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ABSTRACT 

Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and 

remarkable mechanical properties not seen with cellular macromolecular complexes. The 

limited coding capacity of viral genome necessitates economization upon one or a few 

identical gene products known as capsid proteins for shell assembly. The functional 

uniqueness of this class of proteins prompts questions on key structural features critically 

important for their higher order organization. In this thesis, I develop the statistical 

framework and computational tools to pinpoint the structural characteristics of viral 

capsid proteins exclusive to the virosphere by testing a series of hypotheses, providing 

understanding of the physical principles governing molecular self-association that can 

inform rational design of nanomaterials and therapeutics. In the first chapter, I compare 

the folded topology of capsid proteins with those of generic proteins, and establish that 

capsid proteins are segregated in structural fold space, highlighting the geometric 

constraints of these building blocks for tiling into a closed shell. Second, I develop a 

software program, PCalign, for quantifying the physicochemical similarity between 

protein-protein interfaces. This tool overcomes the major limitation of current methods 

by using a reduced representation of structural information, greatly expanding the 

structural interface space that can be investigated through inclusion of large 

macromolecular assemblies that are often not amenable to high resolution experimental 

techniques. As an application of this method, I propose a computational framework for 
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template-based protein inhibitor design, leading to the prediction of putative binders for a 

therapeutic target, the influenza hemagglutinin. In silico evaluations of these candidate 

drugs parallel those of known protein binders, offering great promise in expanding 

therapeutic options in the clinic. Lastly, I examine protein-protein interfaces using 

PCalign, and find strong statistical evidence for the disconnectivity between capsid 

proteins and cellular proteins in structural interface space. I thus conclude that the basic 

shape and the sticky edges of these Lego pieces act concertedly to create the sophisticated 

shell architecture. In summary, the novel tools contributed by this dissertation work lead 

to delineation of structural features of viral capsid proteins that make them functionally 

unique, providing an understanding that will serve as the basis for prediction and design. 
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CHAPTER I 

Introduction 

1.1.  General background: 

Viruses, a frequently overlooked domain of pseudo-living organisms, are gaining 

attention in the scientific community due to the unparalleled reach and diversity of these 

systems, with an abundance that is estimated to outnumber living cells by an order of 

magnitude [1]. Since the 1980s there has been a paradigm shift from the traditional view 

of viruses as a long-standing foe of human health [2], to their being a rich source of 

information on biodiversity [3], on their role in shaping evolution through genetic 

exchanges with hosts [4], and on the insights they provide into the design principle of 

nanoscale biological containers [2]. Our current understanding of the virosphere is still 

relatively limited, and growing efforts are now channeled into studying this important 

section that is an indispensable and integral part of the biosphere. 

Traditionally, viruses have been classified based on a variety of phenotypical features, 

such as their host organisms (animal viruses, plant viruses, etc.), their overall morphology 

(helical, icosahedral or complex), and the types of genetic materials they carry (dsDNA 

viruses, ssDNA viruses, dsRNA viruses, +ssRNA viruses, -ssRNA viruses, ssRNA-RT 

viruses, and dsDNA-RT viruses). A major obstacle in deriving a systematic taxonomy for 

viruses, like with the domains of cellular life, is the lack of a unifying genetic marker, 
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compounded with the fact that viruses frequently undergo lateral gene transfer as opposed 

to vertical transmission. With recent advances in experimental techniques that have 

determined the structures of viral capsids, there is accumulated evidence that viruses 

previously thought to be unrelated, including those infecting different domains of hosts 

[5-7], can share remarkable structural and architectural similarity in their viral capsid 

proteins, providing support for a newly formulated hypothesis that attempts to group 

together viruses by the structural similarity of the viral coat proteins to define viral 

lineage [8]. This proposal appears reasonable, given that viral capsid proteins are 

arguably the single hallmark feature present in all viruses, in the same way that 

ribosomes are signature of the cellular empire. 

This thesis work is centered on viral capsid proteins, which are a functionally unique 

class of proteins in the virosphere. They play a critical role in the life cycle of viruses, 

providing a protective coat that encapsulates the viral genome to be delivered to host cells 

they infect. In carrying out this central function, capsid proteins first have to self-

assemble into a closed shell of a defined size inside the highly crowded cellular 

environment at the stage of replication, undergo a series of maturation steps to stabilize 

the shell in the case of some viruses, and later dissociate from one another in the newly 

infected host cells to release the genetic materials, manifesting remarkable dynamic and 

mechanical properties [9]. Other than the central function of protecting the genetic 

material, there are other more refined roles of capsid proteins that are differentiated 

among different viruses, depending on their detailed mechanism of infection. For 

instance, enveloped viruses, which are membrane-covered viruses, typically have 

glycoproteins (here broadly considered as coat proteins or capsid proteins) that specialize 
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in inducing membrane fusion with the endosome upon endocytosis, in addition to their 

structural role. 

Most of the currently solved structures of viral capsids are icosahedral, and we have 

focused our studies on these available structural data, which are collectively available in 

the database VIPERdb [10]. An icosahedron contains 20 triangular faces, with 2-, 3- and 

5-fold symmetry, and consists of 60 copies of an icosahedral asymmetric unit (IAU). 

Given the limited coding capacity of viral genomes, viruses economize upon a single type 

or a few types of capsid proteins that tile on an icosahedron lattice. Within each IAU, 

there are T-number of capsid proteins, where the T-number is the triangulation number 

that takes discrete values given by T=h2+hk+k2, h and k being non-negative integers. An 

icosahedron has twelve vertices, and thus an icosahedral virus consists of 12 pentamers 

placed at the vertices and 10(T-1) hexamers tiled on the flat surfaces. For T=1 viruses, all 

capsid proteins are placed in an identical environment. For T>1 viruses, the sequence-

wise identical capsid proteins are placed in different chemical environments, and interact 

with one another in slightly different fashions. This construction principle, termed ‘quasi-

equivalence’ by Caspar and Klug [11], allows large viruses with more than 60 protein 

subunits to form, while still obeying icosahedral symmetry. In this case, quasi-symmetry 

axes are introduced, which do not necessarily coincide with the icosahedral symmetry 

axes, depending on the classification of different T-numbers as discussed in detail in [12]. 

While most icosahedral viruses have symmetries that are explained by the quasi-

equivalence theory, a few exceptions exist. The best known example of deviation from 

the quasi-equivalence theory is the polyoma viruses. Instead of having 12 pentamers and 

10(T-1) hexamers, polyoma viruses consist of only pentamers, which occupy positions on 
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an icosahedral lattice that correspond to T=7 symmetry [13] and classified as such. The 

total number of capsid protein subunits is thus 360, which implies a forbidden T-number 

based on the formula, contrary to the expected 420 for a T=7 virus. Another case that 

disobeys the quasi-equivalence rule is L-A viruses, which are comprised of 120 protein 

subunits that again points to a forbidden T-number of 2. It is therefore commonly viewed 

as having a symmetry of T=1, except with dimers making up the IAU [14]. Finally, 

different capsid protein subunits in picornaviruses have different peptide sequences, yet 

all adopt the same structural fold, which can also be regarded as forming pseudo-quasi-

equivalent interfaces [15]. Despite these aberrations, the quasi-equivalence theory 

remains an important cornerstone that has wide applicability in describing the 

architecture of most icosahedral viruses, and the T-number is generally regarded as a 

useful metric in quantifying the size of viral capsids. 

1.2.  Aim of the study and motivation: 

One observation about viral capsids is of interest to us; although symmetric 

macromolecular assemblies are not lacking in the cellular domains of life, exemplified by 

ferritin cages and the chaperone GroEL/ES complexes, they are not found to be on such a 

large scale as viral capsids. In other words, viral capsid proteins represent a functionally 

unique class of proteins dedicated to make large cages for the protection and 

transportation of other macromolecules. Given that function follows form, we ask the 

question of what structural features of viral capsid proteins are key to determining their 

higher order organization, with the goal of understanding the fundamental physical 

principles governing assembly of biological containers of defined sizes.  
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Prior to our work, an important finding about the structure-function relationship of 

viral capsid proteins has established the role of topological constraints- specifically the 

trapezoidal shape adopted by most viral capsid proteins- in tiling into a closed spherical 

shell with no holes, no overlaps and no gross structural variability [16], which are 

essential properties for capsid shells designed to offer protection to the viral genome with 

maximal genetic economy. With the aim to gain a deeper understanding to fully address 

the question raised above, I set out to investigate in this thesis work how various 

structural features of viral capsid proteins compare with generic, non-capsid proteins. The 

answer to our question has three-fold important implications; first is to provide guidelines 

for the design of nano-packaging tools in various biomedical applications and materials 

science, second is to inform the rational design of antiviral drugs that minimize toxic 

effects, and lastly to enrich our knowledge of protein-protein interactions in general by 

mining through the myriad of structural data for viral capsids. These three aspects are 

presented as follows. 

The ability of viral capsid proteins to self-assemble into cages of defined sizes offers 

great promise in a range of biomedical applications, including vaccine development, gene 

therapy, bio-imaging and drug delivery. In fulfilling these functionalities, viral capsid 

proteins are typically expressed in the absence of the infectious genomic material they 

encapsulate, with the exception of the use of viruses for transfection in gene therapy, and 

these empty viral shells are often called virus-like particles (VLPs) without virulent 

activity. Since as early as in the 1990s, immunogenic peptides have been genetically 

fused with viral capsid proteins to be presented on the surface of the assembled capsids to 

enhance recognition by antibodies to elicit immune response [17-44], with some of the 
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VLP-based vaccines making it to the clinical trial stage. The use of viruses as vectors of 

gene therapy also has a long history, and has been known for their efficiency for the 

reason that viruses are naturally designed to transfect living cells with their own genetic 

material, via sophisticated mechanisms selected by evolution. These vectors are 

generated as recombinant viral genomes packaged by viral capsid proteins, incorporating 

the therapeutic gene of interest, allowing self-replication in some cases (especially in the 

treatment of cancer) while prohibiting replication in others for a ‘one-hit’ transient 

expression of the therapeutic gene using replication-defective viruses [45]. Different 

types of viral vectors including retroviruses, adenoviruses, adeno-associated viruses and 

herpes simplex viruses have been developed [46], with notable successes in the treatment 

for inherited monogenic diseases [47-51]. In the area of bio-imaging, VLPs can either be 

convalently conjugated to dye molecules on the viral surface to take advantage of the 

large display area for maximized signal, as well as the precise positioning to prevent the 

dye molecules from fluorescent quenching, or they can encapsulate fluorescent cores as 

cargos, leaving the outer surface for modifications to achieve specific targeting [52, 53]. 

These techniques have been widely applied in various biomedical studies, including but 

not limited to imaging of tumor angiogenesis in vivo with fluorescent cowpea mosaic 

virus sensors [54-56], packaging quantum dots and infrared chromophores into simian 

viruses and brome mosaic viruses for in vitro imaging [57, 58], and using cowpea mosaic 

viruses, cowpea chlorotic viruses and MS2 viruses  as carriers of MRI contrast reagents 

for diagnostic and therapeutic decisions [59-62]. Lastly, formulations of small drug 

molecules delivered by viral containers have also been developed for treatment of cancer 
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[63-68] and bacterial infections [69], greatly prolonging the activity of the drug 

molecules which otherwise undergo fast clearance. 

In materials science applications, viral capsids are equally popular as bio-templates 

given their remarkable mechanical properties and diversity in sizes and shapes. Phage 

display libraries, for one, have been used for identifying peptides with specific binding to 

materials, which are in turn engineered onto viral capsid proteins for directing nucleation 

of inorganic nanocrystals of different sizes, composition and morphology [70-74]. The 

interior of VLPs has been explored to confine nanomaterials synthesis within, with 

examples ranging from mineralization of anionic polyoxometalate salts [75], to formation 

of nanowires in helical viruses [76, 77], to creation of light harvesting systems by 

chemically attaching chromophores to viral coat proteins [78, 79]. Selective engineering 

of exposed residues on the outer surface of viral capsid proteins also allows spatially 

controlled crosslinking patterns in various nanodevices such as sensors and electronic 

circuits [51, 80-82]. Lastly, altering assembled architectures by tuning inter-subunit 

interactions of viral capsid proteins [83] enables some degree of control over magnetic 

properties of the magnetic materials synthesized within [84]. 

The need for precise control in all of the above design applications is highly 

important; on the exterior surface, functional moieties are arranged with specific 

geometries (such as defined spacing) for optimally targeting specific sites of interest. At 

the interface between protein subunits of the capsid shell, the slightest modifications can 

imply altered stability and overall architecture. For materials encapsulated in the viral 

interior, the shell has to assume the right size to tailor to different cargos or has to be 

decorated with modules internally to direct the assembly. Understanding the physical 
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principles that govern viral shell assembly is essential to achieve predictable results when 

such new functionalities are imparted onto the viral templates. What specific structure is 

required for the building block to satisfy geometric constraints in forming a closed shell? 

In what ways do these Lego pieces associate with one another? We can glean some 

preliminary insights into these unanswered questions by comparing the structural features 

of capsid proteins that form large protein cages and the non-capsid proteins that do not 

form large protein cages, and delineate characteristics that differentiate the function of 

capsid proteins. 

A second reason for us to study viral capsid proteins is the increasing recognition of 

their being attractive therapeutic targets in viral infections. Traditionally, efforts on 

developing antiviral drugs have largely focused on viral enzymes [85], which are 

involved in important steps in the life cycle of viruses. Examples of these targets include 

viral DNA polymerases and reverse transcriptases, which are essential for replication of 

the viral genome, with known drugs such as acyclovir, brivudin, zidovudine, nevirapine 

and other nucleoside analogues [86, 87]; viral proteases, which process newly 

synthesized viral proteins for maturation, targeted by saquinavir, ritonavir and other 

peptidomimetic substrate analogues [88]; neuraminidases, the glycoproteins found on 

influenza viruses that allow newly formed virions to escape the infected host cell, 

inhibited by drugs such as zanamivir and oseltamivir [89-93]. While efficacious, these 

drugs may raise selectivity concerns due to the potential functional overlap between viral 

enzymes and some cellular enzymes. The emergence of techniques that allow monitoring 

of the viral capsid assembly [94, 95] has opened up avenues to investigate drugs targeting 

viral capsid proteins, which are functionally unique to viruses and thus may serve as a 
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more specific drug target. A few pioneering studies have led to the discovery of 

molecules/compounds that interfere with capsid assembly or capsid uncoating. Pleconaril, 

for instance, is known to bind to a hydrophobic pocket on the capsid protein VP1 of 

enteroviruses, which rigidifies the capsid shell and prevents the capsid proteins from 

undergoing conformational changes necessary for disassembly [96-98]. A peptide, CA-I, 

inserts in between the dimer interface of HIV capsid proteins, while another allosteric 

small molecule inhibitor of HIV, CAP-1, alters the interface geometry to disrupt the viral 

capsid assembly [99-103]. Given the different structural aspects one can target on viral 

capsid proteins, be it the structural core or the protein-protein interface, we should be 

cautious about drug selectivity. It is thus helpful to evaluate which structural features of 

viral capsid proteins are exclusive in the virosphere and therefore pathogen-specific, so as 

to rationalize antiviral drug design that minimally interferes with normal cellular 

activities. 

Lastly, viral capsid proteins provide a great example of protein plasticity in 

accommodating varied modes of protein-protein interactions. As introduced earlier, 

quasi-equivalence of inter-subunit interfaces in viral capsids provides a general 

framework for large icosahedral viruses to maximize their genetic economy. Different 

modes of interaction between genetically identical capsid proteins can be achieved via an 

array of mechanisms; in small plant viruses this is frequently in the form of the switch 

between order/disorder of a terminal arm of the capsid proteins, or RNA segments, or a 

combination of both [104-106], and in larger viruses often helper proteins are required to 

control the size of the assembled complex, such as the tape protein P30 that defines the 

vertex-to-vertex distance between two pentamers in PRD1 viruses [107]. Structural data 
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of viral capsids thus provide a wealth of information on fine-tuning protein-protein 

interactions with subtle conformational switching among the constituent monomers, 

which can lend insights into fundamental principles of molecular recognition. Before we 

apply such knowledge gained to for instance improve scoring functions for protein-

protein docking studies, we need to establish its generalizability, by assessing whether the 

inter-subunit interfaces in viral capsids span the structural interface space of all proteins 

including cellular ones. 

1.3.  Overview of thesis chapters: 

Motivated by these open questions, I performed large scale comparative analysis 

between available structural models of all capsid proteins and non-capsid proteins, 

focusing on two primary structural features of viral capsid proteins, namely the folded 

topology and the protein-protein interfaces. Chapter II discusses my findings on the 

structural overlap in protein fold space between viral capsid proteins and cellular proteins, 

which informs the geometric constraints of individual building blocks for tiling into a 

closed shell. Chapter III describes a computational tool I developed, PCalign, to quantify 

physical and chemical similarities between a given pair of protein-protein interfaces. 

Because no current method prior to this work deals sufficiently with low-resolution 

structural data that is typical with viral capsids, this tool (PCalign) is specifically 

designed for assessing the degree to which capsid inter-subunit interfaces are 

representative of all interfacial patterns present in cellular macromolecular complexes, as 

explored in detail in Chapter V. In Chapter IV, I apply the same tool to designing protein 

inhibitors of the influenza virus hemagglutinin protein, and predict a number of new 

candidate binders that can further undergo experimental validation, illustrating the 
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usefulness of the tool in setting up a general framework for search of novel protein-based 

drug leads. 

In Chapter II, I mainly explore the question of whether the prevalent jellyroll fold of 

capsid proteins is exclusively found in the virosphere, to which end I examine 

representative capsid protein chains in the VIrus Particle ExploreR database (VIPERdb) 

[10] as well as a non-redundant subset of protein domains in the Structural Classification 

Of Proteins (SCOP) database [108], not including the viral capsid entries. In this work, I 

design a novel statistical framework for analyzing the degree of connectivity between two 

mutually exclusive sets of data, where the partition is made based on functional 

annotation while the connectivity is drawn based on structural similarity. This same 

framework is also applied in Chapter V when studying protein-protein interfaces. 

Unlike the case of comparing individual protein structures, for which a state-of-the-

art tool (TMalign) is available [109], a metric for quantifying similarity between protein-

protein interfaces that accounts for patterns of interest to us is lacking. One major 

limitation with currently available implementations for methods that compare a given 

pair of protein-protein interfaces is that they all require atomic details of structural 

models as input to define what constitutes an interface. However, large macromolecular 

complexes such as viral capsids are often times not amenable to X-ray crystallography 

due to the challenge in crystal formation, and lower-resolution techniques such as cryo-

Electron Microscopy (cryo-EM) serve as a complement that provides structural models 

typically with fewer details [110, 111]. In the VIPERdb database [10], for instance, there 

are 29 cryo-EM structural models (10 of which have homologues determined by X-ray 

crystallography) for icosahedral viral capsids in addition to 392 X-ray crystal structures, 
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which is a small but non-negligible proportion. Chapter III of my thesis covers 

specifically a method that I developed, PCalign, to address this limitation, taking into 

account the extent to which the spatial and chemical arrangement of residues lining two 

protein-protein interfaces overlap with each other. This method facilitates comparison 

across structural models with different levels of detail by relying on a hierarchical 

definition of interfacial residues, using a distance criteria optimized by a correlation study 

that I carried out through mining the Protein Data Bank (PDB) [112]. 

Chapter IV of my thesis illustrates an application of the method PCalign other than 

the intended large scale comparative studies detailed in Chapter V, i.e. template-based 

protein inhibitor design for a given therapeutic target, which is the hemagglutinin of 

influenza viruses in this study. Motivated by recent works of David Baker and coworkers 

[113, 114], which used an ab initio approach to successfully design protein inhibitors for 

the hemagglutinin protein, I attempted to address the same problem by searching the 

existing library of protein-protein interfaces to identify putative binders for the viral 

protein, which interact with their respective native partners in similar fashions as the viral 

protein complexes with a known antibody, based on interface similarity recognized by 

the PCalign program. These putative binders, bearing a binding site that resembles the 

paratope, can then serve as a starting point for redesign for affinity for the target protein, 

using an array of computational modelling tools. Candidate protein inhibitors identified 

as such can then undergo further experimental validation to verify the feasibility of our 

design protocol. 

Knowing that the geometric shape of capsid proteins plays a role in determining the 

assembled architecture, I was next interested in whether the glue that holds these building 
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blocks together is also subject to evolutionary constraints. Chapter V addresses this 

question by testing the hypothesis that the protein-protein interfaces in viral capsids are 

representative of generic protein-protein interfaces using a similar statistical framework 

as with the folded topology. The comparative analysis of a non-redundant set of inter-

subunit interfaces in viral capsids from VIPERdb and protein-protein interfaces in non-

capsid protein complexes from the PDB allows us to assess if the overlap in structural 

space of protein-protein interfaces of the two sets is significantly small. Together with my 

earlier study of the folded topology of viral capsid proteins, we can delineate important 

structural features in viral capsid proteins in directing the final complex formation of 

nanoscale containers. 

In summary, I have developed a general statistical framework for testing the 

uniqueness of structural features for a given functional class of proteins, as well as a 

computational tool, available as a software program, to quantify physicochemical 

similarity between protein-protein interfaces. These methodology developments led to 

novel biological insights into the design principles of large biological assemblies, with 

broad applications in biomedical and materials science. 
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CHAPTER II 

Viral capsid proteins are segregated in structural fold space 

2.1  Introduction: 

Viral capsid proteins protect the viral genome by forming a closed protein shell 

around it. Most of currently found viral shells with known structure are spherical in shape 

and observe icosahedral symmetry [115]. Comprised of a large number of proteins, such 

large, symmetrical complexes assume a geometrically sophisticated architecture not seen 

in other biological assemblies. Here we make a distinction between protein cages in viral 

capsid shells that have sizes ranging from about 10 nm to about 90 nm in radius (Figure 

2.1(A)), and other oligomeric containers of a much smaller scale, such as ferritins and 

chaperones. In the simplest form, 60 identical copies of an icosahedral asymmetric unit 

(IAU) are assembled with 5:3:2 symmetry, by positioning three IAUSs on each of the 20 

triangular faces of the icosahedron [116]. The triangulation-number, or T-number, can be 

used to describe the number of proteins in each icosahedral asymmetric unit and therefore 

the size of the virus. Thus the number of capsid proteins in each shell is a multiple of 60, 

such as 180 proteins for a T=3 virus and 240 proteins for a T=4 virus. While T=1 viruses 

can place each protein in an identical environment, other viruses having multiple proteins 

per IAU achieve the symmetry by following the ‘quasi-equivalence’ principle proposed 

by Caspar and Klug [11]. Also worth noting is that large viruses, such as double-stranded 
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RNA (dsRNA) viruses, deviate from this principle, while preserving a rigid icosahedral 

symmetry nonetheless [116]. 

Geometry of the complex architecture aside, another striking feature of viral capsid 

proteins lies in the folded topology of the monomers, with the canonical jelly-roll β barrel 

appearing most prevalent (but not unique) as a core structural motif among capsid 

proteins that make up these viral shells of varying sizes [117]. Traditionally, this fold has 

also been termed as a wedge shape [118], an RNA virus capsid domain [119], a β-barrel 

[120], a β-sandwich [121], and an eight-stranded antiparallel β-barrel fold with a β-roll 

topology [122], all of which are consistent with the overall morphological characteristic 

of the fold (Figure 2.1(B)). Remarkable diversity in the loop regions connecting the β 

strands has been observed across different viruses, with variations in length and in 

inserted segments ranging from secondary structural elements to complete domains [123]. 

This signature fold of capsid proteins has been extensively studied [124, 125], and has 

also been compared with non-viral proteins in many separate works, most of which aimed 

to investigate the evolutionary relationship between viruses and their hosts. Other than 

the jelly-roll β barrel, there are also the Greek key β barrel with six strands [126], the 

helix bundle [127] and the immunoglobulin-like fold [128]. 

Given the unique geometry of the complex formed by viral capsid proteins, one 

interesting question arises as to whether the structural folds of capsid proteins that 

assemble into this distinct architecture are also unique to viruses.  By comparing the 

structural topology of capsid proteins that form the icosahedral shells and generic 

proteins that interact to form other types of complexes, we can potentially establish a link 

between capsid fold and capsid architecture, or the lack thereof. The answer to this  
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Figure 2.1. Capsid shells and the folded topology of a typical capsid protein. (A) 
Representative icosahedral viral capsid structures with varying sizes. The Satellite 
Tobacco Mosaic Virus which is a T=1 virus has a radius of 8.8 nm, and the Paramecium 
bursaria Chlorella virus 1 (PBCV-1) which is a pT=169 virus has a radius of 92.9 nm. 
Here pT stands for ‘pseudo T number’, which simply means the subunits are not 
chemically identical (the primary sequences are different). These protein shells are large 
in that they are assembled from tens of up to hundreds of protein monomers, and they are 
highly symmetrical. (B) The signature jelly-roll of viral capsid proteins, with 8 β-strands 
forming two antiparallel sheets, exemplified by a satellite tobacco mosaic virus protein 
subunit here (PDB code: 1a34). The wedge or trapezoidal shape of this particular fold 
immediately reveals six flat surfaces for monomer-monomer interaction; the sides, the 
two loop ends and the top and the bottom. The prevalence of the jelly-roll fold among 
capsid proteins might be related to their relative ease for tiling. 
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question can lend novel insights to protein-protein interactions, in terms of how folds of 

protein monomers, as opposed to their surface chemistry, might be related to the 

assembled multimer complex architecture. Furthermore, the ability of many viral capsid 

proteins to self-assemble spontaneously makes them an attractive platform for synthetic 

manipulation across the fields of biomedical applications and nanosciences [2]. 

Understanding how much influence viral capsid folds place on the assembled architecture 

is likely to provide guiding principles in the design of drug delivery systems and 

nanomaterials. 

In this work, we present, to the best of our knowledge, the first attempt to examine 

whether the structural folds of viral capsid proteins set them apart from generic proteins, 

and with how much statistical significance. We recognize that a general assumption is 

that any class of proteins with a unique function is expected to be found in exclusive 

folds, which may or may not hold, given that folded topology is a coarse description of 

structural characteristics. Thus in addition to testing our hypothesis in the specific case of 

viral capsid proteins, we perform similar analysis for a few representative classes of 

proteins with diverse functions. At a finer level of granularity, i.e., the superfamily level, 

Abroi and Gough also surveyed the classification of all viral proteins and the other 

superkingdoms to study their genetic interactions in evolutionary history [3]. We 

distinguish our work by restricting our analysis to viral capsid proteins, which are 

functionally unique in viruses, in order to establish the link between topology of the 

building block and the assembled complex architecture. In another related work, Janin 

and coworkers provided an extensive analysis of physicochemical characteristics of 

protein-protein interfaces in icosahedral viruses, and compared them with generic 



18 
 

protein-protein interfaces [129]. Rather than adopting the same approach of enumerating 

what’s similar and what’s different between the two classes, we will employ a direct 

comparison metric to evaluate whether there is significant statistical evidence supporting 

our conjecture that viral capsid proteins are structurally unique.  

2.2 Materials and methods: 

To test our hypothesis that viral capsid folds are not commonly found in generic 

proteins, we proceed to evaluate if the proportion of non-viral capsid proteins that share 

similar structural folds with viral capsid proteins is significantly small  (Figure 2.2), 

based on a well-defined quantitative measure. 

2.2.1 Comparison metric 

We chose the Template Modeling-score (TM-score) [109] as our structural 

comparison metric, for the following reasons. This structure-alignment-based scoring 

function using the fr-TM-align algorithm [130] is very fast to compute and suits our 

large-scale comparison; it is normalized, or protein size independent, making the 

comparison between pairs of domains with complex topology and pairs with simpler ones 

fair; it has been established in large scale benchmark studies that most of the pairs of 

proteins with a TM-score of more than 0.5 have the same fold classification, and most of 

those with a TM-score of less than 0.5 are in different fold classes [131]. In addition,  a 

TM-score of 0.4 has also been extensively used as a criterion to decide if a pair of 

structures are similar or not [132]. Given that many proteins within the same SCOP fold 

can have a TM-score of 0.4 and higher, we chose the TM-score of 0.4 as the threshold to 

validate our hypothesis. 
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Figure 2.2. Comparison in structural fold space of capsid proteins and non-capsid 
ones. Capsid proteins form large, highly symmetric protein shells (left, PDB code: 3kic), 
while generic proteins form other types of complexes (right), exemplified here by an 
RNA polymerase elongation complex (PDB code: 2o5i). Overlap between the structural 
space of viral capsid proteins and that of generic proteins signifies the set of non-capsid 
‘relatives’ of capsid proteins. Figure is for illustration purposes and not drawn to scale. 
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Briefly, the structural alignment score is defined as 

TM-score = 𝑴𝑴𝑴 � 𝟏
𝑳𝑵
∑ 𝟏

𝟏+�𝒅𝒊𝒅𝟎
�
𝟐

𝑳𝑻
𝒊=𝟏 �,    (2.1) 

where LN and LT are the lengths of the two peptides being compared, di is the distance 

between the Cα atoms of the structurally equivalent residues, and d0 is a normalization 

score to make the alignment length-independent. The term Max stands for an optimal 

superimposition between the two structures to minimize distances between structurally-

equivalent residues. We define structural distance between a pair of proteins by (1−TM-

score), which ranges from zero to one. 

2.2.2 Data collection  

In our work, we included all of capsid, nucleocapsid and envelope proteins for 

analysis, which we collectively call capsid proteins, because of their common structural 

role in forming the viral shell despite differentiated functions in a few cases. We 

collected the viral capsid protein set from the VIrus Particle ExploreR (VIPERdb) [10], 

which is a database of icosahedral virus capsid structures, with 319 entries in total. 

Altogether 1174 protein chains having at least 80 residues were extracted from these 

entries, as short peptides are known to assume very simple topologies. These 1174 were 

further cut into domains; while 452 proteins have domain annotations in SCOP, 637 

proteins have homologues (sharing a sequence identity of at least 40%) that are well-

annotated by SCOP. The remaining 85 were examined visually and dissected into 
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individual domains. Lastly, the non-compact domains (extended structure with little 

secondary structure content) are removed, leaving 1447 domains in total. 

We used the non-redundant set of 10569 proteins covering 1195 folds from the 

database Structural Classification Of Proteins (SCOP) 1.75 [133] filtered at 40% 

sequence identity, available from the ASTRAL compendium [134], to constitute our total 

protein set.  This set was further reduced to 8921 proteins covering 1047 folds after 

removal of short peptides with fewer than 80 residues. The viral capsid protein set was 

then subtracted from the total protein set to yield the non-capsid protein set. In addition, 

24 capsid proteins in the total protein set that were originally not deposited in VIPERdb 

were added to the capsid set and removed from the non-capsid set (Appendix A, Table 

A.1).  A sequence filter of 40% identity was then applied to the domains of the capsid set, 

which resulted in 151 domains that are sequence-wise non-redundant.  

As viruses across the same family are known to share limited sequence identity 

despite remarkable structural resemblance, a further structural filter was applied to the 

capsid set of 151 domains by clustering analysis. We performed hierarchical clustering 

via the average linkage method, and selected the cluster medoids of the resulting N 

clusters as our structurally non-redundant capsid set. Optimal partitioning of the data 

from hierarchical clustering was obtained by choosing the minimal number of clusters 

such that all intra-cluster distances are less than 0.6, using our structural distance measure. 

This criterion is based on the rationale that we would like to sort out the most 

representative capsid structures, without their repeating one another resulting in unfair 

comparison with the permutation test that we will describe shortly. 
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Figure 2.3. Domain size distribution. Shown in pink is the density distribution of the 
lengths of non-capsid proteins, and that of capsid proteins is shown in blue. Viral capsid 
proteins appear to have overall larger domains compared to their cellular counterparts, 
with a few exceptionally complex domains having more than 600 residues. 600 was later 
used as a size cutoff in order to examine the two sets that are of comparable sizes. 
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A preliminary survey of the two sets revealed differences in the sizes of domains. As 

shown in Figure 2.3, a typical capsid domain (blue) has approximately 180 residues, 

compared to about 150 residues for a typical non-capsid domain (pink). This size 

comparison is purely based on existing structural data of viral capsid proteins, but we do 

see a larger proportion of complex topologies in certain capsid domains, as opposed to 

the under-representation of longer folds in generic proteins. In order to preclude the 

possibility of concluding that capsid and non-capsid proteins have different folds that are 

in fact largely a result of the difference in length, we performed an additional separate 

analysis by removing domains having longer than 600 residues in both datasets.  

2.2.3 Shared folds as the test statistic 

After obtaining the non-redundant viral capsid set and the non-capsid set, we quantify 

the extent to which the structural space of the non-capsid set overlaps with that of the 

capsid set in the following manner. We performed an all-against-all structural comparison 

between the non-capsid set and the capsid set. For each member in the non-capsid set, we 

select its nearest neighbor in the capsid set, and use the distance between the two to 

represent how far structurally this particular non-capsid protein is to viral capsid proteins. 

With the structural distances between all non-capsid proteins and their nearest neighbors 

in capsids in hand, we then filter the non-capsid set by retaining only proteins that are 

less than 0.6 away from capsid proteins. We thus obtain the final distribution of distances 

between viral capsid proteins and those non-capsid proteins that structurally resemble 

capsid proteins. Among these ‘relatives’ of viral capsid proteins, we count the number of 

folds covered by them, following the fold classification in SCOP. This defines our test 

statistic, which we term as ‘shared folds’ in the rest of the chapter. 



24 
 

2.2.4 Statistical significance of the test statistic 

To estimate the statistical significance of the number of shared folds between capsids 

and non-capsid proteins, we calculated the probability of observing at most the same 

number of shared folds by random chances by running a permutation test on the total 

protein set. The total set of proteins was randomly partitioned into set A and set B, with 

set A consisting of an equal number of proteins as that in the capsid set, and set B being 

their complement in the total set. The same procedure as described above was carried out 

to obtain the number of shared folds between this particular set A and their non-self 

counterparts. To avoid finding ‘relatives’ in set B that are evolutionarily closely related to 

(i.e. belonging to the same family) the proteins in set A, we further excluded ‘self folds’ 

from the shared folds found, as an approximation to, or a lower bound of, folds shared 

with non-self proteins. Here ‘self fold’ is defined as the fold annotation by SCOP of a 

particular structural analogue found in the large protein set that is already covered by any 

protein in the small set of proteins.  Altogether 10,000 independent permutations were 

done to give rise to the estimated distribution of shared folds, based on which the p-value 

of our test statistic can be evaluated. 

2.2.5 Cross-checking with other functional classes of proteins 

To examine if unique function generally implies unique folds, we chose a few 

functional classes of proteins to perform the same analysis described above for capsid 

proteins. Seven classes were chosen, namely kinases, globins, dehydrogenases, 

DNA/RNA polymerases, chaperones, antigens and muscle proteins, with functions 

ranging from catalysis, to transport to signal transduction. The total protein set which is 
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filtered at 40% sequence identity level was partitioned into two sets based on SCOP 

annotations at the domain level; one being the functional class and the other being the 

complementary set, and the statistical significance of shared folds is again estimated by 

permutation tests. 

2.3  Results: 

2.3.1 Representative folds adopted by viral capsid proteins 

We found 56 clusters for the viral capsid set, using the criterion described in the 

Materials and Methods section. These clusters are fairly compact, with all members 

within each cluster being less than 0.6 apart from one another. Furthermore, the clusters 

are maximally separated, with only 26 pairs of proteins (0.24%) from two different 

clusters being closer than 0.4. In Figure 2.4, we show the statistics demonstrating a good 

separation between clusters that are reasonably homogeneous. The resulting 56 cluster 

medoids thus represent the distinct domain architecture adopted by capsid proteins.  

Figure 2.5 illustrates these 56 clusters with all members in each cluster superimposed 

on one another. The alignment shows high structural similarity across the same cluster, 

while different clusters display mostly different folding topologies, in agreement with our 

quantitative assessment. There are a fairly large number of singlet clusters that are unlike 

one another, mostly because the structural data for these few viral families are lacking. 

The few most populated clusters correspond to the canonical jelly-roll fold, with 

variations in the terminal ends. 
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Figure 2.4. Clustering to find representative capsid folds. Shown here are all pairwise 
distances between members from the same cluster (grey) and between members from 
different clusters (blue). The numbers on top of each bar indicate the number of pairs that 
fall into that bin. Partitioning was chosen such that each cluster is maximally 
homogeneous, with no members within the same cluster being farther than 0.6 apart. 
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Figure 2.5. The 56 representative capsid folds. Domains within one cluster are 
superimposed on one another to show good structural alignment, with number of 
members in each cluster indicated. The prevalence of singlet clusters reflects the scarcity 
of structural data for many viral families.  
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2.3.2 Viral capsid proteins are segregated in structural fold space from generic 

proteins 

By comparing the viral capsid set and the non-capsid set, we found altogether 2078 

generic proteins sharing similar topology with viral capsid proteins, based on a distance 

cutoff of 0.6. These 2078 proteins cover 210 folds in total. If we disregard marginally 

similar capsid-like proteins by looking at those within a distance 0.5 of capsid proteins 

only, we find altogether 600 proteins covering 21 folds (Table 2.1). A further inspection 

of the distribution of shared folds for randomly sampled sets of 56 proteins and their non-

self counterparts immediately reveals that viral capsid proteins are structurally separated 

from generic proteins.  Referring to Figure 2.6, the cumulative fraction of non-self 

proteins across the entire structural distance spectrum from viral capsid proteins is clearly 

shifted to the right compared to those of the 10,000 permutation tests. Through this plot, 

we expect to arrive at the answer that capsid proteins are different from generic proteins 

regardless of the distance cutoff used in defining similar folds. 

2.3.3 Estimation of statistical significance 

The distribution of shared folds, estimated from the 10,000 permutation tests, is 

plotted in Figure 2.7. The number of capsid-like folds shared by non-capsid proteins 

hence lies on the extreme left tail of the distribution, demonstrating that viral capsid folds 

are far less populated in structural fold space compared to generic proteins (Figure 2.7). 

The one-tailed p-value of our test statistic is less than 0.0001, and we thus conclude that 

there is significant statistical evidence against the null hypothesis that viral capsid folds  
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Table 2.1. The 21 folds covered by structural relatives of capsid proteins. 14 out of 
these 21 folds are either greek-key or jelly-roll (the latter fold being a specific variation 
of the former). Remarkably, 17 folds are specific to non-capsid proteins, and are only 
marginally similar to capsid proteins in structure. 

fold (as 
in 
SCOP) 

name of fold description of fold whether 
contains 
capsid 
proteins 

example of non-
capsid relatives 

SCOP ID 
of example 

b.1 Immunoglobulin-like 
beta-sandwich 

sandwich; 7 strands in 2 sheets; greek-
key. some members of the fold have 
additional strands 

Yes Titin, I27 d1tiua_ 

b.2 Common fold of 
diphtheria 
toxin/transcription 
factors/cytochrome f 

sandwich; 9 strands in 2 sheet; greek-
key; subclass of immunoglobin-like fold 

No Runt-related 
transcription factor 1 

d1eaqa_ 

b.6 Cupredoxin-like sandwich; 7 strands in 2 sheets, greek-
key  
variations: some members have 
additional 1-2 strands 

No Auracyanin d1qhqa_ 

b.7 C2 domain-like sandwich; 8 strands in 2 sheets; greek-
key 

No Chaperone protein 
Caf1M 

d1p5va2 

b.14 Calpain large subunit, 
middle domain 
(domain III) 

sandwich; 8 strands in 2 sheets; jelly-roll No M-Calpain d1df0a2 

b.18 Galactose-binding 
domain-like 

sandwich; 9 strands in 2 sheets; jelly-roll No Xyn10B 
carbohydrate-
binding module 

d1h6ya_ 

b.22 TNF-like sandwich, 10 strands in 2 sheets; jelly-
roll 

No Tumor necrosis 
factor superfamily 
member 4 

d2hewf1 

b.23 CUB-like sandwich, 10 strands in 2 sheets; jelly-
roll 

No Acidic seminal fluid 
protein 
(spermadhesin) 

d1sfpa_ 

b.29 Concanavalin A-like 
lectins/glucanases 

sandwich; 12-14 strands in 2 sheets; 
complex topology 

Yes Sugar binding 
protein 

d1is3a_ 

b.47 Trypsin-like serine 
proteases 

barrel, closed; n=6, S=8; greek-key 
duplication: consists of two domains of 
the same fold 

Yes human alpha-
thrombin 

d1h8d.1 

b.71 Glycosyl hydrolase 
domain 

folded sheet; greek-key No alpha-galactosidase d1uasa1 

b.82 Double-stranded 
beta-helix 

one turn of helix is made by two pairs of 
antiparallel strands linked with short 
turns has appearance of a sandwich of 
distinct architecture and jelly-roll 
topology 

No transcriptional 
regulator, HTH_3 
family 

d1y9qa2 

b.121 Nucleoplasmin-
like/VP (viral coat 
and capsid proteins) 

sandwich; 8 strands in 2 sheets; jelly-
roll; some members can have additional 
1-2 strands characteristic interaction 
between the domains of this fold allows 
the formation of five-fold and pseudo six-
fold assemblies 

Yes Nucleoplasmin-like 
protein (histone 
chaperone) 

d1nlqa_ 

b.132 Supernatant protein 
factor (SPF), C-
terminal domain 

sandwich; 8 strands in 2 sheets; jelly-
roll; similarity to the Nucleoplasmin-
like/VP fold 

No Lipid Binding 
Protein  

d1olma2 

b.135 Superantigen 
(mitogen) Ypm 

sandwich; 9 strands in 2 sheets; jelly-roll No superantigen from 
Yersinia 
pseudotuberculosis 

d1pm4a_ 

c.2 NAD(P)-binding 
Rossmann-fold 
domains 

core: 3 layers, a/b/a; parallel beta-sheet 
of 6 strands, order 321456 

No Shikimate 
dehydrogenase 

d1nyta1 
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c.16 Lumazine synthase 3 layers, a/b/a; core: parallel beta-sheet 
of 4 strands, order 2134 

No lumazine synthase d1ejba_ 

c.23 Flavodoxin-like 3 layers, a/b/a; parallel beta-sheet of 5 
strand, order 21345 

No Lysine aminomutase d1xrsb1 

c.37 P-loop containing 
nucleoside 
triphosphate 
hydrolases 

3 layers: a/b/a, parallel or mixed beta-
sheets of variable sizes 

No elongation factor Sel
B 

d1wb1a4 

c.44 Phosphotyrosine 
protein phosphatases 
I-like 

3 layers: a/b/a; parallel beta-sheet of 4 
strands, order 2134 

No IIBcellobiose d1iiba_ 

c.66 S-adenosyl-L-
methionine-
dependent 
methyltransferases 

core: 3 layers, a/b/a; mixed beta-sheet of 
7 strands, order 3214576; strand 7 is 
antiparallel to the rest 

No salicylic acid carbox
yl methyltransferase 

d1m6ex_ 
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Figure 2.6. Capsid proteins are structurally distant from generic proteins. Each 
curve plots the empirical cumulative fraction distribution of distances between one set of 
56 proteins and their nearest neighbor in the complementary set. The comparison 
between the capsid set and the non-capsid proteins is colored in blue, while those from 
the 10,000 permutation tests are colored in grey. The average empirical cumulative 
fraction distribution of the 10,000 permutation tests is colored in red. The capsid set is 
clearly further away from its non-self set compared to what happens with random 
chances. 
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Figure 2.7. Statistical significance of test statistic. No single case in the 10,000 
permutations has resulted in 210 or fewer shared folds between the set of 56 protein 
domains and their complement set, which makes the p-value of our test statistic less than 
0.0001, as an upper bound for the statistical significance. 
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span the protein fold space. We also show in Figure A.1 (Appendix A) that the p-value of 

our test statistic, based on the datasets containing domains of comparable sizes only, is 

0.0002, therefore excluding size as a compounding factor contributing to the difference in 

fold.  In conclusion, viral capsid folds are unique to viruses. 

2.3.4 Other functional classes 

The seven other functional classes of proteins we examined range in size from 18 to 

297 in the total set of 8921 proteins. When compared with their complementary set, the 

number of shared folds with non-self proteins is found to be statistically insignificant, 

with a one-tailed p-value greater than 0.05 in all cases (Table 2.2). This is not surprising, 

given that cellular proteins have evolved over a relatively shorter period of time 

compared to viral proteins, and therefore their folds are more similar to one another as 

compared to viral ones, similar being defined by having a TM-score of greater than 0.4. 

We thus showed that it is not always true that unique function implies unique structural 

folds. Without making this assumption, we further proved that viral capsid proteins are 

segregated in structural fold space, which is remarkable. 

2.4  Discussion: 

2.4.1 Possible differences in domain definition 

In this work, our major interest is to compare the independently folded domains of 

capsid proteins with generic protein domains, so as to reveal their relationship with the 

higher order of structural organization. Domains defined in this work therefore refer to 

integral structural units that are connected by single peptide to neighboring domains,  
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Table 2.2. Seven additional functional classes of proteins studied. These are found to 
be not significantly distinguished in their folded topology. The shared folds between each 
functional class of proteins and their complement are not significantly small compared to 
what happens with random chances, with a one-tailed p-value greater than 0.05 in every 
case, suggesting that these cellular proteins are highly connected in structural fold space.  

Functional class Size of class Subgroups, if any, included One-tail p-value 

Kinase 213 - 0.1449 
Globin 32 Myoglobin and hemoglobin 0.4154 
Dehydrogenase 297 - 0.3461 
Polymerase 67 DNA/RNA polymerase 0.0572 
Chaperone 33 - 0.2925 
Antigen 49 - 0.4411 
Muscle 18 Actin, myosin, titin, nebulin 0.1972 
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although in a few cases these criteria are not fully met. We followed strictly the definition 

of domains in SCOP to make fair comparison with generic proteins collected from the 

same database. Our work does not focus on a finer granularity of structure such as 

subdomains, or motifs, which might have been called ‘domains’ in certain literature for 

the interpretation of their evolutionary origin. While our choice of domain definition 

addresses our question of interest adequately, we also note that the question of whether 

viral folds and generic proteins are evolutionarily segregated can be answered by 

comparing subdomains or structural motifs, which is outside the scope of discussion here. 

2.4.2 What are the capsid-like proteins and why they do not form shells 

Prior to our work, several studies have reported that certain classes of cellular 

proteins also share similar topologies or structural cores with certain capsid proteins. 

These include the tumor necrosis factor superfamily [121], the serine proteases [126], the 

superantigen class [135], the concavalin A class [124], and the CUB-like domains [136]. 

All of the above classes of proteins were among the generic proteins that we found to 

share similar folds as capsid proteins, as expected. In addition, analysis of our set of 600 

non-viral relatives of capsid proteins revealed that many virus proteases, certain 

hydrolases, transcription regulators and histone chaperones also shared close topological 

characteristics with viral capsid proteins (Table 2.1).  

We first examined the structural relatives that are highly similar to capsid proteins 

(within a distance 0.4 or less). Many of these structural relatives possess the typical jelly-

roll topology, with some variations in each case. The tumor necrosis factor superfamily is 

characterized by 10 strands in two sheets, with the core eight strands having identical 
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connectivity as that of a standard capsid jelly-roll. Truncation in one strand and addition 

of two extra strands make them slightly different in shape compared to capsid proteins. 

The CUB-like domains in spermadhesins display a particular variation of the jelly-roll 

topology in terms of connectivity, including reversed β-strands, two disulphide bridges 

and two additional β-strands. They thus share a minimal structural core with capsid 

proteins (specifically the bean pod mottle virus capsid protein), but have shorter β-strands 

and overall smaller shape as a distinction. Superantigen Ypm is yet another class that 

overlaps significantly in structure with capsid proteins, especially satellite tobacco 

necrosis virus capsid proteins. Other than an additional disulphide bond connecting the C 

terminus with one β-strand that differentiates itself, superantigen Ypm also has a much 

more compact structure compared to capsid proteins, owing to its shorter loops 

connecting the β-strands. The supernatant protein factor protein consists of two domains, 

and the C-terminal domain also follows the jelly-roll topology that resembles satellite 

tobacco necrosis virus most, with minute differences in the concavity of the two β-sheets. 

The histone chaperone proteins are characterized by the same topology as capsid proteins, 

with some of them having one or two additional strands. Remarkably, all of these 

proteins discussed occur naturally (as opposed to crystal packing) as heterodimers (the 

monomers having identical topology), trimers, pentamers or hexamers, although their 

modes of interaction differ from that of capsid proteins in many cases. This suggests that 

the β-sandwich formed by proteins with varying connectivity generally facilitates 

aggregation, presumably because of the greasy, flat surfaces presented by their wedge-

like shapes to promote monomer association.  
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In addition to these structural analogues found naturally in oligomeric states, we also 

identified quite a few proteins in the immunoglobulin fold and the methyltransferase fold 

that are highly similar to capsid proteins; however, they typically occur as part of some 

multi-domain proteins, such as the N-terminal binding fragment of the human polymeric 

immunoglobulin receptor. It thus might not be feasible to simultaneously arrange all 

domains on a shell in such cases, which may explain why we are not observing 

multimeric complexes for these proteins. We omit here discussion on the remaining types 

of protein domains, mainly for the reason of their limited structural similarity to capsid 

proteins (distance-wise more than 0.4 apart). These proteins typically either appear 

smaller in size or are tightly coupled with other domains, and consequently significantly 

different in shape, and have not been observed to form symmetric complexes in general. 

Given the above interesting observations, we need to highlight that the structural 

relatives of capsid proteins only marginally resemble capsid proteins to the extent of their 

common structural core, as evident from the large structural distances (majority are 

greater than 0.4) between the two classes. Decorations on top of this level of similarity 

directly differentiate the exposed edges of the proteins, such that geometrical 

complementarities along multiple symmetry axes are easily satisfied by repeating units of 

the same monomers in the case of capsid proteins but not in the other. In other words, the 

positions in which monomers interact with one another are also fine-tuned by geometric 

and physicochemical factors of protein-protein interfaces. We thus do not observe any 

protein cages assembled from these cellular proteins despite their sharing similar 

structural topologies with capsid proteins. Lastly, we speculate that the structural but not 

functional close relationship between these few classes of proteins and capsid proteins 
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resulted from ancient genetic interactions between viruses and their hosts, although 

further investigation is needed to support this view. 

2.4.3 Scarcity and possible bias in the data 

An important aspect that cannot be overlooked is that we have drawn our conclusion 

in this work based solely on existing structural data of capsid proteins taken from 

icosahedral viruses. We cannot exclude possibilities of identifying novel viral capsid 

folds that span a larger subspace of protein folds in future, as predicted in several recent 

publications [1-3] given the diversity of the virosphere.  This is especially so when we 

take into account the current challenges in determining the structure of viral proteins 

embedded in lipid membranes for enveloped viruses. In addition, experimental 

limitations in determining the structure of large assemblies place a heavy bias in highly 

symmetrical viral particles, and thus statistics for irregularly shaped viruses such as HIV 

are missing in our analysis. Given all structural data available up to this date, we have 

derived our conclusion with rigor and confidence, but we remain open to potential 

changes should abundant novel discoveries be made. 

2.4.4 Implications on protein-protein interaction and other applications 

Our study provided support for the hypothesis that viral capsid proteins, which are 

functionally unique in viruses in constructing protein shells, are also structurally unique 

in terms of their folding topology. This implies that protein-protein interactions, in the 

case of viral capsids at least, confer evolutionary constraints on capsid proteins, 

specifically on their folds. Bhadur and Janin [137] found that residues making up capsid 
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cores are more conserved than interface residues and surface residues, which highlights a 

greater selective pressure on capsid structural core. Interpreted together, the characteristic 

folds (and therefore fundamental shapes) of capsid proteins are most likely a consequence 

of geometric requirements of the building block so as to form the cage-like 

macromolecular assembly, which corroborates the theory proposed by Mannige and 

Brooks that demonstrates a trapezoid as the only shape available to capsid proteins for 

monohedral tiling into an icosahedron [16]. From a more general point of view, core 

residues of cellular proteins have also been shown to evolve at a slower rate compared to 

interface and surface residues [138], with a 25%-35% higher conservation score 

compared to surface residues. Most studies that investigated the degree to which proteins 

are subject to constraints due to their interactions with other proteins mainly focused on 

interface residues [138-140], and it remains to be established whether the greater 

conservation of structural cores of generic proteins is similarly affected by the interaction 

with their partners during evolution. Our work sheds light on this missing link by 

studying the particular case of viral capsid proteins, and it will be interesting to verify 

whether this evolutionary constraint is true in general. 

Additionally, virus-like particles (VLPs), which are self-assembling capsid shells 

without the infectious viral genetic materials encapsulated, are already a popular choice 

among a variety of nanoparticle platforms for a wide range of applications both in the 

biomedical arena and in materials science [141-147]. For a comprehensive review, 

readers may refer to this paper [148]. Compared to other nanoparticle materials, VLPs 

offer several advantages, including the full range of protein templates they provide that 

adapt to diverse environmental conditions including extreme thermal environments [149], 
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their proteinaceous nature which makes them biodegradable [52], and their plasticity to a 

wide range of synthetic manipulations [150-152]. For biomedical applications, VLP 

design has been formulated for targeted delivery of drug molecules [53], tissue-specific 

imaging reagents [151], as well as novel vaccine development [153]. VLPs have also 

been extensively explored as nanocontainers [75] and nanotubes [154] in materials 

science. In order to fulfill their desired purposes, VLPs are introduced into new 

functional modules to facilitate specific interactions with the intended biological sites or 

nonbiological surfaces, to alter the overall architecture and stability [155], and to package 

various cargos as well as directing the cage assembly [156]. Our work laid out the 

fundamental principle in such tailored design of VLP platforms; in order to preserve the 

assembled architecture of viral capsid shells, it is important for the newly formulated 

protein subunits to adhere to the library of viral capsid folds. In other words, significant 

adaptations that result in unfolding or misfolding of capsid proteins are undesirable. 

Where human creativity has no bound in exploring all synthetic possibilities, feasibility 

has its bound; decorations on VLPs should minimally disrupt the folded topology and 

geometry of the building block to make it work. 

2.4.5 Are viral capsid interfaces also unique to viruses? 

Having established that viral capsid proteins possess distinct folds, we would like to 

take one step further by examining whether the protein-protein interfaces in viral capsid 

assemblies are also unique to viruses. Because differences in monomer structure do not 

imply differences in protein-protein interfaces [132], our conclusion of the uniqueness of 

capsid fold cannot be directly extended to capsid interfaces. The results of this second 



41 
 

comparison will again have interesting implications. Should capsid interfaces resemble 

those of generic ones, the mode of capsid-capsid interation is then governed purely by 

physicochemical laws, and evolution merely plays a part in dictating the building block 

structure for their proper tiling. If, on the other hand, we learn that viral capsid interfaces 

are quantitatively different from interfaces formed by their cellular counterparts, we can 

then tap on this difference and design pathogen-specific antiviral drugs targeted at 

disintegrating the protection shells, without disrupting normal cellular activities. This 

question is fully addressed in Chapter V. 

In summary, our comprehensive analysis of the viral capsid proteins and their cellular 

counterparts revealed the segregation of capsid proteins in structural fold space. This 

provides important clues to requirements of the building blocks for the distinctive viral 

shell architecture; the unique folds of viral capsid proteins present favorable geometry to 

allow effective packing and assembly into the right complex architecture. With this in 

mind, the design of gene therapy delivery agents as well as nanoparticles, both targeted at 

making packing tools, can be tailored to satisfy geometric constraints by following 

closely the viral capsid templates nature has created for us. 
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Appendix A 

Additional information for CHAPTER II 

Table A.1. Capsid proteins added from SCOP that are not deposited in VIPERdb. 

SCOP id Description of protein 

d1wyka  Sindbis virus capsid protein 

d2df7a1 structural polyprotein VP2 

d1vpsa  Polyomavirus vp1 pentamer 

d1hx6a2 major capsid protein 

d1p2za1 Hexon protein 

d1p2za2 Hexon protein 

d1ahsa  African horse sickness virus (serotype 4) vp7 

d1bvp11 bluetongue virus coat protein vp7 

d1bvp12 bluetongue virus coat protein vp7 

d1qhda1 viral capsid vp6 

d1qhda2 viral capsid vp6 

d1jmu.1 protein mu-1 

d1u7ka  Gag polyprotein 

d2eiaa2 Eiav capsid protein p26 

d1em9a  Gag polyprotein capsid protein p27 

d1tx9a1 Scaffolding protein D 

d1kqra  VP4 

d1svba2 Tick-borne encephalitis virus glycoprotein 

d2alaa2 Structural polyprotein (P130) 

d1slqa  VP4 

d1m3ya1 The Major capsid protein of PBCV-1, Vp54 

d1m3ya2 The Major capsid protein of PBCV-1, Vp54 

d2pxrc1 Gag-Pol polyprotein (Pr160Gag-Pol) 

d2v33a1 E1 envelope glycoprotein 
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Figure A.1. Statistical significance of test statistic for small domains. For permutation 
analysis performed on protein domains of 600 residues or fewer, only 2 out of the 10,000 
permutations showed 210 or fewer shared folds between the set of 53 proteins and their 
complement set, which makes the p-value of our test statistic 0.0002 and thus still 
significant. 
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CHAPTER III 

PCalign: a method to quantify physicochemical similarity of protein-
protein interfaces 

 

3.1. Introduction: 

Protein-protein interactions play important functional roles in almost all biological 

activities, including, but not restricted to, signal transduction, gene regulation, catalytic 

enzymatic activities and maintenance of structure [157]. Characterization and 

classification of protein-protein interactions would allow us to organize information in 

protein-protein interaction networks, to make predictions on their function, as well as to 

facilitate drug design targeted at interfering with those disease-associated protein-protein 

interactions. While many high-throughput studies are directed toward mapping out the 

entire protein interactome, providing information on whether two given proteins interact 

or not, the question of how two proteins interact still requires three-dimensional structural 

models of protein complexes. Advances in experimental techniques in recent years have 

led to exponential growth in structural data available for protein complexes [112], and the 

rise of low-resolution alternative techniques such as cryo-Electron Microscopy (cryo-EM) 

have made it possible to visualize even large macromolecular complexes that were 

previously not amenable to crystallization [110]. With increasing efforts from structural 

genomics initiatives to populate the structural space of protein complexes [158], we 
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expect the gap between protein-protein interaction networks and the matching structural 

details to close quickly. 

At the center of protein-protein interactions are the binding surfaces, or interfacial 

residues which form contacts between binding partners and stabilize protein complexes. 

Characteristics of residues lining interfaces have been extensively studied, some focusing 

on their collective statistics such as hydrophobicity, buried surface area, depth index and 

planarity [159-161], others focusing on hot spot residues which contribute significantly to 

the free energy of binding [162, 163]. While these approaches provide insights into the 

mechanism of protein-protein recognition, they are not suitable for measuring similarities 

between a given pair of protein-protein interfaces. The latter is useful for revealing 

potential biological relationships between different complexes, for instance, to discover 

evolutionarily closely-related protein complexes, or to recognize competitive binding 

partners for the same protein, or to search potential off-targets for drug molecules that 

target specific protein-protein interfaces, or to identify structural templates for protein-

protein docking studies. Therefore a suitable method to directly compare protein-protein 

interfaces across randomly selected protein complexes and to quantitatively assess their 

pairwise similarities is highly desirable. 

Depending on the specific biological question being asked, methods for protein-

protein interface comparison with different focuses have been developed.  Most of the 

methods are based on structural alignment of protein-protein interfaces, as this provides 

the most straightforward way to both visualize and quantitatively measure interface 

similarities. Gao and Skolnick developed the dynamic programming-based algorithm 

Ialign [164] to detect protein-protein interfaces with shared geometric patterns. The 
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currently available implementation for this method initially defines interfacial residues 

using atomic details, and then uses positions of the Cα atoms for structural alignment and 

scoring, and includes a sequence-order dependent version [164] and a sequence-order 

independent version [165]. Shulman-Peleg et al. developed I2I-SiteEngine [166] to 

compare the physicochemical properties of the functional groups forming protein-protein 

interfaces, which uses an algorithm similar to pharmacophore mapping. Both of these 

methods work well for accurately predicting functional relationships between protein 

complexes determined at atomic resolution. Despite different levels of details involved in 

the scoring stage (one with Cα atoms and one with side chain atoms and molecular 

surface), both of these methods require high resolution of the structural models in order 

to determine what constitutes an interface. As a result, they are not applicable in cases 

where the data quality of structural models is relatively poor and only backbone atoms 

are traceable.  

The current statistics in the Protein Data Bank (PDB) [112] shows that a very small 

proportion of the deposited entries were determined at low-resolution, with only 1379 

entries having a resolution of 3.5 Å or lower compared to 78511 atomic resolution 

models (statistics for proteins only). Many of these structures are macromolecular 

complexes, such as viral capsid shells, that are typically solved by cryo-EM, and may 

capture protein-protein interaction patterns that occur exclusively in large oligomeric 

complexes. The current under-representation of these macromolecular complexes in the 

database merely reflects the limitation of experiments, and does not justify complete 

neglect of their contribution to our knowledge of protein-protein interactions. In addition, 

with increasing efforts from the Structural Genomics project to target high-value, novel 
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protein structures, we expect homology modeling techniques to be valuable tools to fill 

up the structural space. The modeled structures generated as such are unlikely to be high 

in quality, but nonetheless should contain useful information. In other words, there is 

significant added value in exploring these coarse-grained structural models when 

studying protein-protein interfaces, calling for an interface comparison method that can 

traverse through different resolutions of structural models. 

 In this work, we develop a method that combines the advantages of existing methods 

to quantify the similarity of any given pair of protein-protein interfaces in terms of their 

physicochemical properties. This method not only disregards the sequence-order of 

interface fragments in performing the structural alignment, but also takes into account the 

mapping of different chemical types of amino acid residues. More importantly, our 

method facilitates comparison of structural models determined at different resolutions, 

greatly expanding the structural space of protein-protein interactions that can be studied 

systematically. 

3.2. Methods: 

3.2.1. Extract interfacial residues 

While many structural models for protein monomers and homodimers can be 

determined at atomic resolution by X-ray crystallography or NMR techniques, the 

structures of large macromolecular complexes are typically solved by cryo-EM and are 

hence low in resolution. In spite of their lower resolution, these coarser structural models 

are nonetheless informative and can aid our understanding of protein-protein interactions. 

Statistics from PDB show over 600 structural models only contain information on the Cα 
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atoms, with many of them populating the lower end of the resolution spectrum (Figure 

B.1 in Appendix B). To facilitate comparison of interfaces across models with different 

levels of details, we apply a hierarchical approach in defining interfacial residues with a 

distance criterion, as described below. 

Given the structural model of a protein dimer determined at atomic resolution, we 

define two residues to be in contact if at least two heavy atoms, one from each residue, 

are within 4.5Å. The collection of all residues that are in contact with at least one other 

residue in the binding partner is considered the set of interfacial residues. When side 

chain information is not available, we use a Cα-Cα distance cutoff criterion to determine 

if two residues are in contact. Traditionally, a common distance cutoff is used for all 

types of amino acids. Considering the fact that different amino acids have side chains that 

vary in size, the Cα-Cα distance between different types of pairs of amino acids that 

make a contact via their side chains may differ by a non-negligible amount. To account 

for the side chain size factor, we examined the statistics of Cα-Cα distances for different 

pairs of amino acids (e.g., a Ser-Lys pair) that are in contact from the PDB. Similar to 

what Kolinski and Skolnick did in parameterizing pairwise interactions between side 

chain groups of different amino acids [167], our distance cutoff for Cα-Cα distances is 

determined by the following, 

cutoff𝑖,𝑗 = mean𝑖,𝑗 + ξ × sd𝑖,𝑗    (3.1) 

where i,j represent a given pair of residues of amino acid type i and of amino acid type j 

respectively (i, j can be the same type). Meani,j and sdi,j represent the average values of 

the Cα-Cα distances in the set of high-resolution (37474) structures in the PDB and their 
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standard deviation respectively. The statistics are listed in Appendix B, Table B.1 and 

B.2. ξ represents a multiplication factor that is of a fixed value across different residue 

types, and its optimal value was determined to be 0.5 based on our correlation study (see 

Appendix B, Figure B.2). 

After extraction of the interfacial residues, only the coordinates of the Cα atoms are 

retained for use in computing the pairwise interface similarity score, so as to allow 

comparison of interfaces with different levels of structural details. This bare bones 

criterion sufficiently captures the skeleton architecture that hosts amino acid residues of 

various chemical types at an interface, without adding noise to the data representation 

that arises from fluctuations of the side chain orientations. 

3.2.2. Identify initial alignments 

In order to quantitatively assess the degree to which two sets of interfacial residues 

resemble each other spatially and chemically, we first superimpose the two sets of 

interfacial residues. As interfacial residues are fragments that are clustered at the binding 

site without these fragments necessarily following the peptide sequence order, we chose 

the sequence order-independent comparison technique, geometric hashing [168-171], to 

find the transformation needed to superimpose one interface onto the other. This 

algorithm treats each interface as a set of color-labeled points (of the Cα atoms) scattered 

in the three-dimensional space, where the color corresponds to the chemical type of each 

residue. The goal is to find a transformation (i.e. translation and rotation) applied to one 

point cloud to be overlaid with the other so as to maximize the number of points that 

match spatially and chemically. Details of the algorithm dealing with simply the 

geometric properties of the interfacial residues are explained in Appendix B (B.2). In 
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short, the algorithm uses a voting procedure to count the number of points that can be 

matched between two sets of points for a given superposition, where a point i is described 

by a feature defined by the Cartesian coordinates of the point, (xi,yi,zi). The superposition 

that receives a high vote corresponds to one having many points that can be matched 

between the two sets of interfacial residues. 

There are two additional factors to be taken into account in this problem; first is that 

an interface is not a single entity (a set of points) but rather consists of two binding 

fragments, A and B. Thus in aligning one interface to another, one needs to 

simultaneously align fragment A in interface 1 to its counterpart, fragment A’ in 

interface2, and B to B’, and not allow crossing over. To achieve this, we add to the 

feature of each residue (xyz-coordinates originally) an additional attribute of fragment 

label (either binding site A or binding site B), and count the votes only when both the 

coordinates and the fragment labels match. Without knowing the correspondence of 

binding fragments prior to alignment, we attempt both ways by swapping the fragment 

labels. 

In addition to the fragment label, another factor to be considered is the chemical label 

that is associated with each residue. Given the coarse-grained nature of our method (using 

only Cα atoms), we applied a reductive method to classify the 20 amino acids based on 

the prominent functional group in each side chain. The assignment of the individual 

functional groups in the side chain is based on the definition in earlier work by Schmitt et 

al [172]. Depending on what functional groups are present in a specific amino acid, we 

classified them to one of the following six categories: donor (K, R), acceptor (E, D), 

mixed donor/acceptor (N, Q, S, T), aromatic (F, W), Aliphatic (C, A, I, L, M, P, V, G) 
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and mixed donor/acceptor or aromatic (H,Y). This classification scheme largely agrees 

with previous assignment of the residue type [173]. Since the six classes are not mutually 

exclusive, we allow matches across two different classes as long as they share at least one 

common functional group. For instance, asparagine has both a donor group, ND2-HD21, 

and an acceptor group, OD1, and thus classified as “mixed donor/acceptor”. Therefore 

asparagine can be matched with either arginine due to the shared functional group of a 

donor, or aspartate due to the shared functional group of an acceptor. In summary, we 

consider features representing residues as equal if their binned xyz-coordinates and 

fragment labels are the same and their chemical labels match (not necessarily identical). 

Lastly, different pairs of orthogonal bases typically yield degenerate transformation 

matrices, and thus those receiving sufficiently high votes are further clustered to retain 

representative transformations as a last step, with the 100 top-ranking transformations 

processed for further refinement. 

3.2.3. Iterative refinement 

The previous step proposed candidate transformations to superimpose the two 

interfaces initially, and in the iterative refinement step we aim to further improve the 

structural alignment in order to maximize the final similarity score. Based on each 

proposed initial alignment, a list of structurally equivalent pairs of residues between the 

two interfaces can be identified. Here we used maximum weight matching in bipartite 

graphs [174] to identify structural equivalence, which is the problem of optimizing one-

to-one mapping between two sets of nodes based on the weight of the edge that connects 

two nodes (one from each set). We implemented the Hungarian algorithm [175], which is 

explained in detail in Appendix B (B.3).  
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In our particular problem, we’d like the weight to reflect spatially how close two 

residues are and also how well their chemical types match, and hence we’ve chosen the 

following scheme to quantify equivalence between ith residue in interface 1 and jth residue 

in interface 2, 

equivalence-score𝑖𝑗 = 1

1+0.25×�1−𝐼𝑖𝑖(same chem type)�+
𝑑𝑖𝑖

2

16

  (3.2) 

where Iij(same chem type) is the indicator function that takes the value of 1 when the pair 

of residues (i, j) share the same chemical type and 0 when they don’t. dij is the Euclidean 

distance between the Cα atoms of the two residues in Å after structural superposition. 

After obtaining the list of equivalent residues, we then apply the Kabsch algorithm [176] 

to translate and rotate the second interface so as to minimize the sum of squared errors 

between all the equivalent pairs of residues. Based on this new structural superposition, 

we obtain a new updated list of structurally equivalent residues using maximum weight 

matching in bipartite graphs, which will be submitted to the same procedure for 

refinement. This process is iterated until no further improvement is possible.  

The overall scoring function, PC-scoreraw, based on the converged alignment is given 

by 

PC-scoreraw = 𝒇𝒄
𝑳𝑴𝒂𝒂

∑ 𝟏

𝟏+𝟎.𝟐𝟐×�𝟏−𝑰𝒊𝒊(same chem type)�+𝒅𝒊𝒊
𝟐

𝟏𝟏

𝑳𝑴𝒂𝒊
𝒊=𝟏   (3.3) 

where Lave is the average number of interfacial residues for the pair of interfaces 

compared, and Lali is the number of all aligned residues identified by the aforementioned 
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algorithm that have an equivalence-score of 0.20 or higher. fc is the ratio of common 

contacts between the two sets of aligned interfacial residues, and is calculated as 

𝒇𝒄 = �⃖��⃗ 𝟏∙�⃖��⃗ 𝟐

(�⃖��⃗ 𝟏∙�⃖��⃗ 𝟏+�⃖��⃗ 𝟐∙�⃖��⃗ 𝟐)/𝟐
     (3.4) 

where 𝑁1  and 𝑁2  are Lali× Lali matrices representing the contact maps of the aligned 

interfacial residues in interface 1 and those in interface 2 respectively. The dot operation 

represents the inner product. This scoring function is largely adapted from the scoring 

function of IS-score for the program Ialign [164], given its demonstrated excellent 

performance in the original study, with the modifications here to specifically address our 

question of interest. 

Finally, the raw PC-score is further scaled by the following equation to remove the 

dependency of the score on the interface size to derive our final scoring function: 

PC-score = PC-score𝐫𝐫𝐫
𝒂𝒍𝟎.𝟑/𝒂𝒍 (𝟎.𝟏𝟏+𝟎.𝟐𝟐×𝟎.𝟐𝟗𝑳𝑴𝒂𝒂)

   (3.5) 

This scaling function was derived by fitting the curve of the raw PC-score as a function 

of the size of randomly selected pairs of interfaces being compared (see Appendix B, 

Figure B.3).  

The candidate alignment that receives the highest PC-score represents the optimal 

alignment solution, and its associated PC-score gives the measurement of 

physicochemical similarity between the two interfaces being compared. This scoring 

function is normalized between 0 and 1, and takes the value of 1 when comparing two 

identical interfaces. The associated statistical significance with a PC-score is derived 
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empirically from the distribution of PC-scores for random interface alignments 

(Appendix B, Figure B.4). 

3.3. Results: 

3.3.1. Validation of the scoring function  

Although the quantification of protein-protein interface similarity has no 

corresponding experimental observables to benchmark against, we can nonetheless 

evaluate whether the scoring function is reasonable by comparing it with other physically 

sound metrics. This is only a proof of concept, but still provides useful information in 

terms of judging the performance of the method. Specifically, we tested our scoring 

function against the Q-score in quasi-equivalent viral capsid protein-protein interfaces. 

The Q-score is a normalized score based on equivalent residue contacts in interfaces 

formed by viral capsid proteins [177]. Viral capsid proteins are special structural proteins; 

repeating units of the same capsid protein assemble into large, symmetric shells that 

embed the viral genetic materials inside. An inter-subunit interface within a capsid is thus 

formed by two monomers with the same peptide sequence. In the smallest icosahedral 

viruses, 60 copies of the same protein tile the icosahedral shell, where each protein is 

placed in the same environment. Correspondingly, all the interfaces with the same 

dimerization states are chemically identical. For larger viruses, however, multiples (with 

the multiplicity denoted by the Triangulation number or T-number) of 60 copies of the 

same protein assemble into macromolecular complexes that also obey icosahedral 

symmetry. Based on the theory proposed by Caspar and Klug [11], this can be achieved 

by allowing slightly varied modes of interaction in the proteins such that those protein-
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protein interfaces following strict 2-fold, 3-fold or 5-fold symmetry (as in an icosahedron) 

and those which do not are quasi-equivalent to each other, but not identical. 

The Q-score was developed to specifically quantify the level to which two quasi-

equivalent interfaces resemble each other. First the contact map represented by an N×N 

matrix of 1’s and 0’s between the two binding partners of each interface is calculated, 

where N is the number of amino acids in the capsid protein. The Q-score is computed by 

taking the normalized inner product of the two contact maps of the interfaces: 

Q-score = 2𝑁𝑎∙𝑁𝑏

𝑁𝑎∙𝑁𝑎+𝑁𝑏∙𝑁𝑏
     (3.6) 

=
𝟐∑ ∑ 𝑵𝒊,𝒋

𝑴 𝑵𝒊,𝒋
𝒃

𝒋𝒊

∑ ∑ �(𝑵𝒊,𝒋
𝑴 )𝟐+(𝑵𝒊,𝒋

𝒃 )𝟐�𝒋𝒊
     (3.7) 

where 𝑁𝑎 and 𝑁𝑏 are matrices representing the contact maps of interface a and interface 

b respectively. 

Hence the Q-score reflects the ratio of common contacts between two interfaces, and 

is equal to 1 for identical interfaces and 0 for two interfaces with no common contacts. 

This quantification metric is thus a reasonable one with straightforward physical 

interpretation in the case of capsid protein-protein interactions.  We therefore attempted 

to compare our interface similarity score with the published Q-scores for 18 T=3 viruses 

in [177]. 

Our results show that our interface similarity score largely agrees with the Q-score in 

viral capsid protein-protein interfaces, with a high overall correlation coefficient of 0.93 

(Appendix B, Table B.5). Although the Q-score only measures geometric properties, we 
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showed that with the chemical type taken into consideration in our method, the two agree 

well, suggesting that our scoring metric is reasonably accurate in capturing the physical 

properties of interfaces. 

3.3.2. Comparison of performance with existing methods 

The performance of PCalign is compared with two existing methods, Ialign with its 

sequence-order independent version and I2I-SiteEngine [166], by testing how well these 

methods can distinguish highly similar interfaces from less similar ones. We manually 

collected from the database, Structural Classification Of Protein-Protein Interfaces 

(SCOPPI) [178], a set of interfaces which are grouped into several different families 

based on their evolutionary relationship, and evaluate if our scoring function, as well as 

the two existing methods, can provide a reasonable cutoff value to separate interfaces that 

are highly related from those that are not, where the “relatedness” label is given by pairs 

of interfaces annotated to be in the same group. We should highlight here that the goal of 

our method is to quantify the physical and chemical properties of protein-protein 

interfaces, regardless of the familial relationship between the monomers forming the 

interfaces. Thus benchmarking similarity of interfaces against evolutionary relatedness of 

the monomers forming the interfaces does not accurately reflect the performance of the 

three methods. Nonetheless, it gives us a crude measurement of how confident we can be 

in applying our method to study interfaces in general. 

Together we collected 609 dimers from 124 pairs of protein families in SCOPPI, 

where dimers within the same group are obtained after applying a 50% sequence 

redundancy filter in the database, and are also selected to have similar interaction modes 

(i.e., they present the same “faces” at the binding sites, based on the database 
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classification) [178]. The chosen families cover a wide range of structural folds, as 

annotated by the first letter and the succeeding number in their SCOP ID (Appendix B, 

Table B.6). We then performed an all-against-all comparison for these 609 interfaces 

using the three methods, and obtained their respective scores for each pair compared. For 

I2I-SiteEngine, we included all three scores reported by the program, including the match 

score, the total score, and the t-score [166]. In addition to applying our method to the 

original data, in order to demonstrate the robustness of our method in application to noisy 

low-resolution models, we applied the same analysis described above to the “backbone” 

set, which is the same data set reported here except that all structural models were first 

“corrupted” to retain their Cα atoms only, and then had the positions of the Cα atom 

perturbed in a random direction by a magnitude that follows a Gaussian distribution 

centered at 0 with a standard deviation of 1 Å. This creates an artificial low-resolution 

dataset for testing the robustness of our method. The two existing methods do not deal 

with low-resolution data and are thus not applied to this backbone dataset. For any given 

cutoff value of each score, we tabulated the counts of true positives, false negatives, false 

positives and true negatives for all pairs of interfaces, where real positives correspond to 

pairs of interfaces belonging to the same pair of protein families, and predicted positives 

correspond to pairs of interfaces that have a similarity score higher than the given cutoff 

value. We thus derived the receiver operating characteristic (ROC) curve of the three 

methods so as to evaluate if the method serves as a good classifier of related/unrelated 

interfaces.  

Our results show that our method performs comparably to the two exsiting methods 

in capturing most of the interface similarity reflected in the evolutionary relationship. As 
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shown in Figure 3.1, the area under the curve (AUC) value of predictions derived from 

IS-score (in orange), which corresponds to the alignment program Ialign, ranks the 

highest at 0.980. Following Ialign, our PCalign applied to the original data (in red) and to 

the backbone data (in magenta) resulted in AUC values of 0.970 and 0.955 respectively. 

The three scores reported by I2I-SiteEngine, the match score (in blue), the total score (in 

green), and the t-score (in cyan), gave an AUC value of 0.831, 0.884 and 0.909 

respectively. From this result we see that Ialign is a very useful tool in predicting highly 

related interfaces. Although our method may appear inferior when applied to this dataset, 

it should be noted that our method is developed to detect similar interfaces, which may 

result not only from evolutionary relatedness but also arise from nature’s recycling her 

limited choices of interface design. What were reported by PC-score to be FPs could well 

be putative positives based on interface and not monomer structural similarity, which can 

be captured by our program and may be dismissed by Ialign. To verify if indeed this is 

the case, we carried out further analysis as follows. 

Because we are interested in knowing if PCalign does better than Ialign in 

recognizing interface similarity across unrelated protein dimers, we select one 

representative structure from each of the 124 clusters of protein dimers, and compare all-

against-all. For each pair compared, we tabulate the fraction of aligned interfacial 

residues (i.e. coverage) as well as the RMSD between the aligned interfacial residues. 

Ideally, a good structural alignment program should find high coverage and low RMSD 

values. Note that this criterion is purely geometric. As shown in Figure 3.2(A), PCalign 

aligns slightly more interfacial residues on average compared to Ialign, with lower  
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Figure 3.1. The ROC curves for predicting highly related interfaces using three 
methods, PCalign, Ialign, and I2I-SiteEngine. As shown by the red and magenta 
curves, our method PCalign gives an AUC value of 0.970, and for the backbone set 0.955. 
In comparison, Ialign gives an AUC of 0.980. I2I-SiteEngine performs slightly worse, 
with those predicted by match score, total score and t-score having AUC values of 0.831, 
0.884 and 0.909 respectively. 
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RMSD as well, even though PCalign considers both geometric and chemical aspects of 

protein-protein interfaces. When the chemical term in our scoring function (Equations 3.2 

and 3.3) is turned off to only compare structural alignment from a geometric point of 

view, the advantage of PCalign over Ialign becomes more pronounced (Figure 3.2(B)). In 

addition, we find for each of the 124 interfaces its nearest neighbor in the non-redundant 

set based on PC-score and IS-score respectively, and perform the same analysis. We 

again observe the same trend for the closest, unrelated match identified by the two 

methods, with PCalign marginally outperforming Ialign with and without the chemical 

term considered (Figure 3.2(C), (D)).  

As such, our method may detect more often than other methods highly similar but 

non-related interfaces that are counted as FPs in this benchmark test, which is the 

question of interest that our method aims to address and which cannot be accurately 

assessed by the classification analysis in Figure 3.1. To further check the odds of our 

method outperforming Ialign versus the other way round in terms of getting a better 

structural alignment, we tabulate the statistics of each scenario among all 185136 pairs 

compared, again using the same geometric criterion as in Figure 3.2. With the chemical 

term switched on, PCalign outperforms Ialign in 50838 pairs, with an average coverage 

of 0.623 and an average RMSD of 3.64 Å, as compared to 0.483 and 4.10 Å for Ialign 

respectively. Ialign is found to outperform PCalign in 34087 cases, with an average 

coverage of 0.619 and an average RMSD of 3.60 Å, as compared to 0.486 and 4.04 Å for 

PCalign. If we remove the compounding factor of chemical types for fairer comparison, 

PCalign outperforms Ialign in 57639 cases, with an average coverage of 0.629 and an 

average RMSD of 3.63 Å, as compared to 0.486 and 4.09 Å for Ialign respectively. In   
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Figure 3.2. Recognition of interface similarity across unrelated interfaces by 
PCalign and Ialign. The comparison is based on two geometric criteria; fraction of 
aligned residues (coverage) and RMSD of aligned residues. (A) All-against-all pairwise 
comparison, with PCalign (Ialign) aligning on average 53.1±13.3% (51.4±13.8%) of 
residues with RMSD of 3.725±0.371Å (3.810±0.473Å). (B) All-against-all pairwise 
comparison, with PCalign (Ialign) aligning on average 54.8±13.2% (51.4±13.8%) of 
residues with RMSD of 3.686±0.378Å (3.810±0.473Å), where the chemical term in 
PCalign is turned off to capture geometric similarity only. (C) Closest unrelated interface 
in the set of 124 dimers, with PCalign (Ialign) aligning on average 68.4±14.5% 
(68.3±15.6%) of residues with RMSD of 3.483±0.366Å (3.563±0.502Å). (D) Closest 
unrelated interface in the set of 124 dimers, with PCalign (Ialign) aligning on average 
70.1±15.4% (68.3±15.6%) of residues with RMSD of 3.466±0.371Å (3.563±0.502Å), 
considering the geometric part of the scoring function in PCalign only. In all scenarios, 
PCalign does slightly better than Ialign in recognizing geometric similarities across 
unrelated interfaces, and using a scoring function that considers both chemical and 
geometric properties in PC-score performs less well compared to using one that considers 
purely geometric properties in PC-score, due to the fact that this analysis uses purely 
geometric criteria. 
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contrast, Ialign does better than PCalign in only 27790 cases, with an average coverage of 

0.630 and an average RMSD of 3.56Å, as compared to 0.504 and 3.99 Å for PCalign. In 

summary, we have an odds ratio of 1.5 for PCalign doing better than Ialign with the 

original scoring function of PCalign, and an odds ratio of 2.1 for PCalign performing 

better when we only consider the physical environment of protein-protein interfaces. 

Figure B.5 in Appendix B gives an anecdotal illustration of a scenario where PCalign 

recognizes significant structural similarity between two unrelated interfaces that is missed 

by Ialign. 

In terms of computational time, our method is slower than Ialign and faster than I2I-

SiteEngine (Appendix B, Figure B.6). This higher computational cost arises from the 

algorithm complexity, which samples a larger initial alignment space by disregarding the 

peptide topology. Nonetheless, such cost is sufficiently low for our method to be applied 

to large-scale comparison studies. We would therefore argue that the performance of our 

method parallels those of existing methods. Additionally, our method tackles structural 

models spanning the resolution spectra, which existing methods fail to do, and is able to 

detect spatial and chemical patterns shared by interfaces regardless of their sequence 

similarity in the constituent monomers. We thus expect our method to be a handy tool in 

exploring the repertoire of protein-protein interfaces and understanding their structural 

relationships. 

3.3.3. Application of the method in detecting convergently evolved similar 

interfaces  
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Our method quantifies interface similarity based on the spatial and chemical 

organization of discontinuous interface fragments. This method therefore accounts for 

sequence order-independent patterns shared between protein-protein interfaces that arise 

not necessarily from divergent evolution, but potentially from convergent evolution, 

which leads to identification of functional relationships masked by apparent lack of 

structural resemblance. 

One such interesting example is viral mimicry. Over the long-standing history of 

pathogen-host interaction, viruses have evolved various strategies to evade detection by 

the host immune system [179], to manipulate the cellular signaling network to their 

advantage [180], and to hijack the cellular transcription and translation machinery for 

self-replication [181]. Among these strategies is molecular mimicry, which can arise 

sometimes from viruses capturing host genes followed by deriving their homologues via 

divergent evolution, and more frequently from viruses independently evolving similar 

binding sites without any sequence or structural similarity to the endogenous protein they 

compete with [182]. The latter is especially of interest, as being able to identify which 

endogenous proteins are displaced by these viral proteins when such mimicry is masked 

by the lack of sequence and structural similarity can significantly enhance our 

understanding of how viruses interfere with the cellular pathways for their purposes. 

To illustrate the usefulness of our tool in detecting interface mimicry in virus-host 

interaction, we show here three examples of viral mimicry that are well understood 

(Table 3.1). The first example concerning immune evasion is that of the Murid 

herpesvirus 4 M3 protein, which binds strongly to the CC chemokine ligand 2/monocyte 

chemoattractant protein 1 (CCL2/MCP-1) [183]. It is known that chemokines play a  
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Table 3.1. Three examples of viral mimicry achieved via convergent evolution. The 
first seven columns describe the identity of the proteins involved as well as their 
representative PDB IDs and corresponding chains used for our analysis. The eighth 
column gives the sequence identity between each viral protein and the endogenous 
binding partner it displaces, using the program ClustalW [201]. The ninth column gives 
the template modeling score (TM-score) between each viral protein and the endogenous 
binding partner it mimics, where TM-score measures the structural similarity between 
two proteins [109], and a TM-score of 0.4 or higher typically implies high structural 
similarity. The last column corresponds to the PC-score of the two interfaces measured 
by our program, and a PC-score of 0.4 or higher implies highly similar interfaces. In all 
three examples, the cognate binding partner of the target protein shares no sequence or 
structural similarity with the viral protein, as evident from the low sequence identity and 
TM-scores. In all three cases, PCalign computes a significantly high score for the two 
interfaces, recognizing the interfacial patterns that the viral proteins evolved to mimic 
over time. We also compute the interface similarity scores returned by the two existing 
measures. For Ialign, the non-sequential version and not the sequential version recognizes 
the convergently evolved interfaces as significantly similar with IS-scores of 0.393, 0.436 
and 0.299 for the three cases respectively. For I2I-SiteEngine, we had no success 
generating the input files for the first case of M3 protein for which the program reported 
an error. For the remaining two cases, the match scores are 27 and 22, the total scores 
1339 and 648, and the t-scores 47 and 44 respectively. While it is not clear whether these 
scores are statistically significant, a comparison with the large scale study performed on 
the SCOPPI benchmark dataset suggests that these scores are not sufficient (the latter 
suggest a match score of at least 31 to be classified as similar interfaces). 

Viral protein PDB ID Human 
target 
protein 

PDB ID 
(complexed 
with viral 
protein) 

PDB ID 
(complexed 
with cognate 
partner) 

Displaced 
human binding 
partner 

PDB 
ID 

Seq 
identity 

TM-
score 

PC-
score 

Murid herpesvirus 
4, M3 

2nz1A C-C 
motif 
chemoki
ne 2 

2nz1D 1dokA C-C motif 
chemokine 2 

1dokB 7% 0.17940 0.445 

Simian virus 5, 
nonstructural 
protein V 

2b5lC DNA 
damage-
binding 
protein 1 

2b5lA 3ei4A DNA damage-
binding protein 
2 

3ei4B 4% 0.21976 0.546 

Nipah virus, 
glycoprotein G 

2vskA Ephrin-
B2 

2vskB 2hleB Ephrin type-B 
receptor 4 

2hleA 12% 0.24913 0.430 
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Figure 3.3. Three examples of viral mimicry resulting from convergent evolution. 
The first example is that of the M3 protein mimicking CCL2 in complexing with another CCL2 
monomer (A,B,C), the second being the V protein competing with DDB2 in binding with DDB1 
(D,E,F), and the third case being the G protein targeting the ephrin B2 ligand in similar ways with 
its native ephrin type-B receptor 4 (G,H,I). They are shown with the two complexes 
superimposed (A,D,G), with a focused view of the matched interfacial residues (B,E,H), and with 
just one binding site on the viral protein and that on the host protein it mimics (C,F,I). In all 
illustrations the viral protein is colored in blue, and the host protein it displaces is colored in cyan. 
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The human target protein is colored red when bound with the viral protein, and orange when 
complexed with its cognate binding partner. The small spheres represent the Cα positions of all 
the interfacial residues present in the original complex, while the large spheres represent those 
which are structurally equivalent in the virus-host protein complex and in the endogenous 
complex. Figures are generated by the VMD software [184].  
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crucial role in inducing directed chemotaxis for trafficking of nearby leukocytes [185], 

which is part of the host immune response. Studies have shown that oligomerization of 

the CC chemokines, among other types of chemokines, is critical for recruiting cells in 

vivo [186]. Herpesvirus thus evolved the M3 protein as a decoy receptor for CCL2 as 

shown in the experimental structure [183], which binds strongly to the chemokine at the 

same site where it forms a homodimer with another chemokine [187], therefore inhibiting 

oligomerization of chemokines that is necessary for its recruitment of leukocytes. Using 

our method PCalign, we found that despite the complete lack of sequence and structural 

similarity between the viral protein and the one it displaces, the M3-CCL2 interface 

indeed overlaps extensively with that of the CCL2 homodimer interface, with a high PC-

score of 0.445 (Figure 3.3(A), (B), (C)). 

In a second case pertaining to viral pathogenesis, the Simian virus 5 V proteins target 

the DNA damage-binding protein 1 (DDB1), a protein involved in the ubiquitin-

proteasome pathway, leading to degradation of the STAT1 protein [188]. The latter 

results in the type I interferon signaling pathway being blocked, effectively preventing 

the establishment of a cellular antiviral environment [189]. In achieving this function, the 

viral protein has adopted a similar binding site as that of the DNA damage-binding 

protein 2 (DDB2), which is known to form a complex with DDB1 to participate in UV-

induced nucleotide excision repair [190], as well as in stimulating E2F1-activated 

transcription [191]. Experimental evidence exists that the V protein and DDB2 bind to 

DDB1 in a mutually exclusive manner [192]. Thus through sequestering DDB1 and 

inhibiting its association with DDB2, V proteins are expected to disrupt the normal 

function of the UV-DDB complex in DNA repair and cell cycle regulation, which are 
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associated with the viral pathogenesis [193]. Through analyzing the structural models of 

the V protein-DDB1 complex [194] and the UV-DDB complex [190], we again found 

significant interface similarity with a PC-score of 0.546, and it is clear from Figure 

3.3(D) that such mimicry is established from the viruses’ rapid mutation leading to the 

converged interface, rather than from divergent evolution. 

The last example of viral mimicry involves the mechanism of viral entry into host 

cells. Nipah viruses employ their attachment glycoprotein G (NiV-G) for anchoring to the 

cell surface before initiating membrane fusion, specifically via binding of the 

glycoprotein G to ephrin-B2 [195, 196], which is a transmembrane ligand for the ephrin 

B class of receptor tyrosine kinases. Comparison of the NiV-G-ephrin-B2 complex and 

the cognate ephrin-B2-ephrin-B4 receptor complex reveals striking similarity in their 

structures [197, 198], preserving key interactions at the G-H binding loop in both cases 

[199]. Although experimental evidence for the viral protein’s competitive binding to 

ephrin-B2 with the target protein’s cognate receptor remains to be established, the 

observed interface structural similarity has already spurred propositions of therapeutic 

schemes that target the anchor site of the viral protein while avoiding disrupting the 

endogenous ephrin receptor interactions [199]. Unsurprisingly, this interface mimicry is 

also captured by our method with a high PC-score of 0.430, demonstrating the power of 

our method in identifying shared patterns correlated with biological significance.  

We also performed the same analysis using the two existing methods. While the non-

sequential version of Ialign also detected significant similarity in all three cases, I2I-

SiteEngine assigns scores that do not quantify these mimicked interfaces as sufficiently 

similar (Table 3.1). Based on these anecdotal analyses of protein-protein interfaces 
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bearing biological significance with limited overall structural similarity in the constituent 

proteins, Ialign and PCalign appear to be the recommended methods for detecting the 

interface similarity when all structural details are available. 

3.4. Discussion and conclusions: 

Characterizing, classifying and annotating protein-protein interactions are 

fundamental to understanding the structural or functional relationship between proteins, 

and to provide additional insights into what can be revealed by studying individual 

proteins alone. Central to protein-protein interactions from a structural point of view is 

protein-protein interfaces, which may be dissimilar for similar monomers, and similar for 

dissimilar monomers. Structural comparison of protein-protein interfaces is thus expected 

to aid in organizing information hidden in the protein-protein interaction network, and 

enable predictions for novel biological functions undisclosed by protein monomer 

structures.  

This work presents PCalign, a method to quantitatively measure interface similarity 

for a given pair of protein-protein interfaces, taking into account the chemical and spatial 

patterns of residues lining the interfaces. It primarily uses a geometric hashing algorithm 

to identify the optimal superimposition of two sets of discontinuous fragments of 

interfacial residues while disregarding their connectivity. Based on the optimal 

superimposition, a normalized scoring function, PC-score, is calculated to reflect the 

extent to which the two sets of interfacial residues overlap with each other in terms of 

their physicochemical properties. A major contribution of this new method is that 

PCalign adopts a coarse-grained approach in representing interfaces, aligning interfaces 
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and scoring the alignment, therefore it is able to accommodate input data across different 

resolutions. This is expected to gain advantage over existing methods in the next era of 

structural bioinformatics, given the rate at which large macromolecular complexes solved 

at nano-resolutions continue to populate the pool of structural data. Performance-wise, 

we demonstrated that our method is comparable to existing methods in terms of accuracy 

and computational complexity, and is able to detect significant structural similarities at 

protein-protein interfaces, which are sometimes missed by existing methods. 

As PCalign is aimed at capturing the overall degree of equivalence between protein-

protein interfaces, a necessary limitation with such a design is the lack of sensitivity 

towards local structural motifs shared among interfaces that are globally dissimilar 

(‘globally’ here refers to the entire interface, rather than the entire monomer structure). In 

such situations the local signal becomes diluted out upon normalization against the 

average interface size. In this regard, caution needs to be taken when screening for small 

signature motifs embedded in large interfaces using our method that was designed for 

measuring global similarity among interfaces. 

With this new tool for protein-protein interface comparison, we would now like to 

expand our investigation of structural properties of protein-protein interfaces by 

analyzing large macromolecular assemblies, such as viral capsids. This class of proteins 

presents unique structural and functional characteristics unseen in cellular protein 

complexes [200], and the wealth of information contained in their structural data may 

enrich our knowledge of protein-protein interfaces in general. We expect PCalign to be a 

useful tool in exploring some interesting questions pertaining to the higher-order 

organization of these assemblies. 
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Appendix B 

Additional information for CHAPTER III 

 

 

Figure B.1. Distribution of structural models in the PDB with resolution lower than 
3.5 Å. While models with all atomic details (shown in blue) are mostly clustered on the 
higher end of the resolution spectrum, structural models with coordinates of Cα atoms 
only, in comparison, are more likely to be populated on a wide range of resolutions, 
especially towards the lower end. 
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B.1 Hierarchical definition of interfacial residues: 

To identify the optimal ξ value, we took a non-redundant set of 4248 protein dimers 

determined at atomic resolution, and selected all residues that had their Cα atom within 

15Å of at least another Cα atom of a residue belonging to the binding partner. All pairs of 

residues, one from each chain, in each dimer then comprise our total set. We can compute 

the Matthews correlation coefficient (MCC) for each given ξ value, 

MCC = TP×TN−FP×FN
�(TP+FP)(TP+FN)(TN+FP)(TN+FN)

    (B.1) 

where true positives (TP) represent the number of residues that are in contact based on 

the heavy atoms within 4.5Å definition and “predicted” to be in contact based on the 

residue-specific Cα-Cα distance cutoff criterion with a given ξ value. False positives (FP) 

represent the number of residues that are not in contact based on the side chain definition 

but “predicted” to be in contact based on the backbone criterion. True negatives (TN) 

represent the number of residues that are not in contact based on the side chain criterion 

and also “predicted” to be not in contact based on the backbone criterion. False negatives 

(FN) represent the number of residues that are not in contact based on the side chain 

criterion but are “predicted” to be in contact based on the backbone criterion. Thus MCC 

gives a quantitative measure of how well the two definitions of contacting residues match 

for a given ξ value. We varied the ξ value, which stands for the fraction of the standard 

deviation to be added to the mean value, from -1.0 to 2.0, and chose the ξ value that 

maximizes the MCC with the side chain distance criterion. In addition, we also tested a 

range of generic Cα-Cα distance cutoffs (from 6Å to 12Å) that are invariant for the 
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residue type and computed their respective MCC with the side chain distance criterion, in 

order to compare with the performance of our amino acid type-specific criterion. 

In the range of ξ values we calculated in determining a good type-specific Cα-Cα 

distance cutoff, we found a ξ value of 0.5 gave the highest MCC value of about 0.48 

(Figure B.2 in blue). In comparison, the optimal general Cα-Cα distance cutoff that is 

invariant to residue type, shown to be 8 Å, only yielded a MCC value of about 0.42 

(Figure B.2 in red). A potential explanation for the fairly low MCC value in our residue 

type-specific criterion could be that, the rich repertoire of side-chain rotamers at the 

interface region results in large fluctuations in their Cα-Cα distances that almost cancel 

out any significant differences resulting from different residue types. This can be inferred 

from the comparable magnitudes in the standard deviation values of Cα-Cα distances 

across various types of residue pairs and in the difference between their mean values 

(Table B.1 and Table B.2). Despite the small improvement, given that the residue-type-

specific Cα-Cα distance cutoff criterion matches better with the heavy-atom based 

criterion, we have incorporated this criterion with a ξ value of 0.5 into our hierarchical 

definition of contacting residues. 
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Figure B.2.  Matthews Correlation Coefficient for the amino acid type-specific 
distance criterion and a general Cα-Cα distance cutoff criterion. The horizontal axis 
on top (red) gives the range of the distance cutoffs in Å we tested for the general Cα-Cα 
distance cutoff criterion, which resulted in a peak MCC value of 0.42 when the cutoff is 
chosen to be 8 Å (shown in red circles). The horizontal axis at the bottom (blue) shows 
the range of ξ values, which are the multiplicity factor of the standard deviation to be 
added to the mean value for each residue-residue type, and we obtained the highest MCC 
value of 0.48 when ξ = 0.5. 
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Table B.1. Mean Cα-Cα distances. Statistics are for a given pair of contacting residues 
of specific types based on statistics in Protein Data Bank, where contacting residues are 
defined by having at least two heavy atoms, one from each residue, that are less than 4.5 
Å apart. 

 A R N D C E Q H I L K M F P S T W Y V 

A 5.53 7.99 6.42 6.24 6.03 6.76 6.97 6.91 6.74 6.97 6.96 7.14 7.59 6.10 5.70 6.27 7.89 7.68 6.36 

R 7.99 10.31 8.80 9.32 8.02 9.87 9.21 9.29 8.84 8.73 9.88 8.95 9.32 8.40 8.41 8.57 9.30 9.75 8.40 

N 6.42 8.80 7.31 7.46 6.65 7.95 7.79 8.12 7.33 7.61 8.37 8.02 8.23 6.83 6.82 7.01 8.78 8.71 7.09 

D 6.24 9.32 7.46 7.53 6.64 8.06 8.06 8.34 7.32 7.27 8.77 7.66 8.00 6.73 6.68 6.81 8.72 8.98 6.87 

C 6.03 8.02 6.65 6.64 5.93 7.09 7.69 7.97 7.27 7.43 7.58 7.59 8.08 6.64 6.37 6.54 8.48 7.99 6.74 

E 6.76 9.87 7.95 8.06 7.09 8.63 8.49 8.90 7.61 7.86 9.40 8.07 8.39 7.40 7.36 7.47 9.11 9.31 7.35 

Q 6.97 9.21 7.79 8.06 7.69 8.49 8.74 8.66 7.88 8.13 8.75 8.28 8.65 7.49 7.35 7.60 8.92 9.25 7.60 

H 6.91 9.29 8.12 8.34 7.97 8.90 8.66 8.56 8.00 8.26 8.74 8.38 8.70 7.31 7.50 7.70 9.32 9.15 7.67 

I 6.74 8.84 7.33 7.32 7.27 7.61 7.88 8.00 7.93 8.14 7.91 8.31 8.61 7.27 6.82 7.41 9.23 8.58 7.53 

L 6.97 8.73 7.61 7.27 7.43 7.86 8.13 8.26 8.14 8.23 7.99 8.38 8.77 7.49 7.16 7.61 9.23 8.76 7.77 

K 6.96 9.88 8.37 8.77 7.58 9.40 8.75 8.74 7.91 7.99 9.54 8.44 8.47 7.77 7.97 8.02 8.84 9.30 7.54 

M 7.14 8.95 8.02 7.66 7.59 8.07 8.28 8.38 8.31 8.38 8.44 8.49 8.89 7.71 7.13 7.70 9.39 8.84 7.94 

F 7.59 9.32 8.23 8.00 8.08 8.39 8.65 8.70 8.61 8.77 8.47 8.89 9.21 7.72 7.58 8.19 9.97 9.29 8.45 

P 6.10 8.40 6.83 6.73 6.64 7.40 7.49 7.31 7.27 7.49 7.77 7.71 7.72 6.71 6.42 6.85 8.10 8.30 6.99 

S 5.70 8.41 6.82 6.68 6.37 7.36 7.35 7.50 6.82 7.16 7.97 7.13 7.58 6.42 6.15 6.41 8.13 8.14 6.60 

T 6.27 8.57 7.01 6.81 6.54 7.47 7.60 7.70 7.41 7.61 8.02 7.70 8.19 6.85 6.41 6.71 8.43 8.47 6.93 

W 7.89 9.30 8.78 8.72 8.48 9.11 8.92 9.32 9.23 9.23 8.84 9.39 9.97 8.10 8.13 8.43 9.96 9.90 8.80 

Y 7.68 9.75 8.71 8.98 7.99 9.31 9.25 9.15 8.58 8.76 9.30 8.84 9.29 8.30 8.14 8.47 9.90 9.37 8.40 

V 6.36 8.40 7.09 6.87 6.74 7.35 7.60 7.67 7.53 7.77 7.54 7.94 8.45 6.99 6.60 6.93 8.80 8.40 7.11 
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Table B.2. Standard deviation of Cα-Cα distances. Statistics are for a given pair of 
contacting residues of specific types based on statistics in Protein Data Bank, where 
contacting residues are defined by having at least two heavy atoms, one from each 
residue, that are less than 4.5 Å apart. 

 A R N D C E Q H I L K M F P S T W Y V 

A 0.84 1.94 1.04 1.06 0.92 1.28 1.32 1.37 1.07 1.13 1.65 1.43 1.48 0.81 0.87 0.88 1.78 1.73 0.84 

R 1.94 2.70 2.14 2.02 1.94 2.23 2.21 2.19 2.03 1.95 2.52 2.08 2.14 1.95 2.02 2.02 2.24 2.47 1.92 

N 1.04 2.14 1.45 1.44 1.31 1.58 1.70 1.49 1.37 1.43 1.96 1.62 1.79 1.18 1.25 1.32 1.85 2.00 1.18 

D 1.06 2.02 1.44 1.67 1.24 1.80 1.65 1.61 1.27 1.42 1.89 1.52 1.73 1.19 1.08 1.22 1.95 1.90 1.12 

C 0.92 1.94 1.31 1.24 1.19 1.44 1.42 1.35 1.30 1.18 1.81 1.48 2.05 1.04 1.04 1.11 2.10 1.89 1.19 

E 1.28 2.23 1.58 1.80 1.44 2.10 1.79 1.85 1.48 1.41 2.09 1.59 1.77 1.32 1.38 1.40 1.97 2.13 1.28 

Q 1.32 2.21 1.70 1.65 1.42 1.79 1.95 1.87 1.51 1.50 2.10 1.73 1.87 1.41 1.44 1.41 1.99 2.24 1.40 

H 1.37 2.19 1.49 1.61 1.35 1.85 1.87 2.09 1.63 1.49 2.04 1.81 1.75 1.40 1.47 1.50 2.14 2.19 1.42 

I 1.07 2.03 1.37 1.27 1.30 1.48 1.51 1.63 1.47 1.40 1.67 1.59 1.70 1.14 1.19 1.29 1.90 1.88 1.28 

L 1.13 1.95 1.43 1.42 1.18 1.41 1.50 1.49 1.40 1.51 1.63 1.62 1.83 1.24 1.28 1.25 1.96 1.81 1.23 

K 1.65 2.52 1.96 1.89 1.81 2.09 2.10 2.04 1.67 1.63 2.95 1.92 1.89 1.77 1.87 1.94 2.10 2.32 1.57 

M 1.43 2.08 1.62 1.52 1.48 1.59 1.73 1.81 1.59 1.62 1.92 1.92 1.93 1.45 1.59 1.56 2.15 2.06 1.57 

F 1.48 2.14 1.79 1.73 2.05 1.77 1.87 1.75 1.70 1.83 1.89 1.93 2.16 1.56 1.55 1.74 2.45 2.16 1.66 

P 0.81 1.95 1.18 1.19 1.04 1.32 1.41 1.40 1.14 1.24 1.77 1.45 1.56 1.17 0.98 1.01 1.61 1.77 0.99 

S 0.87 2.02 1.25 1.08 1.04 1.38 1.44 1.47 1.19 1.28 1.87 1.59 1.55 0.98 1.10 1.10 1.81 1.91 1.04 

T 0.88 2.02 1.32 1.22 1.11 1.40 1.41 1.50 1.29 1.25 1.94 1.56 1.74 1.01 1.10 1.25 1.92 1.93 1.10 

W 1.78 2.24 1.85 1.95 2.10 1.97 1.99 2.14 1.90 1.96 2.10 2.15 2.45 1.61 1.81 1.92 2.69 2.34 1.87 

Y 1.73 2.47 2.00 1.90 1.89 2.13 2.24 2.19 1.88 1.81 2.32 2.06 2.16 1.77 1.91 1.93 2.34 2.67 1.84 

V 0.84 1.92 1.18 1.12 1.19 1.28 1.40 1.42 1.28 1.23 1.57 1.57 1.66 0.99 1.04 1.10 1.87 1.84 1.15 
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B.2 Geometric hashing: 

Geometric hashing is divided into two phases; the construction phase and the voting 

phase. The construction phase constructs a lookup table for each structure, and is 

computed only once. The voting phase retrieves the two tables corresponding to the two 

structures being compared and finds the best transformations to apply to one of the 

interfaces to be overlaid with the other. 

In the construction phase, a lookup table is built for an interface, which describes the 

projected coordinates of each point (residue) based on different reference bases. Each 

orthogonal basis (�⃑�, �⃑�, 𝑧) is defined by an ordered triplet of points (residues i, j, k, which 

are interfacial residues that occur consecutively in their sequence order) in the following 

manner, 

�⃑� = 𝑣𝚤���⃑ − 𝑣𝚥���⃑ ,      (B.2) 

𝑦′���⃑ = 𝑣𝑘����⃑ − 𝑣𝚥���⃑ ,      (B.3) 

𝑧 = �⃑� × 𝑦′���⃑ ,      (B.4) 

�⃑� = 𝑧 × �⃑�.      (B.5) 

where 𝑣𝚤���⃑ , 𝑣𝚥���⃑  and 𝑣𝑘����⃑  are the coordinates of residues i, j, k respectively. The × operation 

refers to the cross product. Each point is then projected onto this particular reference 

basis to obtain its new coordinates, which are then discretized based on a given grid size 

(we used 4 Å in our case). The new, discretized coordinates of the point (a feature) is 

then recorded as a hash key pointing to the basis that leads to this specific transformation. 
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All possible ordered triplets are computed and registered into the lookup table based on 

their transformed coordinates (the features). 

The voting procedure browses the two lookup tables that have been pre-computed and 

finds pairs of orthogonal bases that generate a sufficiently large number of features that 

match. As we look up each hash key (feature) in the first table, we find the matching key 

in the second table, and give one vote to all the pairs of orthogonal bases pointed by this 

feature in the two tables. Consequently pairs of orthogonal bases that receive a high vote 

count correspond to bases to re-orient the two structures so that they have many points 

that overlap. These bases are then used to compute candidate initial alignments. Our 

extensive tests show that this approach yields the final optimal score with sufficient 

sampling (Table B.3). 
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Table B.3. Percentage of correctly mapped interfacial residues by PCalign in quasi-
equivalent protein-protein interfaces within the same capsid. In quasi-equivalent 
inter-subunit interfaces within a capsid, structurally equivalent residues have an exact 
one-to-one correspondence due to the monomers being sequence-wise identical. It is 
evident from these numbers that our sampling is sufficient in correctly assigning 
equivalence to pairs of residues for which the correspondence is known. There are, 
however, a few cases where not all matched pairs have the same residue ID, and they 
mostly occur in the comparison between A1B5 and C1C6, and between A1A2 and B1C6. 
These comparisons are between a “bent” interface on a five-fold symmetry axis and a 
“flat” interface on a six-fold symmetry axis, which are therefore less equivalent, as 
reflected by the lower PC-scores in the brackets. In these cases, the “mismatches” 
identified by the program are the consequence of maximizing the overlap of 
physicochemical patterns between less equivalent interfaces, rather than having resulted 
from inefficient sampling. 

 

Virus 
name 

PDB 
ID 

A1B1: 
B1C1 

A1C1: 
B1C1 

A1B1: 
A1C1 

A1B5: C1-
C6 

A1A2: 
B1C2 

A1A2: 
B1C6 

B1C2: 
B1C6 

TNV 1c8n 100% 100% 100% 100% 100% 100% 97% (0.483) 

SMV 1smv 100% 100% 100% 100% 100% 100% 100% 

SBMV 4sbv 100% 100% 100% 97% (0.722) 100% 100% 100% 

RYMV 1f2n 100% 100% 100% 100% 100% 100% 100% 

BBV 2bbv 100% 100% 100% 91% (0.595) 100% 95% (0.597) 100% 

NOV 1nov 100% 100% 100% 96% (0.558) 100% 100% 85% (0.495) 

PAV 1f8v 100% 100% 100% 88% (0.433) 100% 93% (0.400) 100% 

TBSV 2tbv 100% 100% 100% 100% 100% 100% 100% 

NV 1ihm 100% 100% 100% 100% 100% 98% (0.737) 100% 

CCMV 1cwp 100% 100% 100% 100% 100% 96% (0.545) 100% 

CMV 1f15 100% 100% 100% 100% - - 100% 

TYMV 1auy 97% (0.722) 100% 100% 100% 100% 92% (0.715) 100% 

DYMV 1ddl 100% 94% (0.620) 100% 100% 100% 100% 100% 

PhMV 1qjz 100% 100% 100% 100% 94% (0.695) 97% (0.569) 97% (0.698) 

      B1B2: 
A1C6 

B1B2: 
C1A2 

A1C6: 
C1A2 

GA 1gav 100% 94% (0.748) 100% 100% 100% 100% 100% 

FR 1frs 100% 100% 100% 100% 100% - 91% (0.700) 

MS2 2ms2 100% 100% 100% 100% 100% - 95% (0.693) 

QB 1qbe 94% (0.772) 92% (0.680) 100% 100% 100% 100% 87% (0.755) 
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B.3 Hungarian algorithm: 

The Hungarian algorithm is used for finding maximal weight matching in bipartite 

graphs [175]. Briefly, the algorithm starts with some initial state, and iteratively improves 

the objective function until it is optimized.  

Key definitions included in this algorithm are as follows: 

A bipartite graph, G(V,E), consists of two sets of notes, X and Y, that satisfy V= X ∪ Y 

and X ∩ Y = ∅, and the set of edges E ⊆ X × Y. The weights of the edges are given by 

w(x,y) for x ∈ X, y ∈ Y. A matching is a subset of edges, M ⊆ E, such that ∀v ∈ V, at most 

one edge in M is incident upon v. The neighborhood of v, N(v), is all vertices that share 

an edge with v, and the neighborhood of a set of vertices S, N(S), is all vertices that share 

an edge with a vertix in S. The vertex labelling function is defined by l: V→ R, which is 

feasible if l(x) + l(y) ≥ w(x,y) ∀ x ∈ X, y ∈ Y. For Gl(V,El), if El satisfies El = {(x,y): 

l(x)+l(y) = w(x,y)}, then Gl(V,El) is an equality subgraph. 

Based on Kuhn-Munkres Theorem, if l is feasible and M is a perfect matching in El, 

then M is a maximum weight matching, which is what the algorithm aims to find. 

The Hungarian algorithm works as such: 

Initialization: ∀y∈Y, l(y)=0; ∀x∈X, l(x) = max𝑦∈𝑌{𝑤(𝑥,𝑦)}. Set M=∅. 

Iteration: while M is not perfect,  

1.Choose an unmatched vertex u∈X, and set S={u},T=∅. 



81 
 

2.If the Nl(S) = T, define a slack variable, 𝜹 =𝐦𝐦𝐦𝒖∈𝑺,𝒚∈𝒀\𝑻(𝒂(𝑴) + 𝒂(𝒚) −

𝒘(𝑴,𝒚)), and update labelling as such: 

 l′(v) = �
𝑙(𝑣) − 𝛿, 𝑣𝑣𝑣
𝑙(𝑣) + 𝛿,  𝑣𝑣𝑣
𝑙(𝑣), otherwise

     (B.6) 

3.If the  Nl(S) ≠ T, pick y ∈ Nl(S) − T,  

 If y is free, augment M and go back to while loop. 

 If y is matched to some vertex z, extend the alternating tree by setting S = S ∪ {z}, 

T = T ∪ {y}. Go back to 2. 

When the iteration stops, M is perfect, and it is the maximum weight matching we 

look for. In the search for structurally equivalent residues across different interfaces, we 

define the weight function, w(x,y), by the equivalence-score (Equation 3.2) in the 

Methods section (3.2). 

B.4 Correcting for length-dependency of raw PC-score: 

Earlier studies have reported the dependency of raw alignment scores on the sizes of 

interfaces being compared [164]. We therefore applied a similar approach to make the 

scoring function independent of the interface size, by considering the mean PC-scoreraw 

of all random pairs whose interface sizes are ±5% of a given size. When performed on a 

non-redundant set of 1797 interfaces, we observed that the raw score showed exponential 

dependence on the interface size, as shown in Figure B.3. 
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Figure B.3. The mean of PC-scoreraw across random, unrelated pairs whose 
interface sizes are between 95% and 105% of a given interface size. The length-
corrected PC-score based on Equation 3.5 of the main text, derived from the curve fitting 
here, becomes 0.3 for randomly chosen interface pairs regardless of their size. 
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B.5 Statistical significance of PC-scores: 

To derive the p-value of any PC-score, we generated the distribution of PC-scores for 

comparing 1,613,706 pairs of interfaces, using the same dataset as in Figure B.3. Based 

on the distribution of PC-scores for random alignments, shown in Figure B.4, we can 

estimate the p-value of a given PC-score s empirically by obtaining the area under the 

curve to the right of s. A few representative p-values and their corresponding PC-scores 

are provided in Table B.4. 

B.6 Example of PCalign outperforming Ialign: 

Figure B.5 gives an example where PCalign outperforms Ialign in finding better 

structural alignment between two unrelated interfaces. For this pair of unrelated dimers, 

one being a chorismate mutase and the other being a hypothetical protein with unknown 

function, the monomers share an overall low structural similarity, measured by a low 

Template Modeling-score (TM-score) [109] of 0.29132. However, PCalign recognizes 

significant interface similarity that is missed by Ialign, by finding structural alignment 

that has higher coverage and lower RMSD. 

B.7 Computational costs of different interface comparison methods: 

For comparison of computational time among the different methods, we collected the 

statistics of the running time reported by each program for the 185136 pairs we compared, 

excluding the one-time cost for preparing the dataset in the cases of PCalign and I2I-

SiteEngine. Our performance lies between that of Ialign and I2I-SiteEngine, as shown in 

the boxplot of Figure B.6.  
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Figure B.4. The distribution of PC-scores. This is obtained by tabulating the all-
against-all pairwise interface comparison for a non-redundant set of 1797 interfaces. 
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Table B.4. Statistical significance of PC-scores. 

p-value 0.05 0.01 0.005 0.001 0.0005 0.0001 0.00001 

PC-score 0.370 0.407 0.424 0.483 0.541 0.699 0.849 
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Table B.5. The interface equivalence measured by Q-score and PC-score for 
different T=3 viruses. The “/” separates the Q-score reported in [177] and the PC-score 
computed using our method. The two scoring functions match well with an overall 
correlation coefficient of 0.93, and show better agreement in some viruses than in others 
(last column).  

Virus 
name* 

PDB 
ID 

A1B1:B1C1 A1C1:B1C1 A1B1:A1C1 A1B5:C1C6 A1A2:B1C2 A1A2:B1C6 B1C2:B1C6 c.c. 
within 
virus  

TNV 1c8n 0.93/0.97 0.95/0.96 0.98/0.97 0.47/0.53 0.81/0.84 0.30/0.58 0.29/0.52 0.97 

SMV 1smv 0.97/0.93 0.97/0.94 0.97/0.97 0.38/0.57 0.76/0.78 0.37/0.58 0.38/0.55 0.99 

SBMV 4sbv 0.92/0.93 0.90/0.94 0.93/0.95 0.36/0.52 0.74/0.80 0.28/0.52 0.26/0.53 0.99 

RYMV 1f2n 0.70/0.75 0.73/0.76 0.94/0.95 0.15/0.33 0.93/0.92 0.53/0.47 0.52/0.49 0.96 

BBV 2bbv 0.90/0.88 0.93/0.94 0.90/0.90 0.33/0.42 0.88/0.90 0.54/0.45 0.53/0.47 0.97 

NOV 1nov 0.82/0.93 0.91/0.93 0.86/0.96 0.40/0.41 0.87/0.86 0.41/0.47 0.44/0.47 0.98 

PAV 1f8v 0.70/0.80 0.78/0.86 0.72/0.79 0.29/0.37 0.74/0.81 0.33/0.41 0.42/0.48 1.00 

TBSV 2tbv 0.87/0.84 0.90/0.83 0.85/0.91 0.77/0.77 0.86/0.83 0.44/0.55 0.42/0.53 0.97 

NV 1ihm 0.77/0.79 0.74/0.82 0.84/0.87 0.96/0.93 0.63/0.70 0.69/0.70 0.58/0.66 0.97 

CCMV 1cwp 0.77/0.66 0.80/0.67 0.74/0.68 0.90/0.83 0.46/0.58 0.47/0.56 0.96/0.96 0.88 

CMV 1f15 0.92/0.74 0.71/0.7 0.77/0.87 0.78/0.83 - - 0.92/0.92 0.36 

TYMV 1auy 0.59/0.73 0.80/0.83 0.68/0.78 0.88/0.90 0.54/0.66 0.57/0.70 0.85/0.89 0.99 

DYMV 1ddl 0.79/0.81 0.56/0.65 0.71/0.76 0.93/0.92 0.72/0.82 0.78/0.79 0.90/0.89 0.97 

PhMV 1qjz 0.51/0.62 0.66/0.67 0.51/0.59 0.49/0.63 0.42/0.59 0.44/0.52 0.42/0.62 0.66 

      B1B2:A1C6 B1B2:C1A2 A1C6:C1A2  

GA 1gav 0.55/0.62 0.62/0.60 0.74/0.84 0.88/0.92 0.55/0.53 0.34/0.51 0.79/0.79 0.92 

FR 1frs 0.52/0.62 0.57/0.62 0.74/0.73 0.86/0.92 0.52/0.61 - 0.45/0.55 0.97 

MS2 2ms2 0.39/0.56 0.52/0.56 0.71/0.78 0.92/0.94 0.50/0.57 - 0.45/0.64 0.95 

QB 1qbe 0.44/0.70 0.69/0.66 0.64/0.68 0.92/0.94 0.58/0.57 0.36/0.47 0.60/0.65 0.84 

*Tobacco necrosis virus (TNV), Sesbania mosaic virus (SMV), Southern bean mosaic virus 
(SBMV), Rice yellow mottle virus (RYMV), Black beetle virus (BBV), Nodamura virus (NOV), 
Pariacoto virus (PAV), Tomato bushy stunt virus (TBSV), Norwalk virus (NV), Cowpea 
chlorotic mottle virus (CCMV), Cucumber mosaic virus (CMV), Turnip yellow mosaic virus 
(TYMV), Desmodium yellow mottle virus (DYMV), Physalis mottle virus (PhMV), 
Bacteriophage GA (GA), Bacteriophage FR (FR), Bacteriophage MS2 (MS2), Bacteriophage Q 
beta (QB). 
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Figure B.5. An example of similar interfaces across unrelated dimers missed by 
existing methods but captured by PCalign. (A) The homodimer [PDB code: 2d8d] in 
blue and red and the homodimer [PDB: 2d7v] in cyan and orange show no global 
structural similarity in their monomers, but both dimers formed intertwined interfaces in 
a fashion that resembles two hairpins clipped to each other. (B) Ialign aligns 74 residues 
out of 103 interfacial residues of the smaller interface with an RMSD of 3.87Å, and the 
IS-score of 0.220 has a p-value > 0.05 which makes the interface similarity insignificant. 
(C) PCalign aligns 93 out of 103 interfacial residues of the smaller interface with an 
RMSD of 3.47 Å, and the PC-score of 0.418 has a p-value of 0.007, which regards the 
interface similarity as significantly high. This is illustrated by the interface alignment 
showing just one binding site, given the interface is symmetric. Figures are generated by 
the VMD software. 
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Table B.6. Protein dimers grouped by their familial annotation by SCOPPI. All 
dimers within the same group are less than 50% identical sequence-wise, and have the 
same dimerization states. The first alphabet and the first number of the SCOP 
classification describe the folded topology of the monomer structure, the third number 
representing its superfamily and the last its family. As shown in the table, the selected 
groups of protein dimers cover a diverse range of folds, and there are no “shared” 
monomers (in terms of their familial annotation) across different groups. 

Grp PDB ID Family of chain 1 SCOP 
classification 

Family of chain 2 SCOP 
classification 

1 1all_AB Phycocyanin-like phycobilisome 
proteins 

a.1.1.3 Phycocyanin-like 
phycobilisome proteins 

a.1.1.3 

1eyx_AB 

1ha7_AB 

2 3bro_AB MarR-like transcriptional 
regulators 

a.4.5.28 MarR-like transcriptional 
regulators 

a.4.5.28 

1lj9_AB 

2a61_AB 

2hr3_AB 

2fxa_AB 

1s3j_AB 

1hsj_AB 

1z9c_AB 

1lnw_AB 

2frh_AB 

2eth_AB 

2fbk_AB 

3 1nek_AB Succinate dehydrogenase/ 
fumarate reductase flavoprotein 
C-terminal domain 

a.7.3.1 2Fe-2S ferredoxin domains 
from multidomain proteins 

d.15.4.2 

1e7p_AB 

1kfy_AB 

4 2f8n_DK Nucleosome core histones a.22.1.1 Nucleosome core histones a.22.1.1 

2aro_AB 

2fj7_AB 

5 2yw7_AE Ferritin a.25.1.1 Ferritin a.25.1.1 
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1ji4_AD 

2bkc_AC 

2ux1_AC 

1eum_AF 

1sq3_AB 

1vlg_AF 

1n1q_AB 

1nf4_AB 

2fjc_AD 

2htn_AB 

1mfr_AG 

1jre_AB 

1zuj_AB 

1z6o_AM 

1tk6_AB 

6 1fg9_AC Interferons/interleukin-10 (IL-10) a.26.1.3 Fibronectin type III b.1.2.1 

1j7v_LR 

1lqs_LR 

7 2cx9_AB Medium chain acyl-CoA 
dehydrogenase-like, C-terminal 
domain 

a.29.3.1 Medium chain acyl-CoA 
dehydrogenase, NM (N-
terminal and middle) domains) 

e.6.1.1 

2reh_AB 

1t9g_AB 

1ivh_AB 

1jqi_AB 

1rx0_AC 

8 2gzu_AB SinR domain-like a.35.1.3 SinR domain-like a.35.1.3  

1zzc_AB 

1y7y_AB 

2b5a_AB 

2ofy_AB 
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9 2mys_AC Calmodulin-like a.39.1.5 Motor proteins c.37.1.9 

1w7i_AB 

1br1_AB 

1l2o_AC 

10 1ea4_AB CopG-like a.43.1.3 CopG-like a.43.1.3 

1x93_AB 

1p94_AB 

11 1v2a_AB Glutathione S-transferase (GST), 
C-terminal domain 

a.45.1.1 Glutathione S-transferase 
(GST), N-terminal domain 

c.47.1.5 

1tu7_AB 

1pn9_AB 

1tw9_AB 

2aaw_AC 

1y6e_AB 

2c8u_AB 

1pl2_AB 

1zgn_AB 

1m0u_AB 

2ab6_AB 

1gul_AB 

1gwc_BC 

1oyj_AB 

1k0c_AB 

1v40_AD 

1axd_AB 

2pmt_AB 

1n2a_AB 

1ljr_AB 

12 2elc_AD Nucleoside 
phosphorylase/phosphoribosyltra

a.46.2.1 (Nucleoside 
phosphorylase/phosphoribosyl

a.46.2.1 

1kgz_AB 
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2gvq_AD nsferase N-terminal domain transferase N-terminal domain 

1brw_AB 

1azy_AB 

13 1p51_AB Prokaryotic DNA-bending 
protein) 

a.55.1.1 Prokaryotic DNA-bending 
protein 

a.55.1.1 

1b8z_AB 

1exe_AB 

2o97_AB 

1ihf_AB 

14 2a1j_AB Hef domain-like a.60.2.5 Hef domain-like a.60.2.5 

1x2i_AB 

2aq0_AB 

1z00_AB 

15 1f5q_AB Cyclin a.74.1.1 Protein kinases, catalytic 
subunit 

d.144.1.7 

1g3n_AC 

1xo2_AB 

2f2c_AB 

1fvv_AB 

1w98_AB 

16 2nz8_AB DBL homology domain (DH-
domain) 

a.87.1.1 G proteins c.37.1.8 

1foe_AB 

1ki1_AB 

1lb1_AB 

2dfk_AB 

1x86_AB 

17 2pv7_AB TyrA dimerization domain-like a.100.1.12 TyrA dimerization domain-
like 

a.100.1.12 

2g5c_AC 

2f1k_AB 

18 1tnb_AB Protein prenyltransferases a.102.4.3 Protein prenylyltransferase a.118.6.1 

1ltx_AB 
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1sa5_AB 

19 1aj8_AB Citrate synthase a.103.1.1 Citrate synthase a.103.1.1 

1ixe_AB 

1o7x_AB 

4cts_AB 

1nxg_AB 

20 1dd4_AB Ribosomal protein L7/12, 
oligomerisation (N-terminal) 
domain 

a.108.1.1 Ribosomal protein L7/12, 
oligomerisation (N-terminal) 
domain 

a.108.1.1 

1dd3_AB 

21 1s9d_AE Sec7 domain a.118.3.1 G proteins c.37.1.8 

1re0_AB 

1r8q_AE 

22 1zk8_AB Tetracyclin repressor-like, C-
terminal domain 

a.121.1.1 Tetracyclin repressor-like, C-
terminal domain 

a.121.1.1 

2gfn_AB 

2hku_AB 

1z0x_AB 

1vi0_AB 

2g3b_AB 

1rpw_AB 

2zoz_AB 

1rkt_AB 

1t33_AB 

3loc_AB 

1bjy_AB 

23 2gpp_AB Nuclear receptor ligand-binding 
domain 

a.123.1.1 Nuclear receptor ligand-
binding domain 

a.123.1.1 

1yy4_AB 

1h9u_AB 

1uhl_AB 

1m7w_AB 

1xls_AE 
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1fm6_AD 

1r1k_AD 

1xdk_AB 

1zeo_AB 

1ot7_AB 

1p8d_AB 

24 1gk2_AD HAL/PAL-like a.127.1.2 HAL/PAL-like a.127.1.2 

1w27_AB 

1t6p_AC 

25 2q80_AB Isoprenyldiphosphate synthases a.128.1.1 Isoprenyldiphosphate 
synthases) 

a.128.1.1 

1v4e_AB 

1rtr_AB 

1rqi_AB 

26 2d8d_AB Dimericchorismatemutase a.130.1.1 Dimericchorismatemutase a.130.1.1 

1ecm_AB 

2h9c_AB 

27 1wwm_A
B 

TENA/THI-4 a.132.1.3 TENA/THI-4 a.132.1.3 

1rtw_AB 

2gm8_AB 

1yaf_AC 

1udd_AB 

1z72_AB 

28 1cl5_AB Vertebrate phospholipase A2 a.133.1.2 Vertebrate phospholipase A2 a.133.1.2 

1y38_AB 

1oyf_AB 

29 2ijc_AF Atu0492-like a.152.1.3 Atu0492-like a.152.1.3 

2gmy_AB 

2oyo_AB 

2prr_AB 
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2pfx_AB 

30 1fqv_AB Skp1 dimerisation domain-like a.157.1.1 F-box domain a.158.1.1 

1nex_AB 

1p22_AB 

2ovr_AB 

31 1y74_AD L27 domain a.194.1.1 L27 domain a.194.1.1 

1vf6_AC 

1y76_AD 

1rso_AB 

1zl8_AB 

32 2qgs_AB HD domain a.211.1.1 (HD domain a.211.1.1 

2pjq_BC 

3dto_AB 

3djb_AB 

33 2jr2_AB YejL-like a.284.1.1 YejL-like a.284.1.1 

2juz_AB 

2jrx_AB 

34 1n0l_AB Pilus chaperone b.1.11.1 Pilus subunits b.2.3.2 

2uy7_AB 

1pdk_AB 

2j2z_AB 

1ze3_CH 

1p5u_AB 

2co6_AB 

35 1fft_AB Periplasmic domain of 
cytochrome c oxidase subunit II 

b.6.1.2 Cytochrome c oxidase subunit 
I-like 

f.24.1.1 

1ehk_AB 

3dtu_AB 

2dys_AB 

36 1fi8_AC Ecotin, trypsin inhibitor b.16.1.1 Eukaryotic proteases b.47.1.2 
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1id5_HI 

1azz_AC 

1n8o_BE 

1xx9_AC 

1p0s_HE 

1ezu_BC 

37 1uxe_AB Adenovirus fiber protein "knob" 
domain 

b.21.1.1 Adenovirus fiber protein 
"knob" domain 

b.21.1.1 

1qiu_AB 

1nob_AB 

38 1xu2_AR TNF-like b.22.1.1 BAFF receptor-like g.24.1.2 

1oqd_AK 

1oqe_AK 

1xu1_AR 

39 1ukg_AB Legume lectins b.29.1.1 Legume lectins b.29.1.1 

2dvg_AB 

1qmo_AE 

1qot_AB 

1avb_AB 

1fat_AB 

2ltn_AC 

40 1n9e_AB Amine oxidase catalytic domain b.30.2.1 Amine oxidase catalytic 
domain 

b.30.2.1 

2oov_AB 

1ivu_AB 

1qal_AB 

1ksi_AB 

41 2b24_AB Ring hydroxylating alpha subunit 
ISP domain 

b.33.1.2 Ring hydroxylating alpha 
subunit catalytic domain 

d.129.3.3 

1uli_AB 

1ndo_AB 

42 2cz0_AB Nitrile hydratase beta chain b.34.4.4 Nitrile hydratase alpha chain d.149.1.1 
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1v29_AB 

1ugr_AB 

43 1hx5_AB GroES b.35.1.1 GroES b.35.1.1 

1wnr_AB 

1pf9_OP 

44 1n9s_AB Sm motif of small nuclear 
ribonucleoproteins, SNRNP 

b.38.1.1 Sm motif of small nuclear 
ribonucleoproteins, SNRNP 

b.38.1.1 

1i8f_AB 

1d3b_AB 

1b34_AB 

1m8v_AB 

1i5l_AB 

1i4k_AB 

45 1lt5_DE Bacterial AB5 toxins, B-subunits b.40.2.1 Bacterial AB5 toxins, B-
subunits 

b.40.2.1 

1qb5_DE 

46 1ggp_AB Ricin B-like b.42.2.1 Plant cytotoxins d.165.1.1 

2q3n_AB 

2mll_AB 

1hwn_AB 

2aai_AB 

47 1usc_AB NADH:FMN oxidoreductase-like b.45.1.2 NADH:FMN oxidoreductase-
like 

b.45.1.2 

1rz1_AB 

1i0r_AB 

48 1hkw_AB Eukaryotic ODC-like b.49.2.3 Alanine racemase-like, N-
terminal domain 

c.1.6.1 

1qu4_AB 

1twi_AB 

49 2rsp_AB Retroviral protease (retropepsin) b.50.1.1 Retroviral protease 
(retropepsin) 

b.50.1.1 

1ivp_AB 

2p3b_AB 

1ec2_AB 
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3fiv_AB 

50 1ytf_CD Transcription factor IIA (TFIIA), 
beta-barrel domain 

b.56.1.1 Transcription factor IIA 
(TFIIA), beta-barrel domain 

b.56.1.1 

1nvp_CD 

1nh2_CD 

51 2pbk_AB Herpes virus serine proteinase, 
assemblin 

b.57.1.1 Herpes virus serine proteinase, 
assemblin 

b.57.1.1 

1o6e_AB 

1at3_AB 

1id4_AB 

1nju_AB 

52 2pa7_AB dTDP-sugar isomerase b.82.1.1 dTDP-sugar isomerase b.82.1.1 

1pm7_AB 

1ofn_AB 

1dzr_AB 

1wlt_AB 

2ixl_AB 

53 1f7p_AB dUTPase-like b.85.4.1 dUTPase-like b.85.4.1 

1q5h_AB 

1smc_AB 

54 1gkq_AD Hydantoinase 
(dihydropyrimidinase) 

b.92.1.3 Hydantoinase 
(dihydropyrimidinase) 

b.92.1.3 

1k1d_AB 

1gkr_AB 

2fvm_AC 

55 2vq0_AB Tombusviridae-like VP b.121.4.7 Tombusviridae-like VP b.121.4.7 

1c8n_AB 

4sbv_AB 

1f2n_AB 

56 2nad_AB (Formate/glycerate 
dehydrogenases, NAD-domain 

c.2.1.4 Formate/glycerate 
dehydrogenases, NAD-domain 

c.2.1.4 

1j49_AB 

1qp8_AB 



98 
 

1ygy_AB 

1psd_AB 

1gdh_AB 

57 1z7x_WX 28-residue LRR c.10.1.1 Ribonuclease A-like d.5.1.1 

1a4y_AB 

2bex_AC 

58 1yg8_AG Clp protease, ClpP subunit c.14.1.1 Clp protease, ClpP subunit c.14.1.1 

2ce3_AG 

1y7o_AG 

1tg6_AG 

2f6i_AG 

59 1lqm_AB Uracil-DNA glycosylase c.18.1.1 (Uracil-DNA glycosylase 
inhibitor protein 

d.17.5.1 

2j8x_AB 

1udi_EI 

60 2c57_AB Type II 3-dehydroquinate 
dehydratase 

c.23.13.1 Type II 3-dehydroquinate 
dehydratase 

c.23.13.1 

1gqo_AB 

1v1j_AB 

61 1ufv_AB Pantothenatesynthetase 
(Pantoate-beta-alanine ligase, 
PanC)) 

c.26.1.4  Pantothenatesynthetase 
(Pantoate-beta-alanine ligase, 
PanC) 

c.26.1.4  

1iho_AB 

3coy_AB 

62 1zpd_AB Pyruvate oxidase and 
decarboxylase Pyr module 

c.36.1.5 Pyruvate oxidase and 
decarboxylase PP module 

c.36.1.9 

1pyd_AB 

1ozh_AB 

1ovm_AB 

2c31_AB 

1upb_AB 

1n0h_AB 

1mcz_AB 

63 1hoo_AB Nitrogenase iron protein-like c.37.1.10 Nitrogenase iron protein-like c.37.1.10 
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1lny_AB 

1dj3_AB 

64 2tec_EI Subtilases c.41.1.1 CI-2 family of serine protease 
inhibitors 

d.40.1.1 

1mee_AI 

1y3f_EI 

65 1nw2_AD Thioltransferase c.47.1.1 Thioltransferase c.47.1.1 

1xwb_CD 

1ep8_AB 

1f9m_AB 

66 1a49_AB Pyruvate kinase, C-terminal 
domain 

c.49.1.1 Pyruvate kinase, C-terminal 
domain 

c.49.1.1 

1pky_AB 

1pkl_AB 

67 1g5c_AB beta-carbonic anhydrase, cab c.53.2.1 beta-carbonic anhydrase, cab c.53.2.1 

2esf_AB 

1ekj_AB 

68 2nrh_AB CoaX-like c.55.1.13 CoaX-like c.55.1.13 

2f9w_AB 

3bf1_AB 

69 1je1_AD Purine and 
uridinephosphorylases 

c.56.2.1 Purine and 
uridinephosphorylases 

c.56.2.1 

1k9s_AD 

1odi_AB 

1nw4_AB 

1tgv_AB 

1ybf_AB 

1t8w_AB 

70 1bxg_AB Aminoacid dehydrogenases c.58.1.1 Aminoacid dehydrogenases c.58.1.1 

1leh_AB 

1bvu_AF 

1v9l_AF 
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1nr7_AE 

71 1bq3_AB Cofactor-dependent 
phosphoglycerate mutase 

c.60.1.1 Cofactor-dependent 
phosphoglycerate mutase 

c.60.1.1 

2a9j_AB 

1rii_AB 

72 1a96_AB Phosphoribosyltransferases 
(PRTases) 

c.61.1.1 Phosphoribosyltransferases 
(PRTases) 

c.61.1.1 

1vdm_AB 

1pzm_AB 

1hgx_AB 

1grv_AB 

1tc1_AB 

1hmp_AB 

1cjb_AB 

1qk4_AB 

73 1iy9_AD Spermidine synthase c.66.1.17 Spermidine synthase c.66.1.17 

2o0l_AB 

1mjf_AB 

1uir_AB 

2b2c_AB 

2q41_AD 

1jq3_AD 

74 1cs1_AD Cystathionine synthase-like c.67.1.3 Cystathionine synthase-like c.67.1.3 

1gc0_AB 

1n8p_AD 

1i43_AD 

75 1h3m_AB Cytidylytransferase c.68.1.13 Cytidylytransferase c.68.1.13 

1vpa_AB 

1vgw_AB 

76 2abq_AB Ribokinase-like c.72.1.1 Ribokinase-like c.72.1.1 

2awd_AB 
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2ajr_AB 

2dcn_AB 

1tz3_AB 

1gqt_AB 

1v19_AB 

2afb_AB 

1vm7_AB 

77 2bri_AB PyrH-like c.73.1.3 PyrH-like c.73.1.3 

2brx_AB 

2v4y_AF 

78 1gc8_AB Dimericisocitrate&isopropylmala
te dehydrogenases 

c.77.1.1 Dimericisocitrate&isopropylm
alate dehydrogenases 

c.77.1.1 

1wpw_AB 

1a05_AB 

1t0l_AB 

2g4o_AB 

1hqs_AB 

79 2bht_AB (Tryptophan synthase beta 
subunit-like PLP-dependent 
enzymes 

c.79.1.1 Tryptophan synthase beta 
subunit-like PLP-dependent 
enzymes 

c.79.1.1 

1o58_AB 

1oas_AB 

1pwh_AB 

1tzm_AB 

1ve5_AD 

1j0b_AB 

1v7c_AB 

1m54_AB 

1wdw_BD 

1wkv_AB 

1e5x_AB 

80 1viv_AB mono-SIS domain c.80.1.3 mono-SIS domain c.80.1.3 
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1vim_AB 

3bjz_AB 

1x94_AB 

1tk9_AD 

81 1vle_MN Formate dehydrogenase/DMSO 
reductase, domains 1-3 

c.81.1.1 Ferredoxin domains from 
multidomain proteins 

d.58.1.5 

1kqg_AB 

1h0h_AB 

82 1ad3_AB ALDH-like c.82.1.1 ALDH-like c.82.1.1 

1wnd_AD 

1euh_AB 

1ez0_AD 

1o02_AB 

1uzb_AB 

1bpw_AB 

83 1vgv_AB UDP-N-acetylglucosamine 2-
epimerase 

c.87.1.3  UDP-N-acetylglucosamine 2-
epimerase 

c.87.1.3 

1v4v_AB 

1o6c_AB 

84 1jja_AC Glutaminase/Asparaginase c.88.1.1 Glutaminase/Asparaginase c.88.1.1 

1hfw_AC 

2ocd_AB 

1djo_AB 

2d6f_AB 

85 1jhz_AB L-arabinose binding protein-like c.93.1.1 L-arabinose binding protein-
like 

c.93.1.1 

1lbi_AB 

1sxi_AD 

1byk_AB 

86 1mm6_AB Phosphate binding protein-like) c.94.1.1 Phosphate binding protein-like c.94.1.1 

2a5t_AB 

1y1m_AB 
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87 1u0m_AB Chalcone synthase-like c.95.1.2 Chalcone synthase-like c.95.1.2 

1ub7_AB 

1xpk_AB 

2eft_AB 

1tee_AB 

1mzj_AB 

1u0u_AB 

2qnz_AB 

88 1ux1_AD Cytidine deaminase c.97.1.1 Cytidine deaminase c.97.1.1 

2z3h_AD 

2fr6_AD 

1r5t_AC 

89 1vhy_AB YggJ C-terminal domain-like c.116.1.5 YggJ C-terminal domain-like c.116.1.5 

1v6z_AB 

1vhk_AB 

90 2h1o_AB PIN domain c.120.1.1 PIN domain c.120.1.1 

1v8o_AB 

1v96_AB 

91 1vgq_AB CoA-transferase family III 
(CaiB/BaiF) 

c.123.1.1 CoA-transferase family III 
(CaiB/BaiF) 

c.123.1.1 

1x74_AB 

1xa3_AB 

92 1poi_AC CoA transferase alpha subunit-
like 

c.124.1.2 CoA transferase alpha subunit-
like 

c.124.1.2 

1ope_AB 

1k6d_AB 

2ahu_AD 

93 2g4d_AB Adenain-like d.3.1.7 Ubiquitin-related d.15.1.1 

2bkr_AB 

2ckh_AB 

1euv_AB 
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94 2z7a_AB Ketosteroidisomerase-like d.17.4.3 Ketosteroidisomerase-like d.17.4.3 

1ohs_AB 

1cqs_AB 

95 1qy9_AB PhzC/PhzF-like d.21.1.2 PhzC/PhzF-like d.21.1.2 

1u1w_AB 

1u0k_AB 

96 2i7r_AB Antibiotic resistance proteins d.32.1.2 Antibiotic resistance proteins d.32.1.2 

2a4x_AB 

1ecs_AB 

2pjs_AB 

1xrk_AB 

1r9c_AB 

1nki_AB 

97 2h4u_AB PaaI/YdiI-like d.38.1.5 PaaI/YdiI-like d.38.1.5 

1wm6_AC 

2f3x_AB 

1t82_AB 

1yoc_AB 

2fs2_AB 

1sh8_AB 

1sbk_AC 

1q4s_AB 

2ov9_AB 

98 1ues_AB Fe,Mn superoxide dismutase 
(SOD), C-terminal domain 

d.44.1.1 Fe,Mn superoxide dismutase 
(SOD), C-terminal domain 

d.44.1.1 

2nyb_AB 

1bsm_AB 

1kkc_AB 

1wb8_AB 

99 1tkk_AF Enolase N-terminal domain-like d.54.1.1 Enolase N-terminal domain- d.54.1.1 
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2dw6_AB like 

3muc_AB 

2gl5_AB 

1sjd_AB 

1wue_AB 

1wuf_AB 

1yey_AB 

1r0m_AC 

100 1r3n_AB Bacterial exopeptidase 
dimerisation domain 

d.58.19.1 Bacterial exopeptidase 
dimerisation domain 

d.58.19.1 

1vgy_AB 

1ysj_AB 

1vix_AB 

1cg2_AD 

1z2l_AB 

101 2p92_AB TM1457-like d.64.2.1 TM1457-like d.64.2.1 

1s12_AD 

2g0j_AB 

2idl_AB 

102 1nfh_AB DNA-binding protein AlbA d.68.6.1 DNA-binding protein AlbA d.68.6.1 

2bky_AX 

1udv_AB 

103 1xho_AB Chorismate mutase d.79.1.2 Chorismate mutase d.79.1.2 

1com_AB 

1ode_AB 

104 1u1i_AB Dihydrodipicolinatereductase-
like 

d.81.1.3 Dihydrodipicolinatereductase-
like 

d.81.1.3 

1arz_AD 

1jkf_AB 

1p1k_AB 

1yl7_AB 



106 
 

1vm6_AD 

1r0l_AB 

3dap_AB 

105 1rm6_AB CO dehydrogenase flavoprotein 
C-terminal domain-like 

d.87.2.1 Molybdenum cofactor-binding 
domain 

d.133.1.1 

1t3q_BC 

1jrp_AB 

1ffv_BC 

106 2b67_AB NADH oxidase/flavinreductase d.90.1.1 NADH 
oxidase/flavinreductase 

d.90.1.1 

1oon_AB 

2ifa_AB 

1f5v_AB 

1v5y_AB 

2fre_AB 

107 1j2g_AD Urate oxidase (uricase) d.96.1.4 Urate oxidase (uricase) d.96.1.4 

1xxj_AC 

2yzd_AB 

1vax_AB 

1ws3_AC 

108 1y4o_AB Roadblock/LC7 domain d.110.7.1 Roadblock/LC7 domain d.110.7.1 

1veu_AB 

1j3w_AB 

109 1vhg_AB MutT-like d.113.1.1 MutT-like d.113.1.1 

1viu_AB 

1viq_BC 

110 1syn_AB Thymidylate 
synthase/dCMPhydroxymethylas
e 

d.117.1.1 Thymidylate 
synthase/dCMPhydroxymethyl
ase 

d.117.1.1 

1b49_AC 

1f28_AB 

1bsp_AB 

1qzf_AB 
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111 1kij_AB DNA gyrase/MutL, N-terminal 
domain 

d.122.1.2 DNA gyrase/MutL, N-terminal 
domain 

d.122.1.2 

1mx0_AB 

1qzr_AB 

1s16_AB 

1ei1_AB 

112 1m35_AD Creatinase/aminopeptidase d.127.1.1 Creatinase/aminopeptidase d.127.1.1 

1pv9_AB 

1chm_AB 

113 2qlv_AB Ssp2 C-terminal domain-like d.129.6.2 AMPKBI-like d.353.1.1 

2v92_AB 

2ooy_AB 

114 2gac_AB (Glycosyl)asparaginase d.153.1.5 (Glycosyl)asparaginase d.153.1.5 

1k2x_AB 

1apz_AB 

115 1sb2_AB C-type lectin domain d.169.1.1 C-type lectin domain d.169.1.1 

1ukm_AB 

1x2w_AB 

1fvu_AB 

1uex_AB 

1oz7_AB 

1v4l_AB 

116 1inn_AB Autoinducer-2 production protein 
LuxS 

d.185.1.2 Autoinducer-2 production 
protein LuxS 

d.185.1.2 

1j6w_AB 

1j6x_AB 

117 2pkh_AB UTRA domain d.190.1.2 UTRA domain d.190.1.2 

3bwg_AB 

2ikk_AB 

2ooi_AB 

3ddv_AB 
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2fa1_AB 

2p19_AC 

3cnv_AB 

118 2onf_AB Ohr/OsmC resistance proteins d.227.1.1 Ohr/OsmC resistance proteins d.227.1.1 

1ukk_AB 

1qwi_AB 

1lql_AB 

1n2f_AB 

2d7v_AB 

2opl_AB 

119 1twj_AB PurS subunit of FGAM 
synthetase 

d.284.1.1 PurS subunit of FGAM 
synthetase 

d.284.1.1 

1gtd_AB 

1vq3_AB 

120 1si8_AC Heme-dependent catalases e.5.1.1 Heme-dependent catalases e.5.1.1 

1m7s_AC 

1a4e_AB 

1th2_AC 

1ggj_AC 

121 1dk4_AB Inositol 
monophosphatase/fructose-1,6-
bisphosphatase-like 

e.7.1.1 Inositol 
monophosphatase/fructose-
1,6-bisphosphatase-like 

e.7.1.1 

1vdw_AB 

1lbv_AB 

1imd_AB 

122 2e75_AD ISP transmembrane anchor f.23.12.1 Cytochrome b of cytochrome 
bc1 complex (Ubiquinol-
cytochrome c reductase) 

f.21.1.2 

1q90_BR 

2ibz_CE 

2bcc_CE 

123 2axt_AD Bacterial photosystem II reaction 
centre, L and M subunits 

f.26.1.1 Bacterial photosystem II 
reaction centre, L and M 
subunits 

f.26.1.1 

2gmr_LM 

1qov_LM 



109 
 

6prc_LM 

124 1pdg_AB Platelet-derived growth factor-
like 

g.17.1.1 Platelet-derived growth factor-
like 

g.17.1.1 

1bj1_VW 

1rv6_VW 

1wq9_AB 

1vpp_VW 

1kat_VW 

 

 
 
 
  



110 
 

 

Figure B.6. Running time reported by the three programs. The time in seconds is 
plotted in log scale. PCalign finishes a comparison within a second on average, whereas 
Ialign completes within a fraction of a second. I2I-SiteEngine is roughly an order of 
magnitude slower. The longest computational time for these methods is spent on 
comparing (single-domained) dimers with over 200 interfacial residues, shown in circles 
on the very top of each box. 
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CHAPTER IV 

Template-based protein inhibitor design for influenza hemagglutinin 

 

4.1.  Introduction: 

The importance of protein-protein interactions in a wide range of cellular functions 

and diseases has instilled great interest in designing protein-protein interfaces for binding 

affinity, with the goal of modifying, creating or inhibiting protein-protein interactions. 

Part of the interest is intellectual; being able to predict proteins that bind with each other 

and with the correct interface configuration provides the ultimate test to our 

understanding of how proteins recognize one another to form macromolecular complexes, 

and the other part is the great therapeutic potential offered by designing proteins to target 

and interfere with disease-related interactions [202]. Recent advances in the field of 

affinity design have seen successes in redesigning antibodies for enhanced binding 

affinity [203], creation of a chimeric protein by fusing domains of different 

functionalities through a designed interface [204], modifying a protein that is 

physiologically monomeric to self-associate into stable oligomers [205, 206], and the de 

novo design of two protein inhibitors that bind with influenza hemagglutinin protein [113, 

114]. The last work is especially of interest to us, as it demonstrates the feasibility of 

creating diagnostic and/or therapeutic agents to target an arbitrarily chosen protein 

surface. 
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Given the structural model of the target protein, David Baker and coworkers 

employed a computational design approach that entails two fundamental steps; first is the 

identification of hot spot residues which make highly optimized van der Waals, hydrogen 

bonding and electrostatic interactions with the target protein that essentially anchor the 

association, followed by stitching these hot spot residues onto a scaffold protein that has 

a patch which is geometrically complementary to the target protein surface [113, 114]. 

Out of the 88 computational designs created, two that survived experimental validation 

were further “evolved” experimentally to select favorable mutations to enhance binding 

affinity. This computational protocol is de novo in the sense that the scaffold proteins 

from which the designs were created are physiologically unrelated to the target protein of 

interest, and have their surfaces re-engineered to bring about binding activity that was 

absent with the wild type proteins. 

In view of the success of the de novo approach in designing protein binders for a 

given target protein surface, we would like to test an alternative route to propose 

candidate proteins that may bind with a target protein, under the premise that a structural 

model exists for the target protein in complex with another protein at the desired binding 

site. This approach, which we term as template-based, is rationalized based on the 

observation that nature has a limited set of choices for interface designs [165], and 

dissimilar proteins can associate in similar fashions [207]. We illustrate our idea in Figure 

4.1, where we screen the library of currently available structural models for protein-

protein interfaces that resemble the one formed between our target protein and its native 

partner, and use those protein dimers with similar interfaces as a starting point for the 

design of potential proteins that can bind with the target. In this approach, we do not  
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Figure 4.1. Template-based protein inhibitor design protocol. Using the structural 
model of the complex formed by hemagglutinin (yellow) and CR6261 (blue) as the 
template of a protein-protein interface, we search the Protein Data Bank for similar 
interfacial patterns between other proteins (green and red). Upon the identification of 
such dimers, we then replace the antibody (blue) by the protein that has an equivalent 
binding site as the paratope (red), based on the structural alignment of the interface 
region, and propose this protein as a potential binder for the target viral protein.  
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require the proposed protein binder to share structural similarity with the native partner of 

the target protein, as long as there is significant local similarity at the interface region.  

The system we chose to test our template-based inhibitor design is the same as that in 

[113, 114], specifically the hemagglutinin (HA) protein from the 1918 H1N1 influenza 

pandemic [208]. Influenza viruses pose a serious threat to public health, leading to 

250,000-500,000 deaths annually around the globe [209]. Despite intensive efforts on 

therapeutic and vaccine development, limited success has been achieved so far in 

combating this highly adaptable virus. The HA protein is a membrane glycoprotein found 

on the surface of this enveloped virus. Together with another glycoprotein, 

neuraminidase, they define the subtypes of different influenza viruses, such as the swine 

flu H1N1 and the avian flu H5N1. HA has been well characterized as a primary drug 

target [210], given its essential role in the earlier stage of viral infection- from binding of 

influenza viruses to their sialylated cell-surface receptors, to mediating the transfer of 

viral generic material into the cytoplasm via membrane fusion with the endosome. Being 

the major surface antigen recognized by neutralizing antibodies, the HA rapidly 

undergoes antigenic variation under immune pressure to escape detection, posing a great 

challenge in the design of vaccines and therapeutics that can effectively target different 

strains of influenza viruses [211]. This bottleneck underscores the need for novel 

inhibitor designs that adopt alternative mechanisms to provide a broader range of 

protection. 

The HA complex consists of a trimer of two protein subunits, HA1 and HA2, which 

are disulfide-linked and are derived from the proteolysis of one polypeptide during 

maturation [212]. HA1 forms the head region (shown in Figure 4.2) which directly binds   
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Figure 4.2. Structure of a HA trimer. Only one asymmetric unit of the three (PDB code: 
3gbn) is shown in cartoon representation, and the other two are illustrated in grey surface 
representation. HA1 (blue) forms the globular head that recognizes and binds with cell 
surface receptors, while HA2 (red) forms the stem region and contains the fusion peptide 
that is required for membrane fusion with the endosome. Figure is generated by the 
software Visual Molecular Dynamics (VMD) [184]. 
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Figure 4.3. Antibodies targeting HA. Different antibodies target different regions of 
HA (yellow), with most of them neutralizing the hypervariable globular head region, 
shown here overlaid with one another by aligning the HA structure. The head-bound 
antibodies include BH151 (PDB code: 1eo8, shown in green), HC63 (PDB code: 1ken, 
shown in pink), HC45 (PDB code: 1qfu, shown in purple) and HC19 (PDB code: 2vir, 
shown in orange). The broadly neutralizing antibody, CR6261 (PDB code: 3gbn), shown 
in blue, binds instead to the stem region that is highly conserved across different strains 
of influenza. 
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to cellular receptors for endocytosis, while HA2 comprises the stem region, with the 

terminal arm forming the fusion peptide that is responsible for initiating membrane fusion 

upon entry. Inside the lowered pH environment of the endosome, HA undergoes a large 

conformational change that allows the insertion of the fusion peptide into the endosome 

membrane, and subsequently the viral genetic material gets released into the cytoplasm 

[213]. A majority of the neutralizing antibodies that bind with HA recognize the highly 

variable head region [214-217], thereby physically blocking the interaction between the 

head region and the cell surface receptors. These antibodies typically bind to different 

patches on the head domain (shown in Figure 4.3) and are strain-specific, offering 

suboptimal protection with limited breadth. In contrast, the HA stem region is highly 

conserved across different strains and subtypes of influenza, and can be recognized by 

several broadly neutralizing antibodies [218-220], one of which has been recently co-

crystallized with both the HA from the 1918 H1N1 and that from the recent H5N1 avian 

influenza [221]. Given the promising heterosubtypic protection offered by inhibitors 

targeting this epitope that is constrained from mutation, we chose the structural model of 

the broadly neutralizing antibody, CR6261, in complex with the HA from H1N1 (PDB 

ID: 3gbn) as our template to identify naturally existing protein dimers that interact in a 

similar fashion, with the ultimate objective of proposing novel protein inhibitors that can 

offer expanded therapeutic options in the clinic. 

4.2.  Methods: 

4.2.1. Interface library construction 

To construct the library of protein dimer interfaces, we downloaded 75,694 structural 

models from Protein Data Bank (statistics as for Sep 2011) [112],  which were screened 
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against PISA [222] to extract 165257 protein dimer interfaces assigned to be biologically 

significant (as opposed to due to crystal packing). 123395 dimers remain after pruning 

those with too small an interface (<10 residues) or too large an interface (>200 residues). 

These dimers are then grouped based on sequence identity of 50% (we require both 

chains of the protein dimers, which can be homodimers or heterodimers, within the same 

group to have at least 50% sequence identity), in order to select representative dimer 

interfaces to reduce the size of the library for screening. Since two protein dimers with 

similar sequences can interact in different orientations, we perform an all-against-all 

pairwise structural comparison of the protein-protein interfaces within each group using 

PCalign [223], and further cluster using complete-linkage clustering of the dimers that 

have interface similarities of PC-scores greater than 0.5. We then select one 

representative dimer from each cluster to reduce the search space, and this collection of 

sequence-wise non-redundant protein dimers constitute our final interface library. 

4.2.2. Initial candidate selection 

The complex comprising of the 1918 H1N1 influenza virus HA and Fab CR6261 

(PDB code 3gbn) is used as our template structure to screen the interface library for 

similarly arranged geometric and chemical patterns. Using the program PCalign, we first 

retain dimers that have interface similarities with the target structure of PC-scores greater 

than 0.36. This value was shown to discriminate similar interfaces against different ones 

based on our previous study [223]. We then apply a size cutoff between 50 and 100 

amino acids to the protein chains that have equivalent binding sites as the antibody, as we 

believe peptides that are too small are prone to degradation while large bulky proteins 

may diffuse too slowly to associate effectively with the HA. Because our interface 
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similarity measure takes into account both binding fragments, we extract from each dimer 

the chain that has an equivalent binding site as the antibody (we call it the candidate 

protein), and make a chimera complex of the HA and the candidate protein based on 

structural alignment of the interfaces of the two native complexes. This approach enables 

us to delineate the contribution to interface similarity by the candidate protein, and we 

can perform a re-ranking of all the candidate proteins using PC-scores between the 

chimera complexes and the HA-antibody complex. 

4.2.3. Criteria for evaluating likelihood of binding activity 

For any predicted candidate protein, we use three independent criteria to assess its 

binding potential to the target protein. First we calculate the approximate binding energy 

using classical molecular mechanics force field via the GBSA method [224], as in 

Equation 4.1: 

∆𝐺 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑠𝑠𝑠,𝑝 + ∆𝐺𝑠𝑠𝑠𝑠,𝑛𝑝 − 𝑣∆𝑣,    (4.1) 

where ∆𝐺 is the binding free energy,  ∆𝐸𝑀𝑀 is the interaction energy between the target 

protein and the candidate protein, calculated as the enthalpy difference between the total 

system and the individual components, using the CHARMM force field (Equation 4.2) 

[225]. 

𝐸𝑀𝑀 = � 𝑘𝑏(𝑏 − 𝑏0)2
𝑏𝑠𝑛𝑏𝑠

+ � 𝑘𝜃(𝜃 − 𝜃0)2
𝑎𝑛𝑎𝑠𝑎𝑠

+ � 𝑘𝜑(1 + cos(𝑛𝑛 − 𝛿))
𝑏𝑖ℎ𝑎𝑏𝑒𝑎𝑠𝑠

+ � 𝑘𝜔(𝜔 − 𝜔0)2
𝑖𝑖𝑝𝑒𝑠𝑝𝑎𝑒

+ � 𝑘𝑢(𝑢 − 𝑢0)2
𝑈𝑒𝑎𝑦−𝐵𝑒𝑎𝑏𝑠𝑎𝑦
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�𝑛𝑠𝑛−𝑏𝑠𝑛𝑏𝑎𝑏 𝑝𝑎𝑖𝑒𝑠 + ∑ 𝑞𝑖𝑞𝑖
𝜖𝑒𝑖𝑖𝑛𝑠𝑛−𝑏𝑠𝑛𝑏𝑎𝑏 𝑝𝑎𝑖𝑒𝑠  , (4.2) 

where the first five terms account for the bond stretching, the angle bending, the torsion 

angles, the out of plane bending and the Urey-Bradley term which total up the bonded 

energy. The sixth term which is the van der Waals energy and the seventh term which is 

the electrostatic interactions contribute to the non-bonded energy.  ∆𝐺𝑠𝑠𝑠𝑠,𝑝  is the 

electrostatic contribution to the solvation energy calculated using the Generalized Born 

equation, and ∆𝐺𝑠𝑠𝑠𝑠,𝑛𝑝 is an empirical term calculated as 0.015 kcal/Å2 × SASA (solvent 

accessible surface area) to approximate the hydrophobic component of the solvation 

energy. The last term in Equation 4.1 accounts for the entropic cost of fixing the two 

proteins in the bound states with each other, and is neglected as an approximation in our 

calculation for reasons of the high computational cost involved. We believe this does not 

significantly affect our evaluation of the binding free energy comparisons across different 

candidate proteins with the same target protein. When only a single snapshot of a 

structure is available, such as the minimized configuration, the binding free energy is 

calculated based on that snapshot. When a simulation trajectory is available for a system, 

the last 10 ps of the trajectory is used to obtain an average binding free energy from all 

frames recorded. 

The second criterion used is to gauge if blind docking analysis reveals our predicted 

binding configuration as favorable for any given protein candidate docked onto the target 

protein. For this purpose we adopt the software developed by Zhiping Weng’s group, 

Zdock [226], which is an initial-stage docking algorithm that explores the six degrees of 

freedom of individual proteins that are treated as rigid bodies. Their scoring function 
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incorporates a pairwise statistical potential, shape complementarity, electrostatics, and 

desolvation in the fast fourier transform-based algorithm [227], based on which the top-

scoring 2000 configurations are reported with the default parameters. Given this docking 

algorithm is relatively coarse-grained without the next refinement step, we also use a 

loose criterion to count “near-native” configurations, where we consider a configuration 

returned by Zdock as near-native if at least three contacts (residue-based) are captured 

out of all contacts from our proposed binding configuration. The fraction of near-native 

configurations contained in the top 2000 poses reported by Zdock then reflects how likely 

our candidate protein indeed associates with the target protein at the intended site. 

Lastly, we also use the software FoldX to predict the binding energy of our proposed 

candidate proteins and the target [228]. The energy function differs from the classical 

molecular mechanics one described in our first criterion mainly in two aspects; one is that 

the different energy terms such as hydrogen bonding have been weighted empirically, 

and the other being the crude entropy estimation based on statistical analysis of the 

dihedral angles of the peptide backbone, whereas entropy is ignored in the first criterion. 

4.2.4. Relaxation of initial structure 

The candidate protein identified by PCalign is initially placed against the target 

protein based on the structural alignment of the interfaces of the template complex and of 

the query complex. This may unavoidably introduce steric clashes as the two proteins that 

are not natural interacting partners become forced together. A brief minimization of the 

initial configuration in implicit solvent is performed for all candidate proteins. For further 
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relaxation to allow side chains to be repacked, a simulated annealing step described as 

follows is carried out. 

Without any restraints applied to the system during the annealing procedure, it was 

observed that a candidate protein tends to quickly diffuse away from the target surface 

due to the sub-optimal interactions present initially to sufficiently stabilize the association. 

Thus the following restraints were added to keep a candidate protein within the proximity 

of HA. Based on the minimized configuration of the complex, a list of contacting 

residues is generated using the contact definition in [223]. These contacts are used for 

setting up distance restraints during the heating procedure, where a flat-bottom restraint 

defined in Equation 4.3 is applied to each pair of contacting residues to keep the two 

proteins from diffusing away from each other: 

𝐸(𝑅) =

⎩
⎨

⎧0.5 × 𝑘𝑖𝑖𝑛 × (𝑅 − 𝑅𝑖𝑖𝑛)2                                                       𝑅 < 𝑅𝑖𝑖𝑛
0.0                                                                                   𝑅𝑖𝑖𝑛 < 𝑅 < 𝑅𝑖𝑎𝑚
0.5 × 𝑘𝑖𝑎𝑚 × (𝑅 − 𝑅𝑖𝑎𝑚)2                                       𝑅𝑖𝑎𝑚 < 𝑅 < 𝑅𝑠𝑖𝑖
𝑓𝑖𝑎𝑚 × (𝑅 − (𝑅𝑠𝑖𝑖 + 𝑅𝑖𝑎𝑚) 2⁄ )                                              𝑅 > 𝑅𝑠𝑖𝑖

,  (4.3) 

where E(R) is the biasing potential, and R is the distance in Å between the Cα atoms of 

two particular residues from the contact list at a given time point during simulation. The 

two spring constants, kmin and kmax, are both set to 1 kcal/mol/Å2. Given the distance d 

between a particular pair of contacting residues in the starting configuration, Rmin and 

Rmax are set to be (d-2) Å and (d+2) Å respectively to ensure the two residues stay within 

close proximity within each other. fmax which is set to 2 kcal/mol/Å defines the final 

asymptote slope as the two residues drift further apart. Finally, Rlim is defined as Rmax + 

fmax/kmax to ensure continuity of the derivative.  
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In addition to the distance restraints between the HA and the candidate protein, a 

harmonic  restraint with respect to their starting positions is applied to the Cα atoms of 

the HA protein chains with a force constant of 5.0 kcal/mol/Å2 to keep the target protein 

in place, and a harmonic restraint with respect to the starting configuration is applied to 

the Cα atoms of the candidate protein with a force constant of 5.0 kcal/mol/Å2 to allow 

the candidate protein to explore around the binding site of the HA without permitting 

structural distortions.  These restraints are applied to the system during the first 10 ps of 

the simulation when the system is heated up from 300 K to 400 K, after which the 

restraints are removed to allow the system to cool back down to 300 K over another 10 ps 

of simulation. 

4.2.5. Selection of residues for redesign 

Following the simulated annealing procedure, two rounds of stepwise mutation 

analysis are carried out to identify residues for redesign. Rather than attempting 

mutations for all interfacial residues, we focus on only those residues that have 

mismatched chemical types with their structural equivalent ones from the paratope based 

on the initial structural alignment generated by PCalign, and mutate them to any of the 

residues with matched chemical types, in order to maximize the binding free energy with 

minimal mutations introduced to the original candidate proteins. A few exceptions are 

left untouched; Cys, Pro and Gly residues are kept due to their special structural roles in 

proteins in general. Residues with their side chains facing away from the binding site are 

also left unchanged as they do not directly participate in stabilizing the complex 

association. Lastly, residues forming salt bridges with other residues are also not included 

for redesign, as introducing mutations at these positions may destabilize the candidate 
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protein structure. The position of the Cα atom and the center of mass of the side chain are 

used for building the model of each mutated residue, which is further relaxed by the same 

annealing procedure. Following one mutation of a single residue, each mutation is 

evaluated by the estimated binding free energy described in Section 4.2.3, and the 

mutation that results in maximal improvement of binding free energy is accepted for the 

next round of mutation analysis. After two point mutations are introduced in each 

candidate protein, the final proposed binding configuration is assessed using all three 

criteria for evaluation. 

4.3.  Results: 

4.3.1. Correlation between PC-score with the native complex and the predicted 

binding energy 

To assess if interface similarity with the native complex may serve as a good 

predictor for binding activity, we take the 88 initial computational designs from [113], 

and compare the interface similarities between these structural models and the HA-

CR6261 complex. As only two out of the 88 computational designs showed reproducible 

binding activity during experimental validation, we do not have the actual binding data 

for these 88 structural models except for the computed binding energy reported in the 

paper, which is what we use in this analysis. As shown in Figure 4.4, there is very limited 

correlation between the computed binding energy and the interface similarity with the 

native complex (reported by PC-score), with a correlation coefficient of -0.27. However, 

it is worth noting that the two designs that survived experimental validation are found to 

have a high PC-score, one being 0.565 and the other 0.664, implying the binding sites 
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having high resemblance to the paratope on CR6261. This gives us confidence in 

choosing a good template as the starting point for computational design. 

4.3.2. Top ranked predictions 

Upon screening the interface library, we identified altogether 10 protein chains that 

have an interaction environment which highly resembles our template complex, based on 

a PC-score cutoff of 0.5. To judge how likely it is that these 10 protein will bind to the 

target site of the HA protein, we include three reference states to compare the candidates 

with; one being the crystal structure of HA-CR6261 (PDB code: 3gbn), and the other two 

being the crystal structures of the two de novo designs from [113, 114] (PDB codes: 4eef 

and 3r2x). Because the two designed inhibitors have undergone affinity maturation 

through experiments, we are also interested in how the initial computational designs 

perform using our evaluation criteria for comparison purposes, which are thus included in 

our analysis as well. 

Table 4.1 summarizes a preliminary survey of characteristics of the predicted protein 

complexes, with the reference states highlighted in red. These statistics are collected 

based on the initial complex configurations generated using structural alignment of the 

interfaces only. With the exception of the antibody heavy chain that has over 200 

residues, being a two-domain protein itself, the de novo designs and the predicted 

candidate proteins have about the same length, with comparable interface sizes as well. 

These initial configurations of the candidate proteins placed next to the target proteins 

are then minimized and further relaxed by simulated annealing, which is shown to 

generally improve the proposed binding poses (Table 4.2). Especially when the estimated  
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Figure 4.4. PC-scores of computational designs. Comparison between the 88 de novo 
computational designs with the native HA-CR6261 complex results in PC-scores that are 
poorly correlated with their computed energy in Rosetta energy units (R.e.u.). The two 
designs (HB36 and HB80) that showed actual binding activity are illustrated in red, 
bound to the target protein in yellow. Both scored high in terms of interface similarity 
with the native complex. 
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Table 4.1. Basic properties of candidate proteins. Compared with the three reference structures 
highlighted in red, our predicted protein inhibitors have about equal attributes. These include 
interface similarity measure with the native HA-CR6261 complex for the predicted or solved 
bound configuration of the candidate protein and HA, the size of the known binder or candidate 
protein, the interface size of the predicted or solved complex structure, and the buried surface 
area of the predicted or solved complex. Each protein is annotated by its PDB code and the chain 
identifier. The two entries in brackets, HB36 and HB80, are the original computational designs 
that have yet undergone experimental affinity maturation. 

Binding protein 
PC-score with 
native complex 

Protein size 
(a.a.) 

NO. of 
interfacial 

residues (a.a.) ΔSASA (Å2) 
CR6261 1 226 36 1660 

3r2xC (HB36) 0.558 (0.565) 93 37 1800 
4eefG (HB80) 0.580 (0.664) 45 33 1660 

1yrnA 0.535 61 28 1900 
1ohzB 0.500 60 40 1800 
2x9aC 0.519 65 40 1160 
3ihqB 0.512 75 32 1500 
1pk1B 0.561 89 22 1670 
2b87A 0.525 58 38 1990 
2y0sL 0.543 92 38 1860 
3ossC 0.515 68 33 1840 
1s1qB 0.584 76 32 2290 
1qfnA 0.561 85 32 2590 
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binding free energy is considered, side-chain repacking led to much more favored 

complex configurations, rendering the results judged by the first criterion much closer to 

our three reference states. In comparison, in terms of blind docking analysis by Zdock 

and prediction by FoldX, there is still a significant gap between our predictions and the 

reference structures, suggesting room for further improvement.  

The 10 candidate proteins are then subjected to stepwise mutation analysis. For the 

majority of these proteins, two point mutations appear sufficient to significantly improve 

the estimated binding free energies (Table 4.3), with the exception of one protein (PDB 

code 2y0s, chain L) for which no second mutation that brings about noticeable 

improvement can be identified. While not all three criteria reach a consensus regarding 

the effect of the mutations introduced for each candidate protein, the majority of the 

proteins showed improvement based on at least two of the three criteria. Remarkably, 

four proteins performed comparably with the reference states when evaluated by the three 

types of assessment, namely chain B of PDB code 1ohz, chain C of PDB code 2x9a, 

chain B of PDB code 1pk1, and chain A of PDB code 1qfn. It should be highlighted that 

although these results are only sub-optimal compared to the two de novo designs, which 

have gone through “evolution” with experiments, our predictions almost parallel those of 

the original computational designs from [113], with minimal mutations needed to bring 

about putative binding activity.  

The four designs mentioned above in complex with the HA protein are illustrated in 

Figure 4.5. With the exception of chain C of 2x9a which is largely beta-sheet, the other 

proteins are mostly helical in terms of secondary structure content. Upon close 

examination of the candidate proteins, we see that substitutions recommended by our   
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Table 4.2. Structural relaxation with simulated annealing. For each of the three 
criteria used for evaluating the likelihood of binding, a comparison is given before 
simulated annealing (after minimization) and after. For majority of the candidate proteins, 
simulated annealing improves the proposed binding pose, demonstrated by better scoring 
with the evaluation criteria. Nonetheless, for blind docking analysis and energy estimated 
by FoldX, most of these candidate proteins scored more poorly compared to the reference 
states shown in red.  

Binding 
protein 

<ΔGbinding> (kcal/mol) 
 

Near-native poses 
identified by Zdock 

After minimization (%) ΔG by FoldX (kcal/mol) 

 
After 

minimization 

After 
simulated 
annealing 

After 
minimization 

After 
simulated 
annealing 

After 
minimization 

After 
simulated 
annealing 

CR6261 -85.1 -73.1 3.5 1.05 -14.15 -10.95 
3r2xC 

(HB36) -60.6 (-45.6) -60.1 (-53.4) 6.95 (3.25) 2.15 (1.95) -12.35 (-10.14) -11.05 (-5.03) 
4eefG 

(HB80) -76.9 (-76.4) -76.0 (-56.5) 6.9 (4.3) 8.35 (1.6) -7.38 (-7.87) -12.14 (-9.13) 
1yrnA -6.5 -43.4 0.35 0.55 9.62 1.38 
1ohzB -27.7 -47.3 2.05 3.85 -7.68 -6.36 
2x9aC -32.5 -34.7 0.4 0.95 -4.96 -0.43 
3ihqB -51.0 -47.2 0.8 1.4 -2.79 0.74 
1pk1B -13.8 -47.3 1.15 1.35 1.84 0.22 
2b87A 4.9 -27.6 0.45 0.05 3.14 0.57 
2y0sL -42.1 -59.2 1.2 0.5 -5.68 -3.57 
3ossC -19.2 -37.8 0.25 0.95 1.97 1.54 
1s1qB -62.4 -63.5 1.2 1.05 3.10 -2.44 
1qfnA -23.2 -41.9 1 1.8 8.18 2.24 
 



130 
 

Table 4.3. Improvement with computational redesign. Each candidate protein is 
subjected to stepwise mutations, with the most favorable mutation retained for the next 
round. Each round improves over the previous one (<ΔGbinding>1 over <ΔGbinding>0, and 
<ΔGbinding>2 over <ΔGbinding>1). The final designs scored comparably with our reference 
states when evaluated by the three criteria. The last column lists the root mean squared 
distance (RMSD) of the final design based on Cα atoms with respect to its starting 
structure, and the low RMSD value suggests minimal structural distortion introduced to 
the candidate protein. 

Binding 
protein 

<ΔGbinding>0 
(kcal/mol) 

<ΔGbinding>1 
(kcal/mol) 

<ΔGbinding>2 
(kcal/mol) Zdock 

ΔG by FoldX 
(kcal/mol) 

RMSD 
(Å) 

CR6261 -73.1 - - 1.05 -10.95 2.3 
3r2xC 

(HB36) -60.1 (-53.4) - - 2.15 (1.95) -11.05 (-5.03) 1.0 (1.0) 
4eefG 

(HB80) -76.0 (-56.5) - - 8.35 (1.6) -12.14 (-9.13) 1.9 (1.2) 
1yrnA -43.4 -61.1 (E102R) -68.1 (Q87E) 0.1 3.23 0.8 
1ohzB -47.3 -59.8 (S45W) -65.7 (R53W) 2.1 -11.55 1.1 
2x9aC -34.7 -41.0 (D14N) -48.4 (D46V) 1.8 -6.35 1.1 
3ihqB -47.2 -72.0 (E255W) -81.7 (V260Y) 1.1 -3.63 1.1 
1pk1B -47.3 -55.9 (E56V) -65.8 (S32M) 1.7 -6.21 0.9 
2b87A -27.6 -45.5 (D32N) -59.3 (R35F) 0.5 -3.01 1.7 
2y0sL -59.2 -73.1 (H47Y) - 1.45 -4.24 1.4 
3ossC -37.8 -49.1 (R137Q) -57.5 (V150Q) 0.8 0.63 1.3 
1s1qB -63.5 -69.3 (Q62K) -78.9 (I44W) 0.3 -1.7 0.9 
1qfnA -41.9 -56.4 (E56K) -72.2 (D74R) 1.1 -5.84 1.7 
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computational analysis are generally intuitive (Figure 4.6). For the xylanase taken from 

the cellulosome complex in Ruminiclostridium thermocellum (chain B of PDB code 

1ohz), the two substitutions (S45W and R53W) mainly serve to reduce the desolvation 

costs to favor binding, while modifying the side chain volume at the same time to better 

fill the void between the inhibitor and the target protein (Figure 4.6, A1 and A2). For the 

viral attachment protein G3P (2x9a chain C) from Enterobacteria phage If1, both of the 

mutations (D14N and D46V) remove the repulsion with like charges from the nearby 

residues (D46 and D19 of HA2 respectively) on the target site, thereby improving the 

binding energy (Figure 4.6, B1 and B2). The sex-comb-on-midleg protein found in 

Drosophila melanogaster (chain B of 1pk1) is optimized to undergo the mutation of 

E56V to avoid repulsion with like charges from the nearby (D19 of HA2) in HA (Figure 

4.6, C1), and the mutation of S32M to reduce the desolvation cost and to favor 

hydrophobic interaction with the surrounding environment on the target site (Figure 4.6, 

C2). Finally, for glutaredoxin 1 from Escherichia coli (chain A of PDB code 1qfn), both 

substitutions (E56K and D74R) improve the electrostatic interaction by forming salt 

bridges with E57 of HA2 and D46 of HA2 from HA respectively (Figure 4.6, D1 and D2), 

which significantly improves the estimated binding free energy (Table 4.3). 

4.4. Discussion: 

This work presents a computational approach to design protein inhibitors for a target 

protein, when a structural model for the target protein in complex with a known binder 

exists. The key idea is to use the protein-protein interface for the known complex as a 

template to search for naturally present protein dimers that interact in similar fashions, 

from which a substitution of the known binder of the target protein can be made by its 
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Figure 4.5. Top four designed inhibitors. In all panels, HA is colored in yellow while 
the predicted binding protein is colored in red; (A) chain B of PDB code 1ohz, (B) chain 
C of PDB code 2x9a, (C) chain B of PDB code 1pk1 and (D) chain A of PDB code 1pk1. 

  



133 
 

 



134 
 

Figure 4.6. Mutations introduced in top four designs. In all panels, HA is colored in 
yellow while the designed binding protein is colored in red, both in cartoon 
representation. The mutated residues on the designed proteins are shown in bonds 
representation, colored by the atom types. The binding site on the target protein that is 
near the redesigned residues is drawn in surface representation, with non-polar residues 
colored in while, polar residues in green, acidic residues in red and basic residues in blue. 
(A1,2) illustrate the modified redidues for chain B of PDB code 1ohz. (B1,2) show the 
modified residues for chain C of PDB code 2x9a. (C1,2) are the mutations for chain B of 
PDB code 1pk1. (D1,2) show the mutations for chain A of PDB code 1qfn. 
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structural equivalent based on interface alignment. The concept of using templates in 

predicting protein-protein interactions is not new; based on sequence and/or structural 

similarity of the individual proteins, numerous studies have been carried out to model 

protein-protein interactions between some target proteins using the complex structure of 

their homologue pairs [229-241]. In addition, methods also exist that predict protein-

protein interactions by focusing on local similarities at the interface region, either based 

on sequence-structure compatibility [242] or purely from a structural point of view [243-

245], the latter of which is commonly applied in docking studies. The novel contribution 

of our work is that it is the first application, to the best of our knowledge, of the template-

based method in therapeutic design. 

The key to success of the template-based methods in modelling protein-protein 

interactions is the target-query similarity measure. Our metric used in this study, we 

believe, captures the minimally sufficient information to quantify interface similarity. 

First of all, the topology of interfacial residues is not considered, in recognition of the 

fact that interfaces consist of discontiguous fragments in space. Second, chemical types 

of the interfacial residues are accounted for when scoring the similarity. Lastly, only the 

coordinates of the Cα atoms and not the side chains are used for computing the scoring 

function, based on the rationale that the Cα atoms alone provide the skeleton of the 

protein scaffold that accommodates interfacial residues with certain chemical and spatial 

arrangement, while still allowing the flexibility of introducing mutations for re-design 

purposes. Therefore our method, PCalign, is well-suited for our intended inhibitor design 

for a given target protein. 
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While it is not clear at this stage whether our computational predictions are indeed 

valid without being confirmed by experiments, we have shown in our work a plausible 

alternative route to design protein binders for a target of interest when a structural 

template is available. Based on the evaluation by the different assessment criteria we used, 

this method appears to offer great promise in generating testable hypotheses. Beyond 

these computational predictions, we are in the process of setting up experimental 

collaborations to have these designs tested for binding activity. Once validated, we hope 

to improve our design through experiment-guided affinity maturation, using techniques 

such as site-directed mutagenesis or error-prone polymerase chain reaction to identify 

favorable mutations that enhance binding activity, which in turn should better inform us 

the physical principles that underlie molecular recognition. Within the scope of this work, 

we believe we have demonstrated a computational framework that puts us in a good 

starting point in exploring therapeutic options for a given drug target. 

As an extension of the current work on HA inhibitor design, it is worth examining 

whether our proposed candidate proteins have cross-reactivity with other HA strains and 

subtypes, similar to the broadly neutralizing antibody CR6261, given that the intended 

binding site of our designed proteins should largely overlap with that of the antibody. 

Such tests can be carried out for different HAs using techniques such as gel filtration, 

yeast display or biolayer interferometry experiments. If inhibitory activity can indeed be 

detected, we will be more confident about the feasibility of our template-based drug 

design approach in providing additional diagnostic or therapeutic tools to battle against 

influenza viruses. 
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Once binding activity can be established for the predicted protein inhibitors, we are 

also interested in whether any toxic effects will be associated with these designs. In other 

words, identifying potential off-targets of the protein inhibitors is equally important in 

carefully evaluating the feasibility of any drug candidates, as interference with normal 

cellular activity involving these off-targets can be highly undesirable. For the 10 

candidates we identified, five of them are bacterial proteins, one archaeal, one viral, and 

the remaining three eukaryotic proteins. With the exception of the ubiquitin from humans 

(chain B of PDB code 1s1q), the other two eukaryotic proteins are from yeasts and fruit 

flies respectively, which are considered to be on the lower end of the eukaryotic 

hierarchy. Therefore it is unlikely that these candidate proteins bind directly with human 

proteins to result in toxicity. However, precaution needs to be taken in examining 

whether the proposed target site binding region of the candidate proteins share significant 

sequence similarity with their human homologues, if any. Conservation of the interface 

region of the candidate proteins across different kingdoms could lead to unwanted off-

target effects if they cross-react with the human homologues of their binding partners, 

disrupting the associated cellular function in the host system. Other than interference that 

results from shared binding sites for the HA equivalent between the candidate proteins 

and their human homologues, another source of toxicity can also come from remote 

binding sites with other proteins located far away from the designed ones on the 

candidate proteins. This is especially the case if the candidate protein is found in an 

oligomer as opposed to a dimer in its physiological state, so that the candidate protein is 

simultaneously interacting with other macromolecules. Three out of the 10 predictions we 

have belong to this category, for which redesign for interfacial residues located on the 
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secondary binding sites may be necessary to prevent undesirable association with the 

human counterparts of those additional partners, should a homologous functional 

complex exists in our system. 
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CHAPTER V 

Protein-protein interfaces in viral capsids are structurally unique 

5.1. Introduction: 

Viral capsids display an elaborate and symmetrical architecture that is not seen in 

other macromolecular complexes formed by cellular proteins. Most available structural 

models of viral capsids observe icosahedral symmetry, where 60 copies of the 

icosahedral asymmetric unit tile the 20 triangular faces. Each icosahedral asymmetric unit 

contains one or more protein subunits, with the number denoted by the Triangulation 

number or T-number. In T=1 viruses, all 60 capsid proteins are placed in an identical 

environment. The majority of the T>1 viruses with more than 60 capsid proteins in the 

capsid shell obey the quasi-equivalence principle proposed by Caspar and Klug [11], 

permitting slightly varied modes of interaction between capsid proteins in different 

structural environments, with a few exceptions that either still adhere to the overall 

icosahedral symmetry [246, 247] or slightly distort such symmetry [248]. 

The unique functional role of viral capsid proteins prompts questions regarding their 

structural characteristics, given that function follows form. Previously, our study on 

comparing the folded topology of viral capsid proteins and generic cellular proteins 

revealed the lack of connectivity in the structural space between the two [200], 

highlighting the geometric constraints to which the building blocks must conform to form 
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a closed shell. In the current chapter, we concern ourselves with whether the protein-

protein interfaces in viral capsids are similarly subjected to such selective pressure, that is, 

whether evolution plays a role in shaping how capsid proteins associate, or if physical 

laws of complementarity alone are sufficient in guiding the self-assembly of proteins in 

general. 

Other than their distinct higher order organization, capsid proteins display an 

interesting feature of interface plasticity, allowing different intermolecular contacts to be 

formed by sequence-wise identical proteins in one static quaternary structure [104], as 

opposed to dynamically controlled variation in intermolecular interactions in some other 

biological systems [249]. Understanding how such fine-tuning of protein-protein 

interactions is achieved in viral capsids will enhance our knowledge of the fundamental 

principles of protein association, which we can apply to areas such as making better 

predictions in protein-protein docking studies by improving the scoring functions 

accordingly. This is only true, however, if the knowledge we gain from the wealth of 

interaction data in viral capsids is generalizable to all proteins, which necessitates the 

assessment of whether the inter-subunit interfaces in viral capsids span the structural 

interface space of all proteins including cellular ones. 

A third aspect that motivates the comparison of interfaces in viral capsids versus 

those in cellular protein complexes is whether the design of antiviral drugs targeting viral 

capsid assembly can be rationalized to minimize toxicity. While focus of current 

treatment for viral diseases has largely been on viral enzymes [250], viral capsid proteins 

are emerging as a highly promising yet underexplored therapeutic  target, with some 

recent advances in small molecule and peptide inhibitors that can bind HIV capsid 
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proteins [99, 100] at the inter-subunit interfaces to disrupt the initial viral capsid 

assembly. As computational efforts towards structure-based drug design continue to 

propose new candidates for experimental validation [251], precaution needs to be taken 

to evaluate the selectivity of these drug candidates. If we find that the inter-subunit 

interfaces in capsids are indeed uniquely found in viruses, we can focus on these 

pathogen-specific sites for therapeutic development without worrying about off-target 

effects that may disrupt normal cellular activities. 

To address the question of whether the modes of protein-protein recognition seen in 

viral capsids are representative of those found in small oligomeric protein-protein 

complexes that are typically formed by cellular proteins, we perform a structural 

comparative analysis across all pairwise-interacting dimers in viral capsids versus those 

in generic protein complexes for all structural models available to date. The same 

question was raised by Joel Janin and coworkers [129], but with a different approach that 

comprehensively surveyed various structural features of capsid protein-protein interfaces, 

crystal contacts and protein-protein complexes, such as buried surface area, chemical 

composition and atomic packing. In our work, we make the first attempt to directly test 

the hypothesis that the inter-subunit protein-protein interfaces found in viral capsids are 

structurally unique. Figure 5.1 outlines the design of our analysis. Specifically, we would 

like to examine if the structural overlap in the protein-protein interface space between the 

set of all capsid-forming proteins and the set of all non-capsid forming proteins is 

significantly small. If this is true, we then have statistical evidence supporting the 

uniqueness of inter-subunit interfaces in viral capsids. 

5.2. Materials and Methods: 
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Figure 5.1. Comparison between inter-subunit interfaces in viral capsids and 
protein-protein interfaces in generic protein complexes. The protein-protein interfaces 
formed by capsid proteins, illustrated on the left (PDB code: 3kic), constitutes the 
structural space drawn in blue, while the generic protein-protein interfaces, exemplified 
by those found in an RNA polymerase elongation complex shown on the right (PDB code: 
2o5i), constitutes the structural space drawn in grey. Overlap in the Venn diagram refers 
to the subset of generic protein-protein interfaces that sufficiently resemble some capsid 
inter-subunit interfaces, based on certain quantitative criterion for structural similarity, 
and hence signifies the extent to which interfacial patterns found in cellular protein 
complexes can be represented by those in viral capsids. 
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5.2.1. Data collection 

Each viral capsid shell contains 60 copies of the icosahedral asymmetric unit (IAU), 

which consists of T-number of protein subunits. Therefore all pairwise dimer interfaces 

involving at least one protein subunit from the first IAU sufficiently represent all unique 

protein-protein interfacial patterns found in that particular virus. For the 421 entries in the 

database VIrus Particle ExploreR (VIPERdb) [10], which include procapsids (capsids in 

the premature form) as well as subviral particles that form as a result of modified 

conditions, yet all obeying icosahedral symmetry, we collect 1930 dimers involving 

subunits from the first asymmetric unit, with at least 10 interfacial residues and not 

exceeding 200 interfacial residues in those dimers. These cutoffs were chosen based on 

the rationale that pairwise interacting protein dimers with too small an interface are 

insufficiently stabilized in the complexed state, and too large a protein-protein interface 

typically involves multiple domains. Moreover, 50 additional entries of capsid protein 

dimers that we identified in the generic interface set (described in the following section) 

were removed from that set and added to the capsid interface set (the complete list of 

these 50 entries is found in Table C.1). These 1980 capsid dimers were then clustered 

using complete-linkage hierarchical agglomerative clustering cut at a PC-score 

(explained in Section 5.2.2) of 0.5 into 551 groups, from each of which a medoid 

structure is chosen to be included in the final representative set of capsid protein-protein 

interfaces. It is worth noting that the final clustering procedure has precluded many quasi-

equivalent interfaces to be collectively included in the capsid set and only one or few 

representatives of those are retained. However, we believe that the representative set 
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captures the coarse overall geometric and chemical moieties found in capsid shells and 

thus suffices for our comparative study. 

For the generic interface set, 75694 structural models were collected from the Protein 

Data Bank [112], which were screened against PISA [222] to extract 165257 protein 

dimer interfaces assigned to be biologically significant (as opposed to due to crystal 

packing). 123395 remained after pruning those with fewer than 10 interfacial residues or 

more than 200 interfacial residues. This set was then grouped into dimers that have 

pairwise sequence identity of at least 50%. Within each group, representative dimers are 

chosen so that their interfaces have PC-scores lower than 0.5 with one another, given 

similar monomers can interact in dissimilar ways. The entries corresponding to inter-

subunit interfaces in viral capsids are removed from this reduced set and appended to the 

viral capsid set as described earlier. Finally, the same structural clustering procedure is 

performed to retain representative dimers only to constitute our generic dimer set 

consisting of 20014 pairwise generic interfaces. 

5.2.2. Comparison metric 

For quantifying the similarity between two interfaces of a given pair of protein dimers, 

we use the program PCalign [223], which returns a normalized score, PC-score, based on 

structural alignment of two interfaces. PC-score takes the following form: 

PC-score = PC-scoreraw
ln 0.3 ln(0.14+0.29×0.97𝐿𝑎𝑎𝑎)⁄

,    (5.1) 

where Lave is the average of the number of interfacial residues for the pair of protein 

dimers compared, and PC-scoreraw is computed by 
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PC-scoreraw = 𝑓𝑐
𝐿𝑎𝑎𝑎

∑ 1

1+0.25×�1−𝐼𝑖𝑖(same chem type)�+
𝑑𝑖𝑖
2

16

𝐿𝑎𝑎𝑖
𝑖=1  ,   (5.2) 

based on the structural alignment of the two interfaces identified by PCalign. Here fc is 

the ratio of common contacts between the two interfaces aligned given by 

𝑓𝑐 = 𝑁1�⃖���⃗ ∙𝑁2�⃖���⃗

(𝑁1�⃖���⃗ ∙𝑁1�⃖���⃗ +𝑁2�⃖���⃗ ∙𝑁2�⃖���⃗ ) 2⁄
 ,      (5.3) 

where 𝑁1�⃖��⃗  and 𝑁2�⃖���⃗  are matrices representing the contact maps of the aligned interfacial 

residues in the pair of interfaces being compared. The dot operation represents the inner 

product of two matrices. Iii(same chem type) is the indicator function that takes the value 

of 1 if the ith pair of aligned residues share the same chemical functional group and 0 if 

they do not (see [223]). dii is the spatial distance in Å between the Cα atoms of the ith pair 

of aligned residues. This scoring function ranges from 0 to 1, with 1 resulting from 

comparison of identical interfaces (self-comparison). 

5.2.3. Quantify overlap in structural space 

To have a quantitative measure of the extent to which generic protein-protein 

interfaces represent patterns found at capsid inter-subunit interfaces, we perform the 

following analysis. We carry out M×N comparisons of protein-protein interfaces using 

PCalign between all M members in the capsid set and all N members in the generic set. 

For each of the N generic protein-protein interfaces, we find its nearest neighbor in the 

capsid set, where the structural distance is defined by (1 – PC-score). For a given generic 

protein-protein interface, the distance between itself and its nearest neighbor in the capsid 

set reflects how connected it is to the capsid set in the interface space. We then select the 
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generic protein-protein interfaces whose distances with their respective nearest neighbor 

are less than 0.5, and this set of generic interfaces is considered to share significant 

structural similarity with some inter-subunit interface in viral capsids, representing the 

overlapping region in the Venn diagram shown in Figure 5.1. The count of these capsid-

like generic interfaces is used as the test statistic for our hypothesis testing. 

5.2.4. Statistical significance of the test statistic 

To assess whether the shared structural space between generic protein-protein 

interfaces and inter-subunit interfaces found in viral capsids is significantly small, we 

estimate the p-value of our test statistic by a permutation test, as summarized in Figure 

5.2. Similar to what was done previously [200], the total set of protein-protein interfaces 

is first randomly partitioned into two sets, A and B, that have the same number of 

interfaces as the capsid set and the generic set respectively. We then count the number of 

interfaces in the larger set B that highly resemble at least one interface in the smaller set 

A, which is our variable of interest. By repeating this experiment 10,000 times, we obtain 

the distribution of structural overlap between any two mutually exclusive sets of the 

given sizes, and can therefore estimate the probability of obtaining a value smaller than 

or equal to our test statistic by random chance. 

5.3. Results: 

5.3.1. Similar sizes but different oligomerization states 

For the representative 551 capsid protein-protein interfaces and 20014 generic 

protein-protein interfaces, we first examine the size distribution of each set, specifically 

the number of interfacial residues present in a protein dimer. From Figure 5.3, we see that   
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Figure 5.2. Permutation test for estimating the statistical significance. Under the 
assumption of our null hypothesis that inter-subunit interfaces in viral capsids are no 
different from generic protein-protein interfaces, we can exchange labels between the 
capsid set and the non-capsid set (i.e. partition the total set) in a random fashion to obtain 
a set A that mirrors the capsid set, and their complement set B that is the equivalent of the 
generic set. All possible values of the structural overlap between set A and set B under 
the rearrangement of the labels give us the distribution of structural overlap, from which 
we can obtain the statistical significance of our test statistic. 
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Figure 5.3. Density distribution of interface sizes for the generic set and the capsid 
set. The two largely overlap, with the generic set having a marginally larger proportion of 
interfaces in the range of 15 to 40 interfacial residues. 
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there is no pronounced difference in the distribution of interface sizes in the two sets, at 

least not in the range of interface sizes (between 10 and 200) we have considered in our 

analysis. The capsid set compared to the generic set has marginally a larger number of 

residues making contacts at an interface. The most frequently seen interface size for a 

generic protein dimer is 22 interfacial residues, while an inter-subunit interface in viral 

capsids typically has 24 interfacial residues. Nonetheless, this difference is well within 

the standard deviation of 30 residues in the distribution and thus negligible. Having 

comparable interface sizes in the two sets implies that differences identified, if any, 

should be mainly attributed to the geometry and the chemical properties of the interfacial 

residues. 

The oligomerization states, however, differ significantly between the two sets, as 

expected. Similar to what was done in [129], we examined, for each protein of all dimers 

included in our analysis, the number of pairwise protein-protein interfaces that the protein 

is simultaneously involved in. This number of interacting partners gives a crude 

description of the higher order organization of proteins in their quaternary states. As 

shown in Figure 5.4, a typical generic protein forms a dimer, while capsid proteins are 

frequently interacting with 5 other proteins within the same shell, highlighting the overall 

complexity of capsid shell formation. The different oligomerization states may underline 

potential differences we find in the two sets of proteins. 

5.3.2. Protein-protein interfaces formed by capsid proteins are distinct from those 

formed by cellular proteins 

The all-against-all comparison between pairwise protein-protein interfaces in viral  
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Figure 5.4. Different oligomerization states in the two sets. This figure plots the 
density distribution of the number of simultaneous interacting partners in the same 
protein complex for a given protein that forms an interface in the generic set and the 
capsid set. A capsid protein, on average, has 4.2 neighboring capsid proteins within the 
same shell, while the average number of interacting partners for a generic protein is only 
2.2. 
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capsids and cellular protein complexes identified altogether 418 generic interfaces that 

resemble capsid ones, where the similarity is defined based on a distance cutoff of 0.5. 

Compared with the distribution of any two sets of the same sizes, estimated from the 

10,000 permutation tests, this overlap in structural space falls on the extreme left as 

shown in Figure 5.5, which is significantly small with a one-tailed p-value < 0.0001. We 

further show in Figure 5.6 that such a disconnectivity between the capsid set and the 

generic set in the protein-protein interface space is not the result of differences in the 

sampling density of the two sets; in fact, the intra-set connectivity is about equal for the 

two sets. We thus have statistical evidence that in terms of interfacial patterns formed 

between protein dimers, inter-subunit interfaces in viral capsids are not representative of 

generic protein-protein interfaces found in cellular protein complexes. 

The same conclusion can be arrived at even when a different distance cutoff is chosen. 

Figure 5.7 plots the cumulative fraction of 20014 interfaces that are within a certain 

structural distance of their nearest neighbor in the complementary set of 551 interfaces. 

The blue curve corresponding to the comparison between the capsid set and the generic 

set is slightly shifted to the right of the grey curves representing the 10,000 permutations, 

which suggests that inter-subunit interfaces in viral capsids are more different from 

generic protein-protein interfaces compared to what happens as a result of random chance. 

This holds true across the entire spectrum of structural distances, including the cutoff of 

0.5 chosen previously. 

5.3.3. Overlap in structural space of protein-protein interfaces 

As we examine the 418 generic interfaces that resemble at least one inter-subunit 
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Figure 5.5. Statistical significance of the test statistic. Out of 10,000 permutations, no 
single case results in 418 or fewer structurally similar interfaces identified between a 
randomly selected set of 551 interfaces and their complement set of 20014 interfaces, 
which makes the one-tailed p-value of our test statistic less than 0.0001. Hence there is 
strong statistical evidence supporting the hypothesis that capsid interfaces are unlike 
generic ones. 
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Figure 5.6. Equal connectivity in the two sets. This plot shows that the within-set 
structural distance distribution for the capsid interface set is well overlaid on top of that 
for the generic interface set, which suggests that the structural space of both sets have 
been sampled equally densely to give rise to the data sets, demonstrating the uniformness 
of the total interface set that justifies the soundness of the permutation test. 
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Figure 5.7. Capsid protein-protein interfaces are different from generic ones. Shown 
here in the empirical cumulative fraction distribution of distances between one set of 551 
protein-protein interfaces and their nearest neighbor in the complementary set, we see 
that capsid protein-protein interfaces are structurally more distant from non-capsid ones, 
represented by the blue curve, than the random background, represented by 10,000 grey 
curves. The average empirical cumulative fraction distribution is colored in red. The 
range of structural distances plotted is from 0.35 to 0.75 to show a better resolved picture, 
while in theory this can range from 0 to 1. 
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interface in some capsid, we see their structural analogues in the capsid set are generally 

small in size, with more than 70% of them having fewer than 20 interfacial residues 

(Figure 5.8). For these protein dimers that form a small area of contact, there are most 

likely only limited ways of arranging a few points (i.e. interfacial residues) spatially. 

Thus for the smaller interfaces in viral capsids, it is intuitively easier to find similar 

patterns among generic interfaces. Furthermore, interactions rendered by a few interfacial 

residues are unlikely to contribute to a great amount of binding energies compared with 

larger interfaces (which should not be confused with the idea of a few hot spot residues 

anchoring protein-protein association in general). In fact, most of these protein-protein 

interfaces in viral capsids that overlap with generic ones are found in between 

capsomeres, which are pentamers or hexamers and generally considered to be stable 

assembly intermediates for viral capsids, rather than within a capsomere, indicating that 

they are less active players in the shell formation process. This overlap in structural space 

of protein-protein interfaces in the two sets of data thus may not have significant 

biological implications. 

Unlike the case with comparing the folded topology between capsid proteins and 

generic proteins, where we found a few representative classes of cellular proteins that 

resemble capsid ones which also forms symmetric oligomers, no similar trend can be 

easily identified with the capsid-like generic interfaces in terms of the functional 

annotation of the constituent protein monomers. A complete list of the diverse range of 

GO terms associated with these protein interfaces is summarized in Table C.2. Among 

these, the most abundant hits are associated with proteins in the immune system. This is 

not surprising, given the frequent encounters and close interaction between the host   
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Figure 5.8. Sizes of the 418 capsid protein-protein interfaces in the overlap region. 
Majority of these capsid interfaces that structurally resemble some generic interfaces are 
small in size, with the exception of one interface that has a size of 85 interfacial residues, 
being a long coiled coil structure. 
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immune system and the viral coat proteins before the virus gains access to the cell 

interior. What appears most frequent in these small, capsid-like generic interfaces are 

clusters of discontiguous fragments from loop regions, rather than well-defined 

secondary structural elements, and the constituent proteins forming these small contacts 

are typically part of larger oligomeric complexes as opposed to homodimers. Figure 5.9 

illustrates a few examples of these cases, with the constituent proteins covering 

functional classes such as transferases (Figure 5.9 (A)), cell adhesion (Figure 5.9 (B)) and 

ligases (Figure 5.9(C)). 

5.4. Discussion: 

5.4.1. Result of comparative study is not sensitive to quality of structural data 

Structural comparison between biological molecules relies on having reasonable 

structural models solved by experimental techniques. The large, elaborate nature of 

macromolecular complexes such as viral capsids often creates limits on the sample 

availability and regularity, resulting in lower resolution of the structures determined. 

Consequently, the atomic coordinates of these structural models are less accurate and 

sometimes with details missing, compared to those of small protein complexes involving 

cellular proteins. Furthermore, in the case of viral capsids, the symmetry of the assembled 

architecture is utilized for averaging over the experimental density of all asymmetric 

units for coordinate derivation, leading to additional sources of imprecision.  Nonetheless, 

the structural comparison tool that we used in this study scores the similarity between a 

pair of protein-protein interfaces with reduced representation of their structural 

information, both geometrically and chemically, and we have demonstrated previously 

[200] that our comparison metric can recognize significant similarity between related   
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Figure 5.9. Examples of similar interfaces from the capsid set and the generic set. In 
all panels, the viral capsid proteins are colored in cyan and orange, while the cellular 
protein dimers are colored in blue and red. The monomer proteins are drawn in either 
cartoon representation or tube representation, the latter for structural models lacking side-
chain information. The Cα atoms of the aligned interfacial residues are shown in van der 
Waals representation. (A) The interface formed by the generic protein dimer (PDB code 
1xiq, chain IDs B and F) is aligned to the capsid interface (PDB code 1x9p, chain A in 
the first IAU and chain A in the 16th IAU). (B) The generic interface between chain A 
and chain B of PDB code 3m45 is aligned to the capsid interface formed by chain B and 
chain C within the same IAU in PDB code 1n6g. (C) The generic interface between chain 
G and chain H of PDB code 3d54 is aligned to the capsid interface between chain F of the 
first IAU and chain F of the second IAU in PDB entry 3muw. 

  



159 
 

protein- protein interfaces in artificially created data that are highly corrupted. Given the 

robustness of our method against noisy data, it is unlikely that the conclusion drawn 

based on our comparative study will be affected by the inaccuracy of the atomic positions 

in these structural models. 

5.4.2. Domain-swapped interfaces are not treated differently 

Domain swapping is commonly found in homomeric complexes, and it refers to two 

identical proteins exchanging the same structural elements to form dimer interfaces that 

replace the original intramolecular contacts in the monomeric states. Since its first 

recovery in diphtheria toxin [252], many domain-swapped structures of diverse origin 

have been identified [253]. These interfaces are best characterized by their highly 

intertwined nature, blurring the boundary between intramolecular contacts and 

intermolecular ones. In our work, we have not delineated this class of protein-protein 

interfaces from the rest of generic interfaces for special consideration, for the main reason 

that despite the possible advantage of the domain swapping mechanism in formation of 

large, stable protein complexes, domain swapping is still rare (on the order of 10) among 

currently solved structures [254] and remains less well understood for unambiguous 

annotation. This being the case, we do not expect the negligible fraction contributed by 

this class of protein-protein interfaces to have significant bearing on the overall 

conclusion of our study. 

5.4.3. Implications of protein-protein interfaces in capsids being unique 

Viral capsid shells represent large macromolecular assemblies that exist on a scale not 

seen in most of cellular macromolecular complexes. Given the unique function of capsid 



160 
 

proteins in making shells, we are interested in whether the sticky patches on these 

building blocks that piece them together are also structurally unique, in order to pinpoint 

features critical for the design principle of large biological containers. Our hypothesis 

testing has provided strong statistical evidence of the distinctiveness of the interfacial 

patterns found between capsid proteins from those between cellular proteins, which has 

the important implication that how capsid proteins recognize and associate with one 

another is governed not simply by physical principles of shape complementarity alone, 

but is retained specifically by evolution to favor the higher order organization. This 

conclusion that capsid interfaces are subjected to evolutionary constraints is in agreement 

with the previous findings that changes in inter-subunit geometry have direct impact on 

the oligomerization states of protein subunits [255], which in turn should confer selective 

pressure on protein-protein interactions. Combined with our earlier observation that the 

folded topology of viral capsid proteins is also segregated from those of cellular proteins, 

we arrive at the conclusion that the basic shape of these Lego pieces and the molecular 

recognition sites on their edges act concertedly to create the sophisticated shell 

architecture as designed. 

In terms of rationalizing therapeutic design of antiviral drugs, the finding of this work 

favors the view that pathogen specificity can be achieved, given that protein-protein 

interfaces in viral capsids are significantly different from those involved in cellular 

activities. While this statement holds true, we would like to caution against the danger of 

introducing inhibitors targeting the smaller interfaces in viral capsids, especially those not 

found within the same capsomere, which can possibly fall into the structural overlap 

between capsid protein-protein interfaces and generic ones. As shown in Table C.2, these 
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potential off-targets in the cellular domain cover a wide range of biological functions, 

including various enzymatic activities and gene regulation that are crucial for life. A 

more conservative approach would be to focus on those larger interfaces that provide 

greater stabilization energy for the capsid shell, with the hope of not only having greater 

inhibitive power for the assembly process but also with fewer side effects. 

Lastly, our study has confirmed that interfacial patterns in viral capsids are not 

representative of those in cellular protein complexes. While most cellular proteins 

function by forming binary interactions, either transiently or permanently, viral capsid 

proteins are characterized by interacting with multiple partners simultaneously in the 

multiple-component assemblies.  What we are most interested in with regards to 

properties of inter-subunit interfaces in viral capsids is the control of quasi-equivalence, 

which provides a great example of exquisite fine-tuning of modes of interaction via 

conformational switching of identical gene products.  However, as we established in this 

study, the larger interfaces within capsomeres do not share much structural similarity 

with generic protein-protein interfaces, and it is precisely the alternation between the 

concave pentamers and the flat hexamers that best manifests the quasi-equivalent 

property. Therefore, what we learn about physical principles governing protein-protein 

recognition from capsid proteins may not easily extend to protein-protein interactions at 

large. 

The above aspects cover the implications of our findings in this work. What our 

conclusion does not imply, however, is the general uniqueness of structural 

characteristics of all viral proteins. The exclusive sets of folded topology and distinct 

patterns of association with one another found in viral capsid proteins are correlated with 
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their specific function that is missing for cellular life forms. Unlike capsid proteins, other 

viral proteins may assume roles that partially overlap with cellular proteins. Examples 

include viral proteases that process polypeptides for maturation, which contain motifs for 

hydrolysis of peptide bonds similar to cellular proteases that lyse misfolded peptides for 

recycling, and reverse transcriptases in retroviruses necessarily share similar nucleotide 

binding sites with DNA polymerases in cellular machinery. Related studies on the 

structural relationship between general classes of viral proteins and cellular proteins have 

been carried out, with focuses on virus-host interaction in humans [182] and 

thermodynamic stabilities [256]. The first study established extensive overlap between 

virus-host interactions and endogenous interactions within the host for competitive 

binding, suggesting that the uniqueness of capsid protein-protein interfaces is a result of 

functional requirement rather than their viral origin. The second study concluded on the 

high adaptability of viral proteins for effective interaction with proteins in the host, as 

opposed to thermostable proteins, which are less tolerant of the deleterious effects of 

mutations. This second study presents an additional aspect of viral proteins, specifically 

their chemical composition and disorder propensity. One needs to be precautious in 

extrapolating this unique biophysical property of viral proteins to all protein-protein 

interfaces that are viral derived without further investigation. 

5.4.4. Concluding remarks 

To conclude, we have shown in this study via rigorous hypothesis testing that inter-

subunit interfaces in the large, elaborate viral capsid assemblies are significantly different 

from protein-protein interfaces found in the smaller and simpler cellular protein 

complexes. This difference in capsid interfaces is most likely the consequence of the 
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functional requirement for making the specific architecture of shells for encapsulation of 

the viral genome, which on average involves more neighbors per protein subunit as well 

as assumes a more expanded organization compared with cellular complexes that are 

often times binary and more compact and collapsed in nature. Our results should provide 

deeper understanding of the nature of self-association in large biological containers for 

creating predictable designs in a variety of therapeutic and materials science applications. 
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Appendix C 

Additional information for CHAPTER V 

 

Table C.1. List of additional capsid protein dimers. These entries are not deposited in 
the VIPERdb, and were subsequently moved from the generic interface set to the capsid 
set before a structural redundancy filter was applied to both sets. 

PDB code Chain identifiers Virus name 
1ahs AB African horse sickness virus 
1ak4 CD Human immunodeficiency virus 1 
1bvp 56 Bluetongue virus 
1c5e AC Enterobacteria phage lambda 
1ebo DF Ebola virus 
1ei7 AB Tobacco mosaic virus 
1em9 AB Rous sarcoma virus 
1fn9 AB Reovirus 
1hiw AR Human immunodeficiency virus 1 
1hiw QR Human immunodeficiency virus 1 
1jmu BH Reovirus 
1jmu DE Reovirus 
1jmu DF Reovirus 
1jmu EF Reovirus 
1jmu FI Reovirus 
1no7 AB Human herpesvirus 1 

1p65 AB 
Porcine reproductive and respiratory syndrome 
virus 

1r6r AB Dengue virus 2 
1u7k EF AKR (endogenous) murine leukemia virus 
1vps AE Murine polyomavirus 
1wnc BF SARS coronavirus 
1zv8 GK SARS coronavirus 
2beq DF SARS coronavirus 
2cse 1V Mammalian orthoreovirus 1 Lang 
2cse 1W Mammalian orthoreovirus 1 Lang 
2cse AK Mammalian orthoreovirus 1 Lang 
2cse AR Mammalian orthoreovirus 1 Lang 
2cse AY Mammalian orthoreovirus 1 Lang 



165 
 

2cse JU Mammalian orthoreovirus 1 Lang 
2cse LU Mammalian orthoreovirus 1 Lang 
2cse QX Mammalian orthoreovirus 1 Lang 
2cse VW Mammalian orthoreovirus 1 Lang 
2cse VZ Mammalian orthoreovirus 1 Lang 
2cse WZ Mammalian orthoreovirus 1 Lang 
2eia AB Equine infectious anemia virus 
2ezo BC Simian immunodeficiency virus 
2gic AC Vesicular stomatitis Indiana virus 
2gic BC Vesicular stomatitis Indiana virus 
2gsy BD Infectious bursal disease virus 
2gsy GN Infectious bursal disease virus 
2i2s AB Porcine rotavirus 
2vvf AB Pseudoalteromonas phage PM2 
2zl5 AB Norwalk virus 
3bwq AE Simian virus 40 
3h00 BD Human immunodeficiency virus type 1 
3izo BC Human adenovirus 5 
3rkc AB Hepatitis E virus 
3sln AC Norovirus Hu 
3sln BJ Norovirus Hu 
3sln DH Norovirus Hu 
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Table C.2. Functional annotation of capsid-like generic interfaces. The 418 generic 
interfaces that structurally resemble some inter-subunit interfaces in viral capsids are 
highly diverse in terms of the biological functions they are involved in. This table 
summarizes the counts of entries in each functional category. 

Functional annotation NO. of capsid-like generic interfaces 
Alpha-helical bundle 1 
Antimicrobial protein 1 
Apoptosis 2 
Bacterial cell division 1 
Beta-clamp 1 
Biosynthetic protein 1 
Blood clotting 3 
CAMP-binding protein 1 
Catalytic antibody 1 
Cell adhesion 8 
Cell cycle 3 
Cell invasion 1 
Cell motility protein 1 
Chaperone 5 
Chemokine 1 
Chemotaxis 1 
Chromatin regulator 1 
Chromosome segregation 1 
Complex (ligand/receptor) 4 
Contractile protein 4 
Cytokine 2 
Cytotoxin 1 
Decarboxylase 1 
De novo protein 6 
DNA binding protein 10 
DNA integration 1 
Electron transport 8 
Endocytosis/Exocytosis 3 
Enterotoxin 1 
Gene regulation 8 
Growth factor 1 
Heme-binding 1 
Hormone 6 
Hydrolase 56 
Immune system 28 
Immunoglobulin 3 
Isomerase 1 
Lectin 2 
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Leucine zipper 1 
Ligase 5 
Light-harvesting protein 1 
Lipid binding protein 1 
Lipoprotein 1 
Lyase 6 
Membrane protein 11 
Metal binding protein 3 
Murine class I MHC 1 
Neuropeptide 2 
Neurotoxin 1 
Nucleic acid binding protein 2 
Oxidoreductase 22 
Oxygen storage/transport  5 
Peptide binding protein 1 
Peroxidase 1 
Phosphoribosyl transferase 1 
Photosynthesis 10 
Plant protein 1 
Proteinase inhibitor 1 
Protein binding 9 
Protein transport 4 
Replication 1 
Retinoic-acid transport 1 
Ribosomal protein 24 
RNA binding protein 3 
Signaling protein 13 
Structural genomics, unknown 

 

20 
Structural protein 6 
Sugar binding protein 3 
Synthetic protein model 1 
T cell receptor 1 
Toxin 6 
Transcription 23 
Transferase 34 
Tryptophan biosynthesis 1 
Unknown bacterial hydrolase 1 
Unknown function 6 
Viral protein 12 
  



168 
 

CHAPTER VI 

Conclusion 

Viral capsids exhibit elaborate and symmetrical architectures not seen in cellular 

multimeric protein complexes. The limited genome coding capacity of viruses 

necessitates the economic use of a single or a few types of capsid proteins, which can 

efficiently and faithfully self-assemble into a homogeneous particle of a defined size. 

This thesis work is aimed at pinpointing structural characteristics of viral capsid proteins 

that govern the functional assembly of capsid shells, with the ultimate goal of gaining a 

deeper understanding of the design principles that control such events for various 

biomedical and materials science applications. 

In Chapter II [200], I explored the folded topology of all viral capsid proteins for 

which structural data are available, and compared them with a representative set of 

generic proteins, in order to test the hypothesis that these shell-forming building blocks 

assume unique geometry. This large scale comparative analysis, using Template 

Modeling (TM)-score, identified only 2078 non-capsid proteins that have marginal 

structural resemblance to capsid proteins, covering altogether 210 folds following the 

definition in SCOP, which is far less than the number of shared folds between randomly 

partitioned sets of the same sizes. The statistical significance of this test statistic, 

estimated from our permutation test, is very high with a p-value less than 0.0001. This 
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leads to our conclusion that viral capsid proteins are segregated in structural fold space. 

During this work, I developed a novel statistical framework that is suitable for assessing 

whether a structural feature is uniquely found in any functional class of proteins. 

Incidentally, the same analysis performed on several other functional classes of proteins, 

such as muscle proteins and kinases, did not establish exclusive sets of folds for these 

classes, which makes the major conclusion of the work even more significant. The results 

of this study provide novel insights into how structural folds of capsid proteins, which 

directly determine the shape of these building blocks, might be constrained during 

evolution by requirement of the assembled cage-like architecture. Additionally, my work 

highlights the guideline for synthetic maneuvers of virus-based nanoplatforms when 

imparting new functionalities, which is to adhere to the library of folds adopted by capsid 

proteins that nature has created specifically to make shells. 

Chapter III [223] describes a computational tool I developed to compare the 

physicochemical properties of interfaces between two given protein dimers, focusing on 

local similarities at the interface region that participate in molecular recognition while 

disregarding the evolutionary relatedness between the constituent protein monomers. 

Unlike existing methods which require atomic details of the input structural models, my 

method can deal with relatively poor quality data determined at lower resolutions,  

allowing structural comparison across models with different levels of detail. This major 

contribution greatly expands the structural space that can be studied by including protein-

protein interaction patterns found in large macromolecular complexes, exemplified by 

viral capsids, which are typically solved by lower-resolution experimental techniques. 

Such improvement was made possible by defining intermolecular contacts using minimal 
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structural information available, based on statistical knowledge from mining the Protein 

Data Bank, and our amino acid type-specific definition of contacts is shown to 

outperform the generic distance cutoff criterion used traditionally. Additionally, the 

geometric hashing algorithm used in my method effectively addresses the fact that 

interfacial residues are discontiguous fragments clustered spatially regardless of their 

connectivity, which optimally captures the central properties of the protein-protein 

interfaces that interest us. I demonstrated the power of the PCalign method in accurately 

recognizing highly similar interfaces across related protein dimers both on a real dataset 

and on a simulated “corrupted” dataset, showing its robustness against noise. 

Furthermore, through comparison with existing methods, I showed that my method has 

better sampling on average to yield optimal structural alignment, mapping a larger 

fraction of structurally equivalent interfacial residues with lower root mean squared error. 

Finally, I illustrate the usefulness of the PCalign method in recognizing interesting 

biological relationships masked by apparent lack of structural similarity by a few 

examples of viral mimicry, where viruses convergently evolved similar binding sites on 

viral proteins to target cellular proteins in the host system, without these viral proteins 

bearing any evolutionary relationship with the native partners of their target proteins. 

Chapter IV illustrates an application of the method developed in Chapter III to 

computer-aided drug design. This work is rationalized on the hypothesis that nature has a 

limited set of choices in arranging interfacial residues spatially and chemically. Using the 

recently solved crystal structure of the 1918 influenza virus hemagglutinin protein in 

complex with a neutralizing antibody CR6261 as a template, I screened a non-redundant 

subset of all protein dimers in the Protein Data bank to look for similar protein-protein 
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interaction patterns to those between the epitope and the paratope. Encouraged by our 

finding that two recently designed protein inhibitors [113, 114] for the same target via a 

de novo approach scored discriminatively higher by our program PCalign than the 

computational models that failed experimental validation, I selected 10 top-ranking 

proteins which act as the antibody equivalent based on the structural alignment of the 

interfaces as a starting point for designing binders for our target protein. These candidates 

were further optimized by rationally selecting mutations at the binding site to favor the 

interaction. Out of the 10 initial candidates, four of them gave comparable measures of 

likelihood of binding to the viral protein as that of the original neutralizing antibody, 

based on several independent evaluation criteria such as estimated binding free energies 

and percent of near-native poses correctly docked. Experimental collaboration is now 

under way to have our predictions tested for binding activity. This work presents a 

generalizable pipeline of computationally designing novel protein-based inhibitors for 

any given therapeutic target, using structural templates identified by the PCalign tool. 

Having established that viral capsid proteins are represented by unique folded 

topologies in Chapter II, I next investigated whether protein-protein interfaces in viral 

capsids are representative of generic ones found in cellular protein complexes in Chapter 

V. The former attribute essentially concerns the shape of the Lego pieces for shell 

formation, while the latter addresses the sticky patches that hold the pieces together. 

From the comparative analysis of a non-redundant set of 551 inter-subunit interfaces in 

viral capsids and a non-redundant set of 20014 protein-protein interfaces in non-capsid 

protein complexes, we found that 418 generic protein-protein interfaces (about 2%) share 

similar physicochemical patterns with some protein-protein interface in the capsid set. 



172 
 

This overlap in the structural space of protein-protein interfaces is again significantly 

small with a p-value < 0.0001, based on a permutation test on the total set of protein-

protein interfaces. We thus conclude that the exclusive protein-protein interaction 

patterns found in viral capsid proteins are necessary, but not the only, determinants of 

their higher order organization. This observation is in agreement with Chothia and 

coworkers’ finding of interfaces having direct influence on the oligomeric states of 

homomeric tetramers and hexamers from eleven protein families [255]. Together with my 

earlier study of the folded topology of viral capsid proteins, we can establish the 

importance of both having the geometry that conforms with the mathematical constraints 

and having special physicochemical complementarity among individual building blocks 

in directing the final complex formation of viral capsid shells. 

Looking beyond, a related question that remains to be fully understood is the control 

of quasi-equivalence in viruses. Viruses display a highly diverse range of mechanisms in 

fine-tuning interactions between capsid proteins to acquire a defined shell size. For small 

viruses, conformational switching of capsid protein subunits allows the formation of 

different intermolecular contacts, which typically involves a molecular switch in the 

terminal arm that does not appear highly conserved in sequence. For the majority of the 

canonical T=3 and T=4 viruses, this switch is ordered in subunits in a certain 

environment while disordered in others. Leviviruses provide an exception to this rule, 

without any apparent conformational switching mechanism among their protein subunits, 

yet still assuming a T=3 icosahedral symmetry. Larger viruses use more complex ways to 

dictate the size of their shells, often with the help of additional scaffolding proteins, 

exemplified by the tape-measure protein in PRD1 viruses. Given that capsid proteins of 
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most icosahedral viruses of varying sizes have a common structural core, represented by 

the ubiquitous jellyroll fold, it is particularly intriguing what the unifying molecular 

signature at the protein-protein interfaces is, if there is any, that plays a role in 

determining the T-number of the assembled architecture, in addition to the interplay with 

RNA/DNA molecules. 

A preliminary survey was carried out for T=1, T=3 and T=4 viruses by analyzing the 

set of unique capsid inter-subunit interfaces in their pentamers and hexamers. While a 

pentamer is convex, with pairwise interacting dimers forming a bent interface, a hexamer 

is planar, and interfaces in a hexamer can be either bent along the 5-fold symmetry axis, 

or relatively flat along the 3-fold symmetry axis. The capsid proteins in these small plant 

viruses all have the signature jellyroll topology, with small variations in the connecting 

loops of the beta-strands. Comparing the protein-protein interfaces across the board 

therefore can reveal potential molecular fingerprints related to T-numbers. 

Figure 6.1 shows the comparison result for inter-subunit interfaces in a few 

representative T=1, T=3 and T=4 viruses, taking one capsid from each family from the 

VIPERdb database. T=1 viruses include a satellite virus (PDB code: 1stm), a 

sobemovirus (PDB code: 1vak), a bromovirus (PDB code: 1yc6), and a circovirus (PDB 

code: 3r0r), of which the sobemovirus and the bromovirus are both T=1 subviral particles 

resulting from mutations of what are otherwise T=3 viruses. T=3 viruses include a 

tymovirus (PDB code: 1ddl), a bromovirus (PDB code: 1js9), a calicivirus (PDB code: 

2gh8), a sobemovirus (PDB code: 2izw), a tombusvirus (PDB code: 2tbv) and a 

nodavirus (PDB code: 2z2q). Finally, one tetravirus (PDB code: 1ohf) represents a T=4 

virus. All dimer interfaces in unique environments on the icosahedral shell are compared  
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Figure 6.1. Comparison of inter-subunit interfaces in small plant viruses. The 
separation between different interfaces approximately represents the structural distance 
between them. While interfaces found within the same capsid tend to cluster together, 
there is no apparent similarity among interfaces found within capsids of the same T-
number, or interfaces found within equivalent structural environment (pentamers or 
hexamers). 
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against one another using PCalign, and their mutual distance, defined as (1 - PC-score), is 

visualized via a multi-dimensional scaling plot shown in Figure 6.1. This plot captures 

the structural distance between different interfaces based on projection onto the first two 

principle components (PC1 and PC2). The color grouping refers to interfaces found at a 

pentamer, the bent interfaces in a hexamer (hexamer1), and the flat interfaces in a 

hexamer (hexamer2). 

The distribution of different interfaces in Figure 6.1 shows that generally inter-

subunit interfaces within the same family are more similar to one another than across 

different families, and this is also true for the two cases of the T=1 mutant and the T=3 

wild type in the same family, which are clustered together respectively. The plot does not 

show a clear pattern that groups interfaces by the T-number of the capsid they are found 

in. Also worth noting is that the pentamer interfaces resemble the bent hexamer interfaces 

more than the flat hexamer interfaces, as expected. Overall, there is lack of correlation 

between interface similarity and the higher-order organization of capsid proteins. An 

interesting observation is that for the T=3 nodavirus and the T=4 tetravirus, there have 

been reported evolutionary relatedness in terms of capsid maturation strategies [105, 257]. 

Despite the different conformational switching mechanisms and particle architectures for 

these two viruses, the interfacial patterns show remarkable similarity, shown here as 

clustered together, suggesting alternative molecular motifs that converge to the same 

regulatory elements for tuning the hinge angles between interacting dimers. 

The diversity of conformational switching mechanisms prompts the question of 

whether a general underlying rule exists to dictate the size of the assembled capsid. 

Previously, capsomeres (i.e. pentamers and hexamers) mixed in pre-defined ratios are 
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modeled in simulations to study the dynamic assembly of viral capsids of different T-

numbers [258], which has largely reproduced assembled icosahedral capsids of the 

expected size in silico in addition to other aberrant morphologies. This leads to our 

hypothesis that the T-number of icosahedral viral shells is determined by the pre-existing 

ratio of the different capsomeres, which in turn is influenced by the pre-disposition of the 

capsid protein subunits to form pairwise bent or flat interfaces. Indeed, when examining 

the capsid proteins in different environments on an icosahedral shell, we found tractable 

trends about the proportion of different conformations, specifically the order/disorder 

distribution, corresponding to the T-number. In T=1 viruses where all protein subunits 

are in identical environment, there is only one conformation. In T=4 viruses, there are 

four different positions for the protein subunits, which are by convention labeled as A, B, 

C and D. For providence virus and Nudaurelia capensis ω virus found in the tetraviridae 

family, two out of the four subunits assume an ordered configuration in the terminal arms 

while the other two have the disordered configuration, although one virus uses an N-

terminal switch and the other a C-terminal switch. For T=3 viruses, there are different 

classes depending on the overall morphology of the shell, known as the truncated 

icosahedron and the rhombic triacontahedron [104]. Out of the three subunits A, B and C, 

only one assumes an ordered configuration in the terminal arm in the rhombic 

triacontahedron subtype, whereas there are two subunits that are ordered in the terminal 

arms in the truncated icosahedron subtype. In other words, the order/disorder ratios seem 

correlated with the T-numbers and the subtypes within the same T-number. If indeed this 

is the key regulating factor of the higher order organization, one can in theory make 
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reliable predictions by estimating the relative frequencies of the ordered/disordered states 

in the conformational ensemble of a given capsid protein. 

In practice, however, the above hypothesis is difficult to be tested computationally. 

This is mainly due to the fact that a ratio of 2:2 for the two states in T=4 viruses 

corresponds to the two states being in equilibrium with each other, and the ratio of 2:1 or 

1:2 for the two states in T=3 viruses corresponds to a small free energy difference of 

about 0.4 kcal/mol, which is below the sensitivity of any molecular dynamics simulation 

techniques. An alternative approach may be to estimate the disorder propensity of a 

molecular switch using only information from its peptide sequence via Bioinformatics 

tools, such as DynaMine [259], and validate the predictions through experimental means, 

the latter of which can be laborious and expensive. Deciphering the Da Vinci code hidden 

in individual capsid proteins that ultimately defines the shell size remains a challenging 

task to explore in future. 

The structural determination of the large and complex assembly of viral capsids in 

sub-nano resolution marks a milestone in structural biology, bringing exciting 

opportunities to learn about the natural design principles behind these finely-controlled 

biological containers. This dissertation has contributed a novel statistical framework as 

well as a computational tool that enabled the systematic survey of different structural 

features of viral capsid proteins crucial for their function. Through rigorous hypothesis 

testing, I have delineated the folded topology as well as interfacial patterns of viral capsid 

proteins as important attributes retained specifically by evolution for shell assembly. My 

findings should provide guidelines for designing and modulating the assembly of 

biological building blocks into defined higher order structures in various nanotechnology 
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applications, as well as rationalize the design of antiviral drugs towards targeting 

pathogen-specific sites for improved therapeutic efficacy and reduced toxicity. 
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