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ABSTRACT

MODELING AND SIMULATION OF NANOPARTICULATE

LITHIUM IRON PHOSPHATE BATTERY ELECTRODES

by

Bernardo Orvananos Murguia

Chairperson: Katsuyo S. Thornton

Elucidating the complex charge/discharge dynamics in nanoparticulate phase-separating

electrode materials such as lithium iron phosphate, LiFePO4, is a challenging task

because of the small temporal and spatial scale associated with the material and

the process. During the charge/discharge cycles of nanoparticulate LiFePO4 elec-

trodes, phase separation inside the particles can be hindered even when a ther-

modynamic driving force for phase separation exists. In such cases, particles may

(de)lithiate via a process referred to as interparticle phase separation, which involves

Li redistribution between particles. The role of interparticle Li transport and multi-

particle (de)lithiation kinetics could be the key to understand these processes. In

this thesis, the complex dynamics of lithium iron phosphate is investigated based

on the particle-level electrochemical dynamics (PLED) and the porous electrode the-

ory (PET). PLED combined with a phase field model and the Smoothed Boundary

Method is utilized to study the kinetic processes of interparticle phase separation. Us-

ing this approach, simple two-particle systems are examined to elucidate the detailed

dynamics of the lithiation/delithiation process. Additionally, more realistic structures

xix



consisting of many particles are utilized to analyze more complex cases of interpar-

ticle phase separation. The dependence of the electrochemical dynamics on (i) the

exchange current density, (ii) the particle position, (iii) the presence of intraparticle

phase separation, (iv) the particle size distribution, (v) the particle connectivity, and

(vi) the equilibrium potential are elucidated. Simulations based on PET are employed

to examine the overall behavior of the cell; these simulations elucidate the position

dependence of the electrochemical dynamics on a coin-cell battery experimentally

mapped. This thesis presents a comprehensive study on the interactions between

LiFePO4 nanoparticles and their effect on battery performance.
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CHAPTER I

INTRODUCTION

1.1 General Background

Li-ion batteries have the potential to revolutionize the transportation and electric

utilities technologies. For deployment on a large scale, Li-ion battery systems must

be inexpensive and safe. To ensure the long-term safety and reliability of Li-ion bat-

tery systems, special attention is required to avoid accelerating the degradation of

the material and, at worst, thermal runaway. Solving this problem requires a de-

tailed understanding of the relationship between the battery’s measurable properties

(voltage, charge/discharge history, etc.) and the state of charge (SOC) of the indi-

vidual particles in the electrode. Understanding this relationship can be particularly

challenging in nanoparticulate materials (i.e., those composed of particles with a size

< ∼100 nm) because their dynamics may differ from those of materials comprising

larger particles. Furthermore, studying these materials is complicated by their small

size and rapid transformation.

In electrode materials that remain in a single phase at equilibrium with respect to

the Li concentration for the relevant cycling range (as in LiTiS2 [4]), a thermodynamic

driving force homogenizes the Li concentration among all active particles as well

as within each particle. In these cases, the voltage reading across the cell reflects

particles’ SOC. However, for phase-separating systems, in which Li-poor and Li-rich

phases are thermodynamically more stable than a uniform mixture, the interactions
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between particles are much more complex. In such cases, particles in the electrode

can coexist in equilibrium at very different SOCs and in many different configurations

in a narrow potential range [5, 1]. Interest in phase-separating electrode materials

has primarily been driven by the promising performance of nanoparticulate lithium

iron phosphate, LiFePO4 (LFP). LFP was first explored by Padhi et al. as a battery

cathode in 1997 [6] and was not initially considered a suitable electrode material upon

its discovery due to its low ionic diffusivity and electronic conductivity. This difficulty

has been overcome by nanosizing particles [7], carbon coating [8], and doping with

other metallic cations [9].

Although phase separation in nano-LFP particles has been observed in-situ dur-

ing chemical lithiation [10] and ex-situ after electrochemical lithiation [11], it remains

unclear whether phase separation occurs during normal operation of a battery, and

if so, how the phase separation proceeds. This is because phase transformation dur-

ing chemical lithiation can differ from that during electrochemical lithiation and Li

distribution may evolve before ex-situ measurements are performed.

Many models have been proposed for the phase-transformation path. Several

models have proposed different paths for “intraparticle phase separation” (i.e., phase

separation inside the particle), such as the shrinking core [12], domino-cascade model

[13], and amorphous transition [14], among others [15, 16]. Other models have pro-

posed that intraparticle phase separation is prevented and that particles therefore

remain homogeneous without nucleation. Meethong et al. [17] and Wagemaker et al.

[18] proposed that non-bulk thermodynamics, such as surface energy and coherency

stress, may suppress phase separation in nanoparticles with sizes smaller than 15-20

nm. Malik et al. [19] proposed that nucleation of the second phase in particles may

not be feasible and that particles transform through a non-equilibrium solid solution

path. Bai et al. [20] proposed that phase separation occurs at low currents, while a

sufficiently large current suppresses phase transformation. They approximated that
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the threshold may be in the range of 0.3C to 4.5C. Note that this range is comparable

to the C-rates associated with many batteries applications including electric vehicles

and portable electronics.

Despite the disagreement on the phase-transformation path at the individual par-

ticle level, there is a consensus that LFP particles transform inhomogeneously and

non-concurrently [11, 21, 22]. For example, Chueh et al. [11] found that only ∼2

% of the particles react simultaneously at a 1C rate. Dreyer et al. [5] explained

the strong inhomogeneity of the transformation of the particles by proposing that Li

is redistributed between particles during phase transformation. When the particles

are nanosized, Li can be easily redistributed between the nanoparticles to generate

stable phases among the nanoparticles without the energy penalty of interface for-

mation (i.e., they undergo “interparticle phase separation” [19]). In LFP electrodes,

many particles (∼1010 - 1017)[5] are interconnected ionically (through the electrolyte)

and electronically (through carbon-coating, carbon black, or particle-particle con-

tact). Therefore, a particle network is formed in which Li can be transported not

only between the cathode and the anode but also between the active particles within

the cathode. Given the driving force toward interparticle phase separation and the

network of active particles in which Li can be redistributed, particles transform se-

quentially in the slow charging/discharging limit [5]. Thus, at any given time, a

small fraction of particles in the electrode is lithiating (during discharge) or delithi-

ating (during charge) and sustains the cell current. Consequently, the cell voltage

does not reflect the SOC for the individual particles because the cell voltage also

depends on additional factors, such as charge and discharge history [23], particle

size distribution, and cathode architecture (which determines how the particles are

interconnected) [1, 24]. The interparticle Li redistribution has been experimentally

verified in LFP nanoparticles by Lee et al. [25]. They showed that when fully delithi-

ated smaller particles are relaxed near lithiated larger particles, the smaller particles
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lithiate by absorbing Li from the larger particles. Even though Li redistribution has

been verified, how it occurs during battery operation has not been addressed in the

literature and is the central subject of this thesis.

1.2 Research Objectives

In this thesis, we focus on the interactions between particles. We primarily consider

the case where particles transform via a metastable solid solution because it allows

us to efficiently analyze the interactions between many particles. In Chapter IV, we

explore the applicability of the results from the solid solution model by comparing

the results against those from phase separating cases. There, we also show that the

dynamics can change both quantitatively and qualitatively when phase separation

within a particle is suppressed in one particle, but not in the other.

Our work reveals detailed electrochemical dynamics at the individual particle level

and extends to the collective behavior of many particles in an electrode. We specif-

ically focus on the manner in which interparticle phase separation is affected by (1)

particle location, (2) the exchange current density, (3) particle size, (4) the interaction

with phase-separated particles, (5) particle interconnectivity, and (6) size dependence

of the equilibrium potential. Throughout the thesis, several configurations are used

to study different aspects of the particle interactions. Our simulations indicate that

interparticle interactions are significant at the lower applied currents examined, which

produce sudden increases and decreases in the voltage profile, while sufficiently high

current (∼1C rate for the parameters here used) suppresses these interactions. Al-

though this work focuses on the charge/discharge behavior of nanoparticulate LFP,

similar dynamics may be expected in other nanoparticulate materials that have ten-

dency for phase separation, such as nanoparticles for hydrogen storage [26, 27] and

nano-LiMnPO4 [25]).
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1.3 Qualitative Description of Charge-Discharge

Process

In this thesis, we focus on the dynamics of nanoparticulate LFP cathodes. However,

to facilitate the explanation of their dynamics, we first perform two auxiliary descrip-

tions: First we briefly describe the general dynamics of an entire battery. Second, we

discuss a simple case of the charge/discharge of a cathode in which Li remains as a

solid solution. After these two descriptions, the dynamics of LFP are described.

1.3.1 Process overview

Li-ion batteries store and release energy by transferring Li between the anode and

cathode, separated by a separator. Figure 1.1 shows the configuration and the charge-

discharge process.

The process of charging/discharging the battery involves Li transport through

the electrolyte and electrodes, electron transport through the microstructure, and

electrochemical reactions between ions and electrons at the electrode-electrolyte inter-

faces. During battery charging (Fig. 1.1(a)), the Li in the cathode particles undergoes

an electrochemical reaction on the particle surface to form a positively charged ion

(cation) and an electron. The cations dissolve in the electrolyte, where negative ions

(anions) are also present. The cations are transported from the cathode to the anode

through the porous separator. Simultaneously, the electrons are transported through

the conducting phase and current collector to the external circuit and ultimately to

the anode. At the anode-electrolyte interface, the ions and electrons undergo another

electrochemical reaction and recombine. The same process occurs during discharge

in the opposite direction; see Fig. 1.1(b).
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Figure 1.1: Schematic of a cell configuration as well as the (a) charge and (b) discharge
process.

1.3.2 Cathode dynamics with solid solution

In many cathode materials, such as LiCoO2, LiMn2O4, and Li(Ni,Co,Mn)O2, Li forms

solid solutions in a wide composition range [1]. In this section, we provide a simplified

description of the general charge/discharge dynamics observed for such cases. We

first describe the driving force for concentration evolution in the particles and for the

reaction kinetics. In cathode particles in which Li forms a solid solution, the free

energy of Li, f , is a single-well function; i.e., it only has one minimum value. An

illustration of such a free energy is presented in Fig. 1.2. From the free energy, the

particle chemical potential, µp, can be obtained. It is defined as the partial derivative

of free energy with respect to the Li site fraction, Xp (plus other non-bulk terms,

µnb):

µp =
∂f

∂Xp

+ µnb (1.1)

Figure 1.3 shows the chemical potential based on the free energy function presented

in Fig. 1.2. The chemical potential determines the concentration evolution (assuming

uniform electrostatic potential). Li tends to migrate from regions of high chemical

potential to regions of low chemical potential. Given a monotonically increasing
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chemical potential, as in this case, Li always has a driving force to migrate from regions

of high concentration to regions of low concentration. Thus, the Li concentration

tends to become homogeneous throughout the cathode particles.

The reaction kinetics of the cathode particles depends on the equilibrium potential

and the potential difference across the particle-electrolyte interface, ∆φ, which equals

the applied potential for the case of uniform electrostatic potentials. As described by

its name, the equilibrium potential, φeq, is the voltage at which a particle remains

in equilibrium (i.e., at a constant SOC) [28]. The equilibrium potential depends on

both the chemical potential of Li in the cathode and the chemical potential of Li in

the anode. However, when Li metal is considered as the anode (as in this work),

the chemical potential of Li in the anode becomes constant. For the purpose of this

introduction, we take the equilibrium potential to be proportional to −µp, which is

shown in Fig. 1.4.

We now describe a simple case in which four particles are lithiated (discharged).

We assume that the particles have the same size, the electrolyte concentration is

uniform and that there are no gradients in the electrostatic potential of the particles

or electrolyte. For such a simple case, the particles react uniformly. Figures 1.5(a)-(c)

show the lithiation (discharge) process for a set of four particles, and (d)-(f) show the

corresponding voltage. The driving force toward lithiation can be approximated as

the difference between the equilibrium potential and ∆φ. Initially the particles are

nearly fully delithiated and have a high voltage. To lithiate the particles, the voltage

is constantly lowered as the particles depth of discharge (DOD=1-SOC) increases. All

the particles have the same driving force toward lithiation and thus lithiate uniformly.

When the particles reach a nearly fully lithiated state, the voltage reaches a minimum

value. In a more realistic cell, the concentration in the particles would not be uniform,

and the order of reaction of the particles would depend on their size, position, etc.
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Figure 1.3: Example of the chemical potential that results from the free energy shown
in Fig. 1.2.
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Figure 1.4: Example of the equilibrium potential from the free energy shown in Fig.
1.2.

1.3.3 LFP cathode dynamics: driving force toward phase
separation

Now, we introduce the free energy, chemical potential, and equilibrium potential

that govern the kinetics of Li transport and electrochemistry for LFP. LFP has a

thermodynamic driving force to phase separate into Li-rich and a Li-poor phases [29].

The free energy function, f , for this case corresponds to a double-well function, which

is shown in Fig. 1.6. The free energy of this system is minimized when some regions of

the cathode become Li rich and others Li poor. The system in the concentration range

between the inflection points of the free energy curve is unstable; the concentration

values at these inflection points are called the spinodal points. Figure 1.7 shows the

chemical potential that results from the free energy in Fig. 1.6. In this figure, we also

indicate the location of the spinodal points. The spinodal points correspond to the

concentration values at which the chemical potential is at a local minimum or a local

maximum. The spinodal point near a low concentration is referred to as the lower

spinodal point, and the spinodal point near a high concentration is referred to as the

higher spinodal point. Unlike the case with single-phase equilibrium, the chemical
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Figure 1.5: Schematic for the lithiation of four particles (assuming uniform elec-
trostatic potentials). (a), (b) and (c) represent the particles during lithiation (the
grayscale indicates the degree of lithiation, with darker gray indicating a higher Li
concentration); (d), (e) and (f) indicate the applied voltage and the DOD of the
particles. When the equilibrium potential is monotonic the particles tend to react
uniformly.
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potential is non-monotonic with increasing concentration. Figure 1.8 presents the

equilibrium potential that results from the chemical potential from Fig. 1.7, which

differs by a sign, a constant factor and a shift; we here refer to the region between

the spinodal points as the “inverted potential range.”
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Figure 1.6: Example of a double-well free energy function.

We now detail the discharge (lithiation) process for nanoparticulate LFP cathodes;

the description is based on Ref. [1]. We here assume that phase separation cannot

occur inside the particles and that instead particles remain monophasic during their

phase transformation [19]. In Chapter IV, we show that the results presented in this

thesis are similar even if this assumption is removed. Figure 1.9 presents a schematic

of the process at the low current limit. The driving force for Li insertion into the

particles is the difference between the equilibrium potential and ∆φ. When ∆φ is

lower than the equilibrium potential, the particles are driven to lithiate (discharge).

Materials with a tendency for phase separation, such as LFP, have a non-monotonic

equilibrium potential, similar to those shown in Figs. 1.8 and 1.9(d)-(f).

In Fig. 1.9(d), we show the initial voltage, which is considered approximately equal
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Figure 1.7: Example of the chemical potential that results from the free energy shown
in Fig. 1.6.

to ∆φ for the purpose of this description. Upon discharge, the applied potential across

the cell is continually lowered to drive Li insertion. Shortly after the process begins,

the lower spinodal point voltage is reached (Fig. 1.9(e)). Due to the non-monotonic

nature of the equilibrium potential with respect to Li concentration, beyond the

lower spinodal point, the driving force for additional Li insertion begins to increase.

This effect can be observed in Fig. 1.9(e) or (f), where the difference between the

equilibrium and applied potentials is larger at a higher particle DOD. When one of

the particles reaches the spinodal point, the particle begins to undergo rapid lithiation,

while the other particles experience some Li loss, as discussed in the next paragraph.

The order in which particles react is affected by several factors, such as the particle

size, location, and connectivity; this will be discussed throughout the thesis. Once

the particle is nearly fully lithiated, another particle begins to lithiate (Fig. 1.9(c)

and (f)). Thus, the particles lithiate sequentially. The delithiation process is similar,

except for that particles are initially at the lithiated state and Li is extracted from
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Figure 1.8: Example of the equilibrium potential from the free energy shown in Fig.
1.6.

the system during the process. These processes, along with the rate effects, will be

explained in more detail in Chapter III and IV.

In an electrode with many interacting active particles, we must consider a driving

force for interparticle Li redistribution. Redistribution is driven by the higher free

energy of the particles at an intermediate Li concentration compared to a mixture

of particles in Li-rich and Li-poor phases. As will be shown in detail in Chapter III,

redistribution is concurrent with rapid particle lithiation/delithiation. We schematize

this process in Fig. 1.10 for a system containing four particles that are at an interme-

diate concentration. In this example, the particles reach equilibrium by redistributing

Li. Li redistribution among particles is triggered when some particles begin accel-

erated lithiation, which causes a voltage increase. This voltage increase produces a

driving force for particles that are not undergoing rapid lithiation to delithiate. Thus,

particles release or absorb Li and tend to transform into either a Li-poor or a Li-rich

phase.
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Figure 1.9: Schematic for sequential transformation of four particles neglecting inter-
particle redistribution; based on a schematic from Ref. [1] (assuming that the applied
potential approximates the local potential difference across the particle-electrolyte in-
terface, ∆φ). (a), (b) and (c) represent the particles during lithiation (the grayscale
indicates the degree of lithiation, with darker gray indicating a higher Li concentra-
tion); (d), (e) and (f) indicate the applied voltage and the DOD of the particles. (a)
and (d) At the beginning of the process, the voltage is constantly lowered to lithiate
the particles. (b) and (e) When the particles reach the spinodal point, the particles
begin to lithiate sequentially due to the increasing driving force they incur due to the
non-monotonic shape of the equilibrium potential. (c) and (f) The process continues
until all particles are fully transformed.
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Figure 1.10: Schematic of Li redistribution between four particles via a reaction
(assuming that the applied potential approximates ∆φ). (a), (b) and (c) represent
the particles during the process (the grayscale indicates the degree of lithiation, with
darker gray indicating a higher Li concentration); (d), (e) and (f) indicate the voltage
applied to and the DOD of the particles. (a) and (d) A small difference in the
concentration determines which particles extract Li and which particles absorb Li. (b)
and (e) During redistribution, the applied voltage fluctuates to equilibrate insertion
and extraction. (c) and (f) The process ends when the particles reach equilibrium in
a Li-poor or a Li-rich phase.
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1.4 Modeling Approach

The charge/discharge process can be modeled and simulated at different length scales.

At the continuum level (i.e., discrete nature of atoms are not considered), there are

two distinct length scales. The microscale is used to refer to the scale at which

microstructures consist of various phases such as the active particles and electrolyte,

while the macroscale refers to the scale at which microstructural details are ignored.

At the microscale, the dynamics are modeled explicitly considering the particle

geometries. We refer to the dynamics at this length scale as particle-level electrochem-

ical dynamics (PLED). The finite element method is conventionally used to represent

the material micro-structures, as in Ref. [30, 31]. However, a challenge in applying

this method arises when performing three-dimensional (3D) simulations. The bat-

tery electrode microstructures are highly complex; therefore, generating a 3D mesh

is a challenging and time-consuming task especially for realistic microstructures. In

this thesis, we use an alternative approach to account for electrode structures in a

microscale model. We apply the smoothed boundary method (SBM), which was ini-

tially introduced by Bueno-Orovio et al. [32, 33, 34] and further developed by Yu

et al. [2]. The SBM involves modification of the partial differential equations us-

ing mathematical identities and has been applied in studies of structural evolution,

with and without contact angles, and diffusion. The PLED equations in both their

conventional and SBM form are presented in Chapter II.

The aforementioned electrochemical dynamics are also modeled at the macroscale

using effective parameters, such as conductivity and diffusivity [28], which can be

calculated from coarse-grained microstructural characteristics such as porosity and

tortuosity [35]. This type of model is referred to as porous electrode theory (PET)

model. PET models are computationally efficient, often capture the dynamic nature

of the charge/discharge process in a relatively simple description over the cell scale,

and can be directly compared with experimental data. However, a disadvantage is
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that these models only consider average properties and therefore are not applicable

for investigations of the effects of micro-structural details. The PET formulation and

simulations are described in Chapter VII (and briefly in Chapter III).

1.5 Thesis Outline

This dissertation contains nine chapters: (I) Introduction, (II) PLED Model, (III)-

(VI) PLED Results, (VII) PET Model and Results, (VIII) Summary, Discussion and

Future Work, and (IX) Conclusion.

In Chapter II, we describe the PLED model. We present the governing equa-

tions in their conventional formulation, derive the SBM formulation, and present the

numerical methods employed to solve the equations.

In Chapter III, we present the charge/discharge simulation results for systems of

(i) two particles and (ii) 26 particles of equal size. We focus on the dependence of

the particles’ order of reaction on their position. In addition, we study the effect

of an anisotropic exchange current density on the lithiation-delithiation dynamics.

This chapter is based on the published work “Particle-Level Modeling of the Charge-

Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes”

[36].

In Chapter IV, we study the dependence of particle interactions on the presence

of intraparticle phase separation. Here, we utilize a configuration of two particles

with different sizes to compare the interactions between the particles for three cases:

(i) when phase separation is suppressed in both particles, (ii) when phase separation

is not suppressed in either particle, and (iii) when phase separation is suppressed

only in one particle but not in the other. This chapter is based on a publication in

preparation, “Kinetics of Interparticle Phase Separation” [37].

In Chapter V, we study the dependence of inter-particle interactions on connectiv-

ity. Here, we consider two agglomerates: one with 65 particles in which the particles
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are not in direct contact with others and one with 200 particles in which they are

in direct contact with neighboring particles. The 65-particle agglomerate represents

an ideal structure with what we termed as “homogeneous” connectivity between par-

ticles, while the 200-particle corresponds to a more realistic structure with “hetero-

geneous” connectivity. This chapter is based on the published work “Architecture

Dependence on the Dynamics of Nano-LiFePO4 Electrodes” [38].

In Chapter VI, we study the effect of a size-dependent equilibrium potential on

the particle interactions. We employ the two-particle cell from Chapter IV and the

65-particle agglomerate from Chapter V to analyze the change in dynamics when a

size-dependent equilibrium potential is considered in the model. This chapter is based

on a publication in preparation, “Effect of a Size-Dependent Equilibrium Potential

on Nano-LiFePO4 Particle Interactions” [39].

In Chapter VII, we present the PET model and its corresponding simulation re-

sults. We here employ a three-dimensional configuration representative of a coin cell

battery. These simulations provide insights into experiments that map the position

dependence of the order of reaction of the particles within the cathode. Addition-

ally, sensitivity analyses are performed on the particle-size distribution and the elec-

trode porosity. This chapter is based on a publication in preparation, “Mapping the

Inhomogeneous Electrochemical Reaction Through Porous LiFePO4-Electrodes in a

Standard Coin Cell Battery” [40].

In Chapter VIII we present the summary, discussion and future work. In Chapter

IX, we conclude this thesis.
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CHAPTER II

FORMULATION OF PARTICLE-LEVEL

ELECTROCHEMICAL DYNAMICS

We present a model used to study the dynamics of the electrochemical process;

this model is used throughout Chapters III - VI, with certain variations that are

identified at the beginning of each chapter. The porous electrode model is described

in Chapter VII. In this chapter, we first present the conventional electrochemical

formulation, then we derive the smoothed boundary method (SBM) formulation;

finally, we describe the numerical methods used to solve the governing equations.

2.1 Conventional Formulation

Lithium transport in the cathode particles is modeled using either Fick’s diffusion

law or the Cahn-Hilliard equation. We assume that the cathode particles are elec-

trically well connected to the current collector through a carbon black network, and

consequently, we assume that the electrostatic potential is uniform throughout the

entire cathode. We assume electroneutrality throughout the electrolyte, allowing cal-

culation of the electrolyte electrostatic potential based on the charge conservation

conditions. The lithium ion transport into the electrolyte is driven by the gradients

of concentration and electrostatic potential, which correspond to diffusion and migra-

tion, respectively; here, they are modeled using the Nernst-Planck equation. The Li

ion reaction with electrons is modeled using the Butler-Volmer equation.
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2.1.1 Transport within the particles

We now present the equations that govern Li transport within the particles. We first

introduce Cahn-Hilliard equation and then Fick’s diffusion equation. A flux of Li

within the particle, Jp, can originate from gradients in the chemical potential of Li,

µp, within the particle,

Jp = −Mp∇µp, (2.1)

where Mp is the mobility of Li in the particles. Here, we only account for fluxes

originating from concentration gradients, while they can also arise due to the pres-

ence of an electrostatic field (i.e., migration). Using the mass conservation law, the

concentration evolution can be defined as the divergence of a flux within the bulk of

the cathode particle, Vp,

∂Cp
∂t

= −∇ · Jp ∈ Vp, (2.2)

where Cp is the concentration of Li in the particles, and t is time. To model con-

centration evolution in phase-separating systems, the Cahn-Hilliard equation [41] is

commonly employed. Combining Eq. (2.1) and Eq. (2.2) we can obtain the Cahn-

Hilliard equation,

∂Cp
∂t

= ∇ · (Mp∇µp) = ∇ ·
[
Mp∇

(
µb −∇ ·

(
κ

ρ2
∇Cp

))]
∈ Vp, (2.3)

where κ is the energy gradient coefficient, Mp is the Li mobility, and µb is the bulk

term for the chemical potential. The term∇·
(

κ
ρ2
∇Cp

)
accounts for the energy penalty

of having an interface within the particle, where ρ is the Li concentration at which

the Li site fraction, Xp is equal to one (Xp = Cp/ρ). The different models employed

to approximate the chemical potential are specified in each chapter.

When the concentration is proportional to the chemical potential, which is the case

for ideal mixtures, a flux can be defined as a function of the concentration instead of

the chemical potential. Fick’s first law relates that a flux results from gradients in
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the concentration,

Jp = −Dp∇Cp, (2.4)

where Dp is the diffusivity of Li in the particles. Fick’s second law relates the change

in concentration over time as the divergence of the flux defined in Eq. (2.4),

∂Cp
∂t

= ∇ · (Dp∇Cp) ∈ Vp. (2.5)

As mentioned in Chapter I, in most chapters (except Chapter IV), we assume no

phase separation within the individual particles. This assumption allows us to focus

solely on the interparticle phase separation dynamics as the collective behavior of an

electrode consisting of many nanoparticles. For LiFePO4 (LFP), there is a consensus

that phase separation inside the particles is thermodynamically suppressed in particles

smaller than 20 nm [42, 17, 18]; furthermore, phase separation can also be kinetically

suppressed in larger particles during the charge/discharge process [43]. For simplicity

and numerical efficiency, we model the concentration evolution in the particle using

Fick’s law of diffusion (Eq. (2.5)) and not the Cahn-Hilliard equation (Eq. (2.3)).

For the cases examined in this work, the Li concentration in the particles is nearly

uniform, but we employ this model to retain generality. The boundary condition at

the particle-electrolyte interface is determined by the reaction rate, which accounts

for Li (de)intercalation:

~n · J = rLi ∈ A, (2.6)

where rLi is the reaction rate, ~n represents the unit normal vector in the direction from

the electrolyte to the particle, and J is the flux at the particle-electrolyte interfacial

region, A.

2.1.2 Electrostatic potential in the electrolyte

Here, we describe the equations that govern electrostatic potential in the electrolyte.

We use the dilute solution model for diffusion in a binary electrolyte in which one
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cationic and one anionic species are present in a neutral solvent, as described in the

textbook by Newman and Thomas-Alyea [44].

Transporting a charged species through the electrolyte produces an ionic current,

which can be decomposed into terms that correspond to diffusion and migration. The

current density vector, i, accounts for both diffusion and migration and is given by

[44]:

i = −z+υ+F
[
F

RT
(z+D+ − z−D−)Ce∇φe + (D+ −D−)∇Ce

]
, (2.7)

where υ+ is the number of cations produced by the electrolyte dissociation, F is

Faraday’s constant, R is the gas constant, T is the absolute temperature, and Ce and

φe are the concentration and electrostatic potential of the electrolyte, respectively.

Furthermore, zi is the charge number, and Di is the diffusivity of ith species.

Based on the charge conservation condition, the divergence of the current equals

zero in the absence of a source or sink (or, equivalently, in the absence of a reaction),

which is the case for the locations of the electrolyte away from the interfaces:

− ∇ · i
z+υ+F

= ∇·
[
F

RT
(z+D+−z−D−)Ce∇φe

]
+∇· [(D+−D−)∇Ce] = 0 ∈ Ve. (2.8a)

where Ve represents the bulk of the electrolyte domain. The boundary condition at

the particle-electrolyte interface is determined based on the reaction rate,

~n · i
z+υ+F

=
rLi
υ+
∈ A. (2.8b)

Equations (2.8a) and (2.8b) are solved to obtain the electrostatic potential in the

electrolyte under the flux boundary condition imposed at the particle-electrolyte in-

terfaces. The electrostatic potential is used in the Butler-Volmer equation to deter-

mine the reaction rate. On the anode-electrolyte boundary, the reference value of 0

V is set as the electrostatic potential of the electrolyte.
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2.1.3 Transport in the electrolyte

The equations that govern transport in the electrolyte are now described following

the derivation of Ref. [44]. The Nernst-Planck equations for the concentrations of

cation, C+, and anion, C−, when there is no convection can be expressed as

∂C+

∂t
= ∇ · (z+u+FC+∇φe) +∇ · (D+∇C+) ∈ Ve, (2.9a)

∂C−
∂t

= ∇ · (z−u−FC−∇φe) +∇ · (D−∇C−) ∈ Ve. (2.9b)

Here, ui is the transport mobility of the species i. The dissociation relationship relates

the electrolyte concentration and anion/cation concentrations:

Ce =
C+

υ+
=
C−
υ−

, (2.10)

where Ce is the electrolyte concentration and υ− is the dissociation number of the

anion. The dissociation relationship is applied to both Eq. (2.9a) and Eq. (2.9b) to

express these equations in terms of Ce,

∂Ce
∂t

= ∇· (z+u+FCe∇φe) +∇· (D+∇Ce) = ∇· (z−u−FCe∇φe) +∇· (D−∇Ce) ∈ Ve.

(2.11)

The following two substitutions are then performed: (1) The term FCe∇φe is ex-

pressed in terms of the current density vector and concentration gradients using Eq.

(2.7),

FCe∇φe =
−RT i

z+υ+F (z+D+ − z−D−)
− RT (D+ −D−)

(z+D+ − z−D−)
∇Ce. (2.12)

(2) The mobilities are substituted by diffusivities using the Nernst-Einstein equation.

Di = RTui. (2.13)
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Thus, we obtain an equation governing the electrolyte concentration independent of

the electrostatic potential:

∂Ce
∂t

= ∇ ·
(
Damb∇Ce

)
−∇ ·

(
t+i

z+υ+F

)
∈ Ve, (2.14)

where Damb is the ambipolar diffusion coefficient, and t+ is the transference number

of the cation. The ambipolar diffusion coefficient is an effective diffusion coefficient

that accounts for both the diffusion and migration of the electrolyte and is defined as

Damb =
D+D−(z+ − z−)

(z+D+ − z−D−)
, (2.15)

and the transference number of the cation is defined as:

t+ =
z+D+

z+D+ + z−D−
. (2.16)

The second term of Eq. (2.14) is then expanded to obtain the following,

∂Ce
∂t

= ∇ ·
(
Damb∇Ce

)
−
(

i · ∇t+
z+υ+F

)
−
(
t+∇ · i
z+υ+F

)
∈ Ve. (2.17)

Using the charge conservation condition (Eq. (2.8a)), Eq. (2.17) is simplified into

∂Ce
∂t

= ∇ ·
(
Damb∇Ce

)
−
(

i · ∇t+
z+υ+F

)
∈ Ve, (2.18)

in the electrolyte regions away from the interfaces.

At the boundary, a boundary condition similar to Eq. (2.6) is applied but with

opposite sign. Furthermore, because the last term of the right-hand side (RHS) of

Eq. (2.17) has a non-zero boundary condition (denoted by Eq. (2.8b)), the effective

boundary condition becomes

~n · J = −(1− t+)
rLi
υ+
∈ A. (2.19)

Note that the reaction rate is divided by υ+ (using Eq. (2.10)) to denote the flux in

moles of electrolyte. This reaction rate accounts for Li ion transfer to and from the

24



electrodes, similar to the equation used by Ferguson and Bazant [45].

Because the electrolyte was assumed to be electroneutral, the concentrations and

total quantity of each ionic species (anions or cations) in the electrolyte are equal. The

anions are considered inert; thus, the total quantity of both species in the electrolyte

must remain constant. Therefore, as the Li reacts at the cathode particle surface,

we assume that the corresponding amount of lithium reacts at the anode-electrolyte

interface as follows: ∫
AA

~na · JadA =
1

SA

∫
Ar

(1− t+)rLidA, (2.20)

where ~na is the unit normal vector pointing from the anode to the electrolyte, Ja is

the flux at the anode-electrolyte boundary, AA is the anode-electrolyte interface, Ar is

the particle-electrolyte interfaces, and SA is the total surface of the anode-electrolyte

interface.

We neglect the effect of the double layers because, for the range of current consid-

ered here, electrolyte depletion is limited, and the concentrations remain high (∼1M),

which yield thin double layers. For models that account for double-layers/non-neutral

electrolytes, see Refs. [46] and [47].

2.1.4 Reaction at the cathode particle-electrolyte interface

Now we show the derivation for the Butler-Volmer equation following Ref. [48]. This

model is valid for reactions that involve only one electron and that occur in one step,

which is the case for LiFePO4.

The electrochemical reaction that takes place in the electrolyte-electrode interface

of LFP can be defined as:

Li+ + e− + FePO4

kf
GGGGGGBFGGGGGG

kb
LiFePO4, (2.21)

where kf and kb are the rates of forward and backward reaction respectively. The net
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reaction, rnet, is defined as the forward reaction, rf , minus the backward reaction, rb,

rnet = rf − rb = kfC
s
+ − kbCs

p =
i

F
. (2.22)

Here, Cs
+ and Cs

p denote the surface concentration of Li in the electrolyte and in

the particles, respectively. Furthermore, i is the current density, which is defined as

positive in the direction from the electrolyte to the electrode. The rate constants kf

and kb, can be written in an Arrhenius form,

kf = Af exp(−∆G‡c/RT ), (2.23a)

kb = Ab exp(−∆G‡a/RT ). (2.23b)

∆G‡c is the standard free energy for activation of the cathodic reaction (forward

reaction) and ∆G‡a is the standard free energy for activation of the anodic reaction

(backward reaction). Af and Ab are frequency factors for the forward and backward

reactions, respectively.

The interfacial potential difference, ∆φ, is defined as the potential of the electrode

minus the potential of the electrolyte, (∆φ = φp − φe). The formal potential (φ0′) is

defined as the potential at which the rates of the forward reaction and the backward

reaction are equal, when the bulk concentration of Li+ in the electrolyte, Cb
+, and Li

in the particles, Cb
p, are equal (here the superindex b denotes bulk). We denote ∆G‡0i

as the free energy at the condition at which the formal potential is defined. We can

express ∆G‡i for any applied potential as

∆G‡c = ∆G‡0c + αF (∆φ− φ0′), (2.24a)

∆G‡a = ∆G‡0a − (1− α)F (∆φ− φ0′), (2.24b)

where ∆G‡0 is the free energy reference to the formal potential and α is the transfer

coefficient, which ranges from zero to one and accounts for the symmetry of the

reaction energy landscape. Substituting Eqs. (2.23a) and (2.23b), into Eqs. (2.24a)
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and (2.24b), respectively, we obtain:

kf = Af exp(−∆G‡0c/RT ) exp

[
− αF

RT
(∆φ− φ0′)

]
, (2.25a)

kb = Ab exp(−∆G‡0a/RT ) exp

[
(1− α)F

RT
(∆φ− φ0′)

]
. (2.25b)

At equilibrium and when Cb
+ = Cb

p, the interfacial potential drop is equal to the

formal potential ∆φ = φ0′ , and kf becomes equal to kb,

kf = Af exp(−∆G‡0c/RT ) = kb = Ab exp(−∆G‡0a/RT ) = k0, (2.26)

which defines the standard rate constant, k0.

Using Eq. (2.26), Eqs. (2.25a) and (2.25b) can be expressed as

kf = k0 exp

[
− αF

RT
(∆φ− φ0′)

]
, (2.27a)

kb = k0 exp

[
(1− α)F

RT
(∆φ− φ0′)

]
, (2.27b)

respectively. Inserting these expressions in Eq. (2.22) we obtain:

i = Fk0
[
Cs

+ exp

(
− αF

RT
(∆φ− φ0′)

)
− Cs

p exp

(
(1− α)F

RT
(∆φ− φ0′)

)]
. (2.28)

Now, Eq. (2.28) is simplified to obtain the Butler-Volmer equation. The equilib-

rium potential, Eeq, is defined as the potential at which the forward and backward

reaction are equal but not necessarily at Cb
+ = Cb

p,

φeq = φ0′ +
RT

F
ln
Cb

+

Cb
p

. (2.29)

Considering the case of equilibrium, i = 0, in Eq. (2.28), the interfacial potential dif-

ference is equal to the equilibrium potential, ∆φ = φeq, and the surface concentration

is equal to the bulk concentration, Cs
i = Cb

i . Therefore, we obtain

Fk0Cb
+ exp

(
− αF

RT
(φeq − φ0′)

)
= Fk0Cb

p exp

(
(1− α)F

RT
(φeq − φ0′)

)
= i0, (2.30)
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where i0 is the exchange current density. Equation (2.29) can be rearranged to obtain

exp

(
F

RT
(φeq − φ0′)

)
=
Cb

+

Cb
p

, (2.31)

which can be substituted back into Eq. (2.30) to obtain an expression for i0,

i0 = Fk0C
b(1−α)
+ Cb(α)

p . (2.32)

Dividing Eq. (2.28) by Eq. (2.32) results in

i

i0
=

Cs
+

C
b(1−α)
+ C

b(α)
p

exp

(
− αF
RT

(∆φ−φ0′)

)
− Cs

p

C
b(1−α)
+ C

b(α)
p

exp

(
(1− α)F

RT
(∆φ−φ0′)

)
,

(2.33)

which can be rearranged into

i

i0
=
Cs

+

Cb
+

(
Cb

+

Cb
p

)α
exp

(
−αF
RT

(∆φ−φ0′)

)
−C

s
p

Cb
p

(
Cb

+

Cb
p

)−(1−α)
exp

(
(1− α)F

RT
(∆φ−φ0′)

)
.

(2.34)

Substituting Eq. (2.31) into Eq. (2.34), we obtain

i = i0

[
Cs

+

Cb
+

exp

(
− αF

RT
η

)
− Cs

p

Cb
p

exp

(
(1− α)F

RT
η

)]
, (2.35)

where η is the overpotential and is defined as η = φ−φeq. The equilibrium potential,

φeq, can be approximated by the Nernst equation assuming Li metal as the refer-

ence, φeq = E0′ − µp/F , where E0′ is the formal potential, which is approximated

with the open circuit voltage plateau in the simulations. Assuming that the surface

concentration is similar to the bulk concentration, the model can be simplified into:

i = i0

[
exp

(
− αF

RT
η

)
− exp

(
(1− α)F

RT
η

)]
, (2.36)

which is the so-called Butler-Volmer equation. Dividing Eq. (2.36) by Faraday’s

constant, the reaction rate rLi is obtained:

rLi =
i0
F

[
exp

(
− αF

RT
η

)
− exp

(
(1− α)F

RT
η

)]
, (2.37)
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The Butler-Volmer equation provides a good approximation for overpotential

range below 100 mV. The overpotentials observed in our simulations are well within

this regime. Even at the highest C-rate, the overpotential is only slightly over the

100 mV boundary, where the Butler-Volmer kinetics begin to deviate from Marcus-

Hush-Chidsey kinetics, which has a broader range of accuracy than the Butler-Volmer

kinetics [49, 50].

2.2 Smoothed Boundary Method

The particle-level electrochemical dynamics (PLED) equations presented above are

numerically implemented using the SBM. The SBM allows us to effectively manage

problems composed of multiple physics and multiple phases. In this method, a con-

tinuous domain parameter, ψ(x), is used to distinguish the different domains (i.e.,

the electrolyte and cathode in this case). The domain boundary is defined as a region

with a finite thickness, rather than a sharp boundary, thus giving rise to the name,

smoothed boundary method. Figure 2.1 compares a classical sharp interface and the

SBM description of a domain. Figure 2.1(a) shows the sharp boundary description

of a domain. In this figure, Ω denotes the bulk of the domain, and ∂Ω denotes the

interface.

In the SBM (Fig. 2.1(b)), the cathode particles are defined as the regions in which

ψ = 1, and the electrolyte is where ψ = 0. The value of the domain parameter

smoothly transitions from zero to one over the region near the domain boundary

between the electrolyte and cathode particle, which yields a finite thickness of the

interfacial region (where 0 < ψ < 1). The conventional governing equations that

describe lithium transport in the electrolyte and cathode particles as well as charge

conservation in the electrolyte are reformulated into the SBM form below.
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Figure 2.1: (a) Sharp interface description of a domain in which the interface has a
zero thickness. (b) SBM definition of a domain in which the interface has a finite
thickness. Figure obtained from Ref. [2].

2.2.1 Transport within the particles

Equation (2.5) is reformulated to its SBM form, which consists of bulk and boundary

terms [2]. Here, we detail the derivation employed to generate the SBM form of the

equation.

We begin by multiplying both sides of the diffusion equation, Eq. (2.5), by the

domain parameter ψ,

ψ
∂Cp
∂t

= ψ∇ · (Dp∇Cp). (2.38)

We then apply the product rule of differentiation to expand the RHS of the equation,

ψ
∂Cp
∂t

= ∇ · (ψDp∇Cp)−∇ψ · (Dp∇Cp). (2.39)

We substitute Dp∇Cp in the second term of the RHS of the equation with −J using

the Fick’s fist law (Eq. (2.4)),

ψ
∂Cp
∂t

= ∇ · (ψDp∇Cp) +∇ψ · J. (2.40)

A flux in the normal direction of the interface is defined as follows:

Jn = ~n · J, (2.41)
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where ~n is the unit normal vector. The unit normal vector can be defined in terms

of the domain parameter as

~n =
∇ψ
|∇ψ| , (2.42)

from which we obtain

∇ψ · J = |∇ψ|Jn. (2.43)

Here, Jn is given by the reaction rate, rLi, and thus Eq. (2.43) can be written as

∇ψ · J = |∇ψ|rLi. (2.44)

By substituting Eq. (2.44) to Eq. (2.40), the evolution equation for Cp can be

expressed as follows:

ψ
∂Cp
∂t

= ∇ · (ψDp∇Cp) + |∇ψ|rLi, (2.45)

which is rearranged into its final form,

∂Cp
∂t

=
1

ψ

[
∇ · (ψDp∇Cp)

]
+
|∇ψ|
ψ

rLi. (2.46)

Note that Eq. (2.46) reduces to the original equation, Eq. (2.5) for the bulk of the

particles, where ψ = 1, while imposing the flux boundary condition with the reaction

rate on the particle boundary. The regions where ψ = 0 are outside of the domain,

and the solutions for these regions are nonphysical and irrelevant.

The derivation here presented can also be employed to obtain the SBM form of

the Cahn-Hilliard equation (Eq. (2.3)):

∂Cp
∂t

=
1

ψ
∇ ·
[
ψMp∇

(
µb −∇ ·

(
κ

ρ2
∇Cp

))]
+
|∇ψ|
∇ψ rLi, (2.47)

which is employed when phase transformation is considered.
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2.2.2 Electrostatic potential in the electrolyte

The equations for charge conservation in the electrolyte (Equations (2.8a) and (2.8b))

can be combined into a single equation in the SBM formulation using a similar pro-

cedure. Equation (2.8a) is first multiplied by (1 − ψ), which is equal to 1 in the

electrolyte phase:

−(1− ψ)
∇ · i
z+υ+F

= 0. (2.48)

This is expanded into

−∇ ·
(

(1− ψ)i

z+υ+F

)
−∇ψ i

z+υ+F
= 0. (2.49)

The second term of the left-hand side (LHS) of the equation can be re-expressed

employing Eq. (2.43) as

−∇ ·
(

(1− ψ)i

z+υ+F

)
− |∇ψ| in

z+υ+F
= 0. (2.50)

We then utilize Eq. (2.8b) and Eq. (2.41) to express the boundary condition in terms

of the reaction flux,

−∇ ·
(

(1− ψ)i

z+υ+F

)
− |∇ψ|rLi

υ+
= 0. (2.51)

Finally, we use the definition of i (Eq. (2.7)) and rearrange the equation to obtain

the final expression,

∇·[(1−ψ)
F

RT
(z+D+−z−D−)Ce∇φe] = |∇ψ|rLi

υ+
+∇·[(1−ψ)(D−−D+)∇Ce]. (2.52)

2.2.3 Transport in the electrolyte

We obtain the SBM version of the governing equations for concentration evolution of

the electrolyte. Eqs. (2.18) and (2.19) are combined using the SBM domain param-

eter. First, the equation for transport in the electrolyte Eqs. (2.18) is multiplied by

1− ψ, which corresponds to the bulk region of the electrolyte (i.e., 1− ψ = 1 in the
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electrolyte),

(1− ψ)
∂Ce
∂t

= (1− ψ)∇ · (Damb∇Ce)− (1− ψ)

(
i · ∇t+
z+υ+F

)
. (2.53)

Following the same steps employed to derive the equations for transport in the par-

ticles, we obtain the following form of the equation,

(1− ψ)
∂Ce
∂t

= ∇ ·
[
(1− ψ)Damb∇Ce

]
− (1− ψ)

(
i · ∇t+
z+υ+F

)
− |∇ψ|Jn. (2.54)

Combining Eq. (2.19) and (2.41), we obtain Jn = (1 − t+)rLi. By substituting this

to Eq. (2.54), we arrive at the final form of the equation,

∂Ce
∂t

=
1

1− ψ

[
∇ ·
(

(1− ψ)Damb∇Ce
)]
−
(

i · ∇t+
z+υ+F

)
− (1− t+)

|∇ψ|
1− ψrLi. (2.55)

Note that Eq. (2.55) reduces to the original equation, Eq. (2.18), in the electrolyte.

At the particle-electrolyte interface, where |∇ψ| 6= 0, the reaction rate sets the flux

boundary condition.

2.3 Numerical Methods

We now discuss the numerical methods employed to solve the governing equations.

The simulation domain is discretized on a three-dimensional (3D) Cartesian grid with

uniform spacing. Here, the subscripts i, j and k indicate a grid point along in the x-,

y- and z-directions, respectively, and the superscript n indicates the time step.

2.3.1 Discretization

We first describe the spatial discretization. We here employ a second-order central

finite difference scheme, approximation that allows us to solve the governing equations

in a computationally efficient manner. As an example, we here show the discretization

of the term ∇ · (Dψ∇C), which appears in Eq. (2.46) (for brevity we here drop the

suscripts p).
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We first expand the term Dψ∇C. The term has components in the three cartesian

directions,

Dψ∇C =

(
Dψ

∂C

∂x

)
x̂ +

(
Dψ

∂C

∂y

)
ŷ +

(
Dψ

∂C

∂z

)
ẑ, (2.56)

where x̂, ŷ, and ẑ are the unit vectors in x-, y- and z-direction, respectively. In a 3D

domain, the divergence of a gradient, ∇ · (ψ∇C), results in the scalar

∇ · (Dψ∇C) =
∂

∂x

(
Dψ

∂C

∂x

)
+

∂

∂y

(
Dψ

∂C

∂y

)
+

∂

∂z

(
Dψ

∂C

∂z

)
. (2.57)

As the first step, we discretize the terms within the parentheses. These partial deriva-

tives can be defined at a location halfway between grid points. Using a Taylor ex-

pansion, (Dψ ∂C
∂x

) are discretized at the midpoint i+ 1/2 and i− 1/2 into(
Dψ

∂C

∂x

)
i+1/2,j,k

=
(Di+1,j,k +Di,j,k)

2

(ψi+1,j,k + ψi,j,k)

2

(Ci+1,j,k − Ci,j,k)
h

, (2.58a)

(
Dψ

∂C

∂x

)
i−1/2,j,k

=
(Di,j,k +Di−1,j,k)

2

(ψi,j,k + ψi−1,j,k)

2

(Ci,j,k − Ci−1,j,k)
h

, (2.58b)

respectively, where h is the uniform grid spacing (∆x = ∆y = ∆z = h). Similar

to Eqs. (2.58a) and (2.58b) , (Dψ ∂C
∂y

) is discretized in the y-direction at midpoints

j + 1/2 and j − 1/2, and (Dψ ∂C
∂z

) is discretized in the z-direction at midpoints k + 1/2

and k − 1/2.

The partial derivatives outside the parentheses in Eq. (2.57) are discretized in a

similar manner in terms of the partial derivatives inside the parentheses,

∇ ·
(
Dψ∇C

)
i,j,k

=

(
Dψ ∂C

∂x

)
i+1/2,j,k

−
(
Dψ ∂C

∂x

)
i−1/2,j,k

h
+(

Dψ ∂C
∂y

)
i,j+1/2,k

−
(
Dψ ∂C

∂y

)
i,j−1/2,k

h
+(

Dψ ∂C
∂z

)
i,j,k+1/2

−
(
Dψ ∂C

∂z

)
i,j,k−1/2

h
.

(2.59)

Substituting the discretizations shown in Eqs. (2.58a) and (2.58b) and those corre-
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sponding to other directions into Eq. (2.59), we obtain

∇ ·
(
Dψ∇C

)
i,j,k

=
1

4h2

[
(Di+1,j,k +Di,j,k)(ψi+1,j,k + ψi,j,k)(Ci+1,j,k − Ci,j,k)−

(Di,j,k +Di−1,j,k)(ψi,j,k + ψi−1,j,k)(Ci,j,k − Ci−1,j,k)+

(Di,j+1,k +Di,j,k)(ψi,j+1,k + ψi,j,k)(Ci,j+1,k − Ci,j,k)−

(Di,j,k +Di,j−1,k)(ψi,j,k + ψi,j−1,k)(Ci,j,k − Ci,j−1,k)+

(Di,j,k+1 +Di,j,k)(ψi,j,k+1 + ψi,j,k)(Ci,j,k+1 − Ci,j,k)−

(Di,j,k +Di,j,k−1)(ψi,j,k + ψi,j,k−1)(Ci,j,k − Ci,j,k−1)
]
,

(2.60)

which is the spatial discretization we employ.

We now describe the temporal discretization. We utilize a forward difference

approach to describe the partial derivative with respect to time:

∂Cn

∂t
=
Cn+1 − Cn

∆t
, (2.61)

where ∆t is the time step. To describe the terms that are not derived with respect

to time, we use two different temporal discretization methods. For the concentration

evolution of the particles, the RHS of Eq. (2.46) or (2.47) is evaluated at time n, which

yields an explicit time stepping. For the concentration evolution of the electrolyte,

the RHS of Eq. (2.55) is evaluated at time n + 1, which leads to an implicit time

stepping. For the electrostatic potential of the electrolyte, which does not have a

partial derivative with respect to time, the variables are assumed at time n + 1.

Below, we describe how each of the discretized equations are solved.

2.3.2 Direct solver for the concentration evolution in the par-
ticles

We employ a first-order forward Euler time-stepping scheme to determine the particle

concentration. Here, we present the discretization of the SBM form of Fick’s diffusion
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(Eq. (2.46)). Note that here we refer drop the subindices p for simplicity. Using Eqs.

(2.60) and (2.61), we discretize Eq. (2.46) into the following:

Cn+1
i,j,k − Cn

i,j,k

∆t
=

1

4h2ψ

[
(Di+1,j,k +Di,j,k)(ψi+1,j,k + ψi,j,k)(C

n
i+1,j,k − Cn

i,j,k)−

(Di,j,k +Di−1,j,k)(ψi,j,k + ψi−1,j,k)(C
n
i,j,k − Cn

i−1,j,k)+

(Di,j+1,k +Di,j,k)(ψi,j+1,k + ψi,j,k)(C
n
i,j+1,k − Cn

i,j,k)−

(Di,j,k +Di,j−1,k)(ψi,j,k + ψi,j−1,k)(C
n
i,j,k − Cn

i,j−1,k)+

(Di,j,k+1 +Di,j,k)(ψi,j,k+1 + ψi,j,k)(C
n
i,j,k+1 − Cn

i,j,k)−

(Di,j,k +Di,j,k−1)(ψi,j,k + ψi,j,k−1)(C
n
i,j,k − Cn

i,j,k−1)

]
+
|∇ψi,j,k|
ψi,j,k

rnLi,i,j,k,

(2.62a)

where the central discretization of |∇ψi,j,k| is

|∇ψi,j,k| =
√(

ψi+1,j,k − ψi−1,j,k
2h

)2

+

(
ψi,j+1,k − ψi,j−1,k

2h

)2

+

(
ψi,j,k+1 − ψi,j,k−1

2h

)2

.

(2.62b)

Equation (2.62a) has only one unknown at each grid point, Cn+1
i,j,k , and can therefore

be solved directly.

2.3.3 Alternating-direction-line-relaxation (ADLR) solver for
the concentration evolution in the electrolyte

We now describe the method employed to solve the governing equation for the Li

transport in the electrolyte. The method is also used in determining the electrostatic

potential from Eq. (2.55).

Here, Eq. (2.55) is rewritten for the case of constant diffusivity,

∂C

∂t
=
Damb

ψ

[
∇ ·
(
ψ∇C

)]
− (1− t+)

|∇ψ|
ψ

rLi. (2.63)

For simplicity, we employ the simplified notation C = Ce and ψ̂ = 1 − ψ. Equation
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(2.63) is discretized in a similar manner as Eq. (2.62a); the difference is that the terms

on the RHS of the equation are evaluated at timestep n + 1, except for the reaction

rate, which is evaluated at time step n:

Cn+1
i,j,k − Cn

i,j,k

∆t
=

Damb

2h2ψ̂i,j,k

[
(ψ̂i+1,j,k + ψ̂i,j,k)(C

n+1
i+1,j,k − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i−1,j,k)(C
n+1
i,j,k − Cn+1

i−1,j,k)+

(ψ̂i,j+1,k + ψ̂i,j,k)(C
n+1
i,j+1,k − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i,j−1,k)(C
n+1
i,j,k − Cn+1

i,j−1,k)+

(ψ̂i,j,k+1 + ψ̂i,j,k)(C
n+1
i,j,k+1 − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i,j,k−1)(C
n+1
i,j,k − Cn+1

i,j,k−1)

]
−(1− t+)

|∇ψ̂i,j,k|
ψ̂i,j,k

rnLi,i,j,k.

(2.64)

Equation (2.64) can be rearranged as follows:

ψ̂(Cn+1
i,j,k − Cn

i,j,k) =

D∗
[
(ψ̂i+1,j,k + ψ̂i,j,k)(C

n+1
i+1,j,k − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i−1,j,k)(C
n+1
i,j,k − Cn+1

i−1,j,k)+

(ψ̂i,j+1,k + ψ̂i,j,k)(C
n+1
i,j+1,k − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i,j−1,k)(C
n+1
i,j,k − Cn+1

i,j−1,k)+

(ψ̂i,j,k+1 + ψ̂i,j,k)(C
n+1
i,j,k+1 − Cn+1

i,j,k )− (ψ̂i,j,k + ψ̂i,j,k−1)(C
n+1
i,j,k − Cn+1

i,j,k−1)

]
−∆t(1− t+)|∇ψ̂i,j,k|rnLi,i,j,k,

(2.65)

where D∗ = Damb∆t/(2h
2).

Equation (2.65) can be written as a matrix equation of the form Ax = b, where

A is a square matrix, x is a vector containing the values of Cn+1 at the different grid

points, and b is a vector. To solve for this matrix equation, calculating the inverse of

the matrix A is required, however inverting a matrix is computationally expensive. It

is convenient to modify the matrix to express it as a tridiagonal matrix because finding

the inverse of a such a matrix is computationally less expensive. Therefore, we use an

alternating-direction-line-relaxation (ADLR) solver [51, 52, 2] to solve Eq. (2.65). In
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ADLR, the different unknowns in a Cartesian direction are solved iteratively, allowing

the matrix to become tridiagonal. To illustrate this procedure here, we present the

process for solving the equation in the x-direction. We thus first consider Cn+1
i−1,j,k,

Cn+1
i,j,k and Cn+1

i+1,j,k as the unknowns, while Cn+1
i,j−1,k, C

n+1
i,j+1,k, C

n+1
i,j,k−1 and Cn+1

i,j,k+1 are

held constant. Taking the unknowns to the LHS and the knowns to the RHS,

−D∗(ψ̂i,j,k + ψ̂i−1,j,k)C
n+1
i−1,j,k + (ψ̂i,j,k + ψ̂∗i,j,kD

∗)Cn+1
i,j,k −D∗(ψ̂i+1,j,k + ψ̂i,j,k)C

n+1
i+1,j,k =

D∗
[
(ψ̂i,j+1,k + ψ̂)(Cn+1

i,j+1,k) + (ψ̂i,j,k + ψ̂i,j−1,k)(C
n+1
i,j−1,k)+

(ψ̂i,j,k+1 + ψ̂i,j,k)(C
n+1
i,j,k+1) + (ψ̂i,j,k + ψ̂i,j,k−1)(C

n+1
i,j,k−1)

]
+ψ̂i,j,kCi,j,k −∆t(1− t+)|∇ψ̂i,j,k|rLi,i,j,k,

(2.66)

where

ψ̂∗i,j,k = (ψ̂i+1,j,k + ψ̂i,j,k) + (ψ̂i,j,k + ψ̂i−1,j,k)+

(ψ̂i,j+1,k + ψ̂i,j,k) + (ψ̂i,j,k + ψ̂i,j−1,k) + (ψ̂i,j,k+1 + ψ̂i,j,k) + (ψ̂i,j,k + ψ̂i,j,k−1).
(2.67)

For a domain of size x in the x-direction, Eq. (2.66) can be rewritten as a tridiagonal

matrix,

b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . .

ax−2 bx−2 cx−2

ax−1 bx−1 cx−1

ax bx





C1,j,k

C2,j,k

C3,j,k

...

Cx−2,j,k

Cx−1,j,k

Cx,j,k



=



d1 − a0
d2

d3
...

dx−2

dx−1

dx − cx



, (2.68)

where

ai = −D∗(ψ̂i,j,k + ψ̂i−1,j,k), (2.69a)
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bi = (ψ̂i,j,k + ψ̂∗i,j,kD
∗), (2.69b)

ci = −D∗(ψ̂i+1,j,k + ψ̂i,j,k), (2.69c)

di = D∗
[
(ψ̂i,j+1,k + ψ̂i,j,k)(C

n+1
i,j+1,k) + (ψ̂i,j,k + ψ̂i,j−1,k)(C

n+1
i,j−1,k)+

(ψ̂i,j,k+1 + ψ̂i,j,k)(C
n+1
i,j,k+1) + (ψ̂i,j,k + ψ̂i,j,k−1)(C

n+1
i,j,k−1)

]
+ψ̂i,j,kC

n
i,j,k −∆t(1− t+)|∇ψ̂i,j,k|rLi,i,j,k.

(2.69d)

We directly solve for this matrix using a tridiagonal matrix solver. In the first

iteration, the values of C in the RHS are approximated with their values from time

n, and in the subsequent iterations with their values from the previous iteration. A

similar matrix is then constructed to solve the equation in the y-direction using the

results from the solution for Eq. (2.68) for the x-direction as the input. Here, the

terms involving Cn+1
i,j−1,k, C

n+1
i,j,k , and Cn+1

i,j+1,k in Eq. (2.66) are placed on the LHS, and

the remaining terms are placed on the RHS. This equation is also expressed as a

matrix equation with a tridiagonal matrix and is solved directly using the tridiagonal

matrix solver. Finally, we solve for the equation for the z-direction using the solution

from the y-direction as input. In this case, the terms Cn+1
i,j,k−1, C

n+1
i,j,k , and Cn+1

i,j,k+1 in Eq.

(2.66) are placed on the LHS, and the remaining terms on the RHS. This equation is

solved in a similar manner. This process is repeated until a convergence criterion is

met. The name “alternating direction line relaxation” stems from the fact that the

direction along which the variables are updated alternates.
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CHAPTER III

THE EXCHANGE CURRENT DENSITY AND

POSITION DEPENDENCE OF PARTICLE

INTERACTIONS

3.1 Introduction

In this chapter, we investigate the dynamics of interparticle phase separation (i.e.,

mosaic instability) during lithiation and delithiation (discharge and charge) in phase

separating electrodes consisting of nanoparticles. We constrain ourselves to the case

where all the particles are of the same size, allowing us to focus on the dependence

of the interactions on the exchange current density and on the position of the par-

ticles within the electrode. We model the nanoparticles as a Li solid solution based

on the theory mentioned in Chapter II. This chapter presents an in-depth study

of (1) the initiation of the interparticle phase separation, (2) the asymmetric lithia-

tion/delithiation caused by an activity-dependent exchange current density, and (3)

the two distinct processes that occur during the interparticle phase separation.

To elucidate the interactions between particles, we first analyze a cell containing

two nanoparticles (Sec. 3.4.1). The simulations are then extended to a larger domain

containing 26 nanoparticles in a unit cell that is periodic in the direction normal to

the cell current (Sec. 3.4.2-3.4.3). The interaction dynamics under varying applied

currents is investigated. Furthermore, the effect of the exchange current density is

studied by taking the exchange current density to be independent of the activity of the

nanoparticles (Sec. 3.4.2) and by using a cathode-activity-dependent exchange current
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density (Sec. 3.4.3). Analyses are performed to determine what critical concentration

difference is required to trigger the interparticle phase separation, what controls the

size of the group of particles that undergo phase transformation simultaneously, and

how two mechanisms (Li redistribution and constant (de)lithiation) compete during

the interparticle phase separation (Sec. 3.5). Finally, we compare our simulations

with those of a macro-homogeneous model based on the porous electrode theory as a

verification of our results (Sec. 3.6). While we show that our model reproduces the

results of a porous-electrode model for the simple setup studied here, it is a powerful

framework with the capability to predict the detailed dynamics in three-dimensional

complex electrodes and provides further insights into the complex dynamics that

result from the coupling of electrochemistry, thermodynamics, and transport kinetics.

3.2 Model

The model employed in this chapter was almost entirely presented in Chapter II.

However, certain definitions, such as the free energy function and exchange current

density, were not defined because different functions are utilized throughout the the-

sis. In this chapter, we assume that the particles remain monophasic; therefore, we

use the smoothed boundary method (SBM) form of Fick’s diffusion (Eq. (2.46)) to

solve for the concentration evolution in the particles. The electrostatic potential and

concentration of the electrolyte are solved using Eqs. (2.52) and (2.55), respectively.

In this chapter, we use the regular solution model, which includes both entropic

and enthalpic effects, to define the chemical potential of the particles. In the regular

solution model, the free energy of Li in the particles, f , takes the form of

f = RT

[
Xp ln(Xp) + (1−Xp) ln(1−Xp) + ΩXp(1−Xp)

]
, (3.1)

where Xp is the site fraction of Li in LixFePO4, R is the gas constant, T is the absolute

temperature, and Ω is the interaction parameter. The bulk chemical potential, µb,
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which is the partial derivative of the free energy with respect to site fraction (Eq.

(1.1)) takes the form of:

µb = µp = RT

[
ln

(
Xp

1−Xp

)
+ Ω(1− 2Xp)

]
. (3.2)

Here µb is equal to µp since the particles are assumed monophasic. When Ω has a value

greater than two, the free energy becomes a double-well function and the chemical

potential becomes non-monotonic. This represents a state where phase separation is

thermodynamically favored.

The electrochemical reaction rate, rLi, was solved using the Butler-Volmer equa-

tion, Eq. (2.37). In this chapter, the exchange current density is a function of the

activities of Li in the electrolyte and particles, which yields a nonlinear dependence

of the exchange current density on the Li concentration. The use of an activity-

dependent exchange current density is referred to as the “modified Butler Volmer”

equation [53, 20], which differs from the standard Butler-Volmer equation, which is

linearly dependent on the concentration. In a dilute electrolyte, the activity can be

approximated by the normalized concentration, ae = Ce/C
0
e , where Ce is the elec-

trolyte concentration and C0
e is the concentration at which i0 was measured. In the

particles, the activity is defined by the Arrhenius equation of the chemical potential

as ap = exp(µp/RT ). Thus, the exchange current density is given by

i0 =
F (k0cae)

1−α(k0aap)
α

γTS
= i′0

√
aeXp(1−Xp) exp[Ω(1− 2Xp)]. (3.3)

Here, it has been assumed that α = 0.5 and i′0 = F (k0c )
1−α(k0a)

α, where i′0 is the

exchange current coefficient, k0c and k0a are the standard rate constants of cathodic

and anodic reactions, respectively, and γTS is the chemical activity coefficient of the

transition state, approximated as (1−Xp)
−1 to account for the site availability [20].

(The approach of combining the two rate constants into one parameter (i′0) is similar

to those presented in Refs. [20, 54, 55].)
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3.3 Simulation Configuration

We consider a cell that contains a cathode consisting of equal-sized nanoparticles

immersed in a LiPF6 electrolyte, a separator represented by empty space filled with

electrolyte, and lithium metal foil as the anode, for which the Li concentration and

chemical potential are constant. A square-prismatic computational box is used in the

simulations, which spans 1152 nm in the direction from the anode to the cathode

current collector (z-axis) and 64 nm in other directions (x- and y-axes). The anode-

electrolyte interface is located at the boundary at z = 0. Furthermore, rLi,j and Sj

are the reaction rate and surface of particle j, respectively, Ntot is the total number

of particles, and Aa is the total area of the anode-electrolyte boundary. The cathode

current collector is located at z = 1152 nm, where we apply a no-flux boundary

condition for Ce and φe, and the value of φp is adjusted to obtain the current set by

the constant current condition. Periodic boundary conditions are imposed on the x-z

and y-z planes of the computational box. Thus, this configuration represents a planar

cell, of which in-plane dimensions (in x-y plane) are much larger than the depth (in

z-direction) of the cell. Such an arrangement is convenient for investigating the effect

of particle locations on the interparticle phase separation in the depth direction.

Simulations with two different configurations were conducted: one with two par-

ticles and the other with 26 particles in the cell. In the first set, two particles 40 nm

in diameter were located 728 nm apart (measured between the closest surfaces), one

particle was 332 nm from the anode and the other was 12 nm from the cathode current

collector with respect to the nearest surfaces; see Fig. 3.1(a). This two-particle simu-

lation is designed to illustrate the cell voltage response during the interaction between

particles. In the second simulation configuration, the cathode contains 26 particles

in a body-centered-cubic arrangement, where the shortest distance between particle

surfaces is 15 nm; see Fig. 3.3(a). The cathode spans 852 nm in the z-direction,

while the separator (region of electrolyte without particles) has a length of 300 nm.
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The cathode region of this cell has a volume fraction of approximately 25.3% for the

active particles. While this particle volume fraction is smaller than an actual battery

cathode, it allows us to elucidate the behavior of interacting particles, and we expect

the qualitative findings to remain valid for the range of current we examine in this

work. This set of simulations with this given arrangement provides information for

the many-particle dynamics.

A constant applied current was maintained during the simulations by adjusting

the value of the electrostatic potential of the particles. Note, however, that the im-

posed value of the applied current (calculated using Eq. (2.7) at the anode-electrolyte

interface) was allowed to fluctuate ±1.5% to facilitate the faster convergence of the

alternating-direction-line-relaxation (ADLR) scheme (described in Chapter II) and

improving the numerical efficiency.

We choose the average applied current density (normalized to the total particle

surface), i, to be one of the controlling parameters,

i =

Ntot∑
j=1

∫
Sj

rLi,jFdSj

Ntot∑
j=1

∫
Sj

dSj

. (3.4)

In the SBM formulation, the interface has a finite thickness and thus a finite volume.

Therefore, Eq. (3.4) can also be expressed as

i =

Ntot∑
j=1

∫
Vj

rLi,jF |∇ψ|dVj
Ntot∑
j=1

∫
Vj

|∇ψ|dVj
, (3.5)

where ψ is the domain parameter.

Throughout the chapter, i is specified as a fraction of the exchange current coeffi-

cient, i′0. We do so to emphasize that the observed dynamics at a given rate depends

on the ratio i/i′0 and that there is a certain degree of uncertainty in the literature
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Figure 3.1: (a) Two-particle configuration used in these simulations. (b) Depth of
discharge (DOD) of the individual particles with respect to the overall DOD; the
range at which the interparticle phase separation begins is magnified in the inset.
The dashed red curves correspond to the DOD of the particle closer to the separator
(particle A), the dash-dotted blue curves to the DOD of the particle closer to the
cathode current collector (particle B) and the black line to the overall DOD. (c)
Simulated voltage during the lithiation process with respect to the overall DOD. The
red curves represent the obtained voltage from the simulations and the black curve
corresponds to the single-particle equilibrium potential. In (b) and (c), the darker
curves represent the case when i0 is assumed to be activity independent and the
lighter curves represent when this dependence is included. Labels (i)-(v) highlight
the key points of the lithiation process.
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values of i′0. For example, in the work of Dargaville and Farrell [54], a sensitivity

analysis on i′0 is performed to address this uncertainty. Note that a constant current

density with respect to the particle surface is equivalent to a constant C-rate since the

particle size remains unchanged. However, the current density scales with the particle

surface while the C-rate, scales with the particle volume (or mass). Consequently, for

a system with a given mass under the same C-rate but with larger particles, a larger

current density at the surface of the particles will be observed.

The physical parameters used in the simulations are given as follows. For the

cathode, the diffusion coefficient of Li in the particles is 1 × 10−12 cm2/s [56], as-

sumed isotropic for simplicity, and the interstitial site density is 0.0228 mol/cm3. In

the electrolyte, the diffusion coefficients for the cation (Li+) and anion (PF−6 ) are

1.25× 10−6 cm2/s and 4.0× 10−6 cm2/s, respectively, to match the work of Ferguson

and Bazant [45], which were based on experimental results [57, 58]. The electrolyte

has an average concentration of 1 M (consistent with the molarity at which the ionic

diffusivities and the exchange current density were measured). The dissociation num-

ber of the cation is equal to one. For the modified Butler-Volmer equation, we take

i′0 = 1.75× 10−6 A/cm2. Here, we have scaled an experimental value of i′0 similar to

the one from Refs. [59, 60] by 1/100, as was done in Ref. [20], since the experimental

value was measured per the macroscopic cross-sectional area of the cathode, not the

actual particle surface area, which is needed for our simulation. The open circuit volt-

age plateau of LiFePO4 is taken to be 3.422 V [5] and the interaction parameter, Ω, is

set to 4.5 [43] for evaluating the chemical potential. This interaction parameter gives

a non-monotonic voltage profile with a difference between the local minimum and

local maximum of approximately 74 mV; see the single-particle equilibrium potential

profile in Fig. 3.1(c).

The cathode structure was defined using the SBM domain parameter. To obtain

a unique domain parameter that defines all particles, we first defined each domain
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parameter independently using a piecewise sine function:

ψ̃j =



1 if

(
|~x−~xj0 |−r

ξ

)
< −π

2

0 if

(
|~x−~xj0 |−r

ξ

)
> π

2

1− 1
2

[
sin

(
|~x−~xj0 |−r

ξ

)
+ 1

]
otherwise,

(3.6)

where ψ̃j is the domain parameter of the particle, ξ is a parameter used control the

interface thickness, ~x denotes position, and ~xj0 and rj are the center position and the

radius of particle j, respectively. These sets of domain parameters were then added

to obtain the domain parameters used in the simulations:

ψ =
Ntot∑
j=1

ψ̃j. (3.7)

The parameter ξ and the grid spacing are set to 2 nm.

3.4 Results

3.4.1 Lithiation in a two-particle cell

We first conducted the simulation of a two-particle cell to illustrate the interparticle

interactions and the corresponding voltage response, in a similar way as in Ref. [61].

The cell was lithiated at an applied current density, i, which is chosen to be 2% of i′0

to examine the low current regime. This loading condition is approximately a C/12

rate. In the first case, we focus exclusively on the interparticle interactions. We first

ignore the dependence of the exchange current density on the activity of the cathode

particles, and i0 is assumed to only depend on the electrolyte activity, i0 = i′0
√
ae.

Hereafter in this chapter, we refer to the cathode-activity simply as “activity” for

convenience.

The depth of discharge (DOD) for the two individual particles and the voltage

profile during the lithiation process are shown in Figs. 3.1(b) and (c), respectively.
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Here, we refer to the particle close to the separator as particle A and the one close to

the cathode current collector as particle B. Since the cell is lithiated under a constant

current, the average DOD increases linearly. However the DOD of the individual

particles exhibits different behavior. Five points, (i) through (v), on the curves are

noted to illustrate the unique dynamics of the interparticle interactions. In the early

stage of discharge (prior to point (i)), both of the particles lithiate at a similar rate.

However, particle A lithiates slightly faster because both the ion concentration and

electrostatic potential in the surrounding electrolyte are higher than that of particle

B. Thus, particle A reaches the concentration level of the lower spinodal point first

and undergoes rapid lithiation (see point (i)), during which lithium is extracted from

particle B (between point (i) and (ii)). Once the concentration level of particle B

drops below that of the lower spinodal point, a sudden rise in the voltage curve is

observed; see point (ii) in Figs. 3.1(b) and (c). After particle B fully delithiates, the

slope of the voltage curve decreases due to the slow lithiation of particle A because it

can no longer extract lithium from particle B; see point (iii). When particle A reaches

the higher spinodal point, the voltage decreases; see point (iv). In the meantime, the

concentration level of particle B slowly increases. After particle B reaches the lower

spinodal point, the voltage rises again; see point (v). During the lithiation of particle

B, lithium is extracted from particle A to a lesser degree; see the DOD of particle A

between point (v) and the end of the evolution.

The dynamics observed above can be understood as follows. To maintain a con-

stant current, the applied voltage is adjusted to a specific value. When such voltage

resides in the gap between the local minimum and local maximum of the single-particle

equilibrium potential curve (the inverted potential range, shown in Fig. 1.8) and falls

in-between the equilibrium potentials of the two particles, one particle is driven to

lithiate and the other to delithiate, producing the interparticle phase separation.

Next, we conduct the simulation where the exchange current density is a function
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of the activity of the particles, as given in Eq. (3.3); see Fig. 3.2. The form of the

exchange current density results from the regular solution model, as explained in

Sec. 2.1.4. It has the maximum value when the Li concentration is close to the lower

spinodal point, as this is where both the chemical potential and the site availability

are large. The difference is substantial – the exchange current density is 28.6 times

larger at the lower spinodal point than at the higher spinodal point. Therefore, the

magnitude of the required overpotential to maintain a constant current density is

smaller at low concentrations and is larger at high concentrations. It is important to

note that this exchange current density is based on the regular solution model. For

higher accuracy, a more realistic exchange current density is required.
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Figure 3.2: Exchange current density. Solid curve: i0 as a function of the occupied Li
site fraction as expressed in Eq. (3.3). Dashed horizontal line: value of i0 independent
of the Li site fraction. The maximum value of the function is located near the lower
spinodal point. The value of the exchange current density at the lower spinodal point
is 28.6 times higher than that at the larger spinodal point. The vertical dashed lines
represent the spinodal points.

The simulation results are given in the lighter curves in Figs. 3.1(b) and (c), and

show three features that differ from the case with exchange current density indepen-

dent of the activity. First, the interparticle phase separation occurs at a lower con-
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centration, since the magnitude of the overpotential at low concentrations is smaller

(this will be further explained in Sec. 3.5.1). Second, the peak of the voltage rise is

smaller (Fig. 3.1(c)), since the overpotential at higher concentrations is larger. Last,

at the very end of the process, the redistribution of Li between particle A and particle

B is almost completely suppressed (Fig. 3.1(b)). This is caused by the much smaller

exchange current density of the particles at that concentration.

3.4.2 Lithiation and delithiation with exchange current den-
sity independent of the cathode activity

Having developed an understanding of how two particles can interact, we now examine

the dynamics with a larger number of particles via a simulation of the 26-particle

configuration mentioned earlier. As in the two-particle configuration, the simulation

was also performed at i = 2% i′0 (C/12 rate) and the dependence of the exchange

current density on the activity of the particles was ignored by assuming i0 = i′0
√
ae

in this section. Figure 3.3 shows Li concentration in the particles at four different

times during lithiation. First, all the particles lithiate in a fairly even manner up

to the cell DOD of 22%; see Fig. 3.3(i). Next, a group of particles close to the

separator simultaneously undergo fast lithiation, extracting lithium from the rest of

the particles. As a result, the interparticle phase separation occurs at the cell DOD

of 28%, where seven layers of particles are nearly fully lithiated, while the remaining

19 layers are nearly fully delithiated; see Fig. 3.3(ii). The process is repeated with

the remaining delithiated particles. They lithiate in a fairly uniform manner (see Fig.

3.3(iii)), and then undergo interparticle phase separation. In the second interparticle

phase separation that begins at 46% overall DOD, a group of six particles undergo fast

lithiation, and subsequently the cell DOD rises to 50%; see Fig. 3.3(iv). The successive

interparticle phase separation involves a smaller number of particles undergoing fast

lithiation because the number of particles at intermediate concentrations becomes

smaller.
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Figure 3.3: Dynamics observed during lithiation when i0 is assumed independent of
the activity of the cathode. (a) Surface Li concentration at four different times. (i) All
particles lithiate in a nearly uniform manner (DOD = 22%). (ii) The particles closer
to the separator transform to Li-rich phase, and the particles farther away return
to a Li-poor phase (DOD = 28%). (iii) The Li-poor particles lithiate in a nearly
uniform manner (DOD = 46%). (iv) Another group of particles transforms to the
Li-rich phase, delithiating the remaining particles (DOD = 50%). Note that, because
the process is reaction limited, each particle has nearly constant concentration (i.e.,
the surface concentration is approximately equal to the bulk concentration) (b) DOD
averaged over the particle region in a cross section in the x-y plane.
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The process observed, which we here refer to as a group-by-group interparticle

phase separation, is now explained. After some initial concentration accumulation,

the first mosaic instability begins. As mentioned before, the particles closer to the

separator obtain a slightly higher DOD. Because of the non-monotonic potential, the

particles with a higher DOD within the spinodal region have a larger driving force to

lithiate. Thus, a small difference in the DOD of the particles is amplified initiating fast

lithiation. The process of the first interparticle phase separation is shown in Fig. 3.4,

where we can see how a small initial difference in the DOD of the particles is amplified,

triggering the instability. The voltage rises due to the increasing equilibrium potential

of the lithiating particles. Once (φp − φe), which is nearly uniform throughout the

cell at low currents, is higher than the equilibrium potential of the particles that are

not lithiating, the non-lithiating particles become thermodynamically driven toward

delithiation. Therefore, this leads a group of particles to reach a nearly fully lithiated

and another group a nearly fully delithiated state. After the Li redistribution, the

delithiated particles start lithiating again in a nearly uniform manner until the next

interparticle phase separation is triggered, resulting in the intermittent group-by-

group interparticle phase separation, in agreement with the results of Ferguson and

Bazant [45], and Dargaville and Farrell [54].

During interparticle phase separation, the particles momentarily lithiate at a

higher C-rate than the cell C-rate. In Fig. 3.5 we present the local C-rates at the

corresponding DODs from Fig. 3.4. At the beginning of the group-by-group interpar-

ticle phase separation (DOD = 22% - 24%), the particles react at C-rates similar to

the cell C-rate (i.e., the cross section C-rate/cell C-rate is close to one). When Li is

redistributed between the particles (DOD = 26% - 28%), the particles that absorb

lithium react at a much more rapid C-rate than the externally imposed cell C-rate.

Figure 3.6 shows the cell voltage profile during a lithiation-delithiation cycle,

where the red and blue curves represent the lithiation and delithiation, respectively,
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and the black curve represents the single-particle equilibrium potential. The two

voltage curves are antisymmetric, and the magnitude of the overpotentials of the

lithiation and the delithiation are the same when the DOD of the lithiation is equal

to the state of charge (SOC = 1 − DOD) of the delithiation. Five sudden rises and

drops of the voltage curve during both lithiation and delithiation are observed, which

correspond to five discrete phase transformation instabilities. The voltage fluctuates

around the lower spinodal point during lithiation. Conversely, it fluctuates around the

higher spinodal point during delithiation. This leads to a voltage hysteresis between

lithiation and delithiation.
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Figure 3.6: Voltage measured during lithiation and delithiation when i0 is assumed
independent of the activity of the cathode. The dashed red and dotted blue curves
represent the voltage measured during lithiation and delithiation, respectively.

3.4.3 Lithiation and delithiation with activity-dependent ex-
change current density

Now, we include the dependence of the exchange current density on the activity

of the particles as in Eq. (3.3). As will be shown later, this leads to significant

asymmetric dynamics between lithiation and delithiation. In this set of simulations,

we investigate how the applied current affects the particle interactions. Two different
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aspects are analyzed in the following subsections: (A) the lithiation and delithiation

dynamics and their corresponding voltage fluctuations, and (B) the concentration and

electrostatic potential in the electrolyte.

Lithiation and delithiation dynamics and the corresponding voltage re-
sponse

Here, we describe the lithiation and delithiation dynamics with an activity-dependent

exchange current density in the Butler-Volmer equation. Note that in this section we

only describe the dynamics observed, and the detailed analysis will be deferred to

Sec. 3.5. Figures 3.7(a), (c), (e) present the voltage for lithiation and (b), (d), (f) for

delithiation at different currents.

The lithiation dynamics is similar to the case where the current density is indepen-

dent of the activity, presented in Sec. 3.4.2. In both cases, we observe group-by-group

lithiation. Figure 3.7(a) shows the voltage curve for i = 2% i′0 (C/12 rate), which is

the same applied current as in the previous section. The voltage exhibits five primary

spikes during this process, indicating five sets of interparticle phase separation. As

mentioned in Sec. 2.1.1, purely based on the thermodynamics of the material, the

phase separation is expected to occur at the spinodal point. However, significant

deviations between the onset of the interparticle phase separation and the spinodal

points are observed in our simulations. This deviation is referred to as the “concen-

tration overshoot” hereafter. In Fig. 3.7(a), we observe that the interparticle phase

separation occurs at 22% DOD (indicated by the gray vertical dashed lines), which

is 9% DOD higher than the lower spinodal point at ∼13% DOD (indicated by the

black vertical dashed lines). Figure 3.7(c) shows lithiation at i = 5% i′0 (C/4.7 rate).

Here, only three primary spikes in the voltage curve are present, indicating three

sets of interparticle phase separation. From this observation, it can be deduced that

each group contains more particles compared to the case where i = 2% i′0. The con-

centration overshoot increases with an increasing magnitude of the current. In this
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Figure 3.7: Voltage vs. overall DOD during lithiation (left) and delithiation (right)
at different currents. (a) & (d) at i = 2% i′0, (b) & (e) at i = 5% i′0 and (c) & (f) at
i = 20% i′0. The black curve corresponds to the single-particle equilibrium potential,
the color curves to the cells voltage and the dashed curves to the corresponding simu-
lations using a porous electrode model, which are discussed in Sec. 3.6. The vertical
black dashed lines indicate the lower and higher spinodal points during lithiation and
delithiation, respectively. The vertical gray dashed lines the onset of the interparticle
phase separation.
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case, the interparticle phase separation begins at 33% DOD, which corresponds to

a concentration overshoot of 20% DOD. At a sufficiently high current, all the parti-

cles in the computational domain lithiate together and the interactions between the

particles are suppressed. This is shown in Fig. 3.7(e), which correspond to lithiation

at i = 20% i′0 (C/1.2 rate). In this case, there are no spikes in the voltage curve,

showing no interparticle phase separation in the concentration evolution.

On the contrary, the dynamics during delithiation differs substantially. Figure 3.8

shows the snapshots of Li concentration evolution during delithiation at four different

DODs also at i = 2% i′0. The particles delithiate in a fairly even manner until reaching

a DOD of around 59%; see Fig. 3.8(i). At this DOD, the first interparticle phase

separation begins. At about 54% DOD, the first three layers of particles are fully

delithiated and the particles far away from the separator start absorbing lithium

from those close to the separator; see Fig. 3.8(ii). This is followed by particle-by-

particle delithiation in the computational domain (which is equivalent to a layer-by-

layer transformation because of the periodic boundary condition along the x- and

y-directions), initiating from the separator-cathode boundary and moving toward the

cathode current collector; see Fig. 3.8(iii) at 48% DOD. Such a layer-by-layer phase-

front movement continues until the entire cell is fully delithiated. Figure 3.8(iv) shows

the concentration at 30% DOD. The voltage curve for delithiation at this current

is shown in Fig. 3.7(b), where each spike corresponds to a fast delithiation event

of one particle layer. Here, the interparticle phase separation occurs at 55%, which

corresponds to a concentration overshoot of 32% DOD. At i = 5% i′0, the interparticle

phase separation occurs at DOD of 42% and therefore the overshoot is 45% DOD in

magnitude ( = ∼87% DOD at higher spinodal - 42% DOD at first interparticle phase

separation) ; see Fig. 3.7(d). Unlike lithiation, the larger overshoot does not affect

the number of particles undergoing fast lithiation because it still occurs as a layer-by-

layer interparticle phase separation. At a sufficiently high current the interparticle
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phase separation is also suppressed; see Fig. 3.7(f) at i = 20% i′0.

Separator Cathode (z-direction !) (a)

(b)

(0)

(i)

(ii)

(iii)

(iv)

(i) (ii) (iii) (iv)

Figure 3.8: Delithiation with exchange current density dependent of DOD. (a) Surface
Li concentration of each individual particle layer. (0) Initial condition at DOD =
98%. (i) All the particles delithiate in a fairly uniform manner (DOD = 59%).
(ii) The particles closer to the separator fully delithiate, releasing lithium that is
absorbed by the remaining particles, some of which will return to a nearly fully
lithiated state (DOD = 54%). (iii) More particles become fully delithiated and the
particles that were absorbing lithium return to a Li rich phase (DOD = 48%). (iv)
The particles continue to delithiate layer by layer (DOD = 30%). As in Fig. 3.3, the
surface concentration approximates the bulk concentration. (b) DOD averaged over
the particle region in a cross section in the x-y plane.

Concentration and Electrostatic Potential of the Electrolyte

Now, we analyze the effect of the interparticle phase separation on the concentra-

tion and the electrostatic potential of the electrolyte. For this purpose, we consider

lithiation and delithiation at i = 2% i′0. In Figs. 3.9(a) and (b), the voltage for lithi-

ation and delithiation, respectively, is shown again, along with markers noting the

58



different states examined in this analysis. Figures 3.9(c) and (d) show the profiles

of the electrolyte concentration at four different times during lithiation and delithia-

tion, respectively. The curves are represented with the average concentration in the

electrolyte on each slice of the x-y planes.

During lithiation before the interparticle phase separation occurs, the electrolyte

concentration decreases gradually from the separator to the cathode current collector;

see Fig. 3.9(c) curve (i). When the first interparticle phase separation takes place,

Li is absorbed rapidly on the particles near the separator, causing the electrolyte

concentration in the surrounding region to drop. Meanwhile, the particles closer to the

cathode current collector eject Li resulting in a rise in the electrolyte concentration of

that region. Consequently, a concentration increase from the cathode current collector

side to the anode side is observed; see Fig. 3.9(c) curve (ii). After the first interparticle

phase separation, the electrolyte concentration returns to a similar state as prior to the

instability; see Fig. 3.9(c) curve (iii). In the second interparticle phase separation, the

number of particles undergoing fast lithiation and the number of particles releasing Li

is reduced. As a consequence, both the rise and drop in the electrolyte concentration

is reduced. Furthermore, the particles undergoing fast lithiation are located closer

to the cathode current collector, causing the location of the concentration increase

to also be shifted. In addition, the number of particles releasing Li is reduced. As a

consequence, both the rise and the drop in the electrolyte concentration are reduced in

magnitude and occur closer to the cathode current collector; see Fig. 3.9(c) curve (iv).

The subsequent interparticle phase separation is accompanied by smaller variations

with the transition moving closer to the cathode current collector.

For the delithiation process, the electrolyte concentration curve before the first

mosaic instability is smooth, but has a slope with an opposite sign from that of lithi-

ation, since the flow of ions is in the opposite direction; see Fig. 3.9(d) curve (v).

In the first interparticle phase separation, the electrolyte concentration near the an-
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(i)

(ii)

(iii)

(iv)

(i)

(ii)
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(iv)
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(vii)

(viii)
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(vi)
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Figure 3.9: (a) & (b) Cell voltage during lithiation and delithiation, respectively at
i = 2% i′0. The vertical lines indicate the DODs at which concentration and electro-
static potential of the electrolyte are measured. (c) & (d) Electrolyte concentration
difference from the average concentration over the electrolyte region in a cross section
in the x-y planes during lithiation and delithiation, respectively. (e) & (f) Electro-
static potential over the electrolyte region in a cross section in the x-y planes during
lithiation and delithiation, respectively. The electrostatic potential at the anode is
taken to be 0 V as a reference. For lithiation, (i) the solid blue line corresponds to
11% DOD, (ii) the green dashed line to 23% DOD, (iii) the red dotted line to 49%
DOD and (iv) the cyan dashed-dotted line to 68% DOD. For delithiation, the same
DODs as in Fig. 3.8 are used: (v) the solid blue line corresponds to 59% DOD, (vi)
the green dashed line to 54% DOD, (vii) the red dotted line to 48% DOD and (viii)
the cyan dashed-dotted line to 30% DOD.

60



ode rises while the concentration near the cathode current collector decreases; see

Fig. 3.9(d) curve (vi). During the remainder of the delithiation, the concentration

becomes nearly constant near the cathode current collector. This is because the Li

concentration in the particles away from those that are reacting remain relatively un-

affected during the subsequent interparticle phase separation events. As previously

described, the layer-by-layer phase-front moves continuously during delithiation, re-

sulting in a continuous movement of the transition region of the concentration curve,

where the slope changes rapidly; see Fig. 3.9(d) curves (vii) and (viii).

We now describe the electrostatic potential in the electrolyte. Figure 3.9(e) shows

the electrostatic potential for lithiation. The same states (i)-(iv) as in the electrolyte

concentration are presented here. The behavior of the electrostatic potential matches

qualitatively with that from the electrolyte concentration. The only difference is that

all the curves align at the anode because the potential at the anode is set to 0 as the

boundary condition. Similar explanations as for the electrolyte concentration can be

used to describe the behavior of the electrostatic potential. The absorption of Li ions

from the electrolyte into the particles causes not only a decrease in the electrolyte

concentration, but also a decrease in the electrostatic potential. As observed in

Eq. (2.8a), this relation is maintained away from the interfacial regions as long as

(D+−D−) is negative. During the interparticle phase separation, some of the particles

extract lithium into the electrolyte, locally increasing the electrostatic potential in a

similar way as observed with the electrolyte concentration. Figure 3.9(f) presents the

electrostatic potential during delithiation also at the same times (v)-(viii) as for the

electrolyte concentration. An analogous explanation applies for delithiation.

3.5 Analysis

Here, we analyze and further discuss the results presented in the prior sections, pri-

marily focusing on cases where the exchange current density is dependent on the
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cathode activity, unless otherwise noted. Three different aspects are included in this

analysis: (A) the origin of the concentration overshoot, (B) the determinant of the

group size in lithiation, and (C) the origin of the asymmetry in lithiation and delithi-

ation behavior.

3.5.1 Concentration overshoot

As described in Sec 3.4.3, a larger concentration overshoot occurs during delithiation

in comparison to lithiation, and in both cases the overshoot increases with current.

Now, we perform a simplified analysis to illustrate the origin of this change. For

this analysis, we assume a cell in which a group of particles reacts uniformly and

one adjacent particle has a different concentration from the rest. We will denote the

particle as “particle A.” In this hypothetical cell, there is a significant amount of

particles such that the DOD of particle A does not affect the DOD of the cell. In

order for the group of particles with uniform Li concentration to lithiate at a given

current, an applied voltage, “Vx,” is required. At the same time, the adjacent particle

must have a single-particle equilibrium potential lower than Vx to have a driving

force for delithiation while the other particles are lithiating. The Li concentration

of the particle at which this occurs can be determined by the intersection of the

single-particle equilibrium potential curve and a horizontal line of value Vx. This

construction is shown in Fig. 3.10(a) for (de)lithiation at i = 20% i′0. The curves

for lithiation and delithiation are different because of the activity dependent i0 (Fig.

3.2).

We now describe the composition difference required for the initiation of the inter-

particle phase separation during lithiation and delithiation. As previously mentioned,

in order for particle A to delithiate while the group of particles lithiates, particle A

must have an equilibrium potential lower than Vx. Thus, the lengths of line (i) and

line (iv) in Fig. 3.10(a) represent the composition difference required at the first DOD
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Figure 3.10: (a) Applied voltage for lithiation and delithiation at i = 20% i′0 rep-
resented by the solid green curve and the dashed green curve, respectively. The
minimum DOD difference required for the interparticle phase separation to begin (i)-
(ii) during lithiation, and (iii)-(iv) during delithiation is here indicated. The black
curve represents the single-particle equilibrium potential. (b) Minimum DOD dif-
ference as a function of the overall DOD for i = 2% i′0, i = 5% i′0 and i = 20% i′0,
represented here by a red, blue and green curve, respectively. Right-pointing and left-
pointing triangles represent the first interparticle phase separation during lithiation
and delithiation, respectively. The darker curves represent the DODs before the in-
terparticle phase separation occurs, while the lighter curves indicate the regions after
it occurs. The solid curve represents lithiation and the dashed curve delithiation.
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at which the interparticle phase separation is possible for lithiation and delithiation,

respectively. For lithiation, the concentration of the cell is indicated by the right end

of line (i) (21% DOD) while the corresponding concentration of the particle A must

be at the left end of line (i) (13% DOD). Therefore a composition difference of 8%

DOD is required in order for the interparticle phase separation to take place. The

interparticle phase separation could not occur at a cell DOD smaller than 21% since

the applied voltage below that composition is outside the inverted potential range of

the single-particle equilibrium potential. For delithiation, the initial concentration of

the cell is indicated by the left end of the line (iv) (64% DOD) and the concentration

of the lithiating particle by the right end of the line (41% DOD), therefore a com-

position difference of 23% DOD is required for the interparticle phase separation to

begin. By comparing lithiation to delithiation, the following is observed: First, the

DOD at which the interparticle phase separation can occur is farther away from the

spinodal points during delithiation compared to lithiation. Second, once the inter-

particle phase separation can occur, it also requires a larger concentration difference

in delithiation compared to lithiation. These two reasons make the concentration

overshoot in delithiation larger. However, phase separation within the particles, if

allowed, would diminish the concentration overshoot and the asymmetry between

lithiation and delithiation discussed above.

Now, we compare the critical concentration difference at different currents. Figure

3.10(b) shows the critical composition difference as a function of the cell DOD for the

three different applied currents for lithiation and delithiation. The curves are calcu-

lated based on the difference between the equilibrium potential and the theoretical

(de)lithiation voltage of the particles in the absence of interparticle phase separation,

as described above. Again, the difference between lithiation and delithiation origi-

nates from the activity dependence of i0. The darker curves indicate the ranges of the

cell DOD before the onset of the interparticle phase separation relevant for the simu-
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lations presented earlier, while the lighter curves indicate the theoretical calculations

beyond the onset of the interparticle phase separation. The right- and left-pointing

triangular markers on the blue and red curves indicate the points of onset of the

first interparticle phase separation in lithiation and delithiation, respectively. The

required composition difference increases as the loading current increases, and thus

the composition at which the interparticle phase separation can first occur deviates

farther from the spinodal points. As a consequence, a larger concentration overshoot

occurs with a higher current. Note that, even though the interparticle phase separa-

tion could occur at i = 20% i′0, it does not occur if the required composition difference

is not reached (as is the case in our simulation). Thus, the analysis provides only the

minimum overshoot required, not the actual overshoot. If the applied current is high

enough such that the cell voltage is outside the inverted potential range (where the

interparticle phase separation, i.e., full and empty particles, is favored), the interpar-

ticle phase separation will be suppressed, independent of the composition differences.

3.5.2 The determinant of the group size in lithiation

Having established qualitatively the relationship between the concentration overshoot

and the current, we now present an analysis to determine the fraction of particles re-

acting during each interparticle phase separation for a given concentration overshoot.

Note that this analysis is rate independent and in here the transport of the electrolyte

is assumed not to be a limitation. As previously described, during the interparticle

phase separation upon lithiation, the particles with a Li concentration in the spinodal

region (the “unstable particles”) redistribute Li with each other. By such redistri-

bution process, the particles reach either an almost fully lithiated or an almost fully

delithiated state. At the onset of the interparticle phase separation, the particles

outside the spinodal region (the “stable particles”) are only those that have already

undergone fast lithiation. Thus, we assume that the stable particles have a DOD
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of 100%. Given the DOD of the cell, DODcell, the average DOD of the unstable

particles, DODunstable, can be approximated from the expression

Nstable

Ntot

100% +
Nunstable

Ntot

DODunstable = DODcell, (3.8)

where Nstable, Nunstable and Ntot are the number of stable, unstable and total particles,

respectively. Next, we choose DODcell at which we can approximate the DOD of the

lithiating and delithiating particles. This point corresponds to the DOD at which the

voltage peaks occur. If several small peaks occur as part of one main interparticle

phase separation event, we take the latest one, as this is the point when concentration

can be best approximated. As illustrated in Sec. 3.4.1 (see Figs. 3.1(b) and (c)

point (iv)), at this DOD the lithiating particles are close to the higher spinodal

point (∼87% DOD). The actual location of the peak depends on the magnitude

of the applied current and the number of particles reacting. Due to the activity

dependence of i0, the voltage peak shifts to lower DODs at higher currents. However,

for simplicity in the calculation, we ignore this shift. The delithiating particles are

at a low concentration that we refer as DODLC (∼0% at the DOD of Fig. 3.1(b)

point (iv)). The concentration of the delithitated particles depends on the height of

the voltage peaks, as their equilibrium potential has to remain lower than the applied

voltage. DODLC is here approximated as the DOD at which the equilibrium potential

below the spinodal point is equal to the applied voltage.

The fraction of unstable particles that lithiate simultaneously in a given group

can be therefore approximated as

Ngroup

Nunstable

=
DODunstable −DODLC

DODHS −DODLC

, (3.9)

where Ngroup is the number of particles in the group, and DODHS the DOD of the

higher spinodal. Substituting Eq. (3.9) into Eq. (3.8), the fraction of particles that
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react simultaneously can be expressed as

Ngroup

Nunstable

=
NtotDODcell −Nstable −NunstableDODLC

Nunstable(DODHS −DODLC)
. (3.10)

The predictions from this analysis and from our simulations with an activity-dependent

i0 are provided in Table 3.1 for comparison. Note that this analysis could also be

used for lithiation with an activity-independent i0, and a similar analysis could be

performed for delithiation with an activity-independent i0. In the earlier groups (1st-

3rd in the case of i = 2% i′0 and 1st-2nd in the case of i = 5% i′0 ), the estimated

fractions are in good agreement with the simulations. However, in the later groups,

the estimates are less accurate. There are two primary reasons for this disagreement.

(1) The small number of remaining unstable particles limits the results of the fractions

in simulations, for example there are only two particles in the 5th group of i = 2% i′0

and therefore the resulting fraction can only take values of either 50% or 100%. (2)

Because of the smaller number of particles reacting in the later groups, those particles

undergo fast lithiation at a higher rate, which makes the shift of the voltage peak

larger. For example, the DOD at which the voltage peaks in the case of i = 2% i′0 for

the first group is ∼84% while for the last group is ∼64%. With the consideration of

this deviation, the calculated fraction of particles reacting in the last group increases

from 63% to 87%, which is closer to the fraction observed in the simulation.

3.5.3 Origin of the asymmetry in lithiation and delithiation
behavior

In this section, we elucidate the origin of the asymmetry of the interparticle phase

separation during lithiation and delithiation when the current is sufficiently low, ob-

served in Sec. 3.4.3. This asymmetry is a manifestation of a competition between two

processes that occur simultaneously: (1) an intermittent Li redistribution among the

particles and (2) a constant (de)lithiation of the cell due to the externally applied

voltage (which is varied to maintain the desired current). Which of these processes
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Applied Group Cell Predicted Fraction in
current number DOD fraction simulations

1st 26% 29% 31% (8/26)
2nd 51% 32% 33% (6/18)

i = 2% i′0 3rd 70% 39% 41% (5/12)
4th 87% 59% 71% (5/7)
5th 97% 63% 100% (2/2)
1st 40% 45% 46% (12/26)

i = 5% i′0 2nd 81% 73% 78% (11/14)
3rd 94% 57% 100% (3/3)

Table 3.1: Fraction of the unstable particles that react simultaneously obtained by
the calculation presented here, compared to the fraction observed in the simulations.

becomes dominant depends on the value of i0, the exchange current density.

To illustrate these two processes and the resulting dynamics, we conduct simula-

tions including only one of the processes. The insight gained is employed to facilitate

our understanding of the origin of the asymmetric dynamics. First, to analyze Li

redistribution among the particles without an applied current, we conduct a simula-

tion in which a cell is relaxed with a nearly uniform DOD of 22% (taken from the

partially lithiated cell with an activity independent i0 and i = 2% i′0, presented in Sec.

3.4.2; see Fig. 3.3(a)(i)). During the process of relaxation, a cell voltage is imposed to

maintain a zero net current through the current collectors. Shown in Fig. 3.11(a) is

the cell voltage during the relaxation. Throughout the relaxation, where five particles

reach a lithiated state and 21 particles a delithiated state, one primary sudden rise of

the voltage occurs as a consequence of changing the Li concentration of the particles

and their corresponding equilibrium potential. This shows a natural tendency for the

system to transit from an activated unstable state with partially lithiated particles to

a coexistence of lithium rich and lithium poor particles. Note that the shape of the

voltage rise and drop observed in relaxation is very similar to those observed during

lithiation at i = 2% i′0 with an activity independent i0.

Next, we focus on the effect of the applied current by prohibiting an opposing
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Figure 3.11: (a) Relaxation of a cell with a DOD of 22%. The light red curve
represents the voltage of the relaxed cell. The black curve indicates the voltage of the
lithiating cell at i = 2% i′0 where i0 is activity independent (corresponding to the data
shown in Fig. 3.6 in the range from 1% to 35% DOD). The light red asterisk indicates
the beginning of the relaxation of the cell. (b) Lithiation of the cell at i = 2% i′0
where i0 is activity independent and all the backflow fluxes from the particles to the
electrolyte are hindered. The light red curve indicates the voltage of the cell and the
black curve the single-particle equilibrium potential.

69



reaction (i.e., Li back-flow into the electrolyte during lithiation of the cell),

rLi =


rBVLi if rLi ≥ 0

0 if rLi < 0,

(3.11)

where rBVLi is the reaction rate defined by the Butler-Volmer equation (Eq. (2.37)).

The simulation is conducted at i = 2% i′0, and i0 is activity independent. The

resulting voltage response indicates that the rapid lithiation occurs one particle at

a time. We observe 26 sudden rises (and drops) of the voltage, corresponding to

the fast lithiation of the 26 particles; see Fig. 3.11(b). The process begins in the

same manner as the case when the back-flow is allowed (described in Sec. 3.4.2). The

lithiation increases the DOD of the particles nearly uniformly. Upon reaching the

concentration overshoot to trigger the first interparticle phase separation, the first

particle begins lithiating rapidly. However, because delithiation is prohibited here,

the current is a result of lithiation reaction only, which needs to be slower than the case

where delithiation accompanies the process. Thus, a higher voltage, which reduces

the lithiation reaction rate, is observed in Fig. 3.11(b). The peaks in this figure are

higher than those observed in Fig. 3.6. This larger voltage during fast lithiation

leads to a more rapid amplification of the concentration gradient and particle-to-

particle variation of the driving force for lithiation. This amplification causes the

“runaway” reaction of a particle and consequently a particle-by-particle interparticle

phase separation. The lithiation of the subsequent particle can only occur when the

rapidly lithiating particle is nearly fully lithiated and the cell voltage decreases to a

value below the equilibrium potential of the next particle. This process is repeated

and, as a result, the lithiation proceeds in a layer-by-layer manner.

With the background provided by the discussion of the two processes above, we

elucidate mechanisms that lead to the observed asymmetric dynamics in our simu-

lations for the case with the activity-dependent i0. During lithiation, the particles
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undergo interparticle phase separation in a group-by-group manner, similarly to the

case of an activity-independent i0 presented in Sec. 3.4.2. The dynamics of this

interparticle phase separation strongly resembles that of relaxation, showing that Li

redistribution is significant in this case. During the interparticle phase separation,

the delithiation of the particles is strongly facilitated by a “sufficiently large” value of

i0 for the particle DOD in the range between an almost fully delithiated state and the

onset of the interparticle phase separation. Here, we denote that i0 is sufficiently large

when the value for the particles toward delithiation is similar to or larger than that

toward lithiation, at the onset of the interparticle phase separation. In other words,

i0 must be large enough to facilitate delithiation during the lithiation process. Note

that this condition for i0 is met for the lithiation simulations in the previous sections

with both activity-dependent and activity-independent exchange current density, as

well as for delithiation with activity-independent i0; see Fig. 3.2. In those cases, Li

redistribution readily occurs and is the dominant mechanism for the dynamics of the

interparticle phase separation.

In contrast, the delithiation behavior for an activity-dependent i0, which shows

layer-by-layer dynamics, resembles the case of prohibited Li redistribution. At the

onset of interparticle phase separation upon delithiation, because the tendency for a

particle to lithiate when a neighboring particle delithiates is weak due to the value of

i0 (see Fig. 3.2), the Li redistribution is hindered. As a result, when a lithiated particle

undergoes fast delithiation and causes a voltage drop, other lithiated particles remain

at a fairly constant concentration close to the higher spinodal point, without returning

to the nearly fully lithiated state. The only exception is the initial interparticle

phase separation in which the concentration overshoot is larger and therefore some

redistribution occurs. The redistribution is kinetically hindered by the exchange

current density at a concentration close to the higher spinodal point. Thus, the fast

delithiation of a particle corresponds mostly to the constant extraction of Li out of the
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cathode without intermittent redistribution of Li between the particles. This results

in a layer-by-layer interparticle phase separation, similar to the simplified case where

no opposing reaction was allowed.

In summary, our analysis indicate that, because of the asymmetric function of ex-

change current density, Li redistribution is facilitated upon lithiation of the cell, while

redistribution is limited upon delithiation. This difference manifests as a group-by-

group interparticle phase separation during lithiation, a thermodynamically favored

behavior, and a layer-by-layer interparticle phase separation during delithiation, a ki-

netically controlled behavior. Note that, besides an asymmetric i0, other factors such

as an asymmetric equilibrium potential as the one presented by Malik et al. [19] or a

transfer coefficient with a value different from 0.5 also lead to asymmetric dynamics

[62].

3.6 Comparison to the Porous Electrode Model

In this section, we compare our results with those obtained by Ferguson and Bazant

using a porous electrode model [45]. For this comparison, the simulation parameters

in the porous electrode model were set effectively equal to those in our particle-level

simulation and the equations described below were used.

The porous electrode model used is in the pseudocapacitor limit. That is, trans-

port in the solid is fast compared to surface reactions and transport in the electrolyte.

For nanoparticles, this approximation is reasonable. This allows the concentration

profiles inside the particles to be neglected, and the particles can be treated as sink

terms. Since the model averages over the volume of the electrode, what is referred

to as a particle is actually a representative particle for that volume of the electrode,

and all solid particles inside that volume are assumed to behave the same. The
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accumulative Li concentration, Cp, can be determined by the reaction rate:

∂Cp
∂t

= ãvrLi. (3.12)

where t is time and ãv is the area to volume ratio of the particles. This equation

governs the lithiation of the particles and substitutes Eq. (2.5) and (2.6) of our model.

Here, 26 of these “particles” (i.e., volumes of particles) are considered within the

cathode.

The average porosity of the electrode, ε, defined as volume fraction of electrolyte

with respect to the total volume of the cathode, is used to obtain the effective dif-

fusivity and conductivity of the porous media via the Bruggeman empirical relation.

In a one-dimensional domain, the electrolyte concentration evolution is described by

ε
∂Ce
∂t

=
∂

∂z

(
εDamb

∂Ce
∂z

)
− (1− t+)ãprLi, (3.13)

where Damb is the ambipolar diffusivity, t+ is the transference number of the cation,

and ãp is the particle area to electrode volume ratio. Two primary differences between

this equation and the original equation (Eq. (2.55)) can be noticed. First, instead of

spatially resolving the electrolyte that fills the electrode, the electrolyte concentration

is averaged over the volume. Second, the particle surfaces are no longer explicitly

defined, and are replaced by a given value of particle surface area.

In order to express the current density, we also need to account for the porosity,

and therefore the original equation (Eq. (2.7)) is modified to include this factor,

i = −z+υ+F
[
F

RT
(z+D+ − z−D−)εCe

∂φe
∂z

+ (D+ −D−)ε
∂Ce
∂z

]
. (3.14)

where υ+ is the number of cations produced by the electrolyte dissociation, F is Fara-

day’s constant, and φe is the electrostatic potential of the electrolyte. Furthermore,

zi is the charge number and Di is the diffusivity of ith species. Lastly, the current
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continuity equation (Eqs. (2.8a)-(2.8b)) becomes

∂i

∂z
= rLiF ãp. (3.15)

Here, it is assumed that the reaction occurs throughout the entire porous electrode.

Detailed explanations of this model can be found in Ferguson and Bazant’s work [45].

The porous electrode models are computationally efficient and often capture the

dynamical nature of the charge and discharge process within a relatively simple de-

scription. However, the simplification leads to a disadvantage that they do not di-

rectly allow investigation of microstructural details and resulting effects since they

only consider average properties. Thus they require validation and examination of

the limit of applicability. Figures 3.7(a)-(f) show the comparisons between the porous

electrode simulation (dashed curves) and the SBM simulations (solid curves). The

two results are in remarkable agreement. They both capture the interparticle phase

separation events observed in the process, have a similar concentration overshoot

and predict different dynamics between lithiation a delithiation. However, there is a

small difference in the magnitude of the overpotential between the two simulations.

This difference leads to a disagreement between the later mosaic instabilities during

lithiation, and between the onsets of the first instabilities during delithiation. These

differences can be attributed to various approximations involved in each method. On

one hand, an artificial finite thickness is assigned to the particle-electrolyte interface

in the SBM, and on the other hand, several simplifications are taken in the porous

electrode model as described above. Both methods carry some degrees of small errors

that, at the end, leads to the disagreement. For the error analysis in the SBM, one

can find the information in the work of Yu et al. [2].

The above analysis demonstrates that the models from the two different length

scales accurately describe the same physical phenomenon of interparticle phase sep-

aration. Note that the agreement between the two models is partly due to the sim-
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plicity of the microstructure used here. These two models compliment each other:

The particle-level model allows us to study more detailed electrochemical dynamics

accounting for the complexity of microstructures [63], which would not be revealed

in a homogeneous porous electrode model. The porous electrode model allows us

to study much larger cells, such as those from a commercial battery, which is not

currently feasible with particle-level simulations.

3.7 Conclusion

In this chapter, we have investigated the behavior of an array of single-sized particles

that are not allowed to generate a phase boundary within a particle, despite the bulk

thermodynamic driving force to do so. Interparticle phase separation is observed when

the current is sufficiently low. Through analysis, the concentration overshoot was ex-

plained, and the group sizes of the interparticle phase separation were predicted.

Further careful examination elucidated the competition of two mechanisms: ther-

modynamic relaxation that leads to Li redistribution and to group-by-group phase

transformation, and kinetically induced layer-by-layer phase transformation. The

asymmetry between lithiation and delithiation is attributed to the exchange current

density model, appearing in the modified Butler-Volmer equation. We also com-

pared our simulation with the porous electrode model of Ferguson and Bazant [45],

which showed excellent agreement and provided further insights into the mechanism

underlying the lithiation/delithiation dynamics, resulting from the model.
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CHAPTER IV

INTERPARTICLE VS. INTRAPARTICLE

PHASE SEPARATION

4.1 Introduction

In this chapter, we study the interaction kinetics between nanoparticles. Both inter-

particle phase separation and intraparticle phase separation are examined. A com-

parison between these two types of interactions offers critical insights that can help

the experimental identification of the prevalent interaction that occurs in cells. In a

collection of particles with a wide size distribution, particles that remain monophasic

are likely to coexist with particles that undergo intraparticle phase separation be-

cause the tendency to suppress intraparticle phase separation is size dependent. If

the phase separation were suppressed by non-bulk thermodynamics, particles would

be expected to remain monophasic below a critical size, whereas particles would be

expected to phase separate within themselves above that size, independent of the

C-rate (or equivalently current density, in this context). In contrast, if the phase

separation is kinetically suppressed, this threshold would be C-rate dependent [20].

The precise phase-transformation path for nanoparticulate LiFePO4 has not yet been

identified, and the literature contains conflicting claims [12, 15, 14, 16, 13, 19].

To investigate the kinetics of the particle interactions, we simulate the lithiation of

a cell containing only two particles of different sizes. This simple configuration allows

us to clearly identify the details of the lithiation process, which would be difficult to

isolate if more particles were present. Here, a parametric study is conducted, in which
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we vary the interfacial energies to alter the tendencies of intraparticle phase separa-

tion. First, we investigate the dynamics of interparticle phase separation. Then, we

analyze that of intraparticle phase separation. Finally, we consider the special case

in which intraparticle phase separation is suppressed only in the smaller particle.

Even though the cell considered here is geometrically and microstructurally simple,

the resulting dynamics provide valuable insights that lead to better understanding of

multiparticle battery kinetics.

4.2 Model

The electrochemical model is here reduced to two coupled equations: (1) concentra-

tion evolution in the electrode particles and (2) reaction that occurs at the particle-

electrolyte interfaces. We assume that the particles are electronically well connected

via conductive coatings and additives, such that the electrostatic potential in the

particles, φp, is uniform throughout the particles. We also consider the electrolyte

concentration, Ce, and its electrostatic potential, φe, to be uniform. These assump-

tions are well justified because the size of the cell is very small.

To model the concentration evolution in the particles, we use the Cahn-Hilliard

equation (Eq. (2.3)), where the reaction rate serves as a boundary condition at the

particle-electrolyte interface (Eq. (2.6)). The gradient coefficient κ in Eq. (2.3), is

here a tensor as we consider anisotropic interfacial energies,

κ =


kx 0 0

0 ky 0

0 0 kz

 . (4.1)

The bulk chemical potential, µb, is obtained by a polynomial fit [38] of the single-
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particle equilibrium potential calculated from first principles [19],

−µb/F = {
[
5(1.02− 2.04Xp)

51 − 2.925275X2
p + 6.375071Xp − 2.558325

]
× 10−2}[V].

(4.2)

The variableXp represents the Li fraction in LixFePO4, which is defined asXp = Cp/ρ.

Note that, in this model, we neglect coherency strain because the purpose of this work

is to model the interaction between the particles – not the dynamics within a single

particle. However, qualitatively similar behavior would be expected if coherency

strain were included.

The electrochemical reaction rate for Li intercalation is modeled using the Butler-

Volmer equation (Eq. (2.37)). The overpotential at a point on an interface is defined as

η = ∆φ−φeq, where ∆φ = φp−φe, and φeq is the single-particle equilibrium potential.

Here, φeq = VOC − µp/F [45, 36, 38], with a reference value at the experimentally

measured open circuit voltage plateau, VOC = 3.42 V [29] measured with respect to a

Li metal anode. The resulting lower and upper spinodal points (the local minimum

and maximum of the single-particle equilibrium potential) are located at Xp = 0.05

and Xp = 0.93, respectively. The concentration range between the spinodal points

is referred to as the spinodal region. In the simulations, ∆φ corresponds to the cell

voltage as both the electrostatic potential in the particles and in the electrolyte are

assumed uniform and no other loss is considered. We impose the current loading by

an average constant current density, i, normalized by the total particle surface. Table

4.1 lists the parameters used in the simulations.

In the simulations, both particles are initially nearly fully delithiated. (For nu-

merical stability we select an initial Li site occupancy of 2%.) The diameters of the

smaller and larger particle are 40 nm and 70 nm, respectively. The two particles are

immersed in an electrolyte solution within the domain of 96 × 180 × 96 nm3, which

has a concentration of 1M. The particles are placed 80 nm apart, center-to-center

distance, at center positions (48 nm, 50 nm, 48 nm) and (48 nm, 130 nm, 48 nm).
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In this chapter, we employ a 2-nm grid spacing. The electrostatic potential differ-

ence between the electrolyte and the particles, set through the boundary conditions,

is adjusted to obtain the desired current. Even though we focus on the lithiation

process in this chapter, the dynamics observed during delithiation are qualitatively

similar. We employ the smoothed boundary method (SBM) [2, 36] to combine the

Cahn-Hilliard equation (Eq. (2.47)) with the reaction rate boundary condition (Eq.

(2.37)). We assume constant, isotropic mobility for simplicity.

Symbol Parameter Value
T Temperature 300 K
i0 Exchange current density 8.5× 10−7 A/cm2 [38]
ρ Interstitial site density 0.0228 mol/cm3

Dp Li diffusivity in the particles 5× 10−13 cm2/s [64, 65]
Mp Li mobility in the particles Dpρ/(RT )
κ Gradient energy coefficient varied; see text

Table 4.1: Parameters employed in the simulations in this chapter

We perform a parametric study on the interfacial energy penalty to analyze the

different transformation dynamics by varying κ. Smaller values of κ result in thin

interfaces (between Li-rich and Li-poor phases), intermediate values result in thicker

interfaces, and larger values result in suppressed intraparticle phase separation. We

set κ to be anisotropic to obtain a preferential phase separation in one direction,

as observed in LiFePO4. However, the detailed dynamics of the phase separation

is beyond the scope of this work, as we focus here on the interactions. While the

κ values in in this parametric study correspond to unrealistically large interfacial

thicknesses, we use them to control the phase separation behavior without affecting

other conditions such as the size of particles or kinetics. (The interfacial energy

per unit area, γ, of our simulations range from 9.04 × 10−6 J/cm2 to 8.08 × 10−5

J/cm2, while DFT calculated literature values are in the range of 7× 10−7 J/cm2 to

1.15× 10−5 J/cm2 for the different crystal orientations [66].) It should also be noted
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that coherency strain may contribute to the suppression of phase separation, and

therefore the large κ may be thought to account for such effect in an approximate

manner. In an experimental study, one would instead change the particle size, as it is

not possible to increase the interfacial thickness. We refer the reader to the existing

literature for the dynamics of phase transformation in individual particles [43, 42, 66].

4.3 Results

4.3.1 Interparticle phase separation

We first analyze the process of interparticle phase separation, in which intraparticle

phase separation is fully suppressed. For this purpose, we select the value for κ of

κx = 1.66× 10−10 J/cm (corresponding to interfacial energy per unit area, γ, of γx =

3.6×10−5 J/cm2 [67]), and κy = κz = 8.32×10−10 J/cm (γy = γz = 8.08×10−5 J/cm2),

which suppresses phase separation in both particles. The effective interfacial thickness

in this case is 44 nm, which under the kinetic conditions examined, suppresses phase

separation. We examine three values of applied current (i) i = 6% i0, (ii) 18% i0, and

(iii) 54% i0 which correspond to (i) C/12.5, (ii) C/4.17 and (iii) C/1.39.

We first examine the i = 6% i0 case. Snapshots of the particles’ concentration

evolution and their corresponding depth of discharge (DOD) during lithiation for this

case are presented in Figs. 4.1 and 4.2(a), respectively. Note that the horizontal axis in

Fig. 4.2(a) is the cell DOD, which is linearly related to time because of the constant

current condition. Both particles are initially at a DOD of 2% (Fig. 4.1(a)). The

smaller particle lithiates faster than the larger particle because of its greater surface

area per volume. Shortly after the DOD of the smaller particle exceeds the lower

spinodal point, the particle rapidly transitions to a nearly fully lithiated state (Fig.

4.1(b) and 4.1(c)). During the fast lithiation of the smaller particle, Li is extracted

from the larger particle. After the smaller particle is nearly fully lithiated, the larger

particle begins a steady lithiation (Fig. 4.1(d)), extracting a small amount of Li from
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the smaller particle, until the completion of its lithiation. This lithiation process

is facilitated by interparticle phase separation, during which one particle undergoes

a rapid transformation to the lithiated state and extracts lithium from the other

particle, resulting in a sequential transformation of the particles.

y 

z  

x 

(a) (b) (c) (d)

Figure 4.1: The concentration evolution during lithiation with i = 6% i0 for the case
where intraparticle phase separation is suppressed. Four snapshot are shown at four
different times at which the DOD is equal to (a) 2% (initial configuration), (b) 4%,
(c) 14%, and (d) 70%. The colors represent x in LixFePO4 according to the color bar
on the right, red and blue corresponding to the fully lithiated and delithiated states,
respectively. The dimensions of the cell are shown in (a).

To explain the behavior of the system, we examine the voltage of the cell. The cell

voltage of the process is shown in Fig. 4.2(b) curve (i) for the case of i = 6% i0, along

with the equilibrium potential of the particles (curves (ii) and (iii)). In Fig. 4.2, we

denote three different regimes with different shades: “stable + stable” (darker blue),

“unstable + stable” (gray), and “unstable + unstable” (lighter blue). These regimes

indicate the combination of the state of the two particles. We define a stable particle

as a particle with a concentration outside the spinodal region, and an unstable par-

ticle as one with a concentration within the spinodal region. We refer to the states

in this manner because as an unstable particle lithiates, its driving force for lithia-

tion increases and the lithiation accelerates if ∆φ remains constant. This is not the

case for a stable particle, for which the driving force decreases as it lithiates. At the

beginning of the process, both particles are stable (“stable + stable” zone 1 in Fig.

4.2(b)). When the smaller particle exceeds the lower spinodal point, fast lithiation
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begins because the driving force for Li intake increases due to the non-monotonic

shape of the single-particle equilibrium potential (“unstable + stable” zone 2, not

marked in the figure). Shortly after, the larger particle also exceeds the lower spin-

odal and becomes unstable (“unstable + unstable” zone 3). However, the smaller

particle is more lithiated by then and has much larger driving force for lithiation

than the larger particle. Thus, the smaller particle supplies all of the current. The

cell voltage rises such that the larger particle has a driving force for delithiation. The

Li released by the larger particle into the electrolyte is absorbed by the smaller par-

ticle, generating an interparticle flux. The larger particle delithiates until it returns

to a stable state (“unstable + stable” zone 4). A large sudden increase of the voltage

occurs as a response to the increasing equilibrium potential of the smaller particle

with increasing Li concentration. When the smaller particle reaches the upper spin-

odal, both particles become stable (“stable + stable” zone 5). Thus, the voltage

decreases to compensate for the decreasing equilibrium potentials with increasing Li

concentrations at this stage. When the larger particle lithiates and becomes unsta-

ble (“unstable + stable” zone 6), the voltage begins to increase in response to the

increasing equilibrium potential of the larger particle. In the meantime, the smaller

particle remains stable and undergoes a small partial delithiation. When the larger

particle reaches a nearly fully lithiated state (“stable + stable” zone 7), the smaller

particle resumes lithiation. The process completes when both particles become fully

lithiated.

The voltage behavior in Fig. 4.2(b) can be explained as follows. The results

show a sudden increase or decrease in the voltage when one of the particles enters

or exits the spinodal region and thus changes from a stable to an unstable state or

vice versa. When both particles are stable or both are unstable, the cell voltage is

determined by the combination of the driving forces for the insertion on both particles.

Conversely, when one particle is stable and the other is unstable, the voltage is set
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approximately by the driving force required to apply current to the unstable particle.

The overpotential required for the cell lithiation at the given current is primarily

provided by the difference between the cell voltage and the equilibrium potential

of the unstable particle because |η unstable particle| >> |η stable particle|. For the stable

particle, which can be either nearly fully lithiated or delithiated, its concentration

evolves only by a small amount to maintain its equilibrium at the cell voltage. Thus,

it tends to have an equilibrium potential nearly equal to the applied voltage. The

steep slope of the voltage outside the spinodal region allows the stable particle to

remain near equilibrium with the unstable one through small changes in its DOD.

The above description can be clearly observed from the overlap between the cell and

the larger particle voltage curves in the “unstable + stable” zones in Fig. 4.2(b).

We present two schematics to illustrate the interparticle phase separation. For

this purpose we first define the “inverted potential range.” The inverted potential

range is the voltage range between the local minimum and the local maximum of the

single-particle equilibrium potential, as plotted in Fig. 4.3. Lithium redistribution

can only occur when the potential difference between the particle and the electrolyte,

∆φ = φp−φe, is in the inverted potential range, such that one particle has a positive

overpotential while the other has a negative overpotential. Figure 4.3(a) schematizes

a scenario in which this criterion is met, leading to the interparticle phase separation.

In contrast, Fig. 4.3(b) schematizes the scenario where ∆φ is not in the inverted

potential range and both particles have a driving force for lithiation. As noted earlier,

∆φ is equal to the cell voltage because the electrostatic potentials of the particles and

electrolyte are assumed to be uniform. At the rate of i = 6% i0, the cell voltage enters

the inverted potential range at nearly the lower spinodal point; see Fig. 4.2(b) curve

(i). In this case, the difference between the applied voltage and the single particle

equilibrium potential is small. Thus, the difference in Li concentration between the

spinodal point and the onset of the interparticle phase separation (i.e., when the
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FIG. 2: Particle concentration evolution and cell voltage when intraparticle phase separation is

prevented for (a) & (b) i = 6% i0, (c) & (d) i = 18% i0, and (e) & (f) i = 54% i0. Legends for

the curves are noted in subfigure (a) for (a), (c) and (e) and in subfigure (b) for (b), (d) and (f).

Color shades are denoted in subfigure (a) for (a)-(f) and indicate the states of the particles: ‘‘stable

+ stable’’ (darker blue), ‘‘unstable + stable’’ (gray), and ‘‘unstable + unstable’’ (lighter blue).

(g) Voltage evolution for the three current conditions simulated, each plotted for two different

governing equations for concentration evolution: the Cahn-Hilliard equation (solid) and Fick’s Law

of diffusion (with markers). This verifies that two dynamics yield nearly identical results.

Figure 4.2: Particle concentration evolution and cell voltage when intraparticle phase
separation is prevented for (a) & (b) i = 6% i0, (c) & (d) i = 18% i0, and (e) &
(f) i = 54% i0. Legends for the curves are noted in subfigure (a) for (a), (c) and (e)
and in subfigure (b) for (b), (d) and (f). Color shades are denoted in subfigure (a)
for (a)-(f) and indicate the states of the particles: “stable + stable” (darker blue),
“unstable + stable” (gray), and “unstable + unstable” (lighter blue). (g) Voltage
evolution for the three current conditions simulated, each plotted for two different
governing equations for concentration evolution: the Cahn-Hilliard equation (solid)
and Fick’s Law of diffusion (with markers). This verifies that two dynamics yield
nearly identical results.
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larger particle begins partial delithiation) is also small. The difference between these

two concentrations has been referred as the “concentration overshoot” and analyzed

extensively in Chapter II.
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Figure 4.3: A schematic representing the criteria for interparticle phase separation.
(a) When the cell voltage falls inside the inverted potential range, one particle can
have a driving force to lithiate (marked with a green circle) while the other particle
can have a driving force to delithiate (marked with a blue circle), as illustrated in
this figure. (b) When the cell voltage falls below the inverted potential range, both
particles have a driving force to lithiate.

We examine the particle interactions in response to the magnitude of the applied

current by imposing two additional different rates: (ii) i = 18% i0 and (iii) i = 54% i0

in addition to (i) i = 6% i0 studied above. Figure 4.2(c) shows the DOD of the

particles for case (ii). At this rate, the larger overpotential increases the DOD at

which the voltage enters the inverted potential range (Fig. 4.2(d) curve (i)) and

consequently increases the concentration overshoot. When the smaller particle begins

fast lithiation, the larger particle has undergone substantial lithiation. Thus, the

larger particle cannot release enough lithium to return to a stable concentration and

remains unstable. Unlike case (i), the equilibrium potential of the larger particle does

not follow the applied voltage during the fast lithiation of the smaller particle because

the larger particle remains unstable during this process (“unstable + unstable” zone

85



in Fig. 4.2(d)). Consequently, a large, sudden change (increase or decrease) of the

voltage does not occur, and both particles transform simultaneously. Instead, only

a small voltage drop is observed, reflecting that the smaller particle becomes stable

(beginning of “unstable + stable” zone, DOD ∼25%). Figures 4.2(e) and 4.2(f) show

the DOD and cell voltage for case (iii), where the larger particle does not undergo any

partial delithiation during the process. In this case, the overpotential is sufficiently

large that the cell voltage barely enters the inverted potential range prior to the

lithiation of the smaller particle, thus preventing the interparticle phase separation

(Fig. 4.2(f) curve (i)). At these two rates, it can be considered that the particles

undergo a simultaneous transformation. As rate increases, the lithiation is more

dominated by the case schematized in Fig. 4.3(b) as opposed to the case in Fig.

4.3(a).

We now provide a validation demonstrating that Fick’s diffusion can be a good

approximation for scenarios in which intraparticle phase separation is suppressed. In

Chapters III and V, where much larger computational domains are employed, Fick’s

diffusion is used to approximate the Cahn-Hilliard equation with large κ. We per-

formed this approximation because larger stable time steps can be used when solving

for Fick’s diffusion, reducing the computational costs. Here, we compare the re-

sults when the Cahn-Hilliard equation (Eq. (2.47)) is replaced with Fick’s diffusion

equation (Eq. (2.5) or Eq. (2.46) in its SBM form), which is computationally more ef-

ficient. Figure 4.2(g) compares the voltages calculated with the Fick’s approximation

and the Cahn-Hilliard equation. The markers in Fig. 4.2(g) indicate the results of the

simulations using Fick’s diffusion, while the solid curves indicate the Cahn-Hilliard

simulation results. The two results show excellent agreement. For the given κ the

maximum difference is 0.5%. We do not include the resulting particle DODs because

the curves overlap each other.
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4.3.2 Intraparticle phase separation

We now analyze the dynamics in which the particles undergo intraparticle phase

separation. For this purpose, κ is set to be κx = 1.04× 10−11 J/cm (γx = 9.04× 10−6

J/cm2) and κy = κz = 5.20 × 10−11 J/cm (γy = γz = 2.02 × 10−5 J/cm2). These

parameters result in a phase separation in the y-z plane with a thickness of 11 nm.

We first describe the concentration evolution of the particles at i = 6% i0, shown

in Fig. 4.4. Some locations of the smaller particle reach the lower spinodal point

before any region of the larger particle because of its larger area per volume. At this

time, the smaller particle undergoes intraparticle phase separation; see Fig. 4.4(a).

During the two-phase lithiation of the smaller particle, the larger particle is partially

delithiated and then remains inactive in a Li-poor phase. The partial delithiation of

the larger particle indicates the presence of an interparticle flux. The Li-rich phase

in the smaller particle then grows until the particle is nearly fully lithiated; see Fig.

4.4(b). Afterwards, the larger particle re-lithiates via a two-phase lithiation process;

see Fig. 4.4(c). The Li-rich phase grows in the larger particle until it becomes fully

lithiated. This behavior is consistent with the domino-cascade model described in

Ref. [13].

(a) (b) (c)

Figure 4.4: The concentration evolution during lithiation with i = 6% i0 for the case
in which intraparticle phase separation occurs in both particles. Three snapshots are
shown at three different times at which the DOD is equal to (a) 10%, (b) 20%, and
(c) 70%. The colors represent x in LixFePO4 according to the color bar on the right,
red and blue corresponding to the fully lithiated and delithiated states, respectively.

As previously described, the two particles exhibit a sequential lithiation. We refer
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to the cell voltage to explain the process in detail. Curve (i) in Figs. 4.5(a) and

4.5(b) shows the DOD of the larger and the smaller particle, respectively, and curve

(i) in Fig. 4.5(c) shows the voltage response. When the local concentration of the

smaller particle reaches the spinodal point, nucleation of the Li-rich phase occurs

and the voltage increases (point (1) in Fig. 4.5(c) inset). During the lithiation of the

smaller particle, the voltage remains at a value higher than the value corresponding

to the lower spinodal (the local minimum in the equilibrium potential), preventing

nucleation in the larger particle. (Figure 4.6 schematizes the lithiation via a two-

phase process.) The voltage further increases when the two Li-rich domains in the

smaller particles start to contact each other (between Fig. 4.4(a) and 4.4(b) and point

(2) in Fig. 4.5(c) inset). During the merging of the two Li-rich domains and after

the smaller particle becomes monophasic, the voltage response of the cell is similar

to that of a solid solution. A voltage drop follows when the smaller particle reaches

the upper spinodal. At this point, the larger particle undergoes intraparticle phase

separation, resulting in a flat voltage during the growth of the two Li-rich domains

and in a voltage increase when the Li-rich domains contact each other.
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the cell voltage to explain the process in detail. Curve (i) in Figs. 5(a) and 5(b) shows the

DOD of the larger and the smaller particle, respectively, and curve (i) in Fig. 5(c) shows the

voltage response. When the local concentration of the smaller particle reaches the spinodal

point, nucleation of the Li-rich phase occurs and the voltage increases (point (1) in Fig. 5(c)

inset). During the lithiation of the smaller particle, the voltage remains at a value higher

than the value corresponding to the lower spinodal (the local minimum in the equilibrium

potential), preventing nucleation in the larger particle. (Figure 6 schematizes the lithiation

via a two-phase process.) The voltage further increases when the two Li-rich domains in the

smaller particles start to contact each other (between Fig. 4(a) and 4(b) and point (2) in Fig.

5(c) inset). During the merging of the two Li-rich domains and after the smaller particle

becomes monophasic, the voltage response of the cell is similar to that of a solid solution. A

voltage drop follows when the smaller particle reaches the upper spinodal. At this point, the

larger particle undergoes intraparticle phase separation, resulting in a flat voltage during

the growth of the two Li-rich domains and in a voltage increase when the Li-rich domains

contact each other.
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FIG. 5: Concentration evolution and cell voltage at different currents for the case of intraparticle

phase separation in both particles. (a) & (b) DOD of the larger particle and the smaller particle,

respectively. (c) Cell voltage; the beginning of curve (i) is magnified in the inset. Three rates are

shown: (i) i = 6% i0 (red dotted curve), (ii) i = 18% i0 (green dashed curve), and (iii) i = 54% i0
(blue solid curve).

As in the last section, we also simulate the lithiation processes at higher currents, (ii)

i = 18% i0 and (iii) i = 54% i0. The DOD of the particles and the voltage are shown

in Fig. 5. At these two C-rates, we observe that nucleation of the Li-rich phases in both

particles occurs almost simultaneously. The larger overpotentials resulting from the higher

Figure 4.5: Concentration evolution and cell voltage at different currents for the case
of intraparticle phase separation in both particles. (a) & (b) DOD of the larger
particle and the smaller particle, respectively. (c) Cell voltage; the beginning of curve
(i) is magnified in the inset. Three rates are shown: (i) i = 6% i0 (red dotted curve),
(ii) i = 18% i0 (green dashed curve), and (iii) i = 54% i0 (blue solid curve).
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Figure 4.6: A schematic representing the criteria for intraparticle phase separation.
(a) In order for a Li-rich phase to be nucleated, a voltage value lower than the lower
spinodal point is required. (b) Once a particle is phase separated, the cell voltage
can fall inside the inverted potential range and maintain its overall driving force for
lithiation. The circles denote the state of a phase in terms of the DOD and the
equilibrium potential. The squares denote the equilibrium potential for composition
over the interface (without accounting for the energy penalty term).

As in the last section, we also simulate the lithiation processes at higher currents,

(ii) i = 18% i0 and (iii) i = 54% i0. The DOD of the particles and the voltage are

shown in Fig. 4.5. At these two C-rates, we observe that nucleation of the Li-rich

phases in both particles occurs almost simultaneously. The larger overpotentials re-

sulting from the higher C-rates and the faster dynamics of the lithiation processes

causes the larger particle to phase separate before a voltage increase due to the phase

separation in the smaller particle prevents it. Thus, the two particles lithiate simul-

taneously, as can be inferred from the monotonic increase of particle DOD vs. the cell

DOD in Fig. 4.5(a) and (b). In both case (ii) and (iii), the smaller particle completes

lithiation at an approximate cell DOD of 50% because of its larger area per unit

volume compared to that of the larger particle. We observe that the voltage increases

when the Li-rich domains in the smaller particle come into contact with each other;

thus, the smaller particle transitions from a two-phase state to a single-phase state.
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The larger particle continues reacting until it becomes nearly fully lithiated, similarly

causing a voltage increase at the end of its lithiation when the Li-rich domains contact

each other. Both curves (ii) and (iii) in Fig. 4.5(c) exhibit two voltage plateaus. The

first plateau is determined by the intraparticle coexistence of the Li-rich and Li-poor

phases in the two particles [5]. The second plateau is an indication of the coexistence

of the two-phase larger particle and the single-phase smaller particle. The slight pos-

itive slope can be attributed to the increase in the reactive interfacial area as a result

of the growth of the Li-rich phase (for the assumed geometry), which a requires a

reduction in the overpotential to maintain a constant current.

We conclude that the general dynamics of the two-phase lithiation described here

is similar to the case in which intraparticle phase separation is suppressed. Figure

4.7, overplots the results from Fig. 4.2 and Fig. 4.5 for i = 6% i0 and i = 54% i0.

At low C-rates, particles transform sequentially, whereas the sequential transforma-

tion is suppressed at high C-rates. However, there are some differences between the

two cases. The most distinguishable difference is that, in the intraparticle phase-

separation case, the cell voltage is flat instead of being curved (Fig. 4.7(c)), which

is expected for a two-phase growth during the lithiation of the individual particles

[5]. Even though both cases have a simultaneous lithiation of the two particles at

i = 54% i0, the intraparticle phase separation yields more uniform reaction over the

two particles, resulting in faster (slower) lithiation of the larger (smaller) particle in

comparison to the interparticle phase-separation case (Fig. 4.7(b)). This is because,

during the simultaneous two-phase lithiation process, (1) the two particles are closer

to being in equilibrium with each other and (2) the particles follow a lower free en-

ergy path (accessible due to the lower interfacial penalty of this case). Consequently,

the particles experience a more similar driving force for lithiation compared to that

experienced by monophasic particles with different DODs. For this same reason, be-

cause the particles can attain equilibrium easily the interparticle flux observed here
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is smaller. However, these differences do not result in qualitative differences in the

overall dynamics.
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constant current.

We conclude that the general dynamics of the two-phase lithiation described here is

similar to the case in which intraparticle phase separation is suppressed. Figure 7, overplots

the results from Fig. 2 and Fig. 5 for i = 6% i0 and i = 54% i0. At low C-rates, particles

transform sequentially, whereas the sequential transformation is suppressed at high C-rates.

However, there are some differences between the two cases. The most distinguishable

difference is that, in the intraparticle phase-separation case, the cell voltage is flat instead of

being curved (Fig. 7(c)), which is expected for a two-phase growth during the lithiation of

the individual particles [12]. Even though both cases have a simultaneous lithiation of the

two particles at i = 54% i0, the intraparticle phase separation yields more uniform reaction

over the two particles, resulting in faster (slower) lithiation of the larger (smaller) particle in

comparison to the interparticle phase-separation case (Fig. 7(b)). This is because, during

the simultaneous two-phase lithiation process, (1) the two particles are closer to being in

equilibrium with each other and (2) the particles follow a lower free energy path (accessible

due to the lower interfacial penalty of this case). Consequently, the particles experience a

more similar driving force for lithiation compared to that experienced by monophasic particles

with different DODs. For this same reason, because the particles can attain equilibrium

easily the interparticle flux observed here is smaller. However, these differences do not result

in qualitative differences in the overall dynamics.
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FIG. 7: Concentration evolution and cell voltage at different currents comparing the interparticle

phase separation (solid curves) and the intraparticle phase separation (dashed curves) cases at

i = 6% i0 (red curves) and i = 54% i0 (blue curves). (a) & (b) DOD of the larger particle and the

smaller particle, respectively. (c) Cell voltage.

Figure 4.7: Concentration evolution and cell voltage at different currents comparing
the interparticle phase separation (solid curves) and the intraparticle phase separation
(dashed curves) cases at i = 6% i0 (red curves) and i = 54% i0 (blue curves). (a) &
(b) DOD of the larger particle and the smaller particle, respectively. (c) Cell voltage.

4.3.3 Combined intraparticle and interparticle phase separa-
tion

We explore the last case in this study, where the cell contains one particle with

intraparticle phase separation and the other with intraparticle phase separation sup-

pressed. The values of κx = 4.16× 10−11 J/cm (γx = 1.81× 10−5 J/cm2), κy = κz =

2.08× 10−10 J/cm (γy = γz = 4.04× 10−5 J/cm2), are used for this case. This set of

values effectively suppresses intraparticle phase separation in the smaller particle but

not in the larger particle. The thickness of the interface is 22 nm in the y-z plane.

The concentration evolution for this case at i = 6% i0 is shown in Fig. 4.8. As in

the other two cases, the smaller particle lithiates faster than the larger one initially

due to its larger area per volume. As described in the interparticle phase separation

case discussed earlier, there is a concentration overshoot before the interparticle phase

separation can occur (i.e., a difference between the spinodal point and the onset of

the interparticle phase separation). However, in this case, before the smaller particle
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can begin interparticle phase separation, the larger particle undergoes intraparticle

phase separation, as intraparticle phase separation can occur as soon as some regions

of the larger particle reach the spinodal point; see Fig. 4.8(a). The smaller particle

partially delithiates when the larger particle nucleates the-Li rich phase and remains

delithiated during the lithiation of the larger particle. The larger particle continues its

two-phase lithiation process until it is nearly fully lithiated; see Fig. 4.8(b). After it

reaches a concentration above the upper spinodal point, the smaller particle lithiates

via a solid solution; see Fig. 4.8(c).

(a) (b) (c)

Figure 4.8: The concentration evolution during lithiation with i = 6% i0 for the case
in which intraparticle phase separation is suppressed in the smaller particle. Three
snapshots are shown at three different times at which the DOD is equal to (a) 30%,
(b) 84%, and (c) 90%. The colors represent x in LixFePO4 according to the color bar
on the right, red and blue corresponding to the fully lithiated and delithiated states,
respectively.

We now describe the voltage response. Figure 4.9 shows the DOD of the two

particles (curve (i) in Fig. 4.9(a) and 4.9(b)) and the voltage of the cell (curve (i)

in Fig. 4.9(c)). The voltage response of the cell differs significantly from those in

the last sections (curves (i) in Figs. 4.2(g) and 4.5(c)), which can be understood

as the consequence of the inverted order of reaction of the particles; i.e., the larger

particle reacts first. A flat voltage plateau in the cell DOD between ∼15% and ∼50%

represents the two-phase lithiation of the larger particle. Then, an increase in the

voltage is observed as a response to the merging of the two Li-rich domains in the

larger particle. This increase in the voltage lasts for a larger fraction of the cell

DOD because the interfaces contact each other earlier as a consequence of the thicker
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interface (caused by the larger value of κx in this case). After the concentration in the

larger particle reaches the upper spinodal, the voltage decreases, allowing the smaller

particle to lithiate. The voltage increases around a DOD of ∼85% without a plateau

as a response to the monophasic lithiation of the smaller particle. The latter part of

curve (i) in Fig. 4.9(c) resembles the earlier part of curve (i) in Fig. 4.2(g), and the

earlier part of curve (i) in Fig. 4.9(c) is reminiscent of the latter part of Fig. 4.5(c)

curve(i).
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(curve (i) in Fig. 9(a) and 9(b)) and the voltage of the cell (curve (i) in Fig. 9(c)). The

voltage response of the cell differs significantly from those in the last sections (curves (i) in

Figs. 2(g) and 5(c)), which can be understood as the consequence of the inverted order of

reaction of the particles; i.e., the larger particle reacts first. A flat voltage plateau in the cell

DOD between ⇠15% and ⇠50% represents the two-phase lithiation of the larger particle.

Then, an increase in the voltage is observed as a response to the merging of the two Li-rich

domains in the larger particle. This increase in the voltage lasts for a larger fraction of the

cell DOD because the interfaces contact each other earlier as a consequence of the thicker

interface (caused by the larger value of x in this case). After the concentration in the larger

particle reaches the upper spinodal, the voltage decreases, allowing the smaller particle to

lithiate. The voltage increases around a DOD of ⇠85% without a plateau as a response to

the monophasic lithiation of the smaller particle. The latter part of curve (i) in Fig. 9(c)

resembles the earlier part of curve (i) in Fig. 2(g), and the earlier part of curve (i) in Fig.

9(c) is reminiscent of the latter part of Fig. 5(c) curve(i).
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FIG. 9: Concentration evolution and cell voltage at different currents for the case of intraparticle

phase separation only in the larger particle. (a) & (b) DOD of the larger particle and the smaller

particle, respectively. (c) Cell voltage. Three rates are shown: (i) i = 6% i0 (red dotted curve), (ii)

i = 18% i0 (green dashed curve), and (iii) i = 54% i0 (blue solid curve).

As in the last sections, we also analyze the lithiation processes at (ii) i = 18% i0 and

(iii) i = 54% i0 (Fig. 9). At the current of i = 18% i0, the sequential transformation of

the particles (the larger one followed by the smaller one) still prevails. As can be seen in

curve (ii) in Fig. 9(b), a larger partial delithiation of the smaller particle (and thus a larger

interparticle flux) is observed than at i = 6% i0 (case (i)). The voltage response for this case

is very similar to that for case (i), but with a larger overpotential. At a current of i = 54% i0

Figure 4.9: Concentration evolution and cell voltage at different currents for the case
of intraparticle phase separation only in the larger particle. (a) & (b) DOD of the
larger particle and the smaller particle, respectively. (c) Cell voltage. Three rates are
shown: (i) i = 6% i0 (red dotted curve), (ii) i = 18% i0 (green dashed curve), and
(iii) i = 54% i0 (blue solid curve).

As in the last sections, we also analyze the lithiation processes at (ii) i = 18% i0

and (iii) i = 54% i0 (Fig. 4.9). At the current of i = 18% i0, the sequential trans-

formation of the particles (the larger one followed by the smaller one) still prevails.

As can be seen in curve (ii) in Fig. 4.9(b), a larger partial delithiation of the smaller

particle (and thus a larger interparticle flux) is observed than at i = 6% i0 (case (i)).

The voltage response for this case is very similar to that for case (i), but with a larger

overpotential. At a current of i = 54% i0 (case (iii)), simultaneous lithiation occurs.

As in the other higher-rate cases, the smaller particle lithiates faster than the larger

particle due to its larger surface area per volume. In this case, the voltage response
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is similar to curve (i) in Fig. 4.2(f), with the exception that a small voltage plateau

appears (from ∼50% to ∼60% in the cell DOD), corresponding to the two-phase state

of the larger particle after the small particle reaches the upper spinodal.

4.4 Discussion

As previously mentioned, whether nanoparticulate phase-separating materials (such

as LiFePO4) react through interparticle phase separation, intraparticle phase separa-

tion, or a combination of both remains a topic of debate. We have here shown that all

of these three cases give rise to particle interactions via Li redistribution at sufficiently

low currents. The dynamics resulting from the three cases are qualitatively similar.

Specifically, (1) one particle can delithiate as the other particle undergoes rapid lithi-

ation, (2) this leads to interparticle flux, and (3) the voltage can suddenly change to

maintain constant current. However, there are two main differences between them.

The first difference is the voltage of the cell, and the second is the order of reaction of

the particles. As previously known [5], the intraparticle phase separation is marked

with plateaus in the voltage curve, while the interparticle phase separation is accom-

panied by a continuous increase in the voltage followed by a rapid increase. The

order in which the particles react can vary depending on the phase-transformation

path: if all particles in a cell can internally phase separate, or instead cannot phase

separate and remain monophasic, the smaller particle would lithiate first. However,

in a cell with some particles that phase separate internally and others that remain

monophasic, this order may be reversed.

These differences are important because they can be exploited to identify the ac-

tual phase-transformation path occurring in a physical system. While the voltage

responses are distinct for the three cases in a two-particle configuration (or other

configurations with few particles), such fluctuations are averaged out in a cell with

many particles. Therefore, it is not possible to differentiate the phase-transformation
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path based on the voltage. However, the order in which particles react may provide a

tool for differentiating the mixed case, i.e., that contains both (presumably smaller)

particles that do not phase separate within themselves as well as (presumably larger)

particles that can internally phase separate. Experiments can be designed to exam-

ine the lithiation behavior of systems containing particles with various distributions

of sizes at low currents. If larger particles lithiate before nearby smaller particles,

it is an indication that the system is a mixture of particles that phase transform

via intraparticle phase separation and those that phase transform via interparticle

phase separation. The particle size at which this transition occurs may indicate the

critical particle size at which the phase-transformation path changes. However, it is

important to note that a small monophasic particle might still react before a large

phase-separating particle if their sizes are significantly different.

The presence of both interparticle and intraparticle phase separation (along with

interparticle connectivity [38]) may help explain the lack of an obvious order of re-

action of the particles observed in the experiments of Chueh et al. [11]. However,

as will be discussed in Chapter V, for a strong particle-size dependence to prevail,

adequate ionic and electronic connectivities through the electrolyte and electron-

conducting phase, respectively, are required. Additionally, direct contact between

particles should be avoided as they would provide an alternative, non-electrochemical

transport path for Li. These conditions are not usually met in working cells. There-

fore, the cells used in experiments that aim to identify the critical particle size must

be constructed carefully to yield these conditions.

The work in this chapter demonstrates that the qualitative results observed in our

previous studies on the dynamics of many-particle systems [38, 36], which assume that

particles remain monophasic, apply to cases where all particles undergo intraparticle

phase separation. However, it also shows that the dynamics would change quantita-

tively and qualitatively when the system contains both two-phase and monophasic
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particles.

4.5 Conclusion

We explored phase-separation kinetics in a cell containing two nanoparticles that ex-

hibit a tendency to phase separate. In particles that do not undergo intraparticle

phase separation, we have identified the relationship between cell voltage and the

concentration of both particles. A particle with a concentration within the spinodal

region (i.e., an “unstable” particle) has a stronger effect on the voltage than a particle

outside the spinodal region (i.e., a “stable” particle). In the three scenarios studied

in this chapter, a sequential lithiation was observed at low currents, whereas a si-

multaneous transformation was observed at higher currents. In cells containing only

particles that phase separate or only particles that remain monophasic, the smaller

particles react first during a sequential transformation process. However, the order in

which the particles phase transform can be reversed in cells containing one particle

that phase separates and another that remains monophasic. In such a case, which

could arise if the smaller particle is sufficiently small to prevent phase-boundary for-

mation within it while the larger particle is large enough to nucleate a second phase,

the larger particle tends to transform before the smaller particle during a sequen-

tial transformation. When sequential lithiation occurs through either intraparticle

or interparticle phase-separation mechanisms, a partial delithiation accompanied by

interparticle flux emerges. Interparticle fluxes will result in internal resistive losses,

higher local currents, and additional particle expansion-contraction cycles [38], which

are undesirable for battery applications.
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CHAPTER V

THE CONNECTIVITY DEPENDENCE OF

PARTICLE INTERACTIONS

5.1 Introduction

In this chapter we demonstrate the impact of cell architecture (in terms of ionic

and electronic connectivities between active particles) and cycling rate on the multi-

particle (de)lithiation kinetics. Specifically, the connectivity between particles is

shown to have a strong effect on the interparticle phase separation. We show that

interparticle phase separation can be reduced or eliminated by improving (“homoge-

nizing”) the connectivity between particles.

With an eye toward both understanding the dominant mechanisms that contribute

to inhomogeneous charging/discharging at the electrode scale and identifying prac-

tical methods to address them, we develop a model that describes Li redistribution

between particles during the charge/discharge process in two different electrode ar-

chitectures. These two architectures correspond to nanoparticle agglomerates (often

observed in nanoparticulate electrodes [68, 21, 69]) of different densities: a dilute

agglomerate and a dense agglomerate. These two constructions are illustrated in

Fig. 5.1(a). The first architecture (Fig. 5.1(a)(i)) consists of active particles coated

and “wired” with electronically and ionically conducting material, providing excellent

electrical connectivity to the current collector and ionic connectivity to the electrolyte.

Furthermore, the coating prevents any direct contact among active particles. This

architecture is hereafter referred to as the configuration with “homogeneous connec-

97



tivity.” In the second architecture (Fig. 5.1(a)(ii)), no or partial coating/wiring leads

to direct contacts of active particles in clusters, which provides an additional path

for Li transport. In addition, electrical and ionic connectivities are reduced and the

electrostatic potential of the particles may become inhomogeneous (the consequence

of which is not considered here as discussed later). This architecture is referred to

as the configuration with “heterogeneous connectivity.” Similar to the work of Kang

and Ceder [70], the nanoparticles considered here have an average size (diameter) of

∼50 nm. We choose simulation parameters specific to simulate charging/discharging

a network of different-size LiFePO4 (LFP) nanoparticles, a commercial cathode ma-

terial known for both its high-rate performance [9, 70, 71] and its thermodynamic

tendency to phase separate [72, 73].

To elucidate the contribution associated with the connectivity of the particles, we

consider two separate cell architectures. First, we investigate a dilute configuration

with homogeneous connectivity. This corresponds to an idealized electrode config-

uration where the particles are completely separated from each other by embedded

electronic conductors. In this case, Li can only be redistributed via a reaction by

which the resulting ionic Li and electrons are transported through the electrolyte

and the electronic conductors, respectively. As it will be shown later, in this ideal

case, the lithiation/delithiation processes of individual particles are nearly indepen-

dent of their position with respect to other particles, as well as the separator and

current collector. This is because the electrolyte concentration is nearly constant

throughout the small domain considered here (∼300 nm in length) due to the fast

Li-ion transport in the electrolyte and the relative high porosity of the two cell con-

structions. Figure 5.1(a)(i) shows a schematic representation of this architecture and

Fig. 5.1(b) a transmission electron microscopy (TEM) image of well-spaced particles.

Second, we analyze a configuration with heterogeneous connectivity, a more realistic

electrode configuration representative of a dense agglomerate of particles. In hetero-
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(i) Homogeneous
connectivity

(ii) Heterogeneous
connectivity

(a) (b)
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Figure 5.1: (a) Schematics of two different possible Li redistribution mechanisms: (i)
In the case with homogeneous connectivity, Li is transported through the electrolyte
(and electrons through conductive carbon black or carbon-coating) to be redistributed
from one particle to another. (ii) In the case with heterogeneous connectivity, Li can
be directly transported between abutting particles. The electrostatic potential of the
particles may become inhomogeneous due to poor electronic connectivity, which is
not considered here. (b) Transmission electron microscopy (TEM) image of a sample
where the particles are perfectly coated and not in direct contact between each other,
corresponding to case (i). (c) TEM image of particles in possible direct contact
between each other corresponding to case (ii). Figures (b) and (c) obtained from Ref.
[3].

geneously connected particles, there is a spatial preference in the order of reaction of

the particles caused by the direct contact between particles and electrostatic potential

inhomogeneities. Here, we model the heterogeneous connectivity solely by the direct

transport between particles. Explicitly tracking the electronic conductors network

and solving for the electrostatic potential of the conductors and particles is beyond

the scope of this work. However, it is important to note that inhomogeneities in the

voltage would lead to more inhomogeneity in the lithiation of the particles than what

we report here. Figure 5.1(a)(ii) shows a schematic representation of the configuration

with heterogeneous connectivity and Fig. 5.1(c) a TEM image of heterogeneously con-

nected particles. The direct contact between the particles facilitates a redistribution
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of Li via the contact area, driven simply by a transport process (dependent on the

chemical potential difference between the contacting particles) through a permeable

boundary. In this configuration the dynamics is “local-environment dependent” be-

cause contacting particles are strongly coupled through direct transport rather than

the weaker electrochemical interactions. The direct transport can be physically inter-

preted as a “shortcut” path because it allows Li to move from one particle to another

without an electrochemical reaction.

Direct Li transport between LFP particles has not been studied before in the

literature as a mechanism for Li redistribution. However, there is substantial evidence

for its existence via analyzing the ionic conductivity of electrode constructions of bare

pristine LFP (without electrolyte nor additives). For example, in the work of Wang

and Hong [74], the ionic conductivity of a pristine LFP cathode was measured to be

in the range of 10−5 S/cm (equivalent to an ionic diffusivity of 10−10 cm2/s). In such

constructions, the Li transport in the cathode is limited to the direct Li transport

between the particles, as there is no driving force for electrochemical reactions.

5.2 Model

To include direct transport between particles, we add a boundary condition to the

original formulation of Li transport in the particles and, consequently, modify the

smoothed boundary method (SBM) form of the equations.

5.2.1 Original formulation

To describe the physics that govern an electrochemical cell, we employ the four cou-

pled equations introduced in Chapter II: concentration evolution in the (1) cathode

particles and (2) electrolyte, (3) current continuity in the electrolyte, and (4) the

reaction at the electrode-electrolyte interface.

The concentration evolution in the cathode particles is described using Fickian
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diffusion to approximate non-equilibrium solid-solution Li diffusion (Eq. (2.5)) with

a reaction boundary condition at the particle-electrolyte interface (Eq. (2.6)). In

addition, at the particle-particle boundary Ap, present only in the dense agglomerate,

we add a boundary condition to account for direct Li transport,

~ni,jp · J =
ρ

RT
P (µp,j − µp,i) ∈ Ap, (5.1)

where ~ni,jp is the unit normal vector from particle j to particle i at the contact in-

terface, P is the permeability of the interface, and µp,i and µp,j are the chemical

potentials of the two particles in contact. Periodic boundary conditions are assumed

for the box boundaries. The governing equations and boundary conditions for the

concentration (Eqs. (2.8a) and (2.8b)) and electrostatic potential (Eqs. (2.18) - (2.20))

of the electrolyte are the same as those introduced previously.

The Butler-Volmer equation (Eq. (2.37)) is used to model the reaction rate rLi.

For simplicity, here, we assume that i0 is independent of the cathode concentration,

i0 = i′0

√
Ce
C0
e

, (5.2)

where i′0 is the experimentally measured exchange current density and C0
e is the

concentration at which i′0 is experimentally measured. The chemical potential, µp, is

obtained from a first principles calculation [19]. The polynomial used to define the

chemical potential is

−µp/F = −µb/F =

{
[
5(1.05− 2.1Xp)

51 − 2.925275X2
p + 6.375071Xp − 2.558325

]
× 10−2}[V],

(5.3)

where Xp corresponds to the site fraction of Li in LixFePO4.

Due to the small size of the electrochemical cells considered herein, the electro-

static potential and concentration gradients of the electrolyte are small; therefore, we

do not describe those results. For the same reason, we express the observed dynamics
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in terms of the applied voltage of the cell instead of the local potential difference

across the interface (∆φ) because these two values are fairly similar.

5.2.2 Smoothed boundary method

We modify the SBM to define the particles using more than one domain parameter,

which is required to consider direct transport between particles in the dense agglom-

erate because a domain parameter interface between contacting particles is necessary.

We refer to the different “i” domains as ψi and to the sum of all domains as ψT . In

the dilute electrode with no direct transport between particles, the 65 particles are

defined using one parameter, ψi=1 = ψT . Alternatively, for the dense agglomerate,

the 200 particles are described by five domain parameters such that the neighboring

particles are defined by distinct domain parameters.

The SBM formulation of our governing equations is given below. For the dilute

agglomerate, only one concentration variable, Cp,i=1, is used to represent the Li con-

centration in the particles because the particles only include one domain in this case.

For the dense agglomerate, five concentration variables, Cp,i, are evolved with their

corresponding domain parameters, according to

∂Cp,i
∂t

=
Dp

ψi
[∇ · ψi∇Cp] +Wr,i

|∇ψi|
ψi

rLi,i +
∑
j 6=i

Wp,i
|∇ψi|
ψi

ρ

RT
P (µp,j − µp,i), (5.4)

which combines Eq. (2.5) with the two boundary conditions for the reaction (Eq. (2.6))

and interparticle flux (Eq. (5.1)). Here, rLi,i is the reaction rate for particle i, and

Wr,i and Wp,i are the reaction and interparticle flux weighting factors, respectively,

[2], which are defined as

Wr,i =

(
|∇ψi||∇ψT |∑Ndom

j=1

∑Ndom

k=j+1 |∇ψj||∇ψk|+
∑n

j=1 |∇ψj||∇ψT |

)β

, (5.5)

Wp,i =

( ∑
j 6=i |∇ψi||∇ψj|∑Ndom

j=1

∑Ndom

k=j+1 |∇ψj||∇ψk|+
∑Ndom

j=1 |∇ψj||∇ψT |

)β

, (5.6)
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where Ndom is the number of domain parameters and β is the weighting factor expo-

nent [2]. These weighting factors identify the two types of boundaries: the particle-

electrolyte and particle-particle boundaries. Note that, for the dilute electrode, the

third term on the right-hand side of Eq. (5.4) vanishes, Wr,i = 1 at all electrolyte-

particle interfaces, and the original SBM equation is recovered (Eq. (2.46)).

For the electrostatic potential in the electrolyte, Eq. (2.52) is reformulated to

consider the multiple reaction rates from the multiple particle domain parameters,

∇·[(1−ψT )
F

RT
(z+D+−z−D−)Ce∇φe] =

Ndom∑
i=1

Wr,i|∇ψi|
rLi,i
υ+

+∇·[(1−ψT )(D−−D+)∇Ce],

(5.7)

where the electrolyte domain is represented by 1 − ψT = 1. For the concentration

evolution of the electrolyte, Eq. (2.55) is reformulated in a similar manner,

∂Ce
∂t

=
Damb

1− ψT

[
∇ ·
(

(1− ψT )∇Ce
)]
− (1− t+)

Ndom∑
i=1

Wr,i
|∇ψi|

1− ψT
rLi,i. (5.8)

Note that, Eqs. (5.7) and (5.8) reduce to Eqs. (2.52) and (2.55), respectively, for a

dilute electrode.

5.3 Parameters

The parameters employed in the simulations are summarized below. The diffusivities

of Li in the particles and of the electrolyte are assumed constant. In the particles, Li

diffusivity is set to be Dp = 5× 10−13 cm2/s, which is comparable to those found in

literature [64, 65]. While larger values have also been reported [75, 76], Dp here is large

enough to result in a nearly uniform Li concentration within the cathode particles at

the applied currents imposed in this study, and thus, the results would not depend

significantly on this parameter. We take LiPF6 salt in a propylene carbonate solvent

as the electrolyte solution, where the diffusivities of the ions are taken to be D+ =

7.3 × 10−7 cm2/s and D− = 1.5 × 10−6 cm2/s for Li+ and PF−6 , respectively. These
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values of the ionic diffusivities were measured for the electrolyte at a concentration

of 1 M (mol/L) [77], which is the average electrolyte concentration of the electrolyte

solution assumed. We take the permeability of the particle-particle interface, P ,

to the conservative value of 1 × 10−7 cm/s. This value is equivalent to 5 × 10−14

cm2/s if an interfacial thickness of 5 nm is assumed, and it is approximately one

order of magnitude smaller than the bulk diffusivity of the particle. Simulations are

performed for a temperature, T , of 300 K. The site density, ρ, is estimated from

the lattice constants to be 0.0228 mol/cm3 [14], and VOC of 3.42 V is adopted from

an experimental value [29]. The exchange current density, i′0, is set to 8.5 × 10−7

A/cm2. This value was obtained by scaling the experimentally obtained value [60]

by a factor of 200 in order to account for the difference between the actual particle

surface area and the macroscopic cathode surface area at which it was measured [20].

For the electrostatic potential, as mentioned earlier, we assume that it is uniform

throughout the particles. The value of 0.8 is used for β appearing in the weighing

factors, which is a numerical parameter that represents processes near three-phase

boundaries optimally [2]. The discretization and numerical methods can be found in

Chapter II; in this chapter h = ∆x = ∆y = ∆z is set to 2.5 nm.

5.4 Simulation Configuration

5.4.1 Dilute electrode

The dilute electrode consists of 65 particles in a 320 × 320 × 300 nm3 volume and fea-

tures a region of approximately 30 nm at the bottom without particles, corresponding

to the separator. The configuration is depicted in Fig. 5.2(a). This agglomerate has a

volume fraction of 22% active particles. We assume a log-normal distribution of the
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particle radii shifted by b, namely with the following probability density function:

fa,σ,b,β̃(r) =


1

σ̃(r−b)
√
2π

exp

(
− [ln((r−b)/β̃)−a]2

2σ̃2

)
if r > b

0 if r ≤ b,

(5.9)

where r is the particle radius (in nanometers), a = 1, σ̃ = 0.2, b = 5 nm, and β̃ = 7.5

nm. The particle radii range from approximately 18.7 nm to 35 nm.

(a) (b) (c) (d)

Anod
e

Curren
t coll

ecto
r

Separator

A

B

Figure 5.2: Li lattice-site-fraction (0 = FePO4, 1 = LiFePO4) during discharge at
C/11.1 in the dilute agglomerate formed by 65 particles. (a) Initial concentration,
2% cell depth of discharge (DOD). (b) At 43% cell DOD. (c) At 71% cell DOD. (d)
Two randomly selected particles labeled Particle A and Particle B used for discussion
in the text. In (a), the locations of the cathode current collector, separator and anode
are indicated.

The domain parameter for each particle ψ̃j is created using a hyperbolic tangent

function:

ψ̃j = 1− 1

2

[
tanh

( |~x− ~xj0| − rj
ξ

)
+ 1

]
, (5.10)

where ~x denotes position, and ~xj0 and rj are the center position and the radius of

particle j, respectively. The variable ξ is the interface thickness controlling parameter

and is set to 5∆x/7 in order to obtain an interface thickness of approximately three

grid points. A cutoff value, ι, is applied to the domain parameter:

ψ̃j =


1 if ψ̃j > 1− ι

ψ̃j if ι ≤ ψ̃j ≤ 1− ι

0 if ψ̃j < ι.

(5.11)
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The parameter ι is set to 5 × 10−3. The particles are randomly placed throughout

the cell with a constraint that the particles do not contact each other. The particle

domain parameters are summed to create a unique domain parameter,

ψ =
Ntot∑
j=1

ψ̃j. (5.12)

5.4.2 Dense electrode

We generate a dense agglomerate with 200, closely packed particles, which are al-

lowed to be in contact with nearby particles. In this cell, the active particle volume

fraction was 52%. The simulation volume (for both the cathode and separator) and

particle size distribution were the same as that used for the dilute electrode. Because

the particles are allowed to be in contact with other particles, additional steps are

necessary to create the domain parameter for the agglomerate.

We first create a voxelated domain parameter for each particle in which the domain

parameter ψ̃j is set to a value of one inside the particle and a value of zero outside

the particle,

ψ̃j =


1 if dj ≤ rj

0 if dj > rj.

(5.13)

The centers of the particles are randomly located throughout the cell. The overlap

between two particles (where more than one ψ̃j equals one) is limited to 20% of the

volume of any single particle. For the regions that overlap, we consider a given grid

point to belong to only one particle. The criterion for assigning an order parameter

at a given point is the distance inwards from the surface (i.e., the order parameter

with the greatest distance is selected). The domain parameters of the 200 particles,

ψ̃j, are grouped into five domain parameters, ψj. The grouping is performed such

that the contacting particles do not belong to the same domain parameter. The five
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domain parameters are added to obtain ψT :

ψT =

Ndom∑
j=1

ψj. (5.14)

Once the five domain parameters are defined, we smooth the domain parameters

using the three-step procedure proposed by Yu et al. [63]. We first apply the Allen-

Cahn phase field method to evolve the domain parameters. The Allen-Cahn equation

quickly removes sharp interfaces and smooths the interfaces. The equations take the

following form:

∂ψ

∂t
= −µ(ψ) + εA∇2ψ, (5.15a)

where εA is the gradient energy coefficient (set to 0.6) and µ(ψ) is a non-monotonic

polynomial function:

µ(ψ) = 2ψ(1− ψ)(1− 2ψ). (5.15b)

We apply the Allen-Cahn equation to the particles independently (different ψ̃j) and

to the total electrode domain parameter (ψT ) to smooth the particle-particle and

particle-electrolyte boundaries, respectively. We perform five iterations to ψT and

ten iterations to 200 ψ̃j with ∆t = 0.1. The Allen-Cahn equation can produce a non-

uniform thickness at the interface. Thus, we use the level set method initialization

as a second step.

To generate a more uniform interface thickness, we use the reinitialization tech-

nique from the level set method, in which a distance function is calculated. The

distance function Φ is defined as the distance from each grid point to the closest

interface; the distances inside a particle are considered negative, and the distances

outside the particle are positive. The interfaces are defined as the points where Φ = 0.

To initialize the distance function, we first set it to Φ = −1 in the particles (where

ψj = 1), to Φ = 1 in the electrolyte (where ψj = 0), and to an interpolated value
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−1 < Φ < 1 at the interfaces. We then evolve the distance function [78]:

∂Φ

∂t
= S(Φ)(1− |∇Φ|), (5.16)

where

S(Φ) =
Φ√

Φ2 + |∇Φ|2h2
. (5.17)

We apply 100 iterations for each of the five domain grouped parameters, ψj, with h

set at 1.6× 10−2 and ∆t at 1.6× 10−3.

Finally, we use a hyperbolic tangent function to convert from the distance function

back to the domain parameter:

ψj = 1− 1

2

(
tanh

(
Φ

ξ

)
+ 1

)
, (5.18)

where ξ is set to 0.89h. Figure 5.3 shows the domain parameters after the smoothing

process. The figure illustrates the five domain parameters ψi and the sum of the

five different domain parameters ψT separately and in different colors. As shown in

the figure, the particles in the same domain parameter are not in contact. Both the

particle-particle and particle-electrolyte interfaces.

5.5 Results

We simulate the electrochemical process based on the two aforementioned configura-

tions: a dilute electrode and a dense electrode. These configurations represent the case

of homogeneously and heterogeneously connected particles, respectively. We present

the results for the dilute electrode, followed by the results for the dense electrode.

An analysis for both configurations is then presented. The simulation configurations

were chosen to facilitate comparison to experimental measurements of LFP composite

electrodes.
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Figure 5.3: Five domain parameters (ψ1, ψ2, ψ3, ψ4, ψ5) used to model the dense
agglomerate and their sum, (ψT ). We do not allow contact between particles in the
same domain parameter.

5.5.1 Dilute electrode (with homogeneous connectivity)

The dilute electrode is an idealized scenario with optimal ionic and electronic connec-

tivity. Results from the dilute electrode simulations serve two purposes. The first is

to remove the effect of the heterogeneous connectivity to gain a general understanding

of the lithiation of a multi-particle assembly of phase-separating active particles. Sec-

ondly, this configuration serves as the ideal case in terms of the electrode performance

as will be shown later.

Figure 5.2 illustrates how lithiation proceeds in a dilute electrode at the lowest rate

of discharge considered (C/11.1 rate) at three different snapshots with respect to cell

depth of discharge (DOD). As previously mentioned, during the cathode lithiation,

two distinct processes occur simultaneously within the cathode: a constant flux of Li

ions into the cell and Li redistribution among active particles. The snapshots highlight

that the majority of the particles are in either a Li-rich or a Li-poor state during the
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entire process, and only a small population of the particles is at an intermediate

concentration at any time. For instance, Particle A (highlighted in Fig. 5.2(d)) is

nearly fully delithiated when the cell is at 43% DOD but is nearly fully lithiated by

the time the cell is at 71% DOD, and Particle B is nearly fully lithiated by 43% DOD.

The inhomogeneous lithiation of the particles observed at this current is caused by

the Li redistribution between particles, which is more rapid than the overall lithiation

of the cell. There is no obvious spatial dependence as to which particles transform in

which order, but there is an obvious size-dependent correlation as seen in Fig. 5.4.

The Li content across the entire particle size distribution is shown as a function

of cell discharge (at three increasing discharge rates) in Figs. 5.4(a)-(c). Particles are

ordered from smallest to largest along the y-axis, the x-axis is the cell DOD, and the

color indicates the DOD of the individual particles. The Li concentration evolution

in two randomly chosen particles (labeled Particle A and Particle B in Fig. 5.2(d))

is shown in Figs. 5.4(d)-(f). The overall trend, regardless of rate, is that smaller

particles transform before larger ones. This is caused by the larger surface area to

volume ratio of the smaller particles as Li intake is proportional to the area, and the

particle capacity is proportional to the volume. Thus, the smaller particles reach the

concentration instability (or spinodal point) that accelerates further Li insertion into

the particle before the larger particles. (Note that the tendency for smaller particles

to lithiate before larger ones would be reinforced if the equilibrium potential were

assumed to be particle-size dependent [79, 80].)

In the zero current limit, it has been proposed that discharging an assembly of

particles with a non-monotonic single-particle equilibrium potential results in dis-

crete (sequential) transformation [5]. On the other hand, in the high-rate limit, the

magnitude of the applied potential exceeds the difference between the values of the

equilibrium potential corresponding to the two concentration instability points, and

thus Li insertion would homogeneously distributed among all particles assuming uni-
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Figure 5.4: (a)-(c) DOD of the particles during discharge arranged from smaller
diameter to larger (a) at C/11.1 rate, (b) at C/3.7 rate, and (c) at C/1.2 rate.
The color indicates the DOD of the particles from blue (fully delithiated) to red
(fully lithiated) as shown in the color bar. (d)-(f) Particle A and particle B during
discharge at the same three C-rates. The red portion of the curves indicates the partial
delithiation/re-lithiation cycles caused by the particles interactions. The delithiation
events seen in (f) are very small and undetectable in this figure (but are noted in
red). Note that the y-axis in (d)-(f) is not in linear scale.
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form electrostatic potential [1, 20]. In Fig. 5.4(a)-(c), the transition between these

two limits can be clearly seen. At the lowest rate, lithiation proceeds group-by-group

as observed in Fig. 5.4(a), where there are clearly four groups that transform in se-

quence. At intermediate rate, shown in Fig. 5.4(b), there are two identifiable groups

transforming sequentially, and at higher rates (Fig. 5.4(c)) most of particles trans-

form simultaneously (although smaller particles still transform first). Therefore, as

the discharge rate is reduced, the fraction of particles concurrently involved in phase

transformation becomes smaller. Consequently, the entire current of the cell must be

sustained by a smaller fraction of the particles in the cell. This notion is opposite of

what is understood for solid solution systems where the distribution of current over

the cell would be homogenized by decreasing the discharge rate.

Several particles exhibit non-monotonic lithiation behavior, partially delithiating

before re-lithiating during the course of a single cell discharge, as observed in Figs.

5.4(d)-(f) for Particle A and Particle B. Depending on the rate, each particle within

the cell may undergo multiple (partial) delithiation/re-lithiation cycles within a sin-

gle cycle of a cell, resulting in a significantly higher local rate. Thus, the lithiation

process of individual particles is very different from the average across the entire cell.

For instance, Particle A in Fig. 5.4(d) (C/11.1 rate) undergoes two Li concentra-

tion fluctuations, the first at a cell DOD of ∼20% in which the particle delithiates

approximately 6%, and the second at ∼40% DOD, in which the particle delithiates

approximately 11%. Particle A, for example, undergoes an additional ∼0.17 cycle

(highlighted in red). The amplitude of the oscillation of the particle DOD is larger

when the particles are near the lower spinodal while the concentration of the particles

remains nearly constant when the particles are nearly fully lithiated. At higher rates,

however, the effects of interparticle Li transport and interparticle phase separation

become negligible as homogeneous Li insertion dominates (as discussed earlier). Ac-

cordingly, Particle A and Particle B undergo less (partial) delithiation/re-lithiation
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cycles (i.e., fewer and smaller red regions in Figs. 5.4(e)-(f) than in Fig. 5.4(d) as well

as smaller associated concentration drop).

In Fig. 5.5, the cell voltage curve is shown at three different discharge rates along

with the single-particle equilibrium potential (solid black curve) and the “single-

particle voltage” (dashed curve) superimposed for comparison. The single-particle

voltage describes the behavior of an average-size single particle discharging at the

same rate. It represents an unphysical scenario where the particles are identical, and

are perfectly connected to the counterelectrode (ionically) and to the current collector

(electrically) but not to other particles, which prevents the system’s free energy from

reducing through interparticle Li redistribution. This curve illustrates the scenario

where all particles transform simultaneously and independently. Consequently, the

characteristic flat voltage profile associated with LFP electrodes is not observed in

this scenario, and only when interparticle phase-separation occurs (i.e., through in-

terparticle Li redistribution) a voltage plateau emerges. At C/11.1 rate (Fig. 5.5(a)),

the voltage curve strongly resembles the multi-particle equilibrium curve described by

Dreyer et al. [5] in which all particles are either nearly fully lithiated or delithiated.

In this case, there are four distinct undulations in the voltage which correspond to

the four groups of particles transforming in sequence as described earlier, with regions

of decreasing voltage corresponding to the interparticle phase separation. As rate in-

creases, the number of undulations (and therefore the number of groups of particles)

reduces. At C/3.7 (Fig. 5.5(b)), two undulations are observed, and at C/1.2 (Fig.

5.5(c)) all particles react in one group. At C/1.2, a larger overpotential is required

to maintain the constant current, resulting in an increased deviation from the single-

particle voltage, but as particles react concurrently, the shape of the curve appears

similar to the single-particle voltage. In all the three cases, the difference between

the two (cell and single-particle voltage curves) arises from the combination of the

effects of the size distribution and of the Li redistribution between particles.
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Figure 5.5: Cell voltage (colored solid line) during the discharge of the dilute electrode
at (a) C/11.1, (b) C/3.7, and (c) C/1.2 rates. For comparison, the single-particle equi-
librium potential (solid black line) and the potential of a single average-size particle
would experience at the same rate (dashed colored line, see text) are also plotted.

The interactions in homogeneously connected particles occur only when the cur-

rent is sufficiently low. As previously mentioned, in this type of connection, Li redis-

tribution only occurs via an electrochemical reaction. Thus, redistribution is limited

to the case when the applied potential falls between the local minimum and the local

maximum of the equilibrium potential, referred as the inverted potential range (see

Fig. 5.6(a)). As illustrated in Fig. 1.10, for significant redistribution to occur, some

particles need to have a driving force to lithiate and some to delithiate, which can only

occur in this region. Outside of the inverted potential range, all the particles have

a driving force for lithiation (except for small concentration fluctuations, as shown

in Fig. 5.4(f), noted by the red portions of the curve). When discharging the cell

at C/11.1 and C/3.7, the applied potential falls inside the inverted potential range

and thus significant redistribution is observed. However, when discharging at C/1.2,

this is no longer the case for most of the process and the driving force for redistri-

bution is no longer present. A schematic of the different regimes for cell behavior in

homogeneously connected particles is shown in Figs. 5.6(a) and (b)(i). Figure 5.6(b)

tabulates the cell behavior that is observed depending on whether the applied voltage

is in or outside the inverted potential range.
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Figure 5.6: (a) Schematic of the applied potential for different scenarios during cell
discharge. (b) Cell behaviors observed (assuming the applied potential approximates
∆φ). (i) For homogeneously connected particles, redistribution via reaction only oc-
curs when the applied voltage is inside the inverted potential range (applied potential
A). When the applied potential is outside the inverted potential range (applied po-
tential B), only lithiation can occur. (ii) For heterogeneously connected particles,
additionally, redistribution via direct transport can occur at any current.

As DOD increases, the cell potential deviates further from the single-particle volt-

age because, as some particles complete their transformation, fewer particles must

sustain the same cell current density, effectively increasing the local rates. The par-

ticles react less uniformly due to the dispersion of the particle size. At C-rates at

which the interactions are suppressed, it is more efficient to have a small dispersion

in particle-sizes because the magnitude of the overpotential for all particles would be

similar at all DODs. At lower currents, where Li redistribution occurs, the electrode

should be designed to reduce interparticle Li redistribution since it is a dissipative

mechanism that leads to energy loss and the free energy reduction that results from

interparticle phase separation decreases the efficiency of the cell.

115



5.5.2 Dense electrode (with heterogeneous connectivity)

As mentioned earlier, the dilute electrode configuration represents an idealized sce-

nario where there is a homogeneous connectivity between active particles. To better

understand the behavior of a more realistic electrode configuration, we use the dense

electrode presented above. Here, we introduce an additional mechanism that facil-

itates Li redistribution between particles when they are in contact with each other

(described in detail in the Model Section). Thus, this configuration corresponds to

a heterogeneous network that better represents the electrode architecture of a real-

istic composite electrode in which agglomeration of nanoparticles results in particle-

particle contacts.

(a) (b) (c)

Figure 5.7: Li lattice-fraction in the dense agglomerate composed of 200 particles
plotted here during discharge at 1 C-rate. (a) Initial condition with cell DOD = 2%,
(b) cell DOD = 43%, and (c) cell DOD = 71%.

Overall, increased particle density and preferential Li redistribution between neigh-

boring particles leads to more sequential (discrete) lithiation for a given rate and gen-

erally poorer cell performance, as compared to the dilute configuration. In Fig. 5.7,

the arrangement of Li within the cell is shown at three different snapshots in time

during a single discharge cycle at 1C. The inhomogeneity in Li distribution across

the cell is readily seen in Fig. 5.7(b), with the majority of particles either nearly fully

lithiated or fully delithiated. This is similar to the case where the dilute electrode

particles transform sequentially. However, in a dense agglomerate this behavior per-
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sists at higher rates. For instance, in the dilute electrode, the case with C/1.2 rate

shows nearly simultaneous lithiation (Fig. 5.4(c)), while in the dense agglomerate

sequential lithiation prevails at 1 C-rate. In the dilute electrode simulations, there is

no obvious spatial dependence as to which particles transform after another. In these

cases, the order of lithiation is controlled only by the particle size, which changes the

surface area to volume ratio of a particle. However, in the dense agglomerate, the

order of reaction depends on two factors: First is the ratio between active surface

area (i.e., particle-electrolyte interface) and volume of the particle. Second is the

active surface area to volume ratio of neighboring particles in direct contact with the

particle. (This dependence and the amount of Li redistribution also depends on the

crystal alignment of the contacting particles due to the strong anisotropic diffusivity

of LFP [75]; however this is not considered here.) For example, if two particles are

in contact, the lithiation of the particle with the larger active surface area to volume

ratio will be facilitated as it will extract Li from the other particle. Note that active

surface area to volume ratio is correlated to the size of the particles; however, the

correlation decreases as the contact between particle increases. The influence of cell

architecture on battery performance is here apparent as the spatial arrangement of

the particles affects the active surface area to volume ratio and the connectivity of

the particles.

The individual DOD of the 200 particles ordered by active surface area to vol-

ume ratio is given in Fig. 5.8 for three different scenarios. Figure 5.8(a) shows the

DOD of the particles during discharge at 1C. The tendency of particles with larger

active surface area to volume ratio transforming early is less apparent due to the

heterogeneous connectivity in the dense agglomerate. It is also observable that the

transformation of the individual particle occurs in a very short period in comparison

with the discharge of the cell. Increasing the discharge rate to 10C does not alter this

trend; see Fig. 5.8(b). The sequential lithiation behavior still prevails at this rate; the
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only difference with respect to Fig. 5.8(a) is that each transformation takes a larger

fraction of cell discharge time (as indicated by broader transition between blue and

red in Fig. 5.8(b) for each particle). For a direct measurement of the effect of hetero-

geneous connectivity, we perform an analysis of a dense agglomerate discharged at

1C in which the direct redistribution is prohibited (i.e., we artificially homogenize the

connectivity). This could correspond to a case in which all particle-particle contacts

are not permeable or have a low permeability to Li (e.g., by the presence of carbon

coating blocking the contact area). The DOD of the particles resulting from this case

is shown in Fig. 5.8(c). When the particles are homogeneously connected, the order of

reaction of particles depends only on their active surface area to volume ratio (similar

to the dilute electrode cases).

(a) (b) (c)

Figure 5.8: DOD of the particles arranged by active surface area to volume ratio
during discharge. At (a) 1C and (b) 10C with heterogeneous connectivity. (c) At 1C
with homogeneous connectivity.

The cell voltage curves of the dense agglomerate electrode configuration discharged

at the two rates considered (1C and 10C) are shown in Fig. 5.9. Superimposed on
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each plot are the single-particle equilibrium potential (black solid curve), the voltage

curve when the connectivity is homogenized (dashed curve), and the single-particle

voltage (dotted curve). The cell voltage for the case with heterogeneous connectivity

is slightly lower than that for the case with homogeneous connectivity. This is because

heterogeneous connectivity enhances interparticle phase separation, dissipating more

energy by Li redistribution. Unlike in homogeneously connected particles, Li redis-

tribution via direct transport can occur at any C-rate as long as the characteristic

timescale of the direct transport is smaller or similar to the characteristic timescale of

the discharge process. This process depends on the difference of the chemical poten-

tial of the contacting particles and the permeability of the boundary between particles

(mathematically expressed in Eq. (5.1)), and is independent of the driving force for

reaction. A schematic of the voltage regimes and corresponding cell behaviors in

heterogeneously connected particles are shown in Figs. 5.6(a) and (b)(ii). Qualita-

tively, the cell voltage curves for the case with heterogeneous connectivity and the

case with homogeneous connectivity (Fig. 5.9) appear fairly similar. However, the

lithiation states of particles can be very different as illustrated in Figs. 5.8(a) and

(c). This fact is alarming because it demonstrates how challenging it is to extract

information about the individual particle states from conventional electroanalytical

characterization techniques on composite electrodes [1, 81].

5.6 Analysis

To quantify the interactions of the particles, we perform several analyses for the

dilute agglomerate and the dense agglomerate with homogeneous and heterogeneous

connectivity. The dense agglomerate with homogeneous connectivity follows a similar

trend as the dilute agglomerate and therefore we do not specifically describe it in these

analyses. First, we introduce “effective cycles,” which account for the additional

cycling incurred at the individual particle level due to interparticle Li redistribution.
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Figure 5.9: Voltage for discharge (a) at 1 C-rate and (b) at 10 C-rate. The solid and
dashed color lines indicate the case or heterogeneous and homogeneous connectivity,
respectively. The dotted lines indicate single particle voltage. The heterogeneous
connectivity increases the hysteresis between particles: the solid line is generally
below the dashed line.

Thus, the effective cycles are calculated as the sum of the partial delithiation and

redundant re-lithiation of the particles in addition to the full lithiation that occurs

during the discharge of the cell. The results are shown in Fig. 5.10(a). The effective

cycles are higher at low currents, and tend to a value of one as current increases.

Also, at the given rates, the dilute agglomerate undergoes fewer effective cycles than

the dense agglomerate. Second, in Fig. 5.10(b) we quantify the number of particles

reacting simultaneously by counting the number of particles that have an individual

DOD between 15% and 85% [11] and then averaging it over the period that the

cell has a DOD in the same range. At lower currents, a small fraction of particles

react simultaneously while at higher current, the fraction increases. In the dilute

agglomerate, a larger fraction of particles react simultaneously than in the dense

agglomerate. Note that the fraction of particles reacting simultaneously does not

reach 100% at higher currents. This is attributed to the particle size distribution and

the resulting difference of active surface area to volume ratio between the particles.
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Last, we calculate the ratio between particle C-rate and the cell C-rate which arises

due to sequential versus simultaneous particle lithiation; see Fig. 5.10(c). At lower

cell rates, active particles lithiate at a rate an order of magnitude greater than the

cell C-rate, but this rate difference between cell and particle diminishes at higher cell

C-rates. The ratio of particle-to-cell C-rate does not reach a value of one because

some particles have larger area-to-volume ratios that lead to earlier completion of

lithiation even when the reaction rate (per unit area) is constant.
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Figure 5.10: (a) Average effective cycles. (b) Percentage of the particles reacting
simultaneously. (c) Average reaction C-rate of the particles compared to the cell C-
rate. The dashed lines indicate the dilute agglomerate, the dotted lines are the dense
agglomerate with homogeneous connectivity, and the solid lines denote the dense
agglomerate with heterogeneous connectivity.

These three analyses show that (1) homogeneous connectivity and (2) higher rates

reduce effective cycles, enhance simultaneous reaction of the particles, and decrease

the ratio of the particle C-rate to the cell C-rate of an agglomerate. The results point

to the strong influence of the electrode construction (microstructure and connectivity)

on electrochemical behavior of the cell. Furthermore, contrary to intuition, it is

observed that discharging at a higher rate leads to potentially beneficial behavior,

which will be discussed further below.
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5.7 Discussion

In this chapter, we have investigated the effect of interparticle Li transport based

on the connectivity of the active particles. As previously mentioned, Li redistribu-

tion between particles is a source of inefficiency because the free energy reduction

associated with Li redistribution does not contribute to the cell voltage. The contri-

bution of connectivity, therefore, extends beyond simply improving bulk transport in

the cell, as it determines the amount of Li redistribution. Homogeneous connectiv-

ity facilitates simultaneous transformation rather than sequential transformation of

particles, which reduces the local current density on transforming particles (and as

a consequence also reduces the overpotential and energy dissipation). High rate per-

formance in LFP electrodes has been observed exclusively when special attention is

paid to ensure good electronic and ionic connectivity (notable examples are discussed

at length in Ref. [1]). This highlights the importance of optimizing multi-particle

kinetics in electrode design rather than a single particle alone. For instance, in the

dilute electrode (Fig. 5.4), increasing the rate results in more homogeneous transfor-

mation (i.e., each particle DOD approaches the cell DOD). On the other hand, in the

dense agglomerate (Figs. 5.8(a) and (b)), increasing the rate does not have a strong

effect, and the amplified local current density within the cell does not reduce signif-

icantly when discharged at a higher rate. Since Li redistribution underlying these

observations are intrinsically detrimental to efficient operation of a battery, the effect

of heterogeneous connectivity can potentially explain why high-rate LFP electrodes

often require unique electrode architectures that ensure excellent ionic and electronic

connectivity between particles [70].

An efficient cell design should minimize Li redistribution. An ideal approach would

be a construction where particles are completely isolated from each other but well

connected to the electrolyte and current collector. However, since it is unfeasible to

construct an electrode where active particles are not connected to each other, the
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connectivity between particles should be homogenized as much as possible to at least

reduce Li redistribution. This can be accomplished by preventing particle agglomer-

ation and therefore enhancing a more uniform spatial distribution. Particle coating

may also play a key role in achieving such result, e.g., by coating of the particles

in a way that prevents direct transport. Unfortunately, homogenizing connectivity

within a cell typically comes at the cost of reducing the energy density and adding

processing steps.

Several experiments support the idea that cell performance can be improved by

reducing the interactions between active particles. In the work of Bazzi et al. [3],

two different cells were compared, one in which particles had uniform coating and re-

mained isolated from each other (Fig. 5.1(b)), and another in which the coating was

non-uniform and particles formed agglomerates with direct particle-particle contacts

(Fig. 5.1(c)). As in our simulations, the former case, which corresponds to the homo-

geneously connected electrode, exhibited a higher voltage in discharge and capacity

than the heterogeneously connected electrode. Also, in the work of Chong et al.

[69], a significant improvement in the performance of LFP was observed when enough

carbon coating was used to fully coat the particles but no significant improvement

was found when more carbon coating was used. Moreover, homogeneous connectivity

can be achieved by using nontraditional cell architectures, which have been proven to

offer an excellent rate performance. Notable approaches include “micro-templating,”

which enhances the ionic connectivity by forming a three-dimensional (3D) intercon-

nected porous network [82]. Another approach is designing “bicontinuous electrodes,”

where uniformly distributed active particles with a tight particle size distribution can

be constructed with good electronic and ionic contacts through novel synthesis steps

and cell assembly. Such systems have been demonstrated for charging/discharging

at very high rate [83]. Improvements to cell design at the microstructural level are

discussed in detail in Ref. [84]. Since none of these approaches involve modifica-
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tions of the active materials, the performance improvement clearly stems from the

architecture of the cell. While the observed improvements may be caused by the

enhancements in electronic and ionic transport, it may also originate from reducing

the interactions between active particles, as indicated by our simulation results.

Our work can help explain the phenomena observed in the scanning transmission

x-ray microscopy (STXM) and TEM study of Chueh et al. [11]. In their work, a

strong concentration inhomogeneity between particles was observed, where the par-

ticles were either nearly fully lithiated or delithiated. This observation is consistent

with our simulation results, in which there is no nucleation event, and hence these

experimental and modeling observations cannot be used to conclude that nucleation

is a limiting factor. Another key observation of Chueh’s work is that the lithiation

state of the particles appears to lack an obvious particle-size dependence. However, a

size dependence has been observed in the experimental work of Robert et al. [21]. Our

model can help reconcile these two different observations. The size dependence in the

order of reaction in our simulations is more significant when particles are homoge-

neously connected and less significant when particles are heterogeneously connected.

Thus, we surmise that the connectivity plays a role in the conflicting observations

made by Robert et al. [21] and Chueh et al. [11] Note, however, that in systems

containing large particles (as in these two experiments), bulk diffusion could be the

limiting step in the intercalation of the large particles [85], and thus these parti-

cles would be less prone to Li redistribution and would have a lower dependence on

particle connectivities.

5.8 Conclusion

In this chapter, we explore the consequences of discharging a multi-particle assem-

bly of phase-separating active electrode nanoparticles within an electronic and ionic

conducting network, representative of the typical structure of porous Li-ion battery
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cathodes. Our model includes rich physics and dynamics similar to those experimen-

tally observed in LFP. The simulation results offer a new, alternative explanation of

the lithiation process. Unlike in systems where solid solution is the equilibrium state,

the state of the electrode (i.e., each particle DOD) cannot be described only by the

cell voltage when there exists a thermodynamic driving force for phase separation. In

fact, in this model, the multi-particle (de)lithiation path has additional dependence on

the cell architecture (or connectivity between particles) and the imposed cell rate. In

both homogeneously and heterogeneously connected electrodes, not only do particles

transform discretely at low currents upon charge/discharge, but they also undergo

Li concentration fluctuations due to Li redistribution between particles. Such dis-

crete transformation leads to three undesired phenomena: amplification of local rates

compared to the overall cell rates, increased effective cycles due to redundant cycles,

and resulting energy dissipation. At higher rates, however, active particles within the

electrode react more simultaneously in a homogeneously connected electrode as the

effect of interparticle Li redistribution is reduced. Unfortunately, this improvement

at higher rates is contingent on the connectivity of the particles. Heterogeneously

connected electrode particles still transform discretely even at these higher rates.

These findings highlight the importance of optimizing cell architecture especially in

the design of electrodes constructed with nanoparticulate phase-separating materials.
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CHAPTER VI

EFFECT OF A SIZE-DEPENDENT

EQUILIBRIUM POTENTIAL

6.1 Introduction

Particle size affects (de)lithiation dynamics in multiple forms. In the first form, as

explored in Chapters IV and V, the surface-to-volume ratio difference allows smaller

particles to reach the miscibility gap faster and to initiate interparticle phase separa-

tion. A second form is the difference in the equilibrium potential between particles of

different radii. A dependence of the equilibrium potential on the particle size can stem

from the difference in surface-to-volume ratio between particles of different sizes [80],

which causes the total surface-to-bulk free energy ratio to change with size. Another

source of size dependence may be the change in stress in the host structure caused

by the Gibbs-Thomson effect [17, 86]. For LiFePO4 (LFP) particles, several studies

have suggested that smaller LFP particles exhibit higher equilibrium potentials than

larger particles [17, 25].

In this chapter, we include the dependence of the equilibrium potential on the

particle size in the particle-level electrochemical dynamics (PLED) model described

in Chapter II. For convenience we refer to this dependence as the “size effect.” Two

configurations are used for the simulations. The first is a configuration consisting of

two particles of different sizes, and the second configuration an agglomerate with 65

particles with a log-normal particle size distribution. In addition, we present a deriva-

tion for calculating the current at which particles of two sizes react simultaneously,
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given the different surface free energies between the two phases.

6.2 Model

The same four governing equations described in Chapter II are employed: (1) the

concentration evolution in the particles, (2) charge conservation in the electrolyte, (3)

concentration evolution in the electrolyte and (4) reaction at the particle-electrolyte

interface. In this chapter, we assume that phase separation cannot occur inside the

particles. The first three governing equations are identical to those used in Chapter

V; thus, they are not repeated here. For the electrochemical reaction, the same form

of the Butler-Volmer equation as that used in Chapter V is employed (Eqs. (2.37)

and (5.2)); the only difference is that the equilibrium potential φeq and, consequently,

the overpotential, η, depends on the radius:

η = ∆φ− φeq(r), (6.1)

where ∆φ = φp − φe is the electrostatic potential difference across the particle-

electrolyte interface, and φp and φe are the electrostatic potential in the particles

and in the electrolyte, respectively. φeq(r) is the size-dependent equilibrium poten-

tial. Note that ∆φ is nearly equal to the cell voltage because of the small cell size,

limited C-rates, and because no other losses are considered. Ignoring nanoscale ef-

fects, we model the size effect as inversely proportional to the particle radius. Here,

φeq(r) is defined as a function of the particle radius, r, according to the size effect:

φeq(r) = φ0
eq +

a

r
, (6.2)

where a is a constant quantifying the magnitude of the size effect. Furthermore,

φ0
eq is the equilibrium potential of an infinitely large particle, defined by the same
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polynomial as in Chapter V (Eq. (5.3)),

φ0
eq = {VOC +

[
5(1.05− 2.1Xp)

51− 2.925275X2
p + 6.375071Xp− 2.558325

]
× 10−2}[V],

(6.3)

where VOC is the reference open circuit voltage plateau, Xp = CpΩ, and Ω is the

molar volume of LFP. As can be inferred from Eq. (6.2), the size effect is significant

when the particle radius is small. Here, we consider a metastable solid-solution model

in which Li concentration remains nearly uniform throughout the bulk and surfaces

of the particles, which justifies the constant shift of the equilibrium potential due to

the size effect.

The value of a is 1.7 × 10−8 V/cm, which is estimated from the results reported

by Meethong et al. [17] based on a difference of 7 mV in the open circuit voltage

of 17-nm- and 56.5-nm-radius particles. If the source of the size effect were solely

attributed to the surface-to-volume ratio of the particles, as in Ref. [80], the value

of a we selected would correspond to a value of σLFP − σFP = −1.2 × 10−5 J/cm2.

Here σLFP and σFP are the surface free energy of LiFePO4 and FePO4, respectively.

Note that a is an effective parameter resulting from the contribution from various

surface orientations present; ab initio calculations indicate that the size effect would

be negative for the (010) surface and larger for the remainder of the surfaces [80, 87].

The values of Dp, D+ and D− are set to 5×10−13 cm2/s (comparable to the values

from Ref. [64, 65]), 7.3 × 10−7 cm2/s [77] and 1.5 × 10−6 cm2/s [77], respectively.

The electrolyte has an initial concentration of 1 M. The temperature is set to 300

K, VOC to 3.42 V [29] and i0 to 8.5 × 10−7 A/cm2 [38]. A constant-current and a

no-flux boundary conditions are imposed at the anode-electrolyte and the electrolyte-

current collector interfaces, respectively. For the remainder of the box boundaries,

a no-flux and a periodic boundary conditions are imposed for the two-particle cell

and the agglomerate, respectively. A central finite difference scheme for the spatial

discretization with a 2-nm and 2.5-nm spacing for the two-particle and the 65-particle
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Figure 6.1: Concentration evolution of the two-particle configuration during delithi-
ation at i = 6% i0. Four snapshots of the process are shown at different cell depths
of discharge (DODs), (a) 98% (initial concentration), (b) 54%, (c) 19%, and (d) 10%.
The colors in the color bar represent x in LixFePO4. A schematic of the configuration
is included in (a).

configurations are used, respectively. Eq. (2.46) is solved explicitly using an Euler

time stepping scheme; Eqs. (2.55) is solved implicitly using and alternating-direction-

line-relaxation (ADLR) [2, 52, 51] method. The solution for Eq. (2.52) is also obtained

by ADLR every time step.

6.3 Results

The results for the two cells are now described. We only show the results for the

particle concentration evolution and the cell voltage, as the electrostatic potential and

salt concentration in the electrolyte are nearly uniform due to the small dimension of

the cells.

6.3.1 Two-particle configuration

In this section, we use a cell configuration identical to that used in Chapter IV,

containing two particles of different sizes. The smaller particle has a 40-nm diameter,

and the larger particle has a 70-nm diameter. The dimensions of the domain are

96×180×96 nm3. Figure 6.1(a) shows this configuration, which denotes the locations

of the anode and current collector.
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We first simulate the lithiation-delithiation cycle at i = 6% i0 (i.e, the average

current at the particle surface is equivalent to 6% of the value of i0). This current

density corresponds to C/12.5 for this cell. Figure 6.2(a) shows the depth of discharge

(DOD) for the particles and cell during lithiation. The corresponding voltage is

plotted in Fig. 6.2(c) curve (i) with the single-particle equilibrium potentials of the

two particles. The size effect produces a higher particle equilibrium potential for

the smaller particle, as shown by the black dotted curve in Fig. 6.2(c). The driving

force for lithiation is φeq(r) −∆φ = −η. Thus, the size effect enhances lithiation of

the smaller particle by increasing φeq(r), and consequently the driving force, which

further facilitates interparticle phase separation. In addition to this enhancement,

the general lithiation dynamics remain similar to the case in which the size effect is

excluded, which are shown in Fig. 6.2(d) (DOD) and 6.2(f) curve (i) (voltage). This

case was described in Chapter IV; therefore, we do not repeat it here.

The size effect significantly affects the delithiation dynamics at low currents. Fig-

ure 6.1 shows the concentration evolution of the particles during delithiation. Initially,

both particles are nearly fully lithiated. At i = 6% i0, the smaller particle remains

lithium-rich until the larger particle becomes nearly fully delithiated; see Figs. 6.1(b)

and (c). When the larger particle is fully delithiated, the smaller particle begins

delithiation; see Fig. 6.1(d).

Figure 6.2(b) and 6.2(c) curve (ii) show the DOD of the particles and voltage,

respectively, for delithiation at i = 6% i0. Note that the abscissa in Fig. 6.2(b) is

the state of charge (SOC=1-DOD). At the beginning of delithiation, the cell voltage

enters the range between the equilibrium potential of the larger particle (solid black

curve in Fig. 6.2(c)) and the smaller particle (dotted black curve in the same figure).

The driving force for delithiation is ∆φ − φeq(r) = η. Therefore, the size effect

reduces the driving force for delithiation for the smaller particle. In the case presented

in Fig. 6.2(b) and 6.2(c), only the larger particle is driven by the cell voltage to

130



delithiate for the given current. As the larger particle delithiates, the cell voltage

decreases further. Thus, the smaller particle remains nearly fully lithiated. When

the larger particle is nearly fully delithiated, the cell voltage increases above the

smaller particle equilibrium potential at its upper spinodal point (the local maximum

of the equilibrium potential) to maintain the current, causing the smaller particle to

begin delithiating. When the size effect is excluded from the model, as shown in Fig.

6.2(e) and 6.2(f) curve (ii), the smaller particle reacts first due to its greater surface-

to-volume ratio. The difference between lithiation and delithiation when the size

effect is excluded is due to asymmetric equilibrium potential. The smoother shape

of the equilibrium potential at the upper spinodal point weakens the interparticle

interactions. The size effect enhances the asymmetry in the lithiation/delithiation

dynamics by favoring the delithiation of the larger particle.

To further investigate the size effect during delithiation, simulations were per-

formed at two additional currents: i = 18% i0 (C/4.2 rate) and 54% i0 (C/1.4 rate).

(No additional simulations were performed for lithiation because it does not exhibit

major differences from the case without the size effect.) The results are shown in

Fig. 6.3. A higher current produces a higher overpotential and, consequently, a higher

cell voltage. At i = 18% i0, the voltage is sufficiently high such that it exceeds the

equilibrium potential of the smaller particle at its upper spinodal point, which fa-

cilitates delithiation of both particles at the beginning of the process. However, the

larger particle reacts more rapidly than the smaller particle due to the larger over-

potential. The voltage decreases as the larger particle delithiates because of its de-

creasing equilibrium potential. Eventually, the applied potential becomes lower than

the equilibrium potential of the smaller particle, which causes the smaller particle to

lithiate again to a nearly fully lithiated state. The remaining dynamics proceeds in

a similar manner as at i = 6% i0. At the highest current considered, i = 54% i0, the

overpotential is sufficiently large such that the size effect is negligible. The voltage is
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favoring the delithiation of the larger particle.
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Figure 2: The particle DOD and voltage of the two-particle configuration during a lithiation-
delithiation cycle at i = 6% i0 when the GT effect is (a)-(c) considered and (d)-(f) excluded
from the calculation. In (a), (b), (d), and (e), the black solid line represents the cell DOD,
and the horizontal dash-dotted line represents the spinodal points. In (c), the solid and dotted
black curves indicate the equilibrium potential of the larger and smaller particles, respectively;
in (f), the solid curve indicates the size-independent equilibrium potential. The horizontal axis
in (b) and (e) is the state of charge (SOC = 1 -DOD).

To further investigate the GT effect during delithiation, simulations were

performed at two additional currents: i = 18% i0 (C/4.2 rate) and 54% i0 (C/1.4

rate). (No additional simulations were performed for lithiation because it does

not exhibit major differences from the case without the GT effect.) The results

are shown in Fig. 3. A higher current produces a higher overpotential and,

consequently, a higher cell voltage. At i = 18% i0, the voltage is sufficiently

high such that it exceeds the equilibrium potential of the smaller particle at

its upper spinodal point, which facilitates delithiation of both particles at the

beginning of the process. However, the larger particle reacts more rapidly than

the smaller particle due to the larger overpotential. The voltage decreases as

the larger particle delithiates because of its decreasing equilibrium potential.

8

Figure 6.2: The particle DOD and voltage of the two-particle configuration during a
lithiation-delithiation cycle at i = 6% i0 when the size effect is (a)-(c) considered and
(d)-(f) excluded from the calculation. In (a), (b), (d), and (e), the black solid line
represents the cell DOD, and the horizontal dash-dotted line represents the spinodal
points. In (c), the solid and dotted black curves indicate the equilibrium potential
of the larger and smaller particles, respectively; in (f), the solid curve indicates the
size-independent equilibrium potential. The horizontal axis in (b) and (e) is the state
of charge (SOC = 1 -DOD).

higher than the equilibrium potentials of both particles throughout the entire delithi-

ation process, and the smaller particle lithiates more rapidly than the larger particle

due to its larger surface-to-volume ratio.

In this simplified configuration, it is possible to derive an applied current at which

the two particles can delithiate at the same rate, even when the two spherical particles

have different radii. Here, we assume that transport is not limited (in both the

particles and electrolyte) and that the electrostatic potential distribution is uniform

throughout the cell. The two particles will delithiate at the same current per volume

(proportional to the C-rate) if the particle current normalized by the particle volume
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Eventually, the applied potential becomes lower than the equilibrium potential

of the smaller particle, which causes the smaller particle to lithiate again to

a nearly fully lithiated state. The remaining dynamics proceeds in a similar

manner as at i = 6% i0. At the highest current considered, i = 54% i0, the

overpotential is sufficiently large such that the GT effect is negligible. The

voltage is higher than the equilibrium potentials of both particles throughout

the entire delithiation process, and the smaller particle lithiates more rapidly

than the larger particle due to its larger surface-to-volume ratio.
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(a) Delithiation at 18% i0 (b) Delithiation at 54% i0 (c) Voltage during delithiation

Figure 3: The particle DOD and voltage for the two-particle configuration during delithiation
at i = 18% i0 and i = 54% i0. In (a) and (b), the black solid line represents the cell DOD, and
the horizontal dash-dotted line represents the spinodal points. In (c), the solid and dotted black
curves indicate the equilibrium potential of the larger and the smaller particles, respectively.
The horizontal axis in (a) and (b) is the SOC. Note that in (c) the time increases toward the
left.

In this simplified configuration, it is possible to derive an applied current

at which the two particles can delithiate at the same rate, even when the two

spherical particles have different radii. Here, we assume that transport is not

limited (in both the particles and electrolyte) and that the electrostatic potential

distribution is uniform throughout the cell. The two particles will delithiate at

the same current per volume (proportional to the C-rate) if the particle current

normalized by the particle volume is identical:

i1
A1

V1
= i2

A2

V2
, (8)

where ij , Aj and Vj are the particle current density, surface area and volume,

respectively, of particle j. At a low current, it is a reasonable approximation

9

Figure 6.3: The particle DOD and voltage for the two-particle configuration during
delithiation at i = 18% i0 and i = 54% i0. In (a) and (b), the black solid line
represents the cell DOD, and the horizontal dash-dotted line represents the spinodal
points. In (c), the solid and dotted black curves indicate the equilibrium potential of
the larger and the smaller particles, respectively. The horizontal axis in (a) and (b)
is the SOC. Note that in (c) the time increases toward the left.

is identical:

i1
A1

V1
= i2

A2

V2
, (6.4)

where ij, Aj and Vj are the particle current density, surface area and volume, respec-

tively, of particle j. At a low current, it is a reasonable approximation to linearize

the Butler-Volmer equation, which allows us to obtain the current densities at the

particles’ surfaces as follows.

i1 = − Fi0a
RTr2

and i2 = − Fi0a
RTr1

. (6.5)

See Appendix A for derivation of Eq. (6.5). We calculate the average current density

(total current/total particle surface) as

i(A1 + A2) = i1A1 + i2A2. (6.6)

The expressions for i1 and i2 from Eq. (6.5) are substituted into Eq. (6.6) to obtain

the following,

i = − Fi0a

RTr1r2

(r31 + r32)

(r21 + r22)
. (6.7)
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Equation (6.7) is also applicable to a cell containing particles of two different sizes

that are evenly distributed between the two sizes with the same number of particles

of each size. This equation can be easily generalized to account for different number

of particles in each size group.

In our aforementioned simulations, the order of delithiation of the particles changed

between i = 18% i0 and i = 54% i0. According to Eq. (6.7), the transition should

occur at i = 29.4% i0. To verify this prediction, we performed several simulations

with applied currents of various magnitudes at approximately i = 29.4% i0. The

transition occurred at applied currents between i = 27.9% i0 and i = 28.8% i0. The

small discrepancy between the prediction and simulation is attributed to the approx-

imations in the derivation of Eq. (6.7) (including linearization of the Butler-Volmer

equation) and the error in the simulation associated with the finite thickness of the

smoothed boundary method (SBM) interface [2].

6.3.2 Dilute agglomerate configuration

The lithiation-delithiation dynamics for a cell containing 65 particles are now dis-

cussed. The particles are randomly distributed throughout the 320× 320× 300 nm3

domain without allowing the particles to contact one another. An empty region was

left in the bottom 30 nm of the domain, which corresponds to the separator. The

particles follow a log-normal size distribution, f , with a probability density function:

fã,σ,b,β(r) =


1

σ(r−b)
√
2π

exp

(
− [ln((r−b)/β)−ã]2

2σ2

)
if r > b

0 if r ≤ b,

(6.8)

where r is the radius of the particle (in nanometers), ã = 1, σ = 0.2, b = 5 nm, and

β = 7.5 nm [38]. The configuration is presented in Fig. 6.4(a) and is identical to the

configuration used in Chapter V. Similar to the two-particle configuration, we first

describe the lithiation-delithiation cycle at a low current followed by delithiation at
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Figure 6.4: Concentration evolution of the dilute agglomerate during delithiation
at i = 6% i0. Snapshots of the process are shown at four different cell DODs, (a)
98% (initial concentration), (b) 71%, (c) 47%, and (d) 22%. A schematic of the
configuration is included in (a).

two additional currents.

The simulation is performed at i = 6% i0 (equivalent to C/11.1 rate for this

case). Regarding lithiation, Figs. 6.5(a) and 6.5(c) curve (i) show the DOD of the

65 particles, arranged in the order of their size, and cell voltage, respectively. The

single-particle equilibrium potentials of the second-smallest (r = 18.7 nm) and second-

largest (r = 35 nm) particles are also shown in Fig. 6.5(c). Here, we selected the

second-smallest and the second-largest particles and not the smallest/largest because

the smallest/largest particles are outliers of the distribution due to the statistically

small number of the particles. As in the two-particle configuration, the lithiation

dynamics in this simulation are similar to the case in which the size effect is excluded

(discussed above and shown in Fig. 6.5(d) and 6.5(f) curve (i)); the only difference

is that interparticle phase separation is enhanced. Lithiation begins with the smaller

particles, and group-by-group sequential transformation occurs from the smaller to

larger particles. During this lithiation process, the cell voltage exhibits five sudden

increases and decreases that correspond with the group-by-group transformation of

the particles. This behavior has been described in detail in Chapter V, and therefore

it is not repeated here.

By contrast, during delithiation, the size effect facilitates delithiation of the larger
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Figure 5: The particle DOD and voltage of the dilute agglomerate during a lithiation-delithiation
cycle at i = 6% i0 when the GT effect is (a)-(c) considered and (d)-(f) excluded. In (c), the
solid and dotted black curves indicate the equilibrium potential of the second-largest and
the second-smallest particle, respectively, as a function of the particle DOD (rather than the
cell DOD). In (f) the solid curve indicate the size-independent equilibrium potential. The
horizontal axis in (b) and (e) is SOC.

13

Figure 6.5: The particle DOD and voltage of the dilute agglomerate during a
lithiation-delithiation cycle at i = 6% i0 when the size effect is (a)-(c) considered
and (d)-(f) excluded. In (c), the solid and dotted black curves indicate the equilib-
rium potential of the second-largest and the second-smallest particle, respectively, as
a function of the particle DOD (rather than the cell DOD). In (f) the solid curve
indicate the size-independent equilibrium potential. The horizontal axis in (b) and
(e) is SOC.
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(a) Delithiation at 18% i0 (a) Delithiation at 54% i0 (c) Voltage during delithiation

Delithiation

(ii) at 54% i0

(i) at 18% i0

 time

Figure 6: The particle DOD and voltage of the dilute agglomerate during delithiation at
two additional currents, i = 18% i0 and i = 54% i0. In (c), the solid and dotted black
curves indicate the equilibrium potential of the second-largest and second-smallest particles,
respectively, as a function of the particle DOD (rather than the cell DOD). The horizontal
axis in (a) and (b) is the SOC (1-DOD). Note that in (c) the time increases toward the left.

Two sudden decreases in the voltage curve are apparent and correspond to

the group-by-group interparticle phase separation events. At the early stage,

almost all particles are delithiating because the cell voltage is higher than their

single-particle equilibrium potentials, as shown in curve (i) at the cell DOD

between 50% and 95% in Fig. 6(c). The delithiation overpotential of the larger

particles is much larger than that of the smaller particles. Thus, the larger

particles delithiate more rapidly than the smaller particles, even though the

smaller particles have a larger surface-to-volume ratio. At the higher current,

i = 54% i0, the voltage is sufficiently high such that the GT effect is negligible;

thus, the smaller particles delithiate first, unlike the previous case. Here, the

smallest particle is abnormally small, and thus, the overwhelming GT effect

hinders its delithiation until all other particles are fully delithiated. In addition,

the i = 54% i0 voltage is sufficiently high such that interparticle phase separation

is hindered [15], and thus, all particles are delithiated nearly simultaneously.

Therefore, the particles do not transform in groups.

14

Figure 6.6: The particle DOD and voltage of the dilute agglomerate during delithi-
ation at two additional currents, i = 18% i0 and i = 54% i0. In (c), the solid
and dotted black curves indicate the equilibrium potential of the second-largest and
second-smallest particles, respectively, as a function of the particle DOD (rather than
the cell DOD). The horizontal axis in (a) and (b) is the SOC (1-DOD). Note that in
(c) the time increases toward the left.

particle via the equilibrium potential shift as discussed for the two-particle case.

Figure 6.4 shows the concentration evolution of the particles during delithiation. As

in the two-particle case, the larger particles delithiate first at low currents. Figures

6.5(b) and 6.5(c) curve (ii) show the DOD of the particles arranged by size and

the resulting voltage for delithiation. As with lithiation, the particles react in groups,

which produces sudden decreases and increases in the cell voltage. However, when the

size effect is included, delithiation begins with the group of larger particles, unlike

the case without the size effect, as shown in Fig. 6.5(e) and 6.5(f) curve (ii). An

extended analysis of the mechanism underlying the group-by-group transformation

is presented on Chapter III. As with the two-particle configuration, the difference

between lithiation and delithiation dynamics without the size effect is due to the

asymmetric single-particle equilibrium potential.

Van der Ven and Wagemaker [80] suggested that there should be a slight overall

tilt in the cell voltage due to the size effect. The simulation result in Fig. 6.6(c)

appears to show this tilt, but it is not obvious due to the tight size distribution we
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employed and the small value of the constant a. A larger size dependence and/or a

wider particle size distribution will enhance the voltage curve tilt.

The delithiation results for two additional currents are described below. The DOD

of the particles during delithiation at i = 18% i0 (C/3.7 rate) and i = 54% i0 (C/1.2

rate) are shown in Fig. 6.6(a) and 6.6(b), respectively. At i = 18% i0, the larger

particles react first, and the particles react in two groups. Many smaller particles

undergo partial lithiation at the cell SOC between 25% and 50%. The results indicate

that the size effect remains significant at this current. The cell voltage at this current

is plotted as curve (i) in Fig. 6.6(c). Two sudden decreases in the voltage curve are

apparent and correspond to the group-by-group interparticle phase separation events.

At the early stage, almost all particles are delithiating because the cell voltage is

higher than their single-particle equilibrium potentials, as shown in curve (i) at the cell

DOD between 50% and 95% in Fig. 6.6(c). The delithiation overpotential of the larger

particles is much larger than that of the smaller particles. Thus, the larger particles

delithiate more rapidly than the smaller particles, even though the smaller particles

have a larger surface-to-volume ratio. At the higher current, i = 54% i0, the voltage

is sufficiently high such that the size effect is negligible; thus, the smaller particles

delithiate first, unlike the previous case. Here, the smallest particle is abnormally

small, and thus, the overwhelming size effect hinders its delithiation until all other

particles are fully delithiated. In addition, the i = 54% i0 voltage is sufficiently high

such that interparticle phase separation is hindered [37], and thus, all particles are

delithiated nearly simultaneously. Therefore, the particles do not transform in groups.

6.4 Discussion

In portable electronics, intermittent rests during charge/discharge processes (delithi-

ation/lithiation) are common. Because Li transport from/to the counter-electrode is

halted, relaxation through interparticle phase separation is the only route toward equi-
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librium when intraparticle phase separation is suppressed. Although the size effect

may be small, it may be important for determining how phase separation proceeds.

Under the assumption that smaller particles have a higher equilibrium potential,

smaller particles will favor Li absorption from neighboring larger particles. During

delithiation at a higher C-rate, where the size effect is negligible, the smaller particles

delithiate before the larger particles. The smaller particles provide a better cell per-

formance in comparison to the larger particles due to their larger surface-to-volume

ratio. Thus, the rate performance of the cell will deteriorate as the smaller particles

become fully delithiated and the current is supplied mostly by the larger particles.

However, this deterioration may be avoided by a pause in the charge process because

some of the smaller particles may draw Li from neighboring larger particles during the

pause. The delithiation may then proceed similarly as the beginning of the delithia-

tion process, in which the smaller particles delithiate before the larger particles. This

process repeats with each pause during the charge process. By contrast, during lithi-

ation the rate performance will degrade by intermittent rests. The smaller particles

(which lithiate before the larger particles during discharge) continue to lithiate dur-

ing the rest periods, extracting Li from the larger particles. Thus, the remainder of

the process must proceed through insertion into the larger particles, which requires a

larger overpotential for a given rate.

Synthesizing LFP cells with a narrow particle-size distribution can help spatially

homogenize the reaction of the particles. However such a task can be challenging

and expensive. Instead, for specific battery applications, an alternative approach

to improve cell performance can be pursued. Due to the size effect, a particle-size

distribution can be optimized to homogenize the charge over a cell for a given C-

rate. Equivalently, for a given particle-size distribution, an optimal C-rate can be

determined at which the particles delithiate homogeneously (again assuming that the

smaller particles have a higher equilibrium potential). However, this type of optimiza-
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tion is only desirable for devices in which discharge efficiency is more important than

charge efficiency and that are always discharged at the same C-rate (e.g., transmitters,

clocks, etc.).

If the larger particles have a higher equilibrium potential, in contrast to the as-

sumption herein, the smaller particles would have a lower single-particle equilibrium

potential than the larger particles. In this case, the changes in dynamics due to the

size effect would be opposite of what has been described above. The size effect would

favor larger particles for lithiation and smaller particles for delithiation and thus

would not significantly affect delithiation behavior. However, the lithiation behavior

could be reversed such that larger particles would lithiate before smaller particles.

For this case, intermittent rest would be beneficial for lithiation and detrimental for

delithiation. In such a case, the size effect can be exploited to enhance the rate per-

formance in applications that have intermittent discharge. Candidate materials can

thus be screened for their surface energies, in addition to voltage, thermal stability,

diffusivity, etc.

6.5 Conclusion

In summary, we analyzed the size effect on lithiation/delithiation of particles in which

intraparticle phase separation is suppressed. We first simulated a simple two-particle

configuration to systematically analyze the size effect and derive the condition for

concurrent delithiation of different-size particles. This was followed by the analysis of

the size effect on a group of particles by simulating a system of a 65-particle agglom-

erate. We demonstrated that, when the smaller particles have a higher equilibrium

potential, as suggested by experimental observations, the size effect does not lead to

qualitative changes in the lithiation process. On the other hand, the size effect can

reverse the order of particle phase transformation at low currents during delithiation.

At higher currents, the size effect is negligible even during delithiation. The role of
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intermittent rests during the charge and discharge process was also discussed. We

showed that discharge rate performance could be enhanced with intermittent rests

if the delithiated phase has a larger surface energy than the lithiated phase. This

provides an additional material selection criterion for the cathode material selection.
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CHAPTER VII

POROUS ELECTRODE SIMULATIONS

7.1 Introduction

In this chapter, we describe three-dimensional (3D) porous electrode simulations of

the phase transformation for a full LiFePO4 (LFP) electrode in a coin cell battery.

The results are compared to the results of in situ energy-dispersive X-ray diffraction

(EDXRD) cell characterization. Replicating the experiment via simulations provides

insights into the experimental results. Employing the simulations, we can understand

what the limiting factors on the charge/discharge process are. Furthermore, sensitiv-

ity analyses of the cell porosity, particle-size distribution and C-rate are performed

to propose improvements to the cell construction.

Porous electrode theory (PET) is an efficient approach that allows the modeling

of entire battery cells for direct comparison to experimental measurements. However,

PET is a simplified approach that cannot be used to study microstructural details. By

contrast, particle-level electrochemical dynamics (PLED) simulations can be utilized

to study microstructural details but is currently too computationally expensive to

model entire cells. PLED simulation results, as those from Chapters III-VI, have

some degree of uncertainty as to how the dynamics observed in these small cells

translate to entire cells.

We briefly summarize the experimental configuration and results of the EDXRD

experiment, which was performed by our collaborators at the University of Cambridge.

142



The remaining details about the experiments are provided in Ref. [40]. A coin cell

cathode was employed in the experiment. The cathode had a diameter of ∼11 mm

and a thickness of 300 µm. The diameter of the cathode corresponds to the x- and

z-directions and the thickness is y-direction. A two-dimensional representation of the

cell is shown in Fig. 7.1. The battery was cycled twice at a C/7 rate with a 24 hour

rest between cycles. During the cycles, the depth of discharge (DOD) of different

locations of the cathode were obtained using the diffraction patterns obtained from

the EDXRD. In the first cycle, the DOD profiles were performed across the y-direction,

and in the second cycle, the profiles were performed across both the x- and y-direction.

Cathode 
Current Collector 

x-direction 

y-direction Cathode 

Separator 

Anode 

Figure 7.1: Configuration of the cell used for the experimental measurements. The
x- and y-directions denote the directions parallel and perpendicular, respectively, to
the current collector.

The DOD obtained from the EDXRD profiles in the y-direction during the first

discharge (lithiation) are shown in Fig. 7.2. Each marker is a measurement of the

local DOD at different overall cell DODs. The regions closer to the separator react

before those closer to the current collector. This behavior suggests that Li diffusivity

in the electrolyte is the limiting factor for lithiation [28]. Figure 7.3(a) shows the

DOD profile in the y-direction during the second discharge. In this case, two different

trends are observed: the particles closer to the current collector and the particles

closer to the anode react before the particles in the center of the cell. This behavior

indicates that, during the second cycle, the limiting factor is not only the diffusivity

of the Li in the electrolyte but also the electronic conductivity of the electrode [28].
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Finally, in Fig. 7.3(b), we present the DOD profile along the x-direction for the

second discharge. The particles closer to the sides react before the particles closer

to the electrode center. Furthermore, some asymmetry is observed, which is not

expected due to the geometric symmetry of the coin cell, indicating the presence of

a nonideality.
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Figure 7.2: Experimental DOD measurements in the y-direction during the first cell
discharge of the cell. The experiment was performed by Prof. Grey’s group at the
University of Cambridge.
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Figure 7.3: Experimental DOD measurements in the (a) y- and (b) x-directions during
the second cell discharge. The experiment was performed by Prof. Grey’s group at
the University of Cambridge.

7.2 Model

Porous electrode theory [45, 88] is used to model the experimental configuration de-

scribed above during discharge. Five coupled equations are solved to predict the
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concentration evolution during discharge of the cell. They describe (1) concentration

evolution and (2) current continuity in the electrolyte, (3) concentration evolution

and (4) current continuity in the porous electrode, and (5) electrochemical reaction.

We consider three relevant phases for this system: active material (LFP), inactive

material (carbon and polytetrafluoroethylene (PTFE)), and electrolyte. A domain

geometry similar to the experimental cell was employed. Figure 7.4 shows the con-

figuration of the simulation. The casing, which is a cylinder in the experiment, is

represented in the simulation by a square prism with the same volume. This approx-

imation is appropriate because, as shown in the results, we do not observe significant

gradients in the electrolyte domain on the sides of the cathode.

Anode 
Separator 

Current 

collector 

Cathode 

700 um 
y-direction 

15 mm 

x-direction 15
 m

m
 

x-profile 

y-profile 

Figure 7.4: Simulation configuration. We use a cylindrical cathode with the same
dimensions as the experimental cell. The lines noted by “x-profile” and “y-profile”
indicate the lines along which the measurements are made. The graphic is not to
scale; the y-direction is magnified by a factor of 10.
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7.2.1 Governing equations

In porous electrode simulations, “representative volumes” are used to model the

many particles present throughout the cathode. Here, each representative volume

is assumed to be composed of ten particles of different sizes that altogether follow

a log-normal distribution. The governing equations for porous media are modified

to account for the presence of multiple particles in each representative volume (i.e.,

summation of the terms corresponding to the ten particles are performed). In porous

electrode models, the volumetric fraction of the different phases can be represented

as:

εe + εs = 1 (7.1)

where εe is the fraction of electrolyte and εs is the fraction of the solid components.

The solid is composed of a fraction of active material, Lp, and a fraction of inactive

material, 1− Lp.

The governing equations for the electrolyte are the following. For the electrolyte

concentration, Ce, we use the concentration evolution equation for a porous medium

[45]:

εe
∂Ce
∂t

= ∇ ·
(
εeDamb∇Ce

)
−
(

1− t+
)∑

i

ãp,irLi,i (7.2)

where Ce is the concentration of the electrolyte, t is time, Damb is the ambipolar

diffusivity, and t+ is the transference number. The terms ap,i and rLi,i are the particle

area per electrode volume and the reaction rate of the particle i, respectively. To solve

for the electrostatic potential of the electrolyte, φe, we impose the electroneutrality

condition [45],

∇ ·
[
εe
F

RT
(z+D+ − z−D−)Ce∇φe

]
=
∑
i

ãp,irLi,i +∇ ·
[
εe(D− −D+)∇Ce

]
. (7.3)

where F is Faraday’s constant, R is the ideal gas constant, T is temperature, zj and

Dj are the charge number and the diffusivity species j, respectively.
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We use the following governing equations for the solid domain. The concentra-

tion evolution of the particles is modeled using a pseudocapacitor model (i.e., the

concentration of the particles is considered uniform):

∂Cp,i
∂t

= ãv,irLi,i, (7.4)

where Cp,i is the average concentration of particle i. The particle area per particle

volume ãv,i, is defined as ãv,i = Ai/Vi. Here, Ai and Vi represent the area and volume

of particle i, respectively. The term ãv,i is related to ãp,i by ãp,i = εsLpãv,i(Vi/VT ),

where VT is the sum of the volumes for the ten particles in each representative volume.

We employ the current continuity equation in a porous medium for the electrostatic

potential of the particles,

∇ · [εsκs∇φs] = −F
∑
i

ãp,irLi,i, (7.5)

where κs is the effective conductivity of the solid and φs is the electrostatic potential.

The reaction rate is modeled using the Butler-Volmer equation,

rLi =
i0
F

[
exp

(
− αF

RT
η

)
− exp

(
(1− α)F

RT
η

)]
, (7.6)

where η is the overpotential, i0 is the exchange current density, and α is the transfer

coefficient. For clarity, we here drop the subindex i from the different variables. The

exchange current density is defined as [45]:

i0 =
F (k0cae)

1−α(k0aap)
α

γTS
= i′0

(ae)
1−α(ap)

α

γTS
. (7.7)

where k0c and k0a are the standard rate constants for the cathodic and anodic reaction,

respectively. Furthermore, γTS is the chemical activity coefficient of the transition

state approximated as (1−Xp)
−1 [20], where Xp is the occupied Li site fraction defined

as Xp = cp/ρ and ρ is the Li-site density. The activity of the electrolyte, ae, is defined

as ce/c
0
e, where c0e is the reference concentration at which the exchange current density
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was measured. The activity of the particles ap, is defined as ap = exp(µp/RT ). The

chemical potential µp, is defined based on the regular solution model,

µp = RT

[
ln

(
Xp

1−Xp

)
+ Ω(1− 2Xp)

]
, (7.8)

where Ω is the interaction parameter. The overpotential, η, is defined as (φs−ψe)−φeq.

The equilibrium potential, φeq, is approximated to be VOC − µp/F , where VOC is the

open circuit voltage plateau.

7.2.2 Parameters

The porosity of the cathode is set to be 25%. The remaining 75% of the volume

is assumed to be composed of 55% inactive materials and 20% LiFePO4 (LFP). We

assume that only 83% of the LFP is active and that the remainder remains inactive

throughout the cycling. This approximation is based on the maximum capacity mea-

sured in the experiments. In the separator, 84% of the volume is electrolyte and the

remainder is inactive material. A log-normal size distribution with an average of 122

nm is used. The average and the standard deviation of the natural logarithm of the

variable is 4.679 and 0.5, respectively.

A constant diffusivity is used for the electrolyte. D+ and D− are set to 7.3× 10−7

cm2/s and 4 × 10−6 cm2/s, respectively [77]. Damb and t+ are obtained from these

values using the equations from Newman’s and Thomas-Alyea’s textbook [44]. For

the solid phase, the effective conductivity is set to 4×10−2 S/cm during the first cycle

simulation and 5 × 10−3 S/cm during the second cycle simulation. For the reaction

rate, i′0 is set to 2.975 × 10−6 A/cm2, similar to the value used in Chapter III. The

transfer coefficient is approximated to be 0.2 [89]. A central finite difference scheme

with a uniform discretization in each direction is employed. The grid spacing in the

x- and z-direction are set at 100 µm while the spacing in the y-direction is set at 10

µm. Equation (7.2) is implicitly solved using the alternating-direction-line-relaxation
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(ADLR) scheme described in Chapter II. Equations (7.3) and (7.5) are also solved

using the ADLR scheme.

7.3 Results

7.3.1 Simulations of the EDXRD experiments

The simulation results for the first discharge (lithiation) are shown in Fig. 7.5. (The

model was parameterized for the discharge only, and therefore the charge process

was not considered in this chapter.) Figures 7.5(a)-(d) show four snapshots of the

concentration evolution. As in the experiments, the first particles to lithiate are

closest to the Li anode. We also observe that the particles closest to the circular

side react before those in the center. Figures 7.5(e)-(h) show the concentration of the

electrolyte at the same DODs. Throughout the process, the electrolyte in the porous

cathode tends to deplete as the particles lithiate, reaching a nearly fully depleted

state at the end of the process.

The reaction evolution in the y-direction is shown in Fig. 7.6 (a) at six different

DODs for both the simulation and the experimental results. The two sets of results

are in good agreement: the slope and the trend matches well, and the values are

also close for the most part. For the profile comparisons, the average DOD of the

profile is considered representative of the average DOD of the cell and is used to

compare the experiment and simulations. The voltages for the simulation and the

experiment are shown in Fig. 7.7(b) curve (i) and (ii), respectively. The simulation

and the experiment have similar capacities and, in agreement with the experiment,

the overpotential starts to increase at a DOD of ∼75%. However, the simulation

voltage is higher than the experimental voltage (by ∼10 - 20 mV). This difference

can be attributed to the several simplifications in the model, such as the assumption

of electroneutrality in the electrolyte, the lack of consideration of particle contact,

and the simplified model for reaction.
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(a) (b) 

(e) 

(d) (c) 

(f) (g) (h) 

Figure 7.5: Discharge simulation for the first cycle. (a)-(d) Li concentration in the
electrode, at (a) 7% DOD, (b) 24% DOD, (c) 47% DOD, and (d) 63% DOD. The
color bar represents the Li site fraction. (e)-(h) The electrolyte concentration at the
same set of DODs. The color bar indicates the molarity.

A simulation was performed to examine the hypothesis that the effective conduc-

tivity is reduced in the second cycle. The configuration and parameters were the

same as those used in the simulation of the first cycle, except that the electronic con-

ductivity of the solid components in the electrode was decreased by a factor of eight.

Figure 7.8 shows the y-profiles predicted by this simulation. In agreement with the

experimental results, two segments are observed, one side having a significant gradi-

ent and the other nearly flat, which indicates that two limiting factors are playing

a role in the second-cycle discharge. When the electronic conductivity becomes a

limiting factor, the driving force for reaction of the particles decreases with increas-

ing separation from the current collector. This limitation offsets the gradient of the

Li-diffusion gradient. The resulting voltage for the simulation and the experiment

are shown in Fig. 7.7(b) curves (iii) and (iv), respectively. The change in voltage

from the first- to the second-cycle simulation is in qualitative agreement with the

experimentally observed change; the voltage is slightly lower at the beginning of the
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Figure 7.6: DOD in the y-profile for the first discharge. The solid lines indicate
the simulation results, and the dashed lines with markers indicate the experimental
results.

process and higher at the end. Despite the decrease in the electronic conductivity,

the capacity is comparable to that in the first cycle. Therefore, at these low charge

rates, the change in conductivity has a negligible affect on the total number of active

particles, but instead changes the sequence of reaction of the particles upon cycling,

which yields a smaller net reaction gradient across the electrode.

Figure 7.9 shows the simulation results for the x-profiling of the second cycle.

In Fig. 7.9(a), when it is assumed that the sample in the experiments from our

collaborators is perfectly aligned, the simulation results are symmetrical since there

are no asymmetries in any of the governing equations or in the boundary conditions.

The agreement between this result and the experiment is poor as the experimental

x-profiles show a strong asymmetry. While other causes such as a variation in the

pressure on the cell are also possible, we hypothesize that there was a small (∼1

degree) misalignment of the battery in the coin cell holder on the stage, which is

within the uncertainty of the experimental setup. Such a small misalignment would

cause the sampled region on the right side of the cell to be ∼200 µm closer to the
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Figure 7.7: Comparison of the experimental and simulated voltages from the first and
second discharges.

separator than that on the left side. Figure 7.9(b) shows the results for the tilted

x-profiles, which are in good agreement with the experimental results. The tilted

x-profiles indicate that the asymmetry in the profiles originate from the higher DOD

of the cell closer to the separator in comparison to the DOD closer to the current

collector. Furthermore, the agreement between simulations and experiments show

that the “cup” appearance of the profiles is due to the pooling of the electrolyte at

the edges and not the higher pressures, at least in a coin cell.

7.3.2 Simulations for electrode design

Based on the agreement between the experimental and simulation results, we now

employ the simulations to explore further the sensitivities of the gradients in the

y-profile to the particle size distribution, porosity, and C-rate. These analyses are

performed to extract information that could be utilized to optimize the electrode

architecture and are based on the parameters used for the simulation of the second

cycle. To quantify the change in dynamics, we measure the Li-fraction gradient across

the cell in the y-direction. The gradient is measured at a DOD of 50%, at which the
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Figure 7.8: DOD in the y-direction for the second discharge simulation. The solid
lines indicate the simulation results, and the dashed lines indicate the experimental
results.

differences tend to be significant; it is approximated as (DOD near separator - DOD

near current collector)/ width.

We first analyze the y-profile for different particle size distributions. For this

analysis, two additional log-normal size distributions with the same average particle

size were considered: a wider and a narrower particle-size distribution. For the dis-

tribution with a wider dispersion, the average and standard deviation of the natural

logarithm for the variable are 4.4840 and 0.8, respectively. For the distribution with

a narrower dispersion, they are 4.7840 and 0.2, respectively. Figure 7.10(a) shows the

probability density of the different distributions, and Fig. 7.10(b) shows the resulting

y-profile. We also present the y-profile for the case in which all the particles are con-

sidered to have one size (circular markers at cell DOD of 81% in Fig. 7.10(b)). When

the distribution is narrower, the position dependence is stronger, which can result in

more electrolyte depletion. By contrast, when the distribution is wider, the particles

react more homogeneously throughout the cell. Importantly, even though the wider

particle-size distribution decreases the net difference in the extent of reaction across

the electrode, our earlier work has shown that wider particle-size distributions react
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Figure 7.9: DOD in the x-direction for the second discharge simulation. (a) With
a perfectly aligned sample. (b) With a sample misaligned by one degree in the y-
direction. The solid lines indicate the simulation results, and the dashed lines with
markers indicate the experimental results.

more inhomogeneously at shorter length scales. Furthermore, in the case of single-

size distribution, the particles react even more inhomogeneously than in the case of a

narrow size distribution. The difference in the results illustrates that simple porous

electrode models in which only the average of the particle size is employed are not

sufficient to model cells in which the size distribution is not negligible.
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Figure 7.10: (a) Particle size distribution and (b) y-profiling for different size distri-
butions. The solid curves indicate the fitted distribution, the dashed curves indicate
a narrower distribution, and the dotted curves indicate a wider distribution. The cir-
cular markers (provided only for cell DOD = 81%) indicate the case with single-sized
particles.

We next analyze the y-profile gradient responses to porosity. For this analysis,

the ratio of active to inactive material in the original distribution remained constant,
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and only porosity (the electrolyte volume fraction) was changed. In addition to the

original cell, in which the porosity was approximately 25%, we consider 35% and 15%

porosities. In Fig. 7.11(a), we calculate the average y-profile gradient for the different

porosities and the different size distributions considered above. When the porosity is

increased to 35%, the Li-concentration gradient decreases, which can be attributed to

a higher effective diffusivity of the ions in the electrolyte. On the other hand, when

the porosity is decreased to 15%, the Li-concentration gradient increases. Thus, a

higher porosity facilitates the homogenization of particle reactions. A similar trend

is observed for the different size distributions. However, it is important to note that

when the porosity is increased, the fraction of active material is reduced, thereby

decreasing the energy density of the battery.

Finally, we analyze the discharge dynamics at different C-rates. Figure 7.11(b)

shows the gradients of the y-profile at C/2 and 0.7C in addition to the original C/7

data for different particle size distributions. The concentration gradients increase

as the rate increases, which reflect the fact that, at higher rates, the Li diffusion

in the electrolyte becomes more limiting. Interestingly, as the C-rate increases, the

dependence of the y-profile gradients on the particle size distribution decreases, and

the three different size distributions tend to converge to a similar gradient.
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Figure 7.11: Measured y-profile gradient (at DOD = 50 %) as function of (a) porosity
and (b) C-rate for the three different particle size distributions.
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7.4 Conclusion

In this chapter, we performed 3D PET simulations to model the electrochemical

reaction for an LFP coin cell battery. The simulations are consistent with the results

of the EDXRD experiments performed by our collaborators. In the first cycle, the

particles closer to the anode are the first ones to react indicating that the Li diffusion

in the electrolyte is the limiting factor. In the second cycle, in which the effective

conductivity is reduced by a factor of eight, the particles near the current collector

and the particles near the anode react preferentially than the particles in the middle

of the electrode. This dynamics suggest that besides the Li diffusion in the electrolyte,

the electronic conductivity is also a limiting factor in this case. The simulation results

are consistent with the experimental results. The reduced effective conductivity in

the second cycle can be attributed to loss of connectivity due to the expansion and

contraction of the particles or due to a formation of a solid-electrolyte interface.

A profile in the x-direction was performed for the second cycle, showing that the

particles in the sides of the electrode react before the particles in the middle. We also

performed simulations in which we varied the size distribution, porosity, and C-rate.

When the dispersion of the size distribution is increased, the reaction becomes more

evenly distributed throughout the cell. However, it can cause the particles to react

locally more inhomogeneously. When the porosity is higher, the particles react more

homogeneously; however, the volumetric energy density decreases. When the C-rate

is increased, the particles react less homogeneously and the differences caused by the

size-distribution become less significant.
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CHAPTER VIII

SUMMARY, DISCUSSION AND FUTURE

WORK

8.1 Summary

In this dissertation, we studied the electrochemical dynamics of nanoparticulate

LiFePO4 (LFP) cell electrodes, focusing on the kinetics of Li redistribution between

particles. As analyzed throughout the thesis, particle interactions depend on many

factors, such as the position, size, and connectivity. In Chapters III - VI, we employed

particle-level electrochemical dynamics (PLED) simulations to analyze the particle

interactions on a microscale, while in Chapter VII we used porous electrode theory

(PET) simulations to study entire cells on a macroscale.

In Chapters III - VI, we studied the Li redistribution between particles. At low

currents, we observed that particles react sequentially and thus Li redistribution tends

to be significant. Due to the non-monotonic shape of the single-particle equilibrium

potential, at these currents, some particles can lithiate while others delithiate. In

the relatively smalls cells studied here, we observed, in most cases, a group-by-group

lithiation of the particles. At higher currents, in which the magnitude of the overpo-

tential is larger, all particles in the cell have a driving force to either lithiate (during

the discharge process) or delithiate (during the charge process). Thus, all particles

react simultaneously, and Li redistribution does not occur.

In Chapter III, we focused on the dependence of the reaction dynamics on the

exchange current density as well as on position. We compared two models of the
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exchange current density: a cathode-activity-independent and a cathode-activity-

dependent exchange current densities. We showed that a cathode-activity-dependent

exchange current density can lead to asymmetric charge and discharge dynamics.

The position dependence of the reaction dynamics was studied using a simulation

configuration with equal-size particles, which isolates the the effect of the particle po-

sition. The results provide insights into the electrolyte concentration and electrostatic

potential response to the interactions.

In Chapter IV, we focused on how Li redistribution varies between a cell in which

the particles undergo intraparticle phase separation and a cell in which the particles

undergo interparticle phase separation. We observed a similar dynamics in both cases.

At low currents, both particles react sequentially – first the smaller particle followed

by the larger particle. At higher currents, both particles react nearly simultaneously

with the smaller particle completing the reaction process earlier due to its larger

area per volume. We also studied the case in which the larger particle undergoes

intraparticle phase separation and the smaller particle interparticle phase separation.

In such a case, we observed a change in the order the particles react; the larger particle

reacts before the smaller particle.

In Chapter V, we focused on the connectivity dependence of the reaction dynamics.

We found that to minimize the Li redistribution and homogenize the reaction of the

particles over the cell, the particles need to be (1) ionically and electronically well

connected, and (2) not in direct contact with one another. When the particles contact

one another, Li can be transported directly between particles chemically (i.e., not

electrochemically), which occurs causing the particles to react sequentially.

In Chapter VI, we focused on the effect of a size-dependent equilibrium potential.

We observed that, at low currents, the size dependence can lead to an asymmetry

between charge and discharge. For the case considered in this chapter, the size de-

pendence significantly affects the delithiation process while it is insignificant during
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lithiation. During delithiation at low currents, the size dependence can alter the order

of reaction of the particles; in the simulation presented, the larger particles delithiate

before the smaller particles. At higher currents, the size dependence becomes almost

negligible.

In Chapter VII, we map the reaction of the particles throughout the cathode based

on PET. The simulation results are compared to experiments. The simulation results

help identify the rate-limiting factors of the cell during lithiation. We also performed

a sensitivity analysis of the dynamics on the porosity and size distribution.

8.2 Discussion

The PLED simulations performed herein should be interpreted as a local represen-

tation of an electrode and not as that of an entire electrode. Real-size battery cells

include material and structural non-uniformities, such as defects in the particles,

inhomogeneity in the electrostatic potential, and concentration variations of the elec-

trolyte. As such, the interparticle phase separation is a local phenomenon and not

a cell-wide phenomenon; thus, the separation is difficult to observe directly in ex-

periments. In addition, the voltage response to an individual interparticle phase-

separation event may be undetectable when averaged over the entire cell. Our

work elucidates lithiation/delithiation dynamics at the particle level, which affect

the macroscopic behavior of nanoparticulate phase-separating cathodes. As a result,

the discrete behavior observed in the PLED simulations is smooth, and cell voltage

fluctuations are not apparent. Nevertheless, the particle interactions are local, which

lead to an increase in particle C-rates and the effective number of cycles.

Although we studied LFP and assumed in most of the chapters that the particles

do not undergo intraparticle phase separation, our predictions may hold qualitatively

even if phase separation occurs in some or all of the particles. As analyzed in Chap-

ter IV, the order in which the particles react can change when the system contains
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particles that undergo intraparticle phase separation as well as those that do not.

Nevertheless, the particles undergo sequential lithiation at low currents and simulta-

neous lithiation at higher currents. While the particle-size range that may yield a

meta-stable solid-solution path is debatable, there is a consensus that particles with a

diameter below ∼20 nm do not undergo intraparticle phase separation thermodynam-

ically [42, 17, 18]. Furthermore, the particle size threshold value would increase during

the electrochemical processes because phase separation may be kinetically suppressed

[43]. As shown in Chapter IV, even if certain particles undergo intraparticle phase

separation, there would still be a driving force for Li redistribution. The driving force

remains because phase-separated particles have a higher free energy than particles in

a Li-rich or Li-poor state due to the energy penalty of the interface and the elastic

coherency strain. Due to the small particle size and large Li mobility, the interfaces

can be easily moved to the particle surface and then annihilated. Thus, a cell com-

posed of nanoparticles undergoing intraparticle phase separation exhibits some of the

behaviors observed herein. More importantly, the findings presented here are also ap-

plicable to other nanoparticulate phase-separating materials for which interparticle

phase separation is favored.

8.3 Future Work

Integrating PLED and PET simulations can be a powerful modeling approach. The

simulation predictions can be enhanced in this manner. As discussed in Chapters III

and VII, the two techniques have different limitations: the PLED is computationally

expensive, and the PET cannot be utilized to analyze microstructural detail. There-

fore, the integrated use of both techniques can facilitate more accurate calculations

of particle behavior in the cell. A small cell construct (such as the agglomerates from

Chapter V) can be employed to represent different locations of a large cell (such as

the electrode from Chapter VII). A PET simulation can be employed to model the
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general behavior of a cell. For example, as observed in Chapter VII, particles react

inhomogeneously at different cell locations. Results showed that the C-rate for a given

region of the cell differs significantly from the cell C-rate. Furthermore, as analyzed

in Chapter V, the particle and agglomerate C-rates also differ. Therefore, the particle

C-rate can be much greater than the C-rate of the entire cell. The techniques may be

combined by first performing the PET simulation, followed by PLED simulations in

which the PET simulation results provide the boundary conditions, each representing

a small region of the cell; see Fig. 8.1 for a schematic. Using this approach, one could

perform simulations that can be directly compared to experiments while taking the

microstructural details into account.

Figure 8.1: Schematic of a multiscale PET-PLED simulation. Different PLED ag-
glomerates (from Chapter V) are plotted next to the PET configuration (from Chapter
VII).
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CHAPTER IX

CONCLUSION

This work reveals the complexity of the charge/discharge process of nanopar-

ticulate LiFePO4 (LFP) batteries. For the dynamics of these batteries to be fully

explained, an understanding on how the particles interact with each other is neces-

sary. We have here shown that the interparticle interactions can vary significantly

depending on many factors. The exchange current density can lead to asymmetric

charge/discharge. Smaller particles have a larger area-to-volume ratio and thus tend

to react before larger particles. Improving the ionic and electronic connectivity be-

tween particles and preventing direct Li transport between particles facilitate more

uniform reactions over the cell. A size-dependent equilibrium potential can change

the order in which the particles react. These aspects are necessary to fully understand

and predict interaction dynamics in a real cell, critical for predicting the behavior of

and optimizing LFP battery cells.
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APPENDIX A

DERIVATION OF EQ. (6.5)

We begin with the linearized Butler-Volmer equation:

i = −i0
(
F

RT
η

)
, (A.1)

where η is defined as

η = ∆φ−
[
φ0
eq +

a

r

]
. (A.2)

When two particles react at the same C-rate, their surface current per volume is as

follows:

i1
A1

V1
= i2

A2

V2
. (A.3)

For spherical particles, Eq. (A.3) can be rewritten as

i1
r1

=
i2
r2
. (A.4)

Substituting Eq. (A.1) into Eq. (A.4) and reorganizing the equation, we obtain the

following:

η1
r1

=
η2
r2
. (A.5)

Using the definition from η (Eq. 6.1) and defining η0 = ∆φ− φ0
eq we can express

Eq. (A.5) as follows:

1

r1

(
η0 − a

r1

)
=

1

r2

(
η0 − a

r2

)
, (A.6)

and we can solve for η0,

η0 = a
r22 − r21

r1r22 − r2r21
. (A.7)
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Using Eq. (A.1) and Eq. (A.2), we can also write η0 as a function of i and r for either

particle as follows:

η0 = −
(
i2
i0

RT

F

)
+
a

r2
. (A.8)

Equating Eq. (A.7) with (A.8) and solving for i2, we obtain

i2 = − Fi0a
RTr1

. (A.9)

Following the above derivation, we obtain i1, as shown in Eq. (6.5).
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