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ABSTRACT 

Cancer is one of the leading causes of death worldwide. In recent years, with the aid of 

high-throughput genomic technologies, large cohorts of tumor samples have been analyzed to 

characterize molecular aberrations in many cancer types. These studies have generated 

enormous amount of cancer genomics data, providing not only new opportunities to 

understand tumor evolution and cancer progression mechanisms but also new challenges in 

efficiently and rigorously analyzing the data. Heterogeneity is an important feature of cancer 

and has significant impact on the diagnosis and treatment of the disease. My dissertation 

focuses on developing new bioinformatics and biostatistical approaches to study the 

heterogeneity and evolutionary history of cancer genomes. Under this theme, my thesis 

consists of four main chapters. First, I have developed an algorithm to infer aneuploid and 

euploid cell mixing ratios using allele-specific DNA copy number alteration (CNA) data, and 

made a striking discovery that gene expression patterns in brain and ovarian tumors are 

strongly influenced by aneuploid content. The ability to infer mixing ratios allowed me to 

revise the current classification system for glioblastoma, with better predictive power of 

clinical outcome than previous results. Second, I developed a Clonal Heterogeneity Analysis 

Tool (CHAT) that estimates cellular fractions for individual CNAs and individual somatic 

mutations, allowing us to use the distribution of these fractions to inform the macroscopic 

clonal architecture and the relative order of occurrence of somatic changes. For example, a 
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CNA with a higher frequency in the cell population may have occurred earlier in tumor 

development or conferred a greater growth rate, therefore is more likely to contain driver 

genes. Third, I developed a method to detect short tandem repeat (STR) variation using 

paired-end short-read next-generation DNA sequencing data. Unlike previous methods which 

are limited to finding short STR alleles, my method is capable of finding both STR alleles 

shorter than a read and those longer than the read or the read pair (i.e., the insert size of the 

library). This capability addresses the need to reliably detect expanded STR alleles in 

germline DNA that underlie many rare inherited diseases as well as somatic aberrations 

characterized by microsatellite instability. In sum, my dissertation work led to the 

development of several new methods to study tumor heterogeneity. Their applications in 

multiple tumor types have made important contributions in understanding the mechanisms of 

tumor evolution. The work of my thesis is not only helpful to study the nature of tumor 

heterogeneity and evolution, but also provides a basis for assessing the impact of diverse 

tumor cell population on clinically important aspects such as subtype classification, prognosis 

and therapeutic resistance.
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Chapter 1. Introduction  

 

1.1 Background 

 

1.1.1 Significance of Tumor Heterogeneity  

Cancer is a leading cause of death in the US and worldwide (Jemal et al., 2008). Between 100 

and 200 billion dollars are spent each year in US alone on cancer patient care (National 

Cancer Institute: http://costprojections.cancer.gov/). Despite decades of intensive efforts, it 

remains difficult to provide early diagnosis or effective treatment to many types of cancers. 

Most advanced cancers remain incurable. Oncologists commonly apply chemotherapies or 

radiotherapies to kill proliferating cancer cells. Nonetheless, eradication of tumor cells via 

cytotoxic therapies is rarely complete, and in most scenarios tumor eventually develops drug 

resistance, i.e., becomes insensitive to the treatment (Marusyk and Polyak, 2010). Emerging 

evidence has linked the resilience of cancers to its intrinsic heterogeneity, suggesting that a 

tumor can survive multiple environmental challenges, including immune response, 

inflammatory stimuli, clinical treatment etc., due to its large pool of genetically divergent 

cells that allow rapid adaptation and continued evolution (Yates and Campbell, 2012, Marte, 

2013). Understanding such adaptation and evolution is a major focus of today's cancer 
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research.  

Tumor heterogeneity refers to genetic and functional differences between cells in a tumor cell 

population (Heppner, 1984). Historically, studies on this topic dated back to 1950s when 

histologists dissected ascites tumors in mice and observed uneven chromosome numbers 

among individual tumor cells under microscope (Levan and Hauschka, 1953). In the past 

decade, with the development of high-throughput technologies, the paradigm of cancer 

research has shifted from physiological manifestations into mechanistic study of the 

underpinning molecular signatures of tumor heterogeneity (Marusyk et al., 2012). These 

studies have provided a progressively deeper understanding of this complex human disease.  

 

1.1.2 Levels of Tumor Heterogeneity 

Heterogeneity in tumors can be organized according to different levels of biological 

organization: inter-tumor heterogeneity, which refers to the differences among tumors 

between patients or within the same patient; and intra-tumor heterogeneity, which includes 

both tumor/normal cell mixing and potential co-existence of multiple subclones in the tumor 

cell population.  

Inter-tumor heterogeneity refers to the genetic and phenotypic differences between individual 

tumors. This heterogeneity includes inter-patient differences, including how cancer patients 

have distinct clinical outcomes, such as responding differently to the same therapies. Such 

inter-patient differences reflect genetic, developmental, and environmental differences.  For 
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example, breast cancers can be categorized by grade, by recurrent mRNA expression patterns 

or characteristic mutations, or by the presence and absence of certain hormone receptors. The 

classification of a patient's cancer into discrete subtypes—by clinical and/or cellular and 

molecular features—is an important area of research and patient care. In the example of 

breast cancers, the triple-negative subtype is defined by the absence of the estrogen receptor, 

progesterone receptor, and the her2 receptor. This subtype is more aggressive than others and 

leads to the worst prognosis. Studies of inter-patient heterogeneity require a large sample size 

to adequately discover recurrent events and subtypes. Many of these studies do not consider 

intra-tumor heterogeneity, rather they treat each patients tumor sample as a uniform entity, 

containing a homogeneous population of cells.  

Inter-tumor heterogeneity also includes differences among tumors within a cancer patient 

(Vogelstein et al., 2013), both among primary tumors and between primary and metastatic 

tumors. The metastatic tumors, while originated from the primary tumor, may have acquired 

additional molecular aberrations and may be different from each other as they adapt to 

distinct local environments (Yachida et al., 2010).  

Intra-tumor heterogeneity could simply involve different levels of Tumor-Normal mixing.  

A surgically obtained tumor specimen could contain many cell types, including tumor cells, 

surrounding stromal cells, blood vessels, and infiltrating immune cells. Although many 

studies have applied extensive sample selection according to histological tumor "purity", 

these procedures cannot completely remove the admixture of normal non-cancerous cells; 

and as a result, the data may not derive solely from the tumor cell populations, but may 

include the contribution of other cells. 
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Even when the sample contains 100% tumor cells, these cells may belong to different tumor 

subclone, adding another layer of intra-tumor heterogeneity. Even 1 mm3 of tissue material 

may contain millions of cells and they may be partitioned into multiple recognizable groups, 

with the variability among cells within a group to be much smaller than that between groups 

(Kleppe and Levine, 2014). Each of such a group is referred to as a subclone. Sometimes the 

subclones are spatially segregated, and can be revealed by multi-regional sampling and 

analysis of a single tumor (Sottoriva et al., 2013, Gerlinger et al., 2012). In other cases, cells 

with different molecular features may be interspersed thoroughly, such that the subclonal 

structures are not apparent even with regions sampling down to smaller spatial units. 

Ultimately, single-cell profiling is the most effective strategy to study intra-tumor 

heterogeneity, but it incurs much higher costs in time and resources (Navin et al., 2011, Hou 

et al., 2012, Zong et al., 2012). Nonetheless, molecular difference among tumor subclones 

represents the fundamental source of drug resistance: even the most effective treatment can 

eradicate all subclones, and the drug-resistant cells that remain after treatment can expand 

and grow into the recurrent tumor.  Being able to monitor clonal structure in bulk tissue 

samples is both an important research question and a valuable clinical capability.   

 

1.1.3 Biological Sources of Tumor Heterogeneity 

 

Phenotypic variability of tumor cells could be driven by multiple molecular sources of 

variation. One of them is genetic variation. While a person's germline genome could carry 
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different alleles that confer cancer susceptibility, the genome of individual cancer cells 

accumulates additional somatic alterations (Meyerson et al., 2010) that include copy number 

changes (Hanahan and Weinberg, 2000, Albertson, 2006, Beroukhim et al., 2010), 

translocations (Mitelman et al., 2007) and single nucleotide mutations (Sjoblom et al., 2006, 

Ley et al., 2008, Stratton et al., 2009).  The rate of these aberrations can be increased due to 

impaired DNA damage repair mechanism (de Gruijl et al., 2001) or compromised 

surveillance of genomic instability (Negrini et al., 2010). Genetic variation is one of central 

components of the clonal evolution process (Nowell, 1976), which also involves natural 

selection, population expansion and migration, random genetic drift, interactions with local 

environment, and, upon effective treatment, a significant collapse of population size (Greaves 

and Maley, 2012). As is often the case in population genetics concerning humans or other 

species, only a minority of somatic mutations are capable of promoting cell survival, 

proliferation, and clonal expansion, and are referred to as "drivers".  The majority of 

mutation has no discernible phenotypic impact and is referred to as "passengers" (Greenman 

et al., 2007).  

Besides genetic variation, differences in epigenetic modifications also contribute to cancer 

heterogeneity (Esteller, 2008, Sharma et al., 2010). Different alterations of DNA methylation, 

nucleosome positioning and gene expressions among tumor cells contribute to intra-tumor 

heterogeneity. Such epigenetic variations also underlie the Cancer Stem Cell (CSC) Model, 

which emphasizes the possibility that the phenotypic variability among tumor cells can be 

due to epigenetic factors. Extensive studies have been conducted under this model for many 

cancer types (Singh et al., 2003, Prince et al., 2007, Charafe-Jauffret et al., 2009). 
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In addition to genetic and epigenetic heterogeneities, recent advances also highlight the 

interplay between tumor cells and their local tissue environment (Egeblad et al., 2010, 

Junttila and de Sauvage, 2013). For example, cancer associated fibroblasts promote tumor 

growth via secretion of multiple growth factors; active vasculature delivers necessary 

nutrition to proliferating tumor cells, and immune cells can be recruited and converted by 

tumor cells to suppress adaptive immunity and enhance tumor development. Differences in 

fibroblast behaviors and responses, uneven vascularization and vascular maturity, and diverse 

invasive immune cell types and their localizations all contribute to the observed inter- and 

intra-tumor heterogeneity, and must be considered when trying to overcome therapeutic 

resistance.  

 

1.1.4 Applications of High-throughput Technologies in Tumor Heterogeneity Research 

 

In recent years, the maturation of high-throughput technologies has rapidly enhanced our 

ability to study complex cancer genomes. For example, whole-genome sequencing of tumor 

samples provides a nearly complete catalog of somatic changes, including single-nucleotide 

variations, small insertion and deletions, and structural variations. Likewise, RNAseq 

technology has enabled the discovery of gene fusion (Tomlins et al., 2005, Soda et al., 2007), 

novel transcripts (Maher et al., 2009), and RNA editing (Sommer et al., 1991). Other 

high-throughput technologies, including SNP genotyping arrays, gene expression arrays, 

micro-RNA expression arrays, DNA methylation arrays, etc., enable the simultaneous 
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analyses of multiple levels of biological regulation, and have contributed to an increasingly 

integrative understanding of the mechanism of tumor development.  

Many large-scale, coordinated studies have been conducted during the past decade to 

understand the etiology of cancers by applying genomic technologies. The Cancer Genome 

Atlas (TCGA) project and the International Cancer genome Consortium (ICGC) are two 

examples of such consortium-scale, highly collaborative initiatives. By the February of 2014, 

TCGA has analyzed more than 9,000 tumor samples for 29 types of cancers, and has publicly 

released both the clinical data and many types of genomic profiling data. These data 

resources have provided a valuable opportunity to study the molecular basis of multiple of 

cancer types from multiple 'omics perspectives. A limitation of these datasets, as I will 

discuss further in this dissertation, is that they treat each tumor sample as a unitary, 

homogeneous entity, and have not considered the intrinsic heterogeneity within each tumor 

samples.  I will show in Chapter 2 that information about intra-cellular heterogeneity can be 

extracted from datasets originally intended to study the average behavior of bulk tumor 

samples, and intra-cellular heterogeneity can explain a substantial portion of the observed 

inter-tumor heterogeneity.   

 

1.2 Challenges in studying intra-tumor heterogeneity using bulk tumor datasets 
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1.2.1 Normal Tissue Contamination in Inter-tumor Heterogeneity Studies 

Large cancer cohorts mentioned above routinely used molecular materials collected from 

bulk tumor tissues that usually contain normal cells. Low tumor content reduces the power to 

detect somatic events using genomic DNA data, especially for subclonal mutations—those 

that appear in only a fraction of the tumor cells (Carter et al., 2012). Tumor-normal mixing 

also affects every other molecular profiles, including mRNA expression, DNA methylation, 

micro-RNA expression etc., by presenting a weighted average of the signatures carried by 

tumor cells and those carried by the normal calls. Variable ratios of tumor-normal mixing 

affect tumor subtype classification, thus directly complicating the clinical applications of the 

patients' molecular profiling data.  I present a case study using Glioblastoma Multiforme 

samples showing this problem. GBM was one of the first cancers TCGA analyzed (TCGA, 

2008). GBM is a malignant brain cancer (WHO grade IV astrocytoma).  Despite intensive 

treatment, the outcome is poor since the median survival time is only 18 months. (Johnson 

and O'Neill, 2012). Researchers have studied the molecular subtypes to characterize the 

inter-tumor diversity of this cancer (Phillips et al., 2006a, Verhaak et al., 2010a). Verhaak et 

al applied the mRNA expression data from TCGA samples and discovered four subtypes. 

However, many TCGA studies including this one failed to consider the impact of intra-tumor 

heterogeneity, in Verhaak’s classification, different subtypes show no significant survival 

difference.  

In the following paragraph I am going to review the general principle on how to infer 

tumor/normal mixing. TCGA applied genome-wide SNP array to profile the copy number 

alterations in tumor samples. SNP array is an efficient technique to estimate copy number 
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changes and allelic imbalances both at high resolution and throughout the whole genome 

(Zhao et al., 2004, Dutt and Beroukhim, 2007). There are two main commercial platforms for 

SNP array analysis, Affymetrix and Illumina. Both platforms produce allele specific copy 

number estimates, initially derived from the intensity of fluorescent assay signals. For each 

SNP, the two alleles from a diploid genome are denoted by A and B. The intensity of both 

alleles (A+B) provides an estimate for the total copy number. In practice, it is convenient to 

use !"#! !!!! = !"#! ! + ! − 1 (logR ratio, or LRR) to represent copy number, since it 

takes value zero for normal diploid loci. The fraction of B allele signal intensity (B/(A+B)), 

normally referred to as B-allele frequency or BAF, provides evidence for allelic-imbalances. 

Although profiled on genomic DNA from bulk tissue, SNP array data contains intra-tumor 

heterogeneity information and a number of algorithms have been developed to extract 

tumor/normal mixing ratios using SNP array (Popova et al., 2009, Yau et al., 2010, Van Loo 

et al., 2010, Song et al., 2012). When the sample contains a fraction of euploid cells, in a 

copy number variation region, not all the cells are carrying the CNV, and instead of 

theoretical LRR and BAF values based on copy numbers, the observed LRR and BAF will be 

closer to zero, a phenomenon referred to as ‘contraction’. BAF and LRR contraction is 

helpful to infer tumor/normal mixing ratios. 

In Chapter 2, I re-examined Verhaak et al.’s cohort by considering intra-tumor heterogeneity. 

I first developed an algorithm to estimate the tumor/normal mixing ratios for individual 

samples using SNP array data, and discovered that the variation of mRNA expression pattern 

among samples is driven by different levels of euploid cell fractions of individual tumors. I 

then revised the classification of mRNA expression subtypes with joint use of mRNA and 
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CNA data. The new scheme I proposed has stronger predictive power on clinical outcome. 

Using inferred normal cell mixing ratios and reference datasets of known neuronal cell types, 

I was able to identify microglia/macrophage as the likely source of the euploid cells in the 

mesenchymal GBMs.  

 

 

1.2.2 Tumor Subclone Analysis Using Bulk Tissues 

 

As discussed above, intra-tumor heterogeneity is a hallmark of cancer and reflects the 

complicated evolution history of tumors. There are several aspects of interests of intra-tumor 

heterogeneity, including cellular frequencies of somatic copy number alterations (sCNAs) 

and somatic mutations, number of subclones in a tumor population, etc. Cells carrying 

somatic driver events have greater selective advantage and are likely to be maintained during 

tumor evolution. Therefore, somatic aberrations with high cellular frequencies are usually 

candidate driver events. More interestingly, if a somatic event occurred with high prevalence 

in a subclone, it is likely a subclonal driver event. Studying subclonal drivers is helpful to 

understand tumor evolution. . 

The ideal data for analyzing tumor subclones is to profile single cells or samples collected 

from multiple regions of the same tumor. However, these procedures remain expensive and 

labor intensive. Bulk tissue analysis is still a common study design and generated large 
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amounts of data. There is therefore a strong need of analytical tools to effectively infer 

intra-tumor heterogeneity using such suboptimal data. In the past five years, a number of 

algorithms have emerged that can infer tumor subclonal features using data generated from 

bulk tissue. In the following I will provide a review of six methods, and discuss their 

advantages and limitations.  

 

1.2.2.1 Review of Methods Studying Tumor Subclones 

 

Carter et al (Carter et al., 2012) introduced an algorithm, ABSOLUTE to study intra-tumor 

heterogeneity. The segmented and smoothed copy number data is first displayed on a 

histogram to examine the distribution of copy ratios (normalized copy numbers). Usually 

these values group tightly into separate peaks on the density plot, each peak representing a 

copy number configuration. Due to mixing with euploid genome, the spacing between 

adjacent peaks (b) do not reach full theoretical values and the copy ratios (δτ) of regions with 

homozygous deletions which should be zero, are usually positive. ABSOLUTE infer euploid 

mixing ratios depending on b and δτ. A subclonal segment will generate small peak between 

two major peaks of clonal events, and ABSOLUTE acknowledge it as an outlier and infer 

tumor purity using space between major peaks. In addition to inferences made via copy 

number profiles, the authors also extended ABSOLUTE to estimate average allele counts per 

cancer cell, or cell multiplicity (sq) using somatic mutation profiles with a Beta-Multinormial 

likelihood model.  
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Overall, ABSOLUTE made a contribution in the field by explicitly modeling subclonal 

events during tumor purity and ploidy estimation. Integration of somatic mutation data and 

copy number results is also a breakthrough. However, there were several existing challenges 

remained unsolved. First, ABSOLUTE lacks the capability to quantitatively estimate the 

cellular fractions of subclonal sCNA carriers. Second, despite the discussion on cellular 

multiplicity for somatic mutations, the inference is not sufficient. In their likelihood model, 

somatic mutations and CNAs always occur in the same lineage, while it is not always true 

(Nik-Zainal et al., 2012). Another limitation of this approach is that the inference of 

subclonal cell multiplicity remained categorical. The authors failed to provide any 

quantitative estimation to subclonal somatic mutations. Moreover, the inference on sq relied 

on copy number determination, and since only clonal CNA events were analyzed by 

ABSOLUTE, for any somatic mutation, clonal or subclonal, if it hit a subclonal CNA region, 

no information could be concluded from the sequencing data.  

Nik-Zainal et al (Nik-Zainal et al., 2012) studied the subclone structure for one breast tumor 

sample using whole genome sequencing (WGS) with an 188× average depth. The authors 

collected somatic mutations in euploid genomic regions and noticed that the distribution of 

somatic allele frequencies consists of four distinguishable clusters, suggesting that this tumor 

harbored multiple subclones. To further determine the lineage relationships between 

subclones, the authors phased adjacent somatic mutations that are spanned by the same read 

pair. If mutations from cluster X were always in phase with mutations from cluster Y, then X 

and Y were in the same lineage. On the other hand, if mutations from cluster X were never in 

phase with those from Y, X and Y belonged to different lineages. They used this approach to 
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determine if the cells carrying mutations from cluster X is in linear or branching relationship 

with cells carrying mutations from cluster Y. This approach has at least two contributions: 1) 

it set forward an approach to robustly identify the number of subclones in tumors using the 

distribution of somatic allele frequencies; 2) phasing somatic mutations provided rich 

information that can be used to infer lineage relationships between subclones. The major 

limitation is that, the analysis applied in this study is manually optimized for a few 

(twenty-one) samples and is not readily applied to larger cohorts. 

Landau et al (Landau et al., 2013) developed an algorithm to infer the cancer cell fraction 

(CCF) of somatic mutations and CNAs, using both SNP array and whole exome sequencing 

(WES) data. For CNAs, they modified the original ABSOLUTE algorithm to model 

subclonal events. In Landau’s method, in a subclonal region, the mixing ratio is allowed to be 

different from the global tumor purity, on the condition that the tumor CNAs only alter from 

the euploid state by one copy. This assumption, however, is unnecessary and often violated. 

Adding WES data, they were able to estimate the CCF of somatic mutations only in clonal 

CNA regions, and assuming that somatic mutation has occurred later than CNA and therefore 

affect only one allele. The second assumption is oversimplified and can be violated when 

mutation occurred before the CNA. For somatic mutations in subclonal CNA regions, they 

estimated CCF manually. This work made a contribution by explicitly modeling the 

subclonality of somatic mutations, corrected for local copy number events. . However, it is 

incomplete to assume that somatic mutations could only occur after CNAs. For example, if a 

somatic mutation occurred early in a region of subclonal copy neutral LOH, both alleles of 

the LOH-carrying cells would harbor the mutation. Using Landau’s approach, the CCF of this 
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mutation would be overestimated by a factor of two, which could wrongly assign a subclonal 

event to be clonal.  

EXPANDS (Andor et al., 2014) estimates tumor subclonal structure. It used sequencing data 

to infer the fraction of cells carrying a specific CNA or somatic mutation. The authors 

defined ‘B allele’ to be non-reference allele, which is different from the definition in SNP 

array, where B allele is arbitrarily chosen. In this definition, B allele can either be somatic 

mutations or germline polymorphic sites (will be AA if the site does not contain germline 

mutation), which is an improvement compared with previous approaches. EXPANDS 

estimated subclonality for each locus independently using the in-phase constraint, by 

enumeration of all the possible combinations of allele-specific copy numbers and screening 

of possible mixing ratios from (0,1). As mentioned above, the in-phase constraint is a very 

strong and unrealistic assumption, and using this assumption implicitly is the major limitation 

of this approach. Another limitation is, EXPANDS failed to consider all the possible 

temporal and lineage relationships between an sCNA and a somatic mutation occurred in the 

same locus. Due to this limitation, it cannot accurately estimate cellular frequencies of 

somatic mutations that have occurred in branching lineages with sCNA.  

Pyclone (Roth et al., 2014) used sequencing data to estimate CCF of somatic mutations 

(referred to as cellular prevalence) and to perform phylogenetic analysis of tumor subclones. 

Pyclone relied on other methods to infer the absolute copy numbers for each locus as a 

prerequisite. In order to estimate CCF, Pyclone introduced five possible relationships 

(denoted as priors) between a somatic CNA and a mutation occurred in it. Of these five priors, 

predictions using the Parental Copy Number (PCN) prior were the most accurate according to 
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their simulations. The PCN prior considered two lineage relationships: 1) mutation occurred 

before CNA, but with the in-phase constraint; 2) mutation occurred after sCNA, but did not 

include the scenario when mutation and sCNA occurred in different lineages. Pyclone 

considered a more complete set of lineage relationships between a somatic mutation and a 

CNA, yet was still unsatisfactory due to the in-phase assumption.  

The methods above estimate subclonality of somatic events independently. Another method, 

THeTa (Oesper et al., 2013) used an alternative approach. It jointly used all sCNAs to 

simultaenously estimate 1) the number of subclones in a tumor sample; 2) the abundance of 

each subclone and 3) the total copy number carried by each subclone in each locus. For a 

given number (K) of subclones, THeTa models the observed read counts (Yi) in the genomic 

locus i (i=1,2…n, n is the number of loci) as the linear combination of K components: 

Yi=Ni×µ, where Ni=(n1
i,n2

i,…,nK
i) is the copy number vector for K subclones in locus i, and 

µ=(µ1,µ2,…, µK) is the vector of subclonal abundance. It then enumerates all the possible 

integer combinations of copy numbers in the K subclones and select the optimum solutions of 

µ. Combined usage of markers across the genome increases the reliability of inference in 

THeTa. However, its computational time increases exponentially with the number of markers 

analyzed. Also, THeTa could not infer the subclonality of somatic mutations.  

To conclude, current methods developed to infer tumor subclones suffer from several 

limitations. First, they usually only estimate the cellular frequencies of one type of events, 

and none of the above quantitatively infer cellular frequencies for both sCNA and somatic 

mutations. Furthermore, most of these methods implicitly applied the unrealistic ‘in-phase’ 

assumption. Finally, none of the methods above considered the scenario when a mutation 
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occurred in different lineage with an sCNA in the same locus. These methods cannot provide 

accurate estimations when their assumptions are violated. 

 

1.2.2.2 Introduction of Clonal Heterogeneity Analysis Tool 

 

In section 1.2.2.2 I have reviewed recently developed methods on intra-tumor heterogeneity. 

Applications of these methods provided insights into recognition of subclones (Carter et al., 

2012), subclonal architecture (Nik-Zainal et al., 2012, Roth et al., 2014), dynamics of 

population alterations under treatment and the discovery of subclonal driver mutations 

(Landau et al., 2013). Despite these efforts, the field lacks a systematic tool that integrates 

both sCNA and somatic mutation, and provides comprehensive estimations cellular 

frequencies of somatic mutations and sCNAs without using limiting hypothesis such as the 

‘in-phase’ assumption. In Chapter 3, I introduce Clonal Heterogeneity Analysis Tool 

(CHAT), for inferring cellular frequencies of both sCNA and somatic mutations, by jointly 

analyzing DNA SNP array data and DNA sequencing data. In CHAT, I integrated different 

types of somatic events through a systematic investigation of lineage scenarios of mutations 

in an sCNA region. Below is a brief introduction to this topic.  

For example, the task is to estimate cancer cell fraction (CCF) of a somatic mutation, which 

is the subclonality for mutations. Consider a somatic mutation that occurs in a euploid region 

and hits one chromosome: if the observed somatic allele frequency (SAF) is f, then the 
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estimated CCFis simply 2f. However, if the mutation resides in an sCNA region, the 

relationship between CCF and SAF depends on the copy number configuration: copy neutral 

loss-of-heterozygosity (CN-LOH), deletion, amplification, etc. and the cellular frequency of 

the sCNA. Further, it also depends on the chromosomal background in which the mutation 

occurs: on the parental chromosome with higher copy number (major allele) or smaller copy 

number (minor allele). Given the observed SAF of the mutation, it will be impossible to 

estimate CCF without all the information mentioned above.  

A previous research (Durinck et al., 2011) studied the temporal order of somatic mutations 

and CN-LOH event of TP53 gene in 8 cutaneous squamous cell carcinoma samples with 

whole-exome sequencing data. The authors argued that when mutation occurred earlier than 

CN-LOH, both alleles would carry the mutation, and generate homozygous genotypes; 

otherwise it generates heterozygous observations. They used heterozygosity to estimate the 

temporal orders between the TP53 somatic mutations and CN-LOH event, and found these 

mutations were early events. This method modeled the temporal order of somatic events 

explicitly. However, it did not take into consideration the possibility that a given CN-LOH 

event could be subclonal, and therefore, even though the mutation occurred early, it could 

still appear to be heterozygous due to mixing with euploid cells. Also, the estimation is 

limited to CN-LOH events and not generalized to other sCNA types.  

In CHAT, I first implemented the estimation of sCNA genotypes and sCNA subclonality.  

Then, to infer cellular frequencies of somatic mutations, I considered the following scenarios: 

A) The mutation and sCNA emerged sequentially, with the mutation occurring first, and the 
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sCNA occurring in a subset of mutation-bearing cells. Cells carrying both mutation and 

sCNA may have two configurations: A1: the duplication occurred on the mutation-bearing 

chromosome, and A2: the duplication occurred on the mutation-free chromosome.  

B) Like A, the mutation and sCNA emerged sequentially; but unlike A, the sCNA occurred 

first, with the mutation occurring in a subset of sCNA-bearing cells. Mutation may have 

occurred on one of the duplicated chromosome (B1) or the un-duplicated chromosome (B2).  

C) The mutation and sCNA emerged independently, i.e., appearing in non-overlapping 

populations of cells.  

 All previous methods only considered a subset of these scenarios. For example, Landau et 

al.’s approach only considered scenario B, while EXPANDS considered scenarios A1 and A2, 

and PyClone considered A1, A2 and B, but failed to include C. With systematic investigation 

of lineage scenarios, CHAT is able to estimate cell fractions for somatic mutations without 

limiting assumptions. 

 

1.2.3 Detection and Genotyping Short Tandem Repeats in Complex Genomes 

 

Previous cancer research extensively studied somatic CNAs and mutations, while other types 

of genomic aberrations remain poorly understood, including many kinds of structural 

variations. There is need in the field to understand the role of short tandem repeats (STR), or 

microsatellites in human diseases, including cancer. Short tandem repeats are consecutive 
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occurrence of 2-6 bases of DNA sequence many times. STR locI am very common in the 

human genome (Willems et al, 2014) and analysis of STR is useful in many fields, including 

forensic usage, paternity test (Jobling et al., 1997), phylogenetic analysis (Jarne and Lagoda, 

1996), etc. For example, germline mutations of STR locI am responsible for many 

neurodevelopmental disorders, including Huntington’s disease (Walker, 2007), Fragile X 

syndrome (Pearson et al., 2005) and multiple types of spinocerebellum ataxia (Pulst et al., 

1996, Campuzano et al., 1996, Paulson, 2012). Somatic changes in STR length are common 

in some cancers, in a phenomenon known as microsatellite instability (MSI). MSI is caused 

by impaired DNA mismatch repair (Liu et al., 1995, Ellegren, 2004), and it has been 

characterized in colorectal cancer (Popat et al., 2005) and prostate cancer (Uchida et al., 

1995). Current methods to genotype STR loci remain slow and labor-intensive. Traditional 

Sanger sequencing technology still serves as a gold standard in determining the number of 

repeats, yet cannot be efficiently applied to large sample cohorts or to genome-wide analyses. 

The development of next-generation sequencing technologies allows researchers to analyze 

many samples in genome-wide scale, but to genotype STR alleles using short-read 

sequencing data is a novel challenge because many STR alleles are longer than the read 

length. Two algorithms, lobSTR (Gymrek et al., 2012) and RepeatSeq (Highnam et al., 2013) 

have been developed to address part of this challenge. However, both methods are limited to 

genotype STR alleles that are shorter than read length, which is typically 100-nt for the 

Illumina HiSeq2000 sequencer. These methods are not suitable to detect abnormally 

expanded STR alleles beyond the read length, nor can they discover novel microsatellite 

regions due to their reliance of the locations of known STR loci. In Chapter 4, I introduce a 
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new algorithm, called STRfinder, using paired-end short read sequencing data to genotype 

STR loci. STRfinder can detect novel STR loci and genotype STR alleles that are much 

longer than a read, and out-performs lobSTR or RepeatSeq for these alleles in terms of 

variant call rates, genotyping accuracy, and length estimation precision.  

 

1.3 Summary 

 

In this Chapter, I reviewed the concepts and background related to tumor heterogeneity. 

Large amount of cancer -omics data have been accumulated in recent years, and most of 

these involve one-sample-per-tumor, bulk tissue analysis.  A number of methods have been 

developed to analyze these data to infer the features of intra-tumor heterogeneity. However, 

there are at least three challenges in the field. First, studies of inter-tumor heterogeneity 

among multiple samples usually failed to consider intra-tumor heterogeneity, and the results 

could be confounded by tumor/normal mixing ratios or tumor subclones. In Chapter 2, I 

have addressed this challenge. Second, analytical tools specifically developed for analyzing 

intra-tumor heterogeneity suffer from limiting assumptions reviewed in previous sections, 

and CHAT overcomes these limitations. Third, as an important class of genetic variation that 

can underlie the risks of both constitutional and somatic diseases, short tandem repeat has not 

received enough attention. There is need to detect and genotype STR alleles both in large 

sample cohorts and genomewide, using next generation sequencing data. In my thesis, I 

aimed to address the above challenges by developing novel bioinformatics tools.  
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Chapter 2. Inference of aneuploidy genome proportion and revised 

classification of human glioblastoma multiforme (GBM) 

 

2.1 Introduction 

 

Glioblastoma Multiforme (GBM) is an aggressive brain tumor with poor prognosis 

(Adamson et al., 2009). Recently, genomic profiling studies have provided rich new 

information for understanding molecular lesions in GBM. For example, the Cancer Genome 

Atlas (TCGA) project characterized several hundred GBM samples, of which many were 

analyzed across multiple dimensions, including single nucleotide polymorphism (SNP) 

genotyping, mRNA and microRNA (miRNA) profiling, DNA sequencing, and promoter 

methylation analysis (The Cancer Genome Atlas Research Network, 2008). These data 

highlighted the importance of ERBB2, NF1 and TP53 genes, and revealed recurrent 

aberrations in the RTK/RAS/PI(3)K, p53, and RB signaling pathways. Meanwhile, 

genomewide datasets are also useful for characterizing biological diversity in a tumor 

collection, as evidenced by numerous reports of molecular subtypes for many cancers based 

on gene expression cluster analyses (Alizadeh et al., 2000, Perou et al., 2000). In particular, 

gene expression data for TCGA's first GBM cohort were reported to reveal four subclasses 

(Verhaak et al., 2010b): Proneural (PN), Neural (NL), Classical (CL) and Mesenchymal 
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(MES).  

However, while the availability of multiple data types in TCGA provides the opportunity for 

combined analyses, the four-class model was based solely on mRNA expression data. DNA 

copy number alteration (CNA) patterns were summarized post hoc, not incorporated in the 

initial class discovery. Methylation data were analyzed subsequently (Noushmehr et al., 

2010), and revealed three clusters, which lacked a clear correspondence with the four 

transcriptome-based classes. Furthermore, the relationship of the four-class model with those 

previously reported for independent datasets (Murat et al., 2008, Phillips et al., 2006b, Sun et 

al., 2006) was not clarified. While the differences between studies could be explained by 

variations in sample selection criteria, experimental platforms, and analysis methods, the 

discrepancies among different data types within the TCGA's collection remained 

un-reconciled. My first goal was therefore to combine the CNA and expression data to 

provide a more integrated view of the molecular diversity in GBM. 

My second goal was to study within-tumor heterogeneity. Surgically obtained solid tumor 

samples (GBM included) often contain both aneuploid cells and euploid cells. I developed a 

method to leverage the allele-specific CNA data to estimate the fraction of aneuploid cells in 

each sample, and to incorporate this measure of tumor "purity" in class discovery. I also 

asked if results in GBM were seen in the ovarian (OV) cancer cohort from TCGA (The 

Cancer Genome Atlas Research Network, 2011). I emphasized between-cohort concordance 

in deciding the optimal number of clusters, and annotated the potential cell type of origin of 

different classes by comparing GBM gene expression data to reference datasets of known cell 

types. My results led to a revised framework of GBM classification, and I sought to 
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understand its biological implication and clinical relevance. I validated the between-class 

difference in survival time in an independent GBM cohort. Finally, I summarized the newly 

recognized subclasses and associated biomarkers into a hierarchical classification protocol 

for use in diagnosis and further research.  

 

2.2 Data sources 

 

2.2.1 Glioblastoma Multiforme (GBM) 

 

This study covered three cohorts of GBM samples. GBM1 is the cohort analyzed by the 

TCGA pilot study (The Cancer Genome Atlas Research Network, 2008, Verhaak et al., 

2010b). A second cohort was subsequently available and was called GBM2 (Verhaak et al., 

2010b). For validating the survival time differences I selected additional samples that became 

available by early 2012, and called it GBM3.  

 

2.2.1.1 DNA copy number data 

For GBM1-2, Allele-specific copy number data for Illumina HumanHap550K arrays were 

downloaded from the Cancer Genome Atlas (TCGA) data portal 

(http://tcga-data.nci.nih.gov/tcga/) on 4/14/2010. I queried the Data Access Matrix by 

choosing  
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Disease: GBM;  

Data Type: SNP;  

Data Level: 2 and 3;  

Platform: HAIB (HumanHap550).  

This query yielded tumor-normal logR Ratio (LRR) data for 284 paired samples, and B allele 

frequency (BAF) data for 347 tumor samples, of which 284 had matched normal samples. 

The overlapping set of 284 paired samples, 130 in GBM1 and 154 in GBM2, was selected for 

further analysis. The dataset contains 561,468 autosomal SNPs.  

Allele-specific copy number data for GBM3 came from TCGA batches 26, 38, 62, 79, 111, 

and 130. A total of 156 samples had both Affymetrix SNP 6.0 genotyping data and 

Affymetrix gene expression data available, and these were downloaded in bulk on 1/31/2012. 

The copy number data for Affymetrix SNP arrays were Birdsuite output files and were 

converted to logR and BAF. Ten samples were apparent outliers on the gene expression PCA 

plot (not shown), and were removed. Of the remaining 146 samples, two female patients 

(TCGA-12-3644 and TCGA-12-3646) had exceptionally longer survival time (62 and 44 

months respectively), and were removed before classification analysis and survival time 

comparisons. The genome coordinates for the 811 autosomal cytoband were from  

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBand.txt.gz. 

 

2.2.1.2 Gene expression data 

Gene expression data were downloaded from 
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http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/. Most of our analyses were based on 

"unifiedScaledFiltered.txt", which contains processed data for 1,740 most variable genes for 

202 GBM samples. The data processing procedure was reported previously (Verhaak et al, 

2010). I also analyzed the full dataset in "unifiedScaled.txt", containing 11,861 genes before 

filtering. In GBM1, a subset of 130 samples (out of 202) had both gene expression and DNA 

copy number data. In GBM2, all 154 samples had both gene expression and DNA copy 

number data.  

Expression data for GBM3 were downloaded on 1/9/2012, from TCGA Data Portal 

(http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm), by choosing Platform= 

BI_HT_HG-U133A. GBM3 contains 170 samples from TCGA batches 26, 38, 62, 19 and 

111. I quantile normalized these data before running downstream analysis. The 840 genes 

selected in Verhaak et al. for distinguishing the four former subtypes were provided at 

(http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/ClaNC840_centroids.xls) and 

accessed on 04/12/2011. 

 

2.2.1.3 MicroRNA data 

MicroRNA data were downloaded on 1/7/2012 from TCGA portal by choosing  

Data Type: Expression miRNA;  

Batch: All;  

Level: 3;  

Platform: UNC_miRNA_8×15K, 
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This returned a dataset for 534 miRNAs in 506 samples, of which 125 overlapped with the 

202 GBM1 tumors. I quantile normalized these data before running downstream analysis.  

 

2.2.1.4 Clinical information 

Clinical data for individual patients and samples were downloaded from TCGA data-access 

site: 

http://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/gbm/bcr/intg

en.org/minbiotab/clin/ on 1/18/2011. I extracted information regarding age of diagnosis, 

survival time, tumor cell, and tumor nuclei. An updated version, containing information for 

GBM3, was accessed on 1/5/2012. The Karnofsky performance scores were extracted from 

the clinical data accessed on 6/22/2012. 

2.2.2 Ovarian Cancer (OV) 

 

2.2.2.1 DNA copy number data 

Copy number data for Illumina 1M-Duo arrays were downloaded from TCGA Bulk 

Download site http://tcga-data.nci.nih.gov/tcga/findArchives.htm on 10/01/2010. I queried 

the Data Access Matrix by choosing  

Disease: Ovarian Cancer;  

Data Type: SNP;  

Batch number: all; 
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Data Level: 2 and 3;  

Platform: HAIB (Human1MDuo).  

The BAF files contain 1,199,189 SNP markers and 516 paired samples. The LRR files 

contained 530 samples, of which 509 were paired. The overlapping set of 509 paired samples 

was selected for further analysis. 

 

2.2.2.2 Gene expression data 

Gene expression data for OV were obtained from TCGA data analysis working group. The 

file "TCGA_batch9-15_17-19_21-22_24.UE.txt" dated 05/05/2010 contains 11,864 genes 

and 524 samples, of which 504 overlap with the DNA copy number dataset. 

 

2.2.3 Phillips et al. dataset 

 

Phillips et al. data were accessed from GEO dataset GSE4271. The processed gene 

expression data for 56 samples were obtained at 

http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/.  

 

2.2.4 Cahoy et al. dataset 

 

Cahoy et al. data were accessed from GEO dataset GSE9956. 
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2.2.5 Data for microglia/macrophage 

I queried of Gene Expression Omnibus dataset (http://www.ncbi.nlm.nih.gov/gds) (Edgar et 

al., 2002b) to identify gene expression profiles for microglia/macrophage cells. During 

January 5-7th, 2012 I searched for keywords "microglia" AND "human" and found 23 

independent datasets. Among these, I selected experiments for tumor cells, and this resulted 

in 2 datasets, GSE25289 and GSE16119, which I used to infer the likely cell types 

contributing to the euploid population in MES tumors. 

 

2.3 Inferring aneuploidy genome proportion 

 

2.3.1 Introduction to SNP array data 

 

Allelic intensity data from SNP genotyping arrays provide quantitative copy number 

information of the two parental chromosomes: nA and nB. In a homogeneous cell population 

nA and nB are both integers, such that the logarithm of total intensity, logR=log(nA+nB), and 

the observed B allele frequency, BAF=nB/(nA+nB), adopt a finite combination of discrete 

values, which can be shown as "canonical positions" in the BAF-LRR plot (Figure 2.1A). In 

a tumor sample, however, the population of aneuploid cells may be mixed with euploid cells, 

consequently logR and BAF of the former "contract" towards those of the latter; and different 

mixing ratios result in different degrees of contraction (Figure 2.1B). An example of such a 
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mixed GBM sample is shown in Figure 2.2A. Based on this feature I developed an algorithm 

to quantitatively estimate genomewide mixing ratio from SNP data. In the following sections 

3.3-3.9, I will outline the procedures of this algorithm, including data preprocessing, 

theoretical models, inference and validation. 

 

2.3.2 Two-way mixing model and aneuploidy genome proportion (AGP) 

 

Before introducing the details of my algorithm, it is important to layout concepts and 

hypothesis. In this study I define Aneuploid Content, or synonymously, Aneuploid Genomic 

Proportion (AGP), as the parameter p in a mixture model consisting of two homogeneous 

populations: (1) aneuploid cells, at the fraction of p, and (2) euploid cells, at (1-p). This 

model has been routinely used in the field and hereby referred to as the two-way mixing 

model. Euploid cells carry a balanced set of parental chromosomes representing full-integer 

multiples of the haploid genome, and may include normal stromal cells surrounding the 

tumors as well as tumor cells without apparent genomic aberrations (e.g., only point 

mutations). Aneuploid cells, in contrast, carry CNAs at some chromosomes or 

subchromosomal intervals, resulting in an unbalanced set of genomic segments, each of 

which still contain an integer combination of parental DNA, e.g., nA=2, and nB=1 in a region 

of amplification. For many tumors, the two-way mixing model considered here is likely an 

over-simplification, as multiple subpopulations of tumor cells may exist, each carrying a 

different integer combination of parental segments. However, a mixture model with three or 
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more subpopulations is computationally intractable using the observed averages of the entire 

population; and realistically, many tumors may contain a dominant aneuploid population. A 

two-way mixing model is the simplest scenario that could have generated the observed data 

regarding varying levels of contraction in different samples. I therefore applied this model for 

the first-order estimation of within-tumor heterogeneity.  

 

2.3.3 Data processing, DNA segmentation, and merging 

 

Throughout this chapter, I focused on somatic events, defined by the differences between 

tumor-normal pairs, thus ignoring inherited aneuploidy.  

Seven GBM samples, TCGA-06-0139, TCGA-06-0160, TCGA-06-0165, TCGA-06-0167, 

TCGA-06-0189, TCGA-06-0240, and TCGA-06-0881 bear few copy number alterations 

(CNAs), and were excluded from further analysis. 

As homozygous locus is uninformative for detecting changes in BAF patterns I focused on 

BAF data at heterozygous loci. For each tumor-normal pair, loci with BAF value >=0.9 or 

<=0.1 in the normal sample were designated as homozygous. Altering the stringency of this 

definition did not make a major impact on AGP inference, as AGP will be driven by large 

aneuploid events, for which having more or fewer heterozygous loci would not substantially 

change the estimate of "contraction" (see below). For the heterozygous loci thus defined, I 

extracted tumor BAF data and generated the "folded BAF", defined as the absolute value of 

(BAF-0.5), for segmentation. For both GBM and OV, I performed segmentation on folded 
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BAF using the Circular Binary Segmentation (CBS) algorithm, implemented in the R 

package DNAcopy with default parameters, except that "minimal markers required" was set 

to 5. The series of BAF change points were merged with the corresponding LRR change 

points, which were generated by Dr. Devin Absher at the HudsonAlpha Institute of 

Biotechnology using CBS (Olshen et al., 2004), and were made publicly accessible as TCGA 

Level 3 data. As the BAF segments and LRR segments sometimes captured the same event, I 

merged the combined change points as follows: if a BAF change point was within 5 markers 

of a LRR change point, either upstream or downstream, it was removed, i.e. only the LRR 

breakpoint was kept, under the assumption that the two change points captured the same 

event, but the BAF change point was less accurately placed due to the constraint of using 

only heterozygous markers. After merging, small segments, defined as containing fewer than 

10 BAF markers were merged with adjacent segments by removing the flanking change 

points. These steps resulted in a final set of CNA segments for each tumor sample. 

 

2.3.4 Per-segment summary of LRR and BAF 

 

For each segment in the final CNA call set, I re-calculated the median LRR and mean folded 

BAF to update these values within each merged segment. For segments with balanced 

parental chromosomes, BAF values at heterozygous locI am distributed as one track near 0.5, 

but it may not be centered exactly at 0.5. Likewise for segments with unbalanced parental 

chromosomes, BAF values split to two tracks, which may not fall symmetrically around 0.5. 
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To increase the accuracy of BAF estimation I fit each segment's distribution of heterozygous 

BAF values as either one Gaussian distribution or the summation of two Gaussian 

distributions. When there were in fact two tracks but the separation between tracks was small, 

the summed distribution might resemble a single Gaussian distribution. I used the baseline 

variance of BAF as the criterion to distinguish the two cases: segments with folded BAF 

standard variation >=0.1 were considered as two-track segments, and fit with two Gaussians. 

For segments with one track, I obtained the best fitting distribution as N(µ,σ), and defined the 

folded BAF value as 0. For segments with two tracks, the best fitting distribution is N(µ1,σ1) 

and N(µ2,σ2), and the folded BAF value is |µ1 -µ2|/2. If the distribution cannot be fit in R or if 

the segment had fewer than 100 markers, the folded BAF value is taken as the mean absolute 

deviation around the mean: mean(|xi-mean(xi)|), where xi is the BAF value at the i-th marker. 

 

2.3.5 LRR scale-normalization 

 

The primary goal of Illumina's data processing algorithm is to find clusters that represent 

discrete genotypes. As a result the LRR values are not linearly scaled with the true copy 

number changes, e.g., when the true DNA copy number drops from 2 to 1, LRR drops less 

than 1 unit (2-fold). Moreover, the severity of this "saturation effect" is different between 

amplifications and deletions. For Illumina 550K arrays, the correction factors are 0.572 for 

deletions and 0.553 for amplifications (Peiffer et al., 2006). I re-scaled LRR segmental means 

by these ratios before downstream analysis. 
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2.3.6 BAF-LRR plot: canonical points and tracks 

 

I used the BAF-LRR plot to depict the bivariate data of allele-specific copy numbers. In this 

plot, the folded BAF values are shown on the x-axis, and the normalized LRR values are 

shown on the y-axis. Each segment is plotted as a point in the BAF-LRR space, with the 

symbol size indicating segment length. Amplifications, deletions, and copy-neutral LOH 

segments are uniquely placed in the plot.  

Canonical points, representing integer combinations of A and B alleles, were placed as 

follows. For a pair of integers (nB, nT), where nT denotes the copy number for the B allele, 

and nT denotes the total copy number of both alleles, its x and y coordinates are: 

|5.0| −=
T

B

n
nx

 

0
pl2 y

2
log −= Tny

                       (1) 

where y0
pl is an adjustable offset of LRR level to reflect (1) the average ploidy of the 

aneuploid population, which can be a non-integer, and (2) potential alternative ploidy of the 

euploid population. In some tumors, the euploid portion might be nT=4 (or nT=6) rather than 

nT=2, yet the normalization procedure of each sample tended to center its genomic average 

LRR to 0, thus an offset is needed to adjust the y-positions of the canonical points to achieve 

a maximal fit. I will separately fit nT=2, 4, and 6 for the euploid population when searching 

for the optimal AGP (see below).  
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Tumor samples that contain a mixture of euploid cells and aneuploid cells will show a 

contraction of canonical points from its original position toward the origin, where the euploid 

segments reside. The paths of the contraction when AGP decreases from 1 to 0 are called 

canonical tracks (Figure 2.1A and 2.1B). For a given p, canonical points on the BAF-LRR 

plot can be organized into a 2D lattice, in which the near-vertical gridlines connect points of 

equal nB. The first line, located at the right, contains all LOH points with (nB, nT) =(0,1), (0,2), 

(0,3), etc. The second line, to the left, contains (nB, nT) =(1,2), (1,3), (1,4), etc. And the third 

line contains (nB, nT) = (2,4), (2,5), (2,6),etc. They are orthogonal to the canonical tracks, 

which describe the movement of canonical points toward the origin ((nB, nT) = (1,2)) under 

shrinking values of AGP. The relative positions of the canonical points contain information 

for distinguishing the alternative ploidy of the euploid genome, which define the origin of 

contraction for the aneuploid segments. 

 

2.3.7 Inference of Aneuploid Genome Proportion 

 

A. Definition of Euploid Segments: On a BAF-LRR plot, euploid regions tend to land near the 

point (x,y) = (0,0). But due to random noise and various technical artifacts some segments 

may lie slightly off (0,0). Precise assignment of the near (0,0) segments into the euploid 

cluster is important because it affects the relative distances to other canonical points and the 

AGP estimates. To anchor its position, I first ran k-means clustering 10 times on the observed 

BAF-LRR values for all segments. For each run, I identified the segments that belong to the 
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cluster nearest to (0,0), and tagged them as euploid. Segments that were tagged more than 6 

times out of 10 were used to define the seed position, located at the cluster mean (xs, ys) of 

the tagged segments, weighted by segment size. Second, I examined each non-seed segment 

to see if its coordinates (x, y) were sufficiently close to the seed location. If BAFsxx σ<=− ||  

and LRRsyy σ<=− || , this segment was "pulled" into the euploid cluster, where ,04.0=BAFσ  

the empirically estimated standard variation of BAF, and ,16.0=LRRσ  the empirical standard 

variation of LRR. This step was iterated, with more segments joining the euploid cluster until 

the cluster was no longer updated. The final coordinate of the weighted center of the euploid 

cluster is denoted as (
ff yx 00 , ).  

B. Canonical Points under admixture: Consider the mixture containing a population of cells 

carrying an aneuploid segment (nB, nT), and a second population of cells carrying an euploid 

segment (npl, 2npl), npl=1,2, or 3, and that the euploid portion makes up 1-p of the total (i.e., 

AGP = p). The coordinates for the mixed population are given by: 
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C. Aneuploid genome Proportion: For each sample, after the euploid cluster was defined, I 

searched for the best fitting p and npl by screening the parameter space of p � (0,1), and npl � 

(1,2,3,4). I did not include the canonical point for homozygous deletions because their BAF 

or LRR values are not determined. 

For each (p, npl ) combination being considered, the canonical points were calculated and the 

penalized sum of squared distance ( )(' pSSD pl ) was calculated as: 
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where i is the segment index and Ω represents all segments in this sample (excluding those in 

the euploid cluster), pl stands for ploidy npl, 
i

pldmin, is the squared distance of the segment to 

the nearest canonical point. )( pDpl is the penalty score for applying a larger npl, as 

increasing npl results in a larger number of available canonical points to fit with, and 

consequently a smaller sum of squared distances. Applying this penalty will avoid making 

excessively high euploid baseline assignments. )( pDpl is linearly correlated with the 

approximate distance between adjacent canonical points such as (2.4) and (1,4). I defined  

)( pDpl = pn × (npl-1) × distance between canonical points (2,4) and (1,4) 

Penalty Pn was manually chosen as pn=200 as it generated the most reasonable assignments.  

Best fitting AGP value was determined by the smallest SSD'pl(p). The scanning of the 

parameters was carried out in two steps to increase computation speed: a coarse scan of p � 

(0.05,0.95) at an interval of 0.05 was performed, with a best fitting value p* determined. 

Then, in the second step, a finer scan of p � (p*-0.1,p*+0.1) at an interval of 0.02 was 

performed to refine the final score. The model also yielded the optimal ploidy value, resulting 

in 135 diploid, 127 tetraploid and 22 hexaploid samples for GBM1 and GBM2. For OV, I 

identified 23 diploid, 64 triploid, 273 tetraploid, 127 hexaploid and 22 octoploid samples. 

 

2.3.8 Genomic features and QC measures 

 

I extracted multiple genomic measures for each tumor sample, including percent of genome 
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changed (PC) and percent of genome on canonical points (PoP). Let P1 denote the proportion 

of genome in the euploid cluster, thus 1-P1 of genome has been alerted either in copy number 

or in the B allele frequency. I define: 

PC = 1 – P1 

Extremely low PC indicates that there is insufficient amount of CNAs to inform model 

parameters and should be considered as having yielded low-quality AGP estimates. 

Actual segments on the BAF-LRR plot may fall near or far from a canonical point for a given 

AGP. I quantify these deviations as measures of goodness-of-fit by the two-way mixing 

model with optimal AGP. If there is more than one dominant aneuploid population mixed 

with the euploid population, some segments would have a different mixing ratio than some 

other segments, and as a consequence, the fit at a single AGP would not be suitable for all 

segments, and this can be reflected by a low rate of "Percent-on-Point", defined as the 

proportion of segments falling within sBAF = 0.04 and sLRR = 0.16 of a canonical point. If this 

proportion is P2 of the genome, I define 

1

2

P
P

PoP
−

=
1  

As aneuploid cells carry variable copy numbers at different segments, it is no longer 

sufficient to define an integer ploidy as a genomewide attribute of a tumor. However I define 

average aneuploid ploidy as the genomewide mean copy number for the aneuploid cells of 

the tumor, and average overall ploidy as the weighted average of euploid and aneuploid 

populations. Specifically, as I assign ploidy status for every segment in the aneuploid genome, 

the average aneuploid ploidy, Ψtumor, can be defined as the length-weighted means of 

segmental ploidy. The average overall ploidy of the sample, containing p of aneuploid 
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genome and 1-p of euploid genome, is  

)1(2 pnp pltumoroverall −××+×Ψ=Ψ           

Other tumor genomic features, including percentage of genome amplified (%amp), deleted 

(%del), percentage of hemizygous deletion (%del.loh), and percent of genome underwent 

loss of heterozygosity (%LOH), were also extracted.  

I use a bootstrap method to estimate the confidence intervals of AGP. A weighted resampling 

was performed for each sample, such that each segment was chosen with the probability 

proportional to its size. Permutation was done 100 times for each sample, and for each run, 

80% segments were resampled and AGP recalculated. The standard deviation, and the 2.5%, 

50%, and 97.5% quantiles of AGP, were extracted and included in Table 2.1. The 2.5-97.5% 

confidence interval (CI) can be calculated from these results. I also calculated the relative 

confidence interval (rCI) as the ratio of CI to the median of AGP. Eighty-eight percent of 

samples had rCI less than 100%. 

PoPs were negatively correlated with AGPs (Figure 2.1C, Spearman's r = -0.40, P = 3,3 × 

10-12), suggesting that samples better accounted for by the model (i.e., higher PoP) tend to 

have lower AGP estimates, thus our method may have over-estimated AGP for poorly fit 

samples. The CIs, however, were positively correlated with AGPs (Figure 2.1D, r = 0.13, P = 

0.03).  

 

2.3.9 Validation of AGP algorithm 
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The validation dataset, GSE11976, was downloaded from the Gene Expression Omnibus 

(GEO) (Edgar et al., 2002a). It contained 11 samples of DNA from the human breast 

carcinoma cell line CRL2324 mixed with DNA from the lymphoblastoid cell line 

HCC1395BL with known mixing ratios. Samples were measured across 370,404 SNP loci by 

using the Illumina HumanCNV370-Duov1 BeadChips. Known CNVs in HCC1395BL were 

removed so that HCC1395BL DNA represents the euploid portion of the mixture. AGP value 

for each sample was calculated using our algorithm, and compared with the mixing 

percentage. Pearson’s correlation coefficient r = 0.979, confirming that our method 

accurately estimated aneuploid content.  

 

2.4 GBM samples AGP estimation 

 

As mentioned above, in the first batch (GBM1), seven of 284 tumors had too few CNAs 

(including copy-neutral loss-of-heterozygosity events) for AGP estimation, and were 

removed. The remaining 277 tumors had > 0.5% of the genome affected by CNAs, with an 

average Percent Changed (PC) of 37.3%, i.e., > 1/3 of the genome was altered in an 

"average" GBM. Across the 277 samples, the estimated AGPs ranged from 23% to 99% 

(mean ± SD: 76% ±17%), indicating significant admixture of euploid cells (average euploid 

content of 24%). To assess the goodness-of-fit for each sample I quantified the confidence 

interval (CI, 2.5-97.5%) of AGP and the fraction of CNAs that fall on canonical positions 

(PoP, Percent-on-Point) in the optimal two-way mixing model (Figure 2.1C-D). PoP values 
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had a median of 92% among 277 GBMs, suggesting that it is indeed adequate to model a 

single dominant aneuploid cell population in most GBM samples.  

 

2.5 Comparison of genomic estimated aneuploidy contents with histologic reports 

 

Histopathologic assessment of tumor purity provides basic information for clinical diagnosis, 

and is a key criterion in sample selection for research. In TCGA, for example, only GBM 

with >80% "tumor nuclei" were studied. I found, however, that aneuploid estimates based on 

SNP data were only moderately correlated with pathologists' report of "percent tumor cells" 

(Spearman's r = 0.14, P = 0.02, n=275), not correlated with "percent tumor nuclei" (r = 0.076, 

P = 0.21, n=275), and were lower than AGP by an average of 7% and 18%, respectively 

(Figure 2.3). The difference was not explained by tumors with worse fit in our model, or 

greater estimation uncertainty. Our inferred AGP is therefore a novel feature extracted from 

molecular measurements, and can be complementary to the traditionally observed tumor 

purity. 

 

2.6 Impact of aneuploid content on gene expression patterns 

 

I examined 128 GBM1 samples with both gene expression and CNA data. First, samples of 

low AGP tend to cluster together in PCA of gene expression data, driving a strong correlation 

between the first principal component scores (PC1) and AGP (Pearson’s r = 0.62, P = 
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7.3×10-15, n = 128) (Figure 2.2C). PC2 was also correlated with AGP (r = 0.48, P = 1.1×10-8). 

This pattern suggests that within-tumor heterogeneity is a major driver of gene expression 

variation, and a factor overlooked in most previous studies. To see if the results for GBM 

extend to other tumor types, I applied a similar analysis to SNP and expression data for 509 

ovarian (OV) tumors from TCGA (The Cancer Genome Atlas Research Network, 2011), and 

observed a similar pattern (Figure 2.4), with a strong correlation between AGP and PC1 (r = 

0.56, P < 2.2×10-16, n = 504). In contrast to AGP, clinically recorded purity values showed 

little correlation with PC1, r was 0.004 (P = 0.96) for "tumor nuclei", and 0.14 (P = 0.10) for 

"tumor cells", thus underscoring a key advantage of empirical measures of intra-tumor 

heterogeneity (Shirahata et al., 2007). Similar to mRNA, expression patterns of 504 

microRNAs were also correlated with AGP (r = -0.26, P = 3.0×10-3 for PC1; r = -0.56, P = 

1.7×10-11 for PC2, n=125).  

 

2.7 Combined use of DNA and mRNA patterns in class discovery 

 

The results above raised the question of whether varying levels of euploid-aneuploid mixing 

could affect the detection of tumor subtypes. To answer this, I performed a joint classification 

analysis of DNA and mRNA data. In PCA of DNA copy number data, high-AGP samples 

had high and low PC1s, flanking low-AGP samples (Figure 2.5A), and this was mostly due 

to a split of Proneural samples (colored purple). Interestingly, PC1 for copy number and PC1 

for expression data, when plotted together, showed a clear separation of two groups (Figure 
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2.2D), which, due to annotation efforts described below, I will call Non-Proneural and 

Proneural samples (even though the Proneural group defined here only partially overlaps with 

the previously defined Proneural group (Verhaak et al., 2010b)). The two groups were not 

readily separable when either dataset was analyzed by itself. MicroRNA PC2 was highly 

correlated with PC1 of mRNA data (not shown); thus the joint use of this quantity with copy 

number PC1 also separated the two groups (Figure 2.5B). The Proneural class consisted of 

20 high-AGP samples (AGP = 0.86 ± 0.11), of which all but one belonged to the Proneural 

group defined previously (Verhaak et al., 2010b). Conversely, only 19 out of 38 previously 

defined Proneural samples (among the 128 analyzed) were Proneural here. Thus, our first 

revision of GBM classification is that the previously recognized Proneural group splits into 

two, about half becoming the newly recognized Proneural GBM, another half joining the 

Non-Proneural class. The Non-Proneural GBMs fell on a continuous distribution that 

parallels a gradient of AGP (range: 0.23-0.99), and span from the former Mesenchymal 

samples toward the Classical, Neural, and the rest of the former Proneural samples (Figure 

2.2D). 

I sought to validate these findings in the second batch of GBM (GBM2), using 154 samples 

having both DNA and mRNA data. AGP estimates were generated as above, showing a 

similar distribution of AGP in PCA plots of CNA and gene expression data (Figure 2.6A-B). 

Just as in GBM1, combined analysis revealed two well separated classes (Figure 2.6C), with 

15 Proneural samples. 
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2.8 Molecular and clinical features of Proneural GBMs (Proneural/G-CIMP+) 

 

To provide biological annotation of Non-Proneural and Proneural samples, I first note that 

they carried distinct CNA patterns. Non-Proneural GBMs carried recurrent gains in 

chromosomes 7, 19, 20, recurrent losses in chromosomes 9p and 10, and a gradient of CNA 

intensities due to varying AGP (Figure 2.7A). Proneural tumors, in contrast, lacked most of 

the Non-Proneural features described above and had high AGP values. They carried a more 

diverse set of CNAs, including 11p15.2 deletions (n=12 out of 20), 8q24.21 amplification 

(n=7), and 10p11.23 amplifications (n=14). Two of the Proneural samples showed 

co-occurrence of chr1p loss and chr19q loss (bottom of Figure 2.7A), each of which was 

rarely seen in other samples, yet this co-deletion has been reported as a key feature in 

anaplastic oligodendrogliomas (Cairncross et al., 1998, Ducray et al., 2008). Proneural GBMs 

had more IDH1 mutation, a hallmark of secondary GBM (Cooper et al., 2010, Kleihues and 

Ohgaki, 1999, Nobusawa et al., 2009). They showed higher frequencies of mutations in TP53, 

lower frequencies of mutations in PTEN, fewer deletions of CDKN2A - these are also 

signatures of secondary GBM reported previously (Kleihues and Ohgaki, 1999, Ohgaki and 

Kleihues, 2007). They also showed fewer amplifications and over-expression of EGFR, high 

expression of PDGFRA, and lower expression of FAS and MDM2 (Figure 2.7B and Table 

2.2). 

I also compared clinical outcome between the two groups. Compared to Non-Proneural GBM, 

patients with Proneural GBM were younger at diagnosis (Figure 2.7C) and had longer 

survival time (Figure 2.7D). Notably, while the Proneural group defined here has a better 
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outcome, the other half of the former Proneural group (which I assigned to non-Proneural), is 

significantly worse than the rest of the Non-Proneural group (P=0.0059). Thus, lumping the 

two dissimilar types of GBM in the previously defined Proneural class would have missed a 

clinically relevant distinction. 

A recent study of methylation patterns in TCGA samples revealed a subclass of GBM with 

glioma-CpG island methylator phenotype (G-CIMP+), an epigenetic signature associated 

with secondary or recurrent GBM and with IDH1 mutations (Noushmehr et al., 2010). Of the 

20 Proneural samples I identified, 15 were G-CIMP+ (Figure 2.7B); whereas of the 108 

Non-Proneural samples none was G-CIMP+, strongly supporting Proneural GBM as a 

biologically distinct subtype. Indeed, 3-way analysis of CNA, gene expression, and DNA 

methylation data revealed consistent separation between Proneural and Non-Proneural GBMs 

(Figure 2.8). Proneural samples also match the Proneural GBMs defined in Phillips et al. 

(Phillips et al., 2006b) (Table 2.3). As the term "Proneural" was applied differently in 

Verhaak et al. and Phillips et al. I renamed the Proneural group as Proneural/G-CIMP+ (or 

PN/G-CIMP+). PN/G-CIMP+ samples carry signatures resembling those of secondary GBM 

or low-grade gliomas (Cooper et al., 2010), despite the fact that all but four samples in TCGA 

have been designated as primary (three of these were PN/G-CIMP+). These results suggest 

that a fraction (20 of 128 analyzed, ~16%) of the apparently primary GBM cases recruited in 

TCGA may in fact be latent secondary cases. 
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2.9 Three subclasses within Non-Proneural GBMs: Molecular and clinical signatures 

 

After Proneural/G-CIMP+ GBMs were recognized, I sought to identify subclasses within the 

remaining, Non-Proneural GBMs. The reason for removing an already recognized group (i.e., 

Proneural/G-CIMP+) when studying the fine structure inside another (Non-Proneural) is that 

the markers distinguishing the two main groups may not be most informative for the 

within-group analyses, and could confound the latter. 

 

2.9.1 A two-step procedure that relies on GBM1-GBM2 mutual validation 

 

In PCA, Non-Proneural GBMs described a nearly continuous distribution (Figure 2.2C), in 

which the low-AGP samples aggregated to the left, and there were no clearly separated 

sub-groups in this type of plot. For practical reasons it is often useful to partition seemingly 

continuously varying samples into discrete classes in order to draw broad biological 

conclusions, and to aid clinical decision-making. With high-dimension data, however, even 

samples from a homogeneous distribution can be divided into pre-specified numbers of 

clusters; but the result can be unstable, and be sensitive to samples included, or the statistical 

algorithms applied. Self-aggregating algorithms such as hierarchical clustering or k-means 

clustering will always produce a desired number of clusters; and Consensus Clustering is 

prone to exaggerate cluster stability (Senbabaoglu et al., manuscript under preparation). In 

CC, class assignment can be sensitive to outlier samples, chance occurrence of tightly 
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clustered samples, and the markers used. In addition, as gene-gene correlation is ubiquitously 

observed, and if groups of highly correlated genes appeared in both the test cohort and 

validation cohort, it is easy to find that the most discriminating genes in one cohort are 

"validated" in the second cohort by observing similar clustering patterns.  

To address these methodological challenges, I placed major emphases on mutual validation 

between the GBM1 and GBM2 cohorts rather than first selecting the most informative genes 

in one and testing them in another. I also focused on the Non-Proneural samples. I ran 

K-means-based CC on quantile-normalized gene expression data for GBM1, and separately 

for GBM2, recording the class assignments for K = 2, 3, 4 (K is the number of clusters) for 

both cohorts. To assess classification concordance between GBM1 and GBM2, I calculated 

the cross-correlation matrix between every sample in GBM1 and every sample in GBM2, and 

displayed the resulting matrix where samples were grouped by class assignments 

independently obtained for the two cohorts (Figure 2.9A-B). If samples of a given class in 

GBM1 showed high correlation coefficients (r) with those of a particular class in GBM2, and 

showed low r values with other GBM2 classes, the class discovery was considered mutually 

validated. Conversely, if the classes did not show a one-to-one correspondence between the 

two independent cohorts, I considered the class definition poorly replicated. Figure 2.9A 

showed the GBM1-GBM2 cross-correlation matrix for K=2, where the two classes defined in 

GBM1 could be matched, one-to-one, to the two classes independently defined in GBM2. In 

comparison, K=3 or 4 yielded substantially worse matching (Figure 2.10A-B). 

At K=2, one of the two classes for GBM1 contained all the 37 samples in the Mesenchymal 

group defined previously (Figure 2.9A). I therefore named it the Mesenchymal (MES) group 
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even though it now also contained 4 former Neural/Proneural samples and 11 former 

Classical samples. The other class showed hints of finer structure in Figure 2.9A; and this 

was explored by repeating the analysis described above within this class. This led to a further 

split into 2 subclasses (n=27 and 29, Figure 2.9B), with K=2 being better than k=3 or 4 

(Figure 2.10C-D). One of the subclasses was dominated by the previously defined Classical 

samples, and was thus named the Classical group even though it also contained 5 Neural and 

1 Proneural samples. The other subclass, with a mixture of Non-Proneural-Proneural and 

Neural tumors, was named Proliferative for its similarity with the Proliferative samples 

identified by Phillips et al. (Phillips et al., 2006b). Attempts to identify further subtypes 

within the Proliferative group were not supported by mutual validation between GBM1 and 

GBM2 (not shown). This led us to conclude that the G-CIMP-minus (G-CIMP-) subset of 

previously defined Proneural samples did not form a distinct group. In other words, there 

wasn't a second, self-contained Proneural group in the current GBM dataset, although it is 

possible that a larger sample size in future studies could have the power to reveal finer splits. 

In all, I identified three subclasses for Non-Proneural GBM through a two-stage, stepwise 

clustering procedure, with optimal K=2 at both stages, and supported by concordance 

between GBM1 and GBM2. The resulting assignments were different (by 12% of samples) 

from those assigned by a one-stage, K=3 approach. I consider the two-stage approach more 

appropriate because the finer division in the second stage is not affected by the more 

divergent profiles of the two main classes identified in the first stage. The three newly 

identified Non-Proneural GBM classes are visually coherent on the gene expression PCA plot, 

for both GBM1 (Figure 2.9C) and GBM2 (Figure 2.9D). 
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2.9.2 Comparison with previous studies 

 

Phillips et al. (Phillips et al., 2006b) proposed a three-class system for GBM: Proneural, 

Proliferative and Mesenchymal. Verhaak et al. (Verhaak et al., 2010b) reported four classes 

for TCGA samples: Proneural, Neural, Classical, and Mesenchymal; and in this work I 

described a revised four-class system for the same dataset as in Verhaak et al. Based on 

molecular signatures and comparisons with Phillips et al and Verhaak et al’s work discussed 

below, I name the three revised Non-Proneural GBM classes: Classical, Proliferative and 

Mesenchymal. In order to summarize how these systems have evolved (i.e., how different 

classes correspond to each other), I first reanalyzed the Phillips' data, which were made 

publicly available and a subset of 56 samples were subsequently processed to combine two 

technical platforms (Verhaak et al., 2010b). Among the 56 samples I first observed that the 

Proneural samples in Phillips' study showed high similarities to our PN/G-CIMP+ GBMs in 

terms of patient age, survival time, and patterns of CNAs (not shown). For the remaining 46 

samples, which were designated Non-Proneural GBMs here, I followed the procedure of 

Phillips et al. to select 584 genes most highly correlated with patients’ survival time (out of 

1,740 most variable genes) and performed k-means clustering, using cross-correlation with 

TCGA’s GBM1 to find the optimal number of classes. Again, K=2 yielded the best match for 

both steps in a two-step procedure (Figure 2.11), leading to the recognition of 19 

Mesenchymal, 14 Proliferative and 13 Classical samples. This new three-way classification 
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of 46 Non-Proneural samples showed better cohesion on the PCA plot (Figure 2.12) than the 

original classification, and this could be explained by noting that the latter was based on a 

different set of (and much fewer) genes.  

By tracking the class reassignments between the two datasets and between the original 

classification and our revised classification (Figure 2.13A-B), I documented the 

commonalities and differences among different classification systems (Figure 2.13C, Table 

2.3). Of the 108 samples, 70 (65%) had one-to-one mapping to the previous NL, CL, and 

MES classes (Figure 2.13); thus 35% of GBM1 samples received revised assignments. I 

similarly analyzed the 46 Non-Proneural samples in Phillips et al. (Figure 2.11-12), and 

found that the former Proliferative group was split into the new Proliferative and Classical 

groups, and 11 (24%) were reassigned into or out of the MES group. The MES class was 

reproducibly identified in both datasets and in both the original and the revised schemes. The 

original Proneural group for TCGA was split into (1) the PN/G-CIMP+ group, which is 

equivalent to Phillips' Proneural group, and (2) Non-Proneural-Proneural (N-P-P), which was 

merged with the original Neural samples to form the revised Proliferative group, which 

closely resembles Phillips' Proliferative group. However, some of Phillips' Proliferative 

samples split and formed the revised Classical group, which closely resembles the original 

Classical group for TCGA samples. In sum, a major revision of the Verhaak et al. 

classification is in recognizing that the Proneural group contains two distinct subgroups, one 

of which, PN/G-CIMP+, is well separated from the other three classes by CNA patterns, 

IDH1 mutations, patient age, and outcome. For the Philipps' dataset, a major revision is in 

separating the original Proliferative group into the revised Proliferative and Classical groups. 
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The primary reason that the Proneural/G-CIMP+ class was previously mis-grouped with 

some Neural samples is that their gene expression signatures, when viewed without other 

genomic data, were not sufficiently distinctive, because Proneural samples share a cell 

type-specific signature with the Neural samples (renamed as the Proliferative samples in our 

system). It was only by integrating the CNA data (this work) or by using the methylation data 

(Noushmehr et al., 2010) that the Proneural/G-CIMP+ group became evident. The Phillips' 

study did not miss this group because the authors selected genes strongly correlated with 

survival time rather than those showing the largest variation. Since patients in the 

Proneural/G-CIMP+ group survived longer, genes that were most informative for recognizing 

this group were used in that study.  

 

2.9.3 Clinical relevance of revised Non-Proneural GBM classes 

 

Since any new method could lead to a different classification, I pursued an important 

question: are the biological features of the new classes more robust than in the old system? 

Many marker genes highlighted in previous studies were consistently observed (Table 2.4). 

In CNA patterns (Figure 2.14A), while Non-Proneural samples shared the chr7 gains and 

chr10 losses, Proliferative samples carried additional deletions in chr14 and chr15 rarely seen 

in Classical samples (Student t test for chromosome-wide averaged copy number: P=2.6×10-3 

and 3.1×10-4, for chr14 and chr15, respectively), whereas Classical samples carried more 

amplifications in chr19 (P=1.1×10-6) and chr20 (P=3.6×10-6) than in Proliferative samples. 
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Interestingly, many MES samples carried both the chr14-15 deletions and the chr19-20 gains, 

although with varying intensities due to lower aneuploid content, and with significantly more 

chr13 deletions compared with non-MES tumors (P=9.6×10-3). For Proliferative and MES 

samples, chr14q and 15 deletions tended to be mutually exclusive (mean Pearson’s r = -0.23 

for Prolif and -0.26 for MES); whereas for Classical samples, chr19 gains tended to co-occur 

with chr20 gains (mean Pearson’s r = 0.46). These results showed that in addition to the CNA 

differences between Non-Proneural and PN/G-CIMP+ (Figure 2.7A), the three 

Non-Proneural classes carried different patterns of genomic aberration, possibly reflecting 

their differences in cell lineage, transcriptome patterns, and patient outcome. 

The three Non-Proneural classes also showed significant differences in survival time in a 

three-way comparison in GBM1 (Figure 2.14B, log-rank test P=0.011). This is in contrast to 

the previous class assignments (Verhaak et al., 2010b), for which the three-way comparison 

was not significant (Figure 2.14C). For individual pairs of classes, five out of six pairwise 

comparisons were significant in the revised system, while only one of six was significant in 

the previous system (Figure 2.15). The revised classes for Phillips' dataset also had 

significant survival differences in the three-way comparison (P = 0.033, log-rank test) and in 

the four-way comparison that included the PN/G-CIMP+ group (P = 0.014).  

To directly compare the relative hazard across the four GBM subtypes and incorporate 

relevant patient characteristics, I performed a Cox proportional hazard regression analysis 

using our four-class assignments as explanatory covariates, and including patient age and the 

Karnofsky Performance Status (KPS) scores. First, for the entire set of 128 GBM1 samples, 

with the PN/G-CIMP+ subtype used as the reference category, the three non-Proneural 



! 56!

subtypes had higher hazard ratios in the revised system (Figure 2.16A) than in the previous 

system (Figure 2.16B). Second, when I focused only on the three non-Proneural subtypes, 

using Classical as the reference, the 108 samples in the revised system (Figure 2.16C) 

showed higher hazard ratios than the 98 samples in the previous system (Figure 2.16D). To 

compare concordance between tumor classification and patient outcomes, I computed the 

C-statistics (Harrell et al., 1996) for the 128 GBM1 dataset using the Cox regression model 

with age, KPS and subtypes as covariates. Revised classification had a concordance score of 

0.668, higher than using age and KPS alone (0.643) by 2.5%, whereas the previous system 

had a concordance of 0.651, higher than using age and KPS alone (0.643) by only 0.8%, 

indicating that the revised system had improved predictive power for patient outcome. 

 

2.9.4 Validation of survival time differences in an independent cohort 

 

The Non-Proneural classes described above were defined by mutual validation of GBM1 and 

GBM2, thus having used information from both cohorts. To validate the survival time 

differences in a new, independent dataset, I analyzed a third batch of 144 TCGA samples 

(GBM3). As before, I identified 26 PN/G-CIMP+ samples using expression data and CNA 

data. Survival time differences were indeed validated in GBM3, with five out of six pairwise 

comparisons showing significant differences (Table 2.5A). To compare with the previous 

system, I used the 840 markers suggested by Verhaak et al. to classify the GBM3 samples 

and found that only one of six pairwise comparisons was significant (Table 2.5B).  
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2.10 Inference of cell type composition of GBM classes 

 

I attempted to deduce the possible cell type composition of the four GBM classes to shed 

light on the cellular origins of this heterogeneous cancer. To do so, I compared GBM 

expression data with a reference dataset, GSE9566 (Cahoy et al., 2008), for 38 samples that 

represent four main cell types in the central nervous system: acutely isolated astrocytes, 

neurons, oligodendrocytes, and cultured astroglia. The 38 samples formed four 

well-separated clusters, in agreement with their known identity (Figure 2.16). 

Cross-correlations of Non-Proneural GBM samples with the 38 reference samples, when 

grouped by class (for GBM) and cell type (for reference samples), showed recognizable 

mapping of GBM classes to known neural cell types, for GBM1 (N=128), GBM2 (N=154), 

and Phillips’ dataset (N=56) (Figure 2.17A-C). Both PN/G-CIMP+ and Proliferative samples 

showed high correlations with neurons and oligodendrocytes, suggesting that they both 

resemble oligodendrogliomas. The Classical samples were similar to the astrocytes, 

suggesting that they may be related to astrocytomas. Lastly, the Mesenchymal samples 

showed high similarities with the cultured astroglia samples, which had an "immature or 

reactive phenotype" (Cahoy et al., 2008), consistent with the MES signatures of angiogenesis 

and inflammatory infiltration (Phillips et al., 2006b, Verhaak et al., 2010b, Murat et al., 2009). 

The observed resemblance to known cell types was generally consistent with what was 

reported previously (Verhaak et al., 2010b), but with important differences. First, the former 
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Neural group did not show clear mapping to any cell type. Second, the mapping to reference 

cell types is much stronger with the new system: the difference (D) of the mean correlation 

coefficients between the mapped diagonal blocks and the off-diagonal blocks of the 

correlation matrix (Figure 2.17A-C) was 0.562 for the new classes, much higher than in the 

previously reported classes (D = 0.247) even when I counted the best mapped blocks for the 

latter. 

As most of the low-AGP samples fell in the Mesenchymal group, I attempted to clarify the 

cell lineage of the aneuploid and euploid populations. If the aneuploid cells were derived 

from one of the reference cell types, there should be a positive correlation between (1) the 

correlation between samples of that particular cell type and individual MES tumors and (2) 

the MES tumors' AGP values, which measure how much aneuploid cells they contain. I 

calculated the correlation coefficients r, for each of the 38 reference samples, between its 

correlation coefficients with the MES samples and the AGP values of the MES samples, and 

found consistent and positive r values for Cultured Astrocytes (Figure 2.17D), suggesting 

that the aneuploid cells in MES share gene expression features, and possible common lineage, 

with reactive astrocytes (Cahoy et al., 2008).  

As no other cell type in the reference set showed negative correlations, the identity of the 

euploid cells in MES remained unexplained. MES tumors carry angiogenic and inflammatory 

signatures, and some microglia markers are highly expressed in MES samples (Verhaak et al., 

2010b). I therefore hypothesize that the euploid fraction may be related to 

microglia/macrophage infiltration. To test this hypothesis, I searched public databases for 

gene expression data for microglia samples, and found data for tumor-infiltrating 
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microglia/macrophage isolated from freshly excised brain tumors ("TI. microglia", in 

GSE25289) (Mora et al., 2010) and for microglia fraction from postoperative GBM tissue 

("G. microglia", in GSE16119) (Murat et al., 2009). The correlation of these cells with MES 

tumors showed negative correlations with AGP (Figure 2.4D), suggesting that expression 

signatures of MES euploid cells are similar to microglia/macrophage. Moreover, two 

microglia/macrophage-specific transcripts, integrin alpha M (ITGAM) (Guillemin and Brew, 

2004) and allograft inflammatory factor-1 (AIF1) (Schwab et al., 2001), were negatively 

correlated with AGP (r = -0.58, P = 6.3×10-6 for ITGAM; r = -0.53, P = 5.3×10-5 for AIF1), 

further supporting microglia/macrophage as the probable source of euploid population in 

MES.  

 

2.11 Hierarchical classification of GBM 

 

The new understanding of GBM genomic landscape led to our proposal of a cohesive 

stepwise classification procedure (Figure 2.18). First, Proneural/G-CIMP+ GBMs can be 

identified with joint analyses of copy number and mRNA profiles, along with clinical data 

such as patient age. Even if a case was recorded as primary GBM due to the apparent lack of 

antecedent tumors, it could be recognized as Proneural/G-CIMP+ by features such as younger 

age, IDH1 mutations, lack of PTEN mutations, hyper-methylation patterns, and lack of chr7 

gains and chr10 losses. Among the remaining, Non-Proneural samples, MES samples can be 

separated from the Classical and Proliferative samples by lower AGP values, necrosis 
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signatures, higher expression of FAS and CHI3L1, etc. These tumors experienced more 

infiltration of non-cancerous cells, containing aneuploid reactive astrocyte-like cells 

intermingled with cells such as microglia/macrophage that lack CNAs. Lastly, Classical and 

Proliferative samples can be distinguished by gene expression patterns that resemble different 

neural cell types. Known markers highlighted by previous studies (Table S4), such as PCNA 

and TOPA2A overexpression in Proliferative samples, can also be incorporated in this step.  

 

2.12 Summary 

 

The practice in this work covered inter-tumor level and sample level heterogeneity. I have 

developed an algorithm to estimate the euploid cell mixing ratios in surgically removed bulk 

tumor tissues. My algorithm falls in the lineage of pattern recognition discussed in Chapter 1, 

4.2, which was first introduced by Popova et al (ref). However, AGP inference algorithm 

differentiates from the original GAP method in several ways: first, it used folded BAF as 

x-axis, which allowed me to introduce contraction tracks for each possible CNA 

configuration. This feature will later be used to develop a more capable tool, segmental AGP 

inference algorithm, which estimates   
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estimation. Second, AGP inference algorithm does not rely on external input of tumor DNA 

content to genotype the somatic CNAs. It is able to estimate tumor and sample ploidy based 

on the distribution of observed data points on the BAF-LRR plot.  

Discoveries of GBM subtypes have so far relied on single data types. The work reported here 

combined DNA genotyping data and gene expression data, and revealed a novel GBM 

subtype (Proneural/G-CIMP+) that carried distinct molecular, clinical, and demographic 

features. While this subtype was described separately in a study of methylation data 

(Noushmehr et al., 2010), our approach reached the conclusions from two other, independent 

data types, and suggests that such a combined approach will be useful in genomic analysis of 

other cancers.  
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Table 2.2: Selected molecular signatures distinguishing Typical (T) and Atypical (AT) 
GBMs 

�  Signatures* N(AT)1 N(T)1 N(T-PN)1 

Fold change 

(T/AT) 

Change(T/AT)3 

P value2 Reference 

Molecular 

IDH1 mut 10 0 0 �  �  
Nobusawa 

et al, 2009 

EGFR amp 1 106 18 
 

<2.2e-16 
Kleihues et 

al, 1999 

EGFR OE 1 50 5 3.44 3.99E-07 
Kleihues et 

al, 1999 

MDM2 OE 1 18 3 1.65 3.11E-04 
Kleihues et 

al, 1999 

CDKN2A 

del 
8 79 12 �  0.13 

Kleihues et 

al, 1999 

PTEN mut 3 32 6 
  

Kleihues et 

al, 1999 

FAS OE 2 44 3 2.4 2.86E-05 
Tohma et 

al, 1998 

TP53 mut 12 33 8 
  

Kleihues et 

al, 1999 

PDGFRA 

OE 
12 27 10 0.29 2.85E-04 

Kleihues et 

al, 2007 

G-CIMP+ 15 0 0 �  �  
Cooper et 

al, 2010 

Clinical 

Mean Age 

(Onset) 
38 58 58 �  4.63E-05 

Kleihues et 

al, 1999 

Sex Ratio 

(M/F) 
1.5 1.56 2.16 

  

Kleihues et 

al, 1999 

Survival 

(days) 
1,024 370 232 �  7.48E-07 

Kleihues et 

al, 2007 

Necrosis 

(%) 
6.75% 12.80% 15.7 �  9.28E-03 

Kleihues et 

al, 2007 

1:Counts of Atypical (AT), Typical (T) and Typical-Proneural (T-PN) samples with corresponding signatures 

passing a certain threshold. For CNA, the threshold is LRR ratio (base 2) greater than 0.2 or less than -0.2. For 

mutation, the counts are for the presence of validated non-silent mutations. For gene expression it is ±0.5 for 

logged (base 2) gene expression level when the median across the entire cohort is centered at 0 (therefore >0.5 

is counted as OE). 
2:P-values for comparing between Typical and Atypical samples, using the student T-test for expression and 

CNA, Age of Onset, and Necrosis, and the log-rank test for survival time. 

3:Fold change (transformed to linear scale) of gene expression between T and AT groups. 
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*Abbreviations: mutation (mut), amplification (amp), deletion(del), overexpression (OE).
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Table 2.3: Revised class assignment obtained in this work 

GBM1 Classes GBM2 Classes 
Phillips 

et al. 
Classes 

TCGA-02-0001 Mes* TCGA-02-0116 Mes GSM96954 Classical 

TCGA-02-0003 Prolif TCGA-06-0137 Classical GSM96963 Atypical 

TCGA-02-0006 Mes TCGA-06-0138 Prolif GSM96984 Classical 

TCGA-02-0007 Prolif TCGA-06-0145 Classical GSM96991 Atypical 

TCGA-02-0009 Classical TCGA-06-0148 Classical GSM97014 Atypical 

TCGA-02-0010 Atypical TCGA-06-0154 Mes GSM97048 Atypical 

TCGA-02-0011 Atypical TCGA-06-0155 Mes GSM96965 Prolif 

TCGA-02-0014 Atypical TCGA-06-0156 Mes GSM96973 Classical 

TCGA-02-0015 Mes TCGA-06-0169 Mes GSM96972 Mes 

TCGA-02-0016 Classical TCGA-06-0176 Atypical GSM96970 Prolif 

TCGA-02-0021 Classical TCGA-06-0192 Mes GSM96969 Mes 

TCGA-02-0023 Classical TCGA-06-0201 Mes GSM96966 Mes 

TCGA-02-0024 Atypical TCGA-06-0206 Mes GSM96967 Mes 

TCGA-02-0025 Mes TCGA-06-0208 Classical GSM97041 Prolif 

TCGA-02-0026 Atypical TCGA-06-0211 Classical GSM97004 Mes 

TCGA-02-0027 Classical TCGA-06-0213 Mes GSM97002 Mes 

TCGA-02-0028 Atypical TCGA-06-0216 Prolif GSM96996 Prolif 

TCGA-02-0033 Mes TCGA-06-0649 Mes GSM96992 Mes 

TCGA-02-0034 Mes TCGA-06-0686 Prolif GSM96989 Mes 

TCGA-02-0037 Mes TCGA-06-0743 Classical GSM96987 Mes 

TCGA-02-0038 Classical TCGA-06-0744 Classical GSM96982 Mes 

TCGA-02-0039 Mes TCGA-06-0745 Prolif GSM96981 Mes 

TCGA-02-0043 Classical TCGA-06-0747 Classical GSM96980 Mes 

TCGA-02-0046 Prolif TCGA-06-0749 Prolif GSM96964 Mes 

TCGA-02-0047 Atypical TCGA-06-0750 Mes GSM96961 Mes 

TCGA-02-0048 Prolif TCGA-06-0875 Prolif GSM96958 Mes 

TCGA-02-0051 Mes TCGA-06-0876 Classical GSM96951 Mes 

TCGA-02-0052 Prolif TCGA-06-0877 Mes GSM96952 Mes 

TCGA-02-0054 Mes TCGA-06-0878 Mes GSM96955 Atypical 

TCGA-02-0055 Mes TCGA-06-0881 Mes GSM96959 Prolif 

TCGA-02-0057 Mes TCGA-06-1084 Mes GSM96995 Prolif 

TCGA-02-0058 Atypical TCGA-06-1086 Mes GSM97009 Prolif 

TCGA-02-0059 Mes TCGA-06-1087 Prolif GSM97008 Prolif 

TCGA-02-0060 Atypical TCGA-06-1800 Mes GSM97000 Prolif 

TCGA-02-0064 Mes TCGA-06-1801 Prolif GSM97011 Prolif 

TCGA-02-0068 Mes TCGA-06-1802 Mes GSM97010 Prolif 

TCGA-02-0069 Atypical TCGA-06-1805 Atypical GSM96977 Prolif 

TCGA-02-0070 Mes TCGA-12-0654 Mes GSM97040 Prolif 

TCGA-02-0071 Mes TCGA-12-0656 Classical GSM96953 Atypical 
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TCGA-02-0074 Prolif TCGA-12-0657 Mes GSM96962 Classical 

TCGA-02-0075 Mes TCGA-12-0670 Classical GSM96978 Classical 

TCGA-02-0079 Mes TCGA-12-0688 Classical GSM96979 Classical 

TCGA-02-0080 Atypical TCGA-12-0692 Classical GSM96983 Classical 

TCGA-02-0083 Classical TCGA-12-0703 Classical GSM96985 Classical 

TCGA-02-0084 Atypical TCGA-12-0707 Classical GSM96988 Classical 

TCGA-02-0085 Mes TCGA-12-0772 Mes GSM96990 Atypical 

TCGA-02-0086 Mes TCGA-12-0773 Atypical GSM96994 Classical 

TCGA-02-0089 Mes TCGA-12-0775 Mes GSM97007 Classical 

TCGA-02-0099 Mes TCGA-12-0776 Mes GSM97018 Atypical 

TCGA-02-0102 Classical TCGA-12-0778 Mes GSM97037 Atypical 

TCGA-02-0104 Atypical TCGA-12-0780 Classical GSM97042 Atypical 

TCGA-02-0107 Mes TCGA-12-0820 Prolif GSM96976 Classical 

TCGA-02-0113 Classical TCGA-12-0821 Prolif GSM96974 Classical 

TCGA-02-0114 Atypical TCGA-12-0822 Mes GSM96950 Mes 

TCGA-02-0115 Classical TCGA-12-0826 Classical GSM96997 Classical 

TCGA-06-0122 Mes TCGA-12-0827 Atypical GSM96993 Mes 

TCGA-06-0124 Mes TCGA-12-0828 Classical �  �  

TCGA-06-0125 Classical TCGA-12-0829 Mes 
  

TCGA-06-0126 Classical TCGA-12-1088 Mes �  �  

TCGA-06-0127 Classical TCGA-12-1089 Classical 
  

TCGA-06-0128 Atypical TCGA-12-1091 Classical �  �  

TCGA-06-0129 Atypical TCGA-12-1092 Mes 
  

TCGA-06-0130 Mes TCGA-12-1093 Mes �  �  

TCGA-06-0132 Mes TCGA-12-1094 Mes 
  

TCGA-06-0137 Classical TCGA-12-1095 Mes �  �  

TCGA-06-0138 Prolif TCGA-12-1096 Mes 
  

TCGA-06-0143 Mes TCGA-12-1097 Prolif �  �  

TCGA-06-0145 Classical TCGA-12-1098 Classical 
  

TCGA-06-0147 Mes TCGA-12-1099 Atypical �  �  

TCGA-06-0148 Mes TCGA-12-1598 Prolif 
  

TCGA-06-0152 Mes TCGA-12-1599 Mes �  �  

TCGA-06-0154 Mes TCGA-12-1600 Classical 
  

TCGA-06-0156 Prolif TCGA-12-1601 Mes �  �  

TCGA-06-0157 Classical TCGA-12-1602 Prolif 
  

TCGA-06-0158 Classical TCGA-14-0736 Mes �  �  

TCGA-06-0166 Prolif TCGA-14-0783 Mes 
  

TCGA-06-0168 Mes TCGA-14-0786 Classical �  �  

TCGA-06-0171 Prolif TCGA-14-0787 Classical 
  

TCGA-06-0173 Prolif TCGA-14-0789 Mes �  �  

TCGA-06-0174 Prolif TCGA-14-0812 Mes 
  

TCGA-06-0176 Mes TCGA-14-0813 Prolif �  �  
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TCGA-06-0184 Mes TCGA-14-0817 Mes 
  

TCGA-06-0185 Classical TCGA-14-0865 Prolif �  �  

TCGA-06-0187 Mes TCGA-14-0866 Classical 
  

TCGA-06-0188 Prolif TCGA-14-0867 Atypical �  �  

TCGA-06-0195 Prolif TCGA-14-0871 Prolif 
  

TCGA-06-0197 Mes TCGA-14-1034 Mes �  �  

TCGA-06-0208 Classical TCGA-14-1037 Mes 
  

TCGA-06-0210 Mes TCGA-14-1396 Mes �  �  

TCGA-06-0211 Classical TCGA-14-1401 Prolif 
  

TCGA-06-0214 Prolif TCGA-14-1402 Classical �  �  

TCGA-06-0219 Prolif TCGA-14-1451 Prolif 
  

TCGA-06-0221 Atypical TCGA-14-1452 Mes �  �  

TCGA-06-0237 Prolif TCGA-14-1453 Classical 
  

TCGA-06-0238 Prolif TCGA-14-1454 Prolif �  �  
TCGA-06-0241 Prolif TCGA-14-1455 Prolif 

  
TCGA-06-0644 Mes TCGA-14-1458 Atypical �  �  

TCGA-06-0645 Mes TCGA-14-1459 Classical 
  

TCGA-06-0646 Prolif TCGA-14-1794 Prolif �  �  

TCGA-06-0648 Prolif TCGA-14-1795 Prolif 
  

TCGA-08-0244 Classical TCGA-14-1821 Atypical �  �  

TCGA-08-0246 Mes TCGA-14-1823 Mes 
  

TCGA-08-0344 Atypical TCGA-14-1825 Prolif �  �  

TCGA-08-0345 Mes TCGA-14-1827 Classical 
  

TCGA-08-0346 Mes TCGA-14-1829 Mes �  �  

TCGA-08-0347 Prolif TCGA-15-0742 Classical 
  

TCGA-08-0348 Prolif TCGA-15-1446 Classical �  �  

TCGA-08-0349 Prolif TCGA-15-1447 Atypical 
  

TCGA-08-0350 Atypical TCGA-15-1449 Prolif �  �  

TCGA-08-0351 Atypical TCGA-16-0846 Atypical 
  

TCGA-08-0352 Mes TCGA-16-0848 Prolif �  �  

TCGA-08-0353 Classical TCGA-16-0849 Atypical 
  

TCGA-08-0354 Mes TCGA-16-0850 Atypical �  �  

TCGA-08-0355 Classical TCGA-16-0861 Prolif 
  

TCGA-08-0356 Mes TCGA-16-1045 Mes �  �  

TCGA-08-0357 Classical TCGA-16-1047 Classical 
  

TCGA-08-0358 Classical TCGA-16-1055 Mes �  �  

TCGA-08-0359 Prolif TCGA-16-1056 Classical 
  

TCGA-08-0360 Mes TCGA-16-1060 Mes �  �  

TCGA-08-0375 Classical TCGA-16-1062 Classical 
  

TCGA-08-0380 Prolif TCGA-16-1063 Classical �  �  

TCGA-08-0389 Prolif TCGA-16-1460 Atypical 
  

TCGA-08-0390 Mes TCGA-19-0955 Mes �  �  
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TCGA-08-0392 Mes TCGA-19-0957 Prolif 
  

TCGA-12-0616 Prolif TCGA-19-0960 Atypical �  �  

TCGA-12-0618 Prolif TCGA-19-0962 Mes 
  

TCGA-12-0619 Mes TCGA-19-0963 Prolif �  �  

TCGA-12-0620 Mes TCGA-19-0964 Classical 
  

�  �  TCGA-19-1385 Mes �  �  

  
TCGA-19-1386 Classical 

  
�  �  TCGA-19-1387 Prolif �  �  

  
TCGA-19-1388 Mes 

  
�  �  TCGA-19-1389 Mes �  �  

  
TCGA-19-1392 Prolif 

  
�  �  TCGA-19-1786 Classical �  �  

  
TCGA-19-1788 Atypical 

  
�  �  TCGA-19-1789 Classical �  �  

  
TCGA-19-1791 Classical 

  
�  �  TCGA-26-1438 Mes �  �  

  
TCGA-26-1440 Classical 

  
�  �  TCGA-26-1443 Classical �  �  

  
TCGA-26-1799 Prolif 

  
�  �  TCGA-27-1830 Mes �  �  

  
TCGA-27-1832 Mes 

  
�  �  TCGA-27-1833 Classical �  �  

  
TCGA-27-1834 Mes 

  
�  �  TCGA-28-1745 Mes �  �  

  
TCGA-28-1746 Prolif 

  
�  �  TCGA-28-1749 Classical �  �  

  
TCGA-28-1750 Mes 

  
�  �  TCGA-28-1751 Mes �  �  

  
TCGA-28-1752 Mes 

  
�  �  TCGA-28-1755 Classical �  �  

�  �  TCGA-28-1757 Classical �  �  

1:GBM sample assignments based on the revised classification system.  Sample from the three cohorts were 
combined in the same table, where each row is not intended to show any sample matching between studies. 

*Abbreviations: Proliferative (Prolif), Mesenchymal (Mes).
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Table 2.4: Selected gene expression features distinguishing Typical GBM classes 
�  TCGA Phillips 

Classes Genes Classical Prolif Mes Classical Prolif Mes 

Classical 
EGFR 2.6 -0.35 -0.05 1.17 -1.97 -0.6 

CDKN2A -0.9 0.35 -0.027 -0.38 1.5 0.32 

Proliferative 
PCNA 0.24 0.4 -0.17 0.45 0.82 -0.2 

TOP2A -0.06 0.99 -0.64 0.27 1.77 -0.32 

Mesenchymal 

CHI3L1 0.52 -0.42 1.2 -0.052 -1.57 1.36 

TRADD -0.047 -0.19 0.26 -0.029 -0.12 0.22 

RELB -0.034 -0.26 0.31 -0.043 -0.16 0.39 

TNFRSF1A 0.14 -0.37 0.57 0.093 -0.57 0.92 

Number in each entry is the average expression value (log 2 scale) for a given class for the 
gene indicated in the column Genes.
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Table 2.5: Pairwise comparisons between GBM subtypes. 

 
PN/G-CIMP+ Prolif Classical MES 

PN/G-CIMP+ - 1.5e-4 0.018 0.0015 

Prolif 
 

- 0.010 0.040 

Classical 
  

- 0.33 

MES 
   

- 

 

 
PN NL CL MES 

PN - 0.059 0.046 0.091 

NL 
 

- 0.60 0.85 

CL 
  

- 0.92 

MES 
   

- 

Log rank test was performed for each pair of subtypes compared. Upper table shows the results for 
revised GBM subtypes in this work, and lower table is for Verhaak’s four subtypes. 
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Figure 2.1: Inference of Aneuploid Genome Proportion and its goodness-of-fit 
measures. 

 
A. BAF-LRR plot for an idealized sample with 100% aneuploid cells. Canonical positions 
representing integer combinations of (NB, NA+NB) are marked with red stars, with red dashed lines 
indicating the contraction paths when AGP is less than 100%.  B. A hypothetic sample with 
AGP=0.6, with canonical points showing concerted contraction toward (1,2), the position of a normal 
diploid segment.  C. AGP versus the PoP (Percent-on-Point), i.e., the fraction of CNA segments 
accounted for by canonical positions in the optimal mixing model.  D. AGP versus the CI 
(Confidence Interval), defined as the range between the 2.5- and 97.5- percentiles in repeated runs of 
AGP estimates. Values were for GBM1 samples. 
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Figure 2.2: AGP and relationship to gene expression patterns A.  

 
BAF-LRR plot of sample TCGA-02-0038 as an example of using allelic intensity data to estimate 
AGP. The x axis shows |BAF-0.5|, the absolute deviation of B allele frequency (BAF) between tumor 
and matched normal samples, at heterozygous SNP loci in the normal sample; y axis is the LRR, logR 
Ratio between tumor and normal samples. Canonical positions representing integer combinations of 
(NB, NA+NB) are marked with red stars, with red dashed lines indicating the contraction paths when 
AGP < 1 (see also Figure S1). Most CNAs, shown as "bubbles", fell on canonical positions. The size 
of the bubble shows CNA length. PC (percent of genome changed) = 0.20 for this sample. Inferred 
AGP is 0.82. PoP (percent of changed genome on canonical points) = 0.99. B. Validation of AGP 
inference algorithm, using reference dataset GSE11976, for DNA pools of a breast cancer cell line 
mixed with a lymphoblastoid cell line at known ratios. Error bars show the 95% confidence intervals 
from the experimental procedures (horizontal) and from our bootstrap method (vertical). The red line 
has a slope of 1 and intercept of 0. C. Scatter plot of PC1-PC2 (the first two principal component 
scores) of GBM1 gene expression data. Symbol size is proportional to AGP as indicated in the legend. 
D. Scatter plot of PC1 of CNA (also shown on the x-axis in S4A) versus PC1 of gene expression data 
(shown on the x-axis in 1C); Non- Proneural and Proneural/G-CIMP+ GBM samples were indicated 
by filled and open symbols, respectively. 
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Figure 2.3: Histolopathological estimates of tumor purities versus AGP. 

 
Comparison of AGP and clinically recorded "percent tumor cell"(upper panel) and "percent tumor 
nuclei" (lower panel), showing large deviations in many samples and generally higher estimates of 
tumor content in clinical records.  
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Figure 2.4: Relationship between AGP and gene expression pattern in ovarian cancer 
(OV). 

  
TCGA OV samples (n=504) were analyzed, and the gene expression PC1-PC2 plot showed an AGP 
gradient similar to that in Figure 1C.  
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Figure 2.5: PCA plots for CNA and MicroRNA joint analysis.

 
A. PC1-PC2 plot of average DNA copy number in each of 811 cytobands, with AGP indicated by 
bubble size and samples colored by the four-class assignment in Verhaak et al., showing the split of 
the Proneural subtype (purple). B. Scatter plot of PC1 of CNA (y) and PC2 of microRNA expression 
data (x). 
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Figure 2.6: Principal component analyses of gene expression and CNA data for GBM2.

 
A. PC1-PC2 plot for total DNA copy number data of 154 samples in GBM2, averaged in each of 811 
cytobands, with AGP indicated by bubble size. B. PC1-PC2 plot for expression profiles in 1740 genes 
for the same samples in A. Patterns for both CNA and gene expression data were similar to the 
corresponding plots for GBM1 as shown in Figure 1C and Figure 2C. C. Joint use of DNA and gene 
expression data identified 15 PN/G-CIMP+ tumors in the GBM2 cohort, similar to the results for 
GBM1 as shown in Figure 2C-D. 
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Figure 2.7: Molecular and clinical features of Proneural/G-CIMP+ GBM A. 

 
Heatmap of per-cytoband total copy number in Non-Proneural and Proneural/G-CIMP+ samples, with 
Chr1–22 arranged from bottom to top. Non-Proneural samples were ordered from left to right by 
decreasing AGP, and showed characteristic features, such as chr7 amplifications (shown in red) and 
chr10 deletions (in blue), across most samples, albeit with a gradient of magnitude. B. Selected 
molecular features, including, from top to bottom, presence or absence of non-silent mutations in 
IDH1, TP53 and PTEN as reported by (2); G- CIMP+, a methylation signature described in (6); total 
copy number in CDKN2A and EGFR; expression levels of NF1, PDGRFA, FAS, MDM2 and EGFR, 
as described in (2). The four classes defined in Verhaak et al., and the three classes defined in this 
work, are indicated as colored symbols in the bottom row. C. Distribution of age-of-diagnosis in 
Non-Proneural (n=110) and Proneural/G-CIMP+ (n=20) samples. Also shown are two subgroups of 
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Non- Proneural GBM: Proneural (N-P-P) and non-Proneural (N-P-N). D. Kaplan-Meier survival 
curves for Non-Proneural and Proneural/G-CIMP+ groups, with the latter showing better outcome 
(log rank test p-value=7.5E-7). The Non-Proneural group was further split into the former Proneural 
(N-P-P) and non-Proneural (N-P-N) samples. 
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Figure 2.8: Clustering pattern of three data types: PC1 of copy number data, PC1 of 
expression data, and PC2 of methylation data. 
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Figure 2.9: Classification of Non-Proneural GBM tumors. 

 
A-B. Heatmaps of the cross-correlation matrices between samples in GBM1 (left to right) and 
samples in GBM2 (top to bottom), for all Non-Proneural GBM tumors used in the first stage (A), and 
for one of the two subclasses discovered in the first stage (B). Consensus clustering was separately 
performed on both datasets with K = 2, with K = 3, 4 shown in Figure S8.  Samples were ordered by 
the two-class assignment, as indicated by the two-color segments in the sidebar: vertical bar for 
GBM2, and horizontal bar for GBM1.  The original four-class assignment from Verhaak et at. (2) 
was indicated in the four-color sidebar at the bottom. C-D. Three-dimensional PC1-3 plots of gene 
expression data for Non-Proneural samples in GBM1 (C) and GBM2 (D), showing coherent grouping 
of the three classes defined in A and B. 
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Figure 2.10: Cross-correlation analysis of GBM1-GBM2 at K=3 and 4. These plots 
complement Figure S5A-B, which showed k=2.   

 
Shown are heatmaps of the cross-correlation matrices between samples in GBM1 (left to right) and 
samples in GBM2 (top to bottom), for all Non-Proneural GBM tumors used in the first stage at k=3 
(A) and k=4 (B), and for the non-Mesenchymal class discovered in the k=2 first stage analysis, at k=3 
(C) and k=4 (D). Samples were ordered by the three-class or four-class assignment, as indicated by 
the colored segments in the vertical bar for GBM2, and horizontal bar for GBM1.  The original 
four-class assignment from Verhaak et at. was indicated in the four-color sidebar at the bottom.  
These plots revealed no clear one-to-one mapping between GBM1and GBM2 for either K=3 or K=4. 
C-D). The quality of mapping between batches can be quantified by the difference of average 
Pearson’s r for diagonal and off-diagonal sample pairs, which are 0.428, 0.362 and 0.242 for K=2, 3, 
4, respectively, for the first step analysis of all Non-Proneural tumors, and 0.442, 0.313 and 0.256 for 
K=2, 3, 4, respectively, for the second step analysis of Non-Mesenchymal samples. 
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Figure 2.11: Cross-correlation analysis between GBM1 and Phillips' dataset at K=2, 3 
and 4 

 

Correlation matrices for the first stage classification (A, B, and C, for k=2, 3, 4 respectively) and 
second stage (D, E, and F, for k=2, 3, 4 respectively), with procedures and sidebar labels similar to 
those shown in Figure 10 
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Figure 2.12: PCA plots for 46 Non-Proneural GBM samples in Phillips' dataset. 

 
The same PC1-PC2 scatter plot, generated using 584 genes highly correlated with survival time, was 
shown in both A and B, and colored by the three-class assignment defined in this work (A) or the 
original Proliferative-Mesenchymal assignment by Philipps et al. (B), showing more coherent 
separation in A. 
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Figure 2.13: Comparison between the revised and the previous GBM classification 
systems. 

 
A. Cross-tabulation ("Confusion matrix") of samples between the current four-class assignment and 
that reported in Verhaak et al. (2) for TCGA samples.  B. Cross-tabulation between the current 
four-class assignment and that reported in Phillips et al.(7). C. Correspondence of different classes 
across two datasets and the revised and previous classifications.  Arrow width is proportional to the 
number of samples matched. 
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Figure 2.14: Molecular and clinical signatures for Non-Proneural GBM classes. A, 
Chr13–22 CNA patterns in the revised Non-Proneural GBM classes. 

 
Class assignments were indicated by the stars at the bottom, with size proportional to AGP. B and C, 
Kaplan–Meier curves for GBM1 according to the revised classes (B) and the previous classes (C). 
The overall log-rank test for the 3 classes was significant in (B; P 1⁄4 0.011) but not in (C). 
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Figure 2.15: Survival time differences between GBM subtypes, compared between the 
current and previous classification systems. 

Revised Classification 

 
PN/G-CIMP+ Classical Proliferative MES 

PN/G-CIMP+ - 9.5E-04 6.0E-07 4.7E-06 
Classical 

 
- 0.012 0.23 

Prolif. 
  

- 0.035 
MES 

   
- 

Verhaak et al. Subtypes 

 
PN NL CL ME 

PN - 0.12 0.0044 0.065 
NL 

 
- 0.12 0.94 

CL 
  

- 0.18 
ME 

   
- 

P values of pairwise survival time comparisons among the four classes defined in this work (upper 
table) and those defined in Verhaak et al. (lower table) were calculated from the log-rank test, 
showing greater differences in outcome among the revised classes. 
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Figure 2.16: Cox proportional hazard regression analysis with GBM subtypes as covariates, 
after adjusting age and Karnofsky performance scores (KPS). 

 
A) Hazard ratios (HR) and P-values (P) reported for Cox regression on 4 revised subtypes, 128 
GBM1 samples, with Proneural/G-CIMP+ as reference category. B) Same analysis on 4 TCGA 
subtypes, with Proneural as reference. C) Cox regression performed on 3 revised subtypes, 108 
GBM1 samples, excluding Proneural/G-CIMP+ and with Classical subtype as baseline. D) Same 
analysis on 3 TCGA subtypes, 98 GBM1 samples, excluding Proneural and with Classical as 
reference. 
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Figure 2.17: Inference of cell type composition of revised Non- Proneural classes.  
 

 
A–C, heatmaps of the cross-correlation coefficients between the reference dataset of 38 
samples of known neural cell types and samples in GBM1 (A), GBM2 (B), and Phillips' 
study (C). Colored segments in sidebars indicate sample assignments for 4 GBM classes or 
for the 4 neural cell types. D, distribution of the correlation coefficients between (1) AGP 
values of MES samples and (2) correlations with individual reference samples, for the 4 
neuronal cell types in Cahoy and colleagues (GEO accession GSE9956) and 2 datasets for 
microglia (GSE25289 and GSE16119).
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Figure 2.18: A proposed hierarchical classification scheme for GBM. 

 
Joint use of DNA and mRNA data, along with patient age and outcome data, separates 
Proneural/G-CIMPþ GBMs from Non-Proneural GBMs in the first step of the decision tree. The 2 
subsequent 2-way decisions define the 3 Non-Proneural classes, using features indicated in the 
diagram and the most informative transcripts in Supplementary Table 4. 
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Chapter 3. A general framework for analyzing tumor subclonality using 

DNA sequencing and SNP profiling data 

 

3.1 Introduction 

 

It have been recognized for nearly 40 years that cancer is a dynamic disease and its evolution 

follows a classical Darwinian process (Nowell, 1976, Fidler, 1978). After the proposal of the 

two-hit model of oncogenesis (Knudson, 1971), and especially after the discovery of multiple 

mutational milestones marking the linear progression from benign polyps to colorectal cancer 

(Fearon and Vogelstein, 1990, Vogelstein and Kinzler, 1993), it was briefly envisioned that 

cancer could be understood by simply finding the small number of events that act 

sequentially to drive step-wise clonal selection in most cancer cases. However, initial efforts 

to sequence most coding genes in tumor DNA revealed remarkable heterogeneity between 

tumors in each cancer type examined (Sjoblom et al., 2006, Wood et al., 2007, Jones et al., 

2008): typically, very few (< 10) genes are mutated in >10% of tumors, but many (40-80) are 

mutated in 1-5% of tumors. Further, heterogeneity in cancer could manifest on other levels: 

not just among different patients, but also among tumors of different grades or organ sites in 
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the same patient, as well as among different cells within a tumor (Greaves and Maley, 2012, 

Yates and Campbell, 2012). Heterogeneity at any of these levels could confound diagnosis 

and treatment, and underlie the inherent evasiveness of this disease. Most genomic analyses 

to date, notably those led by the Cancer Genome Atlas (TCGA) Research Network (The 

Cancer Genome Atlas Research Network, 2008, The Cancer Genome Atlas Research 

Network, 2011, The Cancer Genome Atlas Research Network, 2012b, The Cancer Genome 

Atlas Research Network, 2012a) and the International Cancer Genome Consortium (ICGC) 

(Alexandrov et al., 2013) have focused on inter-tumor heterogeneity. These studies analyze 

hundreds of tumors per cancer type, relying on bulk tissue samples, usually from one tumor 

per patient. The data were primarily interpreted by regarding each tumor as a single 

population of cells with uniform character. Despite the inherent limitation of this assumption, 

as shown by the widely reported tumor-normal mixing (Van Loo et al., 2010, Li et al., 2012, 

Popova et al., 2009), large-scale inter-tumor comparisons have led to important new insights 

into significantly mutated genes (The Cancer Genome Atlas Research Network, 2008, The 

Cancer Genome Atlas Research Network, 2011), recurrently perturbed pathways, mutation 

signatures (Lawrence et al., 2013, Alexandrov et al., 2013), tumor subtypes (Verhaak et al., 

2010a, Curtis et al., 2012), molecular predictors of outcome, and commonalities or 

distinctions among different cancer types (Garraway and Lander, 2013). However, these 

studies are not designed to adequately investigate intra-tumor heterogeneity. Ultimately, 

cancer genome evolution takes place at the single-cell level, and it is the cellular complexity 

and its dynamics that give rise to both intra- and inter-tumor heterogeneity. Currently, 
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cytogenetic methods are of low throughput and often cannot assure representative sampling. 

And the cost of single-cell sequencing (Navin et al., 2011, Shalek et al., 2013, Hou et al., 

2012, Xu et al., 2012) remains prohibitively expensive for all but the proof-of-concept studies. 

Under such constraints, many groups have surveyed intra-tumor heterogeneity by comparing 

multiple specimens from the same patient by longitudinal sampling or spatial sampling 

(mainly for solid tumors). Almost invariably, analyses of longitudinal samples have 

uncovered dramatic temporal changes of the cancer cell population that often correlate with 

disease progression, severity, and treatment resistance (Keats et al., 2012, Ley et al., 2010, 

Durinck et al., 2011, Landau et al., 2013). Similarly, multi-region comparisons revealed 

extensive genomic variability across different geographic sectors of the tumor (Gerlinger et 

al., 2012, Sottoriva et al., 2013), or between the primary and metastatic tumors (Yachida et 

al., 2010). These studies, while using samples collected with a higher spatial or temporal 

resolution than those in TCGA and ICGC, often still contain heterogeneous populations of 

cells (Yachida et al., 2010, Campbell et al., 2010, McFadden et al., 2014).  

Fortunately, when bulk tissue data describe the global average of multiple subpopulations of 

cells, it remains possible to statistically infer the number and genomic profile of such 

subpopulations. For example, when a sample is sequenced deeply, the somatic mutation 

frequencies sometimes cluster around a small number of distinct frequency "modes" 

(Nik-Zainal et al., 2012, Shah et al., 2012), suggesting that somatic mutations of similar 

frequencies may reside in the same population of cells and these cells may have descended 

from the same founder cell. For this reason, these mutations are said to belong to the same 



! 105!

"clone" or 'subclones", the latter referring to a clonal population of a relatively small cellular 

fraction. This inference task, essentially a deconvolution problem (or Blind Source 

Separation problem), presents many analytical challenges, since both the number of 

subclones and the genomic profile of each need to be estimated simultaneously, and somatic 

copy number alterations (sCNAs) and somatic single-nucleotide variants (SNVs) often reside 

in the same region yet have unknown phase or genealogical order. Currently available 

methods often need to invoke simplifying assumptions and often focus on a subset of the 

issues. For example, ABSOLUTE (Carter et al., 2012) uses sCNA data to estimate the global 

mixing ratio of aneuploid and euploid cells, but only under a tumor-normal, two-population 

assumption. When an sCNA or SNV is subclonal, ABSOLUTE makes the qualitative 

designation of "subclonal" without quantitatively estimating the clonality. Other types of 

compromises also accompany other methods, and I will defer the description of these 

limitations to the Discussion.  

In this work, I developed Clonal Heterogeneity Analysis Tool (CHAT) as a general 

framework for estimating the cellular frequencies of both sCNAs and SNVs. It is suitable for 

analyzing genomewide SNP genotyping and DNA sequencing data for tumor-normal pairs 

(Figure 3.1). CHAT begins by identifying regions of sCNA or by partitioning the genome 

into bins; and for each sCNA or bin, it estimates a local mixing ratio, called segmental 

aneuploid genome proportion (sAGP), between a euploid population and a single aneuploid 

population carrying the local CNA. The assumption of local two-way mixing does not imply 

there are only two cell populations globally. It is akin to the infinite-site model in population 
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genetics, stating that each locus experienced only one copy number alteration, without a 

second overriding alteration or the reversal to the original germline state (i.e., back mutation). 

After calculating sAGP for every sCNA in the tumor, CHAT estimates the cellular prevalence 

of SNVs (also called cancer cell fraction, or CCF, as in (Landau et al., 2013)) by adjusting 

the observed somatic allele frequency (SAF) from sequencing data according to the 

background copy number status, while also considering the sCNA clonality (sAGP), the 

relative order of occurrence between the SNV and its associated sCNA, and their cis- or 

trans- relationship. Through simulation I show that CHAT performs well in quantitatively 

recovering sAGP, CCF, and the underlying evolutionary scenario. I have applied CHAT to 

calculate sAGP for sCNAs, and CCF for SNVs, across 732 human breast tumor samples 

previously analyzed for inter-tumor diversity by TCGA (The Cancer Genome Atlas Research 

Network, 2012b) (Materials and Methods, Section 1), and I will present two vignettes of 

the results. Lastly, I discuss the model identifiability issue and compare CHAT with several 

similar methods. 

 

3.2 Data sources and sCNA identification 

 

From the Cancer Genome Atlas Data Portal 

(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) I downloaded (1) the Level-2 copy 

number data derived from the Affymetrix Genome-Wide Human SNP Array 6.0 (the 

“bi-allele” files) for 732 breast tumor DNA and their paired normal tissue DNA, and (2) the 
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VCF files for whole-exome sequencing data for a subset of 522 tumor-normal samples 

analyzed by TCGA (The Cancer Genome Atlas Research Network, 2012b). Of these, 445 

samples have both SNP array and DNA sequencing available. The SNP array data were 

downloaded on 12/12/2012, while the sequencing data were downloaded on 3/22/2013. Each 

VCF file contains variant information for both the tumor and the paired normal sample. The 

procedures for variant calling and identification of somatic variants can be found in the 

Online Supplementary Methods of (The Cancer Genome Atlas Research Network, 2012b). 

Counts for somatic and reference alleles of both tumor and normal samples were extracted 

for use in this study. 

In addition, I also downloaded the clinical annotation file, including the PAM50 designations 

of all the involved patients, on 12/17/2012.  

sAGP estimation (see below) can be performed on two types of user-selected spatial units: (1) 

genomic bins, predefined for each sample, typically consisting of 500 heterozygous markers 

in the germline DNA, (2) naturally observed sCNA segments, which I detect using the 

Circular Binary Segmentation (CBS) method (Olshen et al., 2004), as follows. I 

independently perform segmentation on the LRR and the folded BAF (absolute value of BAF 

minus 0.5) values, using default parameters in the R package DNAcopy [46], except that 

"minimal markers required" was set to 5. With CBS results for both LRR and BAF, the two 

sets of change points are merged as follows: if a BAF change point falls within 5 markers of 

an LRR change point, either upstream or downstream, it is removed, i.e., only the LRR 

breakpoint is kept, under the assumption that the two change points capture the same event, 
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but the BAF change point is less accurately placed due to the greater sparsity of heterozygous 

markers. 

After merging, the mean of LRR and folded BAF values are computed for each DNA 

segment (or the bin) in each sample, and used as input data for AGP and sAGP inference in 

the next step. For binned files, the bin length is on average 5.1Mb, and each sample has an 

average of 502 bins.  

 

3.3 Inference of segmental aneuploidy genome proportion 

 

3.3.1 Preview and hypothesis 

 

The simplest form of intra-tumor heterogeneity is normal cell "contamination", i.e., mixture 

of aneuploid cells in the tumor with euploid cells in the surrounding normal tissue, the latter 

carrying the full and balanced set of chromosomes found in germline DNA. In our previous 

work (Li et al., 2012), I developed a method to calculate the overall fraction of the tumor 

cells, termed Aneuploid Genomic Proportion (AGP), assuming the global mixing of a tumor 

and a normal population. In brief, allelic intensity data from SNP genotyping arrays (or DNA 

sequencing) provide copy number information of the two parental chromosomes: na and nb. 

Since na and nb are both integers, the logarithm of total intensity ratio, LRR ~ log(na+nb), and 

the observed B allele frequency, BAF = nb/(na+nb), adopt a finite number of discrete BAF- 
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LRR combinations for different CNAs, and reside in "canonical positions" in the BAF-LRR 

plot. When aneuploid cells are mixed with euploid cells, logR-BAF positions of tumor 

sCNAs "contract" towards the euploid position; and different mixing ratios result in different 

degrees of contraction. Based on this feature I can quantitatively estimate a genomewide 

tumor mixing ratio (Li et al., 2012). Our algorithm relies on the same type of information, 

and shares the same goal, as several other methods (e.g., ASCAT and ABSOLUTE) (Van Loo 

et al., 2010, Carter et al., 2012). All of these methods assume that there is a single tumor 

population.  

However, intra-tumor heterogeneity may also manifest as the co-existence of multiple tumor 

cell populations, each with its own copy number profile (Oesper et al., 2013). One example is 

shown in Figure 3.2A, where the sCNA segments marked in red show stronger contractions 

to the diploid track, for both LRR and BAF, than those marked in black; whereas those 

marked in green show even stronger contractions (Figure 3.2A-B). As mentioned above, 

since all the sCNAs in black have similar cellular fraction values, I may infer the existence of 

a subclone, defined as a subpopulation of cells carrying the same set of events (the "black" 

sCNAs) due to their descent from a common ancestor tumor cell. This is the most 

parsimonious explanation why different somatic events in the genome could reach the same 

frequency. Meanwhile, another set of events, such as those in red, show a different cellular 

fraction values, suggesting the existence of a second subclone. When a tumor contains K 

tumor populations as well as a normal population, the term "purity" is no longer adequate as 

it requires K+1 mixing ratios to fully describe the tumor composition. Since the sCNA 



! 110!

segments with different mixing ratios are interspersed, this regional variation of clonality 

along the genome motivates us to extend the earlier concept of genomewide AGP to a new, 

segment-specific measure: sAGP. 

The estimation of sAGP follows a similar approach as estimating the global AGP described 

in detail in Chapter 2, relying on the degree of contraction of each sCNA (Figure 3.2B). The 

method has the implicit assumption that at each sCNA the mixing involves only two 

populations, one of which is euploid. This assumption is largely satisfied when the somatic 

genome has experienced relatively sparse copy number changes, without global doubling or 

multiple rounds of complex local aberration. In effect, it assumes that, even though different 

sCNAs in the genome may belong to multiple populations of aneuploid cells, at each sCNA 

region there is only one aneuploid state that is mixed with the euploid state.  

 

3.3.2. sAGP inference 

 

As discussed in the main text, I jointly use BAF and LRR values to estimate sAGP for each 

sCNA, under the assumption of regional two-way mixing. The algorithm has three steps: 

i. Data pre-processing 

I assume the allele-specific copy number data are already in bi-allelic format, with the 

following fields in the input file: SNP ID, chromosome, position, A allele count, B allele 

count. To note, the allele counts may not be integer numbers, but could be real-numbered 

values from the original CEL file. SNP markers are first grouped into either bins or merged 
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sCNAs as described above. For each bin/sCNA, the median LRR and median folded BAF are 

calculated, and a segmentation file containing the above information for each segment is 

generated for each sample. 

In the initial normalization of SNP array data the absolute LRR values depend on the 

genomewide average ploidy, which is affected by the relative abundance of different copy 

number states in the genome. For example, in a tumor with a high fraction of cells undergone 

genome-wide doubling, the DNA segment located near the origin of the BAF-LRR plot are 

AABB, instead of the normal diploid configuration AB, and the global ploidy can be well 

above 2. The first step of sAGP estimation is therefore to ascertain the genotype of the 

sCNAs near the origin, following the procedures described in (Li et al., 2012). This allows 

unambiguous assignment (when possible) of copy number states for other sCNAs in the 

genome and the calculation of average ploidy. The deviation of BAF and LRR values of the 

baseline sCNAs from (x0,y0) is also used to quantify !"!"#! !!"#!!"!""!  for use in 

downstream analysis. 

ii. Estimate sAGP and absolute copy numbers 

The method I used to estimate sAGP is extended from our AGP inference algorithm. For an 

sCNA with copy number configuration (nb,nt), where nb is number of minor allele, and nt 

number of total alleles, when mixed with a balanced diploid population its theoretical BAF 

and LRR values are: 

!"# = !×!! + 1− !
!×!! + 2× 1− ! − 0.5 + !! 

!"" = !"#! !×!! + 2× 1− ! − 1+ !!
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where p is sAGP, and x0, y0 are the coordinates of the (nt = 2, nb = 1) state. When p changes, 

the points (BAF, LRR) follow a family of curved lines on the BAF-LRR plot, starting from 

the origin (x0,y0). Each line corresponds to a unique combination of (nb, nt) and is called a 

canonical line; and each point on this line uniquely corresponds to an sAGP value. The main 

task is to assign each observed segment to a canonical line. Due to noise, an sCNA does not 

locate precisely on a canonical line. Thus for each sCNA, I scan all possible canonical lines 

to find the one satisfying the following criteria: 

(a) Distance to the closest canonical line ≤ 2* !"!"#! + !"!""! ; where sd2
BAF, and sd2

LRR are 

the estimated standard errors of BAF and LRR values.  

Sometimes multiple lines satisfy (a) and result in multiple sAGP and nt estimates. In such 

cases I apply 

(b) Choose !"#$ = !"#$%&(! = !! − 2×!"#$%& + !! − ! ); where p is sample-wide 

AGP and ploidy is the estimated global average ploidy from step ii). This criterion chooses 

the most probable canonical line as the one that results in a total copy number close to the 

genome-wide ploidy and an sAGP close to the global AGP.  

If no canonical line can be found in (2), i.e., the deviation is greater than the specified 2X 

scale of the standard deviations of BAF and LRR markers, I consider the sCNA not meeting 

the regional two-way mixing hypothesis, and its sAGP is assigned NA, its nb and nt are also 

treated as missing values in downstream analysis. 
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3.4 Macroscopic clonal structure 

 

3.4.1. Statistical modeling to infer macroscopic clonal structure 

 

As explained above, sAGP values can be calculated for either predefined genomic bins or 

identified sCNAs. In the per-bin analysis, the user can choose to filter out the non-sCNA bins 

or those with very small sAGP values, as true sCNAs with length shorter than the bin width 

tend to have reduced sAGP estimates due to the flanking euploid regions. In our analysis of 

the breast tumor data I applied two filtering steps. First, I considered bins with median folded 

BAF ≤ 0.04 and absolute median LRR ≤ 0.16 to be euploid, and assigned sAGP = 0. Second, 

before sAGP clustering, I removed bins with sAGP ≤ 0.05 to remove the contribution of the 

small sAGP values. At this step there is an average of n = 224 bins left per sample. The two 

models of interest are evaluated in a maximal likelihood framework and the biological 

relevance of these models will be discussed in the next section. 

For Model-1, the log likelihood has a uniform and a normal component: 

! = ln( !
!"#$% ! + (1− !)×!"#$(!! , !,!))!

!!!               

where Y is the observed sAGP vector for a given sample, with components yi , i=1,2,…,n, 

where n is the number of DNA segments after filtering. A is a scalar so that A/range provides 

the scaled uniform distribution. µ and σ are the mean and standard deviation of the single 

peak in the model following the normal distribution. I constrain A and µ in the range (0, 1). 
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The parameters A, µ and σ are estimated using the maximum likelihood approach, 

implemented in customized scripts (part of CHAT) written in the R statistical programming 

language.  

Model-2 is fitted using a Dirichlet process Gaussian mixture model to infer the uncertain 

number of peaks and their relative abundances. The parameterization is as follows: 

!!|!! ,!!~!"#$ !! ,!! , ! = 1,2… ,!!

!! ,!!|!~!!

!|!,!!~!!"(!!!)!

!! = !"#$(!|!!,!/!!)!"#$%�ℎ!"#(!|!!,!!)             

!|!!, !!~Γ(!!, !!)!

!!|!!, !!~Γ(!!/2, !!/2) 

Together these expressions describe a standard Dirichlet process mixture of normal model 

(Escobar and West, 1995). The implementation of the MCMC fitting is via R package 

DPpackage (Jara et al., 2011). There are different ways to specify the prior parameters for the 

normal mixture model. The baseline Gaussian distribution G0 relies on three prior parameters, 

µ1, σ and k0, where σ is explicitly modeled by an Inversed Wishart distribution with priors ν1 

and ψ1, and k0 follows a Gamma distribution. In practice, the hyperpriors, ν1, ψ1 and k0 can 

also be allowed to be random variables with a given prior distribution, and the model will 

have higher power to fit minor peaks in the data. In this work I used a conservative setting of 

prior parameters in terms of peak discovery sensitivity.  

Model-1 cannot be included as special case of Model-2, since when y is truly uniformly 
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distributed, Dirichlet process tends to call multiple peaks instead of one peak, even with 

current conservative prior setting. Our solution is to fit both models, then numerically 

compute the likelihood of each model, and use Bayesian Information Criterion (BIC) to 

select the better model. Model-1 has three free parameters: A, µ and σ, while Model-2 has 

seven: a0, b0, k0, ν1, ψ1, τ1 and τ2.  

 

3.4.2 Evolutionary interpretations of statistical models 

 

When there are a sufficient number of sCNAs or bins covered by sCNA, CHAT produces a 

sufficient number of sAGP values; and their distribution could inform the clonal structure of 

the tumor. First, for some tumors the sAGP histogram may contain a single peak, potentially 

accompanied by a flat (nearly uniform) background distribution (Model-1). This pattern can 

arise in a tumor containing a single clone that cover a large fraction of the sCNA-bearing 

portion of the genome, potentially with many other clones that cover much smaller portions 

of the genome and they are undiscernible in the sAGP spectrum. Second, for other tumors the 

histogram may follow a multi-modal distribution (Model-2), representing a number of 

distinct clones, each with a different sAGP, and each covering a comparable portion of the 

genome as to be recognizable in the histogram (an example is shown in Figure 3.2C).  

In all, there are three attributes of each sAGP histogram. (1) The number of the modes 

corresponds to the number of identifiable cell populations, each with a different sAGP value. 

(2) The positions of the modes denote the clonality of each cell population. The right-most 
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peak represents the population with the highest sAGP, and is typically called the dominant 

clone. The peaks to the left of the dominant clones are often called subclone 1, subclone 2, 

etc. (3) The areas under the peaks reflect the number of the sCNAs, or the regularly spaced 

bins, that belong to each cell population. Note that the right-most peak may not have the 

largest area, thus the dominant clone may not cover the widest portion of the genome.  

There are at least two ways to define the spatial unit in the sAGP analysis, and CHAT 

provides both options. The first is to calculate sAGP for regularly spaced bins, either for a 

fixed window width or for a fixed number of SNPs. The resulting sAGP values resemble the 

conventional genetic "markers"; and each tumor has a guaranteed number and density of such 

markers to construct the sAGP histogram, which is interpreted analogously to the allele 

frequency spectrum in population genetics studies. However, the bins don't match the 

naturally occurring sCNAs, which are highly variable in lengths, from tens of kb to entire 

chromosome arms. The sCNAs shorter than the bin width would have their true sAGP values 

"diluted" by flanking euploid segments in the same bin; whereas those longer than the bin 

width would generated a string of correlated sAGP values as the same sCNA is artificially 

divided into multiple adjacent bins, thus violating the assumption that sAGPs are independent. 

In the second option, CHAT will apply the identified sCNA as the naturally occurring spatial 

unit for sAGP calculation. While this has the advantage that all sAGPs are truly independent, 

there are two disadvantages. First, the longer (or shorter) sCNAs provide more (or less) 

precise estimates of sAGP, but this information of confidence was discarded, as it is also the 

case in (Oesper et al., 2013). Two, there will be large tumor-tumor variations in the number 



! 117!

of sCNAs, and some tumors may not have enough sCNAs to construct an informative 

histogram for estimating clonal composition. In short, the per-bin sAGPs (option 1) are 

derived from segments of similar length and have similar confidence intervals—they are 

identically distributed but not independent random variables. Conversely, the per-sCNA 

sAGPs (option 2) are independent, but are not identically distributed due to varying lengths. 

Rigorously speaking, neither is suited for analyzing macroscopic clonal architecture but can 

be applied in exploratory analysis, especially when there is no other data type such as the 

SNVs (see below). 

When the primary goal of using CHAT is to accurately estimate CCF, which relies on 

accurate sAGP values, the user is advised to calculate sAGP using sCNAs as the unit rather 

than the bins. Alternatively, when the primary goal is to explore clonal composition of a 

tumor, and if there are too few sCNAs and if most of them are very large, it is beneficial to 

increase the number of informative features, just as the detection of population stratification 

requires many ancestry informative markers. Here the user may choose regularly spaced bins 

to increase the number of available sAGPs. In fact, when sCNAs are few and large, it is more 

advisable to collect sequencing data; and if the mutation rate is high and/or the entire genome 

is sequenced (as opposed to small targeted regions), it is better to rely on the CCF histogram 

to estimate clonal structure. CCF distributions have the important advantage of meeting the 

condition of independent and identically distributed variable. Ultimately, the best approach is 

to integrate the sAGP and CCF distributions in estimating clonal structure.  
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3.5 Estimating cell fractions of somatic mutations 

 

3.5.1 Nature of the problem 

 

The next step of CHAT turns from estimating sAGP of sCNAs to estimating the frequency of 

cells carrying a specific mutation, i.e., single nucleotide variant (SNV) or small 

insertion/deletion (indel). Here the method addresses the case where the tumor DNA has been 

sequenced, either for the whole genome or for a targeted subset, such as the exome. The input 

of the analysis is the observed number of reads in the sequence data containing the mutation 

as well as those containing the un-mutated allele. The relative fraction of mutation-bearing 

reads is termed somatic allele frequency, or SAF. Following (Landau et al., 2013), I adopt 

CCF to denote the percentage of cells in the tumor sample carrying a specific somatic 

mutation. CCF is also termed cellular prevalence in (Roth et al., 2014). The goal is to use the 

observed SAF to estimate the unknown CCF. 

If the mutation resides in a normal diploid region, it typically occurs on the background of 

one of the two parental chromosomes, contributing to about half the sequence reads in this 

region. In this simple case, if the fraction of cells carrying the mutation is CCF, the expected 

fraction of sequence reads carrying the mutation, SAF, is simply a binomial variable with an 

expected value of CCF/2. I therefore can estimate CCF by SAF times 2. However, if the 

mutation resides in an sCNA, the relationship between CCF and SAF depends on the copy 
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number configuration: copy neutral loss-of-heterozygosity (CN-LOH), deletion, 

amplification, etc.) and its sAGP. Further, it also depends on the chromosomal background in 

which the mutation occurs. For example, in a region of heterozygous amplification where one 

of the chromosomes has been duplicated, if the mutation occurs on the duplicated 

chromosome, it will contribute twice the number of sequence reads than the case where it 

occurs on the un-duplicated chromosome. Lastly, if the mutation occurs after the duplication 

has happened and the duplication-bearing clone is undergoing expansion, only a subset of the 

duplication-bearing cells will carry the mutation, and the relative size of this subpopulation 

can be any value in 0-100% and will also affect the relationship between CCF and SAF. In 

this following I systematically consider these possible scenarios. I will make the 

parsimonious assumption that each mutation only occurred once in the evolutionary history 

of the tumor cell population, therefore I will ignore the possibility of recurrent mutation at the 

same position, or simultaneous emergence of the same mutation is different subpopulations 

of cells. I will treat SNVs and indels equivalently, and use the term "mutation" to denote 

both.  

        

3.5.2 Order-phase scenarios between sCNA and SNV 

 

For a somatic mutation revealed by tumor DNA sequencing, with an observed SAF value, I 

consider the task of estimating CCF if this mutation resides in an sCNA, and the sCNA has 

been discovered by either SNP array genotyping data (Van Loo et al., 2010, Carter et al., 
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2012) or by sequencing data (Nik-Zainal et al., 2012, Landau et al., 2013). I assume that the 

sCNA has been well characterized, such that I already know na and nb, the copy number of its 

major and minor alleles, respectively, i.e., na≥nb, and nt=na+nb is the total copy number. I also 

assume that its sAGP has been calculated using the method described above, and that SAF 

has been corrected for known sequencing errors and local biases (Lawrence et al., 2013, 

Cibulskis et al., 2013). Below I present the CCF estimation procedure for the case of 

heterozygous amplification (na = 2, nb = 1).  

When a mutation resides in an sCNA region, there are three main scenarios that describe the 

possible mutation-sCNA combinations in terms of their relative temporal order and the 

chromosomal background of the mutation (Figure 3.3): 

A) The mutation and sCNA emerged sequentially, with the mutation occurring first, and the 

sCNA occurring in a subset of mutation-bearing cells (Figure 3.3A). This led to the 

co-existence of three subpopulations: the original euploid mutation-free cells, with the 

population fraction of r0; cells carrying the mutation only, with a fraction of r1; and cells 

carrying both the mutation and the sCNA (r2). The last subpopulation has two alternative 

outcomes: A1: the duplication occurred on the mutation-bearing chromosome, and A2: the 

duplication occurred on the mutation-free chromosome. Intuitively, A1 will have higher SAF 

than A2 with the same (r0, r1, r2) fractions. 

B) Like A, the mutation and sCNA emerged sequentially; but unlike A, the sCNA occurred 

first, with the mutation occurring in a subset of sCNA-bearing cells (Figure 3.3B). Again I 

have three subpopulations: the original cells (r0), cells carrying only the sCNA (r1) and those 
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carrying both (r2). The last subpopulation has two alternatives: mutation occurring on one of 

the duplicated chromosome (B1) or the un-duplicated chromosome (B2).  

C) The mutation and sCNA emerged independently, i.e., appearing in non-overlapping 

populations of cells (Figure 3.3C). This also led to three subpopulations: the original cells 

(r0), cells carrying only the mutation (r1) and those carrying only the sCNA (r2). Note that I 

do not consider the fourth population that carries both the mutation and the sCNA. This 

outcome would require that the mutation occurred twice, once in the original cells and again 

in the sCNA-bearing cells. Or it requires the sCNA to occur twice. Under the Maximal 

Parsimonious assumption, recurrent appearance of the same mutation or the same sCNA is 

highly unlikely in the same tumor.  

The three scenarios outlined above covered all the possible mutation-sCNA combinations for 

one-copy amplification without recurrence. In Figure 3.4, I show that heterozygous deletion 

and CN-LOH involve similar scenarios A, B and C, and each leads to a similar set of three 

subpopulations as described by r0, r1, and r2, with r0 + r1 + r2 = 1. 

 

3.5.3 CCF as a function of sAGP, SAF and the underlying scenario 

 

When the (na, nb) configuration and evolutionary scenario is known, CCF can be estimated 

from (1) the pre-estimated sAGP of the sCNA (denoted p hereafter for simplicity) on which 

the mutation occurs, and (2) the observed allele frequency, SAF, of the somatic mutation 

(denoted f hereafter). In the following I derive the estimation procedure for heterozygous 



! 122!

duplication (na = 2, nb = 1) and formulize general expressions for all sCNA types.   

For amplification, in scenario A1, nt=3, the average total copy number !! = 2× 1− ! +

�!×! = 2+ !. The sAGP ! = !!. The SAF!! = (!! + 2!!) (2+ !). This led to the 

expression !! = ! ∗ 2+ ! − 2!!. Since !!" = !! + !!, I have 

!!"!! !,!! ,!! ,! = ! ∗ 2+ ! − !! = ! ∗ 2+ ! − ! (1) 

In A2, the situation is similar to A1 except that ! = (!! + !!) (2+ !). This led to 

!! = ! ∗ 2+ ! − !!, and 

!!"!! !,!! ,!! ,! = ! ∗ 2+ !  (2) 

In B1 and B2, the sAGP: ! = !! + !!. The SAF: ! = !! (2+ !). This led to !! = ! ∗

2+ ! . Since !!" = !!, I have 

!!"! !,!! ,!! ,! = ! ∗ 2+ !  (3) 

In C1 and C2, the sAGP: ! = !!. The SAF: ! = !! (2+ !). This led to !! = ! ∗ 2+ ! . 

Since !!" = !!, I have 

!!"! !,!! ,!! ,! = ! ∗ 2+ !  (4) 

Note that equations (2), (3) and (4) are identical. Thus even if I do not know how to 

distinguish among scenarios A2, B and C, CCF still has the same dependency on sAGP and 

SAF, and can be estimated as long as I can recognize A1 and A2/B/C. Thus CCF 

identifiability is easier to achieve than scenario identifiability.  

In the general copy number configuration of na and nb, for scenarios A1, A2, B and C I have 

�!"!! !,!! ,!! ,! = !×! − !×!! + ! (5) 

!!"!! !,!! ,!! ,! = !!×! − !×!! + ! (6) 
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!!"!/! !,!! ,!! ,! = !!×! (7) 

with!! = 2× 1− ! + !!×! , is the averaged copy number at the locus.  

Thus, for a given pair of mutation and sCNA, with known SAF and sAGP values, once I 

know which scenario applies I can use Eqs. 1-7 to estimate CCF with a statistical approach as 

described in (Landau et al). The distribution of CCF is modeled as Binomial: 

Pr !!" = ! ∝ !"#$%" ! !,! !,!,Θ  

where S is the read count for the somatic allele and N is the total read depth. G(•) is expected 

value of SAF given CCF value x, sAGP value p, and lineage scenario Θ. G is simply obtained 

by reversing the CCF expressions described in the main text (Eqs. 1-7). I assume a uniform 

prior on x and the expectation and variance of CCF can be calculated as:  

!"# !!" =
!"#$%(!|!,!)!"!!

!
!"#$%(!|!,!)!"!

!
 

!"# !!" =
!"#$%(!|!,!)!!!"!

!
!"#$%(!|!,!)!"!

!
− !"#(!!")! 

 

 

3.5.4 Joint distribution of (p, f) and scenario identifiability 

 

By definition, f and p are both bounded by (0,1). In any tumor, however, the possible range of 

f is constrained by p as well as by the sCNA type and the individual scenarios. For example, 

in scenario B of amplification, the mutation occurs in a subset of sCNA-bearing cells, thus f 

is always less than p (in this case it is always less than 0.5 p). As I show below, the attainable 
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joint distributions of (p, f) differs among different scenarios and, importantly, this offers the 

possibility to infer the most likely scenario for a given sCNA-mutation pair based on their (p, 

f) values. Further, some "zones" of the (p, f) space overlap with multiple scenarios, thus if the 

observed (p, f) fall into these zones, it is impossible to unambiguously identify the exact 

evolutionary scenarios. Even then, however, because different scenarios sometimes have the 

same expression of CCF as a function of (p, f), CCF may still be uniquely estimated. In the 

following I derive the scenario-dependent (p, f) joint distributions using heterozygous 

amplification as example.   

In A1, for a given p, the observed f of the mutation depends on the relative abundance of the 

r0 and r1 populations (Figure 3.3). When r0 = 0, the mutation occurred so early that all the 

diploid cells carry the mutation and belong to the r1 subpopulation. !! = 1− !, and f reaches 

its upper limit:  

!!!! =
!!!!!×!

!!
= !!!

!!! (8) 

where !! = 2× 1− ! + 3×!, is the averaged total copy number for the sCNA. On the 

opposite end of the situation is r1 = 0, when the sCNA occurred immediately after the 

mutation such that none of the diploid cells carries the mutation. The lower limit of SAF is 

reached: 

!!!! =
!!
!!! (9) 

If I plot the possible (p, f) combinations in an p-f plot with f on the vertical axis, under 

scenario A1, the observed f is bounded by (2p/(2+p), (1+p)/(2+p)), where ! ∈ (0,1), forming 

the zone marked A1 in Figure 3.5A. 
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For A2, I similarly obtain: 

!!!! = !!!!!
!!

= !
!!! (10) 

!!!! = !
!!! (11) 

The observed f for A2 is bounded by (p/(2+p),1/(2+p)). 

For B, f depends on the relative abundance of the r1 and r2 populations, and the expressions 

are 

!!! = !
!!
= !

!!! (12) 

!!! = 0 (13) 

The f is bounded by [0, p/(2+p)]. 

For C, the upper limit of f is reached when r0 = 0, !! = 1− !, and 

!!! = !!!
!!

= !!!
!!! (14) 

!!! = 0 (15) 

The f is bounded by [0, (1-p)/(2+p)].  

The results for CN-LOH and deletion are shown in Figure 3.5B-C. 

The task is to use the observed somatic allele frequency (f) and sAGP value to determine the 

most likely scenario among the four scenarios described in the main text. I assume that f has 

a uniform prior, U(0,1), and I am interested in calculating the likelihood that the sSNV 

occurred before the sCNA, given the copy number configuration (nb, nt), known sAGP (ps), 

and the observed allele counts. Let f0 denote the true f. The probability of observing S count 

of the somatic allele is model by Binomial(f0, N) and the likelihood of each scenario is the 

probability of observing S given the scenario is true, integrated over all the possible values of 
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f0: 

!! = ! !"#$%&'(!! !,!! ,!! ,!, ! = Pr(!,!,!! ,!! ,!)

= Pr!(!|!!,!)×Pr!(! = !!|!,!,!! ,!!) d!! = Pr!(!|!!,!)!!!
!!!

!!!
 

where X is A1, A2, B or C, representing one of the four scenarios, and fX
h, fX

l are computed 

according to Eqs. 8-15. I then compute the summation of pX: 

! = !!! + !!! + !! + !!  

and normalize each likelihood using P: 

!! =
!!
!  

I calculate the normalized probability for each scenario, as well as all the possible 

combinations of multiple scenarios. For example, the probability of either scenario A1 or C is 

!!!! = !!! + !! . There are in total 24 - 1=15 possible combinations. If the normalized 

probability of any of the four scenarios is greater than 0.95, the SNV is assigned to the 

corresponding scenario. If none of the single-scenario probability exceeds 0.95, I ask if any 

of the six two-scenario combinations have probability > 0.95. If this step fails, I next examine 

the four possible three-scenario combinations, and so forth. If all the above steps fail, I report 

the SNV scenario A1/A2/B/C, and no unique CCF can be estimated in this case.  

To state the full estimation procedure: when !,!! ,!! ,!  are known for a mutation-sCNA 

pair, if the (p, f) combination identifies a unique scenario according to Figure 3.5, CCF is 

calculated using Eqs. 3-7. If the (p, f) combination overlaps with multiple scenarios, CCF 

may still be calculated if the expressions are the same across the undistinguishable scenarios. 

Lastly, when the CCF expressions are different among the applicable scenarios, CCF cannot 
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be uniquely determined, however its 2 or more possible values can still be obtained as valid 

alternatives. In implementation, as SAF is a random variable with confidence level depending 

on read depth, there is always uncertainty as to which scenario the observed (p, f) belongs.  

 

3.6 Validation and performance 

 

3.6.1 Performance of sAGP inference 

 

I first tested the performance of CHAT in sAGP estimation. I simulated LRR and BAF values 

for a series of sCNA datasets with two aneuploid tumor populations, which are mixed with 

the euploid population. The first population is the dominant clone, with an assigned sAGP 

value of pdom ~ [0.1,0.2,…,1.0]. The second population is a minor clone, with an assigned 

sAGP value of psub ~ [0,0.1,…pdom-0.1]. The fraction of the euploid population is 1- pdom - 

psub. In all, there are 55 pdom - psub combinations; and for each, I simulated 200 euploid 

segments (nb = 1,nt = 2, sAGP = 0) and 200 sCNA segments, of which 133 (about 2/3) were 

assigned to the dominant clone (sAGP = pdom), and the remaining 67 were assigned to the 

minor clone (sAGP = psub). Within each clone, the sCNAs were assigned to one of four copy 

number configurations with the following ratios: 2/7 for deletion (nb=0,nt=1), 2/7 for 

CN-LOH (nb=0,nt=2), 2/7 for amplification (nb=1,nt=3) and 1/7 for balanced doubling 

(nb=2,nt=4). The BAF and LRR values were generated using the assigned sAGP and copy 
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number configuration with the following formula: 

!"# = 0.5− !×!!!!!!
!!

+ !"#$%&(0,!!"#)    (16)     

!"" = !"#!!! − 1+ !"#$%&(0,!!"")     (17)    

where p stands for sAGP, and nt is the averaged total copy number for the local segment: 2 

(1-p) + nt × p. σBAF and σLRR are the standard deviation values of the per-segment BAF and 

LRR, respectively. For the Affymetrix 6.0 platform, the per-SNP standard deviation for BAF 

is about 0.05, and for LRR is about 0.25 (our observation). Thus the choice of σBAF=0.01 and 

σLRR=0.04 is equivalent to an sCNA of approximately 36 SNP markers. For a 1 million SNP 

platform, 36 SNPs cover approximately 110 kb, therefore ours are conservative choices for 

sCNAs 110 kb or longer, profiled by 1 million SNPs or more. 

After generating the BAF and LRR values using Eqs. 16-17 for the 400 segments for each of 

the 55 pdom - psub combinations, I applied CHAT to estimate sAGP, nb, and nt for each 

simulated segment, and evaluated performance by reporting (1) percent of cases of mistaken 

estimation of sCNA configuration (error in either nb or nt) (Figure 3.6A, top row) for 

dominant and minor clonal events, and (2) the median absolute deviation of the estimated 

sAGPs from the assigned pdom or psub for the dominant and minor clones, for either the 

segments with correct (nt, nb) identification (Figure 3.6A, middle row), or all segments 

(Figure 3.6A, bottom row). With all of these performance metrics, the errors are the largest 

when with the clonal or subclonal sAGPs are small. The overall errors are small in most 

situations, suggesting that CHAT worked well in recovering the sAGP, nb, and nt values. 
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3.6.2 Performance of CCF prediction 

 

Of the 55 pdom - psum combinations described above I selectively tested CCF inference in four 

cases: pdom - psum ~ (0.9,0.8), (0.9,0.4), (0.5,0.3), and (0.3,0.1). For each case, I simulated 

4,000 SNVs, of which ~2,000 fall in the 200 euploid segments, and the other 2,000 fall in the 

200 sCNA regions, with sAGP-nb-nt assignment as described above. In effect I assume that 

the euploid intervals account for 50% of the genome. For all downstream inferences, I used 

the sAGP, nb and nt estimated by CHAT. If the SNV falls in a euploid region, the assigned 

SAF was randomly drawn from uniform(0,0.5) and the assigned CCF = SAF*2. If it falls in 

an aneuploid region, I randomly choose the lineage scenario from (A1, A2, B, C) according to 

the local copy number a configuration. If the sCNA is a CN-LOH or balanced doubling 

region, I limit the scenarios to (A1, B, C). The upper and lower limits of the chosen scenario 

were determined using Eqs.8-15. SAF values were then randomly drawn from uniform(fl, fh), 

where fl and fh were the lower and upper limits. "Known" CCF values were computed using 

Eqs. 1-6 in the main text. Lastly, I simulated the allele counts in two steps. For a mean read 

depth k, the actual coverage at a given SNV, N, was sampled from N ~ Poisson(k). When N 

and f were assigned, the count of the somatic mutation allele was sampled from Binomial(f, 

N). Based on the estimated sAGP, copy number configuration and the simulated somatic 

allele counts I used CHAT to estimate CCF. The estimated values were compared with the 

"known" CCF in Figure 3.6B for both k = 50 and k = 100. 

In all eight cases (four pdom – psub combinations and two k values) the Spearman's rank 
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correlation coefficient between the known and estimated CCF values ranged in 0.946- 0.97, 

indicating that CHAT makes accuracy CCF inference. To compare performance among SNVs 

in different sub-categories, I separated those falling in euploid regions from those in sCNAs, 

and for the latter, separated those in the major and minor subclone events, and those in 

different copy number status. As shown in Figure 3.6C, the error rates are similar across 

these sub-categories, not affected by dominant/minor clonal events or different sCNA types.  

 

3.6.3 Computational requirements 

 

I estimated the time and memory requirement of CHAT using the TCGA dataset for breast 

tumors. The time estimate below is based on allele-specific copy number data with 850K 

SNPs for tumor-normal pairs and whole-exome sequencing data with ~30X average coverage. 

For binned segmentation (~500 heterozygous SNPs per bin), it takes 2 minutes to complete 

the sAGP and CCF estimation for one tumor/normal pair, and it requires about 10 MB 

memory. For detected sCNAs, the computational time increases to an average of 12 minutes 

per sample pair. The above estimation is based on running R scripts with a single processor 

(AMD Opteron 6136, 2.4GHz with 4G RAM) and counting input file reading time. In CHAT, 

the user can apply the R package parallel to enable multi-thread processing. This allows the 

use of as many processors as available. On our server (32 AMD Opteron 6136 CPUs and 

128G RAM), our test run used 14 processors on average, and it took 10 hrs (140 CPU-hours) 

to complete the CBS segmentation, sAGP estimation for 732 breast tumor-normal samples 
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and CCF estimation for 445 samples with downloaded VCF files. 

 

3.7 Application to human breast cancer 

 

I applied CHAT to estimate sAGP for sCNAs identified using Affymetrix 6.0 single 

nucleotide polymorphism (SNP) array data for tumor and germline DNA samples from 732 

breast cancer patients (The Cancer Genome Atlas Research Network, 2012b). Of these, 445 

also have whole-exome sequencing data available, and I estimated CCF for SNVs. 

 

3.7.1 sAGP distribution 

 

I detected sCNAs using circular binary segmentation (Olshen et al., 2004) of LRR and BAF 

data (Li et al., 2012), resulting in the identification of an average of 261 sCNAs per tumor 

(range: 1 - 3,537). The median size of all sCNAs is 1.7 Mb (range 2.5 Kb – 245 Mb). On 

average, each tumor carries 125 sCNAs larger than 5 Mb, a size corresponding to ~1,500 

SNP markers in the 850K SNP array. Given this sCNA size range, I re-calculated sAGP for 

genomic bins containing 500 heterozygous SNPs in the germline DNA, a bin size that is 

approximately 5 Mb, resulting in 502 bins per sample (range: 404 – 794) and constructed the 

sAGP histogram for every tumor. 87 tumors (12%) had sCNAs for <50 bins, too few for 

analyzing the sAGP distribution patterns. For the remaining 645 tumors I fit the sCNAs 
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distribution to either a uni-modal + uniform distribution or a multi-modal distribution using 

methods described above. In the example in Figure 3.2C, a three-mode distribution provides 

the best fit, with sAGP peaks around 0.5, 0.4, and 0.2. The highest peak corresponds to the 

black-colored sCNAs in Figure 3.2A-B, while the second and third peaks correspond to the 

red and green-colored sCNAs, respectively. In total I observed 392 samples (61%) with best 

fit by the multi-modal distribution, while 253 (39%) follow the uni-model + uniform 

distribution. This shows that a majority of the breast tumors analyzed by TCGA contain more 

than one recognizable aneuploid population, suggesting that the co-existence of more than 

one subclone is very common. 

 

3.7.2 sAGP-CCF joint distribution for known cancer genes 

 

The 445 tumors with both SNP array and sequencing data have an average of 311 somatic 

mutations per tumor with CCF values (range: from 15 to 4235, after counting the 8.8% loss 

due to sCNAs with un-estimable sAGP). While 48% of these mutations fall into a zone with 

overlapping scenarios, 93% of them have a unique mathematical expression and can produce 

a valid CCF estimate (Figure 3.7). The remaining 7% are assigned missing CCF values due 

to scenarios with conflicting CCF estimates.  

The calculation of sAGP for most sCNAs and CCF for most SNVs makes it possible to 

examine the joint distribution of clonality for these two types of genome aberrations. A "CCF 

vs. sAGP" plot can be created for all copy number and mutation events in a single tumor, or 



! 133!

for events affecting a single gene of interest across many tumors. For a given gene, if a 

sample does not have any somatic mutation in the gene, I assign CCF = 0. Likewise if the 

copy number of the gene is normal, I assign sAGP = 0. Figure 3.8A shows a heatmap 

depicting the density of CCF and sAGP joint distribution for all events in a hypothetical 

sample (or for a hypothetical gene across all samples). In this two-dimension space, the "hot" 

peak near the origin (0,0) is typical for most genes, affected by neither somatic mutation nor 

sCNA. The peak in the upper left (near the sAGP-axis) contains genes with highly clonal 

CNAs but carrying either no mutation or mutations of low clonality. A plausible 

interpretation is that for some of these genes, sCNA is a possible driver event. Similarly, the 

peak at the lower left (near the CCF-axis) contains genes with highly clonal somatic 

mutations and low-clonality sCNAs. Lastly, genes in the upper-right peak have both high 

sAGP and high CCF values, suggesting that both copy number changes and somatic 

mutations may have occurred at very early stages of tumor development, and their joint 

appearance may be necessary to act as a driver event.  

Figure 3.8B allows close inspection of relative clonality between sCNA and mutations for 

four genes known to be related to breast cancer (The Cancer Genome Atlas Research 

Network, 2012b): TP53, PIK3CA and GATA3, which occurred in > 10% of analyzed breast 

tumors, and MAP3K1, which had mutations enriched in the luminal A subtype. For TP53, 

there are two noticeable high-density "zones" in the heatmap: one along the sAGP-axis, the 

other at the upper right, indicating two groups of tumor samples: TP53 CNA-only and TP53 

CNA/mutation, respectively. This pattern, when stratified by the four PAM50 subtypes (The 
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Cancer Genome Atlas Research Network, 2012b, Parker et al., 2009) (Figure 3.8C), shows 

that the TP53 CNA/mutation group is enriched in the Basal and HER2 subtypes (accounting 

for 72 of 94 Basal and HER2 tumors), whereas the TP53 CNA-only group is enriched in the 

Luminal-A (94 of 105), and to a lesser degree, the Luminal-B subtypes (44 of 67). In 

comparison, the other three genes have not only the CNA-only and CNA/mutation groups, 

but also a third, mutation-only group near the CCF-axis. Figure 3.5D shows that for PIK3CA, 

the mutation-only group occurs almost exclusively in the Luminal-A and –B subtypes. 

The CCF - sAGP plot can also be used to compare the clonality distribution between a pair of 

genes. In Figure 3.9, TP53 and PIK3CA are shown in red and blue symbols, respectively, 

with the lines linking the two genes for the same samples. There are three notable patterns of 

TP53 - PIK3CA clonality. First, samples marked by the black lines have both sCNA and 

mutation in TP53 but no aberration in PIK3CA. Second, samples marked by the red and green 

lines tend to have sCNA for both TP53 and PIK3CA and at comparable sAGP, but only 

mutation in TP53 (red lines) or PIK3CA (green). Third, samples marked by the blue lines had 

high clonality for TP53 CNA, but not its mutation, and high clonality for PIK3CA mutation, 

but not its CNA, suggesting co-occurrence of aberrations of these two genes but involving 

different variant types. These patterns are subtype-specific: Pattern 1 is enriched in the Basal 

subtype (OR=4.6 compared to the other three subtypes, P=0.0001 by Fisher’s exact test, for 

red; OR=1.2, P=0.67, for green), so is Pattern 2 (OR=5.3, P=6.4e-8,). Most remarkably, 

Pattern 3 is almost exclusively found in the Luminal A subtype (OR=56, P=4.4e-9). 
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3.8 Improvements of CHAT comparing with previous methods 

 

While CHAT does not solve all the issues facing the cancer genome deconvolution problem, 

it attempts to overcome several important compromises or simplifying assumptions that 

underlie other methods. First, oncoSNP (Yau et al., 2010) and ThetA (Oesper et al., 2013) are 

designed to estimate sCNA clonality, but they do not address the clonality of somatic 

mutations. Second, Ding et al. (Ding et al., 2012) used kernel density estimation method to 

characterize somatic mutations, but only focused on those in the euploid regions of genome, 

staying clear of the complicated relationship between SNV and sCNAs. Third, ABSOLUTE 

infers clonality for both sCNA and mutations but only designate subclonal events, stopping 

short of quantitative estimation. This method was extended in Landau et al. (Landau et al., 

2013) to estimate CCF for somatic mutations even if they are subclonal, but the algorithm 

only considers the case where sCNA occurred before SNV, equivalent to our scenario B 

(Figure 3.3 and 4), and further assumes that the copy number was altered by only one in the 

sCNA. In this regard, CHAT considers a wider array of possible scenarios. Fourth, EXPANDS 

(Andor et al., 2014)works with next-generation sequencing data and jointly estimates the 

absolute DNA copy number, clonality of somatic mutations, and that of sCNAs. However, 

this method only considers scenario A1 and without the intermediate r1 population. In effect, 

it assumes that the mutation and sCNA occur at the same instance and are in phase. Fifth, 

PyClone (Roth et al., 2014) infers clonality of somatic mutations and performs phylogenetic 

analysis. It receives as input the integer copy number profiles estimated from other methods, 
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but only considers scenarios A and B, disregarding the possibility of a branching lineage. 

Furthermore, for scenario A, it assumes co-occurrence of SNV and sCNA, thus also ignoring 

the r1 population. In short, the first key contribution of CHAT is in providing a general 

mathematical framework that enumerates the complete set of scenarios covering the possible 

order and phase of the sCNA and the single-base changes. Like many of the previous 

methods, CHAT has its own limitations, primarily in being unable to resolve extremely 

complex events such as three-way mixing or above. It models two-population mixing at each 

genomic region (a gene, an sCNA, or a bin) and works best when the tumor has not 

experienced extensive and repeated copy number alterationa. In the TCGA breast tumor 

dataset I found that 9.3% of sCNAs do not follow the regional two-way mixing model and do 

not allow sAGP estimation. For the other, permissible sCNAs, CHAT can proceed, and is 

able to infer the coexistence of two or more subpopulations by analyzing the distribution of 

sAGP or CCF values. I wish to re-emphasize that while CHAT invokes two-way mixing for 

each individual genomic region, it is not limited to infer the presence of only two populations 

of cells. Globally, the number of peaks in the sAGP or CCF distribution has no restriction, 

and can be very high when the signal-to-noise ratio is improved, such as with ultra-deep 

sequencing data (e.g., Shah et al., 2012).  

 

3.9 Summary 

 

In this work, I developed a computational framework to estimate clonality for both sCNAs 
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and SNVs. It is built on previous methods both by us (Li et al., 2012) and by others. It lifted 

several unrealistic assumptions in previous methods and clarified some ambiguous concepts. 

A second contribution of CHAT is in systematically assessing the input data combinations 

that lead to "unidentifiable zones", in which the CCF, or "scenarios" (i.e., the evolutionary 

order and phase of the sCNA and SNV), cannot be resolved even with perfect data. I found 

that in many situations, even if the evolution scenario is undetermined, CCF values can still 

be estimated. The ability to objectively evaluate the power of inference in any given dataset 

is an important part of method development.  
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Figure 3.1: Schematic pipeline of tumor subclonality using CHAT. 

 
DNA extracted from tumor mass and paired normal sample were sent for both allele-specific copy 
number profiling and DNA sequencing. CHAT provides two alternative ways to define the spatial 
units for sAGP analysis: by natural DNA segmentation (CBS) or fixed number of heterozygous BAF 
marker bin. Inference on CCF and lineage scenarios relies on two sources of input: sAGP estimations 
with absolute copy number configuration, and the allele counts from the sequencing data for each 
somatic mutations. A wide spectrum of downstream analysis are available with the rich information 
inferred by CHAT, including the macroscopic subclonal structures of tumor populations, joint 
analyses of sAGP and CCF for each cancer gene or for each tumor sample, interactions between 
sAGP and CCF values for different tumor subtypes, etc. 
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Figure 3.2: Evolution model inference for primary tumor sample TCGA-A1-A0SD. 

 
A: Scatter plot for binned segments of BAF and LRR showing different levels of contraction even 
within same type of sCNA. B: BAF-LRR plot for the same sample. C: MCMC fitting of sAGP 
distribution reveals three distinct modes, peaking around 0.5,0.4 and 0.2. The segments in each peak 
are colored black (0.5), red (0.4) and green (0.2) in A and B. Segments sharing similar sAGP values 
and clustered within same peak are likely carried by a same group of cells, namely subclone. In C, 
sAGP distribution is indicated by light blue histogram, while the DP fitted density is shown in dark 
green line.
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Figure 3.3: Paradigms for lineage scenarios A to C for heterozygous amplification. 

 
In scenarioA1, three population of cells are modeled: euploid cell without mutation, euploid cell with 
mutation  (hexagon star) and aneuploid cell with mutation. When mutation occurred before 
amplification of the green allele, both alleles carry that mutation. r0,r1 and r2 are the fraction of each of 
the corresponding cell population (same is true to other scenarios) and sum up to 1. A2 is similar to 
A1 , except that the mutation occurred on the unamplified allele (orange). For scenario B, there are 
two equally possible cases: mutation occurred on the amplified (B1) or unamplified (B2) allele. The 
formulas to compute CCF for either case are identical. For scenario C, where mutation and sCNA 
independently occurred on difference lineages, there are also two possible cases: mutation occurred 
on maternal(C1) or paternal(C2) allele in the euploid cells, and the formulas for either case are also 
identical.  Blue arrow: mutation occurrence; red arrow: sCNA occurrence.
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Figure 3.4: Lineage scenarios for CN-LOH (A) and heterozygous deletion (B). 
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Figure 3.5: Identifiable zones 

 
Identifiable zones for CCF estimation in case of hemizygous amplification (A), cn-LOH (B) and 

hemizygous deletion (C), for four temporal scenarios described in the main text.Somatic mutations 

from 201 diploid tumor samples with percent on point (PoP) greater than 0.05 (a measure of 

prediction accuracy from (Li et al., 2012)) were selected for the analyses. Lineage scenarios are 

bordered with different colors as displayed in the legend. Variants with coverage lower than 20 or 

SAF smaller than 0.05 were discarded. 3382 mutations from hemizygous amplification, 2008 from 

cn-LOH and 4662 from hemizygous deletion regions were plotted respectively for each sCNA type 

against the corresponding sAGP values of the DNA segments. Theoretical boundaries of SAF values 

in each scenario from Eq(8)-(15) were overlaid on the plot to display the unique and unidentifiable 

zones. Each lineage scenario is bordered by a different color, as indicated in the legend of A. Text 

boxes with black color labels the regions on the plot their attributes. Single letter in the box indicates 

that the region is uniquely assigned to that scenario, while multiple letters indicate the region is 

indistinguishable between the corresponding scenarios. Regions without text box of capital letters are 

theoretically impossible, and our results show that the distribution of real data agrees well with most 

of these regions. CCF of somatic mutations in light green areas can be uniquely estimated, while not 

in gray zones due to unidentifiable issue.  
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Figure 3.6: In silico validation of CHAT performances. 
 

 
A. Performance of sAGP inferences. Upper row: percent of error in estimated nb or nt, for the 
dominant (left) and subclonal sCNAs (right), as described in Materials and Methods, Sec8on 7a. 
Middle row: the median absolute difference (MAD) between predicted and simulated sAGP values 
for sCNAs with correctly identified (nb, nt), or for all sCNAs (Bottom row). The psub=0 row of the 
lower-right and middle-right panels had zero error because when psub=0 there is only one clone in the 
tumor population and all subclonal sCNA segments have correctly estimated sAGP = 0. B. 
Performance of CCF inference. Shown are scatter plot of simulated and estimated CCF for four pdom – 
psub cases and two coverage values: Cov=50 (upper panels) and 100 (lower panels). C. Comparison of 
CCF inference accuracy among different SNV categories: euploid vs. aneuploidy regions; and in the 
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latter, between the dominant and the minor clones. Lastly, SNVs were divided by sCNA types. The 
tested case has the following parameter settings: pdom=0.9, psub=0.6, coverage=50, number of SNV 
sampled=4,000, number of sCNA sampled=200. 
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Figure 3.7: Distribution of the percentage of somatic mutations associated with a unique 
scenario (black) and the additional percentage with unique CCF estimates (red). From 
left to right are the results for 445 breast tumor samples, ordered by the 
unique-scenario percentage. 
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Figure 3.8: Single gene summary for sAGP-CCF joint distribution for 445 BRCA 
samples. 

 
A: A made-up example showing characteristic density peaks on the heatmap. B: Realization of A) for 
four breast cancer related genes: TP53, PIK3CA, GATA3 and MAP3K1. C-D: Scatter plot of 
sAGP-CCF for two genes, TP53 and PIK3CA, stratified by PM50 BRCA subtypes. sAGP values for 
euploid regions are added a small random noise for visualization purpose. Numbers after gene 
symbols in B are the number of samples with both sAGP and CCF estimable for the gene across 445 
tumors. For each subtype, in C and D, the number indicates the same. To note, I excluded 7 
Normal-like samples due to low count.
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Figure 3.9: Two-gene CCF-sAGP comparison for TP53 and PIK3CA across 445 
samples and stratified by PM50 gene expression subtypes. 

 
Interactions between CCF and sAGP for TP53 are characterized by interacting types: 1. correlated 
CCF and sAGP value of TP53, mostly enriched in Basal subtype (dashed black line); 2. correlated 
sAGP values for TP53 and PIK3CA (dashed red line); 3. correlated TP53 sAGP and PIK3CA CCF, 
enriched in LumA subtype (dashed blue line); 4. correlated TP53 sAGP and PIK3CA sAGP, with 
PIK3CA somatic mutations (dark green line). 
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Chapter 4. STRfinder: A general tool for detecting and genotyping short 

tandem repeat variation using paired-end next-generation sequencing data 

 

4.1 Introduction 

 

Short tandem repeat (STR) in the genome refers to the consecutive occurrence of the same 2-6 DNA 

base pairs many times in a row. Its allelic variation represents an important class of genetic variation 

in many genome systems, including the human genome and the genomes of many cancers. STR 

variants can affect protein structure or gene regulation (Gemayel et al., 2010, Kozlowski et al., 2010, 

Bolton et al., 2013, Sawaya et al., 2013), and have been implicated in several inherited diseases in 

humans (Mirkin, 2007). Meanwhile, cancer researchers have realized since decades ago that the 

instability in STR alleles may be associated with certain cancers (Wooster et al., 1994), such as 

colorectal cancer (Markowitz et al., 1995, Parsons et al., 1995, Popat et al., 2005). Further, CAG 

repeat polymorphism in androgen receptor (AR) is implicated prostate cancer (Nelson and Witte, 

2002) and male breast cancer (MacLean et al., 2004). Highly polymorphic STR loci have also been 

used as DNA fingerprinting markers for forensic identification purposes (Keats et al., 2012). In 

medical genetics, STRs in coding regions sometimes undergo abnormal expansions and the alleles 

with high numbers of repeat units can increase the risk of certain diseases. There have been many well 
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documented developmental or neuro-degenerative disorders that are caused by STR expansions 

(Gatchel and Zoghbi, 2005), including the Huntington’s disease (Walker, 2007), Fragile-X syndrome 

(Pearson et al., 2005), Machado-Joseph disease (MJD) (Paulson, 2012), and some types of ataxia (Orr 

et al., 1993, Pulst et al., 1996, Campuzano et al., 1996).  

Several methods have been developed to annotate STR location/length (Benson, 1999, Smit, 

1996-2004) in well-assembled sequences, such as the human reference genome. However, a reference 

genome represents a consensus sequence, and does not capture STR variations in a population. In this 

regard, we still lack robust methods for detecting STR variation and genotyping individual samples.  

Experimentally, the detection of STR remains error-prone and difficult to scale up. Traditional Sanger 

sequencing still serves as a gold standard, but it cannot be efficiently applied to genome-wide scans or 

in larger sample cohorts. In recently years, with the arrival of the next-generation sequencing (NGS) 

technologies, it becomes feasible to collect DNA sequence data over a large sample and sometimes in 

exome-wide or genome-wide fashion. Specifically for the short-read NGS data, two methods, lobSTR 

(Gymrek et al., 2012) and RepeatSeq (Highnam et al., 2013), have been recently developed to detect 

STR variation. Both methods rely on an existing database of known STR sites, usually created by 

reference genome annotation methods, such as the Tandem Repeats Finder (Benson, 1999). However, 

both methods are limited by only considering alleles that are shorter than the read length. For the 

Illumina HiSeq system, the typical read length is 101 nt, which covers approximately 33 repeats for a 

tri-nucleotide STR. Many disease-associated alleles are longer than 101 nt. For example, in 

Huntington’s disease, the normal number of CAG repeats in HTT is <26, which can be covered by a 

read; however, the disease-associated expanded allele can reach 40 repeats, or 120 nt, thus cannot be 
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spanned by an Illumina read and cannot be detected by lobSTR or RepeatSeq. A similar situation 

occurs for spinocerebellar ataxia, dentatorubropallidoluysian atropy, myotonic distropy and other 

developmental disorders (Gatchel and Zoghbi, 2005). 

Many medical resequencing studies adopt paired-end (PE) sequencing, in which both ends of 

randomly generated DNA fragments are sequenced. Typically the fragments are 300-500 nt in length, 

and the 101-nt sequences at both ends were determined. When an individual read fails to span a long 

STR allele, the read pair may still flank the STR region, thus providing additional information that 

can be used to detect and genotype STR alleles longer than the read length. Currently no method is 

available to fully extract the available information in PE data to characterize STR variation. In this 

chapter I describe the first algorithm to perform this task. My algorithm, STRfinder, is designed to 

detect and, when possible, estimate the length of both STR alleles using paired end next generation 

sequencing data. STRfinder does not require any prior knowledge of STR locations, and finds STR 

loci based on genomic distribution patterns of mapped reads or read pairs containing repetitive 

portions. Our algorithm is capable of finding novel STR regions that have not been documented in the 

human genome. STRfinder is implemented in Python and is available at 

https://sourceforge.net/projects/strfinder/. 
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4.2 STRfinder pipeline 

 

4.2.1 Scope of STRfinder 

 

In this paper, I constrain our discussion to simple repeats. This is referring to repeat region with only 

one type of unit, no other repeat regions at the upper or lower 300bp regions. Also the region must 

contain fewer than or equal to in total 2 mismatches, gaps or sequencing errors. The repeat allele with 

its flanking regions must appear in the genome only once. Regions violating the above standards are 

referred to as complex regions. Furthermore, in our context, the length of a repeating unit α takes 

values from 2 to 6, and the length of a repeat region has minimum number of repeat 8-α. For example, 

for tri-nucleotide repeat, I require at least 5 consecutive units to be called as a repetitive region.  

 

4.2.2 Definition of STR allele types 

Let D=N×α denote the length of STR allele, where α is length of repeating unit and N the number of 

repeats. Let Lr denote read length, and for data generated from Illumina HiSeq machines, it is a 

non-random parameter. There are in 2 possible ranges that D falls in regarding Lr:  

A 0≤D≤Lr-δ 
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B Lr-δ<D 

δ is the minimum length of bases required for an aligner to map a read allowing soft clipping. For 

example, BWA requires at least 20 bases to properly map a read to the reference genome. In a region 

with repeats, δ is the minimum length of flanking regions. In practice, I allow δ to be user-defined, 

with default 20, following BWA convention.  

 

4.2.3 Positional notations of reads and read pair types (RPTs) 

Consider an STR allele with known start and end coordinates on the reference genome. I introduce 

positional notations for reads. In total, there are four types of reads in the region of an STR allele: at 

junction, inside the allele, outside the allele or traverse the allele. Let j denote junction read which 

contains repeats at either tail, o denote read located outside the STR region, i denote read inside STR 

region so that containing pure repeats and t denote traversal reads that contains repeats only in the 

middle and unique sequences at both ends.  

Each read pair consists of two mates and I seek to denote the positions of both mates using the 

combination of the above notations. As a convention, I always write the left read on the left, and right 

read on the right. For the STR region of interest, let L denote the left boundary, and R denote the right 

boundary. Now I am ready to use the above notations to deliver the positional information of all the 

read pairs mapped within and around an STR region. For example, read pair oLj has left read located 

outside the left boundary of STR region and the right read on the junction of the starting position, and 

jj the junction-junction read pair that span the entire STR region. I enumerate and number of all the 

possible combinations for the above notations (Figure 4.1) and there are in total 13 read pair types 
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(RPTs) that can be generated by different allele types.  

 

4.2.4 Characteristic RPTs for each STR allele type 

Each allele type produces a subset of RPTs. It is intuitive that when D≤Lr-δ, it is impossible to 

produce inside reads. Therefore RPTs 1-5 will be completely missing, and all 6-13 RPTs may be 

observed. When Lr-δ<D, the STR allele can produce RPTs 2-7 and 10-12. Traversal reads will be 

missing in this case. This is because even though D may be shorter than a read, the length of flanking 

regions left to anchor the read is not sufficient. RPT 1 may also be observed when D is long enough.  

 

4.2.5 RPTs distribution for different allele types 

I am interested in learning the behavior of STR alleles of different lengths in terms of what RPTs they 

can produce and what the relative proportions of different RPTs are. It is intuitive that when D is 

shorter than a read, it will produce a different subset of RPTs from when D is much longer than a read. 

To simplify our calculation, I fix insert size to be its mean µ, and assume that the left-most position of 

a read pair is uniformly distributed around the region (st-µ, st+D), where st is the start position of STR 

region and let Lt denote the length of the region: Lt=D+µ. Let θ denote the length of unsequenced 

region between two reads in a pair, i.e. θ=µ-2Lr. In a well-designed library, θ should be positive, 

although the sign of θ does not affect the results. I use Mi, i=1,2,…,13, to denote the expected length 

of range where RPT i can be produced. The values of MI am given in Table 4.1. These values can be 

inferred using a series of tiling read pairs with left-most position approaching from st-µ to st+D. 



! 157!

Examples for θ<Lr and D∊(θ,Lr) or D∊(θ+Lr,µ) are shown in Figure 4.2. And the probabilities of 

observing each type of RPT are given by: 

!! = !!/!! 

!! = !! = !!/!! 

!! = !! = !!/!! 

!! = !!" = !!/!! 

!! = !! = !!/!! 

!! = !!! = !!/!! 

!!" = !!"/!! 

!!" = !!"/!! 

Given Lr and µ, I can calculate probabilities to observe each of the 13 RPTs for different allele length 

D. Figure 4.3 displays the distributions of P1-P13 with D progresses from 10 to 1000bp (µ=252, 302 

and 352, Lr=101). There are several signatures revealed from Figure 4.3: 1) P8+P9, the probability of 

observing traversal reads, peaks when D is the smallest and decreases to 0 when D exceeds Lr. 2) 

P13+P11+P7+P12, the probability of observing flanking read pairs, is large when D is small and drops 

down to 0 when D exceeds µ. 3) P1+P2+P3+P4+P5, the probability of observing RPTs with at least one 

inside read, remains 0 when D<Lr, and becomes steadily larger with increasing D. The above 

probability distribution provides the basis of our binary classification of the possible genotypes which 

I will discuss below. 
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4.2.6 Genotype classification for a diploid STR locus 

At a STR locus in a diploid genome, there are two alleles with possibly different repeat lengths. Let 

L1 denote the length of shorter allele and L2 the longer allele, so that L1≤L2. Considering different 

ranges of L1 and L2, I can divide the genotypes at a given STR locus into three scenarios, depending 

on the lengths of the two alleles (L1, L2) , Lr: 

AA: L1 ≤ L2 < Lr-δ 

AB: L1 < Lr-δ< L2 

BB: Lr-δ< L1 ≤ L2  

In Table 4.2 I enumerate all the possible RPTs that can be produced under each genotype. It is 

intuitive that I use the existence a subset of these 13 RPTs to distinguish genotypes. Genotype AA can 

be separated out by missing inside reads, while AB and BB can be further distinguished by existence 

of traversal reads.  

 

4.2.7 STR allele length estimation 

Another major task for our method is to provide accurate estimation of L1 and L2 after identification 

of the genotype. Throughout our method development, three length estimation approaches are used 

for different cases: 

A) exact estimation using traversal reads 

B) parametric model based likelihood estimation using insert size distribution 

C) non-parametric model based likelihood estimation using coverage distribution 
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For alleles shorter than Lr, method A) is usually sufficient to estimate D. When allele length exceeds 

Lr I need method B) and C) to provide unbiased estimations.  

 

4.2.8 STRfinder pipeline 

Our goal is to use previously aligned paired-end short read sequencing data to detect STR alleles 

without any prior information, which can be broken down into three specific tasks. The first task is to 

screen for informative reads and locate STR allele. STRfinder profiles all the reads and select partially 

or fully repeat ones to find candidate STR regions characterized by local cluster of partially repeat 

reads. Second, genotyping: using all the informative read pairs around the STR region, STRfinder 

identifies the genotypes of each STR loci. Third, length estimation: using a maximum likelihood 

approach, I am able to provide an estimate of the length of repeat region, even when it is longer than a 

read or insert size. The flowchart of STRfinder can be found in Figure 4.4 and details for each task 

are discussed in Method section.  

 

4.3 Application to simulated datasets 

In order to evaluate the performance of STRfinder, I created in silico datasets with known STR allele 

lengths. To fully restore the complexity of human genome, without losing generality, I use 

chromosome 10 from human g1k v37 assembly as template. Although STRfinder does not rely on 

external information to locate an STR, I use tandem repeat table from UCSC genome browser, which 

was used by lobSTR to call STR variants (Gymrek et al., 2012). For chr10, there are 11,048 STR loci, 
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from which I randomly sampled 30% sites to be heterozygous and control the allele lengths, with the 

remaining 70% sites to be homozygous with reference allele length. For the 30% sites, I further 

sample 80% out of them (24% of total) to be unexpanded alleles, and assign one allele to be the 

reference. The number of repeats of the other allele is given by nref+U, where nref is the repeat content 

for the reference allele, and U is a random integer sampled from [-5,5]. 20% out of the sampled 30% 

sites (6% of total) are expanded alleles, and I still assign one to be the reference. The number of 

repeats of the other allele is given by U'×nref, where U' is a random integer from [2,5].  

After the locations and lengths of STR alleles are chosen, I simulate reads from the simulated chr10 to 

obtain FASTQ files. Paired end simulated Illumina reads were generated using simNGS 

(http://www.ebi.ac.uk/goldman-srv/simNGS/). I set mean insert size to be 300bp, read length 101pb 

and mean coverage to be 50X. Other parameters are set as default. To examine the performance of 

STRfinder on different aligners, I applied two aligners that allow gap mapping, BWA (Li and Durbin, 

2009) and Bowtie2 (Langmead and Salzberg, 2012) to map the reads onto human g1k v37 reference 

genome. I used the complete genome as reference instead of only using chr10, to include scenarios 

when expanded STR alleles are mapped to other chromosomes of the genome, which is possible in 

real datasets. In total, 3384 STR sites are selected to evaluate the performance of STR calling 

algorithm. 

STRfinder was applied on both BWA and Bowtie2 aligned BAM files and generated two lists of STR 

sites. For BWA BAM, STRfinder called 22832 sites in total, with 22815 on chr10, 8770 in the tandem 

repeat table and 2924 in the heterozygous STR list, where for Bowtie2 BAM there were 22460 sites 

called, 22459 on chr10, 8623 in the table and 2825 belonged to the list. In either case, STRfinder 
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found more than 10K STR loci not covered in the tandem repeat table. From those loci, I randomly 

selected ten, manually checked their validity and all of them were proven correct STR regions.  

BWA and Bowtie2 calling results overlapped 21646 in total, and 2806 were in the STR list. I 

compared the length estimations for both sets with the allele lengths in the STR list, and BWA result 

had a Pearson’s correlation of 0.44, slightly larger than Bowtie2 (0.42). The two sets of BAM files 

yield very similar call rates and accuracies, indicating that STRfinder works fine with both methods. 

Since BWA result has slightly better outcome, I use the STR variants called from BWA aligned BAM 

file to compare with other STR callers.  

 

4.4 Performance of STRfinder and comparison with other methods 

 

I applied two other STR detect algorithms, lobSTR and RepeatSeq to the same dataset and compared 

the performances with STRfinder. In order to compare methods fairly, I used the optimum settings for 

each algorithm in our simulation framework. For lobSTR, I used paired-end mode on fastq files. If, 

for a given site, lobSTR provided more than one estimates, I use the one closest to the reference allele 

to reduce noise. For RepeatSeq, BWA aligned reads yield better call rate, and hence I used BWA 

instead of Bowtie2 aligned bam file. Both lobSTR and RepeatSeq required a list of reference STR 

sites, and I used the tandem repeat table for chr10 that has been used to generate the heterozygous 

STR list containing 3384 sites.  

In total, lobSTR called 9410 sites, 9369 of which were on chr10, while RepeatSeq called 8859 in total 

and 8824 were in the tandem repeat table for chr10. 
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I first compare the overall call rates for three methods. Of all the 3384 sites, STRfinder, although is 

blind to the tandem repeat table used for simulation, called 2924 of them, which is the highest, 

followed by lobSTR, calling 2293 sites. RepeatSeq called 2249 sites. The Venn diagram in Figure 

4.5A shows the overlaps out of two-way and three-way comparisons. 1651 sites for the called sites 

from all three methods are shared.  

For the six genotype scenarios, the results are shown in Figure 4.5B. A cut-off of allele length ≤80-nt 

is applied for A allele. For genotype AA, all three methods have comparable high call rates and most 

of the calls are correct. For genotype AB, only STRfinder provided high fraction of correct calls. 

lobSTR and RepeatSeq also called around 60% of the sites, but none of them were correct. For 

genotypes BB, the call rates for lobSTR and RepeatSeq were close to zero, while STRfinder was able 

to correctly genotype 292 out of 536 sites for this genotype. 

Genotype AA and AB are scenarios where STRfinder is capable of allele length estimations and I 

presented the comparisons using violin plots (Figure 4.5C). AA is the most abundant in heterozygous 

STR list, accounting for more than 70% of all sites. Both lobSTR and RepeatSeq were designed to 

predict lengths on short alleles that can be spanned by a read. As expected, allele length predictions 

from all three algorithms were very close to simulated values, and the median absolute prediction 

errors were low, with RepeatSeq being lowest (0.5 repeat units for both short and long alleles). 

lobSTR has the least prediction error for short allele, which is also 0.5 unit, but its prediction error 

(2.0 unit) for long allele is slightly worse than STRfinder (1.0 for both short and long alleles). Length 

predictions for STRfinder have larger variation than other methods. The sites with extreme prediction 

errors were manually examined and most of them were not simple repeat regions. Since STRfinder 
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does not rely on external information to genotype STR loci, its estimations on complex repeat regions 

suffer from low accuracy. For AB genotype, STRfinder have the smallest prediction errors for both 

long and short alleles. For these STR loci, lobSTR and RepeatSeq failed to identify the long allele, 

and usually assigned it with the length of reference allele, and therefore, both of them yield high 

prediction errors. It is also important to note that the call rate of STRfinder is the highest across AA 

and AB genotypes, where lobSTR and RepeatSeq suffered from decreased calling rate as the length of 

the long allele increased. Of the expansion genotype AB, I am particularly interested in tri-nucleotide 

repeats. There are 40 sites simulated in total, and 36 of them were called by STRfinder, with 33 

correctly called, indicating that for tri-nucleotide repeat expansion alleles, STRfinder has around 80% 

calling accuracy, while lobSTR or RepeatSeq, not designed to detect this type of allele, could not call 

any of these sites correctly. 

To conclude, based on an unbiased simulated dataset and comparisons among three STR callers, 

STRfinder consistently has the highest calling rate, and decent accuracies across all six genotype 

scenarios, where the other two callers, which were designed for only short alleles, suffered from 

regressed performances when allele length becomes longer. 

 

4.5 Application to a real exome 

 

The data I simulated using simNGS followed a protocol of whole genome sequencing preparation 

library. While a wide range of research is practiced using whole exome sequencing (WES) for cost 

efficiency considerations, I am interested to understand the performance of STRfinder for WES data. 



! 164!

The data I used came from a patient diagnosed with Machado-Joseph disease (MJD). Blood DNA 

sample was collected and sent for whole exome sequencing to 40X using Illumina HiSeq 2000 

platform, and NimbleGen V3 capture kit. The raw paired-end reads were aligned to human reference 

genome g1k v37 using BWA aligner. I applied STRfinder onto this dataset and discovered 9791 STR 

sites. MJD is a neurological disorder known to be related to polygutamine (PolyQ), or CAG repeat 

expansion in certain genes (Paulson, 2012). I looked for pathological expansions of tri-nucleotide 

repeats among the 9791 sites and found seven sites with genotype AB/AC. I manually checked all the 

sites and found all four AB genotyped sites and the first AC genotype site located in complex 

interrupted repeat regions. I therefore excluded these five sites  from our analysis. The sixth signal 

resides in chr13: 70713514-70713560, and targeted gene ATXN8OS, with short allele being 20 

repeats, and long allele ~70 repeats. The last signal is in chr14: 92537353-92537396, affecting 

ATXN3 gene, with expanded allele length ≥70 repeat units and normal allele 20 repeats. For this 

specific patient, clinician has ordered Sanger sequencing on ATXN3 and validated that it has 84 

repeats for the expanded allele. ATXN3 is a known causal gene for MJD, with normal allele range 

13-36 repeats and pathological allele 61-84 repeats (Gatchel and Zoghbi, 2005), so the discovery of 

CAG expansion in this gene concluded the study. However, it will also be interesting to look at gene 

ATXN8OS in the future, since it has been associated with a form of spinocerebellar ataxia (Koob et 

al., 1999). For ATXN3 gene, lobSTR reported 13 repeats for both alleles, while RepeatSeq failed to 

identify the locus. 
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4.6 Methods 

 

Before detailed descriptions of the method, I first specify our tasks. The goal is to use paired-end next 

generation sequencing data, which has been previously aligned to a reference genome, to sequentially 

report (1) existence of STR region; (2) the genotype and (3) lengths for L1 and L2.  

4.6.1 Existence of STR region 

4.6.1.1 Informative read searching 

Our algorithm implements an initial search for all the reads that contain more than 8 repeat units at 

either end, to include junction reads and inside reads. To distinguish the junction read from inside 

reads, I perform a finer scan by searching for reads with auto-similarity larger than or equal to 0.9, i.e. 

if a read sequence shares more than 90% of same bases to itself lagged by α bases (iterating α from 2 

to 6), it is considered to be an inside read and α is the length of repeating unit, while reads with 

auto-similarity smaller than 0.9 are considered to be junction reads. Each read is then paired with its 

mate. Each read pair filtered in contains at least one mate that is partially or fully repetitive. The 

above approach guarantees to find all the read pairs from RPTs 1-7,10-12 that have been assigned by 

aligner as unmapped, low mapping quality, soft-clipped or misplaced due to tandem repeats. For RPT 

1, both mates are fully repetitive, and it is usually impossible for aligner to uniquely place the read 

pair in the genome, I exclude it from downstream analysis unless otherwise mentioned. RPTs 8,9 

contain repeat in the middle of the sequence, and 13 does not contain repeat but spans a repeat region. 
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These read pairs are not included by this step and will be retrieved later. During the initial search, I 

also obtain the mean (µ) and standard variation (σ) of insert size distribution, using properly mapped 

read pairs (mapping quality≥20). To note, the thresholds used to filter in informative read pairs are 

adjustable by users in STRfinder. 

4.6.1.2 Read set discovery 

For each read pair kept from the above screen, I use the left-most mapping position of the mate with 

higher mapping quality and sort these positions along the genome for a linear scan. If in a locus I find 

more than 5 reads with maximum distance between adjacent reads ≤µ, I assign all these reads in this 

locus to be a pre read set (pRS). The discovery of a pRS is an evidence for the existence of STR 

region. The minimum (st) and maximum (ed) mapping locations of reads in this pRS are found and all 

the reads mapped within (st,ed) are retrieved to be assigned as a read set (RS). To note, RS may 

contain mapped read pair types 2-7,10-12, while it may also contain traversal reads 8 and 9, and 

traversal read pair 13, since I extract all the reads in this STR locus, and 8,9,13 read pairs are usually 

properly mapped. 

4.6.1.3 Repeat unit identification 

In the RS defined above there are two types of reads: those with decent amount of repeats 

(auto-similarity>=0.5) and those without (auto-similarity<0.5). I select reads with repeats to identify 

the repeat unit. I first estimate the length of the unit by checking the auto-similarities of these reads, 

where the correct length α results in the highest auto-similarity. I then enumerate all the possible 

α-length units, taking into account base-rotation symmetry and reverse complementary. For example, 
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AGC, GCA, CAG, GCT, CGT and TCG are all considered to be the same, and I take the first one by 

alphabetical order, AGC. For each unique repeat unit candidate, I search for its occurrence in RS, and 

if any read contains more than 8-α repeats for the specific unit, I include it into our repeat unit list 

(RUL). A clean repeat region should have only one unit, but a more complicated region, for example, 

containing two different yet closely located STR regions, may have more than one units. For those 

regions, I process one unit a time to find all the simple repeat regions within (st, ed).  

4.6.1.4 STR coordinates estimation 

I proceed to estimate the precise location of the STR region in the reference genome. I now focus our 

discussion on one unit. For region contains more than one repeat unit, same method applies for each 

unit iteratively. To find the precise start position (st0) of the STR, I first find all the reads that contains 

unique part on the left side and repeat on the right side, namely left junction reads (LJR). To find LJR, 

I iterate all the reads in RS, and for each read, I identify the repeat region, allowing for at most 2 

errors. Two types of errors are tolerated in STRfinder: 1) mismatch and 2) insertion or deletion of one 

base. And these errors may either be due to technical artifacts or slippage or mismatch during STR 

formation (Levinson and Gutman, 1987). That is, if the repeat region contains no more than two the 

above types of errors, it is still considered as a continuous repeat region. This procedure avoids calling 

shortened alleles interrupted by non-perfect matches. Similar approach applies to find right junction 

reads (RJR). LJR are used to estimate st0. For each read in LJR, I estimate where tandem repeat 

begins by finding the left-most position (z) of the consecutive repeat region within the read (0<z<Lr). 

If the mapping position of the read is x, then st0=z+x. It is possible that each LJR gives slightly 

different start position estimation, due to sequencing and mapping errors. I take the median of all the 
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start estimates to be the final st0. Likewise, ed0 is estimated from taking the median of all the end 

estimates from RJR. 

 

4.6.2 Genotype identification 

After a read set (RS) is defined and an STR region is found, I move on to identify which of the above 

three genotypes L1 and L2 belong to. It is intuitive to see in Table 2 that the missing inside reads RPT 

2-5 is a signature for genotype AA, while the existence of RPT 8 or 9 further separates AB from BB. 

Therefore I am able to identify genotypes based on the existence of the above characteristic RPTs.  

Before length estimation for STR alleles, I want to describe our question. The goal is to use read 

length, insert size and coverage information around a diploid STR locus to provide unbiased 

estimation of both parental alleles, under each genotype scenario. The genotype classification of AA, 

AB and BB here is primitive since allele type B covers a large range of values. In allele type B, when 

the STR region is short enough, I expect read pairs to flank the allele (denoted as Bshort), while its 

length exceeds the maximum insert size locally, no flanking read pairs shall be observed (denoted as 

Blong). However, there does not exist a definitive threshold between allele types Bshort and Blong, since 

insert size of read pair is a stochastic variable instead of a fixed parameter. Therefore, it is not 

possible to define a global cut-off to separate the two possible scenarios of allele type B. Instead, I 

choose to analyze genotype AB or BB in a contingent fashion. For each AA genotype locus, I 

distinguish the two possible length ranges by looking for flanking read pairs of the longer allele. If 

these read pairs are found, there is definitive evidence that the longer allele is constraint by insert 

sizes these read pairs (Bshort). If not, it is likely that the allele is too long to be covered by any read pair 
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(Blong). And for BB genotype, I do always not seek to provide length estimations. As mentioned in the 

main text, I have three methods for length estimation, with methods B) and C) for alleles longer than a 

read. Of these two, method B) is only available when the allele length is flanked by a sufficient 

number of read pairs, while method C) is applicable to either length ranges. Theoretically, the 

prediction error for method B) is contributed by the variance in insert size, while for method C), this 

error is contributed by both insert size variance and Poisson sampling error. Therefore, I use method 

B) for the Bshort alleles and method C) for the Blong alleles.  

 

4.6.3 Estimation of L1 and L2 

 

4.6.3.1 Genotype AA: L1≤L2<Lr-δ 

In this case, I expect to find traversal reads from RPTs 8,9 as well as 6,7,10-13 and no inside reads 

from RPTs 2-5. The method I search for t reads is similar to that I look for j reads. I iterate through all 

reads in RS, find reads with more than 8-α consecutive repeats in the middle, with the starting 

location of the repeat larger than α and ending position smaller than Lr-α, and assign them to be t. For 

each t read, I record the number of repeats it contains, and include it into a list (S). In this list I expect 

to see two numbers with high frequencies, and due to noise and errors, there may be other numbers. 

Therefore, I find the top two numbers with highest (f1) and second highest frequency (f2) in S. If 

f2<0.2×f1, I assume the second highest abundant number is noise and this is a homozygous region 

with both alleles the same length, otherwise I report heterozygous region and both numbers of repeats.  
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4.6.3.2 Genotype AB: L1≤Lr-δ<L2 

In this scenario, I expect to observe RPTs 2-13, including t and i reads. I apply method 3.a on t reads 

to estimate L1.I then look for RPTs produced by L2 with definitive evidence. Since L2 is longer than Lr, 

it is possible to find RPTs with repetitive region longer than L1. For example, RPTs containing 

junction reads (6,7,10,11,12) may fall into this category if enough number of repeats are found in one 

or both mates. RPTs 2-5 contain inside reads, and must be generated by L2. I denote read pairs that 

can be uniquely assigned to L2 as L2-RP. Figure 5.6 shows different types of L2-RPs in different 

allele length ranges. For Bshort allele type, I expect to find RPTs 7, 11 and 12 within L2-RPs, which are 

very informative to L2 estimation since they are flanking the STR region. If such read pairs exist, I use 

method B to estimate L2 with following likelihood function: 

!"#$%"ℎ!!" = Pr !"#$!!"#$!!"#$%ℎ!! = !!! + !!|!"#$!!"#$!!"#$%!!"#$%&$'

= !"#$%&(!!! + !!, !,!)
!"#$%&(! + !, !,!)!"!

!!!!

!

!!!
 

where Li
u is the length of non-repeat region spanned by read pair i, i=1,2…K, K is the number of L2-

-RP read pairs belonging to RPTs 7, 11 or 12, and δ is the minimum length requirement for a read pair 

to be mapped. For BWA aligner, I choose δ=20. To calculate Li
u, I need to know the length of the 

unique part of sequence coming from both mates. For RPT 12, since it travels from one end of STR 

region to the other, it is known that the space between mates is filled with repeats, and Li
u=2×Lr-Lp, 

where Lp is the total length of consecutive repeat sequence in the two reads. For RPT 7 and 11, 

Li
u=2×Lr-Lp+G, where G is the unique sequence between the two mates. For RPT 7, G=Start position 
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of right read-ed0 and for 11, G=st-Start position of the left read-Lr. The denominator in the likelihood 

formula is the probability that the read pair is observed. Conditioning on the read pair observed and 

belonging to L2, the insert size follows a truncated normal distribution where X has to be greater than 

L2+δ, and given L2, the probability is integral of normal density from L2+δ to infinity. I numerically 

solve L2 to maximize likelihood function and report genotype ABshort as well as both length 

estimations.  

When RPT 7,11 or 12 within L2-RP are missing, it is likely that L2 belong to allele type Blong. I use 

method C, i.e. coverage based likelihood model, to estimate L2. In practice, I find all the reads that are 

known to be produced by L2, knowing that L1<Lr. It is straightforward that RPTs 2-5 are all L2 

generated as well as RPT 6 or 10 containing more repeat units than the shorter allele. Similarly, RPT 

8 and 9 must be produced by L1, since they traverse the shorter allele. I let Nlong denote the number of 

read pairs produced by L2, which is summation of the counts of L2-RPs, and Nshort denote the number 

of read pairs produced by L1, which is the count of RPT 8 and 9. Let Plong and Pshort denote the 

probabilities that I can observe an L2 read pair and L1 read pair respectively. Figure 4.6 shows details 

of Plong and Pshort calculations. Both probabilities need to be mathematically inferred. To simplify the 

calculation, I let insert size to be constant µ. Follow the above discussion, the chance that a read pair 

can be observed as L2-generated is: 

!!"#$

= Pr !"#$!!"#$!!"#$%!!"#$%!!"#$!!!!!"#!!"#$%&#'!!"#$%ℎ!!"#"$%&!!"!!"!!""#$%&'!!"!!!

= !! + �
2×! + !! + !!

× !! + ! − 2×!!!! + !
= !! + ! − 2×!!
2×! + !! + !!

 

where the first part is the probability that a read is truly generated by L2, and the second part is the 
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probability that the repeat contain in the read pair is longer than L1 so that it can be assigned to L2 

definitively. Likewise, the chance that a read pair can be observed as L1-generated is: 

!!!!"#

= Pr !"#$!!"#$!!"#$%!!"#$%!!"#$!!!!!"#!!"#$%&#'!!"#$%ℎ!!"#"$%&!!"!!"!!""#$%&'!!"!!!

= Pr!(!"#$%&$!!"#$%"&#'!!"#$) = !! + !
2×! + !! + !!

× 2×(!! − !!)!! + !
= 2×(!! − !!)
2×! + !! + !!

 

Let Ntot denote the number of read pairs in RS and it follows Ntot>Nlong+Nshort and Plong+Pshort<1, since 

there are a fraction of read pairs cannot be assigned to either L1 or L2. I build a Multinormial 

likelihood model based on coverage: 

!"#$%"ℎ!!" = !"#$%&'(%)#(!!!!"# , !!"#$, 1 − !!!!"# − !!"#$,!!!!"# ,!!"#$,!!"! − !!!!"# − !!"#$) 

It can be shown that the maximum likelihood estimation for L2 is unbiased.  

I apply this model, obtain an MLE estimation !! and report genotype ABlong and both length 

estimations for this situation. 

 

4.6.3.3 Genotype BB: Lr<L1≤L2 

In this scenario, I do not expect to observe any RPT 8 or 9.There are two possibilities: i) flanking read 

pairs RPT 7,11 or 12 can be observed (BshortBshort or BshortBlong) and ii) no flanking read pairs observed 

(BlongBlong). It is not possible to assign these read pairs to be L1-reads or L2-reads as I did for 3.b. But 

for i), it is still possible to provide some information of allele lengths. I first distinguish two cases: 

flanking read pairs were generated from (1) one allele (BshortBshort homozygous or BshortBlong) or (2) 

two alleles (BshortBshort heterozygous). For (1), I expect to observe the variance of insert size of 

flanking read pairs to be very close to σ. For (2), the flanking read pairs actually come from two 
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distributions with different means, and I expect the observed variance σ’ to be greater than σ. In 

practice, if σ’≥1.2σ, I assert case (2) and report genotype BshortBshort heterozygous. If σ’ is comparable 

to σ, two scenarios may be true: 1) BshortBlong: the longer allele is too long to be covered by flanking 

read pairs, and the observed RPT 7, 11, 12 were all generated from the shorter allele and 2) BshortBshort 

homozygous: the longer and shorter allele are of same length, or L1=L2. I use a ratio (k) of counts for 

RPT 7, 11, 12 over counts for RPT 6 and 10. The expected value of k is (! − !!)/2!! for scenario 

2), and half of that value for scenario 1). Since L1 has not been estimated, I use Lref=ed0-st0 instead in 

the above expression. In practice, if the observed value (!) is greater than the 0.8×Exp[k], I assign 

genotype  BshortBshort homozygous, and I test if L1 is the reference allele length by using one-sample 

student t-test of mapping distance against µ. If P-value ≤0.05, then L1 is estimated to be Lref+Δ, where 

Δ=µ-average insert size of flanking read pairs in the locus. If P-value >0.05, L1=L2=Lref. I report 

Lr<L1=L2<µ for either P-value<=0.05 or P-value>0.05, together with the length estimations. If 

! ≤ !
! !, I assign genotype BshortBlong and the insert sizes of flanking reads come from one normal 

distribution. I directly estimate L1 using method B, described in 3.b and report the genotype and the 

estimation for L1 only. 

If no flanking read pairs were observed, I do not seek to make quantitative estimations for either L1 or 

L2 and will just report the length ranges and genotype BlongBlong. 

 

 

4.7 Summary 
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I present STRfinder as a new approach to detect, and when possible, to genotype short tandem allele 

loci in genomes using short read DNA sequencing data. Compared with previously developed 

methods, STRfinder has several advantages: 1) it does not rely on a known list of STR loci to call or 

genotype STRs. Therefore, STRfinder is fully capable of finding true de novo STR sites; 2) it 

integrates all 13 read pair types around a repeat region to robustly call and genotype STR alleles; 3) 

for a wide range of STR allele length, STRfinder provides accurate estimations with high call rates. 

These features make STRfinder a unique tool to detect pathological tandem repeat expansions and find 

the genetic basis of a wide spectrum of neurodevelopmental diseases.  

To date, in our simulation, STRfinder called fewer sites in the tandem repeat table than lobSTR or 

RepeatSeq. This is because in our application, I used a more stringent criterion to call repeats, that the 

allele must contain more than 8 repeats. If I relax this threshold to 6 repeats, STRfinder called 10120 

sites in the tandem repeat table, which is more than either lobSTR or RepeatSeq. In practice, this 

threshold is user-defined. 

STRfinder estimates alleles longer than a read by using the mapping distance distribution of the 

library. I assume it follows a single mode Gaussian distribution. The empirical distribution can be 

used instead to increase accuracy. Larger library size is preferred to detect longer alleles. For example, 

with median insert size 300-nt, it is possible to estimate repeat allele length up to 260-nt, considering 

20-nt is required to anchor the junction reads, which is enough to cover the expanded alleles of 

Huntington’s disease, or various types of Ataxia disorder.    

Application of STRfinder on in silico generated dataset with known number of repeats for a list of 

selected STR loci showed that most sites were accurately genotyped by STRfinder. Comparing with 
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lobSTR and RepeatSeq, STRfinder provides equally good estimations for shorter alleles with 

additional information for expanded alleles, both their genotypes and length estimations. Although 

STRfinder does not perform realignment of repeat reads as lobSTR does, its performance is not 

suffered, since a comprehensive collection of read pair types are utilized around a STR region to 

increase calling accuracy. BWA and Bowtie2 aligners were tested in our simulations and both 

provided similar results. Although I did not test other aligners that support mapping of small 

insertions and deletions, by design they are all valid options to apply STRfinder.  

It took STRfinder 2.8 CPU hour to process the simulated dataset (AMD Opteron 2.4GHz), and 

approximately 5GB memory consumption. The actual memory usage depends on the size of the BAM 

file and parameter settings. More sensitive settings result in high memory consumption. The 

simulated dataset contained 90 million reads for chr10 only, and STRfinder called ~23K STR sites. 

On average, it takes STRfinder 0.43s to fully analyze one site. Multi-thread processing is available for 

STRfinder to call variants on multiple samples in parallel.  

I applied STRfinder to a patient with Ataxia symptom on the whole exome sequencing data, and 

independently discovered the CAG repeat expansion in ATXN3 gene, which had been clinically 

tested and proven expanded. This result indicates that our algorithm is ready for the detection of 

causal STR alleles in susceptible population with NGS data available. I based our methodology 

development on simple repeats, yet since I do not rely on known STR sites as reference, sometimes 

STRfinder will find complex repeat regions and report incorrect results, which is the major 

contribution of prediction errors in our simulation. Future work needs to be done to solve complex 

repeat regions, and to achieve this goal, a DNA fragment library with a wide spectrum of length 
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distribution is helpful to detect long regions with subtle structures.  
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Table 4.1. Distributions of lengths of range where RPTs can be produced. 
A: θ<Lr 

 (0,θ) (θ,Lr) (Lr,θ+Lr) (θ+Lr,µ) (µ,∞) 
M1

 0 0 0 0 L-µ 
M2,M5 0 0 L-Lr θ θ 

M3,M4 0 0 0 L-Lr-θ Lr 

M6,M10 L L Lr Lr Lr 

M7,M11 L θ Lr-L+θ 0 0 
M8,M9 Lr-L Lr-L 0 0 0 

M12 0 L-θ L-θ Lr-(L-Lr-θ) 0 
M13 θ-L 0 0 0 0 

B: Lr<θ<µ 
 (0,Lr) (Lr,θ) (θ,θ+Lr) (θ+Lr,µ) (µ,∞) 

M1
 0 0 0 0 L-µ 

M2,M5 0 L-Lr L-Lr θ θ 

M3,M4 0 0 0 L-Lr-θ Lr 

M6,M10 L Lr Lr Lr Lr 

M7,M11 L Lr Lr-L+θ 0 0 
M8,M9 Lr-L 0 0 0 0 

M12 0 0 L-θ Lr-(L-Lr-θ) 0 
M13 θ-L θ-L 0 0 0 

Upper table is for case when θ is shorter than a read and the lower table is when θ is greater than a 
read. It is impossible for θ to be larger than µ, since read length is non-negative.  
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Table 4.2: RPT distributions across six genotypes and binary classification of 6 
genotypes. 

  
Notation AA AB BB 

1 
 

ii* •• ••/•√ ••/•√/√√ 
2 

 
oi •• •√ √√ 

3 
 

ji •• •√ √√ 
4 

 
ij •• •√ √√ 

5 
 

io •• •√ √√ 
6 

 
oLj √√ √√ √√ 

7 
 

Ljo √√ •√/√√ ••/•√/√√ 
8 

 
ot √√ √• •• 

9 
 

to √√ √• •• 
10 

 
Rjo √√ √√ √√ 

11 
 

oRj √√ •√/√√ ••/•√/√√ 
12 

 
jj √√ •√/√√ ••/•√/√√ 

13 
 

oo √√ •√/√√ ••/•√/√√ 
•: missing, √: presented, *: RPT1 is unmappable. Existence of RPT 8 and 9 (shaded gray) are used to 
separate AA,AB and AC from the other three. Within the first 3 genotypes, RPT 2-5 (shaded orange) 
are used to further split AA out. Within the last 3 genotypes, RPT 7,11,12,13 (shaded magenta) are 
used to further split CC out. The second column display color legend for each RPT matching Figure 
4.3.  
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Figure 4.1: Thirteen read pair types relevant for STR detection. 

Solid 

thick lines in the middle indicates diploid genomic region with STR (black colored). Black color 
indicates reference genome, reads or regions containing no repeats, while gray color for sequences 
that are at least partial repeats. The upper allele is the longer allele. Paired arrows indicate read pairs. 
Details for the longer and shorter alleles and the RPTs they may produce are discussed in the main 
text.  
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Figure 4.2: Cartoon showing RPT fractions as in Table 1.  

 
Different RPTs generated when A: θ<D<Lr and B: Lr<D<µ and their relative fractions as 
indicated by the tiling reads.  
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Figure 4.3: Distribution of observing the 13 RPTs under different insert size and read length 
configurations, with allele length changing from 10 to 1000bp. RPTs with same probability are 
put next to each other. θ=µ-2Lr, is the between read distance in a pair. 
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Figure 4.4: STRfinder pipeline 

 
The STRfinder algorithm contains three steps. Assuming paired end reads have been aligned to the reference 

genome using indel tolerated aligners, such as BWA or bowtie2, STRfinder screens for repetitive reads, find 

read sets that contain closely located repeat reads, genotype the STR locus using informative read pair types 

(RPTs) and estimates the lengths of alleles when possible. 
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Figure 4.5: Performances comparison of STRfinder, lobSTR and RepeatSeq on simulated 
dataset. 

 

A. Venn diagram showing the two-way and three-way overlaps between STR sites called by different 
callers. B. Table showing call rates and number of correctly genotyped sites by each method, for 
genotypes: AA, AB or AC, BB or BC and CC. C. Violin plots of absolute prediction error in unit of 
repeats for each method and stratified by genotype AA, AB and AC. The X-axis of the plot displays 
the methods and allele. Capital letters are abbreviations for STR callers, “S” for STRfinder, “L” for 
lobSTR and “R” for RepeatSeq, where the following small number designates allele: “s” for short 
allele and “l” for long allele.  
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Figure 4.6: Cartoon demonstration of Plong and Pshort calculation in different scenarios 

A. µ<L2: 
To estimate Plong, consider tiling read pairs with left-most position moving from sto-µ to st0+L2, 
L2-reads can be observed in the region of st0-µ+L1 to st0+L2-L1. Assuming read pairs are uniformly 
distributed in the region, the probability to observe L2-reads is (L2+µ-2L1)/(L2+µ). B. L1<Lr: To 
estimate Pshort, read pairs with left-most position moving from st0-µ to st0+L1 can be observed as RPT 8 
or 9 in the region from st0-µ+L1 to st0-µ+Lr and st0+L1-Lr to st0. The probability to observe L1-reads is 
2(Lr-L1)/(L1+µ). C. L2<µ and L1 is long enough to prevent the observation of L2 flanking read pairs. 
L2 reads can be observed in the range of st0-µ+L1 to st0-µ+Lr+L2-L1 and st0+L1-Lr to st0+L2-L1. 
Therefore, the probability to observe L2-reads is 2(Lr+L2-2L1)/(L2+µ). L2-reads are marked with blue 
color. 
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Chapter 5. Conclusion and Future Directions 

 

5.1 Conclusions 

 

In this dissertation, I have developed a collection of biostatistical and bioinformatics tools to 

study intra-tumor heterogeneity and the evolution of cancer genomes. Overall, I have 

completed three projects under this theme. 

In my first project, I studied the euploid cell mixing ratios in a cohort of human GBM 

samples, using allele-specific SNP array data. I discovered a strong correlation between AGP, 

the fraction of aneuploidy cells in a tumor sample, and gene expression PC1 and PC2, 

indicating that major components of gene expression variation of GBM samples are 

influenced by their levels of normal cell admixture. This is a novel finding, one that was 

ignored in the initial analysis and reporting of TCGA data. With this knowledge, I performed 

a joint analysis on copy number alteration profiles and gene expression differences of these 

samples, and revised the classification of GBM. The new subtypes are more strongly 

associated with patients’ survival than the previously defined subtypes. Furthermore, by 

comparing with known neural cell types, I identified that the euploid cells in the 

Mesenchymal subtype are likely to be infiltrating microglia/macrophage.  
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In the second project, I extended my algorithm developed in the first study from estimating 

whole-genome average mixing ratios to the mixing ratios of individual CNAs. Application of 

this algorithm to a breast cancer cohort revealed that about half of the samples consist of 

more than one subclone. I further integrated DNA sequencing data into my analysis. With a 

model that considers all possible temporal orders and phase relationships between a somatic 

mutation and an sCNA it resides in, I inferred the cancer cell fraction (CCF) for each somatic 

mutation. The collection of tools, named Clonal Heterogeneity Analysis Tool (CHAT), is one 

the few methods in the field that analyze both sCNA and somatic mutations, and estimate 

cellular frequencies for both types of variants. It is more general than other methods by 

considering the widest range of possible evolutionary scenarios. 

Throughout the development of this method, I relied on the regional two-way mixing 

hypothesis, first brought up in oncoSNP (Yau et al., 2010). This hypothesis is equivalent to 

the infinite site assumption used in population genetics, which considers recurrent mutation 

in the same locus of the genome as extremely unlikely. For somatic mutations in most tumor 

samples, this assumption is reasonable due to the large size of human genome and the 

relatively low rate of single nucleotide replacement. However, tumors with large fractions of 

genome altered are likely to have some regions affected by more than one independent events. 

And the exact solution is to allow three-way mixings or higher. While two-way mixing model 

is solvable using allele-specific copy number data, higher-order mixing models are 

mathematically difficult, sometimes becoming intractable when the data are limited. In my 

current approach, if an sCNA does not follow this assumption, its sAGP value will be 
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assigned with a missing value, and no downstream analysis will be conducted for this sCNA.  

My third project is to detect and genotype STR loci.  While it was initially motivated to 

study pathological STR expansions in neurological and developmental disorders, it can also 

be applied to study STR variation in the cancer genomes. Compared to lobSTR and 

RepeatSeq, the advantage of my tool, STRfinder is its capability to detect and genotype 

alleles that are longer than the read length, making fuller use of the information contained in 

paired-end short read sequencing data. Furthermore, unlike lobSTR or RepeatSeq, STRfinder 

can detect novel STR regions, without the need of an existing collection of known STRs in 

the genome. Together, these features make STRfinder a valuable new addition among tools to 

study STR variation. When applied in studies of cancer genomes, it is expected to enhance 

our ability to examine microsatellite instability and its role in tumor progression.  

 

5.2 Future Directions 

 

There are several continuations for the intra-tumor heterogeneity project. Methodologically, 

the tool developed in my thesis, CHAT, estimates cellular frequencies for individual somatic 

events, but without borrowing information from other somatic events. Other approaches, 

including PyClone and THetA, jointly use all the variants to infer the subclonal structure, 

which has the advantage of reducing the noise of individual estimates, but has the drawback 

of forcing the somatic events in the tumor into different subclones even when the true 

population is uniform. An important direction of future development is to appropriately 
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incorporate other sites of the genome but without imposing an arbitrary tumor subclonal 

model in the inference, and this is expected to increase the accuracy of sAGP and CCF 

predictions. 

Translational research that bridges fundamental biological discoveries and clinical 

application is an important area in biomedical science. There are several future directions for 

intra-tumor heterogeneity studies in this field. First, the field would benefit from the 

development of cost-effective validation of subclonal driver lesions discovered using 

high-throughput technologies. These events usually have low prevalence in the population, 

and it requires ultra-deep sequencing or single cell profiling to prove their existence. Second, 

functional analysis of subclonal driver events is desirable and model organisms or cell lines 

that recapitulate the hallmarks of in vivo cancers are in need.  

Besides validations for variant discoveries, intra-tumor heterogeneity studies have close 

connections with clinical practice. In Chapter 2, I have studied the impact of tumor/normal 

mixing in tumor samples, and discovered that it has significant impact over tumor subtype 

classification. And in Chapter 3, I discovered that in breast tumors the clonal patterns for 

tumor related genes show difference across tumor subtypes. In both studies, heterogeneity 

within a tumor cell population influences the observation of inter-tumor diversity. In the 

future, discovery of clinically related tumor subtypes would benefit from accounting for 

intra-tumor heterogeneity characteristics, such as tumor/normal mixing ratios and cellular 

frequencies for somatic events.  

It has been shown that the diversity in tumor cell population is a predictor for clinical 
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outcome (Maley et al., 2006) in esophageal adenocarcinoma patients. While in that study, 

researchers applied the labor intensive karyotyping to profile single cells and report 

subclonlaity, it is possible to apply CHAT on genomics data collected from bulk tissue and 

estimate clonal diversity in a high-throughput manner. In the future it will be particularly 

interesting to study the impact of clonal diversity on patient survival for more cancer types 

and subtypes. 

As mentioned in Chapter 1, cytotoxic therapies rarely eradicate tumor cells, and most deaths 

caused by cancer are due to recurrence or metastases. Intra-tumor heterogeneity has played 

an important role in the relapse by providing multiple subclones carrying different somatic 

events, and the treatment is likely to fail if at least one of the subclone harbors drug resistant 

mutations. Research studying leukemia or lymphoma monitor subclonal dynamics by 

longitudinal sampling greatly helped to understand the evolution of tumor subclones. For 

solid tumors, it will also be interesting to compare the subclonal architectures in primary 

tumors with those in recurrent or metastatic tumors. The field is in need to understand 

subclonal evolution and replacement under various treatment options, to minimize the risk of 

relapse and optimize the clinical outcome. 

In Chapter 4 I developed STRfinder, where I detected and genotyped STR alleles using a 

subset of informative read pair types. In the future, STRfinder will benefit from an exact 

likelihood formulation that uses all the information available for the STR locus. The 

prediction accuracy is expected to improve with a full likelihood model that includes the 

coverage distribution of all 13 read pair types, their insert size distribution, and the split reads 
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mapping. Also, many cancer types are associated with microsatellite instability (MSI), such 

as GBM (TCGA, 2008), colorectal cancer (Boland and Goel, 2010), gastric cancer (Halling et 

al., 1999), melanoma (Kroiss et al., 2001), etc. It will be interesting to apply STRfinder to 

these datasets to identify novel microsatellite alleles that cannot be detected using previous 

methods.  

STRfinder provides poor predictions for regions with complex repeats, which is a major 

limitation for the current method. And these regions can be highly interesting. For example, 

the recently developed technology using clustered regularly interspaced palindromic repeats 

(CRISPR) provides an elegant system to perform gene editing (Wang et al., 2014, Hsu et al., 

2014). And it will be helpful to detect CRISPR loci in bacteria strains whose genome have 

not been fully assembled, using short read DNA sequencing data. To detect the closely 

located interspaced repeats using NGS data is a new bioinformatics challenge and currently 

no software is capable of this task. 

 

5.3 Closing remarks 

 

Since the first cancer genome was sequenced in 2008 (Ley et al., 2008), the paradigm of 

cancer research has been shifted. Cancer genomics data have been collected worldwide with 

an unprecedented speed, resolution and scale. Large cancer cohort studies have strongly 

shaped the landscape of cancer research, with a profound influence over cancer diagnosis, 

patient care, and drug development. Great opportunities have come up with an abundance of 
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cancer datasets, spanning a wide spectrum of cancer types and multiple levels of biological 

regulations, yet along emerged new challenges. One of the greatest challenges is to identify 

driver mutations required for rapid malignancy growth and expansion. Algorithms developed 

in my thesis provide methodological support to quantitatively evaluate the effect of somatic 

events in the context of clonal structure. I also presented a novel approach to discover and 

genotype an understudied type of genetic variation, short tandem repeats, or microsatellites, 

and this tool will be helpful to understand tumor genome evolution. It is foreseeable that 

more genomics data derived from bulk tumor tissue will be collected for a wider range of 

cancer patients and the methods developed in this dissertation are expected to serve the need 

of analyzing and interpreting cancer genomics data.  
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