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ABSTRACT 

 

This dissertation reports that environmental conditions significantly impact the bulk 

mechanical properties of Staphylococcus epidermidis bacterial biofilms. Bacterial biofilms are 

commonly found as infections of implanted medical devices, which experience large shear forces 

within the bloodstream. The biofilm’s ability to withstand these forces and host immune 

responses makes infections difficult to eliminate. We aim to reduce the disease burden of 

biofilms by understanding the mechanical properties that allow them to survive in the 

bloodstream. In this dissertation, we will discuss various methods of in situ characterization of 

these biofilms that allows them to be studied directly in their natural growth environments. 

Additionally, we present a technique to weaken the biofilm that may allow for easier removal of 

infections.  

Our first challenge is to create a system capable of growing and analyzing the bacterial 

biofilm without the need for transplantation. We accomplish this by designing an in situ parallel 

plate bio-rheometer to mimic the native growth conditions of the biofilms. In this device, we are 

able to replicate the shear stress (0.1 Pa) and temperature (37°C) that Staphylococcus epidermidis 

would encounter in the bloodstream. We are then able to characterize the elastic modulus (G’) 

and determine how biofilms respond to environmental conditions such as osmotic stresses and 

temperature. Through our osmotic stress study, we notice that the elastic modulus has a non-

monotonic as a function of NaCl concentration, exhibiting a maximum elasticity at 

concentrations resembling human blood (135mM NaCl). Our temperature study showed an 
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irreversible decrease in G’ after undergoing a heating cycle up to 60°C. Additionally, we were 

able to determine the biofilm yield stress (~20 Pa) and fit the linear creep behavior with the 

Kelvin-Voigt and Jeffreys viscoelastic models to determine the biofilm relaxation time (~750 s).  

After observing decrease of elastic modulus following a heating cycle, we investigate the 

effect of heat treatment on biofilm on three different scales: the bacterial cells, the extracellular 

polymers, and the bulk biofilm. To accomplish this, we follow our previous in situ rheometric 

biofilm growth protocol with a one-hour exposure at 37°C, 45°C, and 60°C. These temperatures 

represent our control (body temperature), maximal treatment temperature, and high temperature 

observed to cause irreversible decrease of G’, respectively. We find little difference between the 

lower temperatures, but significant decrease in cell viability (from ~90% to ~25%) and yield 

stress (from ~20 Pa to ~4 Pa) following a 60°C treatment. 

Finally, we examine a technique, cavitation rheometry, which we believe can be used as a 

means of in vivo diagnostics for soft biological matter. Cavitation rheometry exploits the 

fundamental mechanics of cavitation in elastic materials in order to rapidly characterize their 

elastic modulus. Through experimentation, simulation, and theoretical analysis, we extend this 

technique to viscoelastic materials of as little as 1 microliter volumes, which is more comparable 

to what is typically encountered in clinical biofilm infections. Collectively, these results open the 

door for diagnostics of biological soft matter and bacterial biofilm infections based on the 

material elasticity. 
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CHAPTER I 

Introduction 

 

Bacterial biofilms are multicellular communities of bacteria that tend to grow in a matrix-

enclosed formation and can adhere to a variety of water-rich surfaces.1, 2 These biofilms have 

been present in nature for over three billion years, typically appearing in environments such as 

hydrothermal vents and river beds.1, 3, 4 The bacteria synthesize an extracellular polymeric 

substance (EPS), which is known to serve a protective function for bacteria in hostile 

environments.1, 2, 5, 6 This EPS is an integral part of the biofilm matrix that acts as a protective 

barrier from external stresses and is comprised of polysaccharides, proteins, and DNA.2, 5, 6 

Biofilms have adapted to grow in a variety of man-made environments, including industrial 

piping systems and medical devices within the human body.2, 7   

A biofilm-forming species of particular interest to human health is Staphylococcus 

epidermidis (S. epidermidis).2, 4-6 S. epidermidis is a biofilm-forming bacterium commonly found 

in the hospital environment. Out of all hospital admissions in the U.S., approximately 0.158 % of 

patients develop a bloodstream infection from S. epidermidis, making it one of the most frequent 

causes of bloodstream infections in the US.8 This number is greatly increased in the intensive 

care unit as well as in patients receiving medical implants, as biofilms have an affinity for 

adhering and growing onto plastic surfaces such as catheters and prosthetic heart valves.2, 8 Up to 

70% of catheter related infections occur due to coagulase-negative staphylococci, of which S. 

epidermidis is the most commonly responsible.9 Although not generally severe, S. epidermidis 
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infections can have mortality rates above 30% associated with immune-compromised patients.8, 

10  

The high mortality of hospital-acquired S. epidermidis infection is associated with 

systemic infection. The breakage and subsequent spreading and proliferation of the biofilms 

throughout the bloodstream can lead to sepsis, and ultimately death.6, 7 In order to reduce the 

high mortality rates associated with S. epidermidis, it is vital to understand how bacterial 

colonies of the disease can deform, rupture and disseminate throughout the bloodstream, and 

thereby potentially lead to sepsis. We therefore aim to understand the deformation and rupture 

process of S. epidermidis bacterial biofilms by studying the mechanical properties of the biofilms 

through rheology.  

 

Factors Influencing the Growth of Staphylococcus epidermidis Bacterial Biofilms 

 S. epidermidis is a Gram-positive bacteria that is also an opportunistic pathogen.9-11 

Although previously considered a harmless contaminant due to its ubiquitous presence on human 

skin, S. epidermidis is now considered one of the most common causes of nosocomial, or 

hospital acquired, infection.9, 10 This may be due to S. epidermidis biofilm’s polymeric matrix 

structure, which gives it the ability to adapt to various harsh environments. 

 Bacterial biofilms are complex, heterogeneous materials that, as they grow in the body, 

are exposed to certain conditions that dictate the structure they will take. First and foremost, the 

bacteria are exposed to shear forces, under which they preferentially form a biofilm.2 The 

strength of the shear forces can dictate the morphology of the biofilm. For example, at low shear 

forces, the biofilms tend to form mounds, while at higher shear forces, they grow in 

configurations of long filamentous strands, or streamers.4, 12 Within the bloodstream, these forces 
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are approximately 0.076-0.76 Pa.13 Also, other factors in the growing environment of biofilm are 

the nutrients delivered through blood such as oxygen, carbohydrates such as sugars, and 

electrolytes such as sodium. Limits of oxygen and sugar directly correspond to reduced growth 

rates while surpluses account for high growth rates.14, 15 However, altering sodium concentration 

can have interesting effects on the biofilm as well. It was found that by increasing the sodium 

chloride concentration present in a tryptic soy broth media, the resulting S. epidermidis displayed 

greater expression of its ica gene.14, 16 This gene is responsible for the production of the 

polysaccharide that holds the individual bacterial cells together in the matrix.10 Hence, higher 

expression of ica directly corresponds to increased polysaccharide production. Within human 

blood, the typical concentration of sodium ions is approximately 135mM.17 

 

  
 
Figure 1.1. Growth process of Staphyloccocus epidermidis bacterial biofilm. This figure is 
replicated from Otto.10 
 

When considering a common infection, the formation of a S. epidermidis biofilm at the 

infection site is believed to follow a simple process, as depicted in Figure 1.1.10 First, individual 

bacterial cells attach to the polymer surface of the medical device. This attachment can be 

attributed to the surface hydrophobicity of the bacterial cells, due to a variety of surface proteins 
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present in S. epidermidis.10 Cells begin to aggregate around this initial attachment area and form 

micro-colonies. Once enough cells have attached, as determined through quorum sensing, they 

begin to excrete a polysaccharide matrix.10, 18 Quorum sensing is a density-dependent gene 

regulation system, termed agr in S. epidermidis, that controls the metabolism within the biofilm 

as well as bacterial virulence.10, 19 The matrix further improves the biofilms’ ability to undergo 

intercellular aggregation as the biofilm matures and grows through internal cell replication.10, 20 

Additionally, the polysaccharide matrix protects the bacteria cells from changes in applied 

stresses and from antibiotics.1, 2, 5, 6, 10 In fact, biofilms are known to withstand short, transient 

changes in stress through reversible deformation as well as constant stresses over long times 

through irreversible deformation. This ability qualifies the biofilm as a viscoelastic material.4  

After the biofilm has matured, eventually the structure will rupture and the bacterial cells 

will detach, releasing them into the bloodstream to potentially spread infection.10 There are two 

mechanisms that govern the detachment process: quorum sensing and physical disruptive 

forces.10, 19 As much is not known about the quorum sensing mechanisms and due to our interest 

in the material science aspect, we will only try to understand how these viscoelastic biofilms 

rupture through applied stresses, although we still recognize that these mechanical property 

changes may be mediated by signaling processing such as quorum sensing. 

 

Biofilms as Viscoelastic Material 

 Biofilms can be considered as viscoelastic materials as they are able to deform both 

reversibly and irreversibly under applied stresses. A viscoelastic material is one that behaves as 

an elastic solid over short time scales and a viscous liquid over long time scales when 

experiencing an applied stress.21 This can be seen in Figure 1.2 below. 
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Figure 1.2. Response of an elastic solid, viscous fluid, and viscoelastic material to an 
applied stress. Constant stress applied from Time = 0 to Time = T, adapted from Shaw et al.1 
 
 
 In this diagram, when a constant stress is applied at time 0 and removed at time T, a solid 

exhibits an instantaneous strain step response to the application of a stress and subsequent return 

to its initial strain state upon removal of the stress. Thus, a solid has complete memory of its 

initial state during the period of deformation. Conversely, the strain experienced by a viscous 

liquid linearly increases with respect to the time of which the stress is applied and, upon removal 

of the stress, the liquid remains at its last known strain, thus losing memory of its state prior to 

application of the stress. Finally, a viscoelastic material is more complex and exhibits a 

combination of these two responses. The memory that a viscoelastic material can display is time 

dependent. At short time periods, provided the viscous element has not dominated the flow of the 

fluid, the substance would have almost complete memory of its initial state. However, after a 

sufficiently long time under stress, the substance will have essentially no memory of its initial 

state and will never be able to return. The simplest representation of such a material is the 

Maxwell model, which is a combination of a spring and dashpot to account for the elastic and 

viscous elements, respectively, of a viscoelastic fluid.21 
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 However, the problem with a single mode Maxwell model being used to represent the 

biofilm is the limited applicable range of the model and the composite nature of the biofilm 

structure. The Maxwell model is only valid within the linear viscoelastic limit.21, 22 Additionally, 

this model predicts perfectly elastic behavior with a frequency independent modulus at high 

frequencies identical to rubber, which is not realistic for many viscoelastic materials.21 Hence, 

just to describe simple linear viscoelastic behavior, a more complex model will have to be 

implemented. A more effective means to accurately predict the behavior of a biofilm would be 

through a multi-mode Maxwell model with a generalization included to account for nonlinear as 

well as linear viscoelasticity. As most constitutive equations are constructed based upon 

molecular ideas about the materials they are describing, creating one to fit biofilms specifically 

may be difficult because not much is known about the polymer chain, colloidal, or molecular 

interactions at this time. However, the proper model should account for aggregation of bacterial 

cells and entanglements within the polymer chains of the polysaccharide matrix. Also, the 

contribution of the hard spherical cells to the biofilm elasticity should be included. A hierarchical 

approach may be the ideal way to characterize the mechanical response of biofilms due to 

individual cell-cell interactions, the damping caused by the polymer chains between the cells, 

and the dependence on each interaction within the complex network in deciding the overall 

viscoelastic response of the biofilm.  

 Unfortunately, with much information missing, current work has only been able to use 

simple models to describe the viscoelastic behavior of these biofilms.23-26 Therefore, the next 

logical step would be to further explore the rheological properties of these biofilms in order to 

fill in knowledge gaps about the material that would allow for better models to be developed, 

such as the modulus of the biofilms, relaxation time of the polymer chains, and forces 
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responsible for biofilm fragmentation. 

  

Rheometry 

 The viscoelasticity of biofilms can be interrogated through rheometry, which measures 

the mechanical properties of fluids as a function of their deformation rate.27 Specifically for S. 

epidermidis biofilm, drag flow rheometry with a parallel plate is used. In this method, a moving 

surface, called the geometry, induces a shear on the fluid between itself and a fixed base.21 This 

can be seen in Figure 1.3 below.  

 

Figure 1.3. Illustration of parallel plate rheometry. This figure is adapted from Bird et al.22 
 

 Parallel plate rheometry is used, despite the non-homogenous flow produced under the 

geometry. Although the cone-and-plate geometry is ideal due to the uniform material strain that 

can be applied to the sample, the parallel plate is necessary as the goal is to grow the biofilm 

uniformly under the gap for analysis, which would be hard to accomplish with the finite gap size 

available with a cone. Also, the biofilm aggregates can potentially get stuck under the truncation 

gap of the cone geometry, causing inaccurate measurements. The flow state found in parallel 

plate rheology can be illustrated by the strain rate imposed on the fluid by the following 

equation: 
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! ! =
!"
ℎ  

where r is the radius from the center of the geometry at which the flow is being examined with a 

maximum radius of R, h is the height of the gap between the geometry and the base, and ω is the 

angular velocity at which the plate is rotating. This equation is vital in determining the angular 

velocity needed to grow biofilm under the desired shear stress. 
 

 In rheometry, the viscoelastic response of the biofilm is a bulk property quantified by the 

storage and loss moduli, G’ and G”, respectively.27 These moduli can be measured within the 

linear viscoelastic regime, where a small amplitude oscillatory shear (γ0) is imposed onto the 

fluid so that its microstructure is not significantly deformed.28 The sinusoidal shear stress from 

this oscillatory measurement can be related to the storage and loss moduli by the following 

equation: 

! = !!!!!"# !" + !"!!!"# !"  

where the storage modulus is the component of stress that is in-phase with the strain, while the 

loss modulus is the stress that is out-of-phase with the strain.21, 27, 29 When the storage modulus is 

higher than the loss modulus, the material is more solid-like than liquid-like and vice versa. 

Constitutive models yield quantitative predictions of these linear viscoelastic moduli as a 

function of frequency. 

 

Current State of the Field 

There have been a variety of studies geared towards characterizing the viscoelastic 

properties of bacterial biofilms. Throughout literature many innovative techniques have been 

employed to accomplish this. However, many of these methods fail to take into account certain 

vital factors necessary to accurately analyze biofilms as they would be found in their natural 
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environments. Some of these shortcomings can be found in growth conditions, while others are 

due to transportation issues and the length scales of the analytical techniques used. Despite the 

shortcomings, these studies do provide us with interesting results that we can build on.   

In order to find the relaxation time of a variety of biofilms, Shaw et al. conducted strain 

creep tests.1 In these experiments, the stress on the biofilm was increased instantaneously to a 

value within the linear regime and held while the strain was recorded. The stress was then 

removed and the recoil of the strain was measured.21 The extent to which the material is able to 

recover after being deformed is measured. A common relaxation time of roughly 18 minutes was 

determined for 44 different biofilms.1 

However, methods used in these tests can affect the biofilm properties measured. 

Biofilms were scraped off of their growing environment in order to be analyzed. As biofilms are 

fragile enough that forces exerted to remove them from their source could cause deformation, 

any rheological tests done after this may be affected by this method of sample preparation. 

Therefore, it is vital to have the biofilms growing directly onto the analytical surfaces in order to 

obtain results that are clearly indicative of the conditions of their growth. Another problem was 

the non-uniform coverage of biofilms on the rheometer plate. As the instrument is highly 

sensitive to sample loading, any deviation from uniformity can greatly affect the results.  

When conducting microrheological experiments with S. epidermidis biofilms, Hohne et 

al. found that the relaxation time was 13.8 seconds.30 As this is multiple orders of magnitude 

shorter than the Shaw results, additional work should be done to determine a more precise 

timescale. Nevertheless, Hohne’s system improved on other designs as the biofilms were allowed 

to adhere and grow directly onto the testing device. This eliminated the need to remove the 

biofilms from an intermediate surface and reduced the risk of deformation in the sample prior to 
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analysis.  

 In Towler et al., an interesting strategy was used to grow a mixed culture of biofilms.23 

Rheometer plates were suspended into a tank and rotated with the use of a drive shaft at a 

known, constant rate. Growth media flowed continuously through the tank to ensure that there 

were proper amounts of nutrients in the system. An additional benefit from this setup was that, 

with such a small gap between the rheometer plates and the base, shear stress can be accurately 

calculated due to the one-dimensional nature of the system. This allows for reproducibility and 

greater control of the growing conditions of the biofilm.  

Additionally, Towler used epifluorescence microscopy to determine the thickness of the 

biofilm in order to set the gap on the rheometer.23 Knowing the thickness is important in order to 

generate sufficient contact between the biofilm and the parallel flat plates during analysis 

without causing additional stresses due to over-compression onto the analytical surface. Also, the 

strain applied is a direct function of the gap height. Therefore, an inaccurate gap height can 

greatly affect the measurements taken. The biofilms used were between 35-50 µm thick.23 As flat 

plate rheology is typically performed with gaps between 250 µm and 1 mm, a larger biofilm 

thickness is desirable to ensure the error due to instrument sensitivity in the gap height is not 

significant.9 Allowing a longer growth period or exposing the sample to higher nutrient 

concentrations would ensure that these samples are at a suitable thickness.  

To determine the biofilm moduli, Jones et al. conducted rheometry on S. epidermidis.24 

Under many growth conditions, such as various salts and antibiotics being added, Jones found 

that the shear modulus of the biofilm was on the order of 0.5-15 kPa, which is consistent to that 

of Hohne (3.2 kPa), Di Stefano (0.5 kPa), and Aggarwal (0.1-6.5kPa).24, 30-32 However, studies of 

mixed biofilms found them to be on the order of 0.3-45 Pa, with an overall hypothesis that the 
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relaxation time approximately constant.1, 23, 33-35 Additionally, Jones et al. noticed that the 

presence of salt generally reduced the moduli. This is not necessarily in agreement with the 

works of the Rachid and Lim, as increases in NaCl concentrations actually showed an increase of 

biofilm production in S. epidermidis and S. aureus.14, 16 Unfortunately, Rachid and Lim do not 

test biofilm mechanical properties and Jones only uses one concentration of NaCl; therefore no 

conclusions can be drawn about the trend. Another innovation that Jones used was individually 

adjusting the gaps for each biofilm based on the normal force response. However, all of the gap 

sizes used were well below the limit that is typically resolvable for mechanical rheometry. 

Additionally, these biofilms were not grown under the presence of shear stresses, which is 

known to greatly affect the material properties of the biofilms produced.2, 4 

Finally, Jones, Towler, and others have used a Burger model to present their creep 

relaxation results.23, 24 This model is an in-series combination of springs and dashpots from the 

Maxwell model (in-series) and the Kelvin model (in parallel). Although this multi-mode, four 

element model fits the relaxation data reasonably well, it is only valid for linear viscoelasticity 

and will be too primitive when large deformations and ruptures in the material are involved. 

Hence, material properties outside of the linear limits will need to be studied in order to 

determine a suitable model. 

From the previous mechanical characterization work on S. epidermidis bacterial biofilms, 

the main aspect that requires further exploration is the effect of the environmental conditions, 

especially those that are physiologically relevant, on the biofilm’s mechanical properties. 

 

Research Objective  

The objective of our research is to explore how the mechanical properties of S. 
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epidermidis biofilms can be measured under physiological conditions and how these properties 

change with various alterations in the biofilms’ environment. Overall, our research objectives 

can be summarized in three sections:  

 

1) Study the linear and non-linear rheological properties of biofilms in a natural state and 

investigate how these properties are affected by varying environmental conditions. We 

will quantify the linear elastic and viscous moduli, the yield stress, and relaxation time of 

the biofilm. Then, we will study how high salt concentration and increased temperatures 

induces stress on the organism, which is hypothesized to affect mechanical properties. 

The aim of this study is to understand standard in situ behavior of biofilms and develop a 

correlation between salt concentration and temperature with the biofilm properties.  

 

2) Study possible strategies to treat biofilm infections while developing a physical and 

chemical understanding of what is happening to the biofilms during this treatment. Here, 

the focus is to further delve into the idea of using heat/temperature to treat biofilm 

infections with the aims of a) determining the effect of heat exposure on the yield stress 

of the biofilms b) investigating the cell morphology and viability after heat treatment and 

c) understanding the polymer interactions and changes occurring within the EPS. These 

results can be used to alter and improve the efficacy of current clinical treatment 

strategies for biofilm infections.   

 

3) Study a method developed to rapidly characterize mechanical properties of large volumes 

of elastic solids and extend it to finite volumes of viscoelastic materials. Here, the focus 
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would be on using cavitation rheology to provide quick and robust measurements of the 

elastic modulus of the biofilms. The aim of this project is to show that this cavitation 

technique can be used to probe limited volumes of biofilm on various complex and 

clinically relevant geometries. By proving the accuracy of this method, various biofilm 

species and strains within a clinical setting can be studied to diagnose specific infections 

in vivo. Also, this method may become equally as vital for use in other applications such 

as high-throughput polymer rheology and tissue diagnostics. 
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CHAPTER II 

In Situ Rheology of Staphylococcus epidermidis Bacterial Biofilms*† 

 

Abstract 

We developed a method to grow Staphylococcus epidermidis bacterial biofilms and 

characterize their rheological properties in situ in a continuously-fed bioreactor incorporated into 

a parallel plate rheometer. The temperature and shear rates of growth modeled bloodstream 

conditions, a common site of S. epidermidis infection. We measured the linear elastic (G’) and 

viscous moduli (G”) of the material using small-amplitude oscillatory rheology and the yield 

stress using non-linear creep rheology. We found that the elastic and viscous moduli of the S. 

epidermidis biofilm were 11 ± 3 Pa and 1.9 ± 0.5 Pa at a frequency of 1 Hz (6.283 rad/s) and that 

the yield stress was approximately 20 Pa. We modeled the linear creep response of the biofilm 

using a Jeffreys model and found that S. epidermidis has a characteristic relaxation time of 

approximately 750 seconds and a linear creep viscosity of 3000 Pa·s. The effects on the linear 

viscoelastic moduli of environmental stressors, such as NaCl concentration and extremes of 

temperature, were also studied. We found a non-monotonic relationship between moduli and 

NaCl concentrations, with the stiffest material properties found at human physiological 

concentrations (135 mM). Temperature dependent rheology showed hysteresis in the moduli 

when heated and cooled between 5°C and 60°C. Through these experiments, we demonstrated

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This work was previously published by L. Pavlovsky et al. in Soft Matter.1  
† Biochemical assays were performed in part by Ashley E. Satorius. 
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that biofilms are rheologically complex materials that can be characterized by a combination of 

low modulus (~10 Pa), long relaxation time (~103 seconds), and a finite yield stress (20 Pa). This 

suggests that biofilms should be viewed as soft viscoelastic solids whose properties are 

determined in part by local environmental conditions. The in situ growth method introduced here 

can be adapted to a wide range of biofilm systems and applied over a broad spectrum of 

rheological and environmental conditions because the technique minimizes the risk of 

irreversible, non-linear deformation of the microbial specimen before analysis. 

 

Introduction  

Bacterial biofilms are matrix-enclosed multicellular communities of microorganisms that 

can colonize environmental and man-made surfaces of ecological, industrial, and medical 

significance.2-5 In most bacterial biofilms, the matrix is comprised primarily of a bacterially 

synthesized extracellular polymeric substance (EPS) that acts as a protective barrier. The EPS 

improves bacterial fitness through a set of mechanisms that are thought to include resistance to 

the diffusion of antimicrobial agents, promotion of intercellular communication to induce more 

resilient patterns of gene expression, and reversible deformation to resist fragmentation due to 

applied stresses.2, 3, 6, 7 The EPS is composed partially of protein and DNA, but predominantly of 

polysaccharides.6, 8 

Biofilms are persistent in a variety of settings where knowledge of their mechanical 

properties would be useful to maintaining clean surfaces as well as preserving the efficiency and 

effectiveness of the fouled components. For example, biofilm species can grow on the

hulls of ships, increasing drag and overall fuel consumption for transportation.9 Similarly, a 

buildup of biofilm in industrial pipelines can cause a loss of hydrodynamic pressure, leading to 
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increased power consumption, decreased plant efficiency, as well as possible cooling failures.10 

Importantly, biofilms also colonize implanted medical devices in concentrated regions, which 

tend to fragment under the shear stresses of blood and disseminate bacteria through the 

bloodstream, causing infection.3 

A biofilm-forming species of particular interest to human health is Staphylococcus 

epidermidis. S. epidermidis is a normal member of skin flora. Commonly, this organism infects 

patients by contaminating the surface of medical devices at the time of surgical implantation or 

subsequently during routine care of such devices.11 Although not generally severe, S. epidermidis 

infections have a mortality rate above 30% in a population of immunocompromised patients.11, 12 

Much more commonly, S. epidermidis biofilm formation prompts surgical removal and 

replacement of the affected implanted device, with the associated costs and risks of that 

procedure.7  

Many implanted devices susceptible to colonization by this organism are positioned in 

the bloodstream, such as intravenous and intraarterial catheters, dialysis catheters, and prosthetic 

heart valves. In this setting, S. epidermidis biofilm extent and structure reflects immunological 

and physical interactions with the host, including hydrodynamic forces imposed by flowing 

blood in particular.13 Accordingly, reducing the disease burden associated with S. epidermidis 

may require better understanding of the mechanical features that allow it to persist in the 

bloodstream.  

Biofilms must be cultivated prior to rheological characterization. As a result, rheological 

measurements typically follow one of two paths: In the first, a biofilm is cultivated in a 

bioreactor, and then physically transferred to the rheometer for characterization.  In the second, 

the rheological evaluation is performed in situ, but perhaps limited or non-standard techniques 
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are used. Examples in literature of the former include samples scraped off of their growth 

environment by Shaw et al., and samples grown on suspended rheometer plates connected to a 

drive shaft and then moved to the analytical device by Towler et al. An example of the latter 

includes observations of biofilms grown on a microfluidic device by Hohne et al.2, 14, 15 Other 

biofilm rheology studies have been reviewed by Wilking et al.16  

Evidence for divergent results from these two approaches can be found in the broad range 

of values for the linear elastic modulus that have been reported in the literature for S. epidermidis 

biofilms, which include those of Di Stefano et al. (0.5 kPa), Jones et al. (0.5-15 kPa), Hohne et 

al. (3.2 kPa), and Aggarwal et al. (0.1-8.0 kPa).14, 17-20 There is little doubt that biofilm 

mechanics are dependent on the conditions under which they develop.21 It appears that the 

challenges posed by evaluating biofilms in situ in current rheometric fixtures have produced 

considerable uncertainty in biofilm mechanical properties reported in the literature. Experimental 

measurements that address the challenge of in situ growth and evaluation can support the 

development of theoretical models for biofilm mechanics that are grounded in polysaccharide 

and polymer rheology. They can furthermore be applied to evaluate hypotheses about the 

interaction of biofilms with the hydrodynamic stresses generated in the circulatory system. 

Here we address the need for an in situ rheological characterization method for cultured 

biofilms. The method uses a chamber for in situ growth of biofilms under the fixture of a 

standard rheometer. After an initial phase of growth, the biofilm is fused to the rheometer fixture, 

thereby allowing rheological characterization of the bacterial biofilms. This method, here applied 

to the particular case of S. epidermidis biofilms, transforms a parallel plate rheometer into a 

continuously-fed bacterial bioreactor, thereby allowing the in situ rheological characterization to 

proceed. By doing so, we were able to sequentially grow biofilms under defined shear forces and 
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then perform small-amplitude oscillatory rheology and non-linear creep rheology, without 

disrupting the test material from its original site of growth. With this method, we report the 

characterization of the viscoelastic properties of S. epidermidis biofilms. We explore the impact 

on mechanical behavior of a well-known metabolic stressor, osmotic stress, which is generated 

by growth under high salt conditions. Additionally, we observe the behavior of biofilm 

mechanical properties under a range of temperatures and find behavior that reveals that complex 

rheology of these multiphase materials.  

 

Methods and Materials 

Staphylococcus epidermidis  

S. epidermidis of strain RP62A, a biofilm-forming clinical isolate was obtained from 

American Type Culture Collection (culture 35984) and grown in tryptic soy broth (TSB; Fluka 

Scientific) media supplemented with 1% d-(+)-glucose (Sigma Life Science, 86 mM NaCl, 

viscosity 0.88 Pa.s at 37oC). For experiments probing the osmotic stress induced by sodium 

chloride, media were enriched to 135 mM NaCl – which is reflective of human blood stream 

salinity, or 770 mM NaCl – the conventional high-stress condition used in the literature.22, 23 As 

the rheometer bioreactor is an open system and therefore prone to contamination, cycloheximide 

(90 µg/mL; Fluka Scientific) and kanamycin (50 µg/mL; Sigma-Aldrich) were used as an 

antifungal and general antibacterial, respectively.24, 25 The impact of both was confirmed in 

preliminary experiments in which S. epidermidis was cultured on tryptic soy agar plates in which 

each compound had been dosed. Neither had any discernible effect on S. epidermidis growth by 

a count of colony-forming units. 
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Rheometry 

A mechanical rheometer (TA Instruments AR-G2) was used to create a controlled-shear 

rate environment during growth and characterization of the biofilm. The geometry used was a 40 

mm stainless steel parallel plate. We conducted growth and testing while the geometry was 

submerged in media at gap heights between 250 µm and 1 mm. The lower limit was chosen 

because it was the minimal gap height for instrument sensitivity, as determined through 

independent testing on aqueous solutions of poly(ethylene oxide). This configuration was made 

possible by the use of an immersion ring attached to the bottom Peltier plate of the rheometer, 

which acted to keep the parallel plate geometry submerged in TSB media  (Figure 2.1). The 

novelty of this approach is that it allows the biofilm to grow under the rheometer fixture as the 

media is slowly convected over the growth area while, simultaneously, the level is controlled. 

To sterilize the apparatus prior to experiments, we filled the immersion bath with ethanol, 

and allowed it to disinfect for approximately 30 minutes. Additionally, we used a custom-made 

plastic cover to reduce the opportunity for airborne contamination of the open reactor. Variable-

flow peristaltic pumps (Fisher Scientific) were used to constantly replenish the media in a 

chemostat configuration at a rate of approximately 0.5 mL/min with a total fill volume of 

approximately 30 mL, giving a media turnover rate of approximately 1 hour-1. After reaching fill 

volume, we inoculated the media within the immersion ring with 2 mL of the initial S. 

epidermidis culture by pipette. 

The experimental protocol is divided into three phases: growth, attachment, and 

rheological characterization. All phases of the experiments were conducted at 37°C unless 

otherwise noted. 
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Figure 2.1. In situ biofilm rheometry setup. (a) Cross-sectional schematic of continuously-fed 
rheometer bacterial bioreactor where (i) is the growth media inlet, (ii) is its outlet, (iii) is the 
rheometer fixture, (iv) is the Peltier plate for temperature control, (v) is the immersion ring, (vi) 
is the cover, and (vii) is the liquid growth media, which is maintained at a fix level by the outlet 
suction. (b) Overhead view of the open rheometer bioreactor. (c) Close-up view of the rheometer 
geometry of the bioreactor with Staphylococcus epidermidis biofilms grown, post-analysis. 
Figure reproduced from Pavlovsky et al.1 

  

Growth 

During the growth phase, the rheometer parallel plate was positioned at a gap of 1.0 mm. 

Within the human circulatory system, which is a common contamination site for such biofilms, 

the shear rate can be in excess of 100 s-1 and the shear stress is in the range of 0.076 – 0.76 Pa.22, 

26 Therefore, we rotate the plate to generate an initial shear stress of 0.1 Pa, which corresponds to 

a shear rate of 113.6 s-1. This shear rate is held fixed during the growth phase. Biochemical 

assessment of the reactor in the opening hours of the growth phase confirmed a transition from 

aerobic to micro-aerobic growth as oxygen and glucose consumption fell to steady-state values 

a 

b c 
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within 7 hours. Altogether, growth was allowed to continue for 17 hours, after which the gap was 

reduced to 300 µm. This reduction in gap allowed the biofilm cultured on the base to come in 

contact with the upper plate. This timescale for growth was chosen due to the constraints of the 

organism and our interests in analysis, and could be varied to suit differences in organism and 

environment. At the conclusion of the growth phase, the biofilm has covered the rheometer 

Peltier plate completely, but has yet to connect to the upper plate.  

 

Attachment 

The attachment phase was a 7-hour period of linear oscillation of the geometry that 

allowed the biofilm to fuse from the rheometer Peltier plate to the upper plate. We accomplished 

this by reducing the parallel plate gap height to 300 µm and oscillating the plate at a strain of 

0.016 for 7 hours. An oscillatory study at various gap heights was conducted to determine the 

maximum allowable gap height. The oscillatory strain of 0.016 was chosen such that it was 

within the linear viscoelastic regime of the biofilm to avoid altering the material before testing. 

We chose the 7-hour period because it provided for sufficient growth of the biofilm, as was 

discussed in the previous section.  

We established a criterion to systematically determine whether a sample had attached to 

both the top and bottom of the parallel plate rheometer fixture, and thus was a good candidate for 

further rheological testing. During attachment, the linear elastic and viscous moduli, G’ and G”, 

respectively, were measured over time. Only biofilms whose moduli reached steady-state by the 

end of the 7-hour period were judged to have attached. The rate for successful attachment was 

approximately 70%. Examples of the time-dependent elastic modulus for attached and 
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unattached biofilms are shown in Figure 2.2; distinguishing between the two cases was 

straightforward because of the large rheological differences between the two states.  

In addition to the attachment criterion, we performed three other studies to evaluate the quality of 

the rheological measurements on the biofilm. First, we evaluated the overall biofilm coverage. 

We removed the geometry fixture after rheological measurements were completed, stained the 

bacterial cells with Gram crystal violet (Becton, Dickinson and Company), and rinsed off the 

excess. In all attached samples, biofilm coverage was equal to or greater than 95% of the 

analytical surface area of the geometry. Second, we stained and imaged biofilm sampled from a 

number of regions of the rheometer with confocal laser scanning microscopy (CLSM) as per the 

methods of Hohne et al. and Dzul et al.14, 27 These images showed that the biofilms displayed a 

uniform microscopic morphology over the testing surface. Representative images of the Gram 

staining and confocal microscopy are reported in Figure 2.3. Third, we evaluated the effect of 

parallel plate diameter on the rheology. In this testing, we applied the same growth and 

attachment procedures for a 60 mm parallel plate geometry. For the case of no added NaCl, the 

measured G’ and G” did not show a significant difference between tests conducted with a 40 mm 

and 60 mm; measurements at all frequencies were within one standard deviation. This result 

demonstrates geometry independence of the material properties of the tested biofilms. A final 

issue was the selection between parallel plate fixtures and the cone and plate geometry for 

measurements. We opted for the former because of the nonhomogeneous nature of the biofilms, 

the need to assess the effect of multiple gap heights and pre- and post- compression testing, and 

because of the performance of temperature dependence rheology. 
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Figure 2.2. Criterion to determine biofilm attachment. (a) Accepted and (b) rejected 
attachment phase. Measured over 7 hours at 300 µm and a strain of 0.016 directly after the initial 
growth period. The moduli in accepted experiment have reached equilibrium while the rejected 
experiment has not. Examples of one experiment of each case are shown. Figure reproduced 
from Pavlovsky et al.1 
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Figure 2.3. Growth of biofilm on the rheometer. (a) Base of rheometer immediately after 
draining media and lifting the parallel plate. (b) 40mm diameter parallel plate stained with Gram 
crystal violet depicting full coverage of biofilm. (c-d) CLSM images of various areas of the 
biofilm after rheological testing, showing similar morphology throughout. Figure reproduced 
from Pavlovsky et al.1 

 

Rheological characterization 

Small-amplitude oscillatory rheology 

  After the attachment phase, we determined the linear viscoelasticity of the biofilm by 

small-amplitude oscillatory deformation over the frequency range of 0.005 – 10 Hz (0.0314 – 

62.83 rad/s) and strain amplitude of 0.13 (approximately 10% of the maximum strain within the 

linear viscoelastic limit). The measurements were conducted at gap heights of 300 and 250 µm, 
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under compression and tension. The variation in gap was used to check for hysteresis in gap 

height.  

Creep rheology 

  We measured the creep compliance, J(t, so), of a number of specimens to extend the 

regime of linear rheological characterization to long times (low frequencies) and to determine the 

non-linear rheological response of the biofilms, including their yield stress. These tests were 

performed immediately after the small-amplitude oscillatory rheology measurements. The 

experiments were conducted for duration of 20 minutes. The measurements were performed at 

the following applied stresses: 0.1 Pa, 0.2 Pa, 0.5 Pa, 1.0 Pa, and then up to 100 Pa in increments 

of 5 Pa. 

Temperature dependent rheology 

  The effect of temperature on the linear viscoelasticity of the biofilms was studied by 

means of small-amplitude oscillatory rheology. Initial tests on attached biofilms were conducted 

at 37°C. Then, the specimen temperature was decreased to 5°C and linear viscoelasticity 

measured. This procedure was repeated at temperatures from 5°C to 60°C in increments of 5°C. 

To evaluate hysteresis, measurements were then performed from 60°C to 10°C, with temperature 

decreased in increments of 5°C. Temperature changes were rapidly induced by the Peltier 

component of the rheometer. 

 

Sensitivity analysis of small-amplitude rheology  

We found that bacterial biofilms displayed greater specimen-to-specimen variability in 

their rheology than synthetic materials, such as polymer melts or colloidal suspensions. To 

address this variability, we performed statistical analyses standard in the biological sciences to 
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evaluate for differences in rheology between different biofilm growth conditions. To examine the 

impact of such experimental conditions on the G’-frequency and G”-frequency relationships, a 

linear mixed effects regression approach was used as implemented in the lme function in the 

statistical package R 2.13.2. Frequency, NaCl concentration, the gap height, and whether 

measurements were taken before or after a compressive strain were considered as fixed effects. 

Individual biofilms were considered as a random effect. For analysis of G’, modeling was 

performed with log transforms of G’ and angular frequency. For G”, similar modeling was 

performed but included also polynomial fitting of the G”-frequency curve. Between-model 

comparisons were performed using anova.lme in the same package. 

 

Results and Discussion 

Small-amplitude oscillatory rheology of S. epidermidis  

Small-amplitude oscillatory rheology was used to determine the frequency dependence of 

the elastic and viscous moduli of S. epidermidis biofilms (Figure 2.4). The elastic modulus, G’, 

was approximately 10 Pa and exhibited a power-law increase at increasing angular frequency 

while the viscous modulus G” was on the order of 1 Pa and deviated from power-law behavior at 

increasing angular frequency. For comparison, soft living tissues have the following elastic 

moduli: swine brain (260-490 Pa), human liver (640 Pa), human breast tumor (4 kPa), rat skeletal 

muscle (100 kPa), and bovine cartilage (950 kPa).28-32 As G’ is greater than G” at all frequencies 

studied, the material is elastic and solid-like. Unfortunately, due to the small frequency range, 

and the lack of applicability of time-temperature superposition (as discussed in a later section), 

this technique does not reveal much about the material rheology other than confirming that 

biofilms are soft, viscoelastic materials. The non-linear rheological characterization by creep will 
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provide a better indication of the mechanical properties of the biofilm. We can, however, 

conclude from the linear rheology that the longest viscoelastic relaxation time of the biofilm 

must be greater than ~102 seconds because no terminal region was observed within the frequency 

range of the measurements. This conclusion is consistent with the findings of Shaw et al. for the 

case of S. aureus, Pseudomonas aeruginosa, and natural pond biofilms.2  

 
Figure 2.4. Elastic and viscous moduli of S. epidermidis biofilms grown in TSB with 86 mM 
NaCl. This data includes 6 replicates, with each comprised of an average modulus of the 
experiments conducted at 300 and 250 µm under both compression and tension. Error bars 
represent the standard error of the mean. Figure reproduced from Pavlovsky et al.1 
 

More specifically, the S. epidermidis elastic and viscous moduli resemble those of soft 

glassy materials at frequencies above the onset of the plateau region and at temperatures below 

the glass transition.33 At that point, the elastic modulus exhibits the same power-law increase as 

that of the biofilm while the viscous modulus exhibits a greater rate of increase after passing a 
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local minimum.  Other soft glassy materials with analogous properties include jammed 

emulsions, colloidal glasses and colloidal gels.34-36  

 However, as compared to previous findings, the moduli from the small-amplitude 

rheology of S. epidermidis are at least an order of magnitude less than previously reported for S. 

epidermidis biofilms.14, 17-20 A possible origin of this large variability could be the sensitivity of 

biofilm elasticity to measurement strategies and environmental conditions. For example, 

measurements conducted under shear deformation instead of tensile deformation can result in 

properties for gels and pastes that vary by a factor of 50.37 Moreover, the in situ growth protocol 

could also play a role: By providing a continuous source of nutrients and fluids, as is present in 

the natural environment of S. epidermidis, mechanical properties potentially avoid a regime of 

extremely high moduli more commonly seen in a dry-growth environment. (Recall that biofilms 

themselves are ~ 80% water, so properties could be very sensitive to degree of hydration38) 

Additionally, in this work, by removing the need to transport the biofilm, we avoid the risk of 

altering or compacting it. Such a transport step could lead to a collapse of the microstructure of 

water channels known to exist in biofilms, and thereby increase the overall concentration of cells 

and polymer per volume of the biofilm and with it, the modulus. 39, 40 

 

Creep compliance of S. epidermidis 

 To study the non-linear rheology of the S. epidermidis biofilms, the creep compliance of 

the biofilm was measured as a function of time (Figure 2.5). A number of interesting features of 

the creep compliance are apparent from this measurement. 

First, at low applied stress, there is a region of linear viscoelastic behavior. The 

compliance displayed a nearly instantaneous step response followed by a plateau region and then 
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a small, progressive increase in compliance at long times. These observations are consistent with 

the behavior of a viscoelastic solid with long-term creep.  

Second, a transition from solid- to liquid-like behavior is evident in the graph at 15 Pa of 

applied stress. At the intermediate stress of 15 Pa, there is an upturn after the instantaneous step 

response, which illustrates a transition from solid-like deformation to viscous-like flow in the 

material.  

 
Figure 2.5. Creep of S. epidermidis grown in TSB with 86mM NaCl. A constant stress was 
applied at t = 0 and the material compliance measured over 20 minutes. Data shown from 1 
experiment for purposes of clarity. Figure reproduced from Pavlovsky et al.1 
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 Third, at applied stresses above 15 Pa, the creep compliance increased linearly as a 

function of time, as is characteristic of a viscous liquid with a viscosity of approximately 8.3 

mPa·s.  

The behavior in Figure 2.5 is consistent with a soft glassy rheological response for the 

biofilm, as has been reported for gels, pastes and nanocomposites.41-43 The solid regime is 

characterized by a finite compliance being achieved at relatively low applied stresses, followed 

by very slow creep indicative of a very high viscosity. Upon greater applied stresses, this critical 

deformation is surpassed and the material flows like a liquid. The transition is consistent with a 

yield stress for the biofilm.42 Although this value varies from sample to sample, Figure 2.5 

illustrates the characteristic trend that was observed. This generic behavior has previously been 

reported in gels of polymers and pastes of particle suspensions.41 The average yield stress of the 

3 samples was approximately 20 Pa. 

 Additionally, we characterized the creep compliance response through modeling. In 

previous work, Towler et al. fit a linear viscoelastic Burgers model for the creep-stress relaxation 

spectrum of a mixed culture of biofilms.15 We fit the S. epidermidis biofilms with three different 

viscoelastic solid models to capture the linear behavior of the material prior to yielding: the 

Burgers model, the Kelvin-Voigt model, and the Jeffreys model.15, 44-46 In order to capture the 

short-time behavior and creep ringing seen in our experiments, an inertial term was required for 

each model. This inertial term represents the inertia of the mobile part of the apparatus, which in 

our case is the rheometer spindle and the parallel plate geometry.45 We found that the additional 

complexity in the Burgers model of a finite jump to compliance was not needed, therefore we 

only modeled the linear creep data with the Kelvin-Voigt and Jeffreys models. These models and 

their respective equations can be seen in Table 2.1.  



 

	
   33	
  

 
        Kelvin-Voigt 

 

! !,!!   =
1
!!

1− !!!" cos !" +
!
! sin !"  

! =
!!!
2!  ! =

!!!
! − !! 

G1 = 5.2 Pa η1 = 0.095 Pa·s 

        Jeffreys 

 

! !,!!   =
!
!!
− ! + !!!" ! cos !" +

!
! ! −

1
!!!

sin !"  

! =
!! + !!!!!/!
2 !! + !!

 ! =
!!!
!

!!
!! + !!

− !! ! =
!! + !!
!!!!

2!"
!!!

− 1  
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Table 2.1. Viscoelastic models and equations. The Kelvin-Voigt and Jeffreys models and their 
corresponding mathematical equations composed of springs (G1), dashpots(η1 and η2), and 
inertial terms (I) that were used to capture the linear creep behavior of S. epidermidis. The values 
of the parameters determined to be a good fit by visual inspection are listed. The models were 
adapted from Baravian and Quemada, and Ewoldt and McKinley.42, 43 Table adapted from 
Pavlovsky et al.1 
* I = Iinstrument + Igeometry

  

**b (cone and plate) = 2πR3 / (3tanθ)   
***b (parallel plate) = πR4/(2h) 
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Both the Kelvin-Voigt and the Jeffreys models incorporate a short-time viscosity (η1), an 

elastic modulus (G1), and an inertial term (I). The difference between these models lies in the 

addition of a linear creep viscosity (η2) in the Jeffreys model. The reported fit parameters (η1, η2, 

and G1) for both models generate a good agreement between the models and the data, as is 

apparent by inspection of Figure 2.6. As seen in that Figure, the lack of a linear creep viscosity 

term in the Kelvin-Voigt model does not allow it to capture the long-time behavior of the 

material; thus the Jeffreys model is preferred for modeling the linear viscoelasticity of the S. 

epidermidis biofilms. 

 
Figure 2.6. Fitting of creep testing results. Linear region of creep of S. epidermidis (stress of 
0.1 – 1 Pa) fit with Kelvin-Voigt and Jeffreys models. The error bars are standard error of the 
mean. Figure reproduced from Pavlovsky et al.1 
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Thus, the Jeffreys model successfully predicts the creep response of the S. epidermidis 

biofilm in all of previously described regions. In optimizing the Jeffreys model, we noticed that 

the η1 term accounts for the magnitude of the creep ringing, the η2 term dictates the long-term 

creep viscosity, and the G1 term is responsible for the overall magnitude of the compliance. The 

viscous terms were found to be approximately 0.095 Pa·s and 3000 Pa·s for η1 and η2, 

respectively. This is particularly interesting when compared to the viscosity of 8.3 mPa·s after 

the biofilm yields. The comparison shows how significantly the material is affected by the 

imposed stress and how viscous the material is at long times. The modulus was found to be 

approximately 4 Pa. The relaxation times of the biofilm are approximately 750 seconds, and 

were calculated as follows: λ1 = (η1 + η2) / G1 and λ2 = η2 / G1. This is consistent with the 

relaxation time spectrum found by Shaw et al. (350 - 2600 seconds) for a variety of naturally 

occurring biofilms.2 Additionally, our relaxation time was much greater than that found by 

Hohne et al. (13.8 seconds) in compression.14 

 

Effects of osmotic stress on the rheological properties 

 Elevated osmotic pressure of growth media is a known bacterial metabolic stressor that 

prompts a number of defensive changes by S. epidermidis, including increased export of EPS-

related polysaccharides.47, 48 To probe the effects of osmotic stress on biofilm mechanical 

properties, the biofilms were grown in media of three different NaCl concentrations: 86 mM, 135 

mM and 770 mM. By conducting small-amplitude oscillatory rheology, we determined that the 

concentration of NaCl affects the biofilm material properties. This is summarized in Figure 2.7. 

The values of the moduli at a frequency of 1 Hz (6.283 rad/s) are displayed in Table 2.2 with the 

respective standard error of the mean. 



 

	
   36	
  

 
 

Figure 2.7. Effect of [NaCl] on the elastic and viscous modulus of S. epidermidis biofilms. 
Error bars were plotted as the standard error of the mean, which includes 6 replicates of the 
physiological condition, 5 replicates of the no-salt-added condition, and 3 replicates of the high 
salt condition. Figure reproduced from Pavlovsky et al.1 
 
 
 

 86 mM 135 mM 770 mM 

G’ 11.1 ± 3.0 Pa 26.3 ± 9.1 Pa 1.2 ± 0.5 Pa 

G” 1.9 ± 0.5 Pa 5.2 ± 1.8 Pa 0.3 ± 0.1 Pa 

 

Table 2.2. Effect of [NaCl] on moduli of S. epidermidis biofilm at 1 Hz. Values extracted from 
points in Figure 2.7. Table reproduced from Pavlovsky et al.1 
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At a frequency of 1Hz, (selected for attention because of its biologically relevance as the 

fundamental frequency of human circulation) the biofilms grown with 86 mM NaCl had storage 

and loss moduli of 11.1 Pa and 1.9 Pa, respectively. However, high salt concentrations resulted 

in biofilms with significantly lower moduli, 1.2 Pa and 0.3 Pa for the elastic and viscous 

modulus, while human physiological salt conditions (corresponding to 135mM in the figure and 

table) exhibited the highest moduli, 26.3 Pa and 5.8 Pa for the elastic and viscous modulus, 

respectively. Hence, there is a non-monotonic relationship between the magnitude of the moduli 

and the concentration of salt in the media. 

We believe this trend can be explained by a combination of effects. The initial increase of 

moduli from the base condition to the human physiological condition may be due to increased 

amounts of EPS, as salt is known to up-regulate genes responsible for EPS production.47, 48 This 

up-regulation would suggest that with higher salt concentrations, EPS concentrations continue to 

increase or level off after reaching a maximum rate of production. However, this effect cannot be 

the only one observed, because the moduli for the highest salt condition are significantly lower 

than the other conditions. Therefore, we suggest that after a certain concentration of salt is 

exceeded, an additional effect dominates.49 One possible effect would be the screening of 

intermolecular Coulombic interactions that leads to destabilization of the biofilm matrix.50 For 

example, sodium cation and chloride anion concentrations can disrupt interactions between the 

negatively charged S. epidermidis cells and the positively charged polymers, potentially causing 

them to dissociate or otherwise alter their configuration, thereby making the biofilm less elastic. 

 In order to ensure that our results were statistically significant and showed definitive 

changes between conditions, we conducted statistical analysis. We used mixed effects linear 

regression to determine if there was a relation between the values of the moduli to the various 
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factors including: frequency, NaCl concentration, gap height, and whether measurements were 

done under tension or compression. The results are summarized in Table 2.3. Consistent with the 

prior discussion, the analysis suggested strong statistical associations between the modulus and 

the NaCl concentration (non-monotonic, with the highest values seen at concentrations 

mimicking human blood). Moreover, the analysis also found a statistically significance 

correlation of G’ and G” with gap height (higher modulus at lower gap height), and deformation 

history (higher modulus after compression) of the sample. The dependence on gap height and 

deformation history may be a signature that the biofilm experiences some irreversible change 

upon compression. Such irreversibility would be consistent with the behavior seen in creep 

testing, such as the yielding transition. This result would indicate that both the degree of pre-

compression of the biofilm, as well as the imposed pre-shear stress should be considered (and 

reported) when determining the mechanical properties of bacterial biofilms. 

 

Elastic Modulus 
Feature Fold Change in G’ P value 

[NaCl] 135 mM vs 86 mM 2.2 (1.4, 3.4) 0.105 

[NaCl] 770 mM vs 86 mM 0.1 (0.1, 0.2) 0.002 

   
Gap 250 µm vs 300 µm 0.9 (0.8, 0.9) 0.036 

Tension vs compression 1.2 (1.1, 1.2) 0.023 

Viscous Modulus 
Feature Fold Change in G” P value 

[NaCl] 135 mM vs 86 mM 2.5 (1.6, 3.8) 0.051 

[NaCl] 770 mM vs 86 mM 0.1 (0.1, 0.2) 0.002 

   
Gap 250 µm vs 300 µm 0.7 (0.7, 0.7) < 10-4 

Tension vs compression 1.0 (1.0, 1.0) 0.102 

 
Table 2.3. Statistical analysis of the effect of [NaCl], gap height, and deformation history on 
the moduli of S. epidermidis biofilm. Table reproduced from Pavlovsky et al.1 
* Estimate (Estimate – SE, Estimate + SE) 
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Temperature dependence of the rheological properties 

To determine the effects of temperature on the linear rheological properties, we 

conducted small-amplitude oscillatory rheology at temperatures ranging from 5°C to 60°C. Here, 

temperature was increased and then decreased while the moduli were measured on a frequency 

range of 0.005-10 Hz. A number of conclusions can be drawn from the temperature dependence 

of the biofilm rheology. 

 First, the results show that time-temperature superposition is not valid for this material. 

The results are not consistent with the validity of time-temperature superposition in this material 

because the modulus does not display a monotonic dependence on temperature. Thus, 

measurements at a certain temperature and frequency cannot be uniquely shifted to match 

measurements at a lower temperature and frequency (data not shown). Consequently, the 

frequency range of the Figure 2.4 viscoelastic moduli cannot be extended by means of this 

method.  

Second, although time-temperature superposition is not valid, the results do display a 

very interesting hysteresis of the viscoelastic moduli with temperature. This effect is clearly 

apparent when plotted in Figure 2.8 for both G’ and G”. Here, the elastic and viscous moduli 

were plotted at the constant frequency of 1 Hz and plotted as function of temperature. The 

biofilm rheology is a strong function of temperature. The moduli reach a local maximum at 

around 45°C and then drop when the temperature is increased further toward 60°C. More 

importantly, the modulus does not return to its previous condition upon cooling. This behavior 

shows that the environment it was previously exposed to affects the biofilm and its mechanical 

properties. We believe that the hysteresis can be due to the denaturing of linking molecules 

within the biofilm matrix at higher temperatures, thereby breaking EPS-cell associations or 
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associations within the EPS itself. Rupture of these associations would act to reduce the modulus 

of the biofilm. An example of linking molecules would be denaturable proteins. These structures 

denature at higher temperatures and cannot return to their original shape after being cooled back 

down. Hence, the modulus would be irreversibly decreased after the biofilm undergoes a heating 

cycle. 

 
 

Figure 2.8. Effect of temperature on the elastic and viscous moduli of S. epidermidis 
biofilms at a constant frequency of 1 Hz. Points were extracted from experiments conducted 
over a frequency range of 0.005-10 Hz. Order of experimentation was 37°C, then 5°C to 60°C 
increasing at increments of 5, followed by decreasing from 60°C to 10°C in increments of 5. 
Data shown from 1 experiment for purposes of clarity. Figure reproduced from Pavlovsky et al.1 
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Conclusion 

We applied a range of rheological methods to interrogate S. epidermidis biofilms 

submerged in media. By adapting the rheometer to house a continuous-flow bioreactor, we 

eliminated the need to transport the biofilm from the growth environment and gained the ability 

to perform in situ rheology. This allowed us to study small-amplitude oscillatory rheology and 

creep rheology on materials that were previously inaccessible due to the fact that they had to be 

deformed or grown in non-physiological conditions. Using this method, we determined that S. 

epidermidis biofilms are soft, viscoelastic solids under linear deformation, but yield and show 

rheology that is similar to soft glassy materials and pastes upon non-linear deformation. The 

linear creep compliance was well modeled by the Jeffreys model because it incorporates a creep 

viscosity at long times. Additionally, we found that the biofilms display a non-monotonic trend 

upon an increase in osmotic stress and undergo hysteresis under changing temperatures. We 

believe that the critical temperature responsible for the onset of hysteresis should be examined 

further, because this hysteresis may reveal features of temperature-dependent physical chemical 

interactions of the biofilm cells and matrix. The method reported in this paper can be simply 

adapted to for other species and environmental conditions, thereby allowing in situ study that 

will lead to a more complete characterization of the rheological properties of these complex 

biomaterials. 
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CHAPTER III 

Effects of Temperature on the Morphological, Polymeric, and Mechanical Properties of 

Staphylococcus epidermidis Bacterial Biofilms‡ 

 

Abstract 

 Changes in temperature were found to affect the morphology, cell viability, and 

mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms 

are commonly associated with hospital-acquired medical device infections. We observed the 

effect of heat treatment on three physical properties of the biofilms: the bacterial cell 

morphology and viability, the polymeric properties of the extracellular biofilm substance (EPS), 

and the rheological properties of the bulk biofilm. After application of a one hour heat treatment 

at 45°C, cell reproduction had ceased and, at 60°C, cell viability was significantly reduced. Size 

exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) 

based on size. Chemical analysis of each fraction showed that the relative concentration of the 

polysaccharide, protein, and eDNA components of the EPS was unchanged by the heat treatment 

at 45°C and 60°C. The results suggest that the EPS molecular constituents are not significantly 

degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was 

found by dynamic light scattering at 60°C. Finally, relative to control biofilms maintained at 

37°C, we observe an order of magnitude reduction in the biofilm yield stress after 60°C 

temperature treatment. No such difference was found for treatment at 45°C.  From these results, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
‡ Quantitative growth culture was performed by Rachael Sturtevant. 
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we conclude that yield stress of bacterial biofilms is temperature sensitive and that this 

sensitivity is correlated with cell viability. The observed significant decrease in yield stress with 

temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with 

applications in areas such as the treatment of biofilm infected medical devices.  

 

Introduction 

 Bacterial biofilms are multicellular communities enclosed within a matrix of extracellular 

polymeric substance (EPS) that can colonize a variety of water-rich environments.1, 2  These 

environments range from natural hot springs and riverbeds to man-made industrial pipelines and 

medical devices. In these and other environments, flowing fluids impose shear stresses on the 

biofilms.1-4  The EPS, composed of polysaccharides, proteins, and DNA, is synthesized by the 

bacterial cells. The EPS has multiple attributes and functions, one of which is to enable the 

biofilm to withstand applied shear forces.5  Another is to slow the diffusion of antimicrobial 

agents, allowing the bacteria to genetically build resistance.6-9  

One such biofilm-forming bacterium of medical significance is Staphylococcus 

epidermidis. S. epidermidis is a normal member of the human skin flora. However, this organism 

is prevalent in medical device infections. S. epidermidis is among the most common hospital 

acquired bloodstream infections in the United States. The species is present in approximately 

70% of all catheter-related infections.10, 11  Current antibiotic treatments to eradicate biofilms are 

not fully effective, because antibiotics are not able to penetrate the EPS to sessile and slow-

metabolizing bacteria deep within it.6, 8, 12-16  Hence, infections often prompt the surgical removal 

and subsequent replacement of affected devices.6, 17, 18  Immune-compromised patients, who have 

a higher risk associated with surgery, exhibit especially high mortality rates (greater than 30%) 
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from S. epidermidis infections.19  In order to avoid replacement of infected medical devices, the 

physical and mechanical properties of the biofilms should therefore be interrogated.  

Previous work has determined mechanical properties of S. epidermidis biofilms. The 

elastic moduli (G’) of these biofilms, found through mechanical rheometry, varies widely, from 1 

Pa to 8 kPa, depending on factors such as growth conditions and analytical methods.20-27  In 

conditions that most resemble the aqueous environment in which S. epidermidis biofilms are 

endemic, Pavlovsky et al. determined that G’ is approximately 10 Pa. In the same study a yield 

stress of approximately 20 Pa was reported for these biofilms.28  Size exclusion chromatography 

characterization of the polysaccharide constituent of the S. epidermidis EPS, called 

polysaccharide intercellular adhesion, found a weight average molar mass of 2.01 × 105 ± 1200 

g/mol. The radius of gyration of the polysaccharide was 29.2 ± 1.2 nm.29  

Structure and mechanical properties of S. epidermidis biofilms depend on environmental 

conditions. Stewart et al. showed, via confocal laser scanning microscopy (CLSM), that S. 

epidermidis biofilms adopt different density phenotypes depending on the concentration of NaCl 

of the growth media.30  NaCl concentration and temperature impact the elastic modulus of these 

biofilms in an analogous way.28  Moreover, a temperature cycle from 5°C to 60°C was found to 

decrease the elastic modulus of these biofilms by a factor of three.28 

This reported effect of temperature on the mechanical properties of biofilms is of 

particular interest because of its therapeutic potential. Specifically, in seeking to avoid surgical 

replacement of implantable devices, altering the elasticity and yield stress of a biofilm might 

allow for its mechanical removal from the infection site without requiring device replacement. 

Because temperature can be varied within the body non-invasively, this variable’s effect on 

biofilms physical properties should be more comprehensively investigated. Such temperature 
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modulation, for example, has proven effective as an adjuvant therapy for cancer.31, 32  Hence, in 

this paper, we investigate the effect of temperature treatment on cell viability and morphology, as 

well as the polymeric and mechanical properties of S. epidermidis bacterial biofilms. We 

hypothesize that, by exposing the biofilm to a temperature treatment, we can alter the biofilm 

morphology, the properties of its EPS, and the mechanical properties of the biofilm. By 

comparing results for these three different classes of physical properties, conclusions as to the 

correlation between cell morphology, EPS polymeric properties, and biofilm mechanical 

properties can be made. 

 To study the morphology and viability of bacterial cells, we use two forms of 

microscopy: scanning electron microscopy and confocal laser scanning microscopy. With 

scanning electron microscopy, we observe the size and surface characteristics of individual 

bacterial cells. Via confocal microscopy, we distinguish viable and dead cells by differential 

staining with fluorescent dyes.33  We determine the weight average molecular weight and the 

hydrodynamic radius of components in the EPS using size exclusion chromatography and 

dynamic light scattering, respectively. Finally, we use parallel plate rheometry to study the 

temperature dependence of the rheological properties of the biofilm in situ. The rheological 

properties studied are the yield stress and the elastic modulus. 

 

Methods and Materials 

Rheometry 

Biofilm growth and heat treatment 

A biofilm-forming clinical isolate of S. epidermidis, strain RP62A, was obtained from the 

American Type Culture Collection (culture 35984). The bacteria were incubated at 37°C on 
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tryptic soy agar (TSA) overnight. An individual colony forming unit was used to inoculate 

approximately 30 mL of tryptic soy broth (TSB) media supplemented with 1% D-(+)-glucose. 

This culture was grown overnight on a shaker table (Innova 2000 Platform Shaker, New 

Brunswick Scientific) at 200 RPM and 37°C. The next day, 2 mL of the culture was used to 

inoculate glucose-supplemented TSB on a mechanical stress-controlled rheometer (AR-G2, TA 

Instruments), with the Peltier plate maintained at 37°C, as per the procedure described by 

Pavlovsky et al.28  Briefly, at these conditions, the shear stress for growth was 0.1 Pa and the 

media flow rate was approximately 0.5 mL/min. 

After the growth phase, the temperature in the Peltier plate was immediately changed to a 

higher temperature to thermally stress the biofilm. The temperatures used were 37°C, 45°C, and 

60°C, which correspond to the control, the maximum temperature safely applicable in the human 

body, and the high temperature case in which an irreversible decrease of biofilm elastic modulus 

was previously observed, respectively.28, 34  The biofilm was exposed to these temperatures for 

an hour, a common duration used in hyperthermic cancer treatment, during which time the 

rheometer fixture was held stationary.31, 32  

Rheological characterization of the yield stress 

Directly following the hour treatment, an oscillatory strain sweep was conducted to 

determine the elastic modulus (G’) and yield stress of the biofilm. The strain sweep was 

performed at a constant oscillatory frequency of 1 Hz (6.283 rad/s) over the range of 0.01 – 100 

dimensionless strain units. This oscillatory frequency was selected because it approximates the 

fundamental frequency for the human circulatory system.35 The elastic component of the stress, 

τElastic, equal to G’ × strain, was plotted. The point at which τElastic is a maximum is a well known 

measure of the yield stress and strain.36 
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Cell morphology and viability 

Confocal laser scanning microscopy 

In order to investigate cell viability after temperature treatment, we used confocal laser 

scanning microscopy (CLSM). Directly following the oscillatory strain sweep on the rheometer, 

biofilm samples were removed from the Peltier plate and deposited on a glass slide. The biofilm 

was then stained using a fluorescent staining kit (LIVE/DEAD BacLight Bacterial Viability Kit, 

Molecular Probes) with the dye ratios of SYTO 9 to propidium iodide to filter-sterilized 

deionized water of 3 µL:3 µL:1ml.24, 33, 37  This mixture has a SYTO 9 to propidium iodide ratio 

of 1:6 by concentration, with approximately 3 µL of each dye pre-mixed required per mL of 

bacteria to be stained. After applying the appropriate amount of the diluted dye mixture, the 

sample was incubated at room temperature for 20 minutes, away from light. After incubation, the 

dye was gently rinsed with filter-sterilized deionized water covered with a cover glass. 

 The sample was imaged (A1RSi Confocal Laser Scanning Microscope, Nikon) using 

two-channel imaging with laser wavelengths of 488 nm and 561 nm, consistent with the 

excitation spectra of the live and dead bacterial cell dyes, respectively. These channels used 

FITC and Texas Red filters to capture the emission spectra for the live and dead cell dyes of 525 

nm and 595 nm, respectively. The image size was 31.7 × 31.7 × 10.0 µm3, where the voxel size 

was 0.062 × 0.062 × 0.062 µm3. Image analysis was performed using custom codes that make 

use of the Crocker and Grier algorithm to determine the ratios of live to dead cells in a given 

sample.37, 38     

Scanning electron microscopy 

Scanning electron microscopy (SEM) was conducted to observe the morphology of the 

biofilms after heat treatment. Following the oscillatory strain sweep on the rheometer, biofilm 
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samples were removed from the Peltier plate, deposited on a glass cover slip, and submerged in 

4% glutaraldehyde (Electron Microscope Systems) in order to fix the cells and prevent further 

growth.12, 39  After a minimum of 1 hour, the sample was the washed and serially dehydrated in 

increasing concentrations of ethanol, from 50% to 100%. The biofilm sample was then mounted 

on an SEM stub, sputter-coated with gold, and imaged (AMRAY 1910 Field Emission Scanning 

Electron Microscope, Amray Inc). 

Quantitative growth culture 

S. epidermidis colony forming units were isolated overnight on TSA plates. An individual 

colony was then used to inoculate 5 mL cultures of glucose-supplemented TSB. The cultures 

were grown for approximately 4 hours at 37°C until they exhibited mid-log growth, as 

determined through UV/Vis spectrophotometry (Ultrospec 2100 Pro, GE Healthcare). Then, the 

cultures were washed by the addition of 15-20 mL of 0.9% by weight NaCl in water. 

Centrifugation (Alegra X-14R Centrifuge, Beckman Coulter) was then conducted at 2000 RPM 

for 5 minutes. The supernatant was discarded and the pellet resuspended in fresh 0.9% NaCl 

solution to a final OD600 nm of 0.1. After washing, 10 µL of culture was added to 1 mL TSB. 

Samples were incubated in a dry bath incubator (Isotemp 125D, Fisher Scientific) at the desired 

temperature (37°C, 45°C, or 60°C) for one hour and then quantitatively cultured.  

The quantitative culture included three 10-fold serial dilutions of 10 µL each prepared 

sample using TSB. The dilutions (1:10, 1:100, and 1:1000) as well as an undiluted culture were 

plated on TSA plates and incubated overnight. Colonies were counted at the dilution that 

produced in the range of 50-100 colonies, when possible. The density of colony forming units 

was calculated using the following formula: (count × dilution factor) / 0.01 mL. 
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Polymer properties 

EPS purification 

After incubating S. epidermidis on TSA overnight, an individual colony was isolated and 

used to inoculate 50 mL of TSB + 1% glucose media in a 50 mL conical tube. This culture was 

grown for approximately 15 hours on a shaker table at 60 RPM and 37°C. The sample was then 

scraped from the tube, taking care to extract all of the biofilm, and placed in 1 L of TSB + 1% 

glucose media for 24 hours of growth at 60 RPM and 37°C. After this step, a series of washing 

and centrifugal concentrating steps (3900 g, 3 × 25 min, 4°C) were followed as described by 

Ganesan et al.29  The remaining pellet was then resuspended in 20 mL deionized water, on which 

sonication was performed (8 × 30 s cycles, 60% amplitude) using a point sonicator (Model 120 

Sonic Dismembrator, Fisher Scientific) to release the polymers from the bacterial cells.29 

Centrifugation (9000 g, 30 min, 12°C) was performed to separate the polymers (supernatant) 

from the cells (pellet), after which the supernatant was further clarified (12000 g, 10 min). The 

clarified polymer was then filter sterilized and concentrated using centrifugal filters with a 

10kDa cut-off membrane (Amicon Ultra-15, Millipore). Temperature treatment was applied 

using a dry bath for one hour. 

Size exclusion chromatography 

 Size exclusion chromatography (SEC) was conducted using multiple columns in series 

(Waters Utlrahydrogel 2000 and 250, Waters Corp.). Approximately 100 µL of sample was 

injected (Rheodyne) into an aqueous mobile phase of 0.1 M NaNO3 and 0.05% (w/w) NaN3, 

flowing at a rate of 0.45 mL/min. The outlet of the column was connected to a multi-angle laser 

light scattering unit (MALLS; DAWN EOS, Wyatt Technology) and a concentration detector 

(RI; Optilab DSP Interferometric Refractometer, Wyatt Technology). The chemical complexity 
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of the sample did not allow for the the angle dependent scattering intensity in be resolved as a 

distribution of molecular weight (Mw) and z-average radius of gyration (Rg).40, 41  However, the 

SEC experiments do yield the mass concentration of the polymers present in each fraction 

eluting from the column. Chemical analysis of each fraction yielded information about any 

change in the relative concentration of its constituents. 

Chemical analysis 

In order to determine if the mass concentration of polysaccharide, protein, or extracellular 

DNA components of each fraction eluting from the SEC was changing due to the heat treatment, 

samples that had been fractionated by SEC were collected and three chemical assays were 

conducted. The Smith-Gilkerson assay was used to determine the presence of N-acetyl-

glucosamine, a major component of the polysaccharide intercellular adhesion of the biofilm.29, 42  

Similarly, a bicinchoninic acid assay (BCA) was used to determine the concentration of protein, 

and a microvolume spectrophotometric assay (Thermo Scientific NanoDrop 2000 

Spectrophotometer) was used to determine the concentrations of nucleic acid as well as 

protein.43-45 

Dynamic light scattering 

 Dynamic light scattering (DLS) was performed on the specimens following heat 

treatment to measure the distribution of hydrodynamic radii (Rh) of species present (ALV CGS-3 

Compact Goniometer System). The samples were diluted, if necessary, to a total volume of 

approximately 0.8 mL. A helium-neon laser source (JDS Uniphase Corporation) with a 

wavelength λ = 633 nm was used, with the DLS detectors at a fixed angle θ = 90°. Experiments 

were conducted in triplicate, recording the time-dependent intensity of the scattered light for 4-

minute intervals after the treated biofilms had returned to room. The fluctuations of the scattering 
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intensity due to particle motion are processed with an ALV multiple–tau digital correlator 

(ALV–7004), giving an intensity autocorrelation function. The correlation of scattered light is 

then fit using a non-linear fitting method (constrained regularization) to obtain the DLS 

relaxation rate which is proportional to the scattering vector q = 4πn0 / λsin(θ/2), where n0 is the 

solvent refractive index) via the particle diffusivity, D.46, 47  Using the Stokes-Einstein relation 

(D = kBT / 6πηRh, where kB is Boltzmann’s constant, T is temperature, and η is the viscosity) the 

probability distribution of effective hydrodynamic radii of the scattering specimen is then 

obtained.48  Here, the refractive index and viscosity is that of water at the temperature of the 

measurement. The output of the measurement is the distribution function of the hydrodynamic 

radius of the specimen. 

 

Results and Discussion 

Morphology and viability of bacterial cells  

Figures 3.1a-c report scanning electron micrographs of the bacterial cells following 

temperature treatment for one hour at 37°C, 45°C, and 60°C, respectively. Differences in the 

degree of cell reproduction and features of the cells’ exterior morphology were apparent. In the 

untreated case, the normally spherical Staphylococci contained a large portion of cells that 

appeared ellipsoidal, as seen in Figure 3.1a. Upon further investigation, we see that there is a 

plane between the two halves of the ellipsoid. This is a dividing plane, indicating that those 

bacteria were in the process of growth and reproduction.49  Figure 3.1a, the 37°C control case, is 

indicative of a healthy biofilm, as expected for the natural growth temperature of this strain. 

As temperature is increased to 45°C, as shown in Figure 3.1b, significantly fewer 

dividing cell pairs are apparent. This decrease indicates that conditions at this temperature are 



 

	
   56	
  

unfavorable for S. epidermidis reproduction. Additionally, the exterior morphology of many cells 

appears dimpled. We believe that these cells are in the process of cell lysis.  

For the 60°C treatment, shown in Figure 3.1c, we observe that there are no longer 

dividing pairs present. Cells that have persisted are coated in a dense layer of material. We 

believe this residue to be remnants of cells that have lysed due to the temperature treatment.  

To corroborate the SEM observations of temperature effects on cell morphology, Figures 

3.1d-f show CLSM imaging of the biofilms at the same three conditions. In this case, live-dead 

staining directly yields information about cell viability. Imaging was accomplished using two 

different fluorescent nucleic acid stains: SYTO 9, which penetrates both intact (i.e., live, green) 

and damaged (i.e., dead, red) cell membranes, and propidium iodide, which can only penetrate 

damaged cell membranes and displaces any present SYTO 9. By comparing Figure 3.1d and 

Figure 3.1e, we cannot distinguish a difference in the proportions of live to dead cells at these 

two lower treatment temperatures. However, at 60°C, the majority of the cells (> 70%) are dead. 

The complete SEM and CLSM results are summarized in Table 3.1. 

Figure 3.1g confirms this trend. Here, quantitative growth culture was performed via 

serial dilutions of treated biofilms and the colony-forming units (CFU) were counted. The 37°C 

and 45°C treatments had almost identical amounts of CFU: 4.31 ± 1.58 (× 105) CFU and 4.28 ± 

1.63 (× 105) CFU, respectively. However, there was greater than a 100-fold decrease in the 

number of colonies present after a 60°C treatment: 1.43 ± 0.43 (× 103) CFU.  



 

	
   57	
  

 

 

Figure 3.1. Morphology and viability of Staphylococcus epidermidis bacterial cells after 
temperature treatment. Scanning electron microscopy micrographs show the external contours 
of individual cells after treatments of a) 37°C, b) 45°C, and c) 60°C. Confocal laser scanning 
microscopy shows the ratio of live (green) to dead (red) cells after treatments of d) 37°C, e) 
45°C, and f) 60°C.  g) Quantitative growth cultures show the density of colony-forming units 
present, per mL of media following the three different temperature treatments. Each sample was 
tested in triplicate and error bars represent the standard error of the mean. 
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Temperature (°C) % Single Cells  
(SEM) 

% Dividing Pairs 
(SEM) 

% Dead Cells 
(CLSM) 

37 42.7 ± 2.3 57.3 ± 2.3 11.0 ± 3.5 

45 97.2 ± 0.3 2.8 ± 0.3 10.4 ± 1.1 

60 100 ± 0.0 0.0 ± 0.0 73.0 ± 3.4 

 
Table 3.1. Reproductive health and viability of bacterial cells found via SEM and CLSM. 
The percent single cells and dividing pairs are from three SEM images per temperature treatment 
and represent the cells with and without a dividing plane, respectively. The percentage of dead 
cells from the total cells present was determined using CLSM from three 3-dimensional volumes 
of biofilm per sample condition. Each result is displayed with the standard error of the mean. 
 
 

Polymeric properties of EPS 

 In Figure 3.2, we report the results of the refractive index (RI) detector of the size 

exclusion chromatography (SEC) of EPS produced by S. epidermidis biofilms. The RI detector 

signal is proportional to the mass of solute eluting from the SEC. Following EPS purification 

(c.f. Methods), SEC was conducted on the heat-treated EPS samples. In SEC, the elution time is 

inversely proportional to the size and molecular weight of the sample; smaller species have 

longer elution times. The signal in this case is proportional to the solute concentration passing 

through the SEC. The concentration profile of material eluting from the SEC does not vary for 

the different temperature treatments. Hence, the mass fraction of different sized species in the 

EPS is nearly independent of temperature. Any changes in mass fraction are smaller than can be 

detected by the RI instruments of the SEC system. 

 Four peaks in the RI signal with elution volume are apparent in Figure 3.2.  These peaks 

reflect the chemical heterogeneity of the EPS. Chemical analysis of these elution fractions, as 
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discussed subsequently, suggest that from the left to right, the first two peaks are N-acetyle-

glucosamine, while the third and fourth peaks contain both nucleic acid and proteins. 

Figure 3.3a-c shows the SEC elution times of the three major chemical species of the 

biofilm. Fractions from the SEC were collected and assayed for presence of N-acetyl-

glucosamine (a), nucleic acid (b), and proteins (c) as a function of elution time from the SEC and 

the particular temperature treatment. The protein results are the average of two different 

methods, so as to address the known deficiency of such assays; the difference between the assays 

was at most approximately 97% from the average.50  From these chemical assays, we learn that 

the mass distribution of polysaccharide, protein, and DNA in each SEC elution fraction does not 

change appreciably because of the temperature treatment. This finding corroborates the results of 

the SEC RI detector. We therefore conclude that temperature does not play a role in the elution 

time of these species to a degree that is resolvable by these mass detection assays. The absence 

of changes in elution time suggest that none of the three molecular species analyzed for – 

polysaccharide, protein, and eDNA – are undergoing significant degradation due to the 

temperature treatment.  If degradation of one of these species had occurred, we would have 

expected that its mass fraction would have shifted to later times, because the degraded species, 

now of lower molar mass, would have eluted from the SEC column more rapidly. 
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Figure 3.2. Size exclusion chromatography of EPS as a function of temperature. The 
concentration detector curves for the SEC samples. Each temperature treatment was tested in 
triplicate, while the 37°C control case consisted of six replicates. The results were normalized for 
each sample. Error bars represent the standard error of the mean. 
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Figure 3.3. The chemical composition of EPS as a function of temperature. The presence of 
a) N-acetyl-glucosamine, b) nucleic acid, and c) protein in the SEC effluent fractions are shown 
as a function of temperature, determined by various chemical assays. N-acetyl-glucosamine 
assays were conducted in triplicate, while the remaining assays were single experiments. The 
protein is shown as an average concentration of two different assay techniques. The points were 
normalized for each sample. Error bars represent the standard error of the mean. 
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Figure 3.4 shows the probability distribution function (PDF) of the hydrodynamic radius 

of species detected in the purified EPS samples, as quantified by DLS. Without heat treatment 

(i.e. the 37°C case), a broad distribution of hydrodynamic radii is detected in the EPS, spanning 

from smaller than 10 nm to greater than 100 nm. A similar trend exists for the 45°C case, with 

the additional effects of a slight narrowing of the distribution and a shift toward large 

hydrodynamic radii. For the 60°C case, the hydrodynamic radii has not narrowed considerably, 

with a pronounced peak at size ~ 100 nm.  

 

 

Figure 3.4. The probability distribution of the hydrodynamic radius of the polymers in EPS 
as a function of temperature, determined via dynamic light scattering. Each temperature 
treatment was tested in triplicate, while the 37°C control case consisted of six replicates. Results 
were normalized for each sample. Error bars represent the standard error of the mean. 
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The 100 nm length scale that is the dominant peak detected by DLS at 60°C is both larger 

than the expected size of the molecular species (e.g. PIA ~ 30 nm in size29) and smaller than the 

size of individual cells (e.g. S. epidermidis radius is ~ 500 nm29, 51). A number of potential 

explanations for the prominent characteristic size of 100 nm in the 60°C sample are available; 

however, we do not have sufficient information available to select among them.  The potential 

explanations are: (i) aggregation; (ii) cellular debris. Aggregation of the smaller components of 

the biofilm may be occurring as the presence of materials with Rh < 30 nm disappear following 

the 60°C treatment. Also, the absence of particles with Rh > 300 nm, which are prevalent in the 

lower temperature cases, may indicate cell lysis, as was shown via SEM in Figure 3.1. In this 

case, the cellular debris would be smaller than the radius of the cell and may account for 

increased presence of particles with Rh ~ 100 nm 

 

Yield stress of S. epidermidis biofilms 

Figure 3.5 reports the measurement used to determine the yield stress of the S. 

epidermidis biofilms as a function of treatment temperature. An oscillatory strain sweep was 

conducted to measure the strain dependent, nonlinear elastic modulus. Figure 3.5a shows the 

elastic component of the stress (τElastic = G’ × strain) plotted as a function of applied strain 

amplitude for the three different temperature conditions. Previous work has found that the stress 

maximum is a measure of the yield stress.36  By this method, the yield stress was found to be 

23.3 ± 4.4 Pa for our control case of 37°C. This value agrees with the yield stress found in earlier 

study by a different method – non-linear biofilm creep compliance testing. The value found in 

that study was 18.3 ± 6.0 Pa, a difference of 27%, thereby validating the method used in the 

present study.28  
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The biofilm treated at 45°C exhibited a yield stress of 19.2 ± 6.2 Pa. This yield stress is 

not statistically different than the control case of T = 37°C (p = 0.60). However, the yield stress 

of the biofilm treated at 60°C was significantly lower than the control case: 3.9 ± 1.0 Pa (p = 

0.006). This same trend is apparent in the measurements of the small strain (linear) G’. The 

linear elastic modulus and yield stress results are summarized in Fig. 3.5b and 3.5c, respectively.  

Thus, following a 60°C temperature treatment, the S. epidermidis biofilm yield occurs at a stress 

that is an order of magnitude smaller than in the untreated, control case. The integrity of the 

biofilm is therefore significantly weakened by temperature treatment. 

Lastly, we consider how the individual biofilm components, as quantified in Figures 3.1 – 

3.4, might be correlated with the observed changes in mechanical properties. First, the 

morphology measurements indicate that cell reproduction stops by 45°C and cell death has 

occurred by 60°C. Second, there is little change in the mass distribution of EPS constituents as a 

consequence of the different temperature treatments, with the exception of the appearance of a 

component of size 100 nm after temperature treatment at 60°C.   

Thus, cellular death and the production of an EPS species of size 100 nm, are correlated 

with the observed decrease in biofilm yield stress at 60°C. Furthermore, we conclude that the 

halt of cell replication at 45°C is not associated with a change in yield stress, because the 45°C 

treated yield stress was not significantly different than the control case. Finally, the yield stress 

of a mature biofilm can change without being accompanied by significant degradation of the 

polysaccharide, protein, and DNA components of the EPS.  
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Figure 3.5. Rheological characterization of Staphylococcus epidermidis biofilms as a 
function of temperature through parallel plate rheometry. a) The shear stress (τElastic = G’ × 
strain) as a function of the strain over the three temperatures of interest. The maximum point of 
each curve was taken as the yield stress. b) The small strain elastic modulus of the biofilms at 
37°C, 45°C, and 60°C. c) The yield stress (τy) of the biofilms at 37°C, 45°C, and 60°C. Each 
measurement was done in triplicate and error bars represent the standard error of the mean.  
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Conclusions 

The effects of antibiotics and antimicrobial agents on bacterial biofilm infections have 

received significant attention in the literature.4, 6, 15, 52  However, little attention has been paid to 

the potential role of physical methods for biofilm treatment. The physical methods that have 

received attention are magnetic fields, ultrasound, and pulsed electrical fields.53-56  However, 

heat has been used successfully to treat certain types of cancer. Therefore, it could potentially 

play a role in fighting medical device infections by bacterial biofilms. To establish the scope for 

such a role, we have investigated the impact of heat treatment on the two main microscopic 

structural components of the biofilm matrix: the bacterial cells and the extracellular polymeric 

substance. In our experiments, we found that the application of heat caused morphological 

changes in the bacterial cells present in the biofilm, including a drastic decrease in cell viability 

when the biofilms were exposed to a treatment of 1 hour at 60°C. Additionally, a new 

component of size ~ 100 nm was formed in the EPS after heat treatment at 60°C. Species of this 

size were largely absent from the control biofilms and from the biofilms treated at 45°C. This ~ 

100 nm species was the only change in the EPS: chemical analysis of fractionated samples 

designed to monitor for chemical degradation of polysaccharide, protein, and eDNA constituents 

of the EPS were unchanged by the temperature treatments at 45°C and 60°C.  

Bulk rheological characterization correlated strongly with the ratio of live to dead cells in 

the bacterial biofilm. A 60°C temperature treatment resulted in a significant decrease of the yield 

stress and small strain elastic modulus of the biofilm. Thus, the effect of temperature on cell 

viability is implicated in the observed weakening of bacterial biofilms upon temperature 

treatment. 
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We have therefore shown that by exposing the biofilm to a local temperature treatment, 

we can weaken the integrity of the biofilm. This reduction of the yield stress supports the idea 

that biofilms are mechanically weakened by short bursts at high temperature, and suggests that 

possibility that a temperature-treated biofilm might be more easily sheared off an infected 

device. If validated by future work, this finding would open the door to the treatment of biofilm 

infections via external means, such as heat-enhanced ultrasonic vibration, and thereby ameliorate 

the need for surgical intervention in treatment of biofilm infections on medical devices. 

 

Acknowledgements 

We thank Mahesh Ganesan for his assistance with size exclusion chromatography and 

dynamic light scattering as well as Lilian Hsiao for her assistance with multi-channel confocal 

imaging. This work was supported by the NSF CDI Program (grant PHYS-0941227), the 

NIGMS (grant GM-069438), and a University of Michigan Rackham Merit Fellowship (to L.P.). 

  

 
 
 
 



 

	
   68	
  

References 

 

1. T. Shaw, M. Winston, C. J. Rupp, I. Klapper and P. Stoodley, Physical Review Letters, 
2004, 93, 4. 

2. R. M. Donlan and J. W. Costerton, Clinical Microbiology Reviews, 2002, 15, 167-193. 

3. B. Rasmussen, Nature, 2000, 405, 676-679. 

4. L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Nature Reviews Microbiology, 2004, 
2, 95-108. 

5. J. N. Wilking, MRS bulletin, 2011, 36, 385-391. 

6. J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999, 284, 1318-1322. 

7. L. Hall-Stoodley and P. Stoodley, Cellular Microbiology, 2009, 11, 1034-1043. 

8. M. S. Cheema, J. E. Rassing and C. Marriott, Journal of Pharmacy and Pharmacology, 
1986, 38, 53P-53P. 

9. K. K. Jefferson, D. A. Goldmann and G. B. Pier, Antimicrobial Agents and 
Chemotherapy, 2005, 49, 2467-2473. 

10. H. M. Chung, M. M. Cartwright, D. M. Bortz, T. L. Jackson and J. G. Younger, Shock, 
2008, 30, 518-526. 

11. J. P. O'Gara and H. Humphreys, Journal of Medical Microbiology, 2001, 50, 582-587. 

12. T. J. Marrie, J. Nelligan and J. W. Costerton, Circulation, 1982, 66, 1339-1341. 

13. J. C. Nickel, I. Ruseska, J. B. Wright and J. W. Costerton, Antimicrobial Agents and 
Chemotherapy, 1985, 27, 619-624. 

14. M. R. W. Brown, D. G. Allison and P. Gilbert, Journal of Antimicrobial Chemotherapy, 
1988, 22, 777-780. 

15. T.-F. C. Mah and G. A. O'Toole, Trends in Microbiology, 2001, 9, 34-39. 

16. C. A. Fux, J. W. Costerton, P. S. Stewart and P. Stoodley, Trends in Microbiology, 2005, 
13, 34-40. 

17. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber and H. M. Lappin-Scott, 
Annual Review of Microbiology, 1995, 49, 711-745. 

18. R. Wolcott and S. Dowd, Plastic and Reconstructive Surgery, 2011, 127, 28S-35S. 



 

	
   69	
  

19. M. Otto, Nature Reviews Microbiology, 2009, 7, 555-567. 

20. A. Di Stefano, E. D'Aurizio, O. Trubiani, R. Grande, E. Di Campli, M. Di Giulio, S. Di 
Bartolomeo, P. Sozio, A. Iannitelli, A. Nostro and L. Cellini, Microbial Biotechnology, 
2009, 2, 634-641. 

21. S. Aggarwal, E. H. Poppele and R. M. Hozalski, Biotechnology and Bioengineering, 
2010, 105, 924-934. 

22. S. Aggarwal and R. M. Hozalski, Langmuir, 2012, 28, 2812-2816. 

23. W. L. Jones, M. P. Sutton, L. McKittrick and P. S. Stewart, Biofouling, 2011, 27, 207-
215. 

24. D. N. Hohne, J. G. Younger and M. J. Solomon, Langmuir, 2009, 25, 7743-7751. 

25. A. M. Vinogradov, M. Winston, C. J. Rupp and P. Stoodley, Biofilms, 2004, 1, 49-56. 

26. I. Klapper, C. J. Rupp, R. Cargo, B. Purvedorj and P. Stoodley, Biotechnology and 
Bioengineering, 2002, 80, 289-296. 

27. C. J. Rupp, C. A. Fux and P. Stoodley, Applied and Environmental Microbiology, 2005, 
71, 2175-2178. 

28. L. Pavlovsky, J. G. Younger and M. J. Solomon, Soft Matter, 2013, 9, 122-131. 

29. M. Ganesan, E. J. Stewart, J. Szafranski, A. E. Satorius, J. G. Younger and M. J. 
Solomon, Biomacromolecules, 2013, 14, 1474-1481. 

30. E. J. Stewart, A. E. Satorius, J. G. Younger and M. J. Solomon, Langmuir, 2013, 29, 
7017-7024. 

31. W. Rao, Z.-S. Deng and J. Liu, Crit Rev Biomed Eng., 2010, 38, 101-116. 

32. R. D. Issels, L. H. Lindner, J. Verweij, P. Wust, P. Reichardt, B.-C. Schem, S. Abdel-
Rahman, S. Daugaard, C. Salat, C.-M. Wendtner, Z. Vujaskovic, R. d. Wessalowski, K.-
W. Jauch, H. R. Dürr, F. Ploner, A. Baur-Melnyk, U. Mansmann, W. Hiddemann, J.-Y. 
Blay and P. Hohenberger, The Lancet Oncology, 2010, 11, 561-570. 

33. P. S. Stewart, S. A. Rani, E. Gjersing, S. L. Codd, Z. Zheng and B. Pitts, Letters in 
Applied Microbiology, 2007, 44, 454-457. 

34. K. L. O'Neill, D. W. Fairbairn, M. J. Smith and B. S. Poe, Apoptosis, 1998, 3, 369-375. 

35. E. A. Zerhouni, D. M. Parish, W. J. Rogers, A. Yang and E. P. Shapiro, Radiology, 1988, 
169, 59-63. 

36. M.-C. Yang, L. E. Scriven and C. W. Macosko, Journal of Rheology (1978-present), 
1986, 30, 1015-1029. 



 

	
   70	
  

37. S. P. Dzul, M. M. Thornton, D. N. Hohne, E. J. Stewart, A. A. Shah, D. M. Bortz, M. J. 
Solomon and J. G. Younger, Applied and Environmental Microbiology, 2011, 77, 1777-
1782. 

38. J. C. Crocker and D. G. Grier, Journal of Colloid and Interface Science, 1996, 179, 298-
310. 

39. T. J. Marrie and J. W. Costerton, Journal of Clinical Microbiology, 1984, 19, 687-693. 

40. G. C. Berry, The Journal of Chemical Physics, 1966, 44, 4550-4564. 

41. C. E. Ioan, T. Aberle and W. Burchard, Macromolecules, 1999, 32, 7444-7453. 

42. R. L. Smith and E. Gilkerson, Analytical Biochemistry, 1979, 98, 478-480. 

43. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. 
Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, Analytical 
Biochemistry, 1985, 150, 76-85. 

44. P. R. Desjardins and D. S. Conklin, in Current Protocols in Molecular Biology, John 
Wiley & Sons, Inc., Editon edn., 2011. 

45. P. Desjardins and D. Conklin, Journal of Visualized Experiments, 2010, e2565. 

46. S. W. Provencher, Computer Physics Communications, 1982, 27, 213-227. 

47. Q. Lu and M. J. Solomon, Physical Review E, 2002, 66, 061504. 

48. A. M. Shetty and M. J. Solomon, Polymer, 2009, 50, 261-270. 

49. A. Touhami, M. H. Jericho and T. J. Beveridge, Journal of Bacteriology, 2004, 186, 
3286-3295. 

50. C. V. Sapan, R. L. Lundblad and N. C. Price, Biotechnology and Applied Biochemistry, 
1999, 29, 99-108. 

51. G. D. Christensen, W. A. Simpson, A. L. Bisno and E. H. Beachey, Infection and 
Immunity, 1982, 37, 318-326. 

52. D. Davies, Nat Rev Drug Discov, 2003, 2, 114-122. 

53. C. G. Kumar and S. K. Anand, International Journal of Food Microbiology, 1998, 42, 9-
27. 

54. Z. Qian, R. Sagers and W. Pitt, Annals of Biomedical Engineering, 1997, 25, 69-76. 

55. K. Okuno, K. Tuchiya, T. Ano and M. Shoda, Journal of Fermentation and 
Bioengineering, 1993, 75, 103-106. 



 

	
   71	
  

56. U. R. Pothakamury, H. Vega, Q. Zhang, G. V. Barbosa-Canovas and B. G. Swanson, 
Journal of Food Protection, 1996, 59, 1167-1171. 

 



 

	
   72	
  

CHAPTER IV 

Elasticity of Microscale Volumes of Viscoelastic Soft Matter by Cavitation Rheometry§ 

 

Abstract 

Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation 

rheometry is demonstrated for specimens as small as 1 microliter by application of elasticity 

theory and experiments on semi-dilute polymer solutions. Cavitation rheometry is the extraction 

of the elastic modulus of a material, E, by measuring the pressure necessary to create a cavity 

within it [J. A. Zimberlin et al., Soft Matter 3, 763-767 (2007)]. This paper extends cavitation 

rheometry in three ways. First, we show that viscoelastic samples can be approximated with the 

neo-Hookean model provided that the time scale of the cavity formation is measured. Second, we 

extend the cavitation rheometry method to accommodate cases in which the sample size is no 

longer large relative to the cavity dimension. Finally, we implement cavitation rheometry to 

show that the new theory accurately measures the elastic modulus of viscoelastic samples with 

volumes ranging from 4 mL to as low as 1 µL.  

 

Introduction 

The linear elastic modulus of a soft material is a characteristic mechanical property 

measurable by a broad range of techniques spanning from mechanical rheometry to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
§ Mahesh Ganesan performed the theoretical derivation presented in this work, which are 
described in detail in Appendix B. He is the second author in this work.   
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microrheometry to atomic force microscopy (AFM).1, 2  Needs for both in vivo characterization 

of linear elasticity (such as in tissue viability), as well as rapid measurement (such as in quality 

control applications), have driven recent methods development.3-5  Mechanical rheometry 

typically requires approximately milliliter sample volumes and, if sample loading and testing 

durations are considered, requires as much as five minutes to test one specimen at one 

deformation frequency. Passive microrheology is a widely used technique to study the 

mechanical properties of small volumes (between ~ 3 and 50 µL) of soft matter. One method of 

microrheology – which uses the multiple scattering technique of diffusing wave spectroscopy – 

requires as much as an hour of measurement time. This method can probe elastic moduli up to ~ 

2000 Pa.1, 6, 7  Microrheology measurements can also be impacted by the stability of the 

dispersed probes and the heterogeneity of the material studied.8, 9  AFM can also be used to 

characterize the elastic modulus of very small volumes (< 1 µL) of material; however, this 

technique requires long durations for measurements and sample preparation time.3, 10  The 

duration of these techniques makes them challenging for high throughput applications, while the 

lack of portability of the equipment and the ideal testing environments necessary complicate the 

scope for in vivo diagnostics with these techniques.  

Cavitation rheometry, as introduced by Zimberlin et al., is a technique to characterize the 

linear elastic modulus of soft matter with Young’s modulus in the range 0.12 kPa < E < 40 

kPa.11, 12  It is an inexpensive, fast, and portable method that estimates the elastic modulus of a 

material by measurement of the critical pressure (Pc) required for internal cavitation. The 

cavitation is typically induced by air pumped through a needle that has been inserted into the 

sample. The measured critical pressure predicts the elastic modulus, E, through the theory of 

cavitation in an incompressible hyperelastic material.11  A hyperelastic material is described by a 
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rate independent constitutive model that relates the stress to a strain energy density function, 

which depends on strain invariants and material properties.13  Using a neo-Hookean strain energy 

function, the inflation pressure (P), cavity expansion ratio (λ), and the elastic modulus (E) are 

related by 14 

!
! =

5− 4!!! − !!!

6 .            (4.1) 

The cavity expansion ratio is the ratio of the radius of the bubble (Rc) formed to the inner 

diameter of the needle (Ri), λ = Rc/Ri.11  The critical pressure, Pc, is the maximum inflation 

pressure, which is achieved as λ approaches infinity. If the surface tension (γ) of the material is 

taken into account, the critical pressure is 11, 15  

!! =
5!
6 +

2!
!!
.            (4.2) 

A linear fit of experimentally measured Pc versus 2/Ri therefore yields the elastic modulus of the 

sample as an intercept.  

Two key limitations of equations (4.1) and (4.2) restrict the scope of this method. The 

first limitation is that because the analysis assumes a neo-Hookean strain energy function, 

cavitation rheometry has been used to characterize elastic solids, such as triblock co-polymers, 

PVA hydrogels, and biological tissues, in which all can effectively be described as neo-Hookean 

elastic solids.11, 12, 16-18  In other instances, the neo-Hookean strain energy function has been 

widely used to model the linear elasticity of soft, cross-linked polymers such as rubber.19  In 

order to extend this method to viscoelastic materials, the assumption of neo-Hookean mechanics 

must be examined relative to their rheological behavior.  

The second key limitation of the analysis is that equations (4.1) and (4.2) are valid only in 

the case of a sample volume whose dimension is large relative to the radius of the expanding 
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cavity. This assumption is termed the “thick shell” or “thick-wall” case.14  In order to extend the 

scope of cavitation rheometry to smaller volumes, the analysis should be generalized to the case 

of cavitation in materials of arbitrary thickness or finite volumes. 

In this paper, we examine these two limitations by theoretical analysis, numerical 

simulation, and experimental validation. We find instances in which the assumptions that 

underlie both limitations can be relaxed, allowing the extension of the cavitation rheometry 

method for characterization of both viscoelastic liquids and small sample volumes. These 

extensions significantly broaden the scope to apply cavitation rheometry to a greater set of 

materials and a broader range of conditions. 

 

Experimental Methods and Hypotheses 

Mechanical rheometery was performed using a stress-controlled rheometer (AR-G2, TA 

Instruments) to determine the linear elastic and viscous moduli of our viscoelastic fluid. We use 

semi-dilute solutions of high molar mass poly(ethylene oxide) (PEO, Polysciences Inc., 1 x 106 

g/mol) at 3.0, 4.0, 6.0 and 8.0 % (w/w) in water as model materials. The solutions were gently 

rolled from one to five days allow the PEO to dissolve. Cone-and-plate rheometry was 

performed using a 6 cm diameter cone with a 2° angle. An oscillatory frequency sweep was 

conducted at constant strain amplitude, γ, of 0.3. In the linear regime, the frequency dependent 

shear elastic (G’(ω)) and viscous (G”(ω)) moduli of these test fluids are plotted in Fig. 4.1a. The 

elastic and viscous moduli span from a characteristic liquid-like regime at low frequency, where 

G’ α ω2 and G” α ω, and approach a plateau value at high frequency. Because these solutions are 

incompressible liquids, the Poisson’s ratio is approximately 0.5 and hence the elastic and shear 
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elastic moduli are related as E’ = 3G’.20  The dynamic viscosity can be extrapolated to a zero 

shear viscosity, which is used to estimate the viscosity of PEO for our simulations (Fig. 4.1b). 

 

	
  

	
  

Figure 4.1. Mechanical rheometry data from oscillatory frequency sweeps of aqueous 
solutions of PEO (1 x 106 g/mol). The concentrations presented are: 3.0% (blue), 4.0% (red), 
6.0% (black), and 8.0% (green) (w/w). The material properties, measured over a span of 
approximately four decades, include: (a) the G’(ω) (filled circles) and G”(ω) (open circles) as 
well as (b) the dynamic viscosity, η’ (filled circles), and elastic portion of the complex viscosity, 
η” (open circles). 
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The PEO mechanical rheology (Fig. 4.1) differs from the behavior of the neo-Hookean 

constitutive equation in two critical ways: First, a neo-Hookean material is purely elastic, while 

the polymer solutions display a finite viscous modulus, G”. Second, in hyperelastic models, the 

stress-strain relationship is independent of deformation path, strain rate and deformation 

history.19  Therefore, the neo-Hookean model describes a frequency independent elastic modulus 

while the polymer solution rheology exhibits frequency dependent elasticity. We hypothesize 

that neither of these differences is critical to the application of cavitation rheometry. In the first 

case, we will show that the viscous contribution to the cavitation event does not affect the data 

analysis of equations (4.1) and (4.2), as demonstrated by measurements on viscous solutions. In 

the second case, we show, via imaging, that cavitation occurs at a high frequency in which G’ > 

G”. In this limit, the estimate of G’ through cavitation rheometry is found to be in good 

agreement with mechanical rheometry.  

The second limitation, the cavitation length scale, must be addressed to extend the 

technique to small, microliter volumes. The analysis used to produce equations (4.1) and (4.2) 

assumes that the cavitation deformation occurs in a region that is small relative to the overall 

volume of the elastic body. Because the cavitation region scales on the needle radius, the sample 

volume must be significantly larger than ~ 0.2 µL, which is the minimum volume of material 

necessary when commercially available needles are used to generate the cavity. We hypothesize 

that, as the sample volume decreases into the microliter range, the thick-wall assumption must be 

relaxed and equations (4.1) and (4.2) must be modified to account for the effect of material 

volume, relative to the size of the needle, on the cavitation pressure. To verify this second 

hypothesis, we formulate the generalized form of equations (4.1) and (4.2) for specimens of 
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arbitrary volume and subsequently validate the formulation by means of numerical simulations 

and cavitation rheometry experiments in samples of small volume. 

 

Large Volume Cavitation Rheometry 

The cavitation pressure of the four test fluids was measured with air as the cavitating 

agent, as delivered by syringe pump at a rate of 0.4 mL/min (Fisher Scientific). In order to 

differentiate the viscoelastic response from that of a purely viscous fluid, experiments were also 

performed on glycerol. Cavitation was induced with five different needle radii ranging from 

0.084 mm to 0.419 mm (Hamilton). The volume of specimen used in all cases was greater than 1 

mL, a limit in which equation (4.2) applies. Each permutation of needle size and solution was 

tested in triplicate. The typical time for the onset of cavitation was approximately 10 s after the 

start of airflow. Once initiated, the time for the formation of the cavity was very rapid, typically 

faster than 80 ms. The cavitation pressure was taken as the maximum pressure observed. 

Equation (4.2) suggests a linear dependence of the cavitation pressure on the ratio 2/Ri. 

This analysis, plotted in Fig. 4.2a, yields the shear elastic modulus from the intercept of the least-

squared fit (i.e., it is 2/5 of the intercept) and the surface tension from the slope. For comparison, 

the cavitation of glycerol (gray) results in a shear elastic modulus of zero, within error. (A zero 

intercept in Fig. 4.2a indicates zero elasticity, as per equation (4.2).) This result demonstrates 

that a fluid with a vanishing elastic modulus, such as the Newtonian liquid glycerol, can be 

identified as such by the technique. The error on the glycerol measurement also provides a lower 

bound on the elasticity of a material that can be resolved by the cavitation rheometry. 

Specifically, the ~ 50 Pa error in the intercept for the glycerol indicates that a shear elastic 
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modulus of this magnitude or lower cannot be resolved by the cavitation rheometry method. 

These measured values and their standard errors of the mean are reported in Table 4.1. 

Table 4.1 furthermore shows that the elastic modulus, as characterized by the cavitation 

rheometry measurement, increases with concentration. To assess the performance of the neo-

Hookean based cavitation rheometry technique, we compare these moduli to those determined 

from mechanical rheometry in the following way.  First, we performed high speed imaging of the 

cavity formation dynamics (Fig. 4.2b). From these images we estimate a characteristic strain rate 

for cavitation; it is at this strain rate that the mechanical and the cavitation rheometry are 

compared. We recorded cavitation events using a 120 frames per second CCD camera (Pulnix 

Progressive Scan TM-6710) attached to a stereoscope (Zeiss Stemi 2000-C) imaging at 

approximately 20x magnification. From the imaging, which can be seen frame-by-frame for a 

4% PEO solution in Fig. 4.2b, we measured the radius of the bubble for each step of the cavity 

growth with the use of image processing software (ImageJ). The local strain, ε!, and the strain 

rate,  ε, were determined at each frame as ε! = R!−R!!! /R!!! and ε = ε!/t!, where tc is the 

time between frames j and j-1. The point of maximum strain rate was designated the critical 

condition for cavitation. The total strain, ε, was was determined from the beginning of the 

experiment to the point of cavitation as ε = R!,!"#$#!%&−R! /R!. The cavitation rate varied from 

74 s-1 (8% PEO) to 270 s-1 (4% PEO) for the cavitation pressures and surface tensions listed in 

Table 4.1. (The cavitation rate for the 3% PEO sample could not be evaluated because of a 

limitation of the camera frame rate.) By means of the Cox-Merz rule, we compare the elastic 

modulus at the cavitation rate to the G’(ω) at the equivalent frequency from the mecanical 

rheology.21 
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Test 
Material 

 

Rheometry 
G’  

(Pa) 

Cavitation 
G’  

(Pa) 

Correction 
Factor, k 

 

Total 
Strain, ε 

 

Characteristic 
Strain Rate, ε  

(s-1)  

Surface Tension 
(N/m) 

3% PEO - 91 ± 33 - - - 0.066 ± 0.006 

4% PEO 140 205 ± 31 0.70 ± 0.11 1.80 270 0.071 ± 0.006 

6% PEO 290 255 ± 20 1.1 ± 0.09 0.65 130 0.077 ± 0.004 

8% PEO 590 305 ± 47 1.0 ± 0. 03 0.21 74 0.088 ± 0.008 

Glycerol - -8 ± 48 - - - 0.069 ± 0.009 

 
Table 4.1. The shear elastic modulus and surface tension determined by cavitation of four 
different concentrations of 1x106 g/mol PEO. This is directly compared to the shear elastic 
modulus determined from mechanical rheometry at a strain rate estimated from high-speed 
imaging. The total strain to cavitation is also reported. The rheometry values for the 3% PEO 
sample were not evaluated due to limitations of the camera frame rate. The correction factor, k, 
is k = G’Rheo / G’Cav. The cavitation properties of the viscous fluid glycerol are presented for 
comparison. The cavitation G’ are from a least-squared error fit of the cavitation pressure vs. 
2/Ri, at five different needle radii.  Measurements were performed in triplicate.  

 

 

 



 

	
   81	
  

 

 

Figure 4.2. Cavitation rheometry of PEO solutions. (a) Critical pressure of 1 x 106 g/mol PEO 
solutions at various concentrations and a viscous fluid, glycerol, as a function of needle size; 3% 
(blue), 4% (red), 6% (black), 8% (green), and glycerol (grey). Five needle sizes were used (Ri of: 
0.084 mm, 0.13 mm, 0.207 mm, 0.302 mm, and 0.419 mm), with 3 replicates of each. The 
vertical error bars are standard error of the mean and the horizontal error bars are the variability 
of the needle size based on the manufacturer. Inset: An individual cavitation experiment with 4% 
PEO and Ri = 0.419 mm, with Pc denoted as the maximum pressure. (b) Frame-by-frame images 
of a cavitation event in 4% PEO with a needle of 0.084 mm inner radius, captured at 120 fps.  
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The shear elastic moduli at aformentioned frequencies are in a region at which G’ ~ G” 

and the elasticity of the system is significant. This correlation validates our first hypothesis and 

therefore, we directly compare the cavitation and mechanical rheometry at these deformation 

rates.  

We establish a correction factor, k = G’Rheo / G’Cav to connect cavitation rheometry and 

mechanical rheometry. We find that the average correction factor (kavg = 1.23 ± 0.17) results in a 

cavitation rheometry deviation from the mechanical rheometry modulus that is not in any case 

more than a factor of two of the true modulus. Although the cavitation and mechanical rheometry 

agree to within a factor of two and both sets of moduli increase with increasing PEO, the 

dependence of each displays a different dependence of PEO concentration. This result is likely 

tied to the sensitivity of the comparison to the strain rate extracted from the imaging; additional 

experimental and theoretical effort to improve this comparison is warranted. Nevertheless, the 

cavitation and mechanical rheometry results differ, on average, by less than a factor of two. 

Although not exact, this accuracy is acceptable for many applications, especially those requiring 

quick, in situ diagnostics or high throughput quality control screening.  For example, the 

difference in elastic modulus between healthy tissue and a cancerous tumor is approximately an 

order of magnitude or greater.4  Differences of this scale are certainly resolvable by cavitation 

rheometry, even if the underlying material is viscoelastic, rather than purely elastic.  

Table 4.1 also provides an auxiliary characterization of the surface tension, the values of 

which can be compared to literature. Table 4.1 indicates that the liquid-air surface tension of the 

solutions increases modestly with PEO concentration. The surface tension of the PEO solutions 

should be bounded by the value for PEO, 0.043 N/m 22, 23, and the value for pure water, 0.072 

N/m.24  The cavitation rheometry measurements are closer to the value for pure water. This 
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proximity can be explained by the rapid and dynamic nature of the test and interface, 

respectively. At short times, the dynamic surface tension of a freshly created interface in a 

polymer solution is close to that of the solvent because the polymers in solution have yet to 

diffuse to the recently created interface.25, 26  There is also potentially the additional effect of 

finite viscosity. Although this effect vanishes in the limit used to characterize the elastic 

modulus, it may affect the surface tension characterization, and thereby be a determinant in of 

the values and errors discussed. 

 

Viscous Effects on Cavitation Rheometry  

Cavitation rheology of a viscous liquid, glycerol, displayed behavior that was 

distinguishable from materials with elasticity, as reported in Fig. 4.2a. Specifically, the 

(apparent, fictious) elastic modulus of the viscous fluid computed from an analysis of critical 

pressures determined at multiple needle radii was indeed found to vanish, within measurement 

error (c.f. Table 4.1). Instead of appearing in the elastic cavitation analysis, the effect of viscosity 

adds to the magnitude of actual pressures measured. To assess the magnitude of this additive 

effect, finite element simulations (COMSOL Multiphysics) of a viscous material of a large 

volume, (Ri+H)/Ri = 20 (where Ri is the needle radius and H is material thickness), were 

conducted under the assumption of unconstrained radial expansion of the outer boundary of the 

material. Figure 4.3 shows the dependence of pressure with respect to the size of the cavity, 

normalized by its initial size, at various viscosities equivalent to the zero-shear viscosities found 

in Fig. 4.1b. Here, we see that higher viscosity results in a higher pressure. Hence, in a 

viscoelastic material, the overall pressure, and hence the critical pressure, is larger than expected 

for a purely elastic material of the same modulus due to a contribution of viscosity. However, 
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this effect becomes small in the limit analyzed by cavitation rheology to yield the elastic 

modulus (Figure 4.3).  

 

Figure 4.3. COMSOL Multiphysics simulations of the pressure necessary to cause growth 
of an inclusion, Rc, normalized by its initial size, Ri, in Newtonian fluids of various 
viscosities. The viscosities are equivalent to the zero-shear viscosities of 3% (blue), 4% (red), 
6% (black), and 8% (green) PEO at a constant (Ri+H)/Ri ratio of 20.  
 

 

Cavitation Rheometry of Small Volumes 

We now address the second, volumetric, limitation of cavitation rheometry. The ‘thick-

shell’ assumption in equation (4.1) and (4.2) takes the deformation due to cavitation to be local 

and contained within an infinitesimal volume surrounding the needle.27  The outer boundary of 

the specimen is sufficiently far from the needle and therefore unperturbed by the cavitation 

deformation. However, with decreasing sample volume, the outer boundary approaches the 

radius of the expanding cavity, which creates a deformation field extending to the outer 

boundary. Hence, the mechanics of the cavity expansion in a neo-Hookean material in this case 

must be explored.  
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Simulation 

To study these mechanics, we performed a finite element simulation of cavitation in a 

finite volume of a neo-Hookean material with internal loading and unconstrained radial 

expansion of the outer boundary of the material.28  We modeled the pressure-stretch relation and 

displacement gradient of individual regions in materials of varying thickness using COMSOL 

Multiphysics. The governing equation is the equilibrium momentum balance 26 

∇ ∙ ! = 0,          (4.3) 

where the Cauchy stress tensor, τ, is 

τ = !!!!"!! .          (4.4) 

F is the deformation gradient, which has diagonal components of λ, λ, and λ-2, and λ = Rc/Ri. J is 

the determinant of F, equal to 1 for incompressible materials. S is the strain energy derivative 10, 

25, given as  

! =
!"!"
!" ,          (4.5) 

where 

!!" =
1
6! !! − 3 +

1
2 ! ! − 1

!.           4.6  

Here, UNH is the neo-Hookean strain energy density function, ε is the strain tensor, I1 is the first 

principal strain invariant, κ is the bulk modulus, and E is the Young’s modulus. If we assume 

incompressibility, equation (4.6) becomes 

!!" =
1
6! !! − 3 .           4.7  

To solve the momentum balance, we defined a hollow spherical geometry with a constant 

inner radius, Ri = 0.3 mm. The volume was varied by changing the radius of material present, H, 

which is the radial distance between Ri and the outer wall of the material, to generate ratios of 
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(Ri+H)/Ri of 1.1, 1.5, 2, 5, 10, 15, and 20. The simulation was conducted over an applied stretch 

(Rc/Ri) range of 0-10. The material was assumed to have E = 615 Pa, equal to the shear modulus 

of cavitation of 4% PEO. Because of the problem’s symmetry, a hemisphere of the cavitation 

phenomenon was simulated. The outer radius was an unconstrained, free boundary. Loading was 

at the inner radius boundary by specification of a pressure.     

The mesh was scaled by adaptive mesh refinement to resolve the deformation near the 

inner radius of the material while still simulating to the specimen outer boundary (a standard fine 

mesh was used for the complete simulation space, with a refined mesh 2 mm radially from the 

origin). An example of the simulations at small and large volumes, with (Ri+H)/Ri ratios of 1.5 

and 20, respectively, is in Fig. 4.4. Here, the heat map indicates stretch (λ) experienced by the 

material during a cavitation event from high (red; λthin= 0.24 mm, λthick = 0.25 mm) to low (blue; 

λthin = 0.16 mm, λthick = 0.00 mm). 

 

Figure 4.4. COMSOL Multiphysics simulations of the growth of an inclusion in a thin (a) 
and thick (b) elastic shell. The (Ri+H)/Ri ratios 1.5 and 20, for the thin and thick shell 
respectively, assume a neo-Hookean material and no forces opposing expansion at the outer 
boundary. The heat map indicaties areas of large (red) and small material displacement (blue) 
within the elastic shell during cavitation. Dimensions are in mm. These simulations were run 
assuming an elastic modulus of 1 Pa to obtain a critical pressure of 5/6 at large volume. 

0.24 

0.16 

0.20 

!"#$

0.25 

0.00 

0.12 

!"#$



 

	
   87	
  

Results of these simulations are scaled on the ratio P/E, normalizing the relation to all 

values of G, as well as (Ri+H)/Ri, which characterizes the radius of the specimen (Ri+H) to the 

initial radius of the cavity (Ri). Results of the simulation are rendered in Fig. 4.4 for (Ri+H)/ Ri 

ratios of 1.5 and 20, which correspond to thin and thick shells, respectively.14  For the thin shell 

(Fig 4.4a) case, the deformation of the most distant material during cavitation is significant, 

whereas in the thick shell case (Fig. 4.4b), deformation at the outer boundary is negligible.  

 

 

Figure 4.5. The dependence of critical pressure, normalized by the elastic modulus, on the 
volume ratio of material as determined through finite element analysis and theoretical 
calculations. The finite elemental analysis (COMSOL Multiphysics; black circles) and 
theoretical calculations (blue line, points omitted) were fit with equation (4.11) to determine that 
the parameters a and b are -0.8558 and -0.6574, respecitvely. Inset: Simulation and theoretical 
calculations of the pressure, P, scaled by the elastic modulus, E, as a function of the radius of the 
cavity, Rc, normalized by the radius of the needle, Ri, during cavity inflation. Each curve 
represents a different volume of material, characterized as a radius, H, scaled by the radius of the 
needle (i.e. [Ri+H]/Ri). The volume ratios shown are 1.5 (blue), 2.0 (red), 5.0 (green), and 20.0 
(black). The maximum P/E value in each curve represents the critical pressure, Pc, at that 
particular material volume. Theory and simulation curves overlay exactly in the inset. 
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The pressure curves found from simulation (Fig. 4.5 Inset) are plotted as the change in 

pressure, normalized by the elastic modulus, as a function of the radius of the cavity (Rc; Rc = Ri 

at t = 0), normalized by the initial cavity radius. We notice that the response is dependent on the 

amount of material initially present (i.e. (Ri+H)/Ri). At small material volumes ((Ri+H)/Ri ≤ 5), 

we find that, after reaching its critical value, the pressure decreases significantly with increasing 

cavity expansion. This effect is well-known in the elacticity of incompressible materials; 

physically it would be manifested as an unbounded expansion at this critical pressure.13  For 

(Ri+H)/Ri > 5, we find that the critical pressure increases and occurs at increasingly larger values 

of Rc/Ri. At large volumes, such as at (Ri+H)/Ri = 20, the pressure reaches an asymptotic limit of 

~ 5E/6 with increase in cavity size, consistent with equation (4.2). The critical pressure for 

cavitation is significantly lower for finite volumes (i.e. Pc  ~ 0.5E and ~ 0.2E at (Ri+H)/Ri equal 

to 5 and 1.5, respectively). This substantial difference indicates that applying equation (4.2), 

valid only in a large volume limit, in this regime of finite volume would yield an incorrect 

characterization of the elastic modulus. 

 

Cavitation theory 

We analyzed the mechanics of cavity deformation in a neo-Hookean material.  The 

material is defined as a hollow spherical system having an internal radius, Ri, and an external 

radius, Ri+H, which is free to expand. Assuming the material to be incompressible, the 

application of a pressure at the inner wall generates equibiaxial extension.27  The principal 

Cauchy stress tensors,  τ!!  and  τ!! = τ!!,  are obtained from the first derivative of the neo-

Hookean strain energy density function with respect to the principal stretches (c.f. Appendix B). 

The equilibrium momentum balance 29, in terms of the deformation variable, λ, is 
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!!!!
!" +

2!!!

λ3 − 1
!!! − !!! = 0,            (4.8) 

We solve equation (4.8) subject to the boundary conditions of internal loading (τrr = -P at λ = 

Rc/Ri) and an unbounded surface (τrr = 0 at λ = λb), where  

!! = !! − 1
!! + !
!!

!!

+ 1
!/!

.            (4.9) 

 We find that the applied pressure, P, and deformation, λ, are related as 

! =
!

6!!
! +

2!
3!!

−
!
3

1
2!! +

2
! ,            (4.10) 

Here, λ is the spatially varying stretch ratio of the cavity and λb is the stretch ratio of the material 

at any point within the elastic shell. Additional details are in Appendix B. By numerically 

solving equation (4.10) and plotting the result along with the simulation results, we find that our 

theoretical equation overlays exactly with the simulation results (Fig. 4.5 Inset).  

We lack an analytical expression for Pc, defined as the first derivative maxima of P with 

respect to λ. Thus, we numerically generate pressure-stretch curves to determine Pc at many 

dimensionless sample thicknesses (results not shown). From these calculated values, we obtain 

the modified cavitation equation by fitting the results (Fig. 4.5) to  

!! =
5!
6

6!
5

!! + !
!!

!

+ 1 ,            (4.11) 

where a and b are fitting parameters, equal to -0.8558 and -0.6547, respectively. Under the limit 

of infinite material volume ((Ri+H)/Ri →∞), equation (4.11) approaches equation (4.2) 

monotonically, thus validating our fit. This equation is valid for all H > 0, as Ri+H > Ri. 
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Small volume experiments 

Equation (4.11) predicts that the cavitation pressure in finite volumes is a function of the 

elastic modulus and the geometric parameter (Ri+H)/Ri. To test this equation in the finite volume 

limit, 4% PEO droplets of varying volume were dispensed on a glass slide. To cause the PEO 

droplet to bead, the glass slide was coated with a hydrophobic layer (Rain-X). The droplet 

dimensions were measured with a stereoscope equipped with a CCD camera (PCO Pixelfly QE). 

The overall volume of our PEO droplets were approximately 1 µL. An example experiment is 

shown in Fig. 4.6a.  

Cavitation was induced in the small volume drops by pressurization of the syringe. The 

measured cavitation pressures, after subtracting the surface tension term as determined by large 

volume cavitation (2γ/Ri), are plotted for a range of drop dimensions in Fig. 4.6b. The trend 

between the small volume experiments (circles) and the large volume experiments (squares) is 

consistent with both the simulation and theory reported earlier. The small volume experiments 

were fit with equation (4.11), which yielded an elastic modulus of 840 Pa. The large volume 

experiments, from Table 1, found E = 615 Pa, a discrepency of 35%. Moreover, the large volume 

data fell within the 95% confidence interval of our small volume fitting, further indicating the 

applicability of equation (4.11). 
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Figure 4.6. Small volume cavitation rheometry of 4% PEO. (a) Example image from a small 
volume cavitation experiment of 4% PEO. Pictured is ~1 µL droplet on a glass slide with a 
hydrophobic coating used to cause the droplet to bead. The needle is inserted in the sample and a 
characteristic dimension, Ri+H, is established. The critical pressure, with the surface tension 
contribution subtracted, is plotted for a range of drop dimensions in (b). Small (circles) and large 
(squares) volume cavitation experiements are plotted and fit (solid line) with the modified 
cavitation equation (4.11). The 95% confidence interval (dotted lines) are shown. The fit yields 
an estimate of the elastic modulus of 840 Pa, as compared to 615 Pa determined from large 
volume experiments alone. The relative error is between the large and small volume 
measurements is 35%. 
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 In conclusion, cavitation rheometry has been succesfully extended to estimate the elastic 

modulus of viscoelastic fluids in the limit of large volumes. This method, pioneered by 

Zimberlin et al. for elastic materials, works well provided that sample dimensions are > 20X Ri. 

When seeking to apply cavitation rheometry using commercially available needles to specimen 

volumes less than about 0.1 ml, additional analysis is required. Using simulations and theoretical 

calculations, the decrease in cavitation pressure in this small specimen case is successfully 

modeled, and this analysis agrees well with experiments. Areas for future attention include 

viscoelastic modeling of the cavitation experiment; this step would allow correspondence 

between this technique and other methods for elongation deformation, and their accompanying 

instabilities, to be better assessed.30, 31  We develop an equation that can be used to predict the 

shear modulus of material for specimen volumes as small as 1 µL. The extension of cavitation 

rheometry to both viscoelastic materials and to small specimen volumes improves the scope for 

this method’s new application in a range of areas, including the diagnostic characterization of the 

mechanical properties of tissues and the high throughput rheological characterization of 

materials in formulation and manufacturing.  
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CHAPTER V 

Conclusions and Future Work 

 

Concluding Remarks 

The objective of this thesis was to provide an understanding of the mechanical properties 

of Staphylococcus epidermidis bacterial biofilms. We focused on developing experimental 

systems that mimic the environments in which the biofilms naturally grow in order to establish a 

more accurate and clinically relevant assessment of the bulk properties of the biofilms. Our hope 

was that our research would ultimately be applied to diagnose and increase the efficacy of 

current clinical treatment strategies of infections. The use of this particular strain was motivated 

by its prevalence in hospital-acquired medical device infections. 

In Chapter II, we introduced an in situ parallel plate bio-rheometer to mimic the native 

growth conditions of the biofilms. In our device, we were able to control environmental 

conditions such as the shear stress and temperature at which the biofilms grow while also 

supplying a constant source of nutrients. By growing the biofilms directly on the rheometer, we 

were able to mechanically characterize our samples without having to damage the biofilm matrix 

in transportation. With the use of our system, we were able to determine the elastic modulus of 

the biofilm and monitor how it changes as a function of NaCl concentration, with blood like 

NaCl levels resulting in the most elastic biofilms. We were also able to study the non-linear 

rheology, characterizing the yield stress, and applying viscoelastic models to determine the 

material’s relaxation time. Then, while studying the effects of temperature on the elastic 
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modulus, we found that a heating cycle up to 60°C irreversibly decreased the elastic modulus. 

This result motivated the work presented in our following chapter. 

In Chapter III, we studied the effect of a temperature treatment on the polymeric, cellular, 

and bulk rheological properties of the biofilm. We used our previous in situ rheometric system to 

grow and then apply an hour-long heat treatment at 37°C, 45°C, and 60°C. These temperatures 

represented body temperature, maximum allowable therapeutic temperature, and the temperature 

at which we began to notice the irreversible decrease in elastic modulus, respectively. With the 

use of scanning electron microscopy, we determined that both higher temperature treatments 

essentially eliminated cell reproduction. However, cell viability was only impacted by a 60°C 

treatment, where approximately 70% of cells were found to be dead based on two-channel 

fluorescent imaging using confocal laser scanning microscopy. Although dynamic light 

scattering and chemical assays did not find any distinguishable differences between the treated 

polymers, it was evident that the 60°C treatment resulted in a drastic decrease in the yield stress 

of the Staphylococcus epidermidis biofilms. These results can be used to enhance current 

treatment strategies to weaken the integrity of the biofilm and subsequently allow infections to 

be more easily sheared off of medical devices.  

Finally, in Chapter IV, we introduced a technique, cavitation rheometry, which we 

believe can be used as a means of in vivo diagnostics. Cavitation rheometry can rapidly 

characterize the elastic modulus of purely elastic solids. In order to interrogate bacterial biofilm 

and other biological soft matter, it was vital to show that this technique can be used on 

viscoelastic material. Hence, through experimentation, simulation, and theoretical analysis, we 

extend this technique to a range of materials and microliter volumes. Experimentally, we 

compared the elastic modulus of various concentrations of 106 g/mol viscoelastic poly(ethylene 
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oxide) determined through standard mechanical rheometry and cavitation rheometry at large 

volumes to develop a correction factor. Then, we proved the ability of cavitation rheology to 

rightfully identify Newtonian fluids as having no elastic modulus. Once showing the feasibility 

of this method on viscoelastic materials, we performed finite element analysis simulations 

(COMSOL Multiphysics) to determine the effect of finite volume on the measurement of the 

cavitation modulus. We further constructed a theoretical derivation to compare with our 

simulation, through which we were able to fit a volume-dependent cavitation equation. Finally, 

we conducted small volume cavitation experiments of poly(ethylene oxide) with our new 

equation to prove its validity.  

Our findings address multiple areas in biofilm research. First, we have introduced a 

technique to obtain mechanical information about the biofilm in its natural environment. Then, 

we investigated a possible treatment method for biofilm infections. Finally, we extended a 

technique that may be able to incorporate our previous knowledge to give rapid diagnosis of 

biofilm infections. Overall, the research presented in this thesis allows the construction of 

biological models that more accurately capture the properties of bacterial biofilm while also 

making a significant impact in the field of combatting bacterial biofilm bloodstream infections. 

 

Future Work 

 In order to progress in our study of biofilm rheology, there are a few areas that must be 

expanded. These areas consist of further developing and improving the cavitation method for use 

on biofilms, characterizing multi-species biofilms as they appear in infections, and beginning to 

explore methods to clear infections from medical devices.  



 

	
   98	
  

In Chapter IV, we used cavitation rheometry to estimate the elastic modulus of a model 

material: poly(ethylene oxide). In order to bring this finite volume rheometry technique closer to 

use in medical diagnostics, it must be applied to biological soft matter. Hence, an obvious future 

goal of this research is to apply cavitation on bacterial biofilms and compare the results to the in 

situ rheometry of Chapter II. Provided the characterization is successful, the speed of this 

technique would also allow for a rapid cataloguing of the elastic modulus of various biofilms for 

the purpose of diagnostics.  

Additionally, with cavitation rheometry, we used a neo-Hookean model to predict the 

elastic modulus of a viscoelastic material. This was done to extend an existing technique to 

formerly untestable volumes. However, from a theoretical standpoint, there is an obvious gap in 

applying this technique to viscoelastic materials. Although we showed that an estimate was 

sufficient, it is pertinent to understand the complete physics of cavitation. Hence, the cavitation 

equation must be constructed based on a viscoelastic liquid model, such as the Lodge elastic 

model.1 The Lodge model can model a fluid behavior as that of an elastic material, provided 

sufficiently fast extension occurs. This is the exact condition we are looking to achieve in 

cavitation, as we are trying to elastically quantify a viscoelastic liquid. By constructing our 

theory around this equation, we can better understand if the strain-rate we are generating is 

sufficient to make the assumption of an elastic material, as well as account for viscous 

dissipation if our strain is not sufficiently fast. Also, we should consider the Considère criterion, 

which determines the maximum strain allowable for homogenous extension in a viscoelastic 

material.1, 2 If the graph of force versus strain (analogous to Figure 4.5) has a maximum, as ours 

exhibits, the uniform extension will become unstable and failure, or necking occurs.2 Hence, as 

cavitation rheometry induces an extensional flow, failure of the material may be better predicted 
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by accounting for the Considère criterion in our theory. This way, it would be easier to directly 

compare material failure from cavitation to other, non-extensional methods.   

Secondly, biofilms should be characterized as they appear in clinical infections in order 

to develop a meaningful understanding of their in vivo mechanics. Although Staphylococcus 

epidermidis is one of the most common causes of bloodstream infections in the US, biofilm 

infections seldom consist of a singular bacterial species.3, 4 Therefore, to understand the 

mechanics of biofilms seen in the clinical setting, it is important to study multi-species 

infections. Multiple species of bacteria are known to coaggregate and grow synergistically to 

improve biofilm formation and antibiotics resistance.5-7 As these species have different 

morphologies (cell size/geometry) and are capable of producing different polymers, the rheology 

of the overall biofilm may be vary significantly from that of the individual species. Hence, a 

study of the elastic modulus, yield stress, and overall structure of bacteria that are known to 

coagggregate and present themselves simultaneously in clinical infections should be conducted. 

By comparing the structure of mono-culture and multi-species biofilms via confocal microscopy 

and relating it to their respective rheology, we would enable biological modeling to more 

accurately predict behaviors of clinical infections.  

Finally, as would be the ultimate goal of this research, we must focus on improving 

possible treatment methods. In Chapter III, we discussed using heat treatment to weaken the 

structural integrity of the biofilm. To add significance to this result, steps must be made to show 

how externally applied stresses can easily and safely cause the biofilm to yield from medical 

devices, such as catheters. This can be accomplished by placing an infected catheter in a flow 

channel experiencing central venous-like flowrates. Through application of ultrasonic stresses, 
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the cells and biofilm fragments being sheared from the catheter can be monitored through a flow 

camera to determine the efficacy of the treatment in clearing an infection from a medical device.  

Mechanical rheometry and imaging techniques haven previously used to analyze the 

structure and property of biofilms. In this thesis, we have built upon this fundamental work to 

bring new methods and techniques capable of interrogating the biofilms in situ. These techniques 

can be further extended to provide an understanding of clinical biofilm infections, develop more 

realistic predictive biological models, and to possibly alter current procedures and improve 

clinical treatment of biofilm infections. 
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APPENDIX A 

Validation of Procedures for In Situ Biofilm Rheology** 

 

Non-standard Rheometry Procedures 

The procedures applied to measure the in situ elastic and viscous moduli of 

Staphylococcus epidermidis bacterial biofilms in Chapter II had to be validated prior to testing 

incorporating biofilm as they are non-standard experiments.  

First of all, rheometry of a material is typically performed in a dry state, with only the 

material of interest present. However, as the biofilms are grown and their moduli evaluated in a 

submerged state, rheology of a model material must confirm that results are not altered due to the 

presence of water. Our model material was 4% w/w poly(ethylene oxide) (g/mol PEO, 

Polysciences Inc., 1 x 106 g/mol) in water. In order to determine the effect of submerging the 

geometry and material in water, analogous to what would be seen with tryptic soy broth in the 

biofilm, an oscillatory frequency sweep was conducted over three varying operating conditions. 

The first case, plotted in Fig A.1. as Dry_Dry, refers to instrument inertial mapping being 

conducted in a dry environment, followed by sample loading and testing, also in a dry 

environment. This is the standard procedure when conducting rheometric measurements; hence, 

this is our control case. The second case (Dry_Wet) refers to a dry inertial mapping followed by 

a submerged measurement and similarly, the last case (Wet_Wet) is a submerged inertial 

mapping and measurement. The elastic and viscous moduli are plotted for each case in Fig A.1.

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
** Biochemical assays were performed, in part, by Ashley E. Satorius. 
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Figure A.1. Submerged rheology of poly(ethylene oxide). The (a) elastic (G’) and (b) viscous 
(G”) moduli are plotted from oscillatory frequency sweeps, with instrument mapping and 
measurement done in standard and submerged conditions. ‘Dry’ refers to standard rheometry 
procedures and ‘Wet’ refers to submerged rheology. These are listed in the order of inertial 
mapping condition followed by measurement condition.  
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Here, we can see that the measurements of both the elastic and viscous moduli are the 

same in each case. This allows us to be confident that the moduli determined from submerged 

rheology of the biofilm are in fact the true moduli. 

 Secondly, due to the range of thickness of biofilm reported in literature, it was necessary 

to establish a lower sensitivity limit of the rheometer gap height. A compression study of our 

model poly(ethylene oxide) was conducted to determine the resolution limit. In this study, we 

used standard rheometric procedures to measure the elastic and viscous moduli of our model 

material using a 40 mm stainless steel parallel plate geometry. We began with a gap height of 

500 µm, at which we conducted an oscillatory frequency sweep from 100 – 0.005 s-1. Then, the 

gap was reduced 50 µm and the test was repeated until we reached a gap height of 150 µm. Our 

results can be seen in Fig A.2. 

As the elastic and viscous moduli are material properties, they should remain constant 

irrelevant of the gap height. From our results, we notice that the elastic and viscous moduli 

measured between 250 and 500 µm fairly consistent. However, at gap heights smaller than 250 

µm, both the elastic and viscous moduli begin to increase. Due to the consistency of the 

measurements over the larger gap heights, we can conclude that this increase in moduli is an 

artifact of the instrument sensitivity, and therefore we are able to determine a lower gap height 

resolution limit of 250 µm to be incorporated in our biofilm testing. 
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Figure A.2. Gap height resolution testing with poly(ethylene oxide). The (a) elastic (G’) and 
(b) viscous (G”) moduli are plotted from oscillatory frequency sweeps conducted at various gap 
heights.  
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Refining Rheometry Methods for Biofilm 

After confirming that the deviations from standard operating procedures would not alter 

the results, we can begin validation of our methods with the use of biofilm. First, it is important 

to note that the system we are working with is the analytical surface of a rheometer, which is 

open to air. This allows the possibility of contamination in our media from the environment. In 

order to avoid any possible contaminants, precautions in the form of antibiotics must be used. 

Specifically, we use cycloheximade and kanamycin, an antifungal and general antibacterial, 

respectively.  However, we must ensure that neither antibiotic has an adverse effect on the 

growth of S. epidermidis. Hence, we ran our antibiotic-free control and compared the effects of 

individual antibiotic doses on the moduli. The error plotted is the standard error of the mean and, 

from Figure A.3, we can see that the samples with the antibiotic have moduli within the 

acceptable range. From this, we can conclude that the use of antibiotic does not adversely affect 

our system. 
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Figure A.3. Effect of antibiotics on the rheology of biofilms. The elastic modulus and viscous 
modulus of biofilms grown in standard tryptic soy broth (86 mM) without antibiotics are 
compared with biofilms grown in the standard media with 10% v/v concentration of 
cycloheximide and kanamycin. The 86 mM results come from triplicate and are shown with their 
standard error of the mean.  

 

Next, we must ensure that the biofilm has enough time to fuse to the place during the 

attachment phase. In order to do this, we must determine how long it takes the biofilm to reach 

its maximum growth rate. The rate of growth of the bacterial cells in the biofilm is related to 

their metabolism. In order to grow, S. epidermidis needs a supply of nutrients, in our case 

glucose, and oxygen. Hence, we measure the concentration of each present in the media over the 

course of 7 hours. By conducting an assay for glucose concentration and taking hourly readings 

from a dissolved oxygen meter, we are able to track these concentrations. Also, we monitor the 

concentration of lactate present. When the bacteria are operating in an oxygen-deficient 

environment, they begin to produce lactate. Hence, the presence of lactate indicates that 

maximum growth rate has been surpassed. From this, we conclude that 7 hours is a sufficient 
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timeframe to conduct our attachment phase between the biofilm grown on the Peltier plate base 

and the geometry. 

 
Figure A.4. Nutrient concentration in the media during biofilm growth. The concentrations 
of the nutrients glucose and dissolved oxygen as well as the concentration of lactic acid secreted 
during biofilm growth on the rheometer. Lactate and glucose concentrations were obtained by 
Ashley E. Satorius.  
 

 Thirdly, as biofilm is a heterogeneous material and rheology is heavily loading-

dependent, we must make sure that variations throughout the biofilm do not significantly affect 

the bulk modulus measurements. One way to accomplish this is by varying the size of the 

geometry used. After developing our testing methods, we conducted oscillatory frequency 

sweeps using our standard 40 mm stainless steel flat plate geometry as well as a larger 60 mm 

stainless steel flat plate. Specifically, this was done to ensure that the scale of the heterogeneity 

of the biofilm does not significantly affect the elastic modulus measured with the smaller 

geometry. The larger geometry, averaging over a larger area, should be able to reduce the affects 

of any large variations. Our results are seen in Fig. A.5. 
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Figure A.5. Geometry dependence of biofilm moduli. Oscillatory frequency sweeps were 
conducted on S. epidermidis using two different geometries: a 40 mm and 60 mm diameter 
stainless steel flat plate. The 40 mm (green) data and standard deviation are the result of 6 
replicates and are the same data set seen in Figure 2.4. The data from the 60 mm plate was only 
taken once.  
 

From our results, we see that the data set generated with 60 mm flat plate geometry falls 

well within the standard deviation from the 40 mm flat plate results. This shows that the 

heterogeneity of the sample is not significantly felt at the length scales on which our bulk 

rheometry is conducted.  

Finally, to further illustrate the instrument sensitivity investigated with the PEO model 

material and to determine the thickness of our biofilm sample, compression testing was 

conducted the in the same way it was for PEO. Our results can be seen in Fig. A.6. 
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Figure A.6. Gap height resolution and biofilm thickness testing. The elastic (G’) modulus is 
plotted from oscillatory frequency sweeps conducted at various gap heights, starting at 300 µm 
and decreasing to 150 µm. These results are shown from one individual experiment for the 
purpose of clarity.  

 

Here, we see that the moduli measured at a gap height of 300 µm and 250 µm overlay 

perfectly. This gives us confidence that what we are measuring is the modulus of the biofilm and 

is not being influenced by the water content. At a gap height of 225 µm, we already notice an 

increase in the modulus. This can possibly be coming from two factors: 1) the water may be 

being squeezed out, concentrating the solids in the biofilm or 2) this is already approximately the 

lower resolution limit previously determined from PEO testing. Either way, the measurements 

below a gap height of 250 µm are thrown out and the biofilm thickness is determined to be 

approximately 300 µm. 
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Appendix B 

Theory of Cavitation in Neo-Hookean Solids†† 

 

The relationship between the inflation pressure P and the deformation field λ for the 

symmetric inflation of a spherical cavity in an incompressible neo-Hookean material of finite 

volume and elastic modulus E is derived. The material is treated in spherical coordinates of 

initially undeformed radius, R where Ri ≤ R ≤ Ri+H. Upon inflation due to P at the inner wall, 

the material expands symmetrically to a material of deformed radius r where 1 

!! = 1+
!!! − !!!

!! !! = !!!!.          (!. 1) 

Equation (B6) is obtained using the incompressibility and spherical symmetry criterion. The neo-

Hookean strain energy function is given by equation (4.7) where, I! = λ!!!
!!!  and λ1 = λ-2, λ2 = 

λ3 = λ, which are the principal stretch ratios under symmetric expansion.2  From UNH, the 

principal components of the Cauchy stress, from equation (4.4), are 1, 3 

!!! =
!
4 !

!! − !  ;   !!! = !!! =
!
3 !

! − !,          (!. 2) 

where, p is the hydrostatic pressure required to maintain equilibrium in the case of 

incompressibility. In the absence of any body forces, the relation between inflation pressure P 

and λ is obtained by solving the equilibrium condition, equation (4.3), 

!!!!
!" +

2
! !!! − !!! = 0,          (!. 3) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
†† Mahesh Ganesan performed the theoretical derivations presented in this work. 
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which reduces to 4 

!!!!
!" +

2!!!

!! − 1 !!! − !!! = 0,          (!. 4) 

after a change of variables using equation (B.1). Equation (B.4) is solved subject to the boundary 

conditions τrr = -P at λ= Rc/Ri and τrr = 0 at λ = λb, where 

!! = !! − 1
!! + !
!!

!!

+ 1
!
!
.          (!. 5) 

The final equation is obtained as  

! =   
!
6!!!

+
2!
3!!

−
!
3

1
2!! +

2
! ,          (!. 6) 

By numerically solving for critical pressure, taken as the first derivative maxima of P with 

respect to λ, fitting those results, and adding the surface tension term, we find the cavitation 

equation modified for finite specimen size 

!! =
5!
6

6!
5

!! + !
!!

!

+ 1 +
2!
!!
,           !. 7  

where a = -0.8558 and b = -0.6574.  
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