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ABSTRACT

Location-Based Sensor Fusion for UAS Urban Navigation

by

Justin R. Rufa

Chair: Associate Professor Ella M. Atkins

For unmanned aircraft systems (UAS) to effectively conduct missions in urban environ-

ments, a multi-sensor navigation scheme must be developed that can operate in areas with

degraded Global Positioning System (GPS) signals. This thesis proposes a sensor fusion

plug and play capability for UAS navigation in urban environments to test combinations

of sensors. Measurements are fused using both the Extended Kalman Filter (EKF) and

Ensemble Kalman Filter (EnKF), a type of Particle Filter. A Long Term Evolution (LTE)

transceiver and computer vision sensor each augment the traditional GPS receiver, iner-

tial sensors, and air data system. Availability and accuracy information for each sensor is

extracted from the literature. LTE positioning is motivated by a perpetually expanding net-

work that can provide persistent measurements in the urban environment. A location-based

logic model is proposed to predict sensor availability and accuracy for a given type of urban

environment based on a map database as well as real-time sensor inputs and filter outputs.

The simulation is executed in MATLAB where the vehicle dynamics, environment, sensors,

and filters are user-customizable. Results indicate that UAS horizontal position accuracy

xv



is most dependent on availability of high sampling rate position measurements along with

GPS measurement availability. Since the simulation is able to accept LTE sensor speci-

fications, it will be able to show how the UAS position accuracy can be improved in the

future with this persistent measurement, even though the accuracy is not improved using

current LTE state-of-the-art. In the unmatched true propagation and filter dynamics model

scenario, filter tuning proves to be difficult as GPS availability varies from urban canyon to

urban canyon. The main contribution of this thesis is the generation of accuracy data for dif-

ferent sensor suites in both a homogeneous urban environment (solid walls) using matched

dynamics models and a heterogeneous urban environment layout using unmatched models

that necessitate filter tuning. Future work should explore the use of downward facing VI-

SION sensors and LiDAR, integrate real-time map information into sensor availability and

measurement weighting decisions, including the use of LTE for approximate localization,

and more finely represent expected measurement accuracies in the GPS and LTE networks.
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CHAPTER 1

Introduction

1.1 Expanding Urban-Focused UAS Missions

As unmanned aircraft system (UAS) technology continues to mature, numerous visions

for UAS applications in rural and urban areas have emerged. The Federal Aviation Ad-

ministration (FAA) will oversee the integration of UAS into the National Airspace Sys-

tem (NAS). This process, as outlined by the FAA Modernization and Reform Act of 2012,

has begun with the identification of six test sites, and will provide support for integration

of UAS into the NAS with a target date of no later than September 30, 2015 [1]. With

UAS flying in the NAS, many non-federal government entities will have the opportunity

to operate UAS for missions including urban law enforcement, anti-terrorism, riot control,

traffic surveillance, natural disaster monitoring, emergency medicine, agriculture, and com-

munications relay among others [2]. Many of these missions require operations in urban

environments, characterized by dense canyons formed between high-rise buildings as well

as monuments, pedestrian bridges, parks, overpasses/bridges, billboards, antennas, spires,

construction equipment, and possibly other aircraft. In addition to these potential obstruc-

tions, the large volumes of vehicle and pedestrian traffic on the ground must not be placed

at higher risk due to the introduction of UAS. Despite the difficulties in safely operating

UAS in urban environments, law enforcement organizations in the United States, Canada,

and Europe are giving consideration to these missions and the issues they will face.
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As early as 2007, the United Kingdom investigated requirements necessary for UAS

to augment manned aircraft conducting urban law enforcement missions. One of the chal-

lenges specifically cited was sensor obscuration, which further shows the need for naviga-

tion and control systems independent of any one data source [3]. In Canada, the Ontario

Provincial Police received a Special Flight Operations Certificate to fly UAS in a law en-

forcement role across the province, including urban areas [4]. The first use of a UAS under

this certificate was by the Kenora, Ontario Forensic Identification Services in mid- 2007 for

forensic evidence gathering during a homicide investigation [5]. In the United States, the

Seattle, Washington Police Department and the Arlington, Texas Police Department both

received FAA permission to operate UAS under certain conditions for missions such as

traffic accident surveillance, possible hostage situations in and around buildings [6], crime

scene photography, and missing person searches [7].

The importance of this class of missions, especially in time-sensitive law enforcement

and emergency situations, require navigation systems be sufficiently robust to handle sen-

sor anomalies common in urban canyons, including degradation/denial/spoofing of Global

Positioning System (GPS) signals. This is necessary to ensure the safety of people on the

ground (pedestrians and vehicle traffic), and to avoid damage to public infrastructure as

well as private property.

1.2 GPS Degradation, Loss, or Denial in Urban Canyons

UAS normally depend on reliable equipment and reliable GPS signals for accurate and

precise navigation. However, GPS signals can become degraded due to natural phenom-

ena such as free-space loss and refraction/absorption in the atmosphere. Signals can also

degrade or become unavailable due to man-made reflection and masking from urban struc-

tures and foliage [8]. In urban areas where GPS signals are available, multipath and mask-

ing also contribute to an increased geometric dilution of precision of the measurements [9].
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Lu et al. [10] conducted a GPS accuracy trial in the Wanchai area of Hong Kong, seen in

Figure 1.1, known to have one of the densest high-rise building cores on the island. It

showed that 50% of the area studied did not have adequate GPS reception. When a GPS

solution was available, the accuracy was worse than 20 meters for 40% of the points and

worse than 100 meters for 9% of the points.

Figure 1.1: Wanchai District of Hong Kong from Victoria Harbour courtesy of WiNG [11].

There are also intentional, yet inadvertent reasons for GPS signal unavailability, includ-

ing the use of GPS signal jammers, which was the case in the Newark Airport GPS outage

event from November 2009 through April 2010 [12]. When the GPS signal is unavail-

able, either due to the environment or a jamming device, other instruments are required for

navigation.

In 2007, the Defense Advanced Research Projects Agency (DARPA), concerned by

the possibility of losing GPS navigation capabilities, funded a Robust Surface Navigation

program that studied how navigation could continue without using GPS signals. It exam-

ined signals of opportunity, including cellular network signals, television signals, and even

signals emanating from other satellites, to determine if any would be viable for naviga-

tion purposes [13]. In a similar effort, BAE Systems developed “NAVSOP” (navigation

via signals of opportunity) that uses Wi-Fi, television, and cellular network signals among

others to provide navigation capabilities independent of GPS [14]. With two large research
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and development organizations, from government and private industry coming to the same

conclusion, a multiple sensor approach that includes pre-existing signals is critical to in-

vestigate and mature.

An initial step towards multi-sensor navigation is to identify possible data sources. One

such source with rapidly expanding infrastructure is the cellular phone network. Smart

phones on the Long Term Evolution (LTE) network provide a means for producing spo-

radic position estimates using one of many cellular-network based geolocation techniques.

The perpetually increasing accuracy of these techniques can be attributed to the Federal

Communications Commission’s Enhanced-911 device location requirements that enforce

network-calculated accuracy within 300 meters for 90% of the requested position fixes,

with more stringent requirements on device-calculated accuracy. Table 1.1 summarizes the

E-911 accuracy requirements, with mandatory compliance by September 11, 2012 [15].

Table 1.1: FCC E-911 accuracy requirements [15].

67% 90%

Network-Based 100 meters 300 meters

Handset-Based 50 meters 150 meters

As LTE network position estimate accuracy increases, it can be used for naviga-

tion, roadside assistance, landmark locators, billing aid for toll roads, fleet manage-

ment, and even location-sensitive sales alerts [16]. While the state-of-the-art accu-

racy is largely guarded by the companies developing this technology, Polaris Wireless

(http://www.polariswireless.com), set a goal to eventually reach an accuracy of 10 meters

with a 1 second time-to-fix using its Polaris Wireless Locating Signatures technology.

Given that GPS is unreliable in the urban environment, can a UAS with an LTE-network

capable transceiver, GPS receiver, combined with a compact computer vision system,

inertial measurement unit (IMU), and an air data system (ADS) combination allow a UAS

to safely and reliably navigate autonomously while flying critical urban missions around
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the world? A review of existing urban canyon navigation techniques will show the types

of navigation solutions that already exist for vehicles in the urban environment, and our

simulations will investigate sensor suite accuracy and availability.

1.3 Existing Urban Canyon Navigation Techniques

Since the early 1990’s, researchers have studied urban canyon vehicle state estimation in

the presence of degraded and sometimes unavailable GPS sensor data. The least complex

state estimation technique uses only a single sensor, while more advanced techniques inte-

grate data from sources such as onboard environment-sensing, inertial sensors, urban map

databases, and ground-based navigation transmitters. Multi-source techniques generally

use Bayesian filtering techniques such as the Kalman Filter, Extended Kalman Filter, or

Particle Filter to integrate measurements from the different sources. Each of these different

urban canyon navigation techniques for both ground vehicles and UAS are summarized

below.

1.3.1 GPS-Only Navigation

In terms of onboard systems integration complexity, the most basic solution is to use only a

single data source. This is normally a high sensitivity GPS receiver with high signal avail-

ability. References [17], [18], and [19] used a high sensitivity GPS receiver as a baseline

solution in their research, while [20] used standard receivers.

MacGougan et al. [17] used four receivers during their driving trials in the two Cana-

dian cities, with two standard receivers and two high-sensitivity receivers. In Vancou-

ver, British Columbia (as seen in Figure 1.2), the two-dimensional root-mean-square po-

sition error ranged from 10.8 meters to 23.1 meters once outliers were removed with the

root-mean-square horizontal dilution of precision (HDOP) ranging from 4.0-7.0. The root-

mean-square error (RMSE) for height was less accurate ranging from 11.9 meters to 62.4
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meters. When the test was repeated in Calgary, Alberta, despite better than expected signal

availability, the root-mean-square HDOP for the four receivers ranged from 2.8-12.5. [18]

the authors also conducted a field test in Calgary, reporting trajectory errors in the range

of several hundred meters to almost a kilometer using an epoch-by-epoch least-square ap-

proach.

Figure 1.2: Vancouver urban street-level image courtesy of MacGougan et al. [17].

Hide et al. [19], in their driving trial in Nottingham, United Kingdom, reported high sig-

nal availability, but horizontal position RMSE of roughly 5 meters, with vertical RMSE of

almost 39 meters, and heading RMSE of almost 29 meters at speeds below 5 meters/second.

This study also reported horizontal error position spikes of 30 meters and 70 meters, de-

spite at least seven satellites being available, demonstrating the multipath issues inherent to

GPS signals in urban canyons.

Modsching et al. [20] conducted a walking trial of Görlitz, focusing on GPS accuracy in

an environment with less urban build-up, shown in Figure 1.3(a) and an environment with

more urban build-up, shown in Figure 1.3(b). For an environment with less urban build-up

environment, the mean two-dimensional error was 2.42 meters while with significant urban

buildup, the mean two-dimensional error was 15.43 meters.
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(a) Less urban build-up

(b) More urban build-up

Figure 1.3: Görlitz Urban Build-up Images courtesy of Modsching et al. [20].

1.3.2 Navigation by GPS with Inertial Sensors

A popular method of augmenting GPS data is through the use of inertial sensors. Iner-

tial sensors generate acceleration and angular rate measurements with respect to an inertial

reference frame without using an outside reference. Examples include gyroscopes and

accelerometers. Mezentsev et al. [18] tested a GPS/gyroscope sensor combination, imple-

menting zero velocity updates to minimize gyro drift. Using a three-state Kalman Filter, the

vehicle’s position was estimated during a driving trial in Calgary with less than 20 meters

average error, but spiking to 60− 75 meters. GPS availability of only 30% demonstrated

the blocking effect of the urban environment on GPS signals.

References [19] and [21] described results when GPS measurements are combined with

with a gyroscope/accelerometer unit, traditionally known as an inertial navigation system

(INS). Hide et al. [19] implemented a Kalman Filter to calculate position error estimates
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during a driving trial in Nottingham, England. The horizontal position RMSE was roughly

2.5 meters, with vertical RMSE under 10 meters. The maximum horizontal RMSE was

only 11 meters, even with only 48.4% GPS solution availability. Davidson et al. [21] used

an Extended Kalman Filter to produce state estimates during driving tests in both Tampere

(Finland) and Portland (Oregon). The position error was less than 20 meters, even when

the GPS error was up to 35 meters in some locations.

1.3.3 Navigation by GPS with other Sensors

Mar and Leu [22] proposed the use of a compass sensor and odometer for dead reckon-

ing to augment differential GPS (DGPS). The two position sources were integrated using

both an eight-state and ten-state Kalman Filter. Simulation results showed that when dif-

ferential GPS was available, the filter had 3.083/2.075 meter North/East mean error with

7.510/4.837 meter standard deviation for the eight-state/ten-state Kalman Filter, respec-

tively. However, when differential GPS was not available, the dead reckoning error jumped

to 7.506/7.83 meter mean error with 57.52/22.62 meter standard deviation. Even with

reasonable error means, high standard deviations indicate low confidence in the estimates.

References [23] and [24] describe errors resulting from GPS measurements augmented

with a gyroscope/odometer combination to provide measurements via dead reckoning. Vis-

cek et al. [23] used a filter with stationary and moving modes to estimate the position of a

vehicle during a driving test in San Francisco, California. Their results showed that dead

reckoning only accumulates error on the order of 2% of the distance traveled when using

GPS. Georgy et al. [24] quantified the accuracy of the gyroscope/odometer combination

using both a Kalman Filter and a mixture Particle Filter separately during a driving test in

southeastern Ontario. In each instance of GPS outage, the Particle Filter outperformed the

Kalman Filter substantially, with 6.89 meter Particle Filter error and 27.86 meter Kalman

Filter error in one case as well as 8.9 meter Particle Filter error and 41.45 meter Kalman

Filter error in another case. These results show how using 100 particles with the nonlinear
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dynamics of a system can more accurately estimate the state than when using the linearized

model necessary for the Kalman filter.

1.3.4 Navigation by GPS with Inertial Sensors and Beacons

A further enhancement to the GPS/inertial sensor navigation solution is the use of ground-

based navigation beacons. Wei et al. [25] used GPS receiver-compatible pseudolites as their

ground-based navigation beacons to augment GPS when only two satellites were avail-

able. This GPS/pseudolite position data as well as the INS range estimates were double

differenced to eliminate clock bias error and then used in the measurement model of an

Extended Kalman Filter. Although this technique extended the availability of GPS to urban

canyons [26], the error reached almost 20 meters in both horizontal directions.

Lu et al. [27] used an INS with Bluetooth navigation beacons to position vehicles when

GPS was degraded or unavailable. A Kalman Filter was used to integrate the INS measure-

ments and GPS when it was available and accurate. In cases where GPS was not available,

Bluetooth beacons would send their location to the vehicle as a correction to eliminate INS-

induced drift. Driving trials in a densely urban part of Hong Kong showed the effectiveness

of the beacons with position error dropping from over 50 meters using only GPS/INS to

just over 7 meters when the beacons were also activated.

1.3.5 Navigation by GPS with Map Matching

Urban street maps can be used to augment GPS-based navigation systems in urban canyon

navigation. Cui and Ge [28] proposed a technique to model a vehicle’s path as concatenated

curves to represent the roads on a map, lowering the required number of GPS satellites to

two. These curves consisted of straight lines, arcs, polynomials, and other piecewise con-

tinuous curves, making the map a series of curves connected by nodes or junctions. Their

work used a state augmentation method and an Extended Kalman Filter to provide esti-

mates of both the actual path and positioning information for the vehicle. Results showed
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mean distance error of 0.436 meters when using path modeling, compared to a 1.205 meter

error without path modeling. When only one satellite was available the mean error jumped

to only 2.73 meters, demonstrating robustness of the technique to satellite loss.

Drevelle and Bonnifait [29] created the Interval Global Positioning with road Surface

by tightly-coupling three-dimensional maps with GPS pseudorange measurements to po-

sition the vehicle. The technique was presented as a constraint satisfaction problem that

enforced the GPS measurements and drivable space on the map as geometric constraints.

The position confidence domain was then calculated using interval analysis and contrac-

tors. Results from a driving trial in Paris showed less than 6.5 meter error 95% of the time

with the radius of the confidence domain less than 16 meters 95% of the time, both with

two or more satellites in view. The trial also demonstrated the lack of satellite availability

in urban environments with three or fewer satellites available 77% of the time and two or

fewer satellites available 40% of the time. GPS error reached 10 meters in the horizontal

plane and 35 meters in the vertical plane during these periods.

1.3.6 Navigation by GPS with Map Matching and Inertial Sensors

In addition to GPS and urban street maps, the more traditional inertial sensors can also

be integrated into a vehicle’s navigation system to provide more accurate state estimates.

Syed’s [30] navigation technique used a gyroscope and digital map as well as a high-

sensitivity GPS receiver to locate a vehicle in an urban setting. The foundation of this

algorithm was the identification of the current vehicle’s two-dimensional road link and po-

sition on the link. Once this information was determined for one epoch, it was used to

discard bad GPS pseudoranges for the next epoch. A driving test in Calgary showed this

solution provided correct fixes up to 89% and 93% of the time with no false position fixes

for the two different GPS receivers. These high sensitivity receivers also provided 96% and

almost 99% real-time solution availability.

References [31] and [32] describe tests where GPS is augmented with odometer and
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map data to estimate the position of a vehicle in dense urban settings using different Par-

ticle Filter variants. Boucher and Noyer’s [31] solution implemented a hybrid filter that

took advantage of separating the states within the system so that the linear states could be

estimated using a Kalman Filter within the Particle Filter, known as a Rao-Blackwellized

Particle Filter. Map data was composed of two-dimensional piecewise arcs connected by

nodes. Position and heading along these nodes was calculated through map measurement

equations to give an independent set of measurements. Results from a driving trial in Calais

(France) showed a 16 meter error when using dead reckoning navigation during the GPS

outage while the proposed solution with the addition of map measurements reduced the

error to 2.6 meters.

Georgy et al. [32] used a mixture Particle Filter based on the sampling importance re-

sampling. A gyroscope and two accelerometers were included along with the odometer

to form a three-dimensional reduced inertial sensor system (RISS). The technique also

used map measurements tightly integrating the three measurement sources. Map measure-

ments were computed from a four-step process that matched a predicted two-dimensional

solution to 1,000 foot candidate segments until the segment with the minimum distance

to the predicted solution was found. During two driving trials in downtown Toronto, On-

tario, the mixture Particle Filter was used for three-dimensional RISS/GPS integration and

the three-dimensional RISS/GPS/Map integration. The three-dimensional RISS/GPS mix-

ture Particle Filter had an RMSE of 10.73 meters for the first trial and 9.19 meters for the

second trials with a 0.0014 seconds per iteration execution time. The three-dimensional

RISS/GPS/Map mixture Particle Filter had a 6.72 meter and 6.22 meter RMSE for the two

trials, with a 0.0180 seconds per iteration execution time. .
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1.3.7 Navigation by Environment-Based Sensors: Computer Vision

and Laser

Computer vision and laser navigation techniques differ from GPS and inertial sensing tech-

niques in that they provide information about the position, speed, and orientation of the

vehicle with respect to its local environment rather than with respect to a global inertial

reference frame. Muratet et al. [33] combined an IMU with a video camera as the UAS’s

primary sensors. Optic flow, the apparent motion of pixels from frame to frame in an image,

was calculated using real-time quantized region matching. Their results showed the ten-

dency of a vehicle to slow down in the presence of obstacles, center itself in a canyon, and

complete U-turns when necessary to avoid obstacles in front of the vehicle while avoiding

collisions. These tendencies were driven by the relative value of a time-to-contact param-

eter compared to a preset minimum acceptable value. Wu et al. [34] also used vision to

augment inertial sensors in estimating the UAS’s position and attitude. In their solution,

vision-based target position measurements, from a pinhole camera model, were fed into

an Extended Kalman Filter providing state estimates to correct the inertial position and

attitude estimates. In simulation, the maximum position errors were 2.804 meters, 1.432

meters, 0.58 meters in the x,y,z directions respectively. In an experimental test, these errors

rose slightly to 2.926 meters, 2.53 meters, 1.22 meters in the x, y, z directions, verify-

ing the feasibility of a vision/inertial navigation system for urban environments. Graham

et al. [35] integrated visual odometry with GPS for accurate urban environment naviga-

tion. Their algorithm detected unmodeled state propagation and measurement errors due

to visual odometry drift/biases and used filtering techniques to improve the estimate while

preventing GPS multipath errors from causing the estimate to further deteriorate. They

were able to reduce two-dimensional position error means from 15.10 meters using an Ex-

tended Kalman Filter to 12 meters using an l1 filter, while lowering the 1σ deviation from

10.16 meters to 6.87 meters.

Hrabar and Sukhatme’s [36] vision based solution combined side-facing optic flow
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cameras with a front-facing stereo vision camera on a UAS and ground vehicle. Optic

flow data was calculated using the Lucas and Kanade feature tracker. This work demon-

strated the ability of a vehicle to detect obstacles using stereo vision and navigate around

them using vision based turn rate commands. It also demonstrated how optic flow can be

used to center a vehicle within a canyon. When combining data from both cameras the test

vehicle was able to successfully navigate through T-junctions and 90 degree bends in an

urban canyon.

Shim et al. [37] showed that range and angle data from a laser scanner could be used

to build an obstacle map as well as a model predictive control (MPC) obstacle avoidance

algorithm. Using these tools, their vehicle was able to safely navigate a simulated urban

canyon.

Soloviev [38] used an integrated GPS, INS, and laser scanner system for navigation

in urban canyons. This work used the laser as a complementary sensor to GPS such that

when GPS was unavailable due to obstructions, the laser was able to use local environment

features to navigate. Local range and angle measurements taken at consecutive time steps

determine change in position and orientation of the vehicle. The INS was used for angular

motion computation and to fill in the gaps when neither GPS and nor laser were able to

produce measurements. The INS data was also used in algorithms for feature matching,

laser tilt compensation, and coasting. The standard deviation for user position residuals

errors over two driving trials in Athens, Ohio was roughly 0.03 meters in the East-West

direction and 0.02 meters in the North-South direction.

Tomić et al. [39] proposed a UAS navigation solution using laser odometry or

correlation-based vision odometry to augment inertial sensor data in an Extended Kalman

Filter. This allowed full six degree of freedom state estimation with one filter. The selection

between the two different sensors was made based on which had the smaller covariance at

a particular time step, and drift error was corrected using frames from visual odometry or

landmark recognition. Experimental results from both indoor and outdoor environments
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showed less than 0.2 meter error in each of the three directions over a minute-long flight

test. A longer flight test would be needed to determine if the error would stay steady at the

reported value, increase, or decrease.

Overall trends show that GPS augmented with other sensors and data sources perform

significantly better than GPS-only. Additionally, the use of a Particle Filter to produce a

state estimate from multiple measurement sources shows better accuracy than the Kalman

Filter/Extended Kalman Filter implementation for the same set of sensors at the cost of

higher computational load per iteration. However, using the Particle Filter to its full poten-

tial requires the use of a particle weighting algorithm, determining a reasonable number of

particles, and understanding the distribution of measurement noise.

1.4 Problem Statement

The goal of this research is to investigate the accuracy of combinations of navigation sen-

sors and filtering techniques for different urban environments in which UAS might operate.

To achieve this goal, a user-configurable urban UAS navigation simulation was developed

using filtered sensor state accuracy data from traditional and nontraditional aircraft sensors

including an IMU, air data system, LTE network, GPS receiver, and computer vision sen-

sors. In each urban environment scenario, the fixed-wing UAS uses available sensors to

estimate its 12 states including the inertial position coordinates, airspeed, wind frame an-

gles, attitude, and angular rates. This six degree of freedom model assumes no wind so that

the inertial velocities can be represented by airspeed, angle of attack, and angle of sideslip

using basic transformations. Considerations must be taken to account for inaccuracies in

low-cost sensors, delayed measurement reporting, and availability issues. Ultimately, a

fielded UAS must appropriately fuse measurements from each of these sensors on-board

and in real-time to safely guide the UAS through a narrow urban environment, i.e., flight

below building roofs on both sides of a street, without persistent dependence on GPS.
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1.5 Research Objectives

The four primary research objectives of this dissertation are listed below:

• The first objective is to design a MATLAB®-based UAS guidance, navigation, and

control simulation, including a basic guidance scheme, controller, sensor models,

and a state estimation filtering structure using an existing UAS dynamics model. The

software must be customizable to facilitate simulations over any suite of sensors and

filter parameters.

• The second objective is to quantify the relative location of the UAS within an urban

environment at all times as it correlates to sensor availability, sensor measurement

error, and state estimation filter properties.

• The third objective is to use the simulation to study the effects of measurement error

for the various sensors on the accuracy of the state estimate within a homogeneous

urban environment using matching dynamics models and process noise model.

• The fourth objective is to use the simulation to study the effects of incorporating

sensor availability as a function of the environment and adding model uncertainty.

Accuracy of the state estimate is characterized during simulated flights through a

heterogeneous urban environment.

1.5.1 Approach

To achieve the first research objective, the MATLAB® environment is used to develop a

simulation using a series of functions and subfunctions for each process within the UAS

guidance, navigation, and control loop. Customized data structures are used to ensure the

smooth flow of data between functions. An important feature of the simulation is the ability

to easily customize the vehicle, sensor, environment, and filter models to meet user needs.

This includes the six degree of freedom UAS rigid-body dynamics model, literature-based
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sensor models, and a simulated urban environment model including buildings and obstacles

such as skybridges and antennas.

To achieve the second research objective, vertical and horizontal relative location par-

titions are defined along with the algorithms to categorize the UAS location within each.

These algorithms use UAS position with respect to the buildings within the environment to

determine sensor availability and measurement noise covariances. If available these mea-

surement noise covariance values are then used to generate realistic measurements for the

simulation.

To achieve the third research objective, a straight-and-level trajectory is flown at mul-

tiple altitudes both above and within a homogeneous urban canyon using multiple sensor

combinations. This set of simulations determines baseline navigation accuracy for differ-

ent sensor combinations as well as determining what effect, if any, the novel fusion of LTE

measurements with traditional navigation data has on the state estimate.

To achieve the fourth research objective, both straight-and-level as well as sinusoidal

trajectories are flown above and in a heterogeneous urban environment, including intersec-

tions. Sensor availability is varied and an unmatched model is used where the UAS plant

dynamics propagation model coefficient and constant values do not match their counter-

parts in the filter dynamics model. This set of simulations demonstrates how performance

of a more realistic UAS model is affected by increased process noise, dynamically chang-

ing sensor availability, and measurement-only sensors that must estimate their own noise

values.

1.6 Contributions

1. A modular end-to-end UAS simulation is developed within the MATLAB® environ-

ment to include UAS dynamics, urban environments, and sensor models to account

for the environment and delays using object-oriented data structures to emphasize
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reconfigurability.

2. A compilation of measurement availability and accuracy statistical information for a

suite of current and proposed UAS sensors is presented based on a thorough literature

review.

3. Bayesian filter UAS urban navigation consistency and accuracy statistics are devel-

oped as a function of urban environment characteristics.

4. Quantification of UAS urban navigation performance using LTE network observed

time difference of arrival (OTDOA) position measurements to augment sensors in

areas of poor GPS availability is given as are results using traditional sensor options

including GPS, vision, and IMU.

1.7 Innovations

1. Sensor availability, sampling rate, measurement delay, and filtered state noise co-

variance values are used for the first time in a rigorous location-dependent simula-

tion study synthesizing results from current literature and existing commercial off

the shelf sensor options.

2. An intuitive discretization of the urban environment is used for the first time in the

generation of GPS and LTE location-dependent availability and noise values that are

then incorporated into the state estimation filter.

3. The LTE network OTDOA positioning capability is exploited to provide independent

and persistent time-delayed position measurements which are incorporated into the

state estimation process.

4. UAS navigation performance is compared for matching UAS plant dynamics and
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filter dynamics models as well as for unmatched UAS plant dynamics and filter dy-

namics models.

1.8 Dissertation Overview

The remainder of the dissertation is divided into six chapters. Chapter 2 discusses the

technical background including linear quadratic controller (LQR) regulator design, nonlin-

ear fixed-wing aircraft equations of motion, including their linearization and equilibrium

(trim) states. Chapter 2 also presents background in possible UAS sensors and state esti-

mation filtering techniques, including the handling of delayed measurements. Chapter 3

describes the development of the UAS urban canyon simulation in terms of the guidance,

navigation, and control loop. The main topics include the simulation data classes, the spe-

cific linearized UAS model, and the development of basic guidance algorithms along with

UAS controller design. Chapter 4 introduces the relative location categorization process

which splits the urban environment into vertical and horizontal planes to aid in determining

accuracy for GPS and LTE. Additionally, sensor availability and accuracy models are dis-

cussed for GPS and vision sensors. Chapter 5 presents accuracy results for homogeneous

urban canyon simulations using matched models for the UAS plant dynamics propagation

and state estimation filter dynamics. Chapter 6 studies UAS navigation in a realistic ur-

ban canyon with varying building heights and intersections using both a matched model

and an unmatched model for the UAS plant dynamics propagation model versus the filter

dynamics model. Chapter 7 concludes the dissertation with a summary of key results and

discussion of future work needed to realize robust urban canyon navigation.
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CHAPTER 2

Background

This chapter summarizes modeling and control techniques necessary for UAS guidance,

navigation, and control. Next, detailed models of potential UAS sensors, including their

accuracy and availability, are introduced. The chapter concludes with a review of two

non-linear Bayesian state estimation filters, including the Extended Kalman Filter and the

Ensemble Kalman Filter as well as a description of metrics to quantify their consistency

and accuracy. In this dissertation, scalar-valued variables are represented in a lowercase un-

bolded form such as p, vector valued variables are represented in lowercase bolded form

such as x, and matrix valued variables are represented in uppercase un-bolded form such

as P.

2.1 UAS Control using a Linear Quadratic Regulator

(LQR)

An LQR controller [40] is commonly used for UAS due to its straightforward implementa-

tion and constant gains when the UAS dynamics are linearized about a trim (steady flight)

condition. The control law is

uk−1 = K̄(xcmdk−1 −xk−1) + utrim (2.1)
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where u is the control vector, xcmd is the commanded state vector, x is the state vector, and

utrim is the trim control vector.

The gain matrix K̄ is calculated using

K̄ = (R̄ + BT P̄ B)−1 BT P̄A. (2.2)

A and B are the state transition and control matrices calculated during the linearization

process, and the Q̄ and R̄ matrices are user-defined values selected to minimize

J =

∞∑
0

(xT Q̄x + uT ρ̄ R̄u). (2.3)

Q̄ and R̄ can be set to the identity matrix with dimensions equal to those of x and

u, respectively, and can be tuned by adjusting the scalar value of ρ̄. Bryson’s Rule [41],

another well-known technique, initially sets the diagonal elements of Q̄ and R̄ to the inverse

of the square of the maximum allowable deviation of each state and control from trim,

respectively.

P̄ is calculated using

P̄ = Q̄ + AT (P̄− P̄ B (R̄ + BT P̄ B)−1 BT P̄) A (2.4)

the discrete algebraic Ricatti equation [40].

2.2 Fixed-Wing Rigid-Body Aircraft Equations of Motion

The fixed-wing rigid-body aircraft equations of motion used in this research are in the form
.
x = f (x,u), where x the state vector is

x = [xN xE h VT α β φ θ ψ p q r]T (2.5)
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consisting of the inertial position (North position, xN , East position, xE , and altitude, h),

wind frame parameters (assuming zero wind) (airspeed, VT , angle of attack, α, angle of

sideslip, β), Euler angles (attitude) (roll angle, φ, pitch angle, θ, and yaw angle, ψ), and

body-fixed angular velocities (roll rate, p, pitch rate, q, and yaw rate, r).

The control vector u is

u = [δa δe δr FT ]T (2.6)

consisting of the aileron deflection, δa, elevator deflection, δe, rudder deflection, δr, and

thrust, FT .

The full set of position dynamics equations with a zero wind assumption are given by


ẋN

ẋE

ḣ

 = VT


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ+ sinφ sinψ

cosθ sinψ sinφ sinθ sinψ+ cosφ cosψ cosφ sinθ sinψ− sinφ cosψ

sinθ −sinφ cosθ −cosφ cosθ




cosα cosβ

sinβ

sinα cosβ


.

VT = 1
m (Xw + FT cosα cosβ+ mgw

x )
.
α = 1

cosβ ( 1
mVT

(Zw−FT sinα+ mgw
z ) + qw)

.
β = 1

mVT
(Yw−FT cosα sinβ+ mgw

y )− rw
φ̇

θ̇

ψ

 =


1 tanθ sinφ tanθ cosφ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ




p

q

r


ṗ

q̇

ṙ

 = Ib−1




Lb

Mb

Nb

−


p

q

r

× Ib


p

q

r


 .

(2.7)

They are available with full derivation in Chapter 3 of [42] with aircraft model properties

available in the appendix of [42]. Analogous equations are available in Chapter 5 of [43].

These differential equations contain aerodynamic forces acting on the UAS in the wind

frame, {Xw ,Yw, Zw}, gravity force in the wind frame, {gw
x , gw

y , gw
z }, and two roll rates in the

wind frame, qw, rw as well as the constant physical inertia matrix of the UAS, Ib, and the

aerodynamic torques on the UAS, {Lb, Mb, Nb}.

Since the engine cannot instantaneously switch from its current throttle setting to a
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different commanded throttle setting, the equation of motion governing the rate at which

the engine speed can change is

.
n̄ = −

1
τn̄

n̄ +
1
τn̄

n̄cmd (2.8)

with n̄ representing the engine revolutions per second, n̄cmd representing the commanded

engine revolutions per second, and τn̄ as the engine constant. The total thrust force is

calculated as

FT = ρn̄2D4CFT (J) (2.9)

where D is the propeller diameter and CFT (J) is the coefficient of thrust as a function of

advance ratio J [42].

2.2.1 Rewriting UAS Equations of Motion in Terms of System States

The aerodynamic force wind frame components, gravity force wind frame components,

aerodynamic torque components, roll rate wind frame components are defined in terms of

the states of the system/control inputs in (2.10)-(2.20).

The aerodynamic force components are defined as

Xw =
ρV2

T

2
S (CX1 +CXαα+CXα2α

2 +CXβ2β
2) (2.10)

Yw =
ρV2

T

2
S CY1β (2.11)

Zw =
ρV2

T

2
S (CZ1 +CZαα). (2.12)

The gravity force components are defined as

gw
x = g(−sinθ cosα cosβ+ cosθ sinφ sinβ+ cosθ cosφ sinα cosβ) (2.13)
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gw
y = g(cosα sinβ sinθ+ cosβ cosθ sinφ− sinα sinβ cosθ cosφ) (2.14)

gw
z = g(sinα sinθ+ cosα cosθ cosφ). (2.15)

The aerodynamic torque components are defined as

Lb =
ρV2

T

2
S b

(
CLaδa +CLββ+CLp̃

b p
2VT

+CLr̃
br

2VT

)
(2.16)

Mb =
ρV2

T

2
S c̄

(
CM1 +CMeδe +CMαα+CMq̃

c̄ q
2VT

)
(2.17)

Nb =
ρV2

T

2
S b(CNδrδr +CNr̃

br
2Vt

+CNββ). (2.18)

The roll rate wind frame components are defined as

qw = q cosβ− p sinβ cosα− r sinα sinβ (2.19)

rw = −p sinα− r cosα. (2.20)

2.3 Aircraft Equation of Motion Linearization and Trim

State Calculation

For a UAS to achieve trimmed flight, it must maintain control inputs at or near values

that maintain this trim or equilibrium state. To accomplish this, the equations of motions

must be linearized about a trim state vector xtrim and control vector utrim using a first-order

Taylor Series Expansion.
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2.3.1 Linearization about a Trim Condition

The desired form of the linearized equations of motion is

.
x̄ = Ax̄ + Bū (2.21)

where x̄ = x−xtrim, and ū = u−utrim are the deviations from the trim conditions, trim state

vector, and trim control vector, respectively. A =
∂ f
∂x |xtrim,utrim is the state transition Jacobian

and B =
∂ f
∂u |xtrim,utrim is the control Jacobian, both linearized about the trim state vector and

the trim control vector [43].

The symbolic Jacobian for the state transition matrix is

A =



0 0 0 ∂
.
xN
∂VT

∂
.
xN
∂α

∂
.
xN
∂β

∂
.
xN
∂φ

∂
.
xN
∂θ

∂
.
xN
∂ψ 0 0 0

0 0 0 ∂
.
xE
∂VT

∂
.
xE
∂α

∂
.
xE
∂β

∂
.
xE
∂φ

∂
.
xE
∂θ

∂
.
xE
∂ψ 0 0 0

0 0 0 ∂
.
h

∂VT

∂
.
h
∂α

∂
.
h
∂β

∂
.
h
∂φ

∂
.
h
∂θ 0 0 0 0

0 0 0 ∂
.

VT
∂VT

∂
.

Vt
∂α

∂
.

Vt
∂β

∂
.

VT
∂φ

∂
.

Vt
∂θ 0 0 0 0

0 0 0 ∂
.
α

∂VT

∂
.
α
∂α

∂
.
α
∂β

∂
.
α
∂φ

∂
.
α
∂θ 0 ∂

.
α
∂p

∂
.
α
∂q

∂
.
α
∂r

0 0 0 ∂
.
β

∂VT

∂
.
β
∂α

∂
.
β
∂β

∂
.
β
∂φ

∂
.
β
∂θ 0 ∂

.
β
∂p 0 ∂

.
β
∂r

0 0 0 0 0 0 ∂
.
φ
∂φ

∂
.
φ
∂θ 0 ∂

.
φ
∂p

∂
.
φ
∂q

∂
.
φ
∂r

0 0 0 0 0 0 ∂
.
θ
∂φ 0 0 0 ∂

.
θ
∂q

∂
.
θ
∂r

0 0 0 0 0 0 ∂
.
ψ
∂φ

∂
.
ψ
∂θ 0 0 ∂

.
ψ
∂q

∂
.
ψ
∂r

0 0 0 ∂
.
p

∂VT
0 ∂

.
p
∂β 0 0 0 ∂

.
p
∂p

∂
.
p
∂q

∂
.
p
∂r

0 0 0 ∂
.
q

∂VT

∂
.
q
∂α 0 0 0 0 ∂

.
q
∂p

∂
.
q
∂q

∂
.
q
∂r

0 0 0 ∂
.
r

∂VT
0 ∂

.
r
∂β 0 0 0 ∂

.
r
∂p

∂
.
r
∂q

∂
.
r
∂r



. (2.22)

Traditionally, the states are divided into longitudinal and lateral-directional cate-

gories. The longitudinal states are [xN , h, VT , α, θ, q] and the lateral-directional states are

[xE , β, φ, ψ, p, r]. As seen in (2.22), many of the elements in the state transition matrix

are equal to zero. However, there are many elements that show coupling between the lon-
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gitudinal and lateral-directional states as evidenced by the non-zero partial derivatives of

longitudinal states with respect to a lateral state and vice-versa. In certain steady flight

conditions, many of these coupled partial derivatives take on values near zero, but others

do not. A specific example is shown in Chapter 3 to demonstrate this non-trivial coupling.

The symbolic Jacobian for the control matrix is

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∂
.
VT
∂FT

0 0 0 ∂
.
α

∂FT

0 0 0 ∂
.
β

∂FT

0 0 0 0

0 0 0 0

0 0 0 0
∂
.
p

∂δa
0 ∂

.
p

∂δr
0

0 ∂
.
q

∂δe
0 0

∂
.
r

∂δa
0 ∂

.
r

∂δr
0



. (2.23)

Traditionally, the controls are divided into longitudinal and lateral-directional cate-

gories as well. The longitudinal controls are [δe, FT ] and the lateral-directional controls

are [δa, δr]. As seen in (2.23), most of the elements in the control matrix are equal to

zero. The only coupling between the longitudinal and lateral-directional states is the partial

derivative of the sideslip time rate of change with respect to thrust.
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2.3.2 Calculating a Trim Condition

Trim conditions can be calculated by solving

[ẋE ḣ V̇T α̇ β̇ φ̇ θ̇ ψ̇ ṗ q̇ ṙ]T = f (xtrim,utrim) (2.24)

for xtrim and utrim where the components of left hand side are all equal to zero with the

exception of ẋE (for turning flight) and ḣ.

The value for ẋE is calculated as

ẋEtrim =
VT

RTurn
cosγ (2.25)

and the value for ḣ is calculated as

ḣtrim = VT sinγ (2.26)

respectively, where γ is the flight path angle, RTurn is the turn radius, and VT is the desired

airspeed.

The set of nonlinear equations in 2.24 can be solved using one of several algorithms,

including Levenberg-Marquardt, Gauss-Newton, and Steepest Descent [44]. The relation-

ship between pitch angle, flight path angle, and angle of attack (θ = γ+α) can be used when

setting the initial state vector. In the case of constant altitude flight, the pitch angle is equal

to the angle of attack (θ = α), eliminating one of the unknowns [43].

2.4 UAS Sensors

Small UAS have the capability to carry a variety of onboard sensors for aircraft pose mea-

surements. These are the pre-GPS legacy sensors and the modern odometry/localization

sensors. The first category includes both the IMU [45] and the ADS [46], [47], [48]. The
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second category includes computer vision sensors that can be processed with a variety of

techniques [49], [36], [50], [35], a laser scanner [37], [38], [39], a GPS receiver [51], [47],

[52], and a proposed LTE transceiver using the OTDOA technique [53].

2.4.1 Inertial Measurement Unit (IMU)

The IMU for a small UAS generally consists of 3-axis gyroscopes, 3-axis accelerometers,

and a 3-axis magnetometer and is installed at the center of gravity of the aircraft aligned

with the body frame. In this case where the sensor frame and body frame are aligned and

the angles between the body and inertial frames are small, such as in steady level flight,

the noise on each individual accelerometer and gyroscope signal is assumed to be white

and Gaussian. However, this is generally not the case for magnetometers, which are biased

by the effect of buildings on local magnetic fields. The individual sensors output raw data

that is filtered to provide measurements of the aircraft’s angular rates and accelerations. An

attitude and heading reference system (AHRS) uses filters such as an Extended Kalman

Filter [51], a Complementary Filter [54], [55], and an Unscented Kalman Filter [56] to

generate roll, pitch, and heading measurements using angular rates, acceleration (gravity

vector), and magnetometer outputs. The gravity vector can only be estimated accurately

under the assumption that accelerations due to maneuvers are close to zero, as is the case

in trimmed flight [57].

Typical filtered sensor state angular rate 1σ noise values are generally in the 0.5 de-

grees/second range [58], [47], [59]. Filtered Euler angle 1σ noise values are generally

similar for pitch and roll in the range of 0.6− 3 degrees [60], [54], [56]. However, yaw is

generally measured using an inertial navigation system (INS), which uses GPS measure-

ments to correct the IMU yaw to roughly 8 degree 1σ noise value [45]. This noise value is

used for the yaw measurement throughout this research.
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2.4.2 Air Data System (ADS)

In addition to the IMU, another legacy aircraft sensor is the ADS. Most ADS include, as

a minimum, a pitot tube that uses static and dynamic (stagnation) ports to generate static

pressure which in turn can be used to generate airspeed measurements. Airspeed measure-

ments are almost always available on fixed-wing UAS [61]. A 5-hole pitot probe is capable

of providing airspeed, angle of attack, and angle of sideslip [48]. There are also customized

ADS solutions that can augment an autopilot to provide angle of attack and angle of sideslip

measurements [62]. Airspeed 1σ accuracy is between 1− 1.5 meters/second [48], [46].

Angle of attack and angle of sideslip 1σ accuracies, using a differential pressure probe,

are both roughly 1 degree. Since the static port measures ambient pressure, the ADS can

also produce altitude measurements. Typical 1σ altitude accuracy ranges from 1.5−3 me-

ters [63], [46].

2.4.3 Computer Vision-Based Sensors

An area of active research in UAS navigation is the use of computer vision-based sensors

to provide navigation information for position, airspeed, and attitude. These sensors use

a variety of techniques including optical flow [33], [64], [36], feature detection [50], and

vanishing points [65] to provide measurements to the filter. One of the largest advantages

of using this type of sensor is that it does not depend on any type of electromagnetic signal

to work properly, making it a complementary sensor to the GPS.

2.4.3.1 Optical Flow

Optical flow is defined in [66] as the distribution of apparent velocities of brightness pattern

movements in an image. It is generally calculated by comparing pixels in sequential images

to determine the local velocity of the camera that is capturing the images. This concept can

be applied to a UAS operating in an urban canyon by attaching a camera to the vehicle and
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calculating the apparent local velocities of adjacent buildings or the street below. Accuracy

is typically measured in pixels per frame, with a scaling process necessary to convert to

meters per second.

An ideal optical flow application to the urban environment is the ‘centering response’,

with biological inspiration from bees. Reference [67] explains that bees are able to hold

this centerline trajectory by equalizing the apparent motion images on their retinas. This

phenomenon has been demonstrated in biological tests and on UAS operating in urban

canyons, in simulation [33], [68] and in experiments [69], [70]. In addition to maintaining

a centerline trajectory, further experiments have shown that vehicles equipped with side

facing optical flow sensors and a pair of front facing stereo sensors for obstacle detection

can also navigate 90◦ turns in a simulated urban canyon [36].

Standardized accuracy metrics have been established to compare performance of the

different optical flow calculation methods. The two main metrics throughout the literature

are 1) average angular error and 2) endpoint error. Average angular error is described

in [71], [72], [73], [74] and Middlebury Dataset [75]. It is measured as the angle between

the true velocity vector ~vc and the estimated velocity vector ~ve in the image coordinate

plane using

ψE = cos−1(vc • ve). (2.27)

Endpoint error [73] defined in image plane coordinates as

Ex = |uc−ue|

Ey = |vc− ve|

(2.28)

can also be used to quantify the absolute magnitude of differences of components.

The Middlebury Dataset is a vast resource providing optical flow accuracy characteriza-

tion information for both metrics over 91 different methods using well-known standardized

image sequences such as Urban, Translating Tree, and Yosemite [75]. More detailed optical
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flow information is found in Appendix A.

2.4.3.2 Line Detection and Vanishing Points

Another computer vision-based technique for UAS navigation uses line detection and van-

ishing points to generate roll and pitch measurements. A brief overview of the process to

measure attitude angles from vanishing points is discussed here with further details avail-

able in [65]. The first step in the algorithm is to detect parallel lines in a two-dimensional

image. These lines may represent vertical edges of buildings parallel to the direction of

gravity or horizontal edges of buildings at the street level, orthogonal to the direction of

gravity. Once the lines have been detected, the second step in the algorithm is to follow

the lines to points of intersection as shown in Figure 2.1. These points of intersection are

known as vanishing points, categorized as either vertical or horizontal based on the direc-

tion of the parallel lines.

Figure 2.1: Example of parallel lines and vanishing points using an urban scene courtesy
of Hwangbo and Kanade [65].

The third step in the algorithm is to use the vanishing points to calculate roll and pitch.

A single vertical vanishing point v∗v with coordinates (vx, vy) can be used to calculate both

angles
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φ = atan2(vx, vy) (2.29)

and

θ = atan
1√

v2
x + v2

y

(2.30)

where the coordinates are generated from the projection of the world z-axis onto the two-

dimensional camera plane.

Horizontal plane vanishing point coordinates, v∗h, are calculated as

v∗h =

[
cosφ sinψ− sinφ sinθ cosψ

cosθ cosψ
,
−sinφ sinψ− cosφ sinθ cosψ

cosθ cosψ

]T

(2.31)

using the projection of the direction of travel axis onto the unit vector in the direction of

each horizontal vanishing point. These points can also be used for the calculation of roll

and pitch if at least two horizontal vanishing points are present in an image as equation is

not decoupled in the roll and pitch directions. Once all vanishing points are calculated from

an image, they can be used in a Kalman Filter to reset the error in the IMU-based attitude

angle estimates.

2.4.3.3 Feature Detection

In [50], a scale-invariant feature transform technique is used to match features from one

image to the next in order to accurately correct position, airspeed, and attitude angles. Use

of feature matching for state estimation has several steps. The first step is to analyze the

initial image, capturing each scale-invariant descriptor (or feature). When the next image

is received, the Euclidean distance is calculated between a descriptor in the first image and

its nearest neighbors in the next image. Once the images are matched, the homography (or

relationship) between the two images is calculated using a scale factor defined as the ratio
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of the camera coordinate out of the bottom of the aircraft before and after transformation.

Reference [50] gives details on how to use the homography matrix to solve for the rotation

matrix and the translation vector. This rotation matrix and translation vector can then be

used to correct IMU and altimeter measurements.

2.4.3.4 Urban Cues

In the urban environment, images from computer vision systems can be used to detect

cues such as roads, lane markings, crosswalks, and stop lines. While primarily used for

ground vehicle applications, UAS applications are possible when operating at sufficiently

low altitudes to detect and isolate these cues in successive images. Many works have stud-

ied this problem including [76], [77], [78]. Paetzhold and Franke [76] focused on both

unknown and known road situations to locate these cues. In the unknown situations they

made assumptions about the characteristics of the cues in order to extract them from im-

ages as polygons. These assumptions include orientation of cues with respect to each other

and the vehicle trajectory as well as constant brightness and linear shape among others.

With a map of cues, frame to frame feature matching was used to generate cue-based state

measurements. Stereo vision was then used to separate vertical and horizontal shapes and

motion as well as identify image clutter. He et al. [77] used an intensity (grayscale) image

to detect the road boundaries, including curvature, and then used the full color image to find

the road area within the boundaries. Newman et al. [78] created a navigation system to both

generate three-dimensional maps and pose estimates using vision and lasers. Their system

analyzed the generated maps to provide labels within the maps to classify the different parts

of the image as walls, foliage, grass, etc.

2.4.4 GPS Receiver

As previously discussed, GPS navigation suffers performance degradation in the urban en-

vironment with availability rates range from 27% to 50% [18], [10], [19], [29]. When
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GPS measurements are available some of the specific factors that contribute to the error in-

clude the atmosphere, satellite geometry, satellite clock drift, multipath, and measurement

noise [47]. These error sources generally consist of a bias error term and random error

that can be combined using a root sum square to calculate total error from each source.

Nominal total error values for each source are shown in Table 2.1, with the root sum square

total user equivalent range error (UERE) in the last row. Filtered UERE values range from

4 meters [79] to of 5.1 meters [43]

Table 2.1: UERE typical error standard deviation (meters) courtesy of u-blox.com [79].

Source Total
Ephemeris Data 1.5 meters
Satellite Clock 1.5 meters

Ionosphere 3.0 meters
Troposphere monitoring 0.7 meters

Multipath 1.0 meters
Receiver measurement 0.5 meters
Filtered UERE (RMS) 4.0 meters

The dilution of precision (DOP), the second component of the GPS error, is a measure

of the effect of satellite geometry on the accuracy of the position calculation [80]. Nominal

HDOP and vertical dilution of precision (VDOP) are 1.3 and 1.8, respectively [43]. Using

UERE and DOP, the position error 1σ RMSE is calculated for the horizontal position using

E1σn−e = HDOP∗UERE (2.32)

and the vertical position using

E1σh = VDOP∗UERE. (2.33)

From this model, GPS 1σ position error in both horizontal dimensions is roughly 3.67

meters and roughly 7.2 meters in the vertical direction. The horizontal values are similar

to the 3 meter error values used in [46] and [58]. The horizontal values are much lower
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than those published from urban canyon experiments that ranged from 30 meters to almost

a kilometer [18], [19].

If time-varying error is assumed, the standard deviation is calculated as

νk+1 = exp{−kGPS ∗Ts}νk +ηGPS k (2.34)

using the Gauss-Markov error model [81], consisting of both the slowly varying zero-mean

bias and a random noise component where vk is the position error standard deviation at time

step k, initialized using 2.32 or 2.33. The remaining terms include −kGPS as the process

time constant, Ts as the GPS measurement sampling time, and ηGPS as the zero-mean

Gaussian random noise component. Table 2.2 shows typical values for these parameters.

Table 2.2: GPS measurement error parameter values [43].

Direction 1/kGPS (seconds) Ts (seconds) ηGPS (meters)
North 1100 1 0.21
East 1100 1 0.21

Down 1100 1 0.40

2.4.5 LTE

As shown in Figure 2.2, there are several different geolocation techniques currently avail-

able to pinpoint the location of a smart phone with varying levels of quality of service. They

fall into cellular ID (CID), time difference of arrival (TDOA), and assisted-Global naviga-

tion Satellite System (A-GNSS) categories. The main characteristic of the CID techniques

is that they use the location of the current Base Transceiver Station (cellular network tower)

as an estimate of the location of the receiver. The TDOA techniques use the time difference

between reference signals sent from different multiple towers to the device to determine its

location. The A-GNSS techniques use satellite signals to determine the device location, but

are hampered by longer time-to-first-fix and shorter battery life for the phone as compared

34



to the other techniques [82]. Enhanced CID, OTDOA, and A-GNSS were first defined in

the 3GPP TS 36.355 Release 9 as the LTE Positioning Protocol techniques [83].

Figure 2.2: Smart phone geolocation techniques courtesy of Ericsson [84].

Geolocation within an LTE network is a multilayered three-step process involving sev-

eral different nodes in the network. The first step provides information and assistance to

complete the location estimation. The second step is signal measurement and reporting

of results. The third is actual location estimation using the measurements [85]. More in-

formation on how geolocation data is routed through the cellular network can be found

in [86], [87] and [88].

2.4.5.1 LTE Standardized Geolocation Techniques

Enhanced Cell ID The enhanced-CID method is a rapid network-based geolocating tech-

nique that requires the device to send information, as listed below, to allow the network to

calculate an estimated location of the phone [89] based on its current cell.

• Cell Tower (known as eNodeB or eNB in LTE network) and Serving CID

• Received Signal Strength

• Neighboring cell IDs and signal strengths
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• Timing advance

• Angle of Arrival

Enhanced CID is not a primary geolocation method when a high level of accuracy is

needed. However, this technique can quickly provide an accuracy check for the OTDOA

and A-GNSS methods by identifying the device’s current serving tower.

Assisted-Global Navigation Satellite Systems The A-GNSS geolocation method is a

device-assisted technique that is the primary and most accurate method, in general, used in

LTE networks [90]. Here, the device uses network-based assistance data to speed up the

satellite signal acquisition process from either the GPS or GLONASS constellations or a

combination of both. The assistance data comes from stationary network GPS receivers

and is passed to a location server and then to the device. Examples of the two different

assistance data types are below [89].

• Position calculation assisting data can include reference time, reference position,

satellite ephemeris, and clock corrections.

• Measurement-assisting data can include reference time, visible satellite list, satellite

signal Doppler, code phase, and Doppler and code phase search windows.

Once the first fix has been achieved, either the device or network can calculate the esti-

mated location with GPS-level accuracy. This technique allows for more accurate location

estimates and drains the battery more slowly than if GPS is used by itself. However, its

performance still suffers from the urban environment [82].

Observed Time Difference of Arrival The OTDOA method, shown in Figure 2.3, uses

multilateration (hyperbolic lateration) to geolocate the device. This is similar to the tech-

nique used by GPS receivers but with shorter baselines (thus less accuracy). Either the
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device or the network can execute the geolocation calculations, but in order for the device-

based mode to be accurate, the following conditions must be met.

• The device must have a priori knowledge of the two-dimensional coordinates of all

cell towers in its operating area.

• All cell towers in the operating area must be synchronized with each other, but do

not need to be synchronized with the device.

Figure 2.3: OTDOA geolocation technique.

The process is initiated when a position reference signal is sent from hearable cell

towers nh to the device, where nh ≥ 3. Once the device timestamps the arrival times of

the nh signals, the difference between each pair of arrival times (t j − ti) is calculated. It is

converted to a difference in distance traveled

d j−di = c∗ (t j− ti) (2.35)

by multiplying the time difference by the speed of light, c.
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These constant differences form a hyperbola (h j−i) between the two towers that contain

the estimated position of the device. To narrow down the device location to a maximum of

two points along h j−i, a second hyperbola is drawn (hi−k) [89]. If the two hyperbolas only

intersect in one location, then the estimated device location is that point of intersection.

However, as Figure 2.3 shows for three hearable towers, sometimes h j−i and hi−k intersect

in two points, so a third hyperbola, h j−k is needed to find the unique location of the device.

For three hearable towers, the geolocation process requires solving the following three

non-linear equations simultaneously

d2−d1 =
√

(x2− x)2 + (y2− y)2−
√

(x1− x)2 + (y1− y)2

d3−d1 =
√

(x3− x)2 + (y3− y)2−
√

(x1− x)2 + (y1− y)2

d3−d2 =
√

(x3− x)2 + (y3− y)2−
√

(x2− x)2 + (y2− y)2.

(2.36)

Normally numerical methods are used to solve for the location of the receiver (x, y).

These include algorithms such as Levenberg-Marquardt (LM), Gauss-Newton, and Steep-

est Descent, all discussed in [44]. Another iterative algorithm that specifically addresses

a moving source is the Constrained Weighted Least Squares algorithm [91]. While this

method is able to accurately geolocate a UAS using only three towers, as a numerical

solver, it may not be able to reach a solution as quickly as other methods.

When nh ≥ 4, the system of equations can be linearized and solved using matrix opera-

tions for most tower layouts. The two-dimensional geolocation equations for this technique

are

Amh x + Bmhy + Dmh = 0 (2.37)

Amh =
2xmh

dmh −d1
−

2x2

d2−d1
(2.38)

Bmh =
2ymh

dmh −d1
−

2y2

d2−d1
(2.39)
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Dmh = dmh −d1− (d2−d1)−
x2

mh
+ y2

mh

dmh −d1
−

x2
2 + y2

2

d2−d1
(2.40)

where mh = {3, ...,nh}. {x, y} are calculated using

 x

y

 =


A3 B3

...
...

Amh Bmh



†

−


D3

...

Dmh

 (2.41)

where a pseudo-inverse is used since the matrix may not always be square. The complete

three-dimensional derivation is available in [92]. Reference [93] shows that in situations

where nh > 4, the accuracy of the TDOA method increases as the number of towers (and

therefore number of equations) increases.

A similar technique in the TDOA family is Uplink-Time Difference of Arrival (UT-

DOA), set to be included in the 3GPP Release 11. It will not be discussed further in this

research due its limited use. UTDOA is essentially the fully network-based version of

OTDOA currently used for the E-911 mission [84], [93].

2.4.5.2 Current OTDOA Accuracy

OTDOA accuracy data is difficult to collect due to the sensitive nature of different carrier

network architectures and tower layouts. As a result most available data is simulation-

based. Table 2.3 [94], [95] shows early results of two simulation studies that vary substan-

tially. This disparity shows the difficulty in determining the true accuracy of the OTDOA

geolocation technique.

Table 2.3: OTDOA two-dimensional measurement accuracy statistics.

Sensor Neuland et al. [94] Tao [95]
Mean, µ (meters) 16.3 45.54

Standard Deviation, σ (meters) 31.4 2.65

More accurate LTE geolocation data was generated in [53] as a function of the number
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of hearable towers. Although this data has yet to be reproduced, in this research it will be

assumed that the LTE network may or will eventually have 1σ accuracy ranging from 3

meters with 20 hearable towers to 7.5 meters with 7 hearable towers. More LTE accuracy

data is shown in Appendix E.4.

2.4.6 LiDAR

LiDAR is another navigation sensor that could possibly be used on small UAS in the urban

environment. LiDAR sensors have been shown to increase urban canyon navigation accu-

racy by over an order of magnitude over the traditional GPS/IMU/odometry solution [96].

LiDAR has also been shown to have sub-meter user position accuracy in urban environ-

ments when tightly coupled with GPS/INS [38]. Since it can operate in both bad weather

and GPS degraded/denied conditions it is a good candidate to consider for urban naviga-

tion. However, LiDAR systems can cost at least 2K dollars [97] and have a typical range of

only 30 meters [98], making them very expensive for a low-cost small UAS. They also are

only useful when flying trajectories that are within sensor range of buildings to be useful.

For the remainder of this dissertation each sensor will be referenced as follows: inertial

measurement unit as IMU, air data system as ADS, LTE device/transceiver as LTE, GPS

receiver as GPS, computer vision using feature detection as VISION/IMU and computer

vision optical flow as VISION-OF.

2.5 Bayesian State Estimation Filters

One application of the state estimation filter is to provide an estimate of the state of a system

that can be used in feedback control of real-world systems. Bayesian state estimation filters

accomplish this task through use of a prediction-correction structure to calculate both a state

estimate of the system and an error covariance matrix. Kalman Filter variants generally

assume a Gaussian distribution of the state with a known initial mean and covariance, while
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the particle filter makes no assumptions about the distribution of the state and allows the

user to quantify its results as necessary.

The general form of the n dimensional dynamics of a system is

xk = f (xk−1, uk−1, wk−1) (2.42)

where xk is the state of the system at a given time-step, uk is the control at a given time,

and the unknown process (plant) noise is wk ∼N (0,Qk). The general form of the discrete

measurement model is

zk = h(xk, uk, vk) (2.43)

with measurement noise vk ∼ (0,Rk), where Rk, the measurement noise covariance matrix,

is empirically determined.

2.5.1 Kalman Filter Derivation

To understand how the Kalman Filter [99], [100] generates a state estimate vector and

accompanying covariance, the filter equations are derived using an adaptation of [101].

The first step is to write the both (2.42) and (2.43) as linear equations

xk = Ak−1xk−1 + Bk−1uk−1 + Lk−1wk−1 (2.44)

zk = Hkxk + Mkvk (2.45)

with the eventual goal of finding an expression for the state estimate vector, x̂k, that mini-

mizes the error, ek = xk− x̂k, between the state vector and its estimate as well as the covari-

ance Pk = E[ekeT
k ] of this estimate.
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2.5.1.1 Prediction

At each time-step the dynamics of the system are recursively propagated forward to gener-

ate the predicted (a priori) state estimate, x̂−k

x̂−k = Ak−1xk−1 + Bk−1uk−1 (2.46)

and the predicted covariance matrix, P−k .

P−k = Ak−1Pk−1AT
k−1 + Qk−1 (2.47)

where Qk = E[wkwT
k ].

Although (2.46) is the linear version of (2.42), with the noise term removed, (2.47) does

not have an equivalent expression from the dynamics and therefore must be derived. From

(2.44) and (2.46) the predicted error vector is

e−k =xk−x̂−k

=Ak−1xk−1 + Bk−1uk−1 + Lk−1wk−1−Ak−1x̂k−1 + Bk−1uk−1

=Ak−1(xk−1−x̂−k−1) + Lk−1wk−1

=Ak−1e−k−1 + Lk−1wk−1.

The predicted covariance as the expectation of the square of the predicted error is rewrit-

ten as

P−k =E[e−k e−
T

k ]

=E[(Ak−1e−k−1 + Lk−1wk−1)(Ak−1e−k−1 + Lk−1wk−1)T ]

=E[Ak−1e−k−1e−
T

k−1AT
k−1 + 2Lk−1wk−1e−

T

k−1AT
k−1 + Lk−1wk−1wT

k−1LT
k−1]

=Ak−1E[e−k−1e−
T

k−1]AT
k−1 + 2Lk−1E[wk−1e−

T

k−1] + Lk−1E[wk−1wT
k−1]LT

k−1.
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Assuming that process noise is uncorrelated with state error allows E[wke−T

k ] = 0. Mak-

ing the necessary substitutions into the above equation, P−k simplifies to

P−k =Ak−1P−k−1AT
k−1 + Lk−1Qk−1LT

k−1. (2.48)

2.5.1.2 Correction

The correction step of the Kalman Filter uses available measurements to refine both the

predicted state estimate and covariance matrix, generating a corrected (a posteriori) state

estimate, x̂k, and a corrected covariance matrix, Pk. The corrected state estimate is calcu-

lated using

x̂k = x̂−k + Kk(zk−ẑ−k ) (2.49)

where Kk is the Kalman gain, zk is available measurement vector, and ẑ−k = Hkx̂−k is the

prediction of the measurement.

The corrected covariance matrix, defined as Pk = E[ekeT
k ], is derived by finding an

expression for ek and then calculating the expectation value. First, (2.45) is substituted into

x̂k =x̂−k + Kk(Hkxk + Mkvk−Hkx̂−k )

=x̂−k + KkHkxk + KkMkvk−KkHkx̂−k

=(I−KkHk)x̂−k + KkHkxk + KkMkvk

and simplified. Using the corrected state estimate error equation, ek = xk−x̂k, and the above
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result, an expression for ek is written as

ek =xk−x̂k

=xk−(I−KkHk)x̂−k−KkHkxk−KkMkvk

=(I−KkHk)xk−(I−KkHk)x̂−k−KkMkvk

=(I−KkHk)(xk−x̂−k )−KkMkvk

=(I−KkHk)e−k−KkMkvk.

The corrected covariance matrix is written using the above result

Pk =E[((I−KkHk)e−k−KkMkvk)((I−KkHk)e−k−KkMkvk)T ]

=E[(I−KkHk)e−k e−T
k (I−KkHk)T−2(I−KkHk)e−k vT

k MT
k KT

k +KkMkvkvT
k MT

k KT
k ]

=(I−KkHk)E[e−k e−T
k ](I−KkHk)T−2(I−KkHk)E[e−k vT

k ]MT
k KT

k + KkMkE[vkvT
k ]MT

k KT
k .

Recalling P−k = E[e−k e−T
k ], letting Rk = E[vkvT

k ] and assuming there is no correlation

between vkand e−k , the above expression can be simplified to

Pk = (I−KkHk)P−k (I−KkHk)T + KkMkRkMT
k KT

k (2.50)

the Joseph Formula.
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2.5.1.3 Calculating the Optimal Kalman Gain

The optimal Kalman gain matrix is the solution of an optimization problem minimizing the

trace of the corrected covariance matrix, Pk.

tr[Pk] =tr[Q̃ΛQ̃−1]

=tr[ΛQQ−1]

=tr[Λ]

=

n∑
i=1

λPk,i.

Minimizing the trace of the matrix is equivalent to minimizing the sum of the eigenval-

ues of the matrix, which is in turn equivalent to minimizing the uncertainty of the corrected

state estimate as shown below, where Q̃ is the matrix formed by the columnwise eigenvec-

tors of Pk, Λ is the diagonal matrix of eigenvalues, and λi is the ith eigenvalue of Pk.

The formal problem is now posed as

Minimize Jk(Kk) =tr[Pk]

=tr[(I−KkHk)P−k (I−KkHk)T + KkMkRkMT
k KT

k ]

=tr[P−k−KkHkP−k−P−k HT
k KT

k + KkHkP−k HT
k KT

k + KkMkRkMT
k KT

k ]

=tr[P−k−KkHkP−k−P−k HT
k KT

k + KkWkKT
k ]

where

Wk = HP−k HT
k + MkRkMT

k .

To find the minimum value of Jk(Kk), its derivative with respect to Kk is calculated as

∂Jk(Kk)
Kk

= 2(−P−k HT
k + KkWk) = 0
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and set equal to the zero matrix. Solving for Kk yields the optimal gain

Kk =P−k HT
k W−1

k .

Right multiplying this expression by WkKT
k gives

KkWkKT
k =P−k HT

k W−1
k WkKT

k

=P−k HT
k KT

k .

Substituting the above result into the expanded version of (2.50) gives

Pk =P−k−KkHkP−k−P−k HT
k KT

k + P−k HT
k KT

k

=P−k−KkHkP−k

=(I−KkHk)P−k .

When using the optimal Kalman gain, the corrected covariance becomes

Pk = (I−KkHk)P−k (2.51)

completing the derivation.

2.5.2 Extended Kalman Filter

When (2.42) and/or (2.43) are nonlinear functions, the posterior distribution loses its Gaus-

sian properties after the first nonlinear state propagation/measurement generation. The

Extended Kalman Filter allows the nonlinear dynamics to be propagated and provides a

predicated covariance, corrected estimated state vector, and corrected covariance approxi-

mation by linearizing (2.42) and/or (2.43) at each instance in time around the most recent

estimated state vector [100]. This approximates the posterior Gaussian distribution, while
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allowing the filter to generate corrected values using the Kalman Filter equations. The

Jacobians Ak, Lk, Hk, and Mk are calculated as

Ak =
∂ f (xk,uk,wk)

∂xk
|x̂k,uk (2.52)

Lk =
∂ f (xk,uk,wk)

∂wk
|x̂k,uk (2.53)

Hk =
∂h(xk,vk)
∂xk

|x̂k (2.54)

Mk =
∂h(x(t),vk)

∂vk
|x̂k (2.55)

A disadvantage of the Extended Kalman Filter is that (2.52) - (2.55) must be recalcu-

lated at every time step since they are linearized about the previous estimated state vector.

This causes the predicted covariance matrix, Kalman gain, and corrected covariance matrix

to also be recalculated at each time step, whereas these can be calculated offline for the

Kalman Filter (KF). It may also result in an unstable filter if the local linear approximation

is not valid. Since the Extended Kalman Filter (EKF) is not optimal, the calculated covari-

ances are not the true values, but are instead approximations [102]. These disadvantages

have led to the development of the Unscented Kalman Filter (UKF) as a more computa-

tionally efficient and stable estimator for non-linear systems, generating state estimates and

covariances without the need to calculate any Jacobians [103]. However, this research will

use the Extended Kalman Filter due to its more straightforward implementation as the UAS

will fly in accordance with linearized system dynamics.

2.5.3 Ensemble Kalman Filter

In contrast to the Extended Kalman Filter, which uses a recursive calculation of the esti-

mated state vector mean and covariance to represent the posterior belief distribution of each

unobservable state, particle filters use an ensemble of Np samples or particles to represent
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the distribution [104], where each particle is drawn using

xi
k ∼ p(xk|z1:k,u1:k). (2.56)

In this type of filter only the ensemble is calculated recursively with the corrected mean

and covariance being calculated empirically at each time-step if desired.

The Ensemble Kalman Filter (EnKF), introduced in [105], is a variant of the particle

filter in which all distributions are assumed to be Gaussian. The ensemble is formed as

Xk = {x1
k , x2

k , ...x
Np
k } with increasing accuracy as Np→∞. Similar to the Extended Kalman

Filter, the Ensemble Kalman Filter includes both prediction and correction steps, generally

known as the forecast step and the analysis step.

The EnKF filtering process [106] is initialized by drawing Np particles from N (x0, P0)

to form the initial ensemble. Each of these particles is propagated during the forecast step

xi−
k = f (xi−

k−1, uk−1) + wi
k−1 (2.57)

to form Xi−
k where wi

k ∼N (0,Qk).

The forecasted estimated state vector is created according to

x̂−k =
1

Np

Np∑
i=1

xi−
k (2.58)

and the state error vector ensemble is calculated as

Ex
−
k = [x1−

k −x̂−k . . .x
N−
k −x̂−k ] (2.59)

and the forecasted estimated state vector covariance is calculated as

P−k =
Ex
−
k Ex

−T

k

Np−1
(2.60)
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as the unbiased mean square of the error.

The analysis step of the Ensemble Kalman Filter is very similar to the correction step

of the Extended Kalman Filter, with a change in the calculation of the innovation vector.

Since there are Np particles in the ensemble, the innovation vector becomes an innovation

ensemble. It is formed by first replicating the available measurement vector zk to match the

number of particles and adding zero mean Gaussian noise vi
k ∼N (0,Rk) to each measure-

ment vector creating the measurement ensemble Zk

Zk = [zk+v1
k . . .zk+vN

k ] (2.61)

The predicted measurement ensemble is formed using

Ẑk = HkX̂i−
k (2.62)

with the innovation ensemble Nk calculated as

Zk−Ẑk. (2.63)

The Ensemble Kalman Filter then directly calculates the Kalman Gain

Kk = P−k HT
k (HkP−k HT

k + Rk)−1. (2.64)

The elements of the corrected estimated state ensemble Xi
k are calculated as

xi
k = xi−

k + KkNi
k (2.65)

with the estimated state vector mean calculated as

x̂k =
1

Np

Np∑
i=1

xi
k. (2.66)
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2.5.4 Multi-Sensor Fusion Techniques

In a system with multiple sensors measuring different states or sets of states, measurements

must be fused properly to ensure the best filter performance. One method to fuse these dis-

parate measurements is discussed and analyzed in [107]. This method converts the multiple

individual measurements into a single augmented measurement vector

zk =



z1
k

z2
k
...

zq
k


(2.67)

where q is the number of active sensors at time k.

The measurement sensitivity and measurement error covariance matrices, Hk and Rk,

are also augmented as

Hk =



H1
k

H2
k

...

Hq
k


(2.68)

and

Rk =



R1
k 0 · · · 0

0 R2
k · · · 0

... 0 . . . ...

0 0 · · · Rq
k


(2.69)

respectively.

The measurement sensitivity matrix Hk is sized nz × n, where nz is the total number

of available measurements at time k and n is the the total number of states in the system.

The measurement covariance matrix Rk is sized nz × nz. The number of rows will vary

over time if using more than one sensor, assuming sensors have no delay or the lag is not
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compensated. Since this method accounts for all measurements at a time step, it gives the

most information to the state estimation filter. With all measurements the state estimation

filter should yield the most realistic estimates, but do so at an increasing computational cost

as the number of sensors increases.

2.5.5 Delayed Measurement Compensation

A common technique to properly account for delayed measurements is known as state aug-

mentation or stochastic cloning [108], [109]. For a measurement with a known delay of

m time steps that becomes available at time step k, the state augmentation process keeps

a copy of the propagated UAS plant dynamics state vector (in simulation) and estimated

state vector at the conclusion of the correction step at time step k−m and appends it to the

bottom of the state estimate vector, while also expanding the covariance matrix, state tran-

sition matrix, process noise matrix, and measurement sensitivity matrix. The augmented

estimated state vector ˘̂x is formed as

˘̂xk−m =

x̂k−m

x̂k−m

 . (2.70)

In order to properly account for the effect of the augmented states on the covariance

matrix, it is augmented and becomes P̆

P̆k−m =

Pk−m Pk−m

Pk−m Pk−m

 (2.71)

while the state transition matrix is augmented as Ă

Ăk−m =

Ak−m 0

0 I

 (2.72)
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so that the evolving states propagate according to the dynamics of the system while the

augmented states are not affected by the prediction step. Since the process noise covariance

matrix only affects the evolving states of the system, it is augmented to become Q̆

Q̆k−m =

Qk−m 0

0 0

 . (2.73)

The measurement sensitivity matrix H̆ is also augmented to account for the increased

size of the augmented estimated state vector

H̆k−m =

[
Hk−m 0

]
. (2.74)

The filter operates normally from time-step k −m + 1 to k − 1 using the augmented

matrices shown above. During this time, the non-evolving elements of the augmented

estimate state vector are corrected using non-delayed measurements, due to the correlation

between the evolving states and the augmented states in the covariance matrix. H̆k is used to

calculate the augmented predicted measurement vector z̆. The remainder of the correction

step is unchanged. Once the evolving estimated state vector and covariance matrix have

been corrected, the augmented states and their associated covariance matrix entries are

marginalized out of the system and the process is repeated for the next measurement from

the delayed sensor.

2.5.6 Filter Consistency and Accuracy Metrics

Several metrics exist to determine the accuracy and precision of the estimates and covari-

ances generated by state estimation filters. From Bar-Shalom et al. [110], these include the

average normalized estimation error squared (ANEES), the average normalized innovation

squared (ANIS), the sample autocorrelation statistic, and the RMSE. The ANEES is a filter

consistency metric that measures the square of the state error as compared to the reported
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filter covariance. The ANIS is a second filter consistency metric that shows if the innova-

tions match the calculated innovation covariance. The final filter consistency metric is the

sample autocorrelation statistic, which determines if the innovations are white (uncorre-

lated). The RMSE is used to determine filter accuracy over time by measuring the average

absolute relative error at each time step over the complete set of Monte Carlo trials.

2.5.6.1 Average Normalized Estimation Error Squared

The normalized estimation error squared (NEES), ε, is

εk = eT
k P−1

k ek (2.75)

a squared Mahalanobis distance calculated at each time step as a measure of the accuracy

of the calculated filter error covariance matrix as compared to the state error vector. To

calculate the state error vector, the propagated UAS plant dynamics states of the system or

measured ground truth data must be known.

When the NEES value is chi-squared distributed with n degrees of freedom, the filter is

said to be consistent. Since the filter may be consistent for one Monte Carlo trial, but not

consistent for a large number of trials, the average NEES (ANEES) value is calculated as

ε̄k =
1

MC

MC∑
mc=1

(εmc
k ). (2.76)

In (2.76), MC is the number of Monte Carlo trials. The (2.76) distribution must be chi-

squared with n∗MC degrees of freedom for the filter to be consistent. If the ANEES value

exceeds the upper chi-squared distribution limit for more than 5% of the trajectory, this

indicates that the estimation error is increasing without the expected increase in estimated

covariance. This trend is known as an optimistic filter. If the ANEES value shrinks below

the lower chi squared distribution limit, the filter is over predicting the error, which is

known as a pessimistic filter. In either case, in a simulation environment, the process noise
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can be tuned to bring the ANEES value back within the chi squared bounds.

2.5.6.2 Average Normalized Innovation Squared

Similar to the NEES, the normalized innovation squared (NIS) εν is

ενk = νT
k W−1

k νk (2.77)

a squared Mahalanobis distance calculated at each time step as a measure of the accuracy

of the filter-calculated innovation covariance matrix as compared to the actual innovations,

generated using both the sensors and filter. Having an accurate innovation covariance ma-

trix ensures that the correction step in the filter weights the measurements appropriately.

Since it does not require knowledge of the propagated UAS plant dynamics states of the

system or ground truth measurements, it can be calculated in real-time using incoming

measurements and the filter.

The consistency criteria for the NIS is that it is chi-squared with nz degrees of freedom.

The number of degrees of freedom will change at each time-step for systems with sensors

that have different sampling rates so the consistency bounds will also change as the number

of available measurements changes. If a large number of Monte Carlo trials is used, the

average NIS (ANIS) value is calculated as

ε̄νk =
1

MC

MC∑
mc=1

(εmc
νk

). (2.78)

As with the ANEES, ε̄νk must be chi-squared with nz ∗MC degrees of freedom for

the filter to be consistent. If the ANIS is less than the lower acceptance region bound

or higher than the upper acceptance region bound more than 5% of the values, the filter

is inconsistent. The filter can be tuned in the real environment using process noise and

measurement noise to bring the ANIS trajectory back within the bounds.
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2.5.6.3 Sample Autocorrelation Statistic

The final test for filter consistency is the sample autocorrelation statistic, ρ̂k, j, calculated as

ρ̂(k, j)q =
1
√nzq

MC∑
mc=1

νmcT

kq

[ MC∑
mc=1

νmc
kq
νmcT

kq

]− 1
2
[ MC∑

mc=1

νmc
jq ν

mcT

jq

]− 1
2

νmc
jq (2.79)

to verify that the innovation sequences are white. This test can be done per measurement

or for the entire innovation vector per sensor. Here the statistic is calculated for the entire

innovation vector per sensor where nzq is the number of measurements for sensor q. It is

calculated using the innovations at consecutive time steps with available measurements per

sensor, meaning that the difference in time-steps k and j is generally the sampling period.

To meet the filter consistency criteria of the innovation sequences being uncorrelated,

the sample autocorrelation statistic values, where k = j, should have a mean of zero with

a variance equal to 1
MC . This requires 95% of the values to fall between −r and r where

r = 1.96√
MC

.

2.5.6.4 Root-Mean-Square Error

The RMSE is

RMS Ek =

√√√
1

MC

MC∑
mc=1

e2
k (2.80)

an n×1 vector at each time step quantifying the absolute accuracy of the estimated value for

each state [111]. It can increase or decrease based on several factors including the amount

of process noise in the system as well as the availability and accuracy of measurements.
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CHAPTER 3

Development of the UAS GNC Simulation

This chapter describes the UAS guidance, navigation, and control (GNC) simulation used

in this dissertation, shown in Figure 3.1. The systems-level simulation includes both the

GNC object-oriented class structures and the urban environment generation software. The

fixed-wing UAS model from Chapter 2 is linearized about multiple trim states to facilitate

the design of an LQR controller. A real-time guidance strategy of obstacle avoidance is

presented in Appendix G. While alone not a particularly novel research contribution, this

work was a necessary building block for all the simulation-based analysis.

Figure 3.1: UAS GNC simulation system diagram.
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3.1 Simulation Flow

The simulation shown in Figure 3.1 is comprised of guidance, control, state propagation,

sensor measurement, and state estimation blocks with an overarching urban environment

affecting sensor accuracy and availability. Each has inputs from the previous block in the

simulation as a minimum. The guidance command vector xcmd is generated by the guidance

block based on the estimated state vector x̂ of the UAS. This command vector is then passed

into the control block along with the estimated state vector to generate the control vector

u. The control vector and the UAS plant model ẋplant are passed into the state propagation

block as an input, where the model can be exact or have uncertainty in specified coefficients

and constants.

The unknown state vector x from the state propagation block is passed into the sensor

measurement block along with post-processed sensor measurement noise values to form

the measurement noise covariance matrix R. From the sensor measurement block, the

measurement vector z, the measurement sensitivity matrix H, and the measurement noise

covariance matrix are passed into the state estimation block. The exact UAS model ẋmodeled

is also passed into the state estimation block. The estimated state vector is then calculated

in the state estimation block as well as the estimated state covariance matrix P completing

the simulation loop.

3.2 Simulation Code Outline

Creating a realistic UAS GNC simulation requires a methodical system-level design with

intuitive data structures. The goal is to produce a framework that is easy to use and to

customize. Object-oriented programming practices are used to organize the data necessary

to execute the simulation and output results into structures/objects. All data classes and

subclasses are shown in italics when referenced for the remainder of the dissertation. The

five data classes defined are simulation, urban environment, UAS dynamics, sensor, and
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estimator. As shown in Figure 3.1, each of the ovals represents user-defined or simulation-

generated data, while each block represents a process or function that uses data from one

or more of these classes as inputs to produce the specified outputs. Each is color-coded to

show when each data class is called. Orange represents simulation class data, green rep-

resents urban environment class data, blue represents UAS dynamics class data, red rep-

resents sensor class data, and brown represents estimator class data. Multiple estimator

blocks are shown to highlight customization available to the user when selecting the ap-

propriate filter or filters. The urban environment structure encapsulates the entire cycle to

represent its effects on all aspects of the simulation.

Figure 3.2 summarizes the five data classes using the above color-coding along with

their second-tier subclasses. Each subclass is designated into one of three types: user-

specified initialization values (darkest colors), randomly-generated parameters (medium

colors), and data updated at each time step (light colors).

Figure 3.2: Simulation data classes with first level of subclasses.

Each class is described below along with a diagram and description of all lower-level

subclasses. Selected properties are included in the urban environment class diagram in

italics to illustrate how the properties fit into the overall class/subclass structure. Full prop-
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erty details for all subclasses including names, allowable values, dimensions, and units are

available in Appendix B.

3.2.1 Simulation Data Class

The simulation class, shown in Figure 3.3, defines overall parameters, flags, and storage for

details needed to generate simulation outputs. It consists of three second-level subclasses:

parameters, options, and results.

Figure 3.3: Simulation class diagram with subclasses.

Simulation – Parameters The parameters subclass contains mostly user-defined ini-

tialization properties. Its properties store the temporal execution values for the simulation

including the length of a time step, the length of the simulation, number of time steps, and

the CPU time to execute each run. It also includes the initial position of the UAS and the

number of Monte Carlo trials.

Simulation – Options The options subclass contains user-defined initialization prop-

erties that set flags to trigger different algorithms and on/off flags during the simulation

execution. The algorithm flags are used to select the environment type, the feedback type,

and the estimation filter type. There are on/off flags for saving different data sets, sensor

measurement delay compensation, and sensor self-accuracy determination.
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Simulation – Results The results subclass contains a lower-level auto-correlation sub-

class and properties updated at each time step that are used in the post-simulation analysis

software. These properties serve as storage for the mean value and standard deviation val-

ues of several simulation outputs averaged over all Monte Carlo trials for each time step.

They include the state vector, control vector, estimated state vector, estimated state co-

variance matrix, state error vector, relative location classification value vector, the average

normalized estimation error squared value, the average normalized innovations squared,

and the root mean squared error vector. This subclass also includes a property for the mean

cycle time average over all Monte Carlo trials.

Simulation – Results – Autocorrelation The autocorrelation subclass contains proper-

ties to store the autocorrelation statistic for each sensor each time it is used for a measure-

ment as well as the time-steps which the measurements were taken.

3.2.2 Urban Environment Data Class

The urbanenvironment class, shown in Figure 3.4, defines the area of operations for the

UAS including local environment infrastructure, weather information, and provides storage

for a novel position categorization method. It is comprised of four second-level subclassses

including city speci f ications, map, weather, and relative location. The map subclass has

three levels of subclasses under it, including canyon, building, obstacles, antennas, and

skybridges (last two not shown), but does not have any properties within its own subclass.

The obstacle subclass also does not have any properties within its own subclass.

Urban Environment – City Specifications The city speci f ications subclass contains

user-defined initialization properties to generate the urban landscape. These properties fall

under three general categories within the subclass. The first category defines the size and

spacing of the grid-based city. These properties are the number of blocks, the number
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Figure 3.4: Urban environment class diagram with subclasses.

of buildings per block, the spacing between buildings, the width of the street separating

the buildings, and any blocks that may contain open space. The second allows the user

to customize building sizes by specifying minimum and maximum rectangular footprint

dimensions and heights. The third category allows the user to choose obstacle sizes and

quantities. The antenna obstacle properties include antenna length and radius minimum

and maximum sizes, and the minimum height of a building to have an antenna on its roof.

The skybridge obstacle properties allow the user to specify the number of skybridges along

with their altitudes, heights from top to bottom, and the buildings which anchor them on

either side of the street.

Urban Environment – Map – Canyon The canyon subclass properties are randomly

generated using inputs from the city specifications subclass to define each canyon within

the city. The number of canyons (thus instances of the canyon subclass) is equal to the

number of blocks in the city. Its properties are the two-dimensional coordinates of each

of the canyon’s four corners and the height of the shortest and tallest buildings within the

canyon.

Urban Environment – Map – Canyon – Building The building subclass properties

are randomly generated using building inputs from the city speci f ications subclass. The
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number of buildings (and instances of this class) is double the product of the number of

blocks and number of buildings per block to account for buildings on both sides of the

street. Its properties are the two-dimensional coordinates of each building’s four corners as

well as their heights and a unique identification number.

Urban Environment – Map – Canyon – Obstacle – Antenna antenna subclass proper-

ties are randomly generated using inputs from the city specifications subclass. The number

of antennas (and instances of this class) is equal to the number of blocks since it is as-

sumed there is one antenna placed on the tallest building on each block (where the tallest

building is above the minimum height for antenna). Its properties are the two-dimensional

coordinates of the antenna, its base height, top height, and radius.

Urban Environment – Map – Canyon – Obstacle – Skybridge skybridge subclass

properties are also generated using the skybridge inputs from the city specifications sub-

class. The number of skybridges (and instances of this class) is defined in the city spec-

ifications subclass. Its properties are the four two-dimensional corner coordinates, base

altitude, and top altitude.

Urban Environment – Weather The weather subclass contains user-defined initializa-

tion properties representing current weather conditions. These properties include a current

wind vector, temperature, and visibility. The utilization of these properties for UAS navi-

gation is left to future work.

Urban Environment – Relative Location The relativelocation subclass properties are

updated at every time step. This subclass is instantiated twice, once for propagated UAS

plant dynamics three-dimensional inertial position and again for estimated inertial position.

Separate properties define relative altitude and street-level position of the UAS as well as

the number of the current canyon in which it is located.
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3.2.3 UAS Dynamics Data Class

The UAS dynamics class, shown in Figure 3.5, defines the parameters necessary to trim and

simulate flight for the six degree of freedom UAS model. It is divided into three second-

level subclasses: model, trim, and state propagation. The model subclass has properties

of its own. The model subclass contains properties, and also one subclass: parameters.

The statepropagation subclass contains properties and one subclass: guidance. The trim

subclass contains no properties, but two subclasses: parameters and truestates.

Figure 3.5: UAS dynamics and control class diagram with subclasses.

UAS Dynamics – Model The model subclass contains user-defined initialization prop-

erties. These properties include the dimensions of both the state vector and the control

vector, the process noise matrix, the process noise matrix scaling factor, and physical limits

or saturation constraints on control inputs.

UAS Dynamics – Model – Parameters The parameters subclass contains specific UAS

aerodynamic coefficients, mass and inertia properties, and engine parameters. It is instanti-

ated once for the UAS plant dynamics propagation model and once for the state estimation

filter dynamics model.
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UAS Dynamics – Trim – Parameters The parameters subclass contains user-defined

initialization properties necessary to calculate UAS trim conditions. These properties in-

clude the desired trim airspeed, altitude, flight path angle, and heading angle, as well as the

trim conditions such as in (2.24).

UAS Dynamics – Trim – True States The truestates subclass contains indirect user-

defined initialization properties specifying UAS trim or equilibrium conditions. These

properties include the calculated trim state vector as well as the resulting squared two-norm

value of the residual. This residual shows the amount of error in the actual trim conditions

relative to the desired trim conditions.

UAS Dynamics – State Propagation The state propagation subclass contains the prop-

gated UAS plant dynamics state vector and control vector updated at every time step.

UAS Dynamics – State Propagation – Guidance The guidance subclass object is also

updated at every time step. The first subclass property is the current three-dimensional

obstacle avoidance waypoint. The second is the user-desired vertical clearance between

the UAS and any obstacle in its current path. The final property is the UAS commanded

state vector to be output per Figure 3.1.

3.2.4 Sensor Data Class

The sensor class, shown in Figure 3.6, defines performance characteristics of all modeled

sensors as well as providing storage for the measurement quantities. It is split into three

second-level subclasses: per f ormance, availability, and measurementvalues.

Sensor – Performance The per f ormance subclass contains user-defined initialization

properties characterizing each modeled sensor. The subclass is instantiated once for each

sensor. Properties includes two main categories. The first is the sensor temporal properties
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Figure 3.6: Sensor class diagram with subclasses.

category, including how frequently the sensor can take measurements, any delay in the mea-

surement becoming available, and when the first measurement can be taken. The second

is the sensor measurement generation properties categories, including a flag to determine

if the sensor is in use, the availability of the sensor based on the environment, the sensor’s

orientation with respect to the buildings, the states that can be measured, the accuracy of

these measurements, and a measurement sensitivity vector for each state being measured.

Sensor – Availability The availability subclass contains a list of sensors that are in use

for a given simulation and a second list of sensors that provide delayed measurements.

The availability of these sensors during the simulation is subject to sensor performance

constraints described in the previous paragraph and urban environment geometry, to be

described in future chapters.

Sensor – Measurement Values The meaurementvalues subclass contains properties that

are updated for each sensor when a measurement becomes available for that particular

sensor, based on sensor performance constraints and the urban environment geometry. It

is instantiated for each sensor in use. The properties include the time stamp of when a

measurement was taken for each sensor and the innovation value for the measurement to

be used when calculating filter consistency metrics.
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3.2.5 Estimator Data Class

The estimator class, shown in Figure 3.7, provides storage for quantities used for the

state estimation filters. It has two second-level subclasses: parameters and stateestimate.

The stateestimate subclass contains properties as well as two second level subclasses:

ExtendedKalmanFilter and ParticleFilter.

Figure 3.7: Estimator class diagram with subclasses.

Estimator – Parameters The parameters subclass contains user-defined initialization

properties for the state estimation filters. These properties include the initial estimated

state vector covariance matrix for all filters. For particle filter option, the number of par-

ticles used to represent the posterior distribution, the optimal jittering bandwidth, and the

resampling threshold percentage of effective particles are also defined.

Estimator – State Estimate Along with filter-specific subclasses, the stateestimate sub-

class contains properties updated at every time step. This includes the estimated state vec-

tor, estimated state vector covariance matrix as well as the error vector and the normalized

estimation error squared (NEES).

Estimator – State Estimate – Extended Kalman Filter The EKF subclass contains

properties for the storage of the normalized innovation squared (NIS) and dimension of the

measurement vector at each time step used in filter consistency analysis.
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Estimator – State Estimate – Particle Filter The particle f ilter subclass contains prop-

erties to store the multivariate particles and their respective weights at each time step. The

weights are only updated when a non-Kalman Filter particle filter is used, including the

Sampling Importance Resampling Filter or the Regularized Particle Filter [112].

3.3 Urban Environment Development

To simulate a true urban canyon environment, urban environment generation software was

developed to generate buildings based on user input. The design inputs can be based on real

urban databases such as the Primary Land Use Tax-lot Output for New York City [113] or

a user-defined fictitious city. Table 3.1 shows representative inputs used to generate urban

environments for the simulations presented in this dissertation.

Table 3.1: Urban environment design specifications.

Urban Landscape Value Notes
Parameter

Number of Blocks 5
Buildings per Block 4 Number of buildings on each side of street

Open Space 3−East Modeled as buildings with zero height
Street Width 20 meters Includes six lanes for traffic and sidewalks

Building Shape Cuboid
Building Height 40 meters-125 meters Can be random or set for each building
Building Length 25 meters-40 meters
Building Width 25 meters-40 meters

Building Spacing 7.5 meters
Antennas per block 1 Rising from roof of tallest building per block

When these specifications are provided as inputs to the urban environment generation soft-

ware, the outputs produced are shown in Figure 3.8 and Figure 3.9 along with canyon maps

and building maps.

The main data stored in canyon maps are the four canyon corners as defined by the ex-

treme corners of the building pairs on both the southern edge of the block and the northern

edge of the block. The building maps store building corner coordinates, building heights,

and building numbers for each building. The buildings are numbered from West to East and
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Figure 3.8: Example urban environment with skybridges.
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Figure 3.9: Example urban landscape with canyon boxes.
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then South to North so that the southwesternmost building in the environment is assigned

the number ’1,’ the building adjacent to the East is assigned number ’2,’ and so on. This

building environment plays a critical role in determining the availability and accuracy of

navigation sensor measurements.

3.4 UAS Model

The fixed-wing UAS aerodynamic model used for this research was taken directly from

[42] and follows the form described previously in Chapter 2. Table 3.2 lists the physical

parameters of the UAS pictured in Figure 3.10 and used for this research. The physical

inertia matrix and aerodynamic coefficients for this UAS are listed in Appendix C. For the

unmatched model, uncertainty percentages between 10% and 30% percent are applied to

certain aerodynamic coefficients and the physical inertia matrix entries as will be described

in Chapter 6. These parameters are indicated with an asterisk in Appendix C.

Table 3.2: UAS model physical parameters taken from [42].

Parameter Value
Aircraft Mass, m 28 kilograms

Wing Surface Area, S 1.8 meters
Mean Aerodynamic Chord, c̄ 0.58 meters

Wing Span, b 3.1 meters
Propeller Diameter, D 0.79 meters

Engine Time Constant, τn 0.4 seconds

In this model, the aileron δa, elevator δe, and rudder δr, input deflection limits are nor-

malized to the range {−1, 1} and the engine revolutions/minute range is set to {1800, 6000}.

The lower revolutions/minute limit is greater than zero because the UAS is gas-powered.

Both ranges are necessary in the simulation to ensure the UAS autopilot is commanding

only realistic control inputs.

The time-invariant UAS plant dynamics are propagated using the Runge-Kutta fourth-

order numerical integration method [115] coded into simulation. This method generates
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Figure 3.10: Photo of UAS used in model, courtesy of ETH [114].

an approximate solution at discrete points with fourth-order accuracy. For a given initial

conditions vector x0, the state vector x is propagated forward in time to each subsequent

discrete point using

xk+1 = xk +
h̄
6

(
k̄1 + 2k̄2 + 2k̄3 + k̄4

)
(3.1)

where the step size h̄ is calculated as

h̄ = tk+1− tk (3.2)

and is set to 0.01 seconds for all simulations in this dissertation. The constant k̄1 is calcu-

lated as

k̄1 = f (xk,uk) (3.3)

k̄2 is calculated as

k̄2 = f
(
xk +

h̄
2

k̄1,uk

)
(3.4)

k̄3 is calculated as

k̄3 = f
(
xk +

h̄
2

k̄2,uk

)
(3.5)
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k̄4 is calculated as

k̄4 = f
(
xk + h̄k̄3,uk

)
. (3.6)

3.5 Linearization of the UAS Equations of Motion at

Nominal Flight Conditions

To linearize the UAS equations of motion at given trim conditions, these conditions must

first be calculated, then the state transition Jacobian matrix and control Jacobian matrix

must be generated using these conditions. Once the model is linearized, the linear response

must be checked to show that it accurately reflects the nonlinear response of the aircraft to

control inputs.

3.5.1 Calculating Trim Conditions

When linearizing UAS equations of motion, a straight and level trim condition (flight path

angle γ = 0 radians) is used as the baseline. The selected trim airspeed and altitude were

chosen to be 30 meters per second and 50 meters respectively. The airspeed was selected

since it was used for much of the analysis in [42]. Since the altitude has a minimal effect on

the trim at a constant airspeed, it was selected to be sufficiently high, but still sufficiently

lower than the tallest buildings in most major cities. Table 3.3 shows the trim values of all

state variables and control inputs except the two inertial horizontal position coordinates, xN

and xE . The table is divided into the longitudinal states and control inputs in the left column

and the lateral states and control inputs in the right column where the longitudinal states

are h, VT , α, θ, q, δe, FT and the lateral states are β, φ, ψ, p, r, δa, δr, respectively. The lon-

gitudinal inertial position, xN , can be arbitrarily initialized for simulation, depending on

the desired location within the environment. The altitude h is shown to four decimal places

to demonstrate that small imprecision is introduced when using a numerical solver. The

angle of attack, α, and pitch angle, θ, trimmed to equal values near 0.09 radians, and the
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elevator, δe, trimmed to roughly 0.02 down, as indicated by the negative sign. The lateral

inertial position, xE , is initialized as a user input based on the desired position between the

buildings in the canyon. All other lateral states and control inputs are approximately zero

as expected in steady, level flight conditions. These states did not trim exactly to zero due

to the imprecision in the UAS model and the use of a numerical solver.

Table 3.3: UAS Trim Conditions for VT = 30 meters/second, h = 50 meters, γ = 0 degrees
with a residual norm equal to 5.84×10−26.

h 50.00 meters β 0.0004 radians
VT 30 meters/ second φ 0.0006 radians
α 0.0887 radians ψ −0.0003 radians
θ 0.0887 radians p 0 radians/second
q 0 radians/second r 0 radians/second
δe −0.0235 radians δa 0.0001 radians
FT 35.40 N δr −0.0006 radians

3.5.2 Linearizing about the Trim Conditions

With known trim conditions, the linearized state transition matrix, A, and control matrix,

B, are generated by substituting the aerodynamic model values and trim conditions for the

state and control inputs into the symbolic state transition Jacobian and control Jacobian

derived in Section 2.3.1. This process yields a state transition matrix with values shown in

(3.7) and a control matrix shown in (3.8). For these matrices the state vector was reordered

to
[
xN hVT αθq xE βφψ pr

]T , and the control vector reordered to [δe FT δa δr] T to separate

the longitudinal and lateral states and control inputs. This allows the small but non-zero

coupling between the longitudinal and lateral states to be seen in the upper right quadrant

(rows 1−6 / columns 7−12) and lower left quadrant (rows 7−12 / columns 1−6) of
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Alin =



0 0 1 0 0 0 | 0 0 0 0 0 0

0 0 0 −30 30 0 | 0 −0.0173 −0.0101 0 0 0

0 0 −0.0840 −0.9226 −9.81 0 | 0 −0.0058 0.0033 0 0 0

0 0 −0.0216 −3.8590 0 1 | 0 0 −0.0002 0 −0.0004 0

0 0 0 0 0 1 | 0 0 0 0 0 −0.0006

0 0 0 −4.7412 0 −4.989 | 0 0 0 0 0 0

− − − − − − | − − − − − −

0 0 0 −0.0173 0 0 | 0 30 −2.6561 30 0 0

0 0 0 −0.0001 0.0001 0 | 0 −0.4871 0.3257 0 0.0885 0.9961

0 0 0 0 0 0.0001 | 0 0 0 0 1 0.0889

0 0 0 0 0 0.0006 | 0 0 0 0 0 1.0039

0 0 0 0 0 0 | 0 −20.295 0 0 −11.955 2.8374

0 0 0 0 0 0 | 0 24.3630 0 0 0.5289 −3.117



. (3.7)

These values are approximately one order of magnitude smaller than any of the uncou-

pled values. For small deviations from trim, the linearized system can be approximated as

decoupled as long as the coupling terms are small by comparison when propagating the

states. There is no coupling between the lateral inputs and the longitudinal equations of

motion or the longitudinal inputs and lateral equations of motion in

Blin =



0 0 0 0

0 0 0 0

0 0.0356 0 0

0 −0.0001 0 0

0 0 0 0

28.6110 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 81.8280 −2.8476

0 0 −3.6207 14.58



(3.8)

as shown by the zeros in rows 1−6 / columns 3−4 and rows 7−12 / columns 1−2.
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3.5.3 Verifying the Linear Model

Figures 3.11 and 3.12 show the linear and nonlinear response to small elevator and small

thrust inputs, respectively, for the longitudinal UAS states. All linearized states track quite

closely to the nonlinear states over the ten second interval shown, verifying the accuracy of

the linear model for small elevator perturbations.
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Figure 3.11: Comparison of nonlinear and linear responses of longitudinal states for a small
elevator input.
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Figure 3.12: Comparison of nonlinear and linear responses of longitudinal states for a small

thrust input.

Figure 3.13 shows the nonlinear and linear responses to a small aileron input for lateral

position, angle of sideslip, roll angle, and roll rate. The roll rate response for the linear

model tracks nearly identically to the non-linear model. Lateral position, angle of sideslip,

and roll angle linear responses track the non-linear responses until roughly 5 seconds, at

which point the linear response begins to diverge. The reason for these deviations is that the

non-linear response accounts for how the increasing and decreasing roll angle and sideslip
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angle affect the states of the system, while the linear model linearizes about trim values of

both angles very close to zero radians. Once the roll angle and sideslip angle values increase

or decrease from their trim values, the coefficients based on these trim values do not accu-

rately emulate the non-linear model. These coefficients include ∂
.

xE
∂β ,

∂
.

xE
∂φ ,

∂
.
β
∂θ ,

∂
.
β
∂β ,

∂
.
β
∂φ ,

∂
.
φ
∂q ,

∂
.
φ
∂r .

However, this behavior, consistent with [42], shows that for small perturbations from trim

over small time periods, this linearized model response is acceptable.
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Figure 3.13: Comparison of nonlinear and linear responses of lateral states for a small

aileron input.
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Since the linear model sufficiently mimics the actual nonlinear dynamics of the UAS

over small time periods given small perturbations, it can be used to design a linear controller

to be implemented on the nonlinear UAS dynamics.

3.6 Linear Quadratic Regulator Design

From Figure 3.1, the controller converts the error between the estimated state vector and the

guidance reference commanded state vector into the control vector at each time step. The

guidance reference command for the simulations in this research is the trim state vector at

a given altitude unless another trajectory is specified. This relationship is

uk−1 = K(xcmdk−1 − x̂k−1) + utrim (3.9)

An LQR controller was selected due to its straightforward gain matrix, which must be

calculated using the linearized dynamics of the UAS. Using steady, level trim conditions,

Vt = 30 meters/second, h=50 meters, γ = 0 degrees, allows the previously calculated A and

B matrices, (3.7) and (3.8) to be used in the LQR process. The initial values of the Q̄ matrix

were set to an 11× 11 identity matrix while the initial values of the R̄ matrix were set to

a 4× 4 diagonal matrix containing the reciprocals of the square of each of the maximum

control input values along the diagonal, as suggested by Bryson’s Rule [41].

To find a set of gains for the controller that provide the best balance between rise

time, overshoot, and settling time, four different scaling values were used. These included

ρ̄ = {1,10,50,100}. Each value was used as an input along with R̄ and Q̄ matrices to the

MATLAB ® ’lqr’ command to calculate a gain matrix. These matrices were used to de-

termine how effectively the controller could regain trim conditions after a 10% deviation.

Figure 3.14(a) shows the airspeed response for each of the scaling values. The value ρ̄ = 10

had the best tradeoff between the performance parameters. Figure 3.14(b) shows the alti-

tude response for each of the scaling values. Again, the value ρ̄ = 10 had the best tradeoff,
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although its response was very similar to the response with ρ̄ = 1.
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Figure 3.14: UAS response to a 10% deviation from trim for various LQR scaling values.

The 4×11 gain matrices for ρ̄ = 10 at a steady level flight trim condition and also at wings-

level descending flight trim condition are available in Appendix D.

3.7 Chapter Summary

This chapter described UAS GNC simulation software in terms of the object oriented data

classes. It also described the urban environment generation software, based on a suite of

customizable input parameters for all aspects of the environment. It then detailed the UAS

physical model, linearized the equations of motion about a steady, level trim condition,

and developed the LQR controller for the simulation. Each result is used in subsequent

chapters to examine urban UAS navigation performance under varying aircraft, sensor, and

environmental conditions.
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CHAPTER 4

Sensor Models and Filter Parameters for UAS

Navigation in Urban Environments

This chapter focuses on the sensor and state estimation filter system blocks in Figure 3.1.

It first explores the idea of a relative location categorization system to predict GPS avail-

ability and accuracy along with LTE accuracy for the filter. Next, the sensor measurement

generation process is discussed. This includes the measurement sensitivity matrix, mea-

surement error covariance matrices, and the measurement models for each sensor. The

chapter concludes with a discussion of implementing delayed GPS, LTE, and VISION-OF

measurements as well as selecting the right number of particles to guarantee a certain level

of initial accuracy.

4.1 Urban Environment Relative Location Categorization

When a UAS operates in an urban environment, it may have a set of exteroceptive sensors

only available in certain locations with measurement accuracy that varies due to the chang-

ing geometry of the surrounding buildings and obstacles. While these sensors use actual

GPS or LTE signals to calculate their measurements, they may or may not have the ability

to determine and report the accuracy of these measurements to the state estimation filter.

One method to generate accuracy values for these sensors is to use empirical accuracy data

based on the location of the sensor within the urban environment. This assumes that the
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UAS has a priori knowledge of an accurate map of building locations and heights as ex-

pected measurement accuracy for sensors such as GPS and LTE will vary as a function of

building heights and distances apart. This assumption is reasonable given the availability

of building and map database information online today.

Relative locations are discretized into categories based on street-level position within a

city block structure (horizontal plane) and altitude with respect to urban canyon buildings

(vertical plane). Each horizontal-vertical position category is assigned specific GPS and

LTE accuracies based on the literature. Using a feature known as Sensor Accuracy Mode

(SAM), two different scenarios are explored. The first scenario presumes each sensor has

the ability to determine its own accuracy. In this scenario the propagated horizontal-vertical

position is used to look up sensor accuracy values used in both the generation of the sensor

measurements and the state estimation filter. In the second scenario the sensors do not have

the capability to generate their own accuracy values. In this case, the estimated horizontal-

vertical position is used to determine the sensor accuracy filters for the state estimation

filter with some uncertainty. However, in this second scenario, measurement generation

still uses the same filter parameters and process as in the first scenario since these values

are based on simulated ground truth data.

4.1.1 Categorizing Street-Level Position

The street-level or horizontal position categorization, or simply S L, is assigned three pos-

sible values listed below and shown in Figure 6.3(b).

1. Urban Canyon: S L−1

2. Intersection: S L−2

3. Adjacent Open Space: S L−3

When the UAS is within an urban canyon, defined by a block with buildings on either

side of street, it is in the S L−1 category, as shown in Figure 4.1(a). Here UAS navigation
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relies more on VISION, LTE, and GPS when available for measurements. Upon exiting

the canyon at the end of a block, the UAS enters an intersection, S L− 2 category, shown

in Figure 4.1(b). This environment is more open than the canyon, allowing increased GPS

availability and accuracy, increased LTE accuracy, but no VISION availability. UAS are

in the third category, S L− 3, when adjacent to an open space on one side of the street

and buildings on the other side as shown in Figure 4.1(c). This environment allows for

better GPS availability and accuracy than S L−1, but lower GPS availability and accuracy

than S L− 2. In S L− 3, VISION is still available, but only gives measurements based on

the one side with adjacent buildings. Open space on both sides within the urban canyon

is not specifically given its own category as this is very similar to an intersection. When

conducting urban missions, the UAS will encounter all three categories and must be able

to gain as much measurement information as possible for use in state estimation.

The inputs for the S L categorization algorithm include UAS longitudinal position,

canyon number, and building information for the current canyon. With these inputs, the

algorithm uses a series of tests to determine S L category at the current time step as shown

in Figure 4.2.

4.1.2 Categorizing Altitude with respect to Buildings

The altitude with respect to buildings categorization, or simply ALT , has three possible

values listed below and shown in Figure 4.3.

1. Above the tops of all buildings: ALT −1

2. Above the tops of some buildings: ALT −2

3. Below the tops of all buildings: ALT −3
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(a) Canyon (S L−1)

(b) Intersection (S L−2) (c) Adjacent Open Space (S L−3)

Figure 4.1: Street-level position categories (top view).

When the UAS is above the tops of all buildings (ALT −1), as shown in Figure 4.3(a), it

relies heavily on accurate GPS position and airspeed estimates for navigation since a large

view of the sky is available. As the UAS descends into a canyon, it may fly above the tops

of some shorter buildings but still be below the tops of other skyscrapers. This is known

as above the tops of some buildings (ALT −2), as shown in Figure 4.3(b). In this situation,

GPS availability and accuracy begins to degrade as the signals no longer have line of sight

to the UAS, but VISION availability increases. Once the UAS has descended fully into a

canyon, it is below the tops of all buildings (ALT − 3), as shown in Figure 4.3(c). Here,
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1. Is the UAS longitudinal position in a canyon from the last time step AND North of
the South side of the southernmost building in the current canyon AND South of the
North side of the northernmost building in the current canyon?

(a) Yes: Is there open space on one side?

i. Yes: S L−3 - Adjacent Open Space
ii. No: S L−1 - Urban Canyon

(b) No: S L−2 - Intersection

2. Is the UAS in an intersection from the last time step but now adjacent to buildings?

(a) Yes: Increment canyon number

i. Is there an open space on one side?
A. Yes: S L−3 - Adjacent Open Space
B. No: S L−1 - Urban Canyon

(b) No: S L−2 - Intersection

Figure 4.2: Street Level Position Categorization Algorithm.

the UAS may completely lose GPS availability, but may have more consistent VISION

availability with buildings on either side of the street now visible. Being able to navigate

safely in this category is important for the UAS to execute its low-altitude urban missions.

The inputs for the altitude categorization algorithm, shown in Figure 4.4, include the

current S L category, UAS altitude, current canyon number, and building information for

both the current canyon and the upcoming canyon. Figure 4.5 shows the UAS traveling

through the intersection and its four bordering buildings (numbered 1−4) referenced in the

algorithm.

4.2 UAS Urban Environment Sensors

Figure 4.6 shows a system diagram of possible urban canyon navigation sensor solutions

with available filtered sensor state noise covariance values. The individual sensor output
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(a) Above Tops of All Buildings (ALT −1)

(b) Above Tops of Some Buildings
(ALT −2)

(c) Below Tops of All Buildings
(ALT −3)

Figure 4.3: Altitude with Respect to Buildings categories (side view).

noise characteristics are shown with solid lines and the integrated system output noise char-

acteristics are shown as dotted lines. Each sensor type is currently available in a commercial

off the shelf package and the integrated systems use combinations of these sensors in their

published filtering techniques. The VISION-OF signal is considered to be measurements

directly from a computer vision system using optical flow and the VISION/IMU signal uses

odometry and localization to correct IMU drift.

For this research each sensor and integrated system is assigned a signal ID number to

allow for quick reference, facilitate sensor addition and removal, and enable sensor modi-

fication to account for changes in performance. This signal ID and available filtered sensor

states are shown in Table 4.1.
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1. Is the UAS in an intersection (S L−2)?

(a) Yes: Is the altitude of the UAS higher than the four buildings bordering the
intersection?

i. Yes: ALT −1 - Above Tops of all Buildings
ii. No: Is the altitude of the UAS higher than at least one building bordering

the intersection?
A. Yes: ALT −2 - Above the Tops of Some Buildings
B. No: ALT −3 - Below Tops of All Buildings

(b) No: Is the altitude of the UAS higher than the tallest building in the current
canyon?

i. Yes: ALT −1 - Above Tops of All Buildings
ii. No: Is the altitude of the UAS higher than at least one building in the

current canyon?
A. Yes: ALT −2 - Above Tops of Some Buildings
B. No: ALT −3 - Below Tops of All Buildings

Figure 4.4: Street Level Position Categorization Algorithm.

Table 4.1: UAS Sensor Information.

Signal ID Number Measured States
GPS S1 xN , xE , h, VT
IMU S2 φ, θ, ψ, p, q, r

VISION-OF S3 VT
ADS S4 h, VT , α, β

LTE S5 xN , xE
GPS/IMU S6 xN , xE , h, VT ,φ, θ, ψ

VISION/IMU S7 xN , xE , h, VT ,φ, θ, ψ

ADS/IMU S8 α, β, φ, θ, ψ

4.3 Sensor Measurement and Error Covariance Genera-

tion

To use filtered sensor state accuracy information in a state estimation filter a sensor mea-

surement must be generated and measurement noise covariance information must be de-
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Figure 4.5: Cross-section of urban landscape intersection (top view).

Figure 4.6: Sensor system diagram.

termined. In general, the sensor measurement generation part of the process is divided

into an availability determination step, an accuracy determination step, and a measurement

generation or acquisition step performed only if the measurement is available.
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The input to the overall process is the propagated UAS plant dynamics state vector.

Figure 4.7 shows the process that starts from this vector and outputs available sensor mea-

surements and filter measurement noise covariance values for the representative sensors

shown. To arrive at the output measurements, the propagated UAS plant dynamics state

vector is first used to calculate the relative location categorization (S L, ALT ), which dic-

tates the availability of GPS, VISION-OF and VISION/IMU sensors as well as the true 1σ

measurement noise values for all sensors except the IMU and ADS that are not influenced

by buildings. Should any of the set of GPS and LTE sensors have the ability to determine

their own measurement noise covariances, the filter measurement noise covariance matrix

will match the measurement noise covariance matrix values as shown in the figure. Using

a linear sensor measurement model is a simplifying assumption in the measurement gener-

ation process. This assumption should not be made when modeling the internal dynamics

of any given sensor.

Figure 4.7: Sensor measurement and noise covariance generation process.
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4.3.1 Sensor Availability

To best represent real-world conditions and performance, IMU, ADS, and LTE sensors are

assumed to be always be available, with measurements taken at the sensor’s sampling rate.

However, GPS and both types of VISION sensor availabilities are subject to real-world

conditions that may cause interruptions in measurement generation as well as changes in

accuracy. Availability models are described for GPS and VISION sensors below.

4.3.1.1 GPS Measurement Availability for Simulation

GPS availability is determined through the probability-based algorithm shown in Figure

4.8. In this algorithm, availability probability decreases as the UAS altitude decreases until

it is surrounded by buildings. The inputs to this algorithm are the current true ALT and

S L values, a GPS Availability Lookup Table, shown in Table 4.2, and a number generated

from the uniform distribution U(0,1). The relative location values are used to look up

the GPS availability probability from the GPS Availability Lookup Table, which contains

values extracted from the literature as described below. This probability is then compared

to the generated random number. If the GPS availability probability is greater than or equal

to the random number, GPS is available at the current time step for measurement. If the

GPS availability probability is less than the random number, GPS is not available for a

measurement.
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Figure 4.8: GPS measurement availability algorithm.

The basis of this algorithm is the assumption that as the UAS descends deeper into

the urban canyon, less GPS satellites are in view. The same is true for canyons versus

intersections as the intersections offer a wider view of the sky and therefore more satellites

in view. Groves [116] proposed satellite availability as a function of building height and

street-width using a global navigation satellite system simulation with three-dimensional

models of cities around the world. Real-world experimental data such as in [17] and [20]

would need to be collected in urban cores around the globe to determine the exact effects

of building heights on GPS availability. As a starting point, GPS availability values are

proposed in Table 4.2. The ALT − 2/S L − 2 value was set using the availability value

in [10] and the ALT − 3/S L− 2 availability value was set using [29]. All other values for

ALT − 2 and ALT − 3 were extrapolated. When the UAS is above all buildings, the S L

value is not taken into account since it does not affect line of sight to satellites.
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Table 4.2: Relative location-based GPS availability probabilities.

P(Avail)
ALT −1/S L− 1

ALT −2/S L−1 0.45
ALT −2/S L−2 0.50
ALT −2/S L−3 0.55
ALT −3/S L−1 0.20
ALT −3/S L−2 0.25
ALT −3/S L−3 0.30

4.3.1.2 VISION Measurement Availability for Simulation

VISION-OF as well as VISION/IMU generate measurements only when the UAS is adja-

cent to buildings on one or both sides. As a result, no measurements are taken while the

UAS is passing through an intersection (S L− 2) or above all buildings (ALT − 1). This is

formalized in Figure 4.9. When the UAS is alongside an adjacent open space, only one of

the two VISION sensors is able to generate a measurement. Figure 4.10 shows the port

and starboard facing VISION sensors considered for this research. W is the width of the

real-world image captured by the camera in meters, L is the perpendicular distance from

the camera to the real-world object in meters, and HFOV is the horizontal field of view in

degrees.

1. Is the UAS in an intersection (S L−2) or above all buildings (ALT −1)?

(a) Yes: VISION Unavailable

(b) No: Is the UAS in an adjacent open space (S L−3)

i. Yes: One VISION sensor available for measurement
ii. No: Both VISION sensors available for measurement

Figure 4.9: VISION Availability Algorithm.
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Figure 4.10: UAS VISION geometry.

4.3.1.3 Forming the Measurement Sensitivity Matrix, Hk

The output from the sensor availability calculations is the measurement sensitivity matrix,

Hk. This nz×n matrix is formed at the current time step by adding a row for each measured

state for each available sensor where nz is the number of available measurements at the time

step. Each of these rows are filled with n−1 zeros, with a ’1’ in the column corresponding

to the state to be measured using column ordering
[
xN hVT αθq xE βφψ pr

]
from left to

right. This assumes that filtered sensor state values in the inertial frame are output to the

sensor measurement model. Since real-world sensors generally produce raw measurements

in the sensor frame, these raw measurements would need to be filtered as well as rotated

if the sensor was not already aligned with the vehicle frame. An example is shown in

(4.1) for the IMU, which measures θ, q, φ, ψ, p, r where nz = 6. If another sensor is also

available at the current time step, rows are appended as necessary to account for all of the

next sensor’s measured states. Note that expected measurement availability at each time

step is a function of both sensor availability and sensor sampling period.
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HkIMU =



0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



(4.1)

4.3.2 Sensor Measurement Generation

When measurements are available, they are generated using

zk = Hkxk + vk (4.2)

where vk is a noise term computed as N (0, Rk), with Rk as the measurement error co-

variance matrix. The simplified model with zero bias is used to allow focus on the state

estimation process using several different sensors rather than the detailed modeling of any

individual sensor. Covariance values Rk for each sensor are discussed below.

4.3.3 Sensor Error Covariance Determination for Available Sensors

To generate sensor measurements, the measurement model requires measurement noise

covariance values Rk for all available sensors. For some sensors, this is a fixed value for

each measured state, while it varies for other sensors based on the environment. As mea-

surements become available versus dropping out, rows are appended to Rk and removed

from Rk respectively so that each noise covariance value is in its own row in the column

corresponding to the applicable measured state.

IMU and ADS sensors have measurement noise covariance values that are determined

through experimental methods. These values are not generally influenced by the environ-

ment, so they can be set as constant values in the measurement generation block and state
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estimation filter block of Figure 3.1. Even though environment dependent magnetometer

data can be used in an IMU, it is not explicitly used in this research. However, sensors

such as GPS, and LTE have measurement noise covariances that are dependent on the en-

vironment. This research allows for these noise covariance values to be determined either

by the actual sensor in the sensor accuracy mode (SAM) On configuration or by using the

estimated state vector in the sensor accuracy measurement O f f configuration. This mode

setting and its impact are discussed next.

4.3.3.1 Sensor Accuracy Mode

For sensors such as GPS and LTE it is assumed that measurement noise covariance values

can be determined from the actual sensor diagnostic data. This is because both sensors

generate measurements based on at least one overarching environmental factor. For GPS,

this is the number of satellites that can be viewed by the receiver. In the case of LTE,

the main factor is the number of hearable cellular network towers. Although both of these

sensors generate measurements as shown in Figure 4.7 following the black arrows, when in

the SAM O f f mode, they do not have diagnostic data available to generate a measurement

noise covariance value. In this case the filter estimates measurement noise covariance as

shown in Figure 4.11 following the red arrows. This feature provides another capability to

test current and future sensors regardless of their noise determination abilities.

4.3.3.2 Determining Sensor Measurement Noise Covariance Values

Figure 4.7 shows the measurement noise covariance values as outputs of a process de-

pendent on the relative location values of the UAS. This is because both GPS and LTE

measurement accuracy are largely correlated to the electromagnetic signal environment,

which in turn, is correlated to the density of buildings and other structures. Table 4.3 as-

signs measurement error covariance values based on the relative location of the UAS within

its immediate environment.
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Figure 4.11: Filter measurement noise covariance matrix generation process for SAM O f f .

Table 4.3: Measurement error covariance lookup table for GPS and LTE.

S L−1 S L−2 S L−3
ALT −1 σ2

11 σ2
12 σ2

13
ALT −2 σ2

21 σ2
22 σ2

23
ALT −3 σ2

31 σ2
32 σ2

33

When populated by simulation or real-world sensor data for GPS or LTE, the lookup

table gives measurement error covariance values for each measured state as a function of

the current ALT and S L values. If SAM is On, the current time-step ALT/S L pair is used,

but if SAM is O f f , the estimated ALT/S L pair from the previous time step is used. The

initial ALT/S L pair is generated using the initial propagated UAS plant dynamics state

vector while the initial estimated ALT/S L pair is generated using the initial estimated state

vector. Both the true and estimated categorizations are calculated at each time step.

GPS The GPS and LTE inertial position noise covariance tables are shown in Table 4.4

and Table 4.5, respectively. The GPS ALT −1 position measurement noise covariance val-

ues were taken from [43] and [79] while the ALT −3/S L−1 values were taken from [17];
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remaining position values were interpolated. While GPS gives the inertial velocity compo-

nents, the no wind assumption allows this measurement to be used as the forward airspeed,

VT . Due to the lack of consistency in published GPS inertial velocity data regarding iner-

tial airspeed measurement error covariance, which is the same as inertial velocity given the

no-wind assumption, it is set to (0.2 meters/second)2 for all relative location value combi-

nations.

Table 4.4: Location-Based GPS Receiver Noise Covariance Data.

σ2
xN,E/h

(meters2)
S L−1 S L−2 S L−3

ALT −1 3.672/7.22 3.672/7.22 3.672/7.22

ALT −2 6.962/19.592 6.452/17.992 5.682/15.602

ALT −3 10.252/31.982 9.232/28.782 7.692/23.992

LTE The LTE OTDOA noise covariance values for inertial horizontal position as shown

in Table 4.5 were generated from [53] as this was the only identified source of LTE posi-

tioning. These values were converted from horizontal range to the two separate components

by assuming the noise was equal in both the North and East directions and taking the root-

sum-square of the range. The accuracy is capped at 20 hearable towers consistent with a

review of the Cell Reception website for Detroit, Michigan which showed approximately

22 cellular towers 1 in and around the skyscraper core. Higher density cores could use

more hearable towers as appropriate. These nominal values assumed a general trend of

more hearable eNodeBs when above the tops of some buildings of the table since there

were an even mix of ground-based eNodeBs and roof-mounted eNodeBs in this area. LTE

network simulations and data collection would be needed to determine exact eNodeB hear-

ability maps and OTDOA accuracy for each specific urban environment.

VISION Recall that the simulation uses two types of VISION measurement in-

puts: VISION-OF refers to optical flow and VISION/IMU represents VISION odome-
1All will be assumed to be eNodeBs on the LTE network
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Table 4.5: Location-Based LTE Noise Covariance Data.

σ2
xN,E

(meters2) (# of Hearable eNBs)
S L−1 S L−2 S L−3

ALT −1 4.38 (10-15) 4.38 (10-15) 4.38 (10-15)
ALT −2 4.38 (10-15) 3.48 (15-20) 4.38 (10-15)
ALT −3 6.26 (7-10) 4.38 (10-15) 6.26 (7-10)

try/localization information used to correct IMU drift, such as in [50]. Optical flow mea-

surement noise standard deviation σOFpixels is generally reported in units of pixels/frame

making a conversion to meters/second necessary. This is done by first determining the

width of the real-world image W captured by the camera as shown in Figure 4.10. If the

camera’s focal length f is known, the image width is calculated using

W =
L ∗d

f
(4.3)

where L is the perpendicular distance from the camera to the real-world object, d is the hor-

izontal dimension of the image, and f is the focal length of the lens. The optical flow iner-

tial airspeed noise covariance value is then scaled from (pixels/frame)2 to (meters/second)2

using

σ2
OF =

(σOFpixels FR∗W

HR

)2
(4.4)

where FR is the camera frame rate in frames/second and HR is the camera horizontal

resolution in pixels.

When VISION/IMU odometry/localization measurement noise values are used to cor-

rect IMU drift, they are taken directly from the literature [34], [65], [50] since building

texture, time of day, or weather-related visibility conditions are not considered.

96



4.4 Accounting for Delayed Measurements using State

Augmentation

With the multitude of sensors available for urban navigation, some are likely to have larger

(non-negligible) delay times in producing measurements than others. This research as-

sumes that the IMU, ADS, and VISION/IMU odometry/localization correction do not have

delayed measurements since these sensors have a high sampling rate on the order of 50-

100 Hz. However, GPS, LTE produce delayed measurements with delay times ranging

from 0.1 seconds for GPS [51] to 4−10 seconds for LTE according to the Polaris Wireless

website and [117]. VISION-OF delay is 0.15 second delay. Appendix F shows how the

state augmentation process is applied to GPS and LTE measurements.

4.5 Particle Filter Ensemble Sizing

Particle ensemble sizing is generally viewed as a trade off between using enough particles

for an accurate representation of the distribution and computation time. Many times the

particle ensemble is sized without an accompanying analysis of this design choice [24],

[32]. This section describes an analysis aimed at ensuring the set of discrete particles

accurately reflects the assumed distribution when all state vector elements are coupled.

This problem can be explored by setting the desired covariance tolerance to a constant

value and varying the state dimension. Alternatively ensemble sizing can be explored by

varying the desired covariance tolerance and setting the state vector dimension to a constant

value. Both are important because they give the user insight into the computational cost of

the number of particles used to initialize the particle filter as the number of states increase

and the desired tolerance decreases. This technique assumes that all particles can be drawn

from the distribution at once using a command such as “mvnrnd” in MATLAB® to quickly

execute the algorithm rather than build the distribution one particle at a time.
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1. Set Np = 1

2. Draw Np particles from a given multivariate Gaussian distribution: xsample ∼

N (µtrue,
∑

true)

3. Calculate the particle ensemble covariance matrix
∑

sample

4. Determine if each entry in
∑

sample is within the desired tolerance bounds

(a) If all entries in
∑

sample are within desired tolerance bounds→ Go to step 5

(b) else Np = Np + 1→ Go to step 2

5. Save Np as number of particles necessary to represent N (µtrue,
∑

true) within desired
covariance tolerance bounds

Figure 4.12: Particle Ensemble Sizing Algorithm.

The algorithm to determine the required particle ensemble size is specified in Figure

4.12. The only input is desired tolerance and the only output is the number of particles Np

necessary to ensure each entry in the n× n covariance matrix meets the desired tolerance

constraint.

This algorithm must be executed a large number of times in a Monte Carlo simulation

format to find an accurate average particle ensemble size, Np, since this value will change

each time the algorithm is executed as particles are sampled from different regions of the

distribution.

Two different tests were run to show how results varied based on the dimension n of the

state vector and also to investigate how results varied based on the covariance tolerance.

The true distribution was N (0n×1,AT A) where A was an n×n matrix drawn using the “rand”

command in MATLAB®. Note that any n×1 vector could be used for the mean vector and

any positive-semidefinite symmetric matrix could be used as the covariance matrix.

The first test varied the state dimension n from 1 to 12 while setting the covariance tol-

erance to 5% or 0.05. The Particle Ensemble Sizing Algorithm was run for 100, 1,000, and
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10,000 Monte Carlo trials with the average number of required particles for each dimen-

sion shown in Figure 4.13. The number of particles increased from approximately 14 to

648 as the dimension of the vector increased for each set of trials. As expected, the trajec-

tory became more smooth for 1,000 Monte Carlo trials, and 10,000 trial runs revealing a

linear relationship between the number of required particles and the dimension of the state

of the Gaussian random variable for a desired initial covariance tolerance.
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Figure 4.13: Minimum particle ensemble size for 5% covariance tolerance of a Gaussian
random variable with increasing dimension.

The second test held the state dimension n constant at 12 while varying the covariance

tolerance from 1% down to 10% to give particle filter users a good estimate of the number

of particles necessary to initialize the filter. It was run for 100, 1,000, and 10,000 Monte

Carlo trials with the average values shown below in Figure 4.14. The exponentially de-

creasing trajectory shows that to meet 10% tolerance requires roughly 215 particles, but

this number increases 40 to 50 fold when 1% tolerance is desired. With such a large in-

crease in required number of particles for smaller than 5% tolerance, users must make a

design choice between speed of filter execution and desired accuracy based on the compu-
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tational resources available and as well as the application.

0.02 0.04 0.06 0.08 0.1
0

2000

4000

6000

8000

10000

Tolerance

N
um

be
r 

of
 P

ar
tic

le
s

 

 

100 Monte Carlo Trials
1,000 Monte Carlo Trials
10,000 Monte Carlo Trials

Figure 4.14: Minimum particle ensemble size for 12-state Gaussian random variable as a
function of covariance tolerance.

4.6 Chapter Summary

This chapter first described a strategy for relative location categorization by street level

(S L) and altitude (ALT ) features that facilitate sensor availability and covariance specifica-

tion. It then described the method used in this dissertation to generate sensor measurements

and sensor measurement error covariances for filtered sensor state information from IMU,

ADS, GPS, LTE, and VISION-OF. It focused primarily on the GPS, LTE, and VISION

sensors as each of these have dynamic environment-based measurement error covariance

matrices. There was also a discussion of sensor self-accuracy determination versus using

the estimated position in the environment to determine noise covariance values to send to

the filter. Additionally, a delayed-state filter implementation was described for GPS and

LTE. Finally, a particle filter ensemble sizing study was conducted to determine a min-
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imum number of particles required to ensures the ensemble covariance reflects the true

distribution covariance to a user-defined tolerance.
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CHAPTER 5

Accuracy of Navigation in a Homogeneous

Urban Environment

This chapter describes UAS urban environment navigation results using different sensor

sets at different altitudes in a simulated homogeneous environment. These sensor sets were

selected to demonstrate the varying levels of navigation accuracy available using currently

available algorithms and hardware based on literature and manufacturer specifications. The

homogeneous environment provides a baseline where sensors are either available through-

out the duration of the simulation or unavailable throughout the duration of the simulation.

In this chapter the UAS plant dynamics propagation model and state estimation filter prop-

agation model are assumed to be identical (or matched) to objectively evaluate test the

sensor sets as a function of the environment.

5.1 Simulation Setup

5.1.1 Homogeneous Urban Environment

The homogeneous urban environment, shown in Figure 5.1, consists of two 100 meter high

walls flanking a corridor with the UAS flight path set down the middle of the corridor. This

environment is assumed to have constant VISION properties so that the measurement noise

covariance is not affected by the longitudinal position within the canyon.

102



Figure 5.1: Urban Environment for simulations with direction of travel indicated.

5.1.2 Test Matrix

Six tests at varying altitudes, as shown in Table 5.1, were conducted to explore naviga-

tion accuracy as a function of GPS, VISION-OF, VISION/IMU, and LTE availability and

covariance changes as a function of (S L, ALT ) in the homogeneous environment.

Table 5.1: Simulation test matrix.

Test ID Environment Altitude, h Available Signals
1 Open Space 125 meters IMU, ADS ,GPS
2 Open Space 125 meters IMU, ADS ,GPS , LT E
3 High Canyon 75 meters IMU, ADS ,GPS , LT E, VIS ION/IMU ×2
4 Low Canyon 50 meters IMU, ADS LT E, VIS ION/IMU ×2
5 High Canyon 75 meters IMU, ADS ,GPS , LT E, VIS ION −OF ×2
6 Low Canyon 50 meters IMU, ADS , LT E, VIS ION −OF ×2

Each test was conducted using the delays as shown in Table 5.2 for GPS, LTE, and

VISION. Tests 1, 2, 5, 6 were conducted with zero GPS, LTE, and VISION delay to show

the effect of sensor delay on the system. The first test served as a baseline using currently
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available sensors with published accuracy in an open space where vision systems would not

produce useful information. The second test was conducted in the same environment, but

added the LTE sensor to determine what, if any, effect it had on navigation accuracy. The

third test explored the effects of being high in an urban canyon, modeled by two long walls,

while still having GPS available, although at a degraded level of accuracy. VISION/IMU

odometry and localization information was also available for this test using two separate

measurements streams (one vision camera pointing directly out laterally from each wing).

The fourth test was conducted low in the canyon with GPS turned off to study the effects

of using VISION/IMU as a GPS replacement. Tests 5 and 6 replaced VISION/IMU with

just VISION-OF to provide vision-based inertial velocity, but no position or orientation

measurements in the canyon. These two tests explored the navigation accuracy degradation

when using optical flow only. Test 5 was also run for a 200 second duration using 250

Monte Carlo trials to examine the long term trends in navigation accuracy for the two

different filter types and sensor delays.

5.1.3 Simulation Parameters

Table 5.2 shows the 1σ measurement noise values for each sensor. Each was taken from

published results or sensor/integrated system specification sheets. A complete listing of

values is shown in Appendix E. Table 5.3 shows the general simulation parameters. Al-

though Figure 4.13 showed that almost 650 particles are necessary to discretely represent a

Gaussian distribution to 5% covariance matrix tolerance initially, 1,000 particles are used

to gain slightly more initial accuracy.

The VISION-OF inertial velocity noise covariance was converted to (meters/second)2

using the camera specifications from the PX4FLOW Smart Camera, a typical optical flow

camera available on hobby websites. Assuming zero wind and travel in the North direction,

the airspeed is assumed to be equal to the North inertial speed. The PX4FLOW camera has

a resolution of 752×480 with a 16 millimeter focal length and 24×24µ meters pixel size.
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Table 5.2: Sensor simulation parameters

Sampling Sampling Measured States
Rate Delay (Noise Covariance Values)
(Hz) (seconds)

GPS 1 Hz 0.1 xN , xE , h, VT
(See Table 5.4)

VISION/IMU 50 0 xN , xE , h
Odometry/Localization (meters2)

[2.77, 3.39, 3.36]2

ẋN , ẋE , ẋh
((meters/second)2)
[0.70, 0.62, 0.26]2

φ, θ, ψ

(degrees2)
[0.760,0.807, 0.740]2

VISION-OF 6.67 0.15 VT = VNorth
Inertial Airspeed Only (4.54 frames/second)2

IMU 100 0 φ, θ, ψ

(degrees2)
[2.71, 1.65, 8.27]2

p, q, r
((degrees/second)2)

[0.6, 0.6, 0.6]2

ADS 50 0 h, VT
[1.5 meters, 1 meter/second]2

α, β

[1 degree, 1 degree]2

LTE 1/4 4 xN , xE
(See Table 5.5)

Table 5.3: General simulation parameters.

Time step 0.01 seconds
Simulation Length 20 seconds (600 meters)

Number of Monte Carlo Trials 500
Filter Type EKF/EnKF

Number of Particles 1,000

The optical flow algorithm and sampling data, shown in Table F.1, was taken from the

Bartels algorithm [118] in the Middlebury Optical Flow Evaluation results for the synthetic

urban image [75].
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The GPS and LTE inertial position noise covariance tables are shown in Table 4.4 and

Table 4.5, respectively. The GPS ALT − 1 position measurement noise covariance values

were taken from [43], [79] while the ALT − 3/S L− 1 values were taken from [17]. The

remaining position values were interpolated and the velocity noise covariance value was

taken from [58]. The LTE OTDOA noise covariance values were generated from [119] as

this was the only identified source of LTE positioning accuracy as a function of number of

hearable eNodeBs.

Table 5.4: Location-Based GPS Receiver Noise Covariance Data.

σ2
xN,E/h

(meters2)
S L−1 S L−2 S L−3

ALT −1 3.672/7.22 3.672/7.22 3.672/7.22

ALT −2 6.962/19.592 6.452/17.992 5.682/15.602

ALT −3 10.252/31.982 9.232/28.782 7.692/23.992

Table 5.5: Location-Based LTE Noise Covariance Data.

σ2
xN,E

(meters2) (# of Hearable eNBs)
S L−1 S L−2 S L−3

ALT −1 4.38 (10-15) 4.38 (10-15) 4.38 (10-15)
ALT −2 4.38 (10-15) 3.48 (15-20) 4.38 (10-15)
ALT −3 6.26 (7-10) 4.38 (10-15) 6.26 (7-10)

5.1.4 State Estimation Filters

As shown in Table 5.3, both the Extended Kalman Filter and the Ensemble Kalman Filter,

a type of Particle Filter, are used in the simulations in this chapter. Using the two different

filter types allows for comparison of the estimated state vector and covariance when they are

empirically calculated once per time step as in the Extended Kalman Filter and calculated

for several particles and then averaged as in the Ensemble Kalman Filter. Both filters are

used when implementing delayed measurements, but only the Extended Kalman Filter is

used when zero delay is assumed due to its rapid per time step execution rate.
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The initial propagated UAS plant dynamics state vector and diagonal covariance matrix

values are shown in Table 5.6 for a steady-level trim condition. For the Extended Kalman

Filter and Ensemble Kalman Filter filters, the initial estimated state vector for each Monte

Carlo simulation was drawn from N (x0, P0). The constant process noise covariance matrix,

Q, was set to 10−4 ∗ I12. Since process noise structure was not the focus of this research and

a specific process noise model was not published for the UAS dynamics model, a diagonal

process noise covariance matrix is used. It will apply process noise to each state without

correlation when propagating the UAS plant dynamics model.

Table 5.6: Initial UAS Plant Dynamics State and Initial Covariance Values.

State Initial Value Initial Covariance
xN 5 meters (1 meter)2

xE 0 meters (1 meter)2

h 50 meters (1 meter)2

VT 30 meters/second (5 meters/second)2

α 0.0893 radians (1π/180 radians)2

β 0.0003 radians (1π/180 radians)2

φ 0.0003 radians (1π/180 radians)2

θ 0.0893 radians (1π/180 radians)2

ψ 0.0005 radians (1π/180 radians)2

p 0 radians/second (1π/180 radians/second)2

q 0 radians/second (1π/180 radians/second)2

r 0 radians/second (1π/180 radians/second)2

5.2 Results

5.2.1 Open Space Environment

Table 5.7 shows the longitudinal and lateral RMS position error value at the final time step

for the two open space test environments. For both filters, the position error is similar with

and without using the LTE measurement. However, in the no-delay case, the LTE measure-

ment slightly aids in decreasing the longitudinal error, while it causes a slight increase in
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error for the delayed case using either filter. The difference in the magnitude of the lateral

and longitudinal errors in the open space environments is due to the controller constantly

attempting to correct the lateral position back to the center of the canyon. This causes small

overshoots of the trim position throughout the duration of the simulation. The EnKF did

not show any improvement in both longitudinal and lateral position errors as it was simply

calculating the estimated state vector and covariance empirically instead of in closed-form

to eliminate the need to generate the state transition Jacobian.

Table 5.7: RMS position error at final time step for open space test environments.

Error in meters
EKF(No Delay) EKF(Delay) EnKF(Delay)

Environment xN xE xN xE xN xE
Open Space (No LTE) 0.67 1.23 0.66 1.24 0.67 1.32

Open Space 0.64 1.25 0.71 1.19 0.68 1.35

Figures 5.2 and 5.3 show the horizontal RMS position error trajectories of the two open

space environments. The RMS position error trajectories are similar for both states when

the EKF is used. The addition of LTE, with its 4-second delay, did not give any better

performance since these measurements were not weighted as highly as the less-delayed

GPS measurements in the correction step. The EnKF gives much lower initial RMS error

for each state than the EKF because the initial estimated state vector is calculated as the

mean value of 1,000 twelve-dimensional particles. However, the error increases to EKF

levels during the simulation as the forecasted mean is propagated with process noise. In

both environments, the delayed EKF and EnKF longitudinal position errors approach the

same value showing that in a steady level trajectory with a nearly constant state transition

matrix, the EKF is tough to outperform.

Although the LTE measurements had little effect on increasing the accuracy of the

position estimate, they did slightly increase the confidence in the estimate as shown in

Figure 5.4. Here the EKF and EnKF position mean error and 3σ bounds are shown for the

longitudinal position state (Figure 5.4(a)) and the lateral position state (Figure 5.4(b)). A
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(b) Lateral Position

Figure 5.2: RMS error trajectory for the open space environment with GPS.
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(b) Lateral Position

Figure 5.3: RMS error trajectory for the open space environment with GPS and LTE.

legend is not included on this figure since the trajectories are very close together and use the

same line types. The dotted lines with slightly higher 3σ values represent the open space

environment with GPS only. The outer set of dotted lines is for the EKF and the inner set of

dotted lines is for the EnKF. The solid lines represent the open space environment with the

delayed LTE measurements added to the GPS. The outer set of solid lines is for the EKF

and the inner set of solid lines is for the EnKF. The increase in the estimate confidence

is shown by the slight divergence of the solid and dotted lines, with small but noticeable
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shrinking of the bounds when the first delayed LTE measurement arrives at the 5 second

point as more measurement information is received by the filter. Also, as expected, the

EnKF does give tighter bounds since the covariance is empirically calculated, more closely

approximating the error of the system. The error trajectories (shown in blue) hover near

zero for both filters with and without LTE indicating that the error is Gaussian distributed

over the set of Monte Carlo trials.
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(b) Lateral Position

Figure 5.4: Effect of adding delayed LTE sensor on horizontal position error 3σ bounds.

5.2.2 Canyons

Table 5.8 shows the longitudinal and lateral RMS position error value at the final time step

for the four canyon test environments. When using the VISION/IMU system to augment

GPS and/or LTE, both filters give very small estimation errors in the range of 0.12− 0.14

meters in both horizontal directions. However, once the VISION augmentation is set to

providing VT = VN updates only, the error gets much worse when using the EKF with lon-

gitudinal RMS errors near 1 meter and lateral RMS errors approaching 2 meters in the

realistic delayed measurement cases. Although the EnKF performed slightly better in the
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longitudinal direction with RMS errors just under 0.8 meters, the lateral position error got

slightly worse just like in the open space tests for all environments as it attempted to keep

the UAS down the centerline using less accurate, low-sampling rate, delayed measure-

ments.

Table 5.8: RMS position error at final time step for canyon test environments.

Error in meters
EKF(No Delay) EKF(Delay) EnKF(Delay)

Environment xN xE xN xE xN xE
High Canyon - - 0.13 0.12 0.14 0.14

(VISION/IMU)
Low Canyon - - 0.12 0.13 0.13 0.13

(VISION/IMU/No GPS)
High Canyon 0.89 1.73 0.92 1.79 0.74 1.93
(VISION OF)

High Canyon: 200 seconds 1.06 2.31 1.04 2.38 1.61 3.39
(VISION OF)
Low Canyon 0.98 1.88 1.01 2.06 0.78 2.21

(VISION OF/No GPS)

Figure 5.5 show the horizontal RMS position error trajectories of the low canyon envi-

ronment at h = 50 meters. Both the lateral and longitudinal errors drop quickly and reach

similar steady state error values due to the dominance of the two sets of high-sampling rate

VISION/IMU measurements using both the EKF and EnKF. For the lateral error, this is in

contrast to the open space environments where the error grows as the UAS attempts to con-

trol its lateral position using much slower position measurements. The results are similar

for the high canyon environment at h = 75 meters and are not shown.

When the VISION/IMU is removed from the system and VISION-OF is added, the

results look much different as shown in Figures 5.6 and 5.7 for the high and low canyon

environments. These results show the same trends as the open space results since the only

position sensors are GPS and LTE in the high canyon and only LTE in the low canyon.

However, the RMS errors are higher within high canyons, especially when using the EKF,

because the GPS measurements are less accurate, when available, and the LTE measure-
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(a) Longitudinal Position
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(b) Lateral Position

Figure 5.5: RMS error trajectories for the low canyon environment with LTE and VI-
SION/IMU.

ments are only available every four seconds, and are delayed by the same amount. This

effect is seen more in the lateral position errors as the controller attempts to center the UAS

using this delayed measurement. The EnKF does provide a more accurate initial estimate

of the longitudinal position with these low-sampling rate sensors, but it degrades over time

and is still increasing toward the EKF trajectories at t = 20 seconds. Overall, GPS and/or

LTE can only provide roughly 1 meter RMSE error in the longitudinal position estimate

within an urban canyon and continuously worsening RMSE error in the lateral position

estimate.

The 200-second high canyon test showed worse longitudinal and lateral RMS error re-

sults than the 20-second test indicated at the same conditions. From Table 5.8, the nodelay

and delay EKF longitudinal error are roughly 1 meter and the lateral error hovers near 2.35

meters. However, as shown in Figure 5.8, these errors appear to have reached a steady-state

value by this point, allowing accuracy conclusions to be drawn confidently. The vertical

line in Figures 5.8(a) and 5.8(b) at the 20 second mark allows comparison between the er-

ror at 20 seconds and the error at 200 seconds. The major difference in the 20 second and

200 second runs is with the EnKF. With this filter, the longitudinal error is still growing

112



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time(seconds)

x N
 R

M
S

 E
rr

or
 (

m
et

er
s)

 

 

EKF − No Delay
EKF − GPS/LTE/VISION−OF Delay
EnKF − GPS/LTE/VISION−OF Delay

(a) Longitudinal Position

0 5 10 15 20
0

0.5

1

1.5

2

Time(seconds)

x E
 R

M
S

 E
rr

or
 (

m
et

er
s)

(b) Lateral Position

Figure 5.6: RMS error trajectories for the high canyon environment with GPS, LTE and
VISION-OF.
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Figure 5.7: RMS error trajectories for the low canyon environment with LTE and VISION-
OF.

linearly at 200 seconds while the lateral error eventually reaches a steady-state value near

3.4 meters. The longitudinal position error will most likely keep climbing until it reaches

the GPS ALT −3/S L−1 noise value of 10.25 meters since it considers all particles equally

when calculating the estimate, regardless of the likelihood of those estimates being close

to the actual value of the state. The lateral position error grew quickly to its steady-state
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value since this state was being controlled. As the UAS plant dynamics lateral position

value was propagated using a control input based on the estimate at the previous time step,

it did not move back toward its commanded value of zero. This was due to the estimated

value of the state at the previous time step being generally close to zero as it was the mean

of 1,000 particle values. With such a small difference between the estimated state value

and its commanded value, the control input stayed small. As a result, the UAS plant dy-

namics state value had no way of being pushed back toward zero since it was already being

estimated near zero. These trends show the difficulty in using an EnKF for state estimation

and control with limited, inaccurate measurements.
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Figure 5.8: RMS error trajectories for a 200 second simulation in the high canyon environ-
ment with GPS, LTE and VISION-OF.

5.2.3 Altitude, Airspeed, and Attitude Performance

Since the altitude, airspeed, and attitude are measured by the reliable high sampling rate

IMU and ADS, their performance does not change greatly when considering delayed sys-

tems versus ideal non-delayed systems. As such, the below results are presented using the

delayed systems only comparing the error trajectories for the 50 meter LTE/VISION OF
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test as the baseline and the 75 meter GPS/LTE/VISION/IMU to determine what, if any,

effect the GPS and VISION/IMU sensors have on the accuracy of these states.

Figure 5.9 shows the altitude (Figure 5.9(a)) and airspeed (Figure 5.9(b)) RMSE tra-

jectories for both low canyon environments. Since the ADS provides high-sampling rate

measurements of both states in the LTE/VISION-OF configuration, the RMS error reaches

a small steady state value quickly. When adding the high-sampling rate VISION/IMU,

there is a slight decrease in steady-state error for both states. This drop in error is expected

in the EKF since two independent altitude and airspeed measurements are available at every

other time step to correct the predicted estimate.
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Figure 5.9: RMS altitude and airspeed error trajectories for low canyon environments.

Figure 5.10 shows the attitude angle RMSE trajectories for roll (Figure 5.10(a)), pitch

(Figure 5.10(b)), and yaw (Figure 5.10(c)). The IMU provides small steady-state RMS

errors when in the LTE/VISION-OF configuration with roll and pitch error just under 0.4

degrees and yaw RMS error at 0.7 degrees. This trend of IMU roll and pitch being much

more accurate than yaw is typical since yaw is primarily measured with a noisy magne-

tometer. However, once the VISION/IMU measurements are added, all three RMS errors

drop to roughly 0.2 degrees as the VISION/IMU measurements are very accurate with low

variances when using feature tracking-type localization algorithms.
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5.3 Chapter Summary

Navigation accuracy in the open space and homogeneous urban canyon test environ-

ments was evaluated using several sensor suites that included combinations of GPS, LTE,

VISION/IMU and VISION-OF along with the traditional IMU and ADS. In the open space

environment with realistic sensor delay, the addition of LTE made a marginal difference in

lateral position navigation accuracy, but slightly decreased the estimation error covariance.

In the canyon with VISION/IMU navigation accuracy was on the order of 0.15 meters un-

der the assumed simulation conditions, with little difference when eliminating GPS. When

reverting to VISION-OF, the accuracy was on the order of 1− 2 meters for both lateral

position states. When in the canyon using VISION-OF, the EnKF generally gave more

accurate short-term results in the longitudinal direction while the EKF gave better results

along the lateral direction. Longer simulations should be run in the future to determine

if the EnKF can reach a steady-state longitudinal error value. Overall, VISION/IMU in-

tegrated navigation systems should be considered when possible as they are able to add

accurate high sampling rate position and attitude measurements to the state estimation fil-

ter. LTE OTDOA is still immature as a UAS positioning sensor due to its low sampling

rate, high delay period, and limited availability of accuracy data in literature but it may

provide a means of detecting spoofed GPS data on a mass level, an analysis left to future

work.
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Figure 5.10: RMS attitude angle error trajectories for low canyon environments.
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CHAPTER 6

Accuracy of Navigation in a Heterogeneous

Urban Environment

This chapter studies navigation accuracy in a realistic urban environment using both the

exact UAS dynamics propagation model, which includes the equations of motions along

with the constant aerodynamic model parameters, and multiple randomly-generated UAS

plant dynamics propagation models where the aerodynamic model parameters are varied

from their exact values based on the literature. In the heterogeneous urban environment,

buildings of varying heights, intersections, and open spaces allow the study of sensor per-

formance in different relative location categories during straight and level flight as well

as climbing and descending flight. Since GPS availability rates are not constant within

an urban environment, these rates will be varied as a function of relative location category

throughout many of the simulations presented within the chapter. This dissertation refers to

models as matched when the same numerical values are used for constants and coefficients

in the UAS plant dynamics and state estimation filter propagation models. Unmatched

models have one or more different numerical values for the UAS plant dynamics model

versus the filter dynamics model. Unmatched models require process noise tuning to en-

sure a consistent filter. The sensor models remain unchanged. Process noise tuning is ac-

complished through the use of the average normalized estimation error squared (ANEES),

the average normalized innovation squared (ANIS), and the autocorrelation statistic, all

introduced in Chapter 2.
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Specific factors affecting the accuracy of UAS state estimation in the urban environ-

ments include both sensor availability and sensor self-accuracy detection, as first discussed

in Chapter 4 as sensor accuracy mode (SAM). In reality, the UAS GPS sensor is sensitive

to its altitude in the canyon with respect to the surrounding buildings. It may generate mea-

surements when near the top of the urban canyon, but it can lose line of sight to enough

satellites to lose measurement generation capability when flying lower in the canyon. This

phenomenon can be modeled discretely by turning GPS off when the UAS is below h = 75

meters, as was the case in the previous chapter. However, a more realistic technique to

account for varying availability is to use empirical availability rates as was shown in Table

4.2. Understanding the effects of sensor self-accuracy detection for both GPS and LTE is

also important. If these sensors can determine their own measurement noise covariance

values based on signal data, this information can be provided to the filter to give a more

realistic estimate of the propagated UAS states. Otherwise, if these sensors are not able

to generate this information, the filter must use estimated measurement noise covariance

values based on environmental information from previous state estimates.

The remainder of the chapter is outlined as follows: the Simulation Description sec-

tion discusses the simulation description in terms of building layout, sensors used and test

matrices. The Matched Model Results section analyzes the large pool of matched model

results where GPS availability, sensor accuracy mode, and the flight path are varied. The

Unmatched Model Results section analyzes both filter tuning and navigation accuracy for

a straight and level trajectory in the canyon. Finally, the Summary section provides overar-

ching conclusions based the simulation results.

The main contribution of this chapter is to provide navigation accuracy results for mul-

tiple trajectories in the heterogeneous urban environment with varying GPS availability for

both matched and unmatched models and filter tuning results for the unmatched model

case. The main innovations of this chapter include the incorporation of position depen-

dent sensor availability for GPS, sensor accuracy mode consideration when determining
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measurement noise covariance, and using expected sensor availability in the filter tuning

process.

6.1 Simulation Description

The general simulation parameters used in this chapter are shown below in Table 6.1.

Table 6.1: General simulation parameters.

Time-Step 0.01 seconds
Simulation Length 20 seconds (600 meters)

Number of Monte Carlo Trials 500
Filter Type EKF

Base Process Noise Covariance Q = 10−4 ∗ I12

6.1.1 Heterogeneous Urban Environment

The urban landscape shown in Figure 6.1 was used for all simulations in this chapter. Each

block contains four buildings of varying heights except the east side of the third block,

which is an adjacent open space. Since the mission altitudes within the environment were

h = 50 meters and h = 75 meters, each of the urban environment relative location categories

were encountered at least once. The h = 125 meters case was used as the baseline since

both GPS and LTE were available at each of their sampling instances.

6.1.2 Sensors and Sensor Noise Covariance

Table 6.2 shows the 1σ measurement noise values for each sensor used in simulations

within this chapter. The sensors include the IMU, ADS ,GPS , LT E, VIS ION −OF × 2,

where VIS ION −OF is an optical flow camera oriented perpendicular to the longitudinal

axis of the UAS. The ×2 denotes two cameras and two sets of measurements, with one along

each wing. Each result in Table 6.2 was taken from published results or sensor/integrated

system specification sheets.
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Figure 6.1: Example urban landscape used in simulations.

VISION-OF is used for all simulations in this chapter in order to focus on GPS avail-

ability as a main factor in receiving horizontal position measurements. Similar to the

previous chapter, the VISION-OF inertial airspeed noise covariance was converted to

(meters/second)2 using the camera specifications from the PX4FLOW Smart Camera, a

typical optical flow camera available on many hobby websites. These specifications in-

cluded a resolution of 752×480 with a 16 millimeter focal length and 24×24 micrometer

pixel size. The optical flow algorithm accuracy and computational speed data, shown in
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Table 6.2: Sensor simulation parameters for heterogeneous urban environment testing.

Sampling Sampling Measured States
Rate Delay (Noise Covariance Values)
(Hz) (seconds)

GPS 1 Hz 0.1 xN , xE , h, VT
(See Table 6.3)

VISION-OF 6.67 0.15 VT = VNorth
Inertial Airspeed Only (4.54 frames/second)2

IMU 100 0 φ, θ, ψ

(degrees2)
[2.71, 1.65, 8.27]2

p, q, r
((degrees/second)2)

[0.6, 0.6, 0.6]2

ADS 50 0 h, VT
[1.5 meters, 1 meter/second]2

α, β

[1 degree, 1 degree]2

LTE 1/4 4 xN , xE
(See Table 6.4)

Table F.1, was taken from the Bartels algorithm [118] in the Middlebury Optical Flow

Evaluation results for the synthetic urban image [75].

The GPS and LTE inertial position noise covariance tables are both shown in Table

4.4 and Table 4.5 respectively. The GPS ALT − 1 position measurement noise covariance

values were taken from [43], [79] while the ALT −3/S L−1 values were taken from [17].

The remaining position values were interpolated and the airspeed noise covariance value

was taken from [58]. The LTE OTDOA noise covariance values were generated from [119]

as this was the only identified source of LTE positioning accuracy as a function of number

of hearable eNodeBs.
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Table 6.3: Location-Based GPS Receiver Noise Covariance Data.

σ2
xN,E/h

(meters2)
S L−1 S L−2 S L−3

ALT −1 3.672/7.22 3.672/7.22 3.672/7.22

ALT −2 6.962/19.592 6.452/17.992 5.682/15.602

ALT −3 10.252/31.982 9.232/28.782 7.692/23.992

Table 6.4: Location-Based LTE Noise Covariance Data.

σ2
xN,E

(meters2) (# of Hearable eNBs)
S L−1 S L−2 S L−3

ALT −1 4.38 (10-15) 4.38 (10-15) 4.38 (10-15)
ALT −2 4.38 (10-15) 3.48 (15-20) 4.38 (10-15)
ALT −3 6.26 (7-10) 4.38 (10-15) 6.26 (7-10)

6.1.3 Test Matrix

6.1.3.1 Matched Model

To test GPS availability and sensor self-accuracy detection, four sets of tests were con-

ducted as shown in Table 6.5. Each test used a filter process noise covariance matrix set to

10−4 ∗ I12. The first set of tests provided baseline accuracy values for the straight and level

trajectory at the test altitudes using a GPS available/unavailable selection as in the previous

chapter. The second set of tests allowed GPS availability to vary based on the UAS location

within the environment to show any increase or decrease in navigation performance when

a more realistic and dynamic model is used. Both of these first two tests assume that the

sensor accuracy mode is On for GPS and LTE. The third test set switches the sensor accu-

racy mode to O f f for GPS and LTE. This single change allows the second and third sets

to be compared in order to determine what, if any, effect this change had on the system.

The fourth and final set of tests commanded the UAS to fly a sinusoidal trajectory through

the urban environment, starting at an altitude of 75 meters with a maximum altitude of 105

meters and a minimum altitude of 45 meters to ensure the UAS climbs above all buildings

and below all buildings at some point along the trajectory. These trajectories are shown in

Figure 6.2. The first run of this test had the UAS initiate a climb from the initial location

123



(Figure 6.2(a)) while the second run had the UAS descend from the initial point (Figure

6.2(b)). Since this is the only test that flies a non-straight and level mission trajectory, it

cannot be compared quantitatively to the other tests, but the qualitative results can be used

to determine accuracy differences.

Table 6.5: Simulation test matrix for UAS matched model.

Test ID Altitude Trajectory GPS Availability Sensor Accuracy Mode
1a 125 meters Straight/Level Available On
1b 75 meters Straight/Level Available On
1c 50 meters Straight/Level Unavailable On
2a 125 meters Straight/Level Varies On
2b 75 meters Straight/Level Varies On
2c 50 meters Straight/Level Varies On
3a 125 meters Straight/Level Varies Off
3b 75 meters Straight/Level Varies Off
3c 50 meters Straight/Level Varies Off
4a1 75 meters Sinusoidal: Varies On

h = 75 + sin( 2π
300 xN)

4a2 75 meters Sinusoidal: Varies On
h = 75 − sin( 2π

300 xN)
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(b) Initial descending

Figure 6.2: Sinusoidal trajectory through urban environment.
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6.1.3.2 Unmatched Model

The accuracy of the unmatched filter was determined through a series of tests using 1%

uncertainty in the UAS plant dynamics propagation model and the three different random

models for UAS plant dynamics propagation with larger uncertainties. Each was conducted

at an altitude h = 75 meters with varying GPS availability for a straight and level trajectory,

similar to the conditions in Test 2b in Table 6.5. Two sets of tests are shown in Table 6.6.

The first set simply uses the unmatched models with the same process noise for both the

UAS plant dynamics propagation and filter dynamics propagation. This test was conducted

for each unmatched model to determine if any one coefficient has a larger effect on the

consistency of the filter than the others. With this baseline, the second set of tests raised

the process noise entering the filter in order to weight the measurements higher than the

filter predictions. This test set was conducted for all three unmatched models to gener-

ate comparison information. Additional tests were also run to fine tune the ANEES and

ANIS values for unmatched Model 2 since it had the smoothest ANEES time history when

untuned.

Table 6.6: Initial simulation test matrix for UAS unmatched model.

Test ID Unmatched UAS Plant Dynamics
Model Process Noise Covariance

0 1% Uncertain 10−4 ∗ I12
1a 1 10−4 ∗ I12
1b 2 10−4 ∗ I12
1c 3 10−4 ∗ I12

2a1 1 10∗10−4 ∗ I12
2a2 1 100∗10−4 ∗ I12
2a3 1 1000∗10−4 ∗ I12
2b1 2 10∗10−4 ∗ I12
2b2 2 100∗10−4 ∗ I12
2b3 2 1000∗10−4 ∗ I12
2c1 3 10∗10−4 ∗ I12
2c2 3 100∗10−4 ∗ I12
2c2 3 1000∗10−4 ∗ I12
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6.2 Matched Model Results

This section discusses simulation RMSE results when using a matched model in the hetero-

geneous urban environment. It first analyzes the navigation accuracy with respect to GPS

availability, then with respect to the sensor accuracy mode O f f , and finally with the UAS

flying sinusoidal trajectories through the urban environment.

6.2.1 GPS Availability

When analyzing the performance of the relative location-based GPS availability algorithm,

the relative location trajectories must first be examined to determine where GPS is expected

to be available. Figure 6.3 shows the ALT (Figure 6.3(a)) and S L (Figure 6.3(b)) trajecto-

ries for each altitude. The pairs of dotted vertical lines in each figure represent the entrance

and exit of the intersections with the large white space between the pairs of line repre-

senting for the urban canyon. At h = 125 meters the ALT categorization stays above all

buildings providing persistent GPS availability. At h = 75 meters the ALT categorization

varies from below the tops of all buildings along the first block to above all buildings in the

second block, to above the tops of some buildings along the third and fourth blocks. This

variation results in sporadic GPS measurements initially, with more regular measurements

available as the UAS moves through the environment. When the UAS is at h = 50 meters the

ALT categorization begins below the tops of all buildings until just prior to the third block

were it moves to below the tops of some buildings due to the adjacent open space along

the third block. Once the UAS crosses into the fourth block, ALT is again below the tops

of all buildings. At this altitude, GPS measurements will be much less frequent, but still

not completely eliminated. This thorough sampling of ALT categories over runs spanning

three separate altitudes ensures navigation accuracy through all possible ALT transitions

will be reported. Since the same lateral profile is flown for all three altitudes, each of the

three S L trajectories is the same, as shown in Figure 6.3(b).
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Figure 6.3: Relative location categorization for straight and level trajectories through urban
environment.

Figure 6.4 is a representative plot, using data from Monte Carlo Trial #500, to view

trends in GPS measurement generation as a function of altitude and and surrounding urban

canyon characteristics. It shows that the most GPS measurements occur at h = 125 meters

since GPS is available to take a measurement every second, while this number decreases

as the UAS altitude decreases due to loss of satellite line of sight. For this specific run

only 8 of a possible 19 measurements are available at an altitude of 75 meters with 5 of the

measurements coming in the second canyon where the UAS is above all buildings. At 50

meters, only 6 of 19 measurements available with multiple measurements only occurring

in the third canyon. These values demonstrate the possible ineffectiveness of GPS as a

reliable navigation sensor when the UAS is below the tops of buildings.

Figures 6.5 and 6.6 show the horizontal position and altitude/airspeed RMSE trajec-

tories at h = 75 meters comparing the GPS constant availability method with the relative

location-based algorithm. Each shows the trajectory at h = 125 meters for comparison. For

the longitudinal position shown in Figure 6.5(a) the two techniques yield similar results,

reaching a steady error of roughly 0.8 meters, because the measurements provided by the
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Figure 6.4: GPS measurement locations at each altitude using the varying GPS availability
technique.

constant availability method were not sufficiently accurate upon exiting the second canyon

to outperform the varying availability trajectory that generally had fewer measurements

available. This was due to the UAS ALT category switching from above the tops of all

buildings to above the tops of some buildings with its larger measurement noise values af-

ter that point. Neither method performed as well as the h = 125 meter trajectory as it had

more accurate measurements available at each sampling point along the canyons, reaching

a steady error of approximately 0.7 meters.

The lateral position trajectories shown in Figure 6.5(b) show the similar sawtooth trend

to those in the previous chapter as the UAS attempted to center itself within the canyon.

However, there was a linear increase in error at h = 75 meters using both GPS availability

algorithms as the available measurements became less accurate in the third canyon. How-

ever, halfway though the third canyon, the constant availability trajectory error dropped

while the varying availability trajectory error continued to climb, signifying the lack of

available measurements for this algorithm. As both error trajectories continued to increase

in the fourth canyon, the h = 125 meter error trajectory began to slowly decrease as the

128



UAS continued to receive more accurate measurements.
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Figure 6.5: Horizontal position RMSE trajectories at h = 75 meters for both GPS availabil-
ity methods with h = 125 meters baseline shown.

The altitude trajectories shown in Figure 6.6(a) show no real difference in accuracy

performance between the two GPS availability algorithms at different altitudes since the

ADS provided an accurate high sampling rate measurement regardless of GPS availability

or accuracy. A steady-state error of 0.2 meters in altitude is sufficient to navigate in the

urban environment, assuming all sensors are working properly. The airspeed trajectories in

Figure 6.6(b) show a steep decrease in error regardless of the GPS availability method since

the ADS also measures airspeed. However, the h = 125 meter trajectory does not decrease

as fast as the h = 75 meter trajectories since it is not able to take advantage of optical flow

airspeed when above all buildings. However, by the second canyon, a sufficient number

of measurements have been received for all three trajectories to approach the same steady-

state error value below 0.1 meters/second.

Figures 6.7 and 6.8 show the horizontal position and altitude/airspeed RMSE trajec-

tories at h = 50 meters comparing the GPS constant availability method with the relative

location-based algorithm. Each shows the trajectory at h = 125 meters for comparison.
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(b) Airspeed

Figure 6.6: Altitude and airspeed RMSE trajectories at h = 75 meters for both GPS avail-
ability methods with h = 125 meters baseline shown.

The longitudinal error trajectory in Figure 6.7(a) shows that the error worsens when GPS is

unavailable and gets slightly better with variable GPS availability at h = 50 meters. The dif-

ference is based solely on the number of location measurements received. In the constant

availability case, the only measurements received are those from the LTE sensors which

are scarce and 4 seconds delayed when received. In the varying availability case, even if

a small number of GPS measurements are received, they still augment LTE to provide a

more accurate estimate. For the lateral position in Figure 6.7(b), both error trajectories

at h = 50 meters increase with the constant availability increasing roughly linearly from 1

meter to 2 meters and the varying availability increasing from 1 meter to 1.75 meters until

the third canyon and then leveling off as more position measurements are received. For the

varying availability case, the error will grow in areas where measurements are scarce and

level off in areas where measurements become available with more regularity. These error

increases highlight the difficulty in controlling the lateral position of the UAS when so few

measurements are available to increase the accuracy of the estimate.

The altitude and airspeed trajectories shown in Figures 6.8(a) and 6.8(b) respectively
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Figure 6.7: Horizontal position RMSE trajectories at h = 50 meters for both GPS availabil-
ity methods with h = 125 meters baseline shown.

show similar results to those at h = 75 meters since the state accuracy is mostly depen-

dent on the accuracy of the ADS altitude and airspeed measurements. As previously seen,

the availability of VIS ION −OF × 2 airspeed measurements allows the error to initially

decrease more quickly in the first canyon at h = 50 meters than at h = 125 meters.

6.2.2 Sensor Accuracy Mode

Figures 6.9 and 6.10 show the horizontal position trajectories comparing the sensor ac-

curacy mode (SAM) On and O f f settings at h = 75 meters and at h = 50 meters. In the

longitudinal case shown in Figures 6.9(a) and 6.10(a) and the lateral cases shown in Fig-

ures 6.9(b) and 6.10(b) both SAM settings yield approximately the same error trajectories.

This behavior was expected in the canyons and intersections because the accurate altitude

estimate was used to generate the ALT categorization. However, the fact that there was no

variation in the error at the transition points between the two shows that the roughly 1 me-

ter error in the longitudinal position estimate was sufficiently small when using a discrete

relative location categorization algorithm.
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Figure 6.8: Altitude and airspeed RMSE trajectories at at h = 50 meters for both GPS
availability methods with h = 125 meters baseline shown.
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Figure 6.9: Horizontal position RMSE trajectories at h = 75 meters for both GPS availabil-
ity methods with h = 125 meters baseline shown.

6.2.3 Sinusoidal Flight Path through Environment

When flying a sinusoidal flight path though the urban environment with an initial altitude

of h = 75 meters, the ALT profile will look different than the three trajectories shown in
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Figure 6.10: Horizontal position RMSE trajectories at h = 50 meters for both GPS avail-
ability methods with h = 125 meter baseline shown.

Figure 6.3(a) as it changes categorizations within both the urban canyons and intersections

resulting in navigation performance changes. This is demonstrated in Figure 6.11 with both

the initial climbing (shown as a solid line) and initial descending (shown as dotted line)

flight paths. The ALT categorization for the initial climbing flight path starts below the

tops of all buildings, then climbs to above the tops of all buildings, and then descends back

to above the tops of some buildings by the time the UAS approaches the first intersection

with the same transitions in the second intersection. Since the UAS is climbing when it

enters the third canyon, it quickly transitions from above the tops of some buildings to

above the tops of all buildings until it descends toward the next intersection. For the initial

descending trajectory, the ALT categorization starts below the tops of all buildings and

remains there until the second canyon where transitions to above the tops of all buildings

as the UAS climbs. Since the UAS is at its highest altitude in the second canyon with

shorter buildings, it stays above the tops of all buildings until it enters the third canyon

where it is above the tops of some buildings. The UAS begins its second climb within the

third canyon and ends up above the tops of all buildings by the time it enters the fourth
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canyon. Since the commanded altitude trajectory was a sine function with a wavelength

set to 300 meters, which is much larger than the block length, these frequent transitions

between categorization values are to be expected.
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Figure 6.11: ALT categorization for sinusoidal trajectories through urban environment.

Figure 6.12 shows the horizontal position RMSE trajectories for both UAS sinusoidal

trajectories and Figure 6.13 shows the altitude and airspeed RMSE trajectories for the same

two trajectories with the initial altitude h0 = 75 meters for both. For both horizontal position

error trajectories in Figures 6.12(a) and 6.12(b), the initial descent flight path outperforms

both the climbing flight path and the constant altitude flight path. This is due to its ALT

categorization above all buildings for the entire length of the second canyon where the

climbing flight is primarily below building tops in the second canyon. In the lateral case,

the climbing flight path has a sharp drop in error during the first half of the third canyon

as it climbs above the tops of all buildings, but this is brief as it descends back into the
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canyon and its lateral error linearly increases. Even though a UAS may not fly these exact

sinusoidal flight paths through the canyon, the noticeable trend is that rapid changes in

altitude in turn induce rapid changes in RMS error.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Longitudinal Position (meters)

x N
 R

M
S

 E
rr

or
 (

m
et

er
s)

 

 

Initial Climb
Initial Descent
Constant Altitude

(a) Longitudinal

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Longitudinal Position (meters)
x E

 R
M

S
 E

rr
or

 (
m

et
er

s)
 

 

(b) Lateral

Figure 6.12: Horizontal position RMSE trajectories for sinusoidal trajectories through the
urban environment where h0 = 75 meters.

The altitude and airspeed trajectories for the sinusoidal flight paths are shown in Figure

6.13. Both follow the same general trend of a sharp decrease from the initial error to the

steady-state due to the high frequency sampling ADS measurements. Figure 6.13(a) shows

that the initial climb and initial descent flight paths have small but cyclic changes in altitude

error along the length of the urban environment due to the changing ALT categorization.

Generally when the UAS is higher in the canyon, the altitude estimate is more accurate and

when the UAS is lower in the canyon it degrades slightly. Figure 6.13(b) shows the initial

climbing and descending flight path error trajectories descending more steeply then the

constant altitude error trajectory. Since all three cases start at h = 75 meters the climbing

and descending flight paths would have received slightly more accurate initial optical flow

airspeed measurements, but all three reached the steady-state error before the halfway point

of the first canyon.
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Figure 6.13: Altitude and airspeed RMSE trajectories for sinusoidal trajectories through
the urban environment.

6.3 Unmatched Model Results

Since the real-world dynamic model parameters generally do not exactly match those calcu-

lated during the system identification process, uncertainty must be applied to these param-

eters. This true plant dynamics propagation can then be compared to the filtered estimates

after filter tuning to determine state accuracy. A straightforward spring-mass-damper ex-

ample is presented to show the effect of an unmatched model. The system is shown in

Figure 6.14.

The linear equations of motion for the spring-mass-damper are

 ẋ1

ẋ2

 =

 0 1

− k
m − c

m


 x1

x2

 (6.1)

where x1 is the position of the mass in meters, x2 is the linear velocity of the mass in meters

per second, k is the spring constant in Newtons per meter, c is the damping coefficient in

kilograms per second, and m is the mass in kilograms.

The measurement model is
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Figure 6.14: Spring-mass-damper system.

 z1

z2

 =

 1 0

0 1


 x1

x2

+

 v1

v2

 (6.2)

where v ∼ N (0,R). To verify the simulation, it was run using a matched model for 10

seconds with a 0.01 second time step. The model constants were set to m = 1 kilogram, k =

10 Newtons per meter, and c = 2 kilograms per second for both the plant dynamics model

and filter model. The plant states were initialized to x1(0) = 5 meters and x2(0) = 0 meters

per second. The filter initial estimates were drawn from a normal distribution using the

plant states as the means with the covariances equal to the initial filter covariance matrix

P =

 0.5 0

0 0.25

 (6.3)

The process noise covariance matrix for both the plant dynamics propagation and filter

propagation was set to

Q =

 1 0

0 1

 (6.4)
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and the measurement noise covariance was set to

R =

 1.5 0

0 0.5

 (6.5)

Figure 6.15 shows the ANEES (Figure 6.15(a)) and ANIS (Figure 6.15(b)) trajectories

for the spring-mass-damper system when using a matched model for the plant dynamics

and filter dynamics. Here, the ANEES and ANIS values stay between the lower (red)

and upper (green) chi-squared bounds for a 95% confidence interval, verifying that the

filter covariance accurately reflects the error in the states and the innovation covariance

accurately reflects the innovations being calculated by the filter.
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Figure 6.15: Filter metrics for the matched spring-mass-damper system.

To determine the effects of using an unmatched model, the simulation was run keeping

all of the above parameters the same except for the plant dynamics model constants. These

were assumed to have a 20% uncertainty and were set to m = 0.8 kilogram, k = 12 New-

tons per meter, and c = 1.6 kilograms per second. Figure 6.16 shows the ANEES (Figure

6.16(a)) and ANIS (Figure 6.16(b)) trajectories when using the unmatched model when
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the filter is not tuned. Both the ANEES and ANIS values are above the upper chi-squared

bounds, showing that the filter covariance is not predicting sufficient error in the states due

to the unmatched model.

0 2 4 6 8 10

5

10

15

20

25

30

Time (seconds)

A
N

E
E

S
 (

−
)

(a) ANEES

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

Time (seconds)
A

N
IS

 (
−

)

(b) ANIS

Figure 6.16: Filter metrics for the unmatched and untuned spring-mass-damper system.

In order to tune the filter, the simulation was run again with increased filter process

noise. Increased filter process noise increases the predicted covariance, which in turns

causes an increase in Kalman gain. A larger Kalman gain will cause a larger correction

based on the more accurate measurements. To raise the filter process noise, a scalar tuning

value qtune was used such that Q f ilter=qtune ∗Q. This method was selected as it allows

the process noise on each state to be increased equally for a given scalar tuning value.

It also facilitates straightforward ANEES/ANIS trajectory comparisons, as will be shown

later in the chapter. Figure 6.17 shows the ANEES (Figure 6.17(a)) and ANIS (Figure

6.17(b)) trajectories when qtune = 100.1 ( 1.25). With this filter process noise increase, both

the ANEES and ANIS values drop back between the chi-squared bounds, showing that the

filter is consistent. This same process will be used subsequently to tune the UAS navigation

filter, but with quite different results.
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Figure 6.17: Filter metrics for the unmatched and tuned spring-mass-damper system with
qtune = 100.1.

6.3.1 Unmatched UAS Models

The same unmatching and filter tuning process can be applied to the UAS navigation sim-

ulation using the unmatched models shown below. Table 6.7 shows the nominal model

parameters used by the state estimation filter along with slightly different uncertain param-

eters that are drawn from a uniform distribution centered on the nominal value with one

percent bounds on either side. This one percent model is used to determine if filter con-

sistency, as shown through ANEES and ANIS, is attainable without the need for tuning if

system identification is able to yield highly accurate parameters for the aircraft.
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Table 6.7: Uncertain UAS model aerodynamic coefficients.

Coefficient/Constant Nominal Model 1% Uncertain

CLδa 6.79×10−2 6.74×10−2

CLβ −1.30×10−2 −1.30×10−2

CM1 2.08×10−2 2.07×10−2

CMδe 5.45×10−1 5.46×10−1

CMα −9.03×10−2 −9.11×10−2

CMq̃ −9.83 −9.92

CNδr 5.34×10−2 5.30×10−2

CNβ 8.67×10−2 8.75×10−2

CNr̃ −2.14×10−1 −2.16×10−1

Ixx (kilogram-meter2) 2.56 2.58

Iyy (kilogram-meter2) 10.9 10.99

Izz (kilogram-meter2) 11.3 11.22

Ixz = Izx (kilogram-meter2) 0.5 0.50

Table 6.8 shows the nominal model parameters used by the state estimation filter along

with the uncertain parameters for three different randomly generated models. The bound

on the percent uncertainty for each parameter, from Ducard [42], as shown in the table,

is used to select the value from a uniform distribution centered about the nominal value.

All coefficients are unitless while the moment of inertia constants are each in units of

kilogram−meter2. In keeping with [42], all other model parameters, listed in Appendix

C are assumed to have no uncertainty although realistically they may have at least a small

amount of uncertainty as they are typically generated through an experimental process.
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Table 6.8: Unmatched UAS model aerodynamic coefficients.

Coefficient/Constant Nominal Model Percent Unmatched 1 Unmatched 2 Unmatched 3

Uncertainty

CLδa 6.79×10−2 10% 7.05×10−2 6.56×10−2 7.43×10−2

CLβ −1.30×10−2 30% −1.06×10−2 −1.69×10−2 −1.44×10−2

CM1 2.08×10−2 10% 2.11×10−2 2.21×10−2 2.24×10−2

CMδe 5.45×10−1 20% 6.34×10−1 5.16×10−1 6.10×10−1

CMα −9.03×10−2 20% −7.93×10−2 −9.36×10−2 −9.79×10−2

CMq̃ −9.83 20% −7.98 −8.77 −9.38

CNδr 5.34×10−2 10% 4.98×10−2 5.48×10−2 5.14×10−2

CNβ 8.67×10−2 10% 8.66×10−2 8.46×10−2 8.10×10−2

CNr̃ −2.14×10−1 10% −1.98×10−1 −2.07×10−1 −2.14×10−1

Ixx 2.56 5% 2.44 2.48 2.45

Iyy 10.9 5% 11.18 10.55 11.20

Izz 11.3 5% 11.83 11.08 11.43

Ixz = Izx 0.5 5% 0.49 0.52 0.49

6.3.2 Untuned Unmatched Model Results

When examining the performance of an unmatched model, ANEES time history can be

used to determine if the filter is consistent. If the filter is consistent, the majority of the

ANEES values will lie between the upper and lower 95% confidence bounds centered on n,

the number of states in the system. With this type of behavior state errors can be considered

to have a zero mean and be realistically estimated by the filter covariance. The ANIS is

also a measure of filter consistency that examines the innovations using a lower and upper

bound much in the same way as the ANEES. It measures how closely the covariance of the

innovations at each time step match the filter-calculated innovation covariance.

The first comparison shows the matched model ANEES and ANIS time histories along

with the same metrics for the 1% unmatched model in Figure 6.18. For ANEES time
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history in Figure 6.18(a), the small differences in the 1% unmatched model results in in-

creasing values in the first through third canyons from 12 to 18. The values level out in the

fourth canyon where GPS measurements become scarce. This increase corresponds to an

optimistic filter that will underestimate the actual state error, which is not acceptable in an

urban environment. Even small differences in the model can drive the ANEES to quickly

increase when the error covariance does not accurately predict the actual state error. The

ANIS time history in Figure 6.18(b) shows almost identical results for the matched model

and the 1% unmatched model. Since the ANEES does not show a consistent filter, but the

ANIS does show a consistent filter, small tuning adjustments could be made to the filter to

bring the ANEES into the consistency bounds if the true propagation model was known to

1%. However, it should not be at the expense of keeping the ANIS within the consistency

bounds as this metric can be used in experimental filter tuning, while the ANEES cannot

be used since the true state values are not known. The most important conclusion here is

that an accurate system identification process with known measurement noise could yield

a consistent real world filter with only small tuning corrections needed.
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Figure 6.18: Filter metrics for straight and level trajectories through urban canyon at h = 75
meters using 1% unmatched model.
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Figures 6.19 and 6.20 show the ANEES and ANIS plots respectively for the matched

model along with the untuned and unmatched model tests with higher levels of uncertainty

as described in Ducard [42]. The ANEES plots for all three unmatched models (Figure

6.19) are well above the green line that represents the upper bound on ANEES for filter

consistency. This indicates an optimistic filter that underestimates the error covariance.

Models 1 and 2 yield similar ANEES time histories that hover near 80 with Model 1 reach-

ing a steady state and Model 2 slightly increasing. However, the ANEES value for Model

3 increases dramatically in the second canyon and spikes at almost 550. This is most likely

due to Model 3 having the largest deviation from the exact filter dynamics model. This

difference between the matched model in ANEES in Figure 6.19(a) and the unmatched

models, as well as the differences in ANEES between the unmatched models show just

how sensitive the filter is to changes in the model parameters.
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Figure 6.19: ANEES time history for straight and level trajectories through urban canyon
at h = 75 meters using a matched model and three unmatched models.

The ANIS plots in Figure 6.20 show the same trends as the ANEES plots with the three

unmatched model time histories all well above the upper bound for filter consistency. These

discrepancies are due to the dependence of the innovation covariances on the predicted state
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vector covariance from the current time-step. Since this covariance value is underestimated,

as previously discussed, it will result in the underestimation of the innovation covariance,

which in turn leads to large and inconsistent ANIS values. With proper tuning of the filter

process noise covariance matrix, the ANIS time history should begin to look similar to

Figure 6.20(a) where it stays within the confidence bounds indicating that the innovations

are being represented accurately by the innovation covariance.
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Figure 6.20: ANIS time history for straight and level trajectories through urban canyon at
h = 75 meters using three unmatched models.

6.3.3 Tuned Unmatched Model Results

If the filter is not consistent when using the unmatched models, it must be tuned to bring

these values within the consistency bounds as shown in Figures 6.19(a) and 6.20(a). This

can be accomplished by adjusting the values of the filter process noise and the measurement

noise covariance matrices. Since the measurement noise covariance values are known, the

filter process noise covariance matrix can be adjusted. In general, the process noise covari-

ance matrix values are artificially increased during tuning to intentionally raise the Kalman

gain values. As a result, the filter weights the measurements more heavily. Mathemati-
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cally, the increase in the process noise covariance matrix values raises both the predicted

error covariance matrix values and the innovation covariance matrix values. With these two

quantities increased, both the ANEES and ANIS are decreased for the same state error and

innovation values.

6.3.3.1 Filter Metrics Verification

As shown in Table 6.6 tests 2a1− 2c2, the filter process noise covariance matrix values

are increased by multiples of 10, 100, and 1000 respectively in an attempt to bring the

ANEES and ANIS values into the consistent range so that the filter is accurately estimating

the state error and innovations. Figures 6.21 and 6.22 show the ANEES and ANIS time

histories respectively using these three filter process noise covariance matrix multipliers.

As the process noise is increased from 10 (Figure 6.21(a)) to 100 (Figure 6.21(b)) to 1000

(Figure 6.21(c)), the ANEES value decreases toward the consistency range and eventually

falls below the range at qtune = 1000 for Models 1 and 2. This indicates that the filter has

become pessimistic, meaning that its error covariance is larger than the actual state error.

However, both unmatched models 1 and 3 showed the ANEES value starting to climb upon

reaching the first canyon meaning that the error covariances were decreasing. Because

the process noise increase lowers the ANEES values, it would be difficult to use a single

parameter to tune the process noise covariance matrix such that the entire length of the

ANEES time history would fall between the consistency bounds.

Any time the ANEES time histories decreased due to an increase in the filter process

noise, we expect the ANIS time histories to also decrease. As the process noise is increased

from 10 (Figure 6.22(a)) to 100 (Figure 6.22(b)) to 1000 (Figure 6.22(c)), the ANIS time

history values also decreased through the consistency window until they were well below

the lower bound. This indicated that the innovation covariance had increased to the point

where the measurements were not being weighted as highly as necessary. Tuning filter

process noise then becomes a balancing act to ensure it is not indiscriminately increased so
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(c) qtune = 1000

Figure 6.21: ANEES time history for straight and level trajectories through urban canyon
at h = 75 meters using a matched model and three unmatched models.

that the ANIS values fall below the filter consistency bounds.

Further ANEES Tuning To further tune the filter, unmatched Model 2 with its fairly

consistent ANEES values was selected to be run with qtune values of 25 and 50 as shown

in Figure 6.23. In both cases, the ANEES started below the lower consistency bound and
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Figure 6.22: ANIS time history for straight and level trajectories through urban canyon at
h = 75 meters using matched model and three unmatched models.

increases as measurements are received and error covariance decreases. For qtune = 25 the

ANEES value stayed within the consistency bounds throughout most of the second canyon,

but increased slightly in the third canyon and then climbed in the third intersection. The

ANEES value for qtune = 50 followed the same trend, but started at a slightly lower value as

the filter was initially more pessimistic due to the higher process noise. The ANIS values
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dipped just below the lower consistency bound in several locations as well indicating that

the process noise was larger than necessary. However, a lower process noise would drive

the ANEES above the upper consistency bound even closer to the beginning of the mission.

This demonstrates the difficulty in tuning the filter process noise covariance by using a

single tuning factor, especially in a dynamically changing sensor environment where more

GPS measurements may be available when the UAS is in the second canyon and third

canyon than are available in the other canyons.
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Figure 6.23: Filter metrics for qtune = {25, 50} for straight and level trajectories through
urban canyon at h = 75 meters using Unmatched Model 2.

With increasing ANEES values as the UAS moves through the canyon, one possible

technique to improve ANEES-based performance would be to increase the filter process

noise covariance matrix values in each canyon. To test this, qtune was initialized to 15 in

the first canyon then increased to 25,35, 50 respectively in each of the next three canyons.

Using this technique, the ANEES value shown in Figure 6.24(a) was within the consistency

bounds for parts of the first and second canyon, then for all of the third and fourth canyons.

Since it did not creep very high above the upper bound, the ANEES only slightly over-

predicted the accuracy of the state estimates in a handful of locations along the canyon.
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However, the ANIS values decreased from canyon to canyon as the process noise increased

from canyon to canyon and ended up below the lower consistency bound by the second

canyon. Again, by increasing process noise, the ANIS showed an inconsistent filter while

the ANEES showed a fairly consistent filter.

0 200 400 600
0

5

10

15

Longitudinal Position (meters)

A
N

E
E

S
 (

−
)

(a) ANEES

0 200 400 600
0

5

10

15

Longitudinal Position (meters)

A
N

IS
 (

−
)

(b) ANIS

Figure 6.24: Filter metrics for increasing qtune for straight and level trajectories through
urban canyon at h = 75 meters using Unmatched Model 2.

Further ANIS Tuning As stated in Bar-Shalom et al. [110] the ANEES can only be

tested in simulation or a controlled laboratory environment since in the real world there is

no way to measure the propagated UAS plant dynamics states. The ANIS test would be

used to tune the filter in this situation since the measurements would be available. Follow-

ing that idea while still considering ANEES, the simulation was run a with qtune = 15 to

determine if this value would yield a consistent filter in terms of ANIS values since Fig-

ure 6.23(b) shows the ANIS below the lower consistency bound for qtune = 25 and Figure

6.21(a) shows the ANEES above the upper consistency bound for qtune = 10. The results

of this run, shown in Figure 6.25, reaffirm the expected trends. Figure 6.25(a) shows a

slightly decreased ANEES in the first canyon, but then increased continuously once the
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UAS entered the second canyon. As previously discussed, this increase can only be coun-

teracted with canyon by canyon process noise increases. However, the ANIS, shown in

Figure 6.25(b), stayed between the consistency bounds for much of the time history, with

short intervals just below the lower bound. This indicates that a slightly smaller filter pro-

cess noise would push the ANIS values into the consistent filter range, but would cause a

further increase in ANEES.
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Figure 6.25: Filter metrics for qtune = 15 for straight and level trajectories through urban
canyon at h = 75 meters using Unmatched Model 2.

Innovation Autocorrelation The third requirement for a consistent filter is that the in-

novation sequences are considered to be white, meaning that they are statistically uncor-

related. For each of the sensors, the expectation is that the autocorrelation statistic has a

zero mean and a variance of 1/N. For qtune = 15, Figure 6.26 shows the autocorrelation

statistic along with the 95% bounds for each of the six active sensors. As seen in Figures

6.26(a) and 6.26(b), the high sampling rate IMU and ADS sample autocorrelation statistics

are offset below the lower bound, which is expected as the innovation values decrease with

an increase in filter process noise. The lower sampling rate GPS and LTE sample autocor-
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relation statistic time histories, shown in 6.26(c) and 6.26(d) have only a few data points (4

for GPS and 3 for LTE). The GPS autocorrelation statistic is slightly above the upper bound

for the complete innovation sequence. However, it is difficult to draw any conclusions for

GPS autocorrelation since only the four innovations that were present at the same time-step

in each run are shown, due to varying GPS availability. The LTE autocorrelation statistic

gives the best results as the values stay within the bounds for all four innovations. This

is because the innovations are spread out four seconds in time, are sampled at the same

time-steps for each run, and measure the states with the most uncertainty. Figures 6.26(e)

and 6.26(f) show the sample autocorrelation statistical values for the VISION optical flow

sensors. Both stay in the consistent range near zero for most of the trajectory showing that

the appropriate amount of process noise is used for these particular sensors to ensure their

innovations are uncorrelated.

6.3.4 Filter Accuracy Results

Once the filter is tuned, the RMS error is examined to determine the accuracy of the filter in

estimating the propagated UAS plant dynamics states. RMS error plots are shown in Figure

6.27 - Figure 6.29, with time history plots for the unmatched and untuned case, the tuned

ANEES case where qtune increases in each canyon, and the tuned ANIS case where qtune =

15. The three different cases were selected to show how different filter tuning methods

affect the accuracy of the different states. In Figure 6.27 the three RMS position error plots

are shown for the three different cases. For both longitudinal (Figure 6.27(a) and lateral

(Figure 6.27(b)) positions, the untuned trajectory was generally between the two other

trajectories in terms of accuracy. The longitudinal RMS position error continually increased

along the urban environment with small decreases when measurements were received. This

growth in error demonstrated the problem facing a UAS with an unmatched model when it

does not have a reliable high sampling rate position measurement to measure a state that

is not controlled. The results for the lateral RMS position error were slightly better due to
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Figure 6.26: Innovation autocorrelation statistic time history for qtune = 15 for straight and
level trajectories through urban canyon at h = 75 meters using Unmatched Model 2.
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the decrease in error in the second canyon. Here, the more frequent measurements produce

accurate estimates as the controller drives the UAS to the center of the canyon.

Altitude RMS position error (Figure 6.27(c)) shows large differences between the un-

tuned case and the two tuned cases. In the untuned case, after the initial sharp descent, the

error climbed through the second half of the first canyon due to the difference in models.

This demonstrates the effect of having a high sampling rate measurement combined with

unmatched models. Even though the measurements were available, the process noise was

not artificially inflated sufficiently to weight them higher in the Kalman gain calculation

until the second canyon when more GPS measurements became available. For the two

tuned cases, the trajectory followed the same path as the matched model tests since the

increased process noise allowed for the frequently generated ADS altitude measurements

to have a larger effect of the magnitude of the Kalman gain.

In Figure 6.28 the RMS error plots are shown for airspeed (Figure 6.28(a)), angle of

attack (Figure 6.28(b)), and angle of sideslip (Figure 6.28(c)). The untuned airspeed trajec-

tory shows a large spike within the first canyon corresponding to the jump in altitude error

shown in Figure 6.27(c). As the altitude error began to level off in the second canyon, the

airspeed error also leveled off with decreases each time a GPS measurement was received.

Interestingly, the loss of the computer vision airspeed measurement had virtually no effect

in any of the intersections, most likely due to its slow 0.15 second sampling rate and delay

period. Once the filter was tuned, the two other cases showed small differences in error

trajectories. As expected, the two trajectories essentially overlap in the first canyon since

the qtune value is the same for both. The case with variable qtune was slightly more accurate

for the remainder of the urban environment, but all three cases reach the same RMS error

value by the end of the fourth canyon.

The angle of attack and angle of sideslip plots show small errors due to the availability

of the ADS measurements throughout the environment. For these two states, the tuned

cases were slightly less accurate than the untuned case again because artificial process
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Figure 6.27: RMS position error time history for untuned and tuned cases for straight and
level trajectories through urban canyon at h = 75 meters using Unmatched Model 2.

noise was injected into the filter. This was most clearly demonstrated in Figure 6.28(b)

where the errors for the three cases were nearly identical in the first canyon, but as the

process noise increased in the varying case, its error become larger in each canyon.

RMS error plots for the Euler angles in Figure 6.29 have similar tendencies to the angle

of attack and angle of sideslip RMS plots. The untuned cases showed the most accurate
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Figure 6.28: RMS airspeed and wind angle error time history for untuned and tuned cases
for straight and level trajectories through urban canyon at h = 75 meters using Unmatched
Model 2.

results while the varying process noise case showed increasing RMS error as the process

noise was increased entering each canyon. In the case of the constant qtune value, the

error was virtually constant. However, as shown in the RMS position plots, these angle

errors caused increasing position errors when horizontal position measurements were not
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available.
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Figure 6.29: RMS Euler angle error time history for untuned and tuned cases for straight
and level trajectories through urban canyon at h = 75 meters using Unmatched Model 2.

When using an Extended Kalman Filter with an unmatched model, the untuned case

generally yields the most accurate estimates since it has the smallest filter process noise.

The only state where this does not hold along the entire trajectory is altitude. Unfortunately,

the untuned case also yields the most inconsistent filter, meaning that the UAS would not
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actually know that these state estimates are the closest to the propagated UAS plant dynam-

ics states as compared to the other tuned cases. These tradeoffs demonstrate why a good

system identification process that allows the filter to be tuned using very little process noise

is important to accurate and safe navigation within the urban canyon.

6.4 Chapter Summary

This chapter discussed UAS urban canyon simulations using both a matched model and

process noise covariance values as well as unmatched models with both untuned and tuned

process noise covariance values. In the matched model scenarios, simulations were run

when varying GPS availability, switching the sensor accuracy mode on and off, and when

following constant altitude sinusoidal trajectories through the urban environment. When

comparing results with constant GPS availability rates to the varying GPS availability rates,

lateral position navigation accuracy generally became more accurate as more GPS measure-

ments were received at each of the altitudes. For altitude and airspeed accuracy, the higher

sampling rate ADS provided sufficient data for the GPS measurements to have a minimal

effect. The sensor accuracy mode switch did not have an effect on the navigation accuracy

since a discrete relative location model was used, which would yield the same GPS and

LTE accuracy for altitude bands that were always larger than the error in altitude. Again,

the lateral position accuracy became worse in the canyon as fewer GPS measurements were

received. When sinusoidal flight paths were flown through the canyon, position accuracy

changed quickly as a function of ALT category, forcing a tradeoff between low altitude

missions and higher navigation accuracy. This would motivate the use of VISION/IMU

sensor localization when deep in the canyon with degraded GPS capabilities.

When unmatched models were used filter tuning was necessary to ensure the EKF-

generated covariance properly represented the state error and that the innovation covariance

was accurately reflecting the true difference between generated and predicted measure-
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ments. This process was difficult as it was necessary to consider the ANEES, the ANIS,

and the autocorrelation statistic metrics concurrently when tuning. The strategy of simply

adding process noise without altering the calculated measurement noise eventually brought

all three metrics near their consistent ranges near the beginning of the environment, but

could not handle the resulting ANEES increase when more measurements becoming avail-

able further into the environment. Although ANIS and autocorrelation could be tuned

this way, ANEES could not. Instead, it required the use of canyon-specific process noise

covariance values, which caused the ANIS and autocorrelation to drop below the lower

consistency bounds. This issue highlighted the difficulty in tuning process noise in an EKF

when the UAS plant dynamics model has uncertainty in several of its parameters. For all

but altitude, the untuned filter performed the same or better than the tuned filter due to the

lack of artificial process noise added to the system. The only problem is that the user could

not achieve this level of accuracy in real-world applications since the user would need to

tune ANIS and autocorrelation to be confident that the filter error covariance properly cap-

tures the level of error in the estimates, especially in the narrow and safety-critical urban

environment.
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CHAPTER 7

Conclusions and Future Research Topics

To conduct UAS missions in a GPS degraded or denied urban environment, government,

commercial, and academic organizations are actively researching multi-sensor solutions

that take advantage of existing man-made electromagnetic signals. This dissertation inves-

tigated navigation accuracy for fixed-wing UAS using combinations of navigation sensors

over a suite of urban environments. For the first time the attributes of the LTE OTDOA

geolocation technique were used as part of a UAS navigation solution. A custom MAT-

LAB® simulation incorporated and assessed a suite of statistical accuracy metrics using

models of the urban environment, a UAS LQR controller and fixed-wing dynamics model,

sensor availability models based on the UAS location within the environment, sensor mea-

surement models utilizing filtered sensor state noise values, and an Extended Kalman Filter

along with an Ensemble Kalman Filter using state augmentation to account for sensor mea-

surement delay. Vertical and horizontal relative location partitions were created to categor-

ically model the environment to infuse location-dependent sensor noise. Straight and level

trajectories were flown in a homogeneous environment using matching true UAS dynamic

models and filter models. The same trajectories, in addition to sinusoidal trajectories, were

flown in a heterogeneous environment using matching models, while the straight and level

trajectories were flown using unmatched models.
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7.1 Conclusions

The first contribution of this research is the creation of an open-source end-to-end modular

system-level UAS simulation that can account for many of the factors that are present in the

real world. These include the integration of delayed measurements into the state estimation

filtering module, considering several different sensor signals with different sampling rates

and delays, and using dynamically changing sensor availability and sensor noise proper-

ties. Modeled sensor systems include the traditional IMU and ADS, along with man-made

electromagnetic GPS and LTE signals. Multiple computer vision accuracy results were

also used including feature matching to correct IMU output and optical flow for ground

speed. By including these user-customizable capabilities in the simulation, it can be used

in its current form with any filtered sensor state noise values of sensors with known sam-

pling rates, time delays, and availability models. The urban environment simulation and

modeling capability allows integrated navigation performance to be tested in cities as they

currently exist or when the landscape is customized in a way that facilitates evaluation of

GPS and LTE signal degradation.

The second contribution of this research is the development of environment-based avail-

ability (GPS) and noise covariance (GPS and LTE) models as a function of UAS location

within the urban environment. A suite of discrete vertical and horizontal categories was de-

veloped using published signal availability and noise covariance data. This technique takes

advantage of available building and street maps, considered as cloud data, for UAS navi-

gation in combination with these onboard sensors. A benefit of using the map and sensors

together is more rapid execution of navigation algorithms with less required computational

requirements than using raw sensing capabilities only. This technique also allows more

accurate sensor noise covariance values used in the filter based on location within the envi-

ronment.

The third contribution of this research is a large compilation of sensor measurement

noise statistical information for many classes of current and proposed UAS sensors based
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on published literature throughout various engineering disciplines. By using this database,

future researchers can focus their efforts on improving navigation algorithms in simulations

rather than quantifying sensor noise on hardware. This data also allows comparison of

measured levels of sensor/integrated navigation system noise in existing systems to data

generated by simulations with new fused data sets or filters.

From on simulation-based testing, the first conclusion of this research is that fusion of

IMU and ADS, GPS, LTE, and computer vision measurements using an EKF provide an

increasingly accurate longitudinal position estimate for a UAS flying through an urban en-

vironment for missions up to 200 seconds, but a lateral estimate with decreasing accuracy

as the UAS tried to center itself using slow, delayed, and inaccurate measurements. In a ho-

mogeneous environment the navigation accuracy was at its best when a vision-based feature

matching IMU correction system was available. In a heterogeneous environment when the

vision-based feature matching IMU correction system was fully removed, the accuracy was

at its best when above all buildings as GPS measurements were more often available than

when deeper in the urban canyon environment. Over the 200-second simulation duration

with a consistent environment, the longitudinal accuracy does not decrease for this filter.

EnKF results generally show increasing longitudinal and lateral error at 20 seconds, with

the longitudinal error still increasing at 200 seconds as the lateral error reaches steady-state.

The second conclusion of this research is that the introduction of LTE OTDOA as a

horizontal positioning technology does NOT provide any additional accuracy benefit with

its long delay period of at least 4 seconds, low sampling rate, and relatively poor accu-

racy. However, it did stabilize the longitudinal error when no other horizontal position

measurements were available. Given the current proprietary nature of the execution of the

LTE positioning by the major carriers along with sparse and widely varying available liter-

ature, this was to be expected. However, adding this signal to the simulation did provide a

persistent measurement within the urban canyon where GPS would likely be degraded or

unavailable. Providing the framework for LTE will allow it to be used in future work as
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its geolocation accuracy continues to improve and the network evolves towards complete

independence from GPS. The latter would allow navigation to continue even with spoofed

or jammed GPS signals.

The third conclusion of this research is that filter tuning for this specific UAS config-

uration in a heterogeneous environment is difficult to accomplish when attempting to use

ANEES, ANIS, and autocorrelation as joint metrics. For the given process noise model and

unmatched UAS, ANEES tuning required canyon-specific process noise covariance matrix

values to counteract decreasing estimate uncertainty, while ANIS tuning required constant

process noise covariance values regardless of canyon. Autocorrelation results showed that

the tuning process becomes even more difficult when different sensors are tuned using dif-

ferent levels of artificial process noise.

7.2 Future Research Topics

This dissertation exposes many potential future areas of research to explore. These include

further investigation of different sensor combinations with characterized noise values and

state estimation filters, refining the UAS plant dynamics model to better understand the pro-

cess noise, accounting for wind, understanding how the current urban environment affects

sensor performance, and more concretely modeling GPS and LTE sensor accuracy to give

finer resolution. Additional sensors not considered in this work could also be investigated.

For example, downward-facing VISION sensors could take advantage of local landmarks

such as road markings, traffic lights, etc, to provide position measurements. A LiDAR

system should also be explored as this type of sensor can give extremely accurate measure-

ments in a known environment while complementing both GPS and LTE. Markers and/or

active sensors mounted in street and building infrastructure could also provide key data par-

ticularly in poorly-lit GPS-denied regions. Another state estimation filter type to consider

is the particle filters that do not make any assumptions about Gaussian distributions of the
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state estimate, process noise model, or measurement noise model. This gives flexibility to

model process noise and sensor noise using the distributions that best fit experimental data.

By weighting particles appropriately, it may reach a steady-state longitudinal error in less

than 200 seconds. Several particle filter variants of this type exist. Each propagate particles

differently and/or weights them differently based on incoming measurements. Direct urban

environment navigation benefits include quick localization if the UAS loses knowledge of

its location and trajectory and generating position estimates using inaccurate high sampling

rate position measurements with non-Gaussian noise.

One assumption made in this research is that there is no wind affecting the flight of the

UAS in the urban environment. Future work should include wind models in the UAS plant

dynamics modeling realistic conditions in an urban environment. Wind can gust and can

change direction quickly when deflected by buildings, billboards, overpasses, etc. These

non-negligible wind effects may limit flight operations for certain size/weight UAS on any

given day.

Another enhancement to the model is the characterization of the process noise covari-

ance matrix since this matrix is generally not diagonal with equal values for all states. It

is typically unique to each vehicle based on the how closely the vehicle’s actual dynamics

during flight, match the idealized fixed-wing rigid-body dynamics model. An estimate can

be generated during real-world testing by tuning the filter for different forms of the process

noise matrix since its form, in terms of individual values and correlated states, may vary

in different flight configurations. During this tuning process the autocorrelation statistic

should be monitored along with ANEES and ANIS to ensure all three filter consistency

metric are as good as possible.

The use of real-world building and obstacle maps in the navigation system could pro-

vide the UAS with situational awareness that could be used in making decisions on which

sensors to include in the navigation solution or how to weight different sensor measure-

ments. The main challenges are how to store this information in an easy to retrieve format
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either on board or off board but accessible, and how to account for temporary obstacles or

permanent obstacles not updated on a map. This research suggested one basic method of

storing building and obstacle information in an easy-to-retrieve format. However, as the

cities get larger, the shapes of the buildings vary, and several different types of obstacles

are present, storage of this information becomes increasingly difficult. The other challenge

is to have the most current map of the area of operations at all times as well as an ob-

stacle sensing capability. This is necessary because the many programs in existence that

have modeled large cities around the world may or may not include obstacles such as over-

passes, antennas, spires, billboards, construction cranes, power lines, trees, monuments,

statues, etc. Even with the most up-to-date maps, construction equipment or other tempo-

rary obstacles can pop-up and must be avoided. Addressing this challenge will require the

ability to quickly update maps, whether as part of the pre-mission checklist or en route us-

ing some type of cloud computing through Wi-Fi, the cell network, or satellites. Also, when

the map fails to identify an obstacle, the UAS must have the capability to detect obstacles

with enough standoff distance to safely avoid them using sensors such as LiDAR. Since

obstacles are generally static, a sense and avoid type solution is not necessary. Rather,

this problem can leverage existing collision detection and avoidance technology, such as

that being developed in the emerging autonomous car field, to generate logical algorithms.

By generating solutions to these challenges, UAS would have the necessary capabilities to

safely fly in any urban environment. Real-world UAS mission issues such as loss of sen-

sor data stream should also be considered to determine how these events affect map/sensor

navigation.

Another future research area to consider is to more robustly model the interaction be-

tween the LTE transceiver and LTE network as well as the GPS receiver and GPS network

in terms of providing position measurements for a UAS in the urban environment. While

GPS models currently exist, the challenge would be to model the effects of the urban envi-

ronment on the GPS signal and verify these values with real-world measurements. For the
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LTE network, the open knowledge base from which to draw is currently small and requires

system-level access and understanding of the cellular network. Also, the proprietary nature

of the different cell carriers networks has slowed the ability of LTE OTDOA to be better

understood and used. To solve this problem with real-world utility, the LTE network and

associated position accuracy must be characterized using assumptions about which towers

work together on the same network and how the building and obstacle infrastructure alters

signal propagation. Since the OTDOA method is similar to the method used by GPS to

generate measurements, basic knowledge of the LTE network layout could provide a more

fine method of generating LTE-based measurements. Should the carriers ever allow the

user to request OTDOA position data directly from the network, these models could be

verified. In parallel it is expected that the carriers, their equipment providers, and the cel-

lular network regulatory bodies will continually look for ways to provide OTDOA position

fixes much more accurately and faster than the current 4− plus second delay. Eventually,

this GPS-independent man-made electromagnetic signal could completely replace GPS as

an accurate and reliable positioning method for not just UAS navigation, but all urban en-

vironment applications. Until then, the LTE network can provide a level of cybersecurity

in navigation by providing backup position measurements used to detect spoofed GPS sig-

nals.
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APPENDIX A

Review of Optical Flow Techniques

A.1 Calculation Methods

Barron et al. [72] describes nine methods for calculating optical flow, divided into four

broad categories: differential-based, region-based, energy-based, and phase-based. They

argue that many of the methods share three unique stages during the optical flow field

calculation. These stages include

1) Smoothing in order to extract signal structure of interest and signal to noise enhance-

ment

2) Basic measurement extraction including both spatio-temporal derivatives and local

correlation surfaces

3) Integration of the measurements, producing the 2-D optical flow vector field.

Differential-based methods, specifically Lucas/Kanade (LK), and the region-based

methods are further described since these methods are primarily used in calculating the

optical flow fields in published UAS urban canyon navigation work [69], [33].

A.1.1 Differential Based Methods

Lucas/Kanade (LK) [120] & Horn/Schunck (HS) [66] are two common differential based

optical flow calculation methods used quite extensively in the field of optical flow. LK is a

local method using a weighted least squares approach in a neighborhood of interest, while
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HS is a global method that attempts to minimize an energy-like function consisting of a

brightness term and a global smoothness term. The benefit of using HS is that it yields

flow fields with 100% density, while LK, with its sparser flow fields, is more robust to

noise [72]. These beneficial characteristics of each have been used to develop a combined

local-global (CLG) method described in [121], discussed later in this section.

A.1.1.1 Lucas/Kanade and Horn/Schunck Algorithms

The primary assumption for both LK and HS is that the brightness constancy

I(x,y, t) = I(x +δx,y +δy, t +δt) (A.1)

of the image does not change from frame to frame. Expanding the right hand side of (A.1)

using a Taylor Series Expansion yields

I(x,y, t) = I(x,y, t) +
∂I
∂x
δx +

∂I
∂y
δy +

∂I
∂t
δt + H.O.T. (A.2)

After neglecting the higher order terms and canceling out the I(x,y, t) term in (A.2), the

result is
∂I
∂x
δx +

∂I
∂y
δy +

∂I
∂t
δt = 0. (A.3)

Both sides of (A.3) are divided by δt and the limit is taken as δt→ 0, to give

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0. (A.4)

Rewriting (A.4) using partial derivative shorthand notation and letting u = dx
dt and v =

dy
dt

yields

Ixu + Iyv + It = 0. (A.5)

Since (A.5) has two unknowns for each pixel, it cannot be used alone to solve for the
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local optic flow. However, based on the form of (A.5), it can be rewritten as

(Ix, Iy)• (u,v) + It = 0. (A.6)

Moving It to the right hand side of (A.6) and dividing by the magnitude of the brightness

gradient,‖∇I‖, yields

pro j∇I(u,v) =
−It

‖∇I‖
. (A.7)

(A.7) gives the component of the optic flow vector that is parallel to the brightness

gradient as shown in Figure A.1. In order to determine the normal component of the optical

flow vector, more constraints are needed.

Figure A.1: Local optic flow vector component in the direction of the brightness gradient.

The Lucas and Kanade method [120] uses a neighborhood weighted least squares ap-

proach to estimate the optical flow for local regions of interest in an image rather than

requiring the entire image be processed for each frame. The additional underlying assump-

tion is that the neighborhood Ω contains n pixels having the same local flow velocity values,

v̂, giving rise to

E =
∑
qεΩ

W2(qi)[∇I(qi)• (u,v) + It(qi)]. (A.8)

Using the standard weighted least squares equation [72]

AT W2Av̂ = AT W2b (A.9)
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where

A =



Ix(q1) Iy(q1)

Ix(q2) Iy(q2)
...

...

Ix(qn) Iy(qn)


W =



w1 0 · · · 0

0 w2 0
...

... 0 . . . 0

0 · · · 0 wn


b =



−It(q1)

−It(q2)
...

−It(qn)


(A.10)

and solving for v̂

v̂ = (AT W2A)−1AT W2b (A.11)

yields

v̂ =


∑

i w2
i Ix(qi)2 ∑

i w2
i Ix(qi)Iy(qi)∑

i w2
i Ix(qi)Iy(qi)

∑
i w2

i Iy(qi)2


−1 

∑
i w2

i Ix(qi)It(qi)∑
i w2

i Iy(qi)It(qi)

 (A.12)

where each entry is summed from i = 1 : n. This method allows for the local flow to be

calculated at any pixel as long as (AT W2A)−1 exists for a given neighborhood.

Horn and Schunck sought to minimize the energy-like function

E =

∫ ∫
(Ixu + Iyv + It)2dxdy +α2

∫ ∫ (∂u
∂x

)2

+

(
∂u
∂y

)2

+

(
∂v
∂x

)2

+

(
∂v
∂y

)2dxdy (A.13)

over the image that includes a brightness term and global smoothness term. The global

smoothness term consists of the summation of the squares of the partial derivatives of the

two optical flow components in the x and y directions. A complete derivation with flow

field solution can be found in [66].

To minimize (A.13) the iterative equations

uk+1 = ūk −
Ix[Ixūk + Iyv̄k + It]

α2 + I2
x + I2

y
(A.14)
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and

vk+1 = v̄k −
Iy[Ixūk + Iyv̄k + It]

α2 + I2
x + I2

y
(A.15)

can be used where ūk and v̄k are local flow averages at time step k.

Reference [66] suggests that the number of iterations for an image is dependent on the

largest uniform region that must be filled in. In absence of that knowledge, the cross-section

of the image may be used to estimate the number of iterations needed.

A.1.2 Region-Based Methods

Region-based methods calculate the optical flow field by matching a region or feature of

an image, known as a patch Pv in consecutive frames. This patch, with v×v dimensions, is

initially centered at (i, j) at time t, and moves to (i + u, j + w) at time t + 1.

At time t + 1, a matching patch is found by minimizing

M =
∑

(x,y)εPv

|It+1(i + x + u, j + y + w)− It(i + x, j + y)| (A.16)

comparing the pixel intensities of the patch at t and t + 1 for each each pixel. The square

target region is defined as 2n + 1× 2n + 1 region with lower left corner and upper right

corner pixel coordinates of (i− n, j− n) and (i + n, j + n) respectively, meaning that (u,w)

resides in the {−n, ...,n} × {−n, ...,n} space. After the algorithm computes M for each pixel

in the 2n + 1× 2n + 1 region, it picks the minimum value for M and uses the (u,w) pair at

that value as the motion of the center of Pv [33]. Since this method is very cumbersome

due the number of calculations required for each new image frame, [33] suggests that a

quantized version of the algorithm found in [122] be used in urban UAS applications.

A.1.2.1 Real-time Quantized Region Based Method

In order to limit the number of times (A.16) must be calculated, the real-time algorithm

searches over time instead of over space by limiting the motion detection to no more than
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one pixel per frame. It starts by using a small neighborhood where n = 1 to calculate motion

between frames t and t+1, t and t+2, t and t+3, up to t and t+ D, where D is the maximum

time delay and defines the lower limit of detectable motion as 1
D pixels per frame. Now

instead of evaluating pixel motions from 1 to n, the algorithm only needs to evaluate pixel

motions from 1
D to 1. When n = 1, (u,w) would now reside in the {−1,0,1}×{−1,0,1} space,

lowering the number of computations of (A.16) to 9 per frame or 9×D for D frames.

Pooling pixels together allows for a larger detectable motion and limits the number

of pixels that must be calculated. For a p × p block of pixels where p > 1, the range

of detectable motion is now p
D to p and the number of pixels that must be calculated is

reduced by p× p.
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APPENDIX B

Software Class Property Descriptions

This appendix lists the software classes and subclasses along with their property names,

units if applicable, discrete values if applicable, allocated size if greater than a single scalar

value, and the notation used within the software. Properties are listed by class in the order

as defined in the software.

B.1 Simulation Class

B.1.1 Options

1. Environment, (Wall/Clean/S kybridges), environment

2. Feedback Type, (Full-State/State Estimate), f eedbackType

3. Filter Type, (EKF/RPF), f ilterType

4. Initial Estimated State Distribution Type, (Gaussian/Uniform),

initialDistributionType

5. Save Sim MC Average Data, (On/Off), save

6. Internal Sensor Accuracy Calculator, (On/Off), sensorAccuracy

7. Sensor Delay Compensation, (On/Off), sensorDelayCompensation

8. UAS Model, (Exact/Uncertain), uasModelType
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B.1.2 Parameters

1. Time step (seconds), dt

2. Cycle time (seconds), cycleT ime

3. Initial Position (1×3) (meters), initialTruePosition

4. Simulation Length (seconds), length

5. Number of Monte Carlo runs (-), mcRuns

6. Number of time steps (-), numS teps

B.1.3 Results

B.1.3.1 Monte Carlo Mean

1. Mean Altitude with respect to Buildings Value (numS teps×1), alt

2. Mean Simulation Cycle Time (seconds), cycleT ime

3. Mean Number of Measurements (-), nz

4. Mean Street-Level Value (numS teps×1) (-), sl

5. Mean Control Input Vector (4×1×numS teps) (varies), u

6. Mean True State Vector (12×1×numS teps) (varies), x

7. Mean True State Vector Standard Deviation (12×1×numS teps) (varies), xS D

8. Mean Estimated Altitude with respect to Buildings Value (numS teps×1) (-), althat

9. Mean Estimated State Covariance Matrix (12×12×numS teps)(varies), covariance

10. Mean Estimated State Covariance Matrix Standard Deviation (12 × 12 ×

numS teps)(varies), covarianceS D
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11. Mean State Error Vector (12×1×numS teps) (varies), error

12. Mean State Error Vector Standard Deviation(12×1×numS teps)(varies), errorS D

13. Mean Estimated Street Level Value (numS teps×1), slhat

14. Mean Estimated State Vector (12×1×numS teps) (varies), xhat

15. Mean Estimated State Vector Standard Deviation (12 × 1 × numS teps)(varies),

xhatS D

16. Average Normalized Estimation Error Squared (1×1×numS teps )(-), ANEES

17. Average Normalized Innovations Squared (1×1×numS teps) (-), ANIS

18. Mean State Root Mean Squared Error (12×1×numS teps) (varies), RMS E

19. Normalized Estimation Error Squared Standard Deviation (1× 1× numS teps) (-),

neesS D

20. Normalized Innovations Squared Standard Deviation (1×1×numS teps) (-), neesS D

B.1.3.2 Autocorrelation

1. Autocorrelation Value (1×min(numo f innovations))(-), autocorrelation

B.2 Urban Environment Class

B.2.1 City Specs

1. Buildings per Block (-), bldgsperBlock

2. Number of Blocks (-), numbero f Blocks

3. Open Space Block (-), openS pace
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4. Building Spacing (meters), bldgS pacing

5. Street Width (meters), streetWidth

6. Building Length Range (1×2) (meters), bldgLength

7. Building Width Range (1×2) (meters), bldgWidth

8. Building Height Range (1×2) (meters), bldgHeight

9. Antenna Height Range (1×2) (meters), antennaHeight

10. Antenna Radius Range (1×2) (meters), antennaRadius

11. Antenna Minimum Building Height (meters), antennaMinBldgHeight

12. Number of Skybridges (-), skybridgeQuantity

13. Skybridge Height (1× skybridgeQuantity), (meters), skybridgeHeight

14. Skybridge Connecting Buildings (1× skybridgeQuantity), (meters), skybridgeBldgs

15. Skybridge Base Height (1× skybridgeQuantity), (meters), skybridgeBaseHeight

B.2.2 Map

B.2.2.1 Canyon

1. Southwest Boundary Vector (1×2) (meters), S WB

2. Southeast Boundary Vector (1×2) (meters), S EB

3. Northeast Boundary Vector (1×2) (meters), NEB

4. Northwest Boundary Vector (1×2) (meters), NWB

5. Maximum Building Height within Canyon (meters), maxHeight

6. Minimum Building Height within Canyon (meters), minHeight
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B.2.2.2 Canyon > Building

1. Building Number (-), number

2. Southwest Boundary Vector (1×2) (meters), S W

3. Southeast Boundary Vector (1×2) (meters), S E

4. Northeast Boundary Vector (1×2) (meters), NE

5. Northwest Boundary Vector (1×2) (meters), NW

6. Building Height (meters), height

B.2.2.3 Canyon > Obstacles > Antenna

1. Antenna Coordinates (1×2) (meters), position

2. Antenna Base Height (1×1) (meters), baseHeight

3. Antenna Top Height (1×1) (meters), topHeight

4. Antenna Radius (1×1) (meters), radius

B.2.2.4 Canyon > Obstacles > Skybridge

1. Southwest Corner Vector (1×2) (meters), S W

2. Southeast Corner Vector (1×2) (meters), S E

3. Northeast Corner Vector (1×2) (meters), NE

4. Northwest corner Vector (1×2) (meters), NW

5. Top Height (1×1) (meters), topheight

6. Base Height (1×1) (meters), baseHeight
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B.2.3 Weather

1. Wind Vector (3×1) (meters/second), wind

2. Temperature (1×1) (degrees Kelvin), temperature

3. Visibility (1×1) (meters),visibility

B.2.4 Relative Location

1. Altitude with respect to Buildings (mcRuns×numS teps), (1: Above All Buildings/2:

Above Some Buildings/3: Below all Buildings), alt

2. Street-Level Position (mcRuns× numS teps), (1: Urban Canyon, 2: Intersection, 3:

Adjacent Open Space), sl

3. Current Canyon Number (mcRuns×numS teps), canyonNumber

B.3 UAS Dynamics

B.3.1 Model

1. Process Noise Matrix, (12×12) (varies), Q

2. Process Noise Matrix Scaling Factor (-), Qs f

3. Control Input Vector Dimension (-), controlDim

4. State Vector Dimension (-), stateDim

5. Pitch Rate Limits (1×2) (radians/second), qLim

6. Control Surface Deflection Limits (1×2) (-), deltaLim

7. Engine Revolutions per Minute Limits (1×2) (revolutions/second), nLim
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8. Engine Thrust Limits (1×2) (Newtons), thrustLim

B.3.1.1 Parameters

1. Acceleration due to Gravity (meters per sec squared), g

2. Aircraft Mass (kg), m

3. *Aircraft Physical Inertia Matrix Entries (kilogram-meters2), {Ixx, Iyy, Izz, Ixz}

4. Aircraft Wing Area (meters2), S

5. Aircraft Wing Span (meters), b

6. Aircraft Mean Aerodynamic Chord (meters), c bar

7. Propeller Diameter (meters), D

8. Engine Time Constant, (seconds) tau n

9. Zero Angle of Attack Lift Coefficient (-), C Z1

10. Angle of Attack Lift Coefficient (-), C Z alpha

11. Zero Angle of Attack/Angle of Sideslip Drag Coefficient (-), C X1

12. Angle of Attack Drag Coefficient (-), C X alpha

13. Angle of Attack Squared Drag Coefficient (-), C X alpha2

14. Angle of Sideslip Squared Drag Coefficient (-), C X beta2

15. Angle of Sideslip Side Force Coefficient (-), C Y1

16. Aileron Deflection Roll Coefficient (-), C L delta a

17. Angle of Sideslip Roll Coefficient (-), C L beta
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18. Dimensionless Roll Rate Roll Coefficient (-), C L p tilde

19. Dimensionless Yaw Rate Roll Coefficient (-), C L r tilde

20. Zero Elevator Deflection/Angle of Attack/Dimensionless Pitch Rate Pitch Coefficient

(-), C M1

21. Elevator Deflection Pitch Coefficient (-), C M delta e

22. Angle of Attack Pitch Coefficient (-), C M alpha

23. Dimensionless Pitch Rate Pitch Coefficient (-), C M q tilde

24. Rudder Deflection Yaw Coefficient (-), C N delta r

25. Angle of Sideslip Yaw Coefficient (-), C N beta

26. Dimensionless Yaw Rate Yaw Coefficient (-), C N r tilde

27. Zero Advance Ratio Thrust Coefficient (-), C F T1

28. Advance Ratio Thrust Coefficient, (-) C F T2

29. Advance Ratio Squared Thrust Coefficient (-), C F T3

B.3.2 State Propagation

1. True State Vector (11×numS teps×mcRuns) (varies), x

2. Control Input Vector (4×numS teps×mcRuns) (varies), u

B.3.2.1 Guidance

1. Obstacle Avoidance Waypoint (3× skybridgeQuantity) (meters), avoidWaypoint

2. Obstacle Vertical Clearance (meters), verticalClearance

3. Commanded True State Vector (11×numS teps×mcRuns) (varies), xCmd

180



B.3.3 Trim

B.3.3.1 Parameter

1. Flight Path Angle (radians), gamma

2. Altitude (meters), h

3. Heading (radians), heading

4. Airspeed (meters/second), Vt

5. Trim Conditions (11×1) (varies), dx

B.3.3.2 True States

1. True Trim State Vector (11×1) (varies), x

2. Non Linear Least Squared Residual Norm (-), resnorm

B.4 Sensor

B.4.1 Availability

1. Available Sensors, availS ensors

2. Delayed Sensors, delayedS ensors

B.4.2 Measurement

1. Actual Measurement Availability Timestep (1× length/sampling period) (-), avail

2. Sensor Innovations (nz× length/sampling period) (-), innovations
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B.4.3 Performance

1. Airspeed Error Covariance (1×3) (meters/second), airspeedErrorCovariance

2. Measurement Availability Index (1× length/sampling period) (-), availIndex

3. Sensor Environment based Availability (3×3) (-), environmentAvailability

4. Measurement Noise Covariance (varies based on number of measurable states)

(varies), errorCovariance

5. Time First Measurement Taken (seconds), f irstMeas

6. Measurement Latency (seconds), latency

7. Sensor Orientation, (0/1/2) (-), orientatation

8. Number of Measured States, (-), numS tates

9. Measurement Period (seconds), period

10. Measurement Sensitivity Matrix (numS tates× stateDim) (varies), sensitivity

11. Measurement Taken Time Index (numS tates× length/period) (-), stateIndex

12. Measured States (1×numS tates) (-), states

13. Sensor Status, (On/Off) (-), status

B.5 Estimator

B.5.1 Parameter

1. Filter Process Noise Covariance Matrix Tuning Parameter (-), Qtune

2. Particle Filter Optimal Jitter Bandwidth (12×1) (-), hOpt
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3. Initial Estimate Covariance (1×12) (varies), initialCovariance

4. Particle Filter Number of Particles (-), numbero f Particles

5. Particle Filter Resampling Threshold Number of Particles (-), resampThreshold

B.5.2 State Estimate

1. Normalized Estimation Error Squared (1×numS teps×mcRuns) (-), NEES

2. Estimated State Covariance Matrix (12 × 12 × numS teps × mcRuns) (varies),

covariance

3. Estimated State Error Vector (12×numS teps×mcRuns) (varies), error

4. Estimated State Vector (12×numS teps×mcRuns) (varies), xhat

B.5.2.1 EKF

1. Normalized Innovations Squared (mcRuns×numS teps) (-), NIS

2. Number of Measurements (mcRuns×numS teps) (-), nz

B.5.2.2 Particle Filter

1. Particles (12×numbero f Particles×numS teps×mcRuns), (varies), particles

2. Particle Weights (12×numbero f Particles×numS teps×mcRuns) (-), weights
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APPENDIX C

UAS Model Parameters

The UAS model presented in this research is for a fixed-wing 28 kilogram mass, 3.1 meter

wingspan gas-powered radio-controlled aircraft described in Ducard [42]. All aerodynamic

coefficients and the physical inertia matrix entries marked with an asterisk have uncertainty

ranging between 10 and 30 percent as shown.

Table C.1: UAS model physical inertia matrix Ib in kilogram-meter2 with 5% uncertainty.

Ixx = 2.56* 0 Ixz = 0.5*
0 Iyy = 10.9* 0

Izx = 0.5* 0 Izz = 11.3*
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Table C.2: UAS model aerodynamic coefficients with varying levels of uncertainty.

Thrust Roll

CFT1 8.42×10−2 *CLδa (10%) 6.79×10−2

CFT2 −1.36×10−1 *CLβ (30%) −1.30×10−2

CFT3 −9.28×10−1 CLp̃ −1.92×10−1

Lift CLr̃ −3.61×10−2

CZ1 1.29×10−2 Pitch

CZα −3.25 *CM1 (10%) 2.08×10−2

Drag *CMδe (20%) 5.45×10−1

CX1 −2.12×10−2 *CMα (20%) −9.03×10−2

CXα −2.66×10−2 *CMq̃ (20%) −9.83

CXα2 −1.55 Yaw

CXβ2 −4.01×10−1 *CNδr (10%) 5.34×10−2

Side Force *CNβ (10%) 8.67×10−2

CY1 −3.79×10−1 *CNr̃ (10%) −2.14×10−1

Table C.3: UAS performance limits.

Parameter Min Max
Normalized Aileron Deflection, (-) −1 1
Normalized Elevator Deflection, (-) −1 1
Normalized Rudder Deflection, (-) −1 1
Engine RPM @ 30 meters/second 51 100

Angle of Attack, degrees −10 10
Pitch Rate, degrees/second −50 50
Roll Rate, degrees/second −45 45
Yaw Rate, degrees/second −20 20
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APPENDIX D

LQR Controller Gain Matrix for Steady Flight

This appendix contains the LQR gain matrices for the steady, level flight and wings-level

descending flight trim conditions where ρ̄ = 10 for both matrices.
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APPENDIX E

Sensor Measurement Noise Covariance Data

This appendix includes published sensor noise standard deviation data for several possible

UAS sensors. Each of the sensor types are listed separately with the noise standard devia-

tion values for each filtered sensor state. If no sensor measurement bias value is listed, it is

assumed to be zero.

E.1 Inertial Measurement Unit & Inertial Navigation Sys-

tem/Attitude and Heading Reference System

Table E.1: IMU angular velocity measurement noise standard deviation data.

Data Type and Published Source σp = σq = σr (radians/second)

Simulation - Bryson & Sukkarieh [123] 0.002

HIL Simulation - Jung & Tsiotras [46] 0.002

Hardware - Bry et al. [124] 0.003

Simulation - Beard [47] 0.005

Simulation - Langelaan et al. [58] 0.01

Simulation - Ducard [42] 0.087

Simulation - Ramprasadh & Ayra [125] 0.1047
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Table E.2: AHRS/INS Euler angle measurement noise bias and standard deviation data.

Data Type and Published Source µφ/µθ/µψ (radians) σφ/σθ/σψ (radians)

Free Moving Platform Test - Perry et al. [126] 0/0/0 0.003/0.003/0.006

Langelaan et al. [58] 0/0/0 0.017/0.017/0.017

Hardware Spec - Microstrain Datasheet [60] 0/0/0 0.035/0.035/0.035

AHRS Simulation - Kingston & Beard [51] 0/0/0 0.052/0.052/0.052

GPS/INS Simulation - Lopes et al. [45] 0/0/−0.016 0.031/0.006/0.032

GPS/INS Flight Test - Lopes et al. [45] −0.002/0.01/−0.101 0.036/0.039/0.144

Flight Test - Euston et al. [54] 0/−0.023/− 0.047/0.029/−

E.2 Air Data System

Table E.3: ADS indicated airspeed and aerodynamic angle measurement noise standard

deviation data.

Data Type and Published Source σVT /σα/σβ (meters/second radians radians)

Simulation - Beard [47] 0.4/− /−

Simulation - Langelaan et al. [127] 0.2/0.017/0.017

Simulation - Ramprasadh & Ayra [125] 0.808/0.0314/0.0164

Simulation - Ducard [42] 1.0/0.035/0.035

Free Moving Platform Test - Perry et al. [126] −/0.014/0.007

Table E.4: ADS altitude measurement noise standard deviation data.

Data Type and Source σh (meters)

Flight Test - Quigley et al. [63] 1.5

Simulation - Beard [47] 0.4
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E.3 GPS

Table E.5: GPS lateral and vertical position measurement noise bias and standard deviation

data.

Data Type and Source σxN = σxE (meters) µh/σh (meters)

Old European Adjacent Open Space - Modsching et al. [20] 2.06 −

Old European Urban Core - Modsching et al. [20] 11.96 −

Simulation - Jung & Tsiotras [46], Langelaan et al. [58] 3 0/3

Nominal GPS Error Model - Beard [47] 3.67 0/7.2

Modern Urban Core (Best case) - MacGougan et al. [17] 7.65 −7.1/9.5

Table E.6: GPS inertial speed measurement noise standard deviation data.

Data Type and Source σ .
xN

= σ .
xE

= σ .
h (meters/second)

Simulation - Jung & Tsiotras [46], Langelaan et al. [58] 0.1

E.4 LTE

Table E.7: LTE network lateral position - OTDOA method measurement noise standard

deviation data.

Number of eNBs [53] σxN = σxE (meters)

7 7.51

10 5.02

15 3.74

20 3.23

Simulation - 30 Neuland et al. [94] 25
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E.5 Computer Vision

Table E.8: Computer vision position measurement noise bias and standard deviation data.

Data Source and Type µxN/µxE/µh (meters) σxN/σxE/σh (meters)

Flight Test - Wang et al. [50] 6.807/7.055/7.718 2.774/3.385/3.635

Table E.9: Computer vision airspeed measurement noise bias and standard deviation data.

Data Source and Type µ .
xN
/µ .

xE
/µ .

h (meters/second) σ .
xN
/σ .

xE
/σ .

h (meters/second)

Flight Test - Wang et al. [50] 0.590/0.467/0.373 0.698/0.626/0.257

Table E.10: Computer vision Euler angle measurement noise bias and standard deviation

data,

Data Type and Source µφ/µθ/µψ (radians) σφ/σθ/σψ (radians)

Flight Test - Hwangbo & Kanade [65] 0.0106/−0.0086/− 0.0159/0.0196/−

Flight Test - Wang et al. [50] 0.0116/0.0121/0.0141 0.0140/0.0132/0.129
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APPENDIX F

State Augmentation Applied to GPS and LTE

This appendix shows how to account for a delayed GPS measurement, first taken t = 0.9

seconds, and available to the filter t = 1 second with a sampling frequency of 1 Hz and an

LTE measurement first taken t = 1 second and first available to the filter at t = 5 seconds

with a sampling frequency of 0.25 Hz. In this Appendix, the term ‘available’ is used in the

context of a taken measurement sent to the filter after a delay rather than the UAS being in

an (S L/ALT ) location where the sensor is able to take a measurement. IMU and ADS are

also considered as non-delayed sensors as shown in Table F.1.

Table F.1: Sensor simulation parameters.

Sampling Period Sampling Delay Measured States
GPS 1 second 0.1 second xN , xE , h, VT
IMU 0.01 seconds 0 seconds φ, θ, ψ, p, q, r
ADS 0.02 seconds 0 seconds h, VT , α, β

LTE 4 seconds 4 seconds xN , xE

F.1 First GPS Measurement Taken

Switching to time step notation (for dt = 0.01 seconds) to eliminate decimal subscripts, the

first GPS measurement is taken at time step k = 91. It will become available to the filter

at k = 101 . To account for this delay, the estimated state vector is augmented as shown

in (F.1) where x̂GPS 91|91 is a copy of the estimated state vector that will be used at k = 101
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to calculate the delayed GPS measurement prediction. For the estimated state vectors the

subscript k1|k2 is defined as the time step in which the estimate is added to the vector k1

and the time step upon which the estimate is conditioned upon k2. For x̂GPS 91|91 , subscript

k1 = 91 does not change, but subscript k2 = 91 changes at each time step due to small

corrections in this vector due to interim measurements. The augmented estimated state

vector is shown below. Note that x̂91|91 is the evolving estimated state vector generated by

the filter.

x̂aug91|91 =

 x̂91|91

x̂GPS 91|91

 (F.1)

Anytime the estimated state vector is augmented or marginalized, the true state vector

is also expanded or contracted as shown in (F.2) since these values are used in the linear

measurement model: zaugk = Haugk ∗xaugk + vk where zaugk is the augmented measurement

vector, Haugk is the augmented measurement sensitivity matrix, and xaugk is the augmented

true state vector.

xaug91|91 =

 x91|91

xGPS 91|91

 (F.2)

When the estimated state vector is augmented, the estimated state vector covariance

matrix must also be augmented as shown below in (F.3) where P91|91 is the diagonal entry

and P91,91|91 is the cross-covariance with the first subscript representing the the current time

step and the remaining two subscripts are defined in the same manner as for the estimated

state vector.

Paug91|91 =

 P91|91 P91,91|91

P91,91|91 P91|91

 (F.3)

At k = 92, the state transition matrix is augmented as shown below in (F.4) to allow for

propagation of the evolving estimated state vector covariance while holding the augmented

estimated state vector covariance at its current value by adding a 12×12 identity matrix to
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the lower right hand sub-block this matrix.

Aaug92 =

 A92 012×12

012×12 I12×12

 (F.4)

The process noise covariance matrix is also augmented as shown below in (F.5) to

account for the dimension of the estimated state vector.

Qaug92 =

 Q92 012×12

012×12 012×12

 (F.5)

Note that the augmented zero and identity matrices are square matrices with size equal to

the number of states in the system.

For the correction step, the H matrix is augmented as shown in (F.6) to add 12 zeros to

the end of each row. Those zeros to the right of the vertical line are necessary to account

for the length of the augmented estimated state vector and nz is the number of non-delayed

measurements available to the filter at the time step from the IMU and ADS.

Haug92 =

[
H | 0nz×12

]
(F.6)

From k = 92 through k = 100, the above augmented estimated state vector (F.1) and

augmented covariance matrix (F.3) are propagated and then corrected using available non-

delayed measurements at each time step.

F.2 First GPS Measurement becomes Available to Filter

At k = 101, the first GPS measurement becomes available to the filter changing the H matrix

as shown below in (F.7) where nzGPS is the number of delayed GPS measurements available
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to the filter at k = 101.

Haug101 =

 H101 | 0nz×12

0nzGPS ×12 | HGPS

 (F.7)

After the correction step is complete the estimated state vector and covariance matrix

are adjusted to marginalize the augmented states and covariances out of the system, shown

in (F.8) and (F.9), respectively, since the estimated state vector at k = 91 is no longer needed.

x̂aug101|101 =

[
x̂101|101

]
(F.8)

Paug101|101 =

[
P101|101

]
(F.9)

F.3 First LTE Measurement is Taken

However, the first LTE measurement is taken at k = 101 and will become available to the

filter at k = 501. The estimated state vector and covariance matrix from (F.8) and (F.9) are

augmented as shown below in (F.10) and (F.11), respectively where x̂LT E101|101 represents

the non-evolving estimated state vector that will be used in the measurement prediction at

k=501.

x̂aug101|101 =

 x̂101|101

x̂LT E101|101

 (F.10)

Paug101|101 =

 P101|101 P101,101|101

P101,101|101 P101|101

 (F.11)

At k = 102, the state transition matrix, process noise covariance matrix, and H matrix

are augmented again as shown below in (F.12)-(F.14).

Aaug102 =

 A102 012×12

012×12 I12×12

 (F.12)
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Qaug102 =

 Q102 012×12

012×12 012×12

 (F.13)

Haug102 =

[
H102 | 0nz×12

]
(F.14)

From k = 102 through k = 190, the above augmented estimated state vector (F.10) and

augmented covariance matrix (F.11) are propagated and then corrected using available non-

delayed measurements at each time step.

F.4 Second GPS Measurement is Taken

At k = 191, the second GPS measurement is taken, which results in a longer augmented

estimated state vector and larger augmented error covariance matrix as shown in (F.15) and

(F.16), respectively.

x̂aug191|191 =


x̂191|191

x̂LT E101|191

x̂GPS 191|191

 (F.15)

Paug191|191 =


P191|191 P191,101|191 P191,191|191

P191,101|191 P101|191 P191,101|191

P191,191|191 P191,101|191 P191|191

 (F.16)

For the estimated state vector and covariance matrix entries related to the augmented

LTE states from k = 101, the second subscript is now 191 since the quantities are condi-

tioned on the measurements received up through this time step.

At k = 192 the state transition matrix, process noise covariance matrix, and H matrix

are augmented again as shown below in (F.17)-(F.19), now to account for delayed LTE and

197



delayed GPS measurements.

Aaug192 =


A192 012×12 012×12

012×12 I12×12 012×12

012×12 012×12 I12×12

 (F.17)

Qaug192 =


Q192 012×12 012×12

012×12 012×12 012×12

012×12 012×12 012×12

 (F.18)

Haug192 =

[
H192 | 0nz×12 0nz×12

]
(F.19)

The process continues as the estimated state vector and error covariance matrix are aug-

mented to account for GPS measurements taken at k = 291, 391, and 491 and marginalized

at k = 301 and 401 as GPS measurements become available and are used in the innovation

vector. Throughout this time, the non-evolving LTE portion of the augmented estimated

state vector and error covariance matrix remain.

F.5 First LTE Measurement becomes Available to Filter

The first LTE measurement (and fifth GPS measurement) become available to the filter at

k = 501. After the prediction step at this time step, the augmented estimated state vector

and error covariance matrix become (F.20) and (F.21) as shown below.

x̂aug501|500 =


x̂501|500

x̂LT E101|500

x̂GPS 491|500

 (F.20)
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Paug501|500 =


P501|500 P501,101|500 P501,491|500

P501,101|500 P101|500 P501,101|500

P501,491|500 P501,101|500 P491|500

 (F.21)

To generate the measurements and measurement predictions at k = 501, the H matrix is

augmented as shown in (F.22).

Haug501 =


H501 | 0nz×12 0nz×12

0nzLT E×12 | HLT E 0nzLT E×12

0nzGPS ×12 | 0nzGPS ×12 HGPS

 (F.22)

After the correction step the estimated state vector and error covariance matrix are

adjusted to marginalize out the augmented states and covariances since the estimated state

vector at k = 101 (LTE) and the estimated state vector at k = 491 (GPS) are no longer

needed as shown below in (F.23) and (F.24), respectively. The state augmentation and

marginalization process is repeated for GPS and LTE measurements as they are taken and

become available to the filter throughout the simulation.

x̂aug501|501 =

[
x̂501|501

]
(F.23)

Paug501|501 =

[
P501|501

]
(F.24)
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APPENDIX G

Guidance System Design in Urban Environments

When in the urban environment, a situationally-aware guidance system is necessary for safe

and efficient flight. This problem has been examined by many, including [128], [37], [129].

This appendix proposes a simple urban canyon guidance system with the sole objective

of generating commanded state values that allow the UAS to safely avoid obstacles by

climbing above them or descending below them.

The default guidance mode in the simulation is to maintain the trim state set by the

mission trajectory. The UAS switches to obstacle avoidance mode when it determines

there is an obstacle in its flight path based on a priori knowledge of the urban environment.

An obstacle is considered to be in the flight path if the UAS is on a trajectory to intersect

the vertical plane extending from a user-defined obstacle avoidance waypoint above the

obstacle to a user-defined waypoint below the UAS as shown in Figure G.1.

G.1 Maintaining the Trim State

To maintain the trim state, the UAS sends the trim state vector to the controller at each time

step, as shown in (G.1), assuming the direction of travel is xN . These trim values are then

converted into control inputs using the static gains based on the current trim state of the

UAS.
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xcmd = xtrim = [htrim VTtrim αtrim θtrim qtrim xEtrim βtrimφtrimψtrim ptrim rtrim]T (G.1)

G.2 Avoiding Obstacles

Once an obstacle is detected along the flight path using the known obstacle map, the UAS

commands an avoidance maneuver toward an avoidance waypoint to clear of the obstacle.

Upon clearing the obstacle, the UAS returns to its mission trajectory.

During the initialization of the simulation, obstacle avoidance waypoints are calculated

for all obstacles in the urban environment. Both avoidance waypoints for each obstacle,

(xavoidN , xavoidE , xavoidh), are calculated using (G.2) with a user-defined clearance above and

below the obstacle. The North and East coordinates are equal for both waypoints, with the

East coordinate assumed to be zero to ensure all obstacle avoidance climbing/descending

is done as far away from buildings as possible.

xavoidN =
obstacleNE−obstacleS W

2

xavoidE = 0

xavoid aboveh = obstacletopheight + obstacle clearance

xavoid belowh = obstaclebaseheight −obstacle clearance

(G.2)

The UAS calculates a collision avoidance vector at each time step to determine if it is

necessary to initiate an obstacle avoidance guidance command. This vector, dobs, contains

the three elements listed in (G.3):
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dobs =


dlong

dvert

γavoid

 (G.3)

These elements and all other obstacle avoidance geometry is shown in Figure G.1.

Figure G.1: UAS Obstacle avoidance in urban environment geometry.

The first element is the longitudinal distance from the UAS to the obstacle dlong. It is

calculated using (G.4) to select the smaller distance where xobs is the longitudinal position

of the face of the obstacle closest to the UAS.

dlong = |x̂N−xobs| (G.4)

The second element is the vertical distance between the UAS and the closer avoidance

waypoint, dvert. The UAS selects from the two avoidance waypoints by calculating its ver-

tical distance to each waypoint and then selecting the waypoint with the smaller distance,

202



as shown in (G.5). In the unlikely event that the UAS is exactly halfway between the two

avoidance waypoints, it will default to the waypoint above the obstacle to keep it further

from street-level

dvert = min{|x̂h−xavoid aboveh |, |xavoid belowh−x̂h|} (G.5)

The third element is the necessary flight path angle to intersect the selected avoidance

waypoint, γavoid. It is calculated using (G.6) with the selected avoidance waypoint. If the

above obstacle avoidance waypoint is selected,γavoid above is used and the below obstacle

avoidance waypoint γavoid below is used.

γavoid above = tan−1
(

xavoid aboveh−x̂h

dlong

)

γavoid below = tan−1
(

x̂h−xavoid below
dlong

) (G.6)

The UAS initiates the avoidance maneuver once it is within a user defined distance of

the obstacle on a collision trajectory. It completes this action by sending the selected ob-

stacle avoidance waypoint altitude component to the controller, causing it to deviate from

trim. Once the UAS has safely cleared the obstacle, the mission trajectory is continued

as the guidance system resumes sending position and altitude trim commands to the con-

troller. The user-defined avoidance waypoint vertical clearance and stand-off distance must

balance mission needs with safety considerations and must keep the UAS in its flight enve-

lope and sufficiently close to the reference trim state vector for the linearized controller to

be effective.
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