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ABSTRACT 
 

Microorganisms have mediated the cycling of elements on Earth for billions of years. However, 

the majority of microbes present in nature are uncultured and we know little about their 

physiologies or how geochemical niches are partitioned in nature. Innovations in DNA 

sequencing technologies and computational analyses now allow us to reconstruct genomes of 

individual community members from environmental samples. This process, referred to as 

“metagenomics”, enables elucidation of metabolic pathways of microbes without having to 

culture them. Furthermore, in situ gene activity can be measured by sequencing community 

RNA, referred to as “metatranscriptomics”. This dissertation uses these revolutionary approaches 

to investigate two biogeochemical hot spots in the oceans: deep-sea hydrothermal vent plumes 

and estuarine sediments. 

The deep oceans are rich in bioavailable nutrients and contain the largest pool of 

inorganic carbon near the Earth’s surface. Very little was known about the diversity of microbes 

or metabolic pathways involved in carbon and nitrogen cycling in the deep oceans. Therefore, I 

have applied metagenomic and transcriptomic approaches to the Guaymas Basin (Gulf of 

California) deep sea hydrothermal plume and surrounding waters.  Nitrification is the main 

source of nitrate to primary producers in the oceans. This process is mediated by two distinct 

groups of microbes, ammonia oxidizers (NH3 to NO2
-) and nitrite oxidizers (NO2 to NO3). We 

found that ammonia oxidation in the plume and background waters are driven by Thaumarchaea 

capable of CO2 fixation. Surprisingly, these Archaea are closely related to those found in surface 

ocean waters. However, these deep sea populations are physiologically distinct, for example they 

are able to utilize urea as a source of nitrogen. Interestingly, nitrite oxidation is mediate by a 

novel group of bacteria. Also among the most active genes in the plume and background waters 

are those involved in the amino acid transporters, suggesting the ability to recycle carbon and 

nitrogen from amino acids. These genes belong to a group of bacteria, similar to the genus 

Alteromonas, and to novel Archaea generically referred to as “marine group II”. This suggests 

that these uncultured Archaea, which are ubiquitous in the deep sea, are involved in the 

remineralization of organic carbon to CO2. 
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I have also used metagenomics to reconstruct the genomes of 82 bacteria from estuary (in 

the White Oak River, North Carolina) sediments. The genomes obtained are common to 

sediments worldwide, and have provided insights into the metabolisms of these uncultured 

bacteria. Many of the genomes belong to branches of life that had not been sequenced before and 

are involved in important processes including organic carbon degradation and fermentation. 

Among the most abundant organisms in the sulfate-rich layer are novel, uncultured members of 

the Gammaproteobacteria that are capable of anaerobic sulfur oxidation coupled to nitrate and 

nitrite reduction. This high resolution dataset enabled us to construct the first realistic map of the 

flow of carbon and energy through estuary sediment microbial communities. 
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CHAPTER I 

INTRODUCTION 
 

Microorganisms derive energy by transferring electrons from various sources (e.g., 

organic carbon, hydrogen, ammonia, sulfide) to various electron acceptors (e.g., oxygen, nitrate, 

sulfate), depending on their availability and energy yield. Microbial enzymes catalyze these non-

equilibrium redox reactions, and thus drive nearly all the elemental cycles on the planet. For over 

a hundred years, since Sergei Winogradsky began culturing microorganisms from the 

environment (Dworkin, 2011), microbial ecology relied on growing community members in the 

laboratory to understand their physiologies. In the late 1980’s, the development of PCR-

amplification and DNA sequencing of single genes from the environment (16S rRNA gene) by 

Pace and others (Pace et al. 1986, Pace et al. 1991) resulted in a paradigm shift in microbiology. 

This led to realization that the vast majority of microbes (>99.9%) in nature are novel and have 

not been cultured (Pace, 1996, Hugenholtz et al. 1998). Newly discovered divisions of life are as 

different to what had been cultured as humans are to mushrooms. As revolutionary as this was, 

the sequencing of individual genes yields little information about the metabolisms (or 

geochemical roles) of these uncultured groups.  

The fields of microbial ecology, geomicrobiology, and oceanography are being rapidly 

transformed by innovations in DNA sequencing technologies and computational analyses. This 

transformation is being fueled by the decreasing cost and increase in the yield of DNA 

sequencing. It is now possible to reconstruct hundreds of genomes of microbes directly, without 

cultivation, from the environment. This approach, referred to as “metagenomics”, enables us to 

piece together genes into complete metabolic pathways that are present in uncultured microbes. 

The reconstruction of genomes has begun to inform about the biogeochemical roles of several 

uncultured taxa including; OD1, OP11, OP9 bacteria, and Marine Group II Archaea to name a 

few (Wrighton et al. 2011, Dodsworth et al. 2013, Iverson et al. 2012). However, the presence of 

genes does not always equate to activity in nature.  Therefore, recently a new approach to 

quantify the activity of genes in natural communities has been developed, called transcriptomics 

1 
 



(Frias-Lopez et al. 2008). Transcriptomics is the sequencing of RNA (transcripts), which is what 

is produced in the cell from DNA (genes) when active. 

In this dissertation I use metagenomic and transcriptomic (omic) approaches to better 

understand the microbes and metabolic pathways involved in geochemical cycling of carbon and 

nitrogen in Guaymas Basin (GB) deep sea hydrothermal plumes (Gulf of California), and carbon, 

nitrogen, and sulfur cycling in White Oak River (WOR) estuary sediments (North Carolina). In 

the process of doing this I have also been involved in enhancing the computational analyses used 

to reconstruction both genomes and the quantification of transcript data from these microbial 

communities.  

 

1.1 Nitrogen cycling in the Guaymas Basin deep sea and hydrothermal plumes 

The Guaymas Basin contains a deep-sea hydrothermal system that is located at a water 

depth of about 2000 m and that forms the northern-most segment of the East Pacific Rise. It is 

unique compared to other hydrothermal systems in that it is located in a semi-enclosed basin, 

close to the coast, and sits underneath highly productive surface waters. This results in relatively 

high sedimentation rates, which has produced a thick layer of organic-rich sediments in the 

basin. As a result, the hydrothermal fluids that circulate through these sediments are enriched in 

ammonia, hydrocarbons, and methane (Bazylinki et al. 1988, Von Damm et al. 1985). The 

Guaymas Basin vent fluids have a temperature of 315oC, a pH of 5.9, and concentrations of H2 

and H2S of 3.4 and 6 mM, respectively. 

Nitrogen is essential to the structure of all life, as it is a large component of proteins.  

Nitrate, a key nutrient for primary production in the oceans, is primarily generated by microbial 

nitrification. Nitrification is a two-step process mediated by two distinct groups of microbes 

referred to as ammonia oxidizers (NH3 to NO2) and nitrite oxidizers (NO2 to NO3) (Francis et al. 

2007). Ammonia oxidizers were thought to be driven by a few groups of Proteobacteria 

(Kowalchuk and Stephen, 2001), but our understanding of nitrogen cycling has change 

dramatically in recent years.  

Among the most abundant and widespread microbes on the planet are the so-called “cold 

water Crenarchaea” or “Marine Group I”, now referred to as Thaumarchaea (Fuhrman, 2010, 

Brocheri-Armanet et al. 2008). These Thaumarchaea have been shown to comprise over 20% of 
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the picoplankton in the oceans, an estimated total of 1028 cells, and up to 40% in the deep sea 

(Karner et al. 2001). One of the first metagenomic studies was conducted on surface waters in 

Bermuda and found putative ammonia monooxygenase (amoA) gene present in Thaumarchaea 

(Venter et al. 2004). Soon after, a member of this group was isolated from an aquarium and 

shown to be capable of ammonia oxidation to nitrite with biocarbonate as the carbon source 

(Könneke et al. 2005). This isolate, named Nitrosopumilus maritimus, was also shown to have a 

high affinity for ammonia, it is thought that this results in Thaumarchaea’s ability to outcompete 

ammonia oxidizing bacteria in low ammonia waters in the oceans (Konneke et al. 2005).  

It is now known that Thaumarchaea are the key drivers of ammonia oxidation in the 

oceans, however little is known about the next step of nitrification, nitrite oxidation. Nitrite 

rarely accumulates in the oceans.  Given the large numbers of ammonia oxidizers present there, 

nitrite oxidizers must be capable of keeping pace (Ward et al. 2007). Members of the genus 

Nitrospina have been shown to be dominant in Monterey Bay, and the deep North Pacific Gyre 

(Delong et al. 2006, Mincer et al. 2007). Two other bacteria, Nitrospira and Nitrococcus, have 

been implicated to be dominant in oxygen minimum zones (Fussel et al. 2012). However, these 

bacteria are commonly seen at much lower abundances than Thaumarchaea. This is has led to 

speculation that there are unknown, yet-to-be-discovered organism that are driving nitrite 

oxidation in nature (Ward et al. 2007). 

The major source of nitrate to the surface ocean is through diffusion and upwelling of 

nitrate-rich deep ocean water (Zehr and Ward, 2002). Nitrate in the deep oceans is produced 

entirely by microbial nitrification. Studies of ammonia oxidizers (Thaumarchaea) have mostly 

focused on surface waters (Tully et al. 2012), and cultures from soils (Lehtovirta-Morley et al. 

2011, Jung et al. 2014) and aquariums (Konneke et al. 2005). Therefore, we were interested in 

using metagenomic and transcriptomics to interrogate both ammonia and nitrite oxidizing 

populations in the Guaymas Basin deep sea hydrothermal plume, which has high concentrations 

of ammonium and abundant Thaumarchaea.  

 

1.2 Microbial geochemical cycling in sediments 
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Marine and estuary sediments contain massive pools of organic carbon (Raven and 

Falkowski, 2002). Microbes degrade organic carbon and produce electron donors, namely acetate 

and H2, for respiratory processes via anaerobic metabolisms and fermentation. Electron acceptors 

are consumed in order of the energy yield of the redox reaction, with the most energetically 

favorable electron acceptors consumed first (i.e., O2 > NO3 > SO4 > CO2). This results in vertical 

zonation of microbial redox niches in the sediment profiles. Organic carbon is remineralized, the 

energy derived from reduction of the electron acceptors is used for microbial cell growth, the 

products of reduction reactions (e.g., HS-, CH4, N2O) serve as electron donors for other microbial 

metabolisms or in some cases accumulate or escape to the water column. It has been shown that 

up to 95% of the sulfide and thiosulfate produced by sulfate reduction is reoxidized in coastal 

sediments (Jørgensen, 1990). Although sulfate reduction has been shown to be mediated by 

Deltaproteobacteria, the microorganisms involved in sulfur oxidation, and the energetics of this 

process, are mostly unknown. Broadly speaking, sediment microbes assimilate and mobilize 

buried organic carbon produced in the overlying water column. In the ocean this results in the 

sequestration of carbon. While in estuaries it can represent a net sink of carbon or the release of 

methane and CO2 to the atmosphere (Bauer et al. 2013, Cai, 2011). 

 Unfortunately, our understanding of sediment microbiology is largely limited to surveys 

of the diversity of single genes (Teske and Sorensen, 2008) and cultivation of sulfate reducers 

and methanogens. These communities are considerably complex and we now know that most of 

what is out there has not been cultured (Whitman et al. 1998). This is a fundamental gap in our 

understanding of one of the largest habitats on the planet. It has been shown that there is 

considerable overlap in the membership of Archaea in marine sediments and estuaries (Kubo et 

al. 2012), suggesting that key geochemical processes are mediated by microbial groups that are 

ubiquitous. A recent study looking at the genomes of a few members of these widespread marine 

sediment Archaea, Misc. Crenarchaea Group (MCG) and Marine Benthic Group (MBG-D), 

revealed that they are capable of protein degradation (Lloyd et al. 2013). However, these are just 

a small portion of total diversity present in sediments.  

To better understand the links between sediment microbial metabolism and 

biogeochemistry, we conducted metagenomic sequencing of sediments in the White Oak River 

Estuary (WOR) in North Carolina (34°44.49N; 77°07.44W). The White Oak River is an 

approximately 40 mile‐long coastal blackwater stream flowing through coastal plain hardwood 
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forests before it enters a 10‐mile‐long tidal estuary; early diagenetic pathways (sulfate reduction, 

methanogenesis) in sediments of the freshwater lower river and the seawater‐influenced central 

estuary (the sampling site) have been studied extensively (Martens and Goldhaber 1978; Kelley 

et al. 1990, 1995; Martens et al. 1998; Avery and Martens 1998; Avery et al. 2003). Locally 

dominant plants (Spartina spp., cord grass, Juncus black needle rush, Red Cedar) contribute 

significantly to the buried organic material of the estuarine sediments (3-6% TOC) and its δ13C 

isotopic signature (Kelley et al. 1990). Additionally, phytoplankton biomass (especially 

phytoflagellates, cryptomonads in cool seasons, and cyanobacteria in summer blooms; Malin 

1994) contributes seasonally to the organic carbon input into the river. The abundance and 

diversity of organic biomass could be a key factor that selects for the benthic microbial 

communities. This location has been shown to be rich in microbial groups that are common to 

deep sea and coastal sediments throughout the world, making it a model site to study sediment 

biogeochemical cycling (Kubo et al. 2012). 

 

1.3 Structure of the dissertation 

 The research I present in this dissertation is motivated by fundamental questions such as: 

Which microbes are present in the deep sea hydrothermal plumes and estuary sediments? What 

are their metabolic and ecological roles? How are geochemical niches partitioned within the 

communities? While addressing these questions, in every chapter, I have also been involved in 

the development and enhancement of novel metagenomic and transcriptomic computational 

approaches. Chapter II is a feature article on the status of analyzing omic data (metagenomics 

and metatranscritpomics) in microbial ecology that I was asked to write for Microbe magazine. 

In this chapter I detail how DNA and RNA (cDNA) sequence assembly is important for piecing 

together individual genomes and pathways from natural microbial communities. In Chapter III, 

I ask the questions: Who are the dominant ammonia oxidizers in deep sea hydrothermal plumes 

and how do their genome sequences and predicted physiologies compare to those from other 

environments? I reconstructed genomes of Thaumarchaea populations involved in ammonia 

oxidation in the deep Guaymas Basin and use them as a basis to compare gene expression in 

hydrothermal plumes to the background waters. In Chapter IV, I ask the question: Which 

community members are mediating important geochemical transformations of carbon and 
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nitrogen in the deep sea? I again focus on the Guaymas Basin, but conduct the first de novo 

assemblies of metatranscriptomic data to assess gene expression activity in the plume and 

background microbial communities. In Chapter V, I ask the question: What are the metabolic 

capabilities of estuary sediment bacteria and how are carbon and energy cycled through the 

community? I reconstructed dozen of bacterial genomes, many belonging to new branches of 

life, which enabled us to construct a detailed map of cycling of carbon, nitrogen, iron, and sulfur 

in an estuary sediments.  In Chapter VI, I provide overall conclusions and a brief discussion of 

future directions. 
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2.1 Summary 

• Investigators are deducing genomes, transcriptomes, and proteomes of novel microbes, 

based on analysis of DNA sequence data from complex environmental samples. 

• Because genome sequence data fall short of covering the microbial diversity in nature, 

database-dependent approaches to analyzing that diversity have important limitations and 

biases. 

• Recent glimpses, using omics approaches, into the uncultured microbial biosphere have 

started to reveal fascinating organisms that expand our spectrum of knowledge of 

biology. 

• Using whole-community omics to track microbial communities in nature can resolve the 

roles of novel uncultured groups and shed light on fundamental links between ecological 

and evolutionary processes. 

 

9 
 



2.2 Introduction 

“Somewhere, something incredible is waiting to be known.”  Carl Sagan 

Much like astronomy, the microbial sciences are confronted with staggering unknowns and are 

reliant on tools and technology to probe the frontiers of knowledge.  The first realizations of just 

how extraordinarily diverse and unexplored microorganisms are occurred by analyzing microbial 

ribosomal RNA (rRNA) gene sequences directly from environmental samples. Norm Pace of the 

University of Colorado, Boulder, and his collaborators 20 years ago helped to pry open the 

extraordinarily diverse but largely unexplored array of microorganisms from hot springs and 

comparable environments.  

However, the novel microorganisms that they uncovered are not restricted to extreme 

environments.  In fact, we need to look no farther than the dirt outside our homes and 

workplaces, the lakes and streams that provide us with water to drink, and the surfaces on and 

within our bodies. Pace’s approach, applied to many environments, led many other 

microbiologists to realize that many phyla in the natural world are waiting to be discovered. 

Indeed, these ongoing efforts to learn more about microorganisms from so many different 

environments continue to alter our views of the tree of life (Fig. 2.1 and 2.2). 
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Figure 2.1 Phylogenetic tree reflecting our knowledge of the diversity of Bacteria. 
Sequences are clustered into bacterial phyla and archaeal divisions based on the Silva 
classification with manual curations and additions.  

 

Advances in DNA sequencing techniques made it possible to move from analyzing rRNA 

genes to entire genomes. Although this approach, called metagenomics, is based on random 

shotgun DNA sequencing of microbial communities and has proved powerful for interrogating 

microbial communities, it does not provide information about which genes are being expressed at 

any specific moment. However, whole-community transcriptomics and proteomics are helping to 

address questions about gene expression.  Here we highlight how such whole community omic 
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analyses provide unique perspectives of microbial diversity and discuss the importance of using 

de novo assembly to analyze this type of data. 

 

Figure 2.2 Phylogenetic tree reflecting our knowledge of the diversity of Archaea. 
Sequences are clustered into bacterial phyla and archaeal divisions based on the Silva 
classification with manual curations and additions.  

 

2.3 Understanding Microbial Communities in the Wild 

Nearly a decade ago, Jill Banfield of the University of California, Berkeley, and her 

collaborators applied random shotgun DNA sequencing to microbial biofilms from extremely 

acidic waters in the Iron Mountain mine in California, assembling genomes for the most 

abundant of those microbes. Although they relied on Sanger sequencing, whose yields are 
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modest compared to other DNA-sequencing techniques that are now available, their efforts 

showed that genome sequences could be reconstructed directly from environmental samples, 

bypassing cultivation while providing insights into the uncultured members of that microbial 

community.   

Subsequent studies illustrate that metagenomics contributes on at least three distinct 

levels to our understanding of microbial diversity. Taken together, these three levels provide 

insights into diversity that are inherent to microbial communities in the wild and that are readily 

tracked by whole-community genomic approaches.     

First, metagenomic analysis reveals entirely new microbial groups that might otherwise 

be overlooked if one were relying on rRNA or other traditional analytic techniques.  For 

example, Banfield and her collaborators in 2006 detected groups of archaea called ARMAN 

(archaeal Richmond Mine acidophilic nanoorganisms), that were not previously recognized 

because their 16S rRNA genes are mismatched with standard archaeal PCR primers.   

Second, metagenomics highlights how even well-known microbial taxa harbor novel 

genes, which sometimes are harbored within hypervariable regions called genomic islands.  Such 

novel genes are sometimes expressed at high levels in particular environments, suggesting that 

they are important even if their functions are not known, according to Edward DeLong of the 

Massachusetts Institute of Technology in Cambridge and his collaborators. 

Third, metagenomics can reveal genomic variability at the strain level within natural 

populations of Bacteria, Archaea, and viruses. Such variability between slightly different strains 

sometimes contributes in important ways to community functioning.   

 

2.4 Data Assembly Is Critical when Analyzing Microbial Communities 

Investigators now have two main options for analyzing whole-community genomic and 

transcriptomic datasets.  One approach involves comparing individual DNA sequences, or reads, 

to those in available databases.  This approach helps them to determine the function of specific 

genes and the organism in which those genes are functioning (grey arrows, Fig. 3.2).   

One ongoing problem with taking this “read mapping” or “recruitment” approach is that 

many or, in some cases, most of the reads may fail to match sequences in public databases such 

as GenBank and MG-RAST.  Although these and other genomic databases are growing rapidly, 
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they vastly underrepresent microbial diversity in nature.  Genomes from cells grown in culture or 

other sources that populate such databases are mere snapshots of the microbial world, and fall 

short of the full genomic repertoire.  Put another way, much of the DNA and RNA sequence data 

from environmental samples is novel and thus unlike what is available in major databases.   

There are at least two critical challenges facing anyone interpreting reads that do have 

matches in databases. First, comparisons of DNA sequences from the environment to those in 

databases typically use low thresholds of sequence similarity, or BLAST scores, to define 

positive matches.  This approach can result in finding considerable diversity within reads 

mapping to single database sequences (Fig. 2.3).  For example, we found that many bacterial 

reads readily map to an archaeal genome with commonly used parameters.  Second, inferring 

functions of genes based on environmental reads can be difficult because read lengths are 

considerably shorter than full-length genes. 

The other major approach to analyzing whole microbial communities involves 

assembling individual reads into ever-larger fragments on the basis of sequence overlaps (Fig. 

2.3).  While this approach may seem daunting, especially when working with diverse microbial 

communities in which sequence coverage of individual taxa may be limited, it can prove fruitful, 

and it is now commonly used to reconstruct near-complete genomes for microorganisms within 

samples from environments such as seawater and groundwater.   
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Figure 2.3 Schematic of approaches for analyzing whole-community genomic and 
transcriptomic sequence data, database-dependent (on top) and assembly-based (on the 
bottom). Multi-colored lines represent DNA sequences (“reads”) from different microbial 
genomes.  The thickness of arrows roughly represents number of reads.  Database mapping and 
searching of both DNA (genomic) and RNA (transcriptomic) reads is biased by the completeness 
of the database being used to map and assign function to the reads.  Both transcriptomic and 
genomic assemblies enable the reconstruction of natural community members and genes that are 
commonly overlooked by database-dependent approaches. 
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This analytic approach can lead to useful insights. For instance, genes that are linked via 

the genome can also reveal how genes associate on finer scales, such as operons, providing 

potential insights into how those genes function.  Moreover, this approach enables investigators 

to predict what metabolic pathways may be functioning within uncultured organisms. Perhaps 

most importantly, metagenomic assembly can help investigators to piece together novel genomic 

regions as well as full genomes for microorganisms that are absent from databases.  Even sets of 

fragments that do not belong to other near-complete genomes can be linked, or “binned,” with 

one another on the basis of signatures such as tetranuclueotide frequencies.  However, binning is 

not currently possible when relying on individual reads. 

Metagenomic assemblies can also enhance analyses of parallel metatranscriptomic data.  

We took this approach to look at ammonia-oxidizing archaeal populations within deep-sea 

hydrothermal plume communities from the Gulf of California. From these samples, we 

assembled several similar genotypes of archaea and could differentiate the transcriptional 

activity of each of these types under different regimes of ammonium concentration.  Thus, 

sequences from different organisms can be assembled and used to estimate their abundance and 

transcriptional activity in the community (Fig. 2.4).  Without assembly to resolve these different 

types, all of those reads might be assigned mistakenly to only one or a few entries in public 

databases, thus collapsing queries into database-dependent compartments that do not fully reflect 

the full diversity within the natural environment. 
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Figure 2.4 Community assembly enables the reconstruction of fine-scale genomic and 
transcriptomic variation that is inherent to natural microbial populations. Thus, we can 
determine which genotypes are the most abundant and/or transcriptionally active in the 
community. 

 

Complementary metagenomic and metatranscriptomic datasets can also be used for 

assessing the relative abundance and activity of different microbial populations. We find extreme 

differences in DNA and RNA compositions from the same community.  Some of the most 

abundant mRNA sequences belong to rare members of the community.   

Relying on metagenomic data when analyzing metatranscriptomics has pitfalls, however.  

For example, novel, highly expressed genes from low-abundance organisms may not be captured 

in metagenomic datasets or public databases. To better characterize these novel mRNA 

sequences, we assembled transcript libraries from the deep sea to reconstruct whole operons 

from uncultured microbial populations.  Some of the most abundant transcripts are those from 

rare—that is, accounting for less than 1% of the community—bacteria that are involved in 

oxidizing nitrite. There is value in doing transcriptomic and genomic assemblies in parallel. 

 

2.5 Filling in the Tree of Life 
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During the past several decades, rRNA gene surveys have uncovered a substantial 

number of new microbial phyla or divisions.  Few members of these phyla have been cultured, 

thus, our knowledge of them is limited to abundances of single marker genes in the environment 

and, in some instances, visualization of cells with rRNA-targeted fluorescent probes.   

How do we begin to understand the physiology and ecology of these mysterious lineages, 

which some experts call biological dark matter?  In lieu of traditional culture-based analyses, 

genome sequence analysis of environmental samples is providing insights into their lifestyles and 

evolutionary history.   

A few years ago, for example, we determined the genomic sequences of the members of 

two uncultured archaeal phyla, now referred to as Parvarchaeota (two genomes, ARMAN-4 and 

5) and Micrarchaeota (ARMAN-2). The latter sequence was obtained directly from whole-

community assemblies, while the two Parvarchaeota sequences depended in part on enriching 

our samples for ultrasmall (less than 500 nm in diameter) cells.  Recognizing that their genomes 

indicated that these cells interact with others, we determined that other nearby archaeal species 

mysteriously penetrate their cell walls.   

This degree of genomic information remains a rarity for Archaea, most of whose phyla 

are poorly characterized (Fig. 2.2). However, massive sequencing of natural microbial 

communities is bearing fruit more quickly in terms of furnishing genomes for candidate Bacteria 

phyla. For example, Banfield and her collaborators recently assembled genomes for members of 

several such phyla, including OD1, BD1-5, OP11, and a new group PER (Fig. 2.1).  

Single-cell genomics (SCG) is another approach to filling gaps in the tree of life. SCG 

depends on isolating individual cells from microbial communities, and then amplifying 

individual whole genomes before determining their DNA sequences.  Of the known Bacteria 

phyla, many uncultured phyla are published and others are in the works.  Some of the novel 

bacterial genomes, including OP1, OP9, and OP3, as well as several archaea such as Misc. 

Crenarchaeota Group and Marine Benthic group D, were determined by SCG.  

Although powerful, SCG provides mere snapshots of the genomic content of single cells. 

High-throughput methods make it possible to take many snapshots, but only community-wide 

approaches provide a direct measure of their full diversity. This diversity can be tracked further 

using community transcriptomic and proteomic approaches.  Ultimately, community genomics 

and SCG are complementary, with the latter providing references for fragment recruitment and 
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nucleotide compositional binning, while metagenomic data can provide quantitative information 

and a wider lens for addressing questions concerning whole-communities and their dynamics. 

 

2.5 Outlook 

Microbiologists now have the analytic tools to reconstruct genomes, transcriptomes, and 

proteomes of entire microbial communities.  Because so much of what is out there is 

uncharacterized, we are facing many challenges before we more fully understand how novel 

genes and proteins from members within such communities function and how they determine the 

ecological roles of novel phyla. 

However, now that we can also quantify gene expression in nature and how it varies in 

different niches, we can begin to assess how these novel microorganisms within communities 

behave and interact at the system level.  Such data may yield clues about how to culture cells 

within novel microbial groups, leading to experiments that will link gene sequences to their 

functions.  However, even if we could culture all members from a particular microbial 

community, removing them from that environment will change how each of them behaves. 

Moreover, because ecology and evolution are linked, our efforts to understand the latter will very 

much depend on our ability to track microbial genomes and their expression patterns in complex 

assemblages in nature. 
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3.1 Abstract 

Ammonia-oxidizing Archaea (AOA) are among the most abundant microorganisms in the oceans 

and play crucial roles in biogeochemical cycling of nitrogen and carbon. To better understand 

AOA inhabiting the deep sea, we obtained community genomic and transcriptomic data from 

ammonium-rich hydrothermal plumes in the Guaymas Basin (GB) and from surrounding deep 

waters of the Gulf of California. Among the most abundant and active lineages in the sequence 

data were marine group I (MGI) Archaea related to the cultured autotrophic ammonia-oxidizer, 

Nitrosopumilus maritimus. Assembly of MGI genomic fragments yielded 2.9 Mb of sequence 

containing seven 16S rRNA genes (95.4 to 98.4% similar to N. maritimus), including two near-

complete genomes and several lower-abundance variants. Equal copy numbers of MGI 16S 

rRNA genes and ammonia monooxygenase genes and transcription of ammonia oxidation genes 

indicates that all of these genotypes actively oxidize ammonia. De novo genomic assembly 
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revealed the functional potential of MGI populations and enhanced interpretation of 

metatranscriptomic data. Physiological distinction from N. maritimus is evident in the 

transcription of novel genes, including genes for urea utilization, suggesting an alternative source 

of ammonia. We were also able to determine which genotypes are most active in the plume.  

Transcripts involved in nitrification were more prominent in the plume and were among the most 

abundant transcripts in the community. These unique datasets reveal populations of deep-sea 

AOA thriving in the ammonium-rich GB that are related to surface types but with key genomic 

and physiological differences. 

 

3.2 Introduction 

Marine Group I (MGI) Archaea are a diverse group of Archaea that are ubiquitous in marine 

environments and are thought to play a significant role in global nitrification (Delong 1992, 

Delong et al., 1994, Francis et al., 2005, Fuhrman et al., 1992, Kalanetra et al., 2009, Wuchter et 

al., 2006). Originally classified as Crenarchaeota, recent phylogenetic analysis suggests that the 

MGI are part of the distinct and deeply-branching phylum Thaumarchaeota (Brochier-Armanet 

et al. 2008; Pester et al. 2011).  These Archaea are particularly abundant in the deep, dark ocean 

(Church et al. 2010), where they account for up to 40% of microbial communities (Karner et al., 

2001). Despite their abundance and biogeochemical importance, fundamental questions remain 

regarding the physiology and metabolism of MGI. Several studies of MGI have provided 

evidence for both autotrophic ammonia oxidation (Ingalls et al., 2006, Konneke et al., 2005) and 

heterotrophy (Tourna et al., 2011, Ouverney and Fuhrman 2000, Agogué et al., 2008, Muβmann 

et al., 2011).  Autotrophic ammonia oxidation has now been confirmed in a few cultured 

representatives (Tourna et al. 2011, De La Torre et al., 2008), including Nitrosopumilus 

maritimus (Konneke et al., 2005). Physiological characterization of N. maritimus showed that it 

has a high affinity for ammonia, providing a mechanism of niche differentiation with ammonia-

oxidizing bacteria (AOB) (Martens-Habbena et al., 2009), which are active in soils and other 

environments with higher ammonium concentration (Verhamme et al., 2011). 

Given the difficulty in culturing MGI, only two genomes have been fully sequenced. 

Both come from shallow waters, the sponge symbiont Cenarchaeum symbiosum (Hallam et al., 

2006) and the aquarium isolate N. maritimus (Walker et al., 2010). Recently, draft genome 
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sequence has been obtained from single cells and San Francisco Bay sediment enrichments of 

Nitrosoarchaeum limnia, recovered from an estuary in San Francisco bay (Blainey et al., 2011), 

and from a soil isolate, Nitrososphaera viennensis (Tourna et al., 2011). Characterization of 

these genomes suggests they use a modified 3-hydroxypropionate/4-hydroxybutryrate pathway 

for carbon fixation, and have a copper-dependent system for ammonia oxidation and electron-

transfer that is distinct from ammonia-oxidizing bacteria. Additionally, comparison of these 

genomes with marine metagenomic datasets revealed widespread conservation of gene content, 

highlighting the ubiquity of these oligophiles throughout the world.  A recent genomic 

characterization of communities of MGI Archaea from surface waters in the Gulf of Maine 

revealed that N. maritimus has several genomic islands that are not present in marine populations 

(Tully et al., 2012). 

 Although MGI are particularly abundant in the deep oceans (Karner et al., 2001), these 

deep populations are not well studied compared to those from shallower depths. A recent PCR-

based study found that deep waters (>1000m depth) of the North Atlantic have lower ratios of 

MGI amoA to 16S rRNA gene copies than subsurface waters, suggesting that most deep-sea 

MGI are heterotrophic (Agogué et al., 2008).  However, metagenomic sequencing of North 

Pacific waters at 4,000 m depth revealed an equal ratio of MGI amoA to 16S rRNA genes 

(Konstantidis et al., 2009).  Furthermore, it has recently been shown that expression of ammonia 

monoxygenase does not always signify autotrophy (Muβmann et al., 2011). In this study, we 

utilize deep-sea hydrothermal vent plumes in Guaymas Basin of the Gulf of California as natural 

laboratories in which to study ecological and physiological responses of deep-sea MGI to 

ammonium inputs. Sedimented hydrothermal systems such as Guaymas Basin are enriched in 

ammonium due to interactions of hydrothermal fluids with organic-rich sediments as they ascend 

en route to the water column (Von Damm et al., 1985). As a result, ammonium concentrations in 

Guaymas Basin end-member fluids (10.3-15.6 mM) (Von Damm et al., 1985) are considerably 

higher than unsedimented ridge discharge fluids (<0.01 mM) (Lilley et al., 1993). These 

hydrothermal inputs contribute to ammonium concentrations of up to 3 µM in GB deep waters 

(1800 to 2000 m depth) (Lam, 2004). Gene-based surveys have shown that the MGI dominate 

the Guaymas Basin plume archaeal community (Dick and Tebo, 2010, Lesniewski et al., 2012), 

and that MGI are more abundant in plumes than background seawater in the deep Indian Ocean 

and Okinawa Trough (Takai et al., 2004). 
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 Here we use community genomics and transcriptomics to survey the genomic diversity 

and activity of MGI populations in ammonium-enriched Guaymas Basin plumes compared to 

surrounding background waters. Community genomics and transcriptomics have proved to be 

valuable in understanding ecology of microbial communities (Hallam et al., 2006, Baker et al., 

2010, Frias-Lopez et al., 2008, Shi et al., 2009). To date metatranscriptomic studies have relied 

almost entirely on comparisons to public genomic databases (Frias-Lopez et al., 2008, Shi et al., 

2009, Stewart et al., 2011), isolate genomes (Hollibaugh et al., 2011), and unassembled DNA 

sequence (Shi et al., 2011). Instead, we utilized de novo genomic assembly of community DNA 

to evaluate the genomic diversity of MGI and provide a framework for recruitment of transcripts 

to closely-relate gene variants from plume and background waters. These analyses provide a 

unique glimpse into deep-sea MGI genomic diversity, and suggest that a cluster of closely-

related Archaea dominate nitrification in the deep waters of the Gulf of California. 

 

3.3 Materials and Methods 

Sample Collection and processing. Samples were obtained by CTD Rosette from Guaymas 

Basin and Carmen Basin on three cruises aboard the R/V New Horizon in 2004 and 2005.   Once 

on deck, plume and background waters were immediately filtered by N2 gas pressure onto 0.2-

µm pore size, 142-mm diameter polycarbonate filters and fixed and frozen in RNAlater as 

previously described (Dick et al. 2009b, Dick and Tebo 2010). Further details of sample 

processing, locations, and environmental conditions are provided in Table S1 and in Lesniewski 

et al., (2012).  Plume-1 and Plume-2 were used for genomics while Plume-3 and Plume-4 were 

transcriptomics samples from the plume.  Two background samples were each used for both 

metagenomics and metatranscriptomics.  Because it is not possible to obtain true background 

samples from sub-sill depths of Guaymas Basin, Background-1 was taken from just above the 

Guaymas Basin plume and Background-2 was from the next basin south of Guaymas, Carmen 

Basin (Lesniewski et al., 2012).  

RNA was isolated using a modification of the mirVana miRNA Isolation kit (Ambion) as 

described previously (Stewart et al., 2011, Hollibaugh et al., 2011). The RNA was then purified 

and concentrated using the RNeasy MinElute Cleanup kit (Qiagen). cDNA synthesis was 

conducted as described previously (Hollibaugh et al., 2011). Genomic DNA and cDNA libraries 
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were prepared for sequencing using standard protocols (454 Life Sciences, Roche) and randomly 

shotgun sequenced by 454 Titanium pyrosequencing. All of the cDNA reads presented here are 

available in the NCBI Sequence Read Archive under accession number SRA045655.  The entire 

metagenomic assembly has been deposited NCBI Bioproject number PRJNA77837. 

 

Genomic analyses. Genomic reads were assembled using MIRA 3 

(http://chevreux.org/projects_mira.html), and resulting contigs were manually checked with 

consed (Gordon et al., 1998) and annotated using the JGI IMG/MER system (Markowitz et al., 

2009).  Initial binning of the assembled fragments was done using tetra-nucleotide frequencies 

signatures and ESOM mapping as detailed in Dick et al. (2009a). Since this binning only 

obtained fragments larger than 2.5 kb, we also searched the entire assembly for additional 

fragments using reciprocal BLAST searches with the N. maritimus genome. GB fragments were 

then checked for synteny by manually comparing gene order to that of N. maritimus. Fragments 

were chosen to be added to the bin manually based on synteny and sequence match qualities. All 

phylogenetic trees were generated using maximum likelihood method within ARB software 

package (Ludwig et al. 2004). 

 

cDNA analyses. Transcript reads were mapped to predicted proteins using BLASTX (cutoff of 

bit score >45 and >70% similarity). Previous transcriptome studies have relied on publically 

available databases to recruit cDNA reads using bit score of >40-45 (Frias-Lopez et al. 2008, 

Gifford et al. 2011, Hollibaugh et al. 2011, Shi et al. 2009). We used a bit score cutoff of >40 to 

assign mRNA reads to the de novo assembled MGI genomes, resulting in recruitment of a total 

of 10,747 reads (Figure S4). Of these, 4,382 hits have less than 70% sequence similarity to the 

MGIC proteins. Comparison of these transcripts with Genbank revealed that most are not 

archaeal. In fact, only 13% had top hits to Archaea and just 10% of those matched MGIC (bit 

score >40). Furthermore, recruitment of reads originally identified as archaeal (bit score >40, 

%ID <70) to the entire GB genomic assembly revealed that the majority of them (72%) are more 

accurately assigned to other members of the community (Figure S5). In contrast, 93% of the 

cDNA reads recruited at >70% sequence similarity had top hits to Archaea in NCBI, and 88% of 

those had top hits to MGI.  Comparisons of recruitment patterns between the samples within the 
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plume and the two backgrounds did not reveal significant differences in transcription profiles 

(data not shown), therefore we pooled the two plume and two background samples for analyses. 

To confirm the absence of AOB, we searched the transcript libraries using amoA from 

Nitrosomonas marinus and Nitrosococcus oceani with e-value cutoffs of 1x10-10.  Some genes 

like ammonia monooxygenases are highly conserved, for example there is 97-99% similarity (at 

the protein level) between amoA genes in the community. Therefore, in order to accurately 

differentiate expression among variants we found it necessary to recruit reads at the DNA level. 

For normalized comparison analyses the total number of mapped transcripts was divided by the 

length of the gene and the total number of transcripts from each sample for comparison between 

them. A total of 1,651,287 (696,718 from plume-1 and 954,569 from plume-2) and 1,117,284 

(570,580 from background-1 and 546,704 from background-2) reads in the plume and 

background libraries respectively. The circular diagram for comparative genomics and 

transcriptomics was generated using Circos (Krywinski et al. 2009). Suspected replicate reads 

due to artifacts of 454 pyrosequencing were manually removed from ammonia monooxygenase 

gene analyses and from all DNA read coverage-based analyses. 

 

3.4 Results and disccusion 

Community genomics and transcriptomics reveals multiple populations of Marine Group I 

Archaea in the deep Gulf of California. Plume samples yielded more RNA as well as more 

DNA and cDNA reads than the background samples (Table S1). De novo genomic assembly and 

binning by tetranucleotide frequency and emergent self-organizing maps (Dick et al., 2009a) 

revealed a well-defined MGI bin that contained 449 DNA sequence fragments with length  

greater than 2.5 kb, totaling 1.79 Mb of consensus sequence (Figure S1). Based on BLAST 

searches of the whole community versus the N. maritimus genome, we identified 790 additional 

fragments belonging to MGI, bringing the total length of assembled fragments identified as MGI 

to 2.9 Mb. The average GC content of the bin was 31%, similar to that of N. maritimus (34%). 

The average fragment size was 2.3 kb and there were 80 sequences (of 1,239 total) longer than 5 

kb.  

Seven different MGI 16S rRNA genes were identified.  Phylogenetic analyses placed 

them all in group I.1a (Figure S2). 16S rRNA sequence similarity to N. maritimus ranged from 
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95.4 to 98.4% (pair-wise gene aligned), indicating that these GB populations likely represent 

distinct species of the Nitrosopumilus genus. To estimate the abundance and overall metabolic 

activity of each phylotype across samples, metagenomic and metatranscriptomic reads were 

mapped to the MGI 16S rRNA genes (Figure S3).  MGI 16S rRNA genes consistently recruited 

more cDNA reads from plumes than background.  The balance of DNA reads in background 

versus plume was more variable, and in some cases much higher in background than plume 

(Figure S3).  In terms of the whole community, these MGI SSU rRNA genes were the most 

abundantly represented Archaea in both plume and background metatranscriptomic datasets 

(Lesniewski et al., 2012). 

The GB genomic assembly also contained seven different sequence types of MGI amoA 

genes.  The average coverage of amoA genes was 6X (294 total genomic reads), comparable to 

the 4X coverage of MGI 16S rRNA genes (390 total genomic reads).  Normalization of read 

numbers by gene length resulted in a roughly equivalent copy number of amoA and 16S genes 

(amoA:16S ratio of ~1.4), indicating that the majority of GB MGI cells have amoA and are thus 

capable of ammonia oxidation.  These findings are consistent with those of Konstantinidis et al. 

(2009) from 4,000 m depth at station ALOHA and distinct from those of Agogué et al., 2008, 

which found smaller amoA:16S ratios in deep Atlantic waters. 

 

Comparison of the metagenome and metatranscriptome to N. maritimus. Comparison of the 

Guaymas Basin MGI metagenome to the genome of N. maritimus (Walker et al., 2010) revealed 

both similarities and differences. 85% of the ORFs in the Guaymas Basin MGI bin (4,875 of 

5,744) are homologous to proteins from N. maritimus. These homologs average 78% protein 

sequence similarity, and appear to stem primarily from four different genotypes, two of which 

are well-covered in the Guaymas Basin metagenome (Figure 3.1). The remaining 15% of 

putative proteins in the MGI bin do not have homology to proteins in N. maritimus (e-value 

cutoff 1x10-10). Most of these Guaymas Basin-unique proteins (76%) could not be assigned any 

putative function. There were also predicted proteins from the N. maritimus genome that could 

not be identified in the Guaymas Basin genomic data (205 of the 1,799), the majority of which 

were annotated as hypothetical proteins. Many of these N. maritimus-unique genes clustered in 

certain regions of the N. maritimus genome (Figure 3.1), which correspond to recently identified 

genomic islands that are also absent in MGI populations from surface waters of the Gulf of 
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Maine (Tully et al., 2012). This suggests that these regions are unique to the N. maritimus 

genome and that our metagenomic assembly contains near-complete genomes of MGI 

populations.     

Figure 3.1. Mapping of Guaymas Basin metagenomic fragments to the Nitrsospumilus 
maritimus genome. The outer-most ring is the complete genome N. maritimus with ORFs 
colored based on COG categories. The black tiles inside are assembled genomic fragments from 
the Guaymas assembly that map by BLASTn to regions of the N. maritimus genome. The outer 
grey shaded circle is a histogram showing percent sequence identity of top GB proteins that 
match N. maritimus proteins (scaled from 50% inside to 100% outside). The inner-most grey 
circle is the raw number of transcripts that map to those homologous proteins (range 0-30) for 
visualization of region with no recruitment. Genomic islands (> 1 kb) missing in archaeal 
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metagenomic data from Gulf of Maine surface waters (Tully et al., 2012) are highlighted with 
light red wedges.  Note that nearly all the gaps in the Guaymas Basin genomic data occur in 
these genomic islands. 
 

The advent of transcriptomic sequencing of microbial communities is advancing 

knowledge of the transcriptional activity organisms in the environment (Frias-Lopez et al., 2008, 

Stewart et al., 2011). However, accurate assignment and phylogenetic placement of transcripts 

from natural populations of uncultivated microorganisms is hindered by a lack of coverage of 

genomes present in the environment. We applied a stringent threshold (>70% sequence identity 

and bit score >45) to recruit 8,520 high similarity reads to the Guaymas Basin MGI metagenome 

(Figure 3.2). 6,363 of these transcripts came from the plume and 2,157 from the background 

samples, with an average of 94% amino acid similarity. Using the same parameters only 6,849 

transcripts were mapped to N. maritimus genes (Figure S4), highlighting the value of genomes 

assembled directly from the same environment where metatranscriptomic data was collected. 

Given the considerable diversity of MGI in deep Gulf of California waters (Figure S2) and the 

modest quantity of mRNA transcripts recovered, the metatranscriptomic data presented here 

likely represents only the most abundantly transcribed genes of MGI populations. 

 

 
Figure 3.2. Abundance of raw (not normalized) transcripts mapped to genes in the 
Guaymas Basin MGI metagenomic bin (5,744 total genes). Predicted hypothetical proteins 
that have matches to N. maritimus genes are labeled “Nmar”. 

 

Enhancement of AOA in plumes and dominance over AOB. Several recent studies have 

investigated how the balance of AOA and AOB varies as a function of ammonium concentration 
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(Martens-Habbena et al. 2009, Verhamme et al. 2011). Hydrothermal inputs into the 

deep Guaymas Basin lead to ammonium concentrations of 0.2-3 µM in plumes (Lam, 2004), 

which spans the range proposed to delineate niches of AOA and AOB (Martens-Habbena et al., 

2009). We found that transcripts of MGI genes encoding ammonia monooxygenase (amoA) and 

an ammonium transporter were among the most abundant protein-coding transcripts in the deep 

Guaymas Basin microbial community (total of 405 and 1713 transcripts, respectively) and were 

more abundant in plume samples compared to background (Figure 3.3). In contrast, no bacterial 

ammonia monooxygenase genes were identified in any of the Guaymas Basin metagenomic or 

metatranscriptomic datasets (plume or background). This suggests that ammonia oxidation in the 

deep Gulf of California, including ammonium-enriched hydrothermal plumes, is dominated by 

AOA. 
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Figure 3.3. Stacked bar graph showing the number of transcripts recruited to MGI 
Archaea genes in the plume and background samples and sorted by difference between the 
plume and background recruited, with the greatest being at the top.  Numbers are normalized to 
length of the genes as well as the total number of transcripts per sample (raw number of recruited 
divided by gene length and library size, then multiplied by a million to it comparable to the raw 
number of reads). (A) shows transcripts that are most abundant in the plume. (B) shows 
transcripts of genes not present in Nitrosompumilus maritimus that are most up-regulated in the 
plume. 
 

Species-resolved transcriptomics of ammonia oxidation genes. Detailed analysis of amoA 

transcripts revealed dynamic transcription patterns of particular AOA populations. The Guaymas 

Basin metagenome contains 27 contigs that have amo genes from at least seven different 

genotypes (Figure 3.4). These well-assembled amo loci represent the dominant AOA genotypes 

present in the genomic data. To assess the ammonia-oxidizing transcriptional activity of each of 

these genotypes in ammonia-rich and ammonia-poor settings, we compared transcript 

recruitment from plume and background samples to all ammonia monooxygenase genes (amoA, 

amoB, amoC, and the amo-associated hypothetical) from all genotypes. Transcription of amoA 

genes from three of the abundant GB genotypes (c1374, c45409 and c51705) is dramatically 

higher in plume compared to background (Figure 3.4). Interestingly, there are several low-

abundance variants that are highly active in the plume (amoA and hypothetical from c51705, 

amoC from c113214, and hypothetical from c225589).  
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Figure 3.4. Transcript levels of sequence variants of ammonia monooxygenase genes in 
plume and background samples. Transcript numbers are normalized to gene length and library 
size. DNA fragments (contigs) with more than one gene are designated with grey bars on the x-
axis. Individual genes are labeled on top. Thin grey horizontal lines indicate contig coverage in 
the genomic libraries (see scale on the right). 
 

The four Guaymas Basin amoA variants that are most active in the plume (c1235, c1374, 

c45409, and c51705) fall within a tight phylogenetic group (Figure 3.5). Interestingly, the most 

abundant transcript type (c1374) is most closely related to a clone recovered from deep waters 

(2956 m) of the Japan Sea (Nakagawa et al. 2007).  Furthermore, these deep-sea genotypes types 

are distinct from those that have been recovered from the upper 650 m of the water column at 

Guaymas and Carmen Basins (Beman et al. 2008).  These Guaymas Basin gene sequences are 

>97% similar to one another and 92.3 to 93.4% similar to N. maritimus. Thus the genotypes that 

dominate amoA transcription in the deep Guaymas Basin likely represent strains of a novel 

species of Nitrosopumilus, a notion that is supported by sequence similarity and phylogeny of the 

dominant 16S rRNA genes (Figure S2). Our data suggests that expression of amoA genes from 

this deep GB group is enhanced in ammonium-rich hydrothermal plumes of the Guaymas Basin. 

Several other amoA sequences in this phylogenetic cluster were recovered from a site in the 

Arctic Ocean that has high ammonium concentrations (Kalanetra et al., 2009). Taken together, 

this evidence reveals a cluster of MGI that thrives in geographically widespread ammonium-rich 

marine environments. 
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Figure 3.5. Phylogenetic tree of ammonia monooxygenase (amoA) genes and abundance of 
their transcripts in plume and background datasets. Recruitment numbers were normalized 
to gene lengths and the library sizes. Notice the Gulf of California sequences recovered from the 
surface waters (Beman et al. 2008) are not related to the types found in this study. 
 

Genomic insights into the carbon metabolism of GB MGI. Given their abundance in the 

oceans and potential role in the carbon cycle, defining the carbon metabolism of MGI is an 

important yet unfinished task. Conflicting results leave open the question of whether individual 

MGI are capable of both heterotrophy and autotrophy or there are sub-groups that specialize in 

each. Whereas studies of cultures and surface waters indicate autotrophy, observations of a lower 

ratio of MGI amoA to 16S rRNA gene copies (Agogué et al., 2008) and decreasing MGI carbon 

fixation with depth (Varela et al., 2011) in the Atlantic suggest that deep-sea MGI are 

predominantly organoheterotrophic.  Recent studies also show that the presence (and expression) 

of amoA genes does not necessarily indicate CO2 fixation (Tourna et al., 2011, Muβmann et al., 
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2011).  The Guaymas Basin metagenome contains genes homologous to N. maritimus genes 

encoding the 3-hydroxypropionate/4-hydroxybutyrate pathway for CO2 fixation (Berg et al., 

2007), including 4-hydroxybutyryl-CoA dehydratase (HCD), methylmalonyl-CoA epimerase and 

mutase, and acetyl-CoA carboxylase (ACCase). Genes for ACCase recruited 25 transcripts (16 

from plume and 9 from background) as did genes for methylmalonyl-CoA epimerase and mutase 

(19 plume and 6 background). Representation of these autotrophy genes in the 

metatranscriptomic data supports the idea that MGI fix CO2 in the deep Gulf of California.  

The Guaymas Basin MGI genomes contain 57 predicted ABC-type transporters for 

uptake of amino acids, which might be are an important source of carbon, nitrogen and energy 

for marine heterotrophs including MGI (Ouverney and Fuhrman, 2000, Fuhrman, 1987, Suttle et 

al., 1991). Although this indicates genomic potential for heterotrophy in the Guaymas Basin 

MGI, these transporters recruited few or no transcripts (≤2), suggesting that transcription of 

genes encoding MGI amino acid transporters was lower than those for carbon fixation. 

 

Nitrogen and energy metabolism of GB MGI. Although MGI show high affinity for 

ammonium (Martens-Habbena et al., 2009), low ammonium concentration still presents a 

potential bottleneck for energy metabolism of MGI. The Guaymas Basin MGI show evidence of 

several strategies for ammonia acquisition. First, genes encoding ammonium transporters are the 

most abundant protein-coding transcripts in the MGI metatranscriptome (Figure 2). Such high 

transcription of MGI ammonium transporters is consistent with prior observations from surface 

waters (Hollibaugh et al. 2011, Stewart et al., 2011) and likely reflects the much higher 

concentration of ammonium than ammonia at seawater pH. The fact that ammonium transporters 

are the most highly expressed protein coding gene of deep GB MGI suggests that ammonium 

must be first transported into the cell for oxidation to occur. Regardless, this gene is clearly 

critical to the MGI’s success in the community, and may account for their high N affinity 

(Martens-Habbena et al., 2009). 

Second, the deep-sea Guaymas Basin MGI metagenome contains three operons of ure 

genes for urea utilization. One genomic fragment (c229) has ureE, ureF, ureG, and ureH genes 

and another (c464) has ureB, ureG, and ureE, and urease-associated metallopeptidase genes. 

Two additional fragments contain urea active transporters and one of these has a second urease-

associated metallopeptidase gene. It has been recently shown that the soil AOA isolate, N. 

34 
 



viennensis, is capable of growth on urea (Tourna et al., 2011). Both C. symbiosum and N. 

viennensis contain urease genes (Tourna et al., 2011, Hallum et al., 2006), however N. maritimus 

lacks any recognizable genes for urea utilization.  Thus our results and other recent 

environmental studies (Konstantinidis et al., 2009; Tully et al., 2012; Yakimov et al., 2011) 

highlight an important difference in N acquisition between natural populations of MGI and N. 

maritimus. 

All genes for the proposed AOA respiratory pathway (Walker et al., 2010) are present in 

the GB genomic data except the plastocyanin-like subunit of complex III. Genes present include 

those encoding NADH dehydrogenase (NuoABCDHIJKMLN), ATP F0F1-type synthetase, 

complex III, multicopper oxidases (MCO), and the terminal oxidase (complex IV). Many of the 

respiratory pathway genes have multiple variants (up to seven) in the Guaymas Basin, but in 

nearly every instance one specific genotype recruited the majority of transcripts (see Table S2 for 

complete list).   

Nitrite, the product of ammonia oxidation, inhibits growth of AOA (Tourna et al., 2011). 

However, a recent study suggests that AOA reduce nitrite through a pathway known as “nitrifier-

denitrification”, resulting in globally significant production of nitrous oxide (N2O), an important 

greenhouse gas (Santoro et al., 2011). Although culture-based studies of MGI physiology have 

not demonstrated nitrite reduction, genes with homology to nitrite reductase (nirK) and several 

cupredoxin domain-containing MCOs thought to be involved in nitrite reduction were identified 

in the N. maritimus genome (Walker et al., 2010). We identified single copies of nirK-like genes 

Nmar_1259 and Nmar_1667 in the Guaymas Basin genomic data. The Nmar_1259 nirK 

homolog (c632) is well-represented in both plumes (61 transcripts) and background (35 

transcripts), whereas only a few transcripts of the Nmar_1667 homolog were detected. Nearly all 

the nirK-associated MCOs are also present in the GB MGI bin (Nmar_1354 was not found) but 

they are not expressed at significant levels. A potential source of electrons for nitrite reduction is 

formate (Ruiz-Herrera and DeMoss, 1969), which is likely present in Guaymas Basin plume. 

Some of the most abundant MGI transcripts that are highly enriched in the plume come from two 

variants of formate dehydrogenase (c1456 and c85331) that are highly similar (100% and 97%) 

to this protein from N. maritimus (Figure 3.3). Taken together, the evolutionary conservation and 

abundant transcriptional activity of this formate hydrogenase suggests that it serves a critical role 

in Guaymas Basin MGI. The overall magnitude and extensive enrichment of transcripts of 
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formate dehydrogenase and nitrite reductase genes that we observe in the Guaymas Basin plume 

implies that AOA actively reduce nitrite in these deep waters. 

 

3.6 Conclusions 

It is becoming increasingly apparent that MGI are widespread and globally significant 

players in the nitrogen and carbon cycles, yet the extent and implications of their influence are 

unclear due to questions surrounding their physiology and ecology. This is especially true for 

deep-sea MGI, which are numerically dominant but not well studied. In this study, de novo 

assembly of community genomic sequence provided a framework for investigating the activity of 

naturally occurring populations of MGI in the Gulf of California. This approach proved to be 

especially useful for differentiating transcriptional activity among closely-related genotypes. 

Additionally, it provided a catalog of genes not present in reference genomes, including those for 

urea utilization and many hypothetical genes.  

Our findings show that the dominant Archaea in the deep Gulf of California are ammonia 

oxidizers. Archaeal genes for ammonia oxidation are among the most highly transcribed protein-

coding genes in microbial communities inhabiting ammonium-enriched Guaymas Basin deep-sea 

hydrothermal plumes, suggesting vigorous MGI-mediated nitrification. This is surprising in light 

of the prevailing view that Bacteria tend to dominate at higher ammonium concentrations. 

Instead, we found a dominant clade of deep-sea AOA that thrive under ammonium-rich 

conditions, perhaps indicating that the marine AOA niche has a broader range of ammonia 

concentration than previously recognized. This group is closely related to N. maritimus, sharing 

with it the ability to oxidize ammonia and fix carbon, but is also characterized by genomic 

novelty reflecting important physiological differences such as acquisition of nitrogen via urea. 

These insights highlight populations of MGI Archaea in the deep Gulf of California that are 

distinct from those in surface waters and deep Atlantic waters, and that respond to geochemical 

perturbation in the plume environment. 
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Table 3.1. Summary of samples characteristics and sequencing results. 

 

Cast 

 

Sample 

 

Depth 

m 

 

O2 µM 

 

T  

°C 

Total RNA 

conc. ng/Ld 

No. sequencing 

readse 

MetaG. MetaT. 

11-2 #14 GD-1  1996 27.38 3.0 N.D. 640,069 - 

 
11-1 #8 GD-2 1775 27.04 3.0 N.D. 616,464 - 

 
21-6 #2 GD-5 1963 26.05 2.9 167/251 - 758,433 
12-27a #1 GD-6 1950 27.7 3.0 203/319 - 954,569 
12-8 #12 GD-7/9 1600 28.5 3.0 64/69 421,004 570,580 
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34-2 #7 GD-8/10 1900 46.46 2.6 57/82 462,850 546,704 
dtotal RNA concentrations shown are results of two independent extractions for each sample; N.D. = not determined 
eNumber of pyrosequencing reads produced  

**more information on the location and times of samples in Dick et al. 2009 and Dick & Tebo 2010. 
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Table 3.2. List of genes thought to be involved in Nitrospumilus maritimus ammonia oxidation 
electron transfer and their representation in the GB genomic assembly. 
 

Function homolog in variants in fragment with number of plume number of 
background 

  N. 
maritimus 

GB 
assembly dominant variant cDNA reads cDNA reads 

          
Multi-Copper Oxidases Nmar_1226 4 c1026 5 0 
(MCO) with plastocyanin Nmar_1102 4 c4782 11 2 
domains Nmar_1665 1 c1407 0 0 
  Nmar_1307 1 c197 0 0 
  Nmar_1443 2 none 0 0 
  Nmar_1142 4 c6328 2 1 
          
NADH dehydrogenase         
NuoA Nmar_0276 4 c586 1 1 
NuoB Nmar_0277 6 c586 12 10 
NuoC Nmar_0278 3 c2015 6 0 
NuoD Nmar_0279 4 c586 5 0 
NuoH Nmar_0280 7 c1640 4 5 
NuoI Nmar_0281 4 c1640 2 0 
NuoJ Nmar_0282 3 c1640 2 0 
NuoK Nmar_0283 3 c17106 2 0 
NuoM Nmar_0284 4 c1640 3 1 
NuoL Nmar_0285 3 c341 17 3 
NuoN Nmar_0286 3 c341 1 0 
          
Complex III         
Plastocyanin-type subunit Nmar_1542 0      
          
Transmembrane subunit Nmar_1543 4 c49089 9 6 
          
Rieske-type subunit Nmar_1544 4 c7149 5 1 
          
Complex IV Nmar_0182 4 c2483 5 2 
terminal oxidase Nmar_0183 3 c78268 7 7 
  Nmar_0184 3 c6181 15 11 
  Nmar_0185 1 c6181 6 5 
          
ATP F0F1 synthetase         
ATP sythetase C Nmar_1688 3 c964 16 1 
ATP sythetase D Nmar_1689 4 c1542 2 0 
ATP sythetase B Nmar_1690 4 c336 4 0 
ATP sythetase A Nmar_1691 2 c336 13 5 
ATP sythetase E Nmar_1692 3 c1842 2 2 
ATP sythetase I Nmar_1693 6 c288 4 1 
total  30 101   161 64 
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Figure 3.6.  Assignment of metagenomic contigs to populations by binning with tetra-ESOM as 
described in Dick et al., 2009.  Maps are continuous from top to bottom and side to side.  White 
points represent metagenomic sequence fragments that have been clustered according to 
tetranucleotide frequency patterns.  Background color indicates tetranucleotide frequency 
distance between data points; thus brown ridges represent large distances between fragments, 
delineating borders between genomes, whereas green represents short distances between 
fragments within genomes.  Numbers indicate population based on presence of 16S rRNA genes 
on member contigs: (1) SAR324 Deltaproteobacteria; (2) MGI; (3) SUP05 
Gammaproteobacteria. A: de novo clustering of GB plume and background contigs.  B: GB 
contigs as in (A) with the addition of reference genomes to evaluate binning accuracy: turquoise 
– SUP05 contigs from (WALSH et al., 2009); light green – Cenarchaem symbiosum; bright pink – 
Nitrosopumilis maritimus; blue – Ruthia magnifica; yellow – Calyptogena okutanii; orange – 
Methylococcus capsulatus; purple – Alteromonas macleodii; brown – Marinobacter algicola 
DG893; pale pink – Methylophaga thiooxidans DMS010.  
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Figure 3.7. Phylogeny of 16S rRNA genes assembled from the Guaymas genomic library.  The 
tree was generated using maximum likelihood method with Aquifex pyrophilus used as the 
outgroup.  Note that all GB sequences cluster with N. martimus.  The groups that have been 
tentatively namely by Pester et al (2011) are labeled on the right. 
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Figure 3.8. Comparison of the number of metatranscriptomic and metagenomic reads mapped 
from plume and background samples to the MGIC 16S rRNA genes. The RNA reads (left) were 
normalized to length 1166-1472, E. coli numbering, and the total number of transcripts. The 
DNA read counts (right) are normalized to the length of each fragment and the total number of 
reads from each library.  Only four of the 16S rRNA genes have overlapping sequence used in 
this analysis, which is why there are fewer contigs for RNA recruitment (left). Replicates reads 
resulting from 454 artifacts were manually identified and removed from these analyses. 
 

Figure 3.9. Mapping of GB plume and background transcript reads. (A) shows the percent match 
distribution of all transcripts that map to GB MGI proteins with bit scores >40 using BLASTx. 
(B) shows the number of transcripts (4067 total) that map to Nitrosopumilus maritimus proteins 
at more stringent parameters (bit score >45 and >70% similarity). 
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Figure 3.10.  Recruitment of cDNA reads originally identified as MGIC (> 40 bit score but 
<70% ID) to binned fragments in the entire genomic Guaymas Basin assembly. 
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4.1 Abstract  

The deep ocean is an important component of global biogeochemical cycles because it contains 

one of the largest pools of reactive carbon and nitrogen on Earth.  However, the microbial 

communities that drive deep-sea geochemistry are vastly unexplored. Metatranscriptomics offers 

new windows into these communities, but it has been hampered by reliance on genome databases 

for interpretation. We reconstructed the transcriptomes of microbial populations from Guaymas 

Basin, in the deep Gulf of California, through shotgun sequencing and de novo assembly of total 

community RNA. Many of the resulting mRNA contigs contain multiple genes, reflecting co-

transcription of operons, including those from dominant members. Also prevalent were 

transcripts with only limited representation (2.8X coverage) in a corresponding metagenome, 

including a considerable portion (1.2Mb total assembled mRNA sequence) with similarity (96%) 

to a marine heterotroph, Alteromonas macleodii. This Alteromonas and euryarchaeal marine 
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group II (MGII) populations displayed abundant transcripts from amino acid transporters, 

suggesting recycling of organic carbon and nitrogen from amino acids. Also among the most 

abundant mRNAs were catalytic subunits of the nitrite oxidoreductase (NXR) complex and 

electron transfer components involved in nitrite oxidation. These and other novel genes are 

related to novel Nitrospirae and have limited representation in accompanying metagenomic data. 

High throughput sequencing of 16S rRNA genes and rRNA read counts confirmed that 

Nitrospirae are low abundance yet widespread members of deep-sea communities. These results 

implicate a novel bacterial group in deep sea nitrite oxidation, the second step of nitrification.  

This study highlights metatranscriptomic assembly as a valuable approach to study microbial 

communities. 

 

4.2 Introduction 

Microorganisms mediate the marine carbon and nitrogen cycles and thus control nutrient 

bioavailability, primary productivity, and production and consumption of greenhouse gases such 

as N2O and CO2 in the oceans (Füssel et al., 2012; Karl et al., 2012; Ward et al., 2007). The deep 

ocean represents the largest active reservoir of carbon on the planet, containing ~50 times more 

inorganic carbon than the atmosphere (Raven and Falkowski, 1999). Thus, understanding the 

primary agents of carbon cycling in the deep sea is of considerable interest. The “biological 

pump” has been considered a driving force for sequestration of carbon to the ocean interior 

(Raven and Falkowski, 1999) and the “microbial carbon pump”, in which heterotrophic bacteria 

generate recalcitrant dissolved organic carbon, represents a more recently recognized form of 

carbon sequestration (Jiao and Zheng, 2011). Therefore, elucidating the key microbial players 

that mediate interconversions between dissolved inorganic carbon, particulate organic carbon, 

and dissolved organic carbon is crucial to understand the carbon cycle as it pertains to global 

change. 

Because nitrogen is often the co-limiting nutrient for productivity in the oceans, the 

carbon cycle is intimately linked to biogeochemical transformations of nitrogen (Zehr and 

Kudela, 2011).  Recent transformative advances in environmental DNA sequencing have 

revealed the pathways, organisms, and genes involved in the nitrogen cycle including anaerobic 

ammonia oxidation (anammox) (Strous et al., 2006), denitrification (Ward et al., 2007), N2O 
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production (Santoro et al., 2011), and ammonia oxidation (Könneke et al., 2005). Ammonia-

oxidizing Archaea (AOA) are now recognized as major contributors to oceanic nitrification 

(Wuchter et al., 2006) by catalyzing the first step, oxidation of ammonia to nitrite (Könneke et 

al., 2005). These AOA are numerically abundant, especially in the deep sea, where they account 

for up to 40% of total cells (Karner et al., 2001), thus they have been estimated to be among the 

most abundant Archaea on Earth (Pester et al., 2011). Despite these new insights, fundamental 

questions about the marine nitrogen cycle remain open.  For example, because nitrite produced 

by AOA typically does not accumulate in the environment (Dore and Karl, 1996), nitrite 

oxidation must be equally prevalent as AOA in nitrification (Ward et al., 2007). Correlation 

between nitrite-oxidizing bacteria (NOB) and ammonia oxidizing Archaea populations suggests 

metabolic coupling between these groups (Mincer et al., 2007; Santoro et al., 2010), yet NOB are 

observed at much lower abundance than their ammonia-oxidizing counterparts (Mincer et al., 

2007; Santoro et al., 2010; Koops and Pommerening-Roser, 2001). This high AOA:NOB ratio is 

unexplained even when the greater free energy available from ammonia oxidation is taken into 

account, thus the mechanisms and organisms responsible for nitrite removal remain unresolved 

(Ward et al. 2007, Zehr and Kudela, 2011). Previously unrecognized nitrite reduction by AOA 

has recently been highlighted as another potential sink for nitrite (Santoro et al., 2010; Baker et 

al., 2012).  

Metatranscriptomics is emerging as a valuable tool for tracking the metabolic activity of 

microbial communities as they occur in nature.  Although the relationship between the 

abundance of RNA and protein is not simple, thus complicating efforts to use transcript 

abundance as a direct proxy for metabolic activity, metatranscriptomics still provides highly 

informative views of the interactions between microbes and their environments (Moran et al., 

2012).  This approach offers the ability to sequence and quantify mRNA of specific genes and 

populations within an entire community, potentially including those that have not been 

previously identified. To date, analysis of metatranscriptomic sequence data has primarily relied 

on mapping of cDNA reads to genomic datasets derived from either public databases (Frias-

Lopez et al., 2007; Stewart et al., 2011; Shi et al., 2009) or from accompanying metagenomic 

sequencing (Shi et al., 2011; Lesniewski et al., 2012). These approaches are limited by reference 

datasets that lack the full diversity inherent to natural communities and by public databases that 

are biased towards readily cultured representatives. Thus a large fraction of metatranscriptomic 
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data is typically unclassified (Frias-Lopez et al., 2007). Here we attempt to resolve the metabolic 

activity of novel and minor community members through de novo assembly of 

metatranscriptomic sequence reads from a hydrothermal plume in Guaymas Basin, Gulf of 

California, where enhanced primary production is fueled by ammonia oxidation, methanotrophy, 

and sulfur oxidation (Lesniewski et al., 2012). Reconstruction of transcriptomes of deep-sea 

community members enabled identification of abundant transcripts involved in nitrite oxidation 

and carbon cycling from organisms with limited representation in metagenomic datasets. 

 

4.3 Materials and Methods 

Sample collection and processing. Samples were collected in 10L bottles by CTD-Rosette 

aboard the R/V New Horizon (Table 1) as described previously (Dick and Tebo, 2010).  Briefly, 

samples were collected by “tow-yo” of the CTD-rosette then immediately filtered onto 0.2 um 

polycarbonate membranes with N2 gas once on deck and preserved in RNAlater (Ambion).  

Although potential changes in the RNA pool during collection are a concern, as discussed 

previously (Lesniewski et al., 2012), these changes are minimized by the fact that samples are 

kept under in situ conditions (cold, dark) throughout collection and immediately filtered and 

preserved once onboard.  RNA was extracted from filters using the MirVana miRNA Isolation 

kit (Ambion) and treated with DNAase I, and concentrated and re-purified using RNeasy 

MinElut Kit. RNA amplification by random priming and cDNA synthesis was performed as 

described previously (Stewart et al., 2011; Shi et al., 2009). Sequencing performed on an 

Illumina HiSeq2000 instrument at the University of Michigan Sequencing Core.   

 

rRNA-based taxonomy abundance assessment. In order to assess the diversity of organisms 

present in the RNA dataset we mapped cDNA reads from the plume community to the SILVA 

small subunit (SSU) rRNA gene database (Pruesse et al., 2007) using riboPicker software 

(Schmieder et al., 2012).  

 

cDNA sequencing and analyses. cDNA reads were dereplicated by removing duplicated reads 

(100% match, identical length), then quality trimmed using Sickle (github.com/najoshi/sickle). 

For all read mapping we used trimmed and dereplicated datasets. Dereplication reduced the 
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number of reads from 206 to 45 million in the plume and 245 to 130 million in the background 

sample. We also mapped reads prior to dereplication to confirm that the general trends seen were 

not artifacts of preprocessing of the sequences. Reads were assembled with Velvet (1.2.01) and 

subsequently processed using the transcriptomic assembler Oases (0.2.04) (Schulz et al., 2012). 

Abundance of cDNA reads was determined by mapping all of the cDNA reads to the assembled 

transcripts fragments. Mapping was done using BWA (Li and Durbin, 2009) with default settings 

(maximum mismatch = 4%).  We manually checked the mRNA transcripts discussed in depth 

here for chimeras by viewing the read mapping in Integrated Genome Viewer (IGV).  The trends 

reported for the NOB and other low abundance members were observed in that analysis as well. 

Assembled transcript contigs were searched for functions using DOE JGI IMG/MER annotation 

pipeline (Markowitz et al., 2012). The cDNA reads are available at NCBI SRA under accession 

numbers SRX134769 (plume) and SRX134768 (background). The assembled and annotation 

plume transcript library is available via IMG under taxon object ID 236347000.  All comparisons 

of cDNA assemblies with metagenomic data was done with previously described data 

Lesniewski et al. (2012), which was a co-assembly of reads from the same sample (Bkgrd-1), 

and additional ones (Plume-1 and -2, and Bkgrd-2). 

 

Phylogenetic analyses. All phylogenetic trees were generated using maximum likelihood 

(RaxML) with ARB software (Ludwig et al., 2004). rRNA-containing transcripts were identified 

using riboPicker package (Schmieder et al., 2012).  16S rRNA sequences were aligned in 

GreenGenes (DeSantis et al., 2006).  Alignments of mRNA sequences were done using 

CLUSTALW with manual refinement.  In order to identify all of the 16S and 23S rRNA 

sequences in the transcript assembly we first searched the plume assembly with Ca. Nitrospira 

defluvii 16S and 23S rRNA genes.  Matches were then imported and aligned to the Greengenes 

16S rRNA and the Silva 23S rRNA databases (DeSantis et al. 2006). We then generated large 

neighbor joining trees with thousands of reference sequences. Only contigs larger than 350 bp 

were used in the 16S tree and only those larger than 500 were used in the 23S rRNA tree. Only 

those sequences that fell within the Nitrospirae were kept.  The 23S rRNA phylogeny was 

generated using 1909 characters.  Group names in the 16S rRNA tree are based on those 

characterized by Lebedeva et al. (2011). 
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Identification of NOB and anammox transcripts. We searched all annotated genes on the 

Guaymas mRNA transcripts using all of the Ca. N. defluvii genes. We then compared these hits 

to the non-redundant NCBI protein database.  Only those that had top hits to Ca. N. defluvii and 

Leptospirillum spp. were then considered to belong to the Nitrospirae.  We searched the 

metatranscriptomic assembly for transcripts of key anammox genes, hydrazine oxidoreductase 

(hzo) from the genome of Ca. Kuenenia stuttgartiensis and hydrazine hydrolase from Candidatus 

Scalindua sp. (FM163627).  Supplementary Figure S7 is based on the number of reads that 

match with e-value <1E-5 (BLASTx). One gene transcript, 2236391221, had a match of 57% 

(bitscore of 56.6, e-value 7E-10).  However, comparison of this transcript to Genbank revealed 

that it is most similar to several sequences obtained from microbes not thought to be capable of 

anammox, including Shewanella woodyi (79% similarity), and SUP05 (68% similarity). 

 

Analyses of transcript sequence variants. cDNA reads were mapped to assembled contigs 

using BWA mapping software (Li and Durbin, 2009). SNPs were identified by visually 

comparing reads mapped using IGV.  

 

16S rRNA gene pyrosequencing. DNA was extracted from ¼ of a filter with the MoBio 

PowerSoil DNA isolation kit (Carlsbad, CA, USA). In addition to bead beating, filters were 

incubated at 65oC for 20 min to facilitate cellular lysis. Bead beating was performed using the 

MP-Bio FastPrep-24 (Santa Ana, CA, USA) for 45 seconds at setting 6.5. 16S rRNA genes were 

amplified in triplicate 25 μL reactions containing the following (final concentration): 12.5 μL 5 

Prime HotMasterMix (Gaithersburg, MD, USA), 2 μL (15 μM) each forward and reverse 

primers, 1 μL community DNA. PCR thermocycler conditions were as follows: initial 

denaturation 95oC -4 min followed by 30 rounds of 95oC for 30 sec, 50oC for 1 min, 72oC for 1 

min and final elongation 72oC for 10 min. Triplicate PCRs were combined and cleaned using a 

MoBio UltraClean PCR Clean-up kit. DNA was quantified using PicoGreen (Invitrogen, 

Carlsbad, CA, USA). Previously described 16S rRNA gene primers targeting the V4 region 

(515F/806R) (Bates et al., 2010) were used with reverse primers containing a 12-base barcode. 

Individual barcoded samples were combined into a single sample at equivalent concentrations 

then sent to Engencore (http://engencore.sc.edu) for pyrosequencing using Titanium chemistry. 

Sequences were error corrected with Pyronoise (Quince et al., 2009) implemented in Mothur (v 
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1.25.0) (Schloss et al., 2009). Species level OTUs were binned at 97% similarity and chimera 

checked using the OTUpipe (http://drive5.com/otupipe) command within QIIME (Caporaso et 

al., 2010). Default parameters were used with the exception of low abundance OTUs being kept 

for downstream analysis. OTUs were taxonomically classified with BLASTn (Altschul et al., 

1990) (ver 2.2.22, e-values cutoff 10-8) using Greengenes taxonomy (available at 

http://qiime.wordpress.com) and customized to include NOB 16S rRNA sequences recovered 

from Guaymas Basin transcriptomic libraries.  

 

4.4 Results and Discussion 

 De novo assembly of transcripts. Random shotgun metatranscriptomic sequencing was 

conducted on a sample from the Guaymas Basin hydrothermal plume (1950 m water depth) and 

from a location just above the plume (1600 m), referred to as “background”, for comparison. De 

novo assembly of metatranscriptomic reads yielded 78,250 assembled contiguous sequences 

(contigs) containing 81,452 predicted genes. 18,501 (23%) of these were putative protein coding 

genes (non-tRNA or rRNA) of which 12,605 (68%) were assigned putative functions. The large 

number of non-protein coding transcripts can be explained by a high level of fragmentation (due 

to fine-scale variability in highly similar sequences) of rRNA genes that is commonly seen in 

short-read sequencing data (Miller et al. 2011). Several of the mRNA contigs have homology to 

multiple genes of related function, reflecting assembly of co-transcribed genes from operons 

(Supplementary Figure S1). Among the most abundant were transcripts involved in oxidation of 

sulfur (sox), ammonia (amo), and methane (pmo) from dominant community members. Also 

highly expressed were genes encoding ribosomal proteins (Figure S2) from dominant groups, 

including ammonia-oxidizing Archaea (Baker et al., 2012), sulfur-oxidizing SUP05 

Gammaproteobacteria, and methanotrophs (Lesniewski et al., 2012). These results are consistent 

with previous analyses of the same samples based on genome databases (Lesniewski et al. 2012). 

The majority (53%) of the 16S rRNA containing reads belong to members of the 

Gammaproteobacteria (including methanotrophs and the sulfur-oxidizer, SUP05) (Figure 4.1). 

This is consistent with previous findings (Lesniewski et al. 2012; Dick and Tebo, 2010) and their 

high coverage in genomic assemblies. 
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Figure 4.1.  Abundance of major phyla based on classification of rRNA transcript reads. 
All 16S rRNA reads (total of 14,571,562) were mapped (>75% over half the read length cutoff) 
to a 16S rRNA gene database (SILVA). 
 

Heterotrophy. Metatranscriptomic assembly revealed abundant transcripts from community 

members that were not well-represented in corresponding metagenomic datasets (Lesniewski et 

al. 2012). The most abundant ribosomal protein-coding transcripts were highly similar (up to 

99% DNA similarity) to a deep-sea heterotroph, Alteromonas macleodii (Ivars-Martinez et al., 

2008) (Supplementary Figure S2), that has limited representation in corresponding metagenomic 

data (averaging 2.8X coverage) and 16S rRNA gene surveys (Dick and Tebo, 2010). The longest 

of these assembled transcripts is nearly 5 kb and contains an operon of 11 co-transcribed 

ribosomal protein genes. Overall, 1968 mRNA contigs were identified totaling just over 1.2Mb 

of consensus sequence (Figure 4.2), with an average similarity of 96% to A. macleodii. These 
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transcripts are generally less abundant in the background compared to plume (Figure 4.2). The 

four most abundant Alteromonas-like transcripts are for TonB, an amino acid transporter, 

ribosomal protein S2, and a hypothetical protein (Figure 4.2). TonB is a membrane-bound 

receptor that is commonly involved in iron uptake systems in a variety of bacteria. However, it 

has been shown that this protein family is also involved in transport of other metals and various 

carbohydrates (Schauer et al., 2008). 

 

Figure 4.2. Abundance of gene transcripts in plume and background based on mapping 
transcripts to the plume de novo metatranscriptomic assembly. Red filled circles are mRNAs 
that have high similarity to Altermonoas spp., yellow are those related to Nitrospirae, and green 
are MGII. Grey filled circles are highly transcribed ammonium transporters, most of these 
belong to AOA, consistent with previous findings (Baker et al., 2012). The dotted line indicates 
equal representation of transcripts in plume and background.  
 

Given that ATP binding cassette (ABC) transporters are an essential component of 

hetrotrophy and uptake of dissolved organic carbon (DOC) in the oceans (Jiao and Zheng, 2011), 

we compared transcriptional activity among putative ABC amino acid transporters present in the 

metatranscriptome. Interestingly, 5 of the 10 most abundantly represented amino acid 
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transporters in the plume metatranscriptome have high similarity to Euryarchaea Marine Group 

II (MGII), suggesting this group utilizes exogenous amino acids as a carbon and/or nitrogen 

source. Because of the low coverage of MGII in the metagenome (Figure 4.3 and Supplementary 

Figure S3), we searched the transcript assembly using a recently obtained MGII genome (Iverson 

et al., 2012). A total of 112 transcript contigs (nearly 72kb total) were identified with an average 

similarity of 91% to the MGII genome. Putative functions could be assigned to only 37 of these 

assembled contigs; the vast majority was annotated as “hypothetical proteins”, underscoring the 

lack of knowledge of this group.  MGII are ubiquitous in marine environments (Martin-Cuadrado 

et al., 2008) yet their physiology and function has remained enigmatic until their recent 

implication in heterotrophy (Iverson et al., 2012).  

 

Figure 4.3. Plot of gene transcript abundance vs. coverage in the metagenomic assembly 
from Lesniewski et al., 2012. Abundance is the number of cDNA reads mapped to the 
transcript, normalized to the length of the gene. Top matches in the gDNA library assembly are 
greater than e-value of 1E-10. 
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MGII have proteorhodopsin genes for energy generation in the photic zone (Frigaard et 

al., 2006). Upon searching for proteorhodopsin genes in the deep Guaymas metatranscriptome 

none were idnentified, as expected for a dark environment and consistent with previous 454-

based results (Lesniewski et al., 2012). We did however identify expression of a V-type H+-

translocating inorganic pyrophosphatase (H+-PPases) gene, which are implicated in energy 

generation in symbionts (Kleiner et al., 2012). These results hint that deep-sea MGII Archaea 

utilize H+-PPases as an important mechanism of energy conservation and ATP generation. Also 

prominent among MGII transcripts were several RNA processing genes including multiple 

RNA-binding Rrp4 and RNase PH genes (Supplementary Figure S4). 

 

Transcripts absent from metagenomic data. To further assess the extent of sequences present 

in the metatranscriptome but absent from the metagenome, we compared the transcripts to a prior 

metagenomic assembly derived from the same samples (Lesniewski et al., 2012). 8360 

metatranscriptome-specific mRNAs were found, totaling over 3.4 Mb of consensus sequence.  

We were unable to assign potential function to 41% (3419) of these genes, and 2447 did not have 

confident matches to sequences in public databases. Many of the most active genes present in 

this category are of unknown function (Supplementary Figure S5). Overall, 16% (1378 of 8360) 

of the metatranscriptome-specific genes are closely related to genes from Alteromonas, including 

the abundant TonB receptor and ribosomal proteins (Figure 4.4).  
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Figure 4.4. Transcripts not present in accompanying metagenomic data but with similarity 
to sequences in public databases. Each circle represents an assembled mRNA contig. Plotted is 
percent similarity to NCBI sequence versus the number of plume cDNA reads recruited. 
Coloring is consistent with Figure 2 and 3; red are Alteromonas, yellow are Nitrospirae, and 
green are MGII. 
 

Identification of nitrite oxidation transcripts. Some of the most abundant transcripts in the 

community are from genes for nitrite oxidation and associated energy metabolism (Figure 4.2). 

These highly transcribed genes encode the key enzyme for nitrite oxidation, nitrite 

oxidoreductase (NxrA, NxrB, and the membrane subunit), as well a c-type cytochrome and 

cytochrome bd-type terminal oxidase for reduction of O2 (Lücker et al., 2010). Except for nxrA, 

all of these genes are most similar to Candidatus Nitrospira defluvii (Supplementary Figure S6 

and Table S1), a nitrite-oxidizing member of the phylum Nitrospirae (Lücker et al., 2010). These 

nxr genes are phylogenetically distinct from those recently discovered in Chloroflexi sp. 

(Sorokin et al., 2012). Many of the components proposed to oxidize nitrite and reduce O2 in Ca. 

N. defluvii are present and highly transcribed in the Guaymas Basin metatranscriptome (Figure 

4.5).  
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Figure 4.5. Schematic model and abundance of transcripts in the plume for proteins 
involved in nitrite oxidation and associated electron transfer. Colored proteins were detected 
in the plume cDNA libraries. Complexes in grey were not identified but are included in the 
model of electron transport for reference. Arrows show movement of electrons and protons. For 
transcript abundance, multiple circles for each gene represent multiple closely related gene 
sequence variants. Normalization is calculated as the number of cDNA reads mapped divided by 
lengths of the genes and multiplied by 1000. 
 

Assignment of nxr genes to aerobic nitrite oxidation by Nitrospirae is complicated 

because at least two members of the phylum Planctomycetes, Candidatus Kuenenia 

stuttgartiensis and Candidatus Scalindua profundus, also contain nxrA and nxrB-like genes, 

which are thought to be involved in nitrite oxidation during anammox (Strous et al., 2006).  

Although the prevalence of anammox seems unlikely in oxic waters of the deep Guaymas Basin 
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(~28 µM O2), it could take place in particle-associated, anoxic microenvironments (Wright et al., 

2012). Thus to evaluate the possibility that the nxr-like transcripts we observed are from 

anammox microorganisms, attempts to identify additional anammox-related gene transcripts 

were made. No appreciable abundance of transcripts of key anammox genes, hydroxylamine 

oxidoreductase (hao) or hydrazine hydrolase (hzh), were identified in the metatranscriptomic 

assembly (Supplementary Figure S7). Further, the concurrent abundant expression of the 

cytochrome bd-terminal oxidase most closely related to a Ca. N. defluvii homolog indicates 

aerobic metabolism, ruling out a role for NXR in anammox or H2-linked denitrification, which 

has been suggested for Nitrospira moscoviensis (Ehrlich et al., 1995).  Therefore, we conclude 

that the abundant transcripts encoding a novel NXR and associated electron transport chain are 

involved in aerobic nitrite oxidation. 

Guaymas Basin plumes are enriched in ammonium and hydrocarbons (Bazylinski et al., 

1989) thus may be more representative of areas of intense nitrogen and carbon cycling (e.g. 

oxygen minimum zones (Wright et al., 2012)) than the typical deep ocean. However, the high 

abundance of transcripts from nxr and associated electron transport genes in the non-plume 

background sample shows that their prominence is not restricted to ammonium-rich 

hydrothermal plumes (Figure 4.2 and Supplementary Figure S8).   

 

Recovery and Characterization of Nitrospirae 16S rRNA and rRNA genes. Because the 

novel nxr transcripts are not directly linked to conserved phylogenetic markers (i.e. do not co-

occur on a single assembled contig), it is not possible to definitively assign these genes to taxa 

present in our dataset.  To probe this question further, we searched the transcript library for 

known NOB rRNA gene sequences.  No 16S rRNA genes from common NOB genera (e.g. 

Nitrospina, Nitrobacter, Nitrococcus, Nitrospira) were present, however two phylotypes that fall 

within phylum Nitrospirae were identified. Phylogenetic analyses of the Nitrospirae 16S rRNA 

and 23S rRNA genes indicated two distinct clusters (81% and 82% 16S rRNA gene similarity to 

Ca. N. defluvii) that represent novel members of the Nitrospirae phylum (Figure 4.6). One of 

these phylotypes (referred to hereafter as Deep Ocean Nitrospirae Nitrifier, “DONN”) recruited 

four times more rRNA transcripts than the other in the plume and was the only transcriptionally 

active Nitrospirae-like phylotype in the background sample. The closest match to DONN in 

public databases shares only 88% sequence identity to uncultured Nitrospirae clones (Figure 
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4.6), highlighting the novelty of this group. Comparison of all cDNA reads to a comprehensive 

16S rRNA gene database revealed that only 0.3% of the rRNA reads matched most closely to 

Nitrospirae (Figure 4.1). In addition, <0.001% of all rRNA gene-containing reads from the 

genomic library were identified as Nitrospirae. 

 

Figure 4.6. Phylogeny of Nitrospira-like 16S rRNA genes from assembled transcripts. Trees 
were generated using the maximum likelihood method and Planctomycetes brasiliensis as the 
outgroup. 
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Prevalence of Nitrospirae metabolic gene transcripts. Further support for the assignment of 

nxr genes to Nitrospirae comes from the prevalence of additional abundant mRNA transcripts 

with high similarity to Nitrospirae. In total, we identified 160 Nitrospirae-like genes (including 

several species/strain variants) on 142 assembled mRNA fragments (Figure 4.7). Interestingly, 

115 of these have similarity to contigs in the accompanying metagenomic dataset (Figure 4.3) 

but are present at low coverage (2.4X). To confirm this we searched all the previously published 

454 datasets (Lesniewski et al. 2012) and found the same trend of a high (5:1) cDNA:DNA ratio 

in total community nxr genes. Taken together, these results reveal the low-abundance yet high 

transcriptional activity of Nitrospirae in the deep Guaymas Basin (Table S1).   

 

Figure 4.7. Abundance of assembled transcripts most closely related to Nitrospirae from 
the plume transcript assembly. Each circle represents a distinct gene sequence, with assigned 
functions listed on the left. Thus, multiple data points for each gene represent sequence variants 
present in the community. Abundance is based on the number of reads that mapped to the 
assembled transcript. Normalization is calculated as the number of cDNA reads mapped divided 
by lengths of the genes and multiplied by 1000. 
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Nitrite-oxidizing bacteria are thought to be primarily autotrophic, but there is evidence 

for enhanced growth of Nitrospira spp. when supplied with simple organic carbon sources such 

as pyruvate (Lücker et al., 2010, Ehrlich et al., 1995, Boon and Laudelout, 1962). All described 

Nitrospirae utilize the reductive tricarboxylic acid (rTCA) cycle. Among the abundant 

Nitrospirae-like transcripts in the Guaymas Basin metatranscriptome were those from genes 

integral to carbon metabolism via the TCA cycle. Transcripts of several strain variants of all 

three subunits (α, Β, and γ) of 2-oxoglutarate:ferredoxin oxidoreductase and pyruvate:ferredoxin 

oxidoreductase genes  were identified (Figure 4.7). However, genes encoding the ATP-citrate 

lyase (indicative of CO2 fixation via reductive TCA) were not recovered, thus we are unable to 

verify if the reductive TCA cycle operates for CO2 fixation in these DONN populations as it does 

in Ca. N. defluvii (Lücker et al., 2010).  

 

Abundance and distribution of low-abundance yet transcriptionally active microbial 

groups. Given that a large proportion of transcripts originate from minor community members 

(MGII, Alteromonas, and DONN groups), we sought to further assess the abundance and 

distribution of these groups in Guaymas Basin as well as in hydrothermal plumes of the Eastern 

Lau Spreading Center, which is located in the southwestern Pacific and hosts geochemically 

diverse hydrothermal vents. Analysis of high-throughput 16S rRNA gene pyrosequencing 

libraries taken from various depths of the water column yielded operational taxonomic units 

(OTUs) corresponding to all three groups, and confirmed their presence across geographically 

disparate microbial communities. At Guaymas, three dominant 16S rRNA gene phylotypes 

of Alteromonas sp. were present, which collectively represent 1.01-4.04% of the total Guaymas 

Basin community at depths of 1300-1900 m.  These phylotypes were not detected in near surface 

samples (12.5m) but increased to 1.0 and 1.76% near the oxygen minimum zone (356 and 554 m 

respectively). At Lau Basin, only two of the three Guaymas Basin Alteromonas phylotypes were 

detected. Two dominant MGII phylotypes were present as minor community members at 

Guaymas, comprising only 0-0.67% of the total community.  MGII were not detected in the two 

near surface Guaymas Basin samples (12.5 and 356 m). At Lau only one of the two Guaymas 

MGII phylotypes were detected, and ranged in abundance from 0-1.3%.  
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We found that both Nitrospirae phylotypes are present as low abundance community 

members at Guaymas Basin, both in previously obtained clone libraries from Dick and Tebo 

(2010) and in new pyrosequencing data (Supplementary Figure S9). The DONN group is most 

abundant in the deep basin, but even there it only accounts for ~0.25% of the community 

(Supplementary Figure S10). Similar Nitrospirae phylotpes were also identified as minor 

members of Lau Basin communities (Supplementary Figure S11), further suggesting that the 

novel Nitrospirae phylotypes reported here are widespread and consistently low abundance 

members of deep–sea microbial communities. It is also important to note that commonly used 

probes for the Nitrospira (Füssel et al., 2012) have two nucleotide mismatches to the DONN 

group, so these organisms may have been missed by previous studies. Thus more work is needed 

to assess the distribution of DONN in diverse marine environments where nitrification is 

prevalent. 

The stark contrast in NXR abundance between transcript (high-abundance) and 

metagenomic (low-abundance) libraries calls attention to the concept that keystone ecological 

functions can be performed by low abundance species of the biosphere.  In the case of NOB, low 

abundance despite high metabolic activity may be inherent to their physiology. Cultured NOB 

grow slowly (Watson et al., 1986), presumably due to low free energy yield from nitrite 

oxidation (Boon and Laudelout, 1962), which likely constrains the abundance of in situ NOB 

populations. Further, the disparity in population size between NOB (low abundance) and AOA 

(high abundance) at Guaymas Basin implies that cell-specific nitrite oxidation rates must be 

large relative to those of ammonia oxidation (assuming quantitative conversion to nitrate by the 

NOB). In the common terrestrial NOB Nitrobacter winogradskyi, enzyme saturation is evident 

under µM concentrations of nitrite (Watson et al., 1986), and it is estimated that the nitrite 

oxidoreductase enzyme may comprise 10-30% of total cell protein (Bock et al., 1991). Increased 

transcription of nxr genes but not rRNA genes has also been observed in Ca. N. defluvii 

enrichments (Lücker et al., 2010) and actively fertilized soils where Nitrobacter-like nxr 

expression was elevated (Wertz et al., 2011). Our data suggests a similar scenario occurs in the 

deep-sea, where NOB highly transcribe nxr genes to maximize nitrite oxidation that provides 

only modest energy and growth yield.  Another possible explanation is that the disparity between 

DNA and RNA abundance of the NOB reflects of a recent transcriptional response to nitrite in 

the environment, and the subsequent increase in DNA (cell division) would soon follow. 
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Intra-population variability. The high sequence coverage produced by de novo 

metatranscriptomic assembly provides opportunities to investigate gene sequence variation and 

ecological dynamics of strains within natural populations. In many cases, multiple sequence 

variants of each gene involved in nitrite oxidation were recovered, indicating the presence of 

several closely related strains or multiple gene copies within a genome (Figure 4.7). The most 

highly expressed transcripts tended to have the greatest number of variants within the dataset, 

likely as a result of greater coverage of those regions. The NXR variants cluster into two 

divergent groups (82-84% similar at the DNA level), likely representing the two different 

Nitrospirae groups, but it is impossible to rule out the alternative interpretation of gene 

duplicates within a single genome as in Ca. N. defluvii (Lücker et al., 2010). The most highly 

expressed nxrAB type in the plume is also the dominant type in the background, suggesting that 

the same strain is dominant in both communities. Many of the sequence substitutions between 

these transcripts are synonymous. For example, the two most abundant nxrAB operon variants 

(GBPt_c08738 and GBPt_c08738) have eight nucleotide polymorphisms within a 72 bp region 

in the nxrB transcripts yet they have identical amino acid sequences. However, we also identified 

minor variants that were only present in the plume and that have seven distinct nucleotide 

substitutions clustered solely within the metal-coordinating [Fe-S] center of NxrB 

(Supplementary Figures. S12 and S13).  This site is homologous to a region of nitrate reductase 

of E. coli that mediates intramolecular electron transfer.  The high frequency of nucleotide 

polymorphisms around this region suggests that selective pressures (perhaps substrate 

concentrations) maintain such variation. 

 

4.5 Conclusions 

Despite the recent explosion of microbial genome sequencing, environmental shotgun 

sequencing continues to reveal vast genetic novelty, which presents fundamental challenges to 

our ability to fully characterize natural microbial communities.  Our findings demonstrate that de 

novo metatranscriptomic assembly offers the ability to assess 

transcriptionally active populations of diverse and novel microbial 

communities at high resolution (to the strain level). More importantly, it enables the 
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reconstruction and functional characterization of transcripts that would have otherwise been 

overlooked by mapping to reference genomic databases.  In the deep Gulf of California, this 

approach revealed the functional importance of low-abundance populations of Alteromonas and 

archaeal MGII in heterotrophy and novel Nitrospirae in nitrite oxidation. The high RNA:DNA 

ratio and novelty of genes implicated in nitrite oxidation suggest explanations for why these 

Nitrospirae have eluded detection and are under-represented relative to their ammonia-oxidizing 

counterparts. These new insights into novel nitrite-oxidizing Bacteria indicate that the 

distribution and role of this functional group should be re-considered as we seek to understand 

the fate of nitrite in terms of nutrient cycling and production of greenhouse gases in the oceans. 
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Figure 4.8. Examples of four operons assembled from the metatranscriptome.  Genes are 
indicated by bars at top and individual cDNA reads are shown below.  Coverage of these 
sequences in the assembled 454 metagenomic data (Lesniewski et al., 2012) is shown.  
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Figure 4.9. Comparison of abundance of transcripts containing ribosomal proteins (some have 
multiple genes present co-transcribed on operons) in plume versus background. Grey filled 
circles are those related to Altermonas macleodii.  
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Figure 4.10. Plot of transcript abundance versus DNA coverage for genes identified as amino 
acid transporters in the transcript assembly.  DNA coverage is based on previously published 
metagenomic data (Lesniewski et al., 2012) reconstructed from the same samples used in this 
study.   

 

 

70 
 



Figure 4.11. Abundance of the top 50 MGII transcripts in the plume (black bars) and 
background (grey bars). The number of reads mapped is normalized to length of gene transcript. 
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Figure 4.12. Transcriptional activity of novel genes on assembled transcripts.  Each circle is a 
transcript ORF that is not present in the accompanying metagenomic dataset. The x-axis is 
valueless, the genes were arranged in order across the bottom and were sorted based on JGI ID 
numbers 
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Figure 4.13. Phylogeny of nitrite oxidioreductase subunit A (top, NxrA) and B (bottom, NxrB) 
proteins from the transcript assembly and several other DMSO-like proteins.  Both trees were 
generated using maximum likelihood (PHYML) methods in the ARB software package.  
Bootstrap values were estimated maximum parsimony using Phylip with a 1000 replicates.   
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Figure 4.14. Comparison of abundance of cDNA reads matching key genes for ammonia 
oxidation, nitrite oxidation, and anaerobic ammonia oxidation in the plume and background 
samples. Normalized (to the number of total reads in each library) number of cDNA reads 
mapped to ammonia monooxygenase (amoA) of Nitrosopumilus maritimus, nitrite 
oxidoreductase (nxrA1) of Ca. N. defluvii, hydrazine oxidoreductase (hzo) of Ca. Kuenenia 
stuttgartiensis, and hydrazine hydrolase (hzh) Candidatus Scalindua profundus. 
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Figure 4.15. Abundance of gene transcripts in plume and background based on mapping 
transcripts to the background de novo metatranscriptomic assembly. Red filled circles are 
mRNAs that have high similarity to Altermonoas spp., yellow are those related to Nitrospirae, 
and green are MGII. Grey filled circles are highly transcribed ammonium transporters, most of 
these belong to AOA, consistent with previous findings (Baker et al., 2012). The dotted line 
indicates equal representation of transcripts in plume and background. 
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Figure 4.16. Rank abundance plots of genes on mRNA contigs and 16S rRNA genes (inset) of 
the whole plume community. Highlighted in red (top 8 are labeled) and grey are all the 
sequences that we identified as belonging to Nitrospirae. On the 16S rRNA gene plot (inset) we 
highlight OTUs that match the Nitrospirae groups at 97 and 99% similarity.  Note that all of 
these fall within the rare portion of abundance in the community. The number of mRNA 
transcripts mapped was normalized by the lengths of the genes multiplied by 1000. 
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Figure 4.17. Distribution of NOB (Loc390_599 and DONN) and AOA (Thaumarchaeota) 16S 
rRNA genus-level OTUs (95% similarity) using pyrosequencing generated data taken from depth 
profiles at Guaymas Basin.  Note the different scales for NOB and AOB. 
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Figure 4.18. Ranked average abundance of putative nitrite oxidizing bacteria from rising plume 
and background waters at five vent sites (Tahi Moana, Tui Manila, ABE, Mariner and Kilo 
Moana) within the Eastern Lau hydrothermal spreading center. Operational Taxonomic Units 
(OTUs 97% Similarity) related to the known NOB group Nitrospira (green) and Nitrospira-like 
OTUs (blue and red) identified in Guaymas Basin metatranscriptomes are highlighted.  
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Figure 4.19. Amino acid sequence of an iron-sulfur binding region in the metal-coordinating 
center in of the NxrB gene transcript variants, 2236355947 and 2236348949.   

 

 

Figure 4.20. View of reads mapped to the [Fe-S]-binding region of the NxrB transcripts.  The 
consensus sequence is shown at the bottom.  Grey bars represent individual cDNA reads and the 
sequence variations that occur in 2236348949 (the minor variant) are the colored letters in the 
reads.  The positions of the SNPs are labeled at the bottom. 

179--GEIRPYCAICKESVRTTGRYMPKKFPCQEVC--210 
• Red letters are [Fe-S]-binding residues : 179,183,200,203 
• Blue letters are residues that contain SNPs: 193,194,195, 197,201,202,205,207 
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Table 4.1. List of all gene transcripts binned as Nitrospirae.  The following is an explanation of 
the columns starting on the left: IMG ID number, IMG annotation, top hit to the NCBI non-
redundant database, accession number of ortholog in Ca. Nitrospira defluvii genome, % match to 
Ca. N. defluvii gene, Ca. Kuenenia stuttgartiensis, Leptospirillum spp., number of reads that map 
to plume (GD6) and background (GD7), and the coverage of that sequences in the genome (454 
assembly) if found. Blank spaces in the columns of % similtarity to genomes represents no hits 
found (e-value <1E-10). Colors of annotation boxes match colors found in Figure 4. 

GB Plume 
protein IMG annotation top nr hit 

N. 
defluvii 
gene 

Candidatus 
Nitrospira 
defluvii 

Candidatus 
Kuenenia 
stuttgartiensis 

% 
Leptosprillum gd6 N gd7 N 

DNA 
coverage 

2236424278 

2-oxoglutarate:ferredoxin 
oxidoreductase, alpha 
subunit Leptospirillum ferrodiazotrophum NIDE0827 61.82   61.5 121.7 17.8   

2236393701 

2-oxoglutarate:ferredoxin 
oxidoreductase, alpha 
subunit Leptospirillum rubarum NIDE0827 68.82   62.7 196.5 13.49   

2236405518 

2-oxoglutarate:ferredoxin 
oxidoreductase, alpha 
subunit Leptospirillum rubarum NIDE0827 75   78 125 0 3.46 

2236385866 
2-oxoglutarate:ferredoxin 
oxidoreductase, beta subunit Leptospirillum ferrodiazotrophum NIDE0823 71.59   75 85.19 0 2.9 

2236379976 
2-oxoglutarate:ferredoxin 
oxidoreductase, beta subunit Leptospirillum rubarum NIDE0823 70.17   73.48 159.5 17.92   

2236379977 
2-oxoglutarate:ferredoxin 
oxidoreductase, beta subunit Leptospirillum rubarum NIDE0823 72.73   75.97 142.3 33.47   

2236368251 
2-oxoglutarate:ferredoxin 
oxidoreductase, beta subunit Leptospirillum rubarum NIDE0823 81.68   83.85 229.8 22.73 3.16 

2236350102 
2-oxoglutarate:ferredoxin 
oxidoreductase, beta subunit Leptospirillum rubarum NIDE0823 64.71   69.12 248.8 48.78   

2236403362 

2-oxoglutarate:ferredoxin 
oxidoreductase, gamma 
subunit Leptospirillum ferrodiazotrophum NIDE0824 70.37   79.63 132.4 0   

2236416995 50S ribosomal protein L11 Leptospirillum ferrodiazotrophum NIDE1300 71.88   73.68 188.2 5.618   

2236427913 
ABC-type molybdate 
transport permase 

Candidatus Poribacteria sp. WGA-
A3 NIDE3149       65.93 5.495 1.83 

2236351417 ammonium transporter 
Could not find annotation in 
database file         592.9 1.63 2.27 

2236398111 ATP-dependent Zn proteases Candidatus Nitrospira defluvii NIDE2737 72.06   73.53 120.2 0 3.46 

2236417421 
CBS-domain-containing 
membrane protein Candidatus Nitrospira defluvii NIDE3802 50 40.45   78.07 0 1.72 

2236418504 
Chaperonin GroEL (HSP60 
family) Leptospirillum ferrodiazotrophum NIDE1378 57.89   68.81 190.9 33.33 2.27 

2236425622 
Chaperonin GroEL (HSP60 
family) 

Leptospirillum sp. Group II '5-way 
CG' NIDE1378 50.77 50 59.38 134 15.46 

 

2236379008 

DNA-directed RNA 
polymerase, beta 
subunit/140 kD subunit Candidatus Nitrospira defluvii NIDE1303 74.16   74.16 573.2 41.4   

2236398779 

DNA-directed RNA 
polymerase, beta 
subunit/140 kD subunit Leptospirillum ferrodiazotrophum NIDE1303 72.86 69.29 75 130.5 2.331 7.87 

2236394039 

DNA-directed RNA 
polymerase, beta'' 
subunit/160 kD subunit Candidatus Nitrospira defluvii NIDE1304 63.36 48.33 58.54 195.1 24.39 3.88 

2236393487 

DNA-directed RNA 
polymerase, beta'' 
subunit/160 kD subunit Leptospirillum ferrodiazotrophum NIDE1304 91.11   92.39 351.4 10.87 4.06 

2236420746 DnaK suppressor protein Candidatus Nitrospira defluvii NIDE0281 60.44   54.44 96.77 3.584 
 

2236350912 Ferredoxin-nitrite reductase Candidatus Nitrospira defluvii NIDE1367 54.98     628 1.431 2.5 

2236358570 Ferredoxin-nitrite reductase Candidatus Nitrospira defluvii NIDE1367 64.64     416.1 1.963 2.5 

2236358574 Ferredoxin-nitrite reductase Candidatus Nitrospira defluvii NIDE1367 64.64     415.7 6.359 3.02 

2236379802 Ferredoxin-nitrite reductase Candidatus Nitrospira defluvii NIDE1367 67.57     153.1 0 1.76 

2236401838 Ferredoxin-nitrite reductase Candidatus Nitrospira defluvii NIDE1367 59.38     74.26 0 2.5 

2236393164 
Formate dehydrogenase, 
gamma subunit Leptospirillum rubarum NIDE1930 34.78 38.3 43.48 105.4 13.61   
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2236397255 

Formate hydrogenlyase 
subunit 6/NADH:ubiquinone 
oxidoreductase Candidatus Nitrospira defluvii NIDE4140 70.89   46.84 89.15 0 

 
2236351418 Glutamine synthetase Candidatus Nitrospira defluvii NIDE1363 65.22 37.78 66.67 592.9 1.63   

2236352223 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 55.17     230.3 12.01 2.37 

2236352221 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 56.74     262.7 8.102 2.37 

2236377463 hypothetical protein Candidatus Nitrospira defluvii NIDE3281 36.78 32.02   310.3 50.82 4.6 

2236385375 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 68.29     141 22.26 1.43 

2236415742 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 53.12     283.3 31.25 2.69 

2236396947 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 67.36     283.3 0 2.32 

2236378967 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 70.92     163.3 31.32 2.69 

2236382997 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 74.55     240.8 59.63 1.48 

2236397567 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 63.21     113 0 
 

2236375749 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 59.22     279 3.361 2.37 

2236391359 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 81     115 0 2.69 

2236399526 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 56.57     140.1 0 
 

2236424645 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 74.23     81.08 0 2.55 

2236396077 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 60.24     298.8 7.968 2.55 

2236366660 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 81.08     100 0 1.52 

2236370494 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 58.9     251.6 22.58 4.27 

2236378664 hypothetical protein Candidatus Nitrospira defluvii NIDE3308 55.1     206.6 20.66 2.23 

2236383136 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 62.16     79.44 9.346 1.48 

2236421079 hypothetical protein Candidatus Nitrospira defluvii NIDE3519 64.91     168.3 9.615 3.46 

2236406698 hypothetical protein Candidatus Nitrospira defluvii NIDE3313 74.6     108.8 4.184 3.91 

2236373673 hypothetical protein Candidatus Nitrospira defluvii NIDE3276 54.24     86.96 16.3 3.44 

2236401687 hypothetical protein Candidatus Nitrospira defluvii NIDE1338 82.5   76.92 81.18 0 
 

2236351506 hypothetical protein Candidatus Nitrospira defluvii   47.5     783.4 100.1 4.48 

2236352220 hypothetical protein           262.7 8.102 2.37 

2236353357 hypothetical protein           445.1 48.66 1.85 

2236354822 hypothetical protein           401.3 73.3 3.13 

2236354828 hypothetical protein           425.8 76.36 3.13 

2236353359 hypothetical protein           458.8 55.19 1.85 

2236352222 hypothetical protein           230.3 12.01 2.37 

2236377488 

Membrane protease 
subunits, 
stomatin/prohibitin 
homologs Candidatus Nitrospira defluvii NIDE3711 70.59     122.2 3.215 

 

2236403053 

Membrane protease 
subunits, 
stomatin/prohibitin 
homologs Candidatus Nitrospira defluvii NIDE3711 61.54     142.9 0 

 
2236418054 Multicopper oxidase. Candidatus Nitrospira defluvii NIDE3313 69.49     97.74 0 

 

2236415243 

NADH:ubiquinone 
oxidoreductase 20 kD 
subunit and related Fe-S 
oxidoreductases Candidatus Nitrospira defluvii NIDE0614 89.83   84.75 54.64 0 1.79 

2236355525 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 55.28 64.02   1027 205.4 6.82 

2236355522 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 55.28 64.02   856.4 181.2 6.82 

2236354819 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 52.82 57.86   440.4 103.3 1.85 
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2236354817 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 52.82 57.86   436.2 78.19 3.13 

2236354825 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 52.82 57.86   415.4 67.2 3.13 

2236354823 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 53.01 57.86   401.3 73.3 3.13 

2236354829 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 52.82 57.86   425.8 76.36 3.13 

2236354827 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 53.12 59.59   389.4 64.13 3.13 

2236354689 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 56.42 58.69   630.4 161.3 6.96 

2236354690 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 56.17 58.69   554.1 77.6 6.96 

2236354821 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 57.41 62.06   412.1 77.11 2.68 

2236370746 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 49.86 61.02   328 81.06 6.82 

2236370745 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 50.14 61.3   332.7 78.23 6.82 

2236354826 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 49.72 55.97   396 55.08 3.13 

2236355582 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 64.94 72.78   594.6 185.5 6.82 

2236407001 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 63.06 73   100.9 17.29 2.68 

2236355519 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 47.12 61.9   386.7 108.8 2.03 

2236396531 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 52.38 68.27   160.7 136.9 3.13 

2236389678 
Nitrite oxidoreductase, alpha 
subunit 

Candidatus Kuenenia 
stuttgartiensis NIDE3237 68.25 72.58   72.92 52.08 3.5 

2236366173 
Nitrite oxidoreductase, alpha 
subunit Candidatus Nitrospira defluvii NIDE3237 64.62 58.46   121.8 152.3 6.96 

2236355524 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 68.78 63.89   1027 205.4 6.82 

2236355521 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 68.78 63.89   856.4 181.2 6.82 

2236348871 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 69.12 63.77   530.3 81.55 3.24 

2236348868 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 69.12 63.77   505.8 84.67 3.24 

2236348869 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 70.57 64.33   371.8 71.19 3.24 

2236365965 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 65.33 65.33   223.7 30.7 3.24 

2236409832 
Nitrite oxidoreductase, beta 
subunit Candidatus Nitrospira defluvii NIDE3236 67.69 64.62   268.9 396.2 1.54 

2236348870 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3278 38.36     530.3 81.55 3.24 

2236348867 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3278 38.36     505.8 84.67 3.24 

2236351505 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3293 45.06 37.78   783.4 100.1 4.48 

2236376574 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3278 54.17 49.14   2440 1042 3.75 

2236355673 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3278 51.16     1109 477.3 3.75 

2236355674 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3278 51.16     650.7 285.3 3.75 

2236364616 
Nitrite oxidoreductase, 
membrane subunit Candidatus Nitrospira defluvii NIDE3293 66.07     159.9 29.74 1.72 

2236358575 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 55.05 40.82   415.7 6.359 3.02 

2236358573 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 55.05 40.82   318.5 0 3.02 

2236358571 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 54.7 38.46   416.1 1.963 2.5 

2236384125 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 55.32     89.35 0 
 

2236351914 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 55.17 47.62   213 0 3.02 

2236413789 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 72.13     60 0 1.46 

2236351419 Nitrite transporter Candidatus Nitrospira defluvii NIDE1364 66.67 50   592.9 1.63 2.27 

2236376310 

Peptidyl-prolyl cis-trans 
isomerase (rotamase) - 
cyclophilin family Candidatus Nitrospira defluvii NIDE1683 72.38     224.2 3.03 2.27 

2236416751 
Polyribonucleotide 
nucleotidyltransferase Leptospirillum ferrodiazotrophum NIDE4127 72.46   76.09 148.9 16.55   

2236400377 
Predicted transcriptional 
regulator Candidatus Nitrospira defluvii NIDE1347 60.38     110.6 0 1.95 
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2236424351 
Proto-chlorophyllide 
reductase 57 kD subunit. Candidatus Nitrospira defluvii NIDE0413 62.96     54.35 0 3.44 

2236374791 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 62.43 35.56   372 44.3 1.09 

2236374792 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 62.61 35.56   314.9 51.58 1.09 

2236353360 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 62.69 34.62   458.8 55.19 1.85 

2236353358 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 62.69 34.81   445.1 48.66 1.85 

2236353356 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 62.69 34.62   405.3 35.01 1.85 

2236397810 
putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 58.88 37.04   294.8 0 

 
2236393944 

putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 79.17 60.42   483.7 3.268 

 
2236350389 

putative cytochrome bd-like 
oxidase Candidatus Nitrospira defluvii NIDE3296 67.27     543.5 21.74 1.52 

2236384231 
putative monoheme 
cyctochrome C Candidatus Nitrospira defluvii NIDE3295 43.07     223.3 0 

 
2236363341 

putative monoheme 
cyctochrome C Candidatus Nitrospira defluvii NIDE3350 54.55   46.55 344.3 0 1.98 

2236363340 
putative monoheme 
cyctochrome C Candidatus Nitrospira defluvii NIDE3350 62.86   57.63 344.3 0 1.98 

2236405281 
putative monoheme 
cyctochrome C Candidatus Nitrospira defluvii NIDE3294 78.43     172.4 0 1.47 

2236347574 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 65.32     361.1 29.63 3 

2236396890 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 50.93     352 38 2.16 

2236382019 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 55.78     249.1 34.6 2.37 

2236382513 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 47.66     198.1 7.075 2.16 

2236373071 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 65.42     438.9 19.08 2.37 

2236373070 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 66.36     370.2 11.45 2.37 

2236422675 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 55.42     83.67 0 2.55 

2236363366 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 67.57     215.1 11.95 2.55 

2236423378 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 61.64     125.6 0 

 
2236425237 

Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 56.06     75.38 0 

 
2236417255 

Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 61.02     132.7 9.479 2.37 

2236425626 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 57.38     91.4 0 5.74 

2236375812 
Putative multicopper 
oxidases Candidatus Nitrospira defluvii NIDE3937 69.09     207.3 10.36 

 

2236378910 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit Candidatus Nitrospira defluvii NIDE0971 76.56   75.24 198.4 48.82 

 

2236389232 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit Candidatus Nitrospira defluvii NIDE0971 73.1   74.12 148.9 0 

 

2236388614 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit Candidatus Nitrospira defluvii NIDE0971 81.1   79.27 268.1 48.39 

 

2236414119 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit Candidatus Nitrospira defluvii NIDE0971 78.79   74.24 83.74 4.926 1.47 

2236410692 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit 

Leptospirillum sp. Group II '5-way 
CG' NIDE0971 73 n.a. 80 200 38.1 

 

2236396345 

Pyruvate:ferredoxin 
oxidoreductase, alpha 
subunit 

Leptospirillum sp. Group II '5-way 
CG' NIDE0971 79.37 n.a. 85.71 163.3 5.102 

 
2236389369 

Pyruvate:ferredoxin 
oxidoreductase, beta subunit Candidatus Nitrospira defluvii NIDE0970 79.76 n.a. 72.62 120.8 7.547 2.35 

2236410434 
Pyruvate:ferredoxin 
oxidoreductase, beta subunit Candidatus Nitrospira defluvii NIDE0970 79.45 n.a. 76.71 94.22 3.04   

2236394921 
Pyruvate:ferredoxin 
oxidoreductase, beta subunit Candidatus Nitrospira defluvii NIDE0970 88.52 n.a. 83.61 72.16 0 

 
2236347475 

Pyruvate:ferredoxin 
oxidoreductase, beta subunit 

Leptospirillum sp. Group II '5-way 
CG' NIDE0970 76.07 n.a. 78.63 192.4 16.26 3.88 

2236417779 

Pyruvate:ferredoxin 
oxidoreductase, gamma 
subunit Candidatus Nitrospira defluvii NIDE0969 69.62 n.a. 64.1 90.53 8.23 2.98 

2236366485 

Response regulator 
containing CheY-like 
receiver, AAA-type ATPase, Candidatus Nitrospira defluvii NIDE3585 40 n.a. n.a. 266.7 54.32 3.75 
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and DNA-binding domains 

2236404975 
Riboflavin biosynthesis, 
RibBA Leptospirillum ferrodiazotrophum NIDE1383 68.5 n.a. 72.8 162.3 0   

2236407700 ribosomal protein L14 Candidatus Nitrospira defluvii NIDE1321 72.22 n.a. 68.52 186.6 29.85   

2236424068 Ribosomal protein L5 Candidatus Nitrospira defluvii NIDE1323 73.98 n.a. n.a. 134.9 2.646 
 

2236392527 Ribosomal protein S1 Candidatus Nitrospira defluvii NIDE0426 73.08 n.a. 70.31 88.61 0 
 

2236401688 Ribosomal protein S11           81.18 0 
 

2236428182 ribosomal protein S12 Candidatus Nitrospira defluvii NIDE1306 90.54 n.a. 83.78 80.36 0 2.3 

2236419086 Ribosomal protein S12 Candidatus Nitrospira defluvii NIDE1306 92 n.a. 88 85.71 0   

2236400350 Ribosomal protein S7 Candidatus Nitrospira defluvii NIDE1307 77.66   63.74 63.83 0 
 

2236405975 
RNA polymerase sigma 
factor, sigma-70 family Candidatus Nitrospira defluvii NIDE2309 53.4   53 233.2 46.65   

2236351507 RNA polymerase, sigma-24 
Candidatus Poribacteria sp. WGA-
A3   39.64 n.a. n.a. 783.4 100.1 4.48 

2236411333 

Serine-pyruvate 
aminotransferase/archaeal 
aspartate aminotransferase Candidatus Nitrospira defluvii NIDE3444 61.29 48.39 54.84 62.83 0 

 
2236366352 

Short-chain alcohol 
dehydrogenase Candidatus Nitrospira defluvii NIDE0797 66.36 n.a. n.a. 165.2 0 

 
2236414421 

Translation elongation factor 
Ts 

Candidatus Poribacteria sp. WGA-
A3 NIDE2758 50.79 52.38 58.73 140 0 1.46 

2236405443 Transposase IS200 like. Candidatus Nitrospira defluvii NIDE2608 75   78.26 65.42 0 1.48 

2236410178 
Uncharacterized conserved 
protein Candidatus Nitrospira defluvii NIDE3451 49.3 42.67   156.8 0 

 
2236423820 

Uncharacterized conserved 
protein Candidatus Nitrospira defluvii NIDE3299 50     63.06 0 1.12 
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5.1 Abstract  

Microbes associated with sediments in high productivity estuaries are important drivers of global 

cycling of carbon, nitrogen, and sulfur. However, little is known about how ecological and 

metabolic processes are partitioned among members of these communities. We reconstructed 82 

near-complete bacterial genomes from three redox regimes (sulfate-rich, sulfate-methane 

transition (SMTZ), and methane-rich zones) in White Oak River (North Carolina) estuary 

sediments. These genomes belong to 21 bacterial groups that are widespread in estuary and 

marine sediments, including uncultured candidate phyla (BRC1, WS3, OD1, Zixibacteria, TA06, 

KSB1, and KD3-62), and two new candidate phyla (WOR-1 and BRC2). The candidate phyla 

are generally most abundant in the SMTZ and methane-rich zones, and mediate essential 

biogeochemical pathways of the estuarine environment, including organic carbon degradation 

and fermentation. Genes encoding production and utilization of acetate and hydrogen are 

widespread in the bacterial community; these processes likely represent important links between 

fermentation and respiratory metabolisms. Among the most abundant organisms in the sulfate-

rich layer are novel, uncultured members of the Gammaproteobacteria that have the genetic 
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potential for anaerobic sulfur oxidation coupled to nitrate and nitrite reduction. These genome 

sequences of widespread yet uncultured bacteria provide unprecedented insights and suggest 

specific hypotheses about the physiologies and geochemical interactions between bacterial 

community members in estuarine sediments.  

 

5.2 Introduction 

Estuaries are a dynamic biogeochemical environment and represent a key crossroads in the 

global carbon cycle.  Processes within estuaries mediate the transfer of carbon from land to sea, 

release a considerable amount of CO2 to the atmosphere (Cai et al. 2011), and sequester carbon 

in sediments (Bauer et al. 2013). Microorganisms in estuary sediments mediate central 

geochemical processes including degradation of organic carbon and cycling of sulfur, nitrogen, 

and iron. However, our ability to partition these processes and the underlying metabolic 

pathways among specific microbial groups is limited by the complexity and abundance of 

uncultured groups present in sediment communities. Metagenomic studies have characterized the 

genetic potential of marine sediment microbial communities, highlighting their novelty and 

abundance of unknown genes (for example, see Biddle et al. 2008). However, the analysis of 

individual sequencing reads typically does not link individual community members and their 

metabolic pathways (Baker and Dick, 2013). Recently, single-cell genomics revealed metabolic 

pathways for protein degradation in two widespread lineages of marine benthic Archaea (Lloyd 

et al. 2013). Further culture-independent genomic reconstructions of estuary sediment microbial 

communities are lacking; thus we know little about uncultured communities and candidate phyla 

in this complex microbial ecosystem. 

To better understand the metabolic capabilities of uncultured bacteria we obtained high-

throughput genomic libraries from sediment profiles from the White Oak River estuary, North 

Carolina. This genomic dataset was assembled and binned to obtain near-complete genomes, and 

to reconstruct metabolic pathways of numerous community members. Placing the genome-

encoded metabolic capabilities of specific bacterial groups into community context enabled us to 

identify several microbial interactions involving carbon, iron, nitrogen, and sulfur cycling in the 

sediments. This dataset provides a comprehensive genomic road map of geochemical and 

ecological functions of aquatic sediment microbial communities. 
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5.3 Results and Discussion 

 

Genomic reconstruction and identification. Sediment samples were collected with push cores 

at three adjacent mid-estuary locations. Since the distinct redox layers shared similar bacterial 

and archaeal communities across the three sites, we combined genomic libraries from the three 

sites and conducted one genomic assembly for each zone:  the sulfate-rich zone (8-12 cm), 

sulfate-methane transition zone (SMTZ) (24-32 cm), and methane-rich zone (52-54 cm). 

Subsequent binning by tetra-nucleotide frequency coupled with genomic coverage resulted in 

over 120 genomic bins of Bacteria (Fig. S1). Based on completeness, taxon coverage and 

genomic novelty, we chose 82 bins for detailed characterization of genome-encoded metabolic 

pathways. 26, 35, and 21 of the bins are from the sulfate-rich, SMTZ, and methane-rich zones, 

respectively. 88% and 67% of these genomes are estimated to be >70% and >90% complete, 

correspondingly (Table S1). Just 8 of the bins have more than one genome, based on numbers of 

single-copy genes (Raes et al. 2007). Only 30 of these genomes contain 16S rRNA genes (>300 

bp) due to fragmentation commonly seen in short-read assemblies (Miller et al. 2012). Therefore, 

we also used ribosomal protein S3 phylogeny to determine the taxonomic identities of the 

remaining bins (Fig. 1) (Hug et al. 2013, Castelle et al. 2013). Ribosomal proteins belonging to 

novel phyla for which reference sequences were not available were identified by the presence of 

at least one 16S rRNA gene in the clade (Fig. S2).  
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Fig. 5.1. Diversity of organisms from which genomes were reconstructed from the White 
Oak River sediments. Phylogenetic tree inferred from ribosomal protein S3 genes present 
within bacterial genomes from the sediment metagenomic assemblies. Each sequence in bold is 
from one genomic bin. Some clade designations are based on 16S rRNA gene phylogenetic 
analyses (Fig. S2); for example WOR-1 is a distinct novel phylum. Bin names and genome size 
and completeness are also shown. The total size (Mb) and estimated completeness (%) of the 
bins is shown. 
 

 Several of the genomic bins belong to groups that are commonly identified in rRNA gene 

surveys of marine and estuarine sediments, including Betaproteobacteria, 
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Gammaproteobacteria, Deltaproteobacteria, Chloroflexi, Planctomycetes, Bacteroidetes, 

Gemmatimonadetes, Nitrospira, Chlamydiae, and Spirochetes (Beazley et al. 2012, Bowen et al. 

2012). Genomes of candidate phyla that are commonly identified in a variety of anoxic 

environments and marine sediments comprise OD1, WS3, TA06, Zixibacteria, and BRC1 (Table 

S2). Candidate phylum TA06 contains two distinct groups (hereby named TA06.1 and TA06.2) 

based on 16S rRNA and ribosomal protein gene phylogeny (Fig. 1 and S2), GC content (average 

58% and 44%), and predicted physiology (detailed below). Three genomes forming a sister 

lineage to BRC 1 in the ribosomal protein S3 phylogenetic tree are specified as the new lineage 

BRC2, based on distinct GC content (42% vs 60%) (Fig. 1). One genomic bin belongs to a 

previously unnamed phylum-level lineage of 16S rRNA genes, mostly recovered from marine 

sediments, that we refer to as “WOR-1”. This bin (DG-54-3) clusters with BRC1 and BRC2 

phyla on the ribosomal protein tree, but it is deeply divergent from all currently recognized phyla 

based on 16S rRNA gene phylogeny (Fig. S2). 

 

Genomic abundance of community members in the sediment profile. To quantify the 

genomic abundance of community members in each zone we mapped all the reads to all of the 

genes for ribosomal protein S3 in the assemblies (Fig. S3). The assembly from shallow, sulfate-

rich sediments was dominated by Beta-, Gamma- and Deltaproteobacteria (including 

Myxococcales), Bacteroidetes and Nitrospira, and also contained more Gemmatimonadetes and 

Planctomycetes relative to the deeper sediment samples. The SMTZ and the deeper methane-rich 

sediments were dominated by Archaea and Chloroflexi (Fig. S3), consistent with previous qPCR 

and rRNA slot blot results showing that bacterial dominance in surficial White Oak River 

estuarine sediments is considerably reduced and even reversed downcore (Kubo et al. 2012). The 

Candidate bacterial phyla WS3, OD1, TA06.1, TA06.2, and Zixibacteria were sufficiently 

abundant for genome reconstruction only in the deeper sediment layers. 

 

Organic Carbon degradation and fermentation. Sedimentary microbial communities process 

the input of photosynthetic organic matter from the overlying water column, and thus play a key 

role in the degradation of complex carbon substrates (Arnosti et al. 2011). We searched all the 

bacterial genomes present here for 26 known genes involved in degradation of chitin, protein, 

algal- and plant-derived material, and lipids (Berlemont and Martiny, 2013, Wrighton et al. 
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2014). Generally speaking, the genomes belonging to the Bacteroidetes, Gemmatimonadetes, 

Planctomycetes, WOR-1, BRC1, BRC2, and KD3-62 phyla contain the broadest array of 

glycoside hydrolases genes. These organisms have a variety of cellulose, hemicellulose, and 

polysaccharide degradation genes absent in the other community members (Table S3), 

suggesting they drive the initial degradation and hydrolysis of complex organic carbon 

compounds. Multiple genes are involved in the degradation of chitin, the long-chain polymer of 

N-acetylglucosamine and a major structural component of fungal and algal cell wells and of 

arthropod exoskeletons. Endo-acting chitinase genes were identified in two of the 

Gammaproteobacteria (SG8-31 and SG8-15) and the KSB1 bin SM23-31, and N-acetyl-

glucosaminidase genes were found in the Gemmatimonadetes, Bacteroidetes and the three 

TA06.2 genomes (Table S3).  

Proteins account for a large proportion of bioavailable carbon and nitrogen for sediment 

communities (Wakeham et al. 1997). In multiple estuary phyla, these resources are accessed via 

extracellular peptidases. We found the greatest numbers of peptidases in the candidate phyla 

TA06, WOR-1, and WS3, and in the Bacteroidetes, Gemmatimonadetes, Chloroflexi, and 

Planctomycetes, suggesting that these community members are involved in protein degradation 

along with sedimentary benthic Archaea (Lloyd et al. 2013). 

Several of the Chloroflexi genomes (SG8-19, DG-18, SM23-63 and 84) contain the β-

oxidation pathway to generate acetyl-CoA from fatty acids and organic acids, as found 

previously (Hug et al. 2013, Wasmund et al. 2014). This capability is also present in genomes 

from both of the Myxococcales, Gemmatimonadetes (SG8-23 and 28), several 

Gammaproteobacteria and Deltaproteobacteria, and the shallow sediment-dwelling 

Betaproteobacteria. Among the candidate phyla that contain the complete β-oxidation pathway 

are the BRC-1, and one of the Zixibacteria (SM23-57) genomic bins. Interestingly, genomes that 

have the β-oxidation pathway were primarily found in the shallow samples, where 9 of the 15 

complete pathways are located. 

Several of the bacteria groups capable of hydrolyzing complex organic carbon also have 

pathways for glycolytic fermentation of glucose to acetate, including BRC2, WOR-1 (Fig. 3), 

WS3, Bacteroidetes, Nitrospira (SG8-3), and Spirochetes (bin DG-61). All these groups have the 

reductive acetyl-CoA (Wood-Ljungdahl) and phosphate acetyltransferase-acetate kinase 

pathways for carbon fixation and acetate production; we note that the WS3 and WOR-1 genomes 

94 
 



appear to lack acetyl-CoA synthetase, essential to the Wood-Ljungdahl pathway. The 

Spirochetes and BRC2 genomes contain lactate dehydrogenase genes suggesting they are also 

capable of lactate fermentation. The Bacteroidetes, Spirochetes and Thermodesulfovibrio-like 

bins have genes that encode aldehyde dehydrogenase and alcohol dehydrogenase, suggesting 

they are capable of full fermentation to ethanol. Fermentation has been demonstrated in 

Thermodesulfovibrio spp. cultures (Sekiguchi et al. 2008). The genome bins did not yield an 

identifiable complete pathway for butyrate formation. The end products of these fermentation 

pathways fuel terminal respiration in the sediment community; the key electron donors acetate 

and hydrogen are among the principal drivers of sulfate reduction (Oremland and Polcin, 1982) 

(Fig. 5.2). 

 

 
Figure 5.2. Flow diagram of the interactions between (left to right) organic carbon 
utilization, fermentation, and respiration identified in the bacterial genomes reconstructed 
in this study. Arrows represent metabolic capabilities that were identified in the metagenomic 
reconstruction from the White Oak River estuary. The dashed lines on the right represent 
potential electron donors for the anaerobic respiration processes. Note that the and 
Gammaproteobacteria are capable of coupling nitrate reduction to either thiosulfate or sulfide 
oxidation. DNRA = dissimilatory nitrate reduction to ammonia. 

 

We did not identify any genes for Fe,Fe-hydrogenases, which are thought to primarily 

produce H2 (Seiber et al. 2012). However, several of the bacteria possess genes for Ni,Fe-

hydrogenases, which can be involved in H2 production or consumption. These genes are 

ubiquitous in Gemmatiomonas, Myxococcales, Delta-, and Gammaproteobacteria (SG-11, 13, 
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15, 30, and 31) and are likely used for consumption of H2 by respiratory processes (eg. sulfate 

reduction and denitrification). The Nitrospira bin (SG8-35-4, related to Thermodesulfovibrio 

spp., Fig. 1) contain genes for Ni,Fe-hydrogenases that are likely to participate in both sulfate 

reduction with hydrogen as the electron donor and the fermentative production of H2, which have 

been demonstrated in Thermodesulfovibrio spp. (Sekiguchi et al. 2008). Several bacterial groups 

that are capable of organic carbon degradation and fermentation have Ni,Fe-hydrogenase genes, 

including Planctomycetes, Spirochetes, Chloroflexi, BRC2, TA06.2 (not TA06.1), and WOR-1 

(Fig. 3). The extensive distribution of these hydrogenases among both fermenting and respiring 

bacteria indicates that H2 is a highly dynamic electron carrier produced and consumed by a wide 

range of sediments microbes, as it is in other anoxic environments (Wrighton et al. 2014, 

Schmidt et al. 2010). 

 

 

Figure 5.3. Diagrams of metabolic potential and electron transport of WOR-1 (bin DG-54-
3) and Gammaproteobacteria (bin SG8-45), based on gene content. ATPase, ATP synthetase; 
FDH, formate dehydrogenase; NiFe-hyd, Ni,Fe-hydrogenase; Cytb/c1, quinone cytochrome 
oxidoreductase; Cyt c, cytochrome c; nap/nar, nitrate reductase; nir, nitrite reductase; nor, nitric 
oxide reductase; nir, nitrous oxide reductase; SAT, sulfate transferase; apr, APS reductase; rdsr, 
reverse dissimilatory sulfite reductase; Rub, RuBisCO; Q, quinine; SDH/FR, succinate 
dehydrogenase/fumarate reductase; NDH, NADH dehydrogenase; SOX, sulfur oxidation 
multienzyme complex. 
 

Dissimilatory sulfur and nitrogen cycling. Aquatic sediments are characterized by redox 

gradients, as oxidized compounds (e.g., the electron acceptors O2, nitrate and sulfate) are 

gradually reduced by anaerobic respiration. To determine the respiratory repertoire of microbial 
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community members, we surveyed the estuary genomes for key genes of respiration pathways. 

Several of the genomic bins contain dissimilatory sulfite reductase (dsr) genes, indicative of 

microbial sulfate and sulfite reduction. To account for the possibility that a related but 

phylogenetically distinct group of genes (rdsr) mediate the reverse reaction (Loy et al. 2009), we 

generated a phylogenetic tree of all the dsr-like genes recovered (Fig. S4). The 

Deltaproteobacteria, which constituted the most abundant microorganisms in the sulfate-rich 

zone (Fig. S3), have reducing-type dsr genes and complete sulfate reduction pathways (with the 

exception of the two Myxococcales bins). We also found the bin SG8-35-4, similar to 

Thermodesulfovibrio spp. within the Nitrospira phylum, is capable of sulfate reduction based on 

the presence of dsr genes.  

Surprisingly, a complete sulfate reduction pathway was identified in the 

Gemmatiomonadetes-like bin SG8-17. The dsrAB genes from this bin fall within a 

phylogenetically deeply branched clade (Fig. S4). This clade (designated DSR-J, 22) includes 

dsrAB sequences from an intertidal sand flat, Hydrate Ridge, deep sea, and estuary sediments, 

suggesting these sulfate reducers are widespread in coastal and marine sediments. Genes of this 

clade were hypothesized to have been horizontally transferred (Mussmann et al. 2005). We did 

not identify dsr genes in any of the other Gemmatiomonadetes-like bins; therefore it is likely that 

these genes were recently acquired in that organism. Since all of the sequences for this clade had 

previously been recovered from large-insert (fosmid) clones that lacked 16S rRNA genes, their 

taxonomic affiliation had been uncertain. These dsrAB genes are located on a 9.6kb contig that is 

confidently binned with SG8-17. This bin contains additional genes for sulfate reduction on other 

contigs, including aprAB, SAT, and dsrC. Thus, this member of the Gemmatimonadetes is likely 

capable of sulfate reduction. 

Up to 95% of the sulfide and thiosulfate generated by sulfate reduction is re-oxidized to 

sulfate in marine sediments (Jørgensen, 1990). Interestingly, the genomes of the most abundant 

Gammaproteobacteria (SG8-11, -15, -45, -47 -50, SMTZ1-46, and SMTZ-46) include genes for 

sulfide oxidation (rdsr, apr, and SAT) and pathways for thiosulfate oxidation (soxABDZY 

genes). We did not identify any sulfide quinone or flavocytochrome c reductases which are 

common to sulfide oxidizers. All of these genomes contain genes for nitrate reduction. Many 

bins (SG8-30, -31, -41, -45, and -46) also have nirS and norBC genes for the reduction of nitrite 

to nitrous oxide, N2O (Fig. 3). nosZ genes were only found in Gemmatimonadetes (SG8-23) and 
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Myxococcales (SG-38 and -38-1) bins, suggesting they are reducing the N2O produced by 

Gammaproteobacteria to N2 (Fig. 2). Since all of these genomes are nearly complete (Table S2), 

the lack of genes for denitrification is unlikely to reflect incomplete sequence coverage. Two 

gammaproteobacterial genomes (SG8-30 and -31) lack the sox pathway and rdsr genes but have 

genes for Ni-Fe-hydrogenases, suggesting they utilize H2 rather than reduced sulfur as an 

electron donor for nitrate reduction.  

In several Gammaproteobacteria, the gene clusters for nitrate reduction and sulfur 

oxidation are mutually intertwined. The rdsr gene cluster of bins SG8-11, -15, -41, -45, -47, and 

-50, includes a gene with homology to a nitrate sensor (narX) and a luxR-like transcription 

regulator (Fig. 4). This type of sensor protein has been implicated in gene expression in response 

to changes in nitrate/nitrite concentrations (Nohno et al. 1989). Further, the gene cluster for 

nitrate reduction (napABCDGH) in the gammabacterial bins SG8-45 and SG8-50 contains two 

dsrC genes, which have been suggested to regulate rdsr gene expression (Grimm et al. 2010). 

The presence of two dsrC genes in the nap operon suggests that regulation of sulfur oxidation 

and nitrate reduction is coordinated, consistent with of the coupling of these processes in their 

close relative Thioalkalivibrio spp. (Sorokin et al. 2004 and 2008). The preference of these 

Gammaproteobacteria in shallow sediment samples, where the sulfide porewater concentrations 

decrease to the detection limit (Lazar et al. in review), is consistent with nitrate-dependent 

oxidation of sulfur compounds. We did identify cytochrome c oxidases in SG8-11, -31, -45, and 

-50, suggesting that some of the Gammaproteobacteria are also capable of O2 reduction.  

 

 
Figure 5.4. Operons for sulfur oxidation and nitrate reduction present in the dominant 
Gammaproteobacteria genotypes. Those shown here are present in the SG8-45 bin. However, 
syntenous operons are also present in several other Gammaproteobacteria bins (SG8-11, 15, 45, 
47, 50, STMZ1-46, and SMTZ-46). 

 

 In addition to denitrification, several members of the community are putatively capable 

of dissimilatory nitrate reduction to ammonia (DNRA). Deltaproteobacteria (SG8-35-2, SM-61), 

Gemmatimonadetes (SG8-23), Chloroflexi (SM-28-1), Nitrospira (SG8-35-4), and WS3 (DG-63) 

98 
 



have formate-dependent nitrite reductase (nrfA), which is the signature gene for DNRA (Einsle, 

2011). We also found nitrogen fixation genes (nifH) in WS3 (DG-63) and Nitrospira (SG8-35-

1). 

 

Iron cycling. While the microbial cycling of iron in marine sediments has been commonly 

documented by geochemical approaches (Moeslund et al. 1994), well-documented biochemical 

pathways for iron oxidation and reduction now enable environmental genetic studies of these 

processes as well. For example, periplasmic and outer-membrane-anchored c-type cytochromes 

and a beta-barrel protein within the metal reduction (Mtr) respiratory pathway are essential for 

respiratory electron transport across the outer cell membrane to iron minerals in Shewanella 

oneidensis (Coursolle and Gralnick, 2012, White et al. 2013).  Homologues of these enzymes 

catalyze lithotrophic iron oxidation in Sideroxydans lithotrophicus (Liu et al. 2012) and 

phototrophic iron oxidation in Rhodopseudomonas palustris (Jiao and Newman, 2007). 

Therefore, we searched our datasets for genes homologous to mtr genes and found them in 7 

different genomic bins. Betaproteobacterial genomes reconstructed from the sulfate-rich zone 

(SG8-39, 40, and 41) have mtrABC genes and are closely related (>98% at the 16S rRNA gene 

level) to Sideroxydans lithotrophicus (Fig. 1, S2), suggesting that they are capable of iron 

oxidation. Gemmatimonadetes bin SG8-38-2 has a putative mtrABC gene cluster and may be 

involved in iron cycling as well. Consistent with Zixibacteria genomes obtained from 

groundwater, bin SM-73-2 contains mtrAB but lacks the genes for extracellular cytochromes 

implicated in iron reduction (Castelle et al. 2013). Only the Gammaproteobacteria bin SM-47 

contains both the genes homologous to mtrABC and a cytoplasmic membrane-associated c-type 

cytochrome (cymA) required for iron reduction (Coursolle and Gralnick, 2012, Myers and Myers, 

2007). The closely related bacteria SG8-11 and SG8-30 have all these genes except mtrC and 

cymA, respectively.  Bacteria capable of iron reduction have multiple multi-heme cytochromes 

(Carlson et al. 2012); SG8-11 and SG8-30 also each have genes encoding six unique types of 

these cytochromes.  

 

5.4 Conclusions 
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The highly-resolved genomic reconstruction of estuary sediment microbial populations 

conducted here enabled us to piece together physiological pathways of individual community 

members, including several recently defined (eg. KD3-62, TA06, Zixibacteria, and BRC1) and 

two newly described (WOR-1 and BRC2) uncultured candidate phyla. Hence, this study provides 

the first genomic information on microorganisms that are widespread and mediate key 

biogeochemical processes in marine and estuary sediments. The 17 genomes belonging to WOR-

1, KSB1, KD3-62, TA06 (groups 1 and 2), BRC1, and BRC2 are the first to be constructed from 

these phyla. Based on their genome sequences, several of these groups are capable of hydrolysis 

and fermentation of a variety of organic compounds, greatly expanding the range of bacterial 

phyla that hydrolyze and ferment biopolymers (sugars and proteins) to low molecular weight 

substrates. These genomes have an average of 14 carbohydrate hydrolases per genome, with 

WOR-1 and BRC2 having the most with 20 and 39, respectively. Planctomycetes and 

Bacteroides are also among the most versatile carbohydrate degrading bacteria in the White Oak 

River sediments with an average of 33 and 100 hydrolytic genes per genome, respectively. 

This study identified new bacterial capabilities in sulfur cycling. One uncultured 

Gemmatimonadetes bacterium was linked to a previously taxonomically unassigned dsr gene 

clade, suggesting that this group is capable of sulfate reduction, a process that is commonly 

catalyzed by Deltaproteobacteria. Sequences for this group have been recovered from sediments 

throughout the world, suggesting that it is widespread. The oxidation of sulfide and thiosulfate is 

essential to sulfur cycling in marine and coastal sediments (Jørgensen, 1990), but little is known 

about the organisms involved. Recent evidence suggested that Gammaproteobacteria mediate 

sulfur oxidation in coastal sediments (Lenk et al. 2010). Several of the most abundant 

Gammaproteobacteria in the sulfate-rich zone described here have the genetic potential for 

coupling anaerobic sulfur or hydrogen oxidation to denitrification. Many sediment bacteria are 

commonly considered to be specialized to certain niches. However, our findings suggest that 

some can toggle between different oxidative and reductive functionalities depending on the 

dynamic redox state and the availability of different nitrogen and sulfur species in their 

sedimentary habitat. 

  Placing the metabolic capabilities of individual populations within the framework of 

other community members provided a wiring diagram of the potential geochemical interactions 

at a system level. This information provides a foundation for more fully understanding the 
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pathways of carbon degradation and cycling of sulfur, nitrogen, and iron in marine sediments. 

Several metabolic processes are present in multiple bacteria in the community. Further 

investigations assessing gene expression, and additional locations, will provide insights about the 

differential activity of these redundancies. Prior to this study our understanding of ecological 

roles of sediment bacteria was limited by low-resolution approaches. The comprehensive 

genomic reconstruction of these sediments provides a valuable link between function and 

diversity and reveals potential geochemical interactions within the communities. Full knowledge 

of the microbial players will provide a realistic road map that follows the flow on carbon and 

nutrients through the multiple layers of microbial processing, assimilation and remineralization 

in the estuarine environment. 

 

5.5 Materials and Methods 

 

Genomic analyses. Illumina (HiSeq) shotgun genomic reads were screened against Illumina 

artifacts (adapters, DNA spike-ins) with a sliding window with a kmer size of 28 and a step size 

of 1. Reads with 3 or more N’s or with average quality score of less than Q20 and a length <50 

bps were removed. Screened reads were trimmed from both ends using a minimum quality cutoff 

of 5 using Sickle (https://github.com/najoshi/sickle). Trimmed, screened, paired-end Illumina 

reads were assembled using IDBA-UD (39) with the following parameters (--pre_correction --

mink 55 --maxk 95 --step 10 --seed_kmer 55). To maximize assembly reads from different sites 

were co-assembled (see supporting information). 

Genes were called and putative function was assigned using the JGI IMG/MER system 

(Markowitz et al. 2012). Initial binning of the assembled fragments was done using tetra-

nucleotide frequencies signatures and ESOM mapping as detailed in Dick et al. (2009) and 

binning was enhanced by incorporating coverage signatures for all of the assembled contigs 

(Sharon et al. 2013, Wrighton et al. 2012). The completeness of the genomes within bins were 

then estimated by counting universal single copy genes as defined by Raes et al. (2007). Several 

of these bins were then shown to contain multiple (2-5), closely-related genomes based on the 

number of single copy genes. Those bins were then further separate by plotting differential 

coverage between two libraries. Distinct clusters of scaffolds on the coverage plots were 
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manually delineated into new bins. Coverage was determine by recruiting reads to scaffolds by 

BLASTN (bitscore >75). Binning was also manual curated based on GC content, top blast hits, 

and mate-pairings. 
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6. Supplementary Figure 5.7 

7. Supplementary Figure 5.8 

Supplementary Text 

Sample collection and processing. Six 1 meter plunger cores were collected from ~1.5 m water 

depth in three mid-estuary locations (two cores per site) of the White Oak River, North Carolina 

in October 2010 (site 1 at 34˚44.592N, 77˚07.435W; site 2 at 34˚44.482N, 77˚07.404W, and site 

3 at 34˚44.141N, 77˚07298W). Cores were stored at 4˚C overnight and processed 24 hours after 

sampling. Each core was sectioned into 2 cm intervals. From each site one core was subsampled 

for geochemical analyses and the other were subsampled for DNA extractions. DNA was 

extracted using the UltraClean Mega Soil DNA Isolation Kit (MoBio, CA), using 6 g of 

sediment, and stored at -80˚C until use. 

 

Genomic assembly. The shallow assembly was a combination of high-quality reads 

(474,179,948) from sites 2 (8-12 cm), and 3 (8-10 cm). The SMTZ assembly was generated from 

a combination of reads (698,574,240) from site 2 (30-32 cm) and 3 (24-28 cm). The deep 

assembly was generated from high-quality reads (378,027,948) of site 1 (52-54 cm). Since we 

were not able to co-assemble all samples from the SMTZ, one of the samples (site 1 26-30 cm) 

was assembled separately.  The contigs from this sample were co-binned with the assembly of 

the other two samples (site 2 and 3, described above).  This resulted in some closely related, but 

unique bins, for example the Gammaproteobacteria bins SMTZ1-46 and SMTZ-46. 

 

Table 5.1. Summary of genome reconstruction completeness.  For more detailed information 
about individual genomic bins see Table S1. 

Phylum # of 
genomes 

Bins with >1 
genome 

Genomes 
>90% 

Genomes 
>70% 

Betaproteobacteria 3 0 2 3 
Gammaproteobacteria 10 1 6 7 
Deltaproteobacteria 5 1 4 5 
BRC2 3 1 2 3 
Chloroflexi 8 0 4 5 
Nitrospira 4 0 2 4 
Gemmatiomonadetes 5 0 3 5 
Planctomycetes 11 0 9 11 
Spirochetes 1 0 0 1 
Myxococcales 2 0 2 2 
Chlamydiae 1 0 1 1 
KSB1 2 0 0 2 
Bacteroidetes 3 2 3 3 
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OD1 5 1 5 5 
WS3 2 0 2 2 
Zixibacteria 5 0 3 5 
TA06 9 1 6 6 
WOR-1 1 1 1 1 
KD3-62 1 0 0 0 
BRC1 1 0 0 1 
Total 82 8 55 72 

 

Table 5.2. General characteristics of all bacterial genomic bins. 

bin 

# of 

scaffolds 

# of 

genes 

Total 

length Taxonomy 

longest 

scaffold Completeness %GC 

SG8-41 147 3889 3747630 Betaproteobacteria 202275 106.25 62.884 

SG8-39 233 3307 3137175 Betaproteobacteria 98955 100 68.078 

SG8-40 260 2744 2433805 Betaproteobacteria 33740 75 60.292 

SG8-19 437 4886 4668865 Chloroflexi 119936 84.375 51.572 

SG8-51-3 204 2080 1759043 Chloroflexi;Dehalococcoidia 51164 118.75 50.385 

SG8-35-2 292 4049 3649796 Deltaproteobacteria; Desulfobacterales 185839 106.25 46.079 

SG8-35 206 2740 2591650 Deltaproteobacteria; Desulfobacterales 58461 78 48.839 

SG8-13 125 3814 3800553 Deltaproteobacteria; Desulfobacterales 155941 100 56.914 

SG8-31 266 6175 5968366 Gammaproteobacteria 339997 190.625 62.583 

SG8-11 464 4390 3882126 Gammaproteobacteria 12335 56.25 46.909 

SG8-30 113 2780 2820123 Gammaproteobacteria 111313 96.875 68.743 

SG8-15 302 3171 2741304 Gammaproteobacteria 36497 68.75 47.905 

SG8-47 197 2931 2696743 Gammaproteobacteria 55750 100 60.614 

SG8-45 98 2517 2283082 Gammaproteobacteria;Acidithiobacillales 97626 100 55.949 

SG8-50 366 4182 3645285 Gammaproteobacteria;Thiothrichales 50482 90.625 57.244 

SG8-28 430 3820 3856507 Gemmatiomonas 46899 81.25 67.178 

SG8-17 456 3949 3691854 Gemmatiomonas 61136 71.875 59.953 

SG8-23 310 3180 3209539 Gemmatiomonas 55555 103.125 68.084 

SG8-38-2 307 3039 2814545 Gemmatiomonas 143644 90.625 61.536 

SG8-38-1 234 3900 3848836 Myxococcales 133715 106.25 63.032 

SG8-38 105 3453 3623660 Myxococcales 147758 96.875 63.406 

SG8-3 733 6668 5957751 Deltaproteobacteria 34170 106.25 49.975 

SG8-35-1 357 3808 3333117 Nitrospira/ like Thermodesulfovibrio 79085 87.5 45.817 

SG8-35-4 292 3028 2692108 Nitrospira/ like Thermodesulfovibrio 33354 75 46.426 

SG8-24 67 1231 1116563 OD1 62749 96.875 61.437 

SG8-4 479 4333 4458874 Plantomycetes/Phycisphaerae 39007 96.875 54.804 

SMTZ 

       61 286 4504 4241461 Deltaproteobacteria 62586 103.125 56.081 
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62 403 5339 5784682 Bacteroides 142533 106.25 45.753 

62-1 315 4729 5049351 Bacteroides 73049 131.25 40.025 

62 307 2552 2576725 Bacteroides 142533 125 45.236 

51 306 2831 2764529 BRC1 55748 71.875 59.783 

31 300 3403 2821327 KSB1 34851 84.375 40.109 

63 171 4302 4281581 Chloroflexi;Anaerolineae 197251 112.5 50.906 

84 362 3995 3734778 Chloroflexi;Anaerolineae 50007 103.125 59.288 

28-2 107 1566 1469117 Chloroflexi;unclassified 53467 96.875 63.75 

28-1 89 845 732023 Chloroflexi;unclassified 22368 59.375 63.645 

39 67 1253 1126604 Chlymidae 49818 100 26.251 

46 263 3271 2826034 Gammaproteobacteria;Acidithiobacillales 54660 78.125 61.379 

46 182 2960 2616358 Gammaproteobacteria;Acidithiobacillales 54660 81.25 61.645 

52 263 4251 4296877 Gemmatiomonas 93174 96.875 65.496 

35 140 1633 1416608 Nitrospira/ like Thermodesulfovibrio 46553 90.625 46.747 

25 418 3775 3770408 Planctomyce 59260 103.125 66.54 

32 237 2252 2326512 Planctomyce 27318 93.75 69.176 

65 212 1773 1825793 Planctomyce 34095 71.875 62.186 

30 296 3613 4021226 Plantomycetes/Phycisphaerae 50768 90.625 50.742 

33 322 3284 3426709 Plantomycetes/Phycisphaerae 41894 106.25 67.777 

32-1 317 2856 3094560 Plantomycetes/Phycisphaerae 44002 96.875 68.276 

79 241 2878 2952060 Plantomycetes/Phycisphaerae 89332 90.625 50.321 

40 189 2890 2883088 TA06.1 79299 100 60.277 

40 197 2541 2559446 TA06.1 79299 43.75 60.303 

60 264 3104 3369763 TA06.2 63010 109.375 47.409 

42 59 2515 2532789 TA06.2 339863 100 46.22 

77 150 1502 1269144 TA06.2 207686 118.75 45.774 

72 137 2999 3297702 BRC2 100134 181.25 44.999 

29 173 2251 2222379 BRC2 59882 118.75 41.693 

81 99 2856 3074913 WS3 205519 96.875 52.817 

57 285 2369 2350405 KSB1 81445 81.25 46.344 

73-2 124 2356 2272909 Zixibacteria 70866 87.5 42.329 

73 147 2480 2223615 Zixibacteria 46423 87.5 43.972 

73-3 90 1939 1882756 Zixibacteria 85050 100 45.156 

73 163 1657 1441479 Zixibacteria 46423 93.75 43.017 

Deep 

       DG-18 129 1101 936096 Chloroflexi;Dehalococcoidia 23208 68.75 53.881 

DG-22 147 1356 1135001 Chloroflexi;unclassified 21435 71.875 63.458 

DG-28 199 1722 1418734 BRC2 13759 75 39.032 
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DG-60 128 1665 1357456 Deltaproteobacteria;Syntrophobacter 44074 121.875 39.05 

DG-40 88 2555 2338617 Gammaproteobaciteria/Coxiella 273781 118.75 39.872 

DG-56 144 1261 1238975 KD3-62 32772 62.5 64.886 

DG-74-2 79 1584 1286363 OD1 198637 156.25 33.126 

DG-72 11 874 717349 OD1 207750 96.875 34.598 

DG-74-1 13 655 584570 OD1 146628 96.875 38.449 

DG-74-3 21 676 543780 OD1 114447 96.875 36.836 

DG-75 53 581 473645 OP11 32291 75 40.782 

DG-20 331 2799 2821569 Plantomycetes 32318 118.75 67.441 

DG-23 173 2069 2020164 Plantomycetes 41302 109.375 52.375 

DG-58 220 1720 1746620 Plantomycetes 32019 84.375 62.069 

DG-61 431 4757 4307950 Spirochete 56909 84.375 46.724 

DG-26 135 1727 1682905 TA06 48904 134.375 52.046 

DG-24 121 2291 2323720 TA06.1 131201 81.25 60.601 

DG-78-2 95 2768 2562206 TA06.2 105856 78.25 42.199 

DG-78 173 2196 2090507 TA06.2 50145 78.125 40.113 

DG-54-3 279 3638 3303329 WOR-1 114009 134.375 44.77 

DG-63 83 3190 3519707 WS3 259192 112.5 54.986 

DG-27 133 1142 1101969 Zixibacteria 25637 93.75 53.616 

 

 
Table 5.3. Number of specific organic carbon degrading genes identified in the bacterial 
genomic bins. 
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Figure 5.5. Tetra-nucleotide ESOM binning map of shallow assembly.  The delineated bins are 
colored and labeled. Noticed that in a few cases (SG8-35, 35-1, 35-2, and SG8-38 and 38-1) 
multiple closely-related bins falls within one large cluster on this map.  These bins were found to 
contain more than one genome and were therefore, further delineated based on differential 
coverage plots. 
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Figure 5.6. Phylogenetic tree (generated using maximum likelihood method in ARB software 
package) of 16S rRNA genes present in the bacterial genomic bins in this study. Closed circles 
represent maximum likelihood (ProML, ARB package) bootstraps >75% and open circles are 
>50% values. 
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Figure 5.7. Fig. Abundances of top genotypes in the SMTZ (24-32 cm) and methane-rich (52-54 
cm) layers of the sediment profiles based on the number of reads that map to all the genes for 
ribosomal protein S3.  Those that are represented in the genomic bins are labeled.   
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Figure 5.8. Phylogenetic tree of concatenated dsrAB genes within bacteria genomic bins from 
this study. Closed and open circles represent maximum likelihood  (ProML, ARB package) 
bootstrap value >75 and >50, respectively. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

6.1 Introduction  

In this Chapter, I summarize the main findings of the chapters and I discuss what future 

studies might be done. My dissertation applied omic approaches to questions regarding the 

microbial ecology of hydrothermal plumes and estuary sediments. Some of the key questions 

addressed here are: Which microbes inhabit hydrothermal plumes and estuary sediments? What 

pathways and organisms are involved in carbon and nitrogen cycling in Guaymas Basin deep sea 

hydrothermal plumes and surrounding waters? What are metabolisms of novel, uncultured 

bacteria in sediments? How are metabolisms partitioned among community members?  

In Chapter II I reviewed common approaches used to analyze community genomic and 

transcriptomic data and discussed the limitations of relying on public databases rather than doing 

de novo assembly. Chapter III described the diversity, genomic content, and gene expression of 

ammonia-oxidizing archaea in the Guaymas Basin deep-sea and hydrothermal plumes. This was 

the first genomic reconstruction and assessment of transcriptional activity of entire populations 

of these organisms from the deep sea. Then, in Chapter IV I developed a novel approach of 

analyzing metatranscriptomic data (RNA sequence) – de novo assembly – and show that the next 

step in nitrification, nitrite oxidation, in the same Guaymas Basin is mediated by a novel member 

of Nitrospirae. In the process of doing transcriptomic assemblies of the entire Guaymas Basin 

communities I also looked at gene activities of uncultured microbes involved in the recycling of 

organic carbon, and show that these are widespread in the world oceans. Chapter V is the first 

study to reconstruct dozens of bacterial genomes, including those from novel lineages, from 

estuary sediments. These genomes provide insights about the metabolic capabilities of several 

uncultured bacteria. It also enabled me to produce the first highly resolved map of the flow of 
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carbon and energy through estuary sediment microbial communities, and provide links between 

microbes and the geochemistry of pore waters. 

 

6.2 Microbes and metabolic pathways involved in carbon and nitrogen cycling in deep sea 
hydrothermal plumes 

 The reconstruction of multiple (~6-8) genomes belonging to ammonia oxidizing 

Thaumarchaea from the Guaymas Basin deep sea enabled us to investigate the full catalog of 

genes in the plume and background communities (Baker et al. 2012). This was the first time that 

a community transcriptomic dataset was analyzed using matching assembled genomes. This 

meant that we were able to match transcripts to genes from the same environment, which enabled 

us to assign function and taxonomy more accurately than previous studies that used public 

databases (Frias-Lopez et al. 2008, Hollibaugh et al. 2011, Stewart et al. 2011). As a result, I was 

able to look at the expression of different types of closely related genes involved in ammonia 

oxidation, ammonia monooxygenase (amo) genes. Surprisingly, I found that these deep-sea 

Thaumarchaea are closely related to species that are abundant in low-ammonia surface ocean 

waters. However, this cluster of organisms, referred to as “GB plume cluster”, is adapted to the 

higher ammonia concentrations of Guaymas Basin waters, in contrast to Nitrosopumilus 

maritmus. Comparison of the Guaymas Basin  genomes to Nitrosopumilus maritmus revealed 

large portions of the Nitrosopumilus maritmus genome were absent in the deep sea genomes. 

These same genomic regions were also absent in organisms from surface water in the Gulf of 

Maine (Tully et al. 2012), reflecting common patterns of genomic variation in Thaumarchaea 

from disparate environments. Also, the deep sea Thaumarchaea contain genomic regions distinct 

from those previous sequenced, including genes involved in the conversion of urea to ammonia. 

These urease genes were also highly represented in the transcript data from the Guaymas Basin, 

suggesting urea utilization as a source of nitrogen. Interestingly, we also found that nitrite 

reductase (nirK) genes were among the most active genes in the plume population. These nitrite 

reductases reduce nitrite to N2O, a powerful greenhouse gas, and isotopic approaches recently 

implicated Thaumarchaea as a major source of N2O to the atmosphere (Santoro et al. 2012). 

 Using publically available gene databases limits functional and taxonomic identification 

of transcriptomic sequencing reads from natural communities (Baker and Dick, 2013). On 

121 
 



average only around 15% of the mRNA reads are confidently assigned a function (Frias-Lopez et 

al. 2008, Lesniewski et al. 2012). Therefore, we were interested in determining if there were any 

geochemically important genes present in the unassigned transcripts. To do this we developed an 

approach of assembling these RNA reads (Baker et al. 2013). Taking this approach enabled us to 

reconstruct complete transcripts containing full and multiple genes (on operons) from nature for 

the first time. Having complete mRNAs rather than smaller portions (as are represented on 

individual reads) enabled better identification of function. Furthermore, it improved our ability to 

map transcripts back to the metagenomic data to determine which community member it 

originated from (Baker and Dick, 2013).  

While analyzing this data we found that a significant portion of the transcripts (~1.2 Mb) 

belonged to bacteria of the genus Alteromonas. Alteromonas spp. are widespread in the oceans 

and representatives have been cultured that are able to utilize organic carbon for growth (López-

Pérez et al. 2012). In the Guaymas Basin these Altermonas highly express genes for amino acid 

uptake and degradation. Interestingly, genes serving these functions are also well represented in 

the transcript data from uncultured Archaea referred to as Marine Group II Euryarchaeota. Also 

among the most abundantly represented genes in the plume and background metatranscriptomes 

were those encoding catalytic subunits of nitrite oxidoreductase (NxrA, NxrB, and membrane 

subunit). These transcripts are most similar to those found in the genome of Nitrospira defluvii, a 

nitrite oxidizer (Lücker et al. 2010). Therefore, we searched the Guaymas transcript data and 

found several other high expressed genes involved energy generation via the oxidation of nitrite 

coupled to the reduction of oxygen. Although these genes were abundant in the transcriptomic 

data they are present at very low coverage, or absent, in the accompanying genomic dataset. 

Hence, we found that this new nitrite-oxidizing bacterium was widespread in the Gulf of 

California, yet at low abundance in all the samples. This might be a reflection of the low energy 

yield that the nitrite oxidation confers relative to ammonia oxidation. This study was the first to 

utilize assembled transcript data to investigate the activity of a microbial community and showed 

that the second step of nitrification is mediated by a novel, low-abundance, uncultured group of 

bacteria. 
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6.3 Highly resolved mapping of carbon and energy flow through estuary sediment bacteria 

communities 

The reconstruction of dozens of uncultured genomes of bacteria from the White Oak 

River estuary resulted in a detailed map of the flow of carbon, nitrogen, sulfur, and iron through 

various microbial populations in estuary sediments (Baker et al., in review). This dataset is the 

first of its kind from estuary sediments, and provides a foundation on which future investigations 

into geochemical cycling can be built. Many of the organisms identified are commonly found in 

marine sediments as well. Among the genomes are several from phyla that had not been 

genomically sampled before, including TA06.1, TA06.2, KD3-62, and KSB1. We also described 

the genomes belonging to newly described bacterial phyla, WOR-1 and BRC2. Many of the 

newly sequenced organisms were found to be capable of organic carbon degradation and 

fermentation. For example, one of the new groups, WOR-1, is capable of both acetate and H2 

production. This group and BRC1, BRC2, and KD3-62 have several glycoside hydrolase genes 

for the decomposition of organic carbon. 

In addition to these new phyla, several genomes were obtained that belong to uncultured 

members of bacteria taxa whose ecological roles in sediments were unknown, including 

Planctomycetes, Bacteroides, Spirochetes, Chloroflexi, Gammatiomonadetes, and Proteobacteria. 

We were able to assign putative functions to several of these groups. For example, 

Betaproteobacteria appear to be capable of iron oxidation and, surprisingly, some of the 

Gemmatiomonadetes are capable of sulfate reduction. Genomes of the Planctomycetes, which 

are widespread in marine sediments (Schauer et al. 2009), contained the most glycoside 

hydrolases, suggesting these bacteria are specialized at organic carbon degradation.  

Although sulfur oxidation in sediments has been measured by geochemical approaches 

(Schippers and Jórgensen, 2001, Jórgensen, 1990), very little was known about the microbes 

mediating this process. Recently, novel Gammaproteobacteria in coastal sediments were shown 

to be involved in sulfur oxidation (Lenk et al. 2011).  One of the most abundant organisms in the 

White Oak River shallow samples (2-8 cm) were novel Gammaproteobacteria that are 

metabolically flexible.  They are capable of sulfur oxidation coupled to oxygen reduction or 

anaerobic nitrate and nitrite reduction.  
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Future research at this site, and others in the oceans, will involve this level of genomic 

reconstruction of the archaeal community. We have already assembled several genomes 

belonging to archaea groups that are ubiquitous in sediments throughout the world, including 

Marine Benthic Groups (MBG), Miscellaneous Crenarchaeota Groups (MCG), SAGMEG, 

Ancient Archaeal Group (AAG), etc. Once we have a broad representation of genomes 

belonging to all the different groups common to sediments, we will have a better understanding 

of the physiologies of these uncultured microbes. This will enhance our ability to test a variety of 

hypothesis using additional techniques such as cultivation, enrichments on various carbon 

substrates, and spatial/temporal transcriptomic sampling. This will provide rich insights into 

linking geochemical functions to particular community members (Newman et al. 2012).  
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