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CHAPTER 1  
 

GENERAL INTRODUCTION 
 
1.1 Wnt/β-catenin signaling plays important roles in dorsal axis development in 

vertebrates 

1.1.1 Overview of the Wnt signaling pathway 

The Wnt/β-catenin signaling pathway is a cell-cell signaling pathway highly conserved 

among all metazoans (Archbold et al., 2012).  It plays essential roles in numerous 

biological processes throughout embryonic development, such as cell-fate specification, 

proliferation and differentiation (van Amerongen and Nusse, 2009; Archbold et al., 2012; 

Clevers, 2006; Logan and Nusse, 2004a; Niehrs, 2010).  It is also required for 

maintaining adult tissue homeostasis, where Wnts function as a stem cell niche signal 

(Archbold et al., 2012).  Dysregulation of the pathway has been implicated in a variety of 

human pathologies, including various cancers, diabetes and bone disorders (Archbold et 

al., 2012; Cadigan and Peifer, 2009; Clevers and Nusse, 2012; Polakis, 2012).  

 Wnts are a family of secreted glycoproteins that activate several downstream 

signaling cascades, among which the best characterized is the Wnt/β-catenin pathway 

(Archbold et al., 2012).  This pathway is transmitted through a critical messenger protein, 

β-catenin.  In the absence of Wnt, β-catenin is sequestered in cytosol by the “degradation 

complex”, consisting of glycogen synthase kinase 3 (GSK3), casein kinase I (CKI) and 

scaffolding proteins Axin and adenomatosis polyposis coli (APC).  CKI and GSK3 



 

2 
 

consecutively phosphorylate β-catenin.  Phosphorylated β-catenin is further poly-

ubiquitinated by β-TrCP and sent to proteasomal degradation (Archbold et al., 2012; 

Cadigan and Peifer, 2009).   As a result, β-catenin remains at a low level in the cytosol 

when Wnt signaling is off (Figure 1.1A).  

 When Wnt is received at the cell surface by the receptor complex, consisting of 

Frizzled (Fz) family proteins and low density lipoprotein receptor related protein 5 or 6 

(LRP5/6), it results in inhibition of the degradation complex through a mechanism that is  

not fully understood.  The current model suggests that Wnt stimulates phosphorylation of 

cytosolic Dishevelled (Dsh), promoting its interaction with the intracellular domain of Fz.  

Accompanying this, Wnt-activated LRP6 also gets phosphorylated at the intracellular 

domain, which then recruits the degradation complex via directly binding with the 

scaffolding protein Axin.  Assembly of the Fz-LRP6, Dsh and degradation complex is 

referred as the signalosome (Cadigan and Peifer, 2009; MacDonald et al., 2009).  Within 

the signalosome, Axin undergoes a dephosphorylation-induced conformational change, 

leading to its dissociation from the signalosome and disassembly of the degradation 

complex (Clevers and Nusse, 2012; Kim et al., 2013).  As a consequence, β-catenin is 

released from the degradation complex and translocates into the nucleus to participate in 

transcriptional regulation (Figure 1.1).  

 In the nucleus, β-catenin is recruited to Wnt-dependent cis-regulatory modules 

(W-CRMs) mainly by transcription factors (TF) of the T Cell Factor (TCF) family 

through a direct interaction (Figure 1.1).  TCFs are the best-characterized DNA-binding 

effector of the Wnt/β-catenin pathway, which is thought to mediate the majority of Wnt-

controlled transcriptional events (Cadigan and Waterman, 2012a; Schuijers et al., 2014).  
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TCFs act as transcriptional switches, repressing target genes with the aid of co-repressors 

in the absence of Wnt (Figure 1.1A), and activating target genes with β-catenin and 

additional co-activators upon Wnt stimulation (Figure 1.1B).  As the TCF transcriptional 

switch is the central topic of this thesis, more details about the mechanisms of the TCF 

transcriptional switch will be discussed in a later part of this chapter.   

1.1.2 The organizer as signaling center to induce dorsal axis  

Historical perspective 

In 1924, Spemann and Mangold demonstrated that the dorsal blastopore lip of the 

amphibian gastrula organizes the dorsal axis patterning by influencing the cell fate of 

neighboring cells, and therefore named the dorsal blastopore lip “the organizer” 

(Spemann and Mangold, reprinted in 2001).   In their famous intra-species transplantation 

experiments, the dorsal blastopore lip from a light pigmented salamander gastrula was 

grafted to the ventral side of a dark pigmented species, leading to a complete secondary 

dorsal axis (Figure 1.2; Spemann and Mangold, reprinted in 2001).  The pigment 

difference allowed them to track the cell fate of donor and host cells.   They found the 

light donor cells kept their original fate to form the notochord whereas the dark 

neighboring host cells were induced to adopt a dorsal fate, giving rise to dorsal tissues, 

such as somites and nerve cells (Figure 1.2; Spemann and Mangold, reprinted in 2001).   

Their discovery elegantly demonstrated the existence and importance of cell-cell 

communication during development.   The organizer or its developmental analogues are 

also present in other chordates, such as embryonic field in fish, Hensen’s node in bird and 

mice, and they play pivotal roles in patterning overall body plan in each species (Harland 

and Gerhart, 1997; Joubin and Stern, 2001; Marlow, 2010; Schier and Talbot, 2005).   
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Molecular nature of the Spemann Organizer  
 
 Extensive molecular screens have identified numerous organizer-specific genes 

(De Robertis, 2006).  These genes can be divided mainly into two classes: transcription 

factors and secreted signaling antagonists.   

 Siamois and its closely related homologue Twin, two homeodomain transcription 

factors, are expressed in the precursor cells of the organizer during Mid-blastula 

transition (MBT), a developmental time point when zygotic transcription initiates (Blythe 

et al., 2010; Laurent et al., 1997; Lemaire et al., 1995; Newport and Kirschner, 1982).  As 

the earliest organizer genes expressed, Siamois and Twin are redundantly responsible for 

all aspects of the organizer function.  Simultaneous knockdown of Siamois and Twin 

blocks dorsal axis induction (Bae et al., 2011).  Ventral injection of Siamois mRNA could 

induce a complete secondary axis, mimicking the effect of dorsal blastopore lip 

transplantation (Ishibashi et al., 2007; Lemaire et al., 1995).  These data suggested 

Siamois and Twin play an essential role in promoting the organizer formation in Xenopus 

blastula.  At the mechanistic level, they directly activate transcription of several 

downstream organizer genes, including Goosecoid, Chordin and Cerberus (Collart et al., 

2005; Ishibashi et al., 2007; Laurent et al., 1997; Reid et al., 2012).  In zebrafish, the 

Siamois homologue Bozozok/Dharma is also required for formation and function of the 

fish organizer (Ryu et al., 2001).   

 A hallmark gene expressed in all vertebrate organizers is the transcription factor 

Goosecoid, a (Rivera-Pérez et al., 1995).  It was the first organizer gene identified in 

Xenopus (Cho et al., 1991).  It functions as a transcriptional repressor to maintain 

organizer identity and promote head formation, through counteracting Wnt and bone 
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morphogenetic protein (BMP) signaling (Sander et al., 2007; Yao and Kessler, 2001).  In 

mice, Goosecoid is not essential for the organizer function; rather, it is important for 

craniofacial and rib cage formation during later development (Rivera-Pérez et al., 1995).   

 As a potent signaling center, the organizer was expected to secrete a cohort of 

new growth factors and signaling molecules.  Surprisingly, a plethora of signaling 

antagonists were isolated (De Robertis and Kuroda, 2004; Robertis and Larrain, 2000).  

The organizer emits a number of BMP antagonists, such as Chordin, Noggin and 

Follistatin, as well as Wnt antagonists, such as Frzb1, secreted frizzled-related protein-2 

(sFrp2), Crescent and Dickkopf-1 (Dkk-1) (De Robertis and Kuroda, 2004).  These 

antagonists mainly work by blocking ligand-receptor interactions.  They play key roles in 

setting up the perpendicular gradients of Wnt and BMP activities that are essential for 

patterning the future anterior/posterior (A/P) and dorsal/ventral (D/V) structures (Figure 

1.3D; Niehrs, 2010).  More specifically, anterior specification requires low Wnt, whereas 

high Wnt promotes posteriorization of the embryo (Figure 1.3C & D, Hikasa and Sokol, 

2013; Robertis and Larrain, 2000).  The organizer-secreted Wnt inhibitors antagonize 

Wnt anteriorly to ensure head induction (Glinka et al., 1997, 1998; Leyns et al., 1997; 

Piccolo et al., 1999). An ascending BMP gradient along the D/V axis is established by a 

combined action of BMP antagonists expressed by the dorsal organizer and a ventral 

BMP center expressing high levels of BMP ligands (Figure 1.3 C&D; Robertis, 2006).  

Inhibition of BMP dorsally is essential for dorsal trunk development (Khokha et al., 

2005).  

Wnt/β-catenin signaling is required for the organizer formation 
 
 Wnt/β-catenin signaling plays an essential role in promoting the organizer 
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formation (Harland and Gerhart, 1997; Hikasa and Sokol, 2013).  The engagement of 

Wnt signaling in dorsal axis formation was first suggested by gain of function 

experiments in Xenopus embryos: ventral injection of Wnt mRNA induced an ectopic 

organizer on the ventral side, resulting in a duplicated axis (McMahon and Moon, 1989; 

Smith and Harland, 1991; Sokol et al., 1991).  Axis duplication could also be induced by 

other Wnt signaling components, for example, Dsh (Sokol et al., 1995), β-catenin (Guger 

and Gumbiner, 1995), and a dominant-negative form of GSK3 (Dominguez et al., 1995).  

Depletion of maternal β-catenin resulted in ventralized embryos, demonstrating maternal 

β-catenin is required for the organizer formation and dorsal axis formation (Heasman et 

al., 1994).   

 It is unclear how the Wnt pathway is activated in dorsal cells initially.   It has 

been thought that the pathway was initiated intracellularly through a GSK inhibitor 

protein, Frat, which is dorsally enriched and essential for dorsal axis formation (Yost et 

al., 1998).  However, triple knockout of Frat homologs in mice has no phenotype 

consistent with a Wnt defect, suggesting this mechanism may be not conserved in 

mammals (van Amerongen et al., 2005).  Later, anti-sense oligonucleotide-mediated 

maternal depletion of Wnt11, Wnt5a and Fz7 indicated involvement of more upstream 

Wnt pathway components (Cha et al., 2008; Kofron et al., 2007; Tao et al., 2005).   

 During oogenesis, several maternal dorsalizing factors/components of Wnt 

signaling are deposited at the vegetal pole of oocytes, including maternal β-catenin 

(Larabell et al., 1997) and Wnt 11 (Ku and Melton, 1993) (Figure 1.3A).  Shortly after 

sperm entry, these factors are transported to the future dorsal side through cortical 

rotation, a process during which cortical cytoplasm is moved toward the opposite of 
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sperm entry point by 30 degree on average (Houston, 2012) (Figure 1.3B).  In certain 

frog species (e.g. Rana pipiens), the cortical rotation is visible as the conspicuous gray 

crescent, marking the future dorsal side of the embryo (Houston, 2012).  Cortical rotation 

is driven by microtubules (Houliston and Elinson, 1991).  Fertilized eggs treated with 

microtubule-depolymerizing agents, such as UV irradiation or nocodzaole undergo 

ventralization (Jesuthasan and Stähle, 1997; Scharf and Gerhart, 1980).  These 

experiments suggest cortical rotation is essential for establishing asymmetric Wnt activity 

as well as subsequent organizer formation.  

Organizer genes activated by Wnt/β-catenin signaling  
 
 Dorsally enriched β-catenin accumulates in the nucleus (Larabell et al., 1997; 

Schneider et al., 1996; Schohl and Fagotto, 2002) and gets recruited to chromatin by 

TCFs to activate target genes that delineate the organizer.  For example, Siamois, Twin 

and Xenopus nordal related3 (Xnr3), another BMP antagonist, are among the earliest 

zygotic genes activated by TCF in the organizer (Brannon et al., 1997; Laurent et al., 

1997; Mckendry et al., 1997).  In their cis-regulatory modules, functional TCF binding 

sites have been identified and shown to be required for their Wnt-regulated expression 

(Brannon et al., 1997; Laurent et al., 1997; Mckendry et al., 1997).  Bozozok/Dharma, a 

zebrafish Siamois homolog, has also been demonstrated as a direct target of maternal Wnt 

signaling regulated by TCF proteins (Ryu et al., 2001), indicating a conserved regulatory 

role of TCF in the organizer.  Several other organizer genes are also implicated as Wnt 

target genes, as their expression are enhanced by overexpression of some TCFs (Standley 

et al., 2006) and abrogated by maternal depletion of β-catenin (Xanthos et al., 2002).  

However, evidence is lacking to support the hypothesis that they are direct targets.   



 

8 
 

 As gastrulation begins, a wave of zygotic Wnt signaling initiates on the ventral 

side, characterized by Wnt8 expression in a crescent territory circling the blastopore 

outside the organizer zone (Christian and Moon, 1993; Kiecker and Niehrs, 2001).  

Together with Wnt3a, Wnt5a and Wnt11, these zygotic Wnt proteins sustain high Wnt 

signaling in the posterior part of the embryo and promotes posteriorization (Hikasa and 

Sokol, 2013).  Vent1/2, Cdx4, Gbx2 and Meis3 have been indicated as major targets of 

the zygotic Wnts involved in posterior specification (Hikasa and Sokol, 2013).  TCF 

binding sites found in their promoters are required for their Wnt responsiveness, 

suggesting direct Wnt/TCF regulation (Elkouby et al., 2010; Haremaki et al., 2003; 

Hikasa et al., 2010; Li et al., 2009).   Interestingly, the early maternal and the late zygotic 

Wnt signaling activate distinct sets of target genes (Archbold et al., 2012; Hikasa and 

Sokol, 2013).  This well illustrates the developmental stage and context specific 

transcriptional regulation by Wnt/β-catenin signaling.  However, how Wnts achieve such 

specificity is not largely unknown.   

 

1.2 TCFs are the major transcription factors of the Wnt/β-catenin pathway 

The TCF family 
 
 Although β-catenin can bind to several transcription factors (TF) in the nucleus, 

the T-Cell Factor (TCF) family are the best-studied TF that recruits β-catenin to regulate 

the majority of target genes of Wnt signaling (Cadigan and Waterman, 2012; Schuijers et 

al., 2014).    

 As the name indicates, TCFs were originally discovered as lymphocyte specific 

TFs.  They belong to a large TF family with a featured sequence-specific DNA binding 
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domain called High Mobility Group (HMG).  TCFs were first implicated in the Wnt 

pathway by yeast two-hybrid screens showing their ability to interact with β-catenin 

(Behrens et al., 1996; Huber et al., 1996; Molenaar et al., 1996).  Early studies also 

demonstrated that overexpressing LEF1, a member of TCF family, promoted β-catenin 

nuclear translocation and could mimic secondary axis inducing activity of ectopic Wnt 

signaling in Xenopus embryos (Behrens et al., 1996; Huber et al., 1996).  TCF proteins 

bind with β-catenin via a conserved N terminal domain consisting of approximately 50 

amino acids (Figure 1.4).  TCF proteins lacking this domain could inhibit Wnt-dependent 

axis formation, behaving as dominant negative mutants.  Genetic loss-of-function studies 

in several other organisms unequivocally demonstrate the general requirement of TCF in 

Wnt/β-catenin signaling.  For example, mutation of Drosophila TCF(Cavallo et al., 

1998), RNAi knockdown of C. elegans TCF (Herman, 2001) and double knock-out of 

LEF1/TCF1(two members of mouse TCFs) in mice (Galceran et al., 1999) give rise to 

phenotypes indicative of disrupting Wnt signaling.   

 Almost all invertebrates carry a single TCF ortholog, with the best-studied 

examples Pangolin (Pan) in Droshophila and POP-1 in C.elegans (Figure 1.4A).  

However, most vertebrate species have four TCF genes, TCF1 (HUGO gene name : 

TCF7), LEF1, TCF3 (TCF7L1), and TCF4 (TCF7L2) (except in bony fish, including 

zebrafish, TCF1 is duplicated as TCF7L1a and TCF7L1b, thus five TCF genes in total 

(Dorsky et al., 2003).   Except TCF3, all three other TCFs each encodes a variety of 

isoforms due to alternative selection of promoter and splicing sites (Figure 1.4A; 

Archbold et al., 2012; Cadigan and Waterman, 2012).  These vertebrate TCF members 

share and vary in many aspects of their functions, which will be discussed in details in 
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following section.  

1.2.1 Multiple functions of TCF 
 

DNA binding by TCF 
 

HMG domain and basic tail 
 
 The HMG domain (about 90 amino acids) is highly conserved (95% ~ 99% of 

similarity) among TCFs across different species (Figure 1.4B), endowing all the members 

with highly similar DNA binding specificity (Arce et al., 2006).  In vitro DNA binding 

assays reveal that Pan (Drosophila TCF) and mammalian TCFs bind with the highest 

affinity to the consensus  SCTTTGATS (S=G/C) (Atcha et al., 2007; van Beest et al., 

2000; Giese et al., 1991; Hallikas et al., 2006; van de Wetering et al., 1991, 1997).   This 

consensus also matches with many functional TCF binding sites found in endogenous W-

CRMs (Brannon et al., 1997; He et al., 1998).   

 A small basic tail region located downstream of and adjacent to the HMG domain 

is also conserved among different TCFs (Figure 1.4B).  This region has also been shown 

to make contact with the cognate DNA, contributing to the integral DNA recognition 

(Love et al., 1995).   In addition to DNA binding, the HMG domain also bends the bound 

DNA up to 130 degrees, revealed by a structural analysis of the LEF1 HMG domain 

(Giese et al., 1992; Love et al., 1995).  The DNA bending property has been suggested to 

play a structural role to coordinate the assembly of a DNA-protein complex on an 

enhancer of T cell receptor (TCR)-alpha (Love et al., 1995). 

C-clamp domain  
 
 A distinct secondary DNA binding domain called C-clamp (about 30 amino acids) 



 

11 
 

has been identified in most invertebrate TCFs and E-tail isoforms of vertebrate TCF1 and 

TCF4 (refer as TCF1-E and TCF4-E hereafter) (Archbold et al., 2012; Atcha et al., 2007; 

Bhambhani et al., 2014; Chang et al., 2008b).  The C-clamp domain is located 

downstream of the HMG domain and the basic tail, connected by a linker region (Figure 

1.3B).  The C-clamp is marked by four highly conserved cysteine residues, which has 

been recently shown to coordinate a zinc ion in the TCF of Drosophila (Ravindranath and 

Cadigan, 2014).  Adding chelating agents could abolish DNA binding of the C-clamp,  

implying it functions as a novel zinc finger (Ravindranath and Cadigan, 2014).  A related 

C-clamp domain has also been identified in other DNA binding transcription factors 

including HDBP1/GEF(GlutEF), HDBP2/PBF, and Gig1 (Tanaka et al., 2004).  

However, these C-clamp-containing TFs have not been implicated in the Wnt pathway so 

far.  

 The C-clamp domain specifically binds to a DNA motif termed the Helper site.  

This interaction enhances the overall DNA binding affinity of  fly TCF in vitro (Chang et 

al., 2008b; Ravindranath and Cadigan, 2014).   Many natural W-CRMs in flies, worms 

and mammals contain helper sites proximal to functional TCF binding sites.  Mutagenesis 

analysis clearly demonstrates both the C-clamp domain and the helper sites are required 

for activation of these W-CRMs (Atcha et al., 2007; Bhambhani et al., 2014; Chang et al., 

2008b).  The helper site consensus sequence derived from W-CRMs varies modestly in 

different organisms but share a GC enriched core.  For example, GCCGCCR (R=A/G) in 

fly, GCCRAnW (W=A/T) in worms and RCCG in human (Atcha et al., 2007; 

Bhambhani et al., 2014; Chang et al., 2008b).  All together, these data suggests a bipartite 

DNA binding model, involving HMG domain-TCF binding site and C-clamp-Helper site 
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interactions.  This mechanism is proposed to improve the specificity of TCF target 

selection.  

 However, the C-clamp domain is missing in the majority of vertebrate TCF 

members (Archbold et al., 2012), implying alternative mechanisms have replaced C-

clamp function.   In agreement with this, helper sites are not found in many well-

characterized vertebrate W-CRMs, such as Siamois, Axin2 (Brannon et al., 1997; Jho et 

al., 2002).  How these non-C-clamp vertebrate TCFs locate and operate on helper site-

free W-CRMs remains largely uninvestigated.   

TCF co-repressors 
 
 TCFs themselves possess none or little intrinsic trans-regulatory activity 

(Cadigan, 2012).  They regulate gene expression by recruiting co-regulators to W-CRMs 

via protein-protein interactions.   

 In the absence of Wnt signaling, TCF represses gene expression.  Several co-

repressors participate in this process, such as myeloid translocation gene related-1 

(Mtgr1) (Moore et al., 2008), corepressor of Pan (Coop) (Song et al., 2010), and 

hydrogen peroxide-inducible clone (HIC5) (Ghogomu et al., 2006; Li et al., 2011).  The 

best studied TCF/LEF1 co-repressor is the Groucho/transducin-like enhancer of split 

(Gro/TLE) repressor family members (Cadigan, 2012; Cavallo et al., 1998; Roose et al., 

1998).  Gro/TLEs serve as general transcriptional co-repressors for many other TFs 

(Chen and Courey, 2000), mainly through recruiting histone deacetylases (HDACs) to 

local targets (Chen and Courey, 2000), which deacetylate histone proteins, thereby 

altering local chromatin structure and silencing transcription (Narlikar et al., 2002).   

 All TCFs are able to interact with Gro/TLEs in vitro (Brantjes et al., 2001). A 
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conserved region called Groucho binding sequence (GBS, Figure 1.4A) had been 

demonstrated essential for LEF1 binding to TLE1 (Arce et al., 2009; Daniels and Weis, 

2005).  Although this region is modestly conserved in most TCFs, whether it mediates in 

vivo Gro/TLEs binding at endogenous W-CRMs awaits further investigation.  Structural 

analysis showed the GBS overlaps with a central region of LEF1, which makes partial 

contact with β-catenin when β-catenin complexes with LEF1 (Daniels and Weis, 2005).  

It suggests β-catenin displaces Gro/TLE through competing interaction domain on TCF, 

providing a molecular basis of the switch from transcriptional repression to activation.   

 C-terminal binding protein (CtBP) has been reported to specifically interact with 

TCF3 and certain TCF4 isoforms in vitro (Brannon et al., 1999; Valenta et al., 2003) and 

negatively influences Wnt taget gene expression (Brannon et al., 1999; Tang et al., 2008; 

Valenta et al., 2003).  The interaction likely occurs through two classic CtBP binding 

motifs shared only by TCF3 and TCF4, and located at C termini (Figure 1.4; Brannon et 

al., 1999; Valenta et al., 2003).  The presence of the two motifs correlate with increased 

repressive acitivity of TCF4 (Tang et al., 2008).  Therefore, the two CtBP binding sites 

may confer TCF3/TCF4 specific repression, at least partially.  Together, it suggests CtBP 

act as a TCF3/4 specific co-repressors, accounting for certain context-dependent gene 

regulation by TCFs.  However, the CtBP-TCF interaction was not seen by other studies 

(Hamada and Bienz, 2004; Valenta et al., 2006).  It is worth further characterization to 

verify if CtBP interacts with TCF3/TCF4 through the two C terminal motifs and to what 

extent it accounts for TCF3/TCF4 related repression.   

TCF co-activators 
 
 An array of TCF co-activators are recruited intermediately by β-catenin, mainly 
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through β-catenin’s N terminal and C terminal transactivation domains (Cadigan, 2012; 

Mosimann et al., 2009).  For example, Legless/Bcl9 (Lgs in flies, Bcl9 and Bcl9-2 in 

vertebrates) and Pygopus (Pygo) are the most important TCF co-activators (Jessen et al., 

2008).  Lgs binds to the N terminus of β-catenin and it further recruits Pygo via direct 

interaction (Jessen et al., 2008).  The N-terminal homology domain (NHD) of Pygo 

interacts with several factors involved in transcriptional activation.  For example, in flies, 

Pygo interacts with subunits of the mediator complex, bridging the TCF transactivation 

complex with RNA polymerase II complex (Carrera et al., 2008; Malik and Roeder, 

2010).   

 Many co-activators interacting with the C terminal transactivation domain of β-

catenin are also required for Wnt target gene activation (Cadigan, 2012).  The best 

studied examples include several chromatin modifiers and remodelers.  For instance, 

cAMP-response element-binding protein (CREB)-binding protein (CBP) and its closely 

related protein p300 catalyze histone acetylation, a common marker for transcriptional 

activation (Grewal and Moazed, 2003).   CBP/p300 are involved in activating many Wnt 

targets in several contexts (Hecht et al., 2000; Li et al., 2007; Ma et al., 2005; Sun et al., 

2000; Takemaru and Moon, 2000).  MLL2 histone methyltransferase, responsible for 

H3K4 trimethylation, is recruited to some Wnt targets and promotes gene activation 

(Sierra et al., 2006).  Chromatin remodeling ATPases, Brahma (Brm) and Brahma related 

gene 1 (Brg-1), ISWI and components of their associated chromatin remodeling 

complexes have also been reported for their roles in promoting Wnt target gene activation 

in flies and vertebrates (Barker et al., 2001; Sierra et al., 2006; Song et al., 2009; Eroglu 

et al., 2006; Mahmoudi et al., 2010; Major et al., 2008).   
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1.2.2 Functional specialization of vertebrate TCF proteins  
 
 The size and complexity of the TCF family has expanded greatly through gene 

duplication and isoform diversification in vertebrate lineage.  This has led to functional 

specialization of each TCF factor, meaning unique gene targeting, or engaging specific 

co-factors for transcriptional activity (Cadigan and Waterman, 2012; Hoppler and 

Kavanagh, 2007).  This appears to be an important strategy to further refine the context-

dependent gene regulation of Wnt signaling in higher organisms (Cadigan and Waterman, 

2012).  

           Based on their regulatory activity, the four vertebrate TCFs can be divided into 

three classes.  First, TCF3 is a transcriptional repressor, keeping transcription off in the 

absence of Wnt signaling (Houston et al., 2002; Kim et al., 2000; Liu et al., 2005; Merrill 

et al., 2004) .  This was first demonstrated in zebrafish. The headless mutant, with a 

truncated mutation of TCF3, displays severe defects in head formation (Kim et al., 2000).  

As previously discussed, Wnt inhibits head formation.  Depletion of the Wnt inhibitor 

Dkk1 in mice results in a similar headless phenotype, indicating TCF3 acts to antagonize 

Wnt signaling to promote head formation (Mukhopadhyay et al., 2001).  TCF3 attached 

with the engrailed repressor domain can efficiently rescue the headless mutant.  However, 

replacing the engrailed domain with VP16, a potent transactivation domain, completely 

abolished the rescue (Kim et al., 2000).  These data strongly suggests TCF3 functions as 

a transcriptional repressor.  Deleting the β-catenin binding domain does not alter the 

rescue efficiency of full length TCF3, suggesting the β-catenin binding domain is 

dispensable for the repressor activity of TCF3 (Kim et al., 2000).   

 In Xenopus, TCF3 is required as a transcriptional repressor in multiple processes 
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during early embryogenesis, including patterning D-V, A-P axes (Houston et al., 2002), 

specifying mesoderm (Liu et al., 2005), as well as promoting head formation (Hikasa et 

al., 2010).  Particularly, TCF3 is essential for the organizer function during dorsal axis 

formation.  Maternal knockdown demonstrated TCF3 inhibits organizer genes in dorsal 

cells and suppresses ectopic expression of those genes in ventral cells (Houston et al., 

2002).  For instance, the organizer gene, Siamois, is a direct target of TCF3(Brannon et 

al., 1997; Hikasa and Sokol, 2011; Hikasa et al., 2010).  TCF3 has been shown to be 

associated with Siamois W-CRM chromatin (Hikasa et al., 2010).  Mutating the TCF sites 

results in Siamois reporter derepression (Brannon et al., 1997; Fan and Sokol, 1997), 

further supporting the repressing role of TCF3 on Siamois.  In agreement with findings in 

Zebrafish and Xenopus, TCF3 knockout mice also display phenotypes linked to increase 

of Wnt/β-catenin signaling (Merrill et al., 2004).   As repeatedly shown in embryonic 

stem cells (ESC), hair follicle stem cells, and skin stem cells, TCF3 plays a crucial role in 

maintaining stemness of these cells by transcriptionally repressing Wnt target genes 

(Cole et al., 2008; Lien et al., 2014; Nguyen et al., 2009; Yi et al., 2011).    

 In contrast to TCF3, full length LEF1 and TCF1 are always associated with gene 

activation in response to Wnt stimulation (Cadigan and Waterman, 2012b; Galceran et 

al., 1999; Hoverter et al., 2012; Kratochwil et al., 2002; Liu et al., 2005; Merrill et al., 

2001; Yi et al., 2011).  The activator activity of TCF1 and LEF1 absolutely requires an 

interaction with β-catenin.  The isoforms lacking the β-catenin binding domain exhibit 

dominant negative effect, inhibiting Wnt signaling (Hovanes et al., 2001; Roose et al., 

1999; Tiemessen et al., 2012).  The only exception which relates full length TCF1 to 

transcriptional repression was reported in Xenopus ventral blastomeres (Standley et al., 
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2006).  Depletion of maternal TCF1 in Xenopus led to decrease of several organizer 

genes in dorsal blastomeres but increase in ventral cells, arguing that TCF1 being an 

activator in dorsal cells but a repressor in ventral cells (Standley et al., 2006).  Given that 

the repressor function of TCF1 is contradictory to observations made in all the other 

contexts examined, it is worth re-exploring if this effect is true, and why TCF1 behaves 

as such in this particular context.    

 Full length TCF4 is capable to conduct both activation and repression depending 

on the contexts and isoforms (Angus-Hill et al., 2011; Lien et al., 2014; Liu et al., 2005; 

Nguyen et al., 2009; Standley et al., 2006; Tang et al., 2008; Weise et al., 2010; Van de 

Wetering et al., 2002).  In mice, TCF4 knockouts display loss of the stem cell 

compartment in the intestine (Korinek et al., 1998), consistent with a loss of Wnt/β-

catenin signaling.  In colon cancer cells, a genome survey study revealed that, TCF4 is 

the most abundantly expressed TCF, and binds to regulatory regions of target genes that 

are up-regulated by Wnt signaling, including a common direct target, Axin2 (Hatzis et 

al., 2008).  However, in the same cellular context, TCF4 siRNA results in increased 

Wnt/β-catenin signaling activity, suggesting repressive role (Tang et al., 2008).  These 

seemingly conflicting results further illustrate the highly context-dependent and target-

dependent diverse transcriptional outputs of Wnt signaling.  Consistent with this idea, 

another study focusing on characterizing function of a repertoire of TCF4 splicing 

isoforms in murine ESCs and neural progenitors, demonstrated different transactivational 

potential among isoforms (Weise et al., 2010).  In mice skin stem cells, TCF4 primarily 

works in redundancy with TCF3 as transcriptional repressor to keep long-term 

homeostasis of skin epithelia (Nguyen et al., 2009).  In early Xenopus embryo, maternal 
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depletion of TCF4 suggests TCF4 is involved in activating dorsalizing genes, including 

Siamois and Chordin (Standley et al., 2006).  However, during gastrulation, the same 

TCF4 isoform exhibits repressor activity, rescuing mesoderm formation caused by 

morpholino knockdown of TCF3 (Liu et al., 2005).  This repressive function is suggested 

to be conferred by two small motifs, LVPQ and SXXSS, located in the central region 

upstream of the HMG domain (Liu et al., 2005).   A naturally occurring isoform TCF4C, 

which lacks these two motifs, was unable to rescue TCF3 knockdown, but could rescue 

TCF1 knockdown (Liu et al., 2005).  Interestingly, these two motifs are only shared by 

TCF3 and TCF4A.  However, whether these two motifs are essential for the repression 

mechanism of TCF3/TCF4A and how they mediate the repression is not known.   It is 

fundamental to understand the molecular basis of the specialized functions of vertebrate 

TCFs, however so far it remains largely unknown. 

 Apparently, in vertebrate systems, multiple TCFs have to participate in the 

transcriptional switch, with a distinct TCF executing each specialized functions.  An 

interesting question is how Wnt signaling coordinates multiple TCFs to convert 

transcriptional repression into activation.  It has been suggested that Wnt/β-catenin 

releases TCF3 repression by reducing TCF3 target occupancy through distinct 

mechanisms depending on the contexts (Atlasi et al., 2013; Hikasa et al., 2010; Shy et al., 

2013).  For example, in ESCs, Wnt stimulation inhibits TCF3 transcription (Atlasi et al., 

2013) and β-catenin promotes TCF3 degradation (Shy et al., 2013).  Wnt-stimulated 

TCF3 removal from chromatin has been demonstrated on some Wnt targets (such as 

Siamois and Vent2) in early Xenopus development (Hikasa and Sokol, 2011; Hikasa et 

al., 2010).  The same studies also showed activating TCF1 displaces TCF3 to bind to 
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targets after TCF3 is removed from chromatin (Hikasa and Sokol, 2011; Hikasa et al., 

2010).   This TCF exchange model offers a framework of how multiple TCFs coordinate 

in the vertebrate transcriptional switch.  This part will be further discussed in details in 

the vertebrate TCF transcriptional switch section.  

1.2.3 TCF transcriptional switch 
 
 Using the same transcription factor to flip a switch to repress or activate target 

gene expression is a common strategy of cell-cell signaling pathways, such as Su 

(H)/CBF1 in the Notch pathway, and Ci/Gli in the Hh pathway (Barolo 2002).  In the 

case of the Wnt pathway, the TCF transcriptional switch comes in several forms.  In 

invertebrate systems, the single TCF operates both sides of the switch with the aid from 

co-repressors for repression, and β-catenin and co-activators for activation (Figure 

1.5A&B; Cadigan and Waterman, 2012).  In vertebrates, TCF/LEF1 heterogeneity and 

functional specialization allow the possibility of multiple TCF factors engaged in the 

switch.  A recent study demonstrated Wnt stimulates an exchange of repressive TCF for 

activating TCF on W-CRM (Figure 1.5C&D; Hikasa and Sokol, 2011; Hikasa et al., 

2010).  Although this model has only been experimentally validated in Xenopus embryos 

for limited number of Wnt targets,  it fits well with the observations in many other 

vertebrate contexts, which imply divided labor in regard to repression and activation  

among TCFs (Cadigan and Waterman, 2012).   This model sheds light on a mechanistic 

understanding of the vertebrate TCF transcriptional switch.  

TCF transcriptional switch in invertebrates 
 
 The switch model of the single TCF in invertebrates was supported by several 

lines of evidence (Cadigan and Waterman, 2012).  For example, in flies, TCF mutation 
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caused defects in embryonic epidermal patterning that is similar to Wingless (Wg, a fly 

Wnt ligand) mutants, but less severe (Brunner et al., 1997; van de Wetering et al., 1997).  

Interestingly, TCF/Wg double mutants display the identical phenotype as single TCF 

mutants (Cavallo et al., 1998).  This TCF suppressing Wg effect suggests a dual role of 

TCF.  In brief, loss of TCF’s repressive function derepresses Wg targets, compensating 

the loss of activation by Wg.  Loss of TCF’s activating function reduces gene activation, 

mimicing compromised Wg signaling.  In fly cell culture, a study using RNAi and ChIP 

of TCF demonstrated that the TCF switch is operated on several Wg targets, lending 

more mechanistic insights for the model (Fang et al., 2006)  

 In C. elegans, the TCF switch model is slightly different.  The current view 

proposes that the switch occurs involving nuclear efflux of POP-1 (the single worm TCF) 

in addition to β-catenin/co-activator recruitment (Sawa, 2012).  The model is best 

supported by the action of POP-1 in specifying endoderm cell fates.  POP-1 is kept low in 

the nucleus of prospective endoderm cell (E cells) as a result of efflux driven by high 

Wnt signaling (Sawa, 2012).  Low level of nuclear POP-1 somehow stabilizes POP-1-β-

catenin complex on chromatin, leading to activation of endoderm genes (Shetty et al., 

2005).  On the other hand, POP-1 remains high in the nucleus of prospective mesoderm 

cells (MS cells) due to low Wnt signaling.  In MS cells, POP-1 represses those endoderm 

genes.  Depletion of POP-1 causes derepression of these genes in MS cells (Shetty et al., 

2005).  Agreeing with the model, mutagenesis analysis of the W-CRM of end-1, one 

important E cell specific gene, reveals that the single TCF binding site in this W-CRM is 

sufficient to mediate both activation of end-1 reporter in E cells as well as repression of 

the reporter in MS cells (Shetty et al., 2005).   
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TCF transcriptional switch in vertebrates 
 
 Mutating TCF sites in some vertebrate W-CRM reporters support that they are 

both negatively and positively regulated by TCFs (Brannon et al., 1997; Hikasa et al., 

2010).  The best example is the Xenopus Siamois W-CRM (Brannon et al., 1997; Fan et 

al., 1998).  It has been shown that TCF3 represses Siamois (Brannon et al., 1997; 

Houston et al., 2002), and TCF1 contributes to Siamois activation in the dorsal organizer 

region (Standley et al., 2006).   

 Recent studies in Xenopus showed that Wnt promotes the phosphorylation of 

LEF1, TCF3, and TCF4 by homeodomain interacting protein kinase 2 (HIPK2; Hikasa 

and Sokol, 2011; Hikasa et al., 2010), which is a highly conserved serine/threonine 

kinase, and functions in transcriptional regulation, cell growth and apoptosis (D’Orazi et 

al., 2002, 2012).  The phosphorylation disengages the chromatin binding of TCFs.  Upon 

Wnt stimulation, TCF1, lacking the HIPK2 phosphorylation sites, displaces TCF3 to re-

occupy W-CRM chromatins (Figure 1.5C&D; Hikasa and Sokol, 2011; Hikasa et al., 

2010).  The Wnt-stimulated TCF3 exchange for TCF1 was demonstrated on Vent2 and 

Siamois W-CRMs in Xenopus early embryos.  Consistent with the exchange model, in 

mice, it has been observed that Wnt3a-stimulated ESC self-renewal requires TCF1 to 

antagonize target gene suppression by TCF3 (Yi et al., 2011).  In the same context, 

another study showed β-catenin binding to TCF3 promotes TCF3 degradation, leading to 

decreased TCF3 chromatin binding; HIPK2, however, is not involved in this process (Shy 

et al., 2013).  It would be very interesting to investigate whether an exchange for TCF1 

accompanies TCF3 removal in this context.  

  The exchange model assumes TCF3 occupies targets by default, which is 
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puzzling, given that TCF3 has similar/identical DNA binding specificity as other TCF 

members.  What determines TCF3 to outcompete TCF1 in DNA binding when Wnt 

signaling is off?  Understanding this fundamental question will help us better understand 

the operation of the switch and improve our ability to identify novel Wnt targets.  

1.2.4 Target selection by TCFs 
 

Insufficiency of TCF binding site  
 
 In general, TFs locate at “correct” target cis-regulatory modules (CRMs) via their 

DNA binding domain recognizing cognate sequences (Levine, 2010).  Specific target 

recognition is essential to ensure proper gene expression, however it is not easy for 

eukaryotic TFs, because they recognize very short sequences (typically 6-12bp), which 

are highly degenerate and do not contain sufficient information to specify CRMs in large 

genomes (Todeschini et al., 2014).   

 In the case of TCFs, the HMG domain mediates the primary DNA binding by 

recognizing a high affinity consensus “SCTTTGATS, S=G/C”.  Synthetic reporters 

driven by concatemerized optimal TCF binding sites (3 to 12 copies of ‘CCTTTGAT’), 

such as TOPFLASH, have been shown to specifically respond to Wnt signaling in 

various contexts, including mammalian cell cultures, transgenic zebrafish and mice 

(Barolo, 2006).  This is generally used as an argument that the TCF binding site is 

sufficient to locate TCF to genomic sites in vivo.  But such a dense cluster of high 

affinity sites is rare in natural W-CRMs (Archbold et al., 2012; Bhambhani and 

Cadigan,2014).   Functional TCF sites tend to be randomly scattered across natural W-

CRMs.  Also, the sites, judged by their in vitro affinity to HMG, is often less optimal 

than the sites in synthetic reporters (Hallikas et al., 2006; Bhambhani and Cadigan, 
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2014).   In addition, the multimerized TCF site reporters do not give complete Wnt 

signaling pattern, meaning they are only active in a subset of Wnt –positive territories in 

transgenic animals, such as in Xenopus and mice (Barolo, 2006).  In sum, given the 

quality and the organization of TCF binding sites in endogenous W-CRMs, they appear 

insufficient to determine TCF recognition specificity.   

 In vitro DNA binding profiling experiments revealed that the HMG domain of 

TCFs could recognize a broad spectrum of degenerate sequences (Badis et al., 2009).  In 

vivo, functional TCF sites can deviate from the consensus quite far (Bhambhani and 

Cadigan, 2014).  For instance, divergent sites (e.g., CTTTTGAAG, CTTTATAG, 

GTTTGATG, CCTTTTTTC) have been suggested to contribute to Wnt responsiveness 

(Hilton et al., 2003; Lam et al., 2006).  The high extent of degeneracy makes it extremely 

difficult to identify authentic TCF binding sites from excess DNA.  Genome-wide studies 

have found that a significant number of regions occupied by TCFs do not contain 

recognizable TCF sites (Blahnik et al., 2010; Frietze et al., 2012; Hatzis et al., 2008; 

Junion et al., 2012; Wu et al., 2012).  This may be due to indirect recruitment of TCF via 

protein-protein interactions.  But it is also possible that TCF binds to divergent sites in 

those areas.   Taking degenerate sites into account (within the range of known functional 

divergent sites), millions of potential TCF sites exist in the human genome (Archbold et 

al., 2012).  How TCF distinguishes functional sites among all the irrelevant sites is a 

challenging question to the field.  

Bipartite binding of some TCF through C-clamp and Helper site interaction 
 
 Direct evidence demonstrating HMG-TCF site interaction is insufficient for TCF 

locating endogenous targets comes from studies on C-clamp and helper site in flies, 
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worms and mammalian cells (Atcha et al., 2007; Bhambhani et al., 2014; Chang et al., 

2008b; Hoverter et al., 2012).  As discussed earlier, the bipartite DNA binding by HMG 

and C-clamp allows TCF to recognize a composite DNA code with extended sequence 

information, thereby increasing target selectivity (Figure 1.6A; Chang et al., 2008b).   A 

recent study in flies showed recombinant HMG-C-clamp protein binds to a DNA probe 

containing only a TCF site worse than when it binds to a probe containing a TCF site and 

a helper site, suggestive of inhibitory effect of C-clamp (Ravindranath and Cadigan, 

2014).  This paper also showed direct interaction between C-clamp and HMG.  This 

interaction is suggested to auto-inhibit individual DNA binding of each domain and 

promotes bipartite binding when possible (Ravindranath and Cadigan, 2014).  This also 

explains how the C-clamp assists TCF to select specific W-CRMs.   

Cooperative DNA binding with other transcription factors 
 
 TFs often recognize DNA in cooperation with additional TFs via protein-protein 

interactions (Levine, 2010; Todeschini et al., 2014).  This could occur as a homo-

oligomer, as seen with p53 binding to repeated half sites as a tetramer (Brandt et al., 

2009).  Many nuclear hormone receptors form heterodimers on DNA in different 

combinations partially depending on the half sites organization (Todeschini et al., 2014).  

To accommodate cooperative TF binding, the CRM has to harbor multiple cognate codes, 

which decreases the probability of random occurrence and increasing the selectivity of 

target sequence.  In regard to TCF, several TFs have been suggested to act cooperatively 

with TCF to bind to regulatory regions.   

 Two members of the Smad family, which is the major TF family of the TGF-β 

pathway, Smad3 and Smad4, directly interact with LEF1 (Labbé et al., 2000; Nishita et 
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al., 2000).  In the regulatory region of the twin gene of Xenopus, TCF and Smad binding 

sites are paired in close proximity and both are required for full activation of a twin 

reporter by Wnt and TGF-β signaling in the contexts of cell culture and Xenopus embryos 

(Figure 1.6B; Labbé et al., 2000; Nishita et al., 2000).  Several other genes have also been 

reported to be co-regulated by TCF and Smad proteins, such as Msx2 (Hussein et al., 

2003), c-myc (Hu and Rosenblum, 2005), and Emx2 (Suda et al., 2010; Theil et al., 

2002).  Consistent with this, ChIP data demonstrates β-catenin increases Smad 

recruitment on LEF1 bound regulatory region of Msx2 (Hussein et al., 2003).   

 Another example of a cooperative binding partner of TCF is c-Jun, a TF that 

binds DNA as a homodimer or a heterodimer with c-Fos (constituting AP-1) (Shaulian & 

Karin 2002).  In colorectal cancer (CRC) cells, c-Jun activates itself in cooperation with 

TCF4 and β-catenin, forming a forward feedback loop to promote carcinogenesis (Nateri 

et al., 2005).  Phosphorylated c-Jun could interact with TCF4, and both associates with 

the regulatory DNA of c-Jun (Nateri et al., 2005).  In contrast to co-regulation of Smad-

LEF1, where the binding sites of each factor are closely linked, the TCF and AP-1 sites 

are far apart, suggesting formation of a DNA loop stabilized by protein-protein and 

protein-DNA interactions (Figure 1.6C).  On a genome level, a chromatin binding survey 

of β-catenin in CRC cells revealed that 40% of β-catenin bound regions contain TCF4 as 

well as AP-1 sites (Bottomly et al., 2010).  More than a dozen sites are bound by TCF4, 

c-Jun and β-catenin (Bottomly et al., 2010).   

 TCF also cooperates with transcription factors not directly controlled by cell–cell 

signaling.  The best example is the Cdx family of homeodomain proteins.  Cdx1 and 

Cdx4 are direct targets of Wnt signaling themselves (Archbold et al., 2012).   Cdx1 auto-
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regulation requires Cdx1-LEF1-β-catenin complex to assemble on Cdx-1 W-CRM via 

direct interaction between the homedomain of Cdx1 and the HMG domain of LEF1 

(Béland et al., 2004).  Interestingly, a genome-wide survey of Cdx2 binding in intestinal 

cell lines revealed a significant overlap between Cdx2 and TCF4 bound regions and 

TCF4 chromatin binding decreases in Cdx2 mutant cells, suggesting DNA binding of 

TCF4 depends on Cdx2 in intestinal cells (Verzi et al., 2010).   

Genome-wide survey and Transcription Factor collective  
 
 Comparing genome binding profiles of TCF4 from different types of cells, an 

emerging theme is TCF binding pattern largely depends on the cell type (Bhambhani and 

Cadigan,2014).  For example, Freitze, et al. 2012 measured TCF4 binding in 6 distinct 

human cell lines. The overlap of TCF bound regions ranged from 18% to 46% in pairwise 

comparisons (Frietze et al., 2012).  Interestingly, the same study also discovered cell 

type-specific transcription factors tend to co-localize with TCF4.  In liver-derived HepG2 

cells, TCF4 was found to occupy genomic loci with liver specific factors HNF4 and 

FoxA2, and with GATA3 in the breast cancer cell line MCF7 (Frietze et al., 2012).  This 

suggests cell type specific transcription factors play a role in specifying context-

dependent target genes of TCFs.    

 Another common observation made by genome-wide studies is a large portion of 

TCF bound loci contain no consensus sites, indicating TCF could be recruited to 

chromatin indirectly (Bhambhani and Cadigan,2014).   In a study surveying the genomic 

locations of five TFs, TCF, Tinman, pMad, Pannier and Dorsocross, all known to be 

genetically required for cardiac specification in the fly embryo, the five TFs were 

demonstrated to act as a collective unit, cooperatively binding to regulate heart CRMs 
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(Junion et al., 2012).  However, areas co-occupied by five TFs were strikingly devoid of 

predicted TCF binding sites but enriched with binding sites of Doc and Pannier (Junion et 

al., 2012), suggesting TCF is tethered by other DNA binding proteins.  Supporting this, 

interactions between all five factors have been observed in both flies and vertebrates 

(Brown et al., 2004; Bruneau et al., 2001; Durocher et al., 1997; Gajewski et al., 2001; 

Garg et al., 2003; Nishita et al., 2000; Zaffran et al., 2002).  Functionally, the five TF co-

occupancy signature strongly correlates with enhancer activity (Junion et al., 2012).  92% 

of 28 five-TF co-bound regions tested in transgenic flies exhibited expression in the 

mesodermal lineage (Junion et al., 2012).  This study illustrates a distinct TCF 

recruitment mechanism relying less on direct DNA binding and also demonstrates 

physically mapping the TF collective is an effective way to identify novel CRMs.  

However, other TF collectives involving TCF have largely not been explored.    

 Identifying direct target gene of Wnt signaling is key to better understand Wnt 

biology.  Over 100 genes have been found as Wnt target genes (see Wnt homepage for a 

full list, http://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes), however only 

half have been confirmed as direct target using a candidate approach.  We still lack a 

systematic method to identify new Wnt targets because of our limited understanding of 

the TCF target selection and the “grammar” of W-CRMs.   

 

1.3 VegT is a master regulator of mesoendoderm development in Xenopus 

 My main thesis work (chapter 3) focused on the role of the maternal T-box 

protein, VegT, in the TCF transcriptional switch regulating Siamois in Xenopus.  In the 

following section, VegT will be introduced in detail.   
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1.3.1 VegT governs endoderm and mesoderm specification 
 
 VegT (also known as Xombi, Antipodean,or Brat) was identified as a strong 

endoderm and mesoderm inducer from a series of functional screens in Xenopus by four 

separate groups (Horb and Thomsen, 1997; Lustig et al., 1996; Stennard et al., 1996; 

Zhang and King, 1996).  VegT is maternally expressed at high levels in oocytes and 

fertilized embyros, where it is localized to the vegetal hemisphere (Figure 1.7; Zhang and 

King, 1996).  In embryos with maternal VegT depeleted by an antisense oligonucleotide, 

neither endoderm nor mesoderm forms (Kofron et al., 1999; Xanthos et al., 2001).  

Overexpressing VegT in the ectoderm (animal cap cells) induces a full spectrum of 

markers of both endoderm and mesoderm (Horb and Thomsen, 1997; Stennard et al., 

1999).  Together, it suggests maternal VegT plays an essential role in determining 

endoderm and mesoderm formation.  

 At mid-blastula stage, VegT drives zygotic expression of numerous genes, 

composing a regulatory network instructing vegetal cells to differentiate into endoderm 

(Wylie et al., 1987; Xanthos et al., 2001).  Maternal depletion of VegT blocks expression 

of the majority of endoderm genes (Xanthos et al., 2001).   Among these genes, the ones 

that have been demonstrated to be direct VegT targets include transcription factors Bix1, 

Bix4, Sox17α and TGFβ growth factors Xnr1, 2 and 4 (Casey et al., 1999; Howard et al., 

2007; Hyde and Old, 2000; Xanthos et al., 2001).   Endoderm cells send a diffusible 

signal (mainly TGFβ growth factors) to overlying marginal cells to induce mesoderm 

formation (Smith, 2009).  VegT has also been suggested to play a direct role in 

mesoderm induction via directly activating several mesoderm marker genes, such as 

derrière (White and Heasman, 2008) and Gsd (Sudou et al., 2012).    
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1.3.2 VegT is also required for the organizer formation 
 
 Maternal VegT is involved in establishing the dorsal organizer via two distinct 

mechanisms.  First, VegT directly activates expression of Xenopus nodal related (Xnr) 

proteins, giving rise to high nodal signaling (a subset of TGFβ signaling) in the dorsal 

vegetal zone of the early blastula (Agius et al., 2000; Rex et al., 2002; Takahashi et al., 

2000; Yang et al., 2002), where is also known as Nieuwcoop center (Figure 1.7).  High 

nodal signaling derived from the Nieuwcoop center induces overlying cells (dorsal 

marginal cells) to form the organizer in combined action with maternal Wnt signaling 

(Robertis and Larrain, 2000) (Figure 1.7).  Within the organizer, several hallmark genes, 

such as Gsd, Chordin and Cerberus are controlled by transcriptional cooperation of Wnt 

signaling and Nodal signaling (Reid et al., 2012).  

         The Nieuwcoop center corresponds to the area where VegT overlaps with dorsally 

distributed β-catenin (Figure 1.7).  In fact, β-catenin has also been implicated in initiating 

the zygotic nodal signaling.  The pre-MBT expression of Xnr5 and Xnr6 (two nodal 

ligands expressed earliest) depends on both VegT and β-catenin (Agius et al., 2000; Rex 

et al., 2002; Takahashi et al., 2000; Yang et al., 2002).  Maternal depletion of VegT or β-

catenin abolished Xnr5 and Xnr 6 transcription and disrupted the organizer-inducing 

activity of the Nieuwcoop center (Skirkanich et al., 2011; Yang et al., 2002), 

demonstrating the interplay of VegT and β-catenin is necessary for establishing the 

Nieuwcoop center and inducing the organizer.  

 The second mechanism is maternal mRNA of VegT stabilizes the localization of 

maternal Wnt11 message at the vegetal pole (Heasman et al., 2001).  When maternal 

VegT mRNA is degraded by anti-sense oligonucleotide, the vegetal pole distribution of 
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Wnt 11 mRNA is disrupted (Heasman et al., 2001).  The VegT depleted embryos lack 

apparent axis structures (Kofron et al., 1999; Xanthos et al., 2002), consistent with 

disruption of maternal Wnt11 function (Tao et al., 2005).   Interestingly, morpholino 

knockdown of VegT, which only blocks translation but not affects mRNA of VegT, did 

not affect Wnt 11 mRNA localization (Heasman et al., 2001), and the morphants display 

no dorsal axis defects (Ishibashi et al., 2007).   Together, these results uncover a novel 

function of VegT mRNA in regulating localization of maternal Wnt11 and affecting the 

organizer formation.  To avoid the caveat of disrupting Wnt11 localization, we chose to 

use morpholino knockdown to perform VegT loss of function experiments in my study.    

1.3.3 T-box proteins in Xenopus 
 
 VegT belongs to a large TF family featuring a conserved T-box DNA binding 

domain.  18 family members have been identified in mammals so far, functioning in a 

wide range of developmental processes, including primary germ layer specification (e.g. 

Bra), limb development (e.g. TBX4/5 ) and heart development (TBX1,2,3,5,6,18,20) 

(Showell et al., 2004).    

 In Xenopus, besides VegT, three other well-characterized T-box factors, 

Brachyury (Bra), Eomesodermin (Eomes), and TBX6,  also play important roles in early 

embryogenesis of Xenopus (Showell et al., 2004).  Unlike maternal VegT, they are all 

zygotically expressed, and function in patterning the mesoderm downstream of VegT 

(Showell et al., 2004).  The VegT gene also encodes a zygotic isoform, lacking 25 amino 

acids at the N terminus of the maternal VegT protein.  It is expressed in dorsal marginal 

cells at the early gastrula stage and it is involved in paraxial mesoderm patterning 

(Fukuda et al., 2010).   It is unknown if the N terminal difference causes the functional 
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difference of the two isoforms.   

T-box and transactivation domains 
 
 The T-box DNA binding domain (about 200 amino acids) is modestly conserved 

among VegT, Bra and Eomes (Showell et al., 2004).   In vitro, they bind to the same core 

sequence, TCACACCT,  but slightly differ in the preference of flanking sequence 

(Conlon et al., 2001).   VegT, Bra and Eomes have all been shown to induce mesoderm 

genes in isolated ectoderm cells when overexpressed, however the resulting mesoderm 

type in response to each factor is qualitatively different.  For example, VegT and Eomes 

induce the entire spectrum of mesoderm types, whereas Bra induces mainly the posterior 

mesoderm (Conlon et al., 2001; Messenger et al., 2005).  It has been inferred that the 

flanking sequence of the core motif accounts for target selection specificity of each T-box 

factor.  However, this idea was only based on limited functional tests with overexpressed 

proteins (Conlon et al., 2001).  Thus, the physiological relevance of flanking sequence 

variance remains to be determined.    

 Functional T-box sites identified in vivo exhibit varying degrees of degeneracy in 

the core motif and flanking sequences, making the endogenous T-box sites 

indistinguishable for each factor.  In fact, a genome-wide binding survey of zygotic 

VegT, Bra and Eomes reveal that three factors are recruited to the same genomic loci for 

the majority of the bound peaks (Gentsch et al., 2013).  Indirect recruitment via 

interactions between each other is unlikely, because so far no evidence for direct physical 

interaction among the three proteins  is found (Showell et al., 2004), arguing they may 

recognize and bind to the same T-box motifs in vivo (Gentsch et al., 2013).  To achieve 

specific regulation, they may cooperate with distinct co-factors, utilizing unique domains 
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outside of the T-box domain.  The best example illustrating this idea comes from the 

study addressing why VegT is able to induce Gsd in ectoderm whereas Bra cannot.  They 

found Bra activates Xom, which is a strong repressor of Gsd (Messenger et al., 2005).  

Induction of Xom requires specific interaction between Bra and Smad1 (a component of 

the BMP signaling pathway).  This interaction is mediated by the N terminus upstream of 

T-box domain of Bra.  Switching this domain with the corresponding region of VegT, 

converts Bra into a Gsd activator (Messenger et al., 2005).   

 It has been well established that most T-box factors function as transcriptional 

activator, except Tbx2 and Tbx3 (Showell et al., 2004; Singh and Kispert, 2010).  

Generally, the C terminal region of most T-box factors are correlated with their 

transactivation activity (Showell et al., 2004).  Consistent with this, when the C terminal 

region downstream of the T-box domain of VegT fused to the Gal4 DNA- binding 

domain, it was able to activate reporter gene in yeast, suggesting the C terminal region of 

VegT has transactivation function (Zhang and King, 1996).   

 Although VegT primarily acts as a transcriptional activator, it has been previously 

linked to repression of Siamois and Xnr3, both are major organizer genes primarily 

activated by TCF/β-catenin in response to Wnt signaling (Hyde and Old, 2000; Ishibashi 

et al., 2007).  However, whether the repression is directly mediated by VegT has not been 

examined before.  Further study is needed to elucidate the mechanism of the repressive 

action of VegT.  

1.3.4 Interaction between T-box proteins and Wnt signaling 
 
 As discussed previously, Xnr5 and Xnr6 expression in the Nieuwcoop center 

requires combined inputs from VegT and TCF/β-catenin, however, the molecular 
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mechanism of this cooperation is not known (Yang et al., 2002).   Another study 

demonstrated that VegT physically interacts with TCF3 (Cao et al., 2007), providing a 

possible mechanism for the combinatory action of VegT and TCF.  In this study, using 

GST pull down assay with truncated proteins, they have roughly mapped the interaction 

domain to the N-terminal half of VegT (1-230 amino acid) containing the T-box domain 

and a TCF3 fragment (190 – 551 amino acid) encompassing the HMG domain and entire 

C terminal region (Cao et al., 2007).   

 Other T-box family members have also been suggested to cooperate with TCF in 

other systems. For example, Dll1, Msgn1, Hes7 are important genes involved in 

patterning presomitic mesoderm in mouse. Clusters of TCF sites and T-box sites found in 

regulatory regions were necessary for their full transcriptional activation in mice 

(González et al., 2013; Hofmann et al., 2004; Wittler et al., 2007).  In these cases, TCF 

and Tbx seem to cooperate by forming a complex on DNA, yet no direct evidence for 

TCF and Tbx interaction have been shown.  
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RATIONALE AND SPECIFIC AIMS 

 Wnt/β-catenin signaling controls diverse biological events mostly through 

regulating target gene expression.  The TCF family members are the primary 

transcriptional regulators of the Wnt pathway.  The major focus of my dissertation 

research is to understand certain aspects of the vertebrate TCFs, including the C-clamp 

independent target selection and the transcriptional switch involving exchange of 

specialized TCF members.  My thesis comprises two data chapters: 

Chapter 2: The goal was to explore how non-C-clamp vertebrate TCFs select 

specific targets 

 Invertebrate TCFs (e.g. fly TCF) bind two distinct DNA motifs, the TCF and the 

Helper sites, via two DNA binding domains, the HMG and the C-clamp domain.  This 

bipartite recognition enhances the target selection specificity and is essential for 

regulation of various W-CRMs.  However, the C-clamp is absent in most vertebrate TCFs 

(e.g. LEF1 and TCF3), indicating they require other mechanisms to achieve specific 

targeting.  I have investigated two hypotheses: First, if the HMG domain of non-C-clamp 

TCFs is sufficient to recognize endogenous targets on its own.  I found that LEF1 needs 

C-clamp to activate endogenous fly targets, suggesting the HMG domain of LEF1 still 

requires help in selecting specific targets.  Second, if other transcription factors cooperate 

with non-C-clamp TCFs to assist their target selection.  I examined the TCF3-regulated 

Siamois W-CRM.  Through a mutagenesis screen, a variety of novel DNA motifs that 

control Wnt-dependent activation of Siamois reporter were identified, indicating 

additional transcription factors are involved in TCF regulation of the Siamois W-CRM.   

 Part of this work has been published in Bhambhani et al., 2014.   
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Chapter 3: to characterize VegT’s role in the TCF transcriptional switch regulating 

Siamois transcription in Xenopus 

 A set of repressive T-box sites identified from the aforementioned mutagenesis 

screen of the Siamois W-CRM, and their binding factor VegT have been characterized in 

detail in this chapter.  I found that VegT functions in the TCF transcriptional switch with 

two distinct roles.  In the absence of Wnt signaling, VegT cooperates with TCF3 to 

repress Siamois via physical interaction.  Upon Wnt stimulation, HIPK2 phosphorylates 

TCF3 as well as VegT, and disrupts the interaction between VegT and TCF3, leading to 

TCF3 removal from chromatin and subsequent exchange for TCF1 occupying the 

Siamois locus.  In contrast, VegT remains bound to Siamois locus and switches to 

participate in activating Siamois transcription in a TCF1-independent manner.  My 

findings provide a resolution for the controversy of VegT’s function in Siamois 

regulation in the literature.  Also, they add a new level to our understanding of how the 

TCF transcriptional switch regulates Wnt targets. 

 The data presented in this chapter is a major portion of the manuscript: 

“VegT plays a dual role in the TCF transcriptional switch regulating Siamois 

expression in Xenopus”, Yaxuan X. Yang, Ann L. Miller, Robert J. Denver and Ken 

M. Cadigan.  This manuscript has been submitted to Developmental Biology, and is 

currently in revision. 
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Figure 1.1 Simplified model of the Wnt/β-catenin signaling cascade.   

(A) In the absence of Wnt, β-catenin is kept at low levels in the cytosol due to constant 
degradation.  In the nucleus, TCFs are localized at Wnt-dependent cis-regulatory 
elements (W-CRMs) and repress transcription of Wnt target genes with co-repressors.   
(B) Wnt stimulation inhibits the activity of the degradation complex, which includes 
Axin, APC, CK1, and GSK3, thereby stabilizing β-catenin in the cytosol.  β-catenin then 
translocates into the nucleus, and binds to TCF by replacing co-repressors.  Additional 
co-activators are recruited to the TCF/β-catenin complex, turning on expression of target 
genes.   
 
  



 

37 
 

 

 
Figure 1.2 The Spemann-Mangold experiment and discovery of the organizer. 

(A-D) Taken from (Niehrs, 2010), reprinted, with permission, from Development: 
dev.biologists.org. (A,B) Transplantation of the upper blastopore lip (the organizer) of a 
gastrula of Triturus cristatus (A) to the ventral side of a gastrula of T. taeniatus (B). (C) 
Neural plate of host embryo. (D) Secondary induced neural plate. Note the white donor 
cells in the midline. (E) Taken from (Kuroda et al., 2004), reprinted, with permission, 
from the Annual Review of Cell and Developmental Biology, Volume 20 (c) 2004 by 
Annual Reviews www.annualreviews.org.  The Spemann–Mangold experiment 
reproduced in Xenopus laevis. A graft of albino dorsal lip was transplanted into the 
ventral side of the gastrula (bottom right), resulting in a siamese twin (bottom left). Note 
that the D–V and A–P axes are perfectly integrated; this can be seen, for example, in the 
perfect alignment of somites (segments) of the duplicated axes.  
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Figure 1.3 Simplified model for dorsal axis formation in Xenopus. 

(A&B) Taken from 
http://www.mun.ca/biology/desmid/brian/BIOL3530/DB_03/DBNVert1.html   
(A) During oogenesis, dorsalizing factors, including maternal Wnt11, β-catenin, and β-
catenin stabilizing factors, are localized to the vegetal pole. (B) Cortical rotation. 
Following fertilization, the cortex of the egg rotates relative to the inner cytoplasm using 
a parallel array of microtubules. Movement generally occurs opposite to the sperm entry 
point, and transports cortical and subcortical dorsalizing factors into the equatorial region 
of the embryo. (C) At late blastula and gastrula, the Spemann organizer is localized above 
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the dorsal blastopore lip (red dotted oval).  Dorsally distributed β-catenin is indicated by 
green shade.  The organizer expresses a pool of genes listed below the cartoon. Among 
those, diffusible Wnt inhibitors, such as Dkk-1, Frzb1,  antagonizes Wnt activity toward 
the future anterior zone of the embryo. Diffusible BMP inhibitors, counteract the high 
BMP activity derived from a ventral BMP signaling center. (D) Throughout gastrulation 
and elongation of the embryo, the organizer-emitted Wnt and BMP inhibitors create low 
level of Wnt and BMP activity anteriorly and dorsally respectively.  Zygotically 
produced Wnt and BMP proteins give rise to high level of Wnt and BMP activity 
posteriorly and dorsally respectively. The perpendicular Wnt and BMP gradients play key 
roles in specifying the overall body plan, with Wnt specifying A-P axis and BMP 
specifying D-V axis.  
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Figure 1.4 Diversity of TCF/LEFs and their conserved DNA binding domains.  

(adapted from Archbold et al., 2012) (A) Invertebrates contain a single TCF member 
containing the β-catenin binding (green), HMG (red), basic tail (turquoise), and C-clamp 
(blue) domains. Pictured here is the most abundant isoform in Drosophila (Pan A) and the 
C. elegans POP-1. In vertebrates, alternate promoter usage and alternative splicing result 
in a myriad of TCF isoforms with diverse functional properties. Alternate usage of 
downstream promoters can result in isoforms which lack the β-catenin binding domain, 

B 

A 
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and function as natural dominant negatives, such as dnTCF1 and dnLEF1 (Roose et al. 
1999, Hovanes et al. 2001). Groucho binding sequence (salmon), which in part mediates 
direct interaction with co-repressor Gro/TLEs, is present in all TCFs. Alternate exon 
usage (orange) occurs in all family members except TCF3, and the LVPQ/SXXSS motif 
(purple) which is invariant in TCF3 confers repressive activity on TCF4 isoforms which 
contain it (as in TCF4A) (Liu et al. 2005).  Inclusion of the C-clamp motif is seen in E-
tail containing isoforms TCF1E and TCF4E.  B and M isoforms lack the C-clamp, while 
S isoforms contain truncated C-clamp domains (Weise et al. 2010). Some TCF3 and 
TCF4 isoforms also contain CtBP binding sites.  TCF, T-cell factor; LEF, lymphoid 
enhancer-binding factor; HMG, high mobility group.  
(B) Alignment of the HMG domains, basic tails and C-clamps among metazoan TCFs. 
Non-conserved residues are not coloured in the alignment. The six invertebrate TCFs 
possess all three domains, while only the E box isoforms of vertebrate TCF1 and TCF4 
possess C-clamps. The degree of conservation in the HMG domain is quite high, e.g. the 
TCF of Suberities domuncula and human TCF4E are 79.5% identical, 85.9% conserved. 
The C-clamp is less conserved (55.2% identity; 58.6% for the S. domuncula-human 
TCF4E comparison). The number of non-conserved residues between the basic tail and 
C-clamps are highly variable. The GenBank accession number of each protein sequence 
is in parentheses: S. domuncula (CAH04889.1); Amphimedon queenslandica 
(ADO16566.1); Mnemiopsis leidyi (ADO34164.1); Hydra magnipapillata 
(XP_002159974.1); Caenorhabditis elegans (NP_491053.3); Drosophila melanogaster 
(isoform A; NP_726522); human TCF1E (EAW62279.1); TCF4E (CAB97213.1); LEF1 
(NP_001124185) and TCF3 (NP_112573.1). TCF, T-cell factor; HMG, high mobility 
group; LEF1, lymphoid enhancer-binding factor 1. 
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Figure 1.5 Models of TCF transcriptional switches in invertebrates and vertebrates. 

Most invertebrates express a single TCF protein, which act as a docking station on W-
CRM chromatin to switch co-regulators in response to Wnt signaling. (A) When no Wnts, 
TCF binds with co-repressors to suppress gene expression. (B) Upon signaling, TCF 
complexes with β-catenin and associated co-activators to activate gene expression. 
However, in vertebrates, multiple TCF proteins display specialized functions. (C) TCF3 
almost exclusively functions in Wnt off conditions, to repress target gene with co-
repressors. (D)  Upon signaling, a TCF3/TCF1 exchange occurs, at least for some 
Xenopus Wnt target genes (i.e. Siamois and Vent2), Repressor TCF3 gets phosphorylated 
by Wnt-activated HIPK2 in a β-catenin dependent manner.  This causes TCF3 to leave 
chromatin, allowing activating TCF1 and β-catenin to occupy the W-CRM and 
promoting transcriptional activation.   
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Figure 1.6 Three different mechanisms that contribute to TCF target selection in the 
nucleus. 

 Taken from Archbold et al., 2012. (a) Bipartite binding of dTCF/Pan with HMG 
domain–HMG site and C-clamp–Helper site interactions at a binding site in the intronic 
WRE from nkd (Chang et al., 2008b). This strategy increases the TCF recognition site to 
approx. 16 basepairs. (b) Combinatorial binding between LEF1 and a Smad heterodimer 
on the twin WRE in Xenopus (Labbe et al. 2000, Nishita et al. 2000). The adjacent 
location of the Smad and TCF binding site again increases the amount of basepairs 
required for binding. Smads and b-catenin are also thought to cooperate in recruiting 
p300/CBP to TGF-β regulated WREs (Lei et al. 2004). (c) In the case of the c-jun and c-
myc regulatory regions, the TCF and AP-1 sites are not near each other (Nateri et al. 
2005, Yochum et al. 2008), suggesting a model where DNA looping is stabilized by 
interactions between c-Jun and TCF. TCF, T-cell factor; HMG, high mobility group; 
WRE, Wnt response elements; LEF, lymphoid enhancer-binding factor. 
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Figure 1.7  VegT is required for the organizer formation.  

(A) Maternal VegT (purple shade) is localized in vegetal hemisphere of mature oocyte 
and cleaving blastula of Xenopus.  Prior to MBT, VegT and dorsally enriched β-catenin 
(green shade) act together to establish Nieuwcoop Center (black meshed oval ) in dorsal 
vegetal cells through inducing high level expression of nodal related genes (including xnr 
1,2,4,5,6).  The diffusible nodal activity induces overlying dorsal marginal cells to form 
Spemann organizer (red meshed oval) in combined action with maternal Wnt/β-catenin 
signaling (green). The black Dotted lines separate the early blastula into three sections 
roughly cooresponding to prospective endoderm, mesoderm,and ectoderm. The 
nieuwcoop arises in the endoderm region on dorsal side, and the spemann organizer 
subsequently forms in the dorsal mesoderm area.  
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  CHAPTER 2
 

INVESTIGATING TARGET SELECTION BY NON-C-CLAMP VERTEBRATE 
TCFS 

 

Abstract 
 
Specific DNA recognition by transcription factors is essential for proper gene regulation.  

The TCF family members are the major transcription factors mediating Wnt/β-catenin 

signaling.   However, how TCFs recognize specific targets in the information rich 

genome is not fully understood.  All TCFs share a highly conserved DNA binding 

domain, the High Mobility Group (HMG) domain, which binds to specific sequences in 

Wnt-dependent cis-regulatory modules (W-CRMs).  However, this DNA binding alone 

seems insufficient for recognizing specific targets in vivo.  It has been suggested that 

most invertebrate TCFs and certain vertebrate TCF isoforms utilize a bipartite DNA 

binding mechanism to enhance recognition specificity, which involves HMG binding to 

TCF sites, and a secondary DNA binding domain, known as the C-clamp, binding to its 

cognate motif, known as the Helper sites.   However, most vertebrate TCF isoforms have 

lost the C-clamp during evolution.  How these non-C-clamp TCFs locate specific targets 

remains an unexplored question in the field.  To examine this question, I tested two 

hypotheses in this chapter.  First, the HMG domain of non-C-clamp TCFs has increased 

binding affinity and specificity to endogenous targets compared to the HMG domain of 

C-clamp-dependent TCFs, allowing non-C-clamp TCFs bypass the assistance from the C-

clamp domain.  Second, non-C-clamp TCFs cooperate with other TFs to locate and 
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coordinate regulation of Wnt targets.  My findings do not support the first hypothesis by 

showing that LEF1, a vertebrate TCF lacking a C-clamp, could not activate fly W-CRMs, 

however,  when fused with a C-clamp domain, LEF1-C-clamp chimeric protein was able 

to activate fly W-CRMs in vivo, suggesting the HMG domain of LEF1 is insufficient and 

still requires C-clamp to recognize Wnt targets in flies.  To address the second hypothesis, 

I analyzed the Siamois W-CRM sequence by a mutagenesis screening, and found that 

additional DNA motifs besides TCF sites influence Wnt-dependent activation of Siamois 

reporter in HEK293T cells.  Further studies need to be done to identify the TFs binding to 

the identified motifs and the mechanism of how they affect Siamois W-CRM activity (see 

Chapter 3).  

Introduction 
 
 In all metazoans, Wnt/β-catenin signaling plays essential roles in embryonic 

development and adult tissue homeostasis (Archbold et al., 2012; Logan and Nusse, 

2004b).  TCF family members are the best studied transcription factors regulating the 

majority of Wnt target genes (Archbold et al., 2012).  The classic transcriptional switch 

model, mainly based on the action of fly TCF, proposes that TCFs function as sequence -

specific DNA anchors to recruit co-regulators to control transcription (Cadigan and 

Waterman, 2012).  Thus, positioning TCFs at the right locations in the genome is key to 

Wnt signaling outputs.  How TCFs select specific targets, however, is not fully 

understood.  

 The HMG domain is the major DNA binding domain highly conserved in all TCF 

proteins (Archbold et al., 2012).   HMG binds to the consensus SCTTTGATS (S=G/C) 

with highest affinity in vitro (Atcha et al., 2007; van Beest et al., 2000; Giese et al., 1991; 
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Hallikas et al., 2006; van de Wetering et al., 1991, 1997).   However, numerous in vivo 

functional TCF sites deviate from the consensus with varying degrees.  The high 

degeneracy of TCF binding sites argues additional information is required to define the 

TCF binding code.   

 Most invertebrate TCFs and E-tail isoforms of vertebrate TCF1 and TCF4 possess 

a secondary DNA binding domain, known as the C-clamp (Archbold et al., 2012).  It 

binds to a GC-rich DNA motif termed the Helper site (Atcha et al., 2007; Chang et al., 

2008b).  The bipartite DNA binding, involving the HMG-TCF site and the C-clamp-

Helper site interactions, allows TCF to read an extended DNA sequence, increasing the 

target selection specificity (Chang et al., 2008b).  Functionally, the bipartite regulation 

has been shown to be essential for regulation of many W-CRMs in various contexts 

(Atcha et al., 2007; Bhambhani et al., 2014; Chang et al., 2008b; Hoverter et al., 2012).  

In silico searches for clusters of TCF and Helper sites led to successful identification a 

handful of novel W-CRMs in flies and worms (Bhambhani et al., 2014, Archbold et al., 

2014), demonstrating that understanding the targeting code of TCF improves our ability 

to learn new aspects of Wnt signaling.  

 However, bipartite recognition must not be the complete answer for TCF 

targeting, because most vertebrate TCF isoforms do not contain a C-clamp.  Has the C-

clamp been replaced by a separate protein in vertebrate systems? A related C-clamp 

domain has also been identified in other DNA binding transcription factors including 

HDBP1/GEF(GlutEF), HDBP2/PBF, and Gig1 (Tanaka et al., 2004).  However, these C-

clamp-containing TFs have not been implicated in the Wnt pathway.  More importantly, 

Helper sites or similar sequences do not exist in the W-CRMs of many vertebrate Wnt 
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targets, e.g., Siamois and c-myc (Brannon et al., 1997; He et al., 1998; Yochum et al., 

2008), suggesting these W-CRMs are regulated by TCF isoforms containing no C-clamp.  

How non-C-clamp TCFs accomplish specific targeting is largely uninvestigated.  

 To address this question, I tested two hypotheses.  First, the HMG domain of non-

C-clamp TCFs has increased binding affinity and specificity to endogenous targets 

compared to the HMG domain of C-clamp-dependent TCFs, allowing non-C-clamp TCFs 

bypass the assistance from the C-clamp domain.  Second, non-C-clamp TCFs cooperate 

with other TFs to locate and coordinate regulation of the Siamois W-CRM.  In the first 

half of this chapter, I showed that attaching the fly C-clamp domain to human LEF1 

makes it capable to regulate endogenous Wingless (Wg, fly Wnt) targets in cells and 

transgenic flies.  These results indicate the HMG domain of non-C-clamp vertebrate 

TCFs requires additional help to locate endogenous targets.  In the latter half of this 

chapter, I focused on the previously described W-CRM of Siamois to search for 

additional cis motifs important for Wnt/TCF regulation.   From a mutagenesis screen, 

sequence motifs enhancing or diminishing the Siamois reporter activation in HEK293T 

cells were identified.  In particular, I described a set of three T-box sites collectively 

repressing Siamois reporter, and a set of five “CAGT” sites needed for full activation of 

the reporter.  These functional motifs may positively or negatively influence the W-CRM 

activity via affecting TCF activities.  Further studies characterizing the function of these 

motifs and identifying the associated trans factors in Xenopus are needed to elucidate the 

mechanism (see Chapter 3).   
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Results and Discussion 

LEF1 needs a C-clamp to activate Drosophila W-CRMs in Kc cells 
 

Although the HMG domains of all TCFs bind to DNA with no detectable difference in 

vitro, this does not mean they display same DNA binding specificity in vivo.  One 

possibility that has not been formally tested is whether the HMG domains of non-C-

clamp TCFs are better at selecting endogenous targets than that of the invertebrate TCFs, 

which require aid by C-clamps.  To test this hypothesis, we choose to characterize LEF1, 

which does not contain a C-clamp domain (Cadigan and Waterman, 2012).  There are 6 

amino acids differences in the HMG domains (about 80 amino acids) of fly TCF and 

LEF1 (Archbold et al., 2012).  Could it be possible that the minor sequence variation 

underlies a difference in target selection in vivo?   

 To address this question, we assayed the ability of LEF1 to activate a known fly 

W-CRM, nkdIntE W-CRM, in Kc cells, an established Drosophila cell line (Chang et al., 

2008b).   This W-CRM was isolated from the first intron of the naked cuticle (nkd) gene.  

The Drosophila TCF (dTCF or Pangolin) binds to this region in vivo and mediates Wg 

activation of nkd (Chang et al., 2008a).  The nkdIntE W-CRM contains three functional 

TCF sites and two Helper sites, and requires bipartite TCF binding for its regulation.  

Mutating the Helper sites or the C-clamp domain of fly TCF strongly reduces nkdIntE 

reporter activation in both Kc cells and in transgenic flies (Chang et al., 2008b; 

Ravindranath and Cadigan, 2014).    

 We first determined if LEF1 has activity in fly Kc cells. In LEF1-expressing 

transgenic flies, it has been shown that LEF1 activated the homeotic gene Ultrabithorax 

(Ubx) (Riese et al., 1997).  This result suggests LEF1 is capable of coordinating with the 
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endogenous fly transcriptional machinery to turn on transcription.  To validate that LEF1 

retains similar activity in Kc cells, we first tested if LEF1 can induce a synthetic reporter 

driven by 6 consecutive copies of TCF binding sites (6xTCF reporter) in Kc cells.  To 

rule out the contribution of endogenous fly TCF, RNAi targeting 5’UTR of fly TCF were 

introduced into Kc cells.  The RNAi effectively depleted endogenous fly TCF, as 

indicated by that 6xTCF reporter no longer activated by constitutive active Armadillo, the 

fly -catenin (Figure 2.1 B).   Constructs expressing the fly TCF with a distinct 5’UTR 

sequence or LEF1 were transfected into RNAi treated cells to rescue loss of endogenous 

fly TCF activity.   Fly TCF effectively restored reporter activity to a similar level as seen 

in control RNAi cells (Figure 2.1B).  LEF1 also strongly restored reporter activity, 

suggesting LEF1 could recognize the synthetic reporter, and cooperate with Armadillo to 

activate transcription. Interestingly, LEF1 displayed much stronger rescue activity than 

fly TCF.  This could be because LEF1 was expressed at higher level than fly TCF.  Due 

to technical reasons, we were unable to compare the expression level of the two (the V5 

epitope tag was not properly expressed in the fly TCF expression construct).  

Alternatively, it could be because LEF1 has a stronger ability to recruit Armadillo.  This 

postulation agrees with previous observations implicating that LEF1 is better at recruiting 

β-catenin in vivo than other TCF members.  For example, when injected in ventral cells 

of Xenopus embryos, LEF1 alone induces axis duplication, a hallmark of β-catenin- 

dependent Wnt signaling activation. However, TCF3 and TCF4 only do so when β-

catenin was co-injected (Gradl et al., 2002; Huber et al., 1996; Molenaar et al., 1996 and 

data not shown).   

 Similar RNAi and rescue experiments were done with the nkdIntE reporter, 
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representing a natural W-CRM.  As expected, dTCF rescued effectively.   In contrast, 

LEF1 exhibited very minimal rescue activity, dramatically different from the situation 

seen with 6xTCF reporter (Figure 2.1C).   This result indicates LEF1 is deficient at 

recognizing the endogenous nkdIntE which normally requires bipartite recognition, 

arguing the HMG domain of LEF1 is not intrinsically better than that of fly TCF at 

selecting endogenous targets, at least in Kc cells.   

 To test whether the inability of LEF1 to activate nkdIntE is specifically due to 

lack of target recognition, we constructed LEF1-C-clamp chimeric proteins and tested if 

they could rescue the nkdIntE reporter.  As Figure 2.1A shows, two LEF1 chimeric 

proteins (LEF1-CC32, LEF1-CC44) were constructed by adding the dTCF C-clamp 

fragments at the C terminus of LEF1.   When expressed at similar levels (Figure 2.1C), 

these chimeric LEF1s were able to rescue the 6xTCF reporter as well as LEF1.   On the 

other hand, unlike LEF1, they robustly rescued nkdIntE reporter, suggesting the C-clamp 

domain markedly increased LEF1’s capacity to recognize and associate with nkdIntE.  

Collectively, these results argue that the HMG domain of LEF1 is sufficient for 

recognizing an artificial W-CRM with a dense cluster of TCF sites, but insufficient for 

recognizing a natural W-CRM.   

LEF1 needs a C-clamp to mediate Wg signaling in developing fly wing 
 
In Kc cells, we demonstrated that the C-clamp is necessary for LEF1 to target a fly W-

CRM.  However, in the developing fly visceral mesoderm, LEF1 has been previously 

seen to activate a Ubx W-CRM reporter (Riese et al., 1997), which contains a Helper-like 

motif near the functional TCF binding site.   Thus we wondered if LEF1 is capable of 

recognizing Wg targets in vivo without assistance by the C-clamp.    
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 To directly address this question, a similar rescue assay as was performed in Kc 

cells was established in the developing wing.  Wg signaling is required for specification 

of the wing margin and adjacent sensory bristles, with loss of signaling resulting in 

notches in the wing blade (Couso et al., 1994; Phillips and Whittle, 1993) and ectopic 

signaling causing ectopic sensory bristles (Blair, 1992; Cadigan et al., 1998).  When 

dTCF/Pan was depleted in flies containing the wing margin specific Gal4 driver C96 

(Krupp et al., 2005) and a UAS-TCF/Pan RNAi construct (Dietzl et al., 2007), notches 

along most of the distal margin were observed with 100% penetrance (Figure 2.2B; Table 

2.1).  In addition, a large number of ectopic wing margin bristles were seen (Figure 

2.2B’; Table 2.1), likely due to derepression of the Wg targets specifying sensory bristles.  

The dTCF/Pan RNAi phenotypes were used to assay the ability of LEF1 or LEF1-C-

clamp chimera (only the LEF1-CC32 was tested), to rescue the derepression and loss of 

activation phenotypes in C96::TCF/Pan RNAi wings.   

 Both the LEF1 and LEF1-C-clamp transgenes had biological activity in the fly 

wing, but with dramatically different specificities.  LEF1 was unable to rescue the wing 

notch phenotype (Figure 2.2C; Table 2.1) but strongly suppressed the formation of 

ectopic bristles (Figure 2.2C’; Table 2.1).  In contrast, the LEF1- C-clamp chimera 

(LEF1-CC32) was able to rescue both the notch and bristle phenotypes (Figure 2.2D, 

2.2D’; Table 2.1).  More than a dozen independent UAS-LEF1 and UAS-LEF1-C-clamp 

lines were generated, and the ones at the lower end of the expression spectrum were used 

in this rescue experiment, because higher expression of either transgene caused wing 

notches in an otherwise wild-type background (data not shown). We suspect that too 

much of either LEF1 protein inhibits Wg signaling by titrating out Armadillo in the 
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nucleus, causing dominant negative effects.  Western blot analysis revealed that the LEF1 

and LEF1-C-clamp transgenes used for the rescue were expressed at similar levels 

(Figure 2.2E).  These data are largely in agreement with the results from Kc cell cultures, 

suggesting, for Wg-activated targets, LEF1 requires a C-clamp to constitute a bipartite 

DNA binding for specific target recognition.  Additionally, the fact that extra bristles 

were rescued by both LEF1 and LEF1-C-clamp chimera indicated that C-clamp is 

dispensable for basal repression. This effect is consistent with findings in flies and 

C.elegans, where mutating Helper sites failed to derepress certain targets as mutating the 

TCF sites did in the domains where Wnt signaling is low (Bhambhani et al., 2014).  

Mutagenesis screen uncovers novel cis-regulatory motifs controlling the Wnt 
responsiveness of the Siamois W-CRM in HEK293T cells 
 
 Based on the aforementioned results, we argue that LEF1, a vertebrate non-C-

clamp TCF protein, is not superior to its fly counterpart in recognizing specific 

endogenous target genes.  LEF1 still needs aid from C-clamp to locate targets in the fly 

genome.  We reasoned that, in the human genome, which contains over 20 times more 

information than the fly genome, non-C-clamp TCF factors must utilize alternative 

approaches to improve their target selection.   

 When examining the DNA sequence of several previously characterized 

vertebrate W-CRMs, including W-CRMs from the Axin2 (Jho et al., 2002), c-myc 

(Yochum et al., 2007) and Siamois loci (Brannon et al., 1997; Fan et al., 1998; Figure 

2.3A), we found no Helper site-like motifs near the functional TCF sites in these W-

CRMs, ruling out C-clamp/Helper site involvement in these W-CRM regulation.   

 In HEK293T cells, reporters driven by these three W-CRMs (previously 
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described in Brannon et al., 1997; Jho et al., 2002; Yochum et al., 2007) are only weakly 

activated by stabilized β-catenin S45F (about 2 to 3 fold activation, data not shown). 

p300, an acetyltransferase co-activator recruited by β-catenin, has been shown to 

potentiate W-CRM activation in synergistic action with β-catenin (Hecht et al., 2000; Li 

et al., 2007; Ma et al., 2005; Sun et al., 2000; Takemaru and Moon, 2000).  We saw that 

p300 alone did not induce the Siamois W-CRM reporter, whereas p300 dramatically 

stimulated reporter activation when co-expressed with β-catenin (Figure 2.3B).  This 

effect was also seen with the Axin2 and c-myc reporters, but to a more modest extent 

(data not shown).    

 The Siamois W-CRM is composed of 804 bp upstream of the Transcription Start 

Site (TSS) of Siamois, including its endogenous promoter (Brannon et al., 1997).  There 

are five putative TCF sites found in this region.  Mutating all the TCF sites, abolished 

over 95% of the reporter activation (Figure 2.3C), confirming these sites are functional in 

mediating Wnt stimulation of the reporter in HEK293T cells.   The residual activation of 

the mutant reporter may be the result of indirect regulation by Wnt signaling or more 

divergent TCF binding sites.  

 Siamois is known to be repressed by TCF3 in the absence of Wnt signaling in 

Xenopus embryos (Hikasa et al., 2010; Houston et al., 2002).   To understand the TCF 

regulation of Siamois W-CRM in HEK293T cells, individual TCFs were knocked-down 

by shRNA.  To control for off target effects, two separate shRNAs targeting different 

regions of each TCF were used.  The Siamois reporter activity decreased modestly when 

LEF1 or TCF4 were depleted.  In contrast, the reporter increased by over two-fold when 

TCF1 or TCF3 were knocked down (Figure 2.4).  Similar results were observed with the 
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second set of shRNAs (Figure 2.4).  These data suggested endogenous LEF1 and TCF4 in 

HEK293T cells activate Siamois W-CRM, consistent with the generic activating role of 

LEF1 and the previous findings suggesting Xenopus TCF4 as an activator of Siamois 

(Standley et al., 2006).   On the other hand, TCF3 represses Siamois in HEK293T cells, 

indicating conserved regulation by TCF3 (Houston et al., 2002).  However, it is 

surprising to see that TCF1 suppressed Siamois.  We suspect the repressive effect of 

TCF1 was due to knockdown of dominant negative versions of TCF1 (dnTCF1).  

Interestingly, the predominant TCF1 isoform expressed in  HEK293T cells was slightly 

smaller than the full length form (TCF1-B isoform, 48kD) (Weise et al., 2010), and close 

to the size of a dnTCF1 with a E-tail (dnTCF1-E, slightly smaller than 48kD) (Najdi et 

al., 2009)(Figure 2.4B).  Thus, it is possible that the repressive effect is due to this 

dnTCF1-E in 293T cells.  To formally test this, additional experiments, such as RT-PCR 

comparing abundance of dnTCF1-E and TCF1-B isoforms, need to be done.  

 Sequence mutagenesis is a useful approach to study the transcriptional regulation 

of a cis-regulatory DNA elements, e.g., Helper sites were originally identified from a 

mutagenesis screen on nkdIntE (Chang et al., 2008b).   To search for additional cis 

information required for Siamois W-CRM regulation, we semi-systemically mutagenized 

the region surrounding the TCF site cluster (Figure 2.5).  Mutant reporters were assessed 

in HEK293T cells.  Relative activities of mutant reporters are summarized in Table 2.2.   

 This screen revealed several regions of interest for the regulation of the Siamois 

W-CRM.  Besides TCF sites, multiple additional sequences contributed to the Wnt-

dependent activation of the reporter (marked in green in Figure 2.5).  Notably, five 

individual mutants (m4, m11, m24, m25 and m27), each containing a “CAGT” motif, all 
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showed reduction of activation (Figure 2.6, 40% to 60% loss of activation compared to 

WT).   Two mutants with triple “CAGT” sites mutated had no further reduction 

compared to individual mutants (Figure 2.6).   Interestingly, two mammalian W-CRMs 

that our lab is characterizing in mammalian cell cultures (a W-CRM 45kb downstream of 

the Axin2 transcripiton unit and a W-CRM 335kb upstream of the c-myc gene also 

contain multiple “CAGT” sites (although some of them have a variable nucleotide at 

position “T”). The “CAGT” sites are required for the activation of the Axin2 and c-myc 

W-CRMs (L. Chen and P. Burby, unpublished).  The “CAGT” sites may be regulated by 

a common TF activating these W-CRMs.  To determine the functional relevance in 

endogenous context, a reporter with all five CAGT sites mutated will be tested in 

Xenopus embryos.   

 It is not clear what transcription factors bind to the “CAGT” sites.  It has been 

reported that a plant zinc finger protein ZPT2-2 binds to “CAGT” specifically through 

one of its two canonical TFIIIA-type zinc finger domains (Yoshioka et al., 2001).  In 

amphibians and mammals, it is possible that transcription factors with conserved zinc 

finger domains act through these “CAGT” sites.   

 Another candidate is Odd-skipped related (Osr) proteins.  Odd-skipped (Odd) in 

flies and Osr-1, Osr-2 in mammals encode C2H2-type zing finger proteins, which are 

important regulators of multiple embryonic developmental processes, e.g., hindgut 

development in flies (Wang and Coulter, 1996), limb, heart and bone development in 

mammals (Verlinden et al., 2013). Intriguingly, these processes are also controlled by 

Wnt signaling (Archbold et al.,2012).  Odd binds a DNA sequence, TACAGTAGC with 

high affinity  (Meng et al., 2005).  The underlined nucleotides are critical for its in vitro 
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DNA binding (Meng et al., 2005), which contain the “CAGT” motif.  However, the 

adjacent “AGC” sequence does not match with the flanking sequences of most functional 

“CAGT” sites in the Siamois, c-myc and Axin2 W-CRMs. Consistent with this, 

recombinant Osr-1 failed to shift the DNA probe containing “CAGT” sites derived from 

the Axin2 W-CRM (L. Chen and P. Burby, unpublished).  Furthermore, Osr-1 and Osr-2 

function as transcriptional repressors (Rankin et al., 2012), which is inconsistent with the 

function of the identified “CAGT” sites.  Overexpressing Osr-1 or Osr-2 led to reduction 

of Axin2 reporter (L. Chen and P. Burby, unpublished), suggesting negative regulation of 

Axin2 W-CRM by Osr proteins.  Thus, our data suggest Osr proteins may not directly act 

on these “CAGT” sites.    

 Besides mutants defective in activation, a number of mutants were also uncovered 

that had elevated Wnt activation, indicative of being bound by repressors.  In particular, 

three mutants (m34, m7 and m10) sharing a “A/TGGTG” motif, which conforms to a T-

box binding core site, all displayed over 2 fold higher activation than WT, indicating 

these T-box sites mediate repression of Siamois reporter (Table 2.2).    A triple T-box site 

mutant was made and tested.  An additive increase in activity was observed (Figure 2.7).   

The repressive function of these T-box sites were also confirmed in Xenopus embryos 

(Figure 3.1), suggestive of a conserved mechanism across species.  These results will be 

discussed in detail in Chapter 3.  

Materials and Methods 
 
Drosophila cell culture, RNAi and transient transfection  

Drosophila Kc167 cells were cultured and transient transfections were carried out 

as previously described (Fang et al., 2006).  For RNAi treatment, cells were seeded at 



 

58 
 

1×106 cells/ml in growth media supplemented with 10 µg/ml dsRNA for 4 days, diluted 

to 1×106 cells/ml without additional dsRNA, and grown for 3 more days for luciferase 

assay. dsRNAs targeting the 3’UTR of dTCF (Chang et al., 2008b) or β-lactamase 

(negative control) were used (Blauwkamp et al., 2008).   Transient transfections were 

carried out as previously described (Chang et al., 2008b).  For the TCF rescue assays, 50 

ng of luciferase reporters, 2 ng (for 6xTCF) or 10 ng (for nkdIntE) of pAcArm*, 20 ng of 

pAc-dTCF-V5 or pAc-LEF1-V5 or pAc-LEF1C32-V5 or pActin5.1 (negative control) 

and 10 ng of pAc-LacZ (β-galactosidase) were co-transfected.  Each treatment was done 

in triplicates, containing 2.5×105 cells per well.   

HEK293T cell culture, transient transfection and shRNA assays  

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (GIBCO) 

supplemented with 10% fetal bovine serum (BenchMark, 100-106)  at 37°C, 5% CO2.   

Transient transfection was carried out using LipofectamineTM 2000 (Invitrogen, 11668-

027) as instructed by manual. Cells were seeded into a 48 well plate at a density of 0.25 

million/ml one day prior to transfection.  For regular reporter assays, cells were 

transfected with 50ng WT or mutant Siamois W-CRM luciferase reporter and 10ng 

pcDNA3-lacZ reporter plasmids and cultured for 24h before harvested for luciferase 

assay.  For Wnt stimulation, 50ng p-cDNA3β-cateninS45F and 50ng pcDNA3-p300 were 

co-transfected with reporters.  For basal expression, 100ng empty pcDNA3 vector were 

co-transfected to equalize total DNA amount.   For all the shRNA experiments, 100ng of 

each indicated shRNA plasmid were co-transfected with 50ng reporter plasmid and 50ng 

p-cDNA3β-cateninS45F.  Transfected cells were cultured for 48h before harvested for 

luciferase assay.   
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Luciferase reporter assay and statistical analysis 

All luciferase assays (for both Kc cells and HEK293T cells) were carried out essentially 

as previously described (Chang et al., 2008b).  In brief, cells were lysed in 100μl lysis 

buffer and assayed using the Tropix Luc-screen kit (Applied Biosciences).  Luciferase 

and β-galactosidase activity were measured using the Promega Glamax system.  The 

reporter activity was determined by the ratio of luciferase and β-galactosidase activity.    

To calculate relative fold activation (Y axis of the reporter assay bar graph), reporter 

activities, including basal activity of mutant reporters and Wnt-stimulated reporter 

activities of WT and mutant reporters were normalized to basal activity of WT reporter, 

which was set to 1.  All experiments contained three technical replicates, and data shown 

are representative of at least two independent experiments.   

Reporter activities were log transformed before statistical analysis with a two tailed 

Student’s T-test conducted using GraphPad Prism software (GraphPad Prism, Inc., San 

Diego, CA).  A P value <0.05 was considered statistically significant for all analyses.  

D. melanogaster transgenics and genetics  

Transgenic LEF1 and LEF1 C-clamp flies were generated by P-element transgenesis 

(performed by BestGene Inc.).  w1118 was obtained from Bloomington Stock Center. 

C96::Gal4 was kindly provided by Dr. Rolf Bodmer.  The dTCF RNAi line (#25940) was 

obtained from Vienna Drosophila RNAi Center.  All fly crosses were performed at 25°C.  

Plasmids  

For luciferase reporter assays in Drosophila Kc167 cells,  nkdIntE and 6xTCF luciferase 

reporters were described previously (Chang et al., 2008b).  For expression plasmids, pAc-

dTCF, pAc-Arm*, were described previously (Blauwkamp et al., 2008; Chang et al., 
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2008b).  pAc-LacZ (invitrogen) was used as a transfection control in reporter assays.  

pAc-LEF1-V5 was generated by subcloning a human LEF1 fragment from an expression 

plasmid (kindly provided by Dr. Marian L. Waterman) into pActin5.1 (invitrogen) to 

introduce a V5 tag downstream LEF1 C terminus.  PCR based amplification of LEF1 was 

carried out using forward primer 5’CCCCGGTACCATGCCCCAACTCTCCGGA3’ and 

reverse primer 5’CAGTGAATTCTGCGATGTAGGCAGCTGTCATTCTTGG3’ and 

inserted into the KpnI and EcoRI sites of the pActin5.1 vector, with the stop codon 

mutated (underlined).  LEF1-C32 and LEF1-C44 were generated by inserting the C-

clamp fragment PCR amplified from dTCF (LEF1-C32: 

KKCRARFGLDQQSQWCKPCRRKKKCIRYMEAL; LEF1-C44: 

KKCRARFGLDQQSQWCKPCRRKKKCIRYMEALNGNGPAEDGSCF) into EcorRI 

site of pAc-LEF1-V5.  

For transgenic fly generation, pUAS LEF1V5 and pUAS LEF1C32(and C44)V5 

were generated by subcloning LEF1V5 and LEF1C32 (and C44)V5 into pUAST vector.  

LEF1V5 and LEF1C32 (and C44)V5 were digested using the KpnI and PmeI sites and 

inserted into the KpnI and XbaI sites of pUAST.  Prior to insertion, pUAST vector was 

restricted with XbaI and sticky ends filled in by Klenow to create blunt ends, followed by 

a restriction with KpnI.   

For luciferase reporter assays,  Siamois W-CRM luciferase reporter was previously 

described (Brannon et al., 1997).  All the mutants were generated by site directed 

mutagenesis using Stratagene QuickChange kit (Agilent).  The primers used for all 

mutagenesis contain the mutated sequences shown in Table 2.2 with at least 20nt flanking 

sequence on both sides.  pcDNA3-β-cateninS45F and pcDNA3-p300 previously 
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described (Hecht et al., 2000; Yochum et al., 2007).   
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Figure 2.1 LEF1-C-clamp activates nkdIntE reporter in Kc cell, whereas LEF1 does 
not. 

 (A) Schematic depicting the Drosophila TCF (dTCF), LEF1, and LEF1-C-clamp 
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chimeras (LEF1-C32 and LEF1-C44), showing the location of the β-catenin binding 
domain (green), the HMG domain (red) and the C-clamp (blue).  The amino acid 
sequence of C-clamp fragments (32aa and 44aa, respectively) in LEF1-C32 and LEF1-
C44 is shown in the box.  (B & C) TCF rescue assay in Kc cells. Endogenous dTCF was 
depleted with dsRNA targeting the 3’ UTR region.  6xTCF reporter (B) or nkdintE 
reporter (C) was co-transfected with Arm* and indicated TCF expression plasmids. The 
6xTCF reporter was rescued by all the TCFs but to different extents.  All cells were co-
transfected with pAC-lacZ for normalization of transfection efficiency.  LEF1, LEF1-32 
and LEF1-C44 displayed similar rescue activity, which were more than 10 times stronger 
than dTCF.  The nkdintE reporter was efficiently rescued by dTCF, LEF1-C32, and 
LEF1-C44, but not by LEF1.  Relative activation fold was calculated by normalizing 
each condition against mock rescue condition indicated by empty vector (E.V.), which 
was set as 1.  In B and C, the data shown are representative of multiple independent 
experiments.  Log transformed data were analyzed using One-way ANOVA with Tukey's 
post hoc test, p < 0.05, N=3 (technical repeats), bar = average + SEM.  Means with the 
same letter above are not significantly different from each other.  Means with different 
letters above are significantly different.  (D) Western-blot against V5 epitope showing 
comparative expression level of LEF1, LEF1-C32 and LEF1-C44 in the rescue assays.  
The dTCF expression construct does not express a V5 tag, thus the expression level of 
dTCF was not shown in this blot.  
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Figure 2.2 LEF1-C-clamp rescues Wing notches in dTCF RNAi transgenic flies, but 
LEF1 does not.  

(A-D) Images of adult wings containing the wing driver C96-Gal4 crossed to WT (A,A’), 
UAS-dTCF/Pan RNAi (B, B’) or UAS-TCF/Pan RNAi plus UAS-LEF1 (C, C’) or UAS-
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LEF1 plus the C-clamp of TCF/Pan (D, D’).  Knockdown of dTCF leads to notches 
(arrowheads) and ectopic wing margin bristles (block arrows) along the periphery of the 
wing (where C96-Gal4 is active; B, B’).  Expression of the human LEF1 transgene 
significantly rescues the ectopic bristle expression, but not the notches (C, C’).  
Expression of a LEF1-C-clamp chimera rescues the wing margin defects and prevents 
ectopic bristle formation, and causes a L5 vein defect (arrow).  Details about the 
penetrance of these phenotypes are listed in Table 2.1.  (E) Expression of human LEF1 
and LEF1-C-clamp chimera in wing imaginal discs. Westernblot showing the expression 
levels in dissected wing discs from two lines (A and B) of V5 tagged LEF1 (*) or the 
LEF1-C-clamp chimera (**). 
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Figure 2.3 TCF sites are required for robust activation of the Siamois W-CRM 
reporter in HEK293T cells.   

(A) Schematic depicting the Siamois promoter-proximal W-CRM luciferase reporter 
construct. The 804bp W-CRM contains five predicted TCF sites (grey rectangles). The 
bent arrow indicates the TSS (+1) of the firefly luciferase gene.  (B) p300 potentiates β-
catenin induced Siamois reporter activation in HEK293T cells.  Siamois reporter (50ng) 
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was co-transfected with control vector, β-catenin (β-catS45F) (50ng), p300 (50ng), or 
both β-catenin and p300 as indicated. Total DNA was equalized by adding pCDNA3 
empty vector. Relative Activation Fold (RAF) is all normalized against the control vector 
condition, which is set to 1.  The inset showing enlarged RAF of the first three 
conditions.  β-catenin alone induced ~ 4 fold activation of Siamois reporter, and p300 
alone did not activate the reporter. Together, β-catenin and p300 synergistically induced 
dramatic activation of Siamois reporter.  The data shown are representative of multiple 
independent experiments.  Log transformed data were analyzed using One-way ANOVA 
with Tukey's post hoc test, p < 0.05, N=3 (technical repeats), bar = average + SEM.  
Means with different letters above are significantly different.  (C) TCF sites mediate most 
Wnt activation of Siamois reporter in HEK293T cells.  TCF site mutant, with all five 
putative TCF sites mutated, lost most β-catenin/p300 induced activation. The data shown 
are representative of multiple independent experiments.  Log transformed data were 
analyzed using a two tailed Student’s T-test, p <0.05. ** p < 0.01.  
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Figure 2.4 Endogenous TCFs in HEK293T cells display different regulatory activity 
of Siamois reporter.  

TCF1 and TCF3 mediate repression of Siamois reporter whereas LEF1 and TCF4 
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mediate activation of the reporter.  Plasmids expressing shRNA against each TCF were 
co-transfected with the reporter, β-catenin (β-catS45F) and p300 expression constructs.  
Baseline reporter activity is set as 1 (not shown in the graph), each treatment is 
normalized against baseline activity to calculate RAF.  Knockdown of TCF1 or TCF3 
resulted in large increase of reporter activity.  In contrast, knockdown of LEF1 or TCF4 
reduced reporter activity.  Knockdown experiments were performed with two sets of 
different shRNAs indicated by “1” and “2” below X axis, and similar results were 
obtained from either shRNA treatment.  The data shown are representative of multiple 
independent experiments.  Log transformed data were analyzed using One-way ANOVA 
with Tukey's post hoc test, p < 0.05. N=3 (technical repeats), bar = average + SEM.  
Significant difference is indicated by letters above the bars. Letters shared in common 
between or among the groups would indicate no significant difference.  Different letters  
indicate significant difference. (B) TCF1 suppression of Siamois reporter may be 
mediated by dominant negative (dn) TCF1E. Upper cartoon illustrating dnTCF1E is 
slightly smaller than TCF1B (taken from Najdi et al.,2009).  Lower western blott 
showing major TCF isoform in HEK293T cells is smaller than TCF1B in other cell lines, 
which corresponds to estimated size of dnTCF1E and TCF1B respectively (taken from 
Weise et al., 2010).  
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Figure 2.5 Mutagenesis screen uncovers novel cis-regulatory motifs controlling the 
Wnt responsiveness of the Siamois W-CRM in HEK293T cells.   

Sequence of the Siamois W-CRM (GenBank: AF016226.1) is shown.  Transcription start 
site is indicated with a bent arrow. Mutated motifs are alternately lined above and 
beneath, with names labeled above.  Motifs contributing to activation, repression and no 
change are highlighted in green, red and grey, respectively.  m1, m16, m20, m28, m33 
correspond to five putative TCF binding sites labeled with *. m34, m7 and m10 
correspond to three putative T-box binding sites labeled with #.  See Table 2.2 for 
additional information. 
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Figure 2.6 CAGT sites mediate activation of Siamois W-CRM in HEK293T cells. 

HEK293T cells were transfected with WT or indicated CAGT site mutant reporter 
plasmids.  For Wnt stimulation, β-cateninS45F and p300 expression constructs were co-
transfected with the reporters.  The CAGT site mutants all showed reduced activation.  
The data shown are representative of multiple independent experiments.  Bar = average + 
SEM, N=3 (technical repeats).  Log transformed data were analyzed using a two tailed 
Student’s T-test, p <0.05. ** p < 0.01, *** p < 0.001.  
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Figure 2.7 T-box sites mediate repression of Siamois W-CRM in HEK293T cells. 

HEK293T cells were transfected with wild-type or triple T-box site mutant reporter 
plasmids and cultured for 24 h before harvesting for a luciferase assay.  For Wnt 
stimulation, β-cateninS45F (a constitutive active mutant version) and p300 (to boost β-
catenin-induced activation) expression constructs were co-transfected with the reporters.  
The T-box site mutant had increased activity with or without β-catenin/p300, shown by 
the grey bars and black bars (enlarged in the inset), respectively.  Bars represent the mean 
of technical triplicates + SEM.  RLUs were log10 transformed before statistical analysis 
with a two tailed Student’s T-test. ** p < 0.01, *** p < 0.001.  
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Table 2.1 The C-clamp is required for Wg activation but not basal repression in a 
TCF/Pan rescue assay. 

The C-clamp is required for Wg activation but not basal repression in a TCF/Pan rescue 
assay.   
Two independent lines of UAS-Lef1 and UAS-Lef1-C-clamp with similar expression 
levels (see Figure 2.2E) were assayed.  Expression of either transgene with the C96-Gal4 
driver had little or no effect on wing development in an otherwise wild-type background.  
Percentages tabulated for the wing phenotypes seen upon knock down of TCF.  Depletion 
of TCF/Pan with a UAS-driven RNAi hairpin causes mostly large notches, and leads to 
more than 20 ectopic bristles per wing and a high penetrance of L5 vein defects.  
Expression of human Lef1 (Lef1) significantly rescues the ectopic bristles, but has little 
effect on the size and frequency of the wing notches.  In contrast, expression of Lef1 with 
the C-clamp of TCF/Pan (Lef1-C-clamp) rescues both ectopic bristles and the wing notch 
phenotype.  (n) represents the number of wings examined for each genotype.  Depletion 
of TCF/Pan and expression of Lef1 and Lef1-C-clamp also resulted in a disruption of the 
L5 vein (see Figure 2.2).  Since this phenotype has not been linked to Wg signaling, it is 
not considered in this chapter. 
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Table 2.2 Summary of the Siamois W-CRM mutant reporter activity in HEK293T 
cells.  
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  CHAPTER 3
 

VEGT PLAYS A DUAL ROLE IN THE TCF TRANSCRIPTIONAL SWITCH 
REGULATING SIAMOIS EXPRESSION IN XENOPUS 

Abstract 

The T-cell factor (TCF) family of transcription factors are major modulators of 

Wnt/β-catenin signaling in animals.  TCFs regulate Wnt targets through a 

transcriptional switch, repressing transcription in the absence of signaling, while 

activating target gene expression when bound with β-catenin.  Vertebrates contain 

several TCFs which are specialized for either basal repression (e.g., TCF3) or β-

catenin-dependent activation (e.g, TCF1) of Wnt-dependent cis-regulatory modules 

(W-CRMs).  Wnt/ β-catenin signaling is thought to promote an exchange of repressive 

and activating TCFs on W-CRMs, but how this is controlled is not well understood.  

In this study, we examined this question with TCF3, a Wnt target gene repressor, 

using a W-CRM controlling the dorsal organizer gene Siamois in Xenopus embryos.  

In addition to the TCF binding sites previously shown to mediate basal repression, we 

identified three T-box sites required for repression and provide evidence that the T-

box protein VegT binds to these sites in vitro and in vivo.  Knockdown of VegT 

causes vegetal-oriented expansion of Siamois and Chordin expression in Xenopus late 

blastula.  VegT binds to TCF3, and this interaction is inhibited by the activity of 

homeodomain interacting protein kinase 2 (HIPK2), a kinase previously found to 

facilitate the TCF transcriptional switch in Xenopus.  In addition to their role in basal 
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repression, the T-box sites also contributed to gene activation, and VegT remained 

associated with Wnt target gene chromatin after forced HIPK2 expression.   These 

data support a model where VegT acts with TCF3 to repress Siamois in the absence of 

Wnt/β-catenin signaling, but VegT also contributes to Siamois activation.  This adds a 

new level to our understanding of how the TCF transcriptional switch regulates Wnt 

targets. 

Introduction 
 
 Wnt/β-catenin signaling plays essential roles in embryogenesis, tissue 

homeostasis and regeneration among all metazoans that have been studied (Clevers 

and Nusse, 2012; Logan and Nusse, 2004a; Nusse, 2012). Dysregulation of Wnt/β-

catenin signaling has been linked to many human diseases, including various cancers 

(Polakis, 2012).  The Wnt pathway is active in many tissues, where it regulates 

different target genes in a context-dependent manner (Archbold et al.,2012). How this 

signaling pathway regulates such a large diversity of target genes is incompletely 

understood. 

Wnt/β-catenin target genes are regulated through a conserved signaling cascade 

that is still being elucidated (Cadigan and Peifer, 2009; MacDonald et al., 2009; 

Valenta et al., 2012). The hallmark event of the activated pathway is stabilization and 

nuclear accumulation of the transcriptional co-regulator β-catenin.   Nuclear β-catenin 

is recruited to target gene chromatin by binding to transcription factors (Archbold et 

al., 2012; Valenta et al., 2012), the best characterized of which are the T-cell factor 

(TCF) family (Cadigan and Waterman, 2012).  TCFs are thought to act as 

transcriptional switches, where in the absence of signaling, TCFs complexed with co-
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repressors inhibit target gene expression.  Upon Wnt signaling, β-catenin binds to 

TCFs and converts them into transcriptional activators (Cadigan, 2012). 

The transcriptional switch model can explain several aspects of Wnt target gene 

regulation, but the situation has an added complication in vertebrates.  Organisms like 

Drosophila and C. elegans have a single TCF with little isoform diversity (Archbold et 

al., 2012; Cadigan and Waterman, 2012), and it is clear that these transcription factors 

perform both sides of the switch, i.e., basal repression and Wnt-dependent activation 

(Cadigan, 2012).  Amphibians and mammals have four TCFs, TCF1 (also called 

TCF7L), LEF1, TCF3 (also called TCF7L1) and TCF4 (TCF7L2).  Vertebrate TCFs 

have become more specialized in regulating the transcriptional switch (Archbold et al., 

2012; Hoppler and Kavanagh, 2007).  TCF3 primarily functions as a transcriptional 

repressor in regulating Wnt targets (Houston et al., 2002; Kim et al., 2000; Liu et al., 

2005; Merrill et al., 2004), and many of its functions do not require its β-catenin 

binding domain (Liu et al., 2005; Wu et al., 2012).  LEF1 and TCF1, on the other hand, 

are primarily involved in activation of Wnt targets (Galceran et al., 1999; Hoverter et 

al., 2012; Kratochwil et al., 2002; Liu et al., 2005), and this functions requires binding 

to β-catenin (Galceran et al.,2004).  The isoforms of LEF1 and TCF1 lacking the β-

catenin binding domain function as dominant negatives to suppress Wnt targets 

(Hovanes et al., 2001; Roose et al., 1999; Tiemessen et al., 2012).  TCF4 can act as 

both an activator or a repressor of Wnt signaling, depending on the context (Lien et al., 

2014; Liu et al., 2005; Nguyen et al., 2009; Standley et al., 2006; Tang et al., 2008; Van 

de Wetering et al., 2002).  How these distinct TCFs act together to regulate Wnt targets 

is not well understood. 
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TCFs bind DNA through a highly conserved High Mobility Group (HMG) domain 

(Cadigan and Waterman, 2012).  The DNA binding specificity of vertebrate TCFs is 

very similar (Badis et al., 2009; van Beest et al., 2000), suggesting that they compete for 

the same binding sites at Wnt target genes.  This implies that a “TCF exchange” might 

occur when Wnt targets are induced by the pathway (Cadigan, 2012).  For example, in 

mouse embryonic stem cells (ESCs), Wnt signaling promotes an undifferentiated, 

pluripotent state (Clevers and Nusse, 2012), with TCF3 antagonizing and TCF1 

promoting self-renewal, respectively, consistent with the TCF transcriptional switch 

model (Yi et al., 2011).  Wnt/β-catenin signaling has been shown to reduce TCF3 

expression in ESCs, either by inhibiting its transcription (Atlasi et al., 2013) or by 

removing it from Wnt target gene chromatin, resulting in TCF3 degradation (Shy et al., 

2013). Thus, in this context, the Wnt pathway appears to effect a TCF exchange by 

repressing TCF3 levels, allowing activating TCFs (e.g., TCF1) to take its place. 

Another well characterized example of a Wnt-induced TCF exchange occurs 

during early embryogenesis in Xenopus.  Wnt/β-catenin signaling is required for 

dorsoventral patterning in this organism, through specification of a dorsal organizer 

after fertilization (Hikasa and Sokol, 2013). The organizer depends on β-catenin 

induction of the homeobox genes Siamois and twin (Bae et al., 2011; Fan and Sokol, 

1997; Laurent et al., 1997; Lemaire et al., 1995).  In addition, Xenopus Wnt8 is 

zygotically expressed in ventral cells during gastrulation, where it activates the 

homeobox gene Vent2 (Karaulanov et al., 2004; Ramel and Lekven, 2004).  TCF3 is a 

repressor of these Wnt target genes (Hikasa et al., 2010; Houston et al., 2002; Liu et 

al., 2005) and acts to limit the expression domain of Wnt targets (Houston et al., 
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2002).  Wnt/β-catenin signaling promotes phosphorylation of TCF3, via the 

homeodomain interacting protein kinase 2 (HIPK2) (Hikasa et al., 2010).  This 

phosphorylation results in removal of TCF3 from the Wnt-dependent cis-regulatory 

modules (W-CRMs) that control Vent2 and Siamois expression (Hikasa and Sokol, 

2011; Hikasa et al., 2010).  The HIPK2 sites in TCF3 that mediate this regulation are 

not present in TCF1, which can explain why Wnt stimulation promotes an exchange of 

TCF3 for TCF1 on Vent2 and Siamois W-CRM chromatin (Hikasa and Sokol, 2011). 

In this report, we examined the Siamois W-CRM in detail to understand how the 

TCF transcriptional switch operates.  In our initial screen we identified three predicted 

T-box binding sites that contribute to repression of the W-CRM.  These sites are bound 

by the T-box factor VegT, which physically interacts with TCF3.  This interaction is 

disrupted by HIPK2, which supports a model where Wnt/β-catenin signaling disrupts 

the TCF3-VegT complex, resulting in removal of TCF3 from the W-CRM chromatin.   

We also found that Wnt/HIPK2 activation does not remove VegT from W-CRMs, and 

that VegT and the T-box sites are required for full activation of Siamois.  Taken 

together, these data support a dual role for VegT in regulating Siamois expression, 

working with TCF3 to repress expression in the absence of Wnt signaling, but also 

contributing to Siamois activation.  Our findings reveal an additional component of the 

TCF transcriptional switch in an important vertebrate Wnt target. 

Results 

 

T-box and TCF sites in the Siamois W-CRM contribute to its repression in ventral 
blastomeres 
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The Siamois W-CRM has been described previously (Brannon et al., 1997; Fan et al., 

1998).  For our analysis, we used a reporter constructed by Brannon and coworkers, 

composed of the 804 bp upstream of the Transcription Start Site (TSS) of Siamois, 

including its endogenous promoter (Brannon et al., 1997).  This stretch of DNA 

contains five predicted TCF binding sites (Figure 3.1A), three of which (S0, S1 and S3) 

were reported to mediate Wnt/β-catenin activation (Brannon et al., 1997; Fan et al., 

1998).  In our assays, mutation of these three sites resulted in a modest decrease in 

response to pathway activation (data not shown), suggesting that the other two sites may 

also contribute to activation.  Therefore, we characterized the regulation of a Siamois 

reporter with all five TCF sites mutated by base substitution. 

The initial assay for Wnt regulation involved injection of the reporters into the 

animal side of one-cell stage Xenopus embryos, with or without β-catenin mRNA.  

Injected embryos were harvested for luciferase analysis at stage 10.5, when endogenous 

Siamois expression reach peak levels (Brannon et al., 1997; Lemaire et al., 1995).  

Consistent with previous reports (Brannon et al., 1997; Fan et al., 1998), we observed a 

large activation of the wild-type reporter activity by β- catenin (Figure 3.1B).  Mutation 

of all five TCF sites caused a dramatic derepression of the reporter, and no further 

activation by β-catenin (Figure 3.1B).  The level of baseline activity in the TCF site 

mutant reporter was similar as that seen with the wild type reporter with β-catenin 

activation (Figure 3.1B), highlighting the importance of TCF mediated repression in 

regulating this W-CRM. 

To identify additional cis-regulatory elements that contribute to the regulation of 

the Siamois W-CRM reporter, we systematically mutated the regions surrounding the 
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five TCF sites and tested for Wnt responsiveness in HEK293T cells, where the Siamois 

reporter is known to be active (Fan et al., 1998; Hecht et al., 2000).  This screen 

identified several regions that dampened or heightened reporter activation when 

mutated (Figure 2.5; Table 2.2).  In particular, two mutants destroying predicted T-box 

sites (core consensus: AGGTG) (Conlon et al., 2001; Garnett et al., 2009; Howard et 

al., 2007) drew our attention.  When these two sites, plus another T-box site further 

upstream were simultaneously mutated (Figure 3.1A; Figure 2.5), the reporter was 

activated three fold higher than wild-type by β-catenin in HEK293T cells (Figure 2.7).  

When assayed in Xenopus embryos, the T-box sites were also found to repress reporter 

expression.  Without β- catenin co-injection, mutation of the T-box sites resulted in a 

small but significant derepression of the reporter (Figure 3.1C).  Consistent with the T-

box sites antagonizing Wnt signaling, the mutant reporter was activated more than five-

fold higher than wild-type by exogenous β-catenin (Figure 3.1C).  These data support 

that the T-box sites contribute to repression of the Siamois W-CRM. 

After fertilization, the embryo undergoes cortical rotation, which results in β-

catenin accumulation on the dorsal side as early as the two cell stage (Houston, 

2012; Larabell et al., 1997; Schneider et al., 1996).  This dorsally localized Wnt 

signaling activity induces Siamois expression in dorsal marginal cells during the 

midblastula transition (MBT) (Brannon and Kimelman, 1996; Carnac et al., 1996; 

Kuroda et al., 2004; Lemaire et al., 1995; Sudou et al., 2012).  

To take advantage of this ventral/dorsal asymmetry in endogenous Wnt/β-

catenin signaling, the wild-type and binding site mutant reporters were injected into 

the equatorial region of the ventral or dorsal blastomeres of four-cell stage 
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embryos.  As previously reported (Brannon et al., 1997; Fan et al., 1998), the wild-

type reporter is much more active on the dorsal side (Figure 3.1D, 3.1E).  Mutation 

of the five TCF sites resulted in high reporter activity both ventrally and dorsally, 

indicating derepression (Figure 3.1C).  When the three T-box sites were mutated, 

ventral and dorsal expression were higher than in wild-type controls (Figure 3.1D).  

These results confirm that with endogenous levels of Wnt/β-catenin signaling, the 

TCF and T-box sites contribute to repression of the Siamois W-CRM in vivo. 

 
 

VegT regulates Siamois transcription by directly binding to the Siamois W-CRM 
 
 
Although amphibians have many T-box genes in their genomes (Ryan et al., 1996; Smith 

et al., 1991; Stennard et al., 1999; Uchiyama et al., 2001), VegT stands out as a candidate 

for a direct regulator of Siamois transcription.  Several T-box proteins are involved in 

Xenopus embryogenesis, but they are zygotically expressed (Stennard et al., 1999), 

perhaps too late to regulate Siamois, one of the earliest zygotic genes transcribed at the 

onset of MBT (Blythe et al., 2010; Lemaire et al., 1995).  VegT, on the other hand, is 

maternally expressed and localized to the vegetal hemisphere of ooctyes and cleavage 

stage embryos, where it is required for mesendoderm specification (Horb and Thomsen, 

1997; Showell et al., 2004; Zhang and King, 1996). In addition, VegT has previously 

been shown to regulate Siamois expression, though with conflicting results.  Two groups 

reported that VegT is an activator of Siamois (Cao et al., 2007; Houston et al., 2002; 

Xanthos et al., 2002), while another provided evidence that VegT represses Siamois 

expression (Ishibashi et al., 2007). These studies used different approaches to address the 

relationship between VegT and Siamois expression, and they do not rule out the 
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possibility of multiple levels of regulation (see Discussion for further comments). 

 
To examine the role of VegT in Siamois regulation, we knocked down expression 

of VegT using a morpholino approach.  The vegetal pole of each blastomere was 

injected with a morpholino targeting VegT at the four cell stage, as previously 

described (Heasman et al., 2001; Ishibashi et al., 2007).  Overall, VegT morphants 

gastrulated normally, except that involution and blastopore closure was slightly slower 

than in embryos injected with control morpholino (data not shown).  At the tadpole 

stage, VegT morphants exhibited several defects, including a bent tail toward the 

ventral side, a less distinct somite muscle pattern, a larger head and expanded cement 

gland (Figure 3.2A and B).  These phenotypes are reminiscent of mild LiCl treatment 

of early embryos (Kao and Elinson, 1988), which activates Wnt/β-catenin signaling 

(Klein and Melton, 1996). 

To investigate how VegT regulates Siamois transcription in vivo, we 

conducted whole mount in situ hybridization.  Knockdown of VegT resulted in the 

expansion of Siamois transcripts towards the vegetal pole (Figure 3.2C and 3.2D).  

These data indicate that VegT represses Siamois in the dorsal-vegetal region, 

which is consistent with VegT being localized to the vegetal hemisphere of the 

embryo (Horb and Thomsen, 1997; Zhang and King, 1996).  In addition to the 

expanded expression domain, the mRNA level of Siamois was lower in VegT 

morphants compared to controls (Figure 3.2C and 3.2D).  We also extended our 

analysis to another hallmark organizer gene, Chordin, whose expression requires 

Siamois (Collart et al., 2005; Ishibashi et al., 2007).  Chordin transcripts also 

expanded vegetally in VegT morphants (Figure 3.2 E-G).  These data are in 
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agreement with a previous report (Ishibashi et al., 2007) which proposed that 

VegT restricts Siamois expression and the dorsal organizer to the dorsal/animal 

region of the mid/late blastula. 

The T-box sites in the Siamois W-CRM are similar to previously defined VegT 

consensus sites (Conlon et al., 2001) (Table 3.1).  They also resemble the functional T-

box sites identified in CRMs of several VegT direct target genes, such as derrière, 

Sox17α, Xnr1, Xnr5 and Bix4 (Casey et al., 1999; Hilton et al., 2003; Howard et al., 

2007; Hyde and Old, 2000; White et al., 2002) (Table 3.1).  To test whether VegT 

could bind to the predicted T-box sites from the Siamois W-CRM, we conducted 

electromobility shift assays (EMSAs) using recombinant GST- tagged VegT protein.  

The T-box site probe sequence corresponded to a 38 bp region upstream of the Siamois 

TSS, which contains two T-box sites (Figure 3.3A).  GST-VegT bound to the T-box 

site probe, and binding was abolished by mutating the first five nucleotides of both T-

box sites (Figure 3.3B).   This demonstrates GST-VegT can specifically recognize 

these T-box sites in vitro. 

To examine if VegT associates with Siamois W-CRM in vivo, chromatin immuno- 

precipitation (ChIP) was performed.  mRNA encoding a myc-tagged VegT was injected 

animally into one-cell stage embryos and processed for ChIP at stage 10.5.  We 

observed significant association of VegT with Siamois W-CRM chromatin over 

controls, which was not observed at the control EF1α locus (Figure 3.3C).  In addition, 

we tested the W-CRM upstream of the Vent2 gene for VegT binding, since it is known 

to be regulated by TCF3 (Hikasa et al., 2010) and has a predicted T-box site near the 

functional TCF site (Figure 3.3C).  TCF3 binding was observed at this locus (Figure 
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3.3C).  These data support a model where VegT associates with the Siamois and Vent2 

W-CRMs, likely via directly binding to T-box sites. 

 

HIPK2 disrupts VegT binding to TCF3 
 
 
Because TCF3 and VegT both contribute to repression of the Siamois W-CRM, we 

hypothesized that these TFs might physically interact.  Indeed TCF3 binding to VegT 

has been previously reported (Cao et al., 2007).  To investigate whether VegT 

associates with different TCFs, we coexpressed myc-tagged VegT with Xenopus TCF1, 

TCF3, TCF4 or mouse LEF1 (which were Flag tagged) in HEK293T cells.  

Interestingly, when expressed alone, VegT was not be detected by Western blot (Figure 

3.4A, lane 5).  Strikingly, co-expression with TCF3 or TCF4 resulted in a large 

increase in VegT levels (Figure 3.4A, lanes 3 & 4).  In contrast, co-expression with 

TCF1 or LEF1 had little effect on VegT expression (Figure 3.4A, lanes 1 & 2).  These 

data suggested that TCF3 and TCF4 can stabilize VegT, allowing it to accumulate to 

detectable levels.  Consistent with this, treatment of VegT transfected cells with the 

proteasome inhibitor MG132 for 15 h prior to harvesting resulted in a dose-dependent 

increase in VegT levels, similar to that obtained with TCF3 co-expression (Figure 

3.4B).  Together, these results suggest TCF3 and TCF4 can stabilize VegT, likely by 

preventing its degradation. 

 To test if TCF3 and TCF4 can physically interact with VegT, a co-

immunoprecipitation (co-IP) assay was performed.  Anti-Flag epitope antibodies 

precipitated myc-VegT from extracts where it was co-expressed with Flag tagged TCF3 

or TCF4 (Figure 3.4C).  To examine if VegT specifically interacts with TCF3, a similar 
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co-IP was conducted using lysates from Xenopus embryos injected with myc-VegT and 

Flag-TCF1 or Flag TCF3 mRNA (Figure 3.4D).  As expected, VegT specifically co-

immunoprecipated with TCF3 but not with TCF1, suggesting VegT specifically binds to 

TCF3 but not TCF1.  

The physical interaction between TCF3 and VegT supports a model where both 

TFs cooperate to repress Siamois transcription in the absence of Wnt/β-catenin 

signaling.  As HIPK2 phosphorylation of TCF3 promotes its removal from the Siamois 

W-CRM (Hikasa and Sokol, 2011; Hikasa et al., 2010), we examined whether it 

regulated the interaction between TCF3 and VegT. We found that expression of 

HIPK2 in HEK293T cells blocked TCF3-dependent stabilization of VegT (Figure 

3.5A, lanes 5 and 6).  This destabilization of VegT was not observed when a kinase-

dead version of HIPK2 was used (Figure 3.5A, lane 7).  HIPK2 has been shown to 

promote cell apoptosis (D’Orazi et al., 2002, 2012), thus it is possible that loss of VegT 

signal is due to death of the transfected cells.  Therefore, experiments were repeated 

with HIPK2ΔP, a kinase active mutant that is unable to induce apoptosis (Hikasa et al., 

2010).  This HIPK2 variant was still able to reduce VegT levels in the presence of 

TCF3 (Figure 5C).   These results suggest HIPK2 kinase activity disrupts the TCF3 

and VegT interaction. 

To test the ability of HIPK2 phosphorylation of TCF3 to stabilize VegT, we took 

advantage of a TCF3 mutant where three serine residues were substituted with alanines.  

This TCF3 mutant was shown to be resistant to HIPK2 regulation in Xenopus (Hikasa et 

al., 2010).  Like the wild- type TCF3, the mutant was able to stabilize VegT (Figure 

3.5A, lane 5).  Surprisingly, HIPK2 was able to disrupt the mutant TCF3’s stabilization 
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of VegT similar to wild-type TCF3 (Figure 3.5A, lane 8).  This suggests that HIPK2 

may be able to regulate VegT independently of TCF3. Interestingly, the kinase dead 

HIPK2 stabilized VegT (Figure 3.5B), suggesting that the two proteins interact.  

Consistent with this, expression of HIPK2 causes a small but reproducible mobility shift 

in VegT (e.g., Figure 3.5C, compare lanes 2 and 3). 

To test if VegT may be a substrate of HIPK2, we mutagenized the potential 

HIPK2 phosphorylation sites on VegT.  There are ten sites with the consensus S/T-P 

(S30, S135, S188, S247, S260, T300, S303, T350 and S401), which are similar to the 

sites found in TCF3 (Hikasa and Sokol, 2011; Hikasa et al., 2010).  These, residues 

were all converted to alanine in the same mutant construct.  When this mutant VegT 

was expressed with TCF3 or the TCF3 phosphorylation site mutant in HEK293T cells, 

it was resistant to destabilization by HIPK2ΔP (Figure 3.5C, lanes 5-7).  In addition, 

the HIPK2-dependent mobility shift was not observed with the VegT mutant (Figure 

3.5C, lanes 5-7).  These data suggest that HIPK2 promotes phosphorylation of VegT 

to disrupt its interaction with TCF3. 

 
 

VegT also contributes to Siamois activation 
 
 
Sokol and coworkers have previously showed that Wnt-activated HIPK2 

phosphorylates TCF3, causing TCF3 to dissociate from W-CRM chromatin (Hikasa 

and Sokol, 2011; Hikasa et al.,2010).  Thus, we investigated if HIPK2 also affects 

VegT W-CRM occupancy by expressing VegT-V5 in Xenopus embryos in the 

presence of HIPK2ΔP or the HIPK2 kinase dead mutant. We used the Vent2 W-CRM 

because the VegT ChIP signal is reproducibly higher at this locus (Figure 3.3C).  
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VegT associated with this chromatin at similar levels with either HIPK2ΔP or the 

kinase dead HIPK2 KD (Figure 3.6A).   As a positive control, we also assayed Flag 

tagged TCF3. A small but significant decrease in TCF3 binding to the Vent2 W-CRM 

was observed when coexpressed with HIPK2ΔP (Figure 3.6B).  These data suggest 

that unlike TCF3, VegT binding to W-CRM chromatin is not affected by Wnt/HIPK2 

signaling.  The observation that VegT remained associated with the W-CRM under 

conditions that favor target gene activation suggests a possible role for VegT in this 

process.  Several results support this hypothesis.  First, in the context of a Siamois W-

CRM reporter lacking TCF sites, the three T-box sites are required for expression 

(Figure 3.6C).  This effect was observed when the reporter was injected in both ventral 

and dorsal blastomeres (Figure 3.6C).  Second, Siamois transcript levels were reduced 

in VegT morphants compared to controls (Figure 3.6D).  While this result seems 

contradictory to the vegetal expansion of Siamois in VegT morphants, it is consistent 

with the overall lower staining intensity in the morphants compared to controls (Figure 

3.2D).  These data support a dual role for VegT in regulating Siamois W-CRM 

activity, with the protein contributing to repression in regions of low Wnt/β-catenin 

signaling, but also being required for activation in the presence of signaling. 

 
 

Discussion 
 
 
Given the specialization of vertebrate TCFs for repression or activation of Wnt targets, 

mechanisms must exist that regulate their ability to associate with W-CRMs in a signal- 

dependent manner.  In this report, we describe how the T-box protein VegT contributes 

to this regulation in early Xenopus development.  A model summarizing our findings on 
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VegT in Siamois regulation is shown in Figure 3.7.  In cells in which Wnt/β-catenin 

signaling is low, TCF3 and VegT cooperate to directly repress Siamois transcription.  

Mutation of either the TCF or T- box binding sites results in higher expression of a 

Siamois W-CRM reporter (Figure 3.1).  VegT specifically binds the T-box sites and is 

found associated with the Siamois W-CRM (Figure 3.3), similar to TCF3 (Hikasa and 

Sokol, 2011; Hikasa et al., 2010).  VegT prevents expression of dorsal organizer genes 

in the vegetal hemisphere, which is required for patterning the body plan (Figure 3.2; 

Ishibashi et al., 2007). 

The TCF3 repression of Siamois is relieved by Wnt/β-catenin signaling through 

HIPK2, which results in phosphorylation of TCF3 and its release from W-CRM 

chromatin (Hikasa and Sokol, 2011; Hikasa et al., 2010).  We found that VegT 

physically associates with TCF3 (Figure 3.4) and this association is disrupted by 

HIPK2 (Figure 3.5).  Mutation of putative HIPK2 phosphorylation sites on TCF3 and 

VegT prevents HIPK2-mediated dissociation (Figure 3.5C).  This dissociation may 

contribute to the reduction of TCF3 binding to W-CRM chromatin by Wnt/HIPK2 

signaling (Figure 3.7), though further studies are required to address this. 

 
In addition to TCF3, HIPK2 also promotes the phosphorylation of LEF1 and 

TCF4, but not TCF1 (Hikasa and Sokol, 2011).  This suggests a model where TCF1 

replaces TCF3 on W- CRMs in the presence of Wnt/HIPK2 signaling, leading to β-

catenin recruitment and transcriptional activation (Figure 3.7; Hikasa and Sokol, 2011; 

Hikasa et al., 2010).  We found that TCF3 and TCF4 interacted with VegT in HEK293T 

cells (Figure 3.4A).  In Xenopus, we confirmed that VegT specifically binds to TCF3 

but not to TCF1 (Figure 3.4D).  The selective binding of VegT to TCF family members 
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and its modification by HIPK2 could explain how Wnt signaling facilitates the 

exchange of TCFs on W-CRM chromatin in the early Xenopus embryo (Figure 3.7). 

In addition to its role in repressing Siamois, we also found evidence that VegT 

contributes to activation of this Wnt target.  We note that this activating function of T-

box sites was not observed in our initial reporter assays (Figure 3.1), indicating that 

they are not absolutely required for expression, at least in the context of an injected 

reporter.  However, mutation of the T-box sites in a Siamois W-CRM reporter lacking 

TCF sites resulted in a dramatic reduction in reporter activity (Figure 3.6C).  In 

addition, VegT morphants showed a reduction in Siamois transcripts (Figure 3.2C, 

3.6D).  Consistent with a role in Wnt target gene activation, VegT remained bound to 

W-CRM chromatin in the presence of HIPK2 (Figure 3.6A).   We propose that VegT 

provides some transcriptional activation of Siamois expression in a TCF-independent 

manner (Figure 3.7). 

Our findings that VegT has a dual role in regulating Siamois provide a 

resolution for the controversy in the literature.  While depletion of VegT with 

morpholinos injected into 4-cell embryos largely resulted in expansion of the Siamois 

expression domain (Figure 3.2; Ishibashi et al., 2007), depletion of VegT via antisense 

oligonucleotide-mediated mRNA knockdown in Xenopus oocytes using the host 

transfer technique resulted in a reduction in overall Siamois transcript abundance 

(Houston et al., 2002; Xanthos et al., 2002).  While some of this effect could be due to 

loss of VegT activation of Siamois, this early depletion of VegT also disrupted vegetal 

accumulation of xWnt11 mRNA prior to cortical rotation (Heasman et al., 2001), 

which is required for Siamois expression (Tao et al., 2005).   Stronger evidence for a 
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direct activating role for VegT comes from animal cap studies, where injection of 

VegT and β-catenin mRNA lead to a large increase in Siamois reporter activity (Cao 

et al., 2007).  This is further supported by our findings that T- box sites contribute to 

Saimois W-CRM reporter activation (Figure 3.6C) and the reduction in Siamois 

transcripts in VegT morphants (Figure 3.6D), where VegT was depleted after cortical 

rotation and XWnt11 mRNA dorsal accumulation has already occurred. 

 
 
Regulation of other Wnt targets by VegT or other Tbx proteins 

 
It is interesting to note that VegT has also been linked to regulation of nodal-

regulated genes in Xenopus embryos.  β-catenin and VegT cooperatively activating 

Xnr5 and Xnr6 expression in dorsal vegetal cells (Agius et al., 2000; Rex et al., 2002; 

Takahashi et al., 2000), while VegT antagonizes Wnt/β-catenin activation of Xnr3 

within the dorsal organizer (Rex et al.,2002).   In the case of a Xnr5 W-CRM reporter, 

mutation of the T-box sites results in loss of expression (Hilton et al., 2003) without the 

derepression we observed when similar sites were altered in the Siamois reporter 

(Figure 3.1).  These data suggest the action of VegT is context and target gene specific.  

In the case of the Siamois W-CRM, our data support a role for both repression and 

activation by VegT through T-box sites (Figure 3.7). 

In addition to the Siamois W-CRM, TCF3 and HIPK2 also regulate Vent2 

expression, a Wnt target expressed in ventral blastomeres (Hikasa et al., 2010).  We 

found that VegT is associated with the Vent2 W-CRM in chromatin (Figure 3.3C).  

There is a predicted T-box site near the functional TCF site in this W-CRM (Figure 

3.3C).  Mutation of the TCF site results in derepression of the reporter (Hikasa et al., 
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2010).  Further studies are needed to determine whether and how the T-box site 

contributes to this W-CRM’s regulation. 

Do other T-box proteins (Tbxs) work with TCFs to regulate Wnt target gene 

transcription? In the mouse, Tbx6 and Wnt/β-catenin signaling act together to activate 

Hes7, Delta 1 and mesogenin 1 expression, which all contribute to patterning the 

presomitic mesoderm.  CRMs for each of these genes were found to contain functional 

TCF and T-box binding sites (González et al., 2013; Hofmann et al., 2004; Wittler et 

al., 2007). At the genomic level, a ChIP-seq analysis in Drosophila embryos 

demonstrated that TCF/Pangolin (the sole fly TCF) and Dorsocross (a fly Tbx) co-

localize to many cardiogenic CRMs (Junion et al., 2012).  More evidence linking TCFs 

with other TFs is accumulating, largely driven by genome-wide surveys of TF binding 

(Archbold et al., 2012; Blahnik et al., 2010; Bottomly et al., 2010; Cole et al., 2008; 

Junion et al., 2012; Marson et al., 2008; Tam et al., 2008; Trompouki et al., 2011; Verzi 

et al., 2010) and it seems likely that some W-CRMs use a strategy where TCF and Tbx 

proteins act in concert.  Further studies are required to determine whether the dual 

regulation of a Tbx protein (i.e., VegT) on the Siamois W-CRM is a common feature of 

Wnt target gene regulation. 

Materials and Methods 
 
 
Plasmids 

 
 
The Siamois W-CRM reporter was described previously (Brannon et al., 1997; 

GenBank AF016226.1).  All mutations in this reporter were generated by site-directed 

mutagenesis (QuickChange II kit, Strategene) and subcloned into the original reporter 
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backbone using StuI and SacI sites.  See Table SII for mutagenesis primer sequences.  

pRenilla-luc (Promega) was used as an injection control for luciferase reporter assays.  

pCS2-myc-VegT and pCS2-VegT-V5 were derived from pCS2-VegT (kindly provided 

by Walter Knöchel) by inserting 2 myc epitopes or the V5 epitope at the N or C 

terminus, respectively.  Mutations of predicted HIPK2 sites on VegT were introduced 

by Assembly PCR as previously described (Swanson et al., 2010) using the primers 

listed in Table SII.  The coding fragment containing the mutated HIPK2 sites was 

subcloned into pCS2-VegT-V5 using PstI and EcoRI sites.  To generate pGEX-GST-

VegT, the VegT ORF was PCR amplified and inserted into pGEX-6P-1 vector using 

XmaI and XhoI sites. Constructs of Xenopus TCF1, TCF3 (WT and P2/3/4 mutant), 

TCF4, HIPK2 (WT, ΔP and KD mutant) and mouse LEF1 were described previously 

(Hikasa et al., 2010).  pcDNA3-β- cateninS45F and pcDNA3-p300 are previously 

described (Hecht et al., 2000; Yochum et al.,2007). 

 
 
Embryo Microinjections and Luciferase Reporter Assays 

 
In vitro fertilization, staging and culture in 0.01x Marc’s modified Ringer’s solution 

were carried out as previously described (Nieuwkoop and Faber, 1967; Peng, 1991).  

Capped synthetic RNAs were generated by in vitro transcription using the mMessage 

mMachine kit (Ambion) with the following linearized plasmid templates:  pSP36T-β-

catenin, pCS2-2xmyc-VegT, pCS2-VegT-V5, pCS2-flag-TCF3HA, pCS2-6xmyc-

HIPK2(WT/KD/ΔP),. VegT morpholino (Ishibashi et al.,2007) and control morpholino 

(Hikasa et al., 2010) were previously described (sequences are found in Table SII).  For 

microinjections, embryos were injected at one cell or four cell stage with 5~10 nl 
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mRNA, DNA, or morpholino solution. 

For dual luciferase assays, 100 pg of the indicated Siamois reporter, 20 pg 

pRLRenilla-luc, with or without 200 pg β-catenin mRNA were injected into one-cell 

stage or four-cell stage embryos.  Lysates of injected embryos were prepared at stage 

10.5.  Luciferase activity was measured as described by manufacturer (Dual-

Luciferase® Reporter Assay System, Promega). For one-cell injections, a group of 

four embryos was mixed and lysed as one sample for measurement, and five replicates 

were analyzed for each condition.  For dorsal/ventral assays, each individual embryo 

was lysed and measured as one sample, and eight replicates were analyzed for each 

condition.  Due to variations in the batch of embryos and microinjections, direct 

comparisons between data were only made for embryos injected on the same day. 

Therefore, each figure panel only contains data collected on the same day. 

 
Whole-Mount In Situ Hybridization 

 
 
Whole-mount in situ hybridization was carried out as previously described (Harland, 

1991). Digoxygenin-labeled antisense RNA probes were synthesized from 

pBluescript II SK+-Siamois and pCS2+-Chordin using DIG labeling mixture 

(Roche).  1-Step NBT/BCIP (Thermo Scientific) was used for chromogenic 

reactions.  For detection of Siamois transcripts, after fixation, embryos were bisected 

along the left-right axis to expose interior.   The bisected embryos were re-fixed 

for 0.5h, and dehydrated directly in 100% ethanol before proceeding with 

the in situ hybridization. 

 
 
Electrophoretic Mobility Shift Assay 
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Electrophoretic Mobility Shift Assays (EMSAs) were carried out as previously 

described (Blauwkamp et al., 2008).  GST-tagged VegT protein was purified from 

E.coli as previously described (Chang et al., 2008b).  For binding reactions, 400 

fmoles biotinylated probes (IDT, Coraville, IA) and 0, 2, 4, 6 or 8 pmoles of 

protein were incubated in 20 µl total volume. 

 
Chromatin Immunoprecipitaiton Assays and quantitative RT-PCR 

 
 
Chromatin immunoprecipitation (ChIP) assays were carried out with Xenopus embryos 

as previously described (Blythe et al., 2009), except that freshly fixed embryos were 

used, because freezing/thawing of fixed embryos decreased the ChIP signal.  DNA 

was fragmented using a Fisher Model 100 sonicator to an average size of 200-600 bp 

(determined by agarose gel electrophoresis).  Polyclonal anti-myc antibody (Millipore, 

06-549), polyclonal anti-V5 antibody (Abcam, ab15828) and anti-flag M2 antibody 

(Sigma, F3165) were used to precipitate myc- VegT, VegT-V5 and flag-TCF3-HA, 

respectively.  Precipitated DNA was analyzed with qPCR (ABI 7500 Fast System) 

using the primers listed in Table SII.  For quantitative RT-PCR, total RNA was 

extracted from injected embryos using RNeasy Mini Kit (QIAGEN).  cDNA was 

synthesized using SuperScript® III RT (Life Technologies) with oligo dT primers.  

For quantification, Siamois level among different samples was normalized to ornithine 

decarboxylase (ODC).  See Table 3.2 for primers used in qPCR. 

 
Cell Culture, Transfection, Co-Immunoprecipitation and Western blot analysis 

 

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (GIBCO) 
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supplemented with 10% fetal bovine serum at 37˚C, 5% CO2.   Cells were seeded at 2.5 

x 105 per ml in 12-well plates for expression assays, in 60 mm plates for CoIP assays 

and in 48-well plates for luciferase reporter assays.  At about 60% confluency, cells 

were transfected with the following plasmids. For expression assays, 400 ng myc-VegT 

or VegT-V5 (WT or mutant), 300 ng flag-TCFs/LEF1 and 300 ng myc-HIPK2.  For co-

IP assays, 4 µg myc-VegT and 4 µg flag-TCF3 or flag-TCF4 were transfected.  For 

luciferase reporter assays, 50 ng reporter plasmids, 50 ng β-cateninS45F and 50 ng p300 

plasmids.  All DNA were transfected using Lipofectamine 2000 (Life Technologies) 

and total DNA transfected was normalized with empty backbone plasmid.  Cells were 

harvested 48 h post transfection and lysed in 1x SDS sample buffer for western 

analysis. For proteasome inhibitor treatments, MG132 (Sigma) was dissolved in DMSO 

and added to media at the indicated concentrations 15 h before harvesting, with control 

cultures receiving the same amount of DMSO.  For co-IP assays, transfected cells were 

lysed in 400 µl of buffer containing 10mM HEPES pH 7.9, 1.5mM MgCl2, 10mM KCl, 

0.5% NP40, 0.5mM DTT and 1x protease inhibitor cocktail (Roche).  40 injected 

Xenopus embryos were lysed in buffer containing 50 mM Tris-HCl (pH 7.5), 50 mM 

NaCl, 0.5% Triton X-100, 1 mM EDTA, and 1x protease inhibitor cocktail (Roche).  

Cell or embryo lysates were pre-cleared with protein G agarose, fast flow (Millipore) 

followed by overnight incubation with anti-flag M2 antibody (Sigma, F3165) and one 

hour protein G agarose binding.  The bound beads were washed four times with lysis 

buffer supplemented with 150 mM NaCl and boiled in SDS sample buffer for western 

blot analysis.  Monoclonal 9E10, M2 (Sigma) and anti-V5 (Invitrogen) were used for 

detection of myc-, flag-, V5-tagged proteins, respectively. 
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Figure 3.1  TCF sites and T-box sites both mediate repression of the Siamois W-
CRM. 

(A) Diagram of Siamois promoter-proximal W-CRM luciferase reporter constructs.  The 
804bp W-CRM contains five predicted TCF sites (grey rectangles) and three predicted T-
box sites (white diamonds).  Mutations of the sites are denoted by Xs.  The bent arrow 
indicates the TSS (+1) of the firefly luciferase gene.  (B, C) Injection of Siamois reporter 
constructs into one-cell stage embryos with or without β-catenin mRNA.  The wild-type 
reporter was activated by β- catenin.  Mutation of the TCF sites resulted in a large 
derepression, which was not further activated by β-catenin.  The T-box site mutant 
reporter had increased activity over the wild-type control with and without β-catenin.  (D, 
E) Four-cell stage embryos were injected with Siamois reporters into the equatorial 
region of ventral or dorsal blastomeres.  As previously reported (Brannon et al., 1997; 
Fan et al., 1998), wild-type reporter activity was higher in the dorsally injected embryos.  
Expression was equally high for the TCF site mutant reporter injected ventrally and 
dorsally, while the T-box site mutant reporter was higher than wild-type in both cases, 
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but still retained enhanced expression dorsally.  All injections also contained a renilla 
luciferase plasmid for normalization of firefly luciferase activity and injected embryos 
were harvested at stage 10.5 for dual luciferase assays.   Relative light units (RLUs) are 
defined by the ratio of firefly luciferase counts to renilla luciferase counts and normalized 
to WT control (B,C) or WT ventral (D,E).  Bars represent the mean + SEM of at least 
five biological replicates. RLUs were log10 transformed before statistical analysis using a 
two tailed Student’s T-test.  * P< 0.05, ** P < 0.01, *** P < 0.001,  **** P < 0.0001, n.s., 
not significant. 
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Figure 3.2  VegT represses organizer gene expression. 

Approximately 5 pmol control or VegT morpholino was injected into the vegetal pole of 
each blastomere of four cell-stage embryos.  (A- B) Stage 40 VegT morphants showed 
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bent tail and enlarged cement gland (white asterisks).  (C, D) In situ hybridization of 
Siamois transcripts in control and VegT morphants.  Stage 9 embryos were fixed and 
bisected along right-left axis prior to in situ hybridization and positioned with animal 
pole upward and the dorsal organizer on the left.  Siamois transcripts are reduced in the 
Organizer region and expanded toward the vegetal pole (brackets).   (E, F) In situ 
hybridization of Chordin transcripts in control and VegT morphants at stage 10.  Dorsal 
is towards the reader. Chordin expression is expanded vegatally in VegT morphants 
(brackets).  (G) Bar graph summarizing the penetrance of the VegT effect on Chordin 
expression, with examples of embryos displaying normal Chordin expression or mild and 
strong vegetal expansion. 
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Figure 3.3  VegT binds to Siamois and Vent2 W-CRM chromatin. 

(A) Cartoon showing the T-box site probe from the Siamois W-CRM (-300 to -263) used 
for the EMSA experiments.  The alterations in the mutant probe are indicated below.  (B) 
EMSA showing GST-VegT specifically binds to the T-box site probe but not the mutant 
probe.  Black and white triangles indicate bound and free probes, respectively.  (C) ChIP 
assay showing that injected myc-tagged VegT associates with Siamois and Vent2 W-
CRM chromatin.  One-cell embryos were injected with 300 pg myc- VegT mRNA at the 
animal pole.  Uninjected embryos served as the negative control.  Embryos were fixed at 
stage 10.5 and processed for ChIP as described in Materials and Methods.  The amplicons 
of Siamois and Vent2 are located at -360 to -240 and -170 to -40 from the TSS of each 
gene, respectively.  Primers for the EF1α locus served as a negative control.  Bars 
represent the mean + SEM (n = 3, each biological replicate contains 50 embryos).  The 
data shown are representative of three independent experiments.  ChIP data (the ratio of 
ChIP signal to input) were log10 transformed before statistical analysis. * P <0.05.  
Sequences of the PCR primers used are provided in Table 3.2. 
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Figure 3.4  VegT interacts with TCF3 in HEK239T cells and Xenopus embryos.   

(A) Western blot showing that VegT protein is stabilized by co-expression of xTCF3 and 
xTCF4 but not xTCF1 or mLEF1 in HEK293T cells.  (B) Western blot showing that 
xTCF3 prevents VegT degradation.  HEK293T cells were transfected with the myc-VegT 
expression vector and were treated with proteasome inhibitor MG132 at 3, 9, 15 µM for 
15 h.  VegT levels in MG132 (15µM) treated cells were similar to those seen in xTCF3 
co-transfected cells.  (C) Co-IP assay showing that VegT interacts with xTCF3 and 
xTCF4 in HEK293T cells.  (D) Co-IP of VegT and xTCF1 or xTCF3 in Xenopus 
embryos injected with the respective mRNAs at the one cell stage and harvested at stage 
10.5.  VegT is specifically co-IPed with xTCF3. All blots are representative of three 
independent experiments. 
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Figure 3.5  VegT is destabilized by HIPK2 in HEK293T cells.  

 (A) Western blots showing that catalytically active HIPK2 blocks the stabilizing effect 
of Xenopus TCF3 on VegT protein levels in HEK293T cells.  Cells were transfected with 
VegT, TCF3 and HIPK2 as indicated by the plus signs. Apostrophes indicate where a 
kinase dead version of HIPK2 or TCF3 lacking three HIPK phosphorylation sites (i.e., 
p2/3/4) was used (Hikasa et al. 2010).  Wild-type HIPK2 but not HIPK2 kinase dead 
(KD) mutant greatly reduced VegT protein levels.  (B) Western blots of HEK293T cells 
transfected with VegT and HIPK2 or the kinase dead mutant (without exogenous TCF3).  
The kinase dead HIPK2 mutant stabilized VegT protein, whereas wild-type HIPK2 did 
not.  (C) Western blots showing HIPK2ΔP, a kinase active version unable to induce 
apoptosis, also inhibits the stabilizing effect of TCF3 on VegT in HEK293T cells.  
However, a VegT mutant with its predicted HIPK2 phosphorylation sites mutated 
remained stabilized by TCF3 in the presence of HIPK2ΔP, and did not display the 
HIPK2-dependent mobility shift observed with wild-type VegT.  All blots are 
representative of three independent experiments. 
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Figure 3.6  VegT also plays a role in Siamois activation.   

(A) A ChIP assay showing that injected V5 tagged VegT remained bound to Vent2 W-
CRM chromatin at similar levels in the presence of HIPK2ΔP (lacking apoptosis 
promoting activity) or HIPK2 KD mutant.  (B) ChIP assay showing that injected flag 
tagged TCF3 binds less at Vent2 W-CRM in the presence of HIPK2ΔP than in the 
presence of HIPK2 KD mutant.  RNAs encoding VegT (300 pg), TCF3 (300 pg) and 
HIPK2 (150 pg) were injected into animal pole of embryos at the one cell stage. Embryos 
were fixed at stage 10.5.  Bars represent the mean of biological triplicates + SEM.  The 
data shown are representative of three independent experiments.  ChIP data were log10 
transformed before statistical analysis. * P <0.05.   (C) Four-cell stage embryos were 
injected with the indicated Siamois reporters into the equatorial region of both ventral or 
dorsal blastomeres.  The expression of TCF site & T-box site double mutant reporters 
were significantly lower than the TCF site mutant in ventral and dorsal cells.  The double 
mutant is more active when in dorsal than ventral cells.  Bars represent the mean of six 
replicates + SEM.  RLUs were log10 transformed before statistical analysis with a two 
tailed Student’s T-test. **** P < 0.0001.  (D) Quantitative RT-PCR assay showing that 
Siamois transcript levels are reduced in VegT morphants.  Morpholinos were injected as 
previously described for in situ experiments in Figure 3.2.  RNA were extracted from 
embryos at stage 10.5.  Siamois expression was normalized to the housekeeping gene 
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ODC.  Bars represent the mean of biological triplicates (each replicate contained four 
embryos) +SEM.  The data shown were representative of three independent experiments.  
Data were analyzed with a two tailed Student’s T-test. * P < 0.05. 
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Figure 3.7  Incorporating VegT into the Xenopus TCF transcriptional switch model.   

This model is a modification of the one proposed by Hikasa and Sokol (Hikasa and 
Sokol, 2011; Hikasa et al., 2010).  (upper cartoon) In the absence of Wnt signaling, VegT 
binds to T-box sites and forms a complex with TCF3 to suppress Siamois expression.  
(lower cartoon) Upon Wnt signaling, TCF3-VegT interaction is disrupted by activated 
HIPK2.  TCF3 dissociates from Siamois W-CRM chromatin, allowing activating TCFs 
such as TCF1 to bind to W-CRM and activate transcription with β-catenin and co-
activators.  VegT stays bound to Siamois W-CRM and contributes to Siamois activation 
as well.  See Discussion for further explanation. 
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Table 3.1 Comparison of the optimal in vitro VegT binding site and verified 
functional VegT sites. 
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Table 3.2 List of primers used in this study. 

  

Purpose Primer name Primer sequence Reference

S0_f CAAGTGTAAGTAAGGGACTGTTCAGTCTTGCCAACTTCTCTCACTCAGTCC

S0_r GGACTGAGTGAGAGAAGTTGGCAAGACTGAACAGTCCCTTACTTACACTTG

S1_f ATCAAGGGAAACACGTGTCATCAGAATCAGAACAGGACCTCCCTTTTG

S1_r CAAAAGGGAGGTCCTGTTCTGATTCTGATGACACGTGTTTCCCTTGAT

S2_f TCCCTTTTGTGTCCCCAAATCACATCTGTTCCCTTGCCAATTCTTTCAG

S2_r CTGAAAGAATTGGCAAGGGAACAGATGTGATTTGGGGACACAAAAGGGA

S3_f
CCAATAAACCACGAGCAACAGTACAGAACAGTATTTATATTTTTTTCATTT
CCC

S3_r
GGGAAATGAAAAAAATATAAATACTGTTCTGTACTGTTGCTCGTGGTTTAT
TGG

S4_f CCCCAAAACACATCCTGGACACACCCTGTTCCCCCTGTTGATATA

S4_r TATATCAACAGGGGGAACAGGGTGTGTCCAGGATGTGTTTTGGGG

T1_f CTACACATTTTATATAACgtcatgAATATAATAAAACACAACATCCTTGGCC

T1_r GGCCAAGGATGTTGTGTTTTATTATATTcatgacGTTATATAAAATGTGTAG

T2_f CAAATCATTTCCATAATAACACATctcatGTTCTGCTGCCAAGTTAGG

T2_r CCTAACTTGGCAGCAGAACatgagATGTGTTATTATGGAAATGATTTG

T3_f GGTTCTGCTGCCAAGTTcttTGgacgATGGGACAGTATTCTGGGC

T3_r GCCCAGAATACTGTCCCATcgtcCAaagAACTTGGCAGCAGAACC

ChIP Sia-f GGGACTTTGAAGTCTTGCCA Hikasa et al 2010
Sia-r TCTGATGACACGTGTTTCCC

Vent2-f GGCAGACATGGTGGAGCCAG Hikasa et al 2010
Vent2-r GTATGCAAATGCAGCCACTA

EF1α-f ACAAAAGAGCTGGGAGCT Blythe et al 2010
EF1α-r TTCCTTTCCCATTGTGGA

Morpholino VegT MO CCCGACAGCAGTTTCTCATTCCAGC Ishibashi et al 2008
Control MO AGAGACTTGATACAGATTCGAGAAT Hikasa et al 2010

EMSA probe T-box site probe ACATAGGTGGTTCTGCTGCCAAGTTAGGTGTCATATGG

mutant probe ACATCTCATGTTCTGCTGCCAAGTTCTCATTCATATGG

siamois_f AACTTTCTCCAGAACC Yang et al 2002
siamois_r GTCAGTGTGGTGATTC Yang et al 2002
ODC _f AATGGATTTCAGAGACCA Yang et al 2002
ODC _r CCAAGGCTAAAGTTGCAG Yang et al 2002
flanking_f caccctgcaggacgtatgtccacccagat

assembly 1 gacgtatgtccacccagatGCACCTgctcctggtgcccactggatgaaggatccgatctg

assembly 2 ttgatccaatgtgttgttggtgagtttgagcttttgaaagcagatcggatccttcatcca

assembly 3 accaacaacacattggatcaacaaggccatattatcttgcattcaatgcatcgctacaag

assembly 4 attgtacatgtcatcagactgaactacatggaacctgggcttgtagcgatgcattgaatg

assembly 5 tcagtctgatgacatgtacaatGCTCCAtggggattggtacaagtgtttagcttcccaga

assembly 6 cttttcattctggtaggcagtcactgaagtaaactctgtctctgggaagctaaacacttg

assembly 7 actgcctaccagaatgaaaagattactaaactgaaaattaatcacaacccatttgctaaa

assembly 8 catccctcttgtgactcctttcctgctcccggaatcctttagcaaatgggttgtgattaa

assembly 9 aggagtcacaagagggatgatgttttaaagattctacaacaaGCTCCTagtaaaaggcag

assembly 10 aaatatcagcctcAGGAGCgtcctcccacttcttcctcttctgccttttactAGGAGCtt

assembly 11 GCTCCTgaggctgatatttcagatttccccaaggctatatgtgtgaaggaggaatccatt

assembly 12 taaactcctgctgggtccataatggattcctccttcacac

assembly 13 tggacccagcaggagtttatcagaactgggtttcagatcacgaggctaaccaaggcttg

assembly 14 tgctcctgattggcaccctcagactcAGGGGCgtgGGGTGCcaagccttggttagcctcg

assembly 15 agggtgccaatcaggagcagcaagtccccacatcttcctctaacttctacaacaagagcc

assembly 16 ggagagatgttgggaactccttcgataatggctcttgttgtagaagttagag

assembly 17 ggagttcccaacatctctccGCGCCAtttgaattgggagagccctctagcagacgtctt

assembly 18 gaatctggatcggaatccggcactgtagcaatgtcAGGGGCaagacgtctgctagagggc

flanking_r agcagaattctgtgttggaatgacatgaaacactgctaaagaatctggatcggaatccgg

Mutagenesis of 
TCF sites

Mutagenesis of 
T-box sites

qRT-PCR

Assembly PCR 
of VegT mutant
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  CHAPTER 4
 

FUTURE DIRECTIONS 
 
 

HIPK2 regulation of VegT and its functional relevance in the TCF transcriptional 

switch 

 Our model (Figure 3. 7) proposes HIPK2 promotes VegT phosphorylation.  This 

is supported by the size shift of VegT in the presence of HIPK2 (Figure 3.5).  This size 

shift also correlates with VegT destabilization, even in the presence of TCF3 (Figure 3.5), 

suggesting that HIPK2 disrupts the TCF3-VegT complex.  These data suggest HIPK2 

regulation of VegT might play an important role in promoting the TCF transcriptional 

switch (Figure 3.7).  To further investigate this model, I propose the following 

experiments and discuss possible results below.  

 The VegT mutant with ten putative HIPK2 phosphorylation sites substituted was 

no longer shifted and destabilized by HIPK2 (Figure 3.5C).  Based on this, it is 

reasonable to assume HIPK2 directly phosphorylates VegT.  To formally test this, an in 

vitro phosphatase assay could be conducted using immuno-precipitated VegT from cells 

co-expressing HIPK2WT or HIPK2 kinase dead mutant.   

 HIPK2 is a promiscuous kinase with a poorly-defined phosphorylation site 

sequence.  However, examination of previously identified phosphorylation sites of 

HIPK2 substrates indicates that serine or threonine residues followed by a proline tend to 

be phosphorylated (D’Orazi et al., 2002; Hikasa and Sokol, 2011; Hofmann et al., 2002; 
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Kim et al., 2006).  The aforementioned VegT mutant was generated by using these loose 

criteria to identify potential VegT phosphorylation sites.  The VegT mutant resists HIPK2 

regulation (Figure 3.5C), implying a subset of the 10 sites might be target sites of HIPK2.  

To identify the bona fide phosphorylation sites, tandem mass spectrometry analysis could 

be conducted with purified phosphorylated VegT (Dephoure et al., 2013; Gingras et al., 

2007).  False positive or non-specific results remain as a key concern of MS/MS 

(Dephoure et al., 2013), thus it would be important to verify the MS/MS identified sites 

with functional experiments.   

 My data suggests HIPK2 phosphorylation does not affect VegT chromatin 

binding (Figure 3.6A) and VegT participates in target gene activation after TCF3 is 

replaced by TCF1 (Figure 3.6 C and D).  It has been reported that overexpressing VegT 

and β-catenin substantially increases Siamois reporter activation in animal caps, where 

endogenous VegT or Wnt/β-catenin are absent  (Cao et al., 2007).  This data indicates 

that the activating role of VegT is more evident with this assay.  My working model 

predicts that unphosphorylated VegT interacts with TCF3 on chromatin to repress 

Siamois.  Thus, a mutant VegT resistant to HIPK2 phosphorylation is predicted to 

activate Siamois reporter less well than WT VegT.  If true, this suggests that HIPK2 

phosphorylation switches VegT from repressing to activating Siamois.   

Mapping interaction domains on TCF3 and TCF4 responsible for VegT 

stabilization and interaction 

 In HEK293T cells, VegT is stabilized by TCF3 and TCF4, but not TCF1 or LEF1 

(Figure 3.4A).  My data suggest this is due to specific interactions between VegT and 

TCF3/TCF4 (Figure 3.4B&C). Consistent with this, CoIP experiment demonstrated that 
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VegT interacted with TCF3 but not TCF1 in Xenopus embryos (Figure 3.4D).  These data 

indicate VegT may bind to certain unique regions in TCF3 and TCF4.  

 Sequence alignment of TCF1, LEF1, TCF3 and TCF4 uncovers three common 

regions shared by TCF3 and TCF4, but absent in TCF1 and LEF1 (Figure 4.1).  Among 

the three candidate domains, region A has not been explored before.  It partially overlaps 

with the HIPK2 phosphorylation sites on TCF3 and TCF4, raising the possibility that 

phosphorylation may affect the conformation of region A, thereby influencing their 

interaction with VegT.  LVPQ and SXXSS motifs (Figure 4.1; region B) have been 

implicated in the repressive function of TCF3 and TCF4A isoform (Liu et al., 2005), 

which corresponds to the TCF4 expressed in the stabilization and CoIP experiments 

(Figure 3.4 A and C).  Region C, corresponding to C terminal end, has not been 

characterized before either.  A truncated fragment of TCF3 containing the entire C-

terminal region downstream of HMG has been reported to bind with T-box domain of 

VegT in vitro (Cao et al., 2007).  In agreement with this, preliminary data indicates a 

TCF3 with truncated C terminus (TCF3ΔC; Liu et al., 2005) exhibited slightly less VegT-

stabilizing effect than WT TCF3 (Figure 4.2).  Although modest, this effect has been 

observed twice.  On the other hand, a TCF3 with region B altered (TCF3ΔL-SA with 

LVPQ motif deleted and SXXSS motif mutated) (Liu et al., 2005) was able to stabilize 

VegT to normal levels (Figure 4.2).   The expression of two mutants (TCF3ΔC and 

TCF3ΔL-SA) was driven by identical heterologous promoter, indicating their different 

VegT-stabilizing activities are due to the difference of translation products.  This 

preliminary data implies that the C terminus or region C is more linked to VegT 

interaction, or region B inhibits TCF3-VegT interaction somehow.  Expression levels of 
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these TCF3 constructs have to be checked to better interpret these results.  A region A-

deleted TCF3 mutant could also be tested in this assay.  Double or triple mutant could be 

considered if mutating individual region was not sufficient to observed a dramatic effect.  

Then, the mutants with least VegT stabilizing ability will be tested in CoIP experiments 

in Xenopus embryos to check if they lose binding to VegT in vivo.  

Functional relevance of TCF3 and VegT interaction 

  
 Because of the dual role of VegT, it is difficult to tear apart the specific effect of 

each role using simple loss of function experiments. Once the interaction domain is 

mapped out, the interaction mutant of TCF3 will be useful to specifically address if TCF3 

and VegT interaction is critical for Siamois repression and whether the VegT binding 

domain is needed for TCF3 repressive function.  Siamois expression is elevated in TCF3 

depleted embryos due to derepression (Houston et al., 2002)  A TCF3 rescue experiment 

using WT TCF3 and VegT-interacting mutant TCF3 will be conducted to compare which 

form has stronger ability to rescue derepressed Siamois.  If the mutant is defective in 

suppressing Siamois, it suggests interacting with VegT is necessary for TCF3 repression 

of Siamois.  

Does VegT facilitate TCF3 recruitment on chromatin 
 
 My thesis began with the goal of understanding vertebrate TCF target selection 

mechanism; however this question is not directly addressed in my work.   My findings 

suggest functionally VegT interacts with TCF3 to cooperatively suppress Siamois.  At the 

mechanistic level, it could be because that VegT and TCF3 bind to DNA in a cooperative 

fashion.   
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 It is well established that Hox proteins require cooperative DNA binding 

cofactors to achieve specific gene regulation (Mann et al., 2009).  Using an 

electrophoretic mobility shift assay (EMSA), Gebelein and colleagues nicely 

demonstrated Ultrabithorax (Ubx), Extradenticle (Exd) and Homothorax (Hth) trimers 

synergistically enhanced binding to a probe containing recognition sites of each factor, 

whereas Ubx alone or Exd/Hth heterodimer binding to the same probe is barely 

detectable (Gebelein et al., 2002).  To test if VegT and TCF3 bind DNA cooperatively, I 

tried similar EMSAs using recombinant TCF3 and VegT proteins and synthesized DNA 

probes containing a TCF binding site and a T-box site linked by a 12bp spacer.  

Unfortunately, cooperative DNA binding was not seen in vitro.  In the case of 

Ubx/Exd/Hht, the binding sites of each factor are closely linked, with 1bp between Ubx 

and Exd sites and 7bp between Exd and Hth (Gebelein et al., 2002).  In contrast, in the 

case of TCF and T-box sites in Siamois W-CRM, the closest pair is 72bp apart, possibly 

indicating that an unknown mechanism is needed to facilitate the cooperative binding of 

TCF3 and VegT in vivo.   

  To study if VegT and TCF3 bind DNA cooperatively in vivo, ChIP assays 

combined with morpholino depletion could be employed.  This experiment requires a 

ChIP quality antibody against endogenous TCF3, which is currently unavailable.  If such 

an antisera were available, the Vent2 and Siamois W-CRMs could be tested.  TCF3 

chromatin binding is expected to be less in VegT morphants than controls.  This would 

support that VegT is needed for full recruitment of TCF3.   

 A more exquisite but more difficult experiment to further elucidate the 

mechanism would be reporter ChIP.   Reporter plasmid undergoes chromatinization after 
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injected into Xenopus embryos (Roche et al., 2006).  This offers a system with editable 

DNA sequences.  WT, T-box site mutant and TCF site mutant reporter plasmids will be 

compared for TCF3 binding level.  If TCF3 binding is reduced in T-box site mutant, that 

would argue VegT positively influences TCF3 recruitment.  To obtain specific signal in 

reporter ChIP, non-target region within the reporter construct has to be included as a 

negative control.  In addition, injected DNA amount has to be optimized to ensure 

balanced signal to noise ratio.   

Are TCF and Tbx site clusters a general paradigm or unique to early embryogenesis 
of Xenopus  
    
 A T-box site is also seen near the functional TCF site in the Vent2 W-CRM 

(Figure 3.3C and Table 3.1; Hikasa et al., 2010).  Also, VegT binds to the W-CRM locus 

of Vent2 in vivo (Figure 3.3C).  To determine the function of the T-box site, WT and T-

box site mutant Vent2 reporter will be assessed in Xenopus embryos.   

 Cdx4/Xcad3 plays important roles in posterior development of Xenopus (Isaacs et 

al., 1998).  It is directly repressed by TCF3  (Haremaki et al., 2003; Ro and Dawid, 

2011), and regulated by Wnt/HIPK2 as well (Hikasa et al., 2010).  An intronic cis-

regulatory element controlling posterior neural specific expression of cdx4 contains 

multiple functional TCF binding sites as well as three T-box sites (Haremaki et al., 2003).  

It would be interesting to learn if the T-box sites influence the cdx4 W-CRM regulation.  

Note that the maternal pool of VegT quickly degrades after MBT, whereas the expression 

level of zygotic T-box proteins, e.g. xBrachyury, Eomesodermin and zygotic VegT 

isoform, increases fast (Yanai et al., 2011).  Furthermore, the expression pattern of these 

zygotic T-box proteins largely overlaps with cdx4 (Keenan et al., 2006; Tada and Smith, 
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2001), raising the possibility that these T-box proteins are involved in cdx4 W-CRM 

regulation instead of maternal VegT.  

 Beyond body patterning during Xenopus embryogenesis, TCFs and T-box (Tbx) 

family proteins are both essential for cardiogenesis in mammals (Archbold et al., 2012; 

Greulich et al., 2011; Naiche et al., 2005).  Wnt signaling is required for early cardiac 

specification of precursor cells and plays important roles in establishing second heart 

field (SHF) as well as subsequent differentiation of heart tissue (Archbold et al., 2012).  

Evidence indicates a number of essential genes involved in heart development are 

directly controlled by Wnt/TCF, including tinmann (fly)/Nkx2.5 (Klaus et al., 2012; 

Archbold et al., 2012), Pitx2 (Ai et al., 2007), Islet1 (Klaus et al., 2012; Lu et al., 2014) 

In developing mammalian heart, 6 of the 17 family members (Tbx1, Tbx2, Tbx3, Tbx5, 

Tbx18 and Tbx20) are expressed and required in a combinatorial fashion in different 

cardiac progenitor pools as well as in different differentiated compartments (Greulich et 

al., 2011).  Accumulating evidence implicates interplay between Wnt signaling and Tbx 

activity in heart development. For example, a recent report demonstrated Tbx20 acts 

upstream of Wnt signaling to regulate endocardial cushion formation and valve 

remodeling during mouse cardiogenesis (Cai et al., 2013).   

 In addition to their hierarchal relationship in some contexts, combinatory 

regulation by TCF and Tbx has also been implicated before.  For instance, Pitx2 has been 

suggested as a common target regulated by TCF and Tbx1 (Ai et al., 2007; Nowotschin et 

al., 2006).  Furthermore, Connexin43 (Cx43) encodes an important gap junctional protein 

essential for heart function.  It has been shown Tbx2, Tbx3 and Tbx18 suppress Cx43 

promoter activity in a rat heart derived cell line (Boogerd et al., 2008) and guinea pig 
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heart (Kapoor et al., 2011).  Interestingly, Cx43 has also been suggested to be a direct 

target activated by TCF/β-cat (van der Heyden et al., 1998).  Both T-box sites and TCF 

binding sites were identified in the Cx43 promoter region (van der Heyden et al., 1998; 

Boogerd et al., 2008), serving as a good candidate to investigate cooperative regulation 

by TCF and Tbx in heart development.  

 A common feature of these TCF and Tbx co-regulated CRMs is that there lacks 

discernable organization of TCF binding sites and T-box sites.  This actually fits with the 

Transcription Factor collective model, where the combinatory binding by multiple TFs 

operates with very flexible arrangement of binding sites and does not require specific 

binding motif orientation or spacing.  A TF collective involving TCF and a Tbx factor 

has been demonstrated in cardiac specification in fly embryos (Junion et al., 2012). 

 My work has investigated the dual role of VegT in regulating Siamois 

transcription in Xenopus, and provided mechanistic insights on how VegT facilitates 

operation of the vertebrate TCF transcriptional switch.  It further illustrates the 

complexities of Wnt/-catenin-dependent gene regulation and sheds light on the general 

requirement of cooperation with context-specific TFs by TCFs.  As a complementary 

approach to genomic studies, our strategy offers a thorough understanding of the action 

of TCF-involved TF collectives and improves our understanding how TCFs and other 

TFs “read” the genome to identify WREs. 
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Figure 4.1 Candidate VegT-interacting domains of TCF3 and TCF4. 

Sequence alignment of xTCF1C (AAO23663.1), mLEF1 (NP_034833.2), xTCF3 
(NP_001080938.1), and xTCF4A (NP_001083866.1). Identical and similar residues are 
shaded in black and grey respectively.  Three unique domains/motifs only present in 
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TCF3 and TCF4A, marked with green lines and letters, are candidate VegT interaction 
domains. HIPK2 phosphorylation sites shared by TCF3, TCF4 and LEF1 are indicated by 
red asterisk (Hikasa et al., 2010).   
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Figure 4.2 VegT-stabilizing effects of different TCF3 mutants in HEK293T cells. 

(A) Cartoon depicting TCF3ΔC and TCF3ΔL-SA (adapted from Liu et al.,2005).  
(B) Western blot showing VegT level in the presence of TCF3 WT or TCFΔC or 
TCF3ΔL-SA.  HEK293T cells are transfected with constructs expressing V5-VegT, WT 
or indicated mutant forms of TCF3.   TCF3ΔC displays slightly less VegT-stabilizing 
activity than WT, whereas TCF3ΔL-SA shows stronger VegT-stabilizing activity.  
Expression level of TCF3 is lacking in this experiment.  
  

A 
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