 223; 224; 225; 226)

For example, the photoisomerization reaction of trans-stilbene and the photo-

chemical reactions leading to vitamin D synthesis are multistep reactions that are in

many respects related to the photoinduced ring opening reaction of CHD. In both of

these systems, MD simulations have been used for modeling and understanding the

molecular level details behind the experimentally observed results(224; 225; 226; 227).

Reactive flux theory (RFT)(228; 229; 230; 231; 232; 233) provides a route for cal-

culating the exact isomerization rate constant from such MD simulations (provided of

course that the dynamics can be described by classical mechanics and that the force

fields are accurate). More specifically, the only assumption underlying RFT is that

the rate of barrier crossing is slower than the rates of all other dynamical processes

that take place in the reactant and product wells, so that the reaction dynamics can

be described by a rate constant. RFT also allows the calculation of the rate constant

by using trajectories that start at the barrier top, thereby bypassing convergence
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problems associated with rare event statistics.(234) The popular transition-state the-

ory (TST)(235) can be obtained from RFT in the limit where barrier recrossing events

are negligible. Finally, it should be noted that Kramers’ theory,(211; 212) which is

often invoked to describe solvent effects on reaction rate constants, is based on de-

scribing the underlying dynamics in terms of a Langevin equation. The latter avoids

a molecularly detailed description of the solvent and accounts for solvent effects in

terms of the dependence of the rate of recrossing on the solvent viscosity.

Our objective in this research is to shed light on the molecular origin

of the above mentioned solvent effects by calculating the cZt-HT→tZt-HT

isomerization rate constants via RFT, at different temperatures and for

different explicit solvents. We do so for a series of different solvents (cyclohexane,

cycloheptane, n-heptane, methanol, ethanol, n-propanol) on the temperature range

(275-325)K.

The structure of the remainder of the chapter is as follows. Theoretical background

and computational methods are outlined in Secs. 5.2 and 5.3, respectively. The results

are presented and discussed in Sec. 5.4, followed by concluding remarks and outlook

in Sec. 5.5.

5.2 Theory

5.2.1 Preliminaries

In this section, we formulate RFT for an isomerization reaction, as well as its

TST limit, with emphasis on the underlying assumptions and the conditions for their

validity. To this end, we restrict ourselves to the case of a unimolecular reaction,

which is appropriate for the isomerization reaction under study here.

We start out by considering a classical system with the following generic Hamil-
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tonian:

H
(
s, ṡ,Q, Q̇

)
= T

(
ṡ, Q̇

)
+ V (s,Q) . (5.1)

Here, s and ṡ are the reaction coordinate and corresponding velocity, respectively;

Q = (Q1, Q2, . . .) and Q̇ =
(
Q̇1, Q̇2, . . .

)
are the non-reactive coordinates and corre-

sponding velocities, respectively; T
(
ṡ, Q̇

)
is the overall kinetic energy and V (s,Q)

is the overall potential energy.

Next, let s = s‡ define the transition state (TS), such that s < s‡ and s >

s‡ correspond to reactant and product, respectively. We also define the heaviside

function,

h(s) =

 1 s > s‡(product)

0 s ≤ s‡(reactant)
, (5.2)

so that the product mole fraction at time t is given by:

xP (t) =

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρ

(
s, ṡ,Q, Q̇; t

)
h(s) ≡ 〈h(s)〉t . (5.3)

Here, ρ
(
s, ṡ,Q, Q̇; t

)
is the (nonequilibrium) phase-space density at time t. It should

be noted that the reactant mole fraction at time t is given by:

xR(t) = 1− xP (t) =

∫
ds

∫
dṡ

∫
dQ

∫
dρ
(
s, p,Q, Ṗ; t

)
[1− h(s)] ≡ 1− 〈h(s)〉t .

(5.4)

In the absence of external perturbation,

ρ
(
s, ṡ,Q, Q̇; t

)
t→∞−→ ρeq

(
s, ṡ,Q, Q̇

)
≡

exp
[
−H

(
s, ṡ,Q, Q̇

)
/kBT

]
∫
ds
∫
dṡ
∫

dQ
∫

dQ̇ exp
[
−H

(
s, ṡ,Q, Q̇

)
/kBT

] ,
(5.5)
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such that

xP (t)
t→∞−→ xP,eq ≡

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρeq

(
s, ṡ,Q, Q̇

)
h(s) ≡ 〈h(s)〉eq

xR(t)
t→∞−→ xR,eq ≡

∫
ds

∫
dṡ

∫
dQ

∫
dQ̇ρeq

(
s, ṡ,Q, Q̇

)
[1− h(s)] ≡ 1− 〈h(s)〉eq .(5.6)

The concept of the reaction rate constant is based on assuming that the reaction

dynamics can be described by a simple kinetic rate equation of the following form:

ẋP (t) = −ẋR(t) = −kRPxP (t) + kPRxR(t) , (5.7)

where kPR and kRP are reactant-to-product and product-to-reactant reaction rate

constants, respectively. Equivalently,

δẋi(t) = −kδxi(t) . (5.8)

Here i = P or R, k = kPR + kRP , δxi(t) = xi(t)− xeqi , xeqP = kPR/k and xeqR = kRP/k.

It should be noted that relaxation processes are generally characterized by many

relaxation times, not one. In order for reaction kinetics to be described by a single

rate constant as in Eq. (5.8), the activation energy has to be much higher than kBT ,

which results in the reaction rate constant being much slower on the time scale of

all remaining nonreactive processes.(236; 237; 233) Under these circumstances, the

reaction dynamics can be described by Eq. (5.8) (after a short transient time during

which the reaction does not make significant progress).(233; 238)

Eq. (5.8) can be easily solved to give δxi(t) = δxi(0) exp (−kt). Thus, the actual

reaction rate constant can be obtained from the following expression:

k = lim
t→tp

k(t) = − lim
t→tp

δẋi(t)/δxi(0) (5.9)
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Here, k(t) is explicitly time-dependent during an initial transient period, 0 < t <

tp(� 1/k), following which it will reach the “plateau region”, where it acquires a

fixed value (provided that t � 1/k). (233; 238) This fixed value corresponds to the

reaction rate constant, k.

5.2.2 The reaction rate constant from linear response theory

Since activated processes follow rare-event statistics, direct evaluation of the re-

action rate constant from Eq. (5.9) would typically require prohibitively long non-

equilibrium MD simulations. Linear response theory (LRT)(228; 239) provides an

alternative route for calculating reaction rate constants that can bypass this obsta-

cle. To this end, one needs to take advantage of the fact that since the reaction rate

constant is independent of the choice of initial condition, one is free to choose an

initial state which is in the close vicinity of thermal equilibrium.(228; 240) It is this

assumption that makes it possible to calculate the reaction rate constant via LRT.

The derivation of an expression for the reaction rate constant from LRT starts

out by considering a classical system with the total Hamiltonian H
(
R, Ṙ

)
+ fA (R)

at t < 0 and H
(
R, Ṙ

)
at t ≥ 0 (R ≡ (s,Q) in the context of the current system).

Here, f is a scalar coefficient, and A (R) is any perturbation that can shift the system

from its unperturbed thermal equilibrium phase-space density

ρeq

(
R, Ṙ

)
=

e−H[R,Ṙ]/kBT∫
dR

∫
dṘe−H[R,Ṙ]/kBT

. (5.10)

At t = 0, the system is assumed to be in thermal equilibrium with respect to the

perturbed Hamiltonian, so that its initial phase-space density is given by:

ρ(R, Ṙ; t = 0) =
e−[H(R,Ṙ)+fA(R)]/kBT∫

dR
∫

dṘe−[H(R,Ṙ)+fA(R)]/kBT
. (5.11)

Thus, the ensemble-averaged value of a dynamical variable B(R) at time t ≥ 0 is
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given by

〈B〉eq(t) =

∫
dR0

∫
dṘ0e

−[H(R0,Ṙ0)+fA(R0)]/kBTB(Rt)∫
dR0

∫
dṘ0e−[H(R0,Ṙ0)+fA(R0)]/kBT

. (5.12)

Here Rt is obtained by solving the classical equation of motion under the Hamiltonian

H(R, Ṙ), with the initial conditions
{

R0, Ṙ0

}
, to obtain

{
Rt, Ṙt

}
at time t.

Assuming that the initial phase-space density is close enough to the unperturbed

equilibrium phase-space density, ρeq

(
s, ṡ,Q, Q̇

)
, for the linear response limit, f � 1,

to be valid, one may replace Eq. (5.12) by its expansion to first order in powers of f .

This then results in the following expression for 〈δB〉eq(t) in terms of an equilibrium

two-time correlation function:

〈δB〉eq(t) =
f

kBT
〈δA(R0)δB(Rt)〉eq , (5.13)

where δA(R) = A(R)− 〈A〉eq and δB(R) = B(R)− 〈B〉eq.

Now, assuming that A = B = h(s), Eq. (5.13) reduces to:

〈δh〉eq(t) ≡ δxP (t) =
f

kBT
〈δh(s0)δh(st)〉eq . (5.14)

Substituting Eq. (5.14) into Eq. (5.9) then yields:

k = − lim
t→tp

〈δh(s0)δḣ(st)〉eq
〈[δh(s0)]2〉eq

= lim
t→tp

〈δḣ(s0)δh(st)〉eq
xR,eqxP,eq

. (5.15)

Noting that δḣ = ḣ = δ
[
s− s‡

]
ṡ is the reactive flux, we obtain the following expres-

sion for the reaction rate constant:

k = lim
t→tp

1

xR,eqxP,eq
〈δ
[
s0 − s‡

]
ṡ0h(st)〉eq . (5.16)

It should be noted that kPR = kxP,eq and kRP = kxR,eq. Eq. (5.16) is the RFT ex-

pression for the reaction rate constant. Importantly, it represents an exact expression
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for the rate constant, provided that classical mechanics is valid and the force fields

are accurate.

5.2.3 Transition state theory

TST can be obtained from Eq. (5.16) by replacing h [st] by h [ṡ0]. This assumption

is equivalent to neglecting barrier recrossing, that is assuming that starting at a TS

configuration with a positive velocity along the reaction coordinate (ṡ > 0) guarantees

barrier crossing, that is h(st) = 1. This then leads to the following expression for the

reaction rate constant:

kTST =
1

xR,eqxP,eq
〈δ
(
s− s‡

)
ṡh(ṡ)〉eq = 〈ṡh(ṡ)〉eq〈δ

(
s− s‡

)
〉eq . (5.17)

Importantly, the TST reaction rate constant is given in terms of an equilibrium ensem-

ble average, as opposed to an equilibrium two-time correlation function within RFT.

As a result the ṡ-dependent and s-dependent factors can be averaged separately.

The s-dependent factor in Eq. (5.17) can be put in the Arrhenius form:

1

xR,eq
〈δ
(
s− s‡

)
〉eq

=

∫
dQ exp

[
−V (Q, s‡/kBT

]∫
dQ

∫
s≤s‡ ds exp [−V (Q, s)/kBT ]

= exp
[
−∆G‡/kBT

]
= exp

[
∆S‡/kB

]
exp

[
−∆H‡/kBT

]
. (5.18)

Here, ∆G‡ = G‡−GR, ∆S‡ = S‡−SR and ∆H‡ = H‡−HR are the Gibbs free energy,

entropy and enthalpy difference between the TS and the reactant state (assuming

that the reaction takes place under constant temperature and pressure). Thus, the

reactant-to-product rate reaction rate constant is given by:

kTSTPR = A exp
[
−∆H‡/kBT

]
, (5.19)
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with

A = 〈ṡh(ṡ)〉eq exp
[
∆S‡/kB

]
(5.20)

Finally, comparison to Eq. (5.16) reveals that

kPR = κkTSTPR , (5.21)

where κ is the so-called transmission coefficient, which is explicitly given by:

κ = lim
t→tp

〈ṡ0δ
[
s0 − s‡

]
h(st)〉eq

〈ṡh(ṡ)〉eq
. (5.22)

It should be noted that κ < 1 due to recrossing and that as a result, kTST corresponds

to an upper bound on the actual rate constant, k ≤ kTST .

5.3 Computational Methods

MD simulations were performed on a system that consists of one HT molecule

and 300-400 solvent molecules (depending on solvent), in a truncated octahedron box

with standard periodic boundary conditions. The reaction coordinate is given by the

dihedral angle, φ, along H(1) − C(1) − C(2) − H(2) atoms of HT (see Fig. 5.1).

The TS corresponds to φ‡ = 90o, so that φ < φ‡ and φ > φ‡ correspond to reactant

(cZt-HT) and product (tZt-HT), respectively.

Classical MD simulations were carried out via the AMBER10 software package,

using the general AMBER force field (GAFF).(241) Lennard-Jones parameters were

adopted from GAFF and atomic partial charges were obtained via the restrained elec-

trostatic potential (RESP) method(242; 243; 244) after calculating the electrostatic

potential via HF/6-31G∗ using the Gaussian 09 software package. All the simulations

were carried out with a time step of 1.0fs. Gibbs free energy profiles as a function

of φ were obtained from the corresponding potentials of mean force using umbrella
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Figure 5.2: Demonstrative examples of calculations of the rate constant via RFT for
methanol (meoh) at 280K (a) and 325K (b), and for cyclohexane (chex)
at 280K (c) and 325K (d).
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sampling with the weighted histogram analysis method (WHAM), via the WHAM

software package.(245)

For the free energy calculations, the system was equilibrated for 450 ps at a con-

stant pressure of 1.0atm and the desired temperature, following a simulated annealing

for 100 ps, where the temperature was controlled using the Andersen temperature

coupling scheme(246). The solute and the solvent intramolecular bond lengths were

constrained to their equilibrium values using the SHAKE algorithm.(247). Umbrella

sampling simulations were carried out with harmonic spring constant of 0.04 kcal/(mol

deg2) at different values of the H(1)−C(1)−C(2)−H(2) dihedral angle, φ. To this

end, we employed 181 bins, each of which 2o wide, and ran a 250 ps long trajectory

to sample the time series of the dihedral angles. WHAM was then used to generate

the potential of mean force for each solvent at constant temperature and pressure

conditions.

For the rate constant calculations using the TST method, the system was equi-

librated for 40ps with the dihedral angle, φ, constrained to its TS value, φ‡ = 90o,

followed by a production run consisting of 1,000 200ps long trajectories during which

the dihedral angle was constrained to its TS value. For the rate constant calculations

using the RFT method, equilibration was performed similarly to the TST calculations.

However, production runs were performed with an unconstrained dihedral angle. The

RFT results reported here were obtained by averaging over 50,000 trajectories (each

1ps long). Error bars were calculated by dividing the trajectories into 10 blocks and

calculating the standard-deviatio (100 200ps trajectories per block for TST and 5,000

1ps trajectories per block for RFT).

5.4 Results and Discussion

Examples of calculations of the rate constant via RFT, Eq. (5.16), for methanol

(meoh) at 280K (a) and 325K (b), and for cyclohexane (chex) at 280K (c) and 325K
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Figure 5.3: Arrhenius plot of the cZt-HT→tZt-HT isomerization rate constants ob-
tained via RFT (circles) and TST (squares) in methanol (meoh), ethanol
(etoh) and n-propanol (proh) solvents.
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Table 5.1: cZt-HT to tZt-HT Isomerization Rate Constant Calculated using TST and
RFT methods at 320 K

Solvent Transition State Theory Reactive Flux Theory
kTST (ns−1) kRFT (ns−1)

Methanol 1.9± 0.7 0.5± 0.2
Ethanol 2.2± 0.8 0.6± 0.2
Propanol 2.4± 1.0 0.7± 0.3

Cyclohexane 3.2± 1.0 1.0± 0.3
Nheptane 3.4± 1.2 0.9± 0.3

Cycloheptane 4.9± 2.0 1.2± 0.5

(d), are shown in Fig. 5.2. As expected, the plateau region is reached within a few

hundred femtoseconds, which is much shorter than 1/kPR (∼ ns), thereby justifying

the assumptions underlying RFT. The RFT rate constants reported below for other

solvents and/or at other temperatures were obtained from similar calculations (not

shown). Arrhenius plots of the cZt-HT→tZt-HT rate constants, as obtained via RFT

and TST, in different alcohol solvents (methanol, ethanol and n-propanol) and alkane

solvents (cyclohexane, cycloheptane and n-heptane), are shown in Figs. 5.3 and 5.4,

respectively.

In addition, we also show the Arrhenius plots obtained by grouping all the alcohol

solvents together and all the alkanes together, when the reaction rate constants are

obtained via TST (Fig. 5.5) and RFT (Fig. 5.6). The following conclusions can be

obtained based on Figs. 5.3 - 5.6:

• The rate constants obtained via both RFT and TST are consistent with the

experimentally observed trend of faster isomerization rates in alkane solvents in

comparison to alcohol solvents.(187)

• The rate constants calculated via TST are larger than the rate constants calcu-

lated via RFT by a factor of 3-4. This is consistent with the fact that TST rate

constants correspond to an upper bound on RFT rate constants, since the for-

mer can be obtained from the latter by neglecting the effect of barrier recrossing
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Figure 5.4: Arrhenius plot of the cZt-HT→tZt-HT isomerization rate constants ob-
tained via RFT (circles) and TST (squares) in cyclohexane (chex), cyclo-
heptane (chep) and n-heptane (nhep) solvents.

events.

• The rate constants calculated via RFT are somewhat slower than the experi-

mental rate constants. We attribute this to the fact that the rate constant is

exponentially sensitive to the activation free energy, which is in turn sensitive

to inaccuracies in the force fields.

• The slopes of the calculated Arrhenius plots in alcohol and alkane solvents are

comparable, implying that the activation enthalpy is insensitive to the solvent

type. However, the intercepts are observed to be significantly higher in alkane

solvents. Since the same behavior is observed when TST is used, one can

conclude that the difference in intercept between alcohol and alkane solvents is

not due to dynamical effects embodied by the transmission coefficient, and can
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Figure 5.5: Arrhenius plot of the cZt-HT→tZt-HT isomerization rate constants ob-
tained via TST in alcohols (methanol, ethanol and n-propanol grouped
together) and alkanes (cyclohexane, cycloheptane, and n-heptane grouped
together).

therefore be attributed to a larger entropy of the TS configurations relative to

the reactant configurations in alkane solvents.

The entropic origin of the difference between the rate constants in alkanes and

alcohols is further supported by Fig. 5.7, which shows the Gibbs energy profiles at

320K as a function of the dihedral angle, φ, for the different solvents. The activation

Gibbs energy in alcohol solvents is observed to be systematically higher than that in

alkane solvents. Since the activation enthalpy is similar for both solvent types, one

can conclude that the origin of the difference is entropic.

On the molecular level, this difference can be traced back to the very different

structures of the solvation shells in alcohol and alkane solvents. More specifically,

Z-HT in alcohol solvents fits within a relatively rigid void formed by the hydrogen-
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Figure 5.6: Arrhenius plot of the cZt-HT→tZt-HT isomerization rate constants ob-
tained via RFT in alcohols (methanol, ethanol and n-propanol grouped
together) and alkanes (cyclohexane, cycloheptane, and n-heptane grouped
together).

bonded network, which is insensitive to conformational dynamics. At the same time,

alkane solvents form a void whose shape can adjust to the instantaneous Z-HT con-

formation, thereby increasing the entropy of the TS and giving rise to faster isomer-

ization. This difference in the structure of the first solvation shell is confirmed by the

solute-solvent (center-of-mass to center-of-mass) radial distribution functions, which

show a tighter packing in alkanes in comparison to alcohols when HT is in the TS

configuration (see Fig. 5.8).

5.5 Concluding Remarks

cZt-HT→tZt-HT isomerization rate constants were calculated from classical MD

simulations, with explicit solvents via TST and RFT in several alcohol and alkane sol-
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Figure 5.7: Free energy profiles as a function of dihedral angle for the cZt-HT→tZt-
HT isomerization reaction, at 320K, in methanol (meoh), ethanol (etoh),
n-propanol (proh), cyclohexane (chex), cycloheptane (chep), n-heptane
(nhep) solvents.

vents and on a wide range of temperatures. The calculated rate constants were found

to be consistent with the major experimentally observed trend of faster isomerization

rate in alkane solvents in comparison to alcohol solvents. Analysis based on the shape

of the Arrhenius plots, free energy profiles and solvent-solute radial distribution func-

tions point to entropy as the origin of solvent effects in this system. The latter can be

traced back to the fundamentally different structure of the first solvation shell in alco-

hol and alkane solvents. More specifically, while alkane solvents pack tightly around

the solute and adjust to its conformational state as it moves through the TS, alcohol

solvents form relatively open and rigid hydrogen-bonded cage structures which are

relatively insensitive to HT conformational state.

It should be noted that while the above mentioned general trend between alkane
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Figure 5.8: Radial distribution function between solvent and solute molecules in the
TS geometry, at 320 K, for methanol (meoh), ethanol (etoh), n-propanol
(poh), cyclohexane (chex), cycloheptane (chep), n-heptane (nhep) sol-
vents.

and alcohol solvents was reproduced, several discrepancies between simulation and

experiment remain. Most notably: (1) The simulated rate constants are somewhat

slower than the experimental ones; (2) The experimentally observed larger activation

enthalpy in alkanes relative to alcohol solvents is not reproduced by the simulations.

Although the origin of these discrepancies are difficult to trace, they likely reflect

inaccuracies in the force fields. To this end, it should be noted that the rate constants

are exponentially sensitive to the activation Gibbs energy and that the force fields do

not account for polarizability effects. Thus, employing polarizable force fields which

are better parametrized for capturing the dynamics away from chemical equilibrium

and in the vicinity of the TS may lead to a more quantitative agreement between

simulated and experimental rate constants.
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Similar studies on HT derivatives with bulkier side chains, such as pre-vitamin

D, α-terpinene and α-phellandrene, offer an interesting extension of the present

study.(248; 249) More specifically, one can expect trend reversal when the range of

conformational motion exceeds the size of the hydrogen-bond cage in alcohol solvents,

thereby leading to a higher enthalpic barrier.

124



CHAPTER VI

Conclusions and Future Directions

The major theme of this dissertation research has been the in-depth study of reac-

tive and non-reactive energy relaxation processes in condensed phase using computa-

tional methods based on molecular dynamics (MD) simulations. Investigations of non-

reactive energy relaxation processes comprised primarily of the prediction and analysis

of vibrational energy relaxation (VER) in multiple condensed phase systems with the

molecule of interest exhibiting high-energy vibrations, such that ~ω/kBT � 1. The

systems studied includes neat liquid HCl and DCl and isotopomeric mixtures of CN−

in H2O and D2O. The primary reason behind choosing systems with high-energy vi-

brations (vibrational stretch frequencies for C-N and H-Cl are 2080 cm−1 and 2783

cm−1, respectively) is that, in the study of the relaxation dynamics of these molecules,

one needs to treat the relaxing vibrational mode as well as the relevant accepting

modes in the framework of quantum dynamics. Recent theoretical and computational

studies of VER have been mostly based on the Landau Teller (LT) formula,(40; 155)

which gives the VER rate constant in terms of the Fourier transform (FT), at the

vibrational transition frequency, of the quantum-mechanical autocorrelation function

of the fluctuating force (FFCF) exerted on the relaxing mode by the other degrees

of freedom (DOF), i.e. the bath. An exact calculation of the quantum-mechanical

FFCF in a condensed phase system is beyond the scope of present day computational
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resources due to exponential scaling of computational cost with the number of DOF.

Therefore, we have explored the applications of semiclassical methods in the calcula-

tion of VER rate constants in high frequency vibrational modes in condensed phase,

particularly, the linearized semiclassical (LSC) method(87; 62; 86; 76; 54; 56) that has

been developed in the Geva group in the last decade. Interestingly, the study of VER

in neat liquid HCl/DCl and the CN− in aqueous solution are examples of the first

ever implementations of the LSC method in the calculations of VER rate constant in

case of a polar liquid system and an ionic system in polar solvent, respectively. Using

a thorough approach for implementation of the LSC method, we were able to obtain

VER rate constants for both the systems studied with excellent agreement with the

experimentally measured rate constants.

The major conclusion that can be derived from all the VER studies combined is

that, the quantum effects in the calculation of VER rate constant plays a significant

role, and cannot be neglected. More specifically, it was observed that in the case

of neat liquid HCl, while nonpolar forces dominate the classical FFCF, electrostatic

forces make a sizable contribution to the FFCF when calculated within the framework

of LSC, indicating a fundamental difference in the mechanism of VER as captured by

the classical treatment and the quantum mechanical treatment of the involved VER

dynamics. It was observed that while the classical treatment points to electrostriction

as the mechanism of VER in this system, the quantum-mechanical treatment indi-

cates towards quantum delocalization as the likely origin of the qualitatively different

behavior of the FFCF calculated using the LSC method. On a quantitative note, the

classical VER rate constant of HCl was found to be two orders of magnitude slower

than the experimental result. At the same time, the VER rate constant predicted

via LSC method was found to be in excellent agreement with experiment. This trend

was also observed in case of the VER in cyanide ion in aqueous solution, where the

classical VER rate constant was found to be an order of magnitude shorter than the
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experimental rate constant, whereas, accounting for quantum effects in the calcula-

tion of VER via the LSC method and/or by using the harmonic/Schofield quantum

correction factor (67) (QCF) led to VER rate constants with quantitative agreement

with experimental rate constants. The major conclusion, however, was that our re-

sults suggested that taking into account quantum effects on the VER of cyanide in

aqueous solution could make the intermolecular pathway (involving translations and

rotations of the solvent) at least as likely as the intramolecular pathway (involving

water bend vibrational modes).

There are many directions into which the VER investigations can be carried for-

ward. In the applications of the LSC method in the calculation of VER rate constant

presented in this thesis, the LSC method was, for the first time, implemented in the

case of a polar liquid and an ionic species in a polar solvent. The next step from

here, would be to apply the LSC method to more complex systems, for example,

in molecules with multiple DOF, including multiple vibrational modes, capable to

accepting the energy released by the high-frequency excited vibrational mode. One

such example would be, Amide I mode of N -methylacetamide in D2O solution(250),

among many other examples of VER in proteins.

The second major theme of the thesis comprised of the study of reactive chemical

process where we calculated the single-bond cZt-tZt isomerization rate constant of

1,3,5-cis-hexatriene dissolved in a series of explicit alkane (cyclohexane, n-heptane

and cycloheptane) and alcohol (methanol, ethanol and n-propanol) solvents, using

classical MD simulations via the reactive flux theory at different temperatures (275-

325K). Our main objective, in this study, was to shed light on the molecular origin of

the experimentally observed trend of isomerization rate constant,(187) wherein the

isomerization rate constants in alcohol solvents were reportedly slower than those in

alkane solvents. We found that the isomerization rate constants in alcohol solvents

were indeed slower than those in alkane solvents, in accord with the observed exper-
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imental trend. The same trend was obtained when the transition state theory limit

of the reactive flux expression for the reaction rate constant was employed. It was

conlcuded from the detailed study of the thermodynamics associated with the iso-

merization reaction, as well as, the analysis of the radial distribution function of the

solvent-solute center of mass at the transition state of the solute, that, the solvent

dependence of the reaction rate constant can be traced back to the fundamentally

different structure of the solvation shell in alcohol and alkane solvents. It was found

that whereas in alcohol solvents, hexatriene fits inside a rigid cavity formed by the

hydrogen-bonded network, which is relatively insensitive to conformational dynamics,

alkane solvents form a cavity around hexatriene that adjusts to the conformational

state of hexatriene, thereby increasing the entropy of transition state congfiurations

relative to reactant configurations and giving rise to faster isomerization. An in-

teresting extension of the classical MD study would be a similar analysis on hexa-

triene derivatives with bulkier side chains, such as pre-vitamin D, α-terpinene and

α-phellandrene(248; 249). More specifically, one can expect trend reversal when the

range of conformational motion exceeds the size of the hydrogen-bond cage in alcohol

solvents, thereby leading to a higher enthalpic barrier.
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