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Insights & Perspectives
Golgi defects enhance APP
amyloidogenic processing in
Alzheimer’s disease

Gunjan Joshi and Yanzhuang Wang*
Increased amyloid beta (Ab) production by sequential cleavage of the amyloid

precursor protein (APP) by the b- and g-secretases contributes to the etiological

basis of Alzheimer’s disease (AD). This process requires APP and the

secretases to be in the same subcellular compartments, such as the

endosomes. Since all membrane organelles in the endomembrane system are

kinetically and functionally linked, any defects in the trafficking and sorting

machinery would be expected to change the functional properties of the whole

system. The Golgi is a primary organelle for protein trafficking, sorting and

modifications, and Golgi defects have been reported in AD. Here we

hypothesize that Golgi fragmentation in AD accelerates APP trafficking and Ab

production. Furthermore, Golgi defects may perturb the proper trafficking and

processing of many essential neuronal proteins, resulting in compromised

neuronal function. Therefore, molecular tools that can restore Golgi structure

and function could prove useful as potential drugs for AD treatment.
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Introduction

The Golgi apparatus is a highly dynamic
cellular organelle with a unique stacked
structure that functions in processing and
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sorting of membrane and luminal pro-
teins during the transport from the
endoplasmic reticulum (ER) to various
destinations inside and outside of the
cell. The Golgi is also actively involved in
post-translational modifications of pro-
teins and lipids, in particular glycosyla-
tion. Because of its central role in the
secretory pathway, changes in the struc-
ture and function of the Golgi are
expected to affect cellular protein ho-
meostasis. Recently, a large number of
human diseases have been linked to
defects in Golgi structure and function [1].
Golgi structural defects have been
reported in Smith-McCort dysplasia [2]
andMACS (macrocephaly, alopecia, cutis
laxa and scoliosis) syndrome [3, 4]. Golgi
Bioessays 37: 24
fragmentation has also been observed in
neurodegenerative diseases, including
Alzheimer’s (AD) [5, 6], Parkinson’s
(PD) [7], and Huntington’s (HD) [8]
diseases and amyotrophic lateral sclero-
sis (ALS) [9–11]. Golgi trafficking defects
have been reported in Pelizaeus-Merz-
bacher disease [12], proximal spinal
muscular atrophy [13] and dyschroma-
tosis universalis hereditaria [14]. Golgi
glycosylation defects have been linked
to Angelman syndrome [15] and Cutis
Laxa type II and wrinkly skin syn-
drome [16, 17]. In some diseases, Golgi
defects are caused by gene mutations.
For example, the expression of a Golgi
resident protein is lost in Gerodermia
osteodysplastica disease [18, 19], “North
Sea” progressive myoclonus epilepsy
[20], Duchenne muscular dystrophy [21],
Dyggve-Melchior-Clausen disease [22] and
Smith-McCort Dysplasia [2]. However, in
most other diseases the mechanisms of
Golgi dysfunction remain unexplored.

We have recently found that Golgi
fragmentation in AD is caused by
phosphorylation of GRASP65, a Golgi
stacking protein essential for Golgi
structure formation [23]. GRASP65 is a
peripheral protein on the cytoplasmic
face of Golgi membranes that oligomer-
izes to stick Golgi cisternal membranes
into multilayer stacks and to link Golgi
stacks into a ribbon. Phosphorylation of
GRASP65 changes the conformation of
the protein and disrupts its oligomeri-
zation and stack formation [24–29]. In
AD, GRASP65 is phosphorylated by
Cdk5 that is activated by Ab accumula-
tion, resulting in GRASP65 dysfunction
and Golgi fragmentation. Subsequently,
0–247,� 2014 WILEY Periodicals, Inc.
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Golgi fragmentation accelerates APP
trafficking and increases Ab produc-
tion [23]. Based on these results we
hypothesize that Golgi fragmentation in
AD enhances APP amyloidogenic proc-
essing, which contributes to AD devel-
opment. Our study reveals that Golgi
fragmentation and its biological con-
sequences may underlie the hyper-
accumulation of Ab, the phenomenon
responsible for the formation of toxic
plaques. The mechanism involves a
deleterious feedback loop: Ab accumu-
lation leads to phosphorylation of Golgi
proteins (e.g. GRASP65) by activating
Cdk5, resulting in Golgi fragmentation,
which subsequently enhances Ab pro-
duction and hyper-accumulation by
accelerating APP trafficking and amy-
loidogenic processing by the b-secretase
BACE1 and the g-secretase Presenilin 1
(PS1). A similarmechanismmay apply to
other diseases with Golgi defects. In this
review article we summarize the molec-
ular mechanisms underlying Golgi frag-
mentation in AD and discuss its impacts
on the trafficking and processing of APP
and APP processing enzymes as well as
on Ab production. Furthermore, we
speculate that Golgi defects may perturb
the proper trafficking and processing
of many essential neuronal proteins,
resulting in compromised neuronal
function. The structural defects of the
Golgi caused by Ab accumulation
and the resultant defects in protein
trafficking and processing may underlie
a so far unrecognized toxicity of the Ab
peptides.
Figure 1. Mechanism of Golgi fragmentation in AD. Ab accumulation leads to influx of Ca2þ

ions; increased cytosolic Ca2þ activates calpain to cleave p35 to p25. p25 then activates
Cdk5 for GRASP65 phosphorylation. GRASP65 phosphorylation results in Golgi fragmenta-
tion, which in turn accelerates APP trafficking and increases Ab production [23].
Mechanism of Golgi
fragmentation in AD

Using tissue culture cells and transgenic
mice that express both the “Swedish”
mutant of human APP (KM 593/594 NL,
APPswe) and the exon 9 deletion
mutant of PS1 (PS1~E9) [30], we first
confirmed that the Golgi is fragmented
in both AD cell culture and in mouse
models [23], as previously reported in
human AD patients [5]. To determine
the cause of Golgi fragmentation in AD,
we then analyzed Golgi structural
proteins. As described above, the highly
organized stacked structure of the Golgi
is maintained by Golgi structural pro-
teins, such as GRASP65 and its homo-
Bioessays 37: 240–247,� 2014 WILEY Pe
logue GRASP55 [31]. Both mitotic
phosphorylation and apoptotic cleav-
age of these proteins can cause Golgi
fragmentation [24, 32]. In mitosis,
mitotic kinases such as Cdk1 phosphor-
ylate GRASP65, leading to the disas-
sembly of the GRASP65 oligomers and
unstacking of the Golgi cisternae [26, 27,
32, 33]. In apoptosis, caspase-mediated
cleavage of GRASP65 and other Golgi
structural proteins also causes Golgi
fragmentation [34]. To distinguish these
two possibilities for Golgi fragmentation
in AD, we determined whether GRASP65
is phosphorylated or cleaved. We did
not observe any change in the protein
levels of GRASP65 and other Golgi
structural and membrane proteins nor
their degradation products in these
models compared to controls [23]. Thus,
we concluded that apoptotic cleavage of
Golgi structural proteins is not a major
cause of Golgi fragmentation in AD.
Instead, we found that GRASP65 is
phosphorylated by a signaling cascade
that is activated by Ab accumulation,
resulting in Golgi fragmentation. More
specifically, Ab accumulation leads to
Ca2þ influx, which activates calpain, a
riodicals, Inc.
Ca2þ-dependent protease that cleaves
p35 to generate the Cdk5 activator p25
[35]. Cdk5, a kinase known to phosphor-
ylate tau, then phosphorylates GRASP65
and its interacting protein GM130 [36],
essentially inactivating the GRASP pro-
teins that stick the cisternae to each
other, and hence leading to Golgi
fragmentation [23, 35] (Fig. 1). This
conclusion was supported by the fact
that Golgi structure can be restored in the
AD tissue culture models by the inhibi-
tion of Cdk5 or by the expression of a non-
phosphorylatable GRASP65 mutant [23].
The direct cause of Golgi fragmentation is
Ab accumulation, as Ab-treatment
causes Golgi fragmentation in cultured
neurons and other cell types; and this
effect is reversible upon the removal of
Ab from the tissue culture medium.
Consequence of Golgi
fragmentation on protein
trafficking and processing

In AD, the amyloid precursor protein
(APP) and its processing enzymes, the
241



Figure 2. Golgi destruction accelerates protein trafficking and impairs accurate glycosylation.
When Golgi cisternae are fully stacked (A) vesicles can only form and fuse at the rims. This
slows down trafficking, but enforces accurate glycosylation. Once the cisternae are
unstacked (B) more membrane area becomes accessible for vesicle budding and fusion,
thereby increasing cargo transport. This, however, causes glycosylation and sorting defects
(adapted and modified from [45]).
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secretases, are synthesized in the ER
and transported through the Golgi to
the cell surface. Trafficking, maturation,
sorting and processing of both APP and
its cleaving enzymes require proper
functioning of the Golgi apparatus [37,
38]. However, the structural-functional
relationship of the Golgi is so far poorly
understood. Golgi structure formation,
especially stacking, is a pronounced
feature of cellular organization in all
metazoans and many unicellular eukar-
yotes, implying that stacking has im-
portant functional consequences. First,
stacking may impact protein trafficking.
The close spatial arrangement of cister-
nae in stacks minimizes the distance
that molecules must travel. Local teth-
ering proteins facilitate vesicle fusion
with Golgi membranes [39], and there-
fore stacking is expected to enhance
protein trafficking. However, stacking
restricts the surface for vesicle budding
and fusion to the rims of the cisternae,
which may set a kinetic limit to
242
trafficking. Thus, the relationship be-
tween Golgi stack formation and traf-
ficking is still not clear. Second,
stacking may be required for accurate
glycosylation. The Golgi harbors various
glycosyltransferases and glycosidases
in different sub-cellular compartments,
and an ordered compartmentalization is
likely required for precise, sequential
modifications as cargo proteins pass
from cisterna to cisterna [40–42]. In
multi-cellular organisms, N-glycosyla-
tion of membrane and secretory pro-
teins is complex and essential for
their cellular functions, including cell
adhesion and migration, cell-cell com-
munication, signal transduction, endo-
cytosis, and immunity [43]. Third,
stacking may ensure that sorting occurs
only when cargo molecules reach the
trans-Golgi network (TGN), but not
in earlier subcompartments. Therefore,
we speculate that stacking controls
the sequence and speed of protein
transport through the Golgi mem-
Bioessays 37: 2
branes, allowing a protein to remain
in each compartment for a sufficient
time period to ensure proper glycosyla-
tion and sorting.

We have performed systematic stud-
ies to test this hypothesis, and our
results are summarized below. First,
Golgi destruction accelerates protein
trafficking determined using several
markers. Inhibition of Golgi stack for-
mation by microinjected GRASP65 anti-
bodies accelerates CD8 intracellular
transport [44]. Depletion of both
GRASP55/65 destroys the Golgi struc-
ture and enhances trafficking of the cell
adhesion protein integrin, the vesicular
stomatitis virus G glycoprotein (VSVG),
and the lysosomal enzyme cathepsin
D [45]. The Golgi tethering protein
GM130 remains unaffected [44–46],
indicating that the observed effect is
not caused by the disruption of mem-
brane tethering [47]. Golgi destruction
also increases the rate and efficiency of
COPI vesicle formation in vitro [44] and
membrane association of coat proteins
in cells [45]. Second, Golgi destruction
impairs accurate protein glycosylation.
GRASP depletion does not impact the
expression level and localization of
Golgi enzymes, but decreases sialic
acid levels on the cell surface [45].
40–247,� 2014 WILEY Periodicals, Inc.



Figure 3. Golgi defects may contribute to AD disease development. APP expression and
processing cause Ab accumulation when BACE1 activity is increased or Ab clearance is
decreased (1), which induces Golgi fragmentation through modification of GRASP65 and
other Golgi structural proteins (2), which in turn increases Ab production by enhancing
amyloidogenic cleavage (3). This deleterious feedback loop would impair the integrity of the
secretory pathway for sorting, trafficking and modifications of many essential proteins (4),
which may compromise neuronal function, activate inflammatory responses, or cause
neuronal cell death (5). Therefore, rescue of Golgi structure may reduce Ab production and
delay AD development (6) (adapted and modified from [23]).
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Third, Golgi destruction causes mis-
sorting of proteins, e.g. cathepsin D
precursor, to the extracellular space
[45]. These results demonstrate that
formation of a proper Golgi structure
is required for Golgi functioning in
trafficking, glycosylation, and sorting
(Fig. 2) [45].
Golgi defects enhance
APP trafficking and
amyloidogenic processing
in AD

Membrane transport pathways provide
a connection between many sub-cellu-
lar compartments and the cell surface.
Trafficking and sorting of membrane
cargo is vital for normal cellular func-
tion; and defective protein trafficking
and sorting have been linked to a variety
of diseases. The Golgi, in particular the
TGN, directs the protein cargo into
distinct vesicles for sorting to various
subcellular compartments, such as
axons and dendrites in neurons, which
Bioessays 37: 240–247,� 2014 WILEY Pe
is crucial to maintain neuronal cell
polarity and function. Perturbation of
intracellular membrane trafficking is
central to the molecular events that
lead to AD [48]. APP is transported from
the ER through the Golgi to the plasma
membrane (PM) and undergoes post-
translational modifications during its
trafficking, including N- and O-glyco-
sylation, phosphorylation, and tyrosine
sulfation. Only a small fraction of APP
reaches the PM and is acted upon by the
a-secretase present there, whereas ma-
jority of the APP remains in the
Golgi [49]. The uncleaved APP at the
PM is internalized with the help of
the “YENPTY” internalization motif at
its C-terminal end and is delivered to
the endosomes, where it is cleaved by
the resident b-and g-secretases [50, 51].
Some of the APP molecules are traf-
ficked to the lysosomes for degradation
[52]. Membrane trafficking, including
axonal vesicular transport, is severely
disrupted in AD. Neurons surrounding
amyloid plaques have axonal swellings
and dystrophic neurites in early stages
of AD [53, 54]. Similar to APP, other
riodicals, Inc.
proteins such as Alcadein-a, a type-1
transmembrane protein involved in
axonal transport, accumulate around
dystrophic neurites and axons [55].

By light and electron microscopy, we
observed that the Golgi is severely
fragmented in 12 month old APPswe/
PS1DE9 transgenic mice [23] and that
Golgi fragmentation occurs as early as
five months of age. Interestingly, Ab
plaques are not seen in APPswe/PS1DE9
transgenic mice until they are six months
old [56]. This indicates an intriguing
possibility that Golgi defects precede the
formation of Ab plaques [5, 57], strength-
ening the role of the defective Golgi in
aggravating the disease. Golgi defects
may enhance trafficking of APP and its
processing enzymes, as well as many
other proteins essential for neuronal
function (Fig. 3). Our preliminary results
demonstrated that rescue of the Golgi
structure results in accumulation of full
length APP in the Golgi membranes,
indicating a delay in APP trafficking and
processing. Furthermore, restoration of
the Golgi structure by inhibiting Cdk5, or
by expressing the N-terminal GRASP
domain of GRASP65 that forms oligomers
but lacks the regulatory phosphorylation
sites at the C-terminus, significantly
reduced Ab production and increased
sAPPa secretion [23]. Expression of the
non-phosphorylatable GRASP domain
rescues the Golgi from fragmentation in
the presence of Ab or Cdk5, which
corrects APP trafficking and sorting
and shifts the balance from amyloido-
genic to non-amyloidogenic processing
(Fig. 3). Future studies are required to
understand the details on how Golgi
fragmentation and restoration affect the
trafficking and processing of APP and its
processing enzymes.

Apart from GRASP65 phosphoryla-
tion, Cdk5 also phosphorylates APP,
which is known to regulate its metabo-
lism, trafficking and processing [58–62].
Phosphorylation of APP by Cdk5 and
GSK-3b (glycogen synthase kinase-3b)
at T668 and S655 [62] affects its sorting
into Golgi vesicles [50, 58, 63] and the
balance between APP trafficking and
cleavage [64]. Therefore, it is necessary
to determine whether changes in APP
post-translational modifications, in-
cluding phosphorylation and glycosyla-
tion, also contribute to the observed
trafficking and processing defects of
APP in AD.
243
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Golgi defects may impact
trafficking and sorting of
APP processing enzymes

The trafficking pathways of APP and its
processing enzymes, including the a-,
b- and g-secretases, play a central role
in regulating the level of Ab production
and amyloid deposition. APP secretases
follow the secretory and the endocytic
pathways to reach their final destina-
tions of action. Little is known about
how their trafficking routes are affected
by the defective Golgi. The a-secretases,
ADAM10 and ADAM17, belong to the
ADAM (a disintegrin and metallopro-
tease) family type-1 transmembrane
proteins. After synthesis in the ER,
ADAM is transported to the Golgi, where
its pro-domain is cleaved by furin or a
furin-like protease, thus activating its
protease activity. After cleavage, ADAM
is transported to the plasma membrane
for its secretase functions [65]. The b-
secretase, BACE1, is subjected to N-
glycosylation at multiple sites in the
catalytic domain. This domain is essen-
tial for its localization to the Golgi and
endosomes [66], cleavage of the pro-
domain by a calcium-dependent furin-
like protease for activation [67], and
phosphorylation at the cytoplasmic
domain [66]. All of these modifications
occur in the Golgi [68], indicating that
malfunction of the Golgi in AD may
impact BACE1 trafficking, maturation
and activity. BACE1 is transported to the
cell surface where it is internalized into
the endosomes, which provide an opti-
mal acidic environment for the activity
of BACE1 [69]. BACE1 trafficking is also
regulated by GGA family proteins (Gol-
gi-localizing, g-adaptin ear homology
domain, ARF-binding) such as GGA1
and GGA3, which are important sorting
adapters known to facilitate the forma-
tion of clathrin-coated vesicles in the
TGN [70]. GGA proteins recognize the
DISLL sequence in BACE1 and facilitate
its recycling between the TGN and
endosomes [66, 71, 72]. Phosphorylation
of the serine residue (S498) in this
sequence does not affect BACE1 endo-
cytosis [66], but it helps BACE1 bind to
GGA1 at the endosomes for trafficking to
the TGN [73]. Both GGA1 and GGA3 are
decreased in AD brains [71, 74]. When
GGA3 is depleted, BACE1 sorting to
lysosomes is impaired, hence prevent-
244
ing BACE1 degradation [71, 75]. GGA1
overexpression has been shown to
decrease Ab levels [74, 76], possibly
due to the increased retrograde trans-
port of BACE1 from the endosomes to
the TGN [73]. Taken together, it is
reasonable to speculate that Golgi
defects in AD affect both APP and
BACE1 trafficking and processing and
thus impact APP amyloidogenic cleav-
age, as revealed in our study [23].

Following BACE1-mediated process-
ing, APP is further cleaved by g-
secretase for Ab production. The g-
secretase complex is composed of four
integral membrane proteins: presenilin,
nicastrin, APH-1 (anterior pharynx-de-
fective 1), and PEN-2 (presenilin en-
hancer 2). These membrane-associated
components are assembled in a step-
wise fashion during membrane traffick-
ing through the ER and Golgi apparatus
to form the active g-secretase complex,
and then transported to other cellular
membrane organelles [77]. So far, g-
secretase activity has been detected in
virtually every membrane organelle in
the endocytic and exocytic pathways,
including the endosome, lysosome,
TGN, cell surface, and even extracellu-
lar vesicles after exosome release [37,
38, 78–80]. This could possibly be
explained by protein missorting by the
fragmented Golgi. Hence, Golgi defects
may not only impact trafficking, glyco-
sylation and sorting of APP, but also its
processing enzymes.
Golgi defects may impact
trafficking and sorting of
proteins essential for
neuronal function

The Golgi is an essential membranous
organelle in all cell types including
neurons. Its primary function is mem-
brane trafficking that targets a large
number of proteins and lipids to their
final destinations. Dendritic Golgi out-
posts are involved in the trafficking of
many integral membrane proteins and
secretory proteins. These include the
synaptic machineries for neuronal com-
munication, ion channels and trans-
porters for membrane and action
potentials, membrane receptors and
cell adhesion molecules for cell survival
and other activities, and extracellular
Bioessays 37: 2
matrix proteins, neurotransmitters, hor-
mones and growth factors essential for
neuronal function. Golgi defects ob-
served in AD may impact the trafficking
of all these proteins and disrupt their
functions in normal neuronal activity
(Fig. 3).

Proper glycosylation of neuronal
proteins in the Golgi is required for
the functioning of these proteins. For
example, Glucose transporter (Glut)
expression in the brain is essential for
a number of glucoregulatory responses,
including glucagon secretion [81], feed-
ing [82], and thermoregulation [83].
Glut2 activation triggers parasympa-
thetic nerve firing and glucagon secre-
tion. Glut-2 is N-glycosylated in the ER
and the Golgi before reaching the cell
surface; a deficiency in a Golgi-resident
glucosyltransferase, GnT-4a, results in a
reduced cell expression and hence
functioning of Glut-2 [84]. Another
example is polysialic acid (PSA), poly-
mers of neuraminic acid derivatives
associated with a wide range of biologi-
cal components, including glycopro-
teins and lipids. PSA plays crucial
roles in nervous system development
and function and facilitate cell migra-
tion, neurite outgrowth, and synaptic
plasticity. Polysialylation occurs via two
Golgi-associated polysialyltransferases
[85]. Hence, improper glycosylation
resulting from Golgi defects may affect
the functioning of neurons and impact
the overall health of the nervous system.

In addition to protein trafficking,
glycosylation and sorting, the Golgi is
also involved in some other important
cellular functions, such as cleavage and
maturation of Notch during cell prolif-
eration and differentiation, cleavage of
ATF6 upon unfolded protein response
(UPR), and cleavage and release of the
transcription factor Sterol Regulatory
Element-Binding Protein (SREBP) upon
lipid deprivation. Golgi defects may
impact the proper functioning of these
pathways. For example, Notch is an
important protein in neuronal and non-
neuronal cell proliferation and differen-
tiation. In the Notch signaling pathway,
Notch is first cleaved by a Furin-like
proteinase (S1 cleavage) in the Golgi
before being transported to the cell
surface. This cleavage is essential for
producing a functional receptor [86–
88]. Notch activity is also affected by its
glycosylation in the Golgi during
40–247,� 2014 WILEY Periodicals, Inc.
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neurogenesis [89, 90]. Notch signaling
regulates neuronal cell differentiation
during neurogenesis. This is controlled
by Numb, an inhibitor of the Notch
pathway. Numb is normally associated
with a Golgi resident protein, ACBD3,
but is released to the cytosol when the
Golgi is fragmented during cell division
to allow Numb-Notch interaction and
thus Notch inhibition [91]. As the Golgi
is fragmented in AD, whether Numb is
released from the Golgi and how it
affects Notch signaling are so far
unknown. Interestingly, Notch is also
cleaved by the g-secretase (S2 cleav-
age) [92], a fact that hinders the use of g-
secretase inhibitors in AD treatment
because of the requirement of Notch
signaling in cell survival [93]. Put
succinctly, studies on the causes and
effects of Golgi fragmentation in ADmay
provide valuable information about AD
pathogenesis and insight into other
diseases with Golgi defects.
Conclusion and prospects

The Golgi apparatus plays a critical role
in post-translational modification and
sorting of a diverse range of proteins
vital for neuronal function. While it has
long been appreciated that intracellular
trafficking of APP involves the Golgi
apparatus and trans-Golgi network
(recently reviewed by Haass et al.
[52]), at present virtually nothing is
known regarding the impact of toxic Ab
peptides on Golgi function. Similarly,
there is a lack of information regarding
how disruptions in Golgi function might
alter APP processing and b-amyloid
production, and how Golgi defects
might affect trafficking, modification,
and sorting of many other proteins
critical for neuronal functions. In this
review, we present a novel hypothesis
that impaired APP processing, traffick-
ing and clearance lead to hyperactiva-
tion of Cdk5, which then phosphorylates
Golgi structural proteins, in particular
GRASP65, resulting in Golgi fragmenta-
tion. Golgi fragmentation, in turn,
affects the trafficking and processing
of APP and its processing enzymes, and
thus increases Ab production. More
importantly, Golgi defects also impact
trafficking, processing and sorting of
many other essential neuronal proteins,
leading to compromised neuronal func-
Bioessays 37: 240–247,� 2014 WILEY Pe
tions. This deleterious feedback loop
may underlie a so far unrecognized
toxicity of Ab peptides (Fig. 3). Restoring
Golgi structure can effectively reduce
Ab production [23], therefore rescuing
Golgi structure and function may repre-
sent a novel approach to alter Ab
production and toxicity and delay dis-
ease development. It is anticipated that
the insights gained from this type of
research will identify novel therapeutic
targets that can be leveraged in the
treatment of AD and will provide deeper
insight into other diseases with traffick-
ing defects.
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