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ABSTRACT

In the pMN domain of the spinal cord, Notch signaling regulates the balance between motor
neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differ-
entiation. Here, we sought to study the role of Notch signaling in regulation of the switch from
the pMN progenitor state to differentiated motor neurons in a human model system. Human
embryonic stem cells (hESCs) were directed to differentiate to pMN-like progenitor cells by the
inductive action of retinoic acid and a Shh agonist, purmorphamine. We found that the expres-
sion of the Notch signaling effector Hes5 was induced in hESC-derived pMN-like progenitors and
remained highly expressed when they were cultured under conditions favoring motor neuron
differentiation. Inhibition of Notch signaling by a y-secretase inhibitor in the differentiating
PMN-like progenitor cells decreased Hes5 expression and enhanced the differentiation toward
motor neurons. Conversely, over-expression of Hes5 in pMN-like progenitor cells during the dif-
ferentiation interfered with retinoic acid- and purmorphamine-induced motor neuron differen-
tiation and inhibited the emergence of motor neurons. Inhibition of Notch signaling had a
permissive rather than an inductive effect on motor neuron differentiation. Our results indicate
that Notch signaling has a regulatory role in the switch from the pMN progenitor to the differ-
entiated motor neuron state. Inhibition of Notch signaling can be harnessed to enhance the dif-

ferentiation of hESCs toward motor neurons. STEM CELLS 2015;33:403—-415

INTRODUCTION

The Notch signaling pathway plays an essential
role in maintenance of progenitor cell popula-
tions and in preventing their differentiation into
mature progenies. Notch signaling is initiated
when Notch receptor on one cell is activated
by a ligand expressed on a neighboring cell.
Upon activation, the Notch receptor intracellu-
lar domain is cleaved by Presenilin proteases of
the y-secretase complex and translocates to the
nucleus to form a complex with CBF1/RBPj,
Su(H), Lag-1 (CSL) and Master-mind (Maml) pro-
teins [1-4]. This complex then activates expres-
sion of the Hes (Hesl and Hes5) and Hey
transcription factors, which repress the expres-
sion of proneural genes such as Neurogenin 1/
2 and Ascll, thereby inhibiting neuronal differ-
entiation and maintaining neural progenitor
cells [5].

In the developing spinal cord, Notch signal-
ing has a prominent role both in maintenance
of neural and glial progenitor cells and in regu-
lation of specific neuronal fate decisions. Spe-
cific progenitor cells with distinct identities and
fates are organized along the dorso-ventral axis
of the neural tube in five domains, termed p0-
p3 and pMN. Recently it was shown that the
transcription factor Nkx6.1 plays an active role
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in inducing the expression of the Notch ligand
DII1 in both the pMN and p2 domains and the
resulting Notch signaling maintains the progeni-
tor state in the distinct domains [6]. Accord-
ingly, conditional knockout of Notchl receptor
results in a reduction of all neural progenitor
subtypes in the ventral spinal cord [7].
Progenitor cells in the p0-p3 domains gen-
erate different classes of ventral interneurons,
named VO0-V3, respectively, whereas pMN pro-
genitor cells at early stages of development
appear to be committed to generate motor
neurons (MNs). Later in development, they
switch to produce oligodendrocytes [8-11].
pMN progenitor cells selectively express the
bHLH protein Olig2, which is required to spec-
ify both motor neuron and oligodendrocyte
cell identities [12, 13]. Olig2 primes pMN pro-
genitor cells to become motor neurons by trig-
gering the expression of Neurogenin 2 (Ngn2)
bHLH protein. Coexpression of Olig2 and Ngn2
directs the pMN progenitors to leave the cell
cycle and to become motor neurons, while
progenitors in which Ngn2 expression is low
remain as proliferative progenitors which are
specified to an oligodendrocyte fate [13-15].
Ngn2 is repressed by Notch signaling, as
was shown by the upregulation of Ngn2
expression in the ventral spinal cord of Notchl
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conditional null mice [7]. In the pMN domain, Notch signaling
acts to maintain the balance between progenitors that differ-
entiate into motor neurons during the neurogenic phase and
those that are preserved as a pool of presumptive progenitors
for the gliogenic phase [16, 17].

It was shown that loss of the Notch signaling in the pMN
domain increased motor neuron differentiation and results in a
progressive depletion of the pMN progenitors over time. Con-
versely, activation of Notch signaling resulted in a reduction in
motor neurons [6, 17]. In light of the potential role of Notch sig-
naling during motor neurons development in animal models, we
sought to study its role in human motor neuron development
using human embryonic stem cells (hESCs) as a model system.

Human ESCs have been reported to generate spinal motor
neurons in a pathway that recapitulates the steps of motor
neuron differentiation in vivo. After initial neuralization, caud-
alization is induced by retinoic acid (RA) and ventralization by
Shh morphogen [18-21]. In response to the Shh, hESCs-
derived pMN progenitors express Pax6, Nkx6.1, and Olig2
transcription factors similar to their in vivo counterparts, and
can be further differentiated into early Hb9 expressing and to
mature ChAT-producing spinal motor neurons.

Using BAC transgenic reporter lines, the Notch compo-
nents Hes5 and DIlI1 have been shown to be dynamically
expressed during the differentiation of hESCs into motor neu-
rons [22]. Hes5 is highly expressed in hESCs-derived neural
progenitors and is downregulated during their differentiation
into motor neurons. Conversely, DII1 is expressed at low lev-
els in neural progenitors and is upregulated upon their differ-
entiation, being expressed in Hb9-positive motor neurons.

To better understand how the activity of Notch signaling
controls differentiation of hESCs into motor neurons, the study
we report here tested the functional relationship between the
expression levels of the Notch downstream effector Hes5 and
motor neuron differentiation. We show that in response to RA
and the Shh agonist purmorphamine (PUR), hESC-derived neu-
ral progenitor cells are specified to generate pMN-like progeni-
tor cells characterized by the expression of Olig2 and Ngn2.
The neuralization and subsequent specification to pMN-like
progenitors are concomitant with the induction of the expres-
sion of Hes5. However, further differentiation of the pMN-like
progenitor cells into motor neurons is low, raising the possibil-
ity that Notch signaling inhibits their differentiation. Using the
y-secretase inhibitor DAPT to inhibit Notch signaling in differen-
tiating pMN-like progenitor cells, we found that inhibition of
Notch signaling downregulates Hes5 expression and enhances
the differentiation of pMN-like progenitors into motor neurons.
Conversely, over-expression of Hes5 in differentiating pMN-like
progenitors inhibits subsequent differentiation into motor neu-
rons. Still, in the absence of RA and PUR, inhibition of Notch
signaling was not sufficient to direct the differentiation of the
pPMN progenitors toward motor neural fate, indicating a per-
missive rather than instructive role of Notch signaling in the
process of differentiation toward spinal motor neurons.

MATERIALS AND METHODS

Cell Culture

Human ESCs (HES1 passages 21-33 with a normal karyotype)
were cultured as described [23, 24].
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For differentiation, hESC colonies were picked up by
means of collagenase IV (1 mg/ml; GIBCO-BRL, Gaithersburg,
MD, www.lifetechnologies.com), triturated into small, 50—-100
cell clumps, and placed into ultralow adherent culture dishes
(Thermo Scientific Nunc HydroCell, www.thermoscientific.
com). For the first 4 days, cells were grown in neural stem
cells (NSC) media, consisting of Dulbecco’s modified Eagle’s
medium (DMEM)/nutrient mixture F-12 (DMEM/F-12; Invitro-
gen, Carlsbad, CA, www.lifetechnologies.com) and 2% B27
supplement with 20 ng/ml FGF2 (PeproTech, Inc., Rocky Hill,
NJ) and 5 pM SB431542 (SB; Selleck Chemicals LLC, Houston,
TX, www.selleckchem.com). At day 14, neural spheres were
switched to medium consisting of DMEM/F-12 and 1% N2
supplement with 1 puM all-trans RA (Sigma-Aldrich, Saint
Louis, MO. www.sigma-aldrich.com) and 1 uM dibutyryl cAMP
(Sigma). At day 21, the spheres were cultured in medium con-
sisting of Neurobasal (Invitrogen) and N2 supplement with 1
UM RA, 0.5 uM PUR (Cayman Chemical, Ann Arbor, MI, www.
caymanchem.com), and 1 uM dibutyril cAMP for a 3-week
period. For differentiation, spheres were cut into small clus-
ters and plated on poly-lysine/laminin-coated cover glasses for
1 week, in Neurobasal medium with 1% N2 supplement con-
taining 0.25 pM or 0.5 uM RA, 0.125 puM, or 0.25 puM PUR,
10 ng/ml each brain-derived neurotrophic factor (BDNF), glial
cell line-derived neurotrophic factor (GDNF), insulin-like
growth factor 1 (IGF-1) (PeproTech, Inc., www.peproTech.
com), and 1 uM dibutyril cAMP. DAPT, N-[N-(3,5-difluorophe-
nacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, dissolved in
dimethyl sulfoxide (DMSO) (Sigma), was used at a final con-
centration of 1 pM. DMSO was used as vehicle control.

Lentiviral Constructs and Transduction

Human Hes5 (aa 1-167) was amplified using Phusion Hot
Start Flex DNA polymerase (New England Biolabs, Inc., Ips-
wich, MA, www.neb.com) and cloned into pFLAG-CMV-2.
FLAG-tagged Hes5 was cloned to SIN18.Cppt.hEFlap.WPRE
lentiviral vector. Empty lentiviral vector was used as control.
Concentrated lentiviral stocks were prepared as described
[23]. Neural spheres treated with 1 uM RA and 0.5 pM PUR
for 19 days were cut into small clusters and incubated over-
night with the concentrated viral supernatant, which was
then replaced with fresh Neurobasal medium supplemented
with RA and PUR. Two days later, the transduced cells were
plated for differentiation as described above.

Immunocytochemistry

Cells were fixed in 4% Paraformaldehyde, permeabilized with
0.2% Triton X-100, and stained at room temperature with pri-
mary antibodies. Primary antibodies used in this study included
antibodies against Ngn2 (Santa Cruz Biotechnology, Inc., Dallas,
TX, www.scbt.com, 1:75), Goat Olig2 (R&D System, Inc., Minne-
apolis, MN, www.rndsystems.com, 1:75), mouse Olig2 (clone
211F1.1, Millipore Corporation, www.emdmillipore.com, 1:150),
Islet-1 (Developmental Studies Hybridoma Bank, DSHB, lowa City,
IA, www.dshb.biology.uiowa.edu, 1:50), Lim3 (DSHB, 1:200),
MNR2 or Hb9 (DSHB, 1:50), ChAT (R&D System, Inc., 1:300),
FLAG (Sigma-Aldrich, 1:1,000), and DYKDDDDK Tag (Cell Signaling
Technology, Inc., Danver, MA, www.cellsignal.com, 1:500). Nuclei
were counterstained with 4,6-diamidino-2-phenylindole (DAPI;
Vector Laboratories, Burlingame, CA, www.vectorlabs.com).
Quantification was performed using ImageJ software (NIH, public
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domain software) by measuring positive stained area relative to
total DAPI. Quantifications are represented as a mean percent-
age of total DAPI +SD or SEM and are from at least 15 random
fields captured in three or more independent experiments.

PCR Analysis

Total RNA was extracted from cells at different stages along
the differentiation into motor neurons, by means of TRIzol
(Invitrogen). cDNA was synthesized with Moloney murine leu-
kemia virus reverse transcriptase (M-MLV RT) and random pri-
mers, according to the manufacturer’s instructions (Promega
Corporation, Madison, WI, www.promega.com). RT-PCR was
performed with Tag DNA Polymerase (Promega Corporation).
Primers used are given in Supporting Information.

For quantitative real-time PCR, TagMan Assays-on-Demand
Gene Expression Products (Supporting Information data), TagMan
Universal PCR Master Mix, and ABI Prism 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA, www.
appliedbiosystems.com) were used. Large ribosomal protein PO
(RPLPO) was used as an internal reference for normalization.

Statistical Analysis

All experiments were performed at least three times unless
otherwise indicated. Data are presented as means + SD or
SEM. Statistical significance was calculated using GraphPad
Instat software using one-tailed unpaired Student’s t test for
comparison between two groups. A p-value of <.05 was con-
sidered significant.

REsuLTS

Derivation and Characterization of pMN-Like
Progenitor Cells from hESCs

Induction of hESC differentiation toward motor neurons was
previously described to progress through three sequential
steps: neuralization, generation of caudal-ventral pMN pro-
genitors, and differentiation into motor neurons. Based on
similar principles, we used a modified four-stage protocol
(Supporting Information Fig. S1) [18-20].

In stage 1, hESCs were induced to differentiate to neuro-
ectoderm by culturing hESC clusters in the presence of
SB431542 (activin receptor inhibitor) and FGF2 for 4 days fol-
lowed by 10 days culturing in the presence of FGF2 only. At
the end of this culture period, the clusters acquired a round
morphology typical of neural spheres and were highly
enriched for neural precursor cells expressing PSA-NCAM [25].

In stage 2, specification of these neural precursors toward
caudal fate was induced by treating the spheres with RA (1 pM).
The spheres diameter were maintained below 300 um by gentle
trituration to allow the penetration of RA. Following 1 week of
treatment with RA, the neural precursors acquired a caudal fate
as indicated by the upregulation of hox genes expression (Fig.
1A). The expression of Hox-c genes suggested that the neural
progenitors acquired a rostral-cervical spinal cord identity [26].

It was previously shown that motor neurons differentiate
from ventral progenitors of the pMN domain that coexpress
Olig2 and Ngn2 [14, 15, 27-29]. In the developing spinal cord,
the expression of Olig2 and Ngn2 is induced by Shh secreted
from the floor plate and the notochord [26, 30]. To induce ven-
tralization of the caudal progenitors generated upon RA treat-
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ment, in stage 3 the spheres were cultured for 3 weeks in the
presence of the Shh agonist PUR (0.5 puM) in addition to RA.
QRT-PCR analysis revealed that following 1 week caudalization
with RA, Olig2 and Ngn2 expression levels in the progenitors
were induced by 2.5- and 17-fold, respectively, while addition
of PUR further induced both Olig2 and Ngn2 by 13- and 3.5-
fold, respectively (Fig. 1B, 1C). Immunofluorescence staining
revealed that upon the first week of RA treatment only few
cells were immunoreactive with either anti-Olig2 (Fig. 1D) or -
Ngn2 (Fig. 1E), while at the end of 3 weeks treatment with RA
and PUR, 57% of the progenitors were stained positive for
Olig2 (Fig. 1F) and 46% were stained positive for Ngn2 (Fig.
1G). Forty-four percentage of the cells coexpressed Olig2 and
Ngn2 as demonstrated by coimmunostaining for these markers
(Supporting Information Fig. S2). The expression of both Olig2
and Ngn2 is indicative of ventral pMN-like progenitors.

Analysis of motor neuron markers expression by qRT-PCR
revealed that Hb9 gene was upregulated by 17-fold upon RA
treatment and its expression was slightly increased (24-fold)
in pMN-like progenitor cells upon addition of PUR (Fig. 1H).
Isl1 gene expression was induced by 1.6-fold in the caudal
progenitors, and its expression was mildly increased in the
pMN-like progenitors (Fig. 11). However, coimmunostaining of
the pMN-like progenitors for Hb9 and either Olig2 or Ngn2
revealed that while the majority of the cells expressed Olig2
or Ngn2, only a few cells were immunoreactive with anti-Hb9
(Fig. 1J, 1K). This observation suggested that at that stage the
cells did not yet differentiate into motor neurons but
remained as pMN-like progenitors that have the potential to
differentiate into motor neurons.

Differentiation of pMN-Like Progenitor Cells Toward
Motor Neurons

In stage 4, the pMN-like progenitors were induced to differen-
tiate into early motor neurons [Hb9(+), ChAT(—)] by plating
on laminin for 1 week in differentiation medium (0.5-RP) that
was supplemented with halved concentrations of RA and PUR
(0.5 uM and 0.25 pM, respectively). The medium was further
supplemented with dibutyril cAMP and the neurotrophic fac-
tors BDNF, GDNF, and IGF-1. As a control, the progenitors
were differentiated in the presence of DMSO vehicle com-
bined with neurotrophic factors and dibutyril cAMP.

Following 1 week of differentiation, the cells were analyzed
for the expression of motor neuron markers Isl1, Lhx3, and Hb9.
The transcriptional levels of Isl1 and Lhx3 were not significantly
changed compared with the levels in the pMN progenitors (Fig.
2A, 2B). The expression level of Hb9 was significantly (p =.01)
increased by 9-fold in control cells treated with DMSO and by
12-fold in cells treated with RA and PUR (Fig. 2C). It appears
that plating control cells on laminin promoted MN differentiation
that was further mildly augmented by RA and PUR. The increase
in Hb9 expression may be attributed to its activation by the
upregulated expression of Ngn2 in pMN-like progenitors [31].

Immunofluorescence staining of the differentiating progeni-
tors revealed 17% Lhx3 and 12% Isl1 positive cells in the pres-
ence of RA and PUR compared with 10% Lhx3 and 5% Isl1-
positive cells in the control (p <.01) (Fig. 2D, 2D/, 2E, 2F/, 2G).
Moreover, in the presence of RA and PUR, 22% of the cells were
Hb9 positive compared with 5% positive cells in the control
(p<.001) (Fig. 2F, 2F, 2G). still at this stage of differentiation
36% and 18% of the cells expressed Olig2 and Ngn2, respectively
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Figure 1. Caudalization and ventralization of neural progenitor cells. (A): Hox genes expression in caudal progenitors grown for 1 week
in the presence of 1 UM retinoic acid (RA). RT-PCR analysis indicated induction of Hox genes in progenitors treated with RA compared
with their nontreated counterparts (NT). GAPDH levels were used as quantitative reference. (B, C): Expression of Olig2 and Ngn2 in cau-
dal and ventral progenitor cells. Neural progenitors were grown for 1 week in the presence of 1 nM RA followed by 3 weeks treatment
with 1 uM RA and 0.5 uM purmorphamine to generate first caudal progenitors (1W RA) and then ventral pMN-like progenitors (3W
RAP). QTR-PCR analysis of the expression Olig2 (B) and Ngn2 (C) genes in caudal (1W RA) and ventral (3W RAP) progenitor cells relative
to the expression level in neural progenitor cells (NT). Expression level in neural progenitor cells was set as 1. Fold activation over con-
trol is derived from three experiments. Data are presented as mean + SD. *, p <.01 by Student’s t test. (D—G): Immunofluorescence
images demonstrating the expression of Olig2 (D and F) and Ngn2 (E and G) in caudal (1W RA) and ventral (3W RAP) progenitor cells.
Blue indicates DAPI stained nuclei. Scale bars =100 pum. (H-K): Expression of motor neurons markers in caudal and ventral pMN-like
progenitor cells. (H, I): QRT-PCR analysis of the expression of Hb9 (H) and Isl1 (I) genes in caudal (1W RA) and ventral (3W RAP) progen-
itor cells relative to the expression level in neural progenitor cells (NT). Expression level in neural progenitor cells was set as 1. Fold
activation over control is derived from three experiments. Data are presented as mean + SD. **, p <.05 by Student’s t test. (J, K):
Immunofluorescence analysis of ventral progenitor cells (3W RAP) stained with antibodies to Hb9 (green) and Olig2 (red, J) or Ngn2
(red, K). Blue indicates DAPI stained nuclei. Scale bars = 100 pm. Abbreviation: DAPI, 4,6-diamidino-2-phenylindole.

(Supporting Information Fig. $3). Taken together, these data sug-  The NO‘ECh Dom{ns.tream Effect(?r Hes5 Is Upregulated
gest that RA and PUR promoted the differentiation of the pMN-  Upon Differentiation of hESCs into Motor Neurons

like progenitors toward MN fate, albeit a proportion of the cells It is well established that Notch signaling plays a key role in
remained in the pMN-like progenitor state. the maintenance of undifferentiated neural progenitors while
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Figure 2. Expression of motor neurons markers upon differentiation of ventral pMN-like progenitor cells. Ventral pMN-like progenitor
cells (3W RAP) were differentiated for 1 week in the presence of 0.5 UM retinoic acid (RA) and 0.25 uM purmorphamine (PUR) (0.5-RP)
or in the presence of DMSO vebhicle control. (A=C): QRT-PCR analysis of the expression of Isl1 (A), Lhx3 (B), and Hb9 (C) genes in pro-
genitor cells differentiating in the absence (DMSO) or presence of RA and PUR (0.5-RP) relative to the expression levels in ventral pMN-
like progenitor cells (3W RAP). Expression level in pMN-like progenitor cells was set as 1. Fold activation over control is derived from
three experiments. Data are presented as mean + SD. *, p =.01 by Student’s t test. (D-G): Immunofluorescence images demonstrating
the expression of Lhx3 (D, D’), Isl1 (E, E’), and Hb9 (F, F') in cells differentiated in the presence of DMSO (D—F) or RA and PUR (0.5-RP,
D'—F'). Blue indicates DAPI counter stained nuclei. Scale bars = 100 um. (G) Quantification of the percentage of Lhx3, Isl1, and Hb9 posi-
tive cells following differentiation in the presence of DMSO or 0.5-RP. Data derived from three experiments are represented as
mean + SD. *, p <.01; **, p <.05 by Student’s t test. (H, 1): Notch signaling is active along the differentiation of neural progenitor cells
into motor neurons. (H): RT-PCR analysis of the expression of Notch receptors and Hes genes in undifferentiated human embryonic
stem cell (HES), NP, caudal progenitor cells (RA), ventral pMN-like progenitor cells (RAP), and progenitors differentiating in the absence
(DMSO) or the presence of RA and PUR (0.5-RP). GAPDH levels were used as quantitative reference. (I): QRT-PCR analysis of the expres-
sion of Hes5 gene in undifferentiated hESCs, NP, caudal progenitor cells (1W RA), ventral pMN-like progenitor cells (3W RAP), progeni-
tors differentiating in the presence of RA and PUR (0.5-RP) and progenitors differentiating in the presence of RA, PUR, and DAPT (0.5-
RPD). Expression level in undifferentiated hESCs was set as 1. Fold activation over undifferentiated hESCs is derived from four experi-
ments. Data are presented as mean + SD. *, p <.01; **, p <.05 by Student’s t test. Abbreviations: NP, neural progenitor cells; DAPI,
4,6-diamidino-2-phenylindole.
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preventing premature differentiation. To test whether Notch
signaling prevents pMN-like progenitors to differentiate into
postmitotic MNs, we tested whether Notch signaling is active
in the differentiating pMN-like progenitors. We first assessed
the expression of Notch receptors in hESCs and their differen-
tiating progeny throughout the stages of the differentiation
protocol. RT-PCR analysis showed that Notch receptors
(Notchl, Notch2, and Notch3) were expressed at similar levels
in hESCs as well as in neural precursors, caudal, and pMN-like
progenitors and in the progenitors that were induced to dif-
ferentiate (Fig. 2H). In contrast, low expression levels of the
Notch downstream effectors, Hesl and Hes5, were observed
in hESCs and their expression was significantly induced upon
differentiation into neural precursors, caudal, and pMN-like
progenitors as well as differentiating progenitors (Fig. 2H).

Both Hesl and Hes5 were shown to be expressed in the
ventricular zone of the spinal cord in complementary
domains. However, in Notchl—/— mice decreased expression
of Hes5 but not Hesl was observed in the ventral spinal cord
[7, 32], suggesting that in the ventral spinal cord Hes5 is a
direct target of Notch signaling while Hes1 could be regulated
by other signaling pathways. Thus, we focused our analysis on
Hes5 and tested its expression throughout the four differen-
tiation stages by qRT-PCR.

Hes5 was dramatically induced (100-fold) upon differentia-
tion of hESCs into neural precursors and a similar level of
expression was maintained upon further differentiation to
caudal progenitors. Following RA and PUR treatment and dif-
ferentiation into pMN-like progenitors, a fourfold increase in
Hes5 expression was observed. This expression level was
maintained after 1 week of plating the progenitors for differ-
entiation into MNs, in line with the maintenance of pMN-like
progenitor state by a proportion of the cells (Fig. 2I). Collec-
tively, these data suggest that Notch signaling is activated
upon differentiation of hESCs toward pMN-like progenitors
and that Hes5 may regulate the maintenance of pMN-like pro-
genitors and the prevention of their differentiation.

Inhibition of Notch Signaling Enhances the
Differentiation of pMN-Like Progenitor Cells into
Motor Neurons

To study whether Notch signaling prevents the differentiation
of the pMN-like progenitors into motor neurons we tested
whether its inhibition promotes motor neuron differentiation
of the pMN-like progenitors. Notch signaling can be blocked
pharmacologically by DAPT, which inhibits y-secretase activity
and prevents Notch receptor cleavage [33, 34]. To test
whether DAPT inhibits Notch signaling during the differentia-
tion of the pMN-like progenitors toward motor neurons, the
progenitors were allowed to differentiate as before in the
presence of RA and PUR combined DMSO or with DAPT (0.5-
RP or 0.5-RPD, respectively). In the presence of DAPT, an
eightfold decrease in Hes5 expression level was observed in
the differentiating pMN-like progenitors, indicating that Notch
signaling was inhibited (Fig. 2I).

Next, we tested whether the decrease in Hes5 expression
was concomitant with an increased expression of motor neu-
ral markers. It was previously shown that specification of
PMN progenitors into motor neuron fate is regulated by Ngn2
and Olig2, where progenitors that express both Olig2 and
Ngn2 develop as motor neurons while those expressing only
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Olig2 become oligodendrocytes [14, 15, 27, 29]. Neither
increase nor decrease in Olig2 expression was detected in
DAPT-treated cells, while a 1.5-fold increase in Ngn2 expres-
sion was observed (Fig. 3A). Similarly, immunostaining showed
comparable levels of Olig2 either in the absence or presence
of DAPT (Fig. 3B, 3B’) while the expression of Ngn2 was
increased in the presence of DAPT (Fig. 3C, 3C'). These results
suggest that Notch inhibition promoted the differentiation of
the pMN-like progenitors toward the motor neuron fate. In
DAPT-treated cultures of differentiating pMN-like progenitors,
the expression levels of IsI1 and Lhx3 were increased by 3-
and 1.7-fold, respectively (Fig. 3D), indicating that inhibition
of Notch signaling promoted the differentiation of the pMN-
like progenitors toward motor neurons.

Ngn2 synergizes with Isl1 and Lhx3 to activate the expres-
sion of Hb9, which is specifically expressed in motor neurons
[35-39]. In accordance with the increased expression of Ngn2,
Isl1, and Lhx3, a threefold increase in Hb9 expression level
was observed in DAPT-treated cells (Fig. 3E).

Immunostaining showed that in the presence of DAPT, Isl1
and Lhx3 expressions were detected in 30% of the differentiat-
ing cells compared with 12% and 17%, respectively, in the
absence of DAPT (Fig. 3F, 3F, 3G, 3G/, 3J). Hb9 expression was
detected in 31% of the cells differentiating in the presence of
DAPT compared with 20% in its absence (Fig. 3H, 3H’, 3J).

The early motor neurons could be further matured into
motor neurons by continuous culturing in suspension. Follow-
ing 4-5 weeks culturing period in the presence of DAPT, the
differentiated cells no longer expressed Hb9 while a substan-
tial percent of the cells were stained positive to choline acetyl
transferase (ChAT), which is exclusively expressed in motor
neurons of the ventral spinal cord (Fig. 3, 3I').

Moreover, when treatment with DAPT was combined with
further lowering the concentrations of RA and PUR (0.25-RPD
medium containing 0.25 uM RA, 0.125 pM PUR, and 1 pM
DAPT), 40% of the differentiating cells expressed Hb9 com-
pared with 20% in the absence of DAPT (Fig. 3K, 3K’). There-
fore, in subsequent experiments, we used the 0.25-RPD
medium for differentiation of the pMN-like progenitors. Col-
lectively, these data suggested that inhibition of Notch signal-
ing in differentiating pMN-like progenitors resulted in an
increased expression of motor neuron markers.

When the cells were allowed to differentiate in the pres-
ence of DAPT without RA and PUR, only 15% of the differenti-
ating cells expressed Hb9 (data not shown). This finding
suggested an instructive role of RA and PUR in directing the
differentiation of the progenitors toward motor neurons,
which was augmented when Notch signaling was inhibited.

Over-Expression of Hes5 Inhibits the Differentiation of
pMN-Like Progenitor Cells Toward Motor Neurons

Previous studies have identified Hes5 as a Notch target in the
developing spinal cord, where it represses proneural genes
such as Ngn2 [7, 40, 41]. To identify the downstream targets
of Hes5 in the differentiating motor neurons, we used a lenti-
viral vector to over-express Flag-tagged Hes5 (FL-Hes5) in
pMN-like progenitors just prior to their differentiation into
motor neurons. Upon transduction of pMN-like progenitors
with FL-Hes5 vector followed by differentiation in the pres-
ence of RA and PUR, an eightfold increase in Hes5 expression
level was observed compared with control cells that were
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transduced with a vector that did not include Hes5 (Vector,
Fig. 4A). As was expected, FL-Hes5 transduced expression was
not affected by DAPT (Fig. 4A), indicating a constitutive Hes5
expression in differentiating motor neurons, similar to consti-
tutively active Notch signaling. To test the effect of constitu-
tive Hes5 expression on motor neuron differentiation, we
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fold induction in vector-only transduced cells (Fig. 4B, 0.25-
RP). Moreover, in FL-Hes5 transduced cells Ngn2 expression
was not induced in the presence of DAPT (Fig. 4B, 0.25-RPD),
indicating a constitutive repression of Ngn2 expression in the
differentiating pMN-like progenitors.

In vector-only transduced cells, RA and PUR induced a
fourfold increase in Hb9 expression level, while only a twofold
increase was observed in FL-Hes5 transduced cells (Fig. 4C,
0.25-RP). The expression level of Lhx3 in vector-only trans-
duced cells was induced by 7.9-fold in the presence of RA
and PUR, while only a twofold increase was observed in FL-
Hes5 transduced cells (Fig. 4D, 0.25-RP). These data suggest
that constitutively active Notch signaling interferes with RA
and PUR to induce differentiation of pMN-like progenitors
toward motor neuron fate. In the presence of DAPT, FL-Hes5
over-expression resulted in a 2.5-fold reduction in both Hb9
and Lhx3 expression levels compared with the expression lev-
els in vector-only transduced cells (Fig. 4C, 4D; 0.25-RPD).

In contrast, in the presence of RA and PUR, Isl1 expres-
sion was similarly induced in both FL-Hes5 and vector-only
transduced cells (1.7-fold) (Fig. 4E, 0.25-RP). In the presence
of DAPT comparable expression levels of Isll (fourfold) were
observed in either FL-Hes5 or vector-only expressing cells (Fig.
4E, 0.25-RPD). These results suggest that Hes5 does not
directly regulate Isl1.

In support with the RNA expression data, immunostaining of
FL-Hes5 transduced cells for the motor neuron markers revealed
a dramatic decrease in differentiation of the pMN-like progeni-
tors into motor neurons. In the absence of DAPT (Fig. 5A-5D/,
0.25-RP), as low as 3%—5% of the FL-Hes5 transduced cells were
stained positive for Hb9, Isl1, or Lhx3 compared with 10%—-15%
positive cells in vector-only transduced cells (51-5K, 0.25-RP). In
the presence of DAPT (Fig. 5E-5H’, 0.25-RPD), 4%—6% of the FL-
Hes5 transduced cells were stained positive compared with
20%—30% positive cells in vector-only transduced cells (Fig. 51—
5K, 0.25-RPD). Coimmunostaining for FL-Hes5 and Hb9 showed
that Flag expressing cells did not express Hb9 (Supporting Infor-
mation Fig. S4). Interestingly, while the level of Isl1 mRNA tran-
scripts was not reduced by FL-Hes5 over expression (Fig. 4E),
immunostaining analysis showed reduction in the percentage of
Isl1 positive cells (Fig. 5D/, 5H, 5K) suggesting post-
transcriptional regulation of Isl1 as previously reported [42, 43].

Our data suggest that constitutive expression of FL-Hes5
in differentiating pMN-like progenitors inhibited their differen-
tiation into motor neurons. These results suggest that Notch
signaling maintains pMN progenitors and prevents them from
differentiation toward postmitotic motor neurons.

Inhibition of Notch Signaling Enhances Motor Neuron
Fate Specified by RA and PUR

Lhx3 expression is not exclusive to motor neurons but is also
characteristic to progenitors in the p2 domain of the develop-
ing spinal cord. The p2 progenitors express the Chx10 tran-
scription factor in addition to Lhx3 and give rise to V2
interneurons [39]. To assess whether the pMN-like progenitors
differentiate to a mixed population of motor neurons and
interneurons, the differentiating cells were costained for
Chx10, and either Lhx3 or Hb9. Strikingly, in the presence of
RA and PUR, Chx10-expressing cells were not demonstrated in
the absence or presence of DAPT (Fig. 6A-6B’), while at the
same time cells expressing Lhx3 (Fig. 6A, 6A’) or Hb9 (Fig. 6B,
6B’) were observed as expected. However, when the cells
were allowed to differentiate in the presence of DAPT without
RA and PUR, we observed two cells populations: one coex-
pressed Chx10 and Lhx3 (Fig. 6C) and the other expressed
either Hb9 or Chx10 (Fig. 6D), indicating differentiation into a
mixed population of both interneurons and motor neurons. In
the presence of DMSO vehicle, only a low percentage of the
cells expressed Chx10, Lhx3, or Hb9 (Fig. 6C/, 6D'). These
results suggest that RA and PUR specify the pMN-like progeni-
tors toward the motor neural fate while at the same time
they prevent the differentiation toward the interneural fate.
Moreover, inhibition of Notch signaling enhances the motor
neural-directed differentiation induced by RA and PUR.

In this study, we show that Notch signaling has a role in
motor neuron differentiation of hESCs. We demonstrate that
Notch signaling is active during the differentiation of pMN-like
progenitors inhibiting their maturation into motor neurons.
Inhibition of Notch signaling at the stage of pMN-like progeni-
tors differentiation by DAPT significantly enhances the

Figure 3.

Inhibition of Notch signaling enhances the differentiation of pMN-like progenitor cells into motor neurons. pMN-like progeni-

tor cells were differentiated for 1 week in the presence of 0.5 uM retinoic acid (RA) and 0.25 uM purmorphamine (PUR) combined with
DMSO vehicle (0.5-RP) or with DAPT (0.5-RPD). (A): QRT-PCR analysis of the expression of Olig2 and Ngn2 genes in pMN-like progenitor
cells differentiating in the presence DAPT (0.5-RPD; black bars) relative to the expression levels in progenitor cells differentiating in the
absence of DAPT (0.5-RP, white bars). Expression levels in progenitors differentiating without DAPT were set as 1. Fold activation is
derived from four experiments. Data are presented as mean + SD. *, p = .01; **, p < .05 by Student’s t test. (B, C): Immunofluorescence
analysis of Olig2 (B) and Ngn2 (C) expression in progenitor cells differentiated in the absence (0.5-RP, B, C) or presence of DAPT (0.5-
RPD, B/, C'). Blue indicates DAPI stained nuclei. Scale bars =100 um. (D, E): QRT-PCR analysis of the expression of Isl1, Lhx3 (D), and
Hb9 (E) genes in progenitor cells differentiated in the presence of RA and PUR combined with DMSO vehicle (0.5-RP; white bars) or
with DAPT (0.5-RPD; black bars) relative to the expression in pMN-like progenitor cells (3W RAP; blue bars). Expression level in pMN-
like progenitors was set as 1. Fold activation is derived from four experiments. Data are presented as mean + SD. *, p <.01; **, p <.05
by Student’s t test. (F-H’): Immunofluorescence images demonstrating the expression of Isl1 (F, ), Lhx3 (G, G’), and Hb9 (H, H') in cells
differentiated in the absence (0.5-RP, F-H) or in the presence of DAPT (0.5-RPD, F'—H’). Blue indicates DAPI stained nuclei. Scale
bars = 100 pm. (I, I'): Immunofluorescence images demonstrating the expression of ChAT in cells differentiating for 5 weeks in the pres-
ence of RA and PUR combined with DMSO vehicle (0.5-RP, 1) or with DAPT (0.5-RPD, I'). Blue indicates DAPI stained nuclei. Scale
bars = 100 um. (J): Quantification of the percentage of cells stained positive for Isl1, Lhx3, and Hb9 following differentiation in the pres-
ence of 0.5 uM RA and 0.25 pM PUR with DMSO vehicle (0.5-RP; white bars) or with DAPT (0.5-RPD; black bars). Data derived from
three experiments are presented as mean + SD. *, p <.01; **, p <.05 by Student’s t test. (K, K'): Expression of Hb9 in cells differenti-
ated in the presence of 0.25 pM RA and 0.125 uM PUR with DMSO vehicle (0.25-RP, K) or with DAPT (0.25-RPD, K’). Blue indicates
DAPI stained nuclei. Scale bars = 100 pm. Abbreviation: DAPI, 4,6-diamidino-2-phenylindole.
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Figure 4. Over-expression of FL-Hes5 reduces the differentiation of pMN-like progenitor cells into motor neurons. pMN-like progenitor
cells infected with FL-Hes5 lentiviral vector (FL-Hes5) or with an empty lentiviral vector (Vector) were differentiated for 1 week in the
presence of DMSO vehicle (DMSO) or 0.25 pM retinoic acid (RA) and 0.125 pM purmorphamine (PUR) combined with DMSO vehicle
(0.25-RP) or with DAPT (0.25-RPD). (A—E): QRT-PCR analysis of the expression of Hes5 (A), Ngn2 (B), Hb9 (C), Lhx3 (D), and Isl1 (E) genes
in vector-only (Vector) and FL-Hes5 (FL-Hes5) infected progenitor cells differentiating in the presence of DMSO vehicle (DMSO; white
bars) or in the presence of RA and PUR combined with DMSO vehicle (0.25-RP; blue bars) or with DAPT (0.25-RPD; black bars). Expres-
sion level in vector-only infected cells differentiating in the presence DMSO vehicle (DMSO) was set as 1. Fold activation is derived from
four experiments. Data are presented as mean + SEM. *, p <.01; **, p <.05 by Student’s t test.
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D’ and H, H) in vector-only (Vector, A-H) and FL-Hes5 (FL-Hes5, A'-H’) infected progenitor cells, differentiating in the presence of reti-
noic acid (RA) and purmorphamine (PUR) combined with DMSO vehicle (0.25-RP, A-D’) or with DAPT (0.25-RPD, E-H’). Blue indicates
4,6-diamidino-2-phenylindole stained nuclei. Scale bars =200 pm. (I-K): Quantification of the percentage of cells stained positive for
Hb9 (1), Lhx3 (J), and Isl1 (K) in vector-only (white bars) and FL-Hes5 (black bars) infected progenitor cells following differentiation in the
presence of RA and PUR combined with DMSO (0.25-RP) or with DAPT (0.25-RPD). Data derived from three experiments are presented
as mean + SD. *, p <.01; **, p <.05 by Student’s t test.

emergence of motor neurons, while forced expression of the the differentiation of the specified progenitors toward motor
Notch effector Hes5 inhibits motor neuron differentiation. neuron fate.

Our data indicate that RA and Shh specify differentiating In line with previous publications [2, 44] we show that
pMN-like progenitors to become motor neurons, and that Notch signaling is activated upon early neural differentiation
inhibition of Notch signaling provides a permissive signal for of hESCs as evidenced by induction of expression of its
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Figure 6.

Retinoic acid (RA) and purmorphamine (PUR) specify the differentiation of pMN-like progenitor cells toward motor neurons

rather than interneurons. Immunostaining showing the expression of Chx10 (red) and Lhx3 (green) (A, A’ and C, C') or Chx10 (red) and
Hb9 (green) (B, B’ and D, D’) in pMN-like progenitor cells differentiating for 1 week in the presence of RA and PUR combined with
DMSO vehicle (0.25-RP, A, B) or with DAPT (0.25-RPD, A, B’) or in the presence of DAPT only (DAPT, C, D) or DMSO vehicle (DMSO, C/,
D'). Blue indicates 4,6-diamidino-2-phenylindole stained nuclei. Scale bars = 100 pm.

downstream effector, Hes5, concomitant with neuralization.
Intriguingly, we demonstrate that the expression level of Hes5
is further increased following specification of early neural pro-
genitors into pMN-like progenitors by RA and the Shh agonist
PUR. Moreover, it remains expressed at comparable levels in
cultures of pMN-like progenitors under conditions favoring dif-
ferentiation into motor neurons.

We provide evidence that Notch signaling inhibits the differ-
entiation of the pMN-like progenitors toward motor neurons.
Interfering with Notch signaling during the stage of their differ-
entiation by DAPT leads to a marked decrease in Hes5 expres-
sion levels and enhances differentiation to motor neurons.
Conversely, over-expression of Hes5 in differentiating pMN-like
progenitors largely inhibits motor neuron differentiation.

The role of Notch signaling in the pMN domain of the
developing spinal cord was previously studied in various ani-
mal models. Notch signaling was shown to preserve the undif-
ferentiated state of pMN progenitors during the period of
motor neuron generation for later differentiation to oligoden-
drocytes [16, 17]. Here, we used hESCs to efficiently generate
pMN-like progenitors and study, for the first time, the role of
Notch signaling during their differentiation into motor neu-
rons in a humanized model system in vitro. We found that
over-expression of Hes5 in the differentiating progenitors led
to reduced expression levels of Ngn2, while the inhibition of
Notch signaling in these progenitors resulted in an increase in
the expression of Ngn2. These observations are consistent
with a previous report of Ngn2 as a direct target for repres-
sion by Notch signaling [41]. Our data suggest that the inhibi-
tion of Notch signaling upregulates the expression of Ngn2 in
differentiating pMN-like progenitors and promotes their differ-
entiation into motor neurons.

Previously, it has been reported that inhibition of Notch
signaling in mouse embryoid bodies (EBs) derived from ptcl
null mutated ESCs, in which Shh is constitutively active,
resulted in precocious loss of ventral neuronal precursors to
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enhanced neuronal differentiation [45]. However, in these
EBs, the inhibition of Notch signaling resulted in reduced
expression of Olig2 and Nkx2.2, while in our pMN-like progen-
itors DAPT had no significant effect on Olig2 expression but
rather increased the expression of Ngn2. Moreover, treating
ptcl null EBs with Shh and DAPT increased Isl1/2 expression
but had no effect on Hb9 and Lhx3 expression. Hence, while
precocious neuronal differentiation was observed in the
absence of Notch signaling, motor neuron differentiation was
not specifically augmented as observed in our results.
Species-specific variation or differences in the methodology
used may explain the dissimilar observations.

In a previous study, it was reported that in conditional
Notchl receptor null mice, more V2 interneurons are gener-
ated at the expense of earlier born motor neurons [7]. Our
data indicate that the inhibition of Notch signaling per se in
vitro is not sufficient to promote differentiation into a specific
neuronal subtype. Inhibition of Notch signaling in the absence
of RA and PUR resulted in differentiation of the pMN-like pro-
genitors to a mixed population of motor neurons expressing
Hb9 and V2 interneurons expressing Chx10 with no signifi-
cantly enhanced differentiation to motor neurons or to V2
interneurons. This observation indicates that inhibition of
Notch signaling provides pMN-like progenitors with a permis-
sive rather than instructive signal for neuronal differentiation,
while RA and Shh specify the progenitors toward motor neu-
ron fate and block the differentiation into V2 interneurons.
Furthermore, over-expression of Hes5 blocked the induction
of Ngn2 expression and reduced the activation of motor
neuron-specific genes by RA and PUR. Thus, it is possible that
Notch signaling inhibits the differentiation of the pMN-like
progenitors by interfering with RA and PUR in specification of
the motor neuron fate.

We demonstrated that in addition to downregulating
Ngn2 expression, over-expression of Hes5 in the differentiat-
ing pMN-like progenitors also reduced the expression levels of
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Lhx3 and Hb9 genes. Previously, it was shown that Ngn2 is
repressed directly by Hes5 [41]. However, whether Hes5 regu-
lates the expression of Hb9 or Lhx3 through direct binding to
their regulatory regions is currently unknown.

Previously it was shown that the MNE enhancer, which
binds both bHLH proteins (Ngn2 and NeuroM) and Lim-HD
proteins (Isl1 and Lhx3), regulates the expression of Hb9 gene
[35, 36]. The bHLH proteins bind the two E-box consensus ele-
ments (CANNTG) included in MNF and synergize with the Lim-
HD proteins to activate Hb9 expression. Thus, it is possible
that Hes5 affects the expression of Hb9 indirectly by downre-
gulating the expression of Ngn2.

Alternatively, it is possible that Hes5 targets the Hb9
enhancer directly. In support of this assumption, we identified
within the MNE sequence an N-box consensus element (CAC-
NAG) which was reported as a specific binding site for Hes5
[46]. Future analysis may indicate whether Hes5 binds directly
to the MNF enhancer and regulates Hb9 expression. Recently
it was reported that the expression of human Lhx3 gene is
regulated by multiple enhancers, but no N-box element was
identified in these regulatory elements, arguing against direct
binding of Lhx3 regulatory regions by Hes5 [47].

The promotion of motor neuron differentiation by inhibi-
tion of Notch signaling may be used to enhance the yield of
motor neuron differentiation protocols. Based on the induc-
tive effect of RA and Shh signaling, our yield of motor neu-
rons was 20%. Inhibition of Notch signaling doubled the yield
of motor neurons. Inhibition of Notch signaling and improving
the efficiency of motor neuron generation in vitro may be
highly valuable for disease modeling, and high throughput
screening assays for molecules that may have therapeutic
value in motor neuron diseases [48].

CONCLUSIONS

In conclusion, our data provide evidence for Notch signaling
as an important mechanism in controlling the differentiation

of pMN progenitor cells into motor neurons. By upregulating
the expression levels of Hes5, Notch signaling reduces the
expression of Ngn2 as well as Hb9 and Lhx3, which are
induced by RA and PUR and are required for directing the
pMN progenitor cells toward motor neuron fate. The results
argue for a model in which Notch signaling inhibits the differ-
entiation of pMN progenitor cells by blocking the capacity of
RA and PUR to induce the expression of key transcription fac-
tors that are required for specification and differentiation of
the progenitor cells to motor neurons.
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