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ABSTRACT

Statistical Models to Assess Associations between the Built Environment and
Health: Examining Food Environment Contributions to the Childhood Obesity

Epidemic

by

Jonggyu Baek

Chair: Brisa N. Sánchez

Models are developed and applied to examine the associations between built envi-

ronment features and health. These developments are motivated by studies examining

the contribution of features of the built food environment near schools, such as avail-

ability of fast food restaurants and convenience stores, to children’s body weight. The

data used in this dissertation come from a surveillance database that captures body

weight and other characteristics for all children in 5th, 7th, and 9th grades enrolled in

public schools in California during 2001-2010 and a commercial data source that con-

tains the locations of all food establishments in California for the same time period.

First, we develop a hierarchical multiple informants model (HMIM) for clustered data

that estimates the marginal association of multiple built environment features and

formally tests if the strength of their association differs with the outcome. Using

this new model, we establish that the contribution of the availability of convenience

stores to children’s body mass index z-scores (BMIz) is stronger than that of fast

xii



food restaurants. Second, we propose to use a distributed lag model (DLM) to exam-

ine whether and how the association between the number of convenience stores and

children’s BMIz decays with longer distance from schools. In this model, distributed

lag (DL) covariates are the number of convenience stores within several contiguous

“ring”-shaped areas from schools rather than circular buffers, and their coefficients

are modeled as a function of distance, using smoothing splines. We find that associa-

tions are stronger with closer proximity to schools and vanish by about 2 miles from

school locations. Third, we develop a hierarchical distributed lag model (HDLM)

to systematically examine the variability of the built environment association across

regions to help address a yet unanswered question in the built environment literature:

whether and how activity spaces relevant to health vary across regions. We find DL

coefficients vary across regions, implying that variation in activity spaces also exists.

We also identify areas where children’s BMIz is more vulnerable to built environment

factors. This dissertation provides novel methods with which to study how built

environment factors affect health.
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CHAPTER I

Introduction

Neighborhood resources and built environment factors have recently received great

attention as potential contributors to health beyond individual factors because hu-

mans and the built environment surrounding them are interrelated. For instance, hu-

mans may change the built environment to suit their needs and at the same time the

built environment directly constrains individuals’ behaviors and their choices (Cum-

mins et al., 2007; Diez-Roux , 1998; Susser , 1994). Food availability and availability

of parks or recreational facilities constrain food choices and ability to exercise. How-

ever, the association between multiple environmental factors and individual health

outcomes can be difficult to untangle. Recently, advancements of geographic infor-

mation systems (GIS) have enabled researchers to more scientifically examine how

features of the built environment are associated with health outcomes, such as child-

hood obesity (Pearce et al., 2006). By integrating spatial information from a range

of disparate sources into a single database and developing precise measures of the

built environment, Thornton et al. (2011) illustrated the usefulness of GIS for built

environment research.

Given the now widely known childhood obesity epidemic, one related research

question is whether and how features of the built environment within children’s time-

activity spaces impact childhood obesity. Children spend a large proportion of their
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time in and around schools and therefore commercial establishments near schools

offering “junk” foods have been considered as possible contributors to the childhood

obesity epidemic. The underlying idea is that availability of establishments that sell

high energy, low nutrition foods near schools may increase consumption of junk foods,

both through direct availability and purchasing on the way to and from schools, as

well as indirectly through exposure to advertising that may shape individuals’ choices

(Gebauer and Laska, 2011; Hillier et al., 2009).

These features of the food environment are typically measured by the number of

food stores within a specific distance from schools (e.g., number of stores falling within

a circle of 1 mile radius around schools, also known as a 1 mile “buffer”) or a distance

of 15 minutes by walk. However, not all studies show consistent results (Alviola et al.,

2014; Currie et al., 2009; Harris et al., 2011; Langellier , 2012; Sánchez et al., 2012)

regarding the association between number of food stores around schools and children’s

weight status. Part of the reasons for this inconsistency may be due to differences in

how the measures of the built environment are constructed, as noted by many authors

(Apparicio et al., 2008; Flowerdew et al., 2008); for instance, the buffer size within

which the environment features are counted. The inconsistency of the results to the

choice of geographic scale is often referred to as the “Modifiable Areal Unit Problem”

(MAUP) (Openshaw , 1984; Fotheringham and Wong , 1991; Openshaw , 1996). Thus,

it is important to determine the most appropriate buffer size.

To determine the buffer size that most strongly influences children’s health, pre-

vious studies have compared associations among a-priori chosen buffer sizes by exam-

ining the overlap of the corresponding confidence intervals, or alternatively, by exam-

ining the distance at which the associations are, or cease to be, significant (Davis and

Carpenter , 2009). Additionally, studies have compared the goodness-of-fits from sev-

eral fitted models (Guo and Bhat , 2004; Leal et al., 2011; Vallée and Chauvin, 2012).

However, comparing associations from separately fitted models based on confidence

2



intervals may yield misleading results since estimated associations of measured fac-

tors on the same outcome are treated as being independent, although they are in fact

correlated. Moreover, Spielman and Yoo (2009) showed through a simulation that

comparing several models, each using different buffer sizes, based on goodness-of-fit

statistics may not be useful in identifying the best underlying buffer size.

Furthermore, the true underlying buffer size may depend on various factors, such

as types of food stores, individual characteristics (including age, race/ethnicity, and

gender), area characteristics, and time at which the data are collected. From a policy

perspective, comparing the strength of associations between two competitive types of

food stores on children’s health may be of interest. Regulating the density of “junk”

food stores near schools, for instance, has been suggested as a possible intervention

(Austin et al., 2005). Investigating how associations of the built environment on

children’s health differ by participant characteristics, such as age, can also help un-

derstand underlying mechanisms of how children interact with features of the built

environment, hence, improving our understanding of who is more vulnerable to these

exposures and developing tailored interventions. At the areal level, recent empiri-

cal studies have found, for example, that the perceived neighborhood size is smaller

for residents of peripheral city neighborhoods compared to downtown neighborhoods

(Vallée et al., 2014). When neighborhood level data are not available, it may still be

possible to indirectly assess the variation on the relevant distances for a given health

outcome.

Motivated by the FitnessGram data set examining the association between mul-

tiple features of the built environment, namely the presence of different types of food

stores near schools, and children’s weight, the first part of this dissertation extends

the multiple informant model (MIM) developed independently by Pepe et al. (1999)

and Horton et al. (1999), to account for hierarchical data. Because children are nested

within schools, hierarchical multiple informant models (HMIMs) enable formal tests
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of marginal associations among multiple features of the environment (e.g. fast food

restaurants and convenience stores) and the same outcome (child’s health). This type

of testing procedure is amenable when comparing marginal associations from each sep-

arate regression model on the same outcome, and when comparing the conditional

association of one informant with an outcome adjusting for the other informant is

not meaningful. The HMIM provides valid inference of testing associations estimated

from separate hierarchical models on the same outcome while increasing efficiency by

accounting for a hierarchical data structure. This HMIM is also appealing because it

can be fully implemented in available statistical software for generalized estimating

equation (GEE) methods. The HMIM is applied to formally test how the association

between a child’s BMI z-score (BMIz) and the number of food stores around schools

changes over three pre-specified distances widely used in children’s built environment

studies, and how marginal associations of convenience stores are different from those

of fast food restaurants on the child’s outcome.

The second part of this thesis proposes to use distributed lag models (DLMs)

to examine how the association between features of the built environment (e.g., the

number of convenience stores) and health (e.g., children’s BMIz) varies over distance

from locations of interest (e.g., schools). Additionally, these models can be used to

quantify the associations between health and features of the built environment within

a-priori specified distances (e.g., 1/4, 1/2, or 1 miles) from study locations, to enable

comparisons with existing approaches. The proposed model improves upon traditional

linear models employed in epidemiology, ecology, and transport geography literature.

These traditional models assume constant effects up to a-priori specified distances

and assume that no further association exists beyond those distances. Fitting DLMs

enables us to estimate the association between the measured feature and the outcome

more accurately than using the traditional models; moreover, the assumptions of

DLMs are less restrictive than those of the currently used models. DLMs are applied

4



to examine the effects of the food environment around schools on children’s BMIz

using FitnessGram data and to investigate how the built environment association

differs by individual characteristics (e.g., 5th graders vs. 7th graders) possibly due to

different health behaviors as children get older. Although DLMs have a long history

in econometrics and other literature, this dissertation presents the first application of

DLMs to study the associations between health and the built environment.

The third part of this thesis proposes a hierarchical distributed lag models (HDLM)

to investigate whether there is variability in the association of the built environment

with health across regions. It has long been argued in the built environment litera-

ture that the associations between the built environment and health outcomes might

have different distance lags in different regions and are likely patterned across re-

gions; however, to date, such variation has not been systematically examined in this

context. Since variation in the DL coefficients can be partially attributed to larger

or shorter relevant distances at given regions, the proposed HDLM can help shed

light on this built environment conundrum using an agnostic approach. The HDLMs

are implemented to analyze data on children’s BMIz collected over 10 years from

all California 7th graders and examine variations in the distributed lag coefficients

(i.e., the association between features of the built environment and children’s BMIz)

across regions, while accounting for correlation within schools. Whereas the HDLMs

available in the literature have typically been estimated using two-stage approaches,

we jointly estimate the DL coefficients across regions of interest to borrow strength

across regions and stabilize variance of the coefficients. The estimation is carried out

within a Bayesian framework using a shrinkage slice sampling technique because of its

advantages over Metropolis-Hasting algorithms, e.g., the convergence rate of posterior

samples and no need for controlling for acceptance rates in posterior samples.

The dissertation is structured as follows. In Chapter 2, we present a review of the

MIM and provide all details concerning the development of the HMIM. Chapter 3 is

5



devoted to the application of DLM to the built environment research. In Chapter 4,

the DLM is further extended to examine variability of DL coefficients across regions.

Conclusions and future work are outlined in Chapter 5. The Appendix lists some

technical details and the figures of the three chapters.
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CHAPTER II

Hierarchical multiple informants models:

Examining food environment contributions to the

childhood obesity epidemic

2.1 Introduction

The childhood obesity epidemic has led several researchers to examine factors be-

yond the individual as possible causes of obesity. For instance, since children spend

large amounts of time in schools, there is increased interest in environmental factors

in or around schools. The presence of food stores such as fast food restaurants or

convenience stores has received attention as children may purchase, or be exposed to

advertising of energy-dense, nutrient-poor foods on their way to or from school. These

features of the environment near schools are typically operationalized as the number

of food stores within a specific distance from schools (e.g., number of stores falling

within a circle of 1/2 mile radius around schools, also known as 1/2 mile “buffer”).

The associations between each type of built environment features and children’s body

weight are examined in separate models because the marginal association between

each feature of the built environment and children’s body weight is of substantive

interest or because features are strongly correlated making it difficult to include them

simultaneously in one model. Comparing the strength of associations between one
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food store type and another is of particular interest (e.g., convenience stores vs. fast

food restaurant) because limiting certain types of food stores vs. others may need

to be considered from a policy perspective. An overarching limitation of the meth-

ods presently employed in these prior studies is that they do not rigorously examine

or test differences among associations between environment features and outcomes.

Furthermore, the specific distance from schools at which the circle is drawn (also

known as buffer size) is typically chosen in an ad hoc manner, since the distance from

schools at which the presence of food stores may influence children’s body weight is

unknown. Some researchers have compared associations of the outcome with a feature

at different buffer sizes by examining the extent of overlap of confidence intervals for

the associations obtained from several buffer sizes or examined the distance at which

the association is, or ceases to be, significant (Davis and Carpenter , 2009). However,

comparing the extent of overlap of confidence intervals is problematic because the

estimates are correlated. The purpose of the present research is to develop a hierar-

chical multiple informant model (HMIM) that will facilitate comparing differences in

the associations of the same type of food store at several buffers sizes from schools,

and/or differences in the associations of two or more types of food stores.

Methods for multiple informant data were independently proposed by Horton

et al. (1999) and Pepe et al. (1999) and have been comprehensively reviewed by

Horton and Fitzmaurice (2004). The term “multiple informants” refers to information

from multiple sources used to measure the same construct. Horton et al. (1999)

give an example of multiple informants, such as information collected from a child’s

teacher and parent to assess the child’s psychopathology. In our setting, the multiple

informant predictors are features of the environment (e.g., multiple store types or

number of a given store type at several buffer sizes) that may affect children’s weight.

Models for multiple informants can be constructed using non-standard generalized

estimating equation (GEE) methods to estimate the marginal association between

8



each multiple source predictor and an outcome, and provide a formal comparison

of the strength of the associations between each predictor with the outcome (Hor-

ton et al., 1999; Pepe et al., 1999). Alternatively, Litman et al. (2008) developed

a maximum likelihood estimation (MLE) approach that, under a joint normality of

predictors and an outcome, can accommodate more general models than can be esti-

mated with a GEE method. The MLE approach can incorporate multiple informants

measured in different scales and enable estimation of a common “standardized” associ-

ation (e.g., adjusted correlation coefficient), and incorporate data missing at random.

However, existing multiple informant methods are limited to non-hierarchical data

where univariate outcomes are measured on independent subjects. Although Hor-

ton and Fitzmaurice (2004) stressed the importance of complex survey designs, the

estimating equations they employed assume independent subjects.

In Section 2.2 we briefly review multiple informant methods for univariate out-

comes, and extend multiple informant approaches to a hierarchical data setting in

Section 2.3. In Section 2.4 we present a small scale simulation study to highlight

properties of the proposed methods. In Section 2.5 we apply the methods to examine

the association between the presence of food stores near schools and child’s body

mass index z-score (BMIz) using a surveillance dataset from all 5th, 7th, and 9th grade

children enrolled in public schools in the State of California. We use two different fea-

tures of the food environment: fast food restaurants and convenience stores. Section

2.6 concludes with a discussion.

9



2.2 Review of univariate multiple informant models and GEEs

2.2.1 Non-standard GEE approach for Multiple Informant Models with

Independent Subjects

Based on a non-standard application of GEE methods, Pepe et al. (1999) and

Horton et al. (1999) developed a multiple informant model (MIM) to estimate the

association between univariate outcomes and multiple informant predictors. For the

ith(i = 1, . . . , n) subject, let Yi be an outcome and Xik be multiple informants, k =

1, . . . , K. The marginal associations between the outcome and each predictor, Xik,

are defined by separate regressions

E[Yi|Xik] = β0k + β1kXik, (2.1)

where β0k and β1k are the intercept and slope parameters in the kth regression, k =

1, . . . , K. Joint estimation of model parameters can be accomplished by re-structuring

the data as

Ỹi =



Yi

Yi
...

Yi


, X̃i =



1 Xi1 0 0 · · · 0 0

0 0 1 Xi2 · · · 0 0

...
. . .

...

0 0 0 0 · · · 1 XiK


, β =



β01

β11

β02

β12

...

β0K

β1K



. (2.2)

Note that Ỹi has K copies of the same outcome Yi, and covariate vectors, [1 Xik], k =

1, . . . , K, are diagonally stacked in X̃i; correspondingly, β is a vector with all coef-

ficients β0k and β1k stacked. Essentially, each subject is treated as an independent
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cluster with K repeated measures (which are in fact K copies of the same outcome).

Under the assumption of the identity link, constant variance and the working inde-

pendence correlation matrix, the GEE for β is

Σn
i=1X̃

T
i (Ỹi − X̃iβ) = 0. (2.3)

By solving (2.3), the regression parameters β can be estimated, and the variance-

covariance matrix for the 2K parameter estimates, β̂, can be derived by either the

empirical variance estimator or the model-based variance via the GEE approach (Lit-

man et al., 2008). Since the multiple informant model basically employs GEE with

re-structured data, binary or count data can be also fitted by changing the link func-

tion (e.g., logit, log) (Liang and Zeger , 1986).

Litman et al. (2008) demonstrated that assuming the working independence corre-

lation is optimal for certain models since the non-standard GEE approach and MLE

approach yield the same estimator. Further, the working independence structure

within cluster is necessary to ensure consistency in the non-standard GEE approach

(Pan et al., 2000; Pepe and Anderson, 1994). Indeed, without a zero constraint for

off-diagonal terms, joint modeling of the same outcome on multiple informants is in-

valid. For instance, suppose that we have an outcome yit and a predictor xit for the

ith subject at two occasions, t = 1, 2. Under a normal assumption of yit conditional

on xit, the joint distribution of yit given xit for t = 1, 2 can be expressed as

 yi1

yi2

∣∣∣∣xi1, xi2
 ∼ N


 β01 + β11xi1

β02 + β12xi2

 ,
 σ11 σ12

σ12 σ22


 , (2.4)

An implicit assumption of GEE is that covariates at a given occasion are not re-

lated to the outcome given the same covariate measured at another occasion, i.e.,

E[yi1|xi1, xi2] = E[yi1|xi1] and E[yi2|xi1, xi2] = E[yi2|xi2] (Pan et al., 2000; Pepe and
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Anderson, 1994). Another implicit assumption here is yi1 6= yi2. When yi1 = yi2, the

non-standard GEE approach needs to impose a zero constraint on σ12 (all off-diagonal

terms in the covariance matrix).

In our motivating study, we are interested in the associations between multiple

correlated predictors and weight status of children nested in schools (i.e., hierarchical

data). We next review hierarchical modeling using well-developed GEE methods and

subsequently extend the multiple informant model to hierarchical data.

2.2.2 The GEE Model with Exchangeable Correlation Structure

GEE methods have been well established and are extensively used to model hier-

archical data. We briefly review the specific case of GEE with an exchangeable corre-

lation structure as a building block for our proposed models in Section 2.3. Consider

a simple case where data consist of J clusters, each with nj units with measures on an

outcome and a covariate: {yij, xij}, i = 1, . . . , nj for each of j = 1, 2, . . . , J clusters.

Units are assumed to be correlated within clusters, but independent across clusters. A

common correlation structure used for this data is an exchangeable correlation−i.e.,

corr(yij, yi′j) = ρ, i 6= i
′

in the jth cluster. A generalized linear model is commonly

used to relate the mean of yij, µij = E[yij], to a covariate, xij, via a link function g(·)

g(uij) = β0 + β1xij. (2.5)

and the variance of yij is V ar(yij) = φv(µij), where v(·) is a known variance function

and φ is a dispersion parameter. Similar to (2.3), GEE estimates, β̂ = (β̂0, β̂1)T , are

given by solving

ΣJ
j=1DjV

−1
j (Yj − µj) = 0. (2.6)

where Yj = (y1j, . . . , ynj ,j)
T , µj = E[Yj], Dj = ∂µj/∂(β0, β1)T , Vj = A

1/2
j RjA

1/2
j ,

Aj = φdiag{v(µ1j), . . . , v(µnj ,j)}, and Rj is a working correlation matrix (Liang and
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Zeger , 1986). For a continuous outcome yij with the identity link function and an

exchangeable correlation assumption the solution of (2.6) for β with a known ρ is

β̂ = (ΣJ
j=1X

T
j V−1

j Xj)
−1(ΣJ

j=1X
T
j V−1

j Yj). (2.7)

The empirical or ‘sandwich’ variance of β̂ is

ˆV ar(β̂) = BFB (2.8)

where B = (ΣJ
j=1X

T
j V−1

j Xj)
−1, F = ΣJ

j=1X
T
j V−1

j (Yj − µ̂j)(Yj − µ̂j)TV−1
j Xj.

Since φ and ρ are generally unknown, β̂ needs to be iteratively re-estimated to

update the estimated variance-covariance matrix, Vj. To estimate the dispersion

parameter φ and correlation ρ, refer to Liang and Zeger (1986). Since the empirical

variance estimator (2.8) protects against a misspecified working correlation and vari-

ance structure, inference based on GEE estimators is robust to departures from the

true covariance structure (Litman et al., 2008; Liang and Zeger , 1986).

In Section 2.2.1, it is necessary to assume the working independence structure for

a MIM for consistency of the estimators, but for hierarchical models reviewed here,

the working independence assumption may be inefficient in some situations. Mancl

and Leroux (1996) demonstrated that loss of efficiency for the working independence

correlation assumption can be substantial even for small correlation when the coef-

ficient of variation in the cluster sizes (CV) is greater than 0.5. In our motivating

data, the number of children varies largely across schools (CV ≈ 1.1). We extend the

MIM to hierarchical data structures by incorporating a block diagonal working corre-

lation to make the model valid, but with diagonal blocks of exchangeable correlation

structures to model correlations within clusters to enhance efficiency.
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2.3 Hierarchical Multiple Informant Model (HMIM)

2.3.1 Data Structure and Model

Let Yij be an outcome of the ith unit (e.g., child’s BMIz) within the jth cluster

(e.g., school), and denote the mean of Yij as µij = E[Yij], i = 1, . . . , nj for each of

j = 1, 2, . . . , J . For simplicity, assume there are two multiple informant predictors

measured at the cluster level, Xj1 and Xj2 (e.g., Xj1 is the number of FFR and Xj2

is the number of convenience store (CS) within d miles from the jth school). Given a

link function g(·), µij can be modeled as

{
g(µij) = β01 + β11Xj1

g(µij) = β02 + β12Xj2

, (2.9)

where β0k and β1k for k = 1, 2 are the population-level intercept and slope parameters

for the kth regression.

Similar to (2), the data are re-structured as

Ỹj =



Y1j

...

Ynj ,j

Y1j

...

Ynj ,j


, X̃j =



1 Xj1 0 0

...
...

...
...

1 Xj1 0 0

0 0 1 Xj2

...
...

...
...

0 0 1 Xj2


, β =



β01

β11

β02

β12


=

 β1

β2

 . (2.10)

Note that two copies of the outcome vector Yj = (Y1j, . . . , Ynj ,j)
T for all subjects

i = 1, 2, . . . , nj within the jth cluster are stacked. The covariate matrices Xjk, k = 1, 2,

consist of nj copies of the vector [1 Xjk], and are diagonally stacked in X̃j. Accord-

ingly, β contains all β0k, β1k, the population-level intercept and slope parameters.

Including individual level predictors and other cluster level variables is straight-
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forward. For instance, let Wij = [Zij Zj] include individual level predictors Zij

and other cluster level variables Zj. Then, the covariate matrices, [Xj1 Wij] and

[Xj2 Wij], within the jth cluster can be re-structured as in (2.10).

Careful modeling of the correlation within clusters can improve inference of the

population level parameters β. However, due to the implicit assumptions of the

GEE as discussed in Section 2.2.1, we restrict the working covariance structure for

the HMIM to a block diagonal matrix where the diagonal blocks are the correlation

structures given each correlated predictor. Let Vjk = φkRjk, where Vjk consists

of constant variance and a correlation matrix Rjk for k = 1, 2. In the motivating

example, we use an exchangeable correlation structure with correlation ρk to model

Rjk, since children within schools can be assumed exchangeable. Hence, the working

covariance matrix of the HMIM can be

Ṽj =

 Vj1 0

0 Vj2


(2nj×2nj)

. (2.11)

Note that Ṽj consists of a block diagonal of distinct exchangeable covariance matrices,

Vj1 and Vj2, given Xj1 and Xj2, respectively.

With Ṽj and the identity link function, and by virtue of the block diagonal co-

variates and covariance matrices, the estimator for β

β̂ = (ΣJ
j=1X̃

T
j Ṽ−1

j X̃j)
−1(ΣJ

j=1X̃
T
j Ṽ−1

j Ỹj).

yields equivalent estimates to fitting a separate model for each predictor, β̂
1
, β̂

2

β̂ =

 β̂1

β̂
2

 =

 (ΣJ
j=1X

T
j1V

−1
j1 Xj1)−1(ΣJ

j=1X
T
j1V

−1
j1 Yj)

(ΣJ
j=1X

T
j2V

−1
j2 Xj2)−1(ΣJ

j=1X
T
j2V

−1
j2 Yj)

 (2.12)
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The empirical or ‘sandwich’ variance-covariance for the estimated parameters is

ˆV ar(β̂) = B̃F̃B̃

where B̃ = (ΣJ
j=1X̃

T
j Ṽ−1

j X̃j)
−1, and F̃ = ΣJ

j=1X̃
T
j Ṽ−1

j (Ỹj−X̃jβ̂)(Ỹj−X̃jβ̂)T Ṽ−1
j X̃j.

Equivalently, if the models for each multiple informant are fitted separately,

ˆV ar(β̂) = B̃∗F̃∗B̃∗ (2.13)

where B̃∗ =

 (ΣJ
j=1X

T
j1V

−1
j1 Xj1)−1 0

0 (ΣJ
j=1X

T
j2V

−1
j2 Xj2)−1

 and

F̃∗ =
∑J

j=1

 XT
j1V

−1
j1 r1

j

XT
j2V

−1
j2 r2

j


 XT

j1V
−1
j1 r1

j

XT
j2V

−1
j2 r2

j


T

, where

 r1
j

r2
j

 =

 Yj −Xj1β̂
1

Yj −Xj2β̂
2

.That

is, the empirical variance/covariance for β̂ can be calculated using results from each

fitted marginal GEE model. From a practical point of view, fitting each marginal

GEE model has computational efficiencies: 1) the dimension of the data will be

smaller for any one model and 2) available GEE software can be implemented to

obtain the empirical covariance matrix. Example R code for calculating the empirical

variance/covariance matrix (2.13) is provided in Appendix A.

2.3.2 Hypothesis Testing

One advantage of the HMIM is that it gives a formal test to compare the as-

sociation among multiple predictors on a univariate outcome while taking into ac-

count the correlation within clusters. In our motivating example, we seek to compare

the association of two different features of the food environment (fast food restau-

rants (FFR) vs. convenience stores (CS)) with BMIz and to compare the associa-

tions between the number of FFR (or CS) and child’s BMIz across several buffers.

These tests can be conducted using general linear hypotheses expressed in the form
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H0 : Lβ = L0, where L consists of l linearly independent constraints on β and

L0 is a vector of constant terms (usually a zero vector). The Wald test statistic is

T = (Lβ̂ − L0)T (LV ar(β̂)LT )−1(Lβ̂ − L0) which, given the asymptotic normality of

β̂, asymptotically follows a chi-squared distribution with l degrees of freedom. We

next describe a strategy to conduct hypothesis tests.

Two approaches can be followed to compare the associations between two (or

more) predictors on the outcome (e.g., different features of food environment, X1 =

fast food restaurants and X2 = convenience stores on child’s BMIz within a given

buffer size). The first is to use the predictors in their original scales and test for

equality of coefficients, H0 : β11 = β12. Alternatively, if the scales are different (e.g.,

there is an overall preponderance of one feature compared to the other), the predictors

can be standardized so that the coefficients are in standard deviation units (i.e., one

standard deviation increase, or interquartile range increase). If we fail to reject the

null hypothesis that the effects of multiple informants are the same, then, as suggested

by Litman et al. (2008), a constrained model (i.e., a model that assumes β11 = β12)

could be used to increase power.

In our motivating example, we are also interested in comparing the effects of

a given environmental feature (e.g., FFR) across several buffers on child’s BMIz.

Suppose that there are a priori specified distances of interest, r1 < r2 < · · · < rK ,

from schools, and let X1, X2, . . . , XK be number of FFR within the corresponding

buffers. For exposition suppose K = 3. Then, let β1k, k = 1, 2, 3, be the corresponding

marginal regression coefficients. We are interested in testing whether the effects differ,

i.e., the overall test H0 : β11 = β12 = β13 vs. H1 : at least one differs. Failure to reject

the null hypothesis suggests that the most appropriate buffer size is at least up to r3

miles from schools. However, if the overall null hypothesis is rejected, we suggest the

following subsequent tests. First, test the one-sided null hypothesis, H0 : β11 ≤ β12.

If the null hypothesis is rejected, then we decide that the buffer size r1 miles from
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schools has the strongest association, and testing stops. Otherwise, conduct a second

one-sided test H0 : β12 ≤ β13. If the null hypothesis is rejected, stop and conclude

the buffer with size r2 has strongest effects. Otherwise, buffer with size r3 is most

relevant.

2.3.3 AR(1) and Three-level Nested Structures

Given our motivating example we consider hierarchical structures where indi-

viduals are nested in larger units in which an exchangeable correlation structure is

natural. However, hierarchical data can also arise in longitudinal repeated measures

for which other correlation structures may be better suited. The HMIM can be ap-

plicable to this setting as well. For instance, let Yit be the ith child’s BMIz at time t,

i = 1, 2, . . . , n and t = 1, 2, . . . , T , and the two covariates be Xit1 and Xit2. Data can

be re-structured in a similar manner as (2.10)

Ỹi =



Yi1
...

Yi,T

Yi1
...

Yi,T


, X̃i =



1 Xi11 0 0

...
...

...
...

1 XiT1 0 0

0 0 1 Xi12

...
...

...
...

0 0 1 XiT2


.

Note that Ỹi has two copies of the vector of repeated measures YT
i = [Yi1 · · · YiT ]

and X̃i has a block diagonal structure of the two covariates including the intercepts.

To reflect within-cluster correlation over time in a longitudinal study, an AR(1) cor-

relation structure can be used

Ṽi =

 σ2
1AR(1, ρ1)T×T 0

0 σ2
2AR(1, ρ2)T×T

 .
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where AR(1, ρ1) and AR(1, ρ2) are AR(1) correlation structures with an autocorre-

lation ρ1 and ρ2, respectively, and the variances are σ2
1 and σ2

2. Other variances can

also be incorporated (e.g., a non-constant variance if an outcome is binary).

Another extension is for a three-level nested structure. For instance, suppose Yijl

is the ith child’s BMI in the jth school in the lth county, i = 1, . . . , njl, j = 1, . . . , nl, l =

1, . . . , L. Assume that there are two county-level covariates Xlk, k = 1, 2, of interest

for comparison. With the independence assumption across counties and given each

predictor Xlk, let the correlation within schools be Corr(Yijl|Xlk, Yi′jl|Xlk) = ρwk , i 6=

i
′
, and let the correlation between schools within county be Corr(Yijl|Xlk, Yi′j′ l|Xlk) =

ρbk, j 6= j
′
. Data can be re-structured in a similar way as (2.10) where a vector of an

outcome is replicated twice at the county level and the re-arranged covariate matrix

has a block diagonal structure. To account for the correlations within schools and the

correlation between schools in a county, a three-level exchangeable working covariance

matrix can be expressed as

Ṽl =

[
σ2
1R1 0

0 σ2
2R2

]
,Rk =


ex(ρwk ) ρbk1njl×njl

· · · ρbk1njl×njl

ρbk1njl×njl
ex(ρwk ) · · · ρbk1njl×njl

...
...

. . .
...

ρbk1njl×njl
ρbk1njl×njl

· · · ex(ρwk )


njlnl×njlnl

, k = 1, 2.

where ex(ρwk ) is a njl×njl exchangeable correlation structure with the correlation

ρwk . The matrix 1njl×njl is a njl × njl one matrix, and the dispersion parameter or

variance parameters are σ2
k.

2.4 Simulation Study

We conducted a small scale simulation study to provide guidance on practical ap-

proaches to estimate model parameters and to examine properties of estimators and

hypothesis tests. In available software, the most straightforward way to implement

the proposed method is to use the working independence assumption within cluster.
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In standard GEEs, this approach is fully efficient when cluster sizes are equal and co-

variates are invariant or mean-balanced within cluster, but can suffer severe efficiency

loss otherwise (Mancl and Leroux , 1996).

Because the environmental effects in our motivating study will typically be small,

loss or gain in efficiency may have important implication for derived inferences. Hence,

we examine statistical power of detecting a small degree of differences of environmen-

tal effects assuming unequal large cluster sizes and invariant covariates within cluster.

2.4.1 Simulation Setup

We set up the simulations to reflect two possible scenarios of the comparison of the

marginal effects of fast food restaurants (FFR) across several buffers on child’s BMIz:

1) marginal effects of FFR are diminishing with distance and 2) marginal effects of

FFR have threshold at some distance. For both simulation scenarios, sample size,

nesting structure (i.e., number of clusters and subjects per cluster), and distribution

of the multiple informants (the number of restaurants within 1/4, 1/2, and 3/4 miles

from each school) were the same as observed in the data example. For instance,

in our motivating data the average number of children per school and its standard

deviation are 145.6 and 159.5, respectively, yielding a coefficient of variation (CV) of

1.1. This means that unbalance of cluster size is large. For each simulation scenario

we simulated 1,000 datasets where each data contain 926,018 observations nested in

6,323 clusters. Multiple informant predictors were fixed to the observed number of

FFR in the motivating example (see Table 2.1), thus we only generated outcome data

conditional on the predictors FFRk, k = 1, 2, 3.

To simulate data with diminishing effects of FFR with distance, the marginal

effect of FFR on child’s BMIz within 1/4 miles was fixed at the observed value in our

motivating example (β11=0.0234). True parameters of FFR within distance 1/2 and

3/4 miles, β12 and β13, were set to β12 = aβ11 and β13 = 0.8aβ11, where 0 ≤ a ≤ 1, i.e.,
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Figure 2.1: Regression parameter values used in simulations for i) diminishing and
ii) threshold effects of fast food restaurants (FFR) at distance 1/4, 1/2,
and 3/4 miles. True parameter settings are β12 = aβ11 at 1/2 mile,
β13 = 0.8aβ11 at 3/4 mile for diminishing effects and β12 = aβ11 at 1/2
mile, β13 = aβ11 at 3/4 mile for threshold effects, such that a (0 ≤ a ≤ 1)
controls the differences across parameters.

the effects of FFR consistently decrease over distance. Similarly, for threshold effects

with distance, β12 = aβ11 and β13 = aβ11, where 0 ≤ a ≤ 1, i.e., the effects of FFR

decrease at some distance and continue to be constant. Here, the constant a controls

the differences across regression parameters. Figure 2.1 shows regression parameter

values used in the simulations for a range of values of a, for both diminishing effects

and threshold effects.

Note that, given the observed variances of the predictors (Table 2.1), these ef-

fects constrain the marginal covariances between predictors and outcome to σX1Y =

β11σ
2
X1

= 0.011, σX2Y = aβ11σ
2
X2

and σX3Y = aβ11σ
2
X3

for threshold effects, and

σX3Y = 0.8aβ11σ
2
X3

for diminishing effects. Further we assumed the marginal outcome

mean was µY = 0 (centered), and had marginal variance σ2
Y = 0.14 (as observed in

our motivating data).
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To simulate outcomes, we first generated cluster level values from a normal distri-

bution with mean E[Ȳ·j|FFRj1,FFRj2,FFRj3] = γ0 + γ1FFRj1 + γ2FFRj2 + γ3FFRj3

and variance V ar[Ȳ·j|FFRj1,FFRj2,FFRj3] = σ2
δ , where σ2

δ = σ2
Y − γ2

1V ar(FFRj1)−

γ2
2V ar(FFRj2)−γ2

3V ar(FFRj3)−2γ1γ2Cov(FFRj1,FFRj2)−2γ2γ3Cov(FFRj2,FFRj3)−

2γ3γ1Cov(FFRj3,FFRj1). The conditional mean of the cluster level given all three

predictors was used because the outcome needs to be simulated only once given all

three predictors. We used the Sweep operator (Beaton, 1964; Dempster , 1969) to

derive conditional associations, γ0, γ1, γ2, γ3 given the specified marginal associations

β11, β12, β13 (see Appendix B). Given the cluster mean, we generated subject level

observations as Yij = Ȳ·j + εij, where εij ∼ N(0, σ2
ε ), where σ2

ε = (1 − ρy)/ρyσ2
δ , and

ρy = Corr(Yij, Yi′j) set to 0.05 for i 6= i
′

in the jth cluster. With this parameter set-

ting, the true marginal covariance matrix for the HMIM (2.11) has non-equal blocks

(see Appendix C).

2.4.2 Simulation Results

Let β̂Ex denote the estimator for β in (2.12) when using Vjk = φkRjk as the

diagonal blocks of Vj (2.11), with Rjk being an exchangeable correlation structure

with parameter ρk, k = 1, 2, 3. Similarly, let β̂I denote the estimator for β when

Vj consists of blocks of Vjk = φkRjk with Rjk being an independence correlation

structure. From the 1,000 datasets, the empirical power was calculated as the rate

of rejecting the overall test for comparing marginal effects β1k for k = 1, 2, 3, i.e.,

H0 : β11 = β12 = β13 vs. H1 : at least one differs, for both estimators. For a

given data set, the null hypothesis was rejected when the Wald test statistic T (see

Section 2.3.2) exceeded the critical value for a chi-squared distribution with 2 degrees

of freedom. As shown in Figure 2.2, the empirical power of β̂Ex was uniformly higher

than β̂I for diminishing effects of FFR. Power was always greater than the significance

level (0.05) because in the range of a (0 ≤ a ≤ 1) true parameters of FFR were always
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Figure 2.2: Simulation results assessing power for the hypothesis test
H0 : β11 = β12 = β13 for i) diminishing and ii) threshold effects of
fast food restaurants (FFR) using HMIM with exchangeable (Ex.)
and independence (Indep.) correlation structures. True parame-
ter settings are β12 = aβ11, β13 = 0.8aβ11 for diminishing effects and
β12 = aβ11, β13 = aβ11 for threshold effects.

distinguishable. The U-shape of the power function within the range of a is due to

the non-centrality parameter of the test statistic, T , being a quadratic function of a

under the alternative hypothesis.

For the threshold effects of FFR, the empirical powers of both estimators β̂Ex and

β̂I go to nominal value (0.05) of Type I error rate when a = 1, or β11 = β12 = β13.

When β1ks are distinguishable or a goes to 0, the power for β̂Ex increases faster than

for β̂I . The crossing of the power curves of the estimators may be due to Monte

Carlo errors from the simulation. The Monte Carlo errors will be negligible with an

increased number of simulations.

Because of the large number of clusters, the empirical power from the overall test

when H0 : β11 = β12 = β13 is true preserved 5% Type I error rate. When the number
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of clusters is small, a bias corrected sandwich estimator could be used (Mancl and

Derouen, 2001).

2.4.3 Simulation conclusions

Accounting for correlation within cluster is important to better detect small differ-

ences between marginal effects in an environmental study of clustered or hierarchical

data. For instance, for threshold and diminishing effects, this simulation shows that,

if using β̂Ex, 80% power was achieved when a < 0.2. That is, to be statistically dis-

tinguishable, the association between the outcome and number of FFR at the outer

buffers needs to be at most 20% of the association with the number of FFR in the

inner buffer. However, note that if using β̂I , 80% power could not be reached for any

value of a.

The fact that power using β̂Ex is higher than β̂I can be explained by applying

previous work on asymptotic relative efficiency (ARE) of Mancl and Leroux (1996).

According to their formula for ARE, and given that we have the conditions: 1)

invariant covariates within clusters, 2) unequal cluster sizes (CV ≈ 1.1), 3) large

cluster size (J̄ = 145.6), and 4) intra-cluster correlation ρk ≈ 0.05, k = 1, 2, 3, the

ARE of β̂Ex to β̂I in the current data is about 0.55, meaning approximately 45%

loss of efficiency by employing the independence correlation structure even for small

intra-cluster correlation and invariant covariates within clusters.

This simulation study shows that a HMIM should be employed for formal testing

of associations of an outcome among correlated predictors in clustered or hierarchical

data to increase power.

2.5 Data Example

We used data for children who participated in the 2007 California physical fit-

ness test (also known as FitnessGram), which contains direct measures of children’s
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weight and height, among all children attending 5th, 7th and 9th grade, as well as

other covariates such as age, sex and race. Following prior exclusion criteria, we

used data on 926,018 children nested in 6,323 schools (Sánchez et al., 2012). The

location of fast food restaurants (FFR) and convenience stores (CS) in California

was purchased from InfoUSA, a commercial source. Geocodes for schools and food

stores were cross-referenced to obtain the counts of stores within 1/4, 1/2, 3/4 miles

from schools, denoted by FFR1,FFR2,FFR3 and CS1,CS2,CS3. We obtained data

from the California Department of Education’s databases and the 2000 US Census

to characterize the size and racial/ethnic composition of the schools, as well as the

socio-economic conditions of the neighborhoods in which schools were located.

Body mass index z-score (BMIz) was used as a continuous outcome. BMIz was

derived by calculating body mass index (weight in kg/height in meters squared), and

standardizing it according to an age and gender-specific BMI distribution. In other

words, BMIz indicates how much a child’s BMI differs from a reference group of the

same age and gender (CDC , 2005). In contrast to BMI among adults, BMI among

children needs to be standardized to a reference population because they are still

growing and their body composition is changing as they grow (Must and Anderson,

2006) such that the meaning of BMI is not the same across age and sex. Following

prior analyses (Sánchez et al., 2012), we included individual- and school-level co-

variates as adjustment factors in models. The individual-level covariates are grade,

age, gender, race/ethnicity. The school-level covariates are school’s racial composi-

tion, school’s neighborhood-level education, school’s total enrollment, and percent of

children enrolled in the free or reduced price meal program.

Descriptive statistics of child’s BMIz, the number of FFR and CS within distance

1/4, 1/2, 3/4 miles are summarized in Table 2.1. The average number of children

per school and its standard deviation are 145.6 and 159.5, respectively, yielding a

coefficient of variation (CV) of 1.1.

25



Table 2.1: Descriptive statistics for BMIz∗, number of fast food restaurants (FFR) and
convenience stores (CS) at three distances, and their pairwise correlations.

We conducted two sets of analyses: 1) the comparison of two different features

of food stores within the same buffer, and 2) the comparison of a food environment

feature across several buffer sizes. In both sets of analyses we fitted a HMIM with both

exchangeable and independence structures and, for comparison, also MIM without

accounting for cluster correlation. Further, the individual- and school-level covariates

described above were included.

First, for the comparison of two different features of food stores within the same

buffer, the counts of FFR and CS were standardized to a mean of zero and a standard

deviation of one because of potentially different scales (e.g., an overall preponderance

of one feature may be different compared to the other) so that the coefficients are

in standard deviation units. We use F s
j1, F

s
j2, F

s
j3 and Cs

j1, C
s
j2, C

s
j3 to denote the

standardized number of FFR and CS within 1/4, 1/2, 3/4 miles from the jth school,

respectively, and Zij to denote the vector of the individual- and the school-level

covariates or confounders. For each of three buffers, k = 1, 2, 3, the fitted models are

E[BMIzij|F s
jk,Zij] = βF

s

0k + βF
s

1k F
s
jk + ZT

ijβ
F s

(k),

E[BMIzij|Cs
jk,Zij] = βC

s

0k + βC
s

1k C
s
jk + ZT

ijβ
Cs

(k).

The null hypotheses of interest are whether for each buffer, the association between

the number of CS and BMIz is the same as the association between the number of
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Table 2.2: Estimated associations∗ of two different features of the food environment
(fast food restaurants vs. convenience stores) within the same buffer on
BMIz and hypotheses tests of equality of the associations. Associations are
estimated based on standardized number of fast food restaurants and con-
venience stores, adjusting for individual- and school-level covariates, using
the proposed HMIM and the MIM without accounting for within cluster
correlation.

FFR and BMIz, i.e., H0 : βF
s

1k = βC
s

1k for k = 1, 2, 3.

Table 2.2 provides the results for the comparison of FFR and CS within the

same buffer size. For all buffer sizes, the adjusted associations of CS with BMIz are

significantly greater than those of FFR with BMIz. For example, given the 1/4 mile

buffer size, child’s BMIz increases 0.77 × 10−3 and 10.82 × 10−3 per one standard

deviation increase of FFR (= 0.679) and CS (=0.473), respectively, after adjusting

for individual and school factors. Using either an exchangeable correlation structure

or the independence structure, we reached the same substantive conclusion, although

the point estimates are slightly different. Second, to investigate how the association

between the number of FFR (or CS) and BMIz varies across several buffers, we fitted
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models

E[BMIzij|FFRjk,Zij] = β0k + β1kFFRjk + ZT
ijβ(k) for k = 1, 2, 3 (similar for CS).

The question of interest is whether the associations between the number of a given

foods store type (FFR or CS) varies across buffer sizes, i.e., the overall null hypothesis

H0 : β11 = β12 = β13. Note that the coefficients are expressed in units of BMIz per

one unit increase in the number of stores, since the same feature is being compared

across buffers. The parameter estimates and the p-values for the overall hypotheses

tests are given in Table 2.3.

The overall test for the associations of FFR across several buffers is not rejected

(p=0.895), meaning the number of FFR within 1/4, 1/2, and 3/4 mile from schools do

not have significantly different associations with child’s BMIz. This implies that the

most relevant buffer size is 3/4 mile from schools, or potentially further. Child’s BMIz

increases 1.72×10−3 per one FFR increment within 3/4 miles from schools (p=0.862,

not reported in Table 2.3). By employing either an exchangeable correlation matrix

or the independence structure, the same conclusion is derived.

Unlike the associations of FFR, the associations of CS across the buffers are signifi-

cantly different based on HMIM with the exchangeable correlation matrix (p = 0.004).

Based on the result of HMIM with the exchangeable correlation matrix, we performed

subsequent hypothesis test as described in Section 2.3.2. i.e., test the one-sided null

hypothesis, H0 : β11 ≤ β12. We rejected the one-side null hypothesis (p-value =

0.017) and concluded that the most relevant buffer size for the association between

CS and child’s BMIz is 1/4 mile from schools. Child’s BMIz increases 0.022 per one

CS increment within 1/4 miles from schools after adjusting other covariates. Note

that in Table 2.2 and Table 2.3 the estimates and standard errors using an exchange-

able correlation matrix differ from those using the independence assumption. These
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Table 2.3: Estimated associations∗ between number of fast food restaurants (or con-
venience stores) and BMIz across three distances and test of equality of
association across distances. Associations are estimated from three differ-
ent models, adjusting for individual- and school-level covariates.

changes result in test statistics (e.g., a ratio of the difference between two regression

parameters to its standard error) that are larger when using the exchangeable corre-

lation matrix and thus smaller p-values. For instance, in Table 2.3 the overall null

hypothesis yields a p-value = 0.118 when using the independence assumption within

cluster while an exchangeable assumption yielded a p-value = 0.004, highlighting the

gain in efficiency when using the exchangeable vs. independence assumption.

Lastly, as shown in Table 2.2 and Table 2.3, the MIM without accounting for

within-cluster correlation provides the same point estimates of HMIM with the inde-

pendence structure, but the failure to account for hierarchical structures yields the

underestimated standard errors, resulting in invalid inference.

2.6 Discussion

We extended multiple informant methods to a hierarchical data setting to enable

comparison of the associations between multiple correlated predictors on a univari-

ate outcome measured in clustered sets of individuals. The method is based on a
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non-standard application of generalized estimating equations and can be applied to

settings where the outcome is continuous, count, or binary. In simulation study,

we showed the improved power and efficiency of estimators based on using a block

diagonal of exchangeable correlation matrices instead of the working independence

correlation structure. A practical advantage of a HMIM is that it can be fitted using

available GEE software. A marginal GEE model for each multiple informant can

be separately fitted, and then a joint empirical variance estimator can be calculated

to conduct hypothesis tests involving the marginal effects of predictors. We applied

HMIMs to examine how the association between the number of fast food restaurants

(or convenience stores) and child’s BMIz varies across several buffers from schools

and to compare the association of two different features of the food environment (fast

food restaurants vs. convenience stores) with child’s BMIz. The overall hypothesis

that the association between number of FFR and child’s BMIz across several buffers

is the same was not rejected, suggesting that the association of the count of FFR up

to 3/4 mile from schools does not differ significantly from the association at small

buffer sizes with accounting for individual- and school-level covariates. In contrast,

the association of BMIz with the count of CS differs depending on distance from

schools, with 1/4 mile being most relevant buffer size. We also showed the associa-

tion between the count of CS and BMIz is much stronger compared to the association

between FFR and BMIz.

We proposed a testing strategy that may be helpful in selecting an appropriate

buffer size at which to estimate the association between an environmental feature and

an outcome. However, there are some extreme cases where the hypothesis testing

strategy may fail. For instance, if there are few or no additional of food stores

between distances rk−1 and rk, then the marginal association between the number of

food stores and child’s BMIz across buffers rk−1 and rk would likely to be the same due

to Xj,k−1 ≈ Xjk. An alternative might be to define multiple informant covariates as
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the new information not contained in the previous buffer, e.g., Xj(δk) = Xjk−Xj,k−1,

and fit a model g(µij) = β∗0 + β∗1Xj(δ1) + β∗2Xj(δ2) + β∗3Xj(δ3). If β∗3 6= 0, then

the buffer of size is r3 from schools still provides information on child’s BMIz, and

similarly for the other buffer sizes. However, the interpretation of these coefficients

is that of conditional associations, not marginal associations.

We also confirmed the underestimated variances of the estimators from the MIM

due to the failure to incorporate hierarchical structures, which provide us invalid

inference. The bootstrap method, as pointed out by a referee, may be employed

for valid inference. For instance, suppose that we have 5,000 bootstrap estimates

of regression parameters from the MIM. Then, the empirical variance/covariance of

the estimates can be used for hypothesis testing because the failure to account for

hierarchical structures has little impact on the population point parameter estimates.

The bootstrap method, however, may require extensive computational time.

The main idea of MIM is very similar to seemingly unrelated regression meth-

ods (SUR) (Zellner , 1962). The main difference between MIM and SUR is that in

MIM the same outcome is replicated to form an outcome vector for the cluster with

predictors changing from one replicate to another, whereas different outcomes form

an outcome vector in SUR. Similarly, a HMIM is related to the model structure de-

scribed by Rochon (1996). The author employed SUR in a repeated measures setting

for discrete and continuous outcome variables; nevertheless, here we extended MIM

to hierarchical data to enable estimation and testing of marginal effects of several

correlated factors or multiple informants or predictors.
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CHAPTER III

Distributed Lag Models: Examining Associations

between the Built Environment and Health

3.1 Introduction

Studying the contributions of both individual- and built environment factors on

health is important to better understand the determinants of disease because environ-

mental factors may directly constrain individual’s behaviors and choices (Diez-Roux ,

1998; Susser , 1994). Built environment factors near or around schools, in particular

commercial establishments offering “junk” food have recently received particular at-

tention as possible contributors to the childhood obesity epidemic. The availability

of establishments that sell high energy, low nutrition foods near schools may increase

consumption of these items, both through purchasing and consumption on the way

to and from school, and indirectly through excess exposure to advertising that may

shape children’s dietary choices and weight status (Gebauer and Laska, 2011; Hillier

et al., 2009). Davis and Carpenter (2009) showed that children’s obesity status was

associated with proximity of fast food restaurants to schools. Similarly, Sánchez et al.

(2012) showed that the number of convenience stores within a 1/2 mile radius from a

school (also known as a 1/2 mile “buffer”) was significantly associated with children’s

obesity status although not all studies show consistent results (Alviola et al., 2014;
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Currie et al., 2009; Harris et al., 2011; Langellier , 2012). Inconsistent findings may

be in part due to how measures of the built environment are constructed; for instance,

the buffer size within which features of the environment are counted.

Studies relating food store availability near schools to children’s weight typically

choose buffer sizes on an ad hoc manner (e.g., 1/4, 1/2, or 1 miles from schools), often

justifying these distances on the basis of the time it takes to walk such distances, e.g.,

children may walk a given distance in 5-10 minutes (An and Sturm, 2012; Howard

et al., 2011; Zenk and Powell , 2008). To determine the most influential buffer size

given a-priori selected buffer sizes, estimated associations are compared by examin-

ing the extent of overlap of the corresponding confidence intervals; or by examining

the distance at which the associations are, or cease to be, significant (Davis and

Carpenter , 2009).

The distances within which the presence of certain food stores significantly affect

children’s weight remain unknown and statistical methods to determine them em-

pirically have been understudied. Although some approaches have been proposed to

empirically select the most relevant/influential/appropriate distances to health out-

comes, there is currently no consensus on the most robust method. In the transport

geography literature, Guo and Bhat (2004) proposed using goodness-of-fit statistics

comparing several fitted models as a way to empirically select the best buffer size.

Conversely, Spielman and Yoo (2009) demonstrated through a simulation study that

selecting buffer sizes based on goodness-of-fit statistics does not perform well and

may even result in biased associations with the health outcome.

Indeed, misspecifying the buffer size within which built environment features are

measured may yield biased associations and incorrect inference. This issue is more

generally known as the modifiable area unit problem (MAUP) (Fotheringham and

Wong , 1991; Openshaw , 1996). For instance, consider data generated from the model

Y = βX(A5) + ε, where β 6= 0, X(A5) indicates a spatially correlated built environ-
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ment factor measured within a buffer of radius 5 from locations of interest, while ε is

a residual error. Without knowledge about the true buffer size, suppose we instead fit

Y = θ0 + θ1X(A3) + ε
′
. Since the built environment feature located between distance

3 to 5 from the locations, say X(A3−5) is correlated with X(A3), the estimated θ1 is

biased; i.e., X(A3−5) confounds the association between Y and X(A3) rendering the

estimate for θ1 different from β(θ1 6= β).

To better understand the associations between built environment features and

health as a function of distance from the locations of interest, we propose using

distributed lag models (DLMs) and apply DLMs to examine the effects of the food

environment around schools on children’s body mass index z-score (BMIz).

DLMs have a long history in economics research mostly derived from the works

of Koyck (1954), Nerlove (1956), Almon (1965) and others; more recently they have

been used in air pollution studies (Braga et al., 2014; Dominici et al., 2004; Goodman

et al., 2004; Heaton and Peng , 2012; Pope and Schwartz , 1996; Pope et al., 1991; Welty

et al., 2009; Zanobetti et al., 2000) to examine associations between lagged exposure

covariates on an outcome. In application to air pollution studies, the lagged exposure

used in DLMs is the air pollution in the previous L days. In our built environment

research, the lagged exposure covariate is represented by the number of food stores

between two radii, rl−1 and rl, l = 1, 2, . . . , L, where r0 = 0, away from schools.

In other words, we consider the number of food stores within “ring”-shaped areas

around schools and examine the association between these lagged exposure covariates

on children’s weight.

Since the associations between a health outcome and the built environment fea-

tures within ring-shaped areas are likely to be similar in adjacent rings, we model

them as a smooth function of distance from the locations of interest, in this case

schools. While various ways for constraining the lagged coefficients of DLMs have

been proposed in the literature (Heaton and Peng , 2012; Welty et al., 2009; Pope and
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Schwartz , 1996), here we follow Zanobetti et al. (2000) and use splines to model the

DL coefficients. Smoothing the DL coefficients has the advantage of stabilizing the

estimates of the coefficients and their variances, and enables researchers to use a large

number L of lags without necessarily increasing the degrees of freedom of the model.

In the following sections of the paper, the text is organized as follows: In Section

3.2, we introduce DLMs in the context of studying the association between the built

environment and health outcomes, including how associations of the built environ-

ment may vary according to subject characteristics. In Section 3.3, we (a) perform a

small scale simulation study that aims to show how DLMs can capture true underlying

associations between health and built environment features given various conditions

of the built environment, and (b) compare them to currently used traditional regres-

sion methods. In Section 3.4, we apply the proposed method (DLMs) to examine

the effect of availability of convenience stores (CS) on children’s BMI z-score (BMIz)

using a surveillance dataset for 5th and 7th grade children who attended public schools

in the State of California. Section 3.5 concludes with a discussion.

3.2 Distributed Lag Model (DLM)

3.2.1 Statistical Model

Let Yi be a continuous outcome measured at location i and Xi(rl−1; rl), l =

1, 2, . . . , L, be a feature of the built environment measured within a ring-shaped area

around location i with inner and outer radius rl−1 and rl, respectively. In our ex-

ample, schools are the unit of observations, the health outcome is the average BMIz

of children attended in the school, and the built environment measure is the number

of CS near the schools. We denote with rL the maximum distance around locations

beyond which we assume there is no further association between the environment

feature and the outcome. The total number of lags L considered can be chosen large
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enough to allow for more flexibility in the shapes of the associations of the aggregated

environment feature and the outcome. Then, in a DLM, the outcome is modeled as

Yi = β0 + ΣL
l=1β(rl−1; rl)Xi(rl−1; rl) + εi, (3.1)

where εi ∼ N(0, τ 2), β0 represents the intercept term, and β(rl−1; rl) denotes the

association of the environment feature measured between radius rl−1 and rl around

the locations and the outcome. In our motivating example, the coefficient β(rl−1; rl)

represents the difference in mean children’s BMIz per one higher CS count in the area

between radii rl−1 and rl (see Figure 3.1a).

We constrain the coefficients β(rl−1; rl) to vary as a smooth function of distance

rl, l = 1, 2, . . . , L, by using splines (Hastie and Tibshirani , 1990; Zanobetti et al.,

2000). This ensures that coefficients corresponding to adjacent areas are similar, as

we would not typically expect associations to change abruptly across distance. It

also alleviates possible numerical problems that may arise when many locations have

zero food stores between two given radii rl−1 and rl . In particular, we model the

association coefficients β(rl−1; rl) using a radial basis function; that is

β(rl−1; rl) = α0 + α1rl + ΣL
k=1α̃k|rl − rk|3, (3.2)

where α0 denotes the intercept of the lag effects, α1 represents the average change

rate of lag association, and the α̃k are penalized coefficients to achieve smoothness

(see Appendix for details). While other types of splines could be employed, using

smoothing splines, avoids the issue of knot selection.

Generally only interpreting the coefficient β(rl−1; rl), rather than α’s, will be of

interest because it directly informs how the built environment feature captured by

Xi(rl−1; rl) is associated with the outcome. The units of the built environment feature

captured by Xi(rl−1; rl) naturally impact the interpretation of β(rl−1; rl). In our
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Figure 3.1: (a) Ring-shaped areas within which food environment features are ascer-
tained and corresponding DL coefficients. (b) Averaged coefficient associ-
ated with features within buffer of radius rk, β̄(0; rk).
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application, we used the total number of CS in ring-shaped areas, however we note

that other definitions of Xi(rl−1; rl) could be used, such as the density of CS per area.

In that case, the DL coefficients could be readily calculated by transforming the

parameters in Eq. (3.1): coefficients of the association between the density measure,

i.e., the count per unit area Xi(rl−1; rl)π(r2
l − r2

l−1), and health outcome are equal to

the coefficients in Eq. (3.1) weighed by the area of the ring where Xi(rl−1; rl) was

calculated, i.e., β(rl−1; rl)π(r2
l − r2

l−1).

Estimation of DLM parameters can be carried out using either a frequentist or a

Bayesian approach: software to fit DLMs is available both in R (R Development Core

Team, 2014; Gasparrini , 2011) and WinBugs (Lunn et al., 2000). In fitting DLMs,

one could estimate the smoothing parameter for the lag effects, i.e., the penalty

parameter for α̃k, either by treating them as random effects or via generalized cross

validation (GCV). We opted for random effects and fitted the model using a Bayesian

approach (see appendix for details): this allows us to account for the uncertainty in

the penalty parameters and easily derive the variance of model summaries such as

the average buffer effects up to a certain distance rk, β̄(0; rk), defined below.

3.2.2 Connection between DLMs and traditional approaches

In environmental studies, traditional linear models of the form Yi = βX(0; rk)+ εi

is the widespread approach to estimate the average association between measures of

the built environment within a buffer of radius rk and a health outcome. An im-

plicit assumption of such models is that the association between the outcome and

the built environment factors within distance rk is constant and no association be-

yond distance rk exists. Our proposed DLM allows us to relax both of these as-

sumptions. In addition, our model enables us to easily calculate the average buffer

effect β̄(0; rk) up to a given distance rk (e.g., the average difference in children’s

BMIz per one additional food store within a buffer area of radius rk) by comput-

38



ing the average height of the volume of the shape depicted in Figure 3.1b, i.e.,

β̄(0; rk) = Σk
l=1β(rl−1; rl)π(r2

l − r2
l−1)/πr2

k. To see this, first consider the average

buffer effect up to distance rk in the density scale. As mentioned previously, the

buffer effect between distance rl−1 and rl in the density scale is the area-weighted

association, β(rl−1; rl)π(r2
l − r2

l−1) which is a volume of the area between two radii

rl−1 and rl. By summing the area-weighted associations, Σk
l=1β(rl−1; rl)π(r2

l − r2
l−1),

we can derive the average association within the buffer of radius rk. Alternatively,

if the density measure is used as covariate in the DLM, then the average association

within the buffer of radius rk is simply the sum of all coefficients up to distance rk. We

note that while in the air pollution literature, the simple sum of the DL coefficients

represents the overall health impact of a unit difference in exposure on the previous

k days, in this research of the built environment associations with child body weight,

the DL coefficients have to be weighted by the area of the rings measured to obtain

the equivalent interpretation.

We also note that deriving the average buffer effect up to distance rk using the

model in Eq. (3.1) provides a more accurate estimate of buffer effects than one could

derive from the linear models traditionally used in environmental exposure studies.

Our simulation studies presented in Section 3.3 will provide an illustration of this

phenomenon.

3.2.3 Differences in DL coefficients by subject characteristics

As with any linear models, also DLMs could be expanded to allow the association

between a health outcome and built environment features to vary by subject charac-

teristics. For instance, effects between features of the built environment and children’s

BMIz might be different by age or grade because younger children may have more re-

strictions on what they are allowed to do within and outside of school boundaries (e.g.,

school policies on whether children are allowed to leave school for lunch may vary by
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age). To investigate whether the DL effects vary according to subjects characteristics,

Eq. (3.1) could include interaction terms between Xi(rl−1; rl), l = 1, 2, . . . , L, and Zi.

Similarly to what is done previously, we would model the interaction coefficients using

splines,

θ(rl−1; rl) = v0 + v1rl + ΣL
k=1ṽk|rl − rk|3, (3.3)

where v0 represents the difference in the intercept of the lag effects due to Zi as

compared to the baseline (Zi = 0), and v1 denotes the difference in the change rate

over distance due to Zi while the random coefficients ṽk are penalized coefficients used

to achieve smoothness for the interaction term. Again, interpreting the effect of the

interaction θ(rl−1; rl), rather than the v’s, is generally of primary interest.

3.2.4 Extensions of the model

DLMs can be extended in several directions to allow for the examination of differ-

ent types of outcomes. For example, we can define generalized DLMs if the observed

outcome Yi is binary or a count. In our motivating example, although our outcome is

approximately normal, the assumption of constant variance, typical of linear models,

does not hold. For this type of situations, instead of using a DLM, we can use a

weighted DLM where the error terms εi are modeled as εi ∼ N(0, τ 2/wi), where wi is

a known weight for the ith observation. Fitting a weighted DLM is rather straightfor-

ward: we simply need to transform the data Yi according to the following equation:

Y w
i = Yi

√
wi and Xw

i (rl−1; rl) = Xi(rl−1; rl)
√
wi, l = 1, 2, . . . , L, and fit the usual

DLM as given by (3.1) to the transformed data. Interpretation of the regression

coefficients remains unchanged.
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3.3 Simulation

We performed a small scale simulation study to improve our understanding of

estimation and inference of associations of interest in DLMs are affected by the degree

of spatial correlation in the built environment and the shape of association between

measured environment factors and an outcome across distance. Further, we compared

results obtained from DLMs to those obtained from traditional approaches based on

linear models when the goal is to estimate the average association between features

of the built environment and an outcome up to a-priori specified distances.

For our simulations, we used a spatial domain as the square (0, 500)× (0, 500). In

the square, we simulated food store locations (e.g., features of the built environment)

by sampling from an inhomogeneous Poisson point process. The intensity of the

inhomogeneous Poisson process was simulated from a log Gaussian process with mean

µx, marginal variance σ2
x, and exponential correlation function. In other words, the

correlation between two points on the 500 × 500 grid is given by ρ(d;φ), where d is

the distance between two points and φ is the decay parameter, i.e., the rate at which

the correlation decays.

We considered three scenarios for the spatial variability of the intensity function:

1) the marginal variance of the intensity function σ2
x is set equal to 0; this implies

that the intensity is constant over space and store locations are sampled from a

homogeneous Poisson point process with a intensity log(µx); 2) σ2
x = 1 and φ = 5/3;

this corresponds to a intensity with a spatial correlation that is equal to 0.05 when

the distance between two points is equal to 5 units. The resulting sampled locations

display a small amount of clustering; and 3) σ2
x = 1 and φ = 20/3; this corresponds

to a correlation function that decays to 0.05 at a distance of 20 units, resulting in

sampled food stores that display a large amount of clustering. In each case, the mean

of the log Gaussian process used to simulate the intensity of the inhomogeneous

Poisson process was taken to be equal to 0.15 (see Supplementary Figure D.1).
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For each of three built environment settings, we simulated one realization of the

built environment, however, given a realization of the built environment, we simulated

1000 datasets with different locations for the health outcomes (e.g., the schools in our

motivating application) and different outcome values (e.g., the average BMIz at the

various schools).

To simulate school’s locations within the (0, 500)× (0, 500) region, we proceed as

follows: we sampled n ∈ {1, 000, 6, 000} school (xi, yi) coordinates from a Uniform(0, 500)

distribution, for i = 1, . . . , n. Finally, after counting the number of locations in the

built environment around each outcome location, we obtained, for each location i,

Xi(rl−1; rl). We used to generate values of outcome Yi by sampling from the model:

Yi = ΣL
l=1β(rl)Xi(rl−1; rl) + εi, where r0 = 0, rL = 10, L = 100 and εi ∼ N(0, τ 2). We

used two function shapes for β(r): 1) a step function given by β(r) = 0.1 if r ≤ 5

and 0 otherwise, which results in the true data generating model Yi = 0.1Xi(0; 5) + εi

(Figure 3.2a), and 2) a smooth function β(r) = 0.1fZ(r)/fZ(0), where fZ(r) is a

normal density function with mean 0 and standard deviation 5/3 (Figure 3.2b). Note

that in the traditional models used to study the effect of the built environment on

health, the tacit assumption is that the effect of the environment on health can be

described by a step function of distance; in other words, the association β(rl−1; rl)

is deemed constant up to specified distance rk but is zero beyond rk. A step func-

tion β(r) is likely unrealistic since it is hard to believe that the association abruptly

vanishes beyond distance 5, yet this assumption is frequently (implicitly) made in

practice. In contrast, the second function used for β(r) implies that the association

decays smoothly with distance and is near zero by distance 5. We chose the variance

τ 2 of the error term so that the model R2 was equal to either 0.2, 0.5 or 0.8 for the

three different built environment schemes. In our motivating example the number of

available schools is near 6,000, and the model R2 was near 0.2 when the DLM was

fitted without adjustment of confounders.
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Figure 3.2: True function β(r). (a) β(r) = 0.1 if r ≤ 5, 0 otherwise. (b)
β(r) = 0.1fZ(r)/f(0), where fz(r) is a normal density with mean 0 and
standard deviation 5/3.

In fitting DLMs, we chose 100 lags, L = 100, with rL = 10. We fitted the

model within a Bayesian framework and specified the following prior distributions

β0 ∝ 1,α ∝ 1, b1 ∼ N(0, σ2
bIL−2), σ2

b ∼ IG(0.1, 1× 10−6), and τ 2 ∼ IG(0.1, 1× 10−6).

Details on posterior inference and the MCMC algorithm are provided in the Appendix

D. For comparison, we also fitted the traditional linear model, Yi = β0+β1Xi(0; rk)+εi

which assumes a constant effect of the built environment up to a distance rk. We used

rk = 2.5, 5, and 7.5, respectively, and compared the estimate of β1 with the estimate

of β̄(0; rk) obtained from the DLM for these three distances.

To examine how well DLMs capture true buffer effects at given distance lags,

bias, variance, mean squared error (MSE), and coverage rate were calculated at each
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rl, l = 1, 2, . . . , L, using the formulas:

Bias(rl) = Σ1000
i=1 (β̂i(rl−1; rl)− β(rl−1; rl))/1000,

V ar(rl) = Σ1000
i=1 V̂ ar(β̂i(rl−1; rl))/1000,

MSE(rl) = Σ1000
i=1 (β̂i(rl−1; rl)− β(rl−1; rl))

2/1000,

Coverage(rl) = Σ1000
i=1 I(β̂i,2.5%(rl) ≤ β(rl) ≤ β̂i,97.5%(rl)).

To summarize their overall performance and compare DLMs with classical regression

models, we calculated the integrated MSE, IMSE = rL
L

ΣL
l=1MSE(rl), for both mod-

els. In evaluating IMSE for the classical regression models, β̂(rl−1; rl) was set equal

to β̂1 for rl ≤ rk and zero otherwise.

When the true DL coefficient function β(r) is a step function bias occurs around

distance lags where the step happens (Figure 3.3a and 3.3b). Since the fitted DLM

assumes that the buffer effect is a continuous function of distance, bias at those

lags is expected, and that results in low coverage rates as well. When β(r) varies

continuously in r (3.3c and 3.3d), much less bias is present, and the bias primarily

occurs at the smallest lags because the estimated buffer effects are smoother than the

true β(r). Some degree of over-smoothing is expected to occur when using random

effect variances (vs GCV) to compute smoothing parameters (Ruppert et al., 2003).

Also, at the first few lags, there is relatively smaller amount of information since many

DL covariates Xi(rl−1; rl) in the first few lags have many zero values. Hence bias at

smallest lags is expected. Additionally, when the degree of clustering in the built

environment becomes large, the range of lags at which bias occurs becomes wider and

coverage rates tend to be smaller.

For both functions β(r), variance of the estimated buffer effects is larger at the

first few distance lags due to less information in DL covariates as previously explained.

Note also that the variance of the estimated coefficients at both end points (rl= 0.1

and 10) tends to be larger than for other values of rl because at the end points the
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coefficients are constrained only in one direction. The estimated buffer effects are

more variable when the spatial dependence in the intensity function controlling the

spatial distribution of the built environment features decays at a slower rate. This can

be anticipated because the amount of independent contributions of built environment

covariates Xi(rl−1; rl) is decreased (compare Figure panels 3.3a vs. 3.3b, and 3.3c vs.

3.3d). The MSE is primarily dominated by bias since the variance is fairly constant

across a range of distances, except at the endpoints, as mentioned above.

The comparison of estimated average association up to distance rk, with rk =

2.5, 5, and 7.5, obtained from DLMs and traditional linear models is reported in

Table 3.1. The true average association up to distance rk, β̄(0; rk), is calculated using

Σk
l=1β(rl−1; rl)π(r2

l − r2
l−1)/πr2

k. When locations of food stores are generated from a

homogeneous Poisson point process, the estimated associations from the traditional

linear models are very close to the true values and their coverage rates are close to 95%

(i.e., valid inference) for both functions used for β(r). However, if there is clustering

of locations in the built environment, the estimated associations from the traditional

models are positively biased (away from the null) giving invalid inference unless the

model is correctly specified (i.e., when β(r) is the step with rk = 5). In particular,

when rk = 2.5, a huge amount of bias occurs in the traditional models due to failure

in adjusting the effects at longer lags. Note that when negative and positive bias is

canceled up to specified distances in the fitted DLMs, bias in estimating the average

buffer effect is close to zero (Figure 3.3). In general, compared to the traditional

regression models, estimated average buffer effects obtained using DLMs generally

performed better having much less bias and better coverage rates except when the

fitted traditional models coincide with the true data generating models

Since both the traditional regression models and the DLMs have some degree of

bias, we summarize their relative performance in terms of integrated mean squared

error (IMSE) up to distance rL = 10 (Table 3.2) (Ruppert et al., 2003). When the
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Figure 3.3:
Bias, variance, MSE, and coverage rate at each rl, l = 1, 2, . . . , 100 for the cases when

β(r) is: (a) a step function under the built environment without clustering. (b) the

step function under the built environment with a large amount of clustering. (c) β(r)

is the normal pdf under the built environment without clustering. (d) β(r) is the

normal pdf under the built environment with a large amount

of clustering. Reported results are from a simulation case with n = 6, 000 and R2 = 0.2.
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Table 3.1: Simulation results for the averaged buffer effects up to distance rk = 2.5, 5,
and 7.5 from the traditional model and the fitted DLM. Reported results
are from a simulation case with n=6,000 and R2=0.2.
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Table 3.2: Integrated MSE from fitted traditional linear models with distance lag rk
= 2.5, 5, and 7.5 and from fitted DLMs with a maximum distance rL = 10.
Reported results are from a simulation case with n = 6, 000 and R2=0.2.

true form of the β(r) function is the step function, the IMSE was minimum for the

traditional regression models using the a-priori distance lag rk = 5, which is not

surprising since the estimated model is the data generating model. However, when

β(r) decays with distance r, the DLMs consistently yield the smallest IMSE.

To conserve space and avoid redundancy, here we only reported results for the

simulation setting with n = 6000 and R2 = 0.2, since this scenario corresponds to

the data in our motivating example. For the smaller sample sizes (tables and figures

shown in the Appendix), bias and coverage rates of the DLM estimates deteriorate,

and the strong confounding bias in the traditional regression models persists. The

bias in the DLM is largely attenuated when the model R2 increases, but this does not

happen for the traditional regression models.

To further examine assumptions used by the fitted DLMs we conducted addi-

tional simulations: 1) we specified different numbers of lags, i.e., L=25, 50, 200, to

define ring-shaped areas that differ from the ones (L=100) used in the data generat-

ing model; and 2) we assumed different maximum distance rL=3, 20. As expected,
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using a smaller numbers of lags in DLMs (L=25), resulted in smoother estimated

DL coefficients because the DL coefficients are estimated in wider ring shaped area

and thus become coarser. A larger number of lags (L=200) yielded similar results as

L=100. When the maximum distance was misspecified and rL=3, we observed bias

in the DL coefficients when there is clustering of locations in the built environment.

However, the amount of bias in estimates of the average buffer effect at rk=2.5 was

less than that from traditional regression models. Results were consistent to those

with rL=10 when the maximum lag distance used to fit the DLMs was equal to 20.

3.4 Data Example

We analyzed the FitnessGram data for 5th and 7th grade children who attended

public schools in California in 2010. The FitnessGram data is publicly available from

the California Department of Education (CDE) and includes measures of children’s

weight and height as well as other individual characteristics (e.g., grade, age, gender,

race/ethnicity). We averaged children’s BMI z-score (BMIz) within a school and

used it as the outcome. BMIz is an age and gender-adjusted BMI measure because

the meaning of BMI is not the same across growing children of different age and

sex (CDC , 2005). Similarly, we averaged the characteristics of the students whose

BMI was recorded and we used these averages as covariates: they are percentage

of 7th graders, percentage of female students, percentage of Hispanic children and

percentage of other ethnicities (Asian, African American, and Filipino combined).

The location of convenience stores (CS) in California was purchased from a com-

mercial source (National Establishment Time Series from Wall and Associates). Geocodes

for schools and food stores were cross-referenced to obtain the number of CS between

two radii rl−1 and rl, l = 1, . . . , 100, from a school with a maximum lag distance of

r100 = 7 miles. We also obtained other school characteristics from the CDE, namely,

total student enrollment in the school, percentage of children in the school that par-
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ticipated in the California school free or reduced meal program, and percentage of

adults with a bachelor’s degree or higher residing in the schools’ census tract; the

latter was obtained from the 2000 US Census.

The total number of schools in the dataset was 5,903, while the mean (SD) for

the number of CS within 1/4, 1/2, and 3/4 miles from schools is, respectively, 0.16

(0.47), 0.68 (1.06), and 1.49 (1.8). The overall mean (SD) BMIz for schools in the

dataset is 0.75 (1.09).

We started our analysis fitting traditional, weighed linear models Yi = β0 +

β1Xi(0; rk) + εi, where Yi is the average BMIz in school i, Xi(0; rk) is the number

of CS up to distance rk from a school i, and εi ∼ N(0, τ 2/ni) with ni number of

children in a school i, where rk was respectively equal to 1/4, 1/2, or 3/4 miles from

schools. We also fitted the weighted DLM, following the approach discussed in Sec-

tion 3.2.4, with weights set equal to the number of children in each school whose BMI

was measured.

We fitted both crude models without any adjustment as well as models adjust-

ing only for the average student characteristics and models adjusting for both the

average student characteristics and the school characteristics. School neighborhood

characteristics (school’s neighborhood socioeconomic position) can act as confounders

or mediators (Chaix et al., 2010; Diez Roux , 2004) since it is uncertain if low neigh-

borhood socioeconomic conditions were driven by poor-quality food environments or,

vice versa, if poor-quality food environments are caused by low neighborhood socioe-

conomic position. Hence, we included both results.

The estimated average effects of CS up to 1/4, 1/2, and 3/4 miles on children’s

BMIz from the weighted linear regression models and the DLMs are summarized in

Table 3.3. In the crude analysis, the estimated average associations between the

number of CS up to 1/4, 1/2, or 3/4 miles were all significant for both the weighted

regression models and DLMs. Interpreting the results from the DLM, for instance,
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Table 3.3: The estimated buffer effects of CS up to buffer sizes 1/4, 1/2, 3/4 miles
from the traditional linear models and DLMs.

we expect the mean children’s BMIz to be 0.035 (95% CI: 0.026, 0.044) higher for

each additional CS within 1/4 mile from schools. Adjusting for average student

characteristics or for both average student and school’s characteristics, attenuated

all coefficients. Overall, the coefficients from the weighted linear regression model

tend to be larger (approximately 2 times larger), although this is likely due to over-

estimation as we observed in the simulations. It is probably due to the presence of

spatial correlation in the built environment.

Figure 3.4 (a)-(c) present the estimated coefficients for CS within 7 miles from

schools as estimated from the fitted DLMs. The crude DL coefficients were signif-

icant up to a distance of approximately 2.5 miles and within 5 miles from schools;

additionally, as it might be expected, they were highest for distances that are within

walking distance. After adjusting for the average student characteristics, the DL coef-

ficients were highly attenuated but they remained significant within shorter distances

from the schools. After further adjustment for school characteristics, effects became

even more attenuated and were almost not significant except for within short walking

distance.

Further, we investigated whether the associations were different for 5th grade chil-
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Figure 3.4: The estimated DL coefficients of CS up to 7 miles from schools (a) without
the adjustment of confounders , (b) with the adjustment of school’s student
participant characteristics, and (c) with the adjustment of both school’s
student participant characteristics and school’s characteristics.

dren versus 7th grade children. Our hypothesis is that this would be the case since the

7th graders might have different behaviors or more ability to walk further. To assess

this, we used the approach discussed in Section 3.2.4 and included in the model the

percentage of 7th grade children in the school as an interacting covariate. Although

the interaction was not significant in the crude models, it was significant in the mod-

els where we adjusted for the average students’ characteristics. Figure 3.5 shows the

estimated DL coefficients relative to distances up to 7 miles for schools where the par-

ticipants are only 5th grade children (Figure 3.5a), 7th grade children (Figure 3.5b),

and the difference of between the two (Figure 3.5c). Estimated coefficients for short

walking distances from schools where participants are only 7th grade children were

greater than those for schools whose participants are only in 5th grade. Adjusting for

both the average student characteristics and the school characteristics attenuated the

effect sizes while keeping a pattern similar to the one displayed in Figure 3.5.
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Figure 3.5: The estimated DL coefficients up to 7 miles from schools where partici-
pants are only (a) 5th grade children or (b) 7th grade children, and (c) the
difference of buffer effects for schools between only 5th grade participants
and only 7th grade participants.

3.5 Discussion

We have proposed a distributed lag model (DLM) to examine associations between

built environment factors and health. This flexible model allows us to examine how

associations between features of the built environment and health are distributed

up to a maximum distance from sample locations. The DLM approach is based on

constructing built environment measures within L ring-shaped regions (DL covariates)

around sample locations, rather than buffers. Based on distributed DL coefficients,

we are able to calculate average buffer effects up to a chosen distance rk, k ≤ L,

without assuming constant effects up to that distance; traditionally, the most common

approach used in epidemiology, ecology, and transport geography impose such an

assumption.

The maximum distance in DLMs implies that we expect no further association

between the outcome and the built environment factors beyond that maximum dis-

tance. Violation of this assumption might cause bias in estimation since the DL

coefficients would be confounded by associations with features beyond the maximum

distance when spatial correlation exists in the built environment. While the tradi-
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tional approaches require the user to speculate the distance where effects may be

present, a DLM has a less stringent requirement by specifying the maximum distance

beyond which effects are zero and simultaneously allow us to examine if these effects

are indeed vanishing with distance.

We have compared the performance of the traditional models with that of DLMs

through a simulation study that comprised various scenarios for degree of clustering

in the built environment as well as different functional forms for the DL coefficients.

Our simulations confirmed that the performance of the DLMs is superior to that of

traditional models in terms of bias and coverage rates of true effects. Our results ex-

pand on the work by Spielman and Yoo (2009), who used simulation settings slightly

different from ours, and discussed only results relative to bias. We have also exam-

ined how well DLMs capture true DL coefficients for various distances from sample

locations. We have found that the estimated coefficients relative to the first few lags

had more uncertainty compared to later lags due to the fact that they could exploit

relatively less information, i.e., more zero values in the first few lags. We also observed

inflated variance of estimated DL coefficients at both end points since constraints are

imposed only in one direction. Exploring whether other types of constraints for the

DL effects attenuate this limitation is a needed next step; possible constrains include

variations of those introduced by Welty et al. (2009). Alternatively, one could as-

sume that the DL coefficients follow a parametric function as was initially done in

DL models. Another possible direction is to use kernel averaged predictor models

(Heaton and Gelfand , 2011). With additional constrains, potentially derived from

substantive knowledge, efficiency may be gained by imposing assumptions such as

coefficients being zero after a given distance. Our proposed model does not make

strong assumptions on the form of the DL coefficients except selecting the maximum

distance.

In our application, we have examined the effect of the availability of convenience

54



stores (CS) on child’s BMI z-score (BMIz) using a surveillance dataset for 5th and 7th

grade children in the 2010 FitnessGram. Comparing results between the traditional

models and the DLMs, we found that estimates from the traditional models were

usually higher than those from DLMs due to the overestimation that results from

the presence of spatial correlation (i.e., clustering of CS) in the built environment.

Applying the proposed DLM, we have been able to investigate whether there is a

difference in the DL coefficients by types of student participant in the school, and have

found that the DL coefficients are higher when the percentage of 7th grade children

in schools is higher. Additionally, DL coefficients were significant at slightly longer

lags compared to schools where there was a higher percentage of 5th grade children

participants. DLMs can help identify if the distance within which built environment

factors affects health varies by subject characteristics.

Although distributed lag models have a long history, this is the first application

of DLMs to study the associations between health and the built environment. This

innovative application of DLMs can help shed light on the relevant distances within

which the built environment may associate with health.
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CHAPTER IV

Hierarchical Distributed Lag Models:

heterogeneity in associations between the Built

Environment and Health

4.1 Introduction

Over the last several years, research to identify contributors to the childhood

obesity epidemic has dramatically increased, owing to the tremendous short and long

term costs associated with this condition (Daniels , 2006; Reilly and Kelly , 2011;

Reilly et al., 2003). Beyond individual level predictors of obesity, areal level factors,

particularly specific features of the built environment may also contribute to poor

diet and inactivity and thus influence body weight. As children spend a large amount

of time in schools, one feature of interest is the food environment near schools. The

food environment can be conceived from a broad point of view as encompassing food

advertisements, to presence of certain food outlets, to more detailed information such

as the quality and quantity of available foods. Research has found that convenience

stores provide ready access to cheap, low nutrient, high calorie food items, and their

presence near schools has been linked to child obesity (Kipke et al., 2007; Rahman

et al., 2011; Sallis and Glanz , 2006; Singh et al., 2010).

However, the link between convenience store availability near schools and chil-
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dren’s obesity has been inconsistent potentially due to several reasons. One possible

reason is between-study differences in the geographic scale used to measure features

of the food environment (Black and Macinko, 2008; Schaefer-McDaniel et al., 2010).

Some studies use counts of convenience stores within a circular area, or “buffer”,

centered at locations of interest with a pre-specified radius, while others use zip-code,

census tract, or county-level counts. The question of how to choose the geographic

scale to construct such measures is widely known as the modifiable areal unit problem

(MAUP) (Fotheringham and Wong , 1991; Openshaw , 1996), and incorrect selection

of the appropriate geographic scale can lead to severe bias in the association of in-

terest (Baek et al., 2014; Spielman and Yoo, 2009). Additionally, it is possible that

individuals’ true geographical context varies across study locations, and this is often

referred to as the uncertain geographic context problem (UGCop) (Kwan, 2012). For

instance, children’s activity spaces may vary according to the degree of street con-

nectivity or availability of sidewalks. Not accounting for differences in activity spaces

translates to measurement error in the covariate of interest and thus results in bias

and incorrect inference. Alternatively, these food environment-obesity associations

may truly vary across places, potentially due to differences in unobserved properties

of the food environment, such as food quality (N.P., 2014), food policy and/or obesity

prevention policies. Many studies have used commercial databases where food estab-

lishments can be classified into several different types, such as ‘convenience stores’

and ‘fast food restaurants’, but obtaining data on the actual nutritional quality of

food items sold at these food outlets is not always possible in part because of the

tremendous cost to obtain such data.

The goal of this study is to systematically examine variations in the association

between the food environment and children’s body weight across assembly districts in

California. We use information from two large scale databases: (1) the Fitnessgram

database, a surveillance database containing body weight information of essentially
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all 7th grade children who attended California public schools during the period 2001-

2010, and (2) the National Establishment Time Series from Walls and Associates;

this latter dataset contains yearly information on the availability of food outlets in

the entire state. There are several reasons for choosing assembly districts as areal

units in studying variation in the built environment associations with health. First,

previous reports have found that there are large variations in childhood obesity across

assembly districts (Drewnowski et al., 2009); additionally, regional differences in the

food environment quality across California have been previously documented (N.P.,

2014). Thus, it is possible that the associations between body weight and features

of the built environment measured using large scale databases may vary due to un-

measured information, such as food quality. Second, assembly districts may be an

important level of aggregation because they are relevant for policy making; they are

politically active units with representation in the state legislature and have the po-

tential to stimulate regulation of food environments around schools (N.P., 2013).

Third, research that explicitly considers assembly districts as units of analyses can

help inform future population-wide obesity prevention interventions at this level.

To achieve our goal, we propose a hierarchical distributed lag model (HDLM)

extending a DLM recently applied in the built environment research (Baek et al.,

2014). DLMs are useful for (a) examining associations between features of the built

environment and health over distance around locations of interest (e.g., schools) and

(b) calculating average buffer effects up to a chosen distance (e.g., a 1 mile buffer)

more accurately than with traditional linear models. With the proposed hierarchical

extension of the DLM, we allow assembly districts to have their own geographic scale

by modeling the magnitude and shape of the DL coefficients as random effects across

assembly districts.

Baek et al. (2014) showed that when there are few food outlets near schools, the

variance of the DL coefficients will increase. In the present application, DL coefficients
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from more rural assembly districts may have higher variance due to fewer food outlets

near schools compared to urban-assembly districts. In the proposed model, we expect

that the estimated assembly-district specific DL coefficients will be shrunk to the

overall DL coefficients; thus, districts with less information in the DL covariates

can borrow strength from other assembly districts. By doing so, HDLMs enable us to

control the variance in the DL coefficients relative to assembly districts with less data.

Although differences in DL coefficients according to pre-specified covariates can be

examined (Baek et al., 2014), examining the variation via hierarchical models allows

us to take an agnostic approach to examine and quantify any potential variation in

associations, and this in turn will enable researchers to generate hypotheses about

the sources of variation in the DL coefficients.

HDLMs have previously been implemented in the air pollution literature. Re-

searchers investigated the overall temporal effects of air pollutant exposures on health

outcomes through combing information across areas (or groups) and some others fur-

ther examined heterogeneity of the effects across areas (Berhane and Thomas , 2002;

Dominici et al., 2000; Huang et al., 2005; Madden and Paul , 2010; Peng et al., 2009;

Rondeau et al., 2005; Zhao et al., 2014). Several examples of HDLM approaches im-

plemented within a Bayesian framework are found in Dominici et al. (2000), Huang

et al. (2005), Peng et al. (2009) in the air pollution literature. However, in all these ex-

amples HDLMs are fitted using a two-stage approach, reducing computational costs.

However, using a two-stage approach in our application would fail to control the in-

flation of variance in the estimates due to sparse covariate information in some areas.

In this paper, we jointly estimate parameters of HDLMs in one-step procedure using

a Bayesian framework.
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4.2 Data Sources

We examined FitnessGram data for 7th grade children who attended public schools

in California in 2001-2010. The FitnessGram dataset is publicly available from Cal-

ifornia Department of Education (CDE) and includes measures of children’s weight

and height and other individual characteristics (e.g., grade, age, gender, race/ethnic-

ity). We averaged children’s BMI z-score (BMIz) (CDC growth charts, 2005) within a

school and used it as the outcome. Similarly, we averaged characteristics of students

participating in data collection to use as covariates: percentage of female students,

percentage of Hispanic children and percentage of other ethnicities (Asian, African

American, and Filipino combined).

Location of convenience stores (CS) in California was purchased from a commercial

source (National Establishment Time Series from Wall and Associates). Geocodes for

schools and food stores were cross-referenced to obtain the number of CS between

two radii rl−1 and rl, l = 1, . . . , 100, from a school with a maximum lag distance of

r100 = 7 miles.

We also obtained other school characteristics from the CDE, namely, total student

enrollment in the school, percentage of children in the school that participated in the

California school free or reduced meal program, and percentage of adults with a bach-

elor’s degree or higher residing in the schools’ census tracts, the latter obtained from

the 2000 US Census. We used the assembly district boundaries set in 2001 rather than

in 2011, since FitnessGram data were from the period 2001-2010. We obtained the

2001 assembly districts’ shapefile at http://statewidedatabase.org/geography.html.

4.3 Exploratory Analysis

We performed several exploratory analyses to guide our model building strategy.

First, we examined the spatial pattern of the assembly district means of children’s
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BMIz, overall and by year, to determine if spatially correlated assembly-district in-

tercepts would be needed, and if the spatial pattern of the district means changed

across time. While there was evidence of spatial correlation in the means (Moran’s

I p-value < 0.001), the spatial pattern was similar over time (Appendix E Figure

E.1), meaning that modeling spatially correlated district means might be needed,

but modeling space-time interaction of district specific means is not necessary. Sec-

ond, we explored the heterogeneity and smoothness of DL effects across assembly

districts by fitting the non-hierarchical DLM in the data stratified by assembly dis-

tricts. Although it is possible that each assembly district requires its own smoothness

parameter (Appendix E Figure E.2a), we also considered grouping assembly districts

into two groups (Appendix E Figure E.2b and E.2c) since in the exploratory analyses

the estimated shapes of DL coefficients were either nearly linear or have a similar

degree of smoothness. Finally, we examined spatial correlation in 1/4, 1/2, 3/4 mile

buffer effects across assembly districts to decide whether random DL coefficients of

assembly districts further need to be spatially structured, from which we concluded

that modeling spatial correlation of the district specific DL coefficients would not be

needed (p-values of Moran’s I were 0.67, 0.66, 0.63 at 1/4, 1/2, 3/4 miles, respec-

tively) (Appendix E Figure E.3).

4.4 Hierarchical Distributed Lag Models (HDLMs)

Let Yijt be the average BMIz among nijt children attending school i in assembly

district j at time t (schools are the unit of observation), and let Xijt(rl−1; rl), l =

1, 2, . . . , L, be the number of convenience stores (CS) between two radii rl−1 and rl

around school i in assembly district j at time t. Time t is years since 2001, and ranges

from 0 to 9. The distance rL is the maximum distance around schools (the maximum

buffer size with a radius equal to rL) after which we assume no further association

between the measured feature and the outcome. The total number of lags, L, can be
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chosen large enough so that the DL effects have a smoother effect as a function of

distance, in our case L=100.

We build the model in a hierarchical fashion to achieve an increased flexibility in

the way the DL coefficients are modeled. Our baseline HDLM (model 1) is assumed

to have constant DL effects across assembly districts

Yijt = β0 +
L∑
l=1

β(rl−1; rl)Xijt(rl−1; rl) + Zijtγ + Tijsij + Tijηj + εijt, (4.1)

where β0 is the overall mean BMIz, β(rl−1; rl) is a DL effect of the environment feature

measured between two radii rl−1 and rl around schools, Zijt are covariates relative

to the fixed effects part of the model and include percentage of female students,

percentage of Hispanics, percentage of other ethnicities, and time modeled as a linear

spline with a knot at year 2005 (t = 4). Finally, εijt represents a residual error

assumed to follow a mean-zero normal distribution with variance τ 2. The change of

slope for time is included because California adopted food and beverage policies in

2004 to improve public school food environment which was shown to have an effect

on obesity rates (Sanchez-Vaznaugh et al., 2010). A knot at year 2005 instead of

year 2004 is used since we expect some latency period of the food policy and a knot

at year 2005 actually provides better model fit. Moreover, a covariates matrix, Tij,

is a subset of Zijt and includes an intercept, time, and spline time at year 2005

with corresponding school and district level random effects, sij and ηj, assumed

normally distributed. With the school and district level random effects, we account

for unobserved covariates that may affect BMIz or modify time trends at both school

and district levels. Including random spline times of schools and assembly districts

may yield rather complex models, but our preliminary analysis showed that including

all those terms yielded better fit. Because there is large variability in the number of

children per school, we adapted the proposed models to include weights set equal to
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the number of children who participated within schools. (Baek et al., 2014).

We constrain the coefficients β(rl−1; rl) to vary as a smooth function of distance

rl, l = 1, 2, . . . , L, from schools using splines (Hastie and Tibshirani , 1990; Zanobetti

et al., 2000). Constraining the coefficients ensures coefficients corresponding to adja-

cent ring-shaped areas to be similar, since we would not typically expect associations

to change abruptly across distance, and also controls possible numerical problems

that may arise when many schools have zero CS between given radii rl−1 and rl.

We used cubic smoothing splines to constrain the association coefficients β(rl−1; rl)

implemented using a radial basis function,

β(rl−1; rl) = α0 + α1rl +
L∑
k=1

α̃k|rl − rk|3, (4.2)

where α0 is the global intercept of the lag effects, and α1 is the global average change

rate of lag associations over distance while the coefficients α̃k are penalized to achieve

smoothness of the global DL coefficients (see Appendix E).

To allow variation in the DL effects across assembly districts, we include random

DL coefficients in the equation (4.1),

Yijt = model 1 +
L∑
l=1

bj(rl−1; rl)Xijt(rl−1; rl), (4.3)

where bj(rl−1; rl) = α0j +α1jrl +
∑L

k=1 α̃jk|rl− rk|3 is a deviation from the global DL

coefficients between radii rl−1 and rl specific to assembly district j.

Based on our exploratory analysis, several variants of the DL model with random

DL effects shown in (4.3) were considered (see Table 4.1). Models 2 and 3 assume that

there is variability in the DL coefficients at the assembly district level (e.g., variation

exists in intercepts and slopes of lag effects), but the same amount of curvature in

the random DL coefficients is sufficient to capture the variation. Since we centered

distance lags at their mean (r̄ = 3.54) for numerical stability, random intercepts and
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Table 4.1: Several variants of the HDLM in (4.3) having various random DL effects
distributional assumptions.

slopes of the DL coefficients may be no longer independent as mentioned by Durbán

et al. (2005). For that reason, we compared between model 2 and model 3. Model 4

further assumes that the smoothness in the DL coefficients across assembly districts is

different from that of the overall DL effects. Model 5 is constructed to allow for more

flexibility in the smoothness of DL coefficients which is categorized into two groups

suggested by the exploratory analysis. Note that the models 1-5 are constructed in a

nested fashion. We compared models based on the widely used deviance information

criterion (DIC) which trades off model fit and complexity (Spiegelhalter et al., 2002).

Given the final chosen model, we further examined whether a spatially struc-

tured random intercept of assembly districts improves model fit, as we speculated in

the exploratory analysis that spatial autocorrelation of district-specific means may

be needed. The spatially structured random intercept is modeled by a conditional

autoregressive (CAR) prior distribution, ηj ∼ N(
∑

j∼j′
wjj′ηj′

wj+
,
τ2η
wj+

), where j ∼ j′ de-

notes assembly district j is a neighbor of assembly district j′ defined as sharing any

boundary between two districts, wjj′ = 1 if j ∼ j′ and 0, otherwise, and wj+ is the

total number of neighbors for area j (Besag et al., 1991; Clayton and Kaldor , 1987).

Similarly as in Chapter 3, we used the selected model to estimate the average dif-

ference in children’s BMI z-score per one additional CS within a buffer area of a 1/2

mile radius in each assembly district j, β̄j(0; 1/2). The 1/2 mile distance is widely used
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in built environment literature concerning children, therefore enhancing the compa-

rability of our results to other work. For a given distance rk from schools, β̄j(0; rk) =∑k
l=1 βj(rl−1; rl)π(r2

l − r2
l−1)/πr2

k, where βj(rl−1; rl) = β(rl−1; rl) + bj(rl−1; rl) are DL

coefficients for an assembly district j between radii rl−1 and rl.

We took a Bayesian approach for estimation to make inference for all model pa-

rameters including the district-specific random effects. This approach incorporates

uncertainty of dispersion parameters of random effects and smoothness parameters of

DL coefficients. Posterior samples of district-specific DL effects were transformed to

easily calculate district-specific buffer effects up to 1/2 mile from schools and respec-

tive 95% credible intervals. The sampling approach we use is based on shrinkage slice

sampling methods proposed by Agarwal and Gelfand (2005) which are an extension

of Neal (2003). Compared to Metropolis-Hasting algorithms shrinkage slice sampling

does not require controlling the acceptance rate of proposed samples from prior dis-

tributions, and thus it achieves faster convergence of posterior samples and enhances

computational efficiency (see Appendix E for more details).

4.5 Results

Locations of schools, assembly district-specific BMIz and concentration of conve-

nience stores are given in Figure 4.1. Schools are densely located in metropolitan

areas as expected (Figure 4.1a). Geographically larger assembly districts tended to

have more schools, while assembly districts in large metropolitan areas had fewer

schools with a larger number of children per school. In California, the overall mean

(SD) BMIz was 0.71 (1.07), and the assembly district-specific BMI means ranged

from 0.32 to 0.98 (Figure 4.1b).

The average number of convenience stores within 1/2 mile from schools over the

study time period was 0.62 (SD=0.97) and the assembly district-specific means ranged

from 0.09 to 1.96 (Figure 4.1c).
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Table 4.2: Descriptive statistics of children’s BMIz and the number of CS within 1/4,
1/2, and 3/4 miles from schools in FitnessGram 2001-2010 for 7th grade
children.

Table 4.2 shows descriptive statistics for the number of 7th grade children, number

of schools, children’s BMIz and the number of CS within 1/4, 1/2, and 3/4 miles from

schools, overall and by year. As shown in Table 4.2, the mean of children’s BMIz

increases up to 2005 and becomes stable after 2005 due possibly to food and beverage

policies adopted in 2004 (Sanchez-Vaznaugh et al., 2010). The number of CS within

1/4, 1/2, or 3/4 mile buffers also increases up to 2004 and becomes stable after that

time.

Table 4.3 shows DIC values for the models considered in Table 4.1. Including

random DL effects of assembly districts further improves model fit (model 1 vs. model

2), and a positive definite covariance structure of the random coefficients provides a

slightly better model (model 2 vs. model 3). However, models allowing more flexibility

in the degree of smoothness of random DL coefficients (model 4 and model 5) resulted

in worse DIC because improvement in model fit did not offset the increased model

complexity. Model 3 had the lowest DIC and was thus selected. The model further

including a spatially structured random intercept of assembly districts did not improve
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Figure 4.1: Locations of unique schools (black dots) and number of schools within as-
sembly districts; (b) assembly district mean of BMIz; (c) assembly district
mean number of CS within 1/2 mile from schools across CA, LA and SF
metropolitan areas. Data Sources: 2001-2010 Fitnessgram data for 7th

grade children, CDE; National Establishments Time Series database.
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Table 4.3: Deviance information criterion (DIC) for model selection.

model fit (DIC = 66,659), probably because the features of the built environment,

which are spatially correlated, explain the spatial pattern of the mean BMIz seen in

our exploratory analysis (Figure 4.1 b-c).

Based on the selected Model 3, we estimated the overall DL effects of the mea-

sured built environment, the random DL effects of assembly districts, and 1/2 mile

buffer effects of assembly districts (Figure 4.2). The estimated overall DL effects

(Figure 4.2a) had wide credible intervals at the first few lags due to sparser built

environment information at shorter distances (i.e., many schools have zero CS within

the first few lags). The overall DL effects became null at around 1.8 miles. Assembly

district specific DL coefficients (Figure 4.2b) had the same smoothness as the overall

DL coefficients, but with different intercept and slope of the district-specific DL coef-

ficients. Some assembly districts had nearly twice as large associations compared to

the overall mean within short distances. Some assembly districts also had associations

that decrease faster towards zero, making it plausible that each assembly district may

have its own effective buffer size.

The assembly district-specific average buffer effects up to 1/2 mile, β̄j(0; 1/2), are

given in Figure 4.2c. We found that some districts have a significant positive 1/2

mile buffer effect. Since those significant positive 1/2 mile buffer effects are related to

having significant DL effects around 1/2 miles, we also examined if credible intervals

of estimated DL effects overlap with 0 along distances up to 7 miles for each assembly

district (Figure 4.3). We found that some assembly districts had significant DL effects
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Figure 4.2: Estimated (a) overall and (b) assembly district specific DL effects, and (c)
estimated 1/2 mile buffer effects of assembly districts from model 3 ad-
justed for individual characteristics. Data sources: 2001-2010 Fitnessgram
and NETS databases.
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Figure 4.3: (a) Distances at which credible intervals of DL effects up do not overlap
with 0 across California’s 80 assembly districts. (b) Mapped assembly
districts with significant DL effects before (red) and after (blue) 3 miles.

before or after 3 miles (Figure 4.3a). Assembly districts with significant DL effects

tend to be in more highly urbanized areas (Figure 4.3b); primarily regions surrounding

San Francisco and Los Angeles. Within these regions, districts with significant DL

effects within 3 miles are mostly located in suburban areas, whereas inner city areas

have significant associations after 3 miles. Degree of urbanization (and its correlates

such as income) may be major drivers of the magnitude of the associations as well as

the distances from schools that are most influential.

In additional analyses we included adjustment for other school and school-neighborhood
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characteristics: total student enrollment in a school, percentage of children in a school

that participated in the California school free or reduced meal program, and per-

centage of adults with a bachelor’s degree or higher residing within schools’ census

tracts. As may be expected due to potential confounding and/or mediation (Chaix

et al., 2010; Diez Roux , 2004), these adjustments attenuated the overall and district-

specific DL coefficients. The number of assembly districts with significant DL effects

before or after 3 miles decreased, but there were still some assembly districts with

DL coefficients that remained significant (See Appendix E Figure E.4-E.5).

4.6 Discussion

We systematically examined variability in the associations between the presence

of convenience stores near schools, a measure of the built food environment, and

children’s weight using HDLMs. We found differences in the associations at the

California assembly district level. First, some assembly districts had about 2 fold

higher associations than the overall mean. Second, there was some indication that

the distances at which the associations are significant varies across districts. These

findings suggest that in certain assembly districts children’s body weight may be more

vulnerable to aspects of the built food environment.

This is the first study to systematically and comprehensively evaluate differences

in health-built environment associations across a large geographical area, namely

California, the most populous and diverse state in the United States. We capitalized

on the availability of the FitnessGram data for the years 2001-2010, a surveillance

database of over 3.6 million 7th grade public school children which contains mea-

sured BMIz, and the comprehensive NETS database from which features of the built

environment were derived.

HDLMs with varying degrees of complexity were constructed based upon ex-

ploratory analyses; they were compared using DIC as a way to describe the types of
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variations in the district-specific DL effects. We further examined the possible spatial

correlation of the district effects which might have been caused by spatially structured

unobserved covariates. Neither the average BMIz nor the built-environment associa-

tions were spatially patterned; this suggests that more localized differences in envi-

ronments or policies may explain the observed differences across assembly districts.

When it is necessary to have spatial HDLMs due to lack of observed spatial infor-

mation, spatially structured random intercepts and DL coefficients could be similarly

modeled as in Macnab and Gustafson (2007).

The proposed multilevel modeling approach can serve more broadly to help ad-

vance the built environment-health literature to incorporate complex data structures.

More importantly however, this approach can help address scientific questions re-

garding the role of the built environment that have long been speculated yet not

systematically investigated. Specifically, these methods provide a way to investigate

the underlying overall shape of built environment-health associations along distances,

as well as area-level heterogeneity of those associations.
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CHAPTER V

Conclusion and Future Work

Built environment researchers often encounter complex data structures in their

research. For instance, data may be collected over time and space, observations may

be nested in groups or regions, and the underlying spatial mechanism of how factors in

the built environment affect health is usually unknown. These complex data give rise

to several data analysis challenges, since assessing associations of built environment

factors on health with valid inferences requires construction of statistical models that

incorporate various sources of variations that come from many factors: for example,

individual characteristics (including age, gender, race/ethnicity, income, and level of

education) and neighborhood characteristics (such as accessibility to health services,

availability of food stores, walkability of neighborhoods, and food quality). Without

observing all the information relevant to the association between factors of the built

environment and health, statistical modeling to account for such uncertainty is im-

portant to make valid inferences for measured built environment effects. To improve

traditional approaches commonly implemented in the built environment literature,

this dissertation has focused on developing novel statistical methodologies for exam-

ining associations between factors of the built environment and health outcomes.

In Chapter 2 as an extension of multiple informant models (Pepe et al., 1999;

Horton et al., 1999), a hierarchical multiple informant model (HMIM) was developed
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to examine or test whether marginal associations of types of the built environment

factors have a different impact on a health outcome while accounting for a hierarchi-

cal data structure (i.e., children are nested in schools). Since HMIMs are built upon

generalized estimating equation (GEE) methods, all the properties of HMIMs are

induced by GEE, such as consistency of parameter estimates and robustness of stan-

dard errors of regression parameter estimates. Additionally, any available statistical

software for GEE can easily be used to fit HMIMs for practical applicability.

As noted in the discussion of Chapter 2 for possible extensions of the work, in

Chapter 3 we examined how associations of measured built environment factors on

health change over distance from outcome locations through distributed lag models

(DLMs). We found that DLMs enable us not only to examine the shape of the built

environment associations across distance from study locations, but also to estimate

buffer effects (e.g., a buffer effect up to r mile from the outcome locations) of built

environment factors; furthermore, these estimated buffer effects were more accurate

than those from traditional linear models under various conditions of spatial clustering

of factors in the built environment.

However, this clustering of the built environment factors may suggest that propen-

sities of being exposed to the built environment factors are not equal for all the ob-

servations in the study. If a question of interest is estimating buffer effects up to a

certain distance from locations of interest, a propensity score method may be consid-

ered to account for the unbalanced built environment exposures. Specifically, if we

have information that explains clustering of the built environment factors, we may

use that additional information to allocate different propensities to observations and

estimate buffer effects from traditional linear models. This is a promising direction

for future work.

In Chapter 4, DLMs were further extended to describe how associations between

features of the built environment and health vary by areas due to unobserved areal
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characteristics or inherently different associations. Through a hierarchical distributed

lag models (HDLM), we examined the possibility of different areas having different

relevant buffer sizes within which measured built environment factors may have health

effects, and located areas where subjects were more vulnerable to exposures of the

built environment.

However, the HDLM implemented in Chapter 4 still assumes that all the units

within the same area have the same effective buffer size and patterns; in fact, there

is a possibility that each unit of observation may have different buffer sizes due to

unobserved covariates. A possible approach that examines different buffer sizes of

measured built environment factors on health across units may be through a modifi-

cation of spatially varying coefficient models (Gelfand et al., 2003).

In the case that covariates are random or partially observed with a spatial pattern,

it may be hard to use spatially varying coefficient models because both coefficients

and covariates are unobserved, as noted by Heaton and Gelfand (2011). That is,

untangling spatial parameters between coefficients and covariates may be difficult.

However, in the case of completely observed covariates that are spatially correlated,

it may be possible to consistently estimate spatially varying coefficients if we have

information that explains the spatial pattern of observed covariates. For instance,

spatial parameters in spatially varying coefficients may be consistently estimable if

we adjust the propensities of being exposed to the built environment factors across

units, as suggested for further work building on Chapter 4.

This dissertation has provided novel directions and methods with which to study

how built environment factors affect health. While several challenges and future work

remain, through the proposed methodologies we have shown how to begin to answer

questions long posed in the built environment health effects literature.
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APPENDIX A

R code for empirical covariance matrix

1

2 ## data ##

3 ## data need sorted by id , beforehand

4 names(data) = c("id", "y", "x1", "x2")

5 ## use gee library for gee function

6 library(gee)

7 gee.model1 = gee(y ~ x1 , id = id, data=data , corstr = "exchangeable")

8 gee.model2 = gee(y ~ x2 , id = id, data=data , corstr = "exchangeable")

9

10 ## Total number of observations

11 N = gee.model1$nobs

12

13 ## Number of parameters from each marginal GEE model

14 p = length(gee.model1$coefficients)

15

16 ## number of subjects in cluster

17 n_j = table(gee.model1$id)

18

19 ## the number of multiple informants

20 n_x = 2

21

22 ## correlation from each fitted GEE model ##

23 rho_1 = gee.model1$working.correlation [1,2]

24 rho_2 = gee.model2$working.correlation [1,2]

25

26 ## dispersion from each fitted GEE model ##
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27 phi_1 = gee.model1$scale

28 phi_2 = gee.model2$scale

29

30 ## bread for each fitted GEE model ##

31 bread_1 = gee.model1$naive.variance

32 bread_2 = gee.model2$naive.variance

33

34 ## create design matrix of each fitted GEE model ##

35 X1 = model.matrix( ~ x1, data=data)

36 X2 = model.matrix( ~ x2, data=data)

37

38 ## initializing for big filling ##

39 big.filling = matrix(0, nrow = n_x*p, ncol = n_x*p)

40

41 ## initializing for indexing clusters ##

42 s = 0

43 ## calculate for big filling ##

44 for(i in 1:nrow(n_j)){

45 V_1 = matrix(rho_1*phi_1, nrow = n_j[i], ncol = n_j[i])

46 V_2 = matrix(rho_2*phi_2, nrow = n_j[i], ncol = n_j[i])

47

48 diag(V_1) = phi_1

49 diag(V_2) = phi_2

50

51 ## define index ##

52 index = seq(1+s, length = n_j[i])

53

54 tmp_1 = t(X1[index ,]) %*% solve(V_1) %*% gee.model1$residuals[index]

55 tmp_2 = t(X2[index ,]) %*% solve(V_2) %*% gee.model2$residuals[index]

56

57 big.tmp = rbind(tmp_1, tmp_2)

58

59 big.filling = big.filling + big.tmp %*% t(big.tmp)

60 s = s + n_j[i]

61 }

62

63 ## use magic library for a block diagonal matrix using adiag function ##

64 library(magic)

65

66 ## make big bread ##

67 big.bread = adiag(bread_1, bread_2)
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68

69 ## make a sandwich or empirical variance estimator ##

70 emp.variance = big.bread %*% big.filling %*% big.bread

71 emp.variance
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APPENDIX B

SWEEP operator

The Sweep operator is a linear operator that works as follows to produce marginal

or conditional effects of a given predictor on the outcome. Let the marginal mean

vector be µT = [ µX1 µX2 µX3 µY ], and Σ is covariance matrix of (X1, X2, X3, Y ).

Then, sweeping

[
−1 µT

µT Σ

]
on the row and column of Xk yields the marginal effects

from the regression of Y on Xk. For instance, sweeping

[
−1 µT

µT Σ

]
on the row and

column of X3 provides the equality below:

SWP [X3]



−1 µX1 µX2 µX3 µY

· σ2
X1

σX1X2 σX1X3 σY X1

· · σ2
X2

σX2X3 σY X2

· · · σ2
X3

σY X3

· · · · σ2
Y


=



a11 a12 a13 a14 a15 = β03

· a22 a23 a24 a25

· · a33 a34 a35

· · · a44 a45 = β13

· · · · a55 = V ar[Y |X3]


,

where arc is the row r and column c element of the swept matrix of

[
−1 µT

µT Σ

]
on

the row and column of X3. Note that since the above matrices are symmetric, we only
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recorded upper triangular elements. From the result, the swept matrix on X3 yields

the marginal effects β03, β13 from the regression of Y on X3. Similarly, sweeping the

matrix

[
−1 µT

µT Σ

]
on X1, X2, and X3, results in

SWP [X1 X2 X3]



−1 µX1 µX2 µX3 µY

· σ2
X1

σX1X2 σX1X3 σY X1

· · σ2
X2

σX2X3 σY X2

· · · σ2
X3

σY X3

· · · · σ2
Y


=



b11 b12 b13 b14 b15 = γ0

· b22 b23 b24 b25 = γ1

· · b33 b34 b35 = γ2

· · · b44 b45 = γ3

· · · · b55 = σ2
δ


.

Sweeping operators were used for the marginal moments at the cluster level to derive

cluster-level mean and variances.
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APPENDIX C

True marginal covariance structure in the

simulation study

Let Yij be an outcome of the ith child, i = 1, 2, . . . , nj, in the jth school, j =

1, 2, . . . , J . With three covariates, Xj1, Xj2, and Xj3, the outcome Yij is generated

from the following hierarchical model

Yij = γ0 + γ1Xj1 + γ2Xj2 + γ3Xj3 + δj + εij,

where δj ∼ N(0, σ2
δ ) and εij N(0, σ2

ε ).

Suppose that we fit a HMIM to compare marginal effects among three covari-

ates Xj1, Xj2, and Xj3 such that V ar[Xjk|Xjk′ ] = σ2
k|k′ for k, k′ = 1, 2, 3, k 6= k′, and

Cov(Xj2|Xj1, Xj3|Xj1) = σ23|1, Cov(Xj1|Xj3, Xj2|Xj3) = σ12|3, and Cov(Xj1|Xj2, Xj3|Xj2) =

σ13|2.

Then, the marginal variance and correlation can be written as

V ar[Yij|Xj1] = γ2
2σ

2
2|1 + γ2

3σ
2
3|1 + 2γ2γ3σ23|1 + σ2

δ + σ2
ε

V ar[Yij|Xj2] = γ2
1σ

2
1|2 + γ2

3σ
2
3|2 + 2γ1γ3σ13|2 + σ2

δ + σ2
ε

V ar[Yij|Xj3] = γ2
1σ

2
1|3 + γ2

2σ
2
2|3 + 2γ1γ2σ12|3 + σ2

δ + σ2
ε
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and

{ Corr(Yij|Xj1, Yi′j|Xj1) = (γ2
2σ

2
2|1 + γ2

3σ
2
3|1 + 2γ2γ3σ23|1 + σ2

δ )/V ar[Yij|Xj1]

Corr(Yij|Xj2, Yi′j|Xj2) = (γ2
1σ

2
1|2 + γ2

3σ
2
3|2 + 2γ1γ3σ13|2 + σ2

δ )/V ar[Yij|Xj2]

Corr(Yij|Xj3, Yi′j|Xj3) = (γ2
1σ

2
1|3 + γ2

2σ
2
2|3 + 2γ1γ2σ12|3 + σ2

δ )/V ar[Yij|Xj3]

Then, the true covariance structure setting of the HMIM in the simulation section

is derived as

Ṽj =

[ Vj1 0 0

0 Vj2 0

0 0 Vj3

]
,

where for k = 1, 2, 3, Vjk = φRjk with Rjk =



1 ρk · · · ρk

ρk 1 · · · ρk
...

...
. . .

...

ρk ρk · · · 1


, and φk =

V ar[Yij|Xjk] and φk = Corr(Yij|Xjk, Yi′j|Xjk).
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APPENDIX D

Parameter estimation in DLMs

In a matrix form, Eq. (3.2) can be written as β = C0α+ C1α̃, where C0 =

[ 1 r1

...
...

1 rL

]
,C1 = [|rl − rk|3]1≤l,k≤L,α =

[
α0

α1

]
, and α̃ = (α̃1, . . . , α̃L)T . The coeffi-

cients α̃ are penalized so the squared second derivative of the estimated DL coefficient

function is penalized. The objective is to minimize ||Y−1nβ0−Xβ||2 = ||Y−1nβ0−

X(C0α + C1α̃)||2 subject to the constrains α̃TC1α̃ ≤ const, and CT
0 α̃ = 0. The

latter constraint implies that there are really L free parameters α and α̃ rather than

L+ 2 implied from the columns of C0 and C1 (Green and Silverman, 1993; Ruppert

et al., 2003). As is well known, the optimization problem can be re-written as a mixed

model by redefining α̃ = M1a1, where M1 is an L × (L − 2) orthogonal matrix to

C0, where M1 can be determined using the QR decomposition [C0 C1] = QcRc and

setting M1 as the 3rd to last columns of Qc(Green and Silverman, 1993). Further,

finding M
1/2
2 that satisfies M2 = M

1/2
2 M

1/2
2 = MT

1C1M1, and defining b1 through

the transformation a1 to M
−1/2
2 b1, and re-structuring the data X∗ = [1n XC0] and

Z∗ = XC1M1M
−1/2
2 , the mixed model becomes Y = X∗[β0 α

T ] + Z∗b1 + ε, where

ε ∼ Nn(0, τ 2I) and b1 ∼ NL−2(0, σ2
bI). The smoothing parameter is λ = τ 2/σ2

b .
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The mixed model can be fitted with packaged software for mixed models in the

frequentist framework. Once we have the estimates from the fitted regression, the

estimates of the DL coefficients can be obtained as β = Ω

[
α

b1

]
and Cov(β) =

ΩCov(

[
α

b1

]
)ΩT where Ω = [C0 C1M1M

−1/2
2 ].

Alternatively, the model can be estimated in the Bayesian framework. With

prior distributions of β0 ∝ 1,α ∝ 1, b1 ∼ N(0, σ2
bIL−2), σ2

b ∼ IG(aσ, bσ), τ 2 ∼

IG(aτ , bτ ), the full conditionals are all available in closed forms. Let D∗ = [X∗ Z∗] =

[1n XC0 XC1M1M
−1/2
2 ], then the full conditional for β0,α, b1 is p(β0,α, b1|·) =

N(µ,Σ), where Σ = (D∗TD∗/τ 2+σ−2
b G)−1,G = diag{03,1L−2} and µ = ΣD∗TY/τ 2.

The full conditional distribution for σ2
b is p(σ2

b |·) = IG(aσ +(L−2)/2, bσ +bT1 Gb1/2),

while the full conditional distribution of τ 2 is p(τ 2|·) = IG(aτ + n/2, bτ + (rTr)/2),

where r = Y −D∗(β0,α, b1)T . Inference for DL coefficients β is obtained by trans-

forming posterior samples of α, b1 by Ω

[
α

b1

]
with Ω as described above. Inference

for average lag effects, β̄(0; rk), can be easily determined from posterior samples.
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Figure D.1: The built environment setting; locations of food stores are sampled from
an inhomogeneous Poisson point process (a) without clustering, (b) with
a small amount of clustering, (c) with a large amount of clustering.
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Figure D.2:
Bias, variance, MSE, and coverage rate at each rl, l = 1, 2, . . . , 100 for the cases when

β(r) is: (a) a step function under the built environment without clustering. (b) the

step function under the built environment with a large amount of clustering. (c) β(r)

is the normal pdf under the built environment without clustering. (d) β(r) is the

normal pdf under the built environment with a large amount

of clustering. Reported results are from a simulation case with n = 1, 000 and R2 = 0.2.
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Table D.1: Simulation results for the averaged buffer effects up to distance rk = 2.5, 5,
and 7.5 from the traditional model and the fitted DLM. Reported results
are from a simulation case with n=1,000 and R2=0.2.

Table D.2: Integrated MSE from fitted traditional linear models with distance lag rk
= 2.5, 5, and 7.5 and from fitted DLMs with a maximum distance rL = 10.
Reported results are from a simulation case with n = 1, 000 and R2=0.2.
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APPENDIX E

Parameter estimation in HDLMs

In a matrix form, Eq. (4.2) can be written as β = C0α+ C1α̃, where C0 =

[ 1 r1

...
...

1 rL

]
,C1 = [|rl − rk|3]1≤l,k≤L,α =

[
α0

α1

]
, and α̃ = (α̃1, . . . , α̃L)T . The coef-

ficients α̃ are penalized so the squared second derivative of the estimated DL co-

efficient function is penalized. The objective is to minimize ||Y − 1nβ0 − Xβ||2 =

||Y − 1nβ0 − X(C0α + C1α̃)||2 subject to the constrains α̃TC1α̃ ≤ const, and

CT
0 α̃ = 0. The latter constraint implies that there are really L free parameters α

and α̃ rather than L+ 2 implied from the columns of C0 and C1 (Green and Silver-

man, 1993; Ruppert et al., 2003). As is well known, the optimization problem can be

re-written as a mixed model by redefining α̃ = M1a1, where M1 is an L × (L − 2)

orthogonal matrix to C0, where M1 can be determined using the QR decomposition

[C0 C1] = QcRc and setting M1 as the 3rd to last columns of Qc(Green and Silver-

man, 1993). Further, finding M
1/2
2 that satisfies M2 = M

1/2
2 M

1/2
2 = MT

1C1M1, and

defining b1 through the transformation a1 to M
−1/2
2 b1, and re-structuring the data

X∗ = XC0 and Z∗ = XC1M1M
−12
2 .

Then, the mixed model only with a random intercept and random DL effects of
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assembly districts becomes

Yijt = β0 + ηj + X∗ijt(α+αj) + Z∗ijt(b1 + b1j) + εijt, (E.1)

where ηj ∼ N(0, τ 2
η ),αj ∼ N(0,Σα), b1 ∼ NL−2(0, σ2

b1
I), b1j ∼ NL−2(0, σ2

b2
I), and

εijt ∼ N(0, τ 2). With integrating over (ηj,αj, b1j), the marginal model of Yijt becomes

Yijt = β0 + X∗ijtα+ Z∗ijtb1 + ε
′

ijt, (E.2)

where ε
′
ijt ∼ N(0, τ 2

η + X∗ijtΣαX
∗T
ijt + σ2

b2
Z∗ijtZ

∗T
ijt + τ 2).

The sampling approach we use is based on Agarwal and Gelfand (2005) shrinkage

slice sampling methods which is an extension of Neal (2003). Slice sampling refers

to using auxiliary variables to draw posterior samples where samples are not easily

drawn, and shrinkage bounds the sampling domain based on the rejected proposal

samples. The sampling steps are

(a) Partition the parameters into of θ = (β0,α, b1) and Ω = (τ 2
η ,Σα, σ

2
b2
, τ 2) so that

f(θ|Ω, Y ) is easy to sample from closed form of the full conditional.

(b) Start with initial values of parameters θ0 and Ω0.

(c) Draw θ from f(θ|Ω,Y), given below.

Implement the shrinkage slice sampling steps

(d) Draw ν = −l(θ,Ω|Y ) + z, where z ∼ exp(1).

(e) Draw Ω from π(Ω|θ, ν)I(−l(θ,Ω|Y ) < ν <∞), given below.

(f) Iterate (c) through (e) until we get the appropriate number of MCMC samples.

The density f(θ|Ω,Y) in (c) is derived as follows. Let Ψ = τ 2
ηUBUT

B+X∗BΣBX∗TB +

σ2
b2

Z∗BZ∗TB + τ 2I be the covariance matrix of Y marginalized in (E.2), where UB is a

block diagonal matrix of 1nj for assembly district j = 1, 2, . . . , 80, X∗B and Z∗B are a

block diagonal matrix of district’s own X∗j and Z∗j , ΣB = diag{Σα, . . . ,Σα}, and let

D∗ = [1n X∗ Z∗]. Then the posterior distribution of θ is f(θ|Ω,Y) = N(S−1m,S−1),
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where S = (D∗TΨ−1D∗ + diag{0, 0, 0, σ−2
b IL−2}) and D∗TΨ−1Y.

In step (d), each parameter of Ω = (τ 2
η ,Σα, σ

2
b2
, τ 2) can be updated one at

a time or simultaneously, we updated one at a time. Without loss of general-

ity, we draw a sample for τ 2
η first. Given the sampled θ(t), we evaluate the log-

likelihood l(θ(t),Ω(t−1)|Y) and draw ν1 = −l(θ(t),Ω(t−1)|Y) + z1, where z1 ∼ exp(1).

Then, sample τ
2(t)
η from the prior inverse gamma distribution IG(aη, bη) with bounds

Lη < τ
2(t)
η < Uη, where Lη and Uη are lower and upper bounds of τ 2

η , respec-

tively, and evaluate l(θ(t), τ
2(t)
η ,Ω

(t−1)

−τ2η
|Y). The posterior sample τ

2(t)
η is accepted when

−l(θ(t), τ
2(t)
η ,Ω

(t−1)

−τ2 |Y) < ν1. If τ
2(t)
η is rejected, the bounds of the prior distribution

are shrunk such that Lη = τ
2(t)
η if τ

2(t)
η < τ

2(t−1)
η or Uη = τ

2(t)
η if τ

2(t)
η > τ

2(t−1)
η . The

parameters (σ
2(t)
b2
, τ 2(t)) can be sampled in the same way as τ 2

η , by again evaluating

the likelihood with the updated τ 2
η and drawing new ν1 and z1.

Next we also apply the shrinking sampling technique to Σα. However, apply-

ing it is not straightforward because Σα has 3 parameters. Even if we employ

the multivariate shrinkage sampling method described in Neal (2003), sampling 3

parameters of Σα under multi-dimensional bounds is computationally inefficient.

Hence, since the prior distribution of Σα is an inverse Wishart with a diagonal

scale matrix, we re-parameterized Σα by a product of inverse gamma and nor-

mal form (Gelfand et al., 2004). For example, Σα ∼ IW2(ν,∆−1) where ∆ is

a diagonal scale matrix with the ith diagonal element ∆i, i = 1, 2. Let ν11 ∼

IG((ν − 1)/2,∆1/2), ν22 ∼ IG(ν/2,∆2/2), ν12|ν22 ∼ N(0, ν22/∆1). Then, Σα =[
σ2

11 σ12

σ12 σ2
22

]
=

[
ν2

11 ν12ν11

ν12ν11 ν2
12ν11 + ν2

22

]
. Re-parameterizing V =

[
ν11 v12

ν12 ν22

]
to Σα

can be easily done with the Sweep operator (Beaton, 1964; Dempster , 1969). The
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relationship between Σα and V is

RSW [2]


SWP [2]

 0 1
r

1
r

0

0 0

0

1

0

 =


−1 0 0

0 σ2
11 σ12

0 σ12 σ2
22

 , (E.3)

where SWP [j] and RSW [j] are sweeping and reverse sweeping operations on the

jth row and column, respectively. Hence, instead of sampling Σα, we used the

shrinkage slice sampling for νii, i = 1, 2, from IG(ν−(2−i)
2

, ∆i

2
), and for ν12 from

ν12|ν22 ∼ N(0, ν22
∆1

). Each element of V is updated at a time and then V imme-

diately transformed to Σα using the sweep/reverse operators.

Given posterior samples of θ = (β0,α, b1) and Ω = (τ 2
η ,Σα, σ

2
b2
, τ 2), we estimate

each district’s intercept and DL effects by sampling district random effects ηj,αj, b1j.

Let rj = Yj−β0−X∗jα−Z∗jb1. To sample (ηj,αj), let Ψ1j = σ2
b2

Z∗jZ
∗T
j +τ 2Inj . Then,

(ηj,αj) ∼ N(AjCj,Aj), where Aj =

(
[1nj X∗j ]

TΨ−1
1j [1nj X∗j ] +

[
τ 2
η 0

0 Σα

])−1

and

Cj = [1nj X∗j ]
TΨ−1

1j rj.

To sample b1j, let Ψ2j = [1nj X∗j ]

[
τ 2
η 0

0 Σα

]
[1nj X∗j ]

T + τ 2Inj . Then, b1j ∼

N(Ab
jC

b
j,A

b
j), where Ab

j = (Z∗Tj Ψ−1
2j Z∗j + σ−2

b2
IL−2)−1 and Cb

j = Z∗Tj Ψ−1
2j rj. With

sampled (αj, b1j) for a district j, we estimate district-specific DL effects

βj = (βj(0; r1), βj(r1; r2), . . . , βj(rL−1; rL))T = [C0 C1M1M
−1/2
2 ]

[
α+αj

b1 + b1j

]
.
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Figure E.1: The 7th grade children’s mean BMIz by Assembly districts in 2001, 2005,
2010 in a whole CA, LA and SF metropolitan areas.
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Figure E.2: (a) Estimated DL coefficients of features of the built environment by As-
sembly districts. (b) Histogram of estimated DL coefficients smoothness
paramters by Assembly districts. (c) Two categorized groups of Assembly
districts for smoothness parameters of DL coefficients.
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Figure E.3: Estimated buffer effects up to (a) 1/4, (b) 1/2, (c) 3/4 miles from schools
by Assembly districts in a whole CA, LA and SF metropolitan areas. The
district-specific buffer effects are estimated by each subset of Assembly
districts in 2001-2010
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Figure E.4: (a) The estimated overall DL effects and (b) the estimated random DL
effects of Assembly districts from the individual and school characteris-
tics adjusted HDLM (model 3), (c) the estimated mile buffer effects of
Assembly districts.
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Figure E.5: (a) Statistical significance of DL effects up to 7 miles across 80 Assembly
districts. (b) Mapped Assembly districts with significant DL effects be-
fore (red) and after (blue) 3 miles. Implemented HDLMs adjusted both
individual and school characteristics adjusted.
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