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Delimitation of species based exclusively on genetic data has been advocated despite a critical knowledge gap: how might such

approaches fail because they rely on genetic data alone, and would their accuracy be improved by using multiple data types.

We provide here the requisite framework for addressing these key questions. Because both phenotypic and molecular data can

be analyzed in a common Bayesian framework with our program iBPP, we can compare the accuracy of delimited taxa based on

genetic data alone versus when integrated with phenotypic data. We can also evaluate how the integration of phenotypic data

might improve species delimitation when divergence occurs with gene flow and/or is selectively driven. These two realities of the

speciation process are ignored by currently available genetic approaches. Our model accommodates phenotypic characters that

exhibit different degrees of divergence, allowing for both neutral traits and traits under selection. We found a greater accuracy of

estimated species boundaries with the integration of phenotypic and genetic data, with a strong beneficial influence of phenotypic

data from traits under selection when the speciation process involves gene flow. Our results highlight the benefits of multiple

data types, but also draws into question the rationale of species delimitation based exclusively on genetic data.
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With the increased availability of multilocus datasets, genetic ap-

proaches are becoming a primary focus for delimiting species, as

evidenced by the recent proliferation of methods (e.g., Knowles

and Carstens 2007; Hausdorf and Hennig 2010; O’Meara 2010;

Yang and Rannala 2010; Ence and Carstens 2011; Camargo et al.

2012). Emboldened by evidence from genetic simulations on the

potential power of these model-based approaches, empirical ap-

plications that rely exclusively on genetic data to estimate species

boundaries are becoming common (e.g., Pons et al. 2006; Leaché

and Fujita 2010; Burbrink et al. 2011; Niemiller et al. 2012;

Satler et al. 2013), in addition to DNA barcoding initiatives not

considered here. Yet, despite studies that advocate for particu-

lar model-based approaches (e.g., Fujita et al. 2012; Carstens

et al. 2013) or evaluate the performance of key steps in the

delimitation of taxa with genetic data (e.g., Olave et al. 2013;

Rannala and Yang 2013), a critical issue in such systematic en-

deavors remains unknown. Specifically, would consideration of

multiple data types in empirical studies provide more accurate

estimates of species boundaries compared to relying exclusively

on genetic data alone?

The theoretical ideals of some genetic model based ap-

proaches for species delimitation do not guarantee that these

approaches will perform ideally in practice. With the limited ex-

pected divergence between newly derived species, species bound-

aries may go undetected because of insufficient genetic data (e.g.,

Camargo et al. 2012; Rittmeyer and Austin 2012; Olave et al.

2013). Likewise, the most relevant data associated with repro-

ductive isolation will not be represented among neutral loci in
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the case of selectively driven species divergence. The available

approaches for delimiting species (see Carstens et al. 2013) will

not use the very data that might prove to be the most informative.

In these cases, failure to consider more than one data type may

compromise the power to detect species boundaries. Failure to

consider more than one data type may also exaggerate mislead-

ing inferences caused by model violations because gene-based

approaches make strong assumptions. For example, neutral loci

may be subject to gene flow across species boundaries with low

levels of migration, in contrast to the traits that may distinguish

taxa (e.g., particular morphological or ecological traits), causing

genetic approaches to underestimate the number of taxa (Zhang

et al. 2011). This means that genetic-based approaches do not

effectively handle some of the biological realities of species di-

vergence (e.g., divergence with gene flow, of selectively driven

divergence). This includes all the fairly sophisticated methods re-

cently developed (e.g., coalescent-based Bayesian delimitation,

Yang and Rannala 2010).

Despite suggestions of seeking consensus across methods as

a way to guard against errors in the delimitation of taxa with ge-

netic data (Carstens et al. 2013), these genetic-based approaches

share many assumptions, even though the details of particular

methods differ (reviewed in Carstens et al. 2013). The current

methods, for example, make very simplifying and implicit as-

sumptions about the divergence process, like assuming that the

unit delimited from neutral genetic variation corresponds to a

species, or that divergence occurs without gene flow. As such, ad-

vocating for a consensus approach does not overcome the inherent

limitations of relying on a single data type. Here, we propose a

new method that explicitly addresses some of these concerns.

Specifically, we present a Bayesian approach for the integration

of multiple data types into a single model-based framework.

We acknowledge that incorporating information from diverse

sources of data for inferring species boundaries has a long sys-

tematic tradition. However, the analysis of multiple data types

has been constrained by the availability of methods that can ac-

tually integrate information from the different sources (Guillot

et al. 2012; Edwards and Knowles 2014). Estimates of species

boundaries from multiple data types typically rely upon a series

of sequential analyses of each separate data type (e.g., Kergoat

et al. 2011; Yeates et al. 2011). The goal of our work is to develop

a species delimitation method to combine genetic and trait data

into a common framework based on an explicit model of evolu-

tion. Specifically, we extend the Bayesian program BPP (Bayesian

phylogenetics and phylogeography, Yang and Rannala 2010) to

combine genetic and quantitative trait data in a single Bayesian

framework, which we call iBPP (integrated BPP). Through sim-

ulations, as well as application to an empirical dataset of recently

diverged Australian lizards (Edwards and Knowles 2014), we

evaluate the general performance of the iBPP method, including

how the addition of trait data may improve the accuracy of esti-

mated species boundaries when divergence occurs with gene flow.

NEW APPROACH

The iBPP method uses the same Bayesian framework as BPP

for modeling molecular data across multiple genes. Among gene-

based methods, BPP was shown to be superior to others in the

simulation conditions in Camargo et al. (2012). As with BPP, iBPP

assumes a known assignment of individuals to putative species and

a guide tree of these putative species. Alternative hypotheses about

delimited taxa are generated by collapsing one or more nodes in

the guide tree, each of which is given an equal prior probability

(but see Rannala and Yang 2013). The posterior probability (PP) of

a particular number of taxa, as specified by a given species tree and

its branch lengths, is calculated from independent gene trees ac-

cording to the multispecies coalescent (Rannala and Yang 2003).

Our iBPP method, in addition to independent loci, can also

take independent quantitative continuous traits, to evaluate the PP

of a particular number of taxa. Each trait is assumed to have a

normal distribution, with species means governed by a Brown-

ian motion (BM) process along the species tree and individuals

normally distributed around the species means. A parameter λ

models the between-to-within species variance ratio, such that

the expected variance of species means from the Brownian mo-

tion is λσ2 and the within-species variance is (1 − λ)σ2 (Lynch

1991; Freckleton et al. 2002). Each trait is allowed to have its

own λ parameter to model selection acting differently on differ-

ent traits. Indeed, selection pressure is expected to reduce trait

variation between individuals in the same species. A uniform

prior is placed on λ, which is integrated using Markov chain

Monte Carlo (MCMC). A conjugate prior distribution is placed

on the trait mean at the root of the species tree and on the total

variance σ2, which allows for analytical integration and avoidance

of MCMC iterations for these parameters. Details are provided

in the Materials and Methods section. The iBPP program and

its companion simulation program are available open-source at

https://github.com/cecileane/iBPP/.

Materials and Methods
METHODS FOR QUANTITATIVE TRAITS

Evolutionary model
Each quantitative trait is assumed to display between-species vari-

ation and within-species variation. We assume a Brownian motion

model for the evolution of species means along the current species

tree, with variance rate λσ2 on the tree normalized to have height

1. We then assume normally distributed within-species variation

with variance (1 − λ)σ2. With this model, λ measures the phylo-

genetic signal, as the ratio of the variation due to the phylogeny to

the total variation expected from the root of the tree to individuals
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Figure 1. Model for trait variation, with Brownian motion along

the species phylogeny for species means, and Gaussian within-

species variation. The phylogenetic signal λ represents the ex-

pected proportion of between-species variation.

within species (see Fig. 1). In other words, the total expected vari-

ance is divided into a proportion λ between species, and (1 − λ)

within species (Lynch 1991; Pagel 1999).

More formally, this model can be written as Y ∼
N (μ, σ2Vλ), where the covariance matrix Vλ is determined by the

species tree and the λ parameter of the particular trait. This matrix

is obtained as the standard Brownian motion covariance matrix

on a tree where each species is represented by a polytomy with

k tips for k individuals. Each branch leading to an individual is

assigned length 1 − λ to model within-species variation, whereas

the initial species tree (with one tip per species) is scaled to a

total height of λ to model between-species variation. Our model

allows each trait to have its own parameters μ, σ2, and λ. Intu-

itively, a trait under selection is expected to show a high λ (large

between-species variation compared to within-species variation),

whereas a trait under neutral evolution is expected to show a low

or intermediate λ.

Priors and marginal likelihood
In our Bayesian framework, we use a conjugate prior distribu-

tion for the ancestral species mean μ and the total variance σ2.

This allows us to integrate these parameters out and to avoid

the computational burden of tracking them in the MCMC algo-

rithm. Namely, we use an inverse chi-squared distribution for σ2

with prior variance (scale) σ2
0 and ν0 degrees of freedom (akin

to a prior number of observations for the prior variance). For the

ancestral species mean μ given σ2, we use a normal prior distri-

bution with mean μ0 and variance (1′V−1
λ 1)−1σ2n/κ0, where n is

the total number of individuals for the trait of interest, prime de-

notes transposition, and 1 is a vector of ones. The hyperparameter

κ0 represents the weight for the prior mean μ0, or prior number

of individual observations. This variance was chosen to be pro-

portional to the sampling variance of the maximum likelihood

estimator μ̂ = (1′V−1
λ 1)−11′V−1

λ Y .

The prior distribution on (μ, σ2) is then conjugate, in that

the posterior distribution of (μ, σ2) given the trait data has the

same form. Namely, the posterior distribution of μ given σ2 is

Gaussian with mean μn = (κ0μ0 + nμ̂)/(κ0 + n) and variance

(1′V−1
λ 1)−1σ2n/κn , where κn = κ0 + n. Also, the posterior distri-

bution of σ2 is inverse chi-squared with νn = ν0 + n degrees of

freedom and scale σ2
n = postSS/νn . The posterior sum of squares

is defined by

postSS = ν0σ
2
0+ (Y − μ̂1)′V−1

λ (Y − μ̂1)+ (μ0 − μ̂)2 κ0

κn
1′V−1

λ 1.

For each trait, μ and σ2 can then be integrated out, leading to the

following marginal likelihood p(Y |Vλ) for each trait Y :

− 2 log p(Y |Vλ) = n log π + log
κn

κ0
− 2 log

�(νn/2)

�(ν0/2)
(1)

−ν0 log(ν0σ
2
0) + νn log(postSS) + log |Vλ|.

A fast algorithm was used to calculate the terms involving

the large matrix Vλ (Ho and Ané 2014). After standardization

of traits, reasonable choices are σ2
0 = 1 and μ0 = 0. We also use

ν0 = 0 and κ0 = 0 for noninformative priors. These are improper

prior distributions, but the marginal likelihood is well defined

up to a constant independent of the trait data and of the current

species delimitation model.

For simplicity, multiple traits are considered independent in

what follows and in our implementation (but see Appendix), with

independent phylogenetic signals λ a priori. A noninformative

uniform prior between 0 and 1 was placed on λ for each trait. Spe-

cific proposal moves were implemented in iBPP to estimate the

posterior distribution of λ with MCMC. When the current model

contains a single species, between-species variation is undefined

and λ is dropped from the model to avoid overparametrization.

To deal with this change of dimension, a reversible jump MCMC

move was implemented in iBPP when proposing to move between

a one-species model and a two-species model.

Joint Bayesian inference for genes and traits
For the simultaneous analysis of genes and traits, both data types

are considered independent conditional on the species tree. In

other words, the sampled traits are assumed to evolve indepen-

dently of the sampled genes, beyond the correlation that comes

from sharing the same species tree. The joint likelihood is then

the product of the genetic data likelihood and trait data likeli-

hood. This framework thus provides an equal footing to weigh

the evidence from both data sources. Namely, with k molecu-

lar alignments A1, . . . , Ak and p traits Y1, . . . , Yp, the likelihood

of the data and of gene trees G1, . . . , Gk given a species tree

S and λ1, . . . ,λp is the product IP(Y1, . . . , Yp|λ1, . . . ,λp, S) ∗
IP{A1, . . . , Ak |G1, . . . , Gk} ∗ IP{G1, . . . , Gk |S, θ, τ}. The first

term for traits is calculated as
∏

i p(Yi |Vλi ) from (1) above. The

second term is the sequence likelihood based on a substitution

model along gene trees. It can be decomposed as
∏

i IP{Ai |Gi }
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with substitution and rate parameters omitted to simplify nota-

tions. The last term uses the coalescent model for gene trees with

branch lengths (Rannala and Yang 2003). The gene trees and

phylogenetic signals are then integrated out using MCMC. Our

implementation is an extension of the BPP package version 2.0

(Yang and Rannala 2010) and allows the user to easily choose

to analyze the genetic data only, the trait data only, or both data

types combined.

SIMULATIONS TO DELINEATE ONE VERSUS TWO

SPECIES WITH TRAITS

The MCcoal program in the BPP package (Rannala and Yang

2003; Yang and Rannala 2010) was extended to simulate

trait data in addition to DNA sequence data. The Perl script

used for all of our simulations is available at http://dx.doi.org/

10.5061/dryad.4gf03. A first set of simulations was conducted

with a two-species guide tree, to quantify the power from trait

data in a simple case. Ten individuals from each of the two puta-

tive species were simulated. In the first scenario, all 20 individuals

were simulated from the same single species. In the second sce-

nario, the two putative species were truly distinct and each trait

was simulated with an expected 70% between-species variation

(λ = 0.7). Either one or three traits and 500 replicates were simu-

lated in each case. The PP for the two-species model was obtained

from iBPP.

SIMULATIONS WITH MIGRATION

The sequence data were simulated either with or without migra-

tion between sister species, even though the analysis with iBPP

requires the assumption of no migration. This study aimed to

simulate neutral loci susceptible to gene flow between species,

and traits under selection within species. The sequence simula-

tion model with migration was described by Zhang et al. (2011).

The simulation model for traits matched the model assumed for

analysis, with a Brownian motion process determining each true

species trait mean, and a normally distributed within-species vari-

ation among individuals. Each trait had its own λ parameter, which

represents the ratio of among-species variation (as expected from

the root of the species tree to the species averages) to the total

variation (including within-species variation).

We simulated data on a three-species tree (species AB, C,

and DE, Fig. 2), and then analyzed these data using a guide tree

with five putative species A, B, C, D, and E, so that the num-

ber of species could be underestimated or overestimated by 2.

The baseline simulation consisted of five individuals per putative

species, three traits, λ = 0.7, four loci with 600 base pairs each,

u = 1 coalescent units from root to tip, and rescaled population

size θ = 0.001. For analysis with iBPP, we used a Gamma(1,100)

prior for θ, a noninformative prior (κ0 = ν0 = 0) for the traits,

and algorithm 0 described in Yang and Rannala (2010). Several

guide tree

C
EDBA

Figure 2. The true species tree used for simulations had three

species: AB, C, and DE, with AB and C sister to each other (black).

The guide tree (blue) used for analysis had five putative species:

A, B, C, D, and E.

migration rates were tested. When present, only two types of mi-

gration were allowed: between the common ancestor of ABC and

the common ancestor of DE, and migration between AB and C.

Both correspond to migration between sister species. All migra-

tion rates were set to be equal and four cases were simulated:

M = 0.1, 1, 5, and 10 expected migrant individuals from popu-

lation i to population j per generation (as in Zhang et al. 2011).

Note that we kept λ constant at 0.7 as migration M was increased,

that is, we assumed that the sampled traits were under selection

and unaffected by the flow of neutral genes. Several combina-

tions of parameters were tried by varying the number of traits,

number of loci, expected between-species trait variance (λ), and

migration rates. For the case of no migration, the total tree height

(in coalescent units) and the number of sites were also varied

with u = 0.5, 1, 2 and loci of 600–1000 base pairs. With each

combination of parameters, 100 replicates were simulated and we

calculated the PP of the true tree, the number of false positives

(species falsely split into two), and the number of false nega-

tives (species pairs falsely lumped) in the maximum a posteriori

tree. These numbers were then averaged over all 100 simulated

datasets. We also explored the computational requirements with

an increased number of genes. For this, we used the same baseline

settings as above but with six traits, M = 5, and 10 to 100 genes.

For 10 and 20 genes, we simulated 40 datasets, and for 50 and

100 genes, we simulated 10 datasets only.

SIMULATIONS WITH PHENOTYPIC MODEL

VIOLATIONS

To explore the effects of violating the assumption of the phe-

notypic model, we extended the simulation software with two

options: trait plasticity and non-BM evolution. We measured the

level of plasticity as the proportion of traits for which two pop-

ulations of a given species have different means. This was to
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model a plastic response to an environmental variable that differs

between the two populations. In our simulations with plasticity

(unaccounted for during inference), we used the same proportion

of plastic traits between populations A and B and between popula-

tions D and E (see Fig. 2). This plasticity level was varied between

0 and 0.10, with other parameters set to six traits at λ = 0.7, four

genes with or without migration (M = 0 or 5), and 100 datasets

in each case.

To simulate a violation of the mode of evolution, we simu-

lated an Ornstein–Uhlenbeck (OU) process for the species mean

evolution, with λ still controlling the between-to-within species

variance. Under the OU process, the species mean is affected

by random drift (like the BM), but is also attracted to an op-

timum μ. After time T , the variance of the process is of the

form γ(1 − e−2αT ), which is taken as the between-species vari-

ance when T is the height of the species tree. Our simulation tool

can simulate the OU process with a constant optimum μ across

the species tree, or with μ varying from branch to branch to sim-

ulate a phenotypic landscape with varying adaptive peaks (see,

e.g., Butler and King 2004). We simulated traits under BM and

under this OU model with α = 277 such that the time taken by

the process to move half-way toward its optimum is 50% of the

species tree height (τ = 0.005). We simulated values μi on branch

i according to a centered normal distribution with a low SD of

0.1, relative to the trait’s scale. For this set of simulations, we

analyzed the trait data only and varied the following parameters:

from 3 to 100 traits and λ from 0.3 to 0.7. Again, 100 replicates

were simulated under each condition.

ANALYSIS OF LIZARD DATA

We reanalyzed a dataset from 81 males across 11 Australian

amphibolurine lizard species within the Ctenophorus maculatus

species complex (Squamata: Agamidae) (Edwards and Knowles

2014). We followed these authors for the assignment to and

detection of putative species, which is required for downstream

species delimitation with iBPP (like BPP). Specifically, indi-

viduals were assigned to putative taxa using a combination of

multivariate and clustering techniques for analysis of genetic,

morphological, and ecological data (see supplement for summary

of assignment approach used by Edwards and Knowles 2014).

Only males were analyzed because of sexual dimorphism, and

because males typically show more distinctiveness between

species in lizards. The level of divergence in the different data

types differs (see Edwards and Knowles 2014, for details), with

some groups of species showing shallow genetic divergence

with marked morphological differences, whereas other groups of

species show no morphological differentiation but deep genetic

divergences. Biological processes responsible for this pattern

might include hybridization and gene flow. The five phased

loci, 12 morphometric characters, and five meristic characters
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Figure 3. Posterior probability (PP) for the two-species model

given one trait (top) or three traits (bottom), when the true model

has one species (left) or two species (right). p is the proportion of

replicates for which the PP of the true model was 0.50 or higher.

measured in adult specimens with no missing values are detailed

in Edwards and Knowles (2014) and the data are available

on Dryad (dx.doi.org/10.5061/dryad.mm11q). To meet the

independence assumption in our model, morphometric data were

corrected for allometric growth as in Lleonart et al. (2000). Snout-

vent length (SVL) was used as a proxy for body size as confirmed

by a principal components analysis done with the prcomp func-

tion in R: SVL had the largest correlation (0.96) with principal

component 1. The morphometric trait transformation consisted of

regressing the log-transformed values of each character against

the log of SVL and using the residuals instead of the original

variables. The R2 values between pairs of transformed morpho-

metric characters were greatly reduced after transformation. The

majority fell below 0.025, and only 25% of them were above

0.15. The largest (0.575) was between interorbital width and arm

length and the second largest (0.567) was between head width

and arm length. For this reason, the arm length character was

eliminated from the analysis, reducing the trait data to 16 charac-

ters. For the Bayesian species delimitation, three separate iBPP

analyses were performed: using multilocus genetic data only,

using morphological data only, and finally using both sources of

data. Each analysis was run for 2.5 million rjMCMC generations

after a burn-in period of 100,000 generations, sampling every

250 generations. This resulted in a final sample size of 10,000.

The prior distributions for θ (ancestral population size) and τ

(root age) were both set to the gamma distribution G(2, 400).

A noninformative conjugate prior distribution was used for the

trait variances and ancestral means with parameters ν0 = 0 and

κ0 = 0. The guide tree topology (Fig. 10) was obtained from
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Figure 4. Degree of overlap in trait values between species for three traits simulated with λ = 0.7. Boxplots along the axes margins

summarize the distribution of each trait within each species separately (median, first, and third quartile and range of trait values).

Analysis with iBPP gives PP 0.96 for two species.

Edwards and Knowles (2014), who used ∗BEAST. Analyses were

performed using algorithm 0 with ε = 15 described in Yang and

Rannala (2010). Convergence was assessed by comparing results

from two separate independent runs. The separate runs were

then combined. A small number of runs started with all nodes

collapsed in the guide tree (one-species model) and were stuck

in that state, lacking convergence. This issue was documented by

Yang and Rannala (2010) and Rannala and Yang (2013). These

runs were thus discarded and new runs were conducted.

The total tree height in coalescent units was evaluated as

2τ/θ from the genetic data. For τ, we used the age of the root

as estimated by iBPP (in substitutions per site). The population

size θ was taken either as the mean or as the median of the θ

values estimated along non-root edges. Both resulting tree height

estimates (0.851 and 1.02 coalescent units) were close to what

was used in the simulations with migration (u = 1).

Analyses of the same phenotypic and genetic data were

conducted with the R package Geneland (Guillot et al. 2012).

For comparison with iBPP analyses, a nonspatial model was fit

with uncorrelated allele frequencies. All analyses used a max-

imum possible number of clusters Kmax = 20. Each analysis

with Geneland was run for 140,000 iterations, sampling every

100 generations and with a burn-in period of 400 after thin-

ning, which resulted in a final sample size of 1000. Convergence

assessment was done by inspecting log-likelihood profiles and

comparing the results from two separate independent runs with

each set.

Results and Discussion
MODEL-BASED DELIMITATION WITH PHENOTYPIC

DATA

In simulations with one versus two species, the power to detect

the correct species number was already very high with a single

trait: 0.964 when all individuals belonged to a single species, and

0.634 under two species when the expected between-species trait

variation was 70% (Fig. 3, top). In this situation, the PP for the

two-species tree correlates with the variance in the trait values

explained by the grouping in the two putative species, as obtained

by an analysis of variance for instance. When the two species

grouping explains 40% of the total trait variance, the two-species

tree receives about 80% PP, and 60% trait variance explained

corresponds to a nearly full support for the two-species tree. With

three traits, the power to detect the correct species model was

0.998 under a single-species model and 0.886 under a two-species

model and λ = 0.7 (Fig. 3, bottom).

To illustrate the applicability of these simulations to empiri-

cal data, we show in Figure 4 an example simulated from λ = 0.7

from three traits and two true species. The species groups ex-

plained 1%, 26%, and 59% of the variance in traits 1, 2, and 3,

respectively. Overlap between species is present in single traits,

but the PP for two species was 0.96 with the three traits combined.

Even with limited data considered here (i.e., one to three

traits), there is sufficient power to delimit taxa with a model-based

analysis of phenotypic data (Fig. 3). For example, by comparing

the inferred number of taxa to the true number of taxa (i.e., the

number of taxa used in the simulations), with three traits we

were able to detect the splitting of lineages and determine when

there had been no divergence of species lineages in 88% and

98% of the replicates, respectively (Fig. 3). In other words, a

model of phenotypic evolution provides the necessary context

for interpreting patterns of morphological variance within and

between putative species for determining the probability that trait

data correspond to hypothesized species boundaries. This finding

parallels the conclusions drawn about the utility of model-based

frameworks more generally, such as with genetic approaches that

account for variation among loci arising from coalescent variance
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Figure 5. Mean posterior probability (PP) of the tree with the three true species with increasing migration rates. Each point is the mean

over 100 replicates for each scenario. Lines show SEs. Simulations included five individuals per putative species, a total tree height of 1

coalescent units, θ = 0.001, and 600 bp loci.

(e.g., Knowles and Carstens 2007; O’Meara 2010), including the

Bayesian program BPP in particular (Yang and Rannala 2010)—

the basis of the framework used in our iBPP approach for species

delimitation across multiple data types.

Despite differences in the number of characters between the

phenotypic and molecular data, the results show consistent im-

provements in the accuracy of delimited taxa when both data

types are used (Fig. 5). In the absence of migration, the PP for

the true species tree increased when combining trait and genetic

data. In some situations, traits alone could provide more informa-

tion than genes. Trait data were particularly beneficial when traits

were under selection (high λ), or when the gene trees were highly

discordant or less resolved (from a lower tree height, or shorter

sequences), even under no migration.

Our results based on phenotypic data alone, with or without

gene flow should not be interpreted as an advocacy on our part

for species delimitation based exclusively on phenotypic traits.

Instead, we include these results to illustrate the effects of data

quantity and quality on the accuracy of delimited species, which

provide general guidelines for empiricists. For example, it is clear

that both the ratio of variance between species to within species

as reflected in the λ parameter and the number of traits impact the

probability of recovering the true history of species divergence

(Fig. 5).

DIVERGENCE WITH GENE FLOW

In the presence of neutral loci affected by gene flow, the mean PP

of the true tree deteriorated substantially with increasing migra-

tion rates when using genetic data only. The addition of data from

traits under selection (unaffected by gene flow) always increased

the PP for the true tree, and rescued a high PP of recovering

the correct species even in the presence of high migration rates

(Fig. 5).

In the absence of migration, both data sources showed a

slight trend to oversplit, leading to slightly more false positives

than false negatives (Figs. 6, 7). Note that the prior probabilities
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Figure 6. Mean number of false positives (oversplitting) in the most probable tree a posteriori. Points and bars as in Figure 5.

given to undersplitting and oversplitting were not equal, because

the uniform prior on all trees derived from the guide tree results in

a prior average of 5/7 or 0.71 false positives, and 4/7 or 0.57 false

negatives. This slight imbalance might explain the slight tendency

toward oversplitting in the absence of migration. In the presence of

gene flow between sister species, the genetic data tended to lump

separate species together instead, as expected from migration.

This trend to undersplit was largely overcome with the addition

of traits under selection, even with the highest level of migration

considered here (Figs. 6, 7).

What is notable about results from analyses in which pheno-

typic data alone are used for delimiting taxa is that they outperform

the analyses based on genetic data alone when divergence occurs

with gene flow for any appreciable level of migration (i.e., val-

ues above 0.1; Fig. 5). It was already clear that coalescent-based

approaches were sensitive to migration rates above 0.1, resulting

in underestimates of species numbers (as documented in Zhang

et al. 2011). In fact, the parameter values used here correspond to

the levels of migration and species divergence times used in past

simulation studies. The failure to detect species lineages under

gene flow with analyses based on genetic data alone compared to

phenotypic data alone (Fig. 7) is what drives the higher accuracy

of delimitation with phenotypic compared to genetic data (Fig. 5).

Indeed, our results show that taxa delimited only with phenotypic

data will be more subject to oversplitting of species lineages, espe-

cially with limited numbers of traits and high within-to-between

lineage variance in those traits, that is, when λ is small (Fig. 6).

ASSUMPTIONS OF THE EVOLUTIONARY MODEL IN

iBPP

Violation of the underlying assumptions regarding the molecu-

lar data (i.e., distribution of gene trees and of substitutions along

gene trees) may compromise the reliability of inferences with

iBPP, just like it does with BPP (e.g., see Zhang et al. 2011).

However, by considering multiple data types, we show how the

accuracy of species delimitation can be improved when incorpo-

rating phenotypic data because it can capture the signal of some

of the processes involved in the speciation process—namely, se-

lectively driven divergence and divergence with gene flow—that

actually compromise the results based on molecular data.
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Figure 7. Mean number of false negative (undersplitting) in the most probable tree a posteriori. Points and bars as in Figure 5.

Our model uses a uniform prior distribution for λ, the rela-

tive between-species variance of a trait. Although we could have

used an informed prior derived from population genetic theory

(e.g., λ/(1 − λ) approximately centered around the tree height

2τ/θ in coalescent units), this expectation only applies to neu-

trally evolving traits and ignores environmental variance (Lynch

and Hill 1986). Therefore, we opted for a noninformative prior for

λ. Our approach also assumes that traits evolved independently,

to facilitate the use of a trait-specific λ. To accommodate this

assumption in practice, we, for example, transformed the traits to

remove correlations due to allometry in the lizard dataset. Alter-

natively, a more complex model with correlated traits might be

implemented and is described (see Appendix). However, its full

implementation would incur a higher computational cost and is

left to future work.

Although very promising, the accuracy of iBPP using pheno-

typic data should be explored when the actual model of phenotypic

evolution is violated. One such violation is phenotypic plasticity.

For example, different populations of the same species might dif-

fer phenotypically because of a plastic response to environmental

differences between their respective geographic areas. We found

that a modest level of plasticity (up to 10% of traits) only slightly

affected the inference accuracy (Fig. 8). The effects of gene flow

between species and phenotypic plasticity within species were

expected to pull the estimated boundaries in opposite directions,

with gene flow causing too few recognized species and pheno-

typic plasticity causing too many. Indeed, inference based on both

genes and traits was always more accurate than when using either

data type alone (Fig. 8).

We also explored violations of the mode of trait evolution.

Figure 9 shows that our method is very robust when species means

evolved according to an OU process, instead of BM. In fact, the

major factor controlling accuracy, when using trait data only, is

the between-species variation as reflected by λ. Our simulations

involved slight variations between optima along separate species

lineages. Large variations between lineage-specific optima are

expected to cause more variation between species, and we ex-

pect our model to account for this by a high estimated λ and a

total variance σ2 mostly representative of the variation in selec-

tive optima between species. More generally, any model of trait
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Figure 8. Mean posterior probability (PP) for the true three species as in Figure 5 with phenotypic plasticity, without (left) or with (right)

gene flow. The plasticity level is the proportion of traits with different means for two populations in the same species.

evolution that would increase the trait variance between species

relative to the within-lineage variance would be expected to in-

crease the accuracy of delimited taxa based on phenotypic data.

ANALYSIS OF AUSTRALIAN LIZARD DATA

All 11 putative species (Fig. 10) were supported by iBBP analyses

of each of the three datasets (genes only, traits only, and genes

and traits). All nodes from the guide tree were present in the

maximum PP tree and were supported as divergent nodes with

PP of 1.0 in all analyses, except for three nodes when only the

traits were analyzed (Fig. 10). All the iBBP analyses showed

convergence with similar results from separate runs; the mean

absolute difference in node PP between runs was 0, 0.06, and 0

using genes, traits, and both genes and traits, respectively.

The general consistency of the delimited taxa across iBBP

analyses of morphological and genetic datasets, as well as the

correspondence with species boundaries from traditional, quali-

tative taxonomic criteria used to describe species (Edwards and

Knowles 2014), suggests that the results from our quantitative

tests are robust to undersplitting of taxa associated with limited

information or divergence processes that compromise inferences

based on single data types (see McKay et al. 2013). It is worth not-

ing that the putative lizard taxa exhibit differences in the level of

genetic and morphological differentiation among taxa, conditions

that can make species delimitation difficult. Because the maxi-

mum number of taxa was constrained by the initial 11 putative

species, it is possible that additional taxa have gone undiscov-

ered. This issue relates to the upstream assignment of individu-

als, which is a difficult task (see below). To the extent that the

delimited taxa are indeed accurate, it would appear the evolution-

ary model used in iBBP that accommodates different rates of

evolution across dataset types is effective (but see discussion

above about assumptions of the model in iBPP).

In contrast, the number of putative species appears to be

significantly underestimated, with only a few clusters recognized,

with the alternative method Geneland (Guillot et al. 2012) for

combining genetic and phenotypic data (Fig. 11). The estimated

number of clusters K̂ was 2 when using genetic haplotype data

only (with PP 1) or both haplotype and phenotypic data (with

PP 0.95), and K̂ = 3 with PP 0.5 when using traits only (95%

credibility interval of [3–5]). Proper mixing was reached in these

three analyses, based on log-likelihood plots and consistent results

across two separate runs. Using traits only, no individual was

confidently assigned to any cluster and the three clusters did

not seem to correspond to any particular species or groups of

species (Fig. 11, top). Using haplotypes only, the two clusters

did not correspond to any particular species or groups of species

either (Fig. 11, center). Interestingly, the combined analysis of

haplotype and phenotypic data inferred clusters that matched a

clade in the guide tree exactly (Fig. 11, bottom). One cluster was

formed by all individuals in the C. femoralis + C. fordi clade and

the other cluster contained the remaining individuals. This result

corroborates our claim that combining different sources of data

can improve species delimitation, although the number of species

was still underestimated with Geneland.

This empirical application to Australian lizards contrasts the

strengths and weaknesses of two methods—iBPP and Geneland—

for integrating multiple data types. The former has the advantage

of using an explicit evolutionary model with a branching struc-

ture for population relationships, a substitution model for genetic

variation, and a model of phenotypic divergence. The latter has

the advantage of not relying on a preassignment of individuals to

putative species, or on a guide tree for these species. Geneland is
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Figure 9. Mean posterior probability (PP) for the true three

species as in Figure 5 from trait data only, with a BM (empty cir-

cles) or OU (filled circles) mode of evolution. Computing times are

indicated, per replicate dataset.

also able to integrate geographic data (but see below). However,

this method is not based on any explicit evolutionary model. It

relies instead upon statistical clustering for detecting species clus-

ters (i.e., a tessellation model; Møller and Stoyan 2014), which is

not evolutionary and does not recognize the hierarchy of species

grouping as expected from a species phylogeny.

A number of factors may have contributed to the limited util-

ity of Geneland to delimit the Ctenophorus taxa. Most likely the

variable, but linked sites contained within the sequenced loci, pro-

vides limited information for inferring individual ancestries from

allele frequencies (Guillot et al. 2012), given that genealogical in-

formation contained by the haplotypes is not used (as with other

approaches based on allele frequency, like the program STRUC-

TURE; Pritchard et al. 2000). Moreover, given that the relevant

information for such inferences depends upon allele frequencies,

as the diversity of haplotypes increases, the performance of such

approaches will be compromised (see Olave et al. 2013). This

probably explains why a mere two species of Ctenophorus were

recognized in the Geneland analyses.

CONTINUED CHALLENGE OF ASSIGNING

INDIVIDUALS TO PUTATIVE SPECIES

Assigning individuals to putative populations is a preprocessing

step for downstream analysis with iBPP. This step is potentially

error-prone and currently, there is no standard method for indi-

vidual assignment. An obviously more satisfying approach would

be to consider individual assignment and species tree estimation

simultaneously. However, doing so is computationally very chal-

lenging (but see O’Meara 2010; Jones and Oxelman 2014) and

outside the scope of this article.

Individual assignment (i.e., individual-putative species asso-

ciations) can be estimated with programs such as STRUCTURE

(Pritchard et al. 2000), STRUCTURAMA (Huelsenbeck and

Andolfatto 2007), or Geneland (Guillot et al. 2005, 2012). How-

ever, these methods ignore the phylogenetic relationships between

species, as mentioned earlier. With the potential for errors at the

initial steps in the delimitation process (i.e., assigning individuals

to putative species) to be magnified in the downstream process

of delimiting species with iBPP (or BPP; see Olave et al. 2013),

approaches that integrate across multiple data types may be prefer-

able at the initial steps in the process as well (see Edwards and

Knowles 2014).

CHALLENGES WITH LARGE DATA SETS

Although powerful conclusions can be reached with a few loci

in some systems, current sequencing trends enable large genomic

datasets. The computational burden of iBPP increases with the

number of loci (Fig. 12), as it does with BPP, but stays reasonable

in the situation considered here with a five-species guide tree.

Very large SNP data are also increasingly available, but require

specific methods to analyze under the coalescent. They have been

used for species delimitation with SNAPP (Bryant et al. 2012)

and Bayes factor delimitation (Leaché et al. 2014). The theory

developed here could readily be used to integrate trait data with

SNAPP (or other programs such as DISSECT; Jones and Oxelman

2014), and therefore integrate trait data with large-scale SNP data

along a species tree.

The number of traits that might be used in species delim-

itation can also become very large (e.g., gene expression data).

Our simulations show that iBPP scales very well to many traits

(Fig. 9), but that power is limited when between-species vari-

ation is low (i.e., low λ values). This does not bode well for

gene expression data, which are expected to have a large within-

individual and within-species variance. Phylogenetic signal and

large between-species variation has been observed in some gene

expression studies, however (e.g., across mammals; Brawand et al.

2011).

With large datasets (i.e., hundreds to thousands of loci), it is

possible that the gene(s) underlying a particular trait be used in the

analysis, in which case our conditional independence assumption

between genes and traits is dubious. The expression of a single

gene, for instance, might be more accurately modeled along the

tree for that gene, rather than along the species tree. Nevertheless,

our independence assumption might be adequate if the gene tree

does not conflict strongly with the species tree.

Theoretically, analysis of very large datasets (hundreds of

genes or traits) would require the development of new prior distri-

butions for gene-specific parameters (such as substitution rate) or

trait-specific parameters (such as λ). Currently, these parameters

are given independent priors. With many genes or many traits, the
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Figure 11. Posterior probabilities of individuals assignment to the estimated K̂ clusters from Geneland analyses using traits only (top,

K̂ = 3), haplotypes only (center, K̂ = 2), and both traits and haplotypes (bottom, K̂ = 2).

mean of these parameters across all genes or all traits becomes

narrow-peaked and informative. Similar phenomena have been

discovered recently for other models, with an undue influence of

prior choices on very large trees (Rannala et al. 2012; Dos Reis

et al. 2014).

FUTURE DEVELOPMENTS FOR iBBP (OR OTHER

MODEL-BASED INTEGRATIVE APPROACHES)

Given the promising results from the analyses of phenotypic traits

with continuous variation, extending the framework to accommo-

date additional phenotypic trait data would increase the general

applicability of the approach, as well as provide access to po-

tentially informative traits that are not yet accommodated. This

includes the development of models for discrete traits, as well as

models of evolution that account for dimorphism, for example, by

augmenting within-species variation with known covariates such

as sex, age, or environmental variables known to cause plasticity.

As noted in the analysis of the Australian lizard datasets, only

males were analyzed to avoid variance attributable to sexual di-

morphism, which decreased the number of individuals available

for estimating species boundaries.
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Figure 12. Mean posterior probability (PP) for the true three

species as in Figure 5. Simulated data included six traits, between

10 and 100 genes with migration rate M = 5. For 10 and 20 genes,
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lated only 10 datasets. Computing times are indicated, per repli-

cate dataset.

A challenging but nonetheless interesting prospect would be

to extend the model-based framework beyond genetic and phe-

notypic data to geographic data. Geographic data are already

used to inform assignment of individuals to putative taxa. For in-

stance, the programs STRUCTURE and Geneland (Hubisz et al.

2009; Guillot et al. 2012) use geographic proximity in their prior

distribution as evidence for clustering closely located individuals

in the same population. Indeed, geographic proximity is expected

to correspond to coancestry: geographically proximate individuals

are expected to be potentially interbreeding. Deviations from this

expectation might also provide valuable information for infer-

ring species boundaries. In particular, geographic proximity of

lineages showing genetic distinctiveness might be interpreted as

additional evidence for these lineages to be separate species. In

analyses of genetic data alone, it is arguably unclear what has been

delimited: distinct species versus populations of the same species

showing genetic differentiation due to geographic isolation (see

Hey and Pinho 2012). If geographic data can be leveraged, demon-

stration of genetic distinctiveness despite the potential for gene

flow (i.e., geographic connectedness in past or present; He et al.

2013) would provide key information for interpreting the pro-

cesses underlying observed genetic differences, such as a barrier

to reproduction that is not simply a function of geographic isola-

tion. In addition to geography, ecological divergence might also

be integrated into the model-based framework given the rele-

vant information it might contain about species boundaries (e.g.,

Wiens and Penkrot 2002; Rissler and Apodaca 2007). Recent de-

velopments for the characterization of divergent ecological niches

for allopatric populations (see Warren et al. 2008; McCormack

et al. 2010; Warren et al. 2010) would provide a way to avoid the

confounding effects of nonoverlapping ranges in the characteriza-

tion of ecological niches, especially for those based on ecological

niche modeling (see Alvarado-Serrano and Knowles 2013).

Lastly, as when using BPP, expanding the iBPP approach to

search over multiple guide trees would guard against a key factor

that contributes to failed delimitation: errors in the guide tree. Ide-

ally, the analysis would not rely on a single guide tree, but would

also include alternative species relationships and maximally split

putative species, because the number of estimated species is cur-

rently limited by the number of putative species included in the

guide tree. With respect to this latter point, the trade-off in as-

signing individuals to subgroups within species lineages that are

not in conflict with actual patterns of ancestry may be difficult to

overcome (Olave et al. 2013).

BENEFITS OF AN INTEGRATED EVOLUTIONARY

MODEL

In this work, we provide a framework to address a critical knowl-

edge gap about the limitation of species delimitation methods

based on genetic data alone. Specifically, because both pheno-

typic and molecular data are analyzed in a common Bayesian

framework with our program iBPP, not only can we compare the

accuracy of delimited taxa based on genetic data alone versus

when integrated with phenotypic data, but we can also evaluate

how the integration of phenotypic data might improve the accu-

racy of estimates when divergence occurs with gene flow and/or

is selectively driven. These two realities of the speciation pro-

cess can compromise the accuracy of inferred species boundaries

based on genetic data alone because these methods assume se-

lective neutrality and no gene flow. Based on the improvements

associated with the integration of phenotypic and genetic data,

not to mention the limitations we demonstrate of using genetic

data alone (see also Bauer et al. 2010; Harrington and Near 2012;

McKay et al. 2013; Olave et al. 2013; Edwards and Knowles

2014), it is difficult to justify the practice of focusing exclusively

on genetic data for species delimitation (see also Guillot et al.

2012).

Our study explicitly shows how the benefits of an integrated

evolutionary model for species delimitation can be realized by

(1) narrowing the parameter space where species are undetected

or oversplit (e.g., Bauer et al. 2010; Harrington and Near 2012),

even when species divergence corresponds to the specified model,

as well as (2) avoiding misleading conclusions when genetic di-

vergence violates the assumptions of the coalescent model used

to statistically delimit taxa (Hey and Pinho 2012). Because it is

model-based, iBPP provides a context for interpreting patterns of

differentiation, even when the level of divergence among puta-

tive taxa differs across loci and/or morphological characters. For
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example, limited divergence in phenotypic traits may not be in

conflict with detected genetic differentiation, but instead consis-

tent with expectations based on recent divergence times or low

rates of evolution in the phenotypic characters. Note that the model

used in iBPP accommodates trait-specific parameter values (as

captured by the λ parameter)—that is, it does not assume equal

within-to-between species variance/covariance across phenotypic

characters. With the estimation of λ, iBPP can accommodate phe-

notypic traits that evolve at different rates, including those subject

to selection, and uncertainty in the actual rate of evolution and

between-species contribution are taken into account by the speci-

fied prior. This means that a diversity of traits can be studied even

when the investigator does not have background information on

whether the trait is likely or not to be diverging under selection.

The improved accuracy afforded by the use of multiple data

types has obvious implications for species delimitation in prac-

tice. By not relying on a singular data type, there is a lower

likelihood that diversity is misrepresented (McKay et al. 2013;

Edwards and Knowles 2014). Again, by considering both phe-

notypic and genetic data, the characters related to the speciation

process (e.g., selected phenotypes affecting reproductive isolation

that evolve faster than neutral loci) may be considered in analy-

ses, and statistical approaches for delimitation are less likely to

be mislead when the assumptions of the genetic model or phe-

notypic model are violated. The consideration of multiple data

types using a framework such as iBPP also provides connections

between species detection and description in an integrative taxon-

omy (Yeates et al. 2011). This contrasts with the criticisms leveled

at investigations where the delimitation of taxa relies solely on

genetic data, leaving unanswered the question of what might dis-

tinguish taxa phenotypically and therefore impeding the study of

such taxa if the only means used to identify a putative taxon is by

characterizing its genetic distinctiveness relative to other sampled

taxa (see Bauer et al. 2010). It is also worth noting that applica-

tions of integrative modeling of multiple data types can make con-

nections with taxonomic traditions of identifying distinguishing

phenotypes while maintaining the appeal of statistical rigor and

objectivity—two aspects that have contributed to the increased

popularity of genetic-based delimitation, while diminishing the

support of classic taxonomic treatments (Hey and Pinho 2012).
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Papenfuss, W. Böhme, J. M. Savage, S. Carranza, J. L. Grismer, et al.
2010. Availability of new Bayesian-delimited gecko names and the im-
portance of character-based species descriptions. Proc. R. Soc. B Biol.
Sci. 278:490–492.

Brawand, D., M. Soumillon, A. Necsulea, P. Julien, G. Csardi, P. Harrigan,
M. Weier, A. Liechti, A. Aximu-Petri, M. Kircher, et al. 2011. The evo-
lution of gene expression levels in mammalian organs. Nature 478:343–
348.

Bryant, D., R. Bouckaert, J. Felsenstein, N. A. Rosenberg, and A. RoyChoud-
hury. 2012. Inferring species trees directly from biallelic genetic mark-
ers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol.
29:1917–1932.

Burbrink, F., H. Yao, M. Ingrasci, R. J. Bryson, T. Guiher, and S. Ruane.
2011. Speciation at the mogollon rim in the arizona mountain kingsnake
(Lampropeltis pyromelana). Mol. Phylogenet. Evol. 60:445–454.

Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a
modeling approach for adaptive evolution. Am. Nat. 164:683–695.

Camargo, A., M. Morando, L. J. Avila, and J. W. Sites. 2012. Species delim-
itation with abc and other coalescent-based methods: a test of accuracy
with simulations and an empirical example with lizards of the Liolaemus

darwinii complex (Squamata: Liolaemidae). Evolution 66:2834–2849.
Carstens, B. C., T. A. Pelletier, N. M. Reid, and J. D. Satler. 2013. How to fail

at species delimitation. Mol. Ecol. 22:4369–4383.
Dos Reis, M., T. Zhu, and Z. Yang. 2014. The impact of the rate prior on

Bayesian estimation of divergence times with multiple loci. Syst. Biol.
63:555–565.

Edwards, D. L., and L. L. Knowles. 2014. Species detection and individual as-
signment in species delimitation: can integrative data increase efficacy?
Proc. R. Soc. B Biol. Sci. 281:20132765.

Ence, D., and B. Carstens. 2011. SpedeSTEM: a rapid and accurate method
for species delimitation. Mol. Ecol. Res. 11:473–480.

Felsenstein, J. 2008. Comparative methods with sampling error and within-
species variation: contrasts revisited and revised. Am. Nat. 171:713–725.

Freckleton, R. 2012. Fast likelihood calculations for comparative analyses.
Methods Ecol. Evol. 3:940–947.

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis
and comparative data: a test and review of evidence. Am. Nat. 160:712–
726.
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Appendix: Multiple Traits
Our model assumes independent traits, but can be generalized

to correlated traits. A complex model uses covariance matrix

Cb ⊗ V1 + Cw ⊗ V0 between all traits in all individuals, with

evolutionary covariance Cb between traits along the phylogeny,

and phenotypic covariance Cw within species (Felsenstein 2008).

Here, ⊗ represents the Kronecker product.

This model can be simplified to C ⊗ Vλ if the phylogenetic

and phenotypic covariances are assumed to be proportional with

the same phylogenetic signal λ for all traits. More formally, this

model can be written as vec(Y) ∼ N (μ′ ⊗ 1, C ⊗ Vλ), where

vec(Y) is a column vector of size nd (n individuals, d traits)

made by stacking up all the individual trait data vectors, μ =
(μ1, ..., μd ) contains the ancestral species mean μ j for trait j ,

C = Cb = Cw is the covariance between traits, and Vλ is the

phylogenetic covariance between individuals. The likelihood p is

then given by

−2 log p(Y|μ, C, Vλ) = nd log(2π) + n log |C| + d log |Vλ|
+ tr

(
C−1(Y − 1μ)′V−1

λ (Y − 1μ)
)
,
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where tr(M) is the trace of matrix M and 1 is a vector of

ones of size n. For our Bayesian framework, we use a con-

jugate prior distribution for the ancestral means μ given C
and Vλ: μ ∼ N (μ0,

n
κ0

(1′V−1
λ 1)−1C), which allows us to in-

tegrate μ out analytically. Given the data, C and Vλ, μ is

Gaussian with mean μn = (κ0μ0 + nμ̂)/(κ0 + n) and variance

n/κn(1′V−1
λ 1)−1C, where κn = κ0 + n. Given C and Vλ, the den-

sity of the data then becomes

− 2 log p(Y|C, Vλ) = nd log(2π) + n log |C| + d log |Vλ|
+ d log(κn/κ0) + tr(C−1S(μ̂)), (A1)

where

μ̂ = {(I ⊗ 1)′(C ⊗ Vλ)−1(I ⊗ 1)}−1(I ⊗ 1)′(C ⊗ Vλ)−1vec(Y)

is the MLE of μ and

S(μ̂) = (Y − 1μ̂)′V−1
λ (Y − 1μ̂)

+κ0

κn
(1′V−1

λ 1)(μ̂ − μ0)′(μ̂ − μ0)

is a multivariate sum of squares. Because μ̂ depends on C, there

does not seem to be any tractable conjugate prior for C, unfor-

tunately. However, we can approximate μ̂ by μ̃ = (μ̃1, ..., μ̃d ),

where μ̃ j is the estimated ancestral mean for trait j when ignoring

the other traits, that is, when assuming that traits are independent.

Estimates μ̂ and μ̃ are expected to be close unless correlations in C
are very large. Because μ̃ does not depend on C, plugging in S(μ̃)

for S(μ̂) in (A1) allows us to recognize a conjugate distribution.

Namely, we use an inverse Wishart distribution for C with prior

covariance matrix �0 and ν0 degrees of freedom. Given the data

and Vλ, C is then approximately inverse Wishart with νn = ν0 + n

degrees of freedom and covariance �n = �0 + S(μ̃). Thus, we

obtain the following approximate marginal likelihood p̃(Y|Vλ),

where μ and C have been integrated out:

−2 log p̃(Y|Vλ) = nd log π + d log
κn

κ0
− 2 log

�d (νn/2)

�d (ν0/2)

− ν0 log |�0| + νn log |�n| + d log |Vλ|.

The assumption of a shared λ across all traits is unreason-

able, however. Alternatively, trait k can have phylogenetic signal

λk , with covariance CklV√
λkλl

between trait k and trait l (Freck-

leton 2012; Ho and Ané 2014). In this model, we can rewrite

cov(Yik, Y jl ) = Ckl (
√

λkλl V1,i j + (1 − √
λkλl )V0,i j ). Here, V1 is

calculated as when λ = 1 (between-species variance only) and

V0 = I as when λ = 0 (within-species variance only). Under this

model, vec(Y) has covariance W = C1 ⊗ V1 + C2 ⊗ I, where

C1 = DCD, C2 = C − C1, and D is a diagonal matrix with

terms
√

λk on the diagonal. We can again set a conjugate

prior for μ given W: μ ∼ N (μ0,
n
κ0

W̃). Here, W̃ = ∑n
i, j=1 W̃i j

is constructed by splitting the matrix W−1 of size nd × nd

into d × d submatrices W̃i j , one for each pair of individuals

i, j = 1, ..., n. Given W and the data, μ has a Gaussian pos-

terior distribution with mean μn = (κ0μ0 + nμ̂)/(κ0 + n) and

variance n/κnW̃. Given C, the tree, and λk values, the likelihood

becomes

−2 log p(Y|C, V1,λ1, . . . ,λd ) = nd log(2π) + nd log |W|
+ d log

κn

κ0
+ (vec(Y) − μ̂′ ⊗ 1)′W−1(vec(Y) − μ̂′ ⊗ 1)

+ κ0

κn
(μ̂ − μ0)W̃(μ̂ − μ0)′ .

Given the complexity of W, we could not find a conjugate

prior that would allow us to integrate out C analytically. This

causes some extra computational burden for the MCMC to sample

C and this model was not implemented.
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