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Abstract 

The development of synthesis gas (syngas) fuel is of interest, as it can enable 

a transition from fossil to renewable energy sources while reducing the emissions 

associated with both.  Historical research has focused on basic syngas formulations 

(H2 & CO) in homogeneous environments, providing a baseline for consideration of 

more realistic mixtures and devices. Recent research and industrial experience for 

syngas fueled combustors indicate the effects of common disturbances can be 

dramatic and are not well-understood, with particular concern regarding the 

occurrence of uncontrolled inhomogeneous auto-ignition and its effect on the 

accuracy of common homogeneous reactor modeling. 

 

This dissertation represents an experimental investigation of syngas 

combustion, aimed at comprehensively understanding the effects of specific 

chemical and physical disturbances at high-pressure low-temperature conditions.  

Experiments were conducted in the University of Michigan-Rapid Compression 

Facility.  The auto-ignition behaviors of syngas were investigated, revealing the 

existence of both homogeneous and inhomogeneous characteristics depending 

strongly on the initial unburned thermodynamic state.  The behaviors were mapped 

over a wide range of conditions revealing consistent patterns.  It was discovered 

that the Sankaran Criterion, a previously proposed relationship between chemical 

kinetics, transport properties, and known thermal disturbances, could predict the 

location of inhomogeneous behavior on these maps with remarkable accuracy.  This 

provides evidence that commonly ignored thermal disturbances can cause 

uncontrolled inhomogeneous auto-ignition in syngas and also provides a 

straightforward method to predict such behavior.  As expected, inhomogeneous 

auto-ignition behavior was well correlated to error in homogeneous reactor 

modeling for higher energy content mixtures. 

 

The effects of chemical impurities on the combustion of syngas were 

investigated, focusing on CH4, a common component of syngas, and trimethylsilanol 

(TMS), an unstudied impurity related to those common to landfill-based syngas.  

The impact of CH4 was to inhibit ignition, evidenced by auto-ignition delay time 

increases by up to a factor of 3.   Conversely the impact of TMS was to promote 

ignition, causing drastic reductions in auto-ignition delay time up to 70%.  These 

large promotion effects have significant safety implications, as pronounced early 

auto-ignition can lead to catastrophic failures and concentrations of similar Si 

containing species are expected to increase in the future. 
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Chapter 1 

Introduction 

 

1.1 Background and Motivation 

Synthesized gas, or syngas, is a mixture composed primarily of hydrogen and 

carbon monoxide, which is produced via gasification of coal or other carbonaceous 

sources such as biomass, oil, or landfill waste.  While commonly utilized as a 

feedstock for chemical manufacturing it is possible to use syngas directly in existing 

combustion devices as a fuel.  In this manner syngas offers the unique and 

important potential to integrate diverse sources of energy into a single fuel product.  

Additionally, the use of syngas can lead to significant reductions in hazardous 

pollutant emissions through pre-combustion filtering during the gasification process 

and post-combustion carbon capture [1].  The development and implementation of 

syngas fuel systems is therefore of great interest, as it can enable a gradual 

transition to renewable fuel sources while simultaneously utilizing and improving 

the emissions associated with existing fossil fuels. 

As coal is used to generate the majority of the electrical power in the United 

States and China, improvement of coal-based power systems is critical to the long 

term sustainability of the global economy, environment, and human health.  The 

implementation of syngas fuel can meet this challenge, providing an alternative to 

the traditional pulverized coal-fired boiler systems commonly in use today.  A new 

coal-based combustion scheme which uses syngas fuel, called Integrated 

Gasification Combined Cycle (IGCC), is currently under development.  In this new 

plant, coal is gasified then combusted directly in a gas turbine as part of a combined 
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cycle power system.  Compared to a pulverized coal system an IGCC plant can 

achieve significant reductions in emissions of SOx, NOx, particulate matter, and 

heavy metals without a significant decrease in overall plant efficiency [1].  While 

commercialization of this technology is still limited, there are currently 18 IGCC 

plants in operation worldwide producing ~ 9.2 GW of power, with an additional 

seven potential plants scheduled to add ~ 2.8 GW in the future [2]. 

Currently the gas turbine portion of the IGCC system is in development, with 

a focus on achieving safe and efficient combustion of syngas.  A particular concern 

for this high-hydrogen-content (HHC) fuel are the potentially high NOx emissions 

that result from increased flame temperatures [3,4].  In order to prevent NOx 

formation in this system, combustion temperatures can be reduced by burning at 

lean, pre-mixed, and/or dilute conditions.  These conditions present challenging 

stability, safety, and control issues however, stemming in part from uncertainties in 

low-temperature chemistry as well as an increased instance and influence of 

abnormal ignition behaviors such as flashback and early auto-ignition [4,5].  As 

syngas is a HHC fuel it exhibits unique and generally unstable physical and 

chemical characteristics, and as such, low-NOx gas turbine combustors currently 

designed for air-dilute lean combustion of natural gas cannot be operated with 

syngas fuel [4].  It is therefore imperative to the successful implementation of 

syngas fuels in these and other similar systems that both the chemical kinetics of 

its oxidation and associated physical ignition behaviors be well understood at 

typical gas turbine operating conditions (P ~ 5-30 atm, T < 1100 K [6], air-dilute, 

fuel-to-O2 equivalence ratio (φ) ~ 0.5 – 1.0 [4]).  This knowledge will facilitate the 

successful design and operation of syngas fueled gas turbine combustors for use in 

IGCC or other similar systems.   

 

1.1.1 Chemical kinetics of syngas oxidation 

The kinetics of basic syngas (H2 & CO only) and pure hydrogen oxidation 

have been well studied and modeled, see Chaos and Dryer [6] and the references 

contained therein.  While early studies (~1970s) focused on low-pressure high-
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temperature conditions, there has been a shift toward high-pressure low-

temperature experimental conditions in recent decades [6].  This coincides with a 

desire to move toward high-pressure low-temperature combustion strategies which 

can reduce emissions and improve efficiency, e.g. dry-low NOx and homogeneous 

charge compression ignition.  As illustrated by Chaos and Dryer [6] and Chaos et al. 

[7] the fundamental nature of hydrogen and correspondingly syngas chemistry 

changes greatly as temperatures are reduced and pressure increased – 

predominantly in the chemical kinetics of OH formation.  At high-pressure low-

temperature conditions kinetic pathways for OH radical formation transition from 

O and H dominated pathways to slower HO2 and H2O2 dominated pathways.  This 

change reduces reactivity and introduces a pronounced pressure dependence, 

manifested as increased auto-ignition delay times which are highly dependent on 

pressure, for example [7].  Importantly, modern chemical kinetic mechanisms such 

as those by Li et al. [8] and Keromnes et al. [9] indeed capture chemical kinetic 

phenomena of basic syngas oxidation quite well for a wide range of thermodynamic 

conditions including at high pressures.  Furthermore, these and other mechanisms 

have been validated quite extensively against auto-ignition, laminar flame speed, 

and chemical species profile data from various experimental facilities [8,9].  

While basic syngas mixtures are indeed well studied, they are not fully 

representative of realistic syngas mixtures which are highly variable in both 

constituent species and concentrations [10].  Contrary to the basic formulation, 

diverse combinations of H2, CO, CH4, CO2, N2, and other trace species such as Si, N, 

and S-based compounds are known to exist in real mixtures [11–13].  This variation 

is detailed in Table 1-1, which illustrates typical syngas composition in real 

industrial applications.  As indicated by Glarborg [14], even trace impurities have 

the potential to drastically alter the reactivity and dominant chemical kinetic 

pathways of the fuel oxidation process.   
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Table 1-1. Typical Syngas Composition [11–13,15] 

 

Component % Volume 

H2 25-30 

CO 30-60 

CO2 5-15 

H2O 2-30 

CH4 0-5 

N2 0-4 

Ar, N2, H2S, COS, NH3, Ash 0-1 

Trace Impurities  

(Fe, Cl, Si - species, Metals, etc.) 

< 100 ppm 

 

 

There are few experimental investigations of the effects of impurities and 

constituent variation on the combustion of syngas mixtures.  These studies are 

limited to select species and focus primarily on the effects of hydrocarbon (HC) 

addition to basic syngas.  Mathieu et al. [10]  measured the effects of variations in 

CH4, CO2, H2O, and NH3 content on auto-ignition delay using a shocktube at ~98% 

Ar dilution, φ = 0.5, P = 2-32 atm, T = ~960-1860 K.  The results indicated that the 

addition of up to 0.16% CO2, 0.22% H2O, or 0.02% NH3 by total mixture volume had 

negligible effect at all conditions, while the addition of up to 0.08% CH4 increased 

the auto-ignition delay time by up to an order of magnitude.  Additionally, Mathieu 

et al. [16] investigated the effects of several compounds on syngas auto-ignition 

delay time using numerical methods, considering the addition of up to 15% CH4, 

1.7% C2H6, 5.3% C2H4, 0.7% C2H2, 21.8% H2O, and 15% CO2 by total fuel volume for 

mixtures at air-dilution,  φ = 0.5 and 1.0, P = 1-35 atm, T = 900 – 1400K.  The 

results of this work indicated that for all hydrocarbon (HC) species except C2H2 an 

increase in the auto-ignition delay time by a factor of two or more is expected, with 

most significant magnitude change for T > 1000 K.  The effect of C2H2 addition was 

found to be negligible.  Gersen et al. [17]  measured the effects of variations in H2, 

CO, and CH4 content on auto-ignition delay times using a rapid compression 

machine at approximately air-dilution, φ = 0.5 and 1.0, P = ~20-80 bar, T = ~900-

1100 K.  The mole fraction of CH4 in the fuel was varied from 0 to 1, for H2 from 0 to 

1, and for CH4 from 0 to 0.5.  The results showed that while the relative 
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concentration of CO had minimal effect, increasing the concentration of H2 

significantly decreased auto-ignition delay time and increasing the concentration of 

CH4 significantly increased this time at all conditions.  

In addition to these studies, the effects of impurities on the combustion of 

pure hydrogen have been evaluated for several compounds.  As syngas combustion 

chemistry is dominated by hydrogen kinetic pathways [6], it is likely that effects 

similar to these would also be observed for syngas mixtures.  Mueller et al. [18] 

measured the effects of NO and NO2 addition to pure hydrogen fuel on species mole 

fraction profiles in a flow reactor at ~ 1% fuel dilution, φ = 1-2, P = ~0.5-14 atm, T = 

~750-850 K.  The experimental results, as well as those from subsequent kinetic 

modeling, illustrated a clear promoting effect of both NO and NO2, with order of 

magnitude decreases in “characteristic reaction times” predicted for 10-1000 ppm 

concentrations.  Mathieu et al. [19] studied the effects of up to 1600 ppm H2S 

addition by total mixture volume on auto-ignition delay times in a shocktube at 

~98% Ar dilution, φ = 0.5, P = 2-35 atm, T = ~960-1860 K.  The findings of that 

study illustrated a distinct inhibiting effect, with increases in auto-ignition delay 

time of up to a factor of 6.  Petersen et al. [20] measured the effects of up to 0.046% 

Silane (SiH4) addition by total mixture volume on the auto-ignition delay times of 

pure hydrogen in a shocktube at ~98% Ar dilution, φ = 1.0, P = ~1 atm, T = ~1000-

2250 K.  The results indicate that the addition of SiH4 at this concentration led to 

decreases in the auto-ignition delay time by a factor of two or more.  This finding is 

in agreement with the previous study by McClain et al. [21] which indicated that 

increasing concentration of SiH4 in an H2 mixture significantly decreased auto-

ignition delay times in a shocktube with ~ air-dilution, φ = 1.0 and 0.5, for P = ~1.5 

atm and T = 800-1050K.   

Overall, previous studies of the effects of impurities on syngas and hydrogen 

combustion are limited to a select few species and the results indicate that different 

species indeed yield varying ignition promoting and inhibiting effects.  With these 

previous studies in mind there is yet a need for further investigation of the effects of 

impurities on syngas combustion.  A number of important species remain 
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completely untested and for those species which have been investigated, limited 

experimental data, particularly for non-pure H2 fuel, inhibits application of the 

results to real devices and mixtures.  This is particularly important for species 

which promote ignition, considering that early ignition can lead to catastrophic 

failures.  As a result, there is presently minimal ability to both predict and model 

chemical kinetic phenomena for realistic syngas mixtures, greatly restricting the 

application of this fuel in practical combustion devices.   

 

1.1.2 Auto-ignition behaviors of syngas 

While the chemical kinetics of basic syngas oxidation has been studied in 

detail, there have been only a few experimental investigations of the auto-ignition 

behavior of these fuels conducted at a narrow range of conditions (Voevodsky and 

Soloukhin, 1965 [22],  Meyer and Oppenhiem, 1971 [23], Blumenthal et al., 1997 

[24], Kalitan et al., 2007 [25], and Walton et al., 2007 [26]).  Knowledge of these 

behaviors has great practical importance in HHC combustion systems, considering 

that control or avoidance of auto-ignition is key to safe and effective operation [27].  

Furthermore, this knowledge is critical to the proper design and interpretation of 

combustion experiments which rely on this chemically driven ignition behavior, e.g. 

rapid compression machines, shocktubes, or flow reactors.  In the auto-ignition 

studies listed above optical techniques were employed during auto-ignition delay 

time measurements in a variety of experimental facilities, which revealed diverse 

auto-ignition behaviors at thermodynamic conditions relevant to gas turbine 

operation.  The observed behaviors consisted of both well-behaved homogeneous 

phenomena (spatially uniform reaction and/or detonation wave) and uncontrolled 

inhomogeneous phenomena (random localized reaction sites and deflagration).  As 

there is no active source of ignition in these systems, e.g. a sparkplug, these results 

are an important indication that spontaneous and uncontrolled ignition can occur.  

Additionally, Chaos and Dryer [6] found that auto-ignition delay time 

measurements for experiments with inhomogeneous ignition behavior are up to 

several orders of magnitude less than typical model predictions; whereas 
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measurements for experiments with homogeneous ignition behavior are generally in 

excellent agreement with these predictions.  This is a critical indication that not 

only is uncontrolled localized ignition taking place, but that it can lead to global 

auto-ignition events that occur much earlier than common model predictions.  

Overall these results illustrate a potentially catastrophic tendency of syngas and 

HHC fuels to ignite in unexpected locations or times at conditions typical of gas 

turbine operation.  

With these important auto-ignition behaviors in mind, there is a critical lack 

of information regarding the conditions at which they occur and the fundamental 

chemical and physical processes which govern their existence and impact.  Previous 

works do illustrate the existence these behaviors, but the conditions studied are 

limited and insufficient to represent the array of thermodynamic and mixture 

conditions in a real gas turbine system.  As a result, there is presently minimal 

ability to predict and control the auto-ignition behaviors of syngas and other HHC 

fuels at conditions typical to gas turbine operation, a major barrier to their 

successful implementation in practical devices.  

 

1.2 Objectives and General Approach 

The primary objective of this thesis was to comprehensively advance syngas 

turbine design and development, through an experimental exploration and analysis 

of syngas combustion chemistry and auto-ignition behaviors at practical combustor 

conditions.  An additional goal was to extend this knowledge to alternate fuel 

systems as appropriate, in order to facilitate the general development of low-

temperature and fuel-flexible combustion strategies.  The specific objectives for this 

thesis were: 

 

 Investigate and broadly map the auto-ignition behaviors and auto-ignition 

delay times of air-dilute syngas for an extensive range of mixture and 

thermodynamic conditions, 
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 Evaluate the relationship between local and global auto-ignition phenomena, 

with a specific focus on the accuracy of common modeling methods, 

 Explore the fundamental physical and chemical processes governing the auto-

ignition behaviors and integrate these with experimental results to develop 

and validate methods for predicting auto-ignition behaviors in syngas, 

 Investigate the effects of select impurities on syngas combustion chemistry, 

with a specific focus on unstudied and understudied species, 

 Improve the understanding of the chemical kinetics of syngas oxidation and 

existing kinetic models.  

 

These objectives were accomplished primarily through a series of 

experimental investigations of syngas auto-ignition behavior and auto-ignition 

delay times using the University of Michigan Rapid Compression Facility (UM-

RCF).  This facility is uniquely designed to create a quiescent volume of gas with 

uniform thermodynamic conditions similar to those in a gas turbine through an 

isentropic compression process.  A detailed description of the UM-RCF and results 

of studies characterizing its performance can be found in Donovan et al. [28] and He 

et al. [29].  In these experiments, transient pressure measurements, high-speed 

imaging of the reactor volume, and ultra-violet (UV) laser absorption spectroscopy 

were employed.  These tools were used to quantify the auto-ignition delay time, 

evaluate the occurrence and properties of auto-ignition behaviors, and to 

experimentally quantify the concentration of a key radical species, OH, during the 

ignition process for select mixtures and thermodynamic conditions.  These new 

experimental data were combined with those from a multitude of previous works to 

develop comprehensive knowledge of auto-ignition times and properties as a 

function of initial thermodynamic state and mixture conditions.  Furthermore, auto-

ignition delay time and OH concentration measurements were compared to 

numerical predictions generated using various chemical kinetic and physical 

models, allowing for the identification of broader trends, enhanced analysis of the 

governing chemical kinetics, and an evaluation of the dominant physical behaviors. 
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1.3 Projects and Chapter Outline 

 The objectives described above were accomplished through four projects, each 

corresponding to a chapter in this dissertation (Chapters 3-6).  Chapter 2 contains a 

detailed description of the experimental methods common to all projects with a 

focus on the University of Michigan – Rapid Compression Facility (UM-RCF).  

Chapter 7 contains a summary and a list of the major conclusions of this work, as 

well as recommendations for appropriate future work.  Chapters 3-6 are described 

in detail below, with specific project motivations and objectives. 

 

1.3.1 Chapter 3: High-pressure low-temperature ignition behavior of 

syngas mixtures   

As previously mentioned, the limited experimental investigations of auto-

ignition behavior by Voevodsky and Soloukhin, 1965 [22],  Meyer and Oppenhiem, 

1971 [23], Blumenthal et al., 1997 [24], Kalitan et al., 2007 [25], and Walton et al., 

2007 [26]  revealed diverse auto-ignition behaviors at thermodynamic conditions 

relevant to gas turbine operation.  These consisted of both homogeneous (spatially 

uniform emission or detonation wave) and inhomogeneous (localized reaction sites 

and deflagration) phenomena.  Importantly, Voevodsky and Soloukhin [22] and 

Meyer and Oppenheim [23] observed a clear and consistent transition between 

inhomogeneous and homogeneous auto-ignition behavior at varying initial 

thermodynamic conditions, i.e. the strong ignition limit.  This is an indication that 

auto-ignition behaviors are generally repeatable and strongly related to the 

unburned condition.  Voevodsky and Soloukhin [22] further illustrated that the 

strong ignition limit corresponds well to the second explosion limit of hydrogen at 

low pressures, demonstrating the importance of dominant chemical kinetic 

pathways in determining ignition behavior.  Meyer and Oppenheim [23] expanded 

on the work by Voevodsky and Soloukhin [7] at low pressures, discovering that a 

specific value of the temperature derivative of the auto-ignition delay time (which 

they defined as the thermal sensitivity of the system) was well correlated with the 

strong ignition limit – thus connecting auto-ignition behavior to the dominant 
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chemical kinetic pathway and thermal non-uniformities in the unburned gas.  This 

was an important indication that transitions in auto-ignition behavior can be 

understood and potentially predicted using thermal sensitivity.   

This relationship between thermal non-uniformities and auto-ignition 

behavior was later investigated computationally by Sankaran et al. [30] using high 

fidelity direct numerical simulations of air-dilute pure H2 at φ = 0.1.  These 

simulations revealed that indeed various auto-ignition behaviors could be caused by 

distributed thermal non-uniformities.  A non-dimensional criterion was then 

proposed, named the Sankaran Criterion in the present work, which compared 

thermal gradient driven propagation speed and laminar flame speed to indicate the 

transition between inhomogeneous and homogeneous ignition behaviors.  Since a 

propagation speed determined by a thermal gradient is directly related to thermal 

sensitivity, this criterion again highlights the importance of the value of the 

thermal sensitivity.  While providing a potentially powerful tool in the prediction of 

auto-ignition behavior, this criterion was not experimentally validated by Sankaran 

et al. or other investigators previous to the current work. 

The understanding and prediction of the occurrence of various auto-ignition 

behaviors are important, as is the relationship between auto-ignition behaviors and 

the accuracy of basic homogeneous ignition modeling.  As highlighted in Chaos and 

Dryer [6] and mentioned previously, it is apparent that auto-ignition delay time 

measurements for experiments with inhomogeneous ignition behavior are up to 

several orders of magnitude less than typical model predictions; whereas 

measurements for experiments with homogeneous ignition behavior are generally in 

excellent agreement with these predictions.  With this in mind, there is currently a 

lack of understanding as to whether the effects inhomogeneous ignition behaviors 

necessarily lead to inaccuracy in basic auto-ignition delay modeling.  This has 

profound impact on both scientific and practical applications of syngas, as both rely 

on accurate predictions of the auto-ignition delay times for safe and effective 

operation.   
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The objectives of this project were to comprehensively advance the 

understanding and prediction of the auto-ignition behaviors of air-dilute syngas for 

a broad range of conditions, and to also evaluate the relationship of such behaviors 

to the predictive accuracy of basic auto-ignition delay time modeling.  These 

objectives were accomplished in part through an experimental investigation of 

syngas auto-ignition behavior and ignition delay times at lean conditions, using the 

UM-RCF.  The results were then combined with those from the shocktube studies of 

Blumenthal et al. [24] and Kalitan et al. [25] to comprehensively map auto-ignition 

behavior as a function of initial thermodynamic state and equivalence ratio.  On 

these maps, the strong ignition limit was identified and compared to the second 

explosion limits of hydrogen and predicted values of thermal sensitivity.  The 

locations of the experimentally determined strong ignition limits were also 

compared to predictions made using the criterion of Sankaran et al. [30], the first 

application of this tool to experimental data.  Lastly, the auto-ignition delay time 

measurements were compared to predictions made using typical zero-dimensional 

homogeneous reactor ignition modeling and the formaldehyde oxidation mechanism 

of Li et al. [8] (Li 2007 mechanism), in order to weigh the impact of auto-ignition 

behavior on the accuracy of auto-ignition delay time predictions. 

A complete description of this project and the findings were published as, A.B. 

Mansfield, M.S. Wooldridge, Comb. and Flame 161 (2014) 2242–2251. 

 

1.3.2 Chapter 4: Low-temperature ignition behavior of iso-octane 

The results of the previous project indeed illustrated a remarkable ability of 

the Sankaran Criterion to predict the location of the strong ignition limit, i.e. the 

conditions where auto-ignition behavior transitions from inhomogeneous to 

homogeneous, using basic modeling methods.  As stated previously, a goal of this 

body of work was to expand findings to alternative fuels in order to develop and 

enable low-temperature combustion strategies in general.  Considering the 

potential value of the Sankaran Criterion to enable such strategies for fuels beyond 

those with HHC, the auto-ignition behavior of iso-octane and the application of the 
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criterion to iso-octane was investigated.  As iso-octane is a well-studied primary 

reference fuel, it was selected as a representative of HC fuels in general.  The 

theoretical foundation of the Sankaran criterion is not inherently fuel specific and a 

successful extension to non-hydrogen-based fuels was conceivable prior to the 

execution of this project.   

While the oxidation chemistry of iso-octane has been well studied, as 

indicated in Mehl et al. [31] and the references therein, only Fieweger et al. [32] and 

Vermeer and Oppenheim [33] have directly investigated the auto-ignition behaviors 

of iso-octane in a controlled and quiescent experimental apparatus.  Vermeer and 

Oppenheim [33] employed optical techniques during auto-ignition measurements in 

a shocktube for air-dilute stoichiometric iso-octane, which revealed diverse auto-

ignition characteristics at thermodynamic and mixture conditions relevant to 

practical combustion devices.  Similar to the results for syngas fuel, these behaviors 

included homogeneous (spatially uniform emission or detonation wave) and 

inhomogeneous (localized reaction sites and deflagration) phenomena.  Vermeer and 

Oppenheim further observed a clear transition between these auto-ignition 

behaviors at varying initial thermodynamic conditions, which they again defined as 

the strong ignition limit.  Fieweger et al. [32] expanded greatly on this work, 

classifying the auto-ignition behaviors of air-dilute stoichiometric iso-octane in a 

shocktube over a much broader range of initial temperatures, using pressure and 

CH emission time history characteristics.  Consistent with the previous findings, 

Fieweger et al. [32] observed both homogeneous and inhomogeneous ignition 

behaviors and discovered a clearly defined strong ignition limit.  The results of 

these studies are an important illustration that various auto-ignition behaviors are 

expected at conditions relevant to practical combustion devices using iso-octane, 

and that these generally repeatable behaviors are strongly related to initial 

unburned thermodynamic state.  In this way previous observations of the auto-

ignition behaviors of iso-octane indicate that they closely resemble the behaviors for 

syngas fuel, discussed in Chapter 3. 
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The objectives of this project were first to evaluate the hypothesis that the 

Sankaran Criterion could be accurately applied to iso-octane fuel, and second to 

investigate the effects of auto-ignition behaviors on the predictive accuracy of basic 

auto-ignition delay time modeling for this fuel. These objectives were accomplished 

in part through new experimental studies of iso-octane auto-ignition behavior and 

auto-ignition delay times using the University of Michigan Rapid Compression 

Facility (UM-RCF) and the Tsinghua University Rapid Compression Machine (TU-

RCM).  The auto-ignition behavior results were combined with those from the shock 

tube studies of Fieweger et al. [32] and Vermeer and Oppenheim [33] to map auto-

ignition behavior as a function of initial thermodynamic state and equivalence ratio.  

Using these maps, the strong ignition limit was identified for various equivalence 

ratios and the location of each limit was compared to predictions made using the 

Sankaran Criterion.  Then the auto-ignition delay time measurements for all 

experiments were compared to predictions made using typical zero-dimensional 

homogeneous reactor modeling and the iso-octane oxidation mechanism of Mehl et 

al. [31]. 

A complete description of this project and the findings were published as, A.B. 

Mansfield, M.S. Wooldridge, H. Di, X. He, FUEL 139 (2015) 79–86. 

 

1.3.3 Chapter 5: The effect of impurities on syngas combustion 

As discussed earlier, previous studies indicate that the addition different 

species indeed yields varying ignition promoting and inhibiting effects in syngas 

and pure hydrogen mixtures.  Furthermore, limited investigation of the effects of 

impurities on syngas yields a corresponding limit to the application of syngas fuels 

in practical devices.  It is of particular importance to develop an understanding of 

the effects of ignition promoting species, which have the potential to cause 

catastrophic system failure through un-predicted early auto-ignition.  With this in 

mind, the significant promoting effect observed for SiH4 addition to pure H2 

mixtures is particularly interesting, considering the substantial and increasing 

concentrations of organic Si compounds in syngas derived from waste (landfills, 
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waste digesters, or water treatment facilities) [13,34].  As detailed in Rasi et al. [13] 

and Pierce et al. [35] syngas from these sources contains both silanol {…Si-OH} and 

siloxane {…Si-O-Si…} species at up to 10-100 ppm concentrations.  Common 

compounds include trimethylsilanol and decamethylcyclopentasiloxane, which make 

up a majority of the organic Si content within syngas from waste sources [13].  

While the fouling tendencies of these and other organic Si species in combustion 

devices is well documented [34,35], their effect on combustion chemistry has not 

been investigated in any capacity.  Considering the significant ignition promoting 

effects observed for a chemically similar compound, i.e. SiH4, and the increasing 

concentrations of Si-based species in syngas, this lack of knowledge presents a 

significant barrier to the safe and effective implementation of this fuel. 

The objective of this project was to advance the understanding of the effects 

of impurities on the chemical kinetics of syngas oxidation, focusing on CH4 and 

trimethylsilanol (TMS) impurities at thermodynamic and mixture conditions 

relevant to practical device operation.  This objective was accomplished through an 

experimental investigation of auto-ignition delay times at lean, low-temperature, 

high-pressure conditions, using the UM-RCF.  Uniquely, high-speed imaging was 

utilized for each experiment, ensuring that only ideal homogeneous ignition 

behaviors were exhibited for the data reported here.  This important diagnostic 

enabled testing at lower temperatures and pressures not possible in previous 

experimental studies by other investigators, thereby expanding knowledge of 

impurity effects to more practical conditions.  The auto-ignition delay time and 

pressure time history measurements were compared to predictions made using 

typical zero-dimensional homogeneous reactor ignition modeling and the 

formaldehyde oxidation mechanism of Li et al. [8] (Li 2007 mechanism), used 

frequently to successfully predict syngas combustion characteristics [6,10,36].  This 

model was then used to interpret and analyze observed pressure time histories and 

impurity effects, in order to describe behavior trends and connect these with 

potential underlying chemical kinetic pathways. 
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1.3.4 Chapter 6: Experimental study of OH time histories during syngas 

auto-ignition 

Chemical kinetic mechanisms are frequently validated against experimental 

measurements of bulk phenomena, i.e. auto-ignition delay time and laminar flame 

speed, which are representative of the global action of the chemically reacting 

system.  Often though, these mechanisms are subsequently used across a much 

broader range of thermodynamic conditions to predict more specific variables such 

as chemical species concentrations. It is therefore highly desirable to expand the 

validation of these mechanisms to include comparisons with measurements of more 

specific parameters, e.g. OH mole fraction time histories.  Such comparisons can 

facilitate an improvement in the chemical pathways most critical to the combustion 

process, thereby improving both the mechanisms accuracy across broader conditions 

and in predicting specific species concentrations.  Based on the recent work by 

Burke et al. [37] to develop a revised H2/O2 oxidation model, there is limited OH 

radical concentration data during combustion for pure H2 fuel.  Furthermore, no OH 

radical concentration data was found in the literature for syngas fuel combustion at 

any conditions.  All available data for H2 is from shocktubes at high-temperature 

low-pressure conditions (1050 – 2700 K, 0.4 – 2 atm) for stoichiometric mixtures 

with very high pure Ar dilution (90+ %) [38–42].  While these data are a valuable 

source for chemical kinetic model development there is a need for OH concentration 

measurements during combustion at more engine relevant conditions and mixtures, 

from a wider range of facilities.  As highlighted previously, the chemical kinetics of 

hydrogen and syngas fuel oxidation changes markedly at the high-pressure low-

temperature conditions often desired in modern engine applications. 

The objective of this project was to provide valuable real-time OH 

concentration data corresponding to the auto-ignition process for syngas fuel and to 

use this data to validate and improve commonly used chemical kinetic mechanisms 

for syngas oxidation.  This was accomplished through an experimental investigation 

of auto-ignition delay times at engine relevant conditions, using the UM-RCF.  

Laser spectroscopy was applied, allowing for real-time measurement of the OH 
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radical concentration for each experiment.  Importantly, high-speed imaging was 

also utilized for each experiment, ensuring that only homogeneous ignition 

behaviors were exhibited for the data reported here.  The auto-ignition delay time, 

pressure time history, and OH mole fraction time history measurements were 

compared to predictions made using typical zero-dimensional homogeneous reactor 

ignition modeling and the commonly used syngas oxidation mechanisms of Li et al. 

[8] and Keromnes et al. [9], importantly considering known uncertainties in reaction 

rates. 
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Chapter 2 

Experimental and Computational Methods 

 

 In this chapter the experimental and computational methods common to all 

projects are described.  These are based primarily on experiments in the UM-RCF 

with computational predictions made using the CHEMKIN software suite [1].  

Additional systems and methods specific to each project are described in more detail 

in each chapter, respectively. 

  

2.1 University of Michigan – Rapid Compression Facility 

The UM-RCF is uniquely designed to create a gas volume with uniform 

thermodynamic conditions through an isentropic compression process [2]. A detailed 

description of the UM-RCF and results of studies characterizing its performance 

can be found in Donovan et al. [2] and He et al. [3].  Briefly, the apparatus consists 

of a long cylinder, the Driven Section, in which a gas mixture is rapidly compressed 

by the motion of a free piston (Sabot).  Prior to compression, the Driven Section is 

evacuated with a pump and then filled with a specific test gas mixture.  Upon firing, 

the Sabot travels the length of the Driven Section compressing the test gas mixture 

into the Test Section – a small cylindrical volume located at the end of the Driven 

Section (~ 50 mm length and 50 mm diameter).  As the Sabot reaches its final 

position near the Test Section, the Sabot achieves an annular interference fit, 

thereby sealing the test gas mixture in the Test Section.  At this point, the Test 

Section is filled with a uniform and isentropically compressed test gas mixture at 

the desired initial thermodynamic condition.  This is achieved in large part because 

cool boundary layer gases from the Driven section are trapped in an external 

volume formed by the geometry of the Sabot [2,4]. 
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For each project, the Test Section was instrumented with a piezoelectric 

transducer (6125B Kistler, Amherst, NY) and charge amplifier (5010 Kistler, 

Amherst, NY) for pressure measurements, and a transparent polycarbonate end-

wall to permit high-speed imaging of the ignition process.  During each experiment 

the pressure time history was recorded using the pressure transducer at 100 kHz 

sampling frequency.  The uncertainty in the pressure measurements is estimated as 

≤ 1% (~ 0.1 atm) considering both the signal-to-noise ratio in the post-ignition 

pressure time history data and the non-linearity limits defined by Kistler during 

the calibration process.  High-speed color imaging was recorded using a digital 

video camera (V711-8G-MAG-C, Vision Research, Phantom) with a Navitar 50mm 

lens (F0.95), a Hoya 62 mm lens (+2 zoom), and a Hoya 62 mm UV(0) filter.  Video 

sequences were recorded at 25,000 frames/second with a CMOS array resolution of 

512 x 512 pixels, resulting in an exposure time of 39.3 μs.   

All test gas mixtures were made using a dedicated stainless steel tank and 

the mixture composition was determined by measurement of the relative partial 

pressures of the components.  After filling, the tank was continuously stirred by an 

internal mechanism and was left to mix for at least one hour before use.  Error in 

the mixture composition is assumed to be negligible and have negligible effect on 

the ignition results, considering ~80-95% (mole basis) of the mixture is comprised of 

N2 and O2. 

 

2.2 Typical pressure time history measurement 

For each experiment in the UM-RCF, a pressure time history was recorded 

allowing for the determination of an auto-ignition delay time.  A typical pressure 

time history during a homogeneous auto-ignition experiment for the present work 

can be seen in Fig. 2-1.  Trends in the pressure data illustrate a pressure increase 

during the compression stroke until the Sabot is seated at the end-of-compression 

event, followed by a slight decrease in pressure due to heat transfer from the test 

gas volume into the cool Test Section walls, followed by a large and rapid increase 

in pressure during the ignition event.  For each experiment, the raw pressure time 
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history was first filtered with a 75-point smoothing algorithm to reduce noise, then 

the time and pressure values were noted at three distinct events: end-of-

compression (EOC), minimum pressure (Pmin), and maximum pressure (Pmax), 

denoted in Fig. 2-1.   

 The method for assigning an auto-ignition delay time to each experiment 

varied between projects and is described individually in the proceeding chapters; 

generally speaking it is the time between the EOC and the ignition event.   

 

 
Fig. 2-1. Typical experimental pressure time history from the UM-RCF at experimental conditions of 

P = 10.2 atm, T = 1,060 K, pure syngas fuel (H2, CO only), φ = 0.1, H2:CO molar ratio = 0.7, ~ Air-

dilute with N2 and Ar.  

 

2.2 Assignment of Thermodynamic State 

For each experiment a thermodynamic state was assigned, representing the 

isobaric/isothermal condition at which the experiment was conducted.  While the 

pressure within the Test Section was directly measured throughout each 

experiment, it was necessary to calculate the bulk temperature using 

thermodynamic relations.  Experimentally verified by Donovan et al. [2], the initial 

compression stroke in the UM-RCF is well represented as isentropic compression.  

Furthermore, assuming that the gas volume contained in the Test Section is 

composed of an “adiabatic core” and a “boundary layer region”, as defined in Lee 

and Hochgreb [5], the pressure decrease after the EOC event can be modeled as 
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isentropic expansion.  With these well supported assumptions in place, the initial 

uncompressed thermodynamic conditions were used in conjunction with isentropic 

state relations to calculate the temperature throughout the experiment.  

Propagation of the pressure measurement uncertainty of ≤ 1% through the 

isentropic state relations yields an uncertainty of ≤ 0.4% in the temperature (~5 K).  

This is in very good agreement with expected thermal variations in the UM-RCF, 

experimentally determined by Donovan et al. [2] to be less than ~10 K by direct 

thermocouple measurement. 

Regarding the assignment of a specific thermodynamic state to each 

experiment, the EOC state (P,T) or a derived average state were assigned, 

depending on which best represented the experiment.  In most cases, there was no 

appreciable decrease in temperature between the EOC event and the ignition event 

(i.e.< 10 K change from PEOC to Pmin), and so the EOC thermodynamic state was 

assigned to the experimental result.  However, for the cases with significant 

decreases in temperature (i.e. > 10 K) in that time period, an average 

thermodynamic state was assigned.  The average pressure was defined 

mathematically as the arithmetic mean of all pressure measurements between EOC 

and Pmin.  The average temperature was calculated thereafter assuming an 

isentropic expansion from the thermodynamic state at the EOC event to the 

average pressure.  Assignment of an average state in this manner captures the 

effects of heat transfer to the cool Test Section walls while retaining critical clarity 

in both reporting and interpreting the experimental results, thus greatly improving 

the archival value of the results as compared to using the EOC conditions.  Similar 

methods of assigning an average or “effective state” to experiments exhibiting some 

non-adiabatic behavior have been successfully applied in numerous past 

experiments using the UM-RCF [2,6].  Moreover, the use of average conditions 

allows straightforward interpretation of the data using isobaric and isothermal 

reporting techniques such as the P-T diagrams and Arrhenius diagrams presented 

later in this work. 
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Other methods to represent the effects of heat transfer on similar rapid 

compression experiments exist, but focus on adjustments in auto-ignition modeling 

rather than assignment of an adjusted thermodynamic state as done here.  These 

alternative methods are discussed in detail in the proceeding section. 

 

2.3 Computational Methods 

Auto-ignition delay time predictions were made in the present work using the 

constant volume adiabatic zero-dimensional homogeneous reactor model in the 

CHEMKIN software suite [1] with various chemical kinetic mechanisms.  Using 

this model corresponding predictions of auto-ignition delay time or other 

parameters were calculated for each auto-ignition experiment using the assigned 

thermodynamic state and mixture composition.  Importantly for each prediction, 

quantified uncertainty bounds of the model predictions were calculated using the 

known uncertainty in the “A-factor” of the Arrhenius reaction rates for the most 

sensitive reactions, selected using OH sensitivity analysis in the CHEMKIN 

software suite.  The selected reactions and rate coefficients used in each project are 

listed in each chapter individually. 

As mentioned above, there are alternatives to the method of assigning an 

average thermodynamic state to each experiment and subsequently modeling each 

experiment as a constant volume adiabatic system.  These methods commonly 

assign the EOC state to each experiment and then integrate a non-reactive pressure 

time history or a derived “volume trace” into the modeling process, as done in 

Gersen et al. [7], Mittal et al. [8], and Würmel et al. [9], in an attempt to account for 

heat transfer effects in the experiment.  While incorporation of a volume trace in 

the modeling is indeed a more time-dependent treatment of heat transfer effects, 

the merit of implementing such detail is small and is may be significantly 

outweighed by the often overlooked drawbacks.  Foremost, if this empirical method 

is used without appropriate documentation, the archival value of the data is 

significantly reduced.  Without any record of the heat loss profiles, appropriate 

comparisons cannot be made between experimental facilities or model predictions, 
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and any quantitative understanding of the effects of heat transfer in the 

experiments is lost.  A standard for reporting rapid compression machine heat 

losses using these empirical corrections has yet to be established or a criterion for 

when it is appropriate to take such steps to represent heat losses (clearly not all 

experiments need such attempts, only systems and conditions with high heat 

transfer rates).  As noted above, a criterion of a maximum temperature change of 10 

K was applied in this body of work.  Further, comparison of the volume trace and 

the effective state methods for syngas fuel, detailed in Mansfield and Wooldridge 

[10] revealed no significant difference between auto-ignition delay time predictions 

(< 15%) using the average state or volume trace method, which was particularly 

irrelevant when the uncertainty in the chemical kinetic mechanism was 

appropriately considered.  Thus, the assignment of an average state allows for both 

improved archival clarity and equivalent accuracy as compared to the volume trace 

method. 

The present discussion of state assignment and modeling techniques was 

published as, A.B. Mansfield & M.S. Wooldridge. Combust Flame 161 (2014)  2242–

51. 

 

REFERENCES  

[1] Reaction Design. CHEMKIN 10101 2010. 

[2] Donovan MT, He X, Zigler BT, Palmer TR, Wooldridge MS, Atreya A. 

Demonstration of a free-piston rapid compression facility for the study of high 

temperature combustion phenomena. Combust Flame 2004;137:351–65. 

[3] He X, Zigler BT, Walton SM, Wooldridge MS, Atreya a. A rapid compression 

facility study of OH time histories during iso-octane ignition. Combust Flame 

2006;145:552–70. 

[4] Walton S, He X, Zigler B, Wooldridge M, Atreya a. An experimental 

investigation of iso-octane ignition phenomena. Combust Flame 

2007;150:246–62. 



26 

 

[5] Lee D, Hochgreb S. Hydrogen Autoignition at Pressures above the second 

explosion limit. Int J Chem Kinet 1998;30:385–406. 

[6] Walton SM, He X, Zigler BT, Wooldridge MS. An experimental investigation 

of the ignition properties of hydrogen and carbon monoxide mixtures for 

syngas turbine applications. Proc Combust Inst 2007;31:3147–54. 

[7] Gersen S, Anikin N, Mokhov a, Levinsky H. Ignition properties of 

methane/hydrogen mixtures in a rapid compression machine. Int J Hydrogen 

Energy 2008;33:1957–64. 

[8] Mittal G, Sung C-J, Yetter R a. Autoignition of H2/CO at elevated pressures 

in a rapid compression machine. Int J Chem Kinet 2006;38:516–29. 

[9] Würmel J, Silke EJ, Curran HJ, Ó Conaire MS, Simmie JM. The effect of 

diluent gases on ignition delay times in the shock tube and in the rapid 

compression machine. Combust Flame 2007;151:289–302. 

[10] Mansfield AB, Wooldridge MS. High-pressure low-temperature ignition 

behavior of syngas mixtures. Combust Flame 2014;161:2242–51.  

  



 

 

27 

 

Chapter 3 

High-pressure low-temperature ignition behavior of syngas mixtures 

 

In order to comprehensively improve the understanding and prediction of the 

auto-ignition behaviors of syngas and also to evaluate the relationship of such 

behaviors to the predictive accuracy of basic auto-ignition delay time modeling, 

auto-ignition behavior and auto-ignition delay times at lean conditions were 

investigated using the UM-RCF.  The results were then combined with those from 

previous studies to comprehensively map auto-ignition behavior and evaluate 

methods for predicting transitions in auto-ignition behavior.  Furthermore, auto-

ignition delay time measurements were compared to predictions made using a 

common syngas chemical kinetic mechanism, in order to weigh the impact of auto-

ignition behavior on the accuracy of auto-ignition delay time predictions. 

This chapter has been published as, A.B. Mansfield, M.S. Wooldridge, Comb. 

and Flame 161 (2014) 2242–2251. 

 

1. METHODS 

1.1 Experimental 

Ignition experiments were conducted for realistic but simple syngas mixtures 

for two values of equivalence ratio (φ = 0.1 and 0.5), designed to represent lean 

syngas mixtures used in the power industry [1].  Both mixtures contained only H2 

and CO as fuel, with a molar ratio of H2:CO = 0.7, and were approximately air-

dilute with N2, i.e. molar O2 to inert gas ratio of 1:3.76.  In some cases small 

amounts of the N2 diluent gas were replaced by Ar and/or CO2 to modify the test 

temperature.  Ignition experiments were conducted at approximately 3, 5, 10, and 

15 atm for the broadest range of temperatures allowable in the UM-RCF for these 
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mixtures (~ 950-1150 K, based on experimental test times).  The composition of the 

gas mixture and the thermodynamic state corresponding to each auto-ignition delay 

time measurement are given in the Supplemental Material section.  

 

1.2 Computational 

Auto-ignition ignition delay time predictions were made using the constant 

volume adiabatic zero-dimensional homogeneous reactor model in the CHEMKIN 

software suite [2] with the Li 2007 chemical kinetic mechanism.  This mechanism 

was used only, given its previous success in predicting syngas ignition behavior [3,4] 

and the minor differences in predictions seen between other H2 and CO reaction 

mechanisms in other studies [5].  Using this ignition model a corresponding auto-

ignition delay time prediction was calculated for each ignition experiment 

considered in the present work using the exact initial thermodynamic condition and 

mixture composition, including those conducted in the UM-RCF and those from 

Blumenthal et al. [6] and Kalitan et al. [7].  For each prediction, quantified 

uncertainty bounds of the model predictions were calculated using the known 

uncertainty in the “A-factor” of the Arrhenius reaction rates for the two most 

sensitive reactions, H + O2 = H + OH (R1) & H + O2 (+M) = HO2 (+M) (R9), selected 

using OH sensitivity analysis in the CHEMKIN software suite.  The rate 

coefficients used for this reaction are listed in the Supplemental Material section.  

Iso-contours of constant predicted auto-ignition delay time and thermal sensitivity 

were also calculated using this model for a broad range of initial thermodynamic 

conditions, though a constant pressure boundary condition was applied and only the 

nominal A-factors in the kinetic model were used when calculating thermal 

sensitivity. 

 

 

2. RESULTS AND DISCUSSION  

For each experiment in the UM-RCF, a pressure time history and a high-

speed imaging video were recorded, allowing for the determination of an auto-
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ignition delay time and direct observation and classification of the auto-ignition 

behavior.  A typical pressure time history during an ignition experiment for the 

present work can be seen in Fig. 3-1.  Trends in the pressure data illustrate a 

pressure increase during the compression stroke until the Sabot is seated at the 

end-of-compression event, followed by a slight decrease in pressure due to heat 

transfer from the test gas volume into the cool Test Section walls, followed by a 

large and rapid increase in pressure during the ignition event.  For each 

experiment, the time and pressure value was noted at three distinct events: end-of-

compression (EOC), minimum pressure (Pmin), and maximum pressure (Pmax), 

denoted in Fig. 3-1.  After filtering the pressure time history with a 75-point 

smoothing algorithm to reduce signal noise, the pressure and time value for each 

event was defined mathematically as a local maximum or minimum respectively.  

The nominal ignition event was defined as occurring at the average time of Pmin and 

Pmax with symmetric uncertainty bounds assigned to span the time from Pmin to 

Pmax.  The nominal auto-ignition delay time was defined as the time from EOC to 

the ignition event, with symmetric uncertainty bounds defined by the uncertainty 

bounds of the ignition event time.  Overall, this definition is quite general and 

biases the auto-ignition delay times slightly to faster times compared to 

conventional definitions based on the maximum rate of pressure rise.  However, this 

approach ensures the analysis can be applied to all experiments regardless of 

ignition behavior, which was critical given the wide range of conditions considered 

in this work yielding variable pressure time history characteristics.  Additionally, 

the uncertainty limits assigned in this study ensure that the conventional definition 

of auto-ignition delay time based on the maximum rate of pressure rise is captured 

within the bounds of the reported measurements.  For each experiment a 

thermodynamic state was assigned, representing the isobaric/isothermal condition 

at which the experimental was conducted, as described in Chapter 2. 
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Fig. 3-1. Typical experimental pressure time history at experimental conditions of P = 10.2 atm, T = 

1,060 K, φ = 0.1; where, τign is the auto-ignition delay time and ∆τignis the symmetric uncertainty of 

the auto-ignition delay time.  

 

Typical high-speed imaging results of chemilluminescence during syngas 

auto-ignition in the UM-RCF are shown in Fig. 3-2a & 3-2b, illustrating both 

homogeneous and inhomogeneous auto-ignition phenomena respectively.  As seen in 

the figure, homogeneous ignition is indicated by spatially uniform 

chemilluminescence emission; whereas, inhomogeneous ignition is indicated by local 

emission features forming flame-like structures which propagate and merge.  In 

some experiments, inhomogeneous phenomena were followed by homogeneous 

ignition of the unburned gas volume.  Based on the observed chemilluminescence 

behavior, each experiment was classified as exhibiting one of three ignition 

behaviors, strong, weak, or mixed, described in detail in Table 3-1.  In general, the 

imaging closely resembled previous high-speed imaging results for syngas ignition 

seen in Walton et al. [8].  In several low-pressure experiments no 

chemilluminescence was observed, likely due to low energy content and/or low-

densities, and the ignition behavior was classified as strong by default. 
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Fig. 3-2a. (left) Single frame from high-speed imaging of homogeneous ignition behavior, illustrating 

uniform chemilluminescence for experimental conditions P = 3.3 atm, T = 1043 K, φ = 0.1. 

Fig. 3-2b. (right) Single frame from high-speed imaging of inhomogeneous ignition behavior, 

illustrating non-uniform chemilluminescence with various localized flame-like structures, for 

experimental conditions P = 9.2 atm, T = 1019 K, φ = 0.5. 

 

Table 3-1. Classification of ignition behavior based on high-speed imaging results 

Ignition 

Classification 

Imaging 

Characteristics 

Auto- Ignition 

Phenomena 

Strong Spatially uniform only Homogeneous 

Weak Flame-like structures only Inhomogeneous 

Mixed 

Flame-like structures then 

spatially uniform in unburned 

gas volume 

Inhomogeneous, then 

homogeneous in 

unburned gas volume 

 

In order to compare ignition behaviors from the UM-RCF to those observed in 

Blumenthal et al. [6] and Kalitan et al. [7], it was necessary to re-classify the 

behavior in these other studies according to the three categories in Table 1.  In 

Blumenthal et al. experiments were originally classified as “Strong”, “DDT” 

(Deflagration to Detonation Transition), or “no DDT” which were defined as strong, 

mixed, and weak ignition in the present work respectively.  In Kalitan et al. 

experiments were classified as exhibiting “early OH emission” or not, which were 

defined as mixed and strong ignition in the present work respectively. 

 

2.1 Auto-Ignition Behavior  

Fig. 3-3 presents the observed ignition behavior as a function of initial 

thermodynamic state for mixtures with φ = 0.1.  A range of behaviors is evidenced, 
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with strong ignition generally at temperatures above ~1000 K transitioning to 

mixed and/or no ignition as the temperature decreases.  The data show the ignition 

behavior is strongly related to initial thermodynamic state and is repeatable, with 

generally clear boundaries between different regions.  The boundary between mixed 

and strong ignition behaviors at lower pressures (2-5 atm) is the strong ignition 

limit and is marked as a hashed area.  A strong ignition limit is not evident at 

higher pressures (10-15 atm) though, where no mixed ignition is observed at any 

temperature. 

 

Fig. 3-3. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.1. The 

Strong Ignition Limit is shown as a hashed area.  H2/O2 explosion limits are shown as solid lines 

with upper and lower bounds shown as dashed lines, representing uncertainty in the rate coefficient 

of reactions R1 and R9. 

 

Fig. 3-4 presents the observed ignition behavior as a function of 

thermodynamic state for mixtures with φ = 0.5, including results from Blumenthal 

et al. [6] and Kalitan et al. [7].  Again, a range of behaviors was observed, with 

strong ignition generally at the highest temperatures transitioning to mixed, then 

weak, then no ignition as the temperature decreases.  There is excellent agreement 

between the results in the present work and those from Blumenthal et al. [6] and 

Kalitan et al. [7].  This finding suggests that the ignition behavior of syngas is not 

highly sensitive to the molar ratio of H2:CO at these conditions and that the 
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behavior trends are not strongly device dependent.  Overall the data show the 

ignition behavior is strongly related to initial thermodynamic state and is 

repeatable, with generally clear boundaries between different regions.  The 

boundary between mixed and strong ignition is the strong ignition limit, which 

exhibits a clear dependence on pressure and is marked as a hashed area.  The onset 

of mixed ignition at higher pressures as the equivalence ratio is increased from 0.1 

to 0.5  is an indication that the energy content of the mixture is related to the auto-

ignition behavior, in agreement with previous findings that connected 

inhomogeneous ignition phenomena and “high energy density mixtures” [4].  This 

relation is not evident at lower pressures, however, where the strong ignition limit 

seems largely unaffected by changes in the equivalence ratio. 

 

 

Fig. 3-4. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.5.  Results 

are from the present work, Kalitan et al. [7], and Blumenthal et al. [6].  The Strong Ignition Limit is 

shown as a hashed area.  H2/O2 explosion limits are shown as solid lines with upper and lower 

bounds shown as dashed lines, representing uncertainty in the rate coefficient of reactions R1 and 

R9. 

 With the strong ignition limit experimentally determined for φ = 0.1 and 0.5, 

it was possible to develop a more complete understanding of the transition in auto-

ignition behavior.  This was accomplished through a comparison of the strong 
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ignition limit in each case to: (1) the second explosion limits of hydrogen, as 

suggested by Voevodsky and Soloukhin [9],  (2) values of thermal sensitivity, as 

proposed by Meyer and Oppenheim [10], and (3) predicted locations of  the strong 

ignition limit, as proposed by Sankaran et al. [11].   

 

2.1.1 H2/O2 Second Explosion Limits 

 The explosion limits are thermodynamic states which mark a transition 

between regions of dominant H2/O2 chemistry.  While Voevodsky and Soloukhin [9] 

considered only the classical second explosion limit in their analysis, in the present 

work the extended second explosion limit was also included.  A detailed description 

of these two limits is given in Zheng and Law [12].  Briefly, the classical second 

limit represents the competition between the dominant chain-branching pathway 

(R1), and the dominant chain-terminating pathway (R9).  The limit is the 

thermodynamic state at which the reaction rates of these two reactions are equal 

and no net radicals (O, OH) are produced.  The extended second limit represents a 

similar balance between radical generation and termination, though it includes HO2 

chemical pathways significant only at pressures greater than ~ 1 atm, i.e. the 

second limit represents the competition between the chain-branching reactions 

((R1), HO2 + H = OH + OH (R11)), the chain-propagating reaction (R9), and the 

chain-terminating reaction (HO2 + H = H2 + O2 (R10)).  The extended second limit is 

the thermodynamic state at which no net radicals (H, O, OH, HO2) are produced.  

Note that this formulation for the extended second limit is simplified, as done in 

Zheng and Law [12], assuming that HO2 is consumed only by H.  The 

thermodynamic states corresponding to the classical and extended second limits 

were calculated using formulations from Zheng and Law [12] where,  
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Classical Second Limit:   [M] =   
2k1

k9
⁄        [mole/m3]                                             (3-1) 

Extended Second Limit:  [M] =   
2k1

k9
⁄ ∗

k10

k10+k11
                                                      (3-2) 

                                          [M] =   P
R̅T

⁄                      (3-3)          

Where, 𝑅̅  = universal gas constant , P = pressure, T = temperature. 

        

The thermodynamic location of the second explosion limits were calculated using 

the nominal reaction rate values of the Li 2007 mechanism.  Uncertainty bounds 

were assigned using the known uncertainty of the reaction rate of R1 & R9, 

consistent with the computational work described previously. 

 The calculated classical and extended second explosion limits are included in 

the maps of ignition behavior in Fig. 3-3 and 3-4.  As illustrated in Fig. 3-3 for φ = 

0.1, the classical explosion limit correlates with the strong ignition limit at low 

pressures (2-5 atm) and the extended explosion limit correlates well with the 

transition from strong to no ignition at high pressures (10-15 atm).  As illustrated in 

Fig. 3-4 for φ = 0.5, the classical explosion limit correlates well with the strong 

ignition limit at low pressures (1-5 atm); however, at higher pressures the strong 

ignition limit is not well described by either the classical or extended explosion limit 

with progressively worse deviation as pressure increases beyond 5 atm.  It is 

therefore apparent that the classical H2/O2 second explosion limit is a good predictor 

of the location of the strong ignition limit for pressures less than ~ 5 atm for a range 

of equivalence ratios; however, the accuracy of such prediction falls off rapidly as 

pressure increases beyond this value even if the extended second limit is considered.  

This finding at lower pressures is in excellent agreement with Voevodsky and 

Soloukhin [9], and suggests that at low pressures the dominant H2/O2 chemical 

pathway is highly correlated to the auto-ignition behavior, whereas at higher 

pressures other factors must be considered.  As discussed in Chaos et al. [13] and 

the references contained therein, competing chemical kinetic and transport time-

scales near the extended second explosion limit at higher pressures are expected 
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and it is likely that consideration of transport phenomena is indeed necessary at 

higher pressures.    

 

2.1.2 Thermal Sensitivity 

As previously discussed, Meyer and Oppenheim [10] built on the work by 

Voevodsky and Soloukhin [9] and devised a method to more deliberately consider 

the relationship between gas-dynamic effects and the strong ignition limit, based on 

the assumption that numerous thermal non-uniformities exist within the reacting 

volume.  It was postulated that these non-uniformities will lead to localized reaction 

centers (inhomogeneous behavior) in regions with higher thermal sensitivity and 

longer auto-ignition delay times, where chemical kinetic and transport time-scales 

are similar.  It was indeed demonstrated in their study for an air-dilute pure H2 

mixture at φ = 1.0 that a limiting value of the thermal sensitivity of approximately - 

2 μs/K exists which corresponds well to the strong ignition limit at pressures below 

3 atm; where regions with higher thermal sensitivity exhibit inhomogeneous auto-

ignition and regions with lower thermal sensitivity exhibit homogeneous auto-

ignition. 

In a similar fashion, thermal sensitivity values were calculated in the present 

work and iso-contours of these values were compared to the experimentally 

determined strong ignition limit for each equivalence ratio.  Figs. 3-5 and 3-6 

present the ignition behavior for φ = 0.1 and φ = 0.5, respectively, as a function of 

initial thermodynamic state with iso-contours of predicted auto-ignition delay time 

and thermal sensitivity included for comparison.  For φ = 0.1 there is a close 

correlation between the iso-contour of thermal sensitivity ≈ - 0.7 ms/K and the 

strong ignition limit.  Correspondingly for φ = 0.5 there is a close correlation 

between the iso-contour of thermal sensitivity ≈ - 0.04 ms/K and the strong ignition 

limit.  These two values are therefore considered the critical values of thermal 

sensitivity for each equivalence ratio and their existence supports the notion of a 

critical thermal sensitivity previously made by Meyer and Oppenheim [8].  

Important to note is the excellent agreement between the critical iso-contour of 
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thermal sensitivity and the strong ignition limit at high pressures for φ = 0.5, a 

marked improvement over the predictions using the H2/O2 second explosion limits.  

Similar to the findings by Meyer and Oppenheim [10], for both equivalence ratios 

regions with thermal sensitivity in excess of the critical iso-contours exhibited 

mixed or weak behavior; whereas, regions with lower sensitivity exhibited only 

strong behavior.  These findings are strong evidence that the value of thermal 

sensitivity is indeed an important factor in determining auto-ignition behavior 

across many mixture and thermodynamic conditions relevant to gas turbine 

operation.  It follows that the assumptions originally made by Meyer and 

Oppenheim [10] are supported in the present work as well, that thermal non-

uniformities and subsequent localized reaction centers are a dominant cause of 

inhomogeneous ignition behavior. 

From the perspective of predicting auto-ignition behavior, using thermal 

sensitivity is a step forward from using the explosion limits in that high pressure 

behaviors can be captured.  However, in order to determine the critical value of 

thermal sensitivity of a given mixture it is still necessary to find the strong ignition 

limit experimentally for at least a few pressure values.  These experiments may be 

avoided for mixtures and conditions sufficiently similar to those studied in the 

present work.  For example, critical values can be estimated for different 

equivalence ratios by interpolating between the results of the current work (φ = 0.1 

and 0.5) and in Meyer and Oppenheim (φ = 1.0).  Furthermore, it is not clear how 

these thermal sensitivity limits extend to less ideal combustion devices, which can 

contain higher magnitudes of thermal non-uniformities and turbulence.  Overall, 

while a priori prediction of the strong ignition limit is not possible using thermal 

sensitivity, establishing the connection between thermal sensitivity and the strong 

ignition limit at a minimum reduces the number of experiments necessary to define 

the strong ignition limit for a system. 
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Fig. 3-5. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.1.  The 

Strong Ignition Limit is shown as a hashed area.  Calculated iso-contours of thermal sensitivity are 

shown as solid lines and calculated iso-contours of auto-ignition delay time are shown as dotted 

lines.  The iso-contour of critical thermal sensitivity, - 0.7 ms/K, is the bold solid line. 

 

 

Fig. 3-6. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.5.  The 

Strong Ignition Limit is shown as a hashed area.  Results are from the present work, Kalitan et al. 

[7], and Blumenthal et al. [6].  Calculated iso-contours of thermal sensitivity are shown as solid lines 

and calculated iso-contours of auto-ignition delay time are shown as dotted lines.  The iso-contour of 

critical thermal sensitivity, - 0.04 ms/K, is the bold solid line. 
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2.1.3 Sankaran Criterion 

As previously mentioned, the effect of distributed thermal non-uniformities 

on auto-ignition behavior in pure H2 mixtures was investigated in detail by 

Sankaran et al. [11] using high fidelity direct numerical simulation methods.  In 

that work auto-ignition behavior was investigated for air-dilute H2 at φ = 0.1 in a 

small constant pressure reactor (4.1mm x 4.1mm), with a distribution of thermal 

gradients and a constant turbulence flow field. Two distinct ignition behaviors 

emanating from thermal hot spots were subsequently observed: spontaneous 

propagation – where a reaction front propagates at a speed (up) equal to the inverse 

of the gradient of the auto-ignition delay time  (dτ/dx)-1, and deflagration - where a 

reaction front propagates at the laminar flame speed (su
0).  Sankaran et al. [11] 

postulated that a non-dimensional transition parameter, β, exists which indicates 

the relative dominance of the two ignition behaviors,  

 

β =
su

0

up
=

su
0

(
dτ

dx
)

−1                                                                                               (3-4) 

 

where, if β < 1 a homogeneous explosion (strong ignition) will occur, and if β > 1 

then an inhomogeneous deflagration front (mixed or weak ignition) will occur.  If 

the gradient of the auto-ignition delay time is decomposed into a product of the 

thermal gradient (dT/dx) and thermal sensitivity (dτ/dT), as was done by Walton et 

al. [14], then the importance of thermal sensitivity is illustrated in the following 

criterion (which we define as the Sankaran Criterion),  

 

dτ

dT
< (

dT

dx
su

0)
−1

                                                                                             (3-5) 

 

where, strong ignition will occur if the inequality is true, and mixed or weak 

ignition will occur if the inequality is false. 
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In the current work, the Sankaran Criterion was used predict the 

thermodynamic location of the strong ignition limit by evaluating the inequality 

across the range of initial temperature and pressure values for each equivalence 

ratio and a range of initial thermal gradients (3, 5, 10, 20 K/mm).  Typical thermal 

gradients in similar experimental devices are expected to be on the order of 5 K/mm 

based on findings from Walton et al. [14] and Strozzi et al. [15].  Additional thermal 

gradient values were included to illustrate the sensitivity of the predicted limits to 

this parameter and expand the predictions to higher thermal gradients which may 

be more representative of practical combustion devices.  Laminar flame speeds were 

calculated using the “Premixed Laminar Flame-Speed Calculation” module in the 

CHEMKIN software suite [2] with the Li 2007 kinetic model [11].  At temperatures 

above ~ 1025 K it was necessary to extrapolate laminar flame speeds from lower 

temperatures, which was done using an exponential fit with correlation coefficients 

above 0.997.  For simplicity, the nominal A-factors and transport parameters 

provided in the Li 2007 mechanism were used for the calculations.  Thermal 

sensitivity values determined for the iso-contours presented earlier were used for 

this analysis as well.  All calculations were completed with the same syngas 

mixture used in the experimental work (air-dilute with molar ratio H2:CO = 0.7).  

 Figs. 3-7 and 3-8 present the ignition behavior for φ = 0.1 and φ = 0.5, 

respectively, as a function of initial thermodynamic state with iso-contours of 

predicted auto-ignition delay time and predicted strong ignition limits for various 

thermal gradient magnitudes.  For φ = 0.1 there is excellent correlation between the 

experimental and the predicted strong ignition limit for 5 K/mm.  Quite remarkably, 

the predicted limit moves to drastically lower temperatures as pressure is increased 

beyond 3 atm, correctly predicting the absence of a strong ignition limit at higher 

pressures mentioned earlier.  This shift to lower temperatures corresponds to a 

significant decrease in laminar flame speeds as pressure increases beyond 3 atm 

and is not captured by the critical thermal sensitivity iso-contour.  For φ = 0.5, there 

is also remarkable correlation between the experimental and the predicted strong 

ignition limit for 5 K/mm for the entire pressure range considered.  The prediction is 
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somewhat less representative of the experimental data closer to 1 atm,  predicting a 

strong ignition limit ~ 50 K higher than what was measured, but that is most likely 

within the uncertainty of the prediction.  As opposed to the results for φ = 0.1, there 

is general agreement between the predicted strong limit and the critical thermal 

sensitivity iso-contour for all pressures, which is the result of a much more gradual 

decrease in laminar flame speeds as pressure is increased for φ = 0.5.  

 

 

Fig. 3-7. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.1.  The 

Strong Ignition Limit is shown as a hashed area.  Predicted locations of the strong ignition limit are 

shown as solid lines and calculated iso-contours of auto-ignition delay time are shown as dotted 

lines.  The most accurate predicted strong ignition limit, for a 5 K/mm gradient, is the bold solid line.  

 

Concerning the results for various thermal gradients, there is minimal 

difference between strong ignition limit predictions at pressures below ~ 3 atm for φ 

= 0.1 and ~ 7 atm for φ = 0.5.  In both cases, at higher pressures the predicted 

strong ignition limit shifts to higher temperatures as the thermal gradient is 

increased.  The shift to higher temperatures occurs with decreasing magnitude as 

the thermal gradient magnitude is increased, suggesting that the strong ignition 

limit may asymptote as thermal gradients increase to much higher values.  It is 

noteworthy that the thermal gradient of 5 K/mm yielded the most accurate 
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predictions, in excellent agreement with the expected gradient magnitudes in the 

experimental UM RCF and shock tube equipment. 

 

 

Fig.3-8. Ignition behavior as a function of thermodynamic state for mixtures with φ = 0.5.  The 

Strong Ignition Limit is shown as a hashed area.  Predicted locations of the strong ignition limit are 

shown as solid lines and calculated iso-contours of auto-ignition delay time are shown as dotted 

lines.  The most accurate predicted strong ignition limit, for a 5 K/mm gradient, is the bold solid line.  

 

Overall, these results indicate that the Sankaran Criterion is indeed an 

excellent tool for a priori prediction of the strong ignition limit, with no 

experimentation necessary for its application.  It is accurate and easy to use, 

requiring only basic computational modeling and the magnitude of characteristic 

thermal gradients in the system.  Beyond the predictive capability, it also provides 

a straightforward method for extending experimental results to other mixtures, 

conditions, and devices; a key attribute for combustor designers.  The validation of 

this simple non-dimensional criterion is important, as this criterion quantitatively 

describes the roles of chemical kinetics, thermo-physical properties, and device 

dependent thermal characteristics on auto-ignition behavior.  In this way, it is not 

an alternative to the explosion limit and thermal sensitivity methods investigated 

previously by Voevodsky and Soloukhin [9] and Meyer and Oppenheim [10], but 
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instead is an important integration of these methods with transport phenomena.  

This criterion not only provides a practical tool for combustor designers and 

experimentalists, it also sheds light on the fundamental nature of thermally driven 

auto-ignition behaviors in pre-mixed combustion systems.  

Considering the success of this criterion it is apparent that localized thermal 

gradients are the dominant driver of inhomogeneous ignition behavior in this work 

and the studies by Blumenthal et al. [8] and Kalitan et al. [9].  Non-uniformities 

will be present in any experimental or practical combustion system and could come 

from a number of sources such as heat transfer, mixing, or the presence of minute 

reactive or non-reactive particles like those observed in Elsworth et al. [16] and 

considered in Chaos and Dryer [4].  Previously, Chaos and Dryer [4] and 

Blumenthal et al. [6] predicted that hot spots of 150-200 K would be necessary to 

cause inhomogeneous auto-ignition.  The present work highlights the importance of 

considering not only the absolute temperature of hot spots but also the 

corresponding thermal gradients, as those on the order of merely 3-5 K/mm were 

found to drive inhomogeneous ignition behaviors in the current work. 

Varying levels of turbulence will likely impact the accuracy of the Sankaran 

Criterion, through an influence on the development of thermal gradients 

(highlighted in the study by Sankaran et al. [11]), chemical kinetics (highlighted in 

the study by Ihme [17]), and flame speeds (highlighted in the study by Daniele et al. 

[18]).  While both the UM-RCF and the shocktubes considered in this study are 

assumed to be nominally quiescent, significantly higher levels of turbulence are 

expected in practical devices.  An investigation of turbulence effects is outside the 

scope of the present work; however, current computational efforts are underway to 

expand the work of Sankaran et al. [11] and Bansal and Im [19] to more directly 

probe the issues of turbulence-chemistry interactions. 

 

2.2 Auto-ignition delay time  

As previously discussed, while there are well documented inaccuracies of 

zero-dimensional homogeneous reactor modeling in predicting auto-ignition delay 
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time in systems with inhomogeneous ignition behavior [4], there is currently a lack 

of understanding as to whether the occurrence of inhomogeneous ignition 

necessarily leads to this inaccuracy.  Illustrated in Fig. 3-9 are the measured and 

predicted auto-ignition delay times as a function of inverse temperature for 

mixtures with φ = 0.1 over a range of pressures.  Recall that the error bars on the 

experimental data represent the limits of the definition of the auto-ignition delay 

time and the error bars on the simulation results represent the effects of the 

uncertainty limits of R1 and R9.  The results indicate excellent agreement between 

the measured and predicted values, across all thermodynamic conditions 

investigated and for both ignition behaviors exhibited (strong and mixed).  It is 

therefore apparent that the presence of inhomogeneous ignition phenomena does 

not significantly affect the predictive accuracy of the zero-dimensional homogeneous 

reactor model using the Li 2007 mechanism at these conditions.  This is likely 

related to the low energy content of the mixture, limiting the quantity of energy 

released during local ignition events and/or reducing flame speeds.  The results 

support this notion, given that while high-speed imaging indicates the presence of 

local ignition events almost immediately after EOC in most cases, inspection of the 

lower bound of the measured auto-ignition delay time indicates that the first signs 

of pressure increase occur only just before the auto-ignition event.  Important to 

note is the rather large uncertainty in the predicted auto-ignition delay times for 3 

atm, highlighting that consideration of uncertainty in the reaction mechanism is 

critical when comparing modeling and experimental data. 
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Fig. 3-9. Measured and predicted auto-ignition delay time as a function of inverse temperature for 

mixtures with φ = 0.1.  Half-filled symbols are experimental measurements and open symbols are 

the predictions corresponding to each measurement.  Uncertainty bounds of the predictions are the 

effect of the uncertainty in the rate coefficient of reactions R1 and R9; whereas, uncertainty bounds 

of the measurements are the limits of the definition of the auto-ignition delay time. 

 

Illustrated in Fig. 3-10 are the measured and predicted auto-ignition delay 

times as a function of inverse temperature for mixtures with φ = 0.5 over a range of 

pressures.  Unlike the earlier results, these data indicate poor agreement between 

the measured and predicted auto-ignition delay times, with rapidly increasing error 

as temperatures decrease below ~1000 K.  Note also the limited effect of the 

uncertainty of the reaction mechanism on the predicted values at most of the 

simulation conditions.  The results therefore illustrate that the presence of 

inhomogeneous ignition phenomena does indeed significantly decrease the 

predictive accuracy of the zero-dimensional homogeneous reactor model using the Li 

2007 mechanism at these conditions.  It is assumed here that the discrepancy is not 

the result of poor performance of this kinetic mechanism at these conditions, given 

the multitude of previous successful applications [3,4] and the agreement 

illustrated in the present work for φ = 0.1.  This predictive inaccuracy is instead 

likely related to the higher energy content of the mixture, leading to larger energy 

release during local ignition events and/or increased flame speeds.  It is clear that 



 

 

46 

 

nearly all the predicted auto-ignition delay times greatly exceed the measured 

values, consistent with previous findings highlighted in Chaos and Dryer [4].  These 

results are expected considering that energy release during inhomogeneous ignition 

events would cause a temperature increase of the unburned gas mixture, thus 

accelerating the auto-ignition process.  With this in mind, the increasing error trend 

as temperature decreases can be explained by noting that as auto-ignition delay 

time increases localized energy release will exist for an increasingly longer time, 

thus allowing for an increasingly pronounced effect on the unburned gases.  Overall 

the results of the present work illustrate an important finding, that the equivalence 

ratio or energy content of the mixture is directly related to the predictive accuracy 

of zero-dimensional homogeneous reactor modeling of auto-ignition delay times in 

systems with inhomogeneous auto-ignition behaviors. 

Unique for φ = 0.5 is the existence of weak ignition behavior at the lowest 

temperature conditions, seen as star markers in Fig. 3-10.  Auto-ignition delay time 

predictions should not be expected to have good agreement with measurements in 

cases with weak ignition behavior, given that no homogeneous auto-ignition event is 

observed.  These data were still included here to illustrate a potential pitfall in 

interpreting pressure time history data for low-temperature auto-ignition 

experiments where inhomogeneous ignition is possible.  Had the ignition behavior 

not been directly observed by imaging and classified appropriately as weak (flame 

propagation with no observed auto-ignition of the unburned gas), it is quite likely 

that these data would have been incorrectly categorized as homogeneous auto-

ignition events, resulting in potentially unnecessary and inaccurate modification of 

physical or chemical representations of the combustion system.  Diagnostics of 

ignition behavior are therefore vitally important in any ignition study of syngas or 

other high-hydrogen content fuels at temperatures below ~ 1000 K.  
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Fig. 3-10. Measured and predicted auto-ignition delay time as a function of inverse temperature for 

mixtures with φ = 0.5.  Half-filled symbols are experimental measurements and open symbols are 

the predictions corresponding to each measurement.  Uncertainty bounds of the predictions are the 

effect of the uncertainty in the rate coefficient of reactions R1 and R9; whereas, uncertainty bounds 

of the measurements are the limits of the definition of the auto-ignition delay time. 

 

3. CONCLUSIONS 

This work represents the first attempt to integrate results from diverse 

experimental platforms to describe common auto-ignition behaviors in high-

hydrogen content fuels, and further to provide a quantitative basis for predicting 

and interpreting data of other ignition studies, beyond syngas and the conditions 

studied here.  Studies such as these are vital for enabling low-temperature 

combustion strategies, such as Dry Low-NOx.  The comprehensive results of the 

present work clearly illustrate the existence of both homogeneous and 

inhomogeneous auto-ignition behaviors for lean air-dilute syngas and pure H2 

mixtures at thermodynamic conditions relevant to gas turbine engines and other 

combustion systems.  Analysis of patterns in the ignition behaviors revealed a 

dependence on temperature, pressure, and equivalence ratio with distinct 

thermodynamic regions in which the ignition behavior was consistent and 

repeatable.  The strong ignition limit was identified for each equivalence ratio, 
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marking the transition between homogeneous and inhomogeneous ignition 

behaviors.   

The locations of the experimentally determined strong ignition limits were 

compared to the second explosion limits of hydrogen, iso-contours of thermal 

sensitivity, and predicted strong ignition limits using the Sankaran Criterion.  

These three approaches represent the historical progression of strong ignition limit 

prediction and analysis methods.  The second explosion limits of hydrogen were 

found to correlate with the strong ignition limits only at pressures below 5 atm, 

indicating the importance of dominant chemical kinetic pathways in determining 

auto-ignition behavior at low pressures and the necessity to consider additional 

factors higher pressures.  Iso-contours of a critical thermal sensitivity described the 

strong ignition limit well; where any region (i.e. state and mixture conditions) with 

a sensitivity value in excess of the critical limit exhibited inhomogeneous ignition 

phenomena and any region with a lower value exhibited homogeneous ignition 

phenomena.  The critical values were equivalence ratio dependent and were found 

to be approximately - 0.7 ms/K for φ = 0.1 and - 0.04 ms/K for φ = 0.5.  It follows 

that thermal non-uniformities and subsequent localized reaction centers are a 

dominant cause of inhomogeneous ignition behavior in the present work.  

Predictions of the strong ignition limit by the Sankaran Criterion, which compares 

laminar flame speed to a thermal gradient driven front propagation speed, were 

found to have excellent agreement with the experimentally determined strong 

ignition limit for both equivalence ratios for an assumed thermal gradient of 5 

K/mm.  The experimental validation of this criterion, the first of its kind, indicates 

that it can indeed be used for a priori prediction of the strong ignition limit.  As this 

criterion quantitatively describes the roles of chemical kinetics, thermo-physical 

properties, and device dependent thermal characteristics in determining auto-

ignition behavior it also provides unique and critical insight into thermally driven 

auto-ignition behaviors.  Overall both the Sankaran Criterion and the ignition 

behavior maps created in the present work provide important, new, and unique 
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tools that can be used in the design of combustion devices using high-hydrogen 

content fuels like syngas. 

In order to investigate the relationship between auto-ignition behavior and 

the accuracy of zero-dimensional homogeneous reactor modeling in predicting auto-

ignition delay time, measured and predicted ignition delay times were compared.  

The results indicate the presence of inhomogeneous ignition phenomena does not 

significantly affect the predictive accuracy of the zero-dimensional homogeneous 

reactor model using the Li 2007 mechanism for φ = 0.1; whereas, the presence of 

inhomogeneous ignition phenomena does significantly affect the predictive accuracy 

for φ = 0.5.  This is an important indication that while inhomogeneous ignition 

phenomena are not avoidable by reducing equivalence ratio, the subsequent effects 

on the accuracy of typical auto-ignition modeling may be reduced or eliminated.  

This inaccuracy for φ = 0.5 is likely related to the higher energy content of the 

mixture, leading to larger energy release during local ignition events and/or 

increased flame speeds which can cause a significant violation of the 

isothermal/isobaric assumptions of the homogeneous reactor model.  The 

importance of properly observing and classifying ignition behaviors was also 

highlighted, as ignition at the lowest temperatures exhibited no homogeneous auto-

ignition, only flame propagation, and the pressure time histories could be confused 

as consistent with homogeneous auto-ignition behavior if imaging diagnostics had 

not been applied. 
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SUPPLEMENTAL MATERIAL 

Table 3-A. Summary of experimental conditions and results for mixtures with φ = 0.1 

Test gas composition a  (% Vol.) 

EOC 

Thermo. State 
b 

Assigned  

Thermo. 

State c 

Ign.  

Beha

-vior 
d 

Auto-ignition delay time e (ms) 

H2 CO O2 N2 CO2 
P 

(atm) 
T (K) 

P 

(atm) 
T (K) τign Δτign τpred δτpred - δτpred + 

1.7 2.5 20.8 68.3 0 17.1 1131 16.6 1122 S 2.5 1.9 2.1 0.9 1.1 

1.7 2.5 20.8 68.3 0 15.5 1145 - - S 1.3 1.1 1.1 0.3 0.7 

1.7 2.5 20.8 68.1 2.0 14.6 1097 13.8 1082 S 6.3 4.1 5.4 2.9 2.7 

1.7 2.5 20.8 68.1 2.0 14.3 1094 13.9 1085 S 9.7 8.1 5.0 2.9 2.5 

1.7 2.5 20.8 68.1 2.0 13.4 1073 13.0 1066 S 12.9 9.9 7.7 4.1 3.2 

1.7 2.4 20.8 70.4 0 15.7 1078 - - S 14.6 10.8 5.9 3.1 2.4 

1.7 2.5 20.9 74.2 0 15.9 1073 - - S 16.1 15.6 7.3 3.0 3.3 

1.7 2.5 20.8 62.6 12.4 14.5 947 - - NI - - - - - 

1.7 2.5 20.9 62.5 12.4 16.0 969 - - NI - - - - - 

1.7 2.4 20.8 70.0 5.2 13.9 985 - - NI - - - - - 

1.7 2.4 20.8 70.0 5.2 15.1 1006 - - NI - - - - - 

1.7 2.4 20.8 74.8 0.3 14.3 1043 - - NI - - - - - 

1.7 2.4 20.8 74.8 0.3 13.9 1034 - - NI - - - - - 

1.7 2.4 20.8 73.0 2.0 10.6 1064 10.1 1049 S 50.3 26.5 11.0 5.4 5.2 

1.7 2.4 20.8 70.4 0 10.2 1053 10.1 1048 S 11.2 3.9 9.9 5.2 4.4 

1.7 2.5 20.9 74.2 0 10.5 1067 10.2 1058 S 9.3 6.8 7.7 4.4 3.7 

1.7 2.5 20.9 73.2 1.7 10.4 1039 10.0 1041 S 39.3 25.3 13.0 6.6 5.2 

1.7 2.5 20.9 73.2 1.7 10.4 1044 10.3 1039 S 26.1 17.6 14.0 6.8 5.7 

1.7 2.5 20.9 73.2 1.7 10.9 1039 - - S 14.0 11.1 15.0 6.1 6.3 

1.7 2.4 20.9 71.5 3.4 10.0 1025 - - NI - - - - - 

1.7 2.4 20.8 70.4 4.7 4.8 1066 4.4 1043 S 4.5 3.1 4.5 5.7 4.0 

1.7 2.5 20.9 73.3 1.7 5.1 1032 4.7 1012 S 53.5 20.3 12.0 12.2 10.7 

1.7 2.5 20.9 73.3 1.7 4.8 1019 4.7 1011 M 36.5 18.7 20.0 11.9 11.4 

1.7 2.4 20.9 71.5 3.4 4.6 996 4.4 983 M 60.4 27.8 50.0 25.0 21.7 

1.7 2.4 20.8 65.8 9.3 5.1 982 - - NI - - - - - 

1.7 2.6 20.8 74.8 0 3.4 1053 3.1 1029 S 10.3 6.7 2.1 8.3 1.8 

1.7 2.4 20.8 74.8 0.3 2.7 1022 2.4 992 S 89.4 31.9 10.0 24.1 9.3 

1.7 2.4 20.8 67.9 3.9 3.3 1047 - - S 9.4 7.9 2.2 5.1 1.9 

1.7 2.4 20.8 69.9 5.2 3.4 1022 3.0 995 S 41.7 15.7 26.0 20.1 18.7 

1.7 2.4 20.8 65.9 9.2 3.1 992 3.0 980 S 28.9 15.9 53.0 32.4 27.6 

1.7 2.4 20.8 74.8 0.3 2.9 1045 2.6 1017 S 30.5 17.8 1.8 11.4 1.5 

1.7 2.4 20.8 67.9 3.9 2.9 1023 2.4 977 M 20.0 11.1 38.0 33.0 30.5 

1.7 2.4 20.8 70.4 0 3.6 995 3.5 984 M 55.3 26.9 37.0 23.9 22.4 

1.7 2.4 20.8 50.3 24.7 3.5 911 - - NI - - - - - 

1.7 2.5 20.7 62.8 12.3 3.2 968 - - NI - - - - - 

1.7 2.5 20.7 62.8 12.3 3.1 963 - - NI - - - - - 

1.7 2.4 20.8 69.9 5.1 3.1 1008 - - NI - - - - - 

a Balance Ar.      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ~ 5 K 
c If reported then average thermodynamic state, otherwise EOC state was assigned 
d S = Strong, M = Mixed, W = Weak, NI = No ignition observed.                                                                                                                                  

e τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred - / 

δτpred + = lower/upper uncertainty bound of prediction 
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Table 3-B. Summary of experimental conditions and results for mixtures with φ = 0.5 

Test gas composition a  (% Vol.) 

EOC  

Thermo. State 
b 

Assigned  

Thermo. State 
c 

Ign. 

Beha

-vior 
d 

Auto-ignition delay time e (ms) 

H2 CO O2 N2 CO2 
P 

(atm) 
T (K) 

P 

(atm) 
T (K) τign Δτign τpred δτpred - δτpred + 

5.1 7.3 12.5 71.4 3.4 15.6 1037 - - M 2.1 1.6 6.1 1.3 1.3 

5.1 7.3 12.5 71.4 3.4 16.6 1067 - - M 1.3 1.2 3.1 0.7 0.8 

5.1 7.3 12.6 67.5 7.4 16.3 1024 - - M 2.2 2.0 8.5 1.5 1.6 

5.1 7.3 12.6 67.5 7.4 15.5 1011 - - M 3.0 2.5 12.0 1.6 2.4 

5.1 7.3 12.5 63.0 12.0 15.9 989 15.5 983 M 5.4 3.2 23.0 3.2 3.0 

5.1 7.4 12.5 60.0 15.0 15.8 968 - - M 7.2 5.5 34.0 3.2 4.5 

5.1 7.4 12.5 52.9 22.1 16.2 918 - - M 
14.

1 
13.3 119.0 6.5 9.1 

5.1 7.4 12.5 55.8 19.2 15.2 932 14.7 924 W 
38.

0f 
20.1 106.0 7.3 9.0 

5.1 7.3 12.5 46.1 28.9 14.1 869 - - NI - - - - - 

5.1 7.3 12.5 75.0 0 11.2 1063 - - M 1.1 1.1 3.1 1.1 1.1 

5.1 7.3 12.7 73.8 1.1 9.2 1020 - - M 3.8 2.6 9.4 2.8 2.8 

5.1 7.3 12.7 73.8 1.1 10.1 1043 - - M 1.9 1.8 5.2 1.7 1.7 

5.1 7.3 12.6 73.8 1.2 9.7 1033 - - M 2.3 1.7 6.7 2.2 2.1 

5.1 7.3 12.6 67.6 7.4 9.4 996 - - M 5.9 3.4 19.0 4.0 4.3 

5.1 7.4 12.5 68.0 15.0 9.6 946 - - W 9.1 7.9 72.0 8.9 10.6 

5.1 7.4 12.5 60.0 15.0 8.9 941 - - W 7.7 6.8 84.0 11.0 12.0 

5.1 7.3 12.6 46.1 28.9 9.8 866 - - NI - - - - - 

5.1 7.3 12.7 73.8 1.1 5.5 1043 - - M 1.4 1.2 3.7 2.7 2.6 

5.1 7.2 12.6 71.4 3.4 4.7 1019 - - M 2.6 1.6 8.0 4.9 4.6 

5.1 7.3 12.6 66.8 8.2 4.6 983 - - M 3.9 3.0 28.0 9.9 9.6 

5.1 7.3 12.6 58.4 16.6 5.1 947 5.0 941 M 8.4 4.8 103.0 20.3 21.6 

5.1 7.3 12.6 63.1 11.9 4.5 969 4.4 962 W 5.5 4.2 55.0 15.3 15.6 

5.1 7.3 12.6 55.9 19.1 4.8 920 - - NI - - - - - 

5.0 7.3 12.6 75.0 0 2.6 998 2.6 989 M 8.2 2.2 8.0 13.6 7.5 

5.2 7.2 12.7 74.8 0 3.2 1048 3.0 1035 M 1.6 1.0 0.4 3.2 0.3 

5.1 7.2 12.6 66.9 8.1 2.8 982 2.7 973 M 3.6 2.9 31.0 18.5 17.6 

5.1 7.2 12.6 50.5 24.6 3.5 907 3.0 876 W 
26.

8 
12.5 900.0 136.0 144.0 

5.1 7.2 12.6 58.5 16.5 2.9 933 2.5 906 W 9.2 4.4 350.0 81.0 91.7 

a Balance Ar.      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ~ 5 K 
c If reported then average thermodynamic state, otherwise EOC state was assigned 
d S = Strong, M = Mixed, W = Weak, NI = No ignition observed.                                                                                                                                  

e τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred - / 

δτpred + = lower/upper uncertainty bound of prediction 
f For cases with Weak ignition, represents time of ignition event since no auto-ignition was observed.  
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Table 3-C. Reaction rate parameters with uncertainty 

 

# Reaction a Amin A0 Amax n Ea 

1 H + O2 = OH + O b 2.789(10)15 3.5458(10)15 4.508(10)15 -0.4 16.6(10)3 

2 H + O2 (+M) = HO2 (+M), k∞ c 1.11(10)12 1.48(10)12 1.85(10)12 0.6 0.0 

2 H + O2 (+M) = HO2 (+M), ko d 6.31(10)20 6.37(10)20 7.00(10)20 -1.72 5.25(10)2 

Units are cm3, s, cal, K; 𝑘 = 𝐴𝑇𝑛 exp (−
𝐸𝑎

𝑅𝑇
) 

 
a Nominal parameters from J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, and J.J. Scire, Int. J. 

Chem. Kinet. 39 (2007) 109-136. 
b  A-factor uncertainty from J.P. Hessler, J. Phys. Chem. A 102 (1998) 4517- 4526. 
c  A-factor uncertainty from C.J. Cobos, H. Hippler, J. Troe, J. Phys. Chem. 89 (1985) 342-349. 
d A-factor uncertainty approximated as ±10%, from J.V. Michael, M.C. Su, J.W. Sutherland, J.J. 

Carroll, A.F. Wagner, J. Phys. Chem. A 106 (2002) 5297-5313. 
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Chapter 4 

Low-temperature ignition behavior of iso-octane 

 

Given the success of the Sankaran Criterion in predicting auto-ignition 

behavior of syngas the primary objective of this project was to evaluate the 

effectiveness of this criterion applied to iso-octane fuel.  An additional objective was 

to evaluate the effect of auto-ignition behavior on the accuracy of basic auto-ignition 

delay time modeling.  These were accomplished through experimental studies of iso-

octane auto-ignition behavior and auto-ignition delay times using the UM-RCF and 

the Tsinghua University Rapid Compression Machine (TU-RCM).  The auto-ignition 

behavior results were combined with those from previous studies to map auto-

ignition behavior evaluate the success of the Sankaran Criterion in predicting 

transitions in behavior.  Furthermore, the auto-ignition delay time measurements 

for all experiments were compared to predictions made using a typical iso-octane 

oxidation mechanism to evaluate the impact of auto-ignition behavior on their 

accuracy. 

This chapter has been published as, A.B. Mansfield, M.S. Wooldridge, H. Di, 

X. He, FUEL 139 (2015) 79–86. 

 

1. METHODS 

1.1 Experimental Methods 

Ignition experiments were conducted using mixtures of iso-octane/air with 

molar fuel-to-O2 equivalence ratios of φ = 0.25 and 1.0, at air levels of dilution, i.e. 

molar O2-to-diluent gas ratio of 1:3.76.  In the UM-RCF N2 was the primary diluent, 

with small volumes of Ar and/or CO2 added to modify the test temperature; in the 

TU-RCM Ar was the primary diluent, with small volumes of N2 added to modify the 
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test temperature.  In the UM-RCF, ignition experiments for φ = 0.25 were 

conducted between 3-20 atm for temperatures ~900-1125 K and experiments for φ = 

1.0 were conducted at ~8 and 18 atm for temperatures ~830-975 K.  In the TU-

RCM, ignition experiments were conducted between at φ = 0.25 for 5-30 atm and 

temperatures ~740-1050 K.  The reactant composition and initial state conditions 

for each auto-ignition experiment are provided in the Supplemental Material.  

A detailed description of the TU-RCM can be found in Di et al. [1].  Briefly, 

the TU-RCM consists of a Driven Section in which a gas mixture is rapidly 

compressed by a piston.  Prior to compression, the test volume is evacuated with a 

pump and then filled with a specific test gas mixture.  Upon firing, high pressure 

air drives the piston into the Driven Section compressing the test gas mixture into 

the Test Section.  As the piston reaches its final position hydraulic oil pressure 

dampens the motion.  At this point, the Test Section is filled with a uniform and 

isentropically compressed test gas mixture at the desired initial thermodynamic 

condition.  For the current study, the TU-RCM test section was instrumented with a 

piezoelectric pressure transducer (Kistler 6052CU20, Amherst, NY) combined with 

a charger amplifier (Kistler 5018A1000, Amherst, NY) for pressure measurements. 

The data were recorded at 100 kHz using a data acquisition system (National 

Instruments cDAQ-9178 chassis coupled with analog input model cDAQ-9223).  The 

uncertainty in the pressure measurements is estimated as ≤ 1%.  High-speed color 

imaging was recorded using a high speed camera (Phantom V7.3, Vision Research, 

CMOS array, 128 x 128 pixels) with a 105 mm lens (Sigma, F2.3).  Video sequences 

were recorded at 10,000 frames/second with an exposure time of 98 μs.  All test gas 

mixtures were made using a dedicated stainless steel tank and the mixture 

composition was determined by measurement of the relative partial pressures of the 

components.  
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1.2 Computational Methods 

Auto-ignition delay time predictions were made using the constant volume 

adiabatic zero-dimensional reactor model in the CHEMKIN software suite [2] with 

the Mehl 2011 mechanism [3].  Using this ignition model, a corresponding auto-

ignition delay time prediction was calculated for each ignition experiment 

conducted in the UM-RCF and TU-RCM, using the specific unburned 

thermodynamic condition and mixture composition of each experiment.  

Uncertainty bounds were calculated for the model predictions, reflecting the 

uncertainties in the pre-exponential “A-factor” of the Arrhenius reaction rates for 

the three most important reactions (H + O2 = OH + O (R1), H2O2 (+M) = OH + OH 

(+M) (R16), and I-C8H18 = Y-C7H15 + CH3 (R3214)), determined via OH sensitivity 

analysis using the CHEMKIN software suite.  The precise values of the rate 

coefficients used for these reactions are listed in the Supplemental Material.  Iso-

contours of constant predicted auto-ignition delay times were also calculated for a 

broad range of initial thermodynamic conditions, using the nominal A-factors for 

simplicity. 

Predicted locations of the strong ignition limit were calculated using the 

Sankaran Criterion as done previously in Chapter 3 for syngas fuel (Mansfield and 

Wooldridge [4]) using 5, 10, 20 K/mm assumed thermal gradient values.  Thermal 

sensitivity values were calculated in this study using the same zero-dimensional 

reactor model and the Mehl 2011 mechanism used for predicting ignition delay 

times; although a constant pressure boundary condition was applied, consistent 

with previous studies by Vermeer and Oppenheim [5], Meyer and Oppenheim [6], 

and Mansfield and Wooldridge [4].  It is assumed that the formation and early 

existence of localized flame-like structures, the primary concern of predictions in 

the present work, occur in a nominally constant pressure environment.  Laminar 

flame speed values were calculated using the correlations developed by Middleton et 

al. [7] for premixed iso-octane.  The flame speed correlation was validated in that 

study by comparison with a wide range of experimental and computational works at 

initial temperatures between 298-1000 K.  As a consequence, predictions of the 
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location of the strong ignition limit in the present work were intentionally limited to 

initial temperatures less than ~ 1100 K.  Valid laminar flame speed data at higher 

temperatures would allow the predictions in the present work to be extended to 

higher temperatures. 

 

2. RESULTS AND DISCUSSION  

For each experiment in the UM-RCF and TU-RCM, a pressure time history 

and a high-speed imaging video were recorded, allowing for the determination of an 

auto-ignition delay time and direct observation and classification of the auto-

ignition behavior.  Figure 4-1 presents a typical pressure time history and 

corresponding still frames from the high-speed video of a UM-RCF experiment 

exhibiting homogeneous ignition.  Trends in the time history data illustrate a 

pressure increase during the compression stroke until the Sabot is seated at the 

end-of-compression (EOC), followed by a slight decrease in pressure due to heat 

transfer from the test gas volume into the cool Test Section walls, followed by a 

large and rapid increase in pressure during the ignition event.  As seen in the 

frames from the high-speed video, the spatial uniformity of the chemilluminescence 

is a clear indication the ignition occurs homogeneously in the Test Section.  Figure 

4-2 presents a typical pressure time history with corresponding still frames from 

the high-speed video of a UM-RCF experiment exhibiting inhomogeneous ignition.  

The characteristics of the pressure time history are not remarkably different than 

those for homogeneous ignition in Fig. 4-1, though it is clear that the heat addition 

and corresponding pressure increase occurs over nearly twice the time.  As seen in 

the high-speed imaging sequence there are two localized flame-like structures 

which propagate and consume some of the test-gas mixture prior to homogeneous 

ignition of the remainder of the test gas volume.  This sequence of ignition 

behaviors occurred in every experiment which exhibited inhomogeneous ignition.  

Inspection of the imaging results for all experiments exhibiting inhomogeneous 

ignition revealed that local flame-like structures initiate in widely varying locations 

within the UM-RCF Test Section, indicating that the behavior is likely related to a 
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distribution of disturbances not a single ignition source.  Figure 4-3 presents a 

typical pressure time history with corresponding still frames from the high-speed 

video of a TU-RCM experiment exhibiting homogeneous ignition.  The 

characteristics of the pressure time history and the high-speed imaging are quite 

similar to homogeneous ignition data of Fig. 4-1 indicating similar homogeneous 

behaviors are observed in both experimental facilities.  No experiments in the TU-

RCM exhibited inhomogeneous ignition behaviors for the conditions and 

compositions studied.  

 

 
 

Figure 4-1. Typical experimental result for pressure time history in the UM-RCF during 

homogeneous ignition, for initial conditions Pavg = 4.5 atm, Tavg = 1035 K, φ = 0.25; where τign is the 

auto-ignition delay time.  Three frames from the corresponding high-speed imaging illustrate 

uniform chemilluminescence during auto-ignition. 
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Figure 4-2. Typical experimental result for pressure time history in the UM-RCF during 

inhomogeneous ignition, for initial conditions Pavg = 2.7 atm, Tavg = 1016 K, φ = 0.25.  Three frames 

from the corresponding high-speed imaging illustrate the formation and propagation of localized 

flame-like fronts prior to the subsequent auto-ignition of the unburned charge. 

 

 

 
 

Figure 4-3. Typical experimental result for pressure time history in the TU-RCM during 

homogeneous ignition, for initial conditions Pavg = 29.7 atm, Tavg = 784 K, φ = 0.25.  Three frames 

from the corresponding high-speed imaging illustrate uniform chemilluminescence during auto-

ignition. The time, t0, corresponds approximately to the auto-ignition delay event (~ 62 ms). 

 

For each experiment, the time and pressure data were noted at three distinct 

events: EOC, minimum pressure (Pmin), and maximum pressure (Pmax), denoted in 

Figs. 4-1 through 4-3.  According to the same method as described in Chapter 3, 
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after filtering the pressure time history with a 75-point smoothing algorithm, the 

nominal auto-ignition delay time was defined as the time difference between the 

EOC and the average of Pmax and Pmin, with the uncertainty of the reported ignition 

delay time defined as one-half the time difference between Pmax and Pmin.  

While the pressure of the Test Section was measured directly, the 

temperatures for each experiment were calculated using thermodynamic relations.  

Based on previous findings [8,9] both the compression process and the subsequent 

expansion of the adiabatic core region due to minor heat transfer can be modeled as 

isentropic processes.  With this well supported assumption in place, the initial 

thermodynamic conditions were used with isentropic state relations to calculate the 

temperature at EOC and at Pmin.  Propagation of the pressure measurement 

uncertainty through the isentropic state relations yields an uncertainty of ≤ 0.4% in 

the assigned temperatures (~5 K).  For each experiment a thermodynamic state was 

assigned, representing the isobaric/isothermal condition at which the experiment 

was conducted, as described in Chapter 2.   

In order to compare the auto-ignition behaviors observed in the current work 

with those from the previous shocktube studies (Fieweger et al. [10] and Vermeer 

and Oppenheim [5]) it was necessary to systematically categorize the behaviors.  

Two ignition classifications were defined for the present work: (1) Strong Ignition, 

where only homogeneous ignition occurs, and (2) Mixed Ignition, where local 

ignition and flame propagation occurs and is followed by homogeneous ignition of 

the unburned gas volume.  In the present work new experiments exhibiting 

homogeneous ignition behavior only (shown in Fig. 4-1) were classified as strong 

and those exhibiting initial inhomogeneous behavior (shown in Fig. 4-2) were 

classified as mixed.  Fieweger et al. [10] and Vermeer and Oppenheim [5] 

categorized experiments as exhibiting strong or mild ignition, where strong ignition 

was described as the appearance of an essentially instantaneous shock, induced by 

an explosion, and mild ignition was described as the appearance of numerous 

localized flames gradually developing into an explosion and shock.  Therefore, 

experiments classified as exhibiting strong ignition in those Shocktube studies were 
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also classified as strong in the present work, and those classified as mild were re-

classified as mixed in the present work. 

 

2.1 Auto-ignition behavior 

Fig. 4-4 presents the observed ignition behavior as a function of 

thermodynamic state for mixtures with φ = 0.25.  A range of behaviors is evident, 

with strong ignition at all conditions except the lowest pressures (3-5 atm) where 

there is a transition from strong to mixed to no ignition as temperature decreases 

from ~ 1100 K to 950 K.  There is excellent agreement between experimental results 

from the UM-RCF and those from the TU-RCM at the higher pressure conditions, 

suggesting that behaviors are device independent.  Overall the data show the 

ignition behaviors are well grouped and strongly related to the initial 

thermodynamic state, with a clearly defined strong ignition limit at lower 

pressures, marked as a hashed area in Fig. 4-4.  The transition to no ignition at the 

lowest temperatures for P = 3 and 5 atm was not expected, as the predicted auto-

ignition delay times in this region are well within the normal limits of the UM-RCF 

(~75 ms); however, reduced pressure rise rates during mixed ignition, previously 

highlighted in Fig. 4-2, likely lead to more significant heat transfer effects at these 

conditions and could result in unexpected quenching of the test gas mixture.  Also 

presented in Fig. 4-4 is the location of the predicted strong ignition limit for three 

thermal gradients, illustrating excellent correlation between the location of the 

experimentally observed strong ignition limit and the prediction which uses a 10 

K/mm thermal gradient magnitude.  This is an indication that the Sankaran 

Criterion can accurately predict the strong ignition limit for iso-octane at these 

conditions.  Interestingly, the most accurate prediction corresponds to an assumed 

thermal gradient magnitude in close agreement with the experimental findings of 

Donovan et al. [8] and Strozzi et al. [11].   
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Figure 4-4. Ignition behavior as a function of initial thermodynamic state for mixtures with φ = 

0.25.  The strong ignition limit identified by the experimental data is shown as the hashed area, and 

the NTC region identified by model predictions is shown as the gray area.  Iso-contours of predicted 

auto-ignition delay time are shown as dotted lines, and predicted locations of the strong ignition 

limit are shown as solid lines.  The most accurate prediction of the strong ignition limit, for a 10 

K/mm gradient, is the bold solid line.  

 

The experimental results indicate the propensity for strong ignition behavior 

greatly increases near the negative temperature coefficient (NTC) region (as 

predicted using the Mehl 2011 mechanism), highlighted in gray in Fig. 4-4.  

Remarkably, the Sankaran Criterion correctly forecasts the leftward curvature in 

the strong ignition limit as the NTC region is approached.  Within the NTC region, 

an inverse relationship between temperature and auto-ignition delay time is 

predicted by the Mehl 2011 mechanism, i.e. the auto-ignition delay time increases 

with increasing temperature.  Therefore, as temperature is lowered and the NTC 

region is crossed from the high-temperature side, the magnitude of the thermal 

sensitivity rapidly decreases and the sign of the thermal sensitivity changes from 

negative to positive.  As indicated by the Sankaran Criterion, Eq. 3-4, a reduction in 

thermal sensitivity magnitude indeed corresponds to an increased likeliness for 

strong ignition behavior.  Therefore, increased propensity for strong ignition 

behaviors near the NTC region is likely due to a corresponding decrease in the 

magnitude of the thermal sensitivity. 
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Fig. 4-5 presents the observed ignition behavior as a function of 

thermodynamic state for mixtures with φ = 1.0.  A range of behaviors is evident, 

with strong ignition generally occurring at higher temperatures and a highly 

pressure dependent transition to mixed ignition occurring as temperature is 

decreased.  There is excellent agreement between the experimental results from the 

UM-RCF, TU-RCM, and those from Fieweger et al. [10], where the latter results 

span a larger range of pressures and temperatures.  As the results from Vermeer 

and Oppenheim [5] are at much higher temperatures and lower pressures than the 

other three data sets, it was not possible to directly compare their results to the 

others; however, the same trend of strong ignition at higher temperatures and 

mixed ignition at lower temperatures is evident.  Overall the data show the ignition 

behaviors are consistent between devices, well grouped, and strongly related to the 

initial thermodynamic state, with a clearly defined strong ignition limit spanning 

1000-650 K for P > 10 atm and ~1400 K for P < 5 atm.  The measured strong 

ignition limit is marked as the two hashed areas in Fig. 4-5.  Regarding the effect of 

equivalence ratio on the location of the strong ignition limit, there is a shift toward 

higher temperatures as φ is increased from 0.25 to 1.0, in agreement with the trend 

observed in hydrogen based fuels by Mansfield and Wooldridge [4].  As discussed in 

that work, this is likely related to the energy content of the mixture and the relative 

amount of energy released during local ignition events.  

Also presented in Fig. 4-5 is the location of the predicted strong ignition limit 

for three thermal gradients, illustrating excellent correlation between the measured 

strong ignition limit and the predicted location for 5 K/mm at P > 10 atm.  This 

correlation is a clear indication that the Sankaran Criterion can accurately predict 

the location of the strong ignition limit for iso-octane at higher equivalence ratio 

conditions.  As the calculation of a predicted strong ignition limit for initial 

temperatures above 1100 K was not reasonable using the flame speed correlation 

from Middleton et al. [12], predictions could not be compared to the measured limit 
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around ~1400 K; however, the trajectory of the predictions is consistent with the 

measured strong ignition limit at high temperatures. 

 

 
 

Figure 4-5. Ignition behavior as a function of initial thermodynamic state for mixtures with φ = 1.0.  

The strong ignition limit identified by the experimental data is shown as the hashed areas and the 

NTC region identified by model predictions is shown as the gray area.  Results are from the present 

work, Vermeer and Oppenheim [5], and Fieweger et al. [10].  Iso-contours of predicted auto-ignition 

delay time are shown as dotted lines, and predicted locations of the strong ignition limit are shown 

as solid lines.  The most accurate prediction of the strong ignition limit, for a 5 K/mm gradient, is the 

bold solid line. 

 

Quite remarkably, for φ = 1.0 the predicted strong ignition limit for a 5 K/mm 

thermal gradient accurately predicts the location of the experimentally observed 

strong ignition limit on both the high and low temperature sides of the NTC region.  

Consistent with the results for lower φ, the strong ignition limits curve toward 

lower pressures at temperatures near the NTC region from both low and high 

temperature directions.  This is again due to the rapid reduction in the magnitude 

of thermal sensitivity near the NTC region.  Strong ignition limit predictions were 

not calculated for points within the NTC region as the inverted sign of the thermal 

sensitivity values contradicts the physical foundation of the Sankaran Criterion.  

The basis of this criterion assumes the existence of a spontaneous propagation 

and/or laminar flame moving from high-temperature to low-temperature down a 

thermal gradient centered at a thermal hot spot.  It is presently unclear if and how 
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flame and/or propagation front motion would be affected if the thermal sensitivity 

were positive, meaning the lower temperature regions would ignite earlier.  

However, as evidenced by the results in Fig. 4-5 the trend of the strong ignition 

limit is not significantly changed as the NTC region is traversed.  This suggests 

that the underlying mechanism governing ignition behavior is also not significantly 

changed in this region, though more detailed experimentation in this region would 

be necessary to validate such an assertion.  

Overall, these results illustrate that the Sankaran Criterion is indeed an 

excellent tool for a priori prediction of the strong ignition limit for iso-octane fuels 

across a broad range of thermodynamic and mixture conditions.  As highlighted 

previously for syngas in Chapter 3 (Mansfield and Wooldridge [4]) this is an 

important and useful tool, which not only provides a practical and simple approach 

to predicting complex ignition behaviors, but it also describes the roles of chemical 

kinetics, thermo-physical properties, and device dependent thermal characteristics 

in governing these behaviors.  Importantly, in conjunction with the previous 

findings for syngas fuels [4], the results of the present work are a strong indication 

that the Sankaran Criterion can be applied to a broad range of fuels – beyond the 

important hydrocarbon primary reference fuel iso-octane and fuels with high 

hydrogen content.  Furthermore, the similarity in thermal gradient values which 

result in the most accurate predictions for both fuels and a range of equivalence 

ratios suggests that an assumption of a 5-10 K/mm gradient can be reasonably 

applied for a broad range of fuel types and mixture compositions. 

The quantitative nature of the Sankaran Criterion is particularly important 

to the extension of this criterion to more practical combustion systems like internal 

combustion engines, which will experience much larger magnitudes of thermal 

gradients (up to ~ 50 K/mm, approximated using experimental data from Einecke et 

al. [12]) as well as mixture inhomogeneities and turbulence.  As indicated in Figs. 4-

4 & 4-5, increasing the value of thermal gradient shifts the predicted location of the 

strong ignition limit toward higher pressures.  Considering the approximate 

magnitude of thermal gradients in real engine systems, mixed ignition behaviors 
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are likely to occur at pressures up to and exceeding 50 atm for T ≤ ~1100K, 

conditions particularly important to modern boosted low-temperature engine 

operation.  As such, it is possible that “pre-ignition” and “super-knock” behaviors at 

high-pressure low-temperature conditions, like those described by Kalghatgi et al. 

[13], are related to the inhomogeneous ignition behaviors observed in the present 

work.   

Regarding the influence of mixture inhomogeneity and turbulence in 

practical combustion systems, these factors are expected to influence the accuracy 

and utility of the Sankaran Criterion in predicting ignition behaviors.  Although 

quantifying these effects is outside the scope of the current study, these topics are 

valuable directions for future work.  A computational investigation of the influence 

of turbulence and mixture inhomogeneities on the success of the Sankaran Criterion 

is currently underway by Pal and Im [14] for syngas fuels, expanding on the 

previous computational work by Sankaran et al. [15] and Bansal and Im [16].  

Additional experimental studies are also important to further bridge the results of 

the current work to engine development. 

 

2.2 Auto-ignition delay time 

Fig. 4-6a & b present the measured and predicted auto-ignition delay times 

as a function of inverse temperature for mixtures with φ = 0.25 at various 

pressures.  Recall that the error bars on the experimental data represent the limits 

of the definition of the auto-ignition delay time and the error bars on the predictions 

represent the effects of known uncertainty in reactions R1, R16, and R3214.  The 

results indicate excellent agreement between the measurements and predictions 

across the complete range of temperature and pressure conditions for both observed 

ignition behaviors (strong and mixed).  Furthermore, excellent agreement is 

evidenced between the results from the UM-RCF those from the TU-RCM.  It is 

therefore clear that the accuracy of auto-ignition delay time predictions made using 

the typical zero-dimensional model described above and the Mehl 2011 mechanism 

are not significantly affected by inhomogeneous ignition behavior at these 
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conditions for φ = 0.25.  This is an indication that the energy released during the 

inhomogeneous ignition process does not significantly influence the subsequent 

homogeneous auto-ignition. 

 

 
 

Figure 4-6a. Measured and predicted auto-ignition delay time as a function of inverse temperature 

for mixtures with φ = 0.25, for P = 3, 5, and 10 atm.  Solid markers represent experimental 

measurements and hollow markers represent corresponding model predictions.  Uncertainty bounds 

of the predictions are the effects of the uncertainties in the rate coefficients of reactions R1, R16, 

R3214; whereas, uncertainty bounds of the measurements are the limits of the definition of the auto-

ignition delay time. 
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Figure 4-6b. Measured and predicted auto-ignition delay time as a function of inverse temperature 

for mixtures with φ = 0.25, for P = 15, 20, and 30 atm.  Solid markers represent experimental 

measurements and hollow markers represent corresponding model predictions.  Uncertainty bounds 

of the predictions are the effects of the uncertainties in the rate coefficients of reactions R1, R16, 

R3214; whereas, uncertainty bounds of the measurements are the limits of the definition of the auto-

ignition delay time. 

 

Fig. 4-7 presents the measured and predicted auto-ignition delay times as a 

function of inverse temperature for mixtures with φ = 1.0 at various pressures.  

Overall the results indicate excellent agreement between all measurements and 

predictions for temperatures greater than 1000 K at all pressures; however, the 

agreement varies at temperatures less than this value.  There is generally good 

agreement between the experimental results from the UM-RCF and those from 

Fieweger et al. [10] and Vermeer and Oppenheim [5], though the only significant 

overlap in initial conditions is for 15 atm.  Regarding the results from Vermeer and 

Oppenheim [5] there is excellent agreement between the measurements and 

predictions for the experiments which exhibited strong ignition and good agreement 

for those which exhibited mixed ignition.  While the nominal auto-ignition delay 

time measurements appear to be slightly less than the nominal predictions when 

mixed ignition behavior occurs, the uncertainty bounds in all cases have significant 

overlap indicating that the model is still accurate at these conditions.  Regarding 

the results from Fieweger et al. [10] at 15 atm, there is excellent agreement 

between the measurements and predictions for the experiments which exhibited 
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strong ignition (at temperatures above ~1000 K); however, after the onset of mixed 

ignition at lower temperatures the measurements are consistently lower than 

predictions with increasing discrepancy as the temperature is decreased.  The 

results from the UM-RCF at 15 atm are in agreement with these findings, where 

the measurements are systematically lower than predicted times.  This is consistent 

with behaviors seen previously for syngas and hydrogen fuels [4,17], which were 

linked to energy release during inhomogeneous ignition coupled with increasingly 

longer auto-ignition delay times.  Regarding the results from Fieweger et al. [10] at 

35 atm, all of which exhibited strong ignition, there is excellent agreement between 

the measurements and predictions for temperatures 1000-1250 and 725 – 750K; 

while at temperatures between these ranges the measurements are up to an order 

of magnitude faster than predictions.  As illustrated in Fig. 4-5 the NTC region lies 

between ~750 and 1000 K at this pressure, which suggests that this discrepancy is 

related to error in the Mehl 2011 mechanism and/or the CHEMKIN zero-

dimensional reactor model in predicting auto-ignition delay times in the NTC 

region.  This level of discrepancy is generally consistent with the benchmarking 

results of Mehl et al. [3] for the NTC region at high pressures, though limited 

experimental data was reported for those conditions. 

 Overall these results are an indication that the effect of ignition behavior on 

the predictive accuracy of auto-ignition delay times made using zero-dimensional 

modeling is strongly dependent on the equivalence ratio, where inhomogeneous 

behaviors have little impact for mixtures with φ = 0.25 and can cause significant 

reductions in delay times for φ = 1.0.  This dependence on equivalence ratio is in 

excellent agreement with previous findings by Mansfield and Wooldridge [4], who 

found similar behavior for syngas fuel and related such behavior to the amount of 

energy released during inhomogeneous ignition.  Furthermore, the results of 

Vermeer and Oppenheim [5] at high temperatures indicate the effect of 

inhomogeneous ignition behavior on predictive accuracy is also dependent on the 

magnitude of the auto-ignition delay time itself, in that very short auto-ignition 
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delay times (< 1 ms) lead to a negligible effect of inhomogeneous behaviors even at 

high φ. 

 
 

Figure 4-7. Measured and predicted auto-ignition delay time as a function of inverse temperature, 

for mixtures with φ = 1.0.  Results are from the present work, Fieweger et al. [10], and Vermeer and 

Oppenheim [5].  Solid markers represent experimental measurements and hollow markers represent 

corresponding model predictions.  Uncertainty bounds of the predictions are the effects of the 

uncertainties in the rate coefficients of reactions R1, R16, R3214; whereas, uncertainty bounds of the 

measurements are the limits of the definition of the auto-ignition delay time. 

 

3. CONCLUSIONS 

This work represents an important integration of results from diverse 

experimental platforms to describe common ignition behaviors of iso-octane, and 

further to provide a quantitative basis for predicting and interpreting data of 

ignition studies beyond the fuel and conditions studied here.  Studies such as this 

are vital towards fundamental understanding of low-temperature combustion 

systems where prediction and control of chemically driven ignition phenomena is 

key to safety and performance.  Importantly, the insights and tools developed in 

this work are relevant not only to systems which rely solely on chemically controlled 

ignition but also those which can be impacted by uncontrolled auto-ignition during 

an active ignition process, e.g. knock, pre-ignition, and super-knock in spark ignited 

internal combustion engine systems. 

The comprehensive results of the present work clearly illustrate the existence 

of both inhomogeneous and homogeneous auto-ignition behaviors for stoichiometric 
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and lean air-dilute iso-octane mixtures at thermodynamic conditions relevant to 

engines and other combustion systems.  Analysis of patterns in the ignition 

behaviors revealed a dependence on temperature, pressure, and equivalence ratio 

with distinct thermodynamic regions in which the ignition behavior is consistent 

and repeatable.  The strong ignition limit was identified for each equivalence ratio, 

indicating a transition in ignition behavior from homogeneous to inhomogeneous.  

The location of this limit was found to shift to higher temperatures as the 

equivalence ratio was increased, with the most significant change at pressures 

greater than 10 atm.  Interestingly, proximity to the NTC region increased the 

propensity for homogeneous ignition, likely resulting from a decrease in thermal 

sensitivity of the auto-ignition delay time. 

The location of the strong ignition limit for each equivalence ratio was 

predicted with remarkable accuracy using the Sankaran Criterion, which is a 

comparison of the laminar flame speed to the thermal gradient driven spontaneous 

propagation speed.  For φ = 0.25 the prediction was most accurate for an assumed 

thermal gradient of 10 K/mm, whereas for φ = 1.0 this value was 5 K/mm.  In 

conjunction with the previous findings for syngas fuels by Mansfield and 

Wooldridge [4], this is a strong indication that the Sankaran Criterion can be used 

to predict ignition behavior for a broad range of hydrocarbons and hydrogen based 

fuels.  This validation of the Sankaran Criterion for a hydrocarbon fuel importantly 

broadens the use of this tool and is an indication that ignition processes in 

hydrocarbon and high hydrogen content fuels are fundamentally similar. 

Furthermore, the quantitative nature of this criterion uniquely describes the roles 

of chemical kinetics, transport phenomena, and thermal characteristics in 

determining auto-ignition behavior, allowing for a deeper understanding of these 

phenomena and facilitating a thoughtful extension to more complex systems which 

include turbulence and mixture inhomogeneity. 

Auto-ignition delay time measurements were compared to zero-dimensional 

model predictions for all experiments considered in the present work, revealing the 

accuracy of predictions was strongly dependent on equivalence ratio and ignition 
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behavior.  The results indicate that the presence of inhomogeneous ignition 

behavior does not significantly affect the accuracy of auto-ignition delay time 

predictions for mixtures with φ = 0.25; whereas, for mixtures with φ = 1.0 the 

presence of inhomogeneous ignition behavior can significantly reduce the accuracy 

of predictions at the conditions studied here.  This inaccuracy at higher φ is likely 

the result of increased energy release during the inhomogeneous event, causing a 

significant shift in the thermodynamic state of the yet unburned gas mixture and a 

subsequent violation of the isobaric/isothermal assumptions in the zero-dimensional 

model.  These results are an important indication that while inhomogeneous 

ignition behavior may still be present at lean conditions, the subsequent effect on 

the auto-ignition delay time may be reduced or eliminated.  Furthermore, it is 

evident that ignition behavior must be appropriately classified in any future 

experimental work for near stoichiometric mixtures of iso-octane at temperatures 

below ~ 1000 K to ensure proper interpretation of the results. 
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SUPPLEMENTAL MATERIAL 

Table 4-A. Summary of experimental conditions and results for mixtures with φ = 1.0, UM-RCF 

Test gas compositiona 

 (% Vol.) 
Thermo.  Stateb 

Ignition 

Behaviorc 

Auto-ignition delay time d (ms) 

iC8H18 O2 N2 Ar P (atm) T (K) τign Δτign τpred δτpred+ δτpred- 

1.64 20.7 44.2 33.5 8.8 986 M 1.9 1.4 5.7 2.4 2.5 

1.67 20.7 67.7 9.94 17.1 913 M 3.8 1.7 9.2 2.5 2.5 

1.67 20.7 77.6 0 17.3 877 M 8.2 3.9 17.5 4.2 4.2 

1.67 20.7 77.6 0 16.5 872 M 9.9 3.7 20.2 4.8 4.8 

1.67 20.7 67.7 0 14.8 812 M 28.9 7.5 55.0 10.9 10.4 

a Balance CO2     
b Assigned thermodynamic state, with pressure uncertainty ~ 0.1 atm and temperature uncertainty 

~ 5 K      
c S = Strong, M = Mixed, W = Weak, NI = No ignition  
d τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred- / 

δτpred- = lower/upper uncertainty of prediction 

 

 

Table 4-B. Summary of experimental conditions and results for mixtures with φ = 1.0, TU-RCM 

Test gas composition 

 (% Vol.) 
Thermo.  Statea 

Ignition 

Behaviorb 

Auto-ignition delay time c (ms) 

iC8H18 O2 N2 Ar P (atm) T (K) τign Δτign τpred δτpred+ δτpred- 

1.65 20.7 0 77.7 20.2 944 S 4.0 1.8 4.4 1.2 1.4 

a Assigned thermodynamic state, with pressure uncertainty ~ 0.1 atm and temperature uncertainty 

~ 5 K.      
b S = Strong, M = Mixed, W = Weak, NI = No ignition  
c τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred- / 

δτpred- = lower/upper uncertainty of prediction 
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Table 4-C. Summary of experimental conditions and results for mixtures with φ = 0.25, UM-RCF 

Test gas composition a 

 (% Vol.) 
Thermo.  Stateb 

Ignition 

Behavior c 

Auto-ignition delay time d (ms) 

iC8H18 O2 N2 Ar P (atm) T (K) τign Δτign τpred δτpred+ δτpred- 

0.42 21.1 68.7 0 19.2 921 S 29.1 14.9 23.8 7.6 7.0 

0.42 21.1 71.3 0 20.9 954 S 16.2 8.4 11.9 4.0 3.8 

0.42 21.1 64.1 0 20.1 905 S 33.2 15.9 26.1 8.1 6.7 

0.42 21.1 75.8 0 14.8 1010 S 6.6 4.0 5.1 2.1 2.1 

0.42 21.1 76.8 0 15.9 1010 S 9.5 6.9 4.8 2.0 1.9 

0.42 21.1 72.0 0 14.5 943 S 27.2 12.9 17.2 6.0 5.7 

0.42 21.1 67.8 0 15.3 929 S 33.5 15.8 21.4 7.2 6.7 

0.42 21.1 74.5 0 14.1 957 S 19.9 11.2 13.5 4.9 4.7 

0.42 21.2 64.1 0 14.7 909 S 57.7 24.4 32.7 10.6 9.7 

0.42 21.1 65.2 13.3 10.6 1070 S 6.3 5.6 2.4 1.4 1.2 

0.42 21.1 75.8 2.7 10.3 1016 S 13.2 8.5 6.2 2.8 2.8 

0.42 21.1 76.8 0 10.4 1006 S 19.1 10.9 7.3 3.2 3.2 

0.42 21.1 74.5 0 10.3 972 S 27.3 14.7 13.6 5.4 5.3 

0.42 21.1 73.7 0 9.9 958 S 33.1 15.8 17.8 6.8 6.7 

0.42 21.1 72.0 0 9.7 948 S 34.5 15.6 21.9 8.2 8.0 

0.42 21.1 67.8 0 9.5 915 S 90.2 39.4 42.1 14.6 13.7 

0.42 21.1 68.7 0 9.7 923 S 67.9 29.3 35.5 12.5 11.8 

0.41 21.1 63.3 15.2 4.5 1035 S 10.0 6.5 8.8 5.2 4.6 

0.42 21.1 63.2 15.2 5.3 1062 S 6.2 4.9 4.8 3.0 2.5 

0.42 21.1 63.2 15.2 4.9 1055 S 9.4 6.4 5.8 3.6 3.1 

0.41 21.1 76.8 0 4.7 971 M 60.7 24.7 27.5 12.8 12.4 

0.42 21.1 65.2 13.3 4.5 1028 M 11.9 7.4 9.9 5.8 5.2 

0.42 21.1 75.8 2.7 4.6 983 M 35.9 15.7 22.1 10.9 10.4 

0.42 21.1 75.8 2.7 4.6 983 M 39.0 15.8 22.1 10.8 10.4 

0.42 21.1 74.5 0 4.9 972 NI - - - - - 

0.42 21.1 73.7 0 4.9 961 NI - - - - - 

0.41 21.1 56.0 22.4 3.2 1098 S 4.3 4.0 4.6 3.0 2.4 

0.41 21.1 63.3 15.1 3.1 1060 S 15.3 8.4 7.7 5.1 4.1 

0.41 21.1 56.1 22.4 2.8 1077 M 7.8 6.6 6.2 4.2 3.3 

0.41 21.1 63.4 15.1 2.6 1034 M 23.7 10.2 13.9 9.1 7.6 

0.41 21.1 67.4 11.0 2.7 1016 M 45.0 21.8 19.2 8.9 11.9 

0.41 21.1 75.8 2.7 2.9 980 NI - - - - - 

0.41 21.1 75.8 2.7 3.3 1010 NI - - - - - 

0.41 21.1 75.8 2.7 3.0 1005 NI - - - - - 

a Balance CO2     
b Assigned thermodynamic state, with pressure uncertainty ~ 0.1 atm and temperature uncertainty ~ 5 K.      
c S = Strong, M = Mixed, W = Weak, NI = No ignition  
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d τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred- / δτpred- = 

lower/upper uncertainty of prediction 

 

Table 4-D. Summary of experimental conditions and results for mixtures with φ = 0.25, TU-RCM 

Test gas composition 

 (% Vol.) 
Thermo.  Statea 

Ignition 

Behaviorb 

Auto-ignition delay time c (ms) 

iC8H18 O2 N2 Ar P (atm) T (K) τign Δτign τpred δτpred+ δτpred- 

0.42 20.9 55 23.7 29.7 784 S 52.9 14.7 70.3 19.7 15.8 

0.42 20.9 55 23.7 29.1 739 S 71.1 19.2 72.6 19.1 16.0 

0.42 20.9 55 23.7 29.0 739 S 71.8 19.2 72.9 19.3 16.0 

0.42 20.9 0 78.7 18.5 818 S 134 22 129 34.6 30.1 

0.42 20.9 0 78.7 20.1 827 S 102 17 101 27.0 23.8 

0.42 20.9 0 78.7 20.1 822 S 102 19 108 28.6 25.1 

0.42 20.9 0 78.7 20.1 823 S 98.8 17.2 106 28.4 24.9 

0.42 20.9 0 78.7 20.1 823 S 99.6 17.4 107 28.4 24.9 

0.42 20.9 0 78.7 20.2 885 S 33.1 6.0 37.6 11.3 10.5 

0.42 20.9 25.7 53.1 20.1 878 S 38.3 6.6 44.0 13.1 11.9 

0.42 20.9 25.7 53.1 20.1 876 S 38.7 6.7 45.8 13.6 12.4 

0.42 20.9 0 78.7 15.0 956 S 11.5 2.8 12.2 4.7 4.6 

0.42 20.9 0 78.7 15.0 956 S 11.4 2.8 12.0 4.7 4.4 

0.42 20.9 25.7 53.1 15.7 974 S 7.2 1.8 8.5 3.4 3.2 

0.42 20.9 25.7 53.1 15.5 971 S 7.6 1.8 9.1 3.6 3.5 

0.42 20.9 0 78.7 5.2 1001 S 14.3 3.7 12.5 7.1 6.4 

0.42 20.9 0 78.7 5.2 1001 S 13.2 3.8 12.6 7.1 6.5 

a Assigned thermodynamic state, with pressure uncertainty ~ 0.1 atm and temperature uncertainty ~ 5 K.      
b S = Strong, M = Mixed, W = Weak, NI = No ignition  
c τign = measured, Δτign = symmetric uncertainty bounds of measurement, τpred = predicted, δτpred- / δτpred- = 

lower/upper uncertainty of prediction 
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Table 4-E. Reaction Rate Parameters with uncertainty 

 

# Reaction Amin A0 e Amax n Ea 

1 H + O2 = OH + O a 2.789(10)15 3.5458(10)15 4.508(10)15 -0.4 16.6(10)3 

16 H2O2(+M) = OH + OH, k0  b 1.86(10)14 2.95(10)14 4.68(10)14 0 48.4(10)3 

16 H2O2(+M) = OH + OH, k∞  c 7.59(10)16 1.20(10)17 1.90(10)17 0 45.5(10)3 

3214 I-C8H18 = Y-C7H15 + CH3 d 3.27(10)26 1.635 (10)27 8.175(10)27 -2.8 83.9(10)3 

Units are cm3, s, cal, K; 𝑘 = 𝐴𝑇𝑛 exp (−
𝐸𝑎

𝑅𝑇
) 

 

Pre-exponential “A-factor” uncertainty sources: 
a Hessler J. Calculation of Reactive Cross Sections and Microcanonical Rates from Kinetics and 

Thermochemical Data. J Phys Chem A 1998;102:4517-4526. 
b Brower L, Cobos C, Troe J, Dubal H, and Crim H. Specific rate constants k(E,J) and product state 

distributions in simple bond fission reactions. II. Application to HOOH = OH+OH. J Chem Phys 

1987;86 : 6171-6182. 
c Baulch D, Cobos C, Cox R, Esser C, Frank P, Just T, Kerr J, Pilling M, Troe J, Walker R, Warnatz 

J. Evaluated Kinetic Data for Combustion Modeling. J Phys Chem Ref. Data 1992;21:411-429 
d Not available, assumed multiplicative uncertainty factor of 5. 
e Nominal parameters from Mehl et al. 2011 kinetic mechanism [3]   

 

 



79 
 

Chapter 5 

The effect of impurities on syngas combustion 

 

The objective of this project was to advance the understanding of the effects 

of impurities on the chemical kinetics of syngas oxidation, focusing on CH4 and 

trimethylsilanol (TMS) impurities at thermodynamic and mixture conditions 

relevant to practical device operation.  This was accomplished through an 

experimental investigation of auto-ignition delay times of syngas with various 

mixture compositions using the UM-RCF.  Uniquely, high-speed imaging was 

utilized for each experiment, enabling testing at lower temperatures and pressures 

not possible in previous experimental studies by other investigators.  The auto-

ignition delay time and pressure time history measurements were compared to 

predictions made using a typical syngas oxidation mechanism, in order to connect 

observations with potential underlying chemical kinetic pathways and elucidate 

behavior trends. 

 

1. METHODS 

1.1 Experimental Methods 

Ignition experiments were conducted for realistic syngas mixtures with fuel 

to oxygen equivalence ratio of φ = 0.1 and were air-dilute with N2, i.e. molar O2 to 

inert gas ratio of 1:3.76.  In some cases, small amounts of the N2 diluent gas were 

replaced by Ar and/or CO2 to modify the test temperature.  Four fuel mixtures were 

used, (1) pure syngas: 30% H2, 70% CO (fuel volume), (2) syngas with CH4: 27% H2, 

67% CO, 6% CH4, (3) pure syngas with 10 ppm TMS, and (4) pure syngas with 100 

ppm TMS.  Mixtures were designed to represent lean syngas mixtures used in the 

power industry while spanning typical CH4 concentrations [1,2] and typical TMS 
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impurity concentrations observed by Rasi et al. [3] (~ 5 ppm).  Considering the 

upward trend in organic Si species in waste-based syngas reported by Rasi et al. [3], 

the mixture containing 100 ppm TMS was selected to represent potential future 

concentrations.  Ignition experiments were conducted at 5 and 15 atm for the 

broadest range of temperatures allowable in the UM-RCF for these mixtures (~ 

1010-1110 K, based on experimental test times and associated uncertainties).  

While it was desirable to increase the equivalence ratio beyond the value chosen 

here, φ = 0.1, it was not possible to achieve homogeneous ignition behavior at the 

thermodynamic conditions of interest for higher values of φ.  Please see Chapter 3 

(Mansfield and Wooldridge [4]) for a discussion of the state and syngas mixture 

conditions associated with homogeneous versus inhomogeneous ignition.  A detailed 

tabulation of the gas mixture composition and thermodynamic state corresponding 

to each auto-ignition delay time measurement is given in the Supplemental 

Material section. 

 

1.2 Computational Methods 

Auto-ignition ignition delay time and pressure time history predictions were 

made using the constant volume adiabatic zero-dimensional homogeneous reactor 

model in the CHEMKIN software suite [5] with the Li 2007 chemical kinetic 

mechanism.  This mechanism was used given previous success in predicting syngas 

ignition behavior [6,7], [4] and because it includes CH4 oxidation chemistry.  Using 

this auto-ignition model, a corresponding auto-ignition delay time prediction was 

calculated for each ignition experiment in this study using the initial 

thermodynamic condition and mixture composition of the experiments.  The auto-

ignition delay time from the model predictions was defined as the time from the 

start of the calculation to the time when dT(t)/dt was maximized.  In most cases two 

inflection points were predicted in the temperature time history, indicating two 

“steps” of energy release during ignition.  The occurrence of two-step auto-ignition 

corresponds well to the experimental observations and is discussed in detail below.  

Important to note is that TMS is not included in the Li 2007 mechanism and the 
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authors are aware of no oxidation model which includes this species and associated 

combustion products.  Therefore auto-ignition delay time predictions are presented 

only for experiments which used the pure syngas or syngas with CH4 mixtures.  For 

each prediction, quantified uncertainty bounds were calculated using the known 

uncertainty in the “A-factor” of the Arrhenius reaction rates for the four most 

sensitive reactions, CO + O2 = CO2 + O (R21), HO2 + H = H2 + O2 (R10), H + O2 = H 

+ OH (R1) and H + O2 (+M) = HO2 (+M) (R9).  These were identified using OH 

sensitivity analysis conducted in the CHEMKIN software suite for the pure syngas 

mixture at P = 15 atm, and T = 1066 K.  The results of the sensitivity analysis and 

the rate coefficients used are listed in Supplemental Material.  

 

2. RESULTS 

For each experiment in the UM-RCF, a pressure time history and a high-

speed imaging video were recorded, allowing for the determination of auto-ignition 

delay times and direct observation of the auto-ignition behavior.  A typical pressure 

time history during an ignition experiment for initial pressures of 15 and 5 atm can 

be seen in Figs. 5-1 and 5-2, respectively.  Similar trends are observed for both 

experiments.  The pressure initially increases during the compression stroke until 

the Sabot is seated at the end-of-compression (EOC) event, followed by a slight 

decrease in pressure due to heat transfer from the test gas volume into the cool Test 

Section walls, followed by a large and rapid increase in pressure during the ignition.  

For each experiment, the time and pressure was noted at the three distinct events: 

end-of-compression, minimum pressure (Pmin), and maximum pressure (Pmax), 

highlighted in Fig. 5-1.  After filtering the pressure time history with a 75-point 

smoothing algorithm to reduce signal noise, the pressure and time value for each 

event was defined mathematically as a local maximum or minimum respectively.  

The pressure data (P(t)) between Pmin and Pmax was then filtered a second time with 

a 100-point smoothing algorithm to further reduce signal noise, and the numerical 

derivative of the pressure time history (dP(t)/dt) was calculated using a center 

differencing scheme.  For each auto-ignition experiment a thermodynamic state was 
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assigned representing the unburned iso-thermal iso-baric condition at which the 

experiment was conducted, as described in Chapter 2. 

 

Fig.5-1. Typical pressure time history, P(t), and time derivative of the pressure time history, 

dP(t)/dt, for experimental conditions exhibiting two-step ignition behavior; P = 15.0 atm, T = 1,109 K, 

φ = 0.1 for a pure syngas mixture.  τi,1 and τi,2 are the first and second auto-ignition delay times 

respectively. 

 

Fig.5-2. Typical pressure time history, P(t), and time derivative of the pressure time history, 

dP(t)/dt, for experimental conditions exhibiting one-step ignition behavior;  P = 4.8 atm, T = 1,029K, 

φ = 0.1 for  pure syngas mixture.  τi,2 is the auto-ignition delay time. 

For experiments with an initial pressure of 15 atm, seen in Fig. 5-1, trends in 

the dP/dt time history exhibited two peaks for all mixtures; one corresponding to 
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each “step” of pressure rise during the ignition event.  As evidenced, each step 

represents a region of rapid pressure rise and the two steps observed are separated 

by region with a reduced rate of pressure.  Two ignition delay times were therefore 

determined for each experiment that exhibited these features (τi,1 and τi,2) as the 

time from EOC to each peak in the dP/dt time history.  The definitions are 

illustrated in Fig. 5-1.  For experiments with an initial pressure of 5 atm,  as 

presented in Fig. 5-2, a single peak in dP/dt was observed for all mixtures and 

correspondingly one ignition delay time, τi,2, was determined from each of these 

experiments.  The most significant source of uncertainty associated with these auto-

ignition delay time measurements is from the selection of the smoothing algorithm 

in the data filtering process.  Uncertainty for each measurement was quantified by 

varying the number of points included in the initial filtering algorithm by ± 50% 

and defining bounds for each measurement which spanned the resulting range of 

auto-ignition delay times calculated.  In the vast majority of cases the uncertainty 

in the measured auto-ignition delay time was < 1%; though, in a few select cases 20- 

35% uncertainty was observed, likely the result of a convolution of the auto-ignition 

event with an artifact in the pressure time history.  Uncertainty bounds in the 

assigned temperature values were also calculated in this manner, as variation in 

the smoothing algorithm parameters affects the selection of key pressure values 

(EOC, Pmin, Pmax) used to calculate the temperature.  While in most cases the 

temperature uncertainty was less than the previously defined value of ~ 5 K, in 

certain cases the uncertainty exceeded this value.  A tabulated list of all 

experimental results, including calculated uncertainty bounds for the auto-ignition 

delay time measurements and assigned temperatures, is provided in the 

Supplemental Material section.  

A frame from the typical high-speed imaging results of chemilluminescence 

during syngas auto-ignition is shown in Fig. 5-3.  As seen, homogeneous ignition is 

indicated by the spatial uniformity of the chemilluminescence emission.  For each 

experiment the high-speed imaging results were reviewed to confirm that only 

homogeneous ignition occurred.  This ensured that all characteristics of the 
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pressure time history correspond to global phenomena (chemical kinetics and heat 

transfer), which are well represented by a zero-dimensional homogeneous reactor 

model.  As illustrated in detail in Chapters 3 & 4 (Mansfield and Wooldridge [4,8]), 

the effects of localized ignition phenomena can significantly impact the accurate 

interpretation of pressure time history results for syngas fuel and so avoiding these 

behaviors was critical in the present work. 

 

 

Fig.5-3. Single frame from high-speed imaging of typical ignition behavior within Test Section, 

illustrating homogeneous chemilluminescence, for the pure syngas mixture at experimental 

conditions P = 4.6atm, T = 1052 K, φ = 0.1. 

 

2.1 Auto-ignition delay times at 5 and 15 atm 

Fig. 5-4a & b illustrate the auto-ignition delay time measurement results for 

the second (τi,2) and first (τi,1) steps of the ignition at 15 atm.  Overall the results for 

both steps illustrate excellent repeatability and consistent trends throughout the 

temperature range evaluated.  The data demonstrate TMS can be added to the 

syngas mixtures in a controlled and consistent manner in the present experimental 

system, an important verification considering that this compound has not been 

tested in any known previous combustion experiment.  The effects of CH4 and TMS 

impurity addition are in trend wise agreement between the first and second auto-

ignition delay times, generally with CH4 inhibiting and TMS promoting ignition, 

though the magnitude of the impact is more pronounced for τi,2.  The observed 

inhibiting effects for the syngas with CH4 mixture are in close agreement with 
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previous findings by Gersen et al. [9] and Mathieu et al. [10] who also observed this 

outcome.  

 

Fig.5-4a. Measured auto-ignition delay time of the second step of ignition (τi,2) as a function of 

inverse temperature for P = 15 atm.  The solid line is provided for visual reference to the pure syngas 

data.  Uncertainty bounds of the auto-ignition measurements and temperatures are the limits of the 

post-processing algorithm filtering parameters, and are not visible on this scale.  

 

 

Fig.5-4b. Measured auto-ignition delay time of the first step of ignition (τi,1) as a function of inverse 

temperature for P = 15 atm.  Uncertainty bounds of the auto-ignition measurements and 

temperatures are the limits of the post-processing algorithm filtering parameters.  The solid line is 

provided for visual reference to the pure syngas data. 
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Regarding the results for τi,2 shown in Fig. 5-4a, it is apparent that the 

addition of CH4 consistently increases the auto-ignition delay time relative to the 

pure syngas mixtures by ~ 40%.  Conversely, the addition of TMS causes a decrease 

in the auto-ignition delay times, with magnitude dependent on both the 

concentration and the initial temperature.  For 10 ppm TMS addition, significant 

effects are only observed at T > 1060 K, at which point the auto-ignition delay time 

is reduced by ~ 30%.  For 100 ppm TMS addition, there is a drastic impact on the 

measurements, with consistent 50-70% decrease in the auto-ignition delay time 

across all temperatures.  Regarding the results for τi,1 shown in Fig. 5-4b, it is 

apparent that the addition of CH4 consistently increases the auto-ignition delay 

time measurement by 40-50%.  Again, the addition of TMS results in a reduction in 

measured auto-ignition delay times; where 10 ppm addition leads to a consistent 10-

30% reduction, and 100 ppm leads to a consistent 45-50% reduction.  As the effect of 

10 ppm and 100 ppm TMS addition was similar for τi,1, but drastically different for 

τi,2, this suggests that the second step of the ignition process is more sensitive to 

this impurity.   Conversely, the difference between τi,1 and τi,2 remains 

approximately constant at ~ 5 ms for both pure syngas and syngas with CH4 across 

all conditions. 

Fig. 5-5 illustrates the auto-ignition delay time measurement results (τi,2) for 

5 atm initial pressure.  Again, the results indicate excellent repeatability and 

consistent trends throughout the temperature range.  Recall that the uncertainty 

bounds of the temperature assignments are the limits of the post-processing 

filtering algorithm parameters.  The effects of CH4 and TMS generally agree with 

those at 15 atm, with CH4 inhibiting and TMS promoting ignition, but the 

magnitudes of the impact differ.  It is apparent that the addition of CH4 has 

minimal impact below 1050 K, though at higher temperatures the auto-ignition 

delay time is increased by up to a factor of 3.  While the apparent activation energy 

(the slope of the auto-ignition delay time as a function of the inverse temperature) 

decreases as temperature decreases for all other mixtures, the apparent activation 

energy for the syngas with CH4 mixture does not change as a function of 
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temperature.  For 10 ppm TMS addition, there is no significant effect on the auto-

ignition delay time; whereas for 100 ppm TMS addition, there is a consistent 20-

30% decrease in the auto-ignition delay time.  Interestingly, as the temperature 

increases to ~ 1070 K, the auto-ignition delay time appears to be increasingly less 

sensitive to addition of 100 ppm of TMS or CH4, suggesting that the effects of these 

impurities at these mole fraction levels are negligible at temperatures above this 

value.  This is may be the result of reductions in the magnitude of the auto-ignition 

delay times at these conditions, as compared to lower temperatures and higher 

pressures.   

 

Fig.5-5. Measured auto-ignition delay time (τi,2) as a function of inverse temperature for P = 5 atm.  

Uncertainty bounds of the auto-ignition measurements and temperatures are the limits of the post-

processing algorithm filtering parameters.  The solid line is provided for visual reference to the pure 

syngas data. 

 

2.3 Pressure dependence  

 As demonstrated in the figures above, the effect of TMS addition on the auto-

ignition delay time is highly pressure dependent, with significantly larger 

magnitude impact at 15 atm.  Fig. 5-6 illustrates the auto-ignition delay time 

measurements for the second step of the ignition process (τi,2) at both 5 and 15 atm 

for the pure syngas and syngas with TMS mixtures.  Regarding the pressure 

dependence of the auto-ignition delay time, there is a clear dependence for the pure 
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syngas mixture illustrated in Fig. 5-6, with increases in ignition delay time of up to 

100% as the pressure is increased from 5 to 15 atm at the same temperature.  This 

behavior is indeed expected as the increase in pressure corresponds to a shift to 

slower HO2 and H2O2 dominated chemical kinetic pathways [11].  While 10 ppm 

TMS addition has minimal impact on this pressure dependence, it is clear that 100 

ppm TMS addition reduces the pressure dependence of the auto-ignition delay time 

to nearly zero.  As this pressure dependence is likely closely related to HO2 and 

H2O2 dominant chemistry, this suggests that the promoting effect of TMS is related 

to interaction with these species.   

 

Fig.5-6. Measured auto-ignition delay time of the second step of ignition (τi,2) as a function of inverse 

temperature for P = 5 and 15 atm for pure syngas and syngas with TMS mixtures.  The solid lines 

are provided for visual reference to the pure syngas data.  Uncertainty bounds of the auto-ignition 

measurements and temperatures are the limits of the post-processing algorithm filtering 

parameters, and are not visible on this scale. 

 

Remarkably, similar significant reduction in both auto-ignition delay times 

and the pressure dependence of the auto-ignition delay time was reported by both 

Petersen et al. [12] and McLain et al. [13] for SiH4 addition to pure H2 mixtures.  

Jachimowski and McLain [14] postulated that this decrease in pressure dependence 

was due to HO2 radical scavenging by SiH4, promoting H2O2 and subsequently OH 

formation, though these claims have not been evaluated experimentally.   
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2.4 Comparison with kinetic model predictions  

As previously mentioned, predictions for auto-ignition delay times of pure 

syngas and syngas with CH4 were made using the Li 2007 mechanism and the 

homogeneous reactor model in CHEMKIN.  For all 15 atm experiments, the kinetic 

model accurately predicted the existence of a two-step ignition process; whereas, for 

5 atm the kinetic model predicted single step ignition in most cases, though two-

step ignition in rapid succession (< 1 ms separation) was predicted for some 

conditions.  This is not in disagreement with the measurements at 5 atm however, 

as the resolution of the experiment, due to the data smoothing process, is 

insufficient to accurately observe two ignition steps in such immediate occurrence.  

Typical pressure time history results (normalized by the initial pressure for clarity 

in the comparison) from simulations with initial conditions P = 5 and 15 atm, T = 

1066 K, using the pure syngas mixture are seen in Fig. 5-7.    These results 

demonstrate the relationship between the initial pressure and the time between 

first and second ignition steps; where for 15 atm the ignition steps are separated by 

~ 4 ms, and for 5 atm, the separation is < 1 ms. 

 

 

Fig.5-7. Typical predicted pressure time histories, normalized by the initial pressure, for P = 5 atm 

and 15 atm, T = 1066 K, and the pure syngas mixture. 
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Fig. 5-8 and 5-9 illustrate the measured and predicted auto-ignition delay 

times for 15 and 5 atm, respectively.  Recall the uncertainty bounds of the 

predictions are the effect of the uncertainty in the rate coefficient of reactions R21, 

R10, R1, and R9.  As seen in Fig. 5-8, predictions for all temperatures, both 

mixtures, and both τi,1 and τi,2, are in excellent agreement with the measurements at 

15 atm.  Likewise, as illustrated in Fig. 5-9, predictions for both mixtures for all 

temperatures at 5 atm are in close agreement with the experimental data except for 

the syngas with CH4 mixture.  Predictions for this mixture at temperatures below ~ 

1040 K are faster than the measurements and outside the uncertainty bounds.  

While this may suggest error in the Li 2007 kinetic mechanism, these data 

correspond to the lowest temperatures and longest auto-ignition delay times, 

therefore it is possible that the slight disagreement is the result of more pronounced 

heat transfer effects not sufficiently captured by the model.  Overall the evidence in 

Figs. 5-7 through 5-9 show the system is well represented by the Li 2007 chemical 

kinetic reaction mechanism and a homogeneous reactor physical model, importantly 

allowing for more detailed chemical kinetic analysis. 

 

 

Fig.5-8. Measured and predicted auto-ignition delay times (τi,1 and τi,2) as a function of inverse 

temperature for P = 15 atm, for pure syngas and syngas with CH4.  Uncertainty bounds of the 

predictions are the effect of the uncertainty in the rate coefficient of reactions R1, R9, R10, and R21.   
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Fig.5-9. Measured and predicted auto-ignition delay time (τi,2) as a function of inverse temperature 

for P = 5 atm, for pure syngas and syngas with CH4.  Uncertainty bounds of the predictions are the 

effect of the uncertainty in the rate coefficient of reactions R1, R9, R10, and R21. 

 

3. DISCUSSION 

3.1 Two-step Ignition Behavior 

The experimental results of the present work clearly illustrate the existence 

of a two-step ignition process for experiments with 15 atm initial pressure, 

embodied by two distinct regions of rapid heat release and corresponding pressure 

rise.  Furthermore, model predictions indicate that near 5 atm, two-step ignition is 

likely occurring though the steps are in such rapid succession that it is not possible 

to observe a separation in time experimentally.  The existence of this two-step 

ignition behavior for syngas fuel mixtures has not been previously reported, 

although similar behavior is evident in the pressure time history results of 

Keromnes et al. [15] and Kalitan et al. [16].  As the auto-ignition delay time is often 

defined as the time where dP/dt is maximized, it is possible that in these and other 

previous studies multi-step ignition behavior was observed but only a single auto-

ignition delay time was reported.  Additionally, given that historical combustion 

experiments were conducted primarily near atmospheric pressures, according to 

Chaos and Dryer [7] and the references therein, it is possible that significant two-

step ignition was not exhibited for a majority of these lower pressure studies. 
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As demonstrated above, the two-step nature of the ignition process was well 

predicted by the Li 2007 kinetic mechanism in the CHEMKIN reactor model.  It 

was therefore possible to use this model in more detail, to probe trends in two-step 

behavior across various conditions as well as its chemical kinetic foundations.  Of 

particular interest was the dependence of this behavior on initial pressure.  

Additionally, given the highly variable nature of syngas mixture composition, 

understanding how this two-step ignition behavior is affected by constituent 

variation, e.g. the ratio of H2:CO, is also important.  In order to evaluate the effects 

of these factors, simulations were conducted for a range of initial thermodynamic 

state and mixture conditions.  Illustrated in Fig. 5-10 are predicted pressure time 

histories for syngas mixtures with P = 5 and 15 atm, T = 1066 K, for air-dilute 

mixtures with φ = 0.1, and variable H2:CO (molar ratio) of 1:3, 1:1, 3:1, 1:0.  Note 

that the pressure values are normalized by the initial unburned value for 

comparative clarity.  Considering these predictions, it is clear that the occurrence of 

two-step ignition behavior is strongly dependent on both the initial pressure and 

the molar ratio of H2 to CO.  Noticeably, significant two-step ignition behavior is not 

apparent at 5 atm for these conditions; however, the addition of CO does impact the 

rate of pressure rise during the ignition event, with increasing amounts of CO 

yielding lower pressure rise rates.  This is in excellent agreement with the 

experimental findings of the present work, and indeed supports the notion that 

previous studies of syngas near atmospheric conditions would likely not yield 

observations of two-step ignition behavior.  In contrast, at 15 atm two-step ignition 

behavior, indicated by two distinct regions of differing rate of pressure rise, is 

clearly apparent for all mixtures except pure H2.  At this higher pressure both the 

relative magnitude of pressure rise from the second step and the time separation 

between first and second steps of the ignition process are increased with CO.  

Remarkably, at 15 atm and the highest CO concentration there is a marked 

increase in the time of energy release during both first and second steps of the 

ignition process as compared to the other conditions evaluated.  For example, at 5 

atm and H2:CO = 1:1, the heat release and corresponding pressure rise from initial 
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to final states occurs over < 1 ms; whereas, for 15 atm and H2:CO = 1:3 the same 

relative pressure rise occurs over more than 10 ms.  In a practical application, two-

step heat release and ignition behavior of this significance could have a marked 

impact on system performance if not appropriately considered. 

 

 

Fig.5-10. Predicted pressure time histories, for P = 5 and 15 atm, T = 1066 K, and syngas at φ = 1.0, 

H2:CO (molar ratio) = 0:1, 1:3, 1:1, 3:1, 1:0, air-dilute with N2.   

 

The clear relationship between two-step ignition behavior and both the initial 

pressure and molar ratio of H2:CO for syngas mixtures implies that these factors 

are important to the chemical kinetic foundations of this behavior.  Regarding these 

foundations, it was desirable to develop an understanding of the root causes of two-

step ignition behavior in syngas fuels.  To accomplish this, the kinetic model was 

once more utilized to predict mole fraction time histories for both major and radical 

species during the ignition process.  This simulation was conducted for the pure 

syngas mixture used in the present experimental work at P = 15 atm, T = 1066 K; a 

condition which exhibits significant two-step ignition.  Illustrated in Fig. 5-11a & b 

are predicted mole fraction time histories at this condition, which reveal the stepped 

behavior in the pressure time history is reflected in the mole fraction time histories 

of both major and radical species.  As evidenced in Fig. 5-11a, during the first step 
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of the ignition process both H2 and CO are consumed, correspondingly forming H2O 

and CO2.  When the H2 supply is essentially exhausted, the rate of pressure rise 

decreases and the rate of CO consumption remains nearly constant.  This reduction 

in pressure rise rate is expected, as the total rate of fuel consumption decreases 

when H2 is no longer significantly available.  The rate of pressure rise continues at 

this reduced magnitude until after some time the remaining CO is rapidly 

consumed and a significantly larger rate of pressure rise occurs.  This second rapid 

rise in pressure forms the second step in the pressure time history.  Shown in Fig. 

5-11b are the major radical species (including HO2 and H2O2) formed during the 

two-step ignition process.  The simulation indicates H2O2 and HO2 radicals 

dominate the first step of the ignition process, as predicted by Chaos et al. [11] and 

mentioned earlier; however, OH and O radicals clearly dominate the second step of 

the ignition process.  

 

Fig.5-11a. Predicted pressure and major species mole fraction time histories for P = 15 atm, T = 

1066 K, and the pure syngas mixture. 
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Fig.5-11b. Predicted pressure and radical species mole fraction time histories for P = 15 atm, T = 

1066 K, and the pure syngas mixture. 

 

As to the chemical kinetic foundation for two-stepped ignition behavior, the 

question is therefore what causes the delay in rapid CO oxidation characteristic of 

the second step of the ignition process?  Rate-of-production analysis for CO at this 

condition, shown in the Supplemental Material, importantly indicates that nearly 

all CO is consumed via the reaction CO + OH = CO2 + H (R23).  This finding, in 

addition to the radical mole fraction time history results in Fig. 5-11b, suggests that 

the delay in rapid CO oxidation is likely related to a corresponding delay in the 

formation of OH.  Rate-of-production analysis was therefore performed for OH, 

which is also shown in the Supplemental Material.  Results of that analysis indicate 

that H2O2 (+M) = OH + OH (+M) (R15) dominates the formation of OH during the 

first step of the ignition process.  Once the H2 supply is nearly exhausted at the end 

of the first step of the ignition, the dominant formation reactions then change to 

primarily H + O2 = OH + O (R1) and O + H2O = OH + OH (R4).  As discussed in 

detail by Chaos et al. [11] and Mansfield and Wooldridge [4], H + O2 = OH + O (R1) 

is in direct competition with H + O2 (+M) = HO2(+M) (R9), and the corresponding 

formation rate of OH is highly dependent on both pressure and temperature.  

Considering the competition of these reactions, as pressure is increased and/or 
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temperature decreased the rate of OH production diminishes significantly.  It is 

therefore likely that the pressure dependence of OH production from reactions R1 

and R13 during the time after the first step of the ignition is the underlying 

foundation for the dependence of two-step ignition behavior on pressure.  In other 

words, when pressure is increased, the rate of OH production after the first step of 

the ignition process is slowed and more time is required to build the OH radical pool 

to a sufficient level for rapid CO oxidation.  This results in a more pronounced two-

step ignition behavior as the first and second steps are separated by more time.  

Competition between reactions R1 and R13 can also explain the dependence of two-

step ignition behavior on the H2:CO molar ratio.  This ratio will affect the 

temperature at the end of the first step of the ignition process, with more H2 

yielding a higher temperature.  The increased temperature will lead to an increased 

rate of OH formation and correspondingly will decrease the time between first and 

second steps of the ignition. 

Overall the results of both the experimental investigation and chemical 

kinetic analysis of the present work illustrate an important yet often overlooked 

characteristic of syngas mixtures - features of multi-stage heat release.  With this in 

mind, the method of reporting a single auto-ignition delay time, as traditionally 

done for syngas mixtures, omits information important to understanding the 

combustion kinetics of these fuels.  The approach of reporting both the first and 

second auto-ignition delay times is an important improvement in capturing multi-

stage behavior.  Other methods for reporting could include more characteristics 

such as magnitude and rates of pressure rise, which may further increase the value 

and accuracy of similar experimental data.  Note that the magnitude of the effects 

of multi-stage heat release are convolved with the volume and heat transfer 

characteristics of the test section of the experimental apparatus.  The amount of 

energy transferred to the test gases during the combustion process is balanced by 

the amount of energy lost to the cool test section walls and/or expended in 

compressing the cool boundary layer gas volume.  Consequently, care should be 

used when comparing data from different facilities.  
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3.2 Inhibiting effect of CH4 

The experimental results of the present work illustrate a pressure dependent 

inhibiting effect of CH4 on the auto-ignition of syngas, which is well predicted by the 

Li 2007 kinetic mechanism and the CHEMKIN reactor model.  The inhibition effect 

and the trend in pressure dependence are both in excellent agreement with the 

findings by Mathieu et al. [10], who suggested that CH4 + OH = CH3 + H2O (R49) 

was the primary reaction through which CH4 inhibits syngas auto-ignition 

(identified using sensitivity analysis). Uniquely, experimental results in the present 

work indicate that while τi,1 and τi,2 are increased by the addition of CH4, the 

magnitude of their difference is consistent with that for pure syngas.  This suggests 

that the CH4 acts primarily on the kinetics during the first step of the ignition at 

the present concentration.  In order to evaluate this hypothesis, the CHEMKIN 

reactor model was once more utilized.  Illustrated in Fig. 5-12 are predicted mole 

fraction time histories for the syngas with CH4 mixture at P = 15 atm, T = 1066 K 

for the major species.  Additionally, the predicted pressure traces for both the pure 

syngas and syngas with CH4 are included for comparison.  As seen in the figure, the 

ignition proceeds in a very similar manner as predicted for pure syngas.  

Interestingly though, CH4 is consumed completely along with H2 during the first 

step of the ignition.  Furthermore, OH rate-of-production analysis for this mixture, 

shown in the Supplemental Material, indicates that CH4 scavenges OH during the 

first step of the ignition process via CH4 + OH = CH3 + H2O (R49) and CH2O + OH = 

CHO + H2O (R38).  After the first step of ignition, however, there is no major 

consumption of OH by CH4 or related intermediates.  The predicted pressure time 

history results also indeed illustrate a lengthening in the time of the first step of the 

ignition process by ~ 2 ms for the mixture with CH4, though the time from the end 

of the first step to the second step remains approximately constant at ~ 3 ms.  

Therefore, the modeling results strongly support the notion that the effect of CH4 

impurity addition at this concentration is to directly increase τi,1 through OH 

scavenging while minimally affecting the kinetics of the second step of the ignition 
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process.  The experimentally observed effect on τi,2  is therefore likely the result of 

delayed heat release from the first step of the ignition process.  Important to note is 

that the preferential inhibition effect of CH4 would not have been detected had only 

a single auto-ignition delay time been reported.  This result highlights the 

importance of using thorough metrics to describe auto-ignition measurements at 

these multi-stage ignition conditions.   

 

Fig.5-12. Predicted pressure and major species mole fraction time histories, for P = 15 atm, T = 1066 

K, and the syngas with CH4 mixture.  The predicted pressure time history for the pure syngas 

mixture is also included, to illustrate the predicted effect of CH4 addition. 

 

Comparison of predicted pressure time history results for each mixture, seen 

in Fig. 5-12, illustrates a decrease in the maximum post-combustion pressure by ~ 

0.15 atm for the mixture with CH4.  This can be explained by a reduction in the 

total heat of reaction (HR) from 2.61 to 2.38 kcal/mol total mixture when changing 

from the pure syngas to the with CH4 mixture.  The specific heat capacity values 

are not significantly different between the two mixtures.   

 

3.3 Promoting effect of TMS 

As previously mentioned, no chemical kinetic mechanism currently exists 

which includes trimethylsilanol and the expected intermediate species.  In order to 
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evaluate the possible chemical kinetic foundations of the observed effects of TMS 

addition, a perturbation study was conducted using the CHEMKIN reactor model 

with a pure syngas fuel mixture.  The perturbations were designed to explore the 

potential effects of the TMS impurity on the high pressure formation pathways of 

OH.  Both Jachimowski and McLain [14] and Petersen et al. [12] suggested that 

SiH4 disrupts the formation and/or enhances the consumption of HO2 thus boosting 

OH production rates at high pressures.  Given the effects of TMS closely resemble 

those of SiH4 addition, it is possible that the kinetic foundations of the ignition 

promoting effect for TMS are related to changes in the same reaction pathways.   

In the current work, two perturbations to the computational model were 

considered, which were conducted at P = 5 and 15 atm, T = 1066 K, for the pure 

syngas mixture.  In the first, HO2 consumption was boosted by increasing the A-

factor of the reaction HO2 + HO2 = H2O2 + O2 (R14) by up to 102 times, and in the 

second perturbation, HO2 formation was inhibited by decreasing the A-factor of H + 

O2 (+ M) = HO2 (+ M) (R9) by up to 10-3 times.  The ranges were chosen to 

encompass limiting behaviors in the predicted trends of the auto-ignition delay 

times.  Results of the model analysis, shown in the Supplemental Material, indicate 

that indeed reductions in both auto-ignition delay time (τi,2) and in the pressure 

dependence of the auto-ignition delay time can be achieved by modifying these 

reactions in the manner described.  However, the magnitude of the decrease in the 

pressure dependence and the precise trends in the auto-ignition delay times 

observed experimentally are not well captured.  This is expected because replicating 

the precise trends would likely require accurate inclusion of TMS and several 

additional Si-based intermediate species in the chemical kinetic mechanism.  While 

the creation of such a mechanism may improve quantitative accuracy of the 

prediction of auto-ignition delay time, mechanism development was beyond the 

scope of the present work.  Regardless, the modeling results presented here are 

important in that they support the notion that the effect of TMS is indeed likely 

related to HO2 kinetic pathways, in good qualitative agreement with previous 

assertions for the similar Si-based impurity, SiH4. 
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4. CONCLUSIONS 

 This work represents a unique investigation on the effects of common yet 

understudied impurities on the combustion of syngas fuel at practical combustor 

conditions, providing not only the first direct observations of these sometimes 

drastic effects, but also highlighting trends in behavior that may extend beyond the 

specific compounds evaluated in the present work.  Studies such as this are vital to 

the safe and effective application of real syngas or other high-hydrogen content 

fuels, especially when used in modern high-pressure low-temperature combustion 

strategies like dry low-NOx. 

The results of the present experimental work uniquely illustrate the 

occurrence of two-step ignition behavior at higher pressures, with two distinct 

regions of heat release and pressure rise.  First and second auto-ignition delay 

times (τi,1 and τi,2) were therefore defined and interestingly the times were affected 

differently by the addition of CH4 and TMS impurities.  Modeling results suggest 

the occurrence and magnitude of two-step ignition behavior can be explained by 

highly pressure and temperature dependent OH kinetics, which can cause a delay 

between H2 and CO oxidation thus creating two distinct steps in the ignition 

process.  Trends identified using this model illustrate that two-step ignition 

behavior becomes more prominent with increasing pressure and decreasing molar 

ratio of H2:CO. 

The addition of CH4 consistently increased both τi,1 and τi,2 up to 40% at 15 

atm, while increasing delay times at 5 atm by a factor of 3 only for T < ~ 1050 K.  

Model analysis suggests this inhibiting effect is due to OH scavenging primarily via 

the CH4 + OH = CH3 + H2O (R49) reaction, which acts to slow the first step of the 

ignition process.  Conversely, the addition of TMS consistently decreased the auto-

ignition delay times, with the magnitude of the effect related to the TMS 

concentration and the initial pressure.  10 ppm TMS impurity addition caused a 

minimal effect on τi,2 at both 5 and 15 atm and a consistent decrease of ~ 10-30% in 

τi,1 at 15 atm.  The effect of 100 ppm TMS impurity addition was much more drastic, 
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with consistent decreases of 50-70% in τi,2 and 45-50% in τi,1 at 15 atm and 20-30% 

reduction in τi,2 at 5 atm.  Furthermore, the pressure dependence of the auto-

ignition delay time, typically causing up to 100% increase as pressure increased 

from 5 to 15 atm, was virtually eliminated for the 100 ppm TMS mixture.  Kinetic 

modeling suggests that these ignition promoting effects are related to enhanced 

consumption and/or reduced production of HO2, though the precise chemical kinetic 

effects cannot be resolved with existing kinetic mechanisms.  The drastic effects of 

TMS have significant safety implications, as pronounced early ignition can lead to 

catastrophic failures.  Furthermore, the upward trend in organic Si content in 

syngas mixtures and the current movement toward higher pressure combustion 

systems means consideration of these effects is of increasing importance. 

The impact of TMS addition observed here is remarkably similar to that for 

SiH4 in pure H2 made in previous investigations.  This suggests a possible trend for 

Si-based species to promote auto-ignition in syngas and hydrogen mixtures.  Such a 

trend may facilitate an extension of the findings in the present results beyond SiH4 

and TMS, to other Si-based species commonly present in syngas fuel.  Important to 

note, however, is that this extension is limited by the lack of understanding as to 

the exact mechanism for ignition promotion.  Because of this, it is not immediately 

apparent if siloxane compounds, for instance, will necessarily have a promoting 

effect due to their Si content alone, or whether their alternative structure will lead 

to other effects. 
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SUPPLEMENTAL MATERIAL 

OH Sensitivity & Rate-of-Production Analysis – Pure syngas mixture, 15 

atm, 1066 K 

 

Fig.5-A. OH sensitivity analysis, using the Li 2007 mechanism [6].  Inset: Close-up view of boxed 

area.  

 

Fig.5-B. OH rate-of-production analysis, using the Li 2007 mechanism [6].  Insignificant reactions 

omitted for clarity. 
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CO Rate-of-Production Analysis – Pure syngas mixture, 15 atm, 1066 K 

 

Fig.5-C. CO rate-of-production analysis, using the Li 2007 mechanism [6].  Insignificant reactions 

omitted for clarity. 

OH Rate-of-Production Analysis – Syngas with CH4 mixture, 15 atm, 1066 K 

 

Fig.5-D. OH rate-of-production analysis, using the Li 2007 mechanism.  Insignificant reactions 

omitted for clarity. 
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TMS Perturbation Modeling 

 

Fig.5-E. Predicted auto-ignition delay times for pure syngas mixture at 5 and 15 atm.  A-factor of 

reaction H + O2 (+M) = HO2 (+M) (R9) multiplied by factor of 1, 1/10 and 1/1000 respectively. 

 

Fig.5-F. Predicted auto-ignition delay times for pure syngas mixture at 5 and 15 atm.  A-factor of 

reaction HO2 + HO2 = H2O2 (R14) multiplied by factor of 1 and 100 respectively. 
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Table 5-A. Summary of experimental conditions and results 

 
Test gas composition a  (% Vol.) 

 Assigned  

Thermo. State b 

 
Auto-ignition delay time e (ms) 

 

H2 CO CH4 O2 N2 Ar 
TMS 

(ppm) 
P (atm) T (K) 

δT 

(+,-) 
τi,1 δτi,1+ δτi,1- τi,2 δτi,1+ δτi,1- 

1.2 2.8 0 20.2 65.9 9.9 0 14.7 1094  3.1 0.1 0 7.0 0 0.1 

1.2 2.8 0 20.2 75.2 0.6 0 14.8 1046  11.0 0.7 0 23.7 0.4 0.1 

1.2 2.8 0 20.2 72.3 3.5 0 15.4 1071  6.9 0.5 0 13.1 0.1 0 

1.2 2.8 0 20.2 65.4 
10.

5 
0 15.0 1109  2.5 0 0.2 6.1 0 0.1 

1.2 2.8 0 20.2 75.2 0.6 0 4.6 1019  x x x 23.0 0.3 0.4 

1.2 2.8 0 20.2 72.3 3.5 0 4.6 1052 0,3 x x x 10.3 0 0.7 

1.2 2.8 0 20.2 68.6 7.2 0 4.8 1069  x x x 5.0 0 0.4 

1.2 2.8 0 20.2 75.1 0.8 0 4.5 1020 0,6 x x x 17.9 0 1 

1.2 2.8 0 20.2 71.7 4.1 0 5.1 1054  x x x 10.2 0 0.5 

1.2 2.8 0 20.2 73.9 1.9 0 4.8 1029  x x x 15.9 0 0.3 

1.2 2.8 0 20.2 73.9 1.9 0 4.9 1042  x x x 12.7 0.5 0.3 

0.9 2.3 0.2 20.3 75.1 1.2 0 14.9 1049  15.3 3.1 0 27.0 0.6 0 

0.9 2.3 0.2 20.3 71.3 5.0 0 14.9 1067  9.7 0.3 0.2 18.3 0.3 0.2 

0.9 2.3 0.2 20.3 67.6 8.7 0 15.5 1098  3.3 1.3 0 9.0 0.2 0 

0.9 2.3 0.2 20.3 64.1 
12.

2 
0 15.3 1114  3.3 0 0.3 5.9 0 0.2 

0.9 2.3 0.2 20.3 75.1 1.2 0 4.7 1031  x x x 33.9 0.2 0.5 

0.9 2.3 0.2 20.3 71.3 5.0 0 4.7 1049  x x x 11.0 2.4 0 

0.9 2.3 0.2 20.3 67.6 8.6 0 4.9 1070 3,4 x x x 4.3 0.1 0.3 

0.9 2.3 0.2 20.3 76.3 0 0 4.8 1025  x x x 62.6 0 11.4 

1.2 2.8 0 20.2 67.4 0.4 10 14.8 1088  3.0 0 0.2 6.7 0.4 0.4 

1.2 2.8 0 20.2 75.3 0 10 15.2 1040  11.5 0.1 0.3 27.8 0 0.1 

1.2 2.8 0 20. 71.5 4.3 10 15.5 1069  4.7 0.5 0 12.0 0 0.4 

1.2 2.8 0 20.2 71.5 4.3 10 15.3 1068  5.0 0 0.1 12.0 0.1 0.4 

1.2 2.8 0 20.2 73.5 2.3 10 15.5 1060  7 0 0.3 17 0 0.3 

1.2 2.8 0 20.2 74.0 1.8 10 14.9 1056  7.0 0.2 0 18.4 0.2 0.1 

1.2 2.8 0 20.2 74.0 1.8 10 14.3 1034  14.3 0.3 0.2 31.1 0.3 0.3 

1.2 2.8 0 65.1 65.1 
10.

7 
10 14.9 1109  1.8 0 0.11 3.8 0.2 0 

1.2 2.8 0 20.2 75.3 0 10 4.9 1021  x x x 21.7 0 4.3 

1.2 2.8 0 20.2 75.6 4.3 10 4.8 1050  x x x 10.1 0.1 0.1 

1.2 2.8 0 20.2 73.6 2.3 10 4.7 1025  x x x 16.4 0 0.8 

1.2 2.8 0 20.2 73.6 2.3 10 5.1 1043 3,0 x x x 11.5 0.5 0 

1.2 2.8 0 20.2 74.0 1.8 10 4.8 1029  x x x 12.7 2.7 0.2 

1.2 2.8 0 20.2 74.0 1.8 10 4.7 1025  x x x 18.2 0 3 

1.2 2.8 0 20.2 67.2 8.6 10 5.1 1075 3,0 x x x 2.5 0 0.2 

1.2 2.8 0 20.2 70.2 5.6 10 5.0 1063  x x x 6.3 0 1 

1.2 2.8 0 20.2 74.8 1 100 14.7 1053  5.7 0.2 0.2 8.3 0.2 0.3 

1.2 2.8 0 20.2 74.8 1 100 14.6 1084  2.3 0.2 0 3 0.35 0.1 

1.2 2.8 0 20.2 70.3 5.5 100 14.9 1074  3.2 0.3 0 4.5 0.3 0.3 

1.2 2.8 0 20.2 71.4 4.4 100 14.9 1067  4.2 0 0.3 5.4 0.3 0.3 

1.2 2.8 0 20.2 75.3 0 100 14.6 1031  9.9 0 0.2 14.8 0.2 0.1 

1.2 2.8 0 20.2 74.8 1 100 4.7 1034  x x x 10.3 0 0.2 

1.2 2.8 0 20.2 75.1 0.7 100 4.8 1034  x x x 10.5 0.3 0.3 

1.2 2.8 0 20.2 73.2 2.6 100 4.8 1045 0,5 x x x 8.1 0 1.3 

1.2 2.8 0 20.2 71.4 4.4 100 4.7 1051 1,3 x x x 7.8 0.1 0.2 

1.2 2.8 0 20.2 71.5 4.4 100 4.8 1056 4,0 x x x 6.3 0 0.3 

1.2 2.8 0 20.2 75.3 0 100 4.8 1015 3,0 x x x 17.0 0.1 0.1 

1.2 2.8 0 20.2 70.3 0 100 5.0 1066 1,5 x x x 4.4 0 0.4 

a Balance CO2.      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ± ~ 2.5 K unless reported otherwise, 

δT+/- = upper and lower uncertainty bound of T assignment 
c τi,1  & τi,2  = measured, δτi +/-=upper and lower uncertainty bound of measurement 

 

\ 
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Table 5-B. Summary of experimental conditions and modeling results 

Test gas composition a  (% Vol.) 
Assigned 

Thermo. State b 

Predicted auto-ignition delay time e 

(ms) 

H2 CO CH4 O2 N2 Ar 
TMS 

(ppm) 
P (atm) T (K) 

δT 

(+,-) 
 τi,1 δτi,1+ δτi,1- τi,2 δτi,1+ δτi,1- 

1.2 2.8 0 20.2 65.9 9.9 0 14.7 1094   3.7 2.3 1.3 5.3 4.3 2.2 

1.2 2.8 0 20.2 75.2 0.6 0 14.8 1046   
12.

1 
5.9 3.8 

18.

1 
11.7 6.5 

1.2 2.8 0 20.2 72.3 3.5 0 15.4 1071   6.5 3.7 2.1 
10.

0 
7.2 3.8 

1.2 2.8 0 20.2 65.4 
10.

5 
0 15.0 1109   2.6 1.5 1.1 3.7 3.2 1.6 

1.2 2.8 0 20.2 75.2 0.6 0 4.6 1019   x x x 
16.

8 
17.9 9.4 

1.2 2.8 0 20.2 72.3 3.5 0 4.6 1052 0,3  x x x 4.0 8.5 3.0 

1.2 2.8 0 20.2 68.6 7.2 0 4.8 1069   x x x 1.8 5.6 1.3 

1.2 2.8 0 20.2 75.1 0.8 0 4.5 1020 0,6  x x x 
15.

9 
17.5 9.1 

1.2 2.8 0 20.2 71.7 4.1 0 5.1 1054   x x x 4.8 8.3 3.3 

1.2 2.8 0 20.2 73.9 1.9 0 4.8 1029   x x x 
12.

4 
14.1 7.3 

1.2 2.8 0 20.2 73.9 1.9 0 4.9 1042   x x x 7.4 11.0 4.7 

0.9 2.3 0.2 20.3 75.1 1.2 0 14.9 1049   
13.

3 
7.1 4.1 

19.

3 
12.0 6.9 

0.9 2.3 0.2 20.3 71.3 5.0 0 14.9 1067   8.6 4.7 0 
12.

3 
8.3 4.5 

0.9 2.3 0.2 20.3 67.6 8.7 0 15.5 1098   4.2 2.5 1.6 5.9 4.5 2.3 

0.9 2.3 0.2 20.3 64.1 
12.

2 
0 15.3 1114   2.8 1.9 1.1 4.0 3.2 1.6 

0.9 2.3 0.2 20.3 75.1 1.2 0 4.7 1031   x x x 
14.

3 
15.2 7.2 

0.9 2.3 0.2 20.3 71.3 5.0 0 4.7 1049   x x x 7.7 9.8 4.4 

0.9 2.3 0.2 20.3 67.6 8.6 0 4.9 1070 3,4  x x x 3.8 5.9 2.3 

0.9 2.3 0.2 20.3 76.3 0 0 4.8 1025   x x x 
17.

9 
17.9 8.7 

a Balance CO2.      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ± ~ 2.5 K unless reported otherwise, 

δT+/- = upper and lower uncertainty bound of T assignment 
c τi,1  & τi,2  = measured, δτi +/-=upper and lower uncertainty bound of prediction 
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Table 5-C. Reaction rate parameter with uncertainty 

 

Units are cm3, s, cal, K; 𝑘 = 𝐴𝑇𝑛 exp (−
𝐸𝑎

𝑅𝑇
) 

 
a Nominal parameters from J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, and J.J. Scire, Int. J. 

Chem. Kinet. 39 (2007) 109-136. 
b  A-factor uncertainty from J.P. Hessler, J. Phys. Chem. A 102 (1998) 4517- 4526. 
c  A-factor uncertainty from C.J. Cobos, H. Hippler, J. Troe, J. Phys. Chem. 89 (1985) 342-349. 
d A-factor uncertainty approximated as ±10%, from J.V. Michael, M.C. Su, J.W. Sutherland, J.J. 

Carroll, A.F. Wagner, J. Phys. Chem. A 106 (2002) 5297-5313. 
e A-factor uncertainty approximated from W. Tsang, R.F. Hanson, J. Phys. Chem. Ref. 15 (1986) 1141 

 

# Reaction a Amin A0 Amax n Ea 

1 H + O2 = OH + O b 2.789(10)15 3.5458(10)15 4.508(10)15 -0.4 16.6(10)3 

9 
H + O2 (+M) = HO2 (+M), k∞ 

c 
1.11(10)12 1.48(10)12 1.85(10)12 0.6 0.0 

9 
H + O2 (+M) = HO2 (+M), ko 

d 
6.31(10)20 6.37(10)20 7.00(10)20 -1.72 5.25(10)2 

10 HO2 + H = H2 + O2 e 5.53(10)12 1.66(10)13 4.98(10)13 0 8.23(10)2 

21 CO + O2 = CO2 + O e 8.43(10)11 2.53(10)12 7.59(10)12 0 4.77(10)4 
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Chapter 6 

Experimental study of OH time histories during syngas auto-ignition 

 

Given the high value of OH mole fraction (χOH) measurements during syngas 

combustion at conditions and mixtures relevant to industry, the objective of this 

project was to provide transient χOH data corresponding to the auto-ignition process 

for syngas fuel and further to use this data to validate two commonly used chemical 

kinetic mechanisms for syngas oxidation.  This was accomplished through an 

experimental investigation of auto-ignition delay times and maximum χOH values at 

engine relevant conditions, using a new ultra violet laser spectroscopy system in the 

UM-RCF.  Considering known uncertainties in the two kinetic mechanisms of 

interest, experimental measurements and computational predictions of χOH and 

auto-ignition delay times were compared.  In addition to these objectives, this 

project represents an important validation of the OH absorption system for future 

investigations. 

 

1. METHODS 

1.1 Experimental Methods 

Auto-ignition experiments were conducted in the UM-RCF for realistic 

syngas mixtures with fuel to oxygen equivalence ratio of φ = 0.1 and were air-dilute 

with N2, i.e. molar O2 to inert gas ratio of 1:3.76.  In some cases, small amounts of 

the N2 diluent gas were replaced by Ar to modify the test temperature.  The fuel 

mixture used was syngas with 30% H2 and 70% CO by fuel volume, designed to 

represent lean syngas mixtures used in the power industry [1,2].  This is the 

identical mixture formulation as the “pure syngas” used in the project discussed in 

Chapter 5.  Ignition experiments were conducted at 5 atm for the broadest range of 
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temperatures allowable in the UM-RCF for these mixtures (~ 1000-1100 K, based 

on experimental test times and associated uncertainties).  A complete tabulation of 

all mixture and thermodynamic conditions for each experiment is given in the 

Supplemental Material. 

The laser system consisted of an intra-cavity frequency-doubled ring dye 

laser (Coherent 899-05) using Rhodamine 6G dye and a potassium deuterated 

phosphorus (KDP) doubling crystal.  The ring dye laser was pumped with a 

Coherent Verdi G7 solid state laser (~7 W @ 532nm).  Fig. 6-1 presents a complete 

schematic of the system, with a detailed description of each component included in 

the Supplemental Material.  This laser system was used to generate a beam with 

specific wavelength corresponding to the R1(5) line of the A2Σ+  X2Πi (0,0) band of 

the OH spectrum (ν0 = 32606.556 cm-1 
 or ~ 306.687nm).  As illustrated in Fig. 6-1, 

once generated this beam was split into a reference and probe beam, using various 

optics and fiber optic components.  The probe beam was passed through the UM-

RCF Test Section then both reference and probe beams were targeted on a pair of 

well-matched large area photodetectors (contained in one assembly) for continuous 

monitoring of the power. In order to ensure the system was tuned to the proper 

resonant wavelength, upon initialization the probe beam was passed through a 

stable flame using a Bunsen burner and the wavelength was modulated near ν0 = 

32606.556 cm-1 until maximum power absorption was achieved.  The laser 

frequency was then set at the value corresponding to maximum absorption.  Any 

pressure shift of the resonant frequency from the atmospheric pressure flame to the 

pressure in the test section of the RCF is considered a negligible impact on the OH 

measurement uncertainty.  The window ports though which the probe beam passes 

are heated for ~ 20 min prior to each experiment using integrated resistance 

heaters, in order to avoid water condensation on the windows during the 

experiment.   
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Fig. 6-1. Schematic of the OH laser absorption system.  All components are described in detail in the 

Supplemental Material.  BS = beam splitter, C = collimator, F = fiber optic cable, OF = optical filter, 

DAQ = data acquisition system. 

 

Using this system, it was possible to measure the fractional absorption of the 

test beam in the Test Section during auto-ignition and then calculate the 

corresponding concentration of OH molecules.  Assuming a basic Beer-Lambert 

relation for a non-saturating linearly absorbing medium with homogeneous 

conditions along the path length, the fractional absorption of the test beam power 

can be related to a wavelength dependent absorption coefficient, kν, via: 

 

− ln (
𝐼

𝐼0
) = 𝑘𝜈𝐿               (6-1) 

 

Where, I0 is the probe beam intensity before passing through the Test Section, I is 

the probe beam intensity after passing through the Test Section, and L is the path 

length of the beam through the absorbing medium. As explained in detail in He et 

al. [3] and Donovan et al. [4], kν can be expanded and the  relationship in 6-1 can be 

rewritten as: 

 

−𝑙𝑛 (
𝐼

𝐼0
)

𝜈
 = 𝑆 𝜑(𝜈 − 𝜈0) 𝑃 𝜒𝑂𝐻 𝐿             (6-2) 
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Where, S is the transition strength of the R1(5) line, φ(ν-ν0) is the line shape 

function, P is the bulk pressure, and χOH is the mole fraction of OH.  It is therefore 

possible to directly relate the mole fraction of OH to the time (t) dependent 

fractional absorption of the probe beam intensity, via: 

 

𝜒𝑂𝐻(𝑡) =
−1

𝑆 𝜑(𝜈−𝜈0) 𝑃 𝐿
𝑙𝑛 (

𝐼

𝐼0
)

𝜈
(𝑡)                   (6-3) 

 

The line strength, S, is a function of temperature and the calculation of S as well as 

the various spectroscopic parameters used are described in detail in Donovan et al. 

[4] and found in the Matlab code in Appendix A of the present work.  The line 

shape, φ(ν-ν0), is a function of temperature, pressure, and mixture composition.  

Both Doppler and collisional broadening were considered in the present work and 

the effects of these factors were convolved using a Voight profile.  A detailed 

description of the method for calculating the line shape along with the broadening 

parameters used can be found in Donovan et al. [4] and Rea et al. [5] as well as in 

the Matlab code in Appendix A.  

As noted previously by He et al. [3], it is vital to consider the uncertainty 

associated with the calculation of χOH using Eq. 6-3, which is primarily the result of 

uncertainty in: absorption path length, thermodynamic state, actual beam 

wavelength, mixture composition during combustion, and measured fractional 

absorption value.  The path length L is approximated as 3.5 cm, as done by 

Donovan et al. [4] for similar UM-RCF experiments to compensate for the cool 

boundary layer region in the Test Section.  The uncertainty of L is ± 0.5 cm, a 

conservative estimate based on in situ measurements of the boundary layer position 

within the Test Section by Donovan et al. [6] using a thermocouple.  Uncertainty in 

the thermodynamic state is discussed in Chapter 2 and is ~ 1% for both P and T.  

Uncertainty in the beam wavelength is approximated as ± 0.05 cm-1 based on the 

precision of the wavemeter used in the laser apparatus.  Uncertainty in the 
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assignment of the value of fractional absorption measurement is associated with the 

selection of specific smoothing algorithm parameters used in the data conditioning.  

The parameters of the smoothing algorithm were therefore varied by ± 50% and 

bounding values of χOH were calculated, in order to capture the uncertainty 

associated with this operation.  The specific application of this algorithm is 

discussed in detail in a later section.   

The mixture composition is used in the calculation of the collisional 

broadening effects mentioned above.  Given that the gas mixture in the Test Section 

gradually changes composition between the unburned and burned states, each 

composition (burned and unburned) was used to calculate two values of χOH 

respectively, thus bounding the uncertainty associated with the exact mixture 

composition.  The unburned mixture was assumed to include only O2, N2, and Ar (if 

included), given the small quantity of H2 and CO.  The burned mixture was 

assumed to include O2, N2, H2O, CO2, and Ar (if included).  For both mixtures O2 

was assumed to have the same OH broadening parameters as N2 due to limited OH 

broadening parameter data.  For the burned mixture, CO2 was assumed to have the 

same OH broadening parameters as H2O due to lack of broadening parameters for 

CO2 and the similar tri-atomic nature of the species.  All broadening parameters 

used are from Rea et al [5] and Donovan et al. [4], and are shown in the Matlab code 

in Appendix A.   

 

1.2 Computational Methods 

Auto-ignition ignition delay time and OH mole fraction time history 

predictions were made using the constant volume adiabatic zero-dimensional 

homogeneous reactor model in the CHEMKIN software suite, described in Chapter 

2, with both the Li et al. [7] (Li 2007) and the Keromnes et al. [8] (NUIG 2013) 

chemical kinetic mechanisms.  The Li 2007 mechanism was selected given its 

previous success in predicting syngas ignition behavior [7,9], [10] and the NUIG 

2013 mechanism was selected as it is the most recently made for syngas fuel and 

was comprehensively evaluated with recent experimental data [8].  Using the 
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CHEMKIN model, two corresponding auto-ignition delay time predictions were 

calculated for each ignition experiment in this study using the initial 

thermodynamic condition and mixture composition of the experiments.  One auto-

ignition delay time was defined as the time from the start of the calculation to the 

time when dT(t)/dt was maximized, the other was defined as the time from the start 

of the calculation to the time when the OH mole fraction (χOH) reached a maximum.  

Furthermore, the maximum value of χOH during ignition was recorded for 

comparison with the experimental measurements.  For each delay time and OH 

prediction, quantified uncertainty bounds were calculated using the known 

uncertainty in the “A-factor” of the Arrhenius reaction rates for the most sensitive 

reactions, identified using OH sensitivity analysis for each kinetic mechanism.  For 

the Li 2007 mechanism: CO + O2 = CO2 + O (R21), HO2 + H = H2 + O2 (R10), H + O2 

= H + OH (R1) and H + O2 (+M) = HO2 (+M) (R9) were used, and for the NUIG 2013 

mechanism: H + O2 = OH + O (R1) and H + O2(+M) = HO2(+M)  (R9/10) were used.  

The results of the OH sensitivity analysis and the rate coefficients used for the 

NUIG 2013 mechanism are listed in Supplemental Material.  Sensitivity analysis 

and rate coefficients for the Li 2007 mechanism are given in Chapter 5. 

 

2. RESULTS 

For each experiment in the UM-RCF, a pressure time history, high-speed 

imaging video, and two laser signals (probe and reference) were recorded.  This 

facilitated the determination of two auto-ignition delay times (one at maximum 

dP/dt, one at maximum χOH ) and the peak value of χOH during the auto-ignition 

event, as well as a direct observation of the auto-ignition behavior.  A typical 

pressure time history during an experiment is presented in Fig. 6-2a.  The pressure 

time history follows a profile similar to the observations in the UM-RCF of the other 

syngas studies of this body of work with a distinct and rapid rise in pressure during 

the ignition event. As was done in Chapter 5, the pressure data between Pmin and 

Pmax was filtered with a 100-point smoothing algorithm to reduce signal noise, and 

the numerical derivative of the pressure time history (dP(t)/dt) was calculated using 
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a center differencing scheme.  Probe input and output laser signals are seen in Fig. 

6-2a clearly indicating the existence of an absorption feature, i.e. some fraction of 

probe signal input intensity (I0) is absorbed by the gas in the Test Section.  Note the 

probe input signal is derived from the reference beam signal using a known beam 

splitting ratio.   

For each experiment an auto-ignition delay time was determined (τign,dP/dt), 

defined as the time from EOC to the peak in the dP/dt time history, as done in 

Chapter 5.  Also similar to the work detailed in Chapter 5, uncertainty bounds for 

this value as well as the other assigned values (tEOC, P,T) were calculated by 

varying the smoothing algorithm parameters by ± 50%.  For each experiment the 

fractional absorption (I/I0) time history was calculated by dividing the probe output 

laser signal by the probe input then smoothing the result using a 50-point 

smoothing algorithm to reduce noise.  A typical result can be seen in Fig. 6-2b, 

which corresponds to the measured laser signals in Fig. 6-2a.  A clear minimum in 

the value of fractional absorption is apparent, corresponding directly to the 

maximum mole fraction of OH, and an alternate auto-ignition delay time (τign, OH) 

was defined as the time from EOC to this minimum.  The fractional absorption time 

history determined for each experiment was then used directly in Eq. 6-3 to 

calculate the OH mole fraction time history and thereby the maximum value of χOH.  

As previously discussed, there is uncertainty associated with the selection of the 

smoothing algorithm parameters for the fractional absorption and those were 

therefore varied by ± 50% to calculate bounding values of χOH.  Importantly, an 

“offline” auto-ignition experiment was conducted, where the laser was tuned to a 

wavelength off the resonant peak at the R1(5) transition and otherwise conducted in 

the same manner as normal experiments.  No significant absorption or emission 

was detected in the offline experiment, indicating the fractional absorption 

measurements made at the conditions in the present work are directly 

representative of interactions of the probe beam with OH molecules in the Test 

Section gas only.   
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Fig. 6-2c presents a typical OH mole fraction time history result 

corresponding to the data presented in Fig. 6-2a & b, with uncertainty bounds 

indicated as dashed lines.  The data illustrate minimal OH present prior to the 

ignition event (~0 – 2.5 ms), followed by a rapid rise in χOH to a maximum during 

the ignition event (~2.5 – 4.8 ms), and then a more gradual decline subsequent to 

the ignition event (~4.8 – 10 ms).  During this decline, the rate of decrease lowers 

near ~ 6 ms forming a slight knee.  Overall the measurements have excellent 

signal-to-noise ratio, and exhibit reasonable behaviors and quantities.  Also 

included in Fig. 6-2c is a specific prediction of the χOH time history, calculated using 

the NUIG 2013 mechanism.  As evidenced, this prediction has excellent qualitative 

and quantitative agreement with the measurement.  The occurrence of a rapid rise, 

peak, and gradual decrease in OH mole fraction is well represented.  Further, the 

maximum predicted value of OH mole fraction is in agreement with the 

measurement within the uncertainty bounds.  The predicted and measured rates of 

increase and decrease in χOH before and after the maximum are in excellent 

agreement, respectively.  However, the predicted rate of decrease after the knee at ~ 

6ms is less than the measurement.  This difference is likely the result of gas 

dynamic interactions that occur after ignition in the experiment.  Such effects can 

lead to changes in the absorption path length and/or thermodynamic conditions 

affecting the accurate translation of fractional absorption to OH mole fraction.  Note 

the A-factor values of the key reaction rates identified above were specifically 

modified within the accepted uncertainty bounds to optimize the predicted value for 

τign,OH to the measurement in Fig. 6-2c. 
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Fig.6-2a. Typical pressure time history, P(t), and laser signal intensity before and after passing 

through the Test Section (I0 and I, respectively) showing the OH absorption feature during ignition, 

for experimental conditions P = 5.1 atm, T = 1,075 K. 

 

 

Fig.6-2b. Typical pressure time history, P(t), and fractional absorption (I/I0) for experimental 

conditions P = 5.1 atm, T = 1,075 K; where, τign,OH is the auto-ignition delay time corresponding to 

peak fractional absorption and therefore peak χOH. 
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Fig.6-2c. Typical pressure time history, P(t), along with measured and predicted OH mole fraction 

time history, χOH(t) for experimental conditions P = 5.1 atm, T = 1,075 K.  Nominal measurement is 

bold with uncertainty bounds, defined in the text, shown as dashed lines.  Uncertainty in the 

prediction is omitted for clarity.   

 

For each auto-ignition experiment a thermodynamic state was assigned 

representing the unburned isothermal isobaric condition at which the experiment 

was conducted, described in Chapter 2.  A tabulated list of all experimental results, 

including calculated uncertainty bounds for the auto-ignition delay time 

measurements and assigned temperatures, is provided in the Supplemental 

Material.  High-speed imaging results of chemilluminescence during syngas auto-

ignition are in close agreement with the results seen in Chapter 5 and those 

indicate spatial uniformity of the chemilluminescence emission.  This was an 

important validation for each experiment that the ignition behavior was 

homogeneous, a requirement when applying Eq. 6-3 to the system.  As the imaging 

was nearly identical to that shown in Chapter 5, imaging results are not presented 

here. 

 

2.1 Measured and predicted auto-ignition delay times 

Figures 6-3 & 6-4 illustrate the measured and predicted auto-ignition delay 

time results for the τign,P and τign,OH as a function of inverse temperature 
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respectively.  Overall the results for both times illustrate good repeatability and a 

consistent trend throughout the temperature range evaluated.  For each 

experiment, nominal values of τign,OH and τign,P are generally very consistent, 

indicating OH production tracks with the increase in radical pool growth associated 

with the pressure rise at ignition, although values for τign,OH  are typically greater 

by ~ 15%.  There is excellent agreement between the experimental measurements 

and predictions using both the Li 2007 and the NUIG 2013 mechanisms across all 

initial conditions.  This agreement is not only an indication of the accuracy of the Li 

2007 and NUIG 2013 chemical mechanisms in predicting auto-ignition delay times 

at these conditions, but also importantly suggests that the newly consturcted laser 

spectroscopy system is yielding reasonable results.  There is no significant 

difference in predictions of either form of the auto-ignition delay time between each 

mechanism; though it appears that nominal predictions at the highest temperatures 

are consistently closer to measurements for the NUIG 2013 mechanism. 

 

 

Fig.6-3. Measured and predicted auto-ignition delay times corresponding to peak dP/dt (τign,P) as a 

function of inverse temperature; where uncertainty bounds of the predictions are the result of known 

uncertainties in the A-factors of key reactions (see text).  Uncertainty in the measurements and 

assigned temperature values, due to parameters used in the post-processing, is less than the symbol 

size on this scale. 
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Fig.6-4. Measured and predicted auto-ignition delay times corresponding to peak χOH (τign,OH) as a 

function of inverse temperature; where uncertainty bounds of the predictions are the result of known 

uncertainties in the A-factors of key reactions (see text).  Uncertainty in the measurements and 

assigned temperature values, due to parameters used in the post-processing, is less than the symbol 

size on this scale. 

 

2.2 Peak OH mole fraction 

 Fig. 6-5 illustrates the measured and predicted values for peak χOH as a 

function of inverse temperature.  As evidenced the measurement results range 

between ~ 100 and 225 ppm.  There is excellent agreement between measurements 

and predictions for T < ~ 1050 K using both the Li 2007 and NUIG 2013 

mechanisms, with nearly identical nominal values and largely overlapping 

uncertainty bounds; whereas, for T > ~ 1050 K the nominal measurement values 

are significantly less than predictions with partial agreement within the 

uncertainty bounds for predictions using the NUIG 2013 mechanism only.  

Predictions for the Li 2007 mechanism are above the upper uncertainty bounds of 

the measurements at these higher temperatures.  Overall these results are an 

excellent indication that the present laser spectroscopy system yields reasonable 

results and that the NUIG 2013 mechanism applied to a homogeneous reactor 

physical model can accurately predict peak values of χOH during the auto-ignition 

process at the conditions studied here.  Consideration of uncertainty in the kinetic 

mechanism and the calculation of χOH was critical to this evaluation.  The reduced 
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agreement between measurements and predictions at higher temperatures is likely 

related to the fast nature of the auto-ignition experiments at those conditions (τign < 

~ 4 ms) which may increase the relative effects of mixing and/or reaction during the 

nosecone seating process on the interpretation of the data.  More experimentation 

at the higher T conditions would help to evaluate these potential effects in more 

detail. 

 

Fig.6-5. Measured and predicted maximum values of χOH as a function of inverse temperature; 

where uncertainties in the measurements are the result of various parameters (see text), and 

uncertainty of the predictions are the result of known uncertainties in the A-factors of key reactions 

(see text).  Uncertainty in the assigned temperature values is less than the symbol size. 

 

3. CONCLUSIONS 

 This work represents a unique and important investigation of the OH mole 

fraction throughout the auto-ignition process of syngas fuel at practical combustor 

conditions, providing the first data of its kind for this fuel at any conditions.  

Studies such as this are vital to the effective development and application of syngas 

and other high-hydrogen content fuels, considering that the accuracy of chemical 

kinetic mechanisms directly corresponds to the accuracy of any reacting system 

models to which it is applied.  Furthermore, the results of this work are an 

important validation of the new laser absorption system applied to the UM-RCF. 
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The results of the present work illustrate excellent agreement between the 

characteristics of measured and predicted χOH time histories, from both qualitative 

and quantitative perspectives.  Auto-ignition delay time measurements and 

predictions from two syngas chemical kinetic mechanisms (Li 2007 and NUIG 2013) 

were in excellent agreement, for auto-ignition delay times determined using both 

maximum dP/dt and peak OH mole fraction.  Furthermore, measurements of 

maximum values of χOH were compared to predictions from these mechanisms, 

indicating excellent agreement for the NUIG 2013 mechanism at T < 1050 K and 

good agreement at higher T.  This is an important validation of this mechanism, as 

no changes to reaction rates were not required to achieve this agreement.  On the 

other hand, the Li 2007 mechanism accurately predicted χOH for T < 1050K but 

over-predicted concentrations at higher T, indicating that modification of the 

reaction rates could be necessary to improve the accuracy of this mechanism.  In 

future studies, additional features of the χOH time histories could be interrogated, to 

more directly probe and refine the reaction rates involved in the auto-ignition 

process. 

Overall, the results are an important illustration that the laser absorption 

system and post-processing techniques applied here indeed yield accurate 

quantifications of χOH in real time.  This validation allows for the expansion of the 

spectroscopy techniques used here to other fuels and conditions in the UM-RCF.  
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SUPPLEMENTARY MATERIAL 

 

 

Fig. 6-A. OH sensitivity analysis, using the NUIG 13 mechanism, P = 5 atm, T = 1066 K [8]. 

 

Table 6-A. Summary of experimental conditions and auto-ignition delay time results 

Mixture (% by vol) a 

Assigned 

Thermo. 

State b 

Measured (ms) c 
Predicted Li 2007 

(ms) c 

Predicted NUIG 2013 

(ms) c 

H2 CO O2 N2 
P 

(atm) 

T 

(K) 

τign,P ± 

Δ 

τign,OH ± 

Δ 
τign,P ± Δ 

τign,OH ± 

Δ 
τign,P ± Δ 

τign,OH ± 

Δ 

1.2 2.8 20.2 67.9 5.3 1079 
4.0 

(-0.2) 

4.7 

(+0.1,-0.2) 

1.5 

(+4.6,-1.1) 

2.0 

(+4.3,-1.2) 

2.5 

(+3.9,-2.1) 

3.1 

(+3.6,-2.2) 

1.2 2.8 20.2 75.8 5.0 1033 
18.9 

(-0.2) 

21.2 

(-0.5) 

11.4 

(+13.1,-

6.8) 

11.7 

(+13.2,-

6.3) 

16.5 

(+10.0,-

10.4) 

16.9 

(+10.2,-

9.9) 

1.2 2.8 20.2 75.8 4.3 998 

24.2 

(+0.2,-

0.2) 

23.5 

(+0.2) 

33.2 

(+29.8,-

16.1) 

33.7 

(+29.9,-

15.4) 

44.6 

(+21.1,-

21.6) 

44.9 

(+21.6,-

21.6) 

1.2 2.8 20.2 67.9 4.9 1068 
3.5 

(-0.2) 
n/a d 

2.1 

(+5.8,-1.6) 
n/a 

3.4 

(+4.8,2.8) 
n/a 

1.2 2.8 20.2 67.9 4.7 1052 
4.3 

(-0.1) 

4.9 

(+0.1) 

4.2 

(+8.4,-3.1) 

4.9 

(+7.9,-3.1) 

6.2 

(+6.4,-5.1) 

7.2 

(+5.6,-5.4) 

1.2 2.8 20.2 67.9 5.1 1075 
3.9 

(-0.4) 

4.7 

(-0.3) 

1.7 

(+4.9,-1.3) 

2.2 

(+4.7,-1.3) 

2.8 

(+4.0,-2.4) 

3.5 

(+3.7,-2.6) 

a Balance Ar      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ± ~ 2.5 K 
c Nominal value (+ uncertainty, - uncertainty). If no value listed, uncertainty is negligible. 
d Off-line experiment, no spectroscopy measurements made 
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Table 6-B. Summary of experimental conditions and OH mole fraction results 

Mixture (% by vol) a 

Assigned 

Thermo. State 
b 

max(χOH) ± Δ (ppm) 

H2 CO O2 N2 
P 

(atm) 

T 

(K) 
Measured c 

Pred. Li 

2007c 

Pred. NUIG 

2013 c 

1.2 2.8 20.2 67.9 5.3 1079 
143 

(+51,-25) 

266 

(+12,-34) 

234 

(+62,-45) 

1.2 2.8 20.2 75.8 5.0 1033 
145 

(+59,-26) 

174 

(+40,-28) 

148 

(+52,-34) 

1.2 2.8 20.2 75.8 4.3 998 
114 

(+44,-21) 

147 

(+11,-26) 

124 

(+46,-30) 

1.2 2.8 20.2 67.9 4.9 1068 n/a d n/a d n/a d 

1.2 2.8 20.2 67.9 4.7 1052 
227 

(+83,-38) 

239 

(+12,-33) 

212 

(+59,-43) 

1.2 2.8 20.2 67.9 5.1 1075 
190 

(+71,-31) 

268 

(+12,35) 

238 

(+65,-45) 

a Balance Ar      
b Pressure uncertainty ~ 0.1 atm and temperature uncertainty ± ~ 2.5 K 
c Nominal value (+ uncertainty, - uncertainty). 
d Off-line experiment, no spectroscopy measurements made 

 

 

Table 6-C. Reaction rate parameter with uncertainty – Li 2007 mechanism 

 

# Reaction a Amin A0 Amax n Ea 

1 H + O2 = OH + O b 2.789(10)15 3.5458(10)15 4.508(10)15 -0.4 16.6(10)3 

9 
H + O2 (+M) = HO2 (+M), k∞ 

c 
1.11(10)12 1.48(10)12 1.85(10)12 0.6 0.0 

9 
H + O2 (+M) = HO2 (+M), ko 

d 
6.31(10)20 6.37(10)20 7.00(10)20 -1.72 5.25(10)2 

10 HO2 + H = H2 + O2 e 5.53(10)12 1.66(10)13 4.98(10)13 0 8.23(10)2 

21 CO + O2 = CO2 + O e 8.43(10)11 2.53(10)12 7.59(10)12 0 4.77(10)4 

Units are cm3, s, cal, K; 𝑘 = 𝐴𝑇𝑛 exp (−
𝐸𝑎

𝑅𝑇
) 

 
a Nominal parameters from J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, and J.J. Scire, Int. J. 

Chem. Kinet. 39 (2007) 109-136. 
b  A-factor uncertainty from J.P. Hessler, J. Phys. Chem. A 102 (1998) 4517- 4526. 
c  A-factor uncertainty from C.J. Cobos, H. Hippler, J. Troe, J. Phys. Chem. 89 (1985) 342-349. 
d A-factor uncertainty approximated as ±10%, from J.V. Michael, M.C. Su, J.W. Sutherland, J.J. 

Carroll, A.F. Wagner, J. Phys. Chem. A 106 (2002) 5297-5313. 
e A-factor uncertainty approximated from W. Tsang, R.F. Hanson, J. Phys. Chem. Ref. 15 (1986) 1141 
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Table 6-D. Reaction rate parameter with uncertainty – NUIG 2013 mechanism 

 

# Reaction a Amin A0 Amax n Ea 

1 H + O2 = OH + O b 1.01 (10)14 1.04(10)14 1.07(10)14 0 1.529(10)4 

9 H + O2(+M) = HO2(+M),k∞ c 3.49 (10)12 4.65(10)12 5.81(10)12 0.44 0.0 

9 H + O2(+M) = HO2(+M),ko c 1.30(10)19 1.74(10)19 2.17(10)19 -1.23 0.0 

9 H + O2(+Ar) = HO2(+Ar),ko c 5.11(10)18 6.81(10)1  8.51(10)18 -1.23 0.0 

Units are cm3, s, cal, K; 𝑘 = 𝐴𝑇𝑛 exp (−
𝐸𝑎

𝑅𝑇
) 

 
a Nominal parameters from A. Kéromnès, W.K. Wetcalfe, K.A. Heufer, N. Donohoe, A.K. Das, C.J. 

Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M.C. Krejci, E.L. Petersen, W.J. Pitz, H.J. 

Curran, Comb. Flame 160 (2013) 995-1011. 
b A-factor uncertainty from Z. Hong, D.F. Davidson, E.A. Barbour, R.K. Hanson, Proc. Comb. Inst. 33 

(2011) 309-316. 
c  A-factor uncertainty from R.X. Fernandes, K. Luther, J. Troe, V.G. Ushakov, Phys. Chem. Chem. 

Phys. 10 (2008) 4313-4321. 

 

 

Table 6-E. Laser spectroscopy system components 

 

Name in Fig. 6-1 / 

Component 
Make, Model, Description 

Pump Laser Verdi G7, High-Power Optically Pumped Semiconductor Laser 

Ring Laser Coherent 899-05 Ring Dye Laser 

Powermeter Coherent, Lasermate-Q, 33-0324 

Wavemeter Advantest, Wavelength meter, TQ8325 

Photodetector 
Thorlabs, PDB220A2, Large Area Balanced Amplified 

Photodetector 

BS1/Beam splitter 
Esco, V610250, Precision wedge window, S1-UV Grade Fused 

Silica 

BS2/Beam splitter 
Thorlabs, BSW20, 50:50 beamsplitter, UV Fused Silica, 250-

450nm 

C1/Collimator 
Multimode Fiber Optics, Inc., LC-4U, 4mm aperature, UV-Vis 

silica lens broadband UV coating, SMA 

OF/Optical Filter Thorlabs, FSR-UG11, UV Bandpass color glass filter 

C3/Adjustable Length 

Collimator Refocusing Assy 

Custom Assembly.  Multimode Fiber Optics, Inc. LC-4U collimator 

(FC) + Thorlabs, LA4936-UV, ½”Diameter UV Fused Silica Plano-

Convex Lens, AR coated + ½” Diameter Al housing 

F-Fiber Optic Cable 
Multimode Fiber Optics, Inc., PCU600-10-SF, 10m length, UV-Vis 

600um silica core, 0.22na, SMA to FC, PVC monocoil sheath 

Mirrors 
(Not shown in Fig. 6-1) Newport Optics, 10D20AL.2, Broadband 

metallic mirror, AL.2 coated, UV enhanced 

Heated Mirror Ports 
Custom Assembly. ESCO ZGC105197 sapphire window + Al port + 

Kapton flexible heater, Omega, KHLV-0504/10 
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Chapter 7 

Summary, Conclusions, and Future work 

 

1. Summary 

The development and implementation of syngas fuel is of great interest, as it 

can enable a gradual transition from fossil to renewable fuel sources while 

simultaneously reducing the emissions associated with both.  While it is a 

seemingly simple mixture composed primarily of H2 and CO, there are fundamental 

issues preventing the successful application of syngas fuels to commercially viable 

combustion systems.  These issues arise largely within the context of increasing 

NOx emission standards, which are driving the development of combustors toward 

lean pre-mixed, low-temperature, and high-pressure conditions often outside the 

scope of historical syngas and H2 combustion research.  While understanding of 

syngas fuels has indeed expanded in recent decades to include these conditions in 

some respects, research has focused largely on the combustion of pure mixtures of 

H2 and CO in highly homogeneous environments.  As discussed previously, this is 

far from reality for actual syngas mixtures burned in practical gas turbine or 

reciprocating engine systems.  Indeed recent research and experiences by those in 

industry have revealed that the effects of both chemical and physical disturbances 

in syngas fueled combustors can be dramatic and are not well-understood.  These 

effects are manifested quite visibly as uncontrolled auto-ignition in homogeneous 

environments like those in shocktubes and rapid compression machines.  

Furthermore, drastic changes in reactivity have been observed for syngas fuels with 

the addition of even very small quantities of various chemical impurities. 
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This body of work represents an important investigation of syngas fuel 

combustion, aimed specifically at comprehensively understanding the effects of 

specific chemical and physical disturbances.  The findings here will help to facilitate 

a more predictable and controllable application of this fuel to practical devices.  This 

investigation was completed in the UM-RCF, a well characterized, quiescent, and 

constant volume combustion system, which eliminates turbulence, flow field, and 

fuel/air mixing effects and thus allows for a focus on the underlying chemical 

kinetics.   

First, the auto-ignition behavior of syngas fuel at practical combustor 

conditions was investigated.  These behaviors were mapped over a wide range of 

thermodynamic and mixture conditions for numerous experimental facilities, 

revealing consistent and well grouped behaviors strongly related to the initial 

thermodynamic and mixture state.  This unique mapping, intrinsically valuable to 

combustor designers and other investigators, was then used to investigate 

predictive models and the fundamental source of inhomogeneous behaviors in these 

experimental systems.  It was discovered that the Sankaran Criterion, a previously 

proposed relationship between dominant chemical kinetics, transport properties, 

and thermal characteristics of the system, could predict the occurrence (albeit not 

the magnitude) of inhomogeneous auto-ignition behavior with remarkable accuracy.  

The success of the Sankaran Criterion is a strong indication that minor thermal 

disturbances distributed throughout the test volume can be the underlying source of 

inhomogeneous auto-ignition behavior in syngas mixtures.  This predictive 

capability and newfound fundamental description of inhomogeneous behaviors 

exhibited by syngas mixtures is an important contribution to both the scientific and 

industrial communities, which until now have either ignored categorizing the 

behavior or avoided low-temperature high-pressure conditions entirely.   

This work represents the first attempt to integrate results from diverse 

experimental platforms to describe common auto-ignition behaviors in high-

hydrogen content fuels, and further to provide a quantitative basis for predicting 

and interpreting data of other ignition studies, beyond syngas and the conditions 
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studied here.  To this end, auto-ignition behaviors were also investigated and 

mapped for iso-octane fuel in the present work, an important primary reference fuel 

for gasoline.  Results indicate that the Sankaran Criterion was again successful in 

predicting the conditions at which inhomogeneous auto-ignition will occur – 

providing an important tool potentially useful to the successful implementation of 

modern boosted direct injection combustion strategies in automotive engines. 

Regarding the impact of inhomogeneous auto-ignition for both syngas and 

iso-octane fuels, the effect of these behaviors on the accuracy of basic auto-ignition 

delay time predictions was also investigated.  For both fuels these behaviors indeed 

impacted the accuracy of predictions at certain mixture conditions, leading to global 

auto-ignition up to several orders of magnitude faster than predictions.  This is an 

important indication that while inhomogeneous behaviors are localized in nature, 

they can impact global phenomena significantly and their consideration is therefore 

critical.  This is especially true at low-temperature conditions where inhomogeneous 

ignition behaviors are far more prominent. 

After exploring ignition behaviors, the effects of impurities on the combustion 

of syngas were then investigated.  This work focused on CH4, a common component 

of syngas, and trimethylsilanol (TMS), an impurity related to those commonly found 

in landfill-based syngas.  Interestingly, through the course of this study multi-stage 

auto-ignition behaviors were observed; where the pressure rise associated with 

ignition had two distinct regions of rapid heat release.  This behavior has not been 

reported prior to the present work and was found to depend strongly on pressure 

and the relative concentration of CO in the mixture.  The impact of CH4 impurity 

was to inhibit ignition, evidenced by auto-ignition delay time increases by up to a 

factor of 3.  This effect is likely through OH scavenging early in the ignition process.   

Alternatively, the impact of TMS impurity was to promote ignition, causing drastic 

reductions in auto-ignition delay time of up to 70%.  This is likely related to 

enhanced consumption and/or reduced production of HO2, though the precise 

chemical kinetic effects cannot be resolved with existing kinetic mechanisms. 
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The drastic effects of TMS have significant safety implications, as pronounced 

early auto-ignition can lead to catastrophic failures.  Furthermore, the upward 

trend in organic Si content in syngas mixtures and the current movement toward 

higher pressure combustion systems means consideration of these effects is of 

increasing importance.  The impact of TMS addition observed here is remarkably 

similar to that for SiH4 in pure H2 made in previous investigations.  This suggests a 

possible trend for Si-based species to promote auto-ignition in syngas and hydrogen 

mixtures.  Overall, this work represents a unique investigation on the effects of 

common yet understudied impurities on the combustion of syngas fuel at practical 

combustor conditions, providing not only the first direct observations of these 

sometimes drastic effects, but also highlighting trends in behavior that may extend 

beyond the specific compounds evaluated in the present work.   

 

3. Major Conclusions 

 Trimethylsilanol impurity significantly increases reactivity of syngas at ~ 

100ppm concentrations.  Similarity to the effect of SiH4 may indicate 

dangerous trend for organic Si impurities. This is the first combustion 

data on these important compounds. 

 Syngas can exhibit multi-stage heat release for high-P, high CO 

conditions, which has never before reported.  This is an important 

validation of heat release for high-P syngas combustion. 

 First OH data for syngas auto-ignition provided here for any condition, 

validating two common syngas kinetic mechanisms. 

 Auto-ignition behaviors of syngas are repeatable and consistent across 

many devices in thermodynamic state space, which allowed for mapping 

and development of predictive capabilities. 

 The methods and approach for characterizing syngas ignition behaviors is 

applicable to other fuels, demonstrated by its extension to iso-octane fuel. 

 Inhomogeneous auto-ignition strongly correlates to error in typical auto-

ignition delay modeling, with magnitude highly correlated to φ. 
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2. Recommendations for future work 

While the mapping of auto-ignition behaviors and establishment of the 

Sankaran Criterion mark an important step towards the safe and effective 

application of syngas fuels to combustion systems, the reach of the present work is 

potentially limited to quiescent and nominally homogeneous environments with 

minimal fluid motion.  At the present time it is unclear how this predictive 

capability will translate to more practical engine systems which include, for 

example, turbulence, large magnitude thermal gradients, active ignition sources, 

and significant fluid motions.  Logical future work therefore should include a 

thoughtful investigation of the effects of these factors on the ignition behaviors of 

syngas fuels at high-pressure low-temperature conditions.  Of particular interest 

would be the evaluation of auto-ignition behaviors and flame stability in a flow 

reactor or actual combustor, where temporal and spatial dimensions are no longer 

independent.  It is possible that through such a study the Sankaran Criterion could 

be modified to include spatial dimensions and velocities, which would add greatly to 

its usefulness in the design of practical engine systems using syngas or other fuels.  

Furthermore, by varying flow field characteristics it may also be possible to 

investigate turbulence effects in such an experiment.  Considering previous 

investigations it is likely that future computational modeling could be used to 

understand the potential impact of turbulence on auto-ignition behaviors and the 

effectiveness of the Sankaran Criterion as well.  In such a study, the ability to 

precisely control the magnitude and distribution of disturbances is a key advantage 

over experimentation.  With this in mind, the optimal future approach is likely to 

combine experimental and computational methods to study syngas behaviors in a 

flow reactor or combustor at practical engine conditions. 

 Regarding the impact of chemical impurities on the combustion of syngas, 

future work should include an effort to assess the effect of species more broadly.  

Given the vast fluctuation of impurity species and concentrations in real syngas 

mixtures it is simply impractical to study all possible combinations.  Therefore, it is 
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imperative to establish a method of categorizing impurities and their impact which 

may eliminate the need for extensive testing of each compound.  This would require 

a more detailed assessment of certain important compounds initially, to determine 

the precise mechanism for their impact.  Considering the successful development of 

a laser spectroscopy system for the UM-RCF in the present work, it is now possible 

to make some of these assessments using this apparatus.  It is likely however, that 

corresponding advanced chemical modeling would be required to identify the precise 

mechanisms through which certain impurities act.  From a practical perspective, 

the development of categories and the identification of key impurity species could 

have significant impact on the design of syngas manufacturing processes, as 

purification efforts could be tailored to the most important species rather than 

broadly to all impurities.  Furthermore, the usefulness of this categorization of 

species may also translate to hydrocarbon fuels, given that H2/CO chemistry is the 

basis for its oxidation.   
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Appendix A 

Laser spectroscopy analysis code 

1. Program OH_CALC 

 

Note that the complete reference for “Donovan thesis 1991” is: 

 
M. T. Donovan, “Experimental study of the role of OH in SiO2 particle nucleation in SiH4 

combustion using UV absorption spectroscopy,” PhD Thesis, University of Michigan, 2003. 

 
%%%%%%%%%%%%%%%%%%%%%%PROGRAM OH_CALC%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Author: A.B. Mansfield 
%Last edited: 10-9-2014 

  
%This program calculates X_OH (OH mole fraction), given the mixture 
%composition,P, T, and I/I_0 (laser fractional absorption) as input. 

  
%Note that this is a function file, which is run in conjunction with the 
%University of Michigan- Rapid Compression Machine analysis software common 
%to all experiments in this body of work. 

  
%P_cut = pressure (atm), T_cut = temperature (K), laser_ratio_smooth = 
%fractional absorption, mix = mixture composition (mole fractions) 

  
%mix = [X_H2 X_CO X_CH4 X_O2 X_N2 X_CO2 X_Ar X_H2O X_iC8H18]; 

  

  
function [X_OH, X_OH_min, X_OH_max] = 

OH_calc(P_cut,T_cut,laser_ratio_smooth,mix); 

  
%%%%%%%%%%%%Set analysis parameters 

  

  
for i = 1:3 

     
    v_0 = 32606.555735;    %[cm-1],  resonant freq. target, R1(5) line 

     
    %Cycles through three scenarios which represent the min, max, and nominal 
    %OH value 

     
    signal = 0; 

     
    if i == 1                   %nominal scenario 
        T = T_cut; 
        P = P_cut; 
        L = 3.5;                %path length, [cm], from Donovan Thesis 2003 
        L0 = L; 
        v = 32606.555735;       %[cm-1],  resonant freq. target 
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    end 
    if i == 2                   %minimum scenario 
        T = T_cut*0.99; 
        P = P_cut*0.99; 
        L = L0+0.5; 
        v = 32606.555735; 
    end 
    if i == 3                   %maximum scenario 
        T = T_cut*1.01; 
        P = P_cut*1.01; 
        L = L0 - 0.5; 
        v = 32606.555735+0.06; 
        signal = 1; 
    end 

     
    %%%%%%%%%%BASIC CALCULATION 

     
    % -ln(I(v)/I_0) = -k(v)*L    Beer's Law 
    % S = int (k(v)dv, freq. range) 
    % k(v) = S*phi(v-v_0)   v_0 = resonant transition freq., phi(v) = line 
    %   shape function 
    %S_lu = S/P_OH --> S_lu*P_OH = int(k(v)dv) 

     
    %ln(I(v)/I_0)=-S_lu*phi(v-v_0)*P*X_OH*L    L = pathlength 

     
    %Therefore, need to define S_lu, phi 

     
    %X_OH = ln(I/I_0)/(-S_lu*phi(v-v_0)*P*L); 

     
    %%%%%%%%LINE SHAPE FUNCTION, phi(v-v_0)%%%%%%%%%%% 

     
    %Ideally, all absorption is at resonance, but in reality, broadening 
    %Assume no line shifing 

     
    %Assume natural broadening is negligible 

     
    %%%%%%%COLLISIONAL BROADENING 

     
    %%%Collisional broadening, due to collisions between absorbing molec. 
    %%%and other species 

     
    %del_v_coll = P*sum(X_a*2*gamma_A*(T/T_ref)^n_a); 

     
    %%%Use N2, H2O, Ar parameters only 
    %%%Assumed broadening parameter for O2 = that for N2 
    %%%Assume broadening for CO2 = that for H2O 

     
    %%Uncertainty --> 
    %%#1 Assume all at initial mixture 
    %%#2 Assume all at final mixture 

     
    %Set revised mixture given grouped broadening parameters 

     
    %Initial mixture (mixx = [N2, Ar, H2O]) 
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    mixxT = mix(4)+mix(5)+mix(7)+mix(8); 

     
    mixx = [(mix(4)+mix(5))/mixxT,mix(7)/mixxT,mix(8)/mixxT]; 

     
    if signal ==1;  %Final mixture (mixx = [N2+O2, Ar, H2O+CO2]) 

         
        mixxT = (mix(5) + (2*mix(4)-mix(1)-

mix(2))/2)+mix(7)+(mix(1)+mix(2)+mix(8)); 
        mixx = [(mix(5) + (2*mix(4)-mix(1)-

mix(2))/2)/mixxT,mix(7)/mixxT,(mix(1)+mix(2)+mix(8))/mixxT]; 

         
    end 

     
    T_ref = [2000,2000,1620];%[K], Rea Thesis 1991 [N2,Ar,H2O] 

     
    gamma_0_2 = [0.043,0.032,0.16];%[cm-1atm-1],Rea thesis 1991 [N2,Ar,O2] 

     
    n = [-0.83,-0.8,-0.66];%Rea thesis 1991 [N2,Ar,H2O] 

     
    del_v_coll = P_cut*sum(mixx.*gamma_0_2.*(T./T_ref).^n);  %[cm-1] 

     
    %%%%%%%%%DOPPLER BROADENING 

     
    %%%Doppler Broadening, due to molecules moving toward/away from incid. 
    %%%radiation 

     
    %del_v_dopp = (8*k*T*ln(2)/(M*c^2))^0.5*v_0    M = molecular weight 

     
    del_v_dopp = v_0*7.1623E-7*(T/17.007)^0.5; 

     

  
    %%%%%%%%VOIGHT CONVOLUTION  

     
    %%%Combine two effects with Voight profile 
    %Voight profile is convolution of Gaussian and Lorenzian profiles 

     
    %Need to use numerical approximation to solve for V 

     
    w = 2*log(2)^0.5*(v-v_0)/del_v_dopp;%  = 0 if only at line center 
    a = (log(2))^0.5*(del_v_coll/del_v_dopp); 

     
    phi = (log(2)/3.1415)^0.5*2/del_v_dopp*Voight(w,a); %See Voight m-file 
    %Voight m-file coded, but copied directly from Donovan thesis 2003 

     
    %%%%%%%%%%%%%%%%%%LINE INTENSITY (S_lu)%%%%%%%%%%% 

     
    % S_lu = 
    % 1/(8*pi*c*v_0^2)*N_OH/P_OH*exp(-h*c*E/(k*T))/Q_int*A_ul*(2J+1)*... 
    %...(1-exp(-hcv_0/(k*T)) 
    % N_OH/P = 1/(k*T) 
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    c = 29979245800;    %speed of light [cm/s] 
    k = 1.380658e-23;   %Boltzman constant [J/K] 
    h = 6.626076e-34;   %Planck constant [J-s] 

     
    E = 543.5949;       %[cm-1], Donovan thesis 1991 

     
    A_ul = 235500;      %[s-1], Donovan thesis 1991 

         
    we = 3737.7341;     %[cm^-1] Vibrational constant 

     
    Qv = 1/(1-exp(-h*c/k * we/T)); 

     
    QeQr = -4.0913399+1.436522e-1*T+3.3773243e-6*T^2-6.3316152e-

10*T^3+7.1957228e-14*T^4; 

     
    Q_int = Qv*QeQr; 

       
    S_lu = 1/(8*3.1415*c*v_0^2)*1/(k*T)*exp(-

h*c*E/(k*T))/Q_int*A_ul*(2*5+4)*(1-exp(-h*c*v_0/(k*T))); 

     
    S_lu = S_lu/1000000/9.8692e-6;   %[cm^-1/cm-atm]  Integrated line 

intensity, S = int(k_v,dv) 

     

     
    %%%%%%%%%%%CALCULATE ABSORPTION%%%%%%%%%%%%%%%%%%%% 

     
    %ln(I(v)/I_0)=-S_lu*phi(v-v_0)*P*X_OH*L    L = pathlength 

     
    % for j = 1:length(v) 
    %     ABS(K,j,I) = S_lu*phi(j)*P*X_OH*L; 
    % end 

     

     
    if i == 1 
        X_OH = log(laser_ratio_smooth)/(-S_lu*phi*P_cut*L)*10^6; 
    end 
    if i == 2 
        X_OH_min = log(laser_ratio_smooth)/(-S_lu*phi*P_cut*L)*10^6; 
    end 
    if i == 3 
        X_OH_max = log(laser_ratio_smooth)/(-S_lu*phi*P_cut*L)*10^6; 
    end 

     
end 
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