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ABSTRACT 

This paper uses a Multi-Criteria Decision Analysis (MCDA) to examine tradeoffs in electricity 

generation technologies on the basis of cost, greenhouse gas emissions, water consumption, and 

land use. Using a life cycle basis, the analysis compares electricity produced from coal, natural 

gas, nuclear energy, hydropower, solar energy via photovoltaics, solar energy via concentrating 

solar technology, onshore wind, offshore wind, geothermal energy and biomass. Attributional life-

cycle analysis values for overall water consumption and greenhouse gas emissions associated with 

each generation technology are used, along with the levelized cost of electricity and levelized 

avoided cost of electricity’ as metrics for cost, and generation weighted land-use efficiency values 

for evaluation of land-footprint. Two objective scoring methods are used to determine whether 

scoring methodology influences the results of the MCDA. The results are consistent under the two 

scoring schemes, indicating that the results are robust to different objective methods of evaluation 

under an MCDA framework.  Different weighting alternatives for determining the relative 

importance of the four objective functions are also considered to determine the sensitivity of the 

results to stakeholder preferences. If a heavy emphasis was given to costs, geothermal energy tends 

to dominate because of its lowest levelized cost of electricity. On the other hand, when a low 

weights is given to costs, wind power and nuclear energy emerge superior under a number of 

weighting schemes. Lastly, the results from the MCDA methods are compared to a Benefit Cost 

Analysis (BCA) to test for consistency, and it is found that the optimal solutions are different under 

the latter due to the high weights that are implicitly given to costs under a BCA. Even after a price 

on greenhouse gas emissions is factored into the BCA, it favors the technologies with a low 

levelized cost over ones that have lower greenhouse gas emissions, demonstrating that an MCDA 

is better at explicitly recognizing tradeoffs and incorporating stakeholder preferences into decision 

making. Thus, the suitability of MCDA for making more informed, context specific decisions is 

discussed, and the merits offered by an MCDA in contrast to a BCA are presented.  
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1. INTRODUCTION 
This paper uses a Multi-Criteria Decision Analysis (MCDA) approach to carry out an evaluation 

of the various generation technologies that could be potentially used for fulfilling the growing 

needs of the power sector based on different criteria that are important to consider when making 

energy planning decisions. Generation from coal, natural gas, nuclear energy, hydropower, solar 

energy (photovoltaics as well as concentrating solar power), wind (onshore and offshore), 

geothermal energy and biomass is compared. The criteria considered are- minimization of system 

costs, water footprint, carbon dioxide equivalent emissions, and land intensity of the chosen energy 

technology. There are studies on the water-energy nexus in the context of the electricity generation 

sector that have examined the effect of a carbon price on water consumption by the power sector 

in the US, and indicated that the water consumption may increase due to the incentives to shift to 

hydro and nuclear generation, as well as due to the incorporation of carbon capture and storage 

technologies, all of which are water intensive.1 There has also been extensive research on the 

water-energy nexus, especially in the context of the wastewater sector and evaluation of energy 

use in the water sector, as well as on the energy sector’s carbon dioxide emissions independently. 

However, most of the research has focused on evaluating the impacts of a certain energy generation 

portfolio scenarios on the water sector, rather than using the impacts as a metric to aid decision 

making. In this paper, we aim to look at the suitability of an MCDA approach to make more 

informed decisions, rather than evaluate the impacts of different decisions that are made solely on 

the basis of economics. There is no study optimizing the life cycle water consumption, emissions, 

as well as land use of new generation, along with costs from a big picture perspective, and that is 

the question this paper aims to answer. 

1.1. Tradeoffs associated with Energy Planning Decisions: 
Costs are an important factor in energy planning. To compare the various options for power 

generation that could be used to meet increasing energy needs, the associated costs of energy 

generation are attempted to be minimized using their ‘Levelized Cost of Electricity’, in 

combination with their ‘Levelized Avoided Cost of Electricity’, where possible. 

Water and energy are intricately interrelated because of the utilization of energy for the water 

sector, and also the indispensable role of water in the energy sector. Even though the dependence 

of these sectors on each other has been recognized, there haven’t been any widespread coherent 

policies that take into account the impact of one sector on another while making decisions.2 

Water use in the energy sector may occur during different stages, such as extraction and processing 

of resource fuel, as would be in case of coal, or even during operations and maintenance, as would 

be common in the case of consumption attributed to renewable energy generation technologies. 

Water footprint of the power sector depends on several factors including, but not limited to, the 

fuel mix of the chosen generation fleet, the type of power plant in question, as well as the physical 

characteristics such as the water stress in the region the plant is located.3 

The inter-dependencies between water and energy are well established in the United States, and 

different steps have been taken to address the same, such as the creation of a ‘Water-Energy-

Technology-Team’ by the Department of Energy,4 and the introduction of a bill in the U.S.Senate 

related to this issue.5 
In addition to having a large water footprint, the power sector is a major emitter of greenhouse gas 

emissions, which are the main drivers of climate change, and play a role in influencing the 

hydrological cycle, thereby giving us another consideration closely tied to the water-energy nexus 

that could be used for energy planning.6 With a changing regulatory landscape requiring reduction 
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of greenhouse gas emissions, it becomes important to factor minimization of the emissions 

footprint of chosen electricity generation technologies for energy planning decisions in the power 

sector. This study attempts to capture the importance of the emissions profile of electricity 

generation by having ‘reduction of greenhouse gas emissions’ as one of the objectives.  

Production of electricity requires land to be dedicated for generation. This can have implications 

for emissions if the land developed for power is by destruction of forests. It can also have an impact 

on species that have that land as a habitat. Land footprint of power generating technologies can 

also be a concern in geographically constrained regions. Thus, factoring in land use of the different 

electricity generation technologies is important while making energy planning decisions. 

 

1.2. Multi-Criteria Decision Analysis Framework: 
For the purpose of this research, the energy-water nexus in the electricity generation sector is 

studied, along with the carbon emissions, land use, and economic metrics that may factor into 

electricity expansion decisions. Given this context, an MCDA seems to be a suitable tool for the 

analysis of the tradeoffs associated with each generation technology. 

The criteria used in this study are important considerations for the power sector, when looking at 

California’s 15-year drought as a case in point. Historically, hydropower has been the primary 

source of clean and renewable energy in California.7 Hydroelectric power generation in California 

peaked in the 1950s,8 but has declined in prominence over the past half century due to falling water 

levels with hydropower production accounting for only 9 percent of statewide electricity 

generation in 2013. 9  Much of this decline is due to drought, and highlights how electricity 

generation is closely tied to water availability. These dry conditions not only limit hydropower 

generation, requiring generation from other sources to make up for the shortfall, but also result in 

increasing electricity demand as increasingly hot temperatures are recorded during the summer, 

setting new peak demand records.10 The limited availability of hydropower is forcing some utilities 

to buy back-up generation in the form of natural gas, putting the ability of regulated entities to 

meet the state's renewable portfolio standard at risk. California set an accelerated renewable 

portfolio standard in 2011, which requires investor-owned utilities, electric service providers, and 

community choice aggregators to procure 33 percent of their energy from renewable sources by 

2020. CO2 emissions from power generation, which had been falling steadily over 2007-2011, now 

appear to be rising as a result of the lack of hydroelectric power, according to the state's Air 

Resources Board.11 This brings to light the link between carbon dioxide, water availability and 

power generation, and is part of the rationale behind this study, that aims to look at the entire 

system, instead of individual criterion for optimization. 

With renewables being increasingly suggested as energy options to be pursued for reduction in 

emissions as well as water-footprint when compared to conventional generation sources, there is 

concern about some of the issues associated with renewable energy, such as their higher land 

footprint compared to conventional generation alternatives. To capture that, minimization of the 

land footprint of the chosen energy mix is one of the objectives considered in this study. 

Multi-criteria decision analysis (MCDA) methods are extremely valuable, especially in the case 

of decision making for sustainable energy, because of their ability to incorporate multiple criteria 

that aren’t restricted to economics alone.12 Compared to previously used single criteria approaches 

aimed at identifying the most efficient options at a low cost, MCDA gives us the opportunity to 

factor in environmental concerns such as water stress, land-use, and carbon dioxide emissions, 

which are a part of the objectives of this study, to obtain an integrated decision making solution.13 

The MCDA method has already been used successfully in the areas of renewable energy planning 
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and resource allocation when it comes to dissemination of various energy options, electric utility 

planning, and planning for different energy projects, as evidenced by literature.14 Wimmler et al15 

have given an exhaustive list of the different cases where MCDA has been used to make decisions 

related to energy planning. The paper shows different methods like the Analytical Hierarchy 

Process, MAUT, MACBETH, PROMETHEE and others have been used for many different 

contexts, and no method seems to dominate.16 

The Multi-Criteria Decision Analysis approach used in this study falls under the broad category of 

‘Compensatory Methods’, which implies that tradeoffs between different performance parameters 

are allowed.17 Under that broad category, this paper uses a ‘Simple Additive Weighted Model’ to 

evaluate different technology options considered relative to each other. Mathematically, this can 

be summarized as: 

Equation 1: 

𝑆(𝑎) =  ∑ 𝑤𝑖

𝑚

𝑖=1

𝑠𝑖(𝑎) 

where wi is the weight assigned to criteria ‘i’, and si(a) is a partial score function that is 

representative of the performance of option ‘a’ for the same criteria ‘i’.18 S(a) may be either 

maximized or minimized depending on whether the chosen scoring method is structured to make 

high or low values preferable.  The score function is an objective measure of how an alternative 

performs with respect to each criterion.  The weight factor is a subjective measure that indicates 

the relative value of each criterion in an overall decision.  Weights depend on stakeholder values 

and may vary across individuals, regions, situations, and time. Hence, the weights as well as the 

scores will determine the overall performance of the different technologies considered for energy 

generation. There are multiple methods that can be used to calculate scores. This paper examines 

two scoring methods to determine whether different scoring methods yield similar results. 

Weights are determined by the decision maker’s preferences based on value judgments.  For 

instance, if a decision maker cares deeply about carbon-dioxide reductions, they would lay a heavy 

weight on the corresponding objective. Alternatively, in an arid region facing water scarcity issues, 

minimization of water consumption within the region may be a priority.  This paper focuses on the 

sensitivity of different methodological choices to the results of an MCDA of electricity generation.  

The paper explores ranges of weights that may lead to selection of different alternatives; however 

it does not use weights explicitly derived from stakeholders, as preferences are context-specific 

and require higher resolution data particular to a given decision. 

The multi-objective optimization methods used in this study have been widely used in similar 

settings such as sustainability evaluation of power plants and determination of optimal renewable 

energy technologies’ mix, which involve high investment costs, longer project durations 

accompanied by high uncertainty, and conflicting objectives.19 MCDA can provide guidance to 

energy management questions due to its integrated operational evaluation and decision support 

approach, and hence seems suitable for the multi-objective optimization question this paper aims 

to answer. 

The model developed in this study can be used to evaluate the tradeoffs involved with our energy 

choices, when it comes to their impacts on water, land, and emissions, as well as their overall costs. 

It primarily aims to study the different energy alternatives that come out to be superior if certain 
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objectives are prioritized over the others, and helps in explicitly recognizing the tradeoffs involved 

with these choices. 

This paper constructs a generic model that is intended to show how MCDA could be used to select 

a preferred technology for a marginal increase in electricity generation, given stakeholder 

preferences for cost, GHG emissions, land use, and water consumption.  The performance of each 

technology is determined for each of these criteria, and objective scores are assigned to them using 

two calculation methods. A range of weighting schemes is applied to determine the effect different 

preferences have on the results. The results of the MCDA are compared to benefit-cost analysis to 

determine whether the two methods yield similar results.  
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2. MATERIALS AND METHODS 
Using a Multi-Criteria Decision Analysis framework described earlier, a constrained optimization 

is carried out for the four objective functions of cost minimization, water-consumption 

minimization, carbon dioxide equivalent emissions minimization, and the minimization of land 

intensity of power generation. Rather than making specific recommendations about individual 

electricity generation options, the purpose of this paper is to examine the robustness of MCDA, 

determining whether different methodological choices yield similar results. The model represents 

a generic model using U.S. average data; it would need to be tailored to specific regions by using 

geographically explicit data and constraints associated with the specific system.  For example, data 

regarding costs and capacity factors of renewable energy technologies are highly variable and need 

to be tailored to be representative of the specific decision-making context.  Similarly, geothermal 

is included within the analysis, but may not be a viable technology alternative for most regions.   

While comparing the alternative technologies for power generation, there is no distinction made 

among the resources in terms of their dispatchability, variability, and provision of ancillary 

services to the grid. Ancillary services are support services in the power system needed for power 

quality, reliability, and security,20 and conventional generation is expected to be different in terms 

of these services offered to the grid when compared to renewable generation. 

Hence, it is possible to have wind power as superior for meeting the objectives considered in the 

study, but it might not be feasible to meet all the new power requirements by wind alone despite 

its abundance due to the constraints of the system. Although some aspects of the variability of 

renewable energy resources is captured in the metrics used for costs associated with these 

technologies, as is the case with LACE incorporating the capacity value of each resource, the 

treatment of all forms of generation in terms of their power availability is a simplification used in 

this paper. 

“A set of solutions in a MCDA problem is Pareto efficient (also called non-dominated), if their 

elements are feasible solutions such that no other feasible solution can achieve the same or better 

performance for all the criteria being strictly better for at least one criterion. This is a necessary 

condition to guarantee the rationality of any solution to an MCDA problem.”21 A Pareto or tradeoff 

frontier in the context of this analysis is a set of technologies such that among those technologies, 

improvements in any objective are not possible without compromises in other objectives by a 

change in choice of technology. In this study, the Pareto frontier is comprised of Geothermal 

energy, which has the lowest cost, nuclear energy, which has the lowest land footprint, and wind 

energy, which corresponds to the smallest life cycle emissions as well as water consumption value. 

These three technologies are also referred to as ‘non-inferior’ technologies. 

The details of the approach are described in the following sections. 

 

2.1. System Framework Under An MCDA Approach: 

2.1.1. System Variables: 

Ten electricity generation technologies are chosen for this analysis.  Decision variables are defined 

as the amount of electricity generated from coal (Ec), natural gas, (Eng), solar PV (Espv), 

concentrated solar power (Escsp), onshore wind (Eonw), offshore wind (Eoffw), nuclear (Enuc), 

hydropower (Ehyd), geothermal (Egeo), and biopower (Ebio). The assumption made is that the 
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generation from any of the technologies is not large enough to change the overall LCOE-LACE 

value for the technology, which might be true for renewable energy technologies with high levels 

of penetration. 

2.1.2. Criteria Considered Under The MCDA Framework: 

The grand objective function is calculated as a weighted scored sum of the individual objective 

functions of water stress minimization, carbon dioxide minimization, costs minimization, and land 

intensity minimization as follows, by using equation 1 for the 4-objective system used in this study. 

The individual objective functions, and the scoring and weighting schemes used to transform them 

into the grand objective function are explained in more detail in the subsequent sections. 

There are multiple objectives that are considered to determine the best energy pathway, namely: 

2.1.2.1. Minimizing costs associated with the implementation of the proposed 

system 

Objective Z1: 

Levelized cost of electricity (LCOE) is a convenient way of contrasting between power generation 

options, and reflects the costs associated with building a new power plant of a given type, financing 

costs, its fixed as well as variable operation and maintenance costs, fuel costs, and the capacity 

factor of the plant. 22  It can be thought of as the revenue required to make a project under 

consideration viable. However, the LCOE does not take into account important considerations 

such as the capacity value of new generation, the existing resource mix of the region under 

consideration, as well as the projected utilization rate of the proposed new generation.23 In order 

to capture the economic benefit of a new generation project to the system, the ‘Levelized Avoided 

Cost of Electricity’ (LACE) can be used in combination with the LCOE to give an idea of the net 

economic benefit from a proposed project.24 A sensitivity analysis is carried out to test for the 

impact of using just LCOE versus LCOE-LACE as a metric on the results. The technology 

rankings do not change with or without the inclusion of LACE, as will be seen in the subsequent 

sections.  

Even though there is significant variation in LCOEs and LACEs by region, in this paper we focus 

only on the broad level average cost comparisons at the country scale for the US by using average 

$/MWh data. Using the average LCOE and LACE values provided by the EIA, and the differences 

between them as metrics to reflect costs of electricity of various generation technologies, the 

objective function for cost minimization is (ignoring subsidies for the purpose of the analysis).  

LACE varies according to the existing technology within the electricity portfolio; therefore, the 

values obtained from the analysis can only be applied to the next marginal increase in generation.  

Beyond marginal increases in electricity generation, the model will need to take into account the 

system dynamics associated with a changing LACE factor.  

2.1.2.2. Minimizing the life-cycle water footprint  

Objective Z2: 

In order to minimize water stress, the water footprint of various electricity generation technologies 

is used to calculate the life-cycle water consumption associated with each technology. Data 

provided by Meldrum at al25 is used. Most of the water consumption in power generation comes 

from power plant cooling, with thermoelectric power plant cooling responsible for 3-4% of all U.S. 

water consumption, owing to the water intensive closed-loop cooling systems (also known as wet-
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cooling system) predominantly in use.26 Water use in electricity generation is either due to water 

withdrawal or consumption, wherein withdrawal involves returning the water to its source, while 

consumptive water use is where the water is transformed into an unusable state, and does not 

become a part of the water cycle of the region in question.27 In this paper, we only look at the 

consumptive use of water for electricity generation.  
The Meldrum et al study reports water use across different stages encompassing everything from 

component manufacturing, fuel cycle that involves various sub-stages like refining and transport, 

as well as the water use in power plant operation and decommissioning, with a sensitivity analyses 

for the assumptions made about different parameters such as heat rates and efficiency.28 This 

dataset is chosen because it seems to be the most recent review paper that harmonizes consolidated 

data from different primary estimates of water use in electricity generation in the United States in 

existing literature.29  

The values for the lifecycle water footprint of biopower and hydropower are not given in this paper, 

due to the wide range of estimates in literature for water use in both those cases, and the difficulty 

with harmonizing those.30 To arrive at numbers for those two cases, separate estimates from other 

sources are used. 

Due to lack of data available regarding life cycle water consumption of hydropower, operational 

water consumption is used, as it comprises the majority of the life cycle water consumption for 

hydropower31.  

Most of the water consumption for hydropower comes from evaporative losses from the reservoir, 

and because the reservoir is used for purposes other than just electricity generation, there is debate 

about whether all of it should be attributed to electricity generation.32 However, consistent with 

the data available, for the purpose of this study, we used the US average for the consumptive use 

of hydropower, which assumes that the evaporative losses from the reservoir are due to the primary 

aim of electricity generation from it.  

Similarly, for biopower, there is a large variation in literature estimates. The water consumption 

associated with the generation of electricity from biomass can vary based on whether hybrid poplar, 

maize, sugar beet or soybean is used, as well as whether the crop is assumed to be rain fed or 

irrigated.33 Biopower water consumption can also be very sensitive to the geography of the region 

the crop is being grown in, and dependent on the climatic factors of the agricultural area,34 making 

it hard to arrive at a single representative number for its water consumption value. 

For determining the water footprint of biopower facilities, a consumption value of 553 gal/MWh, 

as reviewed from 4 different sources in Macknick et al35 is used. Like hydropower, only the 

operational water consumption associated with biomass is used, and does not take into account 

upstream water use. If that is factored in, the water consumption value for biomass would be higher. 

This then can be assumed to be the lower limit for consumptive water use of biopower. 

While this study uses life cycle water consumption as the basis of analysis, decision makers may 

only be interested in water consumption specific to their region.  In that case, the analysis can be 

tailored to include only region-specific water consumption that impacts local scarcity. 

2.1.2.3. Minimizing the life-cycle greenhouse gas emissions  

Objective Z3: 

The Life-Cycle Analysis data published by the ‘Intergovernmental Panel on Climate Change’36 

(publicly available at: http://en.openei.org/apps/LCA/) is used. The published report reviews and 

http://en.openei.org/apps/LCA/
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harmonizes data from more than 200 papers and harmonizes it to give estimates for lifecycle 

carbon dioxide equivalent footprint of each generation technology.37 Even though there are some 

differences in estimates across different papers in literature estimating life-cycle emissions 

associated with different types of power generation, the overall ranking of technologies on a 

climate basis is broadly consistent for all except biopower. There is significant difficulty in 

establishing greenhouse gas emissions associated with biopower due to the wide variety of 

estimates in literature. While some crops such as switchgrass used for biopower production can be 

considered to have zero or negative net carbon dioxide emissions when planted in degraded 

agricultural lands, 38  there are other cases where significant emissions result due to land use 

changes that may occur.39,40 The estimates published by the IPCC report are used for biopower in 

order to have consistency with the estimates for the other sources, even though land-use change 

emissions are not accounted for in the report,41 acknowledging the wide range of estimates in 

literature and the difficulty with harmonizing and attributing land use change emissions to 

biopower.  

2.1.2.4. Minimizing the land-intensity  

Objective Z4: 

Very few studies have quantified the life-cycle land use associated with all the generation 

technologies. It is very challenging to quantify life-cycle land use associated with electricity 

generation due to the large level of uncertainty involved.42 Moreover, median and average values 

are unable to capture the distribution of the estimates, as is seen to be the case for evaluating the 

land-footprint associated with solar PV and solar CSP. 43  A report published by the IEA 

qualitatively estimates the potential land impacts of various generation technologies,44 but it is 

hard to tell the relative ranking of the different technologies. Similarly, an NREL report quantifies 

the direct and indirect land impacts from solar PV and solar CSP, and shows that the value is higher 

for PV compared to CSP, but mentions that the categories have small sample sizes.45 It is also 

relatively easier to quantify direct land impacts, as compared to indirect ones.46 Therefore, for the 

purpose of this paper we only focus on the direct land impacts of electricity generation, due to the 

large variation involved in indirect impacts stemming from differences in boundaries, locations, 

as well as limited sample sizes.  This simplification is assumed to be appropriate, as direct land 

footprint is most likely to be of concern to individual stakeholders. 

For this paper, data published in McDonald et al47 is used to determine the land footprint associated 

with each generation technology. The paper makes available the generation weighted land use 

efficiency for conventional as well as renewable energy generation technologies based on energy 

growth projections by EIA.48 Fthenakis et al have also published a comprehensive life-cycle land 

use of electricity generation technologies,49 and the order of technologies in terms of their land use 

efficiency remains broadly consistent with the data used for this paper. In their paper, there is large 

variation in estimates based on the location of the plant in question, highlighting how single values 

for land impacts of technologies are difficult to arrive it without information on the exact site being 

considered.  

The actual full cycle land impacts of each technology will be higher than the ones used in this 

paper, and the values in this analysis could be considered to be the lower end of land impact 

estimates. 
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2.1.2.5. Summary of generation technologies considered.  The median value is used 

in calculations.  The range is given in parentheses below 

(Refer to Appendix A for more detail) 

*Operational water consumption data used, due to lack of availability for full cycle.58 

**Assumed to be the same as onshore wind, due to lack of distinction made in the dataset.59 

*** Ranges not explicitly mentioned in the source. 

 

 

 

Table 1 - Summary of associated costs, greenhouse gas emissions, land-use and 

water footprint of chosen technologies 

Generation 

Technology 

Median 

GHG 

emissions 

in kg 

CO2/M

Wh50,51 

Mean 

Water 

consump

tion in 

gallons/

MWh52,

53 

Average LCOE 

in 2012 $/MWh 
54 

Average 

LACE in 

2012$/MWh
55 

Mean Land 

Use Intensity 

(kilometer 

square/TWh/

yr)56,57 

Coal (Tower 

cooling) 

820 

(740-910) 
553 

95.6 

(87-114.4) 

62.2 

(54.6-70.6) 

9.7 

(2.5-17) 

NG (Tower 

cooling, 

Combined cycle) 

490 

(410-650) 
215 

64.4 

(59.6-73.6) 

62.9 

(54.5-74.2) 
18.6*** 

Solar (PV) 
48 

(18-180) 
100 

130 

(101.4-200.9) 

73.4 

(50.8-89.6) 
36.9*** 

Solar (CSP, 

Tower cooling, 

Trough 

technology) 

27 

(8.8-63) 
1050 

243.1 

(176.8-388) 

73.3 

(48.2-82.3) 
15.3*** 

Wind (onshore) 
11 

(7-56) 
2 

80.3 

(71.3-90.3) 

55.7 

(51.7-66.4) 
72.1*** 

Hydro (In stream 

and reservoir 

technology) 

24 

(1-2200) 
4491* 

84.5 

(61.6-137.7) 

59.9 

(54.1-69.5) 
54*** 

Nuclear (tower 

cooling) 

12 

(3.7-110) 
777 

96.1 

(92.6-102) 

61.7 

(54.6-70.5) 

2.4 

(1.9-2.8) 

Geothermal 
38 

(6-79) 
292 

47.9 

(46.2-50.3) 

60.9 

(58.3-62.4) 

7.5 

(1-13.9) 

Biomass 
230 

(130-420) 
553* 

102.6 

(92.3-122.9) 

63.3 

(54.5-74.5) 

543.4 

(433-654) 

Wind Offshore 
12 

(8-35) 
2** 

204.1 

(168.7-271) 

62.3 

(55.1-73.7) 
72.1*** 
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2.1.3. Scoring 

Two objective scoring rubrics are used to evaluate the robustness of results to different scoring 

methodologies. These scoring schemes mathematically convert the performance of each 

technology in each criteria used into scores. As is common with MCDA methods, both scoring 

schemes use a scale of 0 to 1 to translate each objective into a comparable scale.60 In one scoring 

scheme, the superior options receive higher scores, whereas in the other scoring scheme, lower 

scores are preferable.   

The scoring schemes used are described in the following sections: 

2.1.3.1. Scoring Method 1: “Higher Preferred” 

The first scoring method calculates each technology’s performance relative to the technology that 

performs the best for each of the criterion.  The technology that has the best performance on each 

criterion receives a score of 1, whereas the worst performer scores a 0 on that criterion. All other 

technologies receive scores between 0-1, which can be interpreted as the percentage of the best 

that is achieved by the technology with respect to that objective. In practice, it is common to use 

percentage scales where the extremes 0 and 1 represent a real or hypothetical worst or best, and is 

the rationale behind this scoring scheme.61 

The equation summarizing this scoring scheme can therefore be expressed as: 

Equation 2: 

Score (Si) = (Max Zj – Zij) / (Max Zj – Min Zj) 

Where Score (Si) is the score of generation technology i, 

Max Zj is the maximum value attained by objective j with the given set of generation technologies, 

Min Zj is the minimum value attained by objective j with the given set of generation technologies, 

And Zij is the value of the objective function j with generation technology i. 

Using this scoring scheme, it can be seen that the best technology for the single objective under 

consideration will get a score of 1, whereas the worst will get a score of 0.  

 

2.1.3.2. Scoring Method 2: “Lower Preferred” 

The second scoring method calculates each technology’s performance relative to the technology 

that performs the worst for each of the criterion. In this scheme, a lower score is preferred and the 

technology that performs the worst for each criterion receives a score of 1.  The upper boundary 

of the scoring range is 1, but it is not necessary for the alternatives to span the entire range between 

0-1.  

The equation summarizing this scoring scheme can be expressed as: 

Equation 3: 

Score (Si) = Zij / Max Zj 

Where Score (Si) is the score of generation technology i, 
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Max Zj is the minimum value attained by objective j with the given set of generation technologies, 

And Zij is the value of the objective function j with generation technology i. 

Using these two scoring schemes, the different objective functions (Zs) can be mathematically 

transformed into scores (corresponding Ss), which are then used for further analysis to study the 

effect of weighting schemes.  The paper tests whether results of the analysis are significantly 

affected by the different scoring schemes. 

 

2.1.4. Weighting 

Whereas scores are objective measures that translate performance on each criterion to a 

commensurate scale, weights are subjective values that indicate the extent to which a stakeholder 

values each criterion.  This paper shows how different weighting schemes may lead to different 

preferred technologies. A rigorous stakeholder engagement process coupled with region specific 

data is necessary to determine the best options for a region and such an undertaking is outside the 

scope of this paper.  

The raw scores can be considered to be the results that are obtained in an equal weighting scenario. 

However, decisions are unlikely to be made by giving equal importance to all criteria. To 

understand the relationship between the weights attributed to the different objectives and the 

changes in recommendations from the different points on the Pareto frontier, additional weighting 

schemes are explored. 

 

2.2. Comparison of an MCDA Approach to a Benefit-Cost Analysis: 
The results of the analysis for the two scoring schemes are compared to one another as well as a  

traditional benefit cost analysis to test for variations and differences in results using different 

methods, and examine possible underlying causes in any discrepancies. 

In order to conduct a benefit-cost analysis, the LCOE and LACE data is used as a cost metric, with 

an additional cost that would be levied for carbon emissions. 

For calculating the costs associated with carbon dioxide equivalent emissions, ‘Social Cost of 

Carbon’ values provided by the EPA62 are multiplied by the emissions associated with every 

technology to find out an associated dollar value.  

Three cost scenarios are considered- High, Medium and Low.  

In the High scenario, the upper value for the social cost of carbon given by the EPA is used, while 

in the Low scenario, the lowest bound for the same is considered to be the cost of greenhouse gas 

emissions.  
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3. THEORY AND CALCULATIONS 

3.1. Multi-Criteria Decision Analysis 

3.1.1. Scoring 

Using the two scoring schemes, the performance of each generation technology for each of the 

objective functions is calculated individually at first. These can be thought of as the solutions to 

single objective functions, and the optimal solutions for these form the extremes of the Pareto 

frontier, as is defined in the preceding sections. Alternatively, the scores of technologies for each 

criterion can be interpreted as the performance of the points if the weight given to that particular 

objective function is 1, while the weights corresponding to the other objective functions are 0. 

The results when using LCOE as a metric are compared to those from using LCOE in combination 

with LACE, and the ranking of each technology remains the same in both the cases.  

Because the ranking of technologies does not change with or without the use of LACE as a metric 

to compute costs, LCOE alone is used as a metric as a proxy for costs, and the decomposition of 

scores is studied to evaluate the merits and demerits of a particular technology. Conventional 

generation and renewable energy technologies are both compared and contrasted and their ranking 

under the two scoring schemes is shown in the following graphic: 

 

. 

For the left half, a higher score indicates a better performance, and a greater degree of meeting 

objectives, whereas on the right side, a lower score is preferred because it implies a lower overall 

impact on resources. As seen, geothermal is the most superior under both schemes, whereas 

biomass performs poorly. Moreover, the overall ranking of technologies is the exact same in both 

cases. This implies that the overall ranking of the technologies under the two methods are 

consistent, at least under the case of equal weighting of objectives. The consistency of the methods 

under other weighting schemes is explored in the later sections of the paper. 

 

 

Figure 1: Scores of the Technologies under the two scoring methodologies (Equal Weighting). 
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3.1.2. Weighting 

For the purpose of this study, a number of ‘hypothetical’ weighting schemes are used, and their 

effect on the overall scores for each technology are studied, to identify critical weighting points 

that could lead to a switch in preferred technology. 

For this, the weight for the costs criterion is held constant, and the remaining weight is distributed 

among the other three criteria of water consumption, greenhouse gas emissions, and land-footprint 

in various ways. This process is repeated for two values of the weight allocated to costs, and the 

recommendation changes from the weighted scores are then observed. 

The following figure illustrates the weighting combinations that allocate different priority weights 

to water consumption, emissions, and land intensity, while holding the weight given to costs as a 

constant 0.1, superimposed with each of the scoring schemes. 

 

This figure shows how the performance of the technologies (as measured by their weighted scores) 

changes under the different weighting scheme combinations. The weighting scheme diagram 

shows that the combinations can be thought of as a collection of ‘blocks’, where each block has a 

constant weight assigned to water consumption as an objective. Thus, as we move from the left to 

right in the chart (as the ‘blue’ portion of the primary axis increases), the weight allocated to water 

consumption is gradually increasing, making it a higher priority.  

Figure 2: Weighted ‘Higher Preferred' Scores of the technologies when superimposed with the 

weighting schemes. 
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Within each block of constant water consumption weight allocation, the remaining weightage is 

allocated to land on the left, and emissions on the right. This means, within each block, as we move 

from the left to right, we increase the priority given to emissions over land intensity. 

Geothermal energy is the cheapest, wind power has the lowest carbon dioxide equivalent emissions, 

and nuclear energy has the lowest land footprint. Therefore, these three form the extremes of the 

Pareto frontier, which means that when switching from any of these technologies to another, we 

are compromising on the objective function that these technologies are optimal for. 

As seen from Figure 2, Wind, which is the best in terms of life cycle water consumption, starts 

getting a higher weighted score as we move from the left of the figure to the right. Similarly, 

nuclear sees an overall decline in weighted score as we prioritize water consumption (move from 

the left to the right of the figure). Within each block, the weighted score of wind power improves 

when emissions are prioritized over land footprint, whereas a reverse trend is seen for geothermal 

energy and nuclear energy, whose weighted scores lose to wind when it comes to emissions 

prioritization. A higher amplitude of ‘spikes’ in the figure would indicate a great different for a 

given technology in meeting two different objectives. For example, wind power seems to have the 

steepest drops and rises within in each block. This is because wind power is the best for emissions, 

but worst (among the Pareto frontier extremes) for land footprint. 

The same overall results are seen when the weighting scheme is superimposed on the ‘Lower 

Preferred’ scheme, as illustrated in the following figure: 

 

Figure 3: Weighted ‘Lower Preferred' Scores of the technologies when superimposed with the weighting 

schemes (Weight on costs = 0.1). 
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Here, a lower weighted score indicates lower impact on resources, and is a sign of better 

technology performance with the given weight on objectives. Again, the results are similar to those 

with the weighted scores under the ‘Higher Preferred’ scheme. Nuclear shows a higher impact 

when we move from left to right, as water consumption gets prioritized, while wind gets a lower 

score, indicating a superiority of wind when it comes to water consumption. Similarly, within each 

block, wind performs better when emissions are prioritized over land intensity, whereas 

geothermal and nuclear are better in terms of land intensity but worse in terms of emissions relative 

to wind.  

It is highly unlikely that a weight of 0.1 would be given to costs, but the scheme indicates how 

different preferences could influence a decision, even though it is not representative of expected 

stakeholder preferences. A more likely scenario with a weight of 0.9 given to costs is considered, 

and the behavior of the technologies in terms of their weighted scores is studied under that scheme 

too. 

 
 

As seen, when 90% of the overall weight allocation is given to costs, the flexibility left for the 

prioritization of the other objectives is greatly reduced.  

Figure 4: Weighted ‘Higher Preferred' Scores of the technologies when superimposed with the 

weighting schemes (Weight on costs = 0.9). 
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The figure shows that once costs are prioritized to 90%, there is no effect of changing the weights 

for the technology that gets the highest weighted score, which in this case is geothermal.  The 

weights on the other three factors do not influence the relative rankings much. 

An analogous analysis is done for the impact scoring scheme under the same weighting schemes, 

and the behavior of the weighted scores of the technologies is similar to the one observed under 

the ‘Higher Preferred’ scheme. 

 

 

Again, as expected, once a high weight is given to costs, geothermal power with its lowest 

weighted impact score, emerges to be superior no matter how the remaining 10% is distributed 

among the objective of water consumption, emission and land intensity. 

At a weight of 95% given to costs, the tradeoffs between the technologies are no longer relevant 

to their overall ranking, as seen: 

Figure 5: Weighted ‘Lower Preferred' Scores of the technologies when superimposed with the weighting 

schemes (Weight on costs = 0.9). 
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Unless the costs are weighted at 95%, there are tradeoffs that color the performance of technologies, 

and do not give a single ranking order. 

 

3.2. Benefit-Cost Analysis 
A benefit cost analysis (BCA) is carried out to determine the similarities and differences in the 

results from a BCA compared to an MCDA approach. In a benefit cost analysis, preference weights 

can be thought of as being reflected in prices seen in the market, or by explicit techniques of 

welfare economics.63 Therefore, there should be an equivalence between the two methods in terms 

of results, if a high weight is given to the ‘costs’ objective under an MCDA. 

To verify that, LCOE is used as a proxy for costs associated with a given technology. The levelized 

cost of energy will have incorporated in it the costs of water and land, as these are costs associated 

with a project. However, the levelized cost of energy will not reflect the cost of emissions 

associated with each technology. For this purpose, Social Cost of Carbon (SCC) values published 

by the Environmental Protection Agency are used.64 Three scenarios- High, Medium and Low are 

Figure 6: Weighted ‘Higher Preferred' Scores of the technologies when superimposed with the 

weighting schemes (Weight on costs = 0.95). 
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considered, and they correspond to the high, medium and low values estimated for the social cost 

of carbon, as determined by the discount rate used. It is important to note, however, that even 

though the LCOE reflects the costs of water and land requirements associated with a project, it 

does not account for the costs of land degradation, or the environmental costs of water consumption 

in a water-scarce region. In such a case, an MCDA retains the ability to capture these factors by 

corresponding values given to weights. 

The emissions from each generation technology (t CO2eq /MWh) are multiplied with the social cost 

of carbon ($/t CO2eq) to get an associated carbon cost for each technology. The carbon cost added 

to the levelized cost of energy is then used for ranking the technologies from least cost to costliest.  

The following table summarizes the results under the different social cost of carbon estimates: 

Table 2 - Technology Ranking, Cheapest to Costliest 

Low Scenario (SCC = 

$12*/metric ton of CO2eq) 

 

Medium Scenario (SCC = 

$39*/metric ton of CO2eq) 

 

High Scenario (SCC = 

$61*/metric ton of CO2eq) 

 

Geothermal Geothermal Geothermal 

NG (Tower cooling, 

Combined cycle) Wind (onshore) Wind (onshore) 

Wind (onshore) NG (Tower cooling, 

Combined cycle) 

Hydro (In stream and reservoir 

technology) 

Hydro (In stream and 

reservoir technology) 

Hydro (In stream and 

reservoir technology) 

NG (Tower cooling, Combined 

cycle) 

Nuclear (tower cooling) Nuclear (tower cooling) Nuclear (tower cooling) 

Biomass Biomass Biomass 

Coal (Tower cooling) Coal (Tower cooling) Solar (PV) (Utility) 

Solar (PV) (Utility) Solar (PV) (Utility) Coal (Tower cooling) 

Wind-Offshore Wind-Offshore Wind-Offshore 

Solar (CSP, Tower cooling, 

Trough technology) 

Solar (CSP, Tower cooling, 

Trough technology) 

Solar (CSP, Tower cooling, 

Trough technology) 

*Constant 2011 dollars 

As seen from the table, in the low scenario, natural gas is the second cheapest, but as the price on 

carbon increases, it gets pushed down in the ranking order. Geothermal emerges to be most 

superior under the Benefit Cost Analysis because of its lowest LCOE, as well as its relatively low 

emissions. Nuclear energy and biomass see no change in ranking under all three scenarios, whereas 

hydropower and solar PV show an improvement in rankings with an increased cost associated with 

emissions.  
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4. RESULTS AND DISCUSSION 

4.1. Suitability of MCDA methods, and differences in scoring schemes 
Out of the three broad categories of ‘Value Measurement Models’, ‘Goal, Aspiration and 

Reference Level Models’, and ‘Outranking Models’ frequently used in MCDA methods,65 this 

paper used a Value Measurement Model for comparison between the technology alternatives. This 

model is chosen over a ‘Goal Programming’ approach, because the optimization does not have 

predefined goals to be met in each criterion (for example, the study does not set carbon reduction 

goals that ought to be attained by the power sector, merely tries to minimize them keeping in mind 

the tradeoffs associated with carbon dioxide reduction). If there were predefined goals that the 

energy system needs to meet, a ‘Goal, Aspiration and Reference Level Model’ could be used, 

which would minimize the deviations from the desired goals.66 Alternatively, constraints could be 

built into the model if there was a particular budget limit for energy investments, or a constraint 

on how much carbon could be emitted from new generation.  

The results under the MCDA approach used in this paper are consistent in terms of the overall 

ranking of technologies with the two scoring methodologies employed, as is seen in Figure 1. The 

analysis also shows how the assignment of weights colors the performance of the technologies 

considered. The raw scores, i.e. just the sum of the scores of each of the technologies, without 

weighting, can be calculated and compared to the weighted scores under different weighting 

schemes for an estimation of the impact of weights on the overall performance of the technologies 

considered. It is observed that the weighted scores can differ significantly from the unweighted 

ones, and after weighting, the recommendations may be different from those seen after unweighted 

scoring. This finding is consistent with what has been shown in literature on the changes in 

recommendations due to different methods employed to conduct an MCDA, and that the changes 

in recommendation with changing weights should not be taken to be an indication that something 

is wrong with any of the methods used.67,68  

Montis et al69 have formulated a list of criteria to compare different MCDA methods and their 

suitability for sustainability issues, and have concluded that identification of a ‘best’ from the 

methods is not realistic, and that different methods can be applied just as successfully in different 

contexts.70 However, they did not conduct a comparison of methods for the same decision making 

context, as is done in this study. It is important to note though, that both the methods used in these 

study fall in the category of Multi-Attribute Value theory, and the impacts of methodological 

differences within this category are being examined. 

The two scoring schemes, ‘Higher Preferred’ and ‘Lower Preferred’, have associated merits and 

demerits. The ‘Higher Preferred’ scoring scheme sets the upper and lower bounds for each 

generation technology based on the best and worst possible performance in each category. This 

scheme uses relative metrics for the evaluation of each technology, and gives a ranking scale that 

reflects the performance of each technology in comparison to the best available and worst available 

technology, instead of an absolute metric. For example, wind power having a score of 1 does not 

imply that the carbon footprint of wind is an absolute 0, but rather that it has the lowest carbon 

footprint among all the technologies considered. In a context where stakeholders are interested in 

knowing about the absolute impacts of a particular option, this scoring scheme may not give the 

magnitude associated with each in the absolute sense, and instead, the ‘Lower Preferred’ scheme 

could be used, because even the technology with the lowest impact does not get a score of 0. 
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An issue with the ‘Lower Preferred’ scheme is that it seems to be sensible only with positive 

numerators and denominators. For the purpose of this research, it becomes challenging to use this 

scheme in the form of the above equation to calculate scores for costs, because the lowest LCOE 

– LACE value is negative (which indicates the technology has a positive net benefit to the system), 

making the technology scores negative and distorting the interpretation. To accommodate for a 

negative denominator, the scoring scheme could be altered by multiplying throughout by (-1), 

however, it seems more straightforward and easy to use the ‘Higher Preferred’ scheme when 

dealing with negative numbers. 

The ‘Lower Preferred’ scheme seems to be more sensitive to weights because of the change in 

recommendations relatively more easily than that from ‘Higher Preferred’ method, when LCOE is 

used as metric for costs comparison. For example, when a weight of ‘0.1’ is given to the costs 

function, under all the combinations of the other three function weights, Lower Preferred Scores 

show ‘Geothermal’ to be optimal 56.3% of the times, whereas Higher Preferred weighted scores 

show ‘Geothermal’ to be optimal 65.4% of the times. It’s possible that the differences in weighting 

stem from the wide ranges in the raw data, and how each scoring scheme translates the extreme 

values numeric scores.  

The scoring schemes, when combined with weighting, give different recommendations when 

LCOE is used as a metric for costs versus when LCOE-LACE is used, unlike the case of 

unweighted scoring, which gives the same optimal technology recommendation with both the 

scoring methods. (Refer to Appendix B.) For instance, as mentioned, Lower Preferred Scores show 

‘Geothermal’ to be optimal 56.3% of the times when LCOE is used as a cost metric, and 10% 

weight is allocated to costs. However, when LCOE-LACE is used as a metric, even with a 10% 

weight on costs, ‘Geothermal’ emerges to be superior regardless of the alteration of weighting 

distribution under this scheme. This variation is higher in weighted ‘Lower Preferred’ scores than 

the variation in weighted ‘Higher Preferred’ scores, and the latter shows high consistency in results 

regardless of LCOE or LCOE-LACE being used as a proxy for costs. In this context, consistency 

is defined as the similarity when it comes to the recommendation, i.e. the technology that receives 

the best weighted score. (Refer to Appendix C for a complete list of Pareto optimal solutions with 

different weighting schemes.) It is important to note that further analysis would be needed to test 

if this consistency holds true beyond the best weighted scores technology, because it is possible 

that geothermal is an ‘outlier’ in its performance, and that the scoring schemes give very different 

technology preference orders after weighting for the remaining technologies. Comparing figures 2 

and 3, as well as 4 and 5, it seems that the methods are broadly consistent with each other, and the 

weighted scores of technologies follow very similar trends under the two methods.  

The analysis is repeated without geothermal energy, given that is likely to be a more location 

specific resource than the others, which would make the analysis without geothermal power more 

realistic. When geothermal is eliminated, power from natural gas is the cheapest available option. 

Hence, the extremes of the Pareto frontier are now natural gas, nuclear energy and wind power. 

Now, there seems to be a significant consistency across the two scoring schemes with respect to 

the technology that gets the best score, even after weighting, and the relative sensitivity of 

weighted ‘Lower Preferred’ to changing cost metrics is eliminated. (Refer to Appendix D for a 

complete list of Pareto optimal solutions with different weighting schemes, when geothermal is 

eliminated from the analysis.) Again, consistency here is specific to the recommendation similarity 

obtained from the two schemes. 
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A possible explanation could be the fact that the presence of negative scores is not suitable when 

working with ‘Lower Preferred’ scheme. To test if this is indeed the case, the LCOE-LACE value 

for geothermal in the dataset, which is originally negative, is artificially made positive by changing 

it from -$13/MWh to $0.1/MWh. The results after doing so are compared to the weighted Lower 

Preferred scores when solely LCOE is used, to see if there is now more consistency among the 

two. It is found that there is now a very high consistency between the weighted Impact Scores. 

Only two discrepancies are seen, and this could be a result of the changed value for ‘LCOE-LACE’, 

as opposed to the scoring scheme itself. (Refer to Appendix E for a complete list of Pareto optimal 

solutions when the LCOE-LACE value for Geothermal energy is artificially made positive.) 

This would indicate that ‘Lower Preferred’ should not be used if there are negative scores that may 

result from the values in the dataset. In such a situation, a ‘Higher Preferred’ approach will be 

more robust. However, with positive values, both the schemes seem to be consistent in terms of 

unweighted as well as weighted scoring results, and both offer more benefits over a traditional 

Benefit-Cost Analysis approach when it comes to explicit recognition of tradeoffs, context 

specificity, and engagement with stakeholders for incorporation of subjective preferences. 

 

4.2. MCDA versus BCA 
The results are different under a traditional benefit-cost analysis, when compared to an equal 

scoring approach under MCDA. One possible explanation for this could be the fact that the 

Benefit-Cost analysis takes into account market clearing prices, which could be thought of as 

weights in the MCDA used, with a high emphasis on costs. This is verified if under high weights 

given to the costs function in an MCDA, the results from the MCDA become equivalent to those 

from a Benefit-Cost analysis. To do so, the results from the BCA were compared to the weighted 

scores with a high weight allocated to costs. 

Under a weighting scheme that allocates 95% weight to costs, and distributes the remaining 5% 

among land, water and emissions, the results match up to those from the ‘Low Scenario’ of the 

Benefit-Cost Analysis. (Figure 6 vs Table 2 – Low Scenario) 

Under this scheme, geothermal has the lowest costs, whereas Solar CSP, the highest, which 

determines them to be the most optimal and least optimal for both, the ‘Higher Preferred’ as well 

as ‘Lower Preferred’ weighted scoring schemes. However, under any weighting schemes where 

the preference allocated to costs is less than 95%, we get a great deal of flexibility when comparing 

the intermediate scored options using an MCDA approach, depending on whether we prioritize 

land, water or emissions, which is absent in a benefit cost analysis. 

There are a large number of similarities in MCDA and BCA, as would be expected to some extent, 

because both are based in utilitarian theory, and often use linear aggregate models (Net Present 

Value in a BCA, and linear additive functions in MCDA such as the MAVT method used for this 

study).71 

In order to get a fair comparison between the two methods, environmental economics techniques 

such as ‘contingent valuation’ and ‘hedonic pricing’ can be used to determine a dollar value of 

‘water scarcity’, or ‘land degradation’, because even though the LCOE accounts for the cost of 

water associated with the project, and the leasing rate of land, it does not address the issue of 

pricing water or land quality. There is criticism, however, against trying to bracket environmental 

attributes into the category of market goods, and the use of consumer preferences seen in the 

market being used to value goods.72 In light of that argument, it might make more sense to use 
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MCDA methods to elicit weights from the stakeholders involved, because those are not solely 

determined by market signals, and give the stakeholder an opportunity to explicitly recognize 

tradeoffs with his/her decision. 

It has been proposed that the monetary equivalent should be determined for all the ‘commodities’ 

for which it is relatively straightforward, and that analysis should be complemented with an 

MCDA for valuing impacts that cannot be readily monetized.73 Again, an MCDA is able to take 

into account not just the quantified value of each attribute, but also the context of the decision 

being made. Instead of a single optimum solution universally, an MCDA would allow for changing 

optima by using weights to reflect stakeholder priorities in a given situation, as well as the 

changing resource constraints by altering the weights- a flexibility absent if single dollar values 

are attached to each technology. 
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5. CONCLUSIONS 
Based on the results from the weighted scoring, it can be seen that different technologies emerge 

superior when certain objectives are prioritized over others. If the emphasis is on minimization of 

the life cycle water consumption and carbon dioxide footprint, wind power emerges superior 

compared to the other options. If we are to optimize solely for minimization of land intensity, 

nuclear power would be our best bet. Similarly, for costs, geothermal power is most superior. 

However, it should be noted that increasing the weight allocated to a particular objective comes at 

the expense of the other objectives, and there are tradeoffs associated with each of the options that 

show up as optimal under the weighting schemes.  

If geothermal is eliminated from the analysis because of its relative location specificity, generation 

from natural gas is the lowest in terms of costs, and it forms one of the extremes of the Pareto 

frontier, along with wind energy and nuclear energy. 

However, it is important to note that the different technologies vary considerably in terms of 

reliability, dispatchability, and other ancillary services offered to the grid. If the new generation 

coming online is to replace retiring coal fired power plants, building a wind power plant for water 

and carbon dioxide optimization may not serve the purpose of base load generation, and create 

issues associated with the intermittency of wind. It is also important to note that the optimization 

is carried out for a ‘snapshot’ period, and is likely to change over time in terms of optimal 

recommendations. This is especially true if we consider the case of variable renewable energy 

generation, whose marginal benefit to the system is likely to decrease with increasing penetration. 

To account for such changes, additional complexity can be added to the model which instead of 

using constant LCOE and LACE values, uses a decreasing value for both over time. 

The results and their robustness across the two scoring rubrics help highlight the suitability of 

MCDA methods as a decision framework for energy planning, along with its advantages over a 

traditional benefit-cost analysis. It also shows how MCDA methods could be used to incorporate 

objectives other than costs into decision making.  

An important characteristic of the two schemes used in this analysis is the fact that even after 

weighting, at no point do suboptimal solutions come up as optimal. This ensures that the 

recommendation after accounting for subjective preferences is still among the objectively optimal 

solutions. 

Further research is needed to study the optimality of different generation technologies when a 

specific region is under consideration. As seen, there is significant variation in values for land 

impacts based on the location (generation weighted land use of solar PV and CSP is likely to be 

lower if the region has an exceptional solar resource), as well as in water consumption values based 

on cooling technology type used. The costs, too, are expected to be different in different regions 

not just because of the geography, but also the system into which the resource is being added. The 

same is expected from emissions. Consequential Life-Cycle Analysis values specific to the 

particular system being studied will help in giving the optimal solutions specific to the system. 

Similarly, instead of hypothetical weights, weights that accurately reflect the geography as well as 

preferences of the region being considered could be formulated by attaching appropriate priority 

weights to capture the same. 
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The comparison between an MCDA and BCA can also be studied further by comparing MCDA 

results to a BCA when land degradation penalties, and water consumption penalties in terms of 

$ value are attached to the latter. 
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6. APPENDICES 
Appendix A: 

Point Estimates Derived from Data Ranges: 

1) Life Cycle Carbon Dioxide eq. Emissions 

Generation Technology 

CO2 emissions in kg CO2/MWh (Data 

from IPCC Report74 75 

 Low Median High 

Coal (Tower cooling) 740 820 910 

NG (Tower cooling, Combined cycle) 410 490 650 

Solar (PV) (Utility) 18 48 180 

Solar (CSP, Tower cooling, Trough technology) 8.8 27 63 

Wind (onshore) 7 11 56 

Hydro (In stream and reservoir technology) 1 24 2200 

Nuclear (tower cooling) 3.7 12 110 

Geothermal 6 38 79 

Biomass 130 230 420 

Wind-Offshore 8 12 35 

 

2) Life Cycle Water Consumption 

(For derivation of water use in various life cycle stages, refer to “Supplemental Dataset”.76 

Generation Technology Water consumption in gallons/MWh (Data from Table 

A-35,[iii] and NREL Report.[iv])77 78 

 Power 

Plant 

Fuel 

Cycle 

Fixed 

O&M 

Variable 

O&M 

Baseline 

(total) 

Coal (Tower cooling) 1 22 90 440 553 

NG (Tower cooling, Combined cycle) 1 4 2 208 215 

Solar (PV) (Utility) 94  2.5 3.5 100 

Solar (CSP, Tower cooling, Trough 

technology) 

160  50 840 1050 

Wind (onshore) 1  0 1 2 
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Hydro (In stream and reservoir 

technology)* 

    4491 

Nuclear (tower cooling) 1 56 30 690 777 

Geothermal 2  0 290 292 

Biomass*     553 

Wind-Offshore** 1  0 1 2 

  

*Operational water consumption data used, due to lack of availability for full cycle.79 

**Assumed to be the same as onshore wind, due to lack of distinction made in the dataset.80 

 

3) Costs data. 

Generation Technology LCOE in 2012 $/MWh (EIA Dataset for LCOE)81 

 Low Average High With 

subsidies 

low 

With 

subsidies 

average 

With 

subsidies 

high 

Coal (Tower cooling) 87 95.6 114.4    

NG (Tower cooling, 

Combined cycle) 

59.6 64.4 73.6    

Solar (PV) (Utility) 101.4 130 200.9    

Solar (CSP, Tower cooling, 

Trough technology) 

176.8 243.1 388    

Wind (onshore) 71.3 80.3 90.3    

Hydro (In stream and 

reservoir technology) 

61.6 84.5 137.7    

Nuclear (tower cooling) 92.6 96.1 102 82.6 86.1 92 

Geothermal 46.2 47.9 50.3    

Biomass 92.3 102.6 122.9    

Wind-Offshore 168.7 204.1 271    

 

Generation Technology LACE in 2012 $/MWh (EIA Dataset for LACE)82 

 Minimum Average Maximum 

Coal (Tower cooling) 54.6 62.2 70.6 

NG (Tower cooling, 

Combined cycle) 

54.5 62.9 74.2 

Solar (PV) (Utility) 50.8 73.4 89.6 

Solar (CSP, Tower cooling, 

Trough technology) 

48.2 73.3 82.3 

Wind (onshore) 51.7 55.7 66.4 
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Hydro (In stream and 

reservoir technology) 

54.1 59.9 69.5 

Nuclear (tower cooling) 54.6 61.7 70.5 

Geothermal 58.3 60.9 62.4 

Biomass 54.5 63.3 74.5 

Wind-Offshore 55.1 62.3 73.7 

 

4) Life-cycle Land use data: 

Generation Technology Life-cycle Land Use (kilometer square/TWh/yr)83 

 Minimum Midpoint Maximum 

Coal (Tower cooling) 2.5 9.7 17 

NG (Tower cooling, Combined 

cycle)* 

 18.6  

Solar (PV) (Utility)*  36.9  

Solar (CSP, Tower cooling, Trough 

technology)* 

 15.3  

Wind (onshore)*  72.1  

Hydro (In stream and reservoir 

technology)* 

 54  

Nuclear (tower cooling) 1.9 2.4 2.8 

Geothermal 1 7.5 13.9 

Biomass 433 543.4 654 

Wind-Offshore  72.1  

*Ranges not explicitly mentioned in the source. 
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Appendix B: 
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Appendix C (Highlighted text indicates inconsistency in recommendation between methods): 

LCOE/LCOE

-LACE = 0.1 

  Higher 

Preferred, 

LCOE 

used 

Higher 

Preferred, 

LCOE-

LACE 

used 

Lower 

Preferred, 

LCOE 

used 

Lower 

Preferred, 

LCOE-

LACE used 

Water Weight Emission

s Weight 

Land 

Intensity 

Weight 

Optimal 

Solution 

Optimal 

Solution 

  

0 0 0.9 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.1 0.8 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.2 0.7 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.3 0.6 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.4 0.5 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.5 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0 0.6 0.3 Geotherma

l 

Geotherma

l 

Nuclear Geothermal 

0 0.7 0.2 Geotherma

l 

Geotherma

l 

Nuclear Geothermal 

0 0.8 0.1 Nuclear Nuclear Nuclear Geothermal 

0 0.9 0 Wind Wind Wind Geothermal 

0.1 0 0.8 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.1 0.7 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.2 0.6 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.3 0.5 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.4 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.5 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.6 0.2 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.1 0.7 0.1 Wind Geotherma

l 

Wind Geothermal 

0.1 0.8 0 Wind Wind Wind Geothermal 
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0.2 0 0.7 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.1 0.6 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.2 0.5 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.3 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.4 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.5 0.2 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.2 0.6 0.1 Wind Wind Wind Geothermal 

0.2 0.7 0 Wind Wind Wind Geothermal 

0.3 0 0.6 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.3 0.1 0.5 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.3 0.2 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.3 0.3 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.3 0.4 0.2 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.3 0.5 0.1 Wind Wind Wind Geothermal 

0.3 0.6 0 Wind Wind Wind Geothermal 

0.4 0 0.5 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.4 0.1 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.4 0.2 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.4 0.3 0.2 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.4 0.4 0.1 Wind Wind Wind Geothermal 

0.4 0.5 0 Wind Wind Wind Geothermal 

0.5 0 0.4 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.5 0.1 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.5 0.2 0.2 Geotherma

l 

Geotherma

l 

Wind Geothermal 

0.5 0.3 0.1 Wind Wind Wind Geothermal 

0.5 0.4 0 Wind Wind Wind Geothermal 
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0.6 0 0.3 Geotherma

l 

Geotherma

l 

Geotherma

l 

Geothermal 

0.6 0.1 0.2 Wind Geotherma

l 

Wind Geothermal 

0.6 0.2 0.1 Wind Wind Wind Geothermal 

0.6 0.3 0 Wind Wind Wind Geothermal 

0.7 0 0.2 Wind Wind Wind Geothermal 

0.7 0.1 0.1 Wind Wind Wind Geothermal 

0.7 0.2 0 Wind Wind Wind Geothermal 

0.8 0 0.1 Wind Wind Wind Geothermal 

0.8 0.1 0 Wind Wind Wind Geothermal 

0.9 0 0 Wind Wind Wind Geothermal 
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Appendix D (Highlighted text indicates inconsistency in recommendation between methods): 

LCOE/LCOE

-LACE = 0.1 

  Higher 

Preferred

, LCOE 

used 

Higher 

Preferred, 

LCOE-

LACE 

used 

Lower 

Preferred, 

LCOE 

used 

Lower 

Preferred, 

LCOE-

LACE used 

Water Weight Emission

s Weight 

Land 

Intensity 

Weight 

Optimal 

Solution 

Optimal 

Solution 

Optimal 

Solution 

Optimal 

Solution 

0 0 0.9 Nuclear Nuclear Nuclear Nuclear 

0 0.1 0.8 Nuclear Nuclear Nuclear Nuclear 

0 0.2 0.7 Nuclear Nuclear Nuclear Nuclear 

0 0.3 0.6 Nuclear Nuclear Nuclear Nuclear 

0 0.4 0.5 Nuclear Nuclear Nuclear Nuclear 

0 0.5 0.4 Nuclear Nuclear Nuclear Nuclear 

0 0.6 0.3 Nuclear Nuclear Nuclear Nuclear 

0 0.7 0.2 Nuclear Nuclear Nuclear Nuclear 

0 0.8 0.1 Nuclear Nuclear Nuclear Nuclear 

0 0.9 0 Wind Wind Wind Wind 

0.1 0 0.8 NG NG NG NG 

0.1 0.1 0.7 Nuclear Nuclear Nuclear Nuclear 

0.1 0.2 0.6 Nuclear Nuclear Nuclear Nuclear 

0.1 0.3 0.5 Nuclear Nuclear Nuclear Nuclear 

0.1 0.4 0.4 Nuclear Nuclear Nuclear Nuclear 

0.1 0.5 0.3 Nuclear Nuclear Nuclear Nuclear 

0.1 0.6 0.2 Wind Nuclear Nuclear Nuclear 

0.1 0.7 0.1 Wind Wind Wind Wind 

0.1 0.8 0 Wind Wind Wind Wind 

0.2 0 0.7 NG NG NG NG 

0.2 0.1 0.6 Nuclear Nuclear Nuclear Nuclear 

0.2 0.2 0.5 Nuclear Nuclear Nuclear Nuclear 

0.2 0.3 0.4 Nuclear Nuclear Nuclear Nuclear 

0.2 0.4 0.3 Wind Wind Wind Wind 

0.2 0.5 0.2 Wind Wind Wind Wind 

0.2 0.6 0.1 Wind Wind Wind Wind 

0.2 0.7 0 Wind Wind Wind Wind 

0.3 0 0.6 NG NG NG NG 

0.3 0.1 0.5 Nuclear Nuclear Nuclear Nuclear 

0.3 0.2 0.4 Wind Wind Wind Wind 

0.3 0.3 0.3 Wind Wind Wind Wind 

0.3 0.4 0.2 Wind Wind Wind Wind 

0.3 0.5 0.1 Wind Wind Wind Wind 
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0.3 0.6 0 Wind Wind Wind Wind 

0.4 0 0.5 NG NG NG NG 

0.4 0.1 0.4 Wind Wind Wind Wind 

0.4 0.2 0.3 Wind Wind Wind Wind 

0.4 0.3 0.2 Wind Wind Wind Wind 

0.4 0.4 0.1 Wind Wind Wind Wind 

0.4 0.5 0 Wind Wind Wind Wind 

0.5 0 0.4 NG NG NG NG 

0.5 0.1 0.3 Wind Wind Wind Wind 

0.5 0.2 0.2 Wind Wind Wind Wind 

0.5 0.3 0.1 Wind Wind Wind Wind 

0.5 0.4 0 Wind Wind Wind Wind 

0.6 0 0.3 NG NG NG NG 

0.6 0.1 0.2 Wind Wind Wind Wind 

0.6 0.2 0.1 Wind Wind Wind Wind 

0.6 0.3 0 Wind Wind Wind Wind 

0.7 0 0.2 Wind NG Wind NG 

0.7 0.1 0.1 Wind Wind Wind Wind 

0.7 0.2 0 Wind Wind Wind Wind 

0.8 0 0.1 Wind Wind Wind Wind 

0.8 0.1 0 Wind Wind Wind Wind 

0.9 0 0 Wind Wind Wind Wind 

 

Appendix E (Highlighted text indicates inconsistency in recommendation between methods): 

LCOE/LCOE-

LACE = 0.1 

  Lower Preferred, 

LCOE used 

Lower Preferred, 

LCOE-LACE 

used, Artificially 

Positive Value 

for Geothermal 

Water Weight Emissions 

Weight 

Land Intensity 

Weight 

  

0 0 0.9 Geothermal Geothermal 

0 0.1 0.8 Geothermal Geothermal 

0 0.2 0.7 Geothermal Geothermal 

0 0.3 0.6 Geothermal Geothermal 

0 0.4 0.5 Geothermal Geothermal 

0 0.5 0.4 Geothermal Geothermal 

0 0.6 0.3 Nuclear Nuclear 

0 0.7 0.2 Nuclear Nuclear 

0 0.8 0.1 Nuclear Nuclear 

0 0.9 0 Wind Wind 

0.1 0 0.8 Geothermal Geothermal 
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0.1 0.1 0.7 Geothermal Geothermal 

0.1 0.2 0.6 Geothermal Geothermal 

0.1 0.3 0.5 Geothermal Geothermal 

0.1 0.4 0.4 Geothermal Geothermal 

0.1 0.5 0.3 Geothermal Geothermal 

0.1 0.6 0.2 Geothermal Geothermal 

0.1 0.7 0.1 Wind Wind 

0.1 0.8 0 Wind Wind 

0.2 0 0.7 Geothermal Geothermal 

0.2 0.1 0.6 Geothermal Geothermal 

0.2 0.2 0.5 Geothermal Geothermal 

0.2 0.3 0.4 Geothermal Geothermal 

0.2 0.4 0.3 Geothermal Geothermal 

0.2 0.5 0.2 Geothermal Geothermal 

0.2 0.6 0.1 Wind Wind 

0.2 0.7 0 Wind Wind 

0.3 0 0.6 Geothermal Geothermal 

0.3 0.1 0.5 Geothermal Geothermal 

0.3 0.2 0.4 Geothermal Geothermal 

0.3 0.3 0.3 Geothermal Geothermal 

0.3 0.4 0.2 Geothermal Geothermal 

0.3 0.5 0.1 Wind Wind 

0.3 0.6 0 Wind Wind 

0.4 0 0.5 Geothermal Geothermal 

0.4 0.1 0.4 Geothermal Geothermal 

0.4 0.2 0.3 Geothermal Geothermal 

0.4 0.3 0.2 Geothermal Geothermal 

0.4 0.4 0.1 Wind Wind 

0.4 0.5 0 Wind Wind 

0.5 0 0.4 Geothermal Geothermal 

0.5 0.1 0.3 Geothermal Geothermal 

0.5 0.2 0.2 Wind Wind 

0.5 0.3 0.1 Wind Wind 

0.5 0.4 0 Wind Wind 

0.6 0 0.3 Geothermal NG 

0.6 0.1 0.2 Wind Wind 

0.6 0.2 0.1 Wind Wind 

0.6 0.3 0 Wind Wind 

0.7 0 0.2 Wind NG 

0.7 0.1 0.1 Wind Wind 

0.7 0.2 0 Wind Wind 

0.8 0 0.1 Wind Wind 

0.8 0.1 0 Wind Wind 

0.9 0 0 Wind Wind 
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