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Abstract: Histone deacetylase 8 (HDAC8) was originally classified as a Zn(II)-dependent deacetylase

on the basis of Zn(II)-dependent HDAC8 activity in vitro and illumination of a Zn(II) bound to the active
site. However, in vitro measurements demonstrated that HDAC8 has higher activity with a bound

Fe(II) than Zn(II), although Fe(II)-HDAC8 rapidly loses activity under aerobic conditions. These data

suggest that in the cell HDAC8 could be activated by either Zn(II) or Fe(II). Here we detail the kinetics,
thermodynamics, and selectivity of Zn(II) and Fe(II) binding to HDAC8. To this end, we have developed

a fluorescence anisotropy assay using fluorescein-labeled suberoylanilide hydroxamic acid (fl-

SAHA). fl-SAHA binds specifically to metal-bound HDAC8 with affinities comparable to SAHA. To
measure the metal affinity of HDAC, metal binding was coupled to fl-SAHA and assayed from the

observed change in anisotropy. The metal KD values for HDAC8 are significantly different, ranging

from picomolar to micromolar for Zn(II) and Fe(II), respectively. Unexpectedly, the Fe(II) and Zn(II) dis-
sociation rate constants from HDAC8 are comparable, koff ~0.0006 s21, suggesting that the apparent

association rate constant for Fe(II) is slow (~3 3 103 M21 s21). Furthermore, monovalent cations (K1

or Na1) that bind to HDAC8 decrease the dissociation rate constant of Zn(II) by �100-fold for K1 and
�10-fold for Na1, suggesting a possible mechanism for regulating metal exchange in vivo. The

HDAC8 metal affinities are comparable to the readily exchangeable Zn(II) and Fe(II) concentrations in

cells, consistent with either or both metal cofactors activating HDAC8.
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Introduction
Misregulation of posttranslational modifications are

implicated in many human diseases, including can-

cer and neurodegenerative diseases.1 Post-

translational acetylation of lysine side chains has

been observed at more than 3600 sites in proteins,

including histones,2,3 and this modification regulates

the biological activity of many of these proteins. For

example, acetylation and deacetylation correlate

with the activation and deactivation, respectively, of

transcriptional gene expression. The acetylation sta-

tus of lysine residues is reversibly regulated by his-

tone acetyltransferase (HAT) and histone

deacetylase (HDAC) activities. HDACs are a family

of 18 enzymes grouped into four classes. Class I, II,

and IV are metalloenzymes with a largely conserved

catalytic core, consistent with a common catalytic
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mechanism.4 Class I comprises four HDAC family

members, HDAC 1, 2, 3, and 8, which are expressed

ubiquitously and generally display deacetylase activ-

ity toward histone substrates.5 Class II includes

HDAC 4, 7, 9, and 10 which generally have lower

catalytic activity. HDAC11, the sole member of class

IV, lies at the boundary between the other two

HDAC classes. All three classes are distinct from

the sirtuin-family of enzymes (class III) in the cata-

lytic domain sequence, three-dimensional structure,

and catalytic mechanism.6

High-resolution crystal structures of the histone

deacetylase-like protein from Aquifex aeolicus,

human HDAC8, and Schistosoma mansoni HDAC8

have been solved illustrating a single a/b domain

with a core eight-stranded b-sheet surrounded by 11

a-helices.7–11 The substrate binding surface is com-

posed of nine loops and an 11 Å tunnel leading to

the active site that includes a HisAsp2 divalent

metal binding site [Fig. 1(a)]. These crystal struc-

tures were solved primarily with zinc(II) as the

active site metal ion, although little change in the

inhibitor-bound structure of HDAC8 was observed

with other metals (Co(II), Fe(II), and Mn(II)) bound

in the active site.9 Nonetheless, the enzymatic activ-

ity of HDAC8 varies with the active site metal ion,

Co(II)>Fe(II)>Zn(II)>Ni(II), using the commercial

HDAC8 substrate.13

Previous research has demonstrated that

HDAC8 is activated by either Fe(II) or Zn(II) in vitro

and, possibly, in vivo. The kcat/KM value for deacety-

lation of a Fluor de Lys peptide catalyzed by HDAC8

stoichiometrically substituted with metals is 3-fold

greater for Fe(II) compared with Zn(II). Further-

more, for recombinant expression of HDAC8 in E.

coli, the HDAC8 activity in cell-free lysates is

approximately fourfold higher under anaerobic con-

ditions than under aerobic conditions and both Zn

and Fe co-purify with the protein.13 Finally, the

active site metal ligands of HDAC8 (HisAsp2) are

unusual for a zinc-dependent hydrolase.9,14–16 These

findings suggest that HDACs could potentially be

activated by Fe(II) rather than Zn(II) in vivo [Fig.

1(b)]. There have been several examples of Zn(II)-

dependent hydrolases that have been reclassified as

“Fe(II)-dependent” enzymes, including peptide defor-

mylase (PDF), S-ribosylhomocysteine lyase (LuxS),

and UDP-3-O-[(R)23-hydroxymyristoyl]-N-acetylglu-

cosamine deacetylase (LpxC).17–19 In particular,

pulldown and metal analysis experiments of the

metal-dependent deacetylase LpxC demonstrated

that this protein binds mainly Fe(II) in Escherichia

coli cells, despite the weaker affinity for Fe(II) com-

pared with Zn(II) (KD for Fe(II) and Zn(II) is 0.1 lM

and 60 pM, respectively).19,20 The data thus far sug-

gest that HDAC8 may fall into this category as well.

A detailed understanding of the metal binding

kinetics and thermodynamics will provide insight

into the native cofactor.

To date, a number of HDAC activity assays

have been developed to measure peptide reactivity

(kcat/KM) and inhibitor potency (Ki).
21,22 Recently, a

fluorescence-based binding assay has been developed

using coumarin-suberoylanilide hydroxamic acid (c-

SAHA) as the fluorescent probe. However, the fluo-

rescence of this ligand is only quenched 50% upon

binding to HDAC823 and the coumarin fluorophore

(kex 5 325 nm, kex 5 400 nm) is unsuitable for fluo-

rescence polarization (FP) measurements due to a

short lifetime.24 To develop an anisotropy (or polar-

ization)-based assay, we synthesized fluorescein-

labeled SAHA (fl-SAHA) as a small molecule probe.

Fluorescein as the fluorophore has high quantum

yield, good photostability, a large Stokes shift, and a

Figure 1. Structure of HDAC8. Catalytic activity of HDAC8 is activated by either Zn(II) or Fe(II)11. (A) A close-up of HDAC8

active site showing the HisAsp2 metal coordination sphere with bound SAHA (PDB ID: 1T69). (B) Crystal structure of HDAC8

displaying divalent cation (black sphere) and two monovalent cation (blue spheres) binding sites (PDB ID: 2V5W).12 The active

site metal could either be Zn(II) (PDB: 3EW8) or Fe(II) (PDB ID: 3MZ6)10 and selectivity is governed by kinetic and thermody-

namic values.
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lifetime in the correct range for measuring binding

to proteins using changes in anisotropy or polariza-

tion.25–27 Furthermore, coupling of the binding of

fl-SAHA to metal binding to HDAC8 allows mea-

surement of metal affinity from changes in fluores-

cence polarization in a 96-well format with ease and

precision since it is a ratiometric measurement. Fur-

thermore, in a competition format this assay is also

applicable for high-throughput screening for inhibi-

tors against HDAC8.

Herein the affinity of HDAC8 for Zn(II) is deter-

mined to be much higher (5 pM) than the Fe(II)

affinity (0.2 lM), as predicted based on the Lewis

acidity of Zn(II) compared with Fe(II) and in accord-

ance with the Irving-Williams series of stability con-

stants.28 Although, the total cellular concentrations

of zinc and iron are comparable at 0.1 to 0.2 mM in

eukaryotes and E. coli,29,30 the readily exchangeable

(RE) metal ion concentrations differ significantly;

[Zn(II)]RE has been measured in the picomolar range

(10–400 pM)31–33 in both eukaryotes and prokar-

yotes,30 while the best estimate for [Fe(II)]RE is

micromolar (0.2–6 lM) in eukaryotic cells.34–37

Therefore, based on thermodynamic considerations,

it is possible that HDACs could be activated by

Fe(II) rather than Zn(II) in eukaryotic cells.

We also demonstrate that monovalent cations

bound to HDAC8 play a role in regulating metal

equilibrium kinetics. Finally, the metal dissociation

rate constant is comparable for zinc and iron, sug-

gesting a two-step metal association mechanism.

These studies measuring the metal kinetics and

thermodynamics of HDAC8 provide insight into the

feasibility and biological relevance of the regulation

of HDAC8 activity by mono- and divalent cations.

Results

Design of a Fluorescein-SAHA Probe for HDAC8
Recently, the pan-HDAC inhibitor, SAHA, was deriv-

atized with a coumarin fluorophore to form

coumarin-suberoylanilide hydroxamic acid (c-

SAHA).23 The fluorescence of this molecule is

quenched 50% upon binding to HDAC8 and this

property has been used to measure the binding

kinetics for HDAC inhibitors.38 However, the modest

change in the fluorescence intensity limits the utility

of this approach for measuring the affinity of HDAC

ligands. Therefore, we developed a fluorescence

polarization probe by coupling a fluorescein deriva-

tive (6-aminofluorescein) to SAHA to form fl-SAHA

(Fig. 2). We have analyzed the affinity of this inhibi-

tor for HDAC8 and used this probe to measure the

metal binding affinity of HDAC8 for Zn(II) and

Fe(II).

Binding affinity of apo and metal-bound HDAC8
for fluorescein-SAHA

To probe the affinity of fl-SAHA for metal-bound

HDAC8, we measured the fluorescence anisotropy of

fl-SAHA upon titration with bovine serum albumin

(BSA), apo or metal-bound HDAC8 under equilib-

rium conditions in assay buffer (20 mM HEPES, pH

8, 137 mM NaCl, and 3 mM KCl, Fig. 3). Upon addi-

tion of metal-bound HDAC8, the fluorescence anisot-

ropy increased with a hyperbolic dependence on the

HDAC8 concentration, as predicted for binding of a

small molecule to the larger protein (MW 5 42.5

kDa). A quadratic fit to these data allows calculation

of a dissociation constant of fl-SAHA (KD) from Zn-

bound and Fe-bound HDAC8 of 0.4 6 0.1 lM and

Figure 2. Synthetic scheme of fluorescein-SAHA (fl-SAHA).
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0.10 6 0.08 lM, respectively (Table I). Little or no

change in fluorescence anisotropy was observed

upon titration of fl-SAHA with BSA or apo-HDAC8;

the affinity for apo-HDAC8 for fl-SAHA can be esti-

mated (KD> 20 lM) assuming a constant anisotropy

endpoint. This result indicates that the affinity of

HDAC8 for fl-SAHA is enhanced >10-fold by inter-

action with the bound divalent metal ion. Therefore,

fl-SAHA can be used as a probe to visualize metal-

bound HDAC8 and to interrogate metal selectivity

and affinity.

Rate constant for dissociation of fl-SAHA com-

plexed with HDAC8
To measure the dissociation rate constant for fl-

SAHA, the HDAC8•fl-SAHA complex was mixed

with excess unlabeled SAHA to rapidly bind to and

trap HDAC8 upon dissociation of fl-SAHA. The

replacement of SAHA for fl-SAHA bound to HDAC8

leads to both a decrease in the fluorescence anisot-

ropy and an increase in the fluorescent intensity

(kex 5 495 nm, kem> 500 nm), allowing measurement

of the fl-SAHA dissociation rate constant. The time-

dependent increase in fluorescence observed after

mixing the metal-bound HDAC8•fl-SAHA complex

with 20 mM SAHA in the stopped-flow fluorometer

(Fig. 4) is well-described by a single exponential

with fl-SAHA dissociation rate constants of

0.62 6 0.06 and 0.036 6 0.001 s21 for Zn(II)-bound

and Fe(II)-bound HDAC8, respectively (Table I).

These rate constants are unchanged when the con-

centration of SAHA is increased by twofold (data not

shown), demonstrating that trapping of HDAC8 by

SAHA is rapid and therefore the measured rate con-

stant reflects dissociation of fl-SAHA.

Metal binding properties of HDAC8

Zn(II) and Fe(II) are the most likely native cofactors

that activate HDAC8 in vivo since they exist in high

concentrations in the cell.29 The binding affinities

(KD) of HDAC8 for Zn(II) and Fe(II) were measured

from the metal-dependent activation of catalytic

activity using the FdL assay as a function of free

metal concentration [Fig. 5(a) and Table II,

KD,Zn 5 5 6 1 pM and KD,Fe 5 0.19 6 0.03 lM]. These

values are slightly lower than previously measured

metal affinities for HDAC8.9 This method requires

that the metal complex has significant catalytic

activity. In contrast, metal affinity could be meas-

ured for inactive complexes by coupling metal bind-

ing to fl-SAHA binding. To validate this method, the

fluorescence anisotropy of fl-SAHA in the presence

of HDAC8 was measured as a function of free metal

concentration in nitrilotriacetate (NTA)-buffered sol-

utions under equilibrium conditions. The fluores-

cence anisotropy increases with a hyperbolic

dependence on the free metal concentration [Fig.

5(b)] while the total fluorescence intensity decreases

less than twofold (data not shown). Dissociation con-

stants (KD) were obtained from fitting a single bind-

ing isotherm to these data (KD,Zn 5 6 6 1 pM and

KD,Fe 5 0.2 6 0.1 lM), in agreement with the affinity

measurements using the FdL assay. These data con-

firm that HDAC8 has significantly higher affinity

for Zn(II) compared with Fe(II), consistent with the

higher Lewis acidity of Zn(II).39

To examine the metal binding kinetics, the rate

constants for dissociation (koff) of the HDAC8-bound

metal ion were determined from the time-dependent

decrease in activity upon dilution of the enzyme into

Figure 3. Metal dependence of HDAC8 affinity for fl-SAHA.

Measurement of the binding affinity (KD) of apo-(D), Zn(II)-

bound (•), or Fe(II)-bound (�) HDAC8 for fl-SAHA from

changes in fluorescence anisotropy (kex 5485 nm,

kem 5 535 nm) upon addition of protein to 50 nM fl-SAHA in

20 mM HEPES, pH 8, 137 mM NaCl, and 3 mM KCl, at 25�C.

As a control, BSA (r) was titrated into fl-SAHA. The anisot-

ropy values are adjusted for a modest decrease in the total

fluorescence. The KD of Zn-HDAC8 and Fe-HDAC8 for fl-

SAHA are calculated as 0.4 6 0.1 lM and 0.1 6 0.08 lM,

respectively, from a fit of Eq. (1) to the data (solid lines). Little

change in anisotropy is observed for addition of either apo-

HDAC8 or BSA.

Table I. Kinetic Parameters of fl-SAHA Binding to Zn(II)- or Fe(II)-HDAC8

KD
fl-SAHA (lM)a measured koff (s21)b measured kon (M21 s21)c calculated

Zn(II)-HDAC8 0.4 6 0.1 0.62 6 0.06 4 3 105

Fe(II)-HDAC8 0.10 6 0.08 0.036 6 0.001 1 3105

a Measured using the FP assay in 20 mM HEPES, pH 8, 137 mM NaCl, and 3 mM KCl, at 25�C.
b Measured using stopped-flow fluorometry using the same conditions as in a.
c kon calculated from koff/KD.
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the high affinity metal chelator, EDTA, using the

FdL assay (Fig. 6). The measured rate constants are

not dependent on the concentration of EDTA (data

not shown), indicating that the metal chelator is

trapping the metals after dissociation from the

enzyme. These measurements revealed that the rate

constants for dissociation (koff) of Zn(II) and Fe(II)

from HDAC8 are 0.038 6 0.003 and 0.034 6 0.004

min21, respectively (Table II). The similarity in the

dissociation rate constants for Zn(II) and Fe(II) is

unexpected given the significantly different affinities

of HDAC8 for these metal ions.

The discrimination between the affinities of the

two metal ions by HDAC8 originates mainly from

alterations in the apparent association rate con-

stants (kon
app). Assuming a one-step metal binding

mechanism, the values for kon
app can be estimated

from the KD and koff values (kon
app 5 koff/KD) as 1 3

108 M21 s21 (Zn(II)) and 3 3 103 M21 s21 (Fe(II))

(Table II). The estimated association rate constant

for zinc binding to HDAC8 is near the diffusion-

controlled limit, consistent with a single-step bind-

ing mechanism. However, the association rate

constant for Fe(II) is orders of magnitude slower

than the diffusion-limit (�108 M21 s21)40 suggesting

a minimal kinetic mechanism for HDAC8 binding

Fe(II) that includes two sequential steps, possibly a

bimolecular diffusion-controlled association reaction

Figure 4. Rate constant for dissociation of fl-SAHA complexed with HDAC8. The dissociation rate constant (koff) for fl-SAHA

bound to metal-bound HDAC8 was measured using a stopped-flow fluorometer from a time-dependent increase in fluores-

cence intensity (kex 5 495 nm) after mixing the HDAC8•fl-SAHA complex with an equal volume of SAHA (final concentrations:

1 lM M21-HDAC8, 0.05 lM fl-SAHA, 20 lM SAHA) in 20 mM HEPES, pH 8, 137 mM NaCl, and 3 mM KCl. For Fe(II)-bound

HDAC8, apo HDAC8 was reconstituted with stoichiometric Fe(II) in the presence of 5 mM ascorbic acid. The solid lines are the

best fit of a single exponential rate equation to the data: (A) Zn-HDAC8; koff 5 0.6 6 0.06 s21 and (B) Fe-HDAC8:

koff 5 0.04 6 0.0005 s21.

Figure 5. Measurement of metal affinity (KD) of HDAC8 using the FdL activity and the anisotropy assays. HDAC8 (1 lM) was

incubated with increasing concentration of free Zn(II) (•) or Fe(II) (�) using a 1 mM NTA metal buffer in the presence of 3 mM

KCl and 137 mM NaCl. The measurements with Fe(II) were carried out in an anaerobic chamber. (A) The activity was measured

using the FdL assay and the relative initial velocity (vobs/vmax) is plotted. (B) The anisotropy is measured in the presence of 50

nM fl-SAHA at varying free metal concentrations. The metal dissociation constants were determined from fitting a single binding

isotherm [Eq. (3)] to these data.
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to form an initial encounter complex followed by a

unimolecular rearrangement to form the final

HDAC8•metal complex (Scheme 1).

Monovalent cations modulate zinc dissociation

kinetics

Crystal structures show that HDAC8 has binding

sites for two MVCs, in addition to the divalent cata-

lytic metal ion, which have been designated as site

1 (7 Å from the divalent catalytic metal ion) and site

2 (21 Å from the divalent catalytic metal ion)

[Fig. 1(b)].41,42 The MVC could be either K1 or Na1

based on their intracellular concentrations.43,44 Pre-

vious research demonstrated that one bound MVC

activates catalytic activity (K1/2 5 14 mM for K1),

whereas the second, weaker-binding MVC (K1/2 5

130 mM for K1) decreases catalytic activity.45 Muta-

genesis data suggest that the MVC bound to site 1

inhibits catalytic activity, likely by altering the pKa

of His-142, whereas the site 2 MVC enhances activ-

ity, likely by an allosteric effect.45 These data sug-

gest that HDAC8 may be regulated by cations in

vivo. In smooth muscle cells where the cytosol con-

tains 100 mM KCl and 4 mM NaCl,46,47 potassium

ions are predicted to partially inhibit the activity of

HDAC8.

To evaluate whether MVCs bound to HDAC8

also regulate the metal equilibration kinetics, the

HDAC8 zinc dissociation rate constant (koff) was

measured as a function of the concentration of either

K1 or Na1. As the MVC concentration increases, the

observed value of koff decreases by >100-fold for K1

and >10-fold for Na1 (Fig. 7). These data were ana-

lyzed using a model where the MVC binds to

HDAC8 and decreases the metal dissociation rate

constant [Scheme 2; Eq. (4)] leading to an apparent

dissociation constant of 1 mM and 93 mM, for K1

and Na1, respectively, with little or no observable

cooperativity (n 5 1 and 1.2 for K1 and Na1). These

data indicate that this MVC site will be saturated

under most in vivo sodium and potassium concentra-

tions. These results also suggest that binding a sin-

gle MVC to HDAC8 is sufficient to decrease the

metal dissociation rate constant; there is no evidence

that binding to the second MVC site alters metal

dissociation. This is in contrast to the differential

effects of the MVCs on catalytic activity. Addition-

ally, the apparent K1 dissociation constant calcu-

lated from the decrease in the zinc dissociation rate

constant is significantly (�14-fold) lower than the

value determined from activation of catalytic activ-

ity. This could reflect difficulties in measuring activ-

ity at low potassium concentrations.45 The decrease

in the zinc dissociation rate data suggest that MVCs

may increase the affinity of HDAC8 for Zn(II),

assuming little effect on the association rate

constant.

Discussion
HDAC8 is activated by a number of divalent metal

ions, including Zn(II), Fe(II), Ni(II), and Co(II) in

vitro,13 however, the metal ion that activates this

class of enzymes in cells is not yet known. The use of

Fe(II) as the physiological catalytic metal ion has

been previously demonstrated for multiple metallohy-

drolases, such as peptide deformylase, methionyl ami-

nopeptidase, LuxS, g-carbonic anhydrase, cytosine

deaminase, and atrazine chlorohydrolase.17,18,48–51

Table II. Kinetic Parameters for Metal Binding to HDAC8

KD
metal, a measured koff (min21)b measured kon

app (M21 s21)c calculated

Zn(II)-HDAC8 5 6 1 pM 0.038 6 0.003 1 3 108

Fe(II)-HDAC8 0.19 6 0.03 lM 0.034 6 0.004 3 3 103

a Measured using the FdL and the FP assays in 20 mM HEPES, pH 8, 137 mM NaCl, and 3 mM KCl at 25�C.
b Measured using the FdL assay in 1 mM EDTA, 20 mM HEPES, pH 8, 3 mM KCl, and 137 mM NaCl at 25�C.
c kon calculated from koff/KD.

Figure 6. Measurement of the metal dissociation rate con-

stant (koff) from the HDAC8•Me(II) complex using the FdL

activity assay. The koff values for HDAC8-bound metal ions

were determined from the time-dependent decrease in activ-

ity measured using the FdL assay after dilution of either

Zn(II)-(•) or Fe(II)-(w) HDAC8 (final concentration 5 1 lM) into

1 mM EDTA in 20 mM HEPES, pH 8, 3 mM KCl, 137 mM

NaCl, 25�C. The solid lines are a single exponential fit to the

data.

Scheme 1. Minimal kinetic mechanism of metal binding to

HDAC8.
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These enzymes were originally misidentified as

Zn(II)-metalloenzymes due to purification under aero-

bic conditions resulting in replacement of the oxygen-

sensitive Fe(II) with the higher affinity Zn(II) cofac-

tor. The oxygen sensitivity of HDAC8 activity in E.

coli cell lysates originally suggested that HDAC8 may

be another non-heme Fe(II) hydrolase that was previ-

ously identified as a zinc metalloenzyme.13 Similarly,

the deacetylase activity of endogenously expressed

HDAC8 isolated from HeLa cells by immunoprecipita-

tion decreased upon exposure to oxygen (approxi-

mately twofold), suggesting that HDAC8 is partially

Fe-bound.52 These data are consistent with activation

of HDAC8 by a Fe(II) metal cofactor under many

physiological conditions.

An interesting possibility is that the metal ion

bound to HDAC8 may depend on the readily

exchangeable concentrations of Fe(II) and Zn(II); the

bound Fe(II) metal ion may exchange with zinc

under conditions where the cellular zinc concentra-

tion increases significantly, such as oxidative

stress,32 or due to the activity of metallochaper-

ones.32,53–55 While metallochaperones for Zn have

not yet been identified, the Philpott lab has demon-

strated that poly r(C)-binding protein 1 (PCBP1)

functions as a cytosolic iron chaperone in Saccharo-

myces cerevisiae to deliver iron to ferritin, a cellular

iron storage protein, as well as several hydroxy-

lases.56–58 A recent mass spectrometric analysis

evaluating HDAC8 protein binding partners sug-

gested interactions with the PCBP family of iron-

metallochaperones.59

To further explore metal activation of HDAC8

we have measured the metal binding kinetics and

thermodynamics of HDAC8 using the FdL activity

assay and an FP assay using a new fluorescent

probe (fl-SAHA). Notably, this FP assay can be used

to measure the metal binding kinetics and thermo-

dynamics of HDAC8 in the absence of catalytic

activity, allowing analysis of metal affinity in a wide

variety of conditions and with mutant enzymes. This

assay could also be developed as a high-throughput

screen for HDAC inhibitors and, potentially, for

imaging HDAC8 in cells since anisotropy measure-

ments are ratiometric.60–63

fl-SAHA binds to metal-bound HDAC8 in the

submicromolar range (0.4 lM for Zn(II)-bound and

0.1 lM for Fe(II)-bound), which is comparable to

both SAHA (KI 5 0.3 lM for Zn(II) and 0.1 lM for

Fe(II)-bound HDAC813) and coumarin-conjugated

SAHA (0.2 lM for HDAC8).23 This is reasonable

since both SAHA analogs contain the same aliphatic

hydroxamate moiety that chelates the active site

metal ion and can be accommodated in the hydro-

phobic tunnel of HDAC8.41 Additionally, fl-SAHA

displays similar KD values for the Zn(II)- and Fe(II)-

bound HDAC8 forms, as previously observed for

SAHA.13 Dissociation rate constants (koff) of fl-SAHA

from metal-bound HDAC8 were determined using

stopped-flow spectrometry as 0.6 s21 and 0.04 s21

for Zn(II)- and Fe(II)-HDAC8, respectively. Apparent

association rate constants of fl-SAHA to metal-

bound HDAC8 were calculated as 4 3 105 M21 s21

and 1 3 105 M21 s21 for Zn(II)- and Fe(II)-HDAC8,

respectively, assuming it is a single-binding step

mechanism (Table I). The differential effects of

metal-substitution on the association rate constants

may suggest a multistep binding mechanism.

The affinity of HDAC8 for Zn(II) is 105-fold

higher than Fe(II), as measured by either the

fl-SAHA FP assay or metal-dependent activation of

catalytic activity (KD,Zn 5 5 6 1 pM and KD,Fe 5

0.19 6 0.03 lM).9 However, the picomolar and micro-

molar affinities of HDAC8 for Zn(II) and Fe(II),

respectively, are in the range of estimated concentra-

tions of readily exchangeable metal ions in

cells.9,31,32,37 This similarity suggests that HDAC8

might be poised to switch between Fe(II)- and

Zn(II)-bound states in cells. Unexpectedly, the disso-

ciation rate constants (koff) of both metals

(0.0006 s21) are similar, despite the difference in the

binding affinities. This result indicates that metal

selectivity primarily resides in the apparent associa-

tion rate constant, estimated as 108 and 103 M21 s21

for Zn(II) and Fe(II), respectively, assuming a single

association step (Table II). The low value for the

apparent association rate constant for Fe(II)

Figure 7. Dependence of metal dissociation rate constant

(koff) from the HDAC8•Zn(II) complex on the concentration of

monovalent cations. The rate constants were determined as

described in the legend of Figure 6. The values for koff

decrease at increasing concentrations of KCl (•) or NaCl

(~). The solid line is a fit of Eq. (4) to the data.

Scheme 2. Coupled binding of MVC and DVC to HDAC8.
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suggests that metal association is a two-step mecha-

nism (Scheme 1) where an initial encounter complex

forms followed by a unimolecular rearrangement to

form the final Me(II)-metal complex. This two-step

mechanism may describe both Zn(II) and Fe(II)

binding to HDAC8 with different rate-limiting steps;

formation of the encounter complex may be the slow

step for Zn(II) binding (k1) while the rearrangement

step may be rate-limiting for Fe(II) binding (k1k3/k2).

Metal dissociation could be limited in both cases by

the reverse rearrangement step (k4).

Previously, the metal association kinetics of

human carbonic anhydrase II (CAII) were deter-

mined with estimated association rate constants for

Zn(II) and Cu(II) of 104 to 105 and 109 M21 s21,

respectively.64 These data along with analysis of the

zinc binding kinetics of CAII mutants suggest a two-

step binding mechanism.64,65 In the first step, zinc

binds to CAII at near diffusion-controlled rates to

form an initial complex with two protein ligands fol-

lowed by a second slower step that includes

exchange of inner-sphere water molecules with the

third protein ligand.64 This may be a paradigm for

two-step metal binding to proteins, including

HDAC8. Metal binding kinetics similar to HDAC8

have been measured for the bacterial deacetylase,

LpxC, where the apparent association rate constants

for Zn(II) and Fe(II) are estimated as 106 and 104

M21 s21, respectively, also suggesting a two-step

binding mechanism for metal association.19 In this

case, the physiologically relevant metal of LpxC in

E. coli is Fe(II) under most conditions, although

LpxC binds Zn(II) in vivo when Fe(II) concentrations

are very low. In LpxC and CAII, the physiological

metal ions (Fe(II) and Zn(II), respectively) have a

slow dissociation rate constant (LpxC for Fe(II)

koff 5 0.067 6 0.004 min21 and CAII for Zn(II) koff 5

8.5 6 0.3 3 1025 min21), leading to an apparent asso-

ciation rate constant that is slower than the

diffusion-controlled limit.19,65 The varied dissociation

rate constants may be important for metal selectiv-

ity in vivo, decreasing kinetic traps for the higher

affinity, but incorrect metal ion, such as Zn(II) for

LpxC and possibly HDAC8 or Cu(II) for CAII.19,66

Furthermore, the similarities between the in vitro

metal binding kinetics and thermodynamics of LpxC

and HDAC8 fuel the hypothesis that HDAC8 might

be activated by Fe(II) under most conditions but

switches to the Zn(II) bound enzyme at high levels

of cellular zinc.19 This model suggests the possibility

of regulation of the activity of HDAC8 by metal

switching in response to conditions that alter the

cellular concentration of readily exchangeable metal

concentrations, such as redox stress.

The crystal structure of HDAC8 also displays

two monovalent metal binding sites that are con-

served in class I and II human HDACs.41,42 Site 1

and 2 are located 7 Å and 21 Å, respectively, from

the divalent metal ion binding site and could be

occupied by either K1 or Na1. Previous studies have

revealed that MVCs bound to site 1 inhibits HDAC8

activity, likely by altering the pKa of His-142,

whereas occupation of MVC site 2 increases activity,

likely by stabilizing the structure.45 These MVC

binding sites may also play a role in regulating

metal selectivity and equilibrium kinetics. The metal

dissociation kinetics of HDAC8 are influenced by the

concentration of monovalent cations; K1 and Na1

decrease the Zn(II) dissociation rate constant by

more than 40-fold and 12-fold, respectively, with no

cooperativity. These data are consistent with a

model in which MVCs bind to the high affinity site

(site 1) to stabilize the active conformation of

HDAC8 and thereby lower the metal dissociation

rate constant.

Here we demonstrate that despite the differences

in the binding affinity of HDAC8 for Zn(II) and Fe(II),

the dissociation rate constants are comparable at

0.0006 s21. Furthermore, the metal binding kinetics

suggest a two-step binding mechanism to HDAC8

where the metal selectivity is determined by the appa-

rent slower association rate constant for Fe(II) com-

pared with Zn(II). In the proposed model (Scheme 1)

the association rate constant for Zn(II) is limited by

formation of the encounter complex while the Fe(II)

association rate constant includes both the encounter

complex and the rearrangement step. Furthermore,

these data indicate that the kinetics and thermody-

namics of HDAC8 metal binding is dependent on the

concentration and identity of both the divalent metal

ions and the monovalent cations. These data are con-

sistent with the proposal that HDAC8 could exist as

an Fe(II)-dependent metalloenzyme as well as a Zn(II)-

dependent enzyme depending on cellular factors.

Materials and Methods

Materials

Unless specified, chemicals and supplies were pur-

chased from Fisher Scientific (MA). All chemicals

were of the highest quality available. Ethylenedia-

minetetraacetic acid (EDTA), FeCl2 (99.99%), and

Zn(NO3)2 were purchased from Aldrich (MO). Chro-

matography resins were purchased from GE Health-

care. To prevent trace metal contamination, all

plastic ware was presoaked with 1 mM EDTA and

rinsed three times with Millipure H2O. Plastic dis-

posables, including pipet tips and microcentrifuge

tubes, were certified trace metal-free (Corning Incor-

porated and Costar, respectively). Sodium hydroxide

(Sigma, 99.999%) was used to titrate 3-(N-morpholi-

no)propanesulfonic acid (MOPS) buffer (Ambion).

Expression and purification of HDAC8

Recombinant His6-HDAC8 was expressed in

BL21(DE3) E. coli transformed with pHD4 and
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purified as previously described13 and then concen-

trated to 2 to 5 mg/mL for metal exchange. Metal-free

HDAC8 was generated by dialyzing purified HDAC8

twice into 500 mL of 25 mM MOPS (pH 7.0), 1 mM

EDTA for 12 to 14 h at 4�C, followed by buffer

exchange into 25 mM MOPS (pH 7.5), 0.1 mM EDTA,

and then 25 mM MOPS (pH 7.5) once each for 12 to

14 h at 4�C. When necessary, anaerobic conditions

were achieved using an anaerobic chamber (Coy, Grass

Lake, MI). For Fe(II) experiments, a freshly made

10 mM FeCl2 stock was prepared in 50 mM ascorbic

acid and diluted to 100 lM with 13 assay buffer

(20 mM HEPES, pH 8, 3 mM KCl, 137 mM NaCl)

before incubation with apo-HDAC8. Similarly, a

10 mM ZnSO4 solution was prepared in 20 mM

HEPES pH 8, 1 mM triscarboxyethylphosphine

(TCEP) and diluted to 100 lM with 13 assay buffer

before incubation with apo-HDAC8.

Synthesis of fl-SAHA

Synthesis of 2-(3,6-dihydroxy-9H-xanthen-9-

yl)25-(8-methoxy-8-oxooctanamido)benzoic acid

(1). To a flame-dried flask equipped with stir bar

and dry DMF (10 mL) was added 6-fluoresceinamine

(100 mg, 0.28 mmol, Sigma-Aldrich) in one portion

(Fig. 2). Then dry triethylamine (Et3N, 43 lL, 0.31

mmol) was added and the reaction was stirred at

room temperature for 1 h. Methyl-8-chloro-1-

oxooctanate (40 lL, 0.28 mmol) was then added to the

solution drop wise and the reaction mixture was

stirred at 50�C for 24 h. The solvent was then evapo-

rated in vacuo and the residue was dissolved in

dichloromethane (20 mL). The product was washed

with sat. NaHCO3 (3 3 20 mL) and NaCl (2 3 20 mL),

dried over anhydrous MgSO4, filtered and dried in

vacuo to yield an orange-yellow oil. The product was

purified via silica gel chromatography (4% MeOH in

CH2Cl2) and the resulting product was washed with

hexanes to remove residual impurities. The final

product was an orange oil (yield: 81 mg, 0.16 mmol,

56%). 1H NMR (CD3OD, 400 MHz)/d (ppm): 8.23 (d,

J 5 1.6 Hz, 1H), 7.73 (dd, J 5 8.0, 2.0 Hz, 2H), 7.04 (d,

J 5 8.4 Hz, 2H), 6.56 (d, J 5 2.4 Hz, 1H), 6.53 (d, J 5

8.8 Hz, 2H), 6.43 (dd, J 5 8.4, 2.4 Hz, 2H), 3.54 (s,

3H), 2.34 (t, J 5 7.6, 2H), 2.24 (t, J 5 7.6, 2H), 1.66–

1.52 (m, 4H), 1.32–1.30 (m, 4H). [M1H]1: calcd. 5

518.13, Found 5 518.06.

Synthesis of 2-(3,6-dihydroxy-9H-xanthen-9-

yl)25-(8-(hydroxyamino)28-oxooctanamido)ben-

zoic acid (fl-SAHA). Hydroxylamine hydrochlor-

ide (104 mg, 1.5 mmol) in methanol (10 mL) was

combined with a solution of KOH (1.57 g, 28 mmol) in

methanol (16 mL), cooled to 0�C, and then filtered. (1)

was added to the filtrate and KOH (5 mg in 1 mL

MeOH) was slowly added. The mixture was stirred at

room temperature for 2 h and then refluxed at 65�C

for 34 h. The reaction was quenched by the addition of

cold water (15 mL), followed by drop-wise addition of

glacial acetic acid until pH �7.0. The precipitated

solid product was filtered, washed with water to

remove impurities, dried under vacuum, and purified

twice by silica gel chromatography (25% MeOH in

CH2Cl2). The final product was recrystallized in

CH2Cl2 and hexanes to afford an orange solid (yield:

362 mg, 0.70 mmol, 75%). 1H NMR (CD3OD, 400

MHz)/d (ppm): 8.24 (d, J 5 1.6 Hz, 1H), 7.73 (dd,

J 5 8.0, 2.0 Hz, 2H), 7.04 (d, J 5 8.4 Hz, 2H), 6.56 (d,

J 5 2.4 Hz, 1H), 6.53 (d, J 5 8.8 Hz, 2H), 6.40 (dd,

J 5 8.4, 2.4 Hz, 2H), 2.32 (t, J 5 7.6, 2H), 2.24 (t,

J 5 7.6, 2H), 1.68–1.51 (m, 4H), 1.37–1.33 (m, 4H).

[M1H]1: calcd. 5 518.14, Found 5 518.11.

Affinity of HDAC8 for fl-SAHA

FP experiments were performed in a half-area black

96-well microplate (Corning Incorporation, #3686)

and FP values were measured with excitation at

485 nm (30 nm bandpass) and emission at 535 nm (40

nm bandpass) using a TECAN Plate Reader. Binding

experiments for determining the KD values of metal-

bound HDAC8 for fl-SAHA included 50 nM fl-SAHA

in assay buffer [20 mM HEPES (pH 8), 137 mM NaCl,

3 mM KCl] and FP was measured as HDAC8 (�5 lM)

was titrated into the solution. The fluorescence inten-

sity of fl-SAHA decreases by �25% upon binding to

HDAC8, even after correction for dilution and back-

ground fluorescence, as described previously.67 The

value of KD for fl-SAHA was obtained by fitting a

binding isotherm, including changes in the ligand

concentration (L) due to binding to E, to the depend-

ence of the FP signal on the concentration of HDAC8

[E, Eq. (1)]. In the equation, Pf is the polarization of

unbound fl-SAHA and Pb is signal from the fl-

SAHA�HDAC8 complex. All data analyses were per-

formed using Prism 6.0 (GraphPad Software).

Y5Pf1 Pb-Pfð Þ

3
ð½L�1½E�1KDÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�1½E�1KDÞ224½L�

q
½E�

2½E� (1)

Kinetics for binding fl-SAHA to HDAC8
Fluorescence stopped-flow measurements were car-

ried out on a model SF-2001 stopped-flow spectro-

fluorometer (KinTek Corp., Austin, TX) fitted with a

75W xenon arc lamp in two syringe mode. fl-SAHA

was excited at 495 nm (slit width, 0.1–2 mm) and

fluorescence emission was monitored using a long-

pass filter (N500nm; Corion, LL-500-F). All kinetic

traces were an average of four to six independent

determinations. To measure the dissociation rate

constant (koff), fl-SAHA (0.1 lM) was preincubated

with metal-bound HDAC8 (2 lM) for at least 20 min
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at RT in assay buffer. The reaction was initiated by

mixing the HDAC8•fl-SAHA complex with an equal

volume of unlabeled SAHA (final concentration of

20 lM) in assay buffer at 25�C to trap HDAC8 and

an increase in fluorescence intensity was measured.

The dissociation rate constant was determined from

a fit of a single exponential to the time-dependent

changes in the fluorescence signal [Eq. (2)]. In the

equation, DF is the observed change in fluorescence

and DF0 is the fluorescence at time zero.

DF5 D F0 3 exp 2koff 3 tð Þ (2)

HDAC8 metal ion binding affinity
The affinity of HDAC8 for Zn(II) or Fe(II) was meas-

ured by assaying catalytic activity in the presence of

varying Me(II)free concentrations in 1 mM nitrilotri-

acetic acid (NTA), 5 mM MOPS, pH 7, serving as

both a pH and metal buffer in the presence of 3 mM

KCl and 137 mM NaCl. The affinity was not depend-

ent on NTA concentration (data not shown).

Catalytic activity was assayed by using a

commercially-available fluorescent assay (BIOMOL)

with the Fluor de Lys (FdL) HDAC8 substrate

(RHK(ac)K(ac)-methyl-coumarin). All assay buffers

were pretreated with Chelex resin (Bio-Rad) to

remove trace divalent metal ions. Metal-free HDAC8

variants were reconstituted with Zn(II) or Fe(II) by

incubation with a stoichiometric concentration of

metal in assay buffer (20 mM HEPES pH 8.0,

137 mM NaCl, 3 mM KCl, and 1 mM TCEP). The

reaction was quenched by the addition of stoichio-

metric amounts of trichostatin A (TSA), a potent

inhibitor of HDAC8. Fluorescence intensity was

monitored at kex 5 340 and kem 5 450 for the deacety-

lated and cleaved product, and at kex 5 340 and

kem 5 380 for the starting acetylated substrate. The

ratio of product fluorescence divided by substrate

fluorescence was observed and linearly increases

with product concentration up to 30% product. The

amount of product formed was determined from

comparison to the fluorescence ratios of a standard

curve made up of known concentrations of products

and substrates. The linear initial rates catalyzed by

wtHDAC8 in assay buffer at 25�C were measured.

The affinity of HDAC8 for the metal was also

measured by changes in anisotropy by coupling the

binding of fl-SAHA to metal binding. These reactions

were carried out in 13 assay buffer containing 50

nM fl-SAHA. Fluorescence anisotropy assays were

performed in a black 96-well microplate by monitor-

ing the anisotropy signal of fluorescein (kex 5 485 nm

and kem 5 535 nm) using a TECAN plate-reader. For

Zn(II) affinity measurements, apo-HDAC8 (1–200

mM) was incubated with 1 mM NTA, 10 mM MOPS,

pH 7, and 0 to 0.5 mM Zntot (0–3.3 nM Znfree) at

25�C for 30 min.12 The concentration of Znfree in the

metal buffers was calculated using the program

MINEQL (Environmental Research software). For

measurement of KD for Fe(II), the assays contained

0 to 950 lM total iron (Sigma, 99.99%, Fe(II)free 5 0–

2.6 lM, as calculated by MINEQL) and 1 lM

HDAC8, in the presence of 3 mM KCl and 137 mM

NaCl. The assay mixtures were incubated for 2 h on

ice to pre-equilibrate in the anaerobic glove box fol-

lowed by addition of fl-SAHA and a short equilibra-

tion at 25�C before measuring the anisotropy signal.

The Zn(II) and Fe(II) KD values were obtained by fit-

ting a binding isotherm to the dependence of either

the activity or anisotropy on the concentration of

Mefree [Eq. (3), X]. In the equation, A is the activity,

DA is change in activity, FP is the fluorescence ani-

sotropy, and DFP is the change in anisotropy.

A

DA
5

FP

DFP
5

X

KD3X
(3)

Metal ion dissociation rate constants
The first order rate constant for M(II) dissociation

from HDAC8•M(II) complexes was measured by the

time-dependent loss of activity upon incubation with

EDTA. HDAC8 reconstituted with stoichiometric

Zn(II) or Fe(II) (final concentration 5 1 lM) was

diluted into assay buffer containing 1 mM EDTA at

25�C. At various times (0–60 min) an aliquot was

diluted 10-fold into assay buffer containing 50 lM

FdL substrate. The reactions were quenched by the

addition of TSA followed by trypsin developer. The

initial rate for product formation was determined for

each time point. The dissociation rate constant was

determined from a single exponential fit to the

decrease in the initial rate as a function of time.

Dependence of metal dissociation rate constant
on monovalent cation (MVC) concentration

For measurement of the dependence of Zn(II) koff on

the concentration of MVC, reconstituted Zn(II)-

HDAC8 was incubated with varying concentration of

potassium or sodium ([KCl] 5 1–100 mM, [NaCl] 5

100–2000 mM) on ice for 1 h in 20 mM HEPES, pH

8.0 and then at 25�C for 4 min. The reaction was

started by the addition of 1 mM EDTA. The dissocia-

tion rate constant of Zn(II) was measured from the

decrease in catalytic activity using the FdL assay, as

described above. The MVC dependence of koff for

Zn(II) was fit by Eq. (4), which is derived from the

coupled binding of monovalent and divalent ions

shown in Scheme 2. In the equation, Keq is the appa-

rent equilibrium constant for MVC binding and koff

is the dissociation rate constant for Zn(II).

kobs5
koff

11
½MVC�n

Kn
eq

(4)
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