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On a preference-based instrumental
variable approach in reducing
unmeasured confounding-by-indication
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Treatment preferences of groups (e.g., clinical centers) have often been proposed as instruments to control for
unmeasured confounding-by-indication in instrumental variable (IV) analyses. However, formal evaluations of
these group-preference-based instruments are lacking. Unique challenges include the following: (i) correlations
between outcomes within groups; (ii) the multi-value nature of the instruments; (iii) unmeasured confounding
occurring between and within groups. We introduce the framework of between-group and within-group con-
founding to assess assumptions required for the group-preference-based IV analyses. Our work illustrates that,
when unmeasured confounding effects exist only within groups but not between groups, preference-based IVs can
satisfy assumptions required for valid instruments. We then derive a closed-form expression of asymptotic bias
of the two-stage generalized ordinary least squares estimator when the IVs are valid. Simulations demonstrate
that the asymptotic bias formula approximates bias in finite samples quite well, particularly when the number of
groups is moderate to large. The bias formula shows that when the cluster size is finite, the IV estimator is asymp-
totically biased; only when both the number of groups and cluster size go to infinity, the bias disappears. However,
the IV estimator remains advantageous in reducing bias from confounding-by-indication. The bias assessment
provides practical guidance for preference-based IV analyses. To increase their performance, one should adjust
for as many measured confounders as possible, consider groups that have the most random variation in treatment
assignment and increase cluster size. To minimize the likelihood for these IVs to be invalid, one should minimize
unmeasured between-group confounding. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

As the health care system becomes more digitalized, large administrative databases become increasingly
available. This provides valuable opportunities to conduct observational studies to evaluate the effective-
ness and quality of care in actual practice and on a large scale. However, the validity of these studies is
often threatened by confounding-by-indication, a source of bias which is common but particularly dif-
ficult to remedy [1]. Confounding-by-indication arises when doctors assign different treatment plans to
patients based on perceived patient risk or prognosis [2]. In order to handle this, statistical methods, such
as regression analyses and propensity score adjustments [3], have been widely used to obtain treatment
effect estimates. However, such methods generally result in bias if an important confounder is not con-
trolled for. This can frequently happen because, usually, not all the information on the confounders is
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available in observational studies. For example, patient disease status may be available, but not the disease
severity or its complications, which leads to confounding-by-indication and subsequent bias. Additional
examples of covariate omissions can occur in the context of simultaneity and measurement errors. Simul-
taneity arises when the exposure of interest is also partly determined by the outcome of interest. It often
occurs in studying chronic diseased patients who receive treatments that are ongoing and change over
time. For example, in a study of examining the relationship between erythropoiesis-stimulating agents
(ESA) use and hemoglobin (Hgb) level for managing anemia patients, ESA dose is the exposure of inter-
est, and Hgb is the outcome. However, ESA dose is also partly determined by the Hgb level. It can be
challenging to include all the variables and their correct functional forms in order to capture the temporal
relationship between ESA dose and Hgb accurately.

These challenges motivate us to examine an instrumental variable (IV) analysis that can lead to more
robust effect estimates, even in the absence of complete covariate adjustments. In particular, we focus
on a preference-based IV because treatment preferences across different groups, such as clinical centers,
physician practices, or service areas, have often been proposed as instruments to control for confounding-
by-indication due to unmeasured factors [4, 5]. In an IV analysis, an instrument is used to mimic an
experiment mechanism that can randomly ‘assign’ patients to different treatment plans, and it can work
virtually as well as randomization of treatment assignment. An instrument can only affect the outcome
through the treatment plans which it assigns patients to. IV analyses have been considered to work
like a randomized encouragement design [6]. In a randomized encouragement design [7, 8], patients
are randomly assigned to either treatment or control groups. Patients are then ‘encouraged’ to receive
either treatment or control. However, patients may or may not comply, and non-compliance can lead
to selection bias. Randomization can operate as a perfect IV to overcome the bias [9–11] with higher
compliance implying a stronger instrument. A preference-based IV analysis works like these random-
ized encouragement trials adapted for observational studies in which patients are ‘assigned’ to different
groups through ‘randomization’ after sufficiently adjusting for measured confounders. Different groups
then ‘encourage’ patients to receive differential treatment dosage levels even after sufficient covariate
adjustments, but patients are free to take dosage levels different from what they are ‘encouraged’ to
and can choose to ‘comply’ to various degrees. These differential dosage levels ‘encouraged’ at differ-
ent groups are not usually completely ‘random’. However, they are often partially ‘random’ because
of differential group policies, mix of insurance coverage, and patient/physician’s preferred drug use or
medical knowledge level. And it may be reasonable to assume that these factors could be generally inde-
pendent of unmeasured confounders, such as patients’ disease severity or complications after adjusting
for measured confounders, or at least much more independent than the treatment plan a patient actu-
ally receives. See related argument by Baiocchi et al [12]. The preference-based IV analysis utilizes
this ‘random’ component of the variation in the treatment assignment across groups to obtain valid
treatment effect estimates.

The preference-based IV analysis has been used in a wide range of medical research. It is closely
related, but not equivalent to the group-treatment approach [13], in which the proportion treated in each
group is substituted for each patient’s actual treatment status in a conventional regression analysis. See
related applications of preference-based IV analyses and their variations [14–17]. It is also related to
multiple-instruments-based analyses, which have been used in studies such as Mendelian randomization
[18]. However, preference-based IVs differ from multiple instruments in several ways: (i) intra-cluster
correlations among outcomes often exist, which may arise from unadjusted group-level characteristics
such as other group treatment practices beyond the treatment of interest; (ii) unmeasured confounding
occurring within and/or between clusters; (iii) the preference-based IVs have multiple values and function
as categorical variables, and the number of different values (or categories) of a preference-based IV
often increases as the number of groups increases; (iv) unlike Mendelian randomization studies where
a patient can have several genetic variants as multiple instruments, a patient in a preference-based IV
analysis cannot belong to multiple groups, and his group membership is unique. These unique features
raise unique challenges in examining the properties of preference-based IV estimators. Note that we use
‘group’ and ‘cluster’ interchangeably.

In this paper, we consider continuous outcomes with continuous treatment. We propose a two-stage
generalized least squares (2SGLS) estimator and its variance estimator to accommodate the correla-
tions of outcomes within groups and measured confounders when the outcome model is a linear mixed
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model (LM) with known variance–covariance structures. We introduce the concept of between-cluster
and within-cluster confounding to examine the assumptions required for preference-based IV analyses.
We formalize the assumptions required for the IVs themselves and for the corresponding IV models to
be valid. We raise the concern over the validity of preference-based IV estimators when unmeasured
between-cluster confounding effects exist. Further, we derive a closed-form expression of asymptotic
bias for the 2SGLS IV estimator when the IV is valid. While two-stage least squares (2SLS) IV estima-
tors are usually consistent, that is, unbiased when the number of independent units goes to infinity, their
evaluations have been conducted within simpler settings without clustering or measured confounders or
multi-valued instruments [19]. Our bias calculation accommodates all these complexities. Additional IV
methods that can incorporate covariates have been described elsewhere in [20–26]. With valid preference-
based IVs, when the number of independent units (i.e., clusters) goes to infinity, we demonstrate that the
2SGLS preference-based IV estimator is usually biased unless the number of patients per cluster (i.e.,
cluster size) also goes to infinity. We conduct simulations to confirm that our asymptotic bias formula
approximates bias quite well in finite samples, even when the number of clusters is not very large. We
also examine bias of the preference-based IV analysis through simulations in the presence of unmeasured
between-cluster confounders when the IVs are invalid. In all simulations, we compare the IV estima-
tor with a commonly used LM estimator. We then provide practical guidance in reducing bias and the
possibility of violating assumptions required for preference-based IV analyses.

Our motivating example comes from the Dialysis Outcomes and Practice Patterns Study (DOPPS), an
international prospective cohort study of patients receiving hemodialysis for end-stage kidney disease.
Patients entered the study at various times after dialysis initiation. The objective is to estimate the effect
of ESA use on Hgb level for managing anemia patients. Physicians prescribe ESA dosage primarily based
on patients’ Hgb levels, health status, and ESA responsiveness. However, many observational databases
lack information that sufficiently captures ESA responsiveness. We illustrate the use of the IV analysis
without controlling for ESA responsiveness.

2. Between-cluster and within-cluster confounding

In this section, we define the types of confounders in a clustered data setting. We are interested in the
causal relationship between the treatment T and outcome Y . We denote any confounder of the T − Y
association in a clustered observational study as Uij with i = 1, ...,m indexing clusters and j = 1, ..., ni

for subjects within clusters. Without losing generality, we assume ni = n for any i. Neuhaus [27]
introduced cluster-level and designed within-cluster covariates to assess their respective effects on lon-
gitudinal outcomes. He separated a designed within-cluster covariate into a between-cluster component
and a within-cluster component. Usually, the effects of between- and within-cluster components of the
same covariate on outcomes are assumed to be the same in regression models; however, Neuhaus and
Kalbfleisch [28] present some examples to illustrate that effects of these two components on outcomes
can be very different. We adopt this framework to study confounding and required assumptions in the use
of preference-based IVs. We assume there are two types of confounders: cluster-level confounders and
designed within-cluster confounders. A cluster-level confounder has identical values for all the subjects
with the same cluster, that is, Uij = Ui for all j with Ui denoting the cluster mean of Uij. Examples include
cluster-level characteristics, such as free-standing or hospital-based dialysis facilities, teaching-based or
non-teaching-based facilities, or facility nurse/patient ratios in the DOPPS data example, and other char-
acteristics that do not change across subjects within the same cluster, such as county membership. A
designed within-cluster confounder generally has different values for subjects within the same cluster,
although these values in the same cluster come from an identical distribution. On the other hand, the vari-
ances and cluster means of a designed within-cluster confounder generally vary across different clusters.
Examples include patients’ age, Hgb level, income, and body mass index. We assume all confounding
factors of the T − Y relationship can be summarized by two components: (i) within-cluster components
of confounders, which include the deviations from cluster means of any designed within-cluster con-
founders, (Uij −Ui); and (ii) between-cluster components of confounders, which include the cluster-level
confounders and the cluster means of any designed within-cluster confounders (Ui). We can assess how
each component affects the treatment/outcome and define the effect of (i) on the treatment/outcome as the
within-cluster confounding and the effect of (ii) as the between-cluster confounding. We further assume
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that some confounders are observed and adjusted for in the models, which we denote as Cij for sim-
plicity, a Kc-dimensional vector consisting of both within-cluster and between-cluster components of
observed confounders. That is, for some k, Ckij = Cki for any j with Cki representing the cluster mean of
Ckij. For unobserved or unadjusted confounders, we use separate matrix notations for the within-cluster
components (Pij) and the between-cluster components (Gi). We assume that Pij is a Kp dimensional vec-
tor consisting of all within-cluster components of any designed within-cluster unobserved confounders,
and Gi is a Kg dimensional vector consisting of all between-cluster components of any designed within-
cluster unobserved confounders and any cluster-level unobserved confounders. The separation between
unmeasured between-cluster confounding and within-cluster confounding helps assess the assumptions
required for the preference-based IV approach in the next section.

3. Preference-based instrumental variable analysis

We first describe preference-based IV analysis models. Then, we assess the validity of the IV analy-
sis in the presence of unmeasured between-cluster or within-cluster confounding. Finally, we examine
the assumptions for the preference-based IV analysis models and for preference-based IVs to be
valid instruments.

3.1. The models and assumptions

The models using the preference-based IVs we are interested in are written as simultaneous equations:

Tij = 𝛾i + C
′

ij𝛼Ic + et
ij, (1)

Yij = 𝛽ITij + C
′

ij𝛽Ic + vi + ey
ij, (2)

where 𝛽I , 𝛼Ic and 𝛽Ic are respective fixed effects; 𝛽I is the parameter of interest estimating the T − Y
relationship; et

ij and ey
ij are within-cluster errors; 𝛾i and vi are between-cluster errors which accommodate

the intra-cluster correlation arisen from the fact that subjects within the same cluster tend to be more alike
than those from different clusters; Cij contains the measured confounders and C1ij = 1 for the intercept.
All error terms et

ij, ey
ij, 𝛾i and vi have mean zeros.

Alternatively, the models (1) can be expressed as

Tij = Z
′

ij𝜃 + C
′∗
ij 𝛼

∗
Ic + et

ij , (3)

where Zij is an m × 1 indicator vector with its elements being I(𝓁 = i) for 𝓁 = 1,… ,m (i.e., if 𝓁 = i,
I(𝓁 = i) = 1; otherwise, I(𝓁 = i) = 0, with 𝓁 representing any potential group memberships), 𝜃 is an m×1
vector of parameters such that 𝜃 =

(
𝛾1 + 𝛼1Ic,… , 𝛾m + 𝛼1Ic

)′

where 𝛼1Ic is a constant and corresponds to
the intercept term, C

′∗
ij =

(
C2ij,… ,CKcij

)
and 𝛼∗

Ic =
(
𝛼2Ic,… , 𝛼KcIc

)
. In this formulation, we regard Zij as

random variables and 𝜃 as unknown parameters. Note that Z
′

ij𝜃 = 𝛾i + 𝛼1Ic, which represents treatment
preference levels across m clusters. We will consider models (3) and (2) in the estimation of the IV
models. Let 𝜉i = viJn +ey

i where ey
i =

(
ey

i1, · · · , e
y
in

)′

. We assume that vi ∼ N
(
0, 𝜎2

v

)
and ey

ij ∼ N
(

0, 𝜎2
ey

)
;

hence, 𝜉i ∼ N(0,Ω) with Ω = 𝜎2
v In + 𝜎2

eyJnJ
′

n where In is an identity matrix with rank n, and Jn is a n × 1
vector of ones. We further assume that 𝛾i ∼ N

(
0, 𝜎2

r

)
and et

ij ∼ N
(
0, 𝜎2

et

)
. Although it is not necessary,

for simplicity, we make the normality assumptions for et
ij, e

y
ij, 𝛾i and vi here. Additional assumptions for

the IV model equations include
(

et
ij, e

y
ij, vi

)
⟂ Cij, ey

ij ⟂ Tij and (𝛾i, vi) ⟂
(

et
ij, e

y
ij

)
. These assumptions

are usually standard in linear mixed models.
We now explore the relationship between et

ij and ey
ij, and that between 𝛾i and vi in the presence of

unmeasured between-cluster and within-cluster confounders. The IV analysis aims to obtain valid effect
estimates by utilizing the random component of the treatment assignment, which may arise from dif-
ferential group policies or preferences and is independent of unmeasured confounders (conditional on
measured confounders). The random component is captured by 𝛾i and needs to be independent of vi, e

t
ij,

and ey
ij. In the presence of unmeasured within-cluster confounders P, but not unmeasured between-cluster

confounders G, P is absorbed by et
ij and ey

ij. Let et
ij = P

′

ij𝛼p + 𝜀t
ij and ey

ij = P
′

ij𝛽p + 𝜀
y
ij. Even if 𝜀t

ij ⟂ 𝜀
y
ij

and Pij ⟂ (𝜀t
ij, 𝜀

y
ij), we have Cov(et

ij, e
y
ij) = 𝛼

′

pV(P)𝛽p ≠ 0 where V(P) represents the variance of P. This
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non-zero correlation between the within-cluster error terms usually serves as the motivation to use an
IV analysis approach because fitting a single model equation (2) can typically result in biased estimates
of 𝛽I . Here, when P exists, 𝛾i ⟂ (et

ij, e
y
ij, vi) remains true after adjusting for Cij. In order to make these

assumptions remain plausible, we further assume that Pij represents unadjusted residual within-cluster
confounding after controlling for Cij. On the other hand, in the presence of unmeasured between-cluster
confounding from G, G is absorbed by 𝛾i and vi. Let 𝛾i = G

′

i𝛼g + r0i and vi = G
′

i𝛽g + u0i. Even when
r0i ⟂ u0i, we have Cov(𝛾i, vi) ≠ 0, and 𝛾i is not independent of vi anymore (conditional on C). Hence, the
IV analysis cannot utilize 𝛾i to obtain valid effect estimation when G exists.

Examples of the between-cluster confounding factors may include physicians’ training levels, group
preferences of other treatments, environmental factors, and average social economic status of patients
at group levels. If these factors are not adjusted for, it can result in Cov(𝛾i, vi) ≠ 0 and invalid esti-
mates of the causal effect. In practice, some medical practices at group levels are correlated with each
other while others are not. For example, during anemia management of patients receiving hemodial-
ysis for end-stage kidney disease, ESA and iron prescriptions are often considered simultaneously in
raising Hgb. Higher iron dosage often accompanies lower ESA dosage prescriptions, and the cost of
these two treatments is now reimbursed as a bundle. If the group preferences of iron prescriptions are
not adjusted for in the model examining the ESA-Hgb relationship, it will likely induce a correlation
between 𝛾i and vi and a direct effect between IV and the outcome. On the other hand, group preferences
of vascular access type prescriptions or blood flow managements are medical practices that are likely
independent of the ESA prescription. Even though they may influence the Hgb levels, it is unlikely that
they will induce the correlation between 𝛾i and vi. Therefore, when unadjusted group treatment/practice
preferences are not correlated with group ESA prescription preferences, group preferences can still
serve as instruments to represent the variation of ESA dosage across groups that is captured by 𝛾i and
remains random. These unadjusted group practices contribute to the between-cluster error term vi and
partially explain the correlations among Hgb levels within the same group. Our IV models are designed to
accommodate these correlations.

Prior explorations have focused on assumptions related to the IV models, and here we attempt to
formalize the assumptions required for preference-based IVs to be valid in a counterfactual framework.
We consider the subscripts ij are purely labels, and subjects are randomly assigned to the ith group and
then the jth member within the group within levels of C; all information about subjects is described by
the underlying true models, including all confounders. For simplicity, we assume that 𝛾i is ordered such
that 𝛾i > 𝛾i′ for any i > i

′
. That is, we order the groups from the lowest group treatment dosage preference

levels to the highest. In literature, the m indicator variables in Zij are sometimes referred to as the IVs
[15,29]. In our setting, the presence of random effect vi in the IV model Equation (2) allows for additional
unadjusted between-cluster factors to exist as long as they are uncorrelated with 𝛾i and are not T − Y
confounders. This may give the misconception of a violation of valid IV assumptions because a direct
effect from Zij to the outcome may seem to have come from these additional unadjusted between-cluster
factors. In actuality, the purpose of using Zij is to extract the various treatment preference levels across m
clusters represented by 𝛾i, which is achieved by fitting Equation (3); hence, 𝛾i is the essential player whose
properties are what matter here. Additionally, there is a one-to-one relationship between Zij and 𝛾i, such
that Z

′

ij𝜃 = 𝛾i+𝛼1Ic and a higher order of 𝓁 = i (i.e., the element of Zij), corresponds to a higher value of 𝛾i.
Therefore, it is more accurate to explore the IV assumptions using 𝛾i directly instead of Zij in our setting.
That is, it is essential for 𝛾i not to have a direct effect on Y , which implies that 𝛾i should not be part of
the Equation (2) and that 𝛾i needs to be independent of the unmeasured factors such that 𝛾i ⟂ vi. Because
the subscripts are purely labels, for simplicity of notations, we drop the subscripts in examining the IV
assumptions. To formalize the assumptions, we first hypothesize that, in a counterfactual framework,
for any subject, Y𝛾,t(v,C) is the potential outcome that would have been observed under the treatment
preference level of 𝛾 , and the treatment dosage t actually received by any subject, conditional on v and C,
and T𝛾 (C) is the potential treatment a subject would have received under the group treatment preference
level of 𝛾 given C. In reality, we can observe only one of the potential outcomes of Y for any subject
because the subject can only be assigned to one group with the corresponding group-specific treatment
preference level and one treatment dosage, and similarly for T .
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We adopt the IV assumptions specified in [9, 30] for a preference-based IV:

(1) 𝛾 is positively associated with the treatment received: E(T𝛾 |C) > E(T𝛾
′ |C) for any 𝛾 > 𝛾

′
. Here,

we assume that the level 𝛾 of the IV means that the subject is encouraged to take level 𝛾 of the
treatment.

(2) 𝛾 must be independent of unmeasured confounders, conditional on measured covariates: 𝛾 ⟂
[T𝛾 (C),Y𝛾,t(v,C)]. This assumption is implied by random assignment of the preference-based
instruments, conditional on measured covariates. When between-cluster confounders G are
unadjusted for, this assumption is violated because 𝛾 is not independent of G, conditional
on measured covariates.

(3) There must not be a direct effect between 𝛾 and Y , conditional on v and C. The group treat-
ment preference level 𝛾 must affect outcome only through its effect on the treatment received:
Y𝛾,t(v,C) = Y𝛾

′
,t(v,C). This is the exclusion restriction (ER). Under the ER, Y𝛾,t(v,C) ≡ Y𝛾

′
,t(v,C).

These are the three main assumptions for valid preference-based IVs. Several additional assumptions
for IVs can often be found in literature. One is the stable unit treatment value assumption (SUTVA)
[9], which is commonly assumed: (a) If 𝛾 = 𝛾

′
, then T𝛾 (C) = T𝛾

′
(C); (b) If 𝛾 = 𝛾

′
and t = t

′
, then

Y𝛾,t(v,C) = Y𝛾
′
,t
′
(v,C). The assumptions 1−3 and SUTVA do not point identify a treatment effect [31]. In

order to point identify the treatment effect, we will need to assume either monotonicity or homogeneous
effect. Monotonicity assumes that there are no subjects who are ‘defiers’, that is, T𝛾 (C) > T𝛾

′
(C) for

any 𝛾 > 𝛾
′
. With the assumptions 1 − 3, SUTVA and monotonicity, the IV estimate is interpreted as

the causal treatment effect for the subpopulation of compliers, that is, complier average causal effect
(CACE, [30]), but the IV estimate may not generalize to the whole population. A homogeneous effect
assumes that the treatment has the same effect for compliers and defiers. With the assumptions 1 − 3,
SUTVA and the homogeneous effect, the IV estimate is a consistent estimate of the CACE, which is
also the average causal effect for the whole population. Note that in this manuscript, except for the data
analysis, we assume that the treatment effect is homogeneous. In the data analysis, we do not really
know whether the true treatment effect is homogeneous or heterogeneous or whether the monotonicity
assumption holds.

3.2. Two-stage generalized least squares estimator

Assume 𝛽Ic =
(
𝛽1Ic,… , 𝛽KcIc

)′

in the model (2) corresponds to the effects of
(
C1ij,… ,CKcij

)′

. Let 𝜂I =(
𝛽I , 𝛽1Ic,… , 𝛽KcIc

)′

. With preference-based IVs, the 2SGLS estimator of 𝜂I is given by:

𝜂I =

(
m∑

i=1

Ô
′

iΩ̂
−1Ôi

)−1 ( m∑
i=1

Ô
′

iΩ̂
−1Yi

)
, (4)

where Ω̂ is an estimate of Ω and Ôi =
(

Ôi1,… , Ôin

)′

with Ôij = (T̂ij,C1ij, · · · ,CKcij)
′
. And T̂ij is the

predicted T obtained from the equation (3) using ordinary least squares (OLS) estimation by regressing
Tij on C

′

ij and Z
′

ij (namely a fixed effect estimation instead of a random effect estimation in economics).

Let X
′

ij =
(

Z
′

ij,C
′∗
ij

)
=

(
Z1ij, · · · , Zmij,C2ij, · · · ,CKcij

)
and Xi = (X11, · · · ,Xin). Hence, Equation (3) can

be rewritten as Ti = X
′

i𝜁 + e
′

i, where 𝜁
′ =

(
𝜃

′
, 𝛼

′∗
Ic

)
and ei =

(
ei1, ei2,… , ein

)′

. Subsequently, we have 𝜁 =[∑m
i=1(XiX

′

i )
]−1 [∑m

i=1 XiTi

]
and T̂ij = X

′

ij𝜁 . The 2SGLS estimator of 𝛽I is given by 𝛽I = (1, 0,… , 0) × 𝜂I .
The variance of 𝜂I is estimated by:

Var(𝜂I) =

(
m∑

i=1

Ô
′

iΩ̂
−1Ôi

)−1

.

Hence, Var(𝛽I) = (1, 0,… , 0)Var(𝜂I)(1, 0,… , 0)′ . Note that we propose this variance estimator to accom-
modate the known variance-covariance structure. The estimator is different from the Hubert-White
variance estimator, which is robust when variance-covariance structure is unknown [32] and often used
in software packages.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1150–1168
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In practice, the components of Ω
(

i.e., 𝜎2
v and 𝜎2

ey

)
are replaced by their estimates, which we obtain

by taking the following steps:

(1) Run the initial pooled 2SLS regression without any random effect, ignoring the variance-

covariance structure: �̃�I =
(∑m

i=1 Ô
′

iÔi

)−1 ∑m
i=1 Ô

′

iYi.

(2) Calculate the 2SLS residual ẽij such that ẽij = Yij−𝛽ITij−C
′

ij
̃betaIc where 𝛽I and 𝛽c are components

of �̃�I .
(3) Obtain the estimates of 𝜎2

v and 𝜎2
ey as:

�̂�2
v = 1

nm(n − 1)∕2 − K

m∑
i=1

n−1∑
j=1

n∑
h=j+1

ẽijẽih,

�̂�2
ey =

1
nm − K

(
m∑

i=1

n∑
j=1

ẽ2
ij

)
− �̂�2

v .

(4) Estimate �̂�I using equation (4).
(5) Iterate steps 2-4 using a new 2SGLS regression residual êij = Yij − 𝛽ITij − C

′

ij𝛽Ic to replace ẽij
until convergence.

The method proposed in step 3 to obtain �̂�2
v is based on the fact that E

(
ey

ije
y
ih

)
= 𝜎2

v for all j ≠ h and

�̂�2
ey is based on the standard OLS error-variance estimator �̂�2

e = �̂�2
v + �̂�2

ey = [1∕(nm − K)]
∑m

i=1

∑n
j=1 ẽ2

ij

[33]. Note that K is used for degrees of freedom correction in estimating 𝜎2
v and 𝜎2

ey in finite samples and

K = rank E
(

Ô
′

iΩ̂
−1Ôi

)
.

Note that the residuals in steps 2 and 5 are not the same as the residuals from Yij − 𝛽I T̂ij − C
′

ij𝛽Ic or

Yij − 𝛽I T̂ij − C
′

ij𝛽Ic, which do not give correct estimates of 𝜎2
v , 𝜎2

ey or 𝛽I .

4. Bias in the presence of within-cluster unmeasured confounding

In this section, we first introduce two commonly used true models for T and Y . We then derive the
expression of asymptotic bias of the 2SGLS IV estimator based on the true models when group treatment
preferences are valid instruments and when unmeasured within-cluster confounding, but not between-
clustering confounding, may exist.

4.1. True models

We consider two commonly used LMs as true models for T and Y in clustered data settings, with Cij
representing the measured confounders and Pij for the unmeasured within-cluster confounders. The
distributions of T and Y are specified as follows:

Tij = a0i + C
′

ij𝛼c + P
′

ij𝛼p + 𝜖t
ij, (5)

Yij = b0i + 𝛽Tij + C
′

ij𝛽c + P
′

ij𝛽p + 𝜖
y
ij, (6)

where 𝛼c, 𝛽, 𝛽c, and 𝛽p are fixed effects; a0i, and b0i are between-cluster random errors; 𝜖t
ij and 𝜖

y
ij are

within-cluster random errors. We assume a0i ∼ N
(
0, 𝜎2

a

)
, b0i ∼ N

(
0, 𝜎2

b

)
, 𝜖t

ij ∼ N
(
0, 𝜎2

𝜖t

)
, and 𝜖

y
ij ∼

N
(

0, 𝜎2
𝜖y

)
. The parameter of interest is 𝛽, the causal effect of T on Y . The key assumptions include

a0i ⟂ (𝜖t
ij, 𝜖

y
ij,Pkij), b0i ⟂ (a0i,Ckij,Tij, 𝜖

t
ij, 𝜖

y
ij,Pkij), 𝜖t

ij ⟂ (Ckij,Pkij) and 𝜖
y
ij ⟂ (𝜖t

ij,Ckij, Tij,Pkij) for any k. Of
note, the between-cluster errors a0i and b0i are also random effects which capture the random variation
across clusters beyond C, P for a0i, and beyond C, P, T for b0i.

Let Yi = (Yi1,Yi2,… ,Yin)
′
, Ti = (Ti1,Ti2,… ,Tin)

′
, Pi = (Pi1,Pi2,… ,Pin)

′
, Ci = (Ci1,Ci2,… ,Cin)

′
,

𝜖t
i =

(
𝜖t

i1, 𝜖
t
i2,… , 𝜖t

in

)′

, and 𝜖
y
i =

(
𝜖

y
i1, 𝜖

y
i2,… , 𝜖

y
in

)′

. Here, Yi, Ti, 𝜖
t
i , and 𝜖

y
i are n × 1 vectors, Pi and Ci are
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n×Kp, and n×Kc matrices respectively. The true models in (5) and (6) can be expressed in a matrix form
as follows:

Ti = a0iJn + Ci𝛼c + Pi𝛼p + 𝜖t
i ,

Yi = b0iJn + 𝛽Ti + Ci𝛽c + Pi𝛽p + 𝜖
y
i .

A more compact matrix form for the true models can be written as below and will be used in the
next section:

T = A0 + C𝛼c + P𝛼p + 𝜖t, (7)

Y = B0 + 𝛽T + C𝛽c + P𝛽p + 𝜖y, (8)

where Y , T , 𝜖t, 𝜖y, A0, and B0 consist of stacked elements of Yi, Ti, 𝜖
t
i , 𝜖

y
i , a0iJn, and b0iJn respec-

tively. Note that Y , T , 𝜖t, 𝜖y, A0, and B0 are mn × 1 vectors; and P and C are mn × Kp and mn × Kc
matrices respectively.

4.2. Asymptotic bias

Here, we will derive the asymptotic bias under these true models and examine the consistency property
of the 2SGLS IV estimator. To simplify the derivations, we make the assumptions that the means of T ,
C, and P are zeros because these means only impact the estimator of the intercept but not the estimator
of 𝛽.

We first examine the impact of measured confounders C (including the intercept term) on the bias
derivation. We let MC = Imn−C(C′

C)−1C
′
and transform the data by pre-multiplying MC to the regression

equations in (7) and (8) to obtain

T∗ = A0 + P𝛼p + 𝜖t,

Y∗ = B0 + 𝛽T∗ + P𝛽p + 𝜖y,

where T∗ = MCT and Y∗ = McY which are the projection errors of Y and T on the space spanned

by C respectively. Because Cij⊥
(
𝜖t

ij, 𝜖
y
ij,Pij, a0i, b0i

)
, we have Mc𝜖

t = 𝜖t, Mc𝜖
y = 𝜖y, McP = P, and

so on. As we shall find, the transformation by multiplying MC does not impact the derivation of any
element in the bias formula because the formula (9) will remain the same with transformed data. There-
fore, to further simplify the derivation process, we will assume that there are no measured confounders
C. Theoretically, the bias formula should be the same with or without C, which we will also confirm
through simulations.

In the absence of C, the 2SGLS estimator of 𝛽 obtained by fitting models (3) and (2) can be simplified to

𝛽I =

(
m∑

i=1

T̂
′

i Ω̂
−1T̂i

)−1 ( m∑
i=1

T̂
′

i Ω̂
−1Yi

)

=

[
m∑

i=1

T̂
′

i

(
In − �̂�JnJ

′

n

)
T̂i

]−1 m∑
i=1

[
T̂

′

i

(
In − �̂�JnJ

′

n

) (
𝛽Ti + Pi𝛽p + b0iJn + 𝜖

y
i

)]
,

where T̂i = QTi = JnJ
′

nTi∕n, with Q being the orthogonal projection matrix and �̂� = 𝜎2
v

𝜎2
ey+n𝜎2

v

. Of note,

since Ω = 𝜎2
v In + 𝜎2

eyJnJ
′

n, we have Ω−1 = 1
𝜎2

ey

{In − 𝜎2
v JnJ

′
n

𝜎2
ey+n𝜎2

v

} = 1
𝜎2

ey

{
In − 𝜋JnJ

′

n

}
with 𝜋 = 𝜎2

v

𝜎2
ey+n𝜎2

v

; the

expression of Ω̂−1 follows. Suppose �̂� →p w. Consistent estimates of 𝜎2
v and 𝜎2

ey guarantee that w = 𝜋,
which usually requires a consistent estimate of 𝛽. Otherwise, an inconsistent estimate of 𝛽 can lead to an
inconsistent estimate of 𝜋 (i.e., w ≠ 𝜋).
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The asymptotic bias of 𝛽I can be calculated as follows:

𝛽I − 𝛽 =
m−1 ∑m

i=1

[
T̂

′

i

(
In − �̂�JnJ

′

n

) (
b0iJn + Pi𝛽p + 𝜖

y
i

)]
m−1

∑m
i=1

[
T̂

′

i

(
In − �̂�JnJ′

n

)
T̂i

]
→p

limm→∞m−1 ∑m
i=1

[(
𝛼0iJn + Pi𝛼p + 𝜖t

i

)′

Q
(
In − �̂�JnJ

′

n

) (
b0iJn + Pi𝛽p + 𝜖

y
i

)]
limm→∞m−1

∑m
i=1[

(
𝛼0iJn + Pi𝛼p + 𝜖t

i

)′
Q
(
In − �̂�JnJ′

n

)
Q
(
𝛼0iJn + Pi𝛼p + 𝜖t

i

)
]

→p

𝛼
′

pVp𝛽p(1 − nw)

n𝜎2
a(1 − nw) +

(
𝛼′

pVp𝛼p + 𝜎2
𝜖t

)
(1 − nw)

→p

𝛼
′

pVp𝛽p∕n

𝜎2
a +

(
𝛼′

pVp𝛼p + 𝜎2
𝜖t

)
∕n

.

(9)

Note that w is conveniently canceled out from the formula. Because E(Pi) = 0, V(Pi) = E(P′

iPi), which
is denoted as Vp in the formula. See Appendix for more details of the derivations. When nis are not the
same, n in (9) should be replaced by the mean sample size of the clusters (by applying the Law of Large
Numbers [LLN]).

In a preference-based IV analysis, when the number of clusters increases, the number of categories
or values of the IV variable also increases. Based on the bias formula, when there is no unmeasured
confounding (i.e., 𝛼p = 0 or 𝛽p = 0), the 2SGLS estimator of 𝛽 is consistent. When m → ∞ but the
cluster size n is finite, the estimator is inconsistent when unmeasured confounders exist. The magni-
tude of the asymptotic bias is impacted by the magnitudes of n, 𝛼p, 𝛽p, Vp, 𝜎2

a and 𝜎2
𝜖t. Subsequently,

we cannot consistently estimate 𝜎2
v or 𝜎2

ey or Var
(
𝛽I

)
. Only when both n → ∞ and m → ∞, the

asymptotic bias of 𝛽I disappears, and 𝛽I becomes a consistent estimator. This consistency property of
the 2SGLS IV estimator is unique and different from several other estimators. For example, for OLS,
2SLS, or LM estimators, their asymptotic bias usually disappears when the number of independent units
goes to infinity.

Regular regression estimators such as OLS and LM estimators are unbiased not only in large samples
but also in small samples when the assumptions for the corresponding models are met. In contrast, nei-
ther 2SLS nor 2SGLS estimators are unbiased in small samples, even when there are no violations of
assumptions. The weaker the instruments, the more biased these estimators are in small samples, partic-
ularly when there are multiple instruments [34, 35] or multiple clusters (in our setting). The strength of
the instruments evaluates the correlation between the instruments and endogenous variables and can be
measured by the first-stage partial F statistic [35]. In the absence of unmeasured between-cluster con-

founding, with the true model (5), we have E(F) =
(

n−1− 1
m

)
𝜎2

a

𝛼′pVp𝛼p+𝜎2
𝜖t

. Similar to the 2SLS estimator, we expect

that the relative bias of the 2SGLS estimator to the OLS estimator in finite samples is approximately
1

E(F)+1
[36]. Similar to 2SLS, obtaining F statistics can give us some insight into the relative bias in prac-

tice; the larger the F value, the stronger the IVs, and the smaller the relative bias of the 2SGLS estimator.
Based on the expression of F, we note that large 𝜎2

a , large n, small 𝛽p, and small Vp lead to large F. See
Angrist and Pischke [19] for related discussions on 2SLS. In this manuscript, we focus on the closed-form
expression of asymptotic bias we derived, which can provide guidance to study design, data analysis, and
sensitivity analysis.

5. Simulation

We conduct simulations with several objectives in mind: (i) to examine how well the asymptotic bias
formula approximates bias in finite samples when IVs are valid; (ii) to further reveal patterns of bias
and examine factors that influence bias and the coverage rate (CR) of confidence intervals (CI) of the IV
estimates when IVs are valid; (iii) to investigate the bias patterns when IVs are invalid due to the presence
of unmeasured between-cluster confounders; and (iv) to compare IV analyses with LMs commonly used
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to analyze clustered data. We simulate Tij and Yij using the true models (5) and (6) which are specified as
follows:

Tij = a0i + 𝛼1c + 𝛼2cC2ij + 𝛼3cC3i + 𝛼1pP1ij + 𝛼1gG1i + 𝜖t
ij,

Yij = b0i + 𝛽1c + 𝛽Tij + 𝛽2cC2ij + 𝛽3cC3ij + 𝛽1pP1ij + 𝛽1gG1i + 𝜖
y
ij.

We first conduct simulations without the presence of unmeasured between-cluster confounding, that
is, 𝛼1g = 0 and 𝛽1g = 0. Because the simulations all demonstrate similar patterns with a wide range of
combinations of parameter values, we only present the results when we vary one parameter while holding
other parameters constant with the following default parameter specifications: m = 200, n = 20, 𝛼1c =
18, 𝛼2c = −1, 𝛼3c = −1, 𝛼1p = 0.6, 𝛼1g = 0, 𝛽1c = 3, 𝛽 = 0.7, 𝛽2c = 1, 𝛽3c = 1, 𝛽1p = 0.6, 𝛽1g = 0.
We specify that C2ij ∼ N(0, 1), C3i ∼ N(11, 1), P1ij ∼ N(1, 1), G1i ∼ N(1, 1), 𝜖t

ij, 𝜖
y
ij ∼ N(0, 1), a0i ∼

N(0, 0.32) and b0i ∼ N(0, 1). Note that previously, in order to simplify the bias derivation, we assumed
mean zeros for P and no presence of C; in these simulations, we allow the presence of C and non-zero
means for T , C, and P. We then conduct simulations allowing the presence of unmeasured between-
cluster confounding with corresponding changes to the previous default parameter specifications, that is,
𝛼1p = 0, 𝛼1g = 0.6, 𝛽1p = 0, 𝛽1g = 0.6. For each set of parameter specifications, we simulate 1000 data
sets. For each data set, we estimate 𝛽 using both IV and LM methods. For each parameter specification,
we report bias of the estimates from each method averaged over 1000 simulations and the bias calculated
directly from the bias formula for the 2SGLS estimator. Additionally, we report the CR of CIs of the IV
and LM estimates.

Figures 1, 2, and 3 show results when there is no unmeasured between-cluster confounding, specifi-
cally, the bias and CR when the number of clusters (m) and the cluster size (n) vary, when the unmeasured
within-cluster confounder effect on T (𝛼1p) and on Y (𝛽1p) vary, and when the variance of the random

effect for T
(
𝜎2

a

)
and the variance of the within-cluster unmeasured confounder

(
𝜎2

p

)
vary, respectively.

Figure 1 shows that, when m is small (m = 10), the asymptotic bias formula for the IV estimator approx-
imates bias in finite samples not very well, but not badly either. As m increases to m = 40 and then
m = 200, the bias formula approximates bias in finite samples quite well across a range of n (Figure 1),
𝛼1p, 𝛽1p (Figure 2), 𝜎2

p , and 𝜎2
a (Figure 3). Regardless of m, as n decreases, the IV bias increases approach-

ing the bias of the LM estimates, and the CR also decreases; as n increases, the IV bias decreases toward
zero, and the CR increases toward 95%. Figure 2 shows that, when 𝛼1p increases, the bias of IV estimates
increases before decreasing, reflecting the nonlinear relationship between bias and 𝛼1p captured in the
bias formula. On the other hand, the increase of 𝛽1p linearly increases bias of IV estimates. The CR mono-
tonically decreases as 𝛼1p and 𝛽1p increase. Figure 3 shows that, when 𝜎2

a increases, that is, the amount
of randomness of the treatment assignment captured by the preference-based instruments increases, the
IV bias disappears quickly, and the CR increases to 95%. As 𝜎2

p increases, the IV bias increases, and
the CR decreases. In almost all scenarios, when an unmeasured within-cluster confounder P1ij exists, IV
estimates are much less biased and have higher CRs than LM estimates.

Figure 4 presents the bias patterns when the unmeasured between-cluster confounding effect exists.
When 𝛼1g increases, the bias of IV estimates increases before decreasing. Meanwhile, the increase of 𝛽1g
linearly increases bias of IV estimates. Compared with LM estimates, IV estimates are much more biased
and have lower CRs.

6. A case study

We illustrate the use of IV analysis using the DOPPS Phase 3 data (2005–2008) with 1434 dialysis patients
in 67 facilities to estimate the effect of ESA on Hgb levels. Although it is well-known that ESA increases
Hgb levels [37], several cross-sectional studies have found that patients who received the higher ESA
dosage tended to have lower Hgb levels [38]. These studies may have not fully adjusted for all the major
confounders or correct functional forms of the ESA prescription history in order to accurately capture the
temporal relationships; thus, they failed to estimate the causal effect correctly. For illustration purposes,
we use Hgb at the 14th month as the outcome (denoted by Hgb0) and the ESA dosage one month prior
to Hgb0 (ESA(−1)) as the main exposure since it typically takes about 4 weeks for ESA to show most of
its effect on Hgb [37].

Our investigation of the DOPPS data shows that one of the major confounding factors omitted by
previous work may have been the ESA responsiveness. We find that the ESA dosage at two months prior

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1150–1168
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Figure 1. Bias and coverage rate of the IV and LM estimates. The true effect 𝛽 = 0.7. m: the number of clusters,
n: the cluster size, empirical: averaged over 1000 simulations, analytic: based on the asymptotic bias formula.

to Hgb0 (denoted by ESA(−2)) and Hgb at one month prior (Hgb(−1)) strongly influence ESA(−1) and Hgb0
and have been able to effectively capture ESA responsiveness. The rationale is that, if ESA(−2) is high
and Hgb(−1) is still low, the patient may not be very responsive, and his physician will likely increase
the ESA(−1) dosage. In contrast, the physician will likely keep ESA(−1) dosage low in a patient with low
ESA(−2) and high Hgb(−1). As data illustration, we estimate the effect of ESA(−1) on Hgb0 using both IV
and LM methods without adjusting for the two confounders, ESA(−2) and Hgb(−1). The adjusted covariates
include patients characteristics (i.e., age, sex, race, years on dialysis, history of coronary artery disease,
congestive heart failure, cancer, cerebrovascular disease, diabetes, gastrointestinal bleeding, peripheral
vascular disease, hypertension, intravenous iron, psychiatric disorder, intravenous iron use) as well as
facility quality indicators (i.e., percentages of patients having albumin level < 3.5 g/dL, catheter use,
phosphorus level > 5.5 mg/dL, and single pool kt/V < 1.2).
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Figure 2. Bias and coverage rate of the IV and LM estimates. The true effect 𝛽 = 0.7. 𝛼1p: the effect of unmeasured
within-cluster confounding on the treatment, 𝛽1p: the effect of unmeasured within-cluster confounding on the

outcome, empirical: averaged over 1000 simulations, analytic: based on the asymptotic bias formula.

We first examine whether the effects of the two unadjusted confounders that capture ESA responsive-
ness on outcome are largely within clusters or between clusters. We decompose these two variables into
within-cluster components (denoted by ESA(−2p) and Hgb(−1p) respectively) and between-cluster compo-
nents (denoted by ESA(−2g) and Hgb(−1g) respectively), adjusting for covariates. Then, we regress Hgb0 on
both between-cluster and within-cluster components adjusting for other covariates. The partial F statis-
tics (p-values) are 15.12(p = 0.0001) for ESA(−2p), 0.03(p = 0.871) for ESA(−2g), 1455.74(p < .0001)
for Hgb(−1p), and 320.97(p < 0.0001) for Hgb(−1g). Based on these F statistics, although there is evidence
of between-cluster confounding effect of Hgb(−1), the within-cluster confounding effects appear to be
much larger for both variables.

We then investigate the properties of the ESA preference of dialysis facilities as a potential instrument.
We examine the strength of the IV, and its corresponding first-stage partial F statistic is calculated as
6.2, which is relatively small and indicates stronger instruments may be explored/preferred (see related
discussions on weak instruments [18]). We subsequently examine the associations between the instru-
ment and the unadjusted variables (to put it more accurately, their independent contributions beyond the
adjusted covariates). These additional contributions are represented by the residuals from regressing the
unadjusted variables on adjusted covariates. The facility ESA preference is estimated as the covariate-
adjusted facility average ESA(−1) by fitting Equation (3) with the adjusted covariates set to their respective
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Figure 3. Bias and coverage rate of the IV and LM estimates. The true effect 𝛽 = 0.7. 𝜎2
a : the variance of ran-

dom treatment assignment across groups, 𝜎2
p : the variance of the unmeasure within-group confounder, empirical:

averaged over 1000 simulations, analytic: based on the asymptotic bias formula.

means. We calculate the Pearson correlation coefficient (CC) between the residuals of ESA(−2) and the
facility preference as 0.214(p < 0.0001); although the CC is statistically significant, it is much smaller
than the CC between the residuals of ESA(−2) and ESA(−1) (i.e., 0.625(p < 0.0001)). Similarly, the CC
between the residuals of Hgb(−1) and the facility preference is 0.061(p = 0.022), which is smaller than
the CC between the residuals of Hgb(−1) and ESA(−1) (i.e., −0.110(p < 0.0001)).

Finally, we conduct data analysis without adjusting for ESA(−2) and Hgb(−1). The IV analysis gives a
positive association between ESA(−1) and Hgb0, with an estimate of 0.047 and 95% CI of (0.016, 0.078);
and the estimate is qualitatively consistent with the established effect of ESA on Hgb. In contrast, LM
yields an estimate of −0.010 with 95% CI of (−0.016, −0.003), indicating an inverse association. We fit
another LM model by adding Hgb(−1) and ESA(−2) to the model, and it results in a positive, albeit small,
association of 0.017, with 95% CI of (0.010, 0.023). Hence, without fully adjusting for important con-
founders, the IV method gives results qualitatively consistent with the truth. Even though the previous
analyses in investigating the properties of the IV show that the facility preference is not a perfect instru-
ment, the IV and LM analysis comparison demonstrates the potential advantage of the preference-based
IV approach over LM in reducing the impact of unmeasured within-cluster confounding. The IV analysis
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Figure 4. Bias and coverage rate of the IV and LM estimates. The true effect 𝛽 = 0.7. 𝛼1g: the effect of unmeasured
between-cluster confounding on the treatment, 𝛽1g: the effect of unmeasured between-cluster confounding on the

outcome, empirical: averaged over 1000 simulations.

in this case study may outweigh its limitations, be potentially more beneficial than the LM analysis, and
provide helpful information about the treatment effect, particularly considering that it is unlikely to ever
find a perfectly valid instrument in practice [4].

7. Discussion

Preference-based instruments have often been used in IV analyses to reduce bias due to confounding-by-
indication. However, to our knowledge, few formal evaluations of their properties exist in the literature;
instead, findings in settings without clustering or multi-valued IVs or measured confounders have often
been borrowed and applied. Our research attempts to fill this void. Several unique features of the data
structure with preference-based instrument variables include the following: (i) correlations of the out-
comes within groups, possibly due to unadjusted between-cluster factors; (ii) increasing number of groups
implying increasing number of IV values or categories; (iii) unmeasured confounding effects occurring
between-groups and within-groups. We investigated the assumptions required for preference-based IV
analyses. We derived a closed-form expression of asymptotic bias of a 2SGLS IV estimator and assessed
its consistency property when IVs are valid. We conducted simulations to evaluate how well the bias
formula approximates bias in finite samples and to reveal bias patterns. Our bias assessment provides
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researchers with guidance in the use of preference-based IVs. We also examined the magnitude of bias
through simulations when IVs are not valid in the presence of unmeasured between-cluster confounders.

We have introduced a framework of between-cluster and within-cluster confounding in the context of
studying the preference-based IV analyses. For preference-based IVs to utilize the random component
of the treatment assignment across groups free of unmeasured confounding, unmeasured within-group
confounding may exist, but unmeasured between-group confounding must not. In practice, disease sever-
ity is a major cause of confounding-by-indication and often inadequately measured in databases. It may
be reasonable to assume that the disease severity (or other indicators of treatment) is usually confound-
ing mostly at the within-group level. In such scenarios, IV estimators may be preferred to LM or OLS
estimators. However, if certain groups systematically admit patients with more severe diseases, unmea-
sured confounding occurs at both within-group and between-group levels. The treatment preferences
across clusters will no longer be valid IVs even after covariate adjustments because they are contaminated
by unmeasured between-cluster confounding from disease severity. In addition to patient characteris-
tics aggregated at the group level, other sources of unmeasured between-group confounding come from
group-level characteristics and practice patterns. For example, hospitals that more frequently prescribe
the treatment of interest may also be more (or less) likely to adhere to practice guidelines and provide
better (or worse) care that may confound the treatment effect on outcome. In such scenarios, IV estima-
tors may not be advantageous to LM or OLS estimators if the unadjusted between-cluster confounding is
relatively large compared with the within-cluster confounding. However, if additional unadjusted prac-
tice and treatment patterns at these hospitals are not T − Y confounders and are uncorrelated with the
prescription pattern of the treatment of interest at these hospitals, IV estimators can remain advanta-
geous. Hence, it is important to measure and control for as many between-group confounding effects as
we can to reduce the likelihood of violating IV assumptions. With our model specifications, the previous
statements are consistent with the assumptions that 𝛾i needs to only capture the variation of treatment pref-
erence across groups and that 𝛾i ⟂ vi (conditional on adjusted covariates). Certain statistical tests can help
examine whether group-preferences satisfy the IV assumptions. For example, the Sargan tests can pro-
vide information on whether any of the instruments are associated with unadjusted confounders [39,40].
The Durbin-Wu-Hausman test can be used to examine the endogeneity of treatment [41–43]. Although
these tests can help guide IV analyses, to our knowledge, there is no empirical method for knowing if
these assumptions are satisfied, and no statistical tests are available to test 𝛾i ⟂ vi in our model specifica-
tion when unmeasured confounders exist. Consequently, IV analysts need to apply substantive knowledge
of their subject matter and study design to assess the plausibility of these assumptions [29, 44]. Be cau-
tioned that, when an instrument is invalid such that unmeasured between-cluster confounding exists, a
small violation of IV assumptions can lead to a large bias, as demonstrated through our simulations.
More targeted work is currently being conducted to investigate the properties of the preference-based IV
estimators when these key assumptions are not satisfied.

We have derived a closed-form expression for asymptotic bias of the 2SGLS IV estimator when group
treatment preferences serve as valid instruments and correlations exist among outcomes within the same
clusters, a setting commonly occurring in biomedical research. In finite samples, the estimated variance
is one component of the IV estimator, which makes the assessment of the finite-sample bias intractable.
However, our asymptotic bias proves to be a very good alternative and approximates the finite-sample
bias very well except when the number of clusters is very small. Even when IV is valid, an important
finding in our bias analysis is that the 2SGLS IV estimator is usually asymptotically biased when the
number of clusters goes to infinity but the cluster size is finite. When the cluster size increases, asymptotic
bias decreases. When the cluster size also goes to infinity, the IV estimator becomes asymptotically
unbiased, that is, consistent. This property differs from the 2SLS estimator. In future work, it will be
interesting to make correction to the finite-sample bias and extend the work to other types of models and
endpoints [45–47].

Our simulations and bias formula provide some practical guidance in the use of preference-based
instruments during study design and data analysis. When investigators suspect there may be relatively
large confounding-by-indication due to unmeasured variables whose distributions do not differ much
across groups and whose confounding effects are mostly within clusters, the preference-based IV method
may be preferred over LM. Investigators should also try to incorporate as many measured confounders
at both between-group and within-group levels as possible, particularly the ones that have strong effects
on the outcome. Incorporating these measured confounders can effectively reduce the effects of either
unmeasured confounders on the outcome (𝛽p) or the variance of an unmeasured confounder (Vp), as both
are positively associated with larger bias of IV estimates and lower CRs of their CIs. Further, whenever
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possible, investigators should select groups that maximize the proportion of random variation of treat-
ment assignments across groups as instruments. Additionally, increasing the cluster size can reduce bias.
Investigators should also account for correlations among outcomes within groups in the preference-based
IV analysis because it helps explain other sources of variation in outcomes not explained by measured
variables, but contributing to the correlation within groups. The first-stage partial F-statistics provide use-
ful guidance for the strength of instruments and the extent of bias of the IV estimator relative to the OLS
estimator. Additionally, the closed-form bias formula provides investigators with a method to conduct
sensitivity analyses [48] in order to measure how robust the results of preference-based IV analyses are
toward hypothetical unmeasured confounders. Additional sensitivity analysis methods have been devel-
oped for different IV methods to examine how sensitive the conclusions from an IV analysis are toward
plausible violations of key assumptions [5, 6, 9, 49]. Note that we obtained OLS estimators using a fixed
effect regression for the first-stage model (3), alternatively, a random effects estimator can be explored
[50]. Here, we focus on the asymptotic distribution of the 2SGLS estimator; however, it will be worth-
while to investigate how to obtain the alternative approximation to the distribution of the IV estimator
[51] in our setting, which may improve the asymptotic approximation. While we consider the use of
preference-based instruments in the form presented in this paper, many variants of the instruments have
been used in literature, such as percentages of patients with treatment usage (or adjusted mean dosage) at
group levels in current or prior times [29,52]. They perform generally similar to preference-based instru-
ments in the current form, but with some important differences. This topic has been part of our ongoing
investigation effort and warrants a separate in-depth discussion.

In conclusion, when an unmeasured confounding effect exists solely within clusters, group preferences
can satisfy the assumptions for valid instruments. When group-preferences are valid instruments, the
2SGLS IV estimator remains advantageous in reducing bias from unmeasured confounding. To reduce
the biases of IV estimates in finite samples, investigators should adjust for as many measured con-
founders as possible, consider groups that capture the most random variation in treatment assignments,
and increase cluster size. To reduce the likelihood of violating IV assumptions, investigators should
control for confounders that pose between-group contextual confounding effects.

Appendix (Bias of a Preference-Based Instrumental Variable Estimator in the Presence
of Unmeasured Within-Cluster Confounding)

The bias of 𝛽I can be calculated as follows:
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As m → ∞, we apply the Law of Large Numbers (LLN) for i.i.d. sequences, and we have
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Thus, the bias of 𝛽I can be approximated as

𝛽I − 𝛽 ≈
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